Science.gov

Sample records for cord-derived mesenchymal stem

  1. Purified umbilical cord derived mesenchymal stem cell treatment in a case of systemic lupus erythematosus.

    PubMed

    Phillips, Christopher D; Wongsaisri, Pornpatcharin; Htut, Thein; Grossman, Terry

    2017-12-01

    Systemic lupus erythematosus (SLE) is a multiple organ system autoimmune disorder for which there is no known cure. We report a case of a young adult lady with SLE and Sjogren's with diagnostic and clinical resolution following purified umbilical cord derived mesenchymal stem cell (MSC) and globulin component protein macrophage activating factor (GcMAF) therapy in a combined multidisciplinary integrative medicine protocol. Our patient had complete reversal of all clinical and laboratory markers. We recommend a prospective randomized double blind study to assess the sustained efficacy of MSC and GcMAF in the treatment of autoimmune connective tissue diseases such as systemic lupus erythematosus.

  2. Effects of Hypoxia and Chitosan on Equine Umbilical Cord-Derived Mesenchymal Stem Cells

    PubMed Central

    Cho, J.; Wagoner Johnson, A.

    2016-01-01

    Chitosan opens new perspectives in regenerative medicine as it enhances the properties of mesenchymal stem cells (MSCs) through formation of spheroids. Hypoxia has also been proposed to enhance stemness and survival of MSCs after in vivo implantation. These characteristics are relevant to the development of an off-the-shelf source of allogenic cells for regenerative therapy of tendinopathies. Umbilical cord-derived MSCs (UCM-MSCs) offer an abundant source of immature and immunoprivileged stem cells. In this study, equine UCM-MSCs (eqUCM-MSCs) conditioned for 3 and 7 days on chitosan films at 5% oxygen were compared to eqUCM-MSCs under standard conditions. Equine UCM-MSCs formed spheroids on chitosan but yielded 72% less DNA than standard eqUCM-MSCs. Expression of Sox2, Oct4, and Nanog was 4 to 10 times greater in conditioned cells at day 7. Fluorescence-labeled cells cultured for 7 days under standard conditions or on chitosan films under hypoxia were compared in a bilateral patellar tendon defect model in rats. Fluorescence was present in all treated tendons, but the modulus of elasticity under tension was greater in tendons treated with conditioned cells. Chitosan and hypoxia affected cell yield but improved the stemness of eqUCM-MSCs and their contribution to the healing of tissues. Given the abundance of allogenic cells, these properties are highly relevant to clinical applications and outweigh the negative impact on cell proliferation. PMID:27379167

  3. Effects of Hypoxia and Chitosan on Equine Umbilical Cord-Derived Mesenchymal Stem Cells.

    PubMed

    Griffon, D J; Cho, J; Wagner, J R; Charavaryamath, C; Wei, J; Wagoner Johnson, A

    2016-01-01

    Chitosan opens new perspectives in regenerative medicine as it enhances the properties of mesenchymal stem cells (MSCs) through formation of spheroids. Hypoxia has also been proposed to enhance stemness and survival of MSCs after in vivo implantation. These characteristics are relevant to the development of an off-the-shelf source of allogenic cells for regenerative therapy of tendinopathies. Umbilical cord-derived MSCs (UCM-MSCs) offer an abundant source of immature and immunoprivileged stem cells. In this study, equine UCM-MSCs (eqUCM-MSCs) conditioned for 3 and 7 days on chitosan films at 5% oxygen were compared to eqUCM-MSCs under standard conditions. Equine UCM-MSCs formed spheroids on chitosan but yielded 72% less DNA than standard eqUCM-MSCs. Expression of Sox2, Oct4, and Nanog was 4 to 10 times greater in conditioned cells at day 7. Fluorescence-labeled cells cultured for 7 days under standard conditions or on chitosan films under hypoxia were compared in a bilateral patellar tendon defect model in rats. Fluorescence was present in all treated tendons, but the modulus of elasticity under tension was greater in tendons treated with conditioned cells. Chitosan and hypoxia affected cell yield but improved the stemness of eqUCM-MSCs and their contribution to the healing of tissues. Given the abundance of allogenic cells, these properties are highly relevant to clinical applications and outweigh the negative impact on cell proliferation.

  4. Effect of HSA coated iron oxide labeling on human umbilical cord derived mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Sanganeria, Purva; Chandra, Sudeshna; Bahadur, Dhirendra; Khanna, Aparna

    2015-03-01

    Human umbilical cord derived mesenchymal stem cells (hUC-MSCs) are known for self-renewal and differentiation into cells of various lineages like bone, cartilage and fat. They have been used in biomedical applications to treat degenerative disorders. However, to exploit the therapeutic potential of stem cells, there is a requirement of sensitive non-invasive imaging techniques which will offer the ability to track transplanted cells, bio-distribution, proliferation and differentiation. In this study, we have analyzed the efficacy of human serum albumin coated iron oxide nanoparticles (HSA-IONPs) on the differentiation of hUC-MSCs. The colloidal stability of the HSA-IONPs was tested over a long period of time (≥20 months) and the optimized concentration of HSA-IONPs for labeling the stem cells was 60 μg ml-1. Detailed in vitro assays have been performed to ascertain the effect of the nanoparticles (NPs) on stem cells. Lactate dehydrogenase (LDH) assay showed minimum release of LDH depicting the least disruptions in cellular membrane. At the same time, mitochondrial impairment of the cells was also not observed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Flow cytometry analysis revealed lesser generation of reactive oxygen species in HSA-IONPs labeled hUC-MSCs in comparison to bare and commercial IONPs. Transmission electron microscopy showed endocytic engulfment of the NPs by the hUC-MSCs. During the process, the gross morphologies of the actin cytoskeleton were found to be intact as shown by immunofluorescence microscopy. Also, the engulfment of the HSA-IONPs did not show any detrimental effect on the differentiation potential of the stem cells into adipocytes, osteocytes and chondrocytes, thereby confirming that the inherent properties of stem cells were maintained.

  5. Human umbilical cord-derived mesenchymal stem cells can secrete insulin in vitro and in vivo.

    PubMed

    Boroujeni, Zahra Niki; Aleyasin, Ahmad

    2014-01-01

    Diabetes mellitus is characterized by autoimmune destruction of pancreatic beta cells, leading to decreased insulin production. Differentiation of mesenchymal stem cells (MSCs) into insulin-producing cells offers novel ways of diabetes treatment. MSCs can be isolated from the human umbilical cord tissue and differentiate into insulin-secreting cells. Human umbilical cord-derived stem cells (hUDSCs) were obtained after birth, selected by plastic adhesion, and characterized by flow cytometric analysis. hUDSCs were transduced with nonintegrated lentivirus harboring PDX1 (nonintegrated LV-PDX1) and was cultured in differentiation medium in 21 days. Pancreatic duodenum homeobox protein-1 (PDX1) is a transcription factor in pancreatic development. Significant expressions of PDX1, neurogenin3 (Ngn3), glucagon, glucose transporter2 (Glut2), and somatostatin were detected by quantitative RT-PCR (P < 0.05). PDX1 and insulin proteins were shown by immunocytochemistry analysis. Insulin secretion of hUDSCs(PDX1+) in the high-glucose medium was 1.8 μU/mL. They were used for treatment of diabetic rats and could decrease the blood glucose level from 400 mg/dL to a normal level in 4 days. In conclusion, our results demonstrated that hUDSCs are able to differentiate into insulin-producing cells by transduction with nonintegrated LV-PDX1. These hUDSCs(PDX1+) have the potential to be used as a viable resource in cell-based gene therapy of type 1 diabetes.

  6. The effects of secretion factors from umbilical cord derived mesenchymal stem cells on osteogenic differentiation of mesenchymal stem cells.

    PubMed

    Wang, Kui-Xing; Xu, Liang-Liang; Rui, Yun-Feng; Huang, Shuo; Lin, Si-En; Xiong, Jiang-Hui; Li, Ying-Hui; Lee, Wayne Yuk-Wai; Li, Gang

    2015-01-01

    Factors synthesized by mesenchymal stem cells (MSCs) contain various growth factors, cytokines, exosomes and microRNAs, which may affect the differentiation abilities of MSCs. In the present study, we investigated the effects of secretion factors of human umbilical cord derived mesenchymal stem cells (hUCMSCs) on osteogenesis of human bone marrow derived MSCs (hBMSCs). The results showed that 20 μg/ml hUCMSCs secretion factors could initiate osteogenic differentiation of hBMSCs without osteogenic induction medium (OIM), and the amount of calcium deposit (stained by Alizarin Red) was significantly increased after the hUCMSCs secretion factors treatment. Real time quantitative reverse transcription-polymerase chain reaction (real time qRT-PCR) demonstrated that the expression of osteogenesis-related genes including ALP, BMP2, OCN, Osterix, Col1α and Runx2 were significantly up-regulated following hUCMSCs secretion factors treatment. In addition, we found that 10 μg hUCMSCs secretion factors together with 2×10(5) hBMSCs in the HA/TCP scaffolds promoted ectopic bone formation in nude mice. Local application of 10 μg hUCMSCs secretion factors with 50 μl 2% hyaluronic acid hydrogel and 1×10(5) rat bone marrow derived MSCs (rBMSCs) also significantly enhanced the bone repair of rat calvarial bone critical defect model at both 4 weeks and 8 weeks. Moreover, the group that received the hUCMSCs secretion factors treatment had more cartilage and bone regeneration in the defect areas than those in the control group. Taken together, these findings suggested that hUCMSCs secretion factors can initiate osteogenesis of bone marrow MSCs and promote bone repair. Our study indicates that hUCMSCs secretion factors may be potential sources for promoting bone regeneration.

  7. Umbilical Cord-Derived Mesenchymal Stem Cells Relieve Hindlimb Ischemia through Enhancing Angiogenesis in Tree Shrews

    PubMed Central

    Yin, Cunping; Liang, Yuan; Zhang, Jian; Li, Zian; Pang, Rongqing

    2016-01-01

    Hindlimb ischemia is still a clinical problem with high morbidity and mortality. Patients suffer from consequent rest pain, ulcers, cool limbs, and even amputation. Angiogenesis is a promising target for the treatment of ischemic limbs, providing extra blood for the ischemic region. In the present study, we investigated the role of umbilical cord-derived mesenchymal stem cells (UC-MSCs) in regulating angiogenesis and relieving hindlimb ischemia. UC-MSCs were isolated from the umbilical cord of tree shrews. Angiography results showed that UC-MSCs injection significantly promoted angiogenesis in tree shrews. Moreover, the ankle brachial index, transcutaneous oxygen pressure, blood perfusion, and capillary/muscle fiber ratio were all markedly increased by the application of UC-MSCs. In addition, the conditioned culture of human umbilical vein endothelial cells using medium collected from UC-MSCs showed higher expression of angiogenic markers and improved migration ability. In short, the isolated UC-MSCs notably contributed to restoring blood supply and alleviating the symptoms of limb ischemia through enhancing angiogenesis. PMID:27651800

  8. Umbilical Cord-Derived Mesenchymal Stem Cells Relieve Hindlimb Ischemia through Enhancing Angiogenesis in Tree Shrews.

    PubMed

    Yin, Cunping; Liang, Yuan; Zhang, Jian; Ruan, Guangping; Li, Zian; Pang, Rongqing; Pan, Xinghua

    2016-01-01

    Hindlimb ischemia is still a clinical problem with high morbidity and mortality. Patients suffer from consequent rest pain, ulcers, cool limbs, and even amputation. Angiogenesis is a promising target for the treatment of ischemic limbs, providing extra blood for the ischemic region. In the present study, we investigated the role of umbilical cord-derived mesenchymal stem cells (UC-MSCs) in regulating angiogenesis and relieving hindlimb ischemia. UC-MSCs were isolated from the umbilical cord of tree shrews. Angiography results showed that UC-MSCs injection significantly promoted angiogenesis in tree shrews. Moreover, the ankle brachial index, transcutaneous oxygen pressure, blood perfusion, and capillary/muscle fiber ratio were all markedly increased by the application of UC-MSCs. In addition, the conditioned culture of human umbilical vein endothelial cells using medium collected from UC-MSCs showed higher expression of angiogenic markers and improved migration ability. In short, the isolated UC-MSCs notably contributed to restoring blood supply and alleviating the symptoms of limb ischemia through enhancing angiogenesis.

  9. Umbilical cord-derived mesenchymal stem cells alleviate liver fibrosis in rats

    PubMed Central

    Chai, Ning-Li; Zhang, Xiao-Bin; Chen, Si-Wen; Fan, Ke-Xing; Linghu, En-Qiang

    2016-01-01

    AIM: To evaluate the efficacy of umbilical cord-derived mesenchymal stem cells (UC-MSCs) transplantation in the treatment of liver fibrosis. METHODS: Cultured human UC-MSCs were isolated and transfused into rats with liver fibrosis induced by dimethylnitrosamine (DMN). The effects of UC-MSCs transfusion on liver fibrosis were then evaluated by histopathology; serum interleukin (IL)-4 and IL-10 levels were also measured. Furthermore, Kupffer cells (KCs) in fibrotic livers were isolated and cultured to analyze their phenotype. Moreover, UC-MSCs were co-cultured with KCs in vitro to assess the effects of UC-MSCs on KCs’ phenotype, and IL-4 and IL-10 levels were measured in cell culture supernatants. Finally, UC-MSCs and KCs were cultured in the presence of IL-4 antibodies to block the effects of this cytokine, followed by phenotypical analysis of KCs. RESULTS: UC-MSCs transfused into rats were recruited by the injured liver and alleviated liver fibrosis, increasing serum IL-4 and IL-10 levels. Interestingly, UC-MSCs promoted mobilization of KCs not only in fibrotic livers, but also in vitro. Co-culture of UC-MSCs with KCs resulted in increased production of IL-4 and IL-10. The addition of IL-4 antibodies into the co-culture system resulted in decreased KC mobilization. CONCLUSION: UC-MSCs could increase IL-4 and promote mobilization of KCs both in vitro and in vivo, subsequently alleviating the liver fibrosis induced by DMN. PMID:27468195

  10. Study of differentiated human umbilical cord-derived mesenchymal stem cells transplantation on rat model of advanced parkinsonism.

    PubMed

    Wang, Zhaowei; Chen, Aimin; Yan, Shengjuan; Li, Chengyan

    2016-08-01

    The aim of this study was to explore the curative effect of differentiated human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) transplantation on rat of advanced Parkinson disease (PD) model. Human umbilical cord-derived mesenchymal stem cells were cultured and induced differentiation in vitro. The PD rats were established and allocated randomly into 2 groups: differentiated hUC-MSCs groups and physiological saline groups (the control group). Rotation test and immunofluorescence double staining were done. The result showed that hUC-MSCs could differentiate into mature dopamine neurons. Frequency of rotation was significantly less in differentiated hUC-MSCs groups than in normal saline group. After we transplanted these cells into the unilateral lesioned substantia nigra induced by striatal injection of 6-hydroxydopamine and performed in the medial forebrain bundle and ventral tegmental area, nigral tyrosine hydroxylase-positive cells were observed and survival of at least 2 months. In addition, transplantation of hUC-MSCs could make an obviously therapeutic effect on PD rats. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Therapeutic Effects of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Acute Lung Injury Mice

    PubMed Central

    Zhu, Hua; Xiong, Yi; Xia, Yunqiu; Zhang, Rong; Tian, Daiyin; Wang, Ting; Dai, Jihong; Wang, Lijia; Yao, Hongbing; Jiang, Hong; Yang, Ke; Liu, Enmei; Shi, Yujun; Fu, Zhou; Gao, Li; Zou, Lin

    2017-01-01

    The incidence and mortality of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) are still very high, but stem cells show some promise for its treatment. Here we found that intratracheal administration of human umbilical cord-mesenchymal stem cells (UC-MSCs) significantly improved survival and attenuated the lung inflammation in lipopolysaccharide (LPS)-induced ALI mice. We also used the proteins-chip and bioinformatics to analyze interactions between UC-MSCs treatment and immune-response alternations of ALI mice. Then we demonstrated that UC-MSCs could inhibit the inflammatory response of mouse macrophage in ALI mice, as well as enhance its IL-10 expression. We provide data to support the concept that the therapeutic capacity of UC-MSCs for ALI was primarily through paracrine secretion, particularly of prostaglandin-E2 (PGE2). Furthermore, we showed that UC-MSCs might secrete a panel of factors including GM-CSF, IL-6 and IL-13 to ameliorate ALI. Our study suggested that UC-MSCs could protect LPS-induced ALI model by immune regulation and paracrine factors, indicating that UC-MSCs should be a promising strategy for ALI/ARDS. PMID:28051154

  12. [Silymarin Protects Umbilical Cord-Derived Mesenchymal Stem Cells against Apoptosis Induced by Serum-Deprivation].

    PubMed

    Wei, Xiao-Juan; Zhang, Hong-Chao; Guo, Zi-Kuan; Zheng, Hai-Bin; Yang, Lei-Lei; Liu, Chao-Zhong

    2015-10-01

    To investigate the protection of silymarin against the human mesenchymal stem cell (MSC) apoptosis induced by serum deprivation and its underlying mechanism. Human umbilical cord MSCs were cultured in the absence of serum, and the silymain of different concentration (1-10 µg/ml) was added into the medium. MTT test was performed to observe the cell proliferation status. After being cultured for 72 hours, the cells were collected, and flow cytometry with Annexin-V-PI double-staining was used to detect the apoptotic cells from the control and silymarin-treated groups. Furthermore, the intracellular contents of BAX and BCL-2 were detected by Western blot for exploring the potential mechanism. The silymarin promoted the proliferation of human UC-MSCs in a dose-dependent manner, reaching its maximal at a dose of 5 µg/ml. Moreover, silymarin could inhibit the serum deprivation-induced apoptosis of MSCs and, the inhibitory rate reached up to 30% when it was added at a concentration of 5 µg/ml. The content of intracellular BAX was obviously elevated after serum-deprivation treatment, and this increase could be blunted by the addition of silymarin. Meanwhile, the content of BCL-2 was not obviously changed. The silymarin can stimulate MSC growth and inhibit the apoptosis of MSCs probably by the mitochondria pathway.

  13. Functional characterization of human umbilical cord-derived mesenchymal stem cells for treatment of systolic heart failure

    PubMed Central

    Fang, Zhihua; Yin, Xiaoguang; Wang, Jianzhong; Tian, Na; Ao, Qiang; Gu, Yongquan; Liu, Ying

    2016-01-01

    Congestive heart failure (HF) is a leading cause of morbidity and mortality worldwide. Although advances in medical therapy, mechanical support and heart transplantation have been made, almost half of all patients with HF succumb to the disease within five years of the initial diagnosis. Therefore, treatment methods need to be identified to restore the structure and function of cardiac muscle. Three patients with HF caused by ischemic cardiomyopathy received human umbilical cord-derived mesenchymal stem cell (HUC-MSC) intravenous infusion were included in the present study. Two patients demonstrated a 65.1% increase in left ventricular ejection fraction (LVEF) at the end of 3 months, which was maintained increasing 47.8% at the end of 12 months post-HUC-MSC intravenous infusion. LVEF of patient 1 decreased slowly in the observation period. This LVEF improvement was associated with significant improvements in the clinical parameters of the New York Heart Association class, and six-minute walk test in the coupled time. The third patient showed significant improvement in the six-minute walk test at the end of 12 months, while the other parameters did not change obviously. There were no severe adverse events during and post-HUC-MSC transplantation. During follow-up, no other immunosuppressive drugs were used. In conclusion, HUC-MSC therapy is a reasonable salvage treatment in HF. Future large-scale randomized clinical trials are likely to be designed to elucidate the efficacy of the HUC-MSC transplantation therapy on HF. PMID:27882158

  14. Umbilical Cord-Derived Mesenchymal Stem Cells Inhibit Cadherin-11 Expression by Fibroblast-Like Synoviocytes in Rheumatoid Arthritis

    PubMed Central

    Zhang, Lu; Kong, Wei; Liang, Jun; Xu, Xinyun; Wu, Hongyan; Hua, Bingzhu; Wang, Hong; Sun, Lingyun

    2015-01-01

    This study aimed to determine whether umbilical cord-derived mesenchymal stem cells (UCMSC) regulate Cadherin-11 (CDH11) expression by fibroblast-like synoviocytes (FLS) in rheumatoid arthritis (RA). FLS were isolated from the synovium of RA and osteoarthritis (OA) patients. FLS from RA patients were cocultured with UCMSC in a transwell system. CDH11 mRNA levels in FLS were tested, and levels of soluble factors expressed by UCMSC, such as indoleamine 2,3-dioxygenase (IDO), hepatocyte growth factor (HGF), and interleukin- (IL-) 10, were determined. IDO, HGF, and IL-10 were upregulated in cocultures, so that appropriate inhibitors were added before determination of CDH11 expression. The effects of UCMSC on arthritis were investigated in the collagen-induced arthritis (CIA) model in Wistar rats. FLS from RA patients expressed higher CDH11 levels than those from OA patients, and this effect was suppressed by UCMSC. The inhibitory effect of UCMSC on CDH11 expression by FLS was abolished by suppression of IL-10 activity. CDH11 expression in synovial tissues was higher in the context of CIA than under basal conditions, and this effect was prevented by UCMSC administration. IL-10 mediates the inhibitory effect of UCMSC on CDH11 expression by FLS, and this mechanism might be targeted to ameliorate arthritis. PMID:26090476

  15. Extracellular matrix from human umbilical cord-derived mesenchymal stem cells as a scaffold for peripheral nerve regeneration

    PubMed Central

    Xiao, Bo; Rao, Feng; Guo, Zhi-yuan; Sun, Xun; Wang, Yi-guo; Liu, Shu-yun; Wang, Ai-yuan; Guo, Quan-yi; Meng, Hao-ye; Zhao, Qing; Peng, Jiang; Wang, Yu; Lu, Shi-bi

    2016-01-01

    The extracellular matrix, which includes collagens, laminin, or fibronectin, plays an important role in peripheral nerve regeneration. Recently, a Schwann cell-derived extracellular matrix with classical biomaterial was used to mimic the neural niche. However, extensive clinical use of Schwann cells remains limited because of the limited origin, loss of an autologous nerve, and extended in vitro culture times. In the present study, human umbilical cord-derived mesenchymal stem cells (hUCMSCs), which are easily accessible and more proliferative than Schwann cells, were used to prepare an extracellular matrix. We identified the morphology and function of hUCMSCs and investigated their effect on peripheral nerve regeneration. Compared with a non-coated dish tissue culture, the hUCMSC-derived extracellular matrix enhanced Schwann cell proliferation, upregulated gene and protein expression levels of brain-derived neurotrophic factor, glial cell-derived neurotrophic factor, and vascular endothelial growth factor in Schwann cells, and enhanced neurite outgrowth from dorsal root ganglion neurons. These findings suggest that the hUCMSC-derived extracellular matrix promotes peripheral nerve repair and can be used as a basis for the rational design of engineered neural niches. PMID:27630705

  16. Adaptive protection against damage of preconditioning human umbilical cord-derived mesenchymal stem cells with hydrogen peroxide.

    PubMed

    Li, D; Xu, Y; Gao, C Y; Zhai, Y P

    2014-02-21

    Adaptive protection against damage to human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) was investigated by preconditioning with low-concentration hydrogen peroxide (H2O2) for a short-time period. Separation, culture, amplification, purification, and identification of immunophenotype and growth curve measurements of hUC-MSCs were performed in vitro. At the logarithmic phase, hUC-MSCs were incubated with different (H2O2) concentrations for 1 and 12 h, and the effects were detected by a cell metabolism assay. Then, hUC-MSCs were preconditioned with 10, 20, 50, and 100 mM (H2O2) for 1 h, restored for 0, 12, and 24 h, and then damaged with 700, 800, and 900 mM (H2O2) for 12 h. Cell morphology, cell metabolism, and the number of cells were measured to determine the protective role of preconditioning. Flow cytometry analysis revealed that the cells expressed CD29 and CD44, but not CD34 and CD45. The growth curve showed that hUC-MSCs reached the logarithmic phase in 3-6 days. The cell metabolism assay showed that (H2O2) induced hUC-MSCs damage in a dose- and time-dependent manner. The cell morphology, cell metabolism, and number of cells all showed that preconditioning with 10, 20, 50, and 100 mM (H2O2) for 1 h and restoration for 12 h prevented subsequent damage with 700, 800, and 900 mM (H2O2) on hUC-MSCs. Preconditioning with low-concentration (H2O2) for a short time has a protective effect of preventing damage on hUC-MSCs exposed to high-concentration (H2O2) for a long time, which is dependent on H2O2 concentration and the time interval between preconditioning and damage.

  17. The potential of human umbilical cord-derived mesenchymal stem cells as a novel cellular therapy for multiple sclerosis.

    PubMed

    Li, Jin-Feng; Zhang, Da-Jin; Geng, Tongchao; Chen, Lin; Huang, Hongyun; Yin, Hong-Lei; Zhang, Yu-zhen; Lou, Ji-Yu; Cao, Bingzhen; Wang, Yun-Liang

    2014-01-01

    Multiple sclerosis (MS) is a complex disease of neurological disability, affecting more than 300 out of every 1 million people in the world. The purpose of the study was to evaluate the therapeutic effects of human umbilical cord-derived mesenchymal stem cell (hUC-MSC) transplantation in MS patients. Twenty-three patients were enrolled in this study, and 13 of them were given hUC-MSC therapy at the same time as anti-inflammatory treatment, whereas the control patients received the anti-inflammatory treatment only. Treatment schedule included 1,000 mg/kg of methylprednisolone intravenously (IV) daily for 3 days and then 500 mg/kg for 2 days, followed by oral prednisone 1 mg/kg/day for 10 days. The dosage of prednisone was then reduced by 5 mg every 2 weeks until reaching a 5-mg/day maintenance dosage. Intravenous infusion of hUC-MSCs was applied three times in a 6-week period for each patient. The overall symptoms of the hUC-MSC-treated patients improved compared to patients in the control group. Both the EDSS scores and relapse occurrence were significantly lower than those of the control patients. Inflammatory cytokines were assessed, and the data demonstrated a shift from Th1 to Th2 immunity in hUC-MSC-treated patients. Our data demonstrated a high potential for hUC-MSC treatment of MS. This manuscript is published as part of the International Association of Neurorestoratology (IANR) special issue of Cell Transplantation.

  18. 5-Azacytidine Induces Cardiac Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells by Activating Extracellular Regulated Kinase

    PubMed Central

    Qian, Qian; Qian, Hui; Zhang, Xu; Zhu, Wei; Yan, Yongmin; Ye, Shengqin; Peng, Xiujuan; Li, Wei; Xu, Zhe; Sun, Lingyun

    2012-01-01

    5-Azacytidine (5-Aza) induces differentiation of mesenchymal stem cells (MSCs) into cardiomyocytes. However, the underlying mechanisms are not well understood. Our previous work showed that 5-Aza induces human bone marrow-derived MSCs to differentiate into cardiomyocytes. Here, we demonstrated that 5-Aza induced cardiac differentiation of human umbilical cord-derived MSCs (hucMSCs) and explored the potential signaling pathway. Our results showed that hucMSCs had cardiomyocyte phenotypes after 5-Aza treatment. In addition, myogenic cells differentiated from hucMSCs were positive for mRNA and protein of desmin, β-myosin heavy chain, cardiac troponin T, A-type natriuretic peptide, and Nkx2.5. Human diploid lung fibroblasts treated with 5-Aza expressed no cardiac-specific genes. 5-Aza did not induce hucMSCs to differentiate into osteoblasts. Further study revealed that 5-Aza treatment activated extracellular signal related kinases (ERK) in hucMSCs, but protein kinase C showed no response to 5-Aza administration. U0126, a specific inhibitor of ERK, could inhibit 5-Aza-induced expression of cardiac-specific genes and proteins in hucMSCs. Increased phosphorylation of signal transducers and activators of transcription 3, and up-regulation of myocyte enhancer-binding factor-2c and myogenic differentiation antigen in 5-Aza-treated hucMSCs were also suppressed by U0126. Taken together, these results suggested that sustained activation of ERK by 5-Aza contributed to the induction of the differentiation of hucMSCs into cardiomyocytes in vitro. PMID:21476855

  19. Umbilical Cord-Derived Mesenchymal Stem Cells Suppress Autophagy of T Cells in Patients with Systemic Lupus Erythematosus via Transfer of Mitochondria

    PubMed Central

    Chen, Jinyun; Wang, Qian; Zhang, Zhuoya; Xu, Ting

    2016-01-01

    Aberrant autophagy played an important role in the pathogenesis of autoimmune diseases, especially in systemic lupus erythematosus (SLE). In this study, we showed that T cells from SLE patients had higher autophagic activity than that from healthy controls. A correlation between autophagic activity and apoptotic rate was observed in activated T cells. Moreover, activation of autophagy with rapamycin increased T cell apoptosis, whereas inhibition of autophagy with 3-MA decreased T cell apoptosis. Umbilical cord-derived mesenchymal stem cells (UC-MSCs) could inhibit respiratory mitochondrial biogenesis in activated T cells to downregulate autophagy and consequently decrease T cell apoptosis through mitochondrial transfer and thus may play an important role in SLE treatment. PMID:28053607

  20. Clinical application prospect of umbilical cord-derived mesenchymal stem cells on clearance of advanced glycation end products through autophagy on diabetic wound.

    PubMed

    Han, Yanfu; Sun, Tianjun; Tao, Ran; Han, Yanqing; Liu, Jing

    2017-03-24

    Nowadays, wound healing delay due to diabetes is considered to be closely related to the accumulation of advanced glycation end products (AGEs). Although mesenchymal stem cells (MSCs) exhibit positive effects on diabetic wound healing, related mechanisms are still not fully elucidated. It has been reported that MSCs can improve the activity of autophagy in injured tissues, thereby playing an important role in wound healing. The autophagy induced by MSCs may be beneficial to diabetic wound healing via removing AGEs, which provide new ideas for clinical treatment of diabetic wounds with the potential of broad application prospects. In this study, the current research situation and application prospect of umbilical cord-derived MSCs on the clearance of AGEs in diabetic wound were reviewed.

  1. Human umbilical cord-derived mesenchymal stem cells differentiate into epidermal-like cells using a novel co-culture technique.

    PubMed

    Li, Dongjie; Chai, Jiake; Shen, Chuanan; Han, Yanfu; Sun, Tianjun

    2014-08-01

    Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) isolated from human umbilical Wharton's Jelly are a population of primitive and pluripotent cells. In specific conditions, hUCMSCs can differentiate into various cells, including adipocytes, osteoblasts, chondrocytes, neurocytes, and endothelial cells. However, few studies have assessed their differentiation into epidermal cells in vitro. To assess the potential of hUCMSCs to differentiate into epidermal cells, a microporous membrane-based indirect co-culture system was developed in this study. Epidermal stem cells (ESCs) were seeded on the bottom of the microporous membrane, and hUCMSCs were seeded on the top of the microporous membrane. Cell morphology was assessed by phase contrast microscopy, and the expression of early markers of epidermal cell lineage, P63, cytokeratin19 (CK19), and β1-integrin, was determined by immunofluorescence, Western blot, and quantitative real-time PCR (Q-PCR) analyses. hUCMSC morphology changed from spindle-like to oblate or irregular with indirect co-culture with ESCs; they also expressed greater levels P63, CK19, and β1-integrin mRNA and protein compared to the controls (p < 0.01). As compared to normal co-cultures, indirect co-culture expressed significantly greater CK19 protein (p < 0.01). Thus, hUCMSCs may have the capability to differentiate into the epidermal lineage in vitro, which may be accomplished through this indirect co-culture model.

  2. Role of Keratinocyte Growth Factor in the Differentiation of Sweat Gland-Like Cells From Human Umbilical Cord-Derived Mesenchymal Stem Cells

    PubMed Central

    Xu, Yongan; Hong, Yucai; Xu, Mengyan; Ma, Kui; Fu, Xiaobing

    2016-01-01

    Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have higher proliferation potency and lower immune resistance than human bone marrow MSCs and can differentiate into various functional cells. Many regulatory factors, including keratinocyte growth factor (KGF), are involved in the development of skin and cutaneous appendages. Although KGF is important in wound healing, the role of KGF in hUC-MSC differentiation remains unknown. In our previous work, we found the mixing medium (nine parts of basic sweat-gland [SG] medium plus one part of conditioned heat-shock SG medium) could induce hUC-MSC differentiation to sweat gland-like cells (SGCs). In this study, we further improved the inducing medium and determined the effects of KGF in hUC-MSC differentiation. We found KGF expression in the SGCs and that recombinant human KGF could induce hUC-MSC differentiation into SGCs, suggesting KGF plays a pivotal role in promoting hUC-MSC differentiation to SGCs. Furthermore, the SGCs differentiated from hUC-MSCs were applied to severely burned skin of the paw of an in vivo severe combined immunodeficiency mouse burn model. Burned paws treated with SGCs could regenerate functional sparse SGs 21 days after treatment; the untreated control paws could not. Collectively, these results demonstrated that KGF is a critical growth factor for SGC differentiation from hUC-MSCs and the differentiated SGCs from hUC-MSCs may have a potential therapeutic application for regeneration of destroyed SGs and injured skin. Significance There is growing evidence demonstrating a potential therapeutic application of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in injured skin. In the current study, conditioned media and chemically defined media with recombinant human keratinocyte growth factor (KGF) could induce hUC-MSC differentiation into sweat gland-like cells (SGCs). Moreover, the differentiated SGCs from hUC-MSCs could regenerate functional sparse sweat glands in a

  3. Replicative senescence of human bone marrow and umbilical cord derived mesenchymal stem cells and their differentiation to adipocytes and osteoblasts.

    PubMed

    Cheng, Huanchen; Qiu, Lin; Ma, Jun; Zhang, Hao; Cheng, Mei; Li, Wei; Zhao, Xuefei; Liu, Keyu

    2011-11-01

    Mesenchymal stem cells (MSC) which have self-renewal and multiple differentiation potential in vitro play important roles in regenerative medicine and tissue engineering. However, long-term culture in vitro leads to senescence which results in the growth arrest and reduction of differentiation. In this study, MSC derived from human bone-marrow (BM-MSC) and umbilical cord (UC-MSC) were cultured in vitro lasted to senescence. Senescence and apoptosis detection showed that the senescent cells increased significantly but the increase of apoptosis was not significant in the long term culture. Senescence related genes p16, p21 and p53 increased gradually in BM-MSC. However, p16 and p53 reduced and then increased but with the gradual increase of p21 in UC-MSC. Adipogenic differentiation decreased whereas the propensity for osteogenic differentiation increased in senescent MSC. Real time RT-PCR demonstrated that both C/EBPα and PPARγ decreased in senescent BM-MSC. However, in UC-MSC, PPARγ decreased but C/EBPα increased in late phase compared to early phase. The study demonstrated p21 was important in the senescence of BM-MSC and UC-MSC. C/EBPα and PPARγ could regulate the balance of adipogenic differentiation in BM-MSC but only PPARγ not C/EBPα was involved in the adipogenic differentiation in UC-MSC.

  4. Transplantation of human umbilical cord-derived mesenchymal stems cells for the treatment of Becker muscular dystrophy in affected pedigree members.

    PubMed

    Li, Pang; Cui, Kai; Zhang, Bo; Wang, Zhendan; Shen, Yangyang; Wang, Xiangyu; Zhang, Jianbo; Tong, Feng; Li, Sheng

    2015-04-01

    The regeneration of muscle tissue has been achieved using multipotent mesenchymal stem cells in mouse models of injured skeletal muscle. In the present study, the utility of multipotent human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in the treatment of Becker muscular dystrophy (BMD), a genetic disease where muscle tissue fails to regenerate, was examined in members from a pedigree affected by BMD. The disease status was evaluated in 4 affected pedigree members (II1, II2, II3 and III2; aged 50, 46, 42 and 6 years, respectively). The transplantation of the hUC‑MSCs (performed on 3 patients, I2, II3 and III2) was performed by infusion with an intravenous drip over a 30‑min period, and the patients were evaluated at 1, 3, 4 and 12 weeks following the procedure. The evaluation was based on physical characteristics, as well as on molecular testing for serum creatine kinase (CK) and lactate dehydrogenase (LDH) levels and a histological examination of muscle biopsies. The patients suffered no adverse reactions in response to the transplantation of the hUC‑MSCs. At 1 week following transplantation all 3 patients showed improvement in the muscle force of the limbs, muscle size and daily activity. The walking gait of patient III2 had improved by 1 week post-transplantation and reached a normal status by 12 weeks. Serum CK and LDH levels were decreased relative to the baseline levels. A histological examination of muscle biopsies displayed no obvious tissue regeneration. In conclusion, the treatment of patients with BMD using hUC-MSCs was safe and of therapeutic benefit that lasted for up to 12 weeks. hUC-MSCs are, therefore, a potential cell therapy-based treatment option for patients with muscular dystrophies.

  5. Efficacy of umbilical cord-derived mesenchymal stem cell-based therapy for osteonecrosis of the femoral head: A three-year follow-up study

    PubMed Central

    Chen, Chun; Qu, Zhiguo; Yin, Xiaoguang; Shang, Chunyu; Ao, Qiang; Gu, Yongquan; Liu, Ying

    2016-01-01

    This is a retrospective analysis of the clinical effects of transplant of mesenchymal stem cells (MSCs) derived from human umbilical cord-derived MSCs (hUC-MSCs) for the treatment of osteonecrosis of the femoral head (ONFH). The biological characteristics of hUC-MSCs were assessed using flow cytometry. Nine eligible patients were enrolled in the study as they adhered to the Association Research Circulation Osseous (ARCO) classification of stage II–IIIa, and hUC-MSCs were grafted by intra-arterial infusion. Organize effective perfusion was assessed using the oxygen delivery index (ODI). The results showed that the ODI was increased at three days post-operation. The MRI results revealed that at 12 and 24 months after treatment, the necrotic volume of the femoral heads was significantly reduced. No obvious abnormalities were observed. Taken together, these data indicate that intra-arterially infused hUC-MSCs migrate into the necrotic field of femoral heads and differentiate into osteoblasts, thus improving the necrosis of femoral heads. This finding suggested that intra-arterial infusion of hUC-MSCs MSCs is a feasible and relatively safe method for the treatment of femoral head necrosis. PMID:27634376

  6. Interferon-γ alters the microRNA profile of umbilical cord-derived mesenchymal stem cells

    PubMed Central

    Chi, Ying; Cui, Junjie; Wang, Youwei; Du, Wenjing; Chen, Fang; Li, Zongjin; Ma, Fengxia; Song, Baoquan; Xu, Fangyun; Zhao, Qingjun; Han, Zhibo; Han, Zhongchao

    2016-01-01

    Numerous studies have demonstrated that interferon-γ (IFN-γ) is an important inflammatory cytokine, which may activate the immunomodulatory abilities of mesenchymal stem cells (MSCs), and may influence certain other functions of these cells. MicroRNAs are small non-coding RNAs that regulate the majority of the biological functions of cells and are important in a variety of biological processes. However, few studies have been performed to investigate whether IFN-γ affects the microRNA profile of MSCs. The aim of the present study was to analyze the microRNA profile of MSCs derived from the umbilical cord (UC-MSCs) cultured in the presence or absence of IFN-γ (IFN-UC-MSCs). An array that detects 754 microRNAs was used to determine the expression profiles. Statistical analysis of the array data revealed that 8 microRNAs were significantly differentially expressed in UC-MSCs and IFN-UC-MSCs. Reverse transcription-quantitative polymerase chain reaction validated the differential expression of the 8 identified microRNAs. The target genes of the 8 microRNAs were predicted through two online databases, TargetScan and miRanda, and the predicted results were screened by bioinformatics analysis. The majority of the target genes were involved in the regulation of transcription, signal transduction, proliferation, differentiation and migration. These results may provide insight into the mechanism underlying the regulation of the biological functions of MSCs by IFN-γ, in particular the immunomodulatory activity. PMID:27667024

  7. Efficacy of human umbilical cord derived-mesenchymal stem cells in treatment of rat bone marrow exposed to gamma irradiation.

    PubMed

    Mousa, Hanaa S E; Shalaby, Sally M; Gouda, Zienab A; Ahmed, Fayza E; El-Khodary, Aisha A

    2017-03-01

    To assess the therapeutic effects of the human umbilical cord blood (hUCB) derived mesenchymal stem cells (MSCs) on rat bone marrow (BM) exposed to gamma rays, 3 groups (n=15 each) of adult male Wistar albino rats were utilized as follows: the 1st group received PBS (control group), the 2nd group was exposed to gamma rays 1.04Gy/min (R group) and the 3rd group exposed to same dose as RG and injected hUCB-MSCs. The BM of femurs was processed for histological and immunohistochemical staining with proliferating cell nuclear antigen antibody (PCNA), anti human CD105 and anti human CD34. Hb content, leukocytes and platelet counts were analyzed as well as fat cells and megakaryocytic counts. Also, the BM vascular spaces and the optical density of immunostaining for PCNA were analyzed. The leukocytes and platelet counts were significantly lower in the R (2.85±235.8; P=0.000 and 95.27±3.01; P=0.000 respectively) when compared with the control (10.40±443.2; P=0.000 and 430.18±20.28; P=0.000 respectively). The fat cell count was significantly higher in the R (36.55±1.83; P=0.000) than in control (7.64±0.61; P=0.000) and in R injected h-MSCs tissues (18.82±2.03; P=0.000). The megakaryocytic count was significantly higher in the R injected h-MSCs (5.36±0.310; P=0.000) than in control (2.82±0.263; P=0.000) and in the R BM (0.45±0.157; P=0.000). The vascular spaces were dilated and significantly increased in the R injected h-MSCs (50.10±2.40; P=0.000) than in control (33.36±1.01; P=0.000). The optical density of PCNA expression was significantly lower in R (0.18±0.11; P=0.005) than in control (0.41±0.40; P=0.005) and in R injected h-MSCs groups (0.30±0.17; P=0.005). The present study concluded that injection of hUCB-MSCs improves destructive effects of bone marrow induced by gamma radiation. Use of radio-protective agents during exposure is recommended. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Clinical-grade human umbilical cord-derived mesenchymal stem cells reverse cognitive aging via improving synaptic plasticity and endogenous neurogenesis

    PubMed Central

    Cao, Ning; Liao, Tuling; Liu, Jiajing; Fan, Zeng; Zeng, Quan; Zhou, Junnian; Pei, Haiyun; Xi, Jiafei; He, Lijuan; Chen, Lin; Nan, Xue; Jia, Yali; Yue, Wen; Pei, Xuetao

    2017-01-01

    Cognitive aging is a leading public health concern with the increasing aging population, but there is still lack of specific interventions directed against it. Recent studies have shown that cognitive function is intimately affected by systemic milieu in aging brain, and improvement of systemic environment in aging brain may be a promising approach for rejuvenating cognitive aging. Here, we sought to study the intervention effects of clinical-grade human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) on cognitive aging in a murine model of aging. The conventional aging model in mice induced by d-galactose (d-gal) was employed here. Mice received once every two weeks intraperitoneal administration of hUC-MSCs. After 3 months of systematical regulation of hUC-MSCs, the hippocampal-dependent learning and memory ability was effectively improved in aged mice, and the synaptic plasticity was remarkably enhanced in CA1 area of the aged hippocampus; moreover, the neurobiological substrates that could impact on the function of hippocampal circuits were recovered in the aged hippocampus reflecting in: dendritic spine density enhanced, neural sheath and cytoskeleton restored, and postsynaptic density area increased. In addition, the activation of the endogenic neurogenesis which is beneficial to stabilize the neural network in hippocampus was observed after hUC-MSCs transplantation. Furthermore, we demonstrated that beneficial effects of systematical regulation of hUC-MSCs could be mediated by activation of mitogen-activated protein kinase (MAPK)-ERK-CREB signaling pathway in the aged hippocampus. Our study provides the first evidence that hUC-MSCs, which have the capacity of systematically regulating the aging brain, may be a potential intervention for cognitive aging. PMID:28796260

  9. Human umbilical cord-derived mesenchymal stem cells elicit macrophages into an anti-inflammatory phenotype to alleviate insulin resistance in type 2 diabetic rats.

    PubMed

    Xie, Zongyan; Hao, Haojie; Tong, Chuan; Cheng, Yu; Liu, Jiejie; Pang, Yaping; Si, Yiling; Guo, Yulin; Zang, Li; Mu, Yiming; Han, Weidong

    2016-03-01

    Insulin resistance, a major characteristic of type 2 diabetes (T2D), is closely associated with adipose tissue macrophages (ATMs) that induce chronic low-grade inflammation. Recently, mesenchymal stem cells (MSCs) have been identified in alleviation of insulin resistance. However, the underlying mechanism still remains elusive. Thus, we aimed to investigate whether the effect of MSCs on insulin resistance was related to macrophages phenotypes in adipose tissues of T2D rats. In this study, human umbilical cord-derived MSCs (UC-MSCs) infusion produced significantly anti-diabetic effects and promoted insulin sensitivity in T2D rats that were induced by a high-fat diet combined with streptozotocin and directed ATMs into an alternatively activated phenotype (M2, anti-inflammatory). In vitro, MSC-induced M2 macrophages alleviated insulin resistance caused by classically activated macrophages (M1, pro-inflammatory). Further analysis showed that M1 stimulated UC-MSCs to increase expression of interleukin (IL)-6, a molecule which upregulated IL4R expression, promoted phosphorylation of STAT6 in macrophages, and eventually polarized macrophages into M2 phenotype. Moreover, the UC-MSCs effect on macrophages was largely abrogated by small interfering RNA (siRNA) knockdown of IL-6. Together, our results indicate that UC-MSCs can alleviate insulin resistance in part via production of IL-6 that elicits M2 polarization. Additionally, human obesity and insulin resistance were associated with increased pro-inflammatory ATMs infiltration. Thus, MSCs may be a new treatment for obesity-related insulin resistance and T2D concerning macrophage polarized effects.

  10. An Increase in CD3+CD4+CD25+ Regulatory T Cells after Administration of Umbilical Cord-Derived Mesenchymal Stem Cells during Sepsis

    PubMed Central

    Chao, Yu-Hua; Tsai, Yi-Giien; Peng, Ching-Tien; Lin, Kuan-Chia; Chao, Wan-Ru; Lee, Maw-Sheng; Fu, Yun-Ching

    2014-01-01

    Sepsis remains an important cause of death worldwide, and vigorous immune responses during sepsis could be beneficial for bacterial clearance but at the price of collateral damage to self tissues. Mesenchymal stem cells (MSCs) have been found to modulate the immune system and attenuate sepsis. In the present study, MSCs derived from bone marrow and umbilical cord were used and compared. With a cecal ligation and puncture (CLP) model, the mechanisms of MSC-mediated immunoregulation during sepsis were studied by determining the changes of circulating inflammation-associated cytokine profiles and peripheral blood mononuclear cells 18 hours after CLP-induced sepsis. In vitro, bone marrow-derived MSCs (BMMSCs) and umbilical cord-derived MSCs (UCMSCs) showed a similar morphology and surface marker expression. UCMSCs had stronger potential for osteogenesis but lower for adipogenesis than BMMSCs. Compared with rats receiving PBS only after CLP, the percentage of circulating CD3+CD4+CD25+ regulatory T (Treg) cells and the ratio of Treg cells/T cells were elevated significantly in rats receiving MSCs. Further experiment regarding Treg cell function demonstrated that the immunosuppressive capacity of Treg cells from rats with CLP-induced sepsis was decreased, but could be restored by administration of MSCs. Compared with rats receiving PBS only after CLP, serum levels of interleukin-6 and tumor necrosis factor-α were significantly lower in rats receiving MSCs after CLP. There were no differences between BMMSCs and UCMSCs. In summary, this work provides the first in vivo evidence that administering BMMSCs or UCMSCs to rats with CLP-induced sepsis could increase circulating CD3+CD4+CD25+ Treg cells and Treg cells/T cells ratio, enhance Treg cell suppressive function, and decrease serum levels of interleukin-6 and tumor necrosis factor-α, suggesting the immunomodulatory association of Treg cells and MSCs during sepsis. PMID:25337817

  11. Clinical-grade human umbilical cord-derived mesenchymal stem cells reverse cognitive aging via improving synaptic plasticity and endogenous neurogenesis.

    PubMed

    Cao, Ning; Liao, Tuling; Liu, Jiajing; Fan, Zeng; Zeng, Quan; Zhou, Junnian; Pei, Haiyun; Xi, Jiafei; He, Lijuan; Chen, Lin; Nan, Xue; Jia, Yali; Yue, Wen; Pei, Xuetao

    2017-08-10

    Cognitive aging is a leading public health concern with the increasing aging population, but there is still lack of specific interventions directed against it. Recent studies have shown that cognitive function is intimately affected by systemic milieu in aging brain, and improvement of systemic environment in aging brain may be a promising approach for rejuvenating cognitive aging. Here, we sought to study the intervention effects of clinical-grade human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) on cognitive aging in a murine model of aging. The conventional aging model in mice induced by d-galactose (d-gal) was employed here. Mice received once every two weeks intraperitoneal administration of hUC-MSCs. After 3 months of systematical regulation of hUC-MSCs, the hippocampal-dependent learning and memory ability was effectively improved in aged mice, and the synaptic plasticity was remarkably enhanced in CA1 area of the aged hippocampus; moreover, the neurobiological substrates that could impact on the function of hippocampal circuits were recovered in the aged hippocampus reflecting in: dendritic spine density enhanced, neural sheath and cytoskeleton restored, and postsynaptic density area increased. In addition, the activation of the endogenic neurogenesis which is beneficial to stabilize the neural network in hippocampus was observed after hUC-MSCs transplantation. Furthermore, we demonstrated that beneficial effects of systematical regulation of hUC-MSCs could be mediated by activation of mitogen-activated protein kinase (MAPK)-ERK-CREB signaling pathway in the aged hippocampus. Our study provides the first evidence that hUC-MSCs, which have the capacity of systematically regulating the aging brain, may be a potential intervention for cognitive aging.

  12. Honokiol improved chondrogenesis and suppressed inflammation in human umbilical cord derived mesenchymal stem cells via blocking nuclear factor-κB pathway.

    PubMed

    Wu, Hao; Yin, Zhanhai; Wang, Ling; Li, Feng; Qiu, Yusheng

    2017-08-29

    Cartilage degradation is the significant pathological process in osteoarthritis (OA). Inflammatory cytokines, such as interleukin-1β (IL-1β), activate various downstream mediators contributing to OA pathology. Recently, stem cell-based cartilage repair emerges as a potential therapeutic strategy that being widely studied, whereas, the outcome is still far from clinical application. In this study, we focused on an anti-inflammatory agent, honokiol, which is isolated from an herb, investigated the potential effects on human umbilical cord derived mesenchymal stem cells (hUC-MSCs) in IL-1β stimulation. Second passage hUC-MSCs were cultured for multi-differentiation. Flow cytometry, qRT-PCR, von Kossa stain, alcian blue stain and oil red O stain were used for characterization and multi-differentiation determination. Honokiol (5, 10, 25, 50 μM) and IL-1β (10 ng/ml) were applied in hUC-MSCs during chondrogenesis. Analysis was performed by MTT, cell apoptosis evaluation, ELISA assay, qRT-PCR and western blot. hUC-MSC was positive for CD73, CD90 and CD105, but lack of CD34 and CD45. Remarkable osteogenesis, chondrogenesis and adipogenesis were detected in hUC-MSCs. IL-1β enhanced cell apoptosis and necrosis and activated the expression of caspase-3, cyclooxygenase-2 (COX-2), interleukin-6 (IL-6) and matrix metalloproteinase (MMP)-1, -9, 13 in hUC-MSCs. Moreover, the expression of SRY-related high-mobility group box 9 (SOX-9), aggrecan and col2α1 was suppressed. Honokiol relieved these negative impacts induced by IL-1β and suppressed Nuclear factor-κB (NF-κB) pathway by downregulating expression of p-IKKα/β, p-IκBα and p-p65 in dose-dependent and time-dependent manner. Honokiol improved cell survival and chondrogenesis of hUC-MSCs and inhibited IL-1β-induced inflammatory response, which suggested that combination of anti-inflammation and stem cell can be a novel strategy for better cartilage repair.

  13. Umbilical cord-derived mesenchymal stem cells promote proliferation and migration in MCF-7 and MDA-MB-231 breast cancer cells through activation of the ERK pathway.

    PubMed

    Li, Tao; Zhang, Chunfu; Ding, Yanling; Zhai, Wei; Liu, Kui; Bu, Fan; Tu, Tao; Sun, Lingxian; Zhu, Wei; Zhou, Fangfang; Qi, Wenkai; Hu, Jiabo; Chen, Huabiao; Sun, Xiaochun

    2015-09-01

    Mesenchymal stem cells (MSCs) are known to migrate to tumor tissues and to play an important role in cancer progression. However, the effects of MSCs on tumor progression remain controversial. The purpose of the present study was to detect the effects of human umbilical cord-derived MSCs (hUC‑MSCs) on the human breast cancer cell lines MDA-MB‑231 and MCF-7 in vitro and the underlying mechanisms. MSCs were isolated and identified from umbilical cord tissues. MDA-MB‑231 and MCF-7 cells were treated with conditioned medium (CM) from 10 and 20% umbilical cord MSCs (UC-MSCs), and the resulting changes in proliferation and migration were investigated. The 3-(4,5-dimethyl-2-thiazolyl)‑2,5-diphenyl‑2-H-tetrazolium bromide (MTT) and plate clone formation assays were used to assess the effect on proliferation, and the effects of CM on MDA-MB-231 and MCF-7 migration were assessed through scratch wound and Transwell migration assays. The expression of cell proliferation- and metastasis-related genes and proteins and activation of the ERK signaling pathway were analyzed by RT-PCR and western blot assays. UC-MSCs are characteristically similar to bone marrow MSCs (BM-MSCs) and exhibit multipotential differentiation capability (i.e., osteoblasts and adipocytes). The MTT, plate clone formation, scratch wound and Transwell migration assay results revealed that 10 and 20% CM promoted the proliferation and migration to higher levels than those observed in the control group. Our findings showed that UC-MSC-CM inhibited E-cadherin expression, increased the expression of N-cadherin and proliferating cell nuclear antigen (PCNA) and enhanced the expression of ZEB1, a transcription factor involved in epithelial‑to‑mesenchymal transition (EMT), through activation of the ERK pathway. U0126, an inhibitor of ERK, reversed the effects of UC-MSC-CM on breast cancer cell proliferation and migration. We conclude that UC-MSCs promote the proliferation and migration of breast

  14. Pre-treatment of human umbilical cord-derived mesenchymal stem cells with interleukin-6 abolishes their growth-promoting effect on gastric cancer cells.

    PubMed

    Wang, Mei; Cai, Jie; Huang, Feng; Zhu, Mengchu; Zhang, Qiang; Yang, Tingting; Zhang, Xu; Qian, Hui; Xu, Wenrong

    2015-02-01

    The inflammatory microenvironment contributes to cancer development and progression. Mesenchymal stem cells (MSCs), as important stromal cells, may be 'educated' by the inflammatory microenvironment to support the development of gastric cancer. Cytokines are a key component of cancer-related inflammation. Interleukin (IL)-6, as an inflammatory cytokine, has multiple roles in cancer. However, whether MSCs can be 'educated' by IL-6 to support gastric cancer remains unknown. In the present study, we focused on the phenotype and function of human umbilical cord-derived MSCs hUC‑MSCs pre-treated with IL-6 in gastric cancer. We found that the protein levels of α-smooth muscle actin (α-SMA) were upregulated, and phosphorylated nuclear factor (NF)-κB protein levels were downregulated in the hUC‑MSCs pre-treated with IL-6, as shown by western blot analysis. The levels of tumor‑promoting cytokines, including chemokine (C-C motif) ligand 5 (CCL5), platelet-derived growth factor‑BB (PDGF‑BB), monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor α(TNFα), were markedly reduced in the hUC‑MSCs following treatment with IL-6, as shown by RT-qPCR. In in vitro experiments, we co-cultured MSCs with N-methyl‑N'‑nitro‑N‑nitrosoguanidine (MNNG)‑transformed GES-1 gastric epithelial cells or SGC-7901 gastric cancer cells. Transwell and colony-forming cell assays revealed that the hUC-MSCs significantly promoted gastric cellular migration and proliferation. However, following treatment with IL-6, the hUC-MSCs had no growth-promoting effect on the gastric epithelial cells and gastric cancer cells. In in vivo experiments, we co-transplanted MSCs and SGC-7901 cells into nude mice in order to establish a nude mouse model of gastric cancer. The hUC-MSCs significantly promoted the growth gastric tumors through the promotion of cell proliferation and the inhibition of cell apoptosis. On the contrary, pre-treatment with IL-6 provided the hUC‑MSCs with

  15. Umbilical cord-derived mesenchymal stem cells on scaffolds facilitate collagen degradation via upregulation of MMP-9 in rat uterine scars.

    PubMed

    Xu, Lu; Ding, Lijun; Wang, Lei; Cao, Yun; Zhu, Hui; Lu, Jingjie; Li, Xin'an; Song, Tianran; Hu, Yali; Dai, Jianwu

    2017-04-18

    Severe injuries of the uterus may trigger uterine scar formation, ultimately leading to infertility or obstetrical complications. To date, few methods have adequately solved the problem of collagen deposition in uterine scars. Umbilical cord-derived mesenchymal stem cells (UC-MSCs) have shown great promise in clinical applications. The objective of this study was to investigate the effect of a scaffold/UC-MSCs construct on collagen degradation and functional regeneration in rat uterine scars following full-thickness excision of uterine walls. In order to establish a rat model of uterine scars, the uterine wall of approximately 1.0 cm in length and 0.5 cm in width (one-third of the uterine circumference) was excised from each uterine horn. A total of 128 scarred uterine horns from 64 rats were randomly assigned to four groups, including a PBS group (n = 32 uterine horns), scaffold group (n = 32 uterine horns), UC-MSCs group (n = 32 uterine horns) and scaffold/UC-MSCs group (n = 32 uterine horns) to investigate the effect of different treatments on the structure and function of uterine scars. PBS, degradable collagen fibres, UC-MSCs or UC-MSCs mixed with gelatinous degradable collagen fibres were injected into four pre-marked points surrounding each uterine scar, respectively. At days 30 and 60 post-transplantation, a subset of rats (n = 8 uterine horns) from each group was euthanized and serial sections of uterine tissues containing the operative region were prepared. Haematoxylin-eosin staining, Masson's trichrome staining, and immunohistochemical staining for MMP-2, MMP-9, α-SMA and vWF were performed. Finally, another subset of rats (n = 16 uterine horns) from each group was mated with male rats at day 60 post-transplantation and euthanized 18 days after the presence of vaginal plugs to check numbers, sizes and weights of fetuses, as well as sites of implantation. The scaffold/UC-MSCs group exhibited obvious collagen degradation

  16. Transplantation of umbilical cord-derived mesenchymal stem cells as a novel strategy to protect the central nervous system: technical aspects, preclinical studies, and clinical perspectives.

    PubMed

    Dalous, Jérémie; Larghero, Jérome; Baud, Olivier

    2012-04-01

    The prevention of perinatal neurological disabilities remains a major challenge for public health, and no neuroprotective treatment to date has proven clinically useful in reducing the lesions leading to these disabilities. Efforts are, therefore, urgently needed to test other neuroprotective strategies including cell therapies. Although stem cells have raised great hopes as an inexhaustible source of therapeutic products that could be used for neuroprotection and neuroregeneration in disorders affecting the brain and spinal cord, certain sources of stem cells are associated with potential ethical issues. The human umbilical cord (hUC) is a rich source of stem and progenitor cells including mesenchymal stem cells (MSCs) derived either from the cord or from cord blood. hUC MSCs (hUC-MSCs) have several advantages as compared to other types and sources of stem cells. In this review, we will summarize the most recent findings regarding the technical aspects and the preclinical investigation of these promising cells in neuroprotection and neuroregeneration, and their potential use in the developing human brain. However, extensive studies are needed to optimize the administration protocol, safety parameters, and potential preinjection cell manipulations before designing a controlled trial in human neonates.

  17. A Simple Method to Isolate and Expand Human Umbilical Cord Derived Mesenchymal Stem Cells: Using Explant Method and Umbilical Cord Blood Serum.

    PubMed

    Hassan, Ghmkin; Kasem, Issam; Soukkarieh, Chadi; Aljamali, Majd

    2017-08-31

    Mesenchymal stem cells (MSCs) are multipotent stem cells that can be isolated from umbilical cords and are therapeutically used because of their ability to differentiate into various types of cells, in addition to their immunosuppressive and anti-inflammatory properties. Fetal bovine serum (FBS), considered as the standard additive when isolating and culturing MSCs, has a major limitation related to its animal origin. Here, we employed a simple and economically efficient protocol to isolate MSCs from human umbilical cord tissues without using digestive enzymes and replacing FBS with umbilical cord blood serum (CBS). MSCs were isolated by culturing umbilical cord pieces in CBS or FBS supplemented media. Expansion and proliferation kinetics of cells isolated by explant method in the presence of either FBS or CBS were measured, with morphology and multi-differentiation potential of expanded cells characterized by flow cytometry, RT-PCR, and immunofluorescence. MSCs maintained morphology, immunophenotyping, multi-differentiation potential, and self-renewal ability, with better proliferation rates for cells cultured in CBS compared to FBS supplement media. We here present a simple, reliable and efficient method to isolate MSCs from umbilical cord tissues, where cells maintained proliferation, differentiation potential and immunophenotyping properties and could be efficiently expanded for clinical applications.

  18. Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomal MicroRNAs Suppress Myofibroblast Differentiation by Inhibiting the Transforming Growth Factor-β/SMAD2 Pathway During Wound Healing.

    PubMed

    Fang, Shuo; Xu, Chen; Zhang, Yuntong; Xue, Chunyu; Yang, Chao; Bi, Hongda; Qian, Xijing; Wu, Minjuan; Ji, Kaihong; Zhao, Yunpeng; Wang, Yue; Liu, Houqi; Xing, Xin

    2016-10-01

    : Excessive scar formation caused by myofibroblast aggregations is of great clinical importance during skin wound healing. Studies have shown that mesenchymal stem cells (MSCs) can promote skin regeneration, but whether MSCs contribute to scar formation remains undefined. We found that umbilical cord-derived MSCs (uMSCs) reduced scar formation and myofibroblast accumulation in a skin-defect mouse model. We found that these functions were mainly dependent on uMSC-derived exosomes (uMSC-Exos) and especially exosomal microRNAs. Through high-throughput RNA sequencing and functional analysis, we demonstrated that a group of uMSC-Exos enriched in specific microRNAs (miR-21, -23a, -125b, and -145) played key roles in suppressing myofibroblast formation by inhibiting the transforming growth factor-β2/SMAD2 pathway. Finally, using the strategy we established to block miRNAs inside the exosomes, we showed that these specific exosomal miRNAs were essential for the myofibroblast-suppressing and anti-scarring functions of uMSCs both in vitro and in vivo. Our study revealed a novel role of exosomal miRNAs in uMSC-mediated therapy, suggesting that the clinical application of uMSC-derived exosomes might represent a strategy to prevent scar formation during wound healing. Exosomes have been identified as a new type of major paracrine factor released by umbilical cord-derived mesenchymal stem cells (uMSCs). They have been reported to be an important mediator of cell-to-cell communication. However, it is still unclear precisely which molecule or group of molecules carried within MSC-derived exosomes can mediate myofibroblast functions, especially in the process of wound repair. The present study explored the functional roles of uMSC-exosomal microRNAs in the process of myofibroblast formation, which can cause excessive scarring. This is an unreported function of uMSC exosomes. Also, for the first time, the uMSC-exosomal microRNAs were examined by high-throughput sequencing, with a

  19. Stirred tank bioreactor culture combined with serum-/xenogeneic-free culture medium enables an efficient expansion of umbilical cord-derived mesenchymal stem/stromal cells.

    PubMed

    Mizukami, Amanda; Fernandes-Platzgummer, Ana; Carmelo, Joana G; Swiech, Kamilla; Covas, Dimas T; Cabral, Joaquim M S; da Silva, Cláudia L

    2016-08-01

    Mesenchymal stem/stromal cells (MSC) are being widely explored as promising candidates for cell-based therapies. Among the different human MSC origins exploited, umbilical cord represents an attractive and readily available source of MSC that involves a non-invasive collection procedure. In order to achieve relevant cell numbers of human MSC for clinical applications, it is crucial to develop scalable culture systems that allow bioprocess control and monitoring, combined with the use of serum/xenogeneic (xeno)-free culture media. In the present study, we firstly established a spinner flask culture system combining gelatin-based Cultispher(®) S microcarriers and xeno-free culture medium for the expansion of umbilical cord matrix (UCM)-derived MSC. This system enabled the production of 2.4 (±1.1) x10(5) cells/mL (n = 4) after 5 days of culture, corresponding to a 5.3 (±1.6)-fold increase in cell number. The established protocol was then implemented in a stirred-tank bioreactor (800 mL working volume) (n = 3) yielding 115 million cells after 4 days. Upon expansion under stirred conditions, cells retained their differentiation ability and immunomodulatory potential. The development of a scalable microcarrier-based stirred culture system, using xeno-free culture medium that suits the intrinsic features of UCM-derived MSC represents an important step towards a GMP compliant large-scale production platform for these promising cell therapy candidates.

  20. Human Umbilical Cord-Derived Mesenchymal Stem Cells Improve Learning and Memory Function in Hypoxic-Ischemic Brain-Damaged Rats via an IL-8-Mediated Secretion Mechanism Rather than Differentiation Pattern Induction.

    PubMed

    Zhou, Xiaoqin; Gu, Jialu; Gu, Yan; He, Mulan; Bi, Yang; Chen, Jie; Li, Tingyu

    2015-01-01

    MSCs are a promising therapeutic resource. Paracrine effects and the induction of differentiation patterns are thought to represent the two primary mechanisms underlying the therapeutic effects of mesenchymal stem cell (MSC) transplantation in vivo. However, it is unclear which mechanism is involved in the therapeutic effects of human umbilical cord-derived MSC (hUC-MSC) transplantation. Based on flow cytometry analysis, hUC-MSCs exhibited the morphological characteristics and surface markers of MSCs. Following directed neural induction, these cells displayed a neuron-like morphology and expressed high levels of neural markers. All types of hUC-MSCs, including differentiated and redifferentiated cells, promoted learning and memory function recovery in hypoxic-ischemic brain damaged (HIBD) rats. The hUC-MSCs secreted IL-8, which enhanced angiogenesis in the hippocampus via the JNK pathway. However, the differentiated and redifferentiated cells did not exert significantly greater therapeutic effects than the undifferentiated hUC-MSCs. hUC-MSCs display the biological properties and neural differentiation potential of MSCs and provide therapeutic advantages by secreting IL-8, which participates in angiogenesis in the rat HIBD model. These data suggest that hUC-MSC transplantation improves the recovery of neuronal function via an IL-8-mediated secretion mechanism, whereas differentiation pattern induction was limited. © 2015 S. Karger AG, Basel.

  1. PHBVHHx scaffolds loaded with umbilical cord-derived mesenchymal stem cells or hepatocyte-like cells differentiated from these cells for liver tissue engineering.

    PubMed

    Su, Zhongchun; Li, Pengshan; Wu, Bogang; Ma, Huan; Wang, Yuechun; Liu, Gexiu; Zeng, Huilan; Li, Zhizhong; Wei, Xing

    2014-12-01

    More attention has recently been focused on the treatment of various kinds of hepatic diseases based on cell-based therapies. In this study, mesenchymal stem cells were isolated from umbilical cord (UC-MSCs). Results confirmed that UC-MSCs could differentiate into adipocytes, osteoblasts and hepatocytes. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (PHBVHHx), a new member of polyhydroxyalkanoate (PHA) family, was produced by bacteria. Liver-injured mouse model was established by CCl4 injection. PHBVHHx scaffolds were transplanted into the liver-injured mice. Liver morphology on day 28 post-transplantation of scaffolds loaded with UC-MSCs or hepatocyte-like cells differentiated from UC-MSCs significantly improved and looked similar to the normal liver. Concentrations of albumin (ALB) significantly increased, and total bilirubin (TB) and alanine axminotransferase (ALT) significantly decreased on days 14 and 28 post-transplantation of scaffolds loaded with UC-MSCs or differentiated UC-MSCs. HE staining showed that on day 28 post-transplantation of scaffolds loaded with UC-MSCs or differentiated UC-MSCs, livers had similar tissue structure of normal livers. Masson staining showed that on day 28 post-transplantation of scaffolds loaded with UC-MSCs or differentiated UC-MSCs, livers had less blue staining for collagen deposition compared with the others. These results demonstrated that PHBVHHx scaffolds loaded with UC-MSCs or differentiated UC-MSCs had the similar effect on injured livers and significantly promoted the recovery of injured livers.

  2. Intradermal injections of equine allogeneic umbilical cord-derived mesenchymal stem cells are well tolerated and do not elicit immediate or delayed hypersensitivity reactions.

    PubMed

    Carrade, Danielle D; Affolter, Verena K; Outerbridge, Catherine A; Watson, Johanna L; Galuppo, Larry D; Buerchler, Sabine; Kumar, Vijay; Walker, Naomi J; Borjesson, Dori L

    2011-11-01

    BACKGROUND AIMS. The use of allogeneic mesenchymal stem cells (MSC) to treat acute equine lesions would greatly expand equine cellular therapy options; however, the safety and antigenicity of these cells have not been well-studied. We hypothesized that equine allogeneic umbilical cord tissue (UCT)-derived MSC would not elicit acute graft rejection or a delayed-type hypersensitivity response when injected intradermally. METHODS. Six Quarterhorse yearlings received 12 intradermal injections (autologous MSC, allogeneic MSC, positive control and negative control, in triplicate) followed by the same series of 12 injections, 3-4 weeks later, at another site. Wheals were measured and palpated at 0.25, 4, 24, 48, 72 h and 7 days post-injection. Biopsies were obtained at 48 and 72 h and 7 days post-injection. Mixed leukocyte reactions were performed 1 week prior to the first injections and 3 weeks after the second injections. RESULTS. There were no adverse local or systemic responses to two intradermal injections of allogeneic MSC. MSC injection resulted in minor wheal formation, characterized by mild dermatitis, dermal edema and endothelial hyperplasia, that fully resolved by 48-72 h. No differences were noted between allogeneic and autologous MSC. The second injection of MSC did not elicit more significant physical or histomorphologic alterations compared with the first MSC injection. Neither allogeneic nor autologous UCT-derived MSC stimulated or suppressed baseline T-cell proliferation in vitro prior to or after two MSC administrations. CONCLUSIONS. Equine allogeneic UCT MSC may be safely administered intradermally on multiple occasions without eliciting a measurable cellular immune response.

  3. Nicotinamide Promotes Adipogenesis in Umbilical Cord-Derived Mesenchymal Stem Cells and Is Associated with Neonatal Adiposity: The Healthy Start BabyBUMP Project

    PubMed Central

    Shapiro, Allison L. B.; Boyle, Kristen E.; Dabelea, Dana; Patinkin, Zachary W.; De la Houssaye, Becky; Ringham, Brandy M.; Glueck, Deborah H.; Barbour, Linda A.; Norris, Jill M.; Friedman, Jacob E.

    2016-01-01

    The cellular mechanisms whereby excess maternal nutrition during pregnancy increases adiposity of the offspring are not well understood. However, nicotinamide (NAM), a fundamental micronutrient that is important in energy metabolism, has been shown to regulate adipogenesis through inhibition of SIRT1. Here we tested three novel hypotheses: 1) NAM increases the adipogenic response of human umbilical cord tissue-derived mesenchymal stem cells (MSCs) through a SIRT1 and PPARγ pathway; 2) lipid potentiates the NAM-enhanced adipogenic response; and 3) the adipogenic response to NAM is associated with increased percent fat mass (%FM) among neonates. MSCs were derived from the umbilical cord of 46 neonates born to non-obese mothers enrolled in the Healthy Start study. Neonatal %FM was measured using air displacement plethysmography (Pea Pod) shortly after birth. Adipogenic differentiation was induced for 21 days in the 46 MSC sets under four conditions, +NAM (3mM)/–lipid (200 μM oleate/palmitate mix), +NAM/+lipid, –NAM/+lipid, and vehicle-control (–NAM/–lipid). Cells incubated in the presence of NAM had significantly higher PPARγ protein (+24%, p <0.01), FABP4 protein (+57%, p <0.01), and intracellular lipid content (+51%, p <0.01). Lipid did not significantly increase either PPARγ protein (p = 0.98) or FABP4 protein content (p = 0.82). There was no evidence of an interaction between NAM and lipid on adipogenic response of PPARγ or FABP4 protein (p = 0.99 and p = 0.09). In a subset of 9 MSC, SIRT1 activity was measured in the +NAM/-lipid and vehicle control conditions. SIRT1 enzymatic activity was significantly lower (-70%, p <0.05) in the +NAM/-lipid condition than in vehicle-control. In a linear model with neonatal %FM as the outcome, the percent increase in PPARγ protein in the +NAM/-lipid condition compared to vehicle-control was a significant predictor (β = 0.04, 95% CI 0.01–0.06, p <0.001). These are the first data to support that chronic NAM

  4. Nicotinamide Promotes Adipogenesis in Umbilical Cord-Derived Mesenchymal Stem Cells and Is Associated with Neonatal Adiposity: The Healthy Start BabyBUMP Project.

    PubMed

    Shapiro, Allison L B; Boyle, Kristen E; Dabelea, Dana; Patinkin, Zachary W; De la Houssaye, Becky; Ringham, Brandy M; Glueck, Deborah H; Barbour, Linda A; Norris, Jill M; Friedman, Jacob E

    2016-01-01

    The cellular mechanisms whereby excess maternal nutrition during pregnancy increases adiposity of the offspring are not well understood. However, nicotinamide (NAM), a fundamental micronutrient that is important in energy metabolism, has been shown to regulate adipogenesis through inhibition of SIRT1. Here we tested three novel hypotheses: 1) NAM increases the adipogenic response of human umbilical cord tissue-derived mesenchymal stem cells (MSCs) through a SIRT1 and PPARγ pathway; 2) lipid potentiates the NAM-enhanced adipogenic response; and 3) the adipogenic response to NAM is associated with increased percent fat mass (%FM) among neonates. MSCs were derived from the umbilical cord of 46 neonates born to non-obese mothers enrolled in the Healthy Start study. Neonatal %FM was measured using air displacement plethysmography (Pea Pod) shortly after birth. Adipogenic differentiation was induced for 21 days in the 46 MSC sets under four conditions, +NAM (3mM)/-lipid (200 μM oleate/palmitate mix), +NAM/+lipid, -NAM/+lipid, and vehicle-control (-NAM/-lipid). Cells incubated in the presence of NAM had significantly higher PPARγ protein (+24%, p <0.01), FABP4 protein (+57%, p <0.01), and intracellular lipid content (+51%, p <0.01). Lipid did not significantly increase either PPARγ protein (p = 0.98) or FABP4 protein content (p = 0.82). There was no evidence of an interaction between NAM and lipid on adipogenic response of PPARγ or FABP4 protein (p = 0.99 and p = 0.09). In a subset of 9 MSC, SIRT1 activity was measured in the +NAM/-lipid and vehicle control conditions. SIRT1 enzymatic activity was significantly lower (-70%, p <0.05) in the +NAM/-lipid condition than in vehicle-control. In a linear model with neonatal %FM as the outcome, the percent increase in PPARγ protein in the +NAM/-lipid condition compared to vehicle-control was a significant predictor (β = 0.04, 95% CI 0.01-0.06, p <0.001). These are the first data to support that chronic NAM exposure

  5. Enhanced expression of hepatocyte-specific microRNAs in valproic acid mediated hepatic trans-differentiation of human umbilical cord derived mesenchymal stem cells.

    PubMed

    Raut, Akshata; Khanna, Aparna

    2016-05-01

    MicroRNAs (miRNAs) play an important role in the control of cell fate determination during differentiation. In this study, we analyzed the expression pattern of microRNAs (miRNAs) during hepatic trans-differentiation. The protocol employed the use of histone deacetylase inhibitor (HDACI), valproic acid (VPA) to induce hepatic trans-differentiation of human umbilical cord Wharton's jelly derived mesenchymal stem cells (hUC-MSCs). The differentiated hepatocyte like cells (HLCs) from hUC-MSCs shared typical characteristics with mature hepatocytes, including morphology, expression of hepatocyte -specific genes at the molecular and cellular level. Moreover, the functionality of HLCs was confirmed through various liver function tests such as periodic acid-Schiff (PAS) stain for glycogen accumulation, enzyme-linked immunosorbent assay (ELISA) for synthesis of albumin and release of urea. The aim of the present work was to examine the effect of VPA treatment on miRNA expression during hepatic trans-differentiation. The analysis at miRNA level showed that there was a significant increase in expression of miRNAs involved in hepatic differentiation, due to VPA pre-treatment during differentiation. The study, thus demonstrated that improved expression of hepatocyte-specific miRNAs, miR-23b cluster (miR-27b-3p, miR-24-1-5p and miR-23b-3p), miR-30a-5p, miR-26a-5p, miR-148a-3p, miR-192-5p, miR-122-5p due to VPA pre-treatment contributed to a more efficient hepatic trans-differentiation from hUC-MSCs. The putative targets of these upregulated miRNAs were predicted using Bioinformatics analysis. Finally, miR-122-5p, highly upregulated miRNA during hepatic differentiation, was selected for target verification studies. Thus, this study also provides the basis for the function of miR-122-5p during hepatic differentiation of hUC-MSCs. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Umbilical cord-derived mesenchymal stem cells reversed the suppressive deficiency of T regulatory cells from peripheral blood of patients with multiple sclerosis in a co-culture - a preliminary study.

    PubMed

    Yang, Hongna; Sun, Jinhua; Wang, Feng; Li, Yan; Bi, Jianzhong; Qu, Tingyu

    2016-11-08

    The immunoregulatory function of T regulatory cells (Tregs) is impaired in multiple sclerosis (MS). Recent studies have shown that umbilical cord-derived mesenchymal stem cells (UC-MSCs) exert regulatory effect on the functions of immune cells. Thus, we investigated whether UC-MSCs could improve the impaired function of Tregs from MS patients. Co-cultures of UC-MSCs with PBMCs of MS patients were performed for 3 days. Flow cytometry was used to determine the frequency of Tregs. A cell proliferation assay was used to evaluate the suppressive capacity of Tregs. ELISA was conducted for cytokine analysis in the co-cultures. Our results showed that UC-MSCs significantly increased the frequency of CD4+CD25+CD127low/- Tregs in resting CD4+ T cells (p<0.01) from MS, accompanied by the significantly augmented production of cytokine prostaglandin E2, transforming growth factor (-β1, and interleukin-10, along with a reduced interferon-γ production in these co-cultures (p<0.05 - 0.01). More importantly, UC-MSC-primed Tregs of MS patients significantly inhibited the proliferation of PHA-stimulated autologous and allogeneic CD4+CD25- T effector cells (Teffs) from MS patients and healthy individuals compared to non-UC-MSC-primed (naïve) Tregs from the same MS patients (p<0.01). Furthermore, no remarkable differences in suppressing the proliferation of PHA-stimulated CD4+CD25- Teffs was observed in UC-MSC-primed Tregs from MS patients and naïve Tregs from healthy subjects. The impaired suppressive function of Tregs from MS can be completely reversed in a co-culture by UC-MSC modulation. This report is the first to demonstrate that functional defects of Tregs in MS can be repaired in vitro using a simple UC-MSC priming approach.

  7. Umbilical cord-derived mesenchymal stem cells reversed the suppressive deficiency of T regulatory cells from peripheral blood of patients with multiple sclerosis in a co-culture – a preliminary study

    PubMed Central

    Yang, Hongna; Sun, Jinhua; Wang, Feng; Li, Yan; Bi, Jianzhong; Qu, Tingyu

    2016-01-01

    The immunoregulatory function of T regulatory cells (Tregs) is impaired in multiple sclerosis (MS). Recent studies have shown that umbilical cord-derived mesenchymal stem cells (UC-MSCs) exert regulatory effect on the functions of immune cells. Thus, we investigated whether UC-MSCs could improve the impaired function of Tregs from MS patients. Co-cultures of UC-MSCs with PBMCs of MS patients were performed for 3 days. Flow cytometry was used to determine the frequency of Tregs. A cell proliferation assay was used to evaluate the suppressive capacity of Tregs. ELISA was conducted for cytokine analysis in the co-cultures. Our results showed that UC-MSCs significantly increased the frequency of CD4+CD25+CD127low/− Tregs in resting CD4+ T cells (p<0.01) from MS, accompanied by the significantly augmented production of cytokine prostaglandin E2, transforming growth factor (−β1, and interleukin-10, along with a reduced interferon-γ production in these co-cultures (p<0.05 - 0.01). More importantly, UC-MSC-primed Tregs of MS patients significantly inhibited the proliferation of PHA-stimulated autologous and allogeneic CD4+CD25− T effector cells (Teffs) from MS patients and healthy individuals compared to non-UC-MSC-primed (naïve) Tregs from the same MS patients (p<0.01). Furthermore, no remarkable differences in suppressing the proliferation of PHA-stimulated CD4+CD25− Teffs was observed in UC-MSC-primed Tregs from MS patients and naïve Tregs from healthy subjects. The impaired suppressive function of Tregs from MS can be completely reversed in a co-culture by UC-MSC modulation. This report is the first to demonstrate that functional defects of Tregs in MS can be repaired in vitro using a simple UC-MSC priming approach. PMID:27705922

  8. Extracellular Vesicles Released from Human Umbilical Cord-Derived Mesenchymal Stromal Cells Prevent Life-Threatening Acute Graft-Versus-Host Disease in a Mouse Model of Allogeneic Hematopoietic Stem Cell Transplantation.

    PubMed

    Wang, Li; Gu, Zhenyang; Zhao, Xiaoli; Yang, Nan; Wang, Feiyan; Deng, Ailing; Zhao, Shasha; Luo, Lan; Wei, Huaping; Guan, Lixun; Gao, Zhe; Li, Yonghui; Wang, Lili; Liu, Daihong; Gao, Chunji

    2016-12-15

    Mesenchymal stromal cells (MSCs) are attractive agents for the prophylaxis of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, safety concerns remain about their clinical application. In this study, we explored whether extracellular vesicles released from human umbilical cord-derived MSCs (hUC-MSC-EVs) could prevent aGVHD in a mouse model of allo-HSCT. hUC-MSC-EVs were intravenously administered to recipient mice on days 0 and 7 after allo-HSCT, and the prophylactic effects of hUC-MSC-EVs were assessed by observing the in vivo manifestations of aGVHD, histologic changes in target organs, and recipient mouse survival. We evaluated the effects of hUC-MSC-EVs on immune cells and inflammatory cytokines by flow cytometry and ProcartaPlex™ Multiplex Immunoassays, respectively. The in vitro effects of hUC-MSC-EVs were determined by mitogen-induced proliferation assays. hUC-MSC-EVs alleviated the in vivo manifestations of aGVHD and the associated histologic changes and significantly reduced the mortality of the recipient mice. Recipients treated with hUC-MSC-EVs had significantly lower frequencies and absolute numbers of CD3(+)CD8(+) T cells; reduced serum levels of IL-2, TNF-α, and IFN-γ; a higher ratio of CD3(+)CD4(+) and CD3(+)CD8(+) T cells; and higher serum levels of IL-10. An in vitro experiment demonstrated that hUC-MSC-EVs inhibited the mitogen-induced proliferation of splenocytes in a dose-dependent manner, and the cytokine changes were similar to those observed in vivo. This study indicated that hUC-MSC-EVs can prevent life-threatening aGVHD by modulating immune responses. These data provide the first evidence that hUC-MSC-EVs represent an ideal alternative in the prophylaxis of aGVHD after allo-HSCT.

  9. Cotransplantation of human umbilical cord-derived mesenchymal stem cells and umbilical cord blood-derived CD34⁺ cells in a rabbit model of myocardial infarction.

    PubMed

    Li, Tong; Ma, Qunxing; Ning, Meng; Zhao, Yue; Hou, Yuelong

    2014-02-01

    The objective of the study is to investigate the effect of hypoxic preconditioning on the immunomodulatory properties of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) and the effect of cotransplantation of hUC-MSCs and human umbilical cord blood (hUCB)-derived CD34(+) cells in a rabbit model of myocardial infarction. hUC-MSCs with or without hypoxic preconditioning by cobalt chloride were plated in a 24-well plate, and then cocultured with hUCB-CD34(+) cells and PBMCs for 96 h at 37 °C in a 5% CO₂ incubator. For the negative control, hUC-MSCs were omitted. The groups were divided as follows: A1 = HP-MSCs + hUCB-CD34(+) cells + PBMC, A2 = hUC-MSCs + hUCB-CD34(+) cells + PBMC, Negative Control = hUCB-CD34(+) cells + PBMC. Culture supernatants of each group were collected, and the IL-10 and IFN-γ levels were measured by ELISA. A rabbit model of MI was established using a modified Fujita method. The animals were then randomized into three groups and received intramyocardial injections of 0.4 ml of PBS alone (n = 8, PBS group), hUC-MSCs in PBS (n = 8, hUC-MSCs group), or hUC-MSCs + CD34(+) cells in PBS (n = 8, Cotrans group), at four points in the infarct border zone. Echocardiography was performed at baseline, 4 weeks after MI induction, and 4 weeks after cell transplantation, respectively. Stem cell differentiation and neovascularization in the infracted area were characterized for the presence of cardiac Troponin I (cTnI) and CD31 by immunohistochemical staining, and the extent of myocardial fibrosis was evaluated by hematoxylin and eosin (H&E) and Masson's trichrome. IFN-γ was 27.00 ± 1.11, 14.20 ± 0.81, and 7.22 ± 0.14 pg/ml, and IL-10 was 31.68 ± 3.08, 61.42 ± 1.08, and 85.85 ± 1.80 pg/ml for the Control, A1 and A2 groups, respectively, which indicated that hUCB-CD34(+) cells induced immune reaction of peripheral blood mononuclear cells, whereas both hUC-MSCs and HP-MSCs showed an immunosuppressive effect, which, however, was attenuated

  10. Systemic transplantation of human umbilical cord derived mesenchymal stem cells-educated T regulatory cells improved the impaired cognition in AβPPswe/PS1dE9 transgenic mice.

    PubMed

    Yang, Hongna; Yang, Hui; Xie, Zhaohong; Wei, Lifei; Bi, Jianzhong

    2013-01-01

    Alzheimer's disease (AD) is one of most prevalent dementias, which is characterized by the deposition of extracellular amyloid-beta protein (Aβ) and the formation of neurofibrillary tangles within neurons. Although stereotaxic transplantation of mesenchymal stem cells (MSCs) into the hippocampus of AD animal model as immunomodulatory cells has been suggested as a potential therapeutic approach to prevent the progress of AD, it is invasive and difficult for clinical perform. Systemic and central nervous system inflammation play an important role in pathogenesis of AD. T regulatory cells (Tregs) play a crucial role in maintaining systemic immune homeostasis, indicating that transplantation of Tregs could prevent the progress of the inflammation. In this study, we aimed to evaluate whether systemic transplantation of purified autologous Tregs from spleens of AβPPswe/PS1dE9 double-transgenic mice after MSCs from human umbilical cords (UC-MSCs) education in vitro for 3 days could improve the neuropathology and cognition deficits in AβPPswe/PS1dE9 double-transgenic mice. We observed that systemic transplantation of autologous Tregs significantly ameliorate the impaired cognition and reduced the Aβ plaque deposition and the levels of soluble Aβ, accompanied with significantly decreased levels of activated microglia and systemic inflammatory factors. In conclusion, systemic transplantation of autologous Tregs may be an effective and safe intervention to prevent the progress of AD.

  11. Connexin 50 modulates Sox2 expression in spinal-cord-derived ependymal stem/progenitor cells.

    PubMed

    Rodriguez-Jimenez, Francisco Javier; Alastrue, Ana; Stojkovic, Miodrag; Erceg, Slaven; Moreno-Manzano, Victoria

    2016-08-01

    Ion channels included in the family of Connexins (Cx) have been reported to influence the secondary expansion of traumatic spinal cord injury (SCI) and neuropathic pain following SCI. However, Cxs also contribute to spinal cord neurogenesis during the remyelinating process and functional recovery after SCI. Certain Cxs have been recently related to the control of cell proliferation and the differentiation of neuronal progenitors. Adult spinal-cord-derived ependymal stem progenitor cells (epSPC) show high expression levels of Cx50 in non-pathological conditions and lower expression when they actively proliferate after injury (epSPCi). We explore the role of Cx50 in the ependymal population in the modulation of Sox2, a crucial factor of neural progenitor self-renewal and a promising target for promoting neuronal-cell-fate induction for neuronal tissue repair. Short-interfering-RNA ablation or over-expression of Cx50 regulates the expression of Sox2 in both epSPC and epSPCi. Interestingly, Cx50 and Sox2 co-localize at the nucleus indicating a potential role for this ion channel beyond cell-to-cell communication in the spinal cord. In vivo and in vitro experiments with Clotrimazole, a specific pharmacological modulator of Cx50, show the convergent higher expression of Cx50 and Sox2 in the isolated epSPC/epSPCi and in spinal cord tissue. Therefore, the pharmacological modulation of Cx50 might constitute an interesting mechanism for Sox2 induction to modulate the endogenous regenerative potential of neuronal tissue with a potential application in regenerative therapies.

  12. Isolation and Culture of Embryonic Stem Cells, Mesenchymal Stem Cells, and Dendritic Cells from Humans and Mice.

    PubMed

    Kar, Srabani; Mitra, Shinjini; Banerjee, Ena Ray

    2016-01-01

    Stem cells are cells capable of proliferation, self-renewal, and differentiation into specific phenotypes. They are an essential part of tissue engineering, which is used in regenerative medicine in case of degenerative diseases. In this chapter, we describe the methods of isolating and culturing various types of stem cells, like human embryonic stem cells (hESCs), human umbilical cord derived mesenchymal stem cells (hUC-MSCs), murine bone marrow derived mesenchymal stem cells (mBM-MSCs), murine adipose tissue derived mesenchymal stem cells (mAD-MSCs), and murine bone marrow derived dendritic cells (mBMDCs). All these cell types can be used in tissue engineering techniques.

  13. Effects of light emitting diode irradiation on neural differentiation of human umbilical cord-derived mesenchymal cells.

    PubMed

    Dehghani-Soltani, Samereh; Shojaee, Mohammad; Jalalkamali, Mahshid; Babaee, Abdolreza; Nematollahi-Mahani, Seyed Noureddin

    2017-08-30

    Recently, light emitting diodes (LEDs) have been introduced as a potential physical factor for proliferation and differentiation of various stem cells. Among the mesenchymal stem cells human umbilical cord matrix-derived mesenchymal (hUCM) cells are easily propagated in the laboratory and their low immunogenicity make them more appropriate for regenerative medicine procedures. We aimed at this study to evaluate the effect of red and green light emitted from LED on the neural lineage differentiation of hUCM cells in the presence or absence of retinoic acid (RA). Harvested hUCM cells exhibited mesenchymal and stemness properties. Irradiation of these cells by green and red LED with or without RA pre-treatment successfully differentiated them into neural lineage when the morphology of the induced cells, gene expression pattern (nestin, β-tubulin III and Olig2) and protein synthesis (anti-nestin, anti-β-tubulin III, anti-GFAP and anti-O4 antibodies) was evaluated. These data point for the first time to the fact that LED irradiation and optogenetic technology may be applied for neural differentiation and neuronal repair in regenerative medicine.

  14. Umbilical Cord as Prospective Source for Mesenchymal Stem Cell-Based Therapy

    PubMed Central

    2016-01-01

    The paper presents current evidence on the properties of human umbilical cord-derived mesenchymal stem cells, including origin, proliferative potential, plasticity, stability of karyotype and phenotype, transcriptome, secretome, and immunomodulatory activity. A review of preclinical studies and clinical trials using this cell type is performed. Prospects for the use of mesenchymal stem cells, derived from the umbilical cord, in cell transplantation are associated with the need for specialized biobanking and transplant standardization criteria. PMID:27651799

  15. Human umbilical cord-derived mesenchymal stromal cells protect against premature renal senescence resulting from oxidative stress in rats with acute kidney injury.

    PubMed

    Rodrigues, Camila Eleuterio; Capcha, José Manuel Condor; de Bragança, Ana Carolina; Sanches, Talita Rojas; Gouveia, Priscila Queiroz; de Oliveira, Patrícia Aparecida Ferreira; Malheiros, Denise Maria Avancini Costa; Volpini, Rildo Aparecido; Santinho, Mirela Aparecida Rodrigues; Santana, Bárbara Amélia Aparecida; Calado, Rodrigo do Tocantins; Noronha, Irene de Lourdes; Andrade, Lúcia

    2017-01-28

    Mesenchymal stromal cells (MSCs) represent an option for the treatment of acute kidney injury (AKI). It is known that young stem cells are better than are aged stem cells at reducing the incidence of the senescent phenotype in the kidneys. The objective of this study was to determine whether AKI leads to premature, stress-induced senescence, as well as whether human umbilical cord-derived MSCs (huMSCs) can prevent ischaemia/reperfusion injury (IRI)-induced renal senescence in rats. By clamping both renal arteries for 45 min, we induced IRI in male rats. Six hours later, some rats received 1 × 10(6) huMSCs or human adipose-derived MSCs (aMSCs) intraperitoneally. Rats were euthanised and studied on post-IRI days 2, 7 and 49. On post-IRI day 2, the kidneys of huMSC-treated rats showed improved glomerular filtration, better tubular function and higher expression of aquaporin 2, as well as less macrophage infiltration. Senescence-related proteins (β-galactosidase, p21(Waf1/Cip1), p16(INK4a) and transforming growth factor beta 1) and microRNAs (miR-29a and miR-34a) were overexpressed after IRI and subsequently downregulated by the treatment. The IRI-induced pro-oxidative state and reduction in Klotho expression were both reversed by the treatment. In comparison with huMSC treatment, the treatment with aMSCs improved renal function to a lesser degree, as well as resulting in a less pronounced increase in the renal expression of Klotho and manganese superoxide dismutase. Treatment with huMSCs ameliorated long-term kidney function after IRI, minimised renal fibrosis, decreased β-galactosidase expression and increased the expression of Klotho. Our data demonstrate that huMSCs attenuate the inflammatory and oxidative stress responses occurring in AKI, as well as reducing the expression of senescence-related proteins and microRNAs. Our findings broaden perspectives for the treatment of AKI.

  16. In vitro cardiomyogenic potential of human umbilical vein-derived mesenchymal stem cells

    SciTech Connect

    Kadivar, Mehdi; Khatami, Shohreh . E-mail: khatamibiochem@yahoo.com; Mortazavi, Yousef; Shokrgozar, Mohammad Ali; Taghikhani, Mohammad; Soleimani, Masoud

    2006-02-10

    Cardiomyocyte loss in the ischemically injured human heart often leads to irreversible defects in cardiac function. Recently, cellular cardiomyoplasty with mesenchymal stem cells, which are multipotent cells with the ability to differentiate into specialized cells under appropriate stimuli, has emerged as a new approach for repairing damaged myocardium. In the present study, the potential of human umbilical cord-derived mesenchymal stem cells to differentiate into cells with characteristics of cardiomyocyte was investigated. Mesenchymal stem cells were isolated from endothelial/subendothelial layers of the human umbilical cords using a method similar to that of human umbilical vein endothelial cell isolation. Isolated cells were characterized by transdifferentiation ability to adipocytes and osteoblasts, and also with flow cytometry analysis. After treatment with 5-azacytidine, the human umbilical cord-derived mesenchymal stem cells were morphologically transformed into cardiomyocyte-like cells and expressed cardiac differentiation markers. During the differentiation, cells were monitored by a phase contrast microscope and their morphological changes were demonstrated. Immunostaining of the differentiated cells for sarcomeric myosin (MF20), desmin, cardiac troponin I, and sarcomeric {alpha}-actinin was positive. RT-PCR analysis showed that these differentiated cells express cardiac-specific genes. Transmission electron microscopy revealed a cardiomyocyte-like ultrastructure and typical sarcomers. These observations confirm that human umbilical cord-derived mesenchymal stem cells can be chemically transformed into cardiomyocytes and can be considered as a source of cells for cellular cardiomyoplasty.

  17. Transplantation of spinal cord-derived neural stem cells for ALS: Analysis of phase 1 and 2 trials.

    PubMed

    Glass, Jonathan D; Hertzberg, Vicki S; Boulis, Nicholas M; Riley, Jonathan; Federici, Thais; Polak, Meraida; Bordeau, Jane; Fournier, Christina; Johe, Karl; Hazel, Tom; Cudkowicz, Merit; Atassi, Nazem; Borges, Lawrence F; Rutkove, Seward B; Duell, Jayna; Patil, Parag G; Goutman, Stephen A; Feldman, Eva L

    2016-07-26

    To test the safety of spinal cord transplantation of human stem cells in patients with amyotrophic lateral sclerosis (ALS) with escalating doses and expansion of the trial to multiple clinical centers. This open-label trial included 15 participants at 3 academic centers divided into 5 treatment groups receiving increasing doses of stem cells by increasing numbers of cells/injection and increasing numbers of injections. All participants received bilateral injections into the cervical spinal cord (C3-C5). The final group received injections into both the lumbar (L2-L4) and cervical cord through 2 separate surgical procedures. Participants were assessed for adverse events and progression of disease, as measured by the ALS Functional Rating Scale-Revised, forced vital capacity, and quantitative measures of strength. Statistical analysis focused on the slopes of decline of these phase 2 trial participants alone or in combination with the phase 1 participants (previously reported), comparing these groups to 3 separate historical control groups. Adverse events were mostly related to transient pain associated with surgery and to side effects of immunosuppressant medications. There was one incident of acute postoperative deterioration in neurologic function and another incident of a central pain syndrome. We could not discern differences in surgical outcomes between surgeons. Comparisons of the slopes of decline with the 3 separate historical control groups showed no differences in mean rates of progression. Intraspinal transplantation of human spinal cord-derived neural stem cells can be safely accomplished at high doses, including successive lumbar and cervical procedures. The procedure can be expanded safely to multiple surgical centers. This study provides Class IV evidence that for patients with ALS, spinal cord transplantation of human stem cells can be safely accomplished and does not accelerate the progression of the disease. This study lacks the precision to

  18. Transplantation of umbilical cord and bone marrow-derived mesenchymal stem cells in a patient with relapsing-remitting multiple sclerosis

    PubMed Central

    Hou, Zong-liu; Liu, Ying; Mao, Xi-Hong; Wei, Chuan-yu; Meng, Ming-yao; Liu, Yun-hong; Zhuyun Yang, Zara; Zhu, Hongmei; Short, Martin; Bernard, Claude; Xiao, Zhi-cheng

    2013-01-01

    There is currently great interest in the use of mesenchymal stem cells as a therapy for multiple sclerosis with potential to both ameliorate inflammatory processes as well as improve regeneration and repair. Although most clinical studies have used autologous bone marrow-derived mesenchymal stem cells, other sources such as allogeneic umbilical cord-derived cells may provide a more accessible and practical supply of cells for transplantation. In this case report we present the treatment of aggressive multiple sclerosis with multiple allogenic human umbilical cord-derived mesenchymal stem cell and autologous bone marrow-derived mesenchymal stem cells over a 4 y period. The treatments were tolerated well with no significant adverse events. Clinical and radiological disease appeared to be suppressed following the treatments and support the expansion of mesenchymal stem cell transplantation into clinical trials as a potential novel therapy for patients with aggressive multiple sclerosis. PMID:24192520

  19. Transplantation of umbilical cord and bone marrow-derived mesenchymal stem cells in a patient with relapsing-remitting multiple sclerosis.

    PubMed

    Hou, Zong-liu; Liu, Ying; Mao, Xi-Hong; Wei, Chuan-yu; Meng, Ming-yao; Liu, Yun-hong; Zhuyun Yang, Zara; Zhu, Hongmei; Short, Martin; Bernard, Claude; Xiao, Zhi-cheng

    2013-01-01

    There is currently great interest in the use of mesenchymal stem cells as a therapy for multiple sclerosis with potential to both ameliorate inflammatory processes as well as improve regeneration and repair. Although most clinical studies have used autologous bone marrow-derived mesenchymal stem cells, other sources such as allogeneic umbilical cord-derived cells may provide a more accessible and practical supply of cells for transplantation. In this case report we present the treatment of aggressive multiple sclerosis with multiple allogenic human umbilical cord-derived mesenchymal stem cell and autologous bone marrow-derived mesenchymal stem cells over a 4 y period. The treatments were tolerated well with no significant adverse events. Clinical and radiological disease appeared to be suppressed following the treatments and support the expansion of mesenchymal stem cell transplantation into clinical trials as a potential novel therapy for patients with aggressive multiple sclerosis.

  20. Neural Growth Factor Stimulates Proliferation of Spinal Cord Derived-Neural Precursor/Stem Cells

    PubMed Central

    Han, Youngmin

    2016-01-01

    Objective Recently, regenerative therapies have been used in clinical trials (heart, cartilage, skeletal). We don't make use of these treatments to spinal cord injury (SCI) patients yet, but regenerative therapies are rising interest in recent study about SCI. Neural precursor/stem cell (NPSC) proliferation is a significant event in functional recovery of the central nervous system (CNS). However, brain NPSCs and spinal cord NPSCs (SC-NPSCs) have many differences including gene expression and proliferation. The purpose of this study was to investigate the influence of neural growth factor (NGF) on the proliferation of SC-NPSCs. Methods NPSCs (2×104) were suspended in 100 µL of neurobasal medium containing NGF-7S (Sigma-Aldrich) and cultured in a 96-well plate for 12 days. NPSC proliferation was analyzed five times for either concentration of NGF (0.02 and 2 ng/mL). Sixteen rats after SCI were randomly allocated into two groups. In group 1 (SCI-vehicle group, n=8), animals received 1.0 mL of the saline vehicle solution. In group 2 (SCI-NGF group, n=8), the animals received single doses of NGF (Sigma-Aldrich). A dose of 0.02 ng/mL of NGF or normal saline as a vehicle control was intra-thecally injected daily at 24 hour intervals for 7 days. For Immunohistochemistry analysis, rats were sacrificed after one week and the spinal cords were obtained. Results The elevation of cell proliferation with 0.02 ng/mL NGF was significant (p<0.05) but was not significant for 2 ng/mL NGF. The optical density was increased in the NGF 0.02 ng/mL group compared to the control group and NGF 2 ng/mL groups. The density of nestin in the SCI-NGF group was significantly increased over the SCI-vehicle group (p<0.05). High power microscopy revealed that the density of nestin in the SCI-NGF group was significantly increased over the SCI-vehicle group. Conclusion SC-NPSC proliferation is an important pathway in the functional recovery of SCI. NGF enhances SC-NPSC proliferation in vitro and in

  1. Human fetal mesenchymal stem cells.

    PubMed

    O'Donoghue, Keelin; Chan, Jerry

    2006-09-01

    Stem cells have been isolated at all stages of development from the early developing embryo to the post-reproductive adult organism. However, the fetal environment is unique as it is the only time in ontogeny that there is migration of stem cells in large numbers into different organ compartments. While fetal neural and haemopoietic stem cells (HSC) have been well characterised, only recently have mesenchymal stem cells from the human fetus been isolated and evaluated. Our group have characterised in human fetal blood, liver and bone marrow a population of non-haemopoietic, non-endothelial cells with an immunophenotype similar to adult bone marrow-derived mesenchymal stem cells (MSC). These cells, human fetal mesenchymal stem cells (hfMSC), are true multipotent stem cells with greater self-renewal and differentiation capacity than their adult counterparts. They circulate in first trimester fetal blood and have been found to traffic into the maternal circulation, engrafting in bone marrow, where they remain microchimeric for decades after pregnancy. Though fetal microchimerism has been implicated in the pathogenesis of autoimmune disease, the biological role of hfMSC microchimerism is unknown. Potential downstream applications of hfMSC include their use as a target cell for non-invasive pre-natal diagnosis from maternal blood, and for fetal cellular and gene therapy. Using hfMSC in fetal therapy offers the theoretical advantages of avoidance of immune rejection, increased engraftment, and treatment before disease pathology sets in. Aside from allogeneic hfMSC in utero transplantation, the use of autologous hfMSC has been brought a step forward with the development of early blood sampling techniques, efficient viral transduction and clonal expansion. Work is ongoing to determine hfMSC fate post-transplantation in murine models of genetic disease. In this review we will examine what is known about hfMSC biology, as well as discussing areas for future research. The

  2. Purinergic Receptors in Spinal Cord-Derived Ependymal Stem/Progenitor Cells and Their Potential Role in Cell-Based Therapy for Spinal Cord Injury.

    PubMed

    Gómez-Villafuertes, Rosa; Rodríguez-Jiménez, Francisco Javier; Alastrue-Agudo, Ana; Stojkovic, Miodrag; Miras-Portugal, María Teresa; Moreno-Manzano, Victoria

    2015-01-01

    Spinal cord injury (SCI) is a major cause of paralysis with no current therapies. Following SCI, large amounts of ATP and other nucleotides are released by the traumatized tissue leading to the activation of purinergic receptors that, in coordination with growth factors, induce lesion remodeling and repair. We found that adult mammalian ependymal spinal cord-derived stem/progenitor cells (epSPCs) are capable of responding to ATP and other nucleotidic compounds, mainly through the activation of the ionotropic P2X4, P2X7, and the metabotropic P2Y1 and P2Y4 purinergic receptors. A comparative study between epSPCs from healthy rats versus epSPCis, obtained after SCI, shows a downregulation of P2Y1 receptor together with an upregulation of P2Y4 receptor in epSPCis. Moreover, spinal cord after severe traumatic contusion shows early and persistent increases in the expression of P2X4 and P2X7 receptors around the injury, which are completely reversed when epSPCis were ectopically transplanted. Since epSPCi transplantation significantly rescues neurological function after SCI in parallel to inhibition of the induced P2 ionotropic receptors, a potential avenue is open for therapeutic alternatives in SCI treatments based on purinergic receptors and the endogenous reparative modulation.

  3. Mesenchymal Stem Cells as Therapeutics

    PubMed Central

    Parekkadan, Biju; Milwid, Jack M.

    2013-01-01

    Mesenchymal stem cells (MSCs) are multipotent cells that are being clinically explored as a new therapeutic for treating a variety of immune-mediated diseases. First heralded as a regenerative therapy for skeletal tissue repair, MSCs have recently been shown to modulate endogenous tissue and immune cells. Preclinical studies of the mechanism of action suggest that the therapeutic effects afforded by MSC transplantation are short-lived and related to dynamic, paracrine interactions between MSCs and host cells. Therefore, representations of MSCs as drug-loaded particles may allow for pharmacokinetic models to predict the therapeutic activity of MSC transplants as a function of drug delivery mode. By integrating principles of MSC biology, therapy, and engineering, the field is armed to usher in the next generation of stem cell therapeutics. PMID:20415588

  4. Establishment of a Mesenchymal Stem Cell Bank

    PubMed Central

    Cooper, Khushnuma; Viswanathan, Chandra

    2011-01-01

    Adult stem cells have generated great amount of interest amongst the scientific community for their potential therapeutic applications for unmet medical needs. We have demonstrated the plasticity of mesenchymal stem cells isolated from the umbilical cord matrix. Their immunological profile makes it even more interesting. We have demonstrated that the umbilical cord is an inexhaustible source of mesenchymal stem cells. Being a very rich source, instead of discarding this tissue, we worked on banking these cells for regenerative medicine application for future use. The present paper gives a detailed account of our experience in the establishment of a mesenchymal stem cell bank at our facility. PMID:21826152

  5. [Characterization of bone marrow mesenchymal stem cells.

    PubMed

    Mizoguchi, Toshihide

    Bones support the body as part of the human musculoskeletal system. They also contain bone marrow, which is a site of hematopoiesis. Bone marrow mesenchymal stem cells play a vital role by regulating skeletal tissue formation and maintaining hematopoiesis. While the presence of bone marrow-derived mesenchymal stem cells has been indicated, they have yet to be fully understood in vivo. Recent studies using genetic mouse models revealed that perivascular stromal cells function as mesenchymal stem cells, and their differentiation status may vary during the early stage of life to adulthood. Furthermore, studies have investigated the underlying mechanisms that regulate the cell fate decision of mesenchymal stem cells. These findings could lead to the design of new therapeutic approaches for metabolic bone disease and hematopoietic disease.

  6. Mesenchymal stem cells in regenerative rehabilitation.

    PubMed

    Nurkovic, Jasmin; Dolicanin, Zana; Mustafic, Fahrudin; Mujanovic, Rifat; Memic, Mensur; Grbovic, Vesna; Skevin, Aleksandra Jurisic; Nurkovic, Selmina

    2016-06-01

    [Purpose] Regenerative medicine and rehabilitation contribute in many ways to a specific plan of care based on a patient's medical status. The intrinsic self-renewing, multipotent, regenerative, and immunosuppressive properties of mesenchymal stem cells offer great promise in the treatment of numerous autoimmune, degenerative, and graft-versus-host diseases, as well as tissue injuries. As such, mesenchymal stem cells represent a therapeutic fortune in regenerative medicine. The aim of this review is to discuss possibilities, limitations, and future clinical applications of mesenchymal stem cells. [Subjects and Methods] The authors have identified and discussed clinically and scientifically relevant articles from PubMed that have met the inclusion criteria. [Results] Direct treatment of muscle injuries, stroke, damaged peripheral nerves, and cartilage with mesenchymal stem cells has been demonstrated to be effective, with synergies seen between cellular and physical therapies. Over the past few years, several researchers, including us, have shown that there are certain limitations in the use of mesenchymal stem cells. Aging and spontaneous malignant transformation of mesenchymal stem cells significantly affect the functionality of these cells. [Conclusion] Definitive conclusions cannot be made by these studies because limited numbers of patients were included. Studies clarifying these results are expected in the near future.

  7. Mesenchymal stem cells in regenerative rehabilitation

    PubMed Central

    Nurkovic, Jasmin; Dolicanin, Zana; Mustafic, Fahrudin; Mujanovic, Rifat; Memic, Mensur; Grbovic, Vesna; Skevin, Aleksandra Jurisic; Nurkovic, Selmina

    2016-01-01

    [Purpose] Regenerative medicine and rehabilitation contribute in many ways to a specific plan of care based on a patient’s medical status. The intrinsic self-renewing, multipotent, regenerative, and immunosuppressive properties of mesenchymal stem cells offer great promise in the treatment of numerous autoimmune, degenerative, and graft-versus-host diseases, as well as tissue injuries. As such, mesenchymal stem cells represent a therapeutic fortune in regenerative medicine. The aim of this review is to discuss possibilities, limitations, and future clinical applications of mesenchymal stem cells. [Subjects and Methods] The authors have identified and discussed clinically and scientifically relevant articles from PubMed that have met the inclusion criteria. [Results] Direct treatment of muscle injuries, stroke, damaged peripheral nerves, and cartilage with mesenchymal stem cells has been demonstrated to be effective, with synergies seen between cellular and physical therapies. Over the past few years, several researchers, including us, have shown that there are certain limitations in the use of mesenchymal stem cells. Aging and spontaneous malignant transformation of mesenchymal stem cells significantly affect the functionality of these cells. [Conclusion] Definitive conclusions cannot be made by these studies because limited numbers of patients were included. Studies clarifying these results are expected in the near future. PMID:27390452

  8. Mesenchymal stem cells: the fibroblasts’ new clothes?

    PubMed Central

    Haniffa, Muzlifah A.; Collin, Matthew P.; Buckley, Christopher D.; Dazzi, Francesco

    2009-01-01

    Mesenchymal stem cells are adherent stromal cells, initially isolated from the bone marrow, characterized by their ability to differentiate into mesenchymal tissues such as bone, cartilage and fat. They have also been shown to suppress immune responses in vitro. Because of these properties, mesenchymal stem cells have recently received a very high profile. Despite the dramatic benefits reported in early phase clinical trials, their functions remain poorly understood. Particularly, several questions remain concerning the origin of mesenchymal stem cells and their relationship to other stromal cells such as fibroblasts. Whereas clear gene expression signatures are imprinted in stromal cells of different anatomical origins, the anti-proliferative effects of mesenchymal stem cells and fibroblasts and their potential to differentiate appear to be common features between these two cell types. In this review, we summarize recent studies in the context of historical and often neglected stromal cell literature, and present the evidence that mesenchymal stem cells and fibroblasts share much more in common than previously recognized. PMID:19109217

  9. Mesenchymal stem cells, aging and regenerative medicine

    PubMed Central

    Raggi, Chiara; Berardi, Anna C.

    2012-01-01

    Summary Tissue maintenance and regeneration is dependent on stem cells and increasing evidence has shown to decline with age. Stem cell based-aging is thought to influence therapeutic efficacy. Mesenchymal stromal cells (MSCs) are involved in tissue regeneration. Here, we discuss the effects of age-related changes on MSC properties considering their possible use in research or regenerative medicine. PMID:23738303

  10. Immunological characteristics of mesenchymal stem cells

    PubMed Central

    Machado, Cíntia de Vasconcellos; Telles, Paloma Dias da Silva; Nascimento, Ivana Lucia Oliveira

    2013-01-01

    Although bone marrow is the main source, mesenchymal stem cells have already been isolated from various other tissues, such as the liver, pancreas, adipose tissue, peripheral blood and dental pulp. These plastic adherent cells are morphologically similar to fibroblasts and have a high proliferative potential. This special group of cells possesses two essential characteristics: self-renewal and differentiation, with appropriate stimuli, into various cell types. Mesenchymal stem cells are considered immunologically privileged, since they do not express costimulatory molecules, required for complete T cell activation, on their surface. Several studies have shown that these cells exert an immunosuppressive effect on cells from both innate and acquired immunity systems. Mesenchymal stem cells can regulate the immune response in vitro by inhibiting the maturation of dendritic cells, as well as by suppressing the proliferation and function of T and B lymphocytes and natural killer cells. These special properties of mesenchymal stem cells make them a promising strategy in the treatment of immune mediated disorders, such as graft-versus-host disease and autoimmune diseases, as well as in regenerative medicine. The understanding of immune regulation mechanisms of mesenchymal stem cells, and also those involved in the differentiation of these cells in various lineages is primordial for their successful and safe application in different areas of medicine. PMID:23580887

  11. Mesenchymal dental stem cells in regenerative dentistry.

    PubMed

    Rodríguez-Lozano, Francisco-Javier; Insausti, Carmen-Luisa; Iniesta, Francisca; Blanquer, Miguel; Ramírez, María-del-Carmen; Meseguer, Luis; Meseguer-Henarejos, Ana-Belén; Marín, Noemí; Martínez, Salvador; Moraleda, José-María

    2012-11-01

    In the last decade, tissue engineering is a field that has been suffering an enormous expansion in the regenerative medicine and dentistry. The use of cells as mesenchymal dental stem cells of easy access for dentist and oral surgeon, immunosuppressive properties, high proliferation and capacity to differentiate into odontoblasts, cementoblasts, osteoblasts and other cells implicated in the teeth, suppose a good perspective of future in the clinical dentistry. However, is necessary advance in the known of growth factors and signalling molecules implicated in tooth development and regeneration of different structures of teeth. Furthermore, these cells need a fabulous scaffold that facility their integration, differentiation, matrix synthesis and promote multiple specific interactions between cells. In this review, we give a brief description of tooth development and anatomy, definition and classification of stem cells, with special attention of mesenchymal stem cells, commonly used in the cellular therapy for their trasdifferentiation ability, non ethical problems and acceptable results in preliminary clinical trials. In terms of tissue engineering, we provide an overview of different types of mesenchymal stem cells that have been isolated from teeth, including dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHEDs), periodontal ligament stem cells (PDLSCs), dental follicle progenitor stem cells (DFPCs), and stem cells from apical papilla (SCAPs), growth factors implicated in regeneration teeth and types of scaffolds for dental tissue regeneration.

  12. SIGNALING PATHWAYS ASSOCIATED WITH VX EXPOSURE IN MESENCHYMAL STEM CELLS

    DTIC Science & Technology

    2017-09-01

    SIGNALING PATHWAYS ASSOCIATED WITH VX EXPOSURE IN MESENCHYMAL STEM CELLS ECBC-TR-1452 Daniel Angelini Christopher Phillips Amber Prugh... Associated with VX Exposure in Mesenchymal Stem Cells 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Angelini...gain insights into the signaling pathways associated with VX exposure. 15. SUBJECT TERMS Mesenchymal stem cell (MSC

  13. Mesenchymal Stem Cells for Osteochondral Tissue Engineering

    PubMed Central

    Ng, Johnathan; Bernhard, Jonathan; Vunjak-Novakovic, Gordana

    2017-01-01

    Summary Mesenchymal stem cells (MSC) are of major interest to regenerative medicine, because of the ease of harvesting from a variety of sources (including bone marrow and fat aspirates) and ability to form a range of mesenchymal tissues, in vitro and in vivo. We focus here on the use of MSCs for engineering of cartilage, bone, and complex osteochondral tissue constructs, using protocols that replicate some aspects of the natural mesodermal development. For engineering of human bone, we discuss some of the current advances, and highlight the use of perfusion bioreactors for supporting anatomically exact human bone grafts. For engineering of human cartilage, we discuss limitations of current approaches, and highlight engineering of stratified, mechanically functional human cartilage interfaced with bone by mesenchymal condensation of MSCs. Taken together, the current advances enable engineering physiologically relevant bone, cartilage and osteochondral composites, and physiologically relevant studies of osteochondral development and disease. PMID:27236665

  14. Isolation and characterization of mesenchymal stem cells.

    PubMed

    Odabas, Sedat; Elçin, A Eser; Elçin, Y Murat

    2014-01-01

    Mesenchymal stem cells (MSCs) have drawn great interest in the field of regenerative medicine, for cell replacement, immunomodulatory, and gene therapies. It has been shown that these multipotent stromal cells can be isolated from tissues such as bone marrow, adipose tissue, trimester amniotic tissue, umbilical cord blood, and deciduous teeth and can be expanded in adherent culture. They have the capacity to differentiate into cells of the connective tissue lineages in vitro and contribute to tissue parenchyma in vivo. However, proper in vitro manipulation of MSCs is a key issue to reveal a potential therapeutic benefit following transplantation into the patients. This chapter summarizes some of the essential protocols and assays used at our laboratory for the isolation, culture, differentiation, and characterization of mesenchymal stem cells from the bone marrow and adipose tissue.

  15. Mesenchymal stem cells induce dermal fibroblast responses to injury

    SciTech Connect

    Smith, Andria N.; Willis, Elise; Chan, Vincent T.; Muffley, Lara A.; Isik, F. Frank; Gibran, Nicole S.; Hocking, Anne M.

    2010-01-01

    Although bone marrow-derived mesenchymal stem cells have been shown to promote repair when applied to cutaneous wounds, the mechanism for this response remains to be determined. The aim of this study was to determine the effects of paracrine signaling from mesenchymal stem cells on dermal fibroblast responses to injury including proliferation, migration and expression of genes important in wound repair. Dermal fibroblasts were co-cultured with bone marrow-derived mesenchymal stem cells grown in inserts, which allowed for paracrine interactions without direct cell contact. In this co-culture model, bone marrow-derived mesenchymal stem cells regulate dermal fibroblast proliferation, migration and gene expression. When co-cultured with mesenchymal stem cells, dermal fibroblasts show increased proliferation and accelerated migration in a scratch assay. A chemotaxis assay also demonstrated that dermal fibroblasts migrate towards bone marrow-derived mesenchymal stem cells. A PCR array was used to analyze the effect of mesenchymal stem cells on dermal fibroblast gene expression. In response to mesenchymal stem cells, dermal fibroblasts up-regulate integrin alpha 7 expression and down-regulate expression of ICAM1, VCAM1 and MMP11. These observations suggest that mesenchymal stem cells may provide an important early signal for dermal fibroblast responses to cutaneous injury.

  16. Cartilage Engineering from Mesenchymal Stem Cells

    NASA Astrophysics Data System (ADS)

    Goepfert, C.; Slobodianski, A.; Schilling, A. F.; Adamietz, P.; Pörtner, R.

    Mesenchymal progenitor cells known as multipotent mesenchymal stromal cells or mesenchymal stem cells (MSC) have been isolated from various tissues. Since they are able to differentiate along the mesenchymal lineages of cartilage and bone, they are regarded as promising sources for the treatment of skeletal defects. Tissue regeneration in the adult organism and in vitro engineering of tissues is hypothesized to follow the principles of embryogenesis. The embryonic development of the skeleton has been studied extensively with respect to the regulatory mechanisms governing morphogenesis, differentiation, and tissue formation. Various concepts have been designed for engineering tissues in vitro based on these developmental principles, most of them involving regulatory molecules such as growth factors or cytokines known to be the key regulators in developmental processes. Growth factors most commonly used for in vitro cultivation of cartilage tissue belong to the fibroblast growth factor (FGF) family, the transforming growth factor-beta (TGF-β) super-family, and the insulin-like growth factor (IGF) family. In this chapter, in vivo actions of members of these growth factors described in the literature are compared with in vitro concepts of cartilage engineering making use of these growth factors.

  17. Spheroid Culture of Mesenchymal Stem Cells

    PubMed Central

    Cesarz, Zoe; Tamama, Kenichi

    2016-01-01

    Compared with traditional 2D adherent cell culture, 3D spheroidal cell aggregates, or spheroids, are regarded as more physiological, and this technique has been exploited in the field of oncology, stem cell biology, and tissue engineering. Mesenchymal stem cells (MSCs) cultured in spheroids have enhanced anti-inflammatory, angiogenic, and tissue reparative/regenerative effects with improved cell survival after transplantation. Cytoskeletal reorganization and drastic changes in cell morphology in MSC spheroids indicate a major difference in mechanophysical properties compared with 2D culture. Enhanced multidifferentiation potential, upregulated expression of pluripotency marker genes, and delayed replicative senescence indicate enhanced stemness in MSC spheroids. Furthermore, spheroid formation causes drastic changes in the gene expression profile of MSC in microarray analyses. In spite of these significant changes, underlying molecular mechanisms and signaling pathways triggering and sustaining these changes are largely unknown. PMID:26649054

  18. Nanotechnology for mesenchymal stem cell therapies.

    PubMed

    Corradetti, Bruna; Ferrari, Mauro

    2016-10-28

    Mesenchymal stem cells (MSC) display great proliferative, differentiative, chemotactic, and immune-modulatory properties required to promote tissue repair. Several clinical trials based on the use of MSC are currently underway for therapeutic purposes. The aim of this article is to examine the current trends and potential impact of nanotechnology in MSC-driven regenerative medicine. Nanoparticle-based approaches are used as powerful carrier systems for the targeted delivery of bioactive molecules to ensure MSC long-term maintenance in vitro and to enhance their regenerative potential. Nanostructured materials have been developed to recapitulate the stem cell niche within a tissue and to instruct MSC toward the creation of regeneration-permissive environment. Finally, the capability of MSC to migrate toward the site of injury/inflammation has allowed for the development of diagnostic imaging systems able to monitor transplanted stem cell bio-distribution, toxicity, and therapeutic effectiveness.

  19. Improved human mesenchymal stem cell isolation.

    PubMed

    Chan, Tzu-Min; Harn, Horng-Jyh; Lin, Hui-Ping; Chou, Pei-Wen; Chen, Julia Yi-Ru; Ho, Tsung-Jung; Chiou, Tzyy-Wen; Chuang, Hong-Meng; Chiu, Shao-Chih; Chen, Yen-Chung; Yen, Ssu-Yin; Huang, Mao-Hsuan; Liang, Bing-Chiang; Lin, Shinn-Zong

    2014-01-01

    Human mesenchymal stem cells (hMSCs) are currently available for a range of applications and benefits and have become a good material for regenerative medicine, tissue engineering, and disease therapy. Before ex vivo expansion, isolation and characterization of primary hMSCs from peripheral tissues are key steps for obtaining adequate materials for clinical application. The proportion of peripheral stem cells is very low in surrounding tissues and organs; thus the recovery ratio will be a limiting factor. In this review, we summarized current common methods used to isolate peripheral stem cells, as well as the new insights revealed to improve the quantity of stem cells and their stemness. These strategies offer alternative ways to acquire hMSCs in a convenient and/or effective manner, which is important for clinical treatments. Improved isolation and mass amplification of the hMSCs while ensuring their stemness and quantity will be an important step for clinical use. Enlarged suitable hMSCs are more clinically applicable for therapeutic transplants and may help people live longer and better.

  20. Mesenchymal stem cells in kidney inflammation and repair.

    PubMed

    Wise, Andrea F; Ricardo, Sharon D

    2012-01-01

    Mesenchymal stem cells are a heterogeneous population of fibroblast-like stromal cells that have been isolated from the bone marrow and a number of organs and tissues including the kidney. They have multipotent and self-renewing properties and can differentiate into cells of the mesodermal lineage. Following their administration in vivo, mesenchymal stem cells migrate to damaged kidney tissue where they produce an array of anti-inflammatory cytokines and chemokines that can alter the course of injury. Mesenchymal stem cells are thought to elicit repair through paracrine and/or endocrine mechanisms that modulate the immune response resulting in tissue repair and cellular replacement. This review will discuss the features of mesenchymal stem cells and the factors they release that protect against kidney injury; the mechanisms of homing and engraftment to sites of inflammation; and further elucidate the immunomodulatory effect of mesenchymal stem cells and their ability to alter macrophage phenotype in a setting of kidney damage and repair.

  1. Mesenchymal stem cells: progress toward promise.

    PubMed

    Le Blanc, K; Pittenger, Mf

    2005-01-01

    Despite having access to embryonic stem cells, many laboratories choose to study adult stem cells, not because of philosophical reasons but because of the practical aspects and day-to-day progress necessary for developing cellular therapeutics. There is certainly the ethical desire and responsibility to provide patients with therapies where few options exist. Multipotential cells have been isolated from adult tissues in many laboratories, characterized and their multipotentiality examined. Mesenchymal stem cells (MSC) can be isolated from several tissues but easily accessible BM seems to be the most common source. These adult stem cells may not be as 'powerful' or diverse as embryonic stem cells may one day become, but at present they offer many advantages for developing cellular therapeutics: ease of isolation, expansion potential, stable phenotype, shippability, and compatibility with different delivery methods and formulations. Their potential use as cellular therapeutics has prompted the investigation of interactions of allogeneic MSC with the immune response. The great importance of cardiovascular medicine has demanded that MSC also be tested in this discipline. We believe MSC continue to provide a substantial scientific and therapeutic opportunity, and have reviewed some of the recent developments in the field.

  2. Netrin-1 promotes mesenchymal stem cell revascularization of limb ischaemia.

    PubMed

    Ke, Xianjin; Liu, Chenxiao; Wang, Ying; Ma, Jianhua; Mao, Xiaoming; Li, Qian

    2016-03-01

    This study examines the effect and mechanism of action of Netrin-1 on bone marrow mesenchymal stem cells in angiogenesis. Tube formation and migration of bone marrow mesenchymal stem cells were observed in cell culture. Bone marrow mesenchymal stem cells or Netrin-1-bone marrow mesenchymal stem cells were injected into the ischaemic area of the rat hind limb on the first day after surgery. Laser Doppler perfusion imaging was performed to analyse the levels of vascular endothelial growth factor in plasma and muscles, and immunohistochemistry and immunofluorescence were used to analyse angiogenesis. Bone marrow mesenchymal stem cells in medium containing Netrin-1 markedly increased the number of tubes formed and the migration of bone marrow mesenchymal stem cells compared with the untreated control group. The function of Netrin-1 in tube formation and migration is similar to vascular endothelial growth factor, and combined with vascular endothelial growth factor, Netrin-1 has more enhanced effect than in the other three groups. The Netrin-1-bone marrow mesenchymal stem cell group had better augmented blood-perfusion scores and vessel densities, as well as improved function of the ischaemic limb than that of the group injected with bone marrow mesenchymal stem cells (treated with bone marrow mesenchymal stem cells individually) or the control group (treated with medium). These results suggest that Netrin-1 has the ability to augment the angiogenesis of bone marrow mesenchymal stem cells and improve the function of the ischaemic hind limb by increasing the level of vascular endothelial growth factor. © The Author(s) 2016.

  3. Proteomic Definitions of Mesenchymal Stem Cells

    PubMed Central

    Maurer, Martin H.

    2011-01-01

    Mesenchymal stem cells (MSCs) are pluripotent cells isolated from the bone marrow and various other organs. They are able to proliferate and self-renew, as well as to give rise to progeny of at least the osteogenic, chondrogenic, and adipogenic lineages. Despite this functional definition, MSCs can also be defined by their expression of a distinct set of cell surface markers. In the current paper, studies investigating the proteome of human MSCs are reviewed with the aim to identify common protein markers of MSCs. The proteomic analysis of MSCs revealed a distinct set of proteins representing the basic molecular inventory, including proteins for (i) cell surface markers, (ii) the responsiveness to growth factors, (iii) the reuse of developmental signaling cascades in adult stem cells, (iv) the interaction with molecules of the extracellular matrix, (v) the expression of genes regulating transcription and translation, (vi) the control of the cell number, and (vii) the protection against cellular stress. PMID:21437194

  4. Mesenchymal Stem Cells Derived from Human Adipose Tissue.

    PubMed

    Mahmoudifar, Nastaran; Doran, Pauline M

    2015-01-01

    Human adult mesenchymal stem cells are present in fat tissue, which can be obtained using surgical procedures such as liposuction. The multilineage capacity of mesenchymal stem cells makes them very valuable for cell-based medical therapies. In this chapter, we describe how to isolate mesenchymal stem cells from human adult fat tissue, propagate the cells in culture, and cryopreserve the cells for tissue engineering applications. Flow cytometry methods are also described for identification and characterization of adipose-derived stem cells and for cell sorting.

  5. Stemness Signature of Equine Marrow-derived Mesenchymal Stem Cells

    PubMed Central

    Zahedi, Morteza; Parham, Abbas; Dehghani, Hesam; Mehrjerdi, Hossein Kazemi

    2017-01-01

    Background Application of competent cells such as mesenchymal stem cells (MSCs) for treatment of musculoskeletal disorders in equine athletes is increasingly needed. Moreover, similarities of horse and human in size, load and types of joint injuries, make horse as a good model for MSCs therapy studies. This study was designed to isolate and characterize stemness signature of equine bone marrow-derived mesenchymal stem cells (BM-MSCs). Methods BM of three mares was aspirated and the mononuclear cells (MNCs) were isolated using density gradient. The primary MNCs were cultured and analyzed after tree passages (P3) for growth characteristics, differentiation potentials, and the expression of genes including CD29, CD34, CD44, CD90, CD105, MHC-I, MHC-II and pluripotency related genes (Nanog, Oct-4, Sox-2, SSEA-1, -3, -4) using RT-PCR or immunocytochemistry techniques. Results The isolated cells in P3 were adherent and fibroblast-like in shape with doubling times of 78.15 h. Their clonogenic capacity was 8.67±4% and they were able to differentiate to osteogenic, adipogenic and chondrogenic lineages. Cells showed expression of CD29, CD44, CD90, MHC-I and Sox-2 while no expression for CD34, MHC-II, CD105, and pluripotency stemness markers was detected. Conclusions In conclusion, data showed that isolated cells have the basic and minimal criteria for MSCs, however, expressing only one pluripotency gene (sox-2). PMID:28222255

  6. Modeling sarcomagenesis using multipotent mesenchymal stem cells

    PubMed Central

    Rodriguez, Rene; Rubio, Ruth; Menendez, Pablo

    2012-01-01

    Because of their unique properties, multipotent mesenchymal stem cells (MSCs) represent one of the most promising adult stem cells being used worldwide in a wide array of clinical applications. Overall, compelling evidence supports the long-term safety of ex vivo expanded human MSCs, which do not seem to transform spontaneously. However, experimental data reveal a link between MSCs and cancer, and MSCs have been reported to inhibit or promote tumor growth depending on yet undefined conditions. Interestingly, solid evidence based on transgenic mice and genetic intervention of MSCs has placed these cells as the most likely cell of origin for certain sarcomas. This research area is being increasingly explored to develop accurate MSC-based models of sarcomagenesis, which will be undoubtedly valuable in providing a better understanding about the etiology and pathogenesis of mesenchymal cancer, eventually leading to the development of more specific therapies directed against the sarcoma-initiating cell. Unfortunately, still little is known about the mechanisms underlying MSC transformation and further studies are required to develop bona fide sarcoma models based on human MSCs. Here, we comprehensively review the existing MSC-based models of sarcoma and discuss the most common mechanisms leading to tumoral transformation of MSCs and sarcomagenesis. PMID:21931359

  7. Viability of mesenchymal stem cells during electrospinning

    PubMed Central

    Zanatta, G.; Steffens, D.; Braghirolli, D.I.; Fernandes, R.A.; Netto, C.A.; Pranke, P.

    2011-01-01

    Tissue engineering is a technique by which a live tissue can be re-constructed and one of its main goals is to associate cells with biomaterials. Electrospinning is a technique that facilitates the production of nanofibers and is commonly used to develop fibrous scaffolds to be used in tissue engineering. In the present study, a different approach for cell incorporation into fibrous scaffolds was tested. Mesenchymal stem cells were extracted from the wall of the umbilical cord and mononuclear cells from umbilical cord blood. Cells were re-suspended in a 10% polyvinyl alcohol solution and subjected to electrospinning for 30 min under a voltage of 21 kV. Cell viability was assessed before and after the procedure by exclusion of dead cells using trypan blue staining. Fiber diameter was observed by scanning electron microscopy and the presence of cells within the scaffolds was analyzed by confocal laser scanning microscopy. After electrospinning, the viability of mesenchymal stem cells was reduced from 88 to 19.6% and the viability of mononuclear cells from 99 to 8.38%. The loss of viability was possibly due to the high viscosity of the polymer solution, which reduced the access to nutrients associated with electric and mechanical stress during electrospinning. These results suggest that the incorporation of cells during fiber formation by electrospinning is a viable process that needs more investigation in order to find ways to protect cells from damage. PMID:22183245

  8. Viability of mesenchymal stem cells during electrospinning.

    PubMed

    Zanatta, G; Steffens, D; Braghirolli, D I; Fernandes, R A; Netto, C A; Pranke, P

    2012-02-01

    Tissue engineering is a technique by which a live tissue can be re-constructed and one of its main goals is to associate cells with biomaterials. Electrospinning is a technique that facilitates the production of nanofibers and is commonly used to develop fibrous scaffolds to be used in tissue engineering. In the present study, a different approach for cell incorporation into fibrous scaffolds was tested. Mesenchymal stem cells were extracted from the wall of the umbilical cord and mononuclear cells from umbilical cord blood. Cells were re-suspended in a 10% polyvinyl alcohol solution and subjected to electrospinning for 30 min under a voltage of 21 kV. Cell viability was assessed before and after the procedure by exclusion of dead cells using trypan blue staining. Fiber diameter was observed by scanning electron microscopy and the presence of cells within the scaffolds was analyzed by confocal laser scanning microscopy. After electrospinning, the viability of mesenchymal stem cells was reduced from 88 to 19.6% and the viability of mononuclear cells from 99 to 8.38%. The loss of viability was possibly due to the high viscosity of the polymer solution, which reduced the access to nutrients associated with electric and mechanical stress during electrospinning. These results suggest that the incorporation of cells during fiber formation by electrospinning is a viable process that needs more investigation in order to find ways to protect cells from damage.

  9. Mesenchymal stem cells: revisiting history, concepts, and assays.

    PubMed

    Bianco, Paolo; Robey, Pamela Gehron; Simmons, Paul J

    2008-04-10

    The concept of mesenchymal stem cells has gained wide popularity. Despite the rapid growth of the field, uncertainties remain with respect to the defining characteristics of these cells, including their potency and self-renewal. These uncertainties are reflected in a growing tendency to question the very use of the term. This commentary revisits the experimental origin of the concept of the population(s) referred to as mesenchymal stem cells and the experimental framework required to assess their stemness and function.

  10. Comparative proteomic analysis of human mesenchymal and embryonic stem cells: towards the definition of a mesenchymal stem cell proteomic signature.

    PubMed

    Roche, Stephane; Delorme, Bruno; Oostendorp, Robert A J; Barbet, Romain; Caton, David; Noel, Daniele; Boumediene, Karim; Papadaki, Helen A; Cousin, Beatrice; Crozet, Carole; Milhavet, Ollivier; Casteilla, Louis; Hatzfeld, Jacques; Jorgensen, Christian; Charbord, Pierre; Lehmann, Sylvain

    2009-01-01

    Mesenchymal stem cells (MSC) are adult multipotential progenitors which have a high potential in regenerative medicine. They can be isolated from different tissues throughout the body and their homogeneity in terms of phenotype and differentiation capacities is a real concern. To address this issue, we conducted a 2-DE gel analysis of mesenchymal stem cells isolated from bone marrow (BM), adipose tissue, synovial membrane and umbilical vein wall. We confirmed that BM and adipose tissue derived cells were very similar, which argue for their interchangeable use for cell therapy. We also compared human mesenchymal to embryonic stem cells and showed that umbilical vein wall stem cells, a neo-natal cell type, were closer to BM cells than to embryonic stem cells. Based on these proteomic data, we could propose a panel of proteins which were the basis for the definition of a mesenchymal stem cell proteomic signature.

  11. Mesenchymal stem cells for bone repair and metabolic bone diseases.

    PubMed

    Undale, Anita H; Westendorf, Jennifer J; Yaszemski, Michael J; Khosla, Sundeep

    2009-10-01

    Human mesenchymal stem cells offer a potential alternative to embryonic stem cells in clinical applications. The ability of these cells to self-renew and differentiate into multiple tissues, including bone, cartilage, fat, and other tissues of mesenchymal origin, makes them an attractive candidate for clinical applications. Patients who experience fracture nonunion and metabolic bone diseases, such as osteogenesis imperfecta and hypophosphatasia, have benefited from human mesenchymal stem cell therapy. Because of their ability to modulate immune responses, allogeneic transplant of these cells may be feasible without a substantial risk of immune rejection. The field of regenerative medicine is still facing considerable challenges; however, with the progress achieved thus far, the promise of stem cell therapy as a viable option for fracture nonunion and metabolic bone diseases is closer to reality. In this review, we update the biology and clinical applicability of human mesenchymal stem cells for bone repair and metabolic bone diseases.

  12. Mesenchymal Stem Cells for Bone Repair and Metabolic Bone Diseases

    PubMed Central

    Undale, Anita H.; Westendorf, Jennifer J.; Yaszemski, Michael J.; Khosla, Sundeep

    2009-01-01

    Human mesenchymal stem cells offer a potential alternative to embryonic stem cells in clinical applications. The ability of these cells to self-renew and differentiate into multiple tissues, including bone, cartilage, fat, and other tissues of mesenchymal origin, makes them an attractive candidate for clinical applications. Patients who experience fracture nonunion and metabolic bone diseases, such as osteogenesis imperfecta and hypophosphatasia, have benefited from human mesenchymal stem cell therapy. Because of their ability to modulate immune responses, allogeneic transplant of these cells may be feasible without a substantial risk of immune rejection. The field of regenerative medicine is still facing considerable challenges; however, with the progress achieved thus far, the promise of stem cell therapy as a viable option for fracture nonunion and metabolic bone diseases is closer to reality. In this review, we update the biology and clinical applicability of human mesenchymal stem cells for bone repair and metabolic bone diseases. PMID:19797778

  13. Mesenchymal stem cells in multiple sclerosis - translation to clinical trials.

    PubMed

    Dulamea, A

    2015-01-01

    Multiple sclerosis is a chronic inflammatory disease of the central nervous system, characterized by an aberrant activation of the immune system and combining demyelination with neurodegeneration. Studies on experimental models of multiple sclerosis revealed immunomodulatory and immunosuppressive properties of mesenchymal stem cells. Clinical trials using mesenchymal stem cells therapy in multiple sclerosis patients showed tolerability, safety on short term, some immunomodulatory properties reducing the Th1 proinflammatory response and the inflammatory MRI parameters. The author reviews the data about experimental studies and clinical trials using mesenchymal stem cells for the treatment of multiple sclerosis.

  14. Epigenetic Mechanisms Regulating Mesenchymal Stem Cell Differentiation

    PubMed Central

    Pérez-Campo, Flor M.; Riancho, José A.

    2015-01-01

    Human Mesenchymal Stem Cells (hMSCs) have emerged in the last few years as one of the most promising therapeutic cell sources and, in particular, as an important tool for regenerative medicine of skeletal tissues. Although they present a more restricted potency than Embryonic Stem (ES) cells, the use of hMCS in regenerative medicine avoids many of the drawbacks characteristic of ES cells or induced pluripotent stem cells. The challenge in using these cells lies into developing precise protocols for directing cellular differentiation to generate a specific cell lineage. In order to achieve this goal, it is of the upmost importance to be able to control de process of fate decision and lineage commitment. This process requires the coordinate regulation of different molecular layers at transcriptional, posttranscriptional and translational levels. At the transcriptional level, switching on and off different sets of genes is achieved not only through transcriptional regulators, but also through their interplay with epigenetic modifiers. It is now well known that epigenetic changes take place in an orderly way through development and are critical in the determination of lineage-specific differentiation. More importantly, alteration of these epigenetic changes would, in many cases, lead to disease generation and even tumour formation. Therefore, it is crucial to elucidate how epigenetic factors, through their interplay with transcriptional regulators, control lineage commitment in hMSCs. PMID:27019612

  15. Cancer gene therapy using mesenchymal stem cells.

    PubMed

    Uchibori, Ryosuke; Tsukahara, Tomonori; Ohmine, Ken; Ozawa, Keiya

    2014-04-01

    Cellular and gene therapies represent promising treatment strategies at the frontier of medicine. Hematopoietic stem cells, lymphocytes, and mesenchymal stem cells (MSCs) can all serve as sources of cells for use in such therapies. Strategies for gene therapy are often based on those of cell therapy, and it is anticipated that some examples will be put to practical use in the near future. Given their ability to support hematopoiesis, MSCs may be useful for the enhancement of stem cell engraftment, and the acceleration of hematopoietic reconstitution. Furthermore, MSCs may advance the treatment of severe graft-versus-host disease, based on their immunosuppressive ability. This application is also based on the homing behavior of MSCs to sites of injury and inflammation. Interestingly, MSCs possess tumor-homing ability, opening up the possibility of applications in the targeted delivery of anti-cancer genes to tumors. Many reports have indicated that MSCs can be utilized to target tumors and to deliver anti-cancer molecules locally, as tumors are recognized as non-healing wounds with inflammatory tissue. Here, we review both the potential of MSCs as cellular vehicles for targeted cancer therapy and the molecular mechanisms underlying MSC accumulation at tumor sites.

  16. Mesenchymal Stem Cells engineered for Cancer Therapy

    PubMed Central

    Shah, Khalid

    2012-01-01

    Recent pre-clinical and clinical studies have shown that stem cell-based therapies hold tremendous promise for the treatment of human disease. Mesenchymal stem cells (MSC) are emerging as promising anti-cancer agents which have an enormous potential to be utilized to treat a number of different cancer types. MSC have inherent tumor-trophic migratory properties, which allows them to serve as vehicles for delivering effective, targeted therapy to isolated tumors and metastatic disease. MSC have been readily engineered to express anti-proliferative, pro-apoptotic, anti-angiogenic agents that specifically target different cancer types. Many of these strategies have been validated in a wide range of studies evaluating treatment feasibility or efficacy, as well as establishing methods for real-time monitoring of stem cell migration in vivo for optimal therapy surveillance and accelerated development. This review aims to provide an in depth status of current MSC-based cancer therapies, as well as the prospects for their clinical translation. PMID:21740940

  17. Mechanical regulation of mesenchymal stem cell differentiation.

    PubMed

    Steward, Andrew J; Kelly, Daniel J

    2015-12-01

    Biophysical cues play a key role in directing the lineage commitment of mesenchymal stem cells or multipotent stromal cells (MSCs), but the mechanotransductive mechanisms at play are still not fully understood. This review article first describes the roles of both substrate mechanics (e.g. stiffness and topography) and extrinsic mechanical cues (e.g. fluid flow, compression, hydrostatic pressure, tension) on the differentiation of MSCs. A specific focus is placed on the role of such factors in regulating the osteogenic, chondrogenic, myogenic and adipogenic differentiation of MSCs. Next, the article focuses on the cellular components, specifically integrins, ion channels, focal adhesions and the cytoskeleton, hypothesized to be involved in MSC mechanotransduction. This review aims to illustrate the strides that have been made in elucidating how MSCs sense and respond to their mechanical environment, and also to identify areas where further research is needed.

  18. Optimizing mesenchymal stem cell-based therapeutics.

    PubMed

    Wagner, Joseph; Kean, Thomas; Young, Randell; Dennis, James E; Caplan, Arnold I

    2009-10-01

    Mesenchymal stem cell (MSC)-based therapeutics are showing significant benefit in multiple clinical trials conducted by both academic and commercial organizations, but obstacles remain for their large-scale commercial implementation. Recent studies have attempted to optimize MSC-based therapeutics by either enhancing their potency or increasing their delivery to target tissues. Overexpression of trophic factors or in vitro exposure to potency-enhancing factors are two approaches that are demonstrating success in preclinical animal models. Delivery enhancement strategies involving tissue-specific cytokine pathways or binding sites are also showing promise. Each of these strategies has its own set of distinct advantages and disadvantages when viewed with a mindset of ultimate commercialization and clinical utility.

  19. Mesenchymal Stem Cells: Angels or Demons?

    PubMed Central

    Wong, Rebecca S. Y.

    2011-01-01

    Mesenchymal stem cells (MSCs) have been used in cell-based therapy in various disease conditions such as graft-versus-host and heart diseases, osteogenesis imperfecta, and spinal cord injuries, and the results have been encouraging. However, as MSC therapy gains popularity among practitioners and researchers, there have been reports on the adverse effects of MSCs especially in the context of tumour modulation and malignant transformation. These cells have been found to enhance tumour growth and metastasis in some studies and have been related to anticancer-drug resistance in other instances. In addition, various studies have also reported spontaneous malignant transformation of MSCs. The mechanism of the modulatory behaviour and the tumorigenic potential of MSCs, warrant urgent exploration, and the use of MSCs in patients with cancer awaits further evaluation. However, if MSCs truly play a role in tumour modulation, they can also be potential targets of cancer treatment. PMID:21822372

  20. Mesenchymal stem cells: angels or demons?

    PubMed

    Wong, Rebecca S Y

    2011-01-01

    Mesenchymal stem cells (MSCs) have been used in cell-based therapy in various disease conditions such as graft-versus-host and heart diseases, osteogenesis imperfecta, and spinal cord injuries, and the results have been encouraging. However, as MSC therapy gains popularity among practitioners and researchers, there have been reports on the adverse effects of MSCs especially in the context of tumour modulation and malignant transformation. These cells have been found to enhance tumour growth and metastasis in some studies and have been related to anticancer-drug resistance in other instances. In addition, various studies have also reported spontaneous malignant transformation of MSCs. The mechanism of the modulatory behaviour and the tumorigenic potential of MSCs, warrant urgent exploration, and the use of MSCs in patients with cancer awaits further evaluation. However, if MSCs truly play a role in tumour modulation, they can also be potential targets of cancer treatment.

  1. Labeling and Imaging Mesenchymal Stem Cells with Quantum Dots

    EPA Science Inventory

    Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into bone, cartilage, adipose and muscle cells. Adult derived MSCs are being actively investigated because of their potential to be utilized for therapeutic cell-based transplantation. Methods...

  2. [Progress in mesenchymal stem cells for treatment of atherosclerosis].

    PubMed

    Liu, Jiajia; Zhang, Yiting; Peng, Hang; Liu, Pengxia

    2013-11-01

    Atherosclerosis is an inflammatory disease. However, its etiology has not been yet fully elucidated. Endothelial dysfunction is currently considered to be one of the most important steps in the initiation of atherosclerosis. In addition, vascular smooth muscle cells, which are the main cellular component of de novo and in-stent restenosis lesions, play an important role in the development of atherosclerosis. Promoting the regeneration of endothelial cells and inhibiting the proliferation of smooth muscle cells are pivotal for the prevention and treatment of vascular injury. Recently, some studies have demonstrated that mesenchymal stem cells can home to the site of injury and differentiate into endothelial cells to repair damaged blood vessels. On the contrary, other researches have revealed that mesenchymal stem cells can differentiate into vascular smooth muscle cells that are involved in the development of restenosis. Here, we review the fundamental researches of mesenchymal stem cell therapy for atherosclerosis and address the perspectives of mesenchymal stem cells in atherosclerosis treatment.

  3. Therapeutic Evaluation of Mesenchymal Stem Cells in Chronic Gut Inflammation

    DTIC Science & Technology

    2015-09-01

    IL-10, TGFβ; colitis; intestinal inflammation; immunosuppression 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES...inflammatory bowel disease; mesenchymal stem cells; Tregs; IL-10, TGFβ; colitis; intestinal inflammation; immuno-suppression; 3. ACCOMPLISHMENTS Major Goals

  4. Labeling and Imaging Mesenchymal Stem Cells with Quantum Dots

    EPA Science Inventory

    Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into bone, cartilage, adipose and muscle cells. Adult derived MSCs are being actively investigated because of their potential to be utilized for therapeutic cell-based transplantation. Methods...

  5. Modulation of Ocular Inflammation by Mesenchymal Stem Cells

    DTIC Science & Technology

    2017-03-01

    1 AWARD NUMBER: W81XWH-15-1-0024 TITLE: Modulation of Ocular Inflammation by Mesenchymal Stem Cells PRINCIPAL INVESTIGATOR: Sunil Chauhan...2016 4. TITLE AND SUBTITLE Modulation of Ocular Inflammation by Mesenchymal Stem Cells 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0024 5c...as corticosteroids. These non-specific treatments typically target both pathogenic and regulatory cells of the immune system, and are associated with

  6. Mesenchymal stem cells: characteristics and clinical applications.

    PubMed

    Bobis, Sylwia; Jarocha, Danuta; Majka, Marcin

    2006-01-01

    Mesenchymal stem cells (MSCs) are bone marrow populating cells, different from hematopoietic stem cells, which possess an extensive proliferative potential and ability to differentiate into various cell types, including: osteocytes, adipocytes, chondrocytes, myocytes, cardiomyocytes and neurons. MSCs play a key role in the maintenance of bone marrow homeostasis and regulate the maturation of both hematopoietic and non-hematopoietic cells. The cells are characterized by the expression of numerous surface antigens, but none of them appears to be exclusively expressed on MSCs. Apart from bone marrow, MSCs are located in other tissues, like: adipose tissue, peripheral blood, cord blood, liver and fetal tissues. MSCs have been shown to be powerful tools in gene therapies, and can be effectively transduced with viral vectors containing a therapeutic gene, as well as with cDNA for specific proteins, expression of which is desired in a patient. Due to such characteristics, the number of clinical trials based on the use of MSCs increase. These cells have been successfully employed in graft versus host disease (GvHD) treatment, heart regeneration after infarct, cartilage and bone repair, skin wounds healing, neuronal regeneration and many others. Of special importance is their use in the treatment of osteogenesis imperfecta (OI), which appeared to be the only reasonable therapeutic strategy. MSCs seem to represent a future powerful tool in regenerative medicine, therefore they are particularly important in medical research.

  7. Clinical grade production of mesenchymal stem cells.

    PubMed

    Sensebé, Luc

    2008-01-01

    Mesenchymal Stem Cells (MSCs) are multipotent adult stem cells having an immunosuppressive effect. These characteristics lead to an increasing use of MSC in graft process or for regenerative medicine. For the clinical uses of MSCs, standards are needed. The clinical grade production necessitates adhering to good manufacturing practices (GMP) to insure the delivery of a "cell drug" that is safe, reproducible and efficient. All parts of the process must be defined: the starting material (tissue origin, separation or enrichment procedures), cell density in culture, and medium (fetal calf serum (FCS) or human serum, cytokines with serum-free medium for target). But to reach the GMP goal, cells have to be cultured in as close to a closed system as possible. Analytical methods are needed to assay the active compound and impurities. At a minimum, quality control (QC) of cells must consider the phenotype, functional potential, microbiological safety, and ensure the cultured cells remain untransformed. Finally, quality assurance system (QA) procedures specific to the production of MSCs as a cell drug must be determined and implemented.

  8. Mesenchymal Stem Cells in Bone Regeneration

    PubMed Central

    Knight, M. Noelle; Hankenson, Kurt D.

    2013-01-01

    Significance Mesenchymal stem cells (MSCs) play a key role in fracture repair by differentiating to become bone-forming osteoblasts and cartilage-forming chondrocytes. Cartilage then serves as a template for additional bone formation through the process of endochondral ossification. Recent Advances Endogenous MSCs that contribute to healing are primarily derived from the periosteum, endosteum, and marrow cavity, but also may be contributed from the overlying muscle or through systemic circulation, depending on the type of injury. A variety of growth factor signaling pathways, including BMP, Wnt, and Notch signaling, influence MSC proliferation and differentiation. These MSCs can be therapeutically manipulated to promote differentiation. Furthermore, MSCs can be harvested, cultivated, and delivered to promote bone healing. Critical Issues Pharmacologically manipulating the number and differentiation capacity of endogenous MSCs is one potential therapeutic approach to improve healing; however, ideal agents to influence signaling pathways need to be developed and additional therapeutics that activate endogenous MSCs are needed. Whether isolated and purified, MSCs participate directly in the healing process or serve a bystander effect and indirectly influence healing is not well defined. Future Directions Studies must focus on better understanding the regulation of endogenous MSCs durings fracture healing. This will reveal novel molecules and pathways to therapeutically target. Similarly, while animal models have demonstrated efficacy in the delivery of MSCs to promote healing, more research is needed to understand ideal donor cells, cultivation methods, and delivery before stem cell therapy approaches can be utilized to repair bone. PMID:24527352

  9. Multipotent mesenchymal stem cells in lung fibrosis

    PubMed Central

    Khan, Petra; Savic, Spasenija; Tamo, Luca; Lardinois, Didier; Roth, Michael; Tamm, Michael; Geiser, Thomas

    2017-01-01

    Rationale Stem cells have been identified in the human lung; however, their role in lung disease is not clear. We aimed to isolate mesenchymal stem cells (MSC) from human lung tissue and to study their in vitro properties. Methods MSC were cultured from lung tissue obtained from patients with fibrotic lung diseases (n = 17), from emphysema (n = 12), and normal lungs (n = 3). Immunofluorescence stainings were used to characterize MSC. The effect of MSC-conditioned media (MSC-CM) on fibroblast proliferation and on lung epithelial wound repair was studied. Results Expression of CD44, CD90, and CD105 characterized the cells as MSC. Moreover, the cells stained positive for the pluripotency markers Oct3/4 and Nanog. Positive co-stainings of chemokine receptor type 4 (CXCR4) with CD44, CD90 or CD105 indicated the cells are of bone marrow origin. MSC-CM significantly inhibited the proliferation of lung fibroblasts by 29% (p = 0.0001). Lung epithelial repair was markedly increased in the presence of MSC-CM (+ 32%). Significantly more MSC were obtained from fibrotic lungs than from emphysema or control lungs. Conclusions Our study demonstrates enhanced numbers of MSC in fibrotic lung tissue as compared to emphysema and normal lung. The cells inhibit the proliferation of fibroblasts and enhance epithelial repair in vitro. Further in vivo studies are needed to elucidate their potential role in the treatment of lung fibrosis. PMID:28827799

  10. Mesenchymal Stem Cell Therapy for Nonhealing Cutaneous Wounds

    PubMed Central

    Hanson, Summer E.; Bentz, Michael L.; Hematti, Peiman

    2014-01-01

    Summary Chronic wounds remain a major challenge in modern medicine and represent a significant burden, affecting not only physical and mental health, but also productivity, health care expenditure, and long-term morbidity. Even under optimal conditions, the healing process leads to fibrosis or scar. One promising solution, cell therapy, involves the transplantation of progenitor/stem cells to patients through local or systemic delivery, and offers a novel approach to many chronic diseases, including nonhealing wounds. Mesenchymal stem cells are multipotent, adult progenitor cells of great interest because of their unique immunologic properties and regenerative potential. A variety of preclinical and clinical studies have shown that mesenchymal stem cells may have a useful role in wound-healing and tissue-engineering strategies and both aesthetic and reconstructive surgery. Recent advances in stem cell immunobiology can offer insight into the multiple mechanisms through which mesenchymal stem cells could affect underlying pathophysiologic processes associated with nonhealing mesenchymal stem cells. Critical evaluation of the current literature is necessary for understanding how mesenchymal stem cells could potentially revolutionize our approach to skin and soft-tissue defects and designing clinical trials to address their role in wound repair and regeneration. PMID:20124836

  11. Homogeneity evaluation of mesenchymal stem cells based on electrotaxis analysis.

    PubMed

    Kim, Min Sung; Lee, Mi Hee; Kwon, Byeong-Ju; Kim, Dohyun; Koo, Min-Ah; Seon, Gyeung Mi; Park, Jong-Chul

    2017-08-29

    Stem cell therapy that can restore function to damaged tissue, avoid host rejection and reduce inflammation throughout body without use of immunosuppressive drugs. The established methods were used to identify and to isolate specific stem cell markers by FACS or by immunomagnetic cell separation. The procedures for distinguishing population of stem cells took a time and needed many preparations. Here we suggest an electrotaxis analysis as a new method to evaluate the homogeneity of mesenchymal stem cells which can observe the stem cell population in culture condition and wide use to various types of stem cells. Human mesenchymal stem cell, adipose derived stem cell, tonsil derived stem cell and osteogenic differentiated cells migrated toward anode but the migration speed of differentiated cells was significantly decreased versus that of stem cells. In mixture of stem cells and differentiated cells condition, we identified that the ratio of stem cell versus differentiated cell was matched with the homogeneity evaluation data of stem cells based on electrotaxis analysis. As a result, our evaluation tool has the possibility of the wide use to stem cell homogeneity evaluation and might be used as the stem cell quality control during stem cell culture without any additional antibodies.

  12. Glutamate Increases In Vitro Survival and Proliferation and Attenuates Oxidative Stress-Induced Cell Death in Adult Spinal Cord-Derived Neural Stem/Progenitor Cells via Non-NMDA Ionotropic Glutamate Receptors.

    PubMed

    Hachem, Laureen D; Mothe, Andrea J; Tator, Charles H

    2016-08-15

    Traumatic spinal cord injury (SCI) leads to a cascade of secondary chemical insults, including oxidative stress and glutamate excitotoxicity, which damage host neurons and glia. Transplantation of exogenous neural stem/progenitor cells (NSPCs) has shown promise in enhancing regeneration after SCI, although survival of transplanted cells remains poor. Understanding the response of NSPCs to the chemical mediators of secondary injury is essential in finding therapies to enhance survival. We examined the in vitro effects of glutamate and glutamate receptor agonists on adult rat spinal cord-derived NSPCs. NSPCs isolated from the periventricular region of the adult rat spinal cord were exposed to various concentrations of glutamate for 96 h. We found that glutamate treatment (500 μM) for 96 h significantly increased live cell numbers, reduced cell death, and increased proliferation, but did not significantly alter cell phenotype. Concurrent glutamate treatment (500 μM) in the setting of H2O2 exposure (500 μM) for 10 h increased NSPC survival compared to H2O2 exposure alone. The effects of glutamate on NSPCs were blocked by the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor antagonist GYKI-52466, but not by the N-methyl-D-aspartic acid receptor antagonist MK-801 or DL-AP5, or the mGluR3 antagonist LY-341495. Furthermore, treatment of NSPCs with AMPA, kainic acid, or the kainate receptor-specific agonist (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid mimicked the responses seen with glutamate both alone and in the setting of oxidative stress. These findings offer important insights into potential mechanisms to enhance NSPC survival and implicate a potential role for glutamate in promoting NSPC survival and proliferation after traumatic SCI.

  13. Palmitate causes endoplasmic reticulum stress and apoptosis in human mesenchymal stem cells: prevention by AMPK activator.

    PubMed

    Lu, Jun; Wang, Qinghua; Huang, Lianghu; Dong, Huiyue; Lin, Lingjing; Lin, Na; Zheng, Feng; Tan, Jianming

    2012-11-01

    Elevated circulating saturated fatty acids concentration is commonly associated with poorly controlled diabetes. The highly prevalent free fatty acid palmitate could induce apoptosis in various cell types, but little is known about its effects on human mesenchymal stem cells (MSCs). Here, we report that prolonged exposure to palmitate induces human bone marrow-derived MSC (hBM-MSC) and human umbilical cord-derived MSC apoptosis. We investigated the role of endoplasmic reticulum (ER) stress, which is known to promote cell apoptosis. Palmitate activated XBP1 splicing, elF2α (eukaryotic translation initiation factor 2α) phosphorylation, and CHOP, ATF4, BiP, and GRP94 transcription in hBM-MSCs. ERK1/2 and p38 MAPK phosphorylation were also induced by palmitate in hBM-MSCs. A selective p38 inhibitor inhibited palmitate activation of the ER stress, whereas the ERK1/2 inhibitors had no effect. The AMP-activated protein kinase activator aminoimidazole carboxamide ribonucleotide blocked palmitate-induced ER stress and apoptosis. These findings suggest that palmitate induces ER stress and ERK1/2 and p38 activation in hBM-MSCs, and AMP-activated protein kinase activator prevents the deleterious effects of palmitate by inhibiting ER stress and apoptosis.

  14. [Human umbilical cord mesenchymal stem cells reduce the sensitivity of HL-60 cells to cytarabine].

    PubMed

    Cui, Jun-Jie; Chi, Ying; Du, Wen-Jing; Yang, Shao-Guang; Li, Xue; Chen, Fang; Ma, Feng-Xia; Lu, Shi-Hong; Han, Zhong-Chao

    2013-06-01

    This study was purposed to investigate the impact of human umbilical cord-derived mesenchymal stem cells (hUC-MSC) on the sensitivity of HL-60 cells to therapeutic drugs so as to provide more information for exploring the regulatory effect of hUC-MSC on leukemia cells. Transwell and direct co-culture systems of HL-60 and hUC-MSC were established. The apoptosis and cell cycle of HL-60 cells were detected by flow cytometry. RT-PCR and Western blot were used to detect the mRNA and protein levels of Caspase 3, respectively. The results showed that the apoptosis of HL-60 induced by cytarabine (Ara-C) decreased significantly after direct co-cultured with hUC-MSC cycle mRNA (P < 0.05). The similar phenomenon was observed in transwell co-culture system. Cell cycle of HL-60 cells were arrested at G0/G1 phase and did not enter into S phase (P < 0.05) and the expression of Caspase-3 mRNA and protein in HL-60 cells were reduced (P < 0.05). It is concluded that hUC-MSC protected HL-60 from Arc-C induced apoptosis through regulating the cell cycle and down-regulating expression of Caspase 3 in HL-60 cells. In addition, this effect is caused by the soluble factors from hUC-MSC.

  15. Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients.

    PubMed

    Zhang, Zheng; Lin, Hu; Shi, Ming; Xu, Ruonan; Fu, Junliang; Lv, Jiyun; Chen, Liming; Lv, Sa; Li, Yuanyuan; Yu, Shuangjie; Geng, Hua; Jin, Lei; Lau, George K K; Wang, Fu-Sheng

    2012-03-01

    Decompensated liver cirrhosis (LC), a life-threatening complication of chronic liver disease, is one of the major indications for liver transplantation. Recently, mesenchymal stem cell (MSC) transfusion has been shown to lead to the regression of liver fibrosis in mice and humans. This study examined the safety and efficacy of umbilical cord-derived MSC (UC-MSC) in patients with decompensated LC. A total of 45 chronic hepatitis B patients with decompensated LC, including 30 patients receiving UC-MSC transfusion, and 15 patients receiving saline as the control, were recruited; clinical parameters were detected during a 1-year follow-up period. No significant side-effects and complications were observed in either group. There was a significant reduction in the volume of ascites in patients treated with UC-MSC transfusion compared with controls (P < 0.05). UC-MSC therapy also significantly improved liver function, as indicated by the increase of serum albumin levels, decrease in total serum bilirubin levels, and decrease in the sodium model for end-stage liver disease scores. UC-MSC transfusion is clinically safe and could improve liver function and reduce ascites in patients with decompensated LC. UC-MSC transfusion, therefore, might present a novel therapeutic approach for patients with decompensated LC.

  16. Detecting viability transitions of umbilical cord mesenchymal stem cells by Raman micro-spectroscopy

    NASA Astrophysics Data System (ADS)

    Bai, H.; Chen, P.; Fang, H.; Lin, L.; Tang, G. Q.; Mu, G. G.; Gong, W.; Liu, Z. P.; Wu, H.; Zhao, H.; Han, Z. C.

    2011-01-01

    Recent research suggests that human umbilical cord derived mesenchymal stem cells (hUC-MSCs) can be promising candidates for cell-based therapy. Since large population and high viability are generally required, detecting viability transitions of these cells is crucial for their population expansion and quality control. Here, as a non-invasive method, Raman micro-spectroscopy is applied to examine hUC-MSCs with different viability. Using peak fitting and statistic t-test, the Raman peaks with obvious differences between the cells with high viability (> 90%) and low viability (< 20%) are extracted. It is found that the C=O out of plane bending in thymine at 744 cm-1, symmetric stretching of C-C in lipids at 877 cm-1 and CH deformation in proteins at 1342 cm-1 show the most significant changes (p < 0.001). When the cell viability decreases, the intensities of the former two peaks are both about doubled while that of the latter peak reduces by about 30%. Based on these results, we propose that the viability of hUC-MSCs can be characterized by these three peaks. And their intensity changes can be understood from the model of excessive reactive oxygen species interacting with the bio-macromolecules.

  17. Biocompatibility and favorable response of mesenchymal stem cells on fibronectin-gold nanocomposites.

    PubMed

    Hung, Huey-Shan; Tang, Cheng-Ming; Lin, Chien-Hsun; Lin, Shinn-Zong; Chu, Mei-Yun; Sun, Wei-Shen; Kao, Wei-Chien; Hsien-Hsu, Hsieh; Huang, Chih-Yang; Hsu, Shan-hui

    2013-01-01

    A simple surface modification method, comprising of a thin coating with gold nanoparticles (AuNPs) and fibronectin (FN), was developed to improve the biocompatibility required for cardiovascular devices. The nanocomposites from FN and AuNPs (FN-Au) were characterized by the atomic force microscopy (AFM), UV-Vis spectrophotometry (UV-Vis), and Fourier transform infrared spectroscopy (FTIR). The biocompatibility of the nanocomposites was evaluated by the response of monocytes and platelets to the material surface in vitro. FN-Au coated surfaces demonstrated low monocyte activation and platelet activation. The behavior of human umbilical cord-derived mesenchymal stem cells (MSCs) on FN-Au was further investigated. MSCs on FN-Au nanocomposites particularly that containing 43.5 ppm of AuNPs (FN-Au 43.5 ppm) showed cell proliferation, low ROS generation, as well as increases in the protein expression levels of matrix metalloproteinase-9 (MMP-9) and endothelial nitric oxide synthase (eNOS), which may account for the enhanced MSC migration on the nanocomposites. These results suggest that the FN-Au nanocomposite thin film coating may serve as a potential and simple solution for the surface modification of blood-contacting devices such as vascular grafts.

  18. Mesenchymal stem cells and adaptive immune responses.

    PubMed

    Cao, Wei; Cao, Kai; Cao, Jianchang; Wang, Ying; Shi, Yufang

    2015-12-01

    Over the past decade, our understanding of the regulatory role of mesenchymal stem cells (MSCs) in adaptive immune responses through both preclinical and clinical studies has dramatically expanded, providing great promise for treating various inflammatory diseases. Most studies are focused on the modulatory effects of these cells on the properties of T cell-mediated immune responses, including activation, proliferation, survival, and subset differentiation. Interestingly, the immunosuppressive function of MSCs was found to be licensed by IFN-γ and TNF-α produced by T cells and that can be further amplified by cytokines such as IL-17. However, the immunosuppressive function of MSCs can be reversed in certain situation, such as suboptimal levels of inflammatory cytokines, or in the presence of immunosuppressive molecules. Here we review the influence of MSCs on adaptive immune system, especially their bidirectional interaction in tuning the immune microenvironment and subsequently repairing damaged tissue. Understanding MSC-mediated regulation of T cells is expected to provide fundamental information for guiding appropriate applications of MSCs in clinical settings. Copyright © 2015 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  19. Mesenchymal Stem Cells Reduce Murine Atherosclerosis Development

    PubMed Central

    Frodermann, Vanessa; van Duijn, Janine; van Pel, Melissa; van Santbrink, Peter J.; Bot, Ilze; Kuiper, Johan; de Jager, Saskia C. A.

    2015-01-01

    Mesenchymal stem cells (MSCs) have regenerative properties, but recently they were also found to have immunomodulatory capacities. We therefore investigated whether MSCs could reduce atherosclerosis, which is determined by dyslipidaemia and chronic inflammation. We adoptively transferred MSCs into low-density lipoprotein-receptor knockout mice and put these on a Western-type diet to induce atherosclerosis. Initially after treatment, we found higher levels of circulating regulatory T cells. In the long-term, overall numbers of effector T cells were reduced by MSC treatment. Moreover, MSC-treated mice displayed a significant 33% reduction in circulating monocytes and a 77% reduction of serum CCL2 levels. Most strikingly, we found a previously unappreciated effect on lipid metabolism. Serum cholesterol was reduced by 33%, due to reduced very low-density lipoprotein levels, likely a result of reduced de novo hepatic lipogenesis as determined by a reduced expression of Stearoyl-CoA desaturase-1 and lipoprotein lipase. MSCs significantly affected lesion development, which was reduced by 33% in the aortic root. These lesions contained 56% less macrophages and showed a 61% reduction in T cell numbers. We show here for the first time that MSC treatment affects not only inflammatory responses but also significantly reduces dyslipidaemia in mice. This makes MSCs a potent candidate for atherosclerosis therapies. PMID:26490642

  20. Mesenchymal stem cell transplantation in multiple sclerosis.

    PubMed

    Cohen, Jeffrey A

    2013-10-15

    Mesenchymal stem cells (MSCs) are pluripotent non-hematopoietic precursor cells that can be isolated from bone marrow and numerous other tissues, culture-expanded to purity, and induced to differentiate in vitro and in vivo into mesodermal derivatives. MSCs exhibit many phenotypic and functional similarities to pericytes. The immunomodulatory, tissue protective, and repair-promoting properties of MSCs demonstrated both in vitro and in animal models make them an attractive potential therapy for MS and other conditions characterized by inflammation and/or tissue injury. Other potential advantages of MSCs as a therapeutic include the relative ease of culture expansion, relative immunoprivilege allowing allogeneic transplantation, and their ability to traffic from blood to areas of tissue allowing intravascular administration. The overall published experience with MSC transplantation in MS is modest, but several small case series and preliminary studies yielded promising results. Several groups, including us, recently initiated formal studies of autologous, culture-expanded, bone marrow-derived MSC transplantation in MS. Although there are several potential safety concerns, to date, the procedure has been well tolerated. Future studies that more definitively assess efficacy also will need to address several technical issues. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Manufacturing and banking of mesenchymal stem cells.

    PubMed

    Thirumala, Sreedhar; Goebel, W Scott; Woods, Erik J

    2013-05-01

    Mesenchymal stem cells (MSC) and MSC-like cells hold great promise and offer many advantages for developing effective cellular therapeutics. Current trends indicate that the clinical application of MSC will continue to increase markedly. For clinical applications, large numbers of MSC are usually required, ideally in an off-the-shelf format, thus requiring extensive MSC expansion ex vivo and subsequent cryopreservation and banking. To exploit the full potential of MSC for cell-based therapies requires overcoming significant cell-manufacturing, banking and regulatory challenges. The current review will focus on the identification of optimal cell source for MSC, the techniques for production scale-up, cryopreservation and banking and the regulatory challenges involved. There has been considerable success manufacturing and cryopreserving MSC at laboratory scale. Surprisingly little attention, however, has been given to translate these technologies to an industrial scale. The development of cost-effective advanced technologies for producing and cryopreserving commercial-scale MSC is important for successful clinical cell therapy.

  2. Mesenchymal stem cells in tumor development

    PubMed Central

    Cuiffo, Benjamin G.; Karnoub, Antoine E.

    2012-01-01

    Mesenchymal stem cells (MSCs) are multipotent progenitor cells that participate in the structural and functional maintenance of connective tissues under normal homeostasis. They also act as trophic mediators during tissue repair, generating bioactive molecules that help in tissue regeneration following injury. MSCs serve comparable roles in cases of malignancy and are becoming increasingly appreciated as critical components of the tumor microenvironment. MSCs home to developing tumors with great affinity, where they exacerbate cancer cell proliferation, motility, invasion and metastasis, foster angiogenesis, promote tumor desmoplasia and suppress anti-tumor immune responses. These multifaceted roles emerge as a product of reciprocal interactions occurring between MSCs and cancer cells and serve to alter the tumor milieu, setting into motion a dynamic co-evolution of both tumor and stromal tissues that favors tumor progression. Here, we summarize our current knowledge about the involvement of MSCs in cancer pathogenesis and review accumulating evidence that have placed them at the center of the pro-malignant tumor stroma. PMID:22863739

  3. Potential mesenchymal stem cell therapy for skin diseases.

    PubMed

    Li, Xiaoguang; Hamada, Takahiro; Ohata, Chika; Furumura, Minao; Hashimoto, Takashi

    2013-08-01

    Mesenchymal stem cells (MSCs) are non-haematopoietic cells that reside in most tissues including adult bone marrow. MSCs have recently been extensively studied and used for clinical therapies, including skin wound healing. However, there are still many questions to be answered. In the viewpoint entitled 'Mesenchymal stem cell therapy in skin: why and what for?', Dr. Khosrotehrani provided a comprehensive overview for MSC properties and current progresses on clinical applications for various skin conditions. This viewpoint is therefore very helpful for both dermatologists and basic skin researchers to understand stem cells researches.

  4. [Differentiation of mesenchymal stem cells of adipose tissue].

    PubMed

    Salyutin, R V; Zapohlska, K M; Palyanytsya, S S; Sirman, V M; Sokolov, M F

    2015-03-01

    Experimental investigation were conducted with the objective to determine a stem cells, capacity to differentiate in adipogenic direction, if they were obtained from adipose tissue. The investigation results have witnessed, that the cells, obtained from adipose tissue, are capable for a tissue-speciphic differentiation in osteogenic, chondrogenic, and, principally--in adipogenic direction, what confirms a multypotent nature of mesenchymal stem cells of adipose tissue. Adipose tissue constitutes an alternative to the bone marrow, as a source of multipotent mesenchymal stem cells, which may be applied in further investigations, concerning determination of their defense possibility for the transplanted autologous adipose tissue from the tissue resorption, made in a lipophiling way.

  5. Stressed stem cells: Temperature response in aged mesenchymal stem cells.

    PubMed

    Stolzing, Alexandra; Sethe, Sebastian; Scutt, Andrew M

    2006-08-01

    Mesenchymal stem cells (MSCs) derived from young (6 week) and aged (56 week) Wistar rats were cultured at standard (37 degrees C) and reduced (32 degrees C) temperature and compared for age markers and stress levels. (ROS, NO, TBARS, carbonyls, lipofuscin, SOD, GPx, apoptosis, proteasome activity) and heat shock proteins (HSP27, -60, -70, -90). Aged MSCs display many of the stress markers associated with aging in other cell types, but results vary across marker categories and are temperature dependant. In young MSCs, culturing at reduced temperature had a generally beneficial effect: the anti-apoptotic heat shock proteins HSP 27, HSP70, and HSP90 were up-regulated; pro-apoptotic HSP60 was downregulated; SOD, GPx increased; and levels in ROS, NO, TBARS, carbonyl, and lipofuscin were diminished. Apoptosis was reduced, but also proteasome activity. In contrast, in aged MSCs, culturing at reduced temperature generally produced no 'beneficial' changes in these parameters, and can even have detrimental effects. Implications for tissue engineering and for stem cell gerontology are discussed. The results suggest that a 'hormesis' theory of stress response can be extended to MSCs, but that cooling cultivation temperature stress produces positive effects in young cells only.

  6. Mesenchymal stem cell therapy in Parkinson's disease animal models.

    PubMed

    Gugliandolo, A; Bramanti, P; Mazzon, E

    Parkinson's disease is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra, and as a consequence, by decreased dopamine levels in the striatum. Currently available therapies are not able to stop or reverse the progression of the disease. A novel therapeutic approach is based on cell therapy with stem cells, in order to replace degenerated neurons. Among stem cells, mesenchymal stem cells seemed the most promising thanks to their capacities to differentiate toward dopaminergic neurons and to release neurotrophic factors. Indeed, mesenchymal stem cells are able to produce different molecules with immunomodulatory, neuroprotective, angiogenic, chemotactic effects and that stimulate differentiation of resident stem cells. Mesenchymal stem cells were isolated for the first time from bone marrow, but can be collected also from adipose tissue, umbilical cord and other tissues. In this review, we focused our attention on mesenchymal stem cells derived from different sources and their application in Parkinson's disease animal models. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Mesenchymal stem cells show radioresistance in vivo.

    PubMed

    Singh, Sarvpreet; Kloss, Frank R; Brunauer, Regina; Schimke, Magdalena; Jamnig, Angelika; Greiderer-Kleinlercher, Brigitte; Klima, Günter; Rentenberger, Julia; Auberger, Thomas; Hächl, Oliver; Rasse, Michael; Gassner, Robert; Lepperdinger, Günter

    2012-04-01

    Irradiation impacts on the viability and differentiation capacity of tissue-borne mesenchymal stem cells (MSC), which play a pivotal role in bone regeneration. As a consequence of radiotherapy, bones may develop osteoradionecrosis. When irradiating human bone-derived MSC in vitro with increasing doses, the cells' self-renewal capabilities were greatly reduced. Mitotically stalled cells were still capable of differentiating into osteoblasts and pre-adipocytes. As a large animal model comparable to the clinical situation, pig mandibles were subjected to fractionized radiation of 2 χ 9 Gy within 1 week. This treatment mimics that of a standardized clinical treatment regimen of head and neck cancer patients irradiated 30 χ 2 Gy. In the pig model, fractures which had been irradiated, showed delayed osseous healing. When isolating MSC at different time points post-irradiation, no significant changes regarding proliferation capacity and osteogenic differentiation potential became apparent. Therefore, pig mandibles were irradiated with a single dose of either 9 or 18 Gy in vivo, and MSC were isolated immediately afterwards. No significant differences between the untreated and 9 Gy irradiated bone with respect to proliferation and osteogenic differentiation were unveiled. Yet, cells isolated from 18 Gy irradiated specimens exhibited a reduced osteogenic differentiation capacity, and during the first 2 weeks proliferation rates were greatly diminished. Thereafter, cells recovered and showed normal proliferation behaviour. These findings imply that MSC can effectively cope with irradiation up to high doses in vivo. This finding should thus be implemented in future therapeutic concepts to protect regenerating tissue from radiation consequences.

  8. Cell surface engineering of mesenchymal stem cells.

    PubMed

    Sarkar, Debanjan; Zhao, Weian; Gupta, Ashish; Loh, Wei Li; Karnik, Rohit; Karp, Jeffrey M

    2011-01-01

    By leveraging the capacity to promote regeneration, stem cell therapies offer enormous hope for solving some of the most tragic illnesses, diseases, and tissue defects world-wide. However, a significant barrier to the effective implementation of cell therapies is the inability to target a large quantity of viable cells with high efficiency to tissues of interest. Systemic infusion is desired as it minimizes the invasiveness of cell therapy, and maximizes practical aspects of repeated doses. However, cell types such as mesenchymal stem cells exhibit a poor homing capability or lose their capacity to home following culture expansion (i.e. FASEB J 21:3197-3207, 2007; Circulation 108:863-868, 2003; Stroke: A Journal of Cerebral Circulation 32:1005-1011; Blood 104:3581-3587, 2004). To address this challenge, we have developed a simple platform technology to chemically attach cell adhesion molecules to the cell surface to improve the homing efficiency to specific tissues. This chemical approach involves a stepwise process including (1) treatment of cells with sulfonated biotinyl-N-hydroxy-succinimide to introduce biotin groups on the cell surface, (2) addition of streptavidin that binds to the biotin on the cell surface and presents unoccupied binding sites, and (3) attachment of biotinylated targeting ligands that promote adhesive interactions with vascular endothelium. Specifically, in our model system, a biotinylated cell rolling ligand, sialyl Lewisx (SLeX), found on the surface of leukocytes (i.e., the active site of the P-selectin glycoprotein ligand (PSGL-1)), is conjugated on MSC surface. The SLeX engineered MSCs exhibit a rolling response on a P-selectin coated substrate under shear stress conditions. This indicates that this approach can be used to potentially target P-selectin expressing endothelium in the more marrow or at sites of inflammation. Importantly, the surface modification has no adverse impact on MSCs' native phenotype including their multilineage

  9. Immunophenotypic characterization of ovine mesenchymal stem cells.

    PubMed

    Khan, Mohammad R; Chandrashekran, Anil; Smith, Roger K W; Dudhia, Jayesh

    2016-05-01

    The clinical potential of multipotent mesenchymal stem cells (MSCs) has led to the essential development of analytical tools such as antibodies against membrane-bound proteins for the immunophenotypic characterization of human and rodent cells. Such tools are frequently lacking for emerging large animal models like the sheep that have greater relevance for the study of human musculoskeletal diseases. The present study identified a set of commercial nonspecies specific monoclonal antibodies for the immunophenotypic characterization of ovine MSCs. A protocol combining the less destructive proteolytic activity of accutase and EDTA was initially developed for the detachment of cells from plastic with minimum loss of cell surface antigens. A range of commercially available antibodies against human or rodent MSC antigens were then tested in single and multistain-based assays for their cross-reactivity to bone marrow derived ovine MSCs. Antibody clones cross-reactive to ovine CD73 (96.9% ± 5.9), CD90 (99.6% ± 0.3), CD105 (99.1 ± 1.5), CD271 (97.7 ± 2.0), and MHC1 (94.0% ± 7.2) antigens were identified using previously reported CD29, CD44, and CD166 as positive controls. Multistaining analysis indicated the colocalization of these antigens on MSCs. Furthermore, antibody clones identified to cross-react against white blood cell antigens exhibited either negative (CD117 (0.1% ± 0.1)) or low (MHCII (10.5% ± 16.0); CD31 (14.6% ± 4.2), and CD45 (39.4% ± 31.8)) cross-reactivity with ovine MSCs. The validation of these antibody clones to sheep MSC antigens is essential for studies utilizing this large animal model for stem cell-based therapies. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.

  10. Pluripotent Stem Cells as a Robust Source of Mesenchymal Stem Cells.

    PubMed

    Luzzani, Carlos D; Miriuka, Santiago G

    2017-02-01

    Mesenchymal stem cells (MSC) have been extensively studied over the past years for the treatment of different diseases. Most of the ongoing clinical trials currently involve the use of MSC derived from adult tissues. This source may have some limitations, particularly with therapies that may require extensive and repetitive cell dosage. However, nowadays, there is a staggering growth in literature on a new source of MSC. There is now increasing evidence about the mesenchymal differentiation from pluripotent stem cell (PSC). Here, we summarize the current knowledge of pluripotent-derived mesenchymal stem cells (PD-MSC). We present a historical perspective on the subject, and then discuss some critical questions that remain unanswered.

  11. Embryonic versus mesenchymal stem cells in cartilage repair.

    PubMed

    Perera, Jonathan R; Jaiswal, Parag K; Khan, Wasim S; Adesida, Adetola

    2012-01-01

    As our population changes osteoarthritis and cartilage defects are becoming more prevalent. The discovery of stems cells and their ability for indefinite regeneration has revolutionised the way cartilage problems are viewed. Tissue engineering has been shown to be the ideal way of repairing articular cartilage lesions, i.e. back to native tissue. The two main types of stem cells being investigated in chondrogenesis are embryological and mesenchymal stem cells. Research into embryological stem cells has been surrounded by controversy because of tumour formation and damaging embryos during the harvest of cells. We discuss the use of embryological and mesenchymal stem cells in cartilage repair and the various factors involved in the differentiation into chondrocytes.

  12. Mesenchymal Stem Cell Levels of Human Spinal Tissues.

    PubMed

    Harris, Liam; Vangsness, C Thomas

    2017-09-06

    .: Systematic Review. .: The aim of this study was to investigate, quantify, compare and compile the various mesenchymal stem cell tissue sources within human spinal tissues to act as a compendium for clinical and research application. .: Recent years have seen a dramatic increase in academic and clinical understanding of human mesenchymal stem cells (MSCs). Previously limited to cells isolated from bone marrow, the past decade has illicited the characterization and isolation of human MSCs from adipose, bone marrow, synovium, muscle, periosteum, peripheral blood, umbilical cord, placenta and numerous other tissues. As researchers explore practical applications of cells in these tissues, the absolute levels of MSCs in specific spinal tissue will be critical to guide future research. .: The PubMED, MEDLINE, EMBASE and Cochrane databases were searched for articles relating to the harvest, characterization, isolation and quantification of human mesenchymal stem cells from spinal tissues. Selected articles were examined for relevant data, categorized according to type of spinal tissue, and when possible, standardized to facilitate comparisons between sites. .: Human mesenchymal stem cell levels varied widely between spinal tissues. Yields for Intervertebral disc demonstrated roughly 5% of viable cells to be positive for MSC surface markers. Cartilage endplate cells yielded 18,500- 61,875 cells/ 0.8 mm thick sample of cartilage end plate. Ligamentum flavum yielded 250,000- 500,000 cells per gram of tissue. Annulus fibrosus FACS treatment found 29% of cells positive for MSC marker Stro-1. Nucleus pulposus yielded mean tissue samples of 40,584-234,137 MSCs/gram of tissue. .: Numerous tissues within and surrounding the spine represent a consistent and reliable source for the harvest and isolation of human mesenchymal stem cells. Among the tissues of the spine, the annulus fibrosus and ligamentum flavum each offer considerable levels of mesenchymal stem cells, and may

  13. Role of Mesenchymal-Derived Stem Cells in Stimulating Dormant Tumor Cells to Proliferate and Form Clinical Metastases

    DTIC Science & Technology

    2015-07-01

    cytokines; chemokines; mesenchymal stem cells; hematologic stem cells; metastasis; quiescence; animal models; fibrosis; basement membrane extract; 3D...cancer; dormancy; tumor recurrence; stroma; cytokines; chemokines; mesenchymal stem cells; hematologic stem cells; metastasis; quiescence; animal

  14. Cranial bone regeneration via BMP-2 encoding mesenchymal stem cells.

    PubMed

    Vural, Altugan Cahit; Odabas, Sedat; Korkusuz, Petek; Yar Sağlam, Atiye Seda; Bilgiç, Elif; Çavuşoğlu, Tarık; Piskin, Erhan; Vargel, İbrahim

    2017-05-01

    Cranial bone repair and regeneration via tissue engineering principles has attracted a great deal of interest from researchers during last decade. Here, within this study, 6 mm critical-sized bone defect regeneration via genetically modified mesenchymal stem cells (MSC) were monitored up to 4 months. Cranial bone repair and new bone formations were evaluated by histological staining and real time PCR analysis in five different groups including autograft and bone morphogenetic protein-2 (BMP-2) transfected MSC groups. Results presented here indicate a proper cranial regeneration in autograft groups and a prospering regeneration for hBMP-2 encoding mesenchymal stem cells.

  15. Mesenchymal Stem Cells Improve Healing of Diabetic Foot Ulcer

    PubMed Central

    Sun, Chenglin

    2017-01-01

    Mesenchymal stem cells (MSCs), an ideal cell source for regenerative therapy with no ethical issues, play an important role in diabetic foot ulcer (DFU). Growing evidence has demonstrated that MSCs transplantation can accelerate wound closure, ameliorate clinical parameters, and avoid amputation. In this review, we clarify the mechanism of preclinical studies, as well as safety and efficacy of clinical trials in the treatment of DFU. Bone marrow-derived mesenchymal stem cells (BM-MSCs), compared with MSCs derived from other tissues, may be a suitable cell type that can provide easy, effective, and cost-efficient transplantation to treat DFU and protect patients from amputation. PMID:28386568

  16. Valproic acid enforces the priming effect of sphingosine-1 phosphate on human mesenchymal stem cells.

    PubMed

    Lim, Jisun; Lee, Seungun; Ju, Hyein; Kim, Yonghwan; Heo, Jinbeom; Lee, Hye-Yeon; Choi, Kyung-Chul; Son, Jaekyoung; Oh, Yeon-Mok; Kim, In-Gyu; Shin, Dong-Myung

    2017-09-01

    Engraftment and homing of mesenchymal stem cells (MSCs) are modulated by priming factors including the bioactive lipid sphingosine-1-phosphate (S1P), by stimulating CXCR4 receptor signaling cascades. However, limited in vivo efficacy and the remaining priming molecules prior to administration of MSCs can provoke concerns regarding the efficiency and safety of MSC priming. Here, we showed that valproic acid (VPA), a histone deacetylase inhibitor, enforced the priming effect of S1P at a low dosage for human umbilical cord-derived MSCs (UC-MSCs). A DNA-methylation inhibitor, 5-azacytidine (5-Aza), and VPA increased the expression of CXCR4 in UC-MSCs. In particular, UC-MSCs primed with a suboptimal dose (50 nM) of S1P in combination with 0.5 mM VPA (VPA+S1P priming), but not 1 µM 5-Aza, significantly improved the migration activity in response to stromal cell-derived factor 1 (SDF-1) concomitant with the activation of both MAPKp42/44 and AKT signaling cascades. Both epigenetic regulatory compounds had little influence on cell surface marker phenotypes and the multi-potency of UC-MSCs. In contrast, VPA+S1P priming of UC-MSCs potentiated the proliferation, colony forming unit-fibroblast, and anti-inflammatory activities, which were severely inhibited in the case of 5-Aza treatment. Accordingly, the VPA+S1P-primed UC-MSCs exhibited upregulation of a subset of genes related to stem cell migration and anti-inflammation response. Thus, the present study demonstrated that VPA enables MSC priming with S1P at a low dosage by enhancing their migration and other therapeutic beneficial activities. This priming strategy for MSCs may provide a more efficient and safe application of MSCs for treating a variety of intractable disorders.

  17. A Comparison of Culture Characteristics between Human Amniotic Mesenchymal Stem Cells and Dental Stem Cells.

    PubMed

    Yusoff, Nurul Hidayat; Alshehadat, Saaid Ayesh; Azlina, Ahmad; Kannan, Thirumulu Ponnuraj; Hamid, Suzina Sheikh Abdul

    2015-04-01

    In the past decade, the field of stem cell biology is of major interest among researchers due to its broad therapeutic potential. Stem cells are a class of undifferentiated cells that are able to differentiate into specialised cell types. Stem cells can be classified into two main types: adult stem cells (adult tissues) and embryonic stem cells (embryos formed during the blastocyst phase of embryological development). This review will discuss two types of adult mesenchymal stem cells, dental stem cells and amniotic stem cells, with respect to their differentiation lineages, passage numbers and animal model studies. Amniotic stem cells have a greater number of differentiation lineages than dental stem cells. On the contrary, dental stem cells showed the highest number of passages compared to amniotic stem cells. For tissue regeneration based on animal studies, amniotic stem cells showed the shortest time to regenerate in comparison with dental stem cells.

  18. Combination cell therapy with mesenchymal stem cells and neural stem cells for brain stroke in rats.

    PubMed

    Hosseini, Seyed Mojtaba; Farahmandnia, Mohammad; Razi, Zahra; Delavari, Somayeh; Shakibajahromi, Benafsheh; Sarvestani, Fatemeh Sabet; Kazemi, Sepehr; Semsar, Maryam

    2015-05-01

    Brain stroke is the second most important events that lead to disability and morbidity these days. Although, stroke is important, there is no treatment for curing this problem. Nowadays, cell therapy has opened a new window for treating central nervous system disease. In some previous studies the Mesenchymal stem cells and neural stem cells. In this study, we have designed an experiment to assess the combination cell therapy (Mesenchymal and Neural stem cells) effects on brain stroke. The Mesenchymal stem cells were isolated from adult rat bone marrow and the neural stem cells were isolated from ganglion eminence of rat embryo 14 days. The Mesenchymal stem cells were injected 1 day after middle cerebral artery occlusion (MCAO) and the neural stem cells transplanted 7 day after MCAO. After 28 days, the neurological outcomes and brain lesion volumes were evaluated. Also, the activity of Caspase 3 was assessed in different groups. The group which received combination cell therapy had better neurological examination and less brain lesion. Also the combination cell therapy group had the least Caspase 3 activity among the groups. The combination cell therapy is more effective than Mesenchymal stem cell therapy and neural stem cell therapy separately in treating the brain stroke in rats.

  19. Antibody Arrays for Quality Control of Mesenchymal Stem Cells.

    PubMed

    Nishikiori, Ryo; Watanabe, Kotaro; Kato, Koichi

    2015-08-05

    Quality control of mesenchymal stem cells is an important step before their clinical use in regenerative therapy. Among various characteristics of mesenchymal stem cells, reproducibility of population compositions should be analyzed according to characteristics, such as stem cell contents and differentiation stages. Such characterization may be possible by assessing the expression of several surface markers. Here we report our attempts to utilize antibody arrays for analyzing surface markers expressed in mesenchymal stem cell populations in a high-throughput manner. Antibody arrays were fabricated using a glass plate on which a micropatterned alkanethiol monolayer was formed. Various antibodies against surface markers including CD11b, CD31, CD44, CD45, CD51, CD73, CD90, CD105, and CD254 were covalently immobilized on the micropatterned surface in an array format to obtain an antibody array. To examine the feasibility of the array, cell binding assays were performed on the array using a mouse mesenchymal stem cell line. Our results showed that cell binding was observed on the arrayed spots with immobilized antibodies which exhibited reactivity to the cells in flow cytometry. It was further found that the density of cells attached to antibody spots was correlated to the mean fluorescent channel recorded in flow cytometry. These results demonstrate that data obtained by cell binding assays on the antibody array are comparable to those by the conventional flow cytometry, while throughput of the analysis is much higher with the antibody array-based method than flow cytometry. Accordingly, we concluded that the antibody array provides a high-throughput analytical method useful for the quality control of mesenchymal stem cells.

  20. Research Advancements in Porcine Derived Mesenchymal Stem Cells

    PubMed Central

    Bharti, Dinesh; Shivakumar, Sharath Belame; Subbarao, Raghavendra Baregundi; Rho, Gyu-Jin

    2016-01-01

    In the present era of stem cell biology, various animals such as Mouse, Bovine, Rabbit and Porcine have been tested for the efficiency of their mesenchymal stem cells (MSCs) before their actual use for stem cell based application in humans. Among them pigs have many similarities to humans in the form of organ size, physiology and their functioning, therefore they have been considered as a valuable model system for in vitro studies and preclinical assessments. Easy assessability, few ethical issues, successful MSC isolation from different origins like bone marrow, skin, umbilical cord blood, Wharton’s jelly, endometrium, amniotic fluid and peripheral blood make porcine a good model for stem cell therapy. Porcine derived MSCs (pMSCs) have shown greater in vitro differentiation and transdifferention potential towards mesenchymal lineages and specialized lineages such as cardiomyocytes, neurons, hepatocytes and pancreatic beta cells. Immunomodulatory and low immunogenic profiles as shown by autologous and heterologous MSCs proves them safe and appropriate models for xenotransplantation purposes. Furthermore, tissue engineered stem cell constructs can be of immense importance in relation to various osteochondral defects which are difficult to treat otherwise. Using pMSCs successful treatment of various disorders like Parkinson’s disease, cardiac ischemia, hepatic failure, has been reported by many studies. Here, in this review we highlight current research findings in the area of porcine mesenchymal stem cells dealing with their isolation methods, differentiation ability, transplantation applications and their therapeutic potential towards various diseases. PMID:26201864

  1. Mesenchymal Stem Cell-Based Therapy for Prostate Cancer

    DTIC Science & Technology

    2014-09-01

    Identification of MSCs in Benign Prostatic Hyperplasia (BPH) Next, the presence of MSCs in pathological tissue from older men was investigated...inflammation was detected (Table 5). Inflammation was more frequently observed in benign areas of malignant prostates ; though it was commonly detected...Mesenchymal Stem Cell-Based Therapy for Prostate Cancer PRINCIPAL INVESTIGATOR: John Isaacs; Jeffrey Karp

  2. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks

    PubMed Central

    Liu, Suling; Ginestier, Christophe; Ou, Sing J.; Clouthier, Shawn G.; Patel, Shivani H.; Monville, Florence; Korkaya, Hasan; Heath, Amber; Dutcher, Julie; Kleer, Celina G.; Jung, Younghun; Dontu, Gabriela; Taichman, Russell; Wicha, Max S.

    2011-01-01

    We have utilized in vitro and mouse xenograft models to examine the interaction between breast cancer stem cells (CSCs) and bone marrow derived mesenchymal stem cells (MSCs). We demonstrate that both of these cell populations are organized in a cellular hierarchy in which primitive aldehyde dehydrogenase (ALDH) expressing mesenchymal cells regulate breast CSCs through cytokine loops involving IL6 and CXCL7. In NOD/SCID mice, labeled MSCs introduced into the tibia traffic to sites of growing breast tumor xenografts where they accelerate tumor growth by increasing the breast cancer stem cell population. Utilizing immunochemistry, we identified “MSC-CSC niches” in these tumor xenografts as well as in frozen sections from primary human breast cancers. Bone marrow derived mesenchymal stem cell may accelerate human breast tumor growth by generating cytokine networks that regulate the cancer stem cell population. PMID:21224357

  3. Cinnamtannin B-1 Promotes Migration of Mesenchymal Stem Cells and Accelerates Wound Healing in Mice.

    PubMed

    Fujita, Kosuke; Kuge, Katsunori; Ozawa, Noriyasu; Sahara, Shunya; Zaiki, Kaori; Nakaoji, Koichi; Hamada, Kazuhiko; Takenaka, Yukiko; Tanahashi, Takao; Tamai, Katsuto; Kaneda, Yasufumi; Maeda, Akito

    2015-01-01

    Substances that enhance the migration of mesenchymal stem cells to damaged sites have the potential to improve the effectiveness of tissue repair. We previously found that ethanol extracts of Mallotus philippinensis bark promoted migration of mesenchymal stem cells and improved wound healing in a mouse model. We also demonstrated that bark extracts contain cinnamtannin B-1, a flavonoid with in vitro migratory activity against mesenchymal stem cells. However, the in vivo effects of cinnamtannin B-1 on the migration of mesenchymal stem cells and underlying mechanism of this action remain unknown. Therefore, we examined the effects of cinnamtannin B-1 on in vivo migration of mesenchymal stem cells and wound healing in mice. In addition, we characterized cinnamtannin B-1-induced migration of mesenchymal stem cells pharmacologically and structurally. The mobilization of endogenous mesenchymal stem cells into the blood circulation was enhanced in cinnamtannin B-1-treated mice as shown by flow cytometric analysis of peripheral blood cells. Whole animal imaging analysis using luciferase-expressing mesenchymal stem cells as a tracer revealed that cinnamtannin B-1 increased the homing of mesenchymal stem cells to wounds and accelerated healing in a diabetic mouse model. Additionally, the cinnamtannin B-1-induced migration of mesenchymal stem cells was pharmacologically susceptible to inhibitors of phosphatidylinositol 3-kinase, phospholipase C, lipoxygenase, and purines. Furthermore, biflavonoids with similar structural features to cinnamtannin B-1 also augmented the migration of mesenchymal stem cells by similar pharmacological mechanisms. These results demonstrate that cinnamtannin B-1 promoted mesenchymal stem cell migration in vivo and improved wound healing in mice. Furthermore, the results reveal that cinnamtannin B-1-induced migration of mesenchymal stem cells may be mediated by specific signaling pathways, and the flavonoid skeleton may be relevant to its effects on

  4. Cinnamtannin B-1 Promotes Migration of Mesenchymal Stem Cells and Accelerates Wound Healing in Mice

    PubMed Central

    Fujita, Kosuke; Kuge, Katsunori; Ozawa, Noriyasu; Sahara, Shunya; Zaiki, Kaori; Nakaoji, Koichi; Hamada, Kazuhiko; Takenaka, Yukiko; Tanahashi, Takao; Tamai, Katsuto; Kaneda, Yasufumi; Maeda, Akito

    2015-01-01

    Substances that enhance the migration of mesenchymal stem cells to damaged sites have the potential to improve the effectiveness of tissue repair. We previously found that ethanol extracts of Mallotus philippinensis bark promoted migration of mesenchymal stem cells and improved wound healing in a mouse model. We also demonstrated that bark extracts contain cinnamtannin B-1, a flavonoid with in vitro migratory activity against mesenchymal stem cells. However, the in vivo effects of cinnamtannin B-1 on the migration of mesenchymal stem cells and underlying mechanism of this action remain unknown. Therefore, we examined the effects of cinnamtannin B-1 on in vivo migration of mesenchymal stem cells and wound healing in mice. In addition, we characterized cinnamtannin B-1-induced migration of mesenchymal stem cells pharmacologically and structurally. The mobilization of endogenous mesenchymal stem cells into the blood circulation was enhanced in cinnamtannin B-1-treated mice as shown by flow cytometric analysis of peripheral blood cells. Whole animal imaging analysis using luciferase-expressing mesenchymal stem cells as a tracer revealed that cinnamtannin B-1 increased the homing of mesenchymal stem cells to wounds and accelerated healing in a diabetic mouse model. Additionally, the cinnamtannin B-1-induced migration of mesenchymal stem cells was pharmacologically susceptible to inhibitors of phosphatidylinositol 3-kinase, phospholipase C, lipoxygenase, and purines. Furthermore, biflavonoids with similar structural features to cinnamtannin B-1 also augmented the migration of mesenchymal stem cells by similar pharmacological mechanisms. These results demonstrate that cinnamtannin B-1 promoted mesenchymal stem cell migration in vivo and improved wound healing in mice. Furthermore, the results reveal that cinnamtannin B-1-induced migration of mesenchymal stem cells may be mediated by specific signaling pathways, and the flavonoid skeleton may be relevant to its effects on

  5. Comparison of in vitro-cultivation of human mesenchymal stroma/stem cells derived from bone marrow and umbilical cord.

    PubMed

    Hoffmann, Andrea; Floerkemeier, Thilo; Melzer, Catharina; Hass, Ralf

    2016-04-28

    Cell-mediated therapy is currently considered as a novel approach for many human diseases. Potential uses range from topic applications with the regeneration of confined tissue areas to systemic applications. Stem cells including mesenchymal stroma/stem cells (MSCs) represent a highly attractive option. Their potential to cure or alleviate human diseases is investigated in a number of clinical trials. A wide variety of methods has been established in the past years for isolation, cultivation and characterization of human MSCs as expansion is presently deemed a prerequisite for clinical application with high numbers of cells carrying reproducible properties. MSCs have been retrieved from various tissues and used in a multitude of settings whereby numerous experimental protocols are available for expansion of MSCs in vitro. Accordingly, different isolation, culture and upscaling techniques contribute to the heterogeneity of MSC characteristics and the, sometimes, controversial results. Therefore, this review discusses and summarizes certain experimental conditions for MSC in vitro culture focusing on adult bone marrow-derived and neonatal umbilical cord-derived MSCs in order to enhance our understanding for MSC tissue sources and to stratify different procedures. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Human umbilical cord derivatives regenerate intervertebral disc.

    PubMed

    Beeravolu, Naimisha; Brougham, Jared; Khan, Irfan; McKee, Christina; Perez-Cruet, Mick; Chaudhry, G Rasul

    2016-09-30

    Intervertebral disc (IVD) degeneration is characterized by the loss of nucleus pulposus (NP), which is a common cause for lower back pain. Although, currently, there is no cure for the degenerative disc disease, stem cell therapy is increasingly being considered for its treatment. In this study, we investigated the feasibility and efficacy of human umbilical cord mesenchymal stem cells (MSCs) and chondroprogenitor cells (CPCs) derived from those cells to regenerate damaged IVD in a rabbit model. Transplanted cells survived, engrafted and dispersed into NP in situ. Significant improvement in the histology, cellularity, extracellular matrix proteins, and water and glycosaminoglycan contents in IVD recipients of CPCs was observed compared to MSCs. In addition, IVDs receiving CPCs exhibited higher expression of NP-specific human markers, SOX9, aggrecan, collagen 2, FOXF1 and KRT19. The novelty of the study is that in vitro differentiated CPCs derived from umbilical cord MSCs, demonstrated far greater capacity to regenerate damaged IVDs, which provides basis and impetus for stem cell based clinical studies to treat degenerative disc disease. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Mesenchymal Stem Cells from Wharton's Jelly and Amniotic Fluid.

    PubMed

    Joerger-Messerli, Marianne S; Marx, Caterina; Oppliger, Byron; Mueller, Martin; Surbek, Daniel V; Schoeberlein, Andreina

    2016-02-01

    The discovery of mesenchymal stem cells (MSCs) in perinatal sources, such as the amniotic fluid (AF) and the umbilical connective tissue, the so-called Wharton's jelly (WJ), has transformed them into promising stem cell grafts for the application in regenerative medicine. The advantages of AF-MSCs and WJ-MSCs over adult MSCs, such as bone marrow-derived mesenchymal stem cells (BM-MSCs), include their minimally invasive isolation procedure, their more primitive cell character without being tumourigenic, their low immunogenicity and their potential autologous application in congenital disorders and when cryopreserved in adulthood. This chapter gives an overview of the biology of AF-MSCs and WJ-MSCs, and their regenerative potential based on the results of recent preclinical and clinical studies. In the end, open questions concerning the use of WJ-MSCs and AF-MSCs in regenerative medicine will be emphasized.

  8. Isolation of mesenchymal stem cells from amniotic fluid and placenta.

    PubMed

    Steigman, Shaun A; Fauza, Dario O

    2007-06-01

    Diverse progenitor cell populations, including mesenchymal, hematopoietic, trophoblastic, and possibly more primitive stem cells can be isolated from the amniotic fluid and the placenta. At least some of the amniotic and placental cells share a common origin, namely the inner cell mass of the morula. Indeed, most types of progenitor cells that can be isolated from these two sources share many characteristics. This unit will focus solely on the mesenchymal stem cells, the most abundant progenitor cell population found therein and, unlike some of the other stem cell types, present all through gestation. Protocols for isolation, expansion, freezing, and thawing of these cells are presented. Preference is given to the simplest methods available for any given procedure. Copyright 2007 by John Wiley & Sons, Inc.

  9. Amniotic and placental mesenchymal stem cell isolation and culture.

    PubMed

    Klein, Justin D; Fauza, Dario O

    2011-01-01

    The amniotic fluid and placenta are sources of diverse progenitor cell populations, including -mesenchymal, hematopoietic, trophoblastic, and possibly more primitive stem cells. Given that much of the amniotic cavity and placenta share a common origin, namely the inner cell mass of the morula, perhaps it is not surprising that most types of progenitor cells that can be isolated from these two sources also share many characteristics. This chapter focuses solely on the most abundant and easy to isolate progenitor cell population found therein, the mesenchymal stem cells (MSCs). Unlike some of the other stem cell types, MSCs are present throughout gestation. Methods of isolation, expansion, freezing, and thawing of these cells will be presented with preference given to the simplest methods available for any given procedure.

  10. Enhanced ex vivo expansion of adult mesenchymal stem cells by fetal mesenchymal stem cell ECM.

    PubMed

    Ng, Chee Ping; Sharif, Abdul Rahim Mohamed; Heath, Daniel E; Chow, John W; Zhang, Claire B Y; Chan-Park, Mary B; Hammond, Paula T; Chan, Jerry K Y; Griffith, Linda G

    2014-04-01

    Large-scale expansion of highly functional adult human mesenchymal stem cells (aMSCs) remains technologically challenging as aMSCs lose self renewal capacity and multipotency during traditional long-term culture and their quality/quantity declines with donor age and disease. Identification of culture conditions enabling prolonged expansion and rejuvenation would have dramatic impact in regenerative medicine. aMSC-derived decellularized extracellular matrix (ECM) has been shown to provide such microenvironment which promotes MSC self renewal and "stemness". Since previous studies have demonstrated superior proliferation and osteogenic potential of human fetal MSCs (fMSCs), we hypothesize that their ECM may promote expansion of clinically relevant aMSCs. We demonstrated that aMSCs were more proliferative (∼ 1.6 ×) on fMSC-derived ECM than aMSC-derived ECMs and traditional tissue culture wares (TCPS). These aMSCs were smaller and more uniform in size (median ± interquartile range: 15.5 ± 4.1 μm versus 17.2 ± 5.0 μm and 15.5 ± 4.1 μm for aMSC ECM and TCPS respectively), exhibited the necessary biomarker signatures, and stained positive for osteogenic, adipogenic and chondrogenic expressions; indications that they maintained multipotency during culture. Furthermore, fMSC ECM improved the proliferation (∼ 2.2 ×), size (19.6 ± 11.9 μm vs 30.2 ± 14.5 μm) and differentiation potential in late-passaged aMSCs compared to TCPS. In conclusion, we have established fMSC ECM as a promising cell culture platform for ex vivo expansion of aMSCs.

  11. Mesenchymal stem cell therapy in treatment of erectile dysfunction: autologous or allogeneic cell sources?

    PubMed

    Mangir, Naside; Akbal, Cem; Tarcan, Tufan; Simsek, Ferruh; Turkeri, Levent

    2014-12-01

    To compare the efficacy of intracavernosal injection of autologous and allogeneic mesenchymal stem cells as potential treatment of erectile dysfunction in an experimental rat model. Mesenchymal stem cells were isolated from rat paratesticular fat tissue. Bilateral cavernous nerve injury was carried out followed by immediate intracavernosal injection of either autologous or allogeneic mesenchymal stem cells or mesenchymal stem cell lysates. One month after injection, erectile function was evaluated by means of intracavernosal pressure measurement. All rats were eventually killed, and penile tissues were taken for immunhistochemical and molecular investigation. A total of 36 Sprague-Dawley rats were used. The mean maximum intracavernosal pressure in the sham-operated, autologous and allogeneic mesenchymal stem cell injection groups were significantly better compared with the vehicle injection group (80.5 [3.56], 71.1 [2.9] and 69.2 [3.2] vs 40.33 [4.4], respectively). Mean maximum intracavernosal pressure to mean arterial pressure ratios in the autologous and allogeneic mesenchymal stem cell and mesenchymal stem cell lysate injection groups were not significantly different. Intracavernosal injection of both autologous or allogeneic mesenchymal stem cells improve erectile functions in a rat model of cavernous nerve injury. Allogeneic mesenchymal stem cells might provide clinicians with ready to use, standardized and, in certain cases, more effective products. More studies focusing on long-term immunological aspects of allogeneic mesenchymal stem cells are required. © 2014 The Japanese Urological Association.

  12. Mesenchymal Stem Cells as a Prospective Therapy for the Diabetic Foot

    PubMed Central

    2016-01-01

    The diabetic foot is a serious complication of diabetes. Mesenchymal stem cells are an abundant source of stem cells which occupy a special position in cell therapies, and recent studies have suggested that mesenchymal stem cells can play essential roles in treatments for the diabetic foot. Here, we discuss the advances that have been made in mesenchymal stem cell treatments for this condition. The roles and functional mechanisms of mesenchymal stem cells in the diabetic foot are also summarized, and insights into current and future studies are presented. PMID:27867398

  13. Mitochondrial respiration regulates adipogenic differentiation of human mesenchymal stem cells.

    PubMed

    Zhang, Yanmin; Marsboom, Glenn; Toth, Peter T; Rehman, Jalees

    2013-01-01

    Human mesenchymal stem cells (MSCs) are adult multipotent stem cells which can be isolated from bone marrow, adipose tissue as well as other tissues and have the capacity to differentiate into a variety of mesenchymal cell types such as adipocytes, osteoblasts and chondrocytes. Differentiation of stem cells into mature cell types is guided by growth factors and hormones, but recent studies suggest that metabolic shifts occur during differentiation and can modulate the differentiation process. We therefore investigated mitochondrial biogenesis, mitochondrial respiration and the mitochondrial membrane potential during adipogenic differentiation of human MSCs. In addition, we inhibited mitochondrial function to assess its effects on adipogenic differentiation. Our data show that mitochondrial biogenesis and oxygen consumption increase markedly during adipogenic differentiation, and that reducing mitochondrial respiration by hypoxia or by inhibition of the mitochondrial electron transport chain significantly suppresses adipogenic differentiation. Furthermore, we used a novel approach to suppress mitochondrial activity using a specific siRNA-based knockdown of the mitochondrial transcription factor A (TFAM), which also resulted in an inhibition of adipogenic differentiation. Taken together, our data demonstrates that increased mitochondrial activity is a prerequisite for MSC differentiation into adipocytes. These findings suggest that metabolic modulation of adult stem cells can maintain stem cell pluripotency or direct adult stem cell differentiation.

  14. Secondary repair of alveolar clefts using human mesenchymal stem cells.

    PubMed

    Behnia, Hossein; Khojasteh, Arash; Soleimani, Masoud; Tehranchi, Azita; Khoshzaban, Ahad; Keshel, Saeed Hidari; Atashi, Reza

    2009-08-01

    Recently tissue engineering has become available as a regenerative treatment for bone defects; however, little has been reported on the application of tissue engineering for regeneration of cleft defect tissues. Mesenchymal-derived stem cells were applied to different kinds of bone substitute and compared in different animal models, but their usage in human critical defects remained unclear. In this study we report 2 patients with unilateral alveolar cleft, treated with the composite scaffold of demineralized bone mineral and calcium sulphate (Osteoset) loaded with mesenchymal stem cells (MSCs). Computed tomograms showed 34.5% regenerated bone, extending from the cleft walls and bridging the cleft after 4 months in one case and in the other there was 25.6% presentation of bone integrity. The available data revealed the conventional bone substitute was not a suitable scaffold for the MSC-induced bone regeneration.

  15. Counteracting bone fragility with human amniotic mesenchymal stem cells

    PubMed Central

    Ranzoni, Anna M.; Corcelli, Michelangelo; Hau, Kwan-Leong; Kerns, Jemma G.; Vanleene, Maximilien; Shefelbine, Sandra; Jones, Gemma N.; Moschidou, Dafni; Dala-Ali, Benan; Goodship, Allen E.; De Coppi, Paolo; Arnett, Timothy R.; Guillot, Pascale V.

    2016-01-01

    The impaired maturation of bone-forming osteoblasts results in reduced bone formation and subsequent bone weakening, which leads to a number of conditions such as osteogenesis imperfecta (OI). Transplantation of human fetal mesenchymal stem cells has been proposed as skeletal anabolic therapy to enhance bone formation, but the mechanisms underlying the contribution of the donor cells to bone health are poorly understood and require further elucidation. Here, we show that intraperitoneal injection of human amniotic mesenchymal stem cells (AFSCs) into a mouse model of OI (oim mice) reduced fracture susceptibility, increased bone strength, improved bone quality and micro-architecture, normalised bone remodelling and reduced TNFα and TGFβ sigalling. Donor cells engrafted into bones and differentiated into osteoblasts but importantly, also promoted endogenous osteogenesis and the maturation of resident osteoblasts. Together, these findings identify AFSC transplantation as a countermeasure to bone fragility. These data have wider implications for bone health and fracture reduction. PMID:27995994

  16. MicroRNAs and mesenchymal stem cells: hope for pulmonary hypertension.

    PubMed

    Zhu, Zhaowei; Fang, Zhenfei; Hu, Xinqun; Zhou, Shenghua

    2015-01-01

    Pulmonary hypertension is a devastating and refractory disease and there is no cure for this disease. Recently, microRNAs and mesenchymal stem cells emerged as novel methods to treat pulmonary hypertension. More than 20 kinds of microRNAs may participate in the process of pulmonary hypertension. It seems microRNAs or mesenchymal stem cells can ameliorate some symptoms of pulmonary hypertension in animals and even improve heart and lung function during pulmonary hypertension. Nevertheless, the relationship between mesenchymal stem cells, microRNAs and pulmonary hypertension is not clear. And the mechanisms underlying their function still need to be investigated. In this study we review the recent findings in mesenchymal stem cells - and microRNAs-based pulmonary hypertension treatment, focusing on the potential role of microRNAs regulated mesenchymal stem cells in pulmonary hypertension and the role of exosomes between mesenchymal stem cells and pulmonary hypertension.

  17. Functionally Active Gap Junctions between Connexin 43-Positive Mesenchymal Stem Cells and Glioma Cells.

    PubMed

    Gabashvili, A N; Baklaushev, V P; Grinenko, N F; Levinskii, A B; Mel'nikov, P A; Cherepanov, S A; Chekhonin, V P

    2015-05-01

    The formation of functional gap junctions between mesenchymal stem cells and cells of low-grade rat glioma C6 cells was studied in in vitro experiments. Immunocytochemical analysis with antibodies to connexin 43 extracellular loop 2 showed that mesenchymal stem cells as well as C6 glioma cells express the main astroglial gap junction protein connexin 43. Analysis of migration activity showed that mesenchymal stem cells actively migrate towards C6 glioma cells. During co-culturing, mesenchymal stem cells and glioma C6 form functionally active gap junctions mediating the transport of cytoplasmic dye from glioma cells to mesenchymal stem cells in the opposite direction. Fluorometry showed that the intensity of transport of low-molecular substances through heterologous gap junctions between mesenchymal stem cells and glioma cells is similar to that through homologous gap junctions between glioma cells. This phenomenon can be used for the development of new methods of cell therapy of high-grade gliomas.

  18. MicroRNAs and mesenchymal stem cells: hope for pulmonary hypertension

    PubMed Central

    Zhu, Zhaowei; Fang, Zhenfei; Hu, Xinqun; Zhou, Shenghua

    2015-01-01

    Pulmonary hypertension is a devastating and refractory disease and there is no cure for this disease. Recently, microRNAs and mesenchymal stem cells emerged as novel methods to treat pulmonary hypertension. More than 20 kinds of microRNAs may participate in the process of pulmonary hypertension. It seems microRNAs or mesenchymal stem cells can ameliorate some symptoms of pulmonary hypertension in animals and even improve heart and lung function during pulmonary hypertension. Nevertheless, the relationship between mesenchymal stem cells, microRNAs and pulmonary hypertension is not clear. And the mechanisms underlying their function still need to be investigated. In this study we review the recent findings in mesenchymal stem cells - and microRNAs-based pulmonary hypertension treatment, focusing on the potential role of microRNAs regulated mesenchymal stem cells in pulmonary hypertension and the role of exosomes between mesenchymal stem cells and pulmonary hypertension. PMID:26313730

  19. The Alliance of Mesenchymal Stem Cells, Bone, and Diabetes

    PubMed Central

    Napoli, Nicola; Paladini, Angela; Briganti, Silvia I.; Pozzilli, Paolo; Epstein, Sol

    2014-01-01

    Bone fragility has emerged as a new complication of diabetes. Several mechanisms in diabetes may influence bone homeostasis by impairing the action between osteoblasts, osteoclasts, and osteocytes and/or changing the structural properties of the bone tissue. Some of these mechanisms can potentially alter the fate of mesenchymal stem cells, the initial precursor of the osteoblast. In this review, we describe the main factors that impair bone health in diabetic patients and their clinical impact. PMID:25140176

  20. Interactions between mesenchymal stem cells and the immune system.

    PubMed

    Li, Na; Hua, Jinlian

    2017-02-18

    In addition to being multi-potent, mesenchymal stem cells (MSCs) possess immunomodulatory functions that have been investigated as potential treatments in various immune disorders. MSCs can robustly interact with cells of the innate and adaptive immune systems, either through direct cell-cell contact or through their secretome. In this review, we discuss current findings regarding the interplay between MSCs and different immune cell subsets. We also draw attention to the mechanisms involved.

  1. The effects of graphene nanostructures on mesenchymal stem cells.

    PubMed

    Talukdar, Yahfi; Rashkow, Jason; Lalwani, Gaurav; Kanakia, Shruti; Sitharaman, Balaji

    2014-06-01

    We report the effects of two-dimensional graphene nanostructures; graphene nano-onions (GNOs), graphene oxide nanoribbons (GONRs), and graphene oxide nanoplatelets (GONPs) on viability, and differentiation of human mesenchymal stem cells (MSCs). Cytotoxicity of GNOs, GONRs, and GONPs dispersed in distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)] (DSPE-PEG), on adipose derived mesenchymal stem cells (adMSCs), and bone marrow-derived mesenchymal stem cells (bmMSCs) was assessed by AlamarBlue and Calcein AM viability assays at concentrations ranging from 5 to 300 μg/ml for 24 or 72 h. Cytotoxicity of the 2D graphene nanostructures was found to be dose dependent, not time dependent, with concentrations less than 50 μg/ml showing no significant differences compared to untreated controls. Differentiation potential of adMSCs to adipocytes and osteoblasts, - characterized by Oil Red O staining and elution, alkaline phosphatase activity, calcium matrix deposition and Alizarin Red S staining - did not change significantly when treated with the three graphene nanoparticles at a low (10 μg/ml) and high (50 μg/ml) concentration for 24 h. Transmission electron microscopy (TEM) and confocal Raman spectroscopy indicated cellular uptake of only GNOs and GONPs. The results lay the foundation for the use of these nanoparticles at potentially safe doses as ex vivo labels for MSC-based imaging and therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Hydroxyapatite incorporated into collagen gels for mesenchymal stem cell culture.

    PubMed

    Laydi, F; Rahouadj, R; Cauchois, G; Stoltz, J-F; de Isla, N

    2013-01-01

    Collagen gels could be used as carriers in tissue engineering to improve cell retention and distribution in the defect. In other respect hydroxyapatite could be added to gels to improve mechanical properties and regulate gel contraction. The aim of this work was to analyze the feasibility to incorporate hydroxyapatite into collagen gels and culture mesenchymal stem cells inside it. Human bone marrow mesenchymal stem cells (hMSC-BM) were used in this study. Gels were prepared by mixing rat tail type I collagen, hydroxyapatite microparticles and MSCs. After polymerization gels were kept in culture while gel contraction and mechanical properties were studied. In parallel, cell viability and morphology were analyzed. Gels became free-floating gels contracted from day 3, only in the presence of cells. A linear rapid contraction phase was observed until day 7, then a very slow contraction phase took place. The incorporation of hydroxyapatite improved gel stability and mechanical properties. Cells were randomly distributed on the gel and a few dead cells were observed all over the experiment. This study shows the feasibility and biocompatibility of hydroxyapatite supplemented collagen gels for the culture of mesenchymal stem cells that could be used as scaffolds for cell delivery in osteoarticular regenerative medicine.

  3. Characterization of hematopoietic potential of mesenchymal stem cells.

    PubMed

    Freisinger, Eva; Cramer, Christopher; Xia, Xiujin; Murthy, Subramanyam N; Slakey, Douglas P; Chiu, Ernest; Newsome, Edward R; Alt, Eckhard U; Izadpanah, Reza

    2010-11-01

    Mesenchymal and hematopoietic tissues are important reservoirs of adult stem cells. The potential of tissue resident mesenchymal stem cells (MSCs) to differentiate into cells of mesodermal and ectodermal lineages has been reported previously. We examined the hypothesis that adherent adipose tissue resident mesenchymal stem cells (ASCs) are capable of generating cells with hematopoietic characteristics. When cultured in differentiation media, clonally isolated ASCs develop into cells with hematopoietic attributes. The hematopoietic differentiated cells (HD) express early hematopoietic (c-kit, PROM1, CD4) as well as monocyte/macrophage markers (CCR5, CD68, MRC1, CD11b, CSF1R). Additionally, HD cells display functional characteristics of monocyte/macrophages such as phagocytosis and enzymatic activity of α-Naphthyl Acetate Esterase. HD cells are also responsive to stimulation by IL-4 and LPS as shown by increased CD14 and HLA-DRB1 expressions and release of IL-2, IL10, and TNF. Taken together, this study characterizes the potential of ASCs to generate functional macrophages in vitro, and therefore paves way for their possible use in cell therapy applications.

  4. Mesenchymal stem cells: Molecular characteristics and clinical applications

    PubMed Central

    Rastegar, Farbod; Shenaq, Deana; Huang, Jiayi; Zhang, Wenli; Zhang, Bing-Qiang; He, Bai-Cheng; Chen, Liang; Zuo, Guo-Wei; Luo, Qing; Shi, Qiong; Wagner, Eric R; Huang, Enyi; Gao, Yanhong; Gao, Jian-Li; Kim, Stephanie H; Zhou, Jian-Zhong; Bi, Yang; Su, Yuxi; Zhu, Gaohui; Luo, Jinyong; Luo, Xiaoji; Qin, Jiaqiang; Reid, Russell R; Luu, Hue H; Haydon, Rex C; Deng, Zhong-Liang; He, Tong-Chuan

    2010-01-01

    Mesenchymal stem cells (MSCs) are non-hematopoietic stem cells with the capacity to differentiate into tissues of both mesenchymal and non-mesenchymal origin. MSCs can differentiate into osteoblastic, chondrogenic, and adipogenic lineages, although recent studies have demonstrated that MSCs are also able to differentiate into other lineages, including neuronal and cardiomyogenic lineages. Since their original isolation from the bone marrow, MSCs have been successfully harvested from many other tissues. Their ease of isolation and ex vivo expansion combined with their immunoprivileged nature has made these cells popular candidates for stem cell therapies. These cells have the potential to alter disease pathophysiology through many modalities including cytokine secretion, capacity to differentiate along various lineages, immune modulation and direct cell-cell interaction with diseased tissue. Here we first review basic features of MSC biology including MSC characteristics in culture, homing mechanisms, differentiation capabilities and immune modulation. We then highlight some in vivo and clinical evidence supporting the therapeutic roles of MSCs and their uses in orthopedic, autoimmune, and ischemic disorders. PMID:21607123

  5. The Effects of Graphene Nanostructures on Mesenchymal Stem Cells

    PubMed Central

    Lalwani, Gaurav; Kanakia, Shruti; Sitharaman, Balaji

    2014-01-01

    We report the effects of two-dimensional graphene nanostructures; graphene nano-onions (GNOs), graphene oxide nanoribbons (GONRs), and graphene oxide nanoplatelets (GONPs) on viability, and differentiation of human mesenchymal stem cells (MSCs). Cytotoxicity of GNOs, GONRs, and GONPs dispersed in distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)] (DSPE-PEG), on adipose derived mesenchymal stem cells (adMSCs), and bone marrow-derived mesenchymal stem cells (bmMSCs) was assessed by AlamarBlue and Calcein AM viability assays at concentrations ranging from 5–300 μg/ml for 24 or 72 hours. Cytotoxicity of the 2D graphene nanostructures was found to be dose dependent, not time dependent, with concentrations less than 50 μg/ml showing no significant differences compared to untreated controls. Differentiation potential of adMSCs to adipocytes and osteoblasts, --characterized by Oil Red O staining and elution, alkaline phosphatase activity, calcium matrix deposition and Alizarin Red S staining-- did not change significantly when treated with the three graphene nanoparticles at a low (10 μg/ml) and high (50 μg/ml) concentration for 24 hours. Transmission electron microscopy (TEM) and confocal Raman spectroscopy indicated cellular uptake of only GNOs and GONPs. The results lay the foundation for the use of these nanoparticles at potentially safe doses as ex vivo labels for MSC-based imaging and therapy. PMID:24674462

  6. Adult stem cell and mesenchymal progenitor theories of aging.

    PubMed

    Fukada, So-Ichiro; Ma, Yuran; Uezumi, Akiyoshi

    2014-01-01

    Advances in medical science and technology allow people live longer lives, which results in age-related problems. Humans cannot avoid the various aged-related alterations of aging; in other words, humans cannot remain young at molecular and cellular levels. In 1956, Harman proposed the "free radical theory of aging" to explain the molecular mechanisms of aging. Telomere length, and accumulation of DNA or mitochondrial damage are also considered to be mechanisms of aging. On the other hand, stem cells are essential for maintaining tissue homeostasis by replacing parenchymal cells; therefore, the stem cell theory of aging is also used to explain the progress of aging. Importantly, the stem cell theory of aging is likely related to other theories. In addition, recent studies have started to reveal the essential roles of tissue-resident mesenchymal progenitors/stem cells/stromal cells in maintaining tissue homeostasis, and some evidence of their fundamental roles in the progression of aging has been presented. In this review, we discuss how stem cell and other theories connect to explain the progress of aging. In addition, we consider the mesenchymal progenitor theory of aging to describing the process of aging.

  7. Extracellular Signals for Guiding Mesenchymal Stem Cells Osteogenic Fate.

    PubMed

    Sima, Livia Elena

    2017-01-01

    Understanding the spatiotemporal dynamics of stem cell fate regulation is important for both fundamental biology and for directing the generation of a specific phenotype during the fabrication of tissue engineering materials. Recent findings revealed aspects of extracellular signals transduction by mesenchymal stem cells that are further integrated to modulate their lineage specification. This review focuses on recent developments in the field of nanobiomaterials design and fabrication for use in research and therapy of bone tissue. Also, new methods of assessment of stem cell multipotency or differentiated phenotype developed for clinical quality control applications are described. Materials engineered for understanding fundamental mechanisms of stem cell interaction with substrates are highlighted as key studies to drive advances in bone implants design. The use of polymers with defined biomechanical and topographical features to mimic the extracellular matrix biochemistry or biophysical cues is discussed. Bioengineered scaffolds able to induce osteogenic fate of bone marrow-derived mesenchymal stem cells in the absence of differentiation factors are successful models for potential development of implant biomaterials with enhanced osseointegration capacity and decreased soft tissue encapsulation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Genetically modified mesenchymal stem cells for improved islet transplantation.

    PubMed

    Wu, Hao; Ye, Zhaoyang; Mahato, Ram I

    2011-10-03

    The use of adult stem cells for therapeutic purposes has met with great success in recent years. Among several types of adult stem cells, mesenchymal stem cells (MSCs) derived from bone marrow (BM) and other sources have gained popularity for basic research and clinical applications because of their therapeutic potential in treating a variety of diseases. Because of their tissue regeneration potential and immune modulation effect, MSCs were recently used as cell-based therapy to promote revascularization, increase pancreatic β-cell proliferation, and avoid allograft rejection in islet transplantation. Taking advantage of the recent progress in gene therapy, genetically modified MSCs can further enhance and expand the therapeutic benefit of primary MSCs while retaining their stem-cell-like properties. This review aims to gain a thorough understanding of the current obstacles to successful islet transplantation and discusses the potential role of primary MSCs before or after genetic modification in islet transplantation.

  9. Human umbilical cord mesenchymal stem cells inhibit C6 glioma growth via secretion of dickkopf-1 (DKK1).

    PubMed

    Ma, Shanshan; Liang, Shuo; Jiao, Hongliang; Chi, Liankai; Shi, Xinyi; Tian, Yi; Yang, Bo; Guan, Fangxia

    2014-01-01

    Mesenchymal stem cells (MSCs) represent a potential therapeutic target for glioma. We determined the molecular mechanism of inhibitory effect of human umbilical cord-derived MSCs (hUC-MSCs) on the growth of C6 glioma cells. We demonstrated that hUC-MSCs inhibited C6 cell growth and modulated the cell cycle to G0/G1 phase. The expression of β-catenin and c-Myc was downregulated in C6 cells by conditioned media from hUC-MSCs, and the levels of secreted DKK1 were positively correlated with concentrations of hUCMSCs-CM. The inhibitory effect of hUC-MSCs on C6 cell proliferation was enhanced as the concentration of DKK1 in hUCMSCs-CM increased. When DKK1 was neutralized by anti-DKK1 antibody, the inhibitory effect of hUC-MSCs on C6 cells was attenuated. Furthermore, we found that conditioned media from hUC-MSCs transfection with siRNA targeting DKK1 mRNA or pEGFPN1-DKK1 plasmid lost or enhanced the abilities to regulate the Wnt signaling in C6 cells. Therefore, hUC-MSCs inhibited C6 glioma cell growth via secreting DKK1, an inhibitor of Wnt pathway, may represent a novel therapeutic strategy for malignant glioma.

  10. Mesenchymal Stem Cells Induce Granulocytic Differentiation of Acute Promyelocytic Leukemic Cells via IL-6 and MEK/ERK Pathways

    PubMed Central

    Chen, Fang; Zhou, Kang; Zhang, Lei; Ma, Fengxia; Chen, Dandan; Cui, Junjie; Feng, Xiaoming; Yang, Shaoguang; Chi, Ying; Han, Zhibo; Xue, Feng; Rong, Lijuan; Ge, Meili; Wan, Li; Xu, Shuxia; Du, Wenjing; Lu, Shihong; Ren, Hongying

    2013-01-01

    All-trans retinoic acid (ATRA) induces clinical remission in most acute promyelocytic leukemia (APL) patients by inducing terminal differentiation of APL cells toward mature granulocytes. Here we report that human umbilical cord-derived mesenchymal stem cells (UC-MSCs) are capable of inducing granulocytic differentiation of the APL-derived NB4 cell line as well as primary APL cells and also cooperate with ATRA in an additive manner. Transwell coculture experiments revealed that UC-MSCs' differentiation-inducing effect was mediated through some soluble factors. Differentiation attenuation by IL-6Ra neutralization and induction by addition of exogenous IL-6 confirmed that IL-6 secreted by UC-MSCs was at least partially responsible for this differentiation induction process. Moreover, we found that UC-MSCs activated the MEK/ERK signaling pathway in promyelocytic cells and pharmacological inhibition of the MEK/ERK pathway reversed UC-MSC-induced differentiation, indicating that UC-MSCs exerted effect through activation of the MEK/ERK signaling pathway. These results demonstrate for the first time a stimulatory effect of MSCs on the differentiation of APL cells and bring a new insight into the interaction between MSCs and leukemic cells. Our data suggest that UC-MSCs/ATRA combination could be used as a novel therapeutic strategy for APL patients. PMID:23391335

  11. Mesenchymal stem cell applications to tendon healing

    PubMed Central

    Chaudhury, Salma

    2012-01-01

    Summary Tendons are often subject to age related degenerative changes that coincide with a diminished regenerative capacity. Torn tendons often heal by forming scar tissue that is structurally weaker than healthy native tendon tissue, predisposing to mechanical failure. There is increasing interest in providing biological stimuli to increase the tendon reparative response. Stem cells in particular are an exciting and promising prospect as they have the potential to provide appropriate cellular signals to encourage neotendon formation during repair rather than scar tissue. Currently, a number of issues need to be investigated further before it can be determined whether stem cells are an effective and safe therapeutic option for encouraging tendon repair. This review explores the in-vitro and invivo evidence assessing the effect of stem cells on tendon healing, as well as the potential clinical applications. PMID:23738300

  12. Flagellin preconditioning enhances the efficacy of mesenchymal stem cells in an irradiation-induced proctitis model.

    PubMed

    Linard, Christine; Strup-Perrot, Carine; Lacave-Lapalun, Jean-Victor; Benderitter, Marc

    2016-09-01

    The success of mesenchymal stem cell transplantation for proctitis depends not only on cell donors but also on host microenvironmental factors, which play a major role in conditioning mesenchymal stem cell immunosuppressive action and repair. This study sought to determine if flagellin, a TLR5 ligand, can enhance the mesenchymal stem cell treatment efficacy in radiation-induced proctitis. With the use of a colorectal model of 27 Gy irradiation in rats, we investigated and compared the effects on immune capacity and remodeling at 28 d after irradiation of the following: 1) systemic mesenchymal stem cell (5 × 10(6)) administration at d 7 after irradiation, 2) administration of flagellin at d 3 and systemic mesenchymal stem cell administration at d 7, and 3) in vitro preconditioning of mesenchymal stem cells with flagellin, 24 h before their administration on d 7. The mucosal CD8(+) T cell population was normalized after treatment with flagellin-preconditioned mesenchymal stem cells or flagellin plus mesenchymal stem cells, whereas mesenchymal stem cells alone did not alter the radiation-induced elevation of CD8(+) T cell frequency. Mesenchymal stem cell treatment returned the irradiation-elevated frequency of CD25(+) cells in the mucosa-to-control levels, whereas both flagellin-preconditioned mesenchymal stem cell and flagellin-plus-mesenchymal stem cell treatment each significantly increased not only CD25(+) cell frequency but also forkhead box p3 and IL-2Rα expression. Specifically, IL-10 was overexpressed after flagellin-preconditioned mesenchymal stem cell treatment. Analysis of collagen expression showed that the collagen type 1/collagen type 3 ratio, an indicator of wound-healing maturation, was low in the irradiated and mesenchymal stem cell-treated groups and returned to the normal level only after the flagellin-preconditioned mesenchymal stem cell treatment. This was associated with a reduction in myofibroblast accumulation. In a proctitis model, flagellin

  13. Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury.

    PubMed

    Anbari, Fatemeh; Khalili, Mohammad Ali; Bahrami, Ahmad Reza; Khoradmehr, Arezoo; Sadeghian, Fatemeh; Fesahat, Farzaneh; Nabi, Ali

    2014-05-01

    To investigate the supplement of lost nerve cells in rats with traumatic brain injury by intravenous administration of allogenic bone marrow mesenchymal stem cells, this study established a Wistar rat model of traumatic brain injury by weight drop impact acceleration method and administered 3 × 10(6) rat bone marrow mesenchymal stem cells via the lateral tail vein. At 14 days after cell transplantation, bone marrow mesenchymal stem cells differentiated into neurons and astrocytes in injured rat cerebral cortex and rat neurological function was improved significantly. These findings suggest that intravenously administered bone marrow mesenchymal stem cells can promote nerve cell regeneration in injured cerebral cortex, which supplement the lost nerve cells.

  14. Effects of pulsed electromagnetic field frequencies on the osteogenic differentiation of human mesenchymal stem cells.

    PubMed

    Luo, Fei; Hou, Tianyong; Zhang, Zehua; Xie, Zhao; Wu, Xuehui; Xu, Jianzhong

    2012-04-01

    The purpose of this study was to evaluate the effect of different frequencies of pulsed electromagnetic fields on the osteogenic differentiation of human mesenchymal stem cells. Third-generation human mesenchymal stem cells were irradiated with different frequencies of pulsed electromagnetic fields, including 5, 25, 50, 75, 100, and 150 Hz, with a field intensity of 1.1 mT, for 30 minutes per day for 21 days. Changes in human mesenchymal stem cell morphology were observed using phase contrast microscopy. Alkaline phosphatase activity and osteocalcin expression were also determined to evaluate human mesenchymal stem cell osteogenic differentiation.Different effects were observed on human mesenchymal stem cell osteoblast induction following exposure to different pulsed electromagnetic field frequencies. Levels of human mesenchymal stem cell differentiation increased when the pulsed electromagnetic field frequency was increased from 5 hz to 50 hz, but the effect was weaker when the pulsed electromagnetic field frequency was increased from 50 Hz to 150 hz. The most significant effect on human mesenchymal stem cell differentiation was observed at of 50 hz.The results of the current study show that pulsed electromagnetic field frequency is an important factor with regard to the induction of human mesenchymal stem cell differentiation. Furthermore, a pulsed electromagnetic field frequency of 50 Hz was the most effective at inducing human mesenchymal stem cell osteoblast differentiation in vitro.

  15. Bone marrow mesenchymal stem cell therapy in ischemic stroke: mechanisms of action and treatment optimization strategies

    PubMed Central

    Li, Guihong; Yu, Fengbo; Lei, Ting; Gao, Haijun; Li, Peiwen; Sun, Yuxue; Huang, Haiyan; Mu, Qingchun

    2016-01-01

    Animal and clinical studies have confirmed the therapeutic effect of bone marrow mesenchymal stem cells on cerebral ischemia, but their mechanisms of action remain poorly understood. Here, we summarize the transplantation approaches, directional migration, differentiation, replacement, neural circuit reconstruction, angiogenesis, neurotrophic factor secretion, apoptosis, immunomodulation, multiple mechanisms of action, and optimization strategies for bone marrow mesenchymal stem cells in the treatment of ischemic stroke. We also explore the safety of bone marrow mesenchymal stem cell transplantation and conclude that bone marrow mesenchymal stem cell transplantation is an important direction for future treatment of cerebral ischemia. Determining the optimal timing and dose for the transplantation are important directions for future research. PMID:27482235

  16. Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury

    PubMed Central

    Anbari, Fatemeh; Khalili, Mohammad Ali; Bahrami, Ahmad Reza; Khoradmehr, Arezoo; Sadeghian, Fatemeh; Fesahat, Farzaneh; Nabi, Ali

    2014-01-01

    To investigate the supplement of lost nerve cells in rats with traumatic brain injury by intravenous administration of allogenic bone marrow mesenchymal stem cells, this study established a Wistar rat model of traumatic brain injury by weight drop impact acceleration method and administered 3 × 106 rat bone marrow mesenchymal stem cells via the lateral tail vein. At 14 days after cell transplantation, bone marrow mesenchymal stem cells differentiated into neurons and astrocytes in injured rat cerebral cortex and rat neurological function was improved significantly. These findings suggest that intravenously administered bone marrow mesenchymal stem cells can promote nerve cell regeneration in injured cerebral cortex, which supplement the lost nerve cells. PMID:25206912

  17. Tracheal regeneration: evidence of bone marrow mesenchymal stem cell involvement.

    PubMed

    Seguin, Agathe; Baccari, Sonia; Holder-Espinasse, Muriel; Bruneval, Patrick; Carpentier, Alain; Taylor, Doris A; Martinod, Emmanuel

    2013-05-01

    Recent advances in airway transplantation have shown the ability of ex vivo or in vivo tracheal regeneration with bioengineered conduits or biological substitutes, respectively. Previously, we established a process of in vivo-guided tracheal regeneration using vascular allografts as a biological scaffold. We theorized that tracheal healing was the consequence of a mixed phenomenon associating tracheal contraction and regeneration. The aim of the present study was to determine the role that bone marrow stem cells play in that regenerative process. Three groups of 12 rabbits underwent a gender-mismatched aortic graft transplantation after tracheal resection. The first group received no cells (control group), the second group had previously received autologous green fluorescent protein-labeled mesenchymal stem cell transplantation, and the third group received 3 labeled mesenchymal stem cell injections on postoperative days 0, 10, and 21. The clinical results were impaired by stent complications (obstruction or migration), but no anastomotic leakage, dehiscence, or stenosis was observed. The rabbits were killed, and the trachea was excised for analysis at 1 to 18 months after tracheal replacement. In all 3 groups, microscopic examination showed an integrated aortic graft lined by metaplastic epithelium. By 12 months, immature cartilage was detected among disorganized elastic fibers. Positive SRY gene detection served as evidence for engraftment of cells derived from the male recipient. EF-green fluorescent protein detection showed bone marrow-derived mesenchymal stem cell involvement. The results of the present study imply a role for bone marrow stem cells in tracheal regeneration after aortic allografting. Studies are necessary to identify the local and systemic factors stimulating that regenerative process. Copyright © 2013 The American Association for Thoracic Surgery. All rights reserved.

  18. Isolation of mesenchymal stem cells from equine umbilical cord blood

    PubMed Central

    Koch, Thomas G; Heerkens, Tammy; Thomsen, Preben D; Betts, Dean H

    2007-01-01

    Background There are no published studies on stem cells from equine cord blood although commercial storage of equine cord blood for future autologous stem cell transplantations is available. Mesenchymal stem cells (MSC) have been isolated from fresh umbilical cord blood of humans collected non-invasively at the time of birth and from sheep cord blood collected invasively by a surgical intrauterine approach. Mesenchymal stem cells isolation percentage from frozen-thawed human cord blood is low and the future isolation percentage of MSCs from cryopreserved equine cord blood is therefore expectedly low. The hypothesis of this study was that equine MSCs could be isolated from fresh whole equine cord blood. Results Cord blood was collected from 7 foals immediately after foaling. The mononuclear cell fraction was isolated by Ficoll density centrifugation and cultured in a DMEM low glucose based media at 38.5°C in humidified atmosphere containing 5% CO2. In 4 out of 7 samples colonies with MSC morphology were observed. Cellular morphology varied between monolayers of elongated spindle-shaped cells to layered cell clusters of cuboidal cells with shorter cytoplasmic extensions. Positive Alizarin Red and von Kossa staining as well as significant calcium deposition and alkaline phosphatase activity confirmed osteogenesis. Histology and positive Safranin O staining of matrix glycosaminoglycans illustrated chondrogenesis. Oil Red O staining of lipid droplets confirmed adipogenesis. Conclusion We here report, for the first time, the isolation of mesenchymal-like stem cells from fresh equine cord blood and their differentiation into osteocytes, chondrocytes and adipocytes. This novel isolation of equine cord blood MSCs and their preliminary in vitro differentiation positions the horse as the ideal pre-clinical animal model for proof-of-principle studies of cord blood derived MSCs. PMID:17537254

  19. Isolation of mesenchymal stem cells from equine umbilical cord blood.

    PubMed

    Koch, Thomas G; Heerkens, Tammy; Thomsen, Preben D; Betts, Dean H

    2007-05-30

    There are no published studies on stem cells from equine cord blood although commercial storage of equine cord blood for future autologous stem cell transplantations is available. Mesenchymal stem cells (MSC) have been isolated from fresh umbilical cord blood of humans collected non-invasively at the time of birth and from sheep cord blood collected invasively by a surgical intrauterine approach. Mesenchymal stem cells isolation percentage from frozen-thawed human cord blood is low and the future isolation percentage of MSCs from cryopreserved equine cord blood is therefore expectedly low. The hypothesis of this study was that equine MSCs could be isolated from fresh whole equine cord blood. Cord blood was collected from 7 foals immediately after foaling. The mononuclear cell fraction was isolated by Ficoll density centrifugation and cultured in a DMEM low glucose based media at 38.5 degrees C in humidified atmosphere containing 5% CO2. In 4 out of 7 samples colonies with MSC morphology were observed. Cellular morphology varied between monolayers of elongated spindle-shaped cells to layered cell clusters of cuboidal cells with shorter cytoplasmic extensions. Positive Alizarin Red and von Kossa staining as well as significant calcium deposition and alkaline phosphatase activity confirmed osteogenesis. Histology and positive Safranin O staining of matrix glycosaminoglycans illustrated chondrogenesis. Oil Red O staining of lipid droplets confirmed adipogenesis. We here report, for the first time, the isolation of mesenchymal-like stem cells from fresh equine cord blood and their differentiation into osteocytes, chondrocytes and adipocytes. This novel isolation of equine cord blood MSCs and their preliminary in vitro differentiation positions the horse as the ideal pre-clinical animal model for proof-of-principle studies of cord blood derived MSCs.

  20. Mesenchymal Stem Cells and Cardiomyocytes Interplay to Prevent Myocardial Hypertrophy

    PubMed Central

    Tan, Xueying; Zhang, Yong; Li, Xingda; Wang, Xinyue; Zhu, Jiuxin; Wang, Yang; Yang, Fan; Wang, Baoqiu; Liu, Yanju; Xu, Chaoqian; Pan, Zhenwei; Wang, Ning; Yang, Baofeng

    2015-01-01

    Bone marrow-derived mesenchymal stem cells (BMSCs) have emerged as a promising therapeutic strategy for cardiovascular disease. However, there is no evidence so far that BMSCs can heal pathological myocardial hypertrophy. In this study, BMSCs were indirectly cocultured with neonatal rat ventricular cardiomyocytes (NRVCs) in vitro or intramyocardially transplanted into hypertrophic hearts in vivo. The results showed that isoproterenol (ISO)-induced typical hypertrophic characteristics of cardiomyocytes were prevented by BMSCs in the coculture model in vitro and after BMSC transplantation in vivo. Furthermore, activation of the Ca2+/calcineurin/nuclear factor of activated T cells cytoplasmic 3 (NFATc3) hypertrophic pathway in NRVCs was abrogated in the presence of BMSCs both in vitro and in vivo. Interestingly, inhibition of vascular endothelial growth factor (VEGF) release from BMSCs, but not basic fibroblast growth factor and insulin-like growth factor 1, abolished the protective effects of BMSCs on cardiomyocyte hypertrophy. Consistently, VEGF administration attenuated ISO-induced enlargement of cellular size; the upregulation of atrial natriuretic peptide, brain natriuretic peptide, and β-myosin heavy chain expression; and the activation of Ca2+/calcineurin/NFATc3 hypertrophic pathways, and these pathways can be abrogated by blocking VEGFR-1 in cardiomyocytes, indicating that VEGF receptor 1 is involved in the antihypertrophic role of VEGF. We further found that the ample VEGF secretion contributing to the antihypertrophic effects of BMSCs originates from the crosstalk of BMSCs and cardiac cells but not BMSCs or cardiomyocytes alone. Interplay of mesenchymal stem cells with cardiomyocytes produced synergistic effects on VEGF release. In summary, crosstalk between mesenchymal stem cells and cardiomyocytes contributes to the inhibition of myocardial hypertrophy via inhibiting Ca2+/calcineurin/NFATc3 hypertrophic pathways in cardiac cells. These results provide the

  1. CD146 Expression Influences Periapical Cyst Mesenchymal Stem Cell Properties.

    PubMed

    Paduano, Francesco; Marrelli, Massimo; Palmieri, Francesca; Tatullo, Marco

    2016-10-01

    Recent studies have identified a new human dental derived progenitor cell population with multi-lineage differentiation potential referred to as human periapical cyst mesenchymal stem cells (hPCy-MSCs). In the present study, we compared two subpopulations of hPCy-MSCs characterised by the low or high expression of CD146 to establish whether this expression can regulate their stem cell properties. Using flow cytometry, we evaluated the stem cell marker profile of hPCy-MSCs during passaging. Furthermore, CD146(Low) and CD146(High) cells were sorted by magnetic beads and subsequently both cell populations were evaluated for differences in their proliferation, self-renewal, stem cell surface markers, stemness genes expression and osteogenic differentiation potential.We found that hPCy-MSCs possessed a stable expression of several mesenchymal stem cell surface markers, whereas CD146 expression declined during passaging.In addition, sorted CD146(Low) cells proliferated significantly faster, displayed higher colony-forming unit-fibroblast capacity and showed higher expression of Klf4 when compared to the CD146(High) subset. Significantly, the osteogenic potential of hPCy-MSCs was greater in the CD146(Low) than in CD146(High) population. These results demonstrate that CD146 is spontaneously downregulated with passaging at both mRNA and protein levels and that the high expression of CD146 reduces the proliferative, self-renewal and osteogenic differentiation potential of hPCy-MSCs. In conclusion, our study demonstrates that changes in the expression of CD146 can influence the stem cell properties of hPCy-MSCs.

  2. Involvement of mesenchymal stem cells in cancer progression and metastases.

    PubMed

    Chang, Astra I; Schwertschkow, Aaron H; Nolta, Jan A; Wu, Jian

    2015-01-01

    Mesenchymal stem/stromal cells (MSCs) are known to be the helpers for the healing of tissue damage, often referred to as ambulatory cells. However, MSCs are also recruited by cancer cells to similarly aid in tumor growth and progression. In this review, some of the key steps in cancer progression and metastases are described including the various steps in which MSCs participate and may play important roles. MSCs aid in cancer cells' ability to evade immune attack, while promoting tumor angiogenesis, even being counter-acting against chemotherapeutics and other drugs used to fight various cancers. Furthermore, MSCs participate in many of the crucial steps in invasion and metastasis, including stimulating the epithelial-mesenchymal transition (EMT) and induction of stem-like properties that allow cancer stem cells to increase their survivability through the circulation. These steps are described in detail. Differences between circulating tumor cells (CTCs) and cancer stem cells (CSCs) are discussed, along with descriptions of the formation of a pre-metastatic niche, the role of exosomes from both cancer cells and MSCs in metastasis and tumor reseeding (self-seeding). More and more, MSCs are being proposed as a promising tumor targeting drug-delivery tool. In order to fulfill this promise, further understanding of the precise roles that MSCs play in the process of cancer metastases must be achieved, in attempting to create remedies that will improve the outcome of available therapeutics.

  3. Generation and characterization of human cardiac resident and non-resident mesenchymal stem cell.

    PubMed

    Subramani, Baskar; Subbannagounder, Sellamuthu; Palanivel, Sekar; Ramanathanpullai, Chithra; Sivalingam, Sivakumar; Yakub, Azhari; SadanandaRao, Manjunath; Seenichamy, Arivudainambi; Pandurangan, Ashok Kumar; Tan, Jun Jie; Ramasamy, Rajesh

    2016-10-01

    Despite the surgical and other insertional interventions, the complete recuperation of myocardial disorders is still elusive due to the insufficiency of functioning myocardiocytes. Thus, the use of stem cells to regenerate the affected region of heart becomes a prime important. In line with this human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have gained considerable interest due to their potential use for mesodermal cell based replacement therapy and tissue engineering. Since MSCs are harvested from various organs and anatomical locations of same organism, thus the cardiac regenerative potential of human cardiac-derived MSCs (hC-MSCs) and human umbilical cord Wharton's Jelly derived MSC (hUC-MSCs) were tested concurrently. At in vitro culture, both hUC-MSCs and hC-MSCs assumed spindle shape morphology with expression of typical MSC markers namely CD105, CD73, CD90 and CD44. Although, hUC-MSCs and hC-MSCs are identical in term of morphology and immunophenotype, yet hUC-MSCs harbored a higher cell growth as compared to the hC-MSCs. The inherent cardiac regenerative potential of both cells were further investigated with mRNA expression of ion channels. The RT-PCR results demonstrated that both MSCs were expressing a notable level of delayed rectifier-like K(+) current (I KDR ) ion channel, yet the relative expression level was considerably varied between hUC-MSCs and hC-MSCs that Kv1.1(39 ± 0.6 vs 31 ± 0.8), Kv2.1 (6 ± 0.2 vs 21 ± 0.12), Kv1.5 (7.4 ± 0.1 vs 6.8 ± 0.06) and Kv7.3 (27 ± 0.8 vs 13.8 ± 0.6). Similarly, the Ca2(+)-activated K(+) current (I KCa ) channel encoding gene, transient outward K(+) current (I to ) and TTX-sensitive transient inward sodium current (I Na.TTX ) encoding gene (Kv4.2, Kv4.3 and hNE-Na) expressions were detected in both groups as well. Despite the morphological and phenotypical similarity, the present study also confirms the existence of multiple functional ion channel currents IKDR, IKCa, Ito

  4. [Primary culture and multiple differentiation potency of mesenchymal stem cells from human umbilical cord].

    PubMed

    Xin, Yi; Li, Na; Huang, Yimin; Cui, Wei; Liu, Sa; Xu, Xiufang; Zhang, Zhaoguang

    2013-10-01

    To establish a reliable method of isolation, culture and characterization of human umbilical cord-derived mesenchymal stem cells (hUCMSCs) and study its multiple differentiation potency. HUCMSCs were isolated and cultured using Trypsin-type II collagen and hyaluronidase digestion method and tissue explant culture method, respectively. The cell growth of hUCMSCs was observed under an inverted microscope. Cell viability rate of the different passages was evaluated by trypan blue staining. The proliferation profile of hUCMSCs was analyzed by growth curve and MTT assay. Flow cytometry was used to study the cell cycle and immunophenotypage change. The differentiation potency of hUCMSCs towards the osteoblasts, adipocytes was assayed using the differentiation kits. The differentiation towards the cardiomyocytes and endothelial cells was tested by immunofluoresence staining with the specific markers. After 1-day culture of the enzyme digested cells, under the inverted microscope, the adherent cells were round, and 4 days later, they grew quickly and presented fusiform. Seven days later, the cells proliferated from the center to the peripheral and fused by 80% on day 10. With the tissue explant culture method, the cells started to proliferate gradually from the periphery of the tissue and grew quickly and arrayed closely in monolayer after 10 days. The cell viability in both isolation methods were more than 96% as tested by trypan blue staining. The growth curve of the third passage presented an "S" shape. MTT assay showed that the optimal cell proliferation occured on day 3 to 5. The ratios of G0/G1 phase and S+G2/M phase was 88.78% and 10.21% respectively by enzyme digestion, and 84.82% and 13.87% respectively by explant culture method. There was no significant difference in cell cycle. The positive rates of CD90, CD105, CD73 were more than 99% and the expressions of CD45, CD34, CD14, CD11b, CD79a, CD19, HLA-DR were lower than 1%. The hUCMSCs isolated by the two methods

  5. Mesenchymal stem cells and induced pluripotent stem cells as therapies for multiple sclerosis.

    PubMed

    Xiao, Juan; Yang, Rongbing; Biswas, Sangita; Qin, Xin; Zhang, Min; Deng, Wenbin

    2015-04-24

    Multiple sclerosis (MS) is a chronic, autoimmune, inflammatory demyelinating disorder of the central nervous system that leads to permanent neurological deficits. Current MS treatment regimens are insufficient to treat the irreversible neurological disabilities. Tremendous progress in the experimental and clinical applications of cell-based therapies has recognized stem cells as potential candidates for regenerative therapy for many neurodegenerative disorders including MS. Mesenchymal stem cells (MSC) and induced pluripotent stem cell (iPSCs) derived precursor cells can modulate the autoimmune response in the central nervous system (CNS) and promote endogenous remyelination and repair process in animal models. This review highlights studies involving the immunomodulatory and regenerative effects of mesenchymal stem cells and iPSCs derived cells in animal models, and their translation into immunomodulatory and neuroregenerative treatment strategies for MS.

  6. GATA2 regulates differentiation of bone marrow-derived mesenchymal stem cells

    PubMed Central

    Kamata, Mayumi; Okitsu, Yoko; Fujiwara, Tohru; Kanehira, Masahiko; Nakajima, Shinji; Takahashi, Taro; Inoue, Ai; Fukuhara, Noriko; Onishi, Yasushi; Ishizawa, Kenichi; Shimizu, Ritsuko; Yamamoto, Masayuki; Harigae, Hideo

    2014-01-01

    The bone marrow microenvironment comprises multiple cell niches derived from bone marrow mesenchymal stem cells. However, the molecular mechanism of bone marrow mesenchymal stem cell differentiation is poorly understood. The transcription factor GATA2 is indispensable for hematopoietic stem cell function as well as other hematopoietic lineages, suggesting that it may maintain bone marrow mesenchymal stem cells in an immature state and also contribute to their differentiation. To explore this possibility, we established bone marrow mesenchymal stem cells from GATA2 conditional knockout mice. Differentiation of GATA2-deficient bone marrow mesenchymal stem cells into adipocytes induced accelerated oil-drop formation. Further, GATA2 loss- and gain-of-function analyses based on human bone marrow mesenchymal stem cells confirmed that decreased and increased GATA2 expression accelerated and suppressed bone marrow mesenchymal stem cell differentiation to adipocytes, respectively. Microarray analysis of GATA2 knockdowned human bone marrow mesenchymal stem cells revealed that 90 and 189 genes were upregulated or downregulated by a factor of 2, respectively. Moreover, gene ontology analysis revealed significant enrichment of genes involved in cell cycle regulation, and the number of G1/G0 cells increased after GATA2 knockdown. Concomitantly, cell proliferation was decreased by GATA2 knockdown. When GATA2 knockdowned bone marrow mesenchymal stem cells as well as adipocytes were cocultured with CD34-positive cells, hematopoietic stem cell frequency and colony formation decreased. We confirmed the existence of pathological signals that decrease and increase hematopoietic cell and adipocyte numbers, respectively, characteristic of aplastic anemia, and that suppress GATA2 expression in hematopoietic stem cells and bone marrow mesenchymal stem cells. PMID:25150255

  7. GATA2 regulates differentiation of bone marrow-derived mesenchymal stem cells.

    PubMed

    Kamata, Mayumi; Okitsu, Yoko; Fujiwara, Tohru; Kanehira, Masahiko; Nakajima, Shinji; Takahashi, Taro; Inoue, Ai; Fukuhara, Noriko; Onishi, Yasushi; Ishizawa, Kenichi; Shimizu, Ritsuko; Yamamoto, Masayuki; Harigae, Hideo

    2014-11-01

    The bone marrow microenvironment comprises multiple cell niches derived from bone marrow mesenchymal stem cells. However, the molecular mechanism of bone marrow mesenchymal stem cell differentiation is poorly understood. The transcription factor GATA2 is indispensable for hematopoietic stem cell function as well as other hematopoietic lineages, suggesting that it may maintain bone marrow mesenchymal stem cells in an immature state and also contribute to their differentiation. To explore this possibility, we established bone marrow mesenchymal stem cells from GATA2 conditional knockout mice. Differentiation of GATA2-deficient bone marrow mesenchymal stem cells into adipocytes induced accelerated oil-drop formation. Further, GATA2 loss- and gain-of-function analyses based on human bone marrow mesenchymal stem cells confirmed that decreased and increased GATA2 expression accelerated and suppressed bone marrow mesenchymal stem cell differentiation to adipocytes, respectively. Microarray analysis of GATA2 knockdowned human bone marrow mesenchymal stem cells revealed that 90 and 189 genes were upregulated or downregulated by a factor of 2, respectively. Moreover, gene ontology analysis revealed significant enrichment of genes involved in cell cycle regulation, and the number of G1/G0 cells increased after GATA2 knockdown. Concomitantly, cell proliferation was decreased by GATA2 knockdown. When GATA2 knockdowned bone marrow mesenchymal stem cells as well as adipocytes were cocultured with CD34-positive cells, hematopoietic stem cell frequency and colony formation decreased. We confirmed the existence of pathological signals that decrease and increase hematopoietic cell and adipocyte numbers, respectively, characteristic of aplastic anemia, and that suppress GATA2 expression in hematopoietic stem cells and bone marrow mesenchymal stem cells. Copyright© Ferrata Storti Foundation.

  8. Osteogenic potential of sorted equine mesenchymal stem cell subpopulations.

    PubMed

    Radtke, Catherine L; Nino-Fong, Rodolfo; Rodriguez-Lecompte, Juan Carlos; Esparza Gonzalez, Blanca P; Stryhn, Henrik; McDuffee, Laurie A

    2015-04-01

    The objectives of this study were to use non-equilibrium gravitational field-flow fractionation (GrFFF), an immunotag-less method of sorting mesenchymal stem cells (MSCs), to sort equine muscle tissue-derived mesenchymal stem cells (MMSCs) and bone marrow-derived mesenchymal stem cells (BMSC) into subpopulations and to carry out assays in order to compare their osteogenic capabilities. Cells from 1 young adult horse were isolated from left semitendinosus muscle tissue and from bone marrow aspirates of the fourth and fifth sternebrae. Aliquots of 800 × 10(3) MSCs from each tissue source were sorted into 5 fractions using non-equilibrium GrFFF (GrFFF proprietary system). Pooled fractions were cultured and expanded for use in osteogenic assays, including flow cytometry, histochemistry, bone nodule assays, and real-time quantitative polymerase chain reaction (qPCR) for gene expression of osteocalcin (OCN), RUNX2, and osterix. Equine MMSCs and BMSCs were consistently sorted into 5 fractions that remained viable for use in further osteogenic assays. Statistical analysis confirmed strongly significant upregulation of OCN, RUNX2, and osterix for the BMSC fraction 4 with P < 0.00001. Flow cytometry revealed different cell size and granularity for BMSC fraction 4 and MMSC fraction 2 compared to unsorted controls and other fractions. Histochemisty and bone nodule assays revealed positive staining nodules without differences in average nodule area, perimeter, or stain intensity between tissues or fractions. As there are different subpopulations of MSCs with different osteogenic capacities within equine muscle- and bone marrow-derived sources, these differences must be taken into account when using equine stem cell therapy to induce bone healing in veterinary medicine.

  9. Regulating myogenic differentiation of mesenchymal stem cells using thermosensitive hydrogels.

    PubMed

    Xu, Yanyi; Li, Zhenqing; Li, Xiaofei; Fan, Zhaobo; Liu, Zhenguo; Xie, Xiaoyun; Guan, Jianjun

    2015-10-01

    Stem cell therapy has potential to regenerate skeletal muscle tissue in ischemic limb. However, the delivered stem cells experience low rate of myogenic differentiation. Employing injectable hydrogels as stem cell carriers may enhance the myogenic differentiation as their modulus may be tailored to induce the differentiation. Yet current approaches used to manipulate hydrogel modulus often simultaneously vary other properties that also affect stem cell differentiation, such as chemical structure, composition and water content. Thus it is challenging to demonstrate the decoupled effect of hydrogel modulus on stem cell differentiation. In this report, we decoupled the hydrogel modulus from chemical structure, composition, and water content using injectable and thermosensitive hydrogels. The hydrogels were synthesized from N-isopropylacrylamide (NIPAAm), acrylic acid (AAc), and degradable macromer 2-hydroxyethyl methacrylate-oligomer [oligolatide, oligohydroxybutyrate, or oligo(trimethylene carbonate)]. We found that using the same monomer composition and oligomer chemical structure but different oligomer length can independently vary hydrogel modulus. Rat bone marrow mesenchymal stem cells (MSCs) were encapsulated in the hydrogels with elastic expansion moduli of 11, 20, and 40 kPa, respectively. After 14 days of culture, significant myogenic differentiation was achieved for the hydrogel with elastic expansion modulus of 20 kPa, as judged from both the gene and protein expression. In addition, MSCs exhibited an elastic expansion modulus-dependent proliferation rate. The most significant proliferation was observed in the hydrogel with elastic expansion modulus of 40 kPa. These results demonstrate that the developed injectable and thermosensitive hydrogels with suitable modulus has the potential to deliver stem cells into ischemic limb for enhanced myogenic differentiation and muscle regeneration. Stem cell therapy for skeletal muscle regeneration in ischemic limb

  10. Strategies to improve homing of mesenchymal stem cells for greater efficacy in stem cell therapy.

    PubMed

    Naderi-Meshkin, Hojjat; Bahrami, Ahmad Reza; Bidkhori, Hamid Reza; Mirahmadi, Mahdi; Ahmadiankia, Naghmeh

    2015-01-01

    Stem/progenitor cell-based therapeutic approach in clinical practice has been an elusive dream in medical sciences, and improvement of stem cell homing is one of major challenges in cell therapy programs. Stem/progenitor cells have a homing response to injured tissues/organs, mediated by interactions of chemokine receptors expressed on the cells and chemokines secreted by the injured tissue. For improvement of directed homing of the cells, many techniques have been developed either to engineer stem/progenitor cells with higher amount of chemokine receptors (stem cell-based strategies) or to modulate the target tissues to release higher level of the corresponding chemokines (target tissue-based strategies). This review discusses both of these strategies involved in the improvement of stem cell homing focusing on mesenchymal stem cells as most frequent studied model in cellular therapies. © 2014 International Federation for Cell Biology.

  11. Mesenchymal stem cell subpopulations: phenotype, property and therapeutic potential.

    PubMed

    Mo, Miaohua; Wang, Shan; Zhou, Ying; Li, Hong; Wu, Yaojiong

    2016-09-01

    Mesenchymal stem cells (MSC) are capable of differentiating into cells of multiple cell lineages and have potent paracrine effects. Due to their easy preparation and low immunogenicity, MSC have emerged as an extremely promising therapeutic agent in regenerative medicine for diverse diseases. However, MSC are heterogeneous with respect to phenotype and function in current isolation and cultivation regimes, which often lead to incomparable experimental results. In addition, there may be specific stem cell subpopulations with definite differentiation capacity toward certain lineages in addition to stem cells with multi-differentiation potential. Recent studies have identified several subsets of MSC which exhibit distinct features and biological activities, and enhanced therapeutic potentials for certain diseases. In this review, we give an overview of these subsets for their phenotypic, biological and functional properties.

  12. Mesenchymal stem cells and the treatment of cardiac disease.

    PubMed

    Minguell, José J; Erices, Alejandro

    2006-01-01

    The ischemia-induced death of cardiomyocytes results in scar formation and reduced contractility of the ventricle. Several preclinical and clinical studies have supported the notion that cell therapy may be used for cardiac regeneration. Most attempts for cardiomyoplasty have considered the bone marrow as the source of the "repair stem cell(s)," assuming that the hematopoietic stem cell can do the work. However, bone marrow is also the residence of other progenitor cells, including mesenchymal stem cells (MSCs). Since 1995 it has been known that under in vitro conditions, MSCs differentiate into cells exhibiting features of cardiomyocytes. This pioneer work was followed by many preclinical studies that revealed that ex vivo expanded, bone marrow-derived MSCs may represent another option for cardiac regeneration. In this work, we review evidence and new prospects that support the use of MSCs in cardiomyoplasty.

  13. Recent Advances in Hydroxyapatite Scaffolds Containing Mesenchymal Stem Cells

    PubMed Central

    Michel, John; Penna, Matthew; Kochen, Juan; Cheung, Herman

    2015-01-01

    Modern day tissue engineering and cellular therapies have gravitated toward using stem cells with scaffolds as a dynamic modality to aid in differentiation and tissue regeneration. Mesenchymal stem cells (MSCs) are one of the most studied stem cells used in combination with scaffolds. These cells differentiate along the osteogenic lineage when seeded on hydroxyapatite containing scaffolds and can be used as a therapeutic option to regenerate various tissues. In recent years, the combination of hydroxyapatite and natural or synthetic polymers has been studied extensively. Due to the interest in these scaffolds, this review will cover the wide range of hydroxyapatite containing scaffolds used with MSCs for in vitro and in vivo experiments. Further, in order to maintain a progressive scope of the field this review article will only focus on literature utilizing adult human derived MSCs (hMSCs) published in the last three years. PMID:26106425

  14. Brain mesenchymal stem cells: physiology and pathological implications.

    PubMed

    Pombero, Ana; Garcia-Lopez, Raquel; Martinez, Salvador

    2016-06-01

    Mesenchymal stem cells (MSCs) are defined as progenitor cells that give rise to a number of unique, differentiated mesenchymal cell types. This concept has progressively evolved towards an all-encompassing concept including multipotent perivascular cells of almost any tissue. In central nervous system, pericytes are involved in blood-brain barrier, and angiogenesis and vascular tone regulation. They form the neurovascular unit (NVU) together with endothelial cells, astrocytes and neurons. This functional structure provides an optimal microenvironment for neural proliferation in the adult brain. Neurovascular niche include both diffusible signals and direct contact with endothelial and pericytes, which are a source of diffusible neurotrophic signals that affect neural precursors. Therefore, MSCs/pericyte properties such as differentiation capability, as well as immunoregulatory and paracrine effects make them a potential resource in regenerative medicine.

  15. Immunoregulation by Mesenchymal Stem Cells: Biological Aspects and Clinical Applications

    PubMed Central

    Castro-Manrreza, Marta E.; Montesinos, Juan J.

    2015-01-01

    Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiation into mesenchymal lineages and that can be isolated from various tissues and easily cultivated in vitro. Currently, MSCs are of considerable interest because of the biological characteristics that confer high potential applicability in the clinical treatment of many diseases. Specifically, because of their high immunoregulatory capacity, MSCs are used as tools in cellular therapies for clinical protocols involving immune system alterations. In this review, we discuss the current knowledge about the capacity of MSCs for the immunoregulation of immunocompetent cells and emphasize the effects of MSCs on T cells, principal effectors of the immune response, and the immunosuppressive effects mediated by the secretion of soluble factors and membrane molecules. We also describe the mechanisms of MSC immunoregulatory modulation and the participation of MSCs as immune response regulators in several autoimmune diseases, and we emphasize the clinical application in graft versus host disease (GVHD). PMID:25961059

  16. Clonal amniotic fluid-derived stem cells express characteristics of both mesenchymal and neural stem cells.

    PubMed

    Tsai, Ming-Song; Hwang, Shiaw-Min; Tsai, Yieh-Loong; Cheng, Fu-Chou; Lee, Jia-Ling; Chang, Yu-Jen

    2006-03-01

    Recent evidence has shown that amniotic fluid may be a novel source of fetal stem cells for therapeutic transplantation. We previously developed a two-stage culture protocol to isolate a population of amniotic fluid-derived mesenchymal stem cells (AFMSCs) from second-trimester amniocentesis. AFMSCs maintain the capacity to differentiate into multiple mesenchymal lineages and neuron-like cells. It is unclear whether amniotic fluid contains heterogeneous populations of stem cells or a subpopulation of primitive stem cells that are similar to marrow stromal cells showing the behavior of neural progenitors. In this study, we showed a subpopulation of amniotic fluid-derived stem cells (AF-SCs) at the single-cell level by limiting dilution. We found that NANOG- and POU5F1 (also known as OCT4)-expressing cells still existed in the expanded single cell-derived AF-SCs. Aside from the common mesenchymal characteristics, these clonal AF-SCs also exhibit multiple phenotypes of neural-derived cells such as NES, TUBB3, NEFH, NEUNA60, GALC, and GFAP expressions both before and after neural induction. Most importantly, HPLC analysis showed the evidence of dopamine release in the extract of dopaminergic-induced clonal AF-SCs. The results of this study suggest that besides being an easily accessible and expandable source of fetal stem cells, amniotic fluid will provide a promising source of neural progenitor cells that may be used in future cellular therapies for neurodegenerative diseases and nervous system injuries.

  17. Immunomodulatory effects of human umbilical cord Wharton's jelly-derived mesenchymal stem cells on differentiation, maturation and endocytosis of monocyte-derived dendritic cells.

    PubMed

    Saeidi, Mohsen; Masoud, Ahmad; Shakiba, Yadollah; Hadjati, Jamshid; Mohyeddin Bonab, Mandana; Nicknam, Mohammad Hossein; Latifpour, Mostafa; Nikbin, Behrooz

    2013-03-01

    The Wharton's jelly of the umbilical cord is believed to be a source of mesenchymal stem cells (MSCs) which can be therapeutically applied in degenerative diseases.In this study, we investigated the immunomodulatory effect of umbilical cord derived-mesenchymal stem cells (UC-MSCs) and bone marrow-derived-mesenchymal stem cells (BM-MSCs) on differentiation, maturation, and endocytosis of monocyte-derived dendritic cells in a transwell culture system under laboratory conditions. Monocytes were differentiated into immature dendritic cells (iDCs) in the presence of GM-CSF and IL-4 for 6 days and then differentiated into mature dendritic cells (mDCs) in the presence of TNF-α for 2 days. In every stage of differentiation, immature and mature dendritic cells were separately co-cultured with UC-MSCs and BM-MSCs. The findings showed that UC-MSCs and BM-MSCs inhibited strongly differentiation and maturation of dendritic cells at higher dilution ratios (1:1). The BM-MSCs and UC-MSCs showed more inhibitory effect on CD1a, CD83, CD86 expression, and dendritic cell endocytic activity, respectively. On the other hand, these cells severely up-regulated CD14 marker expression. We concluded that UC-MSCs and BM-MSCs could inhibit differentiation, maturation and endocytosis in monocyte-derived DCs through the secreted factors and free of any cell-cell contacts under laboratory conditions. As DCs are believed to be the main antigen presenting cells for naïve T cells in triggering immune responses, it would be logical that their inhibitory effect on differentiation, maturation and function can decrease or modulate immune and inflammatory responses.

  18. Mesenchymal stem cells and neuroregeneration in Parkinson's disease.

    PubMed

    Glavaski-Joksimovic, Aleksandra; Bohn, Martha C

    2013-09-01

    Parkinson's disease (PD) is a prevalent neurodegenerative disorder characterized by a progressive and extensive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and their terminals in the striatum, which results in debilitating movement disorders. This devastating disease affects over 1 million individuals in the United States and is increasing in incidence worldwide. Currently available pharmacological and surgical therapies ameliorate clinical symptoms in the early stages of disease, but they cannot stop or reverse degeneration of DA neurons. Stem cell therapies have come to the forefront of the PD research field as promising regenerative therapies. The majority of preclinical stem cell studies in experimental models of PD are focused on the idea that stem cell-derived DA neurons could be developed for replacement of diseased neurons. Alternatively, our studies and the studies from other groups suggest that stem cells also have the potential to protect and stimulate regeneration of compromised DA neurons. This review is focused on strategies based on the therapeutic potential for PD of the neurotrophic and neuroregenerative properties of a subclass of stem cells, mesenchymal stem cells (MSCs). Published by Elsevier Inc.

  19. Biological characterization of sheep kidney-derived mesenchymal stem cells

    PubMed Central

    Ji, Meng; Bai, Chunyu; Li, Lu; Fan, Ya'Nan; Ma, Caiyun; Li, Xiangchen; Guan, Weijun

    2016-01-01

    The aim of the present study was to isolate, culture and characterize sheep metanephric mesenchymal stem cells (MMSCs). The MMSCs were isolated from the kidney tissue of six-week-old sheep fetus. This study investigated whether primary MMSCs could be grown for 26 passages and expressed Oct-4, which is involved in the self-renewal of undifferentiated pluripotent stem cells. The MMSCs also expressed the renal lineage marker gene PAX2, and mesenchymal cell marker genes CD44, FN1 and VIM. Expression of these genes was detected using immunofluorescence and reverse transcription-polymerase chain reaction assays. Additionally, we observed that the MMSCs are able to differentiate into adipocyte, hepatocyte and chondrocyte cells. Karyotype analyses showed that these cells were 95% diploid and thus differentiated. These results indicate that the MMSCs obtained from sheep fetuses possessed certain characteristics of multipotent stem cells. Therefore, MMSCs may potentially offer utility for tissue engineering and cellular transplantation therapy, and further studies are required to investigate these uses. PMID:28105130

  20. Multilineage potential research of bovine amniotic fluid mesenchymal stem cells.

    PubMed

    Gao, Yuhua; Zhu, Zhiqiang; Zhao, Yuhua; Hua, Jinlian; Ma, Yuehui; Guan, Weijun

    2014-02-28

    The use of amnion and amniotic fluid (AF) are abundant sources of mesenchymal stem cells (MSCs) that can be harvested at low cost and do not pose ethical conflicts. In human and veterinary research, stem cells derived from these tissues are promising candidates for disease treatment, specifically for their plasticity, their reduced immunogenicity, and high anti-inflammatory potential. This work aimed to obtain and characterize bovine amniotic fluid mesenchymal stem cells (AFMSC). The bovine AF from the amniotic cavity of pregnant gilts in the early stages of gestation (3- and 4-m-old bovine embryos) was collected. AFMSCs exhibit a fibroblastic-like morphology only starting from the fourth passage, being heterogeneous during the primary culture. Immunofluorescence results showed that AFMSCs were positive for β-integrin, CD44, CD73 and CD166, but negative for CD34, CD45. Meanwhile, AFMSCs expressed ES cell markers, such as Oct4, and when appropriately induced, are capable of differentiating into ectodermal and mesodermal lineages. This study reinforces the emerging importance of these cells as ideal tools in veterinary medicine; future studies aimed at a deeper evaluation of their immunological properties will allow a better understanding of their role in cellular therapy.

  1. Multilineage Potential Research of Bovine Amniotic Fluid Mesenchymal Stem Cells

    PubMed Central

    Gao, Yuhua; Zhu, Zhiqiang; Zhao, Yuhua; Hua, Jinlian; Ma, Yuehui; Guan, Weijun

    2014-01-01

    The use of amnion and amniotic fluid (AF) are abundant sources of mesenchymal stem cells (MSCs) that can be harvested at low cost and do not pose ethical conflicts. In human and veterinary research, stem cells derived from these tissues are promising candidates for disease treatment, specifically for their plasticity, their reduced immunogenicity, and high anti-inflammatory potential. This work aimed to obtain and characterize bovine amniotic fluid mesenchymal stem cells (AFMSC). The bovine AF from the amniotic cavity of pregnant gilts in the early stages of gestation (3- and 4-m-old bovine embryos) was collected. AFMSCs exhibit a fibroblastic-like morphology only starting from the fourth passage, being heterogeneous during the primary culture. Immunofluorescence results showed that AFMSCs were positive for β-integrin, CD44, CD73 and CD166, but negative for CD34, CD45. Meanwhile, AFMSCs expressed ES cell markers, such as Oct4, and when appropriately induced, are capable of differentiating into ectodermal and mesodermal lineages. This study reinforces the emerging importance of these cells as ideal tools in veterinary medicine; future studies aimed at a deeper evaluation of their immunological properties will allow a better understanding of their role in cellular therapy. PMID:24590129

  2. Cells With Unique Properties in Prostate Cancer-Associated Storma Are Mesenchymal Stem Cells

    DTIC Science & Technology

    2007-06-01

    Prostate Cancer-Associated Storma Are Mesenchymal Stem Cells PRINCIPAL INVESTIGATOR: Donna M. Peehl, Ph.D. CONTRACTING ORGANIZATION...NUMBER Cells with Unique Properties in Prostate Cancer-Associated Storma Are Mesenchymal Stem Cells 5b. GRANT NUMBER W81XWH-06-1-0101 5c

  3. Transplantation of placenta-derived mesenchymal stem cell-induced neural stem cells to treat spinal cord injury

    PubMed Central

    Li, Zhi; Zhao, Wei; Liu, Wei; Zhou, Ye; Jia, Jingqiao; Yang, Lifeng

    2014-01-01

    Because of their strong proliferative capacity and multi-potency, placenta-derived mesenchymal stem cells have gained interest as a cell source in the field of nerve damage repair. In the present study, human placenta-derived mesenchymal stem cells were induced to differentiate into neural stem cells, which were then transplanted into the spinal cord after local spinal cord injury in rats. The motor functional recovery and pathological changes in the injured spinal cord were observed for 3 successive weeks. The results showed that human placenta-derived mesenchymal stem cells can differentiate into neuron-like cells and that induced neural stem cells contribute to the restoration of injured spinal cord without causing transplant rejection. Thus, these cells promote the recovery of motor and sensory functions in a rat model of spinal cord injury. Therefore, human placenta-derived mesenchymal stem cells may be useful as seed cells during the repair of spinal cord injury. PMID:25657742

  4. Mesenchymal stem cell therapy for acute radiation syndrome.

    PubMed

    Fukumoto, Risaku

    2016-01-01

    Acute radiation syndrome affects military personnel and civilians following the uncontrolled dispersal of radiation, such as that caused by detonation of nuclear devices and inappropriate medical treatments. Therefore, there is a growing need for medical interventions that facilitate the improved recovery of victims and patients. One promising approach may be cell therapy, which, when appropriately implemented, may facilitate recovery from whole body injuries. This editorial highlights the current knowledge regarding the use of mesenchymal stem cells for the treatment of acute radiation syndrome, the benefits and limitations of which are under investigation. Establishing successful therapies for acute radiation syndrome may require using such a therapeutic approach in addition to conventional approaches.

  5. MET: roles in epithelial-mesenchymal transition and cancer stemness

    PubMed Central

    Jeon, Hye-Min

    2017-01-01

    In a number of cancers, deregulated MET pathway leads to aberrantly activated proliferative and invasive signaling programs that promote malignant transformation, cell motility and migration, angiogenesis, survival in hypoxia, and invasion. A better understanding of oncogenic MET signaling will help us to discover effective therapeutic approaches and to identify which tumors are likely to respond to MET-targeted cancer therapy. In this review, we will summarize the roles of MET signaling in cancer, with particular focus on epithelial-mesenchymal transition (EMT) and cancer stemness. Then, we will provide update on MET targeting agents and discuss the challenges that should be overcome for the development of an effective therapy. PMID:28164090

  6. Age-associated changes in the ecological niche: implications for mesenchymal stem cell aging.

    PubMed

    Asumda, Faizal Z

    2013-05-14

    Adult stem cells are critical for organ-specific regeneration and self-renewal with advancing age. The prospect of being able to reverse tissue-specific post-injury sequelae by harvesting, culturing and transplanting a patient's own stem and progenitor cells is exciting. Mesenchymal stem cells have emerged as a reliable stem cell source for this treatment modality and are currently being tested in numerous ongoing clinical trials. Unfortunately, the fervor over mesenchymal stem cells is mitigated by several lines of evidence suggesting that their efficacy is limited by natural aging. This article discusses the mechanisms and manifestations of age-associated deficiencies in mesenchymal stem cell efficacy. A consideration of recent experimental findings suggests that the ecological niche might be responsible for mesenchymal stem cell aging.

  7. Age-associated changes in the ecological niche: implications for mesenchymal stem cell aging

    PubMed Central

    2013-01-01

    Adult stem cells are critical for organ-specific regeneration and self-renewal with advancing age. The prospect of being able to reverse tissue-specific post-injury sequelae by harvesting, culturing and transplanting a patient’s own stem and progenitor cells is exciting. Mesenchymal stem cells have emerged as a reliable stem cell source for this treatment modality and are currently being tested in numerous ongoing clinical trials. Unfortunately, the fervor over mesenchymal stem cells is mitigated by several lines of evidence suggesting that their efficacy is limited by natural aging. This article discusses the mechanisms and manifestations of age-associated deficiencies in mesenchymal stem cell efficacy. A consideration of recent experimental findings suggests that the ecological niche might be responsible for mesenchymal stem cell aging. PMID:23673056

  8. Lower Oncogenic Potential of Human Mesenchymal Stem Cells Derived from Cord Blood Compared to Induced Pluripotent Stem Cells.

    PubMed

    Foroutan, T; Najmi, M; Kazemi, N; Hasanlou, M; Pedram, A

    2015-01-01

    In regenerative medicine, use of each of the mesenchymal stem cells derived from bone marrow, cord blood, and adipose tissue, has several cons and pros. Mesenchymal stem cells derived from cord blood have been considered the best source for precursor transplantation. Direct reprogramming of a somatic cell into induced pluripotent stem cells by over-expression of 6 transcription factors Oct4, Sox2, Klf4, lin28, Nanog, and c-Myc has great potential for regenerative medicine, eliminating the ethical issues of embryonic stem cells and the rejection problems of using non-autologous cells. To compare reprogramming and pluripotent markers OCT4, Sox-2, c-Myc, Klf4, Nanog, and lin28 in mesenchymal stem cells derived from cord blood and induced pluripotent stem cells. We analyzed the expression level of OCT4, Sox-2, c-Myc, Klf4, Nanog and lin28 genes in human mesenchymal stem cells derived from cord blood and induced pluripotent stem cells by cell culture and RT-PCR. The expression level of pluripotent genes OCT4 and Sox-2, Nanog and lin28 in mesenchymal stem cells derived from cord blood were significantly higher than those in induced pluripotent stem cells. In contrast to OCT-4A and Sox-2, Nanog and lin28, the expression level of oncogenic factors c-Myc and Klf4 were significantly higher in induced pluripotent stem cells than in mesenchymal stem cells derived from cord blood. It could be concluded that mesenchymal stem cells derived from human cord blood have lower oncogenic potential compared to induced pluripotent stem cells.

  9. Biological characteristics and effect of human umbilical cord mesenchymal stem cells (hUC-MSCs) grafting with blood plasma on bone regeneration in rats.

    PubMed

    Qu, Zhiguo; Guo, Libin; Fang, Guojun; Cui, Zhenghong; Guo, Shengnan; Liu, Ying

    2012-06-01

    We evaluated the biological characteristics/effect of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) grafting with blood plasma on bone regeneration in rat tibia nonunion. SD rats (142) were randomly divided into four groups: fracture group (positive control); nonunion group (negative control); hUC-MSCs grafting with blood plasma group; and hUC-MSCs grafting with saline group. Rats were administered tetracycline (30 mg/kg) and calcein blue (5 mg/kg) 8 days before killing. The animals were killed under deep anesthesia at 4 and 8 weeks post fracture for radiological evaluation and histological/immunohistological studies. The hUC-MSCs grafting with blood plasma group was similar to fracture group: the fracture line blurred in 4 weeks and disappeared in 8 weeks postoperatively. Histological/immunohistological studies showed that hUC-MSCs were of low immunogenicity which merged in rat bone tissue, differentiated into osteogenic lineages, and completed the healing of nonunion. After stem cell transplantation, regardless of whether plasma or saline was used, new multi-center bone formation was observed; fracture site density was better in stem cell grafting with blood plasma group. We, therefore, concluded that the biological characteristics of hUC-MSCs-treated nonunion were different from the standard fracture healing process, and the proliferative and localization capacity of hUC-MSCs might benefit from the use of blood plasma.

  10. Effect of Single and Double Administration of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Following Focal Cerebral Ischemia in Rats.

    PubMed

    Park, Hyung Woo; Kim, Yona; Chang, Jong Wook; Yang, Yoon Sun; Oh, Wonil; Lee, Jae Min; Park, Hye Ran; Kim, Dong Gyu; Paek, Sun Ha

    2017-02-01

    Stem cell therapies are administered during the acute phase of stroke to preserve the penumbral tissues from ischemic injury. However, the effect of repeated cell therapy during the acute phase remains unclear. In this study, we investigated and compared the functional outcome of single (two days post-injury) and repeated (two and nine days post-injury) treatment with human umbilical cord derived mesenchymal stem cells (hUCB-MSCs) after middle cerebral artery occlusion (MCAO). The rotarod and limb placement tests were utilized to investigate functional outcomes, while infarct volume and tissue damage were measured by immunofluorescent staining for neovascularization, neurogenesis, apoptosis, and inflammation in the penumbral zones. We observed notable motor dysfunction and a significant decrease in infarcted brain volume, as well as increases in neurons and vessels in both single and repeated hUCB-MSC treatments compared to the control group. Interestingly, repeated administration of hUCB-MSCs was not found to elicit additional or synergistic improvements over monotherapy. This study suggests that a clearer understanding of the therapeutic window after stroke will facilitate the development of more efficient treatment protocols in the clinical application of stem cell therapy.

  11. Effect of Single and Double Administration of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Following Focal Cerebral Ischemia in Rats

    PubMed Central

    Park, Hyung Woo; Kim, Yona; Chang, Jong Wook; Yang, Yoon Sun; Oh, Wonil; Lee, Jae Min; Park, Hye Ran; Kim, Dong Gyu

    2017-01-01

    Stem cell therapies are administered during the acute phase of stroke to preserve the penumbral tissues from ischemic injury. However, the effect of repeated cell therapy during the acute phase remains unclear. In this study, we investigated and compared the functional outcome of single (two days post-injury) and repeated (two and nine days post-injury) treatment with human umbilical cord derived mesenchymal stem cells (hUCB-MSCs) after middle cerebral artery occlusion (MCAO). The rotarod and limb placement tests were utilized to investigate functional outcomes, while infarct volume and tissue damage were measured by immunofluorescent staining for neovascularization, neurogenesis, apoptosis, and inflammation in the penumbral zones. We observed notable motor dysfunction and a significant decrease in infarcted brain volume, as well as increases in neurons and vessels in both single and repeated hUCB-MSC treatments compared to the control group. Interestingly, repeated administration of hUCB-MSCs was not found to elicit additional or synergistic improvements over monotherapy. This study suggests that a clearer understanding of the therapeutic window after stroke will facilitate the development of more efficient treatment protocols in the clinical application of stem cell therapy. PMID:28243167

  12. Mesenchymal stem cells are sensitive to bleomycin treatment

    PubMed Central

    Nicolay, Nils H.; Rühle, Alexander; Perez, Ramon Lopez; Trinh, Thuy; Sisombath, Sonevisay; Weber, Klaus-Josef; Ho, Anthony D.; Debus, Jürgen; Saffrich, Rainer; Huber, Peter E.

    2016-01-01

    Mesenchymal stem cells (MSCs) have been shown to attenuate pulmonary damage induced by bleomycin-based anticancer treatments, but the influence of bleomycin on the stem cells themselves remains largely unknown. Here, we demonstrate that human bone marrow-derived MSCs are relatively sensitive to bleomycin exposure compared to adult fibroblasts. MSCs revealed increased levels of apoptosis after bleomycin treatment, while cellular morphology, stem cell surface marker expression and the ability for adhesion and migration remained unchanged. Bleomycin treatment also resulted in a reduced adipogenic differentiation potential of these stem cells. MSCs were found to efficiently repair DNA double strand breaks induced by bleomycin, mostly through non-homologous end joining repair. Low mRNA and protein expression levels of the inactivating enzyme bleomycin hydrolase were detected in MSCs that may contribute to the observed bleomycin-sensitive phenotype of these cells. The sensitivity of MSCs against bleomycin needs to be taken into consideration for ongoing and future treatment protocols investigating these stem cells as a potential treatment option for bleomycin-induced pulmonary damage in the clinic. PMID:27215195

  13. Composition of Mineral Produced by Dental Mesenchymal Stem Cells

    PubMed Central

    Volponi, A.A.; Gentleman, E.; Fatscher, R.; Pang, Y.W.Y.; Gentleman, M.M.; Sharpe, P.T.

    2015-01-01

    Mesenchymal stem cells isolated from different dental tissues have been described to have osteogenic/odontogenic-like differentiation capacity, but little attention has been paid to the biochemical composition of the material that each produces. Here, we used Raman spectroscopy to analyze the mineralized materials produced in vitro by different dental cell populations, and we compared them with the biochemical composition of native dental tissues. We show that different dental stem cell populations produce materials that differ in their mineral and matrix composition and that these differ from those of native dental tissues. In vitro, BCMP (bone chip mass population), SCAP (stem cells from apical papilla), and SHED (stem cells from human-exfoliated deciduous teeth) cells produce a more highly mineralized matrix when compared with that produced by PDL (periodontal ligament), DPA (dental pulp adult), and GF (gingival fibroblast) cells. Principal component analyses of Raman spectra further demonstrated that the crystallinity and carbonate substitution environments in the material produced by each cell type varied, with DPA cells, for example, producing a more carbonate-substituted mineral and with SCAP, SHED, and GF cells creating a less crystalline material when compared with other dental stem cells and native tissues. These variations in mineral composition reveal intrinsic differences in the various cell populations, which may in turn affect their specific clinical applications. PMID:26253190

  14. Mesenchymal Stem Cell Therapy in Diabetes Mellitus: Progress and Challenges

    PubMed Central

    El-Badri, Nagwa; Ghoneim, Mohamed A.

    2013-01-01

    Advanced type 2 diabetes mellitus is associated with significant morbidity and mortality due to cardiovascular, nervous, and renal complications. Attempts to cure diabetes mellitus using islet transplantation have been successful in providing a source for insulin secreting cells. However, limited donors, graft rejection, the need for continued immune suppression, and exhaustion of the donor cell pool prompted the search for a more sustained source of insulin secreting cells. Stem cell therapy is a promising alternative for islet transplantation in type 2 diabetic patients who fail to control hyperglycemia even with insulin injection. Autologous stem cell transplantation may provide the best outcome for those patients, since autologous cells are readily available and do not entail prolonged hospital stays or sustained immunotoxic therapy. Among autologous adult stem cells, mesenchymal stem cells (MSCs) therapy has been applied with varying degrees of success in both animal models and in clinical trials. This review will focus on the advantages of MSCs over other types of stem cells and the possible mechanisms by which MSCs transplant restores normoglycemia in type 2 diabetic patients. Sources of MSCs including autologous cells from diabetic patients and the use of various differentiation protocols in relation to best transplant outcome will be discussed. PMID:23762531

  15. Mir-218 contributes to the transformation of 5-Aza/GF induced umbilical cord mesenchymal stem cells into hematopoietic cells through the MITF pathway.

    PubMed

    Hu, Kaimeng; Xu, Chen; Ni, Haitao; Xu, Zhenyu; Wang, Yue; Xu, Sha; Ji, Kaihong; Xiong, Jun; Liu, Houqi

    2014-07-01

    Experiments with 5'-azacytidine and hematopoietic growth factor approved for the transformation of human mesenchymal cells into hematopoietic cells have demonstrated that cell fate can be dramatically altered by changing the epigenetic state of cells. Here, we demonstrate that umbilical cord-derived human mesenchymal stem cells (uMSC) are easily accessible and could be induced into cells with hematopoietic function. Furthermore, we focused on the crucial miRNAs and relative transcription factors (TFs) in our study. We show that combined Aza/GF incubation can increase expression of miR-218, miR-150, and miR-451. Accordingly, miR-218 overexpression achieved an increase in expression of CD34 (3-13%), CD45 (50-65%), CD133 and c-Kit in uMSCs that cultured with Aza/GF. The expression of the relevant transcriptional factors, such as HoxB4 and NF-Ya, was higher than in the negative control group or miR-218 inhibitor transfected group, and microphthalmia-associated transcription factor (MITF) is regarded to be a direct target of miR-218, as demonstrated by luciferase assays. Overexpression of miR-218 might, in conjunction with the MITF, upregulate the expression of NF-Ya and HoxB4, which induce a hematopoietic state. We concluded that miR-218 might have a role in the transformation of hematopoietic cells through the MITF pathway.

  16. Cell fusion between gastric epithelial cells and mesenchymal stem cells results in epithelial-to-mesenchymal transition and malignant transformation.

    PubMed

    He, Xianghui; Li, Baosong; Shao, Yang; Zhao, Na; Hsu, Yiling; Zhang, Zhixiang; Zhu, Liwei

    2015-01-30

    The discovery of cancer stem cells and tumor heterogeneity prompted the exploration of additional mechanisms aside from genetic mutations for carcinogenesis and cancer progression. The aim of the present study was to investigate the effect of cell fusion between mesenchymal stem cells and the gastric epithelial cells in tumorigenesis. Cell fusion between cord blood mesenchymal stem cells and human gastric epithelial cells was performed in vitro. Cell scratch and transwell assays were performed to determine migration and invasion abilities of the hybrids. The expressions of epithelial-mesenchymal transition-related proteins and genes were analyzed by immunocytochemistry and real time quantitative PCR. Tumorigenesis of the hybrids was evaluated through in vivo inoculation in nude mice. Hybrids expressed the phenotypes of both donor cells. Aneuploidy was observed in 84.1% of cells. The hybrids showed increased proliferation, migration and invasion abilities compared with the parental cells. In addition, the expression of N-cadherin and vimentin in the hybrids was significantly higher than that of the epithelial cells, and the mRNA expression of the epithelial-mesenchymal transition-related genes, Twist and Slug, in the hybrids was also increased compared with that of the parental epithelial cells. Furthermore, the hybrids formed masses of epithelial origin with glandular structures in BALB/c nude mice. These findings suggest that cell fusion between gastric epithelial cells and mesenchymal stem cells may result in epithelial to mesenchymal transition and malignant transformation.

  17. Effects of Oxidative Stress on Mesenchymal Stem Cell Biology

    PubMed Central

    2016-01-01

    Mesenchymal stromal/stem cells (MSCs) are multipotent stem cells present in most fetal and adult tissues. Ex vivo culture-expanded MSCs are being investigated for tissue repair and immune modulation, but their full clinical potential is far from realization. Here we review the role of oxidative stress in MSC biology, as their longevity and functions are affected by oxidative stress. In general, increased reactive oxygen species (ROS) inhibit MSC proliferation, increase senescence, enhance adipogenic but reduce osteogenic differentiation, and inhibit MSC immunomodulation. Furthermore, aging, senescence, and oxidative stress reduce their ex vivo expansion, which is critical for their clinical applications. Modulation of sirtuin expression and activity may represent a method to reduce oxidative stress in MSCs. These findings have important implications in the clinical utility of MSCs for degenerative and immunological based conditions. Further study of oxidative stress in MSCs is imperative in order to enhance MSC ex vivo expansion and in vivo engraftment, function, and longevity. PMID:27413419

  18. Clinical Applications of Mesenchymal Stem Cells in Soft Tissue Augmentation

    PubMed Central

    Hanson, Summer E.; Gutowski, Karol A.; Hematti, Peiman

    2014-01-01

    Based on a variety of preclinical studies showing that mesenchymal stem cells (MSC) play a significant role in tissue repair and homeostasis, MSC have rapidly moved into a phase of clinical trials investigating their efficacy as a cell-based therapeutic modality for a diverse group of applications. An emerging body of evidence shows that in addition to being a progenitor cell population with self-renewing and multipotent differentiation capabilities, MSC have unique immunomodulatory properties, making them even more attractive for regenerative medicine. Emerging discoveries in stem cell biology have revealed a multitude of mechanisms through which MSC could potentially augment the current techniques in aesthetic surgery. In this article, the authors review the clinical advances in cell-based therapies relevant to aesthetic surgery, including tissue augmentation, rejuvenation, and regeneration. PMID:21131458

  19. Genetically engineered mesenchymal stem cells: applications in spine therapy.

    PubMed

    Aslan, Hadi; Sheyn, Dima; Gazit, Dan

    2009-01-01

    Spine disorders and intervertebral disc degeneration are considered the main causes for the clinical condition commonly known as back pain. Spinal fusion by implanting autologous bone to produce bony bridging between the two vertebrae flanking the degenerated-intervertebral disc is currently the most efficient treatment for relieving the symptoms of back pain. However, donor-site morbidity, complications and the long healing time limit the success of this approach. Novel developments undertaken by regenerative medicine might bring more efficient and available treatments. Here we discuss the pros and cons of utilizing genetically engineered mesenchymal stem cells for inducing spinal fusion. The combination of the stem cells, gene and carrier are crucial elements for achieving optimal spinal fusion in both small and large animal models, which hopefully will lead to the development of clinical applications.

  20. Mesenchymal Stem Cells and Inflammatory Cardiomyopathy: Cardiac Homing and Beyond

    PubMed Central

    Van Linthout, S.; Stamm, Ch.; Schultheiss, H.-P.; Tschöpe, C.

    2011-01-01

    Under conventional heart failure therapy, inflammatory cardiomyopathy usually has a progressive course, merging for alternative interventional strategies. There is accumulating support for the application of cellular transplantation as a strategy to improve myocardial function. Mesenchymal stem cells (MSCs) have the advantage over other stem cells that they possess immunomodulatory features, making them attractive candidates for the treatment of inflammatory cardiomyopathy. Studies in experimental models of inflammatory cardiomyopathy have consistently demonstrated the potential of MSCs to reduce cardiac injury and to improve cardiac function. This paper gives an overview about how inflammation triggers the functionality of MSCs and how it induces cardiac homing. Finally, the potential of intravenous application of MSCs by inflammatory cardiomyopathy is discussed. PMID:21403844

  1. Targeted delivery of mesenchymal stem cells to the bone.

    PubMed

    Yao, Wei; Lane, Nancy E

    2015-01-01

    Osteoporosis is a disease of excess skeletal fragility that results from estrogen loss and aging. Age related bone loss has been attributed to both elevated bone resorption and insufficient bone formation. We developed a hybrid compound, LLP2A-Ale in which LLP2A has high affinity for the α4β1 integrin on mesenchymal stem cells (MSCs) and alendronate has high affinity for bone. When LLP2A-Ale was injected into mice, the compound directed MSCs to both trabecular and cortical bone surfaces and increased bone mass and bone strength. Additional studies are underway to further characterize this hybrid compound, LLP2A-Ale, and how it can be utilized for the treatment of bone loss resulting from hormone deficiency, aging, and inflammation and to augment bone fracture healing. This article is part of a Special Issue entitled "Stem Cells and Bone".

  2. Transplantation of mesenchymal stem cells improves type 1 diabetes mellitus.

    PubMed

    Li, Lisha; Li, Furong; Gao, Feng; Yang, Yali; Liu, Yuanyuan; Guo, Pingping; Li, Yulin

    2016-05-01

    Bone-marrow-derived stem cells can regenerate pancreatic tissue in a model of type 1 diabetes mellitus. Mesenchymal stem cells (MSCs) form the main part of bone marrow. We show that the intrapancreatic transplantation of MSCs elevates serum insulin and C-peptide, while decreasing blood glucose. MSCs engrafted into the damaged rat pancreas become distributed into the blood vessels, acini, ducts, and islets. Renascent islets, islet-like clusters, and a small number of MSCs expressing insulin protein have been observed in the pancreas of diabetic rats. Intrapancreatic transplantation of MSCs triggers a series of molecular and cellular events, including differentiation towards the pancreas directly and the provision of a niche to start endogenous pancreatic regeneration, which ameliorates hypoinsulinemia and hyperglycemia caused by streptozotocin. These data establish the many roles of MSCs in the restoration of the function of an injured organ.

  3. Mesenchymal Stem Cells and Nano-Bioceramics for Bone Regeneration.

    PubMed

    Kankilic, Berna; Köse, Sevil; Korkusuz, Petek; Timuçin, Muharrem; Korkusuz, Feza

    Orthopedic disorders and trauma usually result in bone loss. Bone grafts are widely used to replace this tissue. Bone grafts excluding autografts unfortunately have disadvantages like evoking immune response, contamination and rejection. Autografts are of limited sources and optimum biomaterials that can replace bone have been searched for several decades. Bioceramics, which have the similar inorganic structure of natural bone, are widely used to regenerate bone or coat metallic implants. As people continuously look for a higher life quality, there are developments in technology almost everyday to meet their expectations. Nanotechnology is one of such technologies and it attracts everyone's attention in biomaterial science. Nano scale biomaterials have many advantages like larger surface area and higher biocompatibility and these properties make them more preferable than micro scale. Also, stem cells are used for bone regeneration besides nano-bioceramics due to their differentiation characteristics. This review covers current research on nano-bioceramics and mesenchymal stem cells and their role in bone regeneration.

  4. Energy Metabolism in Mesenchymal Stem Cells During Osteogenic Differentiation.

    PubMed

    Shum, Laura C; White, Noelle S; Mills, Bradley N; Bentley, Karen L de Mesy; Eliseev, Roman A

    2016-01-15

    There is emerging interest in stem cell energy metabolism and its effect on differentiation. Bioenergetic changes in differentiating bone marrow mesenchymal stem cells (MSCs) are poorly understood and were the focus of our study. Using bioenergetic profiling and transcriptomics, we have established that MSCs activate the mitochondrial process of oxidative phosphorylation (OxPhos) during osteogenic differentiation, but they maintain levels of glycolysis similar to undifferentiated cells. Consistent with their glycolytic phenotype, undifferentiated MSCs have high levels of hypoxia-inducible factor 1 (HIF-1). Osteogenically induced MSCs downregulate HIF-1 and this downregulation is required for activation of OxPhos. In summary, our work provides important insights on MSC bioenergetics and proposes a HIF-based mechanism of regulation of mitochondrial OxPhos in MSCs.

  5. Energy Metabolism in Mesenchymal Stem Cells During Osteogenic Differentiation

    PubMed Central

    Shum, Laura C.; White, Noelle S.; Mills, Bradley N.; de Mesy Bentley, Karen L.

    2016-01-01

    There is emerging interest in stem cell energy metabolism and its effect on differentiation. Bioenergetic changes in differentiating bone marrow mesenchymal stem cells (MSCs) are poorly understood and were the focus of our study. Using bioenergetic profiling and transcriptomics, we have established that MSCs activate the mitochondrial process of oxidative phosphorylation (OxPhos) during osteogenic differentiation, but they maintain levels of glycolysis similar to undifferentiated cells. Consistent with their glycolytic phenotype, undifferentiated MSCs have high levels of hypoxia-inducible factor 1 (HIF-1). Osteogenically induced MSCs downregulate HIF-1 and this downregulation is required for activation of OxPhos. In summary, our work provides important insights on MSC bioenergetics and proposes a HIF-based mechanism of regulation of mitochondrial OxPhos in MSCs. PMID:26487485

  6. Mesenchymal stem cell therapy for cutaneous radiation syndrome.

    PubMed

    Akita, Sadanori; Akino, Kozo; Hirano, Akiyoshi; Ohtsuru, Akira; Yamashita, Shunichi

    2010-06-01

    Systemic and local radiation injuries caused by nuclear power reactor accidents, therapeutic irradiation, or nuclear terrorism should be prevented or properly treated in order to improve wound management and save lives. Currently, regenerative surgical modalities should be attempted with temporal artificial dermis impregnated and sprayed with a local angiogenic factor such as basic fibroblast growth factor, and secondary reconstruction can be a candidate for demarcation and saving the donor morbidity. Human mesenchymal stem cells and adipose-derived stem cells, together with angiogenic and mitogenic factor of basic fibroblast growth factor and an artificial dermis, were applied over the excised irradiated skin defect and were tested for differentiation and local stimulation effects in the radiation-exposed wounds. The perforator flap and artificial dermal template with growth factor were successful for reconstruction in patients who were suffering from complex underlying disease. Patients were uneventfully treated with minimal morbidities. In the experiments, the hMSCs are strongly proliferative even after 20 Gy irradiation in vitro. In vivo, 4 Gy rat whole body irradiation demonstrated that sustained marrow stromal (mesenchymal stem) cells survived in the bone marrow. Immediate artificial dermis application impregnated with cells and the cytokine over the 20 Gy irradiated skin and soft tissues demonstrated the significantly improved fat angiogenesis, architected dermal reconstitution, and less inflammatory epidermal recovery. Detailed understanding of underlying diseases and rational reconstructive procedures brings about good outcomes for difficult irradiated wound healing. Adipose-derived stem cells are also implicated in the limited local injuries for short cell harvesting and processing time in the same subject.

  7. A nanofibrous electrospun patch to maintain human mesenchymal cell stemness.

    PubMed

    Pandolfi, L; Furman, N Toledano; Wang, Xin; Lupo, C; Martinez, J O; Mohamed, M; Taraballi, F; Tasciotti, E

    2017-03-01

    Mesenchymal stem cells (MSCs) have been extensively investigated in regenerative medicine because of their crucial role in tissue healing. For these properties, they are widely tested in clinical trials, usually injected in cell suspension or in combination with tridimensional scaffolds. However, scaffolds can largely affect the fates of MSCs, inducing a progressive loss of functionality overtime. The ideal scaffold must delay MSCs differentiation until paracrine signals from the host induce their change. Herein, we proposed a nanostructured electrospun gelatin patch as an appropriate environment where human MSCs (hMSCs) can adhere, proliferate, and maintain their stemness. This patch exhibited characteristics of a non-linear elastic material and withstood degradation up to 4 weeks. As compared to culture and expansion in 2D, hMSCs on the patch showed a similar degree of proliferation and better maintained their progenitor properties, as assessed by their superior differentiation capacity towards typical mesenchymal lineages (i.e. osteogenic and chondrogenic). Furthermore, immunohistochemical analysis and longitudinal non-invasive imaging of inflammatory response revealed no sign of foreign body reaction for 3 weeks. In summary, our results demonstrated that our biocompatible patch favored the maintenance of undifferentiated hMSCs for up to 21 days and is an ideal candidate for tridimensional delivery of hMSCs. The present work reports a nanostructured patch gelatin-based able to maintain in vitro hMSCs stemness features. Moreover, hMSCs were able to differentiate toward osteo- and chondrogenic lineages once induces by differentiative media, confirming the ability of this patch to support stem cells for a potential in vivo application. These attractive properties together with the low inflammatory response in vivo make this patch a promising platform in regenerative medicine.

  8. The characteristics of human cranial bone marrow mesenchymal stem cells.

    PubMed

    Shinagawa, Katsuhiro; Mitsuhara, Takafumi; Okazaki, Takahito; Takeda, Masaaki; Yamaguchi, Satoshi; Magaki, Takuro; Okura, Yunosuke; Uwatoko, Hiroyuki; Kawahara, Yumi; Yuge, Louis; Kurisu, Kaoru

    2015-10-08

    Recently, cell-based therapy has attracted attention for treatment of central nervous system (CNS) disorders. Bone marrow-derived mesenchymal stem cells (BMSCs) are considered to have good engraftment potential. Therefore, more efficient and less invasive methods to obtain donor cells are required. Here, we established human BMSCs from cranial bone waste (cBMSCs) obtained following routine neurosurgical procedures. cBMSCs and cells obtained from the iliac crest (iBMSCs, standard BMSCs) showed expression of cell surface markers associated with mesenchymal stem cells and multipotency traits such as differentiation into osteogenic and adipogenic lineages. cBMSCs showed higher expression of the neural crest-associated mRNAs p75, Slug, and Snail than iBMSCs. Neurogenic induced cells from cBMSCs expressed the neural markers nestin, Pax6, neurofilament (NF)-L, and NF-M as seen with RT-PCR, and NF-M protein as seen with western blotting at higher levels than cells from iBMSCs. Immunostaining showed a significantly greater proportion of NF-M-positive cells in the population of induced cBMSCs compared with the population of iBMSCs. Thus, cBMSCs showed a greater tendency to differentiate into neuron-like cells than iBMSCs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Implications of mesenchymal stem cells in regenerative medicine.

    PubMed

    Kariminekoo, Saber; Movassaghpour, Aliakbar; Rahimzadeh, Amirbahman; Talebi, Mehdi; Shamsasenjan, Karim; Akbarzadeh, Abolfazl

    2016-05-01

    Mesenchymal stem cells (MSCs) are a population of multipotent progenitors which reside in bone marrow, fat, and some other tissues and can be isolated from various adult and fetal tissues. Self-renewal potential and multipotency are MSC's hallmarks. They have the capacity of proliferation and differentiation into a variety of cell lineages like osteoblasts, condrocytes, adipocytes, fibroblasts, cardiomyocytes. MSCs can be identified by expression of some surface molecules like CD73, CD90, CD105, and lack of hematopoietic specific markers including CD34, CD45, and HLA-DR. They are hopeful tools for regenerative medicine for repairing injured tissues. Many studies have focused on two significant features of MSC therapy: (I) systemically administered MSCs home to sites of ischemia or injury, and (II) MSCs can modulate T-cell-mediated immunological responses. MSCs express chemokine receptors and ligands involved in cells migration and homing process. MSCs induce immunomedulatory effects on the innate (dendritic cells, monocyte, natural killer cells, and neutrophils) and the adaptive immune system cells (T helper-1, cytotoxic T lymphocyte, and B lymphocyte) by secreting soluble factors like TGF-β, IL-10, IDO, PGE-2, sHLA-G5, or by cell-cell interaction. In this review, we discuss the main applications of mesenchymal stem in Regenerative Medicine and known mechanisms of homing and Immunomodulation of MSCs.

  10. Cisplatin impaired adipogenic differentiation of adipose mesenchymal stem cells.

    PubMed

    Chang, Yu-Hsun; Liu, Hwan-Wun; Chu, Tang-Yuan; Wen, Yao-Tseng; Ding, Dah-Ching

    2017-02-03

    Adipose mesenchymal stem cells (ASCs) were isolated from the adipose tissue and can be induced in vitro to differentiate into osteoblasts, chondroblasts, myocytes, neurons and other cell types. Cisplatin is a commonly used chemotherapy drug for cancer patients. However, the effects of cisplatin on ASC remain elusive. This study found that high-concentration cisplatin affects the viability of ASCs. First, IC50 concentration of cisplatin was evaluated. Proliferation of ASCs assessed by XTT method decreased immediately after cisplatin treatment with various concentrations. ASCs maintained mesenchymal stem cells surface markers evaluating by flow cytometry after cisplatin treatment. Upon differentiation by adding specific chemicals, a significant decrease in adipogenic differentiation (by Oil red staining) and osteogenic differentiation (by Alizarin red staining), and significant chondrogenic differentiation (by Alcian blue staining) were found after cisplatin treatment. Simultaneously, qRT-PCR was also used for evaluating the specific gene expressions after various differentiations. Finally, ASCs from one donor who had received cisplatin showed significantly decreased adipogenic differentiation but increased osteogenic differentiation compared with ASCs derived from one healthy donor. In conclusion, cisplatin affects the viability, proliferation, and differentiation of ASCs both in vitro and in vivo via certain signaling pathway such as p53 and Fas/FasL. The differentiation abilities of ASCs should be evaluated before their transplantation for repairing cisplatin-induced tissue damage.

  11. Induction of mesenchymal stem cell chondrogenesis by polyacrylate substrates.

    PubMed

    Glennon-Alty, Laurence; Williams, Rachel; Dixon, Simon; Murray, Patricia

    2013-04-01

    Mesenchymal stem cells (MSCs) can generate chondrocytes in vitro, but typically need to be cultured as aggregates in the presence of transforming growth factor beta (TGF-β), which makes scale-up difficult. Here we investigated if polyacrylate substrates modelled on the functional group composition and distribution of the Arg-Gly-Asp (RGD) integrin-binding site could induce MSCs to undergo chondrogenesis in the absence of exogenous TGF-β. Within a few days of culture on the biomimetic polyacrylates, both mouse and human MSCs, and a mesenchymal-like mouse-kidney-derived stem cell line, began to form multi-layered aggregates and started to express the chondrocyte-specific markers, Sox9, collagen II and aggrecan. Moreover, collagen II tended to be expressed in the centre of the aggregates, similarly to developing limb buds in vivo. Surface analysis of the substrates indicated that those with the highest surface amine content were most effective at promoting MSC chondrogenesis. These results highlight the importance of surface group functionality and the distribution of those groups in the design of substrates to induce MSC chondrogenesis.

  12. Mesenchymal stem cells: Emerging mechanisms of immunomodulation and therapy

    PubMed Central

    Glenn, Justin D; Whartenby, Katharine A

    2014-01-01

    Mesenchymal stem cells (MSCs) are a pleiotropic population of cells that are self-renewing and capable of differentiating into canonical cells of the mesenchyme, including adipocytes, chondrocytes, and osteocytes. They employ multi-faceted approaches to maintain bone marrow niche homeostasis and promote wound healing during injury. Biomedical research has long sought to exploit their pleiotropic properties as a basis for cell therapy for a variety of diseases and to facilitate hematopoietic stem cell establishment and stromal reconstruction in bone marrow transplantation. Early results demonstrated their usage as safe, and there was little host response to these cells. The discovery of their immunosuppressive functions ushered in a new interest in MSCs as a promising therapeutic tool to suppress inflammation and down-regulate pathogenic immune responses in graft-versus-host and autoimmune diseases such as multiple sclerosis, autoimmune diabetes, and rheumatoid arthritis. MSCs produce a large number of soluble and membrane-bound factors, some of which inhibit immune responses. However, the full range of MSC-mediated immune-modulation remains incompletely understood, as emerging reports also reveal that MSCs can adopt an immunogenic phenotype, stimulate immune cells, and yield seemingly contradictory results in experimental animal models of inflammatory disease. The present review describes the large body of literature that has been accumulated on the fascinating biology of MSCs and their complex effects on immune responses. PMID:25426250

  13. Wnt/β-Catenin Signaling Determines the Vasculogenic Fate of Postnatal Mesenchymal Stem Cells.

    PubMed

    Zhang, Zhaocheng; Nör, Felipe; Oh, Min; Cucco, Carolina; Shi, Songtao; Nör, Jacques E

    2016-06-01

    Vasculogenesis is the process of de novo blood vessel formation observed primarily during embryonic development. Emerging evidence suggest that postnatal mesenchymal stem cells are capable of recapitulating vasculogenesis when these cells are engaged in tissue regeneration. However, the mechanisms underlining the vasculogenic differentiation of mesenchymal stem cells remain unclear. Here, we used stem cells from human permanent teeth (dental pulp stem cells [DPSC]) or deciduous teeth (stem cells from human exfoliated deciduous teeth [SHED]) as models of postnatal primary human mesenchymal stem cells to understand mechanisms regulating their vasculogenic fate. GFP-tagged mesenchymal stem cells seeded in human tooth slice/scaffolds and transplanted into immunodeficient mice differentiate into human blood vessels that anastomize with the mouse vasculature. In vitro, vascular endothelial growth factor (VEGF) induced the vasculogenic differentiation of DPSC and SHED via potent activation of Wnt/β-catenin signaling. Further, activation of Wnt signaling is sufficient to induce the vasculogenic differentiation of postnatal mesenchymal stem cells, while Wnt inhibition blocked this process. Notably, β-catenin-silenced DPSC no longer differentiate into endothelial cells in vitro, and showed impaired vasculogenesis in vivo. Collectively, these data demonstrate that VEGF signaling through the canonical Wnt/β-catenin pathway defines the vasculogenic fate of postnatal mesenchymal stem cells. Stem Cells 2016;34:1576-1587. © 2016 AlphaMed Press.

  14. IL-17B activated mesenchymal stem cells enhance proliferation and migration of gastric cancer cells.

    PubMed

    Bie, Qingli; Zhang, Bin; Sun, Caixia; Ji, Xiaoyun; Barnie, Prince Amoah; Qi, Chen; Peng, Jingjing; Zhang, Danyi; Zheng, Dong; Su, Zhaoliang; Wang, Shengjun; Xu, Huaxi

    2017-03-21

    Mesenchymal stem cells are important cells in tumor microenvironment. We have previously demonstrated that IL-17B/IL-17RB signal promoted progression of gastric cancer. In this study, we further explored the effect of IL-17B on mesenchymal stem cells in tumor microenvironment and its impact on the tumor progression. The results showed that IL-17B induced the expression of stemness-related genes Nanog, Sox2, and Oct4 in mesenchymal stem cells and enhanced its tumor-promoting effect. The supernatant from cultured mesenchymal stem cells after treating with exogenous rIL-17B promoted the proliferation and migration of MGC-803, therefor suggesting that rIL-17B might promote mesenchymal stem cells to produce soluble factors. In addition, rIL-17B also activated the NF-κΒ, STAT3, β-catenin pathway in mesenchymal stem cells. Our data revealed a new mechanism that IL-17B enhanced the progression of gastric cancer by activating mesenchymal stem cells.

  15. Potential benefits of allogeneic bone marrow mesenchymal stem cells for wound healing.

    PubMed

    Badiavas, Alexander R; Badiavas, Evangelos V

    2011-11-01

    It is becoming increasingly evident that select adult stem cells have the capacity to participate in repair and regeneration of damaged and/or diseased tissues. Mesenchymal stem cells have been among the most studied adult stem cells for the treatment of a variety of conditions, including wound healing. Mesenchymal stem cell features potentially beneficial to cutaneous wound healing applications are reviewed. Given their potential for in vitro expansion and immune modulatory effects, both autologous and allogeneic mesenchymal stem cells appear to be well suited as wound healing therapies. Allogeneic mesenchymal stem cells derived from young healthy donors could have particular advantage over autologous sources where age and systemic disease can be significant factors.

  16. Dedifferentiation-reprogrammed mesenchymal stem cells with improved therapeutic potential.

    PubMed

    Liu, Yang; Jiang, Xiaohua; Zhang, Xiaohu; Chen, Rui; Sun, Tingting; Fok, Kin Lam; Dong, Jianda; Tsang, Lai Ling; Yi, Shaoqiong; Ruan, Yechun; Guo, Jinghui; Yu, Mei Kuen; Tian, Yuemin; Chung, Yiu Wa; Yang, Mo; Xu, Wenming; Chung, Chin Man; Li, Tingyu; Chan, Hsiao Chang

    2011-12-01

    Stem cell transplantation has been shown to improve functional outcome in degenerative and ischemic disorders. However, low in vivo survival and differentiation potential of the transplanted cells limits their overall effectiveness and thus clinical usage. Here we show that, after in vitro induction of neuronal differentiation and dedifferentiation, on withdrawal of extrinsic factors, mesenchymal stem cells (MSCs) derived from bone marrow, which have already committed to neuronal lineage, revert to a primitive cell population (dedifferentiated MSCs) retaining stem cell characteristics but exhibiting a reprogrammed phenotype distinct from their original counterparts. Of therapeutic interest, the dedifferentiated MSCs exhibited enhanced cell survival and higher efficacy in neuronal differentiation compared to unmanipulated MSCs both in vitro and in vivo, with significantly improved cognition function in a neonatal hypoxic-ischemic brain damage rat model. Increased expression of bcl-2 family proteins and microRNA-34a appears to be the important mechanism giving rise to this previously undefined stem cell population that may provide a novel treatment strategy with improved therapeutic efficacy.

  17. Use of Mesenchymal Stem Cells for Therapy of Cardiac Disease

    PubMed Central

    Karantalis, Vasileios; Hare, Joshua M.

    2015-01-01

    Despite substantial clinical advances over the past 65 years, cardiovascular disease remains the leading cause of death in America. The past 15 years has witnessed major basic and translational interest in the use of stem and/or precursor cells as a therapeutic agent for chronically injured organs. Among the cell types under investigation, adult mesenchymal stem cells (MSCs) are widely studied and in early stage clinical studies show promise for repair and regeneration of cardiac tissues. The ability of MSCs to differentiate into mesoderm and non-mesoderm derived tissues, their immunomodulatory effects, their availability and their key role in maintaining and replenishing endogenous stem cell niches have rendered them one of the most heavily investigated and clinically tested type of stem cell. Accumulating data from preclinical and early phase clinical trials document their safety when delivered as either autologous or allogeneic forms in a range of cardiovascular diseases, but also importantly define parameters of clinical efficacy that justify further investigation in larger clinical trials. Here, we review the biology of MSCs, their interaction with endogenous molecular and cellular pathways, and their modulation of immune responses. Additionally, we discuss factors that enhance their proliferative and regenerative ability and factors that may hinder their effectiveness in the clinical setting. PMID:25858066

  18. Mesenchymal stem cells differentiated into chondrocyte-Like cells.

    PubMed

    Narakornsak, Suteera; Poovachiranon, Naree; Peerapapong, Lamaiporn; Pothacharoen, Peeraphan; Aungsuchawan, Sirinda

    2016-05-01

    Among the stem cells contained in human amniotic fluid (hAF), the human amniotic fluid derived-mesenchymal stem cells (hAF-MSCs) are derived from fetal membranes and tissues that are produced during fetal development. The aim of this study was to characterize the 'stem-ness' properties of hAF-MSCs and their potency with regard to the chondrogenic differentiations using the scaffold cultivation method. This study revealed that the easily accessed and isolated MSCs were highly cell prolific and there were fewer ethical concerns regarding their usage. The MSCs were studied through the use of the alamar blue technique. In addition, after cell isolation, hAF-MSCs displayed typical MSCs morphologies including MSCs biomarker characteristics and immune privilege properties (CD44, CD73, CD90, CD105 and HLA-ABC) through immunofluorescence and flow cytometry. Interestingly, this result indicated a negative expression when using the C-Kit (CD117, tyrosine kinase receptor type III ligand for cytokine stem cell factor). This expression can be found at the cell's surface of the amniotic fluid-derived stem cells (AFSCs). This study found evidence that hAF-MSCs had the ability to differentiate the cells into the chondrogenic lineage by exhibiting chondrogenic related genes and proteins (SOX9, AGC, COL2A1 and COMP) through RT-qPCR, immunoenzymatic assays and immunofluorescence analysis. Furthermore, MSCs presented sGAGs accumulation, which was confirmed by histological analysis and SEM. Therefore, this study showed that the MSCs characteristics are contained in AF and are of significant value for further research. It appears that MSCs possess the potential for use in treatments that would necessitate the use of regenerative cell therapy. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. CD271 as a marker to identify mesenchymal stem cells from diverse sources before culture

    PubMed Central

    Álvarez-Viejo, María; Menéndez-Menéndez, Yolanda; Otero-Hernández, Jesús

    2015-01-01

    Mesenchymal stem cells, due to their characteristics are ideal candidates for cellular therapy. Currently, in culture these cells are defined by their adherence to plastic, specific surface antigen expression and multipotent differentiation potential. However, the in vivo identification of mesenchymal stem cells, before culture, is not so well established. Pre-culture identification markers would ensure higher purity than that obtained with selection based on adherence to plastic. Up until now, CD271 has been described as the most specific marker for the characterization and purification of human bone marrow mesenchymal stem cells. This marker has been shown to be specifically expressed by these cells. Thus, CD271 has been proposed as a versatile marker to selectively isolated and expand multipotent mesenchymal stem cells with both immunosuppressive and lymphohematopoietic engraftment-promoting properties. This review focuses on this marker, specifically on identification of mesenchymal stem cells from different tissues. Literature revision suggests that CD271 should not be defined as a universal marker to identify mesenchymal stem cells before culture from different sources. In the case of bone marrow or adipose tissue, CD271 could be considered a quite suitable marker; however this marker seems to be inadequate for the isolation of mesenchymal stem cells from other tissues such as umbilical cord blood or wharton’s jelly among others. PMID:25815130

  20. RNA-Seq Reveals the Angiogenesis Diversity between the Fetal and Adults Bone Mesenchyme Stem Cell.

    PubMed

    Zhao, Xin; Han, Yingmin; Liang, Yu; Nie, Chao; Wang, Jian

    2016-01-01

    In this research, we used RNA sequencing (RNA-seq) to analyze 23 single cell samples and 2 bulk cells sample from human adult bone mesenchyme stem cell line and human fetal bone mesenchyme stem cell line. The results from the research demonstrated that there were big differences between two cell lines. Adult bone mesenchyme stem cell lines showed a strong trend on the blood vessel differentiation and cell motion, 48/49 vascular related differential expressed genes showed higher expression in adult bone mesenchyme stem cell lines (Abmsc) than fetal bone mesenchyme stem cell lines (Fbmsc). 96/106 cell motion related genes showed the same tendency. Further analysis showed that genes like ANGPT1, VEGFA, FGF2, PDGFB and PDGFRA showed higher expression in Abmsc. This work showed cell heterogeneity between human adult bone mesenchyme stem cell line and human fetal bone mesenchyme stem cell line. Also the work may give an indication that Abmsc had a better potency than Fbmsc in the future vascular related application.

  1. Establishment of human hair follicle mesenchymal stem cells with overexpressed human hepatocyte growth factor.

    PubMed

    Zhou, Dan; Cheng, Hongjing; Liu, Jinyu; Zhang, Lei

    2017-06-01

    Chronic liver disease has become a major health problem that causes serious damage to human health. Since the existing treatment effect was not ideal, we need to seek new treatment methods. We utilized the gene recombination technology to obtain the human hair mesenchymal stem cells which overexpression of human hepatocyte growth factor (hHGF). Furthermore, we verified the property of transfected cells through detecting surface marker by flow cytometry. We show here establishment of the hHGF-overexpressing lentivirus vector, and successfully transfection to human hair follicle mesenchymal stem cells. The verified experiments could demonstrate the human hair follicle mesenchymal stem cells which have been transfected still have the properties of stem cells. We successfully constructed human hair follicle mesenchymal stem cells which overexpression hHGF, and maintain the same properties compared with pro-transfected cells.

  2. Mesenchymal Stem Cell Fate: Applying Biomaterials for Control of Stem Cell Behavior

    PubMed Central

    Anderson, Hilary J.; Sahoo, Jugal Kishore; Ulijn, Rein V.; Dalby, Matthew J.

    2016-01-01

    The materials pipeline for biomaterials and tissue engineering applications is under continuous development. Specifically, there is great interest in the use of designed materials in the stem cell arena as materials can be used to manipulate the cells providing control of behavior. This is important as the ability to “engineer” complexity and subsequent in vitro growth of tissues and organs is a key objective for tissue engineers. This review will describe the nature of the materials strategies, both static and dynamic, and their influence specifically on mesenchymal stem cell fate. PMID:27242999

  3. Guidance of Mesenchymal Stem Cells on Fibronectin Structured Hydrogel Films

    PubMed Central

    Kasten, Annika; Naser, Tamara; Brüllhoff, Kristina; Fiedler, Jörg; Müller, Petra; Möller, Martin; Rychly, Joachim; Groll, Jürgen; Brenner, Rolf E.

    2014-01-01

    Designing of implant surfaces using a suitable ligand for cell adhesion to stimulate specific biological responses of stem cells will boost the application of regenerative implants. For example, materials that facilitate rapid and guided migration of stem cells would promote tissue regeneration. When seeded on fibronectin (FN) that was homogeneously immmobilized to NCO-sP(EO-stat-PO), which otherwise prevents protein binding and cell adhesion, human mesenchymal stem cells (MSC) revealed a faster migration, increased spreading and a more rapid organization of different cellular components for cell adhesion on fibronectin than on a glass surface. To further explore, how a structural organization of FN controls the behavior of MSC, adhesive lines of FN with varying width between 10 µm and 80 µm and spacings between 5 µm and 20 µm that did not allow cell adhesion were generated. In dependance on both line width and gaps, cells formed adjacent cell contacts, were individually organized in lines, or bridged the lines. With decreasing sizes of FN lines, speed and directionality of cell migration increased, which correlated with organization of the actin cytoskeleton, size and shape of the nuclei as well as of focal adhesions. Together, defined FN lines and gaps enabled a fine tuning of the structural organization of cellular components and migration. Microstructured adhesive substrates can mimic the extracellular matrix in vivo and stimulate cellular mechanisms which play a role in tissue regeneration. PMID:25329487

  4. [Biological characteristics of human olfactory mucosa mesenchymal stem cells].

    PubMed

    Ge, Lite; Zhuo, Yi; Duan, Da; Zhao, Zhenyu; Teng, Xiaohua; Wang, Lei; Lu, Ming

    2015-01-01

    To observe the biological characteristics of the human olfactory mucosa mesenchymal stem cells (hOM-MSCs). The hOM-MSCs were isolated, cultured and identified in vitro. Scanning electron microscope and transmission electron microscope were used to observe the ultrastructure of hOMMSCs. Th e cells were induced towards adipocyte, osteocyte, neural stem cells, neural-like-cells in vitro. The hOM-MSCs were mainly in spindle shape, arranged with radial colony. The hOMMSCs expressed CD73 and CD90 but no CD34 and CD45. Th e short and thick microvilli processes were seen at the surface of hOM-MSCs by scanning electron microscope, and 2 different cellular morphology of hOM-MSCs were seen under transmission electron microscope. Moreover, the hOMMSCs could be differentiated into adipocyte, osteocyte, neural stem cells and neural cells. The hOM-MSCs possess general biological characteristics of MSCs and display multiple differentiation functions. They can be served as ideal seed cells in tissue-engineering for injury repair.

  5. Generation of mesenchymal stem cell lines from murine bone marrow.

    PubMed

    Sreejit, P; Dilip, K B; Verma, R S

    2012-10-01

    Mesenchymal stem cells (MSC), because of their multipotency and ease of purification and amplification, are an ideal stem cell source for cell therapies. Bone-marrow-derived stem cells (BMSC) can be used to develop MSC-like immortalized cell lines with large proliferation and differentiation potentialities. Their immortalized status prevents the maintenance of MSC function and characters; this can be negated by modifying the isolation and maintenance protocol. Adult murine BMSC were isolated and maintained in media without additional growth factors together with passage-dependent reseeding following trypsinization. Cells maintained over 25 passages were considered as putative cell lines and characterized. The phenotypic and genotypic characteristics and multilineage differentiation potential of the cells were assessed by morphological, phenotypic, and molecular assays at various passages. The putative BMSC cell lines showed the characteristics of MSC and were able to maintain these characteristics, even after immortalization. The phenotypic data demonstrated difference among two cell lines; this was further validated by the difference in their multilineage differentiation potential following specific induction. More importantly, no changes were observed in the genotypic level in comparison with control cells, even after more than 50 passages. Our protocol thus advances the isolation and maintenance of BMSC and the development of putative BMSC cell lines that maintain characteristics of MSC, including multilineage differentiation potential, after more than 40 passages.

  6. Mesenchymal stem cell-based therapy for type 1 diabetes.

    PubMed

    Wu, Hao; Mahato, Ram I

    2014-03-01

    Diabetes has increasingly become a worldwide health problem, causing huge burden on healthcare system and economy. Type 1 diabetes (T1D), traditionally termed "juvenile diabetes" because of an early onset age, is affecting 5-10% of total diabetic population. Insulin injection, the predominant treatment for T1D, is effective to ameliorate the hyperglycemia but incompetent to relieve the autoimmunity and to regenerate lost islets. Islet transplantation, an experimental treatment for T1D, also suffers from limited supply of human islets and poor immunosuppression. The recent progress in regenerative medicine, especially stem cell therapy, has suggested several novel and potential cures for T1D. Mesenchymal stem cell (MSC) based cell therapy is among one of them. MSCs are a type of adult stem cells residing in bone marrow, adipose tissue, umbilical cord blood, and many other tissues. MSCs, with self-renewal potential and transdifferentiation capability, can be expanded in vitro and directed to various cell lineages with relatively less efforts. MSCs have well-characterized hypoimmunogenicity and immunomodulatory effect. All these features make MSCs attractive for treating T1D. Here, we review the properties of MSCs and some of the recent progress using MSCs as a new therapeutic in the treatment of T1D. We also discuss the strength and limitations of using MSC therapy in human trials.

  7. Human mesenchymal stem cells: New sojourn of bacterial pathogens.

    PubMed

    Kohli, Sakshi; Singh, Yadvir; Sowpati, Divya Tej; Ehtesham, Nasreen Z; Dobrindt, Ulrich; Hacker, Jörg; Hasnain, Seyed E

    2015-05-01

    Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tuberculosis), is the leading infectious disease which claims one human life every 15-20s globally. The persistence of this deadly disease in human population can be attributed to the ability of the bacterium to stay in latent form. M. tuberculosis possesses a plethora of mechanisms not only to survive latently under harsh conditions inside the host but also modulate the host immune cells in its favour. Various M. tuberculosis gene families have also been described to play a role in this process. Recently, human bone marrow derived mesenchymal stem cells (MSCs) have been reported as a niche for dormant M. tuberculosis. MSCs possess abilities to alter the host immune response. The bacterium finds this self-renewal and immune privileged nature of MSCs very favourable not only to modulate the host immune system, with some help from its own genes, but also to avoid the external drug pressure. We suggest that the MSCs not only provide a resting place for M. tuberculosis but could also, by virtue of their intrinsic ability to disseminate in the body, explain the genesis of extra-pulmonary TB. A similar exploitation of stem cells by other bacterial pathogens is a distinct possibility. It may be likely that other intracellular bacterial pathogens adopt this strategy to 'piggy-back' on to ovarian stem cells to ensure vertical transmission and successful propagation to the next generation. Copyright © 2015 Elsevier GmbH. All rights reserved.

  8. Inhibition of osteogenic differentiation of human mesenchymal stem cells

    PubMed Central

    Moioli, Eduardo K.; Hong, Liu; Mao, Jeremy J.

    2010-01-01

    Mesenchymal stem cells (hMSCs) have been shown to differentiate into osteoblasts that, in turn, are capable of forming tissues analogous to bone. The present study was designed to investigate the inhibition of osteogenesis by hMSCs. Bone marrow-derived hMSCs were treated with transforming growth factor β-3 (TGFβ3) at various doses during or after their differentiation into osteogenic cells. TGFβ3 was encapsulated in poly(DL-lactic-co-glycolic acid) (PLGA) microspheres and released via controlled delivery in the osteogenic culture of hMSCs and hMSC-derived osteoblasts for up to 28 days. Controlled release of TGFβ3 inhibited the osteogenic differentiation of hMSCs, as evidenced by significantly reduced alkaline phosphatase activity and staining, as well as decreased mineral deposition. After hMSCs had been differentiated into osteoblasts, controlled release of TGFβ3 further inhibited not only alkaline phosphatase and mineral deposition but also osteocalcin expression. These findings demonstrate the potential for sustained modulation of the behavior of stem cells and/or stem cell-derived lineage-specific cells via controlled release of growth factor(s). The attenuation of osteogenic differentiation of MSCs may facilitate understanding not only the regulation and patterning of osteogenesis in development but also several pathological models such as osteopetrosis, craniosynostosis, and heart valve calcification. PMID:17537129

  9. Mesenchymal Stem Cells: The Moniker Fits the Science.

    PubMed

    Boregowda, Siddaraju V; Booker, Cori N; Phinney, Donald G

    2017-09-28

    Mesenchymal stem cells (MSCs) have gained widespread use in regenerative medicine due to their demonstrated efficacy in a broad range of experimental animal models of disease and their excellent safety profile in human clinical trials. Outcomes from these studies suggest that MSCs achieve therapeutic effects in vivo in non-homologous applications predominantly by paracrine action. This paracrine-centric viewpoint has become widely entrenched in the field, and has spurred a campaign to rename MSCs as "medicinal signaling cells" to better reflect this mode of action. In this commentary, we argue that the paracrine-centric viewpoint and proposed name change ignores a wealth of old and new data that unequivocally demonstrate the stem cell nature of MSCs, and also overlooks a large effort to exploit homologous applications of MSCs in human clinical trials. Furthermore, we offer evidence that a stem cell-centric viewpoint of MSCs provides a comprehensive understanding of MSC biology that encompasses their paracrine activity, and provides a better foundation to develop metrics that quantify the biological potency of MSC batches for both homologous and non-homologous clinical applications. This article is protected by copyright. All rights reserved. © 2017 AlphaMed Press.

  10. Characterization of Mesenchymal Stem Cells from Human Vocal Fold Fibroblasts

    PubMed Central

    Hanson, Summer; Kim, Jaehyup; Quinchia Johnson, Beatriz H.; Bradley, Bridget; Breunig, Melissa; Hematti, Peiman; Thibeault, Susan L.

    2009-01-01

    Objective/Hypothesis Mesenchymal stem cells (MSCs) originally isolated from bone marrow, are fibroblast-looking cells that are now assumed to be present in the stromal component of many tissues. MSCs are characterized by a certain set of criteria including their growth culture characteristics, a combination of cell surface markers, and the ability to differentiate along multiple mesenchymal tissue lineages. We hypothesized that human vocal fold fibroblasts (hVFF) isolated from the lamina propria meet the criteria established to define MSCs and are functionally similar to MSCs derived from BM and adipose tissue. Study Design In vitro study Methods HVFF were previously derived from human vocal fold tissues. MSCs were derived from adipose tissue (AT), and BM of healthy donors, based on their attachment to culture dishes and their morphology, and expanded in culture. Cells were analyzed for standard cell surface markers identified on BM-derived MSCs as well as the ability to differentiate into cells of mesenchymal lineage, i.e. fat, bone and cartilage. We investigated the immunophenotype of these cells before and after interferon-γ (INF- γ) stimulation. Results HVFF displayed cell surface markers and multipotent differentiation capacity characteristic of MSCs. Furthermore, these cells exhibited similar patterns of expression of HLA and co-stimulatory molecules, after stimulation with INF- γ compared to MSCs derived from BM and AT. Conclusions Based on our findings hVFF derived from lamina propria have the same cell surface markers, immunophenotypic characteristics, and differentiation potential as BM- and AT-derived MSCs. We propose VF fibroblasts are MSCs resident in the vocal fold lamina propria. PMID:20131365

  11. Runx2 expression: A mesenchymal stem marker for cancer

    PubMed Central

    Valenti, Maria Teresa; Serafini, Paola; Innamorati, Giulio; Gili, Anna; Cheri, Samuele; Bassi, Claudio; Dalle Carbonare, Luca

    2016-01-01

    The transcription factor runt-related transcription factor 2 (Runx2) is a master gene implicated in the osteogenic differentiation of mesenchymal stem cells, and thus serves a determinant function in bone remodelling and skeletal integrity. Various signalling pathways regulate Runx2 abundance, which requires a number of molecules to finely modulate its expression. Furthermore, this gene may be ectopically-expressed in cancer cells. Recent studies have reported the involvement of Runx2 in cell proliferation, epithelial-mesenchymal transition, apoptosis and metastatic processes, suggesting it may represent a useful therapeutic target in cancer treatment. However, studies evaluating this gene as a cancer marker are lacking. In the present study, Runx2 expression was analysed in 11 different cancer cell lines not derived from bone tumour. In addition, the presence of Runx2-related cell-free RNA was examined in the peripheral blood of 41 patients affected by different forms of tumours. The results demonstrated high expression levels of Runx2 in the cancer cell lines and identified the presence of Runx2-related cell-free RNA in the peripheral blood of patients with cancer. As compared with normal individuals, the expression level was increased by 14.2-fold in patients with bone metastases and by 4.01-fold in patients without metastases. The results of the present study therefore opens up the possibility to exploit Runx2 expression as a cancer biomarker allowing the use of minimally invasive approaches for diagnosis and follow-up. PMID:27895787

  12. Human mesenchymal stem cells enhance the systemic effects of radiotherapy.

    PubMed

    de Araújo Farias, Virgínea; O'Valle, Francisco; Lerma, Borja Alonso; Ruiz de Almodóvar, Carmen; López-Peñalver, Jesús J; Nieto, Ana; Santos, Ana; Fernández, Beatriz Irene; Guerra-Librero, Ana; Ruiz-Ruiz, María Carmen; Guirado, Damián; Schmidt, Thomas; Oliver, Francisco Javier; Ruiz de Almodóvar, José Mariano

    2015-10-13

    The outcome of radiotherapy treatment might be further improved by a better understanding of individual variations in tumor radiosensitivity and normal tissue reactions, including the bystander effect. For many tumors, however, a definitive cure cannot be achieved, despite the availablity of more and more effective cancer treatments. Therefore, any improvement in the efficacy of radiotherapy will undoubtedly benefit a significant number of patients. Many experimental studies measure a bystander component of tumor cell death after radiotherapy, which highlights the importance of confirming these observations in a preclinical situation. Mesenchymal stem cells (MSCs) have been investigated for use in the treatment of cancers as they are able to both preferentially home onto tumors and become incorporated into their stroma. This process increases after radiation therapy. In our study we show that in vitro MSCs, when activated with a low dose of radiation, are a source of anti-tumor cytokines that decrease the proliferative activity of tumor cells, producing a potent cytotoxic synergistic effect on tumor cells. In vivo administration of unirradiated mesenchymal cells together with radiation leads to an increased efficacy of radiotherapy, thus leading to an enhancement of short and long range bystander effects on primary-irradiated tumors and distant-non-irradiated tumors. Our experiments indicate an increased cell loss rate and the decrease in the tumor cell proliferation activity as the major mechanisms underlying the delayed tumor growth and are a strong indicator of the synergistic effect between RT and MSC when they are applied together for tumor treatment in this model.

  13. Osteogenic and adipogenic potential of porcine adipose mesenchymal stem cells.

    PubMed

    Qu, Chang-qing; Zhang, Guo-hua; Zhang, Li-jie; Yang, Gong-she

    2007-02-01

    Human, rat, and mouse studies have demonstrated the existence of a population of adipose mesenchymal stem cells (AMSCs) that can undergo multilineage differentiation in vitro. Understanding the clinical potential of AMSCs may require their use in preclinical large-animal models such as pigs. Thus, the objectives of this study were to establish a protocol for the isolation of porcine AMSCs from adipose tissue and to examine their ex vivo differentiation potential to adipocytes and osteoblast. The porcine AMSCs from passage 4 were selected for differentiation analysis. The adipocytes were identified morphologically by staining with Oil Red O, and the adipogenic marker genes were examined by RT-PCR technique. Osteogenic lineage was documented by deposition of calcium stained with Alzarin Red S, visualization of alkaline phosphatase activity, and expression of marker gene. Our result indicates that porcine AMSCs have been successfully isolated and induced differentiation into adipocytes and osteoblasts. This study suggested that porcine AMSCs are also a valuable model system for the study on the mesenchymal lineages for basic research and tissue engineering.

  14. Harnessing mesenchymal stem cell homing as an anticancer therapy.

    PubMed

    Hagenhoff, Anna; Bruns, Christiane J; Zhao, Yue; von Lüttichau, Irene; Niess, Hanno; Spitzweg, Christine; Nelson, Peter J

    2016-09-01

    Mesenchymal stromal cells (MSCs) are non-hematopoietic progenitor cells that have been exploited as vehicles for cell-based cancer therapy. The general approach is based on the innate potential of adoptively applied MSC to undergo facilitated recruitment to malignant tissue. MSC from different tissue sources have been engineered using a variety of therapy genes that have shown efficacy in solid tumor models. In this review we will focus on the current developments of MSC-based gene therapy, in particular the diverse approaches that have been used for MSCs-targeted tumor therapy. We also discuss some outstanding issues and general prospects for their clinical application. The use of modified mesenchymal stem cells as therapy vehicles for the treatment of solid tumors has progressed to the first generation of clinical trials, but the general field is still in its infancy. There are many questions that need to be addressed if this very complex therapy approach is widely applied in clinical settings. More must be understood about the mechanisms underlying tumor tropism and we need to identify the optimal source of the cells used. Outstanding issues also include the therapy transgenes used, and which tumor types represent viable targets for this therapy.

  15. Molecular Characterization of Spontaneous Mesenchymal Stem Cell Transformation

    PubMed Central

    Rubio, Daniel; Garcia, Silvia; Paz, Maria F.; De la Cueva, Teresa; Lopez-Fernandez, Luis A.; Lloyd, Alison C.; Garcia-Castro, Javier; Bernad, Antonio

    2008-01-01

    Background We previously reported the in vitro spontaneous transformation of human mesenchymal stem cells (MSC) generating a population with tumorigenic potential, that we termed transformed mesenchymal cells (TMC). Methodology/Principal Findings Here we have characterized the molecular changes associated with TMC generation. Using microarrays techniques we identified a set of altered pathways and a greater number of downregulated than upregulated genes during MSC transformation, in part due to the expression of many untranslated RNAs in MSC. Microarray results were validated by qRT-PCR and protein detection. Conclusions/Significance In our model, the transformation process takes place through two sequential steps; first MSC bypass senescence by upregulating c-myc and repressing p16 levels. The cells then bypass cell crisis with acquisition of telomerase activity, Ink4a/Arf locus deletion and Rb hyperphosphorylation. Other transformation-associated changes include modulation of mitochondrial metabolism, DNA damage-repair proteins and cell cycle regulators. In this work we have characterized the molecular mechanisms implicated in TMC generation and we propose a two-stage model by which a human MSC becomes a tumor cell. PMID:18167557

  16. Novel hedgehog agonists promote osteoblast differentiation in mesenchymal stem cells.

    PubMed

    Nakamura, Takashi; Naruse, Masahiro; Chiba, Yuta; Komori, Toshihisa; Sasaki, Keiichi; Iwamoto, Masahiro; Fukumoto, Satoshi

    2015-04-01

    Hedgehog (Hh) family members are involved in multiple cellular processes including proliferation, migration, differentiation, and cell fate determination. Recently, the novel Hh agonists Hh-Ag 1.3 and 1.7 were identified in a high-throughput screening of small molecule compounds that activate the expression of Gli1, a target of Hh signaling. This study demonstrates that Hh-Ag 1.3 and 1.7 strongly activate the expression of endogenous Gli1 and promote osteoblast differentiation in the mesenchymal stem cell line C3H10T1/2. Both compounds stimulated alkaline phosphatase activity in a dose-dependent manner, and induced osteoblast marker gene expression in C3H10T1/2 cells, which indicated that they had acquired an osteoblast identity. Of the markers, the expression of osterix/Sp7, a downstream target of runt-related transcription factor (Runx)2, was induced by Hh-Ag 1.7, which also rescued the osteoblast differentiation defect of RD-127, a mesenchymal cell line from Runx2-deficient mice. Hh-Ags also activated canonical Wnt signaling and synergized with low doses of BMP-2 to enhance osteoblastic potential. Thus, Hh-Ag 1.7 could be useful for bone healing in individuals with abnormalities in osteogenesis, such as osteoporosis patients and the elderly, and can contribute to the development of novel therapeutics for the treatment of bone fractures and defects. © 2014 Wiley Periodicals, Inc.

  17. Mesenchymal stem cells: key players in cancer progression.

    PubMed

    Ridge, Sarah M; Sullivan, Francis J; Glynn, Sharon A

    2017-02-01

    Tumour progression is dependent on the interaction between tumour cells and cells of the surrounding microenvironment. The tumour is a dynamic milieu consisting of various cell types such as endothelial cells, fibroblasts, cells of the immune system and mesenchymal stem cells (MSCs). MSCs are multipotent stromal cells that are known to reside in various areas such as the bone marrow, fat and dental pulp. MSCs have been found to migrate towards inflammatory sites and studies have shown that they also migrate towards and incorporate into the tumour. The key question is how they interact there. MSCs may interact with tumour cells through paracrine signalling. On the other hand, MSCs have the capacity to differentiate to various cell types such as osteocytes, chondrocytes and adipocytes and it is possible that MSCs differentiate at the site of the tumour. More recently it has been shown that cross-talk between tumour cells and MSCs has been shown to increase metastatic potential and promote epithelial-to-mesenchymal transition. This review will focus on the role of MSCs in tumour development at various stages of progression from growth of the primary tumour to the establishment of distant metastasis.

  18. Migration ability and Toll-like receptor expression of human mesenchymal stem cells improves significantly after three-dimensional culture.

    PubMed

    Zhou, Panpan; Liu, Zilin; Li, Xue; Zhang, Bing; Wang, Xiaoyuan; Lan, Jing; Shi, Qing; Li, Dong; Ju, Xiuli

    2017-09-16

    While the conventional two-dimensional (2D) culture protocol is well accepted for the culture of mesenchymal stem cells (MSCs), this method fails to recapitulate the in vivo native three-dimensional (3D) cellular microenvironment, and may result in phenotypic changes, and homing and migration capacity impairments. MSC preparation in 3D culture systems has been considered an attractive preparatory and delivery method recently. We seeded human umbilical cord-derived MSCs (hUCMSCs) in a 3D culture system with porcine acellular dermal matrix (PADM), and investigated the phenotypic changes, the expression changes of some important receptors, including Toll-like receptors (TLRs) and C-X-C chemokine receptor type 4 (CXCR4) when hUCMSCs were transferred from 2D to 3D systems, as well as the alterations in in vivo homing and migration potential. It was found that the percentage of CD105-positive cells decreased significantly, whereas that of CD34- and CD271-positive cells increased significantly in 3D culture, compared to that in 2D culture. The mRNA and protein expression levels of TLR2, TLR3, TLR4, TLR6, and CXCR4 in hUCMSCs were increased significantly upon culturing with PADM for 3 days, compared to the levels in 2D culture. The numbers of migratory 3D hUCMSCs in the heart, liver, spleen, and bone marrow were significantly greater than the numbers of 2D hUCMSCs, and the worst migration occurred in 3D + AMD3100 (CXCR4 antagonist) hUCMSCs. These results suggested that 3D culture of hUCMSCs with PADM could alter the phenotypic characteristics of hUCMSCs, increase their TLR and CXCR4 expression levels, and promote their migratory and homing capacity in which CXCR4 plays an important role. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Hepatocyte growth factor modification promotes the amelioration effects of human umbilical cord mesenchymal stem cells on rat acute kidney injury.

    PubMed

    Chen, Yuan; Qian, Hui; Zhu, Wei; Zhang, Xu; Yan, Yongmin; Ye, Shengqin; Peng, Xiujuan; Li, Wei; Xu, Wenrong

    2011-01-01

    Human umbilical cord-derived mesenchymal stem cells (hucMSCs) are particularly attractive cells for cellular and gene therapy in acute kidney injury (AKI). Adenovirus-mediated gene therapy has been limited by immune reaction and target genes selection. However, in the present study, we investigated the therapeutic effects of hepatocyte growth factor modified hucMSCs (HGF-hucMSCs) in ischemia/reperfusion-induced AKI rat models. In vivo animal models were generated by subjecting to 60 min of bilateral renal injury by clamping the renal pedicles and then introduced HGF-hucMSCs via the left carotid artery. Our results revealed that serum creatinine and urea nitrogen levels decreased to the baseline more quickly in HGF-hucMSCs-treated group than that in hucMSCs- or green fluorescent protein-hucMSCs-treated groups at 72 h after injury. The percent of proliferating cell nuclear antigen-positive cells in HGF-hucMSCs-treated group was higher than that in the hucMSCs or green fluorescent protein-hucMSCs-treated groups. Moreover, injured renal tissues treated with HGF-hucMSCs also exhibited less hyperemia and renal tubule cast during the recovery process. Immunohistochemistry and living body imaging confirmed that HGF-hucMSCs localize to areas of renal injury. Real-time polymerase chain reaction result showed that HGF-hucMSCs also inhibited caspase-3 and interleukin-1β mRNA expression in injured renal tissues. Western blot also showed HGF-hucMSCs-treated groups had lower expression of interleukin-1β. Terminal deoxynucleotidyl transferase biotin-deoxyuridine triphosphate (dUTP) nick end labeling method indicated that HGF-hucMSCs-treated group had the least apoptosis cells. In conclusion, our findings suggest that HGF modification promotes the amelioration of ischemia/reperfusion-induced rat renal injury via antiapoptotic and antiinflammatory mechanisms; thus, providing a novel therapeutic application for hucMSCs in AKI.

  20. Enhanced cell survival and paracrine effects of mesenchymal stem cells overexpressing hepatocyte growth factor promote cardioprotection in myocardial infarction.

    PubMed

    Zhao, Liyan; Liu, Xiaolin; Zhang, Yuelin; Liang, Xiaoting; Ding, Yue; Xu, Yan; Fang, Zhen; Zhang, Fengxiang

    2016-05-15

    Poor cell survival post transplantation compromises the therapeutic benefits of mesenchymal stem cells (MSCs) in myocardial infarction (MI). Hepatocyte growth factor (HGF) is an important cytokine for angiogenesis, anti-inflammation and anti-apoptosis. This study aimed to evaluate the cardioprotective effects of MSCs overexpressing HGF in a mouse model of MI. The apoptosis of umbilical cord-derived MSCs (UC-MSCs) and HGF-UC-MSCs under normoxic and hypoxic conditions was detected. The conditioned medium (CdM) of UC-MSCs and HGF-UC-MSCs under a hypoxic condition was harvested and its protective effect on neonatal cardiomyocytes (NCMs) exposed to a hypoxic challenge was examined. UC-MSCs and HGF-UC-MSCs were transplanted into the peri-infarct region in mice following MI and heart function assessed 4 weeks post transplantation. The apoptosis of HGF-UC-MSCs under hypoxic conditions was markedly decreased compared with that of UC-MSCs. NCMs treated with HGF-UC-MSC hypoxic CdM (HGF-UC-MSCs-hy-CdM) exhibited less cell apoptosis in response to hypoxic challenge than those treated with UC-MSC hypoxic CdM (UC-MSCs-hy-CdM). HGF-UC-MSCs-hy-CdM released the inhibited p-Akt and lowered the enhanced ratio of Bax/Bcl-2 induced by hypoxia in the NCMs. HGF-UC-MSCs-hy-CdM expressed higher levels of HGF, EGF, bFGF and VEGF than UC-MSCs-hy-CdM. Transplantation of HGF-UC-MSCs or UC-MSCs greatly improved heart function in the mouse model of MI. Compared with UC-MSCs, transplantation of HGF-UC-MSCs was associated with less cardiomyocyte apoptosis, enhanced angiogenesis and increased proliferation of cardiomyocytes. This study may provide a novel therapeutic strategy for MSC-based therapy in cardiovascular disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Mesenchymal stem cells protect from hypoxia-induced alveolar epithelial-mesenchymal transition.

    PubMed

    Uzunhan, Yurdagül; Bernard, Olivier; Marchant, Dominique; Dard, Nicolas; Vanneaux, Valérie; Larghero, Jérôme; Gille, Thomas; Clerici, Christine; Valeyre, Dominique; Nunes, Hilario; Boncoeur, Emilie; Planès, Carole

    2016-03-01

    Administration of bone marrow-derived human mesenchymal stem cells (hMSC) reduces lung inflammation, fibrosis, and mortality in animal models of lung injury, by a mechanism not completely understood. We investigated whether hMSC would prevent epithelial-mesenchymal transition (EMT) induced by hypoxia in primary rat alveolar epithelial cell (AEC). In AEC cultured on semipermeable filters, prolonged hypoxic exposure (1.5% O2 for up to 12 days) induced phenotypic changes consistent with EMT, i.e., a change in cell morphology, a decrease in transepithelial resistance (Rte) and in the expression of epithelial markers [zonula occludens-1 (ZO-1), E-cadherin, AQP-5, TTF-1], together with an increase in mesenchymal markers [vimentin, α-smooth muscle actin (α-SMA)]. Expression of transcription factors driving EMT such as SNAIL1, ZEB1, and TWIST1 increased after 2, 24, and 48 h of hypoxia, respectively. Hypoxia also induced TGF-β1 mRNA expression and the secretion of active TGF-β1 in apical medium, and the expression of connective tissue growth factor (CTGF), two inducers of EMT. Coculture of AEC with hMSC partially prevented the decrease in Rte and in ZO-1, E-cadherin, and TTF-1 expression, and the increase in vimentin expression induced by hypoxia. It also abolished the increase in TGF-β1 expression and in TGF-β1-induced genes ZEB1, TWIST1, and CTGF. Finally, incubation with human recombinant KGF at a concentration similar to what was measured in hMSC-conditioned media restored the expression of TTF-1 and prevented the increase in TWIST1, TGF-β1, and CTGF in hypoxic AEC. Our results indicate that hMSC prevent hypoxia-induced alveolar EMT through the paracrine modulation of EMT signaling pathways and suggest that this effect is partly mediated by KGF. Copyright © 2016 the American Physiological Society.

  2. VEGF improves survival of mesenchymal stem cells in infarcted hearts

    SciTech Connect

    Pons, Jennifer; Huang Yu; Arakawa-Hoyt, Janice; Washko, Daniel; Takagawa, Junya; Ye, Jianqin; Grossman, William; Su Hua

    2008-11-14

    Bone marrow-derived mesenchymal stem cells (MSC) are a promising source for cell-based treatment of myocardial infarction (MI), but existing strategies are restricted by low cell survival and engraftment. We examined whether vascular endothelial growth factor (VEGF) improve MSC viability in infracted hearts. We found long-term culture increased MSC-cellular stress: expressing more cell cycle inhibitors, p16{sup INK}, p21 and p19{sup ARF}. VEGF treatment reduced cellular stress, increased pro-survival factors, phosphorylated-Akt and Bcl-xL expression and cell proliferation. Co-injection of MSCs with VEGF to MI hearts increased cell engraftment and resulted in better improvement of cardiac function than that injected with MSCs or VEGF alone. In conclusion, VEGF protects MSCs from culture-induce cellular stress and improves their viability in ischemic myocardium, which results in improvements of their therapeutic effect for the treatment of MI.

  3. Mesenchymal stem cell therapy in horses: useful beyond orthopedic injuries?

    PubMed

    De Schauwer, Catharina; Van de Walle, Gerlinde R; Van Soom, Ann; Meyer, Evelyne

    2013-12-01

    In the past decade, mesenchymal stem cells (MSC) have received much attention in equine veterinary medicine. The first therapeutic use of equine MSC was reported in 2003. Since then, the clinical application of MSC has been exploding with thousands of horses now treated worldwide. At present, MSC are mainly used in veterinary medicine to treat musculoskeletal diseases based on their ability to differentiate into various tissues of mesodermal origin. This is in marked contrast to human medicine, where MSC therapies are primarily focused on immune-mediated, inflammatory, and ischemic diseases. In this review, both orthopedic as well as non-orthopedic clinical applications of equine MSC are discussed. A brief overview is provided on the potential of MSC for non-orthopedic injuries with emphasis on those diseases, which occur in both humans and horses.

  4. Therapeutic applications of mesenchymal stem cells for amyotrophic lateral sclerosis

    PubMed Central

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting the neuromuscular system and does not have a known singular cause. Genetic mutations, extracellular factors, non-neuronal support cells, and the immune system have all been shown to play varied roles in clinical and pathological disease progression. The therapeutic plasticity of mesenchymal stem cells (MSCs) may be well matched to this complex disease pathology, making MSCs strong candidates for cellular therapy in ALS. In this review, we summarize a variety of explored mechanisms by which MSCs play a role in ALS progression, including neuronal and non-neuronal cell replacement, trophic factor delivery, and modulation of the immune system. Currently relevant techniques for applying MSC therapy in ALS are discussed, focusing in particular on delivery route and cell source. We include examples from in vitro, preclinical, and clinical investigations to elucidate the remaining progress that must be made to understand and apply MSCs as a treatment for ALS. PMID:25157751

  5. Cardiac cell therapy: boosting mesenchymal stem cells effects.

    PubMed

    Samper, E; Diez-Juan, A; Montero, J A; Sepúlveda, P

    2013-06-01

    Acute myocardial infarction is a major problem of world public health and available treatments have limited efficacy. Cardiac cell therapy is a new therapeutic strategy focused on regeneration and repair of the injured cardiac muscle. Among different cell types used, mesenchymal stem cells (MSC) have been widely tested in preclinical studies and several clinical trials have evaluated their clinical efficacy in myocardial infarction. However, the beneficial effects of MSC in humans are limited due to poor engraftment and survival of these cells, therefore ways to overcome these obstacles should improve efficacy. Different strategies have been used, such as genetically modifying MSC, or preconditioning the cells with factors that potentiate their survival and therapeutic mechanisms. In this review we compile the most relevant approaches used to improve MSC therapeutic capacity and to understand the molecular mechanisms involved in MSC mediated cardiac repair.

  6. The Modulatory Effects of Mesenchymal Stem Cells on Osteoclastogenesis

    PubMed Central

    Sharaf-Eldin, Wessam E.; Abu-Shahba, Nourhan; Mahmoud, Marwa; El-Badri, Nagwa

    2016-01-01

    The effect of mesenchymal stem cells (MSCs) on bone formation has been extensively demonstrated through several in vitro and in vivo studies. However, few studies addressed the effect of MSCs on osteoclastogenesis and bone resorption. Under physiological conditions, MSCs support osteoclastogenesis through producing the main osteoclastogenic cytokines, RANKL and M-CSF. However, during inflammation, MSCs suppress osteoclast formation and activity, partly via secretion of the key anti-osteoclastogenic factor, osteoprotegerin (OPG). In vitro, co-culture of MSCs with osteoclasts in the presence of high concentrations of osteoclast-inducing factors might reflect the in vivo inflammatory pathology and prompt MSCs to exert an osteoclastogenic suppressive effect. MSCs thus seem to have a dual effect, by stimulating or inhibiting osteoclastogenesis, depending on the inflammatory milieu. This effect of MSCs on osteoclast formation seems to mirror the effect of MSCs on other immune cells, and may be exploited for the therapeutic potential of MSCs in bone loss associated inflammatory diseases. PMID:26823668

  7. Mesenchymal Stem Cells: Roles and Relationships in Vascularization

    PubMed Central

    Melchiorri, Anthony J.; Nguyen, Bao-Ngoc B.

    2014-01-01

    One of the primary challenges in translating tissue engineering to clinical applicability is adequate, functional vascularization of tissue constructs. Vascularization is necessary for the long-term viability of implanted tissue expanded and differentiated in vitro. Such tissues may be derived from various cell sources, including mesenchymal stem cells (MSCs). MSCs, able to differentiate down several lineages, have been extensively researched for their therapeutic capabilities. In addition, MSCs have a variety of roles in the vascularization of tissue, both through direct contact and indirect signaling. The studied relationships between MSCs and vascularization have been utilized to further the necessary advancement of vascularization in tissue engineering concepts. This review aims to provide a summary of relevant relationships between MSCs, vascularization, and other relevant cell types, along with an overview discussing applications and challenges related to the roles and relationships of MSCs and vascular tissues. PMID:24410463

  8. Immunomodulatory properties of mesenchymal stem cells: cytokines and factors.

    PubMed

    Soleymaninejadian, Ehsan; Pramanik, Krishna; Samadian, Esmaeil

    2012-01-01

    Mesenchymal stem cells (MSCs) are defined as undifferentiated cells that are capable of self renewal and differentiation into several cell types such as chondrocyte, adipocyte, osteocyte, myocyte, hepatocyte, and neuron-like cells. MSC can be isolated from bone marrow, umbilical cord blood, adipose tissue, placenta, periosteum, trabecular bone, synovium, skeletal muscle, and deciduous teeth. Immunomodulatory of MSCs is one of the important issues nowadays, because this aspect can be clinically applied for graft-versus-host and autoimmune diseases. In this review, we tried to discuss in detail about cytokines and factors such as members of the transforming growth factor superfamily (transforming growth factor-β), hepatic growth factors (HGF), prostaglandin E2 (PGE2), IL-10, indolamine 2,3-dioxygenase (IDO), nitric oxide (NO), heme oxygenase-1 (HO-1), and human leukocyte antigen-G (HLA-G) that are involved in immunomodulatory of MSCs.

  9. Sulforaphane Inhibits Mammary Adipogenesis by Targeting Adipose Mesenchymal Stem Cells

    PubMed Central

    Li, Qinglin; Xia, Jixiang; Yao, Yuan; Gong, Da-wei; Shi, Hongfei; Zhou, Qun

    2013-01-01

    It is now well accepted that tumor cells actively communicate with the tumor microenvironment (e.g., adipocytes) leading to the progression of breast cancer and other malignancies. It is also known that adipose mesenchymal stem cells (MSCs) have the ability to differentiate into mature adipocytes and initiate cytokine signaling within the tumor microenvironment. Here, we examine the role of MSC-differentiated adipocytes on breast cancer cell migration, and test the effects of sulforaphane (SFN, a dietary chemoprevention agent) on adipocyte-breast cancer cell interaction. Our results demonstrate that SFN promotes MSC self-renewal and inhibits adipogenic differentiation. Subsequently, SFN-treatment of adipocytes considerably hinders cytokine communication with breast cancer cells, thereby decreasing breast cancer cell migration and tumor formation. PMID:24002734

  10. Sulforaphane inhibits mammary adipogenesis by targeting adipose mesenchymal stem cells.

    PubMed

    Li, Qinglin; Xia, Jixiang; Yao, Yuan; Gong, Da-Wei; Shi, Hongfei; Zhou, Qun

    2013-09-01

    It is now well accepted that tumor cells actively communicate with the tumor microenvironment (e.g., adipocytes) leading to the progression of breast cancer and other malignancies. It is also known that adipose mesenchymal stem cells (MSCs) have the ability to differentiate into mature adipocytes and initiate cytokine signaling within the tumor microenvironment. Here, we examine the role of MSC-differentiated adipocytes on breast cancer cell migration, and test the effects of sulforaphane (SFN, a dietary chemoprevention agent) on adipocyte-breast cancer cell interaction. Our results demonstrate that SFN promotes MSC self-renewal and inhibits adipogenic differentiation. Subsequently, SFN treatment of adipocytes considerably hinders cytokine communication with breast cancer cells, thereby decreasing breast cancer cell migration and tumor formation.

  11. Good manufacturing practices production of mesenchymal stem/stromal cells.

    PubMed

    Sensebé, Luc; Bourin, Philippe; Tarte, Karin

    2011-01-01

    Because of their multi/pluripotency and immunosuppressive properties mesenchymal stem/stromal cells (MSCs) are important tools for treating immune disorders and for tissue repair. The increasing use of MSCs has led to production processes that need to be in accordance with Good Manufacturing Practice (GMP). In cellular therapy, safety remains one of the main concerns and refers to donor validation, choice of starting material, processes, and the controls used, not only at the batch release level but also during the development of processes. The culture processes should be reproducible, robust, and efficient. Moreover, they should be adapted to closed systems that are easy to use. Implementing controls during the manufacturing of clinical-grade MSCs is essential. The controls should ensure microbiological safety but also avoid potential side effects linked to genomic instability driving transformation and senescence or decrease of cell functions (immunoregulation, differentiation potential). In this rapidly evolving field, a new approach to controls is needed.

  12. Mesenchymal Stem Cells in ex vivo Cord Blood Expansion

    PubMed Central

    Robinson, Simon N.; Simmons, Paul J.; Yang, Hong; Alousi, Amin M; de Lima, Marcos J.

    2013-01-01

    Umbilical cord blood (CB) is becoming an important source of haematopoietic support for transplant patients lacking human leukocyte antigen matched donors. The ethnic diversity, relative ease of collection, ready availability as cryopreserved units from CB banks, reduced incidence and severity of graft versus host disease and tolerance of higher degrees of HLA disparity between donor and recipient, are positive attributes when compared to bone marrow or cytokine-mobilized peripheral blood. However, CB transplantation is associated with significantly delayed neutrophil and platelet engraftment and an elevated risk of graft failure. These hurdles are thought to be due, at least in part, to low total nucleated cell and CD34+ cell doses transplanted. Here, current strategies directed at improving TNC and CD34+ cell doses at transplant are discussed, with particular attention paid to the use of a mesenchymal stem cell (MSC)/CB mononuclear cell ex vivo co-culture expansion system. PMID:21396596

  13. Mesenchymal stem cell therapy: Two steps forward, one step back

    PubMed Central

    Ankrum, James; Karp, Jeffrey M.

    2010-01-01

    Mesenchymal stem cell (MSC) therapy is poised to establish a new clinical paradigm; however, recent trials have produced mixed results. Although MSC were originally considered to treat connective tissue defects, preclinical studies revealed potent immunomodulatory properties that prompted the use of MSC to treat numerous inflammatory conditions. Unfortunately, although clinical trials have met safety endpoints, efficacy has not been demonstrated. We believe the challenge to demonstrate efficacy can be attributed in part to an incomplete understanding of the fate of MSC following infusion. Here, we highlight the clinical status of MSC therapy and discuss the importance of cell-tracking techniques, which have advanced our understanding of the fate and function of systemically infused MSC and might improve clinical application. PMID:20335067

  14. Proangiogenic Features of Mesenchymal Stem Cells and Their Therapeutic Applications

    PubMed Central

    Tao, Hongyan; Han, Zhibo; Han, Zhong Chao; Li, Zongjin

    2016-01-01

    Mesenchymal stem cells (MSCs) have shown their therapeutic potency for treatment of cardiovascular diseases owing to their low immunogenicity, ease of isolation and expansion, and multipotency. As multipotent progenitors, MSCs have revealed their ability to differentiate into various cell types and could promote endogenous angiogenesis via microenvironmental modulation. Studies on cardiovascular diseases have demonstrated that transplanted MSCs could engraft at the injured sites and differentiate into cardiomyocytes and endothelial cells as well. Accordingly, several clinical trials using MSCs have been performed and revealed that MSCs may improve relevant clinical parameters in patients with vascular diseases. To fully comprehend the characteristics of MSCs, understanding their intrinsic property and associated modulations in tuning their behaviors as well as functions is indispensable for future clinical translation of MSC therapy. This review will focus on recent progresses on endothelial differentiation and potential clinical application of MSCs, with emphasis on therapeutic angiogenesis for treatment of cardiovascular diseases. PMID:26880933

  15. Mesenchymal Stem Cells after Polytrauma: Actor and Target

    PubMed Central

    Wiegner, Rebecca; Lampl, Lorenz; Brenner, Rolf E.

    2016-01-01

    Mesenchymal stem cells (MSCs) are multipotent cells that are considered indispensable in regeneration processes after tissue trauma. MSCs are recruited to damaged areas via several chemoattractant pathways where they function as “actors” in the healing process by the secretion of manifold pro- and anti-inflammatory, antimicrobial, pro- and anticoagulatory, and trophic/angiogenic factors, but also by proliferation and differentiation into the required cells. On the other hand, MSCs represent “targets” during the pathophysiological conditions after severe trauma, when excessively generated inflammatory mediators, complement activation factors, and damage- and pathogen-associated molecular patterns challenge MSCs and alter their functionality. This in turn leads to complement opsonization, lysis, clearance by macrophages, and reduced migratory and regenerative abilities which culminate in impaired tissue repair. We summarize relevant cellular and signaling mechanisms and provide an up-to-date overview about promising future therapeutic MSC strategies in the context of severe tissue trauma. PMID:27340408

  16. Stimulation of Chondrogenic Differentiation of Mesenchymal Stem Cells

    PubMed Central

    Yu, Da-Ae; Han, Jin; Kim, Byung-Soo

    2012-01-01

    The methods for cartilage repair have been studied so far, yet many of them seem to have limitations due to the low regenerative capacity of articular cartilage. Mesenchymal stem cell (MSC) has been suggested as an alternative solution to remedy this challenging problem. MSCs, which have extensive differentiation capacity, can be induced to differentiate into chondrocytes under specific conditions. Particularly, this review focused on the effects of growth factors, cell-to-cell interactions and biomaterials in chondrogenesis of MSCs. Appropriate stimulations through these factors are crucial in differentiation and proliferation of MSCs. However, use of MSCs for cartilage repair has some drawbacks and risks, such as expression of hypertrophy-related genes in MSCs-derived chondrocytes and consequent calcification or cell death. Nevertheless, the clinical application of MSCs is expected in the future with advanced technology. PMID:24298351

  17. [Immunomodulatory properties of stem mesenchymal cells in autoimmune diseases].

    PubMed

    Sánchez-Berná, Isabel; Santiago-Díaz, Carlos; Jiménez-Alonso, Juan

    2015-01-20

    Autoimmune diseases are a cluster of disorders characterized by a failure of the immune tolerance and a hyperactivation of the immune system that leads to a chronic inflammation state and the damage of several organs. The medications currently used to treat these diseases usually consist of immunosuppressive drugs that have significant systemic toxic effects and are associated with an increased risk of opportunistic infections. Recently, several studies have demonstrated that mesenchymal stem cells have immunomodulatory properties, a feature that make them candidates to be used in the treatment of autoimmune diseases. In the present study, we reviewed the role of this therapy in the treatment of systemic lupus erythematosus, Sjögren's syndrome, systemic sclerosis, Crohn's disease and multiple sclerosis, as well as the potential risks associated with its use. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  18. Restoration of Corneal Transparency by Mesenchymal Stem Cells.

    PubMed

    Mittal, Sharad K; Omoto, Masahiro; Amouzegar, Afsaneh; Sahu, Anuradha; Rezazadeh, Alexandra; Katikireddy, Kishore R; Shah, Dhvanit I; Sahu, Srikant K; Chauhan, Sunil K

    2016-10-11

    Transparency of the cornea is indispensable for optimal vision. Ocular trauma is a leading cause of corneal opacity, leading to 25 million cases of blindness annually. Recently, mesenchymal stem cells (MSCs) have gained prominence due to their inflammation-suppressing and tissue repair functions. Here, we investigate the potential of MSCs to restore corneal transparency following ocular injury. Using an in vivo mouse model of ocular injury, we report that MSCs have the capacity to restore corneal transparency by secreting high levels of hepatocyte growth factor (HGF). Interestingly, our data also show that HGF alone can restore corneal transparency, an observation that has translational implications for the development of HGF-based therapy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Prenatal transplantation of mesenchymal stem cells to treat osteogenesis imperfecta

    PubMed Central

    Chan, Jerry K. Y.; Götherström, Cecilia

    2014-01-01

    Osteogenesis imperfecta (OI) can be a severe disorder that can be diagnosed before birth. Transplantation of mesenchymal stem cells (MSC) has the potential to improve the bone structure, growth, and fracture healing. In this review, we give an introduction to OI and MSC, and the basis for pre- and postnatal transplantation in OI. We also summarize the two patients with OI who have received pre- and postnatal transplantation of MSC. The findings suggest that prenatal transplantation of allogeneic MSC in OI is safe. The cell therapy is of likely clinical benefit with improved linear growth, mobility, and reduced fracture incidence. Unfortunately, the effect is transient. For this reason, postnatal booster infusions using same-donor MSC have been performed with clinical benefit, and without any adverse events. So far there is limited experience in this specific field and proper studies are required to accurately conclude on clinical benefits of MSC transplantation to treat OI. PMID:25346689

  20. Are Sertoli cells a kind of mesenchymal stem cells?

    PubMed Central

    Gong, Daoyuan; Zhang, Chunfu; Li, Tao; Zhang, Jiahui; Zhang, Nannan; Tao, Zehua; Zhu, Wei; Sun, Xiaochun

    2017-01-01

    Objective: Sertoli cells (SCs) are a major component of testis which secrete a variety of cytokines and immunosuppressive factors, providing nutritional support and immune protection for sperm growth and development. The purpose of this study was to investigate the relationship between SCs and bone marrow mesenchymal stem cells (BMSCs) in order to provide a theoretical basis for better application of SCs. Methods: We used the adherence method to isolate Sprague-Dawley rat SCs and BMSCs. Cells surface markers were detected by flow cytometry. The capacity of cells to differentiate was determined by osteogenic and adipogenic induction. Assessment of cell proliferation was performed by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2-H-tetrazolium bromide] assay. Changes in the nucleus were analyzed by Hoechst nuclear staining. Cell aging was observed with β-galactosidase, which is a biological marker of senescence. RT-PCR was employed to detect the expression of cytokines. Results: From the aforementioned experiments, we found that the surface markers of SCs and BMSCs were almost exactly the same. Proliferation of SCs, as well as osteogenic and adipogenic differentiation, were weaker than in BMSCs. Compared with BMSCs, Hoechst nuclear staining showed that the chromatin of SCs began to aggregate and was slightly larger. β-galactosidase staining showed that SCs were in a slightly aging state. The secretion of cytokines from SCs was slightly less than the secretion from BMSCs. Conclusion: SCs are a kind of mesenchymal stem cells which have begun the process of differentiation. PMID:28386334

  1. Mesenchymal stem cells are highly resistant to sulfur mustard.

    PubMed

    Schmidt, Annette; Scherer, Michael; Thiermann, Horst; Steinritz, Dirk

    2013-12-05

    The effect of sulfur mustard (SM) to the direct injured tissues of the skin, eyes and airways is well investigated. Little is known about the effect of SM to mesenchymal stem cells (MSC). However, this is an interesting aspect. Comparing the clinical picture of SM it is known today that MSC play an important role e.g. in chronic impaired wound healing. Therefore we wanted to get an understanding about how SM affects MSC and if these findings might become useful to get a better understanding of the effect of sulfur mustard gas with respect to skin wounds. We used mesenchymal stem cells, isolated from femoral heads from healthy donors and treated them with a wide range of SM to ascertain the dose-response-curve. With the determined inhibitory concentrations IC1 (1μM), IC5 (10μM), IC10 (20μM) and IC25 (40μM) we did further investigations. We analyzed the migratory ability and the differentiation capacity under influence of SM. Already very low concentrations of SM demonstrated a strong effect to the migratory activity whereas the differentiation capacity seemed not to be affected. Putting these findings together it seems to be likely that a link between MSC and the impaired wound healing after SM exposure might exist. Same as in patients with chronic impaired wound healing MSC had shown a reduced migratory activity. The fact that MSC are able to tolerate very high concentrations of SM and still do not lose their differentiation capacity may reveal new ways of treating wounds caused by sulfur mustard. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Brain mesenchymal stem cells: The other stem cells of the brain?

    PubMed

    Appaix, Florence; Nissou, Marie-France; van der Sanden, Boudewijn; Dreyfus, Matthieu; Berger, François; Issartel, Jean-Paul; Wion, Didier

    2014-04-26

    Multipotent mesenchymal stromal cells (MSC), have the potential to differentiate into cells of the mesenchymal lineage and have non-progenitor functions including immunomodulation. The demonstration that MSCs are perivascular cells found in almost all adult tissues raises fascinating perspectives on their role in tissue maintenance and repair. However, some controversies about the physiological role of the perivascular MSCs residing outside the bone marrow and on their therapeutic potential in regenerative medicine exist. In brain, perivascular MSCs like pericytes and adventitial cells, could constitute another stem cell population distinct to the neural stem cell pool. The demonstration of the neuronal potential of MSCs requires stringent criteria including morphological changes, the demonstration of neural biomarkers expression, electrophysiological recordings, and the absence of cell fusion. The recent finding that brain cancer stem cells can transdifferentiate into pericytes is another facet of the plasticity of these cells. It suggests that the perversion of the stem cell potential of pericytes might play an even unsuspected role in cancer formation and tumor progression.

  3. Induced pluripotent stem cells from human hair follicle mesenchymal stem cells.

    PubMed

    Wang, Yimei; Liu, Jinyu; Tan, Xiaohua; Li, Gaofeng; Gao, Yunhe; Liu, Xuejuan; Zhang, Lihong; Li, Yulin

    2013-08-01

    Reprogramming of somatic cells into inducible pluripotent stem cells (iPSCs) provides an alternative to using embryonic stem cells (ESCs). Mesenchymal stem cells derived from human hair follicles (hHF-MSCs) are easily accessible, reproducible by direct plucking of human hairs. Whether these hHF-MSCs can be reprogrammed has not been previously reported. Here we report the generation of iPSCs from hHF-MSCs obtained by plucking several hairs. hHF-MSCs were isolated from hair follicle tissues and their mesenchymal nature confirmed by detecting cell surface antigens and multilineage differentiation potential towards adipocytes and osteoblasts. They were then reprogrammed into iPSCs by lentiviral transduction with Oct4, Sox2, c-Myc and Klf4. hHF-MSC-derived iPSCs appeared indistinguishable from human embryonic stem cells (hESCs) in colony morphology, expression of alkaline phosphotase, and expression of specific hESCs surface markers, SSEA-3, SSEA-4, Tra-1-60, Tra-1-81, Nanog, Oct4, E-Cadherin and endogenous pluripotent genes. When injected into immunocompromised mice, hHF-MSC-derived iPSCs formed teratomas containing representatives of all three germ layers. This is the first study to report reprogramming of hHF-MSCs into iPSCs.

  4. Myogenic-induced mesenchymal stem cells are capable of modulating the immune response by regulatory T cells

    PubMed Central

    Joo, Sunyoung; Lim, Hyun Ju; Jackson, John D; Atala, Anthony

    2014-01-01

    Cell therapy for patients who have intractable muscle disorders may require highly regenerative cells from young, healthy allogeneic donors. Mesenchymal stem cells are currently under clinical investigation because they are known to induce muscle regeneration and believed to be immune privileged, thus making them suitable for allogeneic applications. However, it is unclear whether allogeneic and myogenic-induced mesenchymal stem cells retain their immunomodulatory characteristics. Therefore, our aim was to evaluate the effects of mesenchymal stem cell differentiation on the immune characteristics of cells in vitro. We investigated the immunologic properties of mesenchymal stem cells after myogenic induction. Mesenchymal stem cells were obtained from C57BL/6 mice and the C3H/10T1/2 murine mesenchymal stem cell line. Two different 5-aza-2′-deoxycytidine doses (0.5 and 3 µM) were evaluated for their effects on mesenchymal stem cell skeletal myogenic differentiation potential, immune antigen expression, and mixed lymphocytic reactions. Using a mixed lymphocytic reaction, we determined the optimal splenocyte proliferation inhibition dose. The induction of regulatory T cells was markedly increased by the addition of 3 µM 5-aza-2′-deoxycytidine–treated mesenchymal stem cells. Myogenic-induced mesenchymal stem cells do not elicit alloreactive lymphocyte proliferative responses and are able to modulate immune responses. These findings support the hypothesis that myogenic-induced mesenchymal stem cells may be transplantable across allogeneic barriers. PMID:24555015

  5. Function of mesenchymal stem cells following loading of gold nanotracers

    PubMed Central

    Ricles, Laura M; Nam, Seung Yun; Sokolov, Konstantin; Emelianov, Stanislav Y; Suggs, Laura J

    2011-01-01

    Background: Stem cells can differentiate into multiple cell types, and therefore can be used for cellular therapies, including tissue repair. However, the participation of stem cells in tissue repair and neovascularization is not well understood. Therefore, implementing a noninvasive, long-term imaging technique to track stem cells in vivo is needed to obtain a better understanding of the wound healing response. Generally, we are interested in developing an imaging approach to track mesenchymal stem cells (MSCs) in vivo after delivery via a polyethylene glycol modified fibrin matrix (PEGylated fibrin matrix) using MSCs loaded with gold nanoparticles as nanotracers. The objective of the current study was to assess the effects of loading MSCs with gold nanoparticles on cellular function. Methods: In this study, we utilized various gold nanoparticle formulations by varying size and surface coatings and assessed the efficiency of cell labeling using darkfield microscopy. We hypothesized that loading cells with gold nanotracers would not significantly alter cell function due to the inert and biocompatible characteristics of gold. The effect of nanoparticle loading on cell viability and cytotoxicity was analyzed using a LIVE/DEAD stain and an MTT assay. The ability of MSCs to differentiate into adipocytes and osteocytes after nanoparticle loading was also examined. In addition, nanoparticle loading and retention over time was assessed using inductively coupled plasma mass spectrometry (ICP-MS). Conclusion: Our results demonstrate that loading MSCs with gold nanotracers does not alter cell function and, based on the ICP-MS results, long-term imaging and tracking of MSCs is feasible. These findings strengthen the possibility of imaging MSCs in vivo, such as with optical or photoacoustic imaging, to understand better the participation and role of MSCs in neovascularization. PMID:21499430

  6. Targeting epithelial-mesenchymal transition and cancer stem cells for chemoresistant ovarian cancer

    PubMed Central

    Deng, Junli; Wang, Li; Chen, Hongmin; Hao, Jingli; Ni, Jie; Chang, Lei; Duan, Wei; Graham, Peter; Li, Yong

    2016-01-01

    Chemoresistance is the main challenge for the recurrent ovarian cancer therapy and responsible for treatment failure and unfavorable clinical outcome. Understanding mechanisms of chemoresistance in ovarian cancer would help to predict disease progression, develop new therapies and personalize systemic therapy. In the last decade, accumulating evidence demonstrates that epithelial-mesenchymal transition and cancer stem cells play important roles in ovarian cancer chemoresistance and metastasis. Treatment of epithelial-mesenchymal transition and cancer stem cells holds promise for improving current ovarian cancer therapies and prolonging the survival of recurrent ovarian cancer patients in the future. In this review, we focus on the role of epithelial-mesenchymal transition and cancer stem cells in ovarian cancer chemoresistance and explore the therapeutic implications for developing epithelial-mesenchymal transition and cancer stem cells associated therapies for future ovarian cancer treatment. PMID:27304054

  7. Epithelial-mesenchymal transition (EMT): A biological process in the development, stem cell differentiation, and tumorigenesis.

    PubMed

    Chen, Tong; You, Yanan; Jiang, Hua; Wang, Zack Z

    2017-01-12

    The lineage transition between epithelium and mesenchyme is a process known as epithelial-mesenchymal transition (EMT), by which polarized epithelial cells lose their adhesion property and obtain mesenchymal cell phenotypes. EMT is a biological process that is often involved in embryogenesis and diseases, such as cancer invasion and metastasis. The EMT and the reverse process, mesenchymal-epithelial transition (MET), also play important roles in stem cell differentiation and de-differentiation (or reprogramming). In this review, we will discuss current research progress of EMT in embryonic development, cellular differentiation and reprogramming, and cancer progression, all of which are representative models for researches of stem cell biology in normal and in diseases. Understanding of EMT and MET may help to identify specific markers to distinguish normal stem cells from cancer stem cells in future.

  8. Citalopram increases the differentiation efficacy of bone marrow mesenchymal stem cells into neuronal-like cells

    PubMed Central

    Verdi, Javad; Mortazavi-Tabatabaei, Seyed Abdolreza; Sharif, Shiva; Verdi, Hadi; Shoae-Hassani, Alireza

    2014-01-01

    Several studies have demonstrated that selective serotonin reuptake inhibitor antidepressants can promote neuronal cell proliferation and enhance neuroplasticity both in vitro and in vivo. It is hypothesized that citalopram, a selective serotonin reuptake inhibitor, can promote the neuronal differentiation of adult bone marrow mesenchymal stem cells. Citalopram strongly enhanced neuronal characteristics of the cells derived from bone marrow mesenchymal stem cells. The rate of cell death was decreased in citalopram-treated bone marrow mesenchymal stem cells than in control cells in neurobasal medium. In addition, the cumulative population doubling level of the citalopram-treated cells was significantly increased compared to that of control cells. Also BrdU incorporation was elevated in citalopram-treated cells. These findings suggest that citalopram can improve the neuronal-like cell differentiation of bone marrow mesenchymal stem cells by increasing cell proliferation and survival while maintaining their neuronal characteristics. PMID:25206899

  9. Citalopram increases the differentiation efficacy of bone marrow mesenchymal stem cells into neuronal-like cells.

    PubMed

    Verdi, Javad; Mortazavi-Tabatabaei, Seyed Abdolreza; Sharif, Shiva; Verdi, Hadi; Shoae-Hassani, Alireza

    2014-04-15

    Several studies have demonstrated that selective serotonin reuptake inhibitor antidepressants can promote neuronal cell proliferation and enhance neuroplasticity both in vitro and in vivo. It is hypothesized that citalopram, a selective serotonin reuptake inhibitor, can promote the neuronal differentiation of adult bone marrow mesenchymal stem cells. Citalopram strongly enhanced neuronal characteristics of the cells derived from bone marrow mesenchymal stem cells. The rate of cell death was decreased in citalopram-treated bone marrow mesenchymal stem cells than in control cells in neurobasal medium. In addition, the cumulative population doubling level of the citalopram-treated cells was significantly increased compared to that of control cells. Also BrdU incorporation was elevated in citalopram-treated cells. These findings suggest that citalopram can improve the neuronal-like cell differentiation of bone marrow mesenchymal stem cells by increasing cell proliferation and survival while maintaining their neuronal characteristics.

  10. Mesenchymal stem cells originating from ES cells show high telomerase activity and therapeutic benefits.

    PubMed

    Ninagawa, Nana; Murakami, Rumi; Isobe, Eri; Tanaka, Yusuke; Nakagawa, Hiroki; Torihashi, Shigeko

    2011-10-01

    We establish a novel method for the induction and collection of mesenchymal stem cells using a typical cell surface marker, CD105, through adipogenesis from mouse ES cells. ES cells were cultured in a medium for adipogenesis. Mesenchymal stem cells from mouse ES cells were easily identified by the expression of CD105, and were isolated and differentiated into multiple mesenchymal cell types. Mesenchymal stem cells showed remarkable telomerase activity and sustained their growth for a long time with a high potential for differentiation involving skeletal myogenesis in vitro. When mesenchymal stem cells were transplanted into the injured tibialis anterior muscles, they differentiated into skeletal muscle cells in vivo. In addition, they improved the vascular formation, but never formed teratoma for longer than 6 months. Gene expression profiles revealed that mesenchymal stem cells lost pluripotency, while they acquired high potential to differentiate into mesenchymal cell lines. They thus indicate a promising new source of cell-based therapy without teratoma formation. Copyright © 2011 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  11. Mesenchymal stem cell therapy in lung disorders: pathogenesis of lung diseases and mechanism of action of mesenchymal stem cell.

    PubMed

    Inamdar, Ajinkya C; Inamdar, Arati A

    2013-10-01

    Lung disorders such as asthma, acute respiratory distress syndrome (ARDS), chronic obstructive lung disease (COPD), and interstitial lung disease (ILD) show a few common threads of pathogenic mechanisms: inflammation, aberrant immune activity, infection, and fibrosis. Currently no modes of effective treatment are available for ILD or emphysema. Being anti-inflammatory, immunomodulatory, and regenerative in nature, the administration of mesenchymal stem cells (MSCs) has shown the capacity to control immune dysfunction and inflammation in the lung. The intravenous infusion of MSCs, the common mode of delivery, is followed by their entrapment in lung vasculature before MSCs reach to other organ systems thus indicating the feasible and promising approach of MSCs therapy for lung diseases. In this review, we discuss the mechanistic basis for MSCs therapy for asthma, ARDS, COPD, and ILD.

  12. Multiple myeloma cells promote migration of bone marrow mesenchymal stem cells by altering their translation initiation.

    PubMed

    Dabbah, Mahmoud; Attar-Schneider, Oshrat; Zismanov, Victoria; Tartakover Matalon, Shelly; Lishner, Michael; Drucker, Liat

    2016-10-01

    The role of the bone marrow microenvironment in multiple myeloma pathogenesis and progression is well recognized. Indeed, we have shown that coculture of bone marrow mesenchymal stem cells from normal donors and multiple myeloma cells comodulated translation initiation. Here, we characterized the timeline of mesenchymal stem cells conditioning by multiple myeloma cells, the persistence of this effect, and the consequences on cell phenotype. Normal donor mesenchymal stem cells were cocultured with multiple myeloma cell lines (U266, ARP1) (multiple myeloma-conditioned mesenchymal stem cells) (1.5 h,12 h, 24 h, 48 h, and 3 d) and were assayed for translation initiation status (eukaryotic translation initiation factor 4E; eukaryotic translation initiation factor 4G; regulators: mechanistic target of rapamycin, MNK, 4EBP; targets: SMAD family 5, nuclear factor κB, cyclin D1, hypoxia inducible factor 1, c-Myc) (immunoblotting) and migration (scratch assay, inhibitors). Involvement of mitogen-activated protein kinases in mesenchymal stem cell conditioning and altered migration was also tested (immunoblotting, inhibitors). Multiple myeloma-conditioned mesenchymal stem cells were recultured alone (1-7 d) and were assayed for translation initiation (immunoblotting). Quantitative polymerase chain reaction of extracted ribonucleic acid was tested for microRNAs levels. Mitogen-activated protein kinases were activated within 1.5 h of coculture and were responsible for multiple myeloma-conditioned mesenchymal stem cell translation initiation status (an increase of >200%, P < 0.05) and elevated migration (16 h, an increase of >400%, P < 0.05). The bone marrow mesenchymal stem cells conditioned by multiple myeloma cells were reversible after only 1 d of multiple myeloma-conditioned mesenchymal stem cell culture alone. Decreased expression of microRNA-199b and microRNA-125a (an increase of <140%, P < 0.05) in multiple myeloma-conditioned mesenchymal stem cells supported elevated

  13. Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells.

    PubMed

    Roubelakis, Maria G; Pappa, Kalliopi I; Bitsika, Vasiliki; Zagoura, Dimitra; Vlahou, Antonia; Papadaki, Helen A; Antsaklis, Aristidis; Anagnou, Nicholas P

    2007-12-01

    Human mesenchymal stem cells (hMSCs) constitute a population of multipotent adherent cells able to give rise to multiple mesenchymal lineages such as osteoblasts, adipocytes, or chondrocytes. So far, the most common source of MSCs has been the bone marrow (BM); however BM-MSC harvesting and processing exhibits major drawbacks and limitations. Thus, identification and characterization of alternative sources of MSCs are of great importance. In the present study, we isolated and expanded fetal MSCs from second-trimester amniotic fluid (AF). We documented that these cells are of embryonic origin, can differentiate under appropriate conditions into cell types derived from all three germ layers, and express the pluripotency marker Oct-4, the human Nanog protein, and the stage-specific embryonic antigen-4 (SSEA-4). Furthermore, we systematically tested the immunophenotype of cultured MSCs by flow cytometry analysis using a wide variety of markers. Direct comparison of this phenotype to the one derived from cultured BM-MSCs demonstrated that cultured MSCs from both sources exhibit similar expression patterns. Using the two-dimensional gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) approach, we have generated for the first time the protein map of cultured AF-MSCs by identifying 261 proteins, and we compared it directly to that of cultured BM-MSCs. The functional pattern of the identified proteins from both sources was similar. However, cultured AF-MSCs displayed a number of unique proteins related to proliferation and primitive phenotype, which may confer to the distinct features of the two types. Considering the easy access to this new cell source and the yield of expanded MSCs for stem cell research, AF may provide an excellent source of MSCs both for basic research and for potential therapeutic applications.

  14. Mesenchymal Stem/Progenitor Cell Isolation from Tooth Extraction Sockets

    PubMed Central

    Nakajima, R.; Ono, M.; Hara, E.S.; Oida, Y.; Shinkawa, S.; Pham, H.T.; Akiyama, K.; Sonoyama, W.; Maekawa, K.; Kuboki, T.

    2014-01-01

    Bone marrow–derived mesenchymal stem/progenitor cells (BMSCs) are commonly used in regeneration therapy. The current primary source of BMSCs is the iliac crest; however, the procedure is associated with various burdens on the patient, including the risk of pain and infection. Hence, the possibility to collect BMSCs from other, more accessible, sources would be an attractive approach. It is well known that stem cells migrate from surrounding tissues and play important roles in wound healing. We thus hypothesized that stem/progenitor cells could be isolated from granulation tissue in the dental socket, and we subsequently collected granulation tissue from dog dental socket 3 d after tooth extraction. After enzyme digestion of the collected tissue, the cells forming colonies constituted the dental socket–derived stem/progenitor cells (dDSCs). Next, dDSCs were compared with dog BMSCs (dBMSCs) for phenotype characterization. A flow cytometric analysis showed that dDSCs were positive for CD44, CD90, and CD271 but negative for CD34 and CD45, similar to dBMSCs. dDSCs also exhibited osteogenic, adipogenic, and chondrogenic differentiation ability, similar to dBMSCs, with a higher capacity for colony formation, proliferation, and motility than dBMSCs. In addition, an in vivo ectopic bone formation assay showed that dDSCs and dBMSCs both induced hard tissue formation, although only dDSCs formed a fibrous tissue-like structure connected to the newly formed bone. Finally, we tested the ability of dDSCs to regenerate periodontal tissue in a one-wall defect model. The defects in the dDSC-transplanted group (β-TCP/PGA/dDSCs) were regenerated with cementum-like and periodontal ligament-like tissues and alveolar bone, whereas only bony tissue was observed in the control group (β-TCP/PGA). In conclusion, we identified and characterized a population of stem/progenitor cells in granulation tissue obtained from the dental socket that exhibited several characteristics similar to

  15. Mesenchymal stem/progenitor cell isolation from tooth extraction sockets.

    PubMed

    Nakajima, R; Ono, M; Hara, E S; Oida, Y; Shinkawa, S; Pham, H T; Akiyama, K; Sonoyama, W; Maekawa, K; Kuboki, T

    2014-11-01

    Bone marrow-derived mesenchymal stem/progenitor cells (BMSCs) are commonly used in regeneration therapy. The current primary source of BMSCs is the iliac crest; however, the procedure is associated with various burdens on the patient, including the risk of pain and infection. Hence, the possibility to collect BMSCs from other, more accessible, sources would be an attractive approach. It is well known that stem cells migrate from surrounding tissues and play important roles in wound healing. We thus hypothesized that stem/progenitor cells could be isolated from granulation tissue in the dental socket, and we subsequently collected granulation tissue from dog dental socket 3 d after tooth extraction. After enzyme digestion of the collected tissue, the cells forming colonies constituted the dental socket-derived stem/progenitor cells (dDSCs). Next, dDSCs were compared with dog BMSCs (dBMSCs) for phenotype characterization. A flow cytometric analysis showed that dDSCs were positive for CD44, CD90, and CD271 but negative for CD34 and CD45, similar to dBMSCs. dDSCs also exhibited osteogenic, adipogenic, and chondrogenic differentiation ability, similar to dBMSCs, with a higher capacity for colony formation, proliferation, and motility than dBMSCs. In addition, an in vivo ectopic bone formation assay showed that dDSCs and dBMSCs both induced hard tissue formation, although only dDSCs formed a fibrous tissue-like structure connected to the newly formed bone. Finally, we tested the ability of dDSCs to regenerate periodontal tissue in a one-wall defect model. The defects in the dDSC-transplanted group (β-TCP/PGA/dDSCs) were regenerated with cementum-like and periodontal ligament-like tissues and alveolar bone, whereas only bony tissue was observed in the control group (β-TCP/PGA). In conclusion, we identified and characterized a population of stem/progenitor cells in granulation tissue obtained from the dental socket that exhibited several characteristics similar to those

  16. Matrices secreted during simultaneous osteogenesis and adipogenesis of mesenchymal stem cells affect stem cells differentiation.

    PubMed

    Cai, Rong; Nakamoto, Tomoko; Hoshiba, Takashi; Kawazoe, Naoki; Chen, Guoping

    2016-04-15

    The extracellular matrix (ECM) plays a pivotal role in regulating stem cell functions. The ECM dynamically changes during tissue development. It remains a great challenge to mimic the dynamically changing ECM. In this study, we prepared novel types of extracellular matrices that could mimic the dynamic variation of extracellular matrices, which were derived from simultaneous osteogenesis and adipogenesis of human bone marrow-derived mesenchymal stem cells (MSCs). Four ECMs simultaneously mimicking early osteogenesis and early adipogenesis (EOEA), early osteogenesis and late adipogenesis (EOLA), late osteogenesis and early adipogenesis (LOEA), late osteogenesis and late adipogenesis (LOLA) were prepared. The stepwise osteogenesis-co-adipogenesis-mimicking matrices had different compositions and different effects on the osteogenic and adipogenic differentiation of MSCs. The matrices could provide very useful tools to investigate the interaction between ECM and stem cells and the role of ECM on stem cell differentiation. Extracellular matrices (ECMs) are dynamically remodeled to regulate stem cell functions during tissue development. Until now, mimicking the ECM variation during stem cell differentiation to single cell type has been reported. However, there is no report on simultaneous mimicking of stem cell differentiation to two types of cells. In this study, we prepared the mixture ECMs derived from simultaneous osteogenesis and adipogenesis of MSCs at different stages and found that they could regulate stem cell differentiation. The concept is new and the ECMs are novel. No such ECMs have been reported previously. The matrices will provide very useful tools to investigate the interaction between ECM and stem cells and the role of ECM on stem cell differentiation. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Mesenchymal stromal cells and hematopoietic stem cell transplantation.

    PubMed

    Bernardo, Maria Ester; Fibbe, Willem E

    2015-12-01

    Mesenchymal stromal cells (MSCs) comprise a heterogeneous population of multipotent cells that can be isolated from various human tissues and culture-expanded ex vivo for clinical use. Due to their immunoregulatory properties and their ability to secrete growth factors, MSCs play a key role in the regulation of hematopoiesis and in the modulation of immune responses against allo- and autoantigens. In light of these properties, MSCs have been employed in clinical trials in the context of hematopoietic stem cell transplantation (HSCT) to facilitate engraftment of hematopoietic stem cells (HSCs) and to prevent graft failure, as well as to treat steroid-resistant acute graft-versus-host disease (GvHD). The available clinical evidence derived from these studies indicates that MSC administration is safe. Moreover, promising preliminary results in terms of efficacy have been reported in some clinical trials, especially in the treatment of acute GvHD. In this review we critically discuss recent advances in MSC therapy by reporting on the most relevant studies in the field of HSCT. Copyright © 2015 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  18. Aggregation kinetics of human mesenchymal stem cells under wave motion.

    PubMed

    Tsai, Ang-Chen; Liu, Yijun; Yuan, Xuegang; Chella, Ravindran; Ma, Teng

    2016-12-20

    Human mesenchymal stem cells (hMSCs) are primary candidates in cell therapy and regenerative medicine but preserving their therapeutic potency following culture expansion is a significant challenge. hMSCs can spontaneously assemble into three-dimensional (3D) aggregates that enhance their regenerative properties. The present study investigated the impact of hydrodynamics conditions on hMSC aggregation kinetics under controlled rocking motion. While various laboratory methods have been developed for hMSC aggregate production, the rocking platform provides gentle mixing and can be scaled up using large bags as in wave motion bioreactors. The results show that the hMSC aggregation is mediated by cell adhesion molecules and that aggregate size distribution is influenced by seeding density, culture time, and hydrodynamic conditions. The analysis of fluid shear stress by COMSOL indicated that aggregate size distribution is inversely correlated with shear stress and that the rocking angle had a more pronounced effect on aggregate size distribution than the rocking speed due to its impact on shear stress. hMSC aggregates obtained from the bioreactor exhibit increased stemness, migratory properties, and expression of angiogenic factors. The results demonstrate the potential of the rocking platform to produce hMSC aggregates with controlled size distribution for therapeutic application.

  19. Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine.

    PubMed

    Nowakowski, Adam; Walczak, Piotr; Janowski, Miroslaw; Lukomska, Barbara

    2015-10-01

    Mesenchymal stem cells (MSCs), which can be obtained from various organs and easily propagated in vitro, are one of the most extensively used types of stem cells and have been shown to be efficacious in a broad set of diseases. The unique and highly desirable properties of MSCs include high migratory capacities toward injured areas, immunomodulatory features, and the natural ability to differentiate into connective tissue phenotypes. These phenotypes include bone and cartilage, and these properties predispose MSCs to be therapeutically useful. In addition, MSCs elicit their therapeutic effects by paracrine actions, in which the metabolism of target tissues is modulated. Genetic engineering methods can greatly amplify these properties and broaden the therapeutic capabilities of MSCs, including transdifferentiation toward diverse cell lineages. However, cell engineering can also affect safety and increase the cost of therapy based on MSCs; thus, the advantages and disadvantages of these procedures should be discussed. In this review, the latest applications of genetic engineering methods for MSCs with regenerative medicine purposes are presented.

  20. Human umbilical mesenchymal stem cells promote recovery after ischemic stroke.

    PubMed

    Lin, Yu-Ching; Ko, Tsui-Ling; Shih, Yang-Hsin; Lin, Maan-Yuh Anya; Fu, Tz-Win; Hsiao, Hsiao-Sheng; Hsu, Jung-Yu C; Fu, Yu-Show

    2011-07-01

    Stroke is a cerebrovascular defect that leads to many adverse neurological complications. Current pharmacological treatments for stroke remain unclear in their effectiveness, whereas stem cell transplantation shows considerable promise. Previously, we have shown that human umbilical mesenchymal stem cells (HUMSCs) can differentiate into neurons in neuronal-conditioned medium. Here we evaluate the therapeutic potential of HUMSC transplantation for ischemic stroke in rats. Focal cerebral ischemia was produced by middle cerebral artery occlusion and reperfusion. The HUMSCs treated with neuronal-conditioned medium or not treated were transplanted into the ischemic cortex 24 hours after surgery. Histology and MRI revealed that rats implanted with HUMSCs treated with neuronal-conditioned medium or not treated exhibited a trend toward less infarct volume and significantly less atrophy compared with the control group, which received no HUMSCs. Moreover, rats receiving HUMSCs showed significant improvements in motor function, greater metabolic activity of cortical neurons, and better revascularization in the infarct cortex. Implanted HUMSCs, treated or not treated, survived in the infarct cortex for at least 36 days and released neuroprotective and growth-associated cytokines, including brain-derived neurotrophic factor, platelet-derived growth factor-AA, basic fibroblast growth factor, angiopoietin-2, CXCL-16, neutrophil-activating protein-2, and vascular endothelial growth factor receptor-3. Our results demonstrate the therapeutic benefits of HUMSC transplantation for ischemic stroke, likely due to the ability of the cells to produce growth-promoting factors. Thus, HUMSC transplantation may be an effective therapy in the future.

  1. [Mesenchymal stem cell therapy, a new hope for eye disease].

    PubMed

    Roubeix, C; Denoyer, A; Brignole-Baudouin, F; Baudouin, C

    2015-10-01

    Mesenchymal stem cells (MSC) are adult stem cells, first identified in skeletal tissues and then found in the entire body. MSC are able to not only differentiate into specialized cells within skeletal tissue - chondrocytes, osteocytes, adipocytes and fibroblasts - but also secrete a large range of soluble mediators defining their secretome and allowing their interaction with a number of cell protagonists. Thus, in a general sense, MSC are involved in tissue homeostasis through their secretome and are specifically responsible for cell turn-over in skeletal tissues. For a decade and a half, safety and efficiency of MSC has led to the development of many clinical trials in various fields. However, results were often disappointing, probably because of difficulties in methods and evaluation. At a time when the first clinical trials using MSC are emerging in ophthalmology, the goal of this literature review is to gather and put into perspective preclinical and clinical results in order to better predict the future of this innovative therapeutic pathway.

  2. Intra-articular Implantation of Mesenchymal Stem Cells, Part 1

    PubMed Central

    Kraeutler, Matthew J.; Mitchell, Justin J.; Chahla, Jorge; McCarty, Eric C.; Pascual-Garrido, Cecilia

    2017-01-01

    Osteoarthritis (OA) after a partial or total meniscectomy procedure is a common pathology. Because of the high incidence of meniscectomy in the general population, as well as the significant burden of knee OA, there is increasing interest in determining methods for delaying postmeniscectomy OA. Biological therapies, including mesenchymal stem cells (MSCs), induced pluripotent stem cells (iPSCs), and platelet-rich plasma (PRP), have been proposed as possible therapies that could delay OA in this and other settings. Several studies in various animal models have evaluated the effect of injecting MSCs into the knee joints of animals with OA induced either by meniscal excision with or without anterior cruciate ligament transection. When compared with control groups receiving injections without progenitor cells, short-term benefits in the experimental groups have been reported. In human subjects, there are limited data to determine the effect of biological therapies for use in delaying or preventing the onset of OA after a meniscectomy procedure. The purpose of this review is to highlight the findings in the presently available literature on the use of intra-articular implantation of MSCs postmeniscectomy and to offer suggestions for future research with the goal of delaying or treating early OA postmeniscectomy with MSCs. PMID:28203597

  3. Dopamine Regulates Mobilization of Mesenchymal Stem Cells during Wound Angiogenesis

    PubMed Central

    Shome, Saurav; Dasgupta, Partha Sarathi; Basu, Sujit

    2012-01-01

    Angiogenesis is an important step in the complex biological and molecular events leading to successful healing of dermal wounds. Among the different cellular effectors of wound angiogenesis, the role of mesenchymal stem cells (MSCs) is of current interest due to their transdifferentiation and proangiogenic potentials. Skin is richly innervated by sympathetic nerves which secrete dopamine (DA) and we have recently shown that concentration of DA present in synaptic cleft can significantly inhibit wound tissue neovascularization. As recent reports indicate that MSCs by mobilizing into wound bed play an important role in promoting wound angiogenesis, we therefore investigated the effect of DA on the migration of MSCs in wound tissues. DA acted through its D2 receptors present in the MSCs to inhibit their mobilization to the wound beds by suppressing Akt phosphorylation and actin polymerization. In contrast, this inhibitory effect of DA was reversed after treatment with specific DA D2 receptor antagonist. Increased mobilization of MSCs was demonstrated in the wound site following blockade of DA D2 receptor mediated actions, and this in turn was associated with significantly more angiogenesis in wound tissues. This study is of translational value and indicates use of DA D2 receptor antagonists to stimulate mobilization of these stem cells for faster regeneration of damaged tissues. PMID:22355389

  4. Mesenchymal Stem Cells Derived from Dental Pulp: A Review

    PubMed Central

    Santiago-Osorio, Edelmiro

    2016-01-01

    The mesenchymal stem cells of dental pulp (DPSCs) were isolated and characterized for the first time more than a decade ago as highly clonogenic cells that were able to generate densely calcified colonies. Now, DPSCs are considered to have potential as stem cell source for orthopedic and oral maxillofacial reconstruction, and it has been suggested that they may have applications beyond the scope of the stomatognathic system. To date, most studies have shown that, regardless of their origin in third molars, incisors, or exfoliated deciduous teeth, DPSCs can generate mineralized tissue, an extracellular matrix and structures type dentin, periodontal ligament, and dental pulp, as well as other structures. Different groups worldwide have designed and evaluated new efficient protocols for the isolation, expansion, and maintenance of clinically safe human DPSCs in sufficient numbers for various therapeutics protocols and have discussed the most appropriate route of administration, the possible contraindications to their clinical use, and the parameters to be considered for monitoring their clinical efficacy and proper biological source. At present, DPSC-based therapy is promising but because most of the available evidence was obtained using nonhuman xenotransplants, it is not a mature technology. PMID:26779263

  5. Inducible immortality in hTERT-human mesenchymal stem cells.

    PubMed

    Piper, Samantha L; Wang, Miqi; Yamamoto, Akira; Malek, Farbod; Luu, Andrew; Kuo, Alfred C; Kim, Hubert T

    2012-12-01

    Human mesenchymal stem cells (hMSCs) are attractive candidates for tissue engineering and cell-based therapy because of their multipotentiality and availability in adult donors. However, in vitro expansion and differentiation of these cells is limited by replicative senescence. The proliferative capacity of hMSCs can be enhanced by ectopic expression of telomerase, allowing for long-term culture. However, hMSCs with constitutive telomerase expression demonstrate unregulated growth and even tumor formation. To address this problem, we used an inducible Tet-On gene expression system to create hMSCs in which ectopic telomerase expression can be induced selectively by the addition of doxycycline (i-hTERT hMSCs). i-hTERT hMSCs have inducible hTERT expression and telomerase activity, and are able to proliferate significantly longer than wild type hMSCs when hTERT expression is induced. They stop proliferating when hTERT expression is turned off and can be rescued when expression is re-induced. They retain multipotentiality in vitro even at an advanced age. We also used a selective inhibitor of telomere elongation to show that the mechanism driving immortalization of hMSCs by hTERT is dependent upon maintenance of telomere length. Thanks to their extended lifespan, preserved multipotentiality and controlled growth, i-hTERT hMSCs may prove to be a useful tool for the development and testing of novel stem cell therapies.

  6. Mesenchymal stem cell therapy for osteoarthritis: current perspectives.

    PubMed

    Wyles, Cody C; Houdek, Matthew T; Behfar, Atta; Sierra, Rafael J

    2015-01-01

    Osteoarthritis (OA) is a painful chronic condition with a significant impact on quality of life. The societal burden imposed by OA is increasing in parallel with the aging population; however, no therapies have demonstrated efficacy in preventing the progression of this degenerative joint disease. Current mainstays of therapy include activity modification, conservative pain management strategies, weight loss, and if necessary, replacement of the affected joint. Mesenchymal stem cells (MSCs) are a multipotent endogenous population of progenitors capable of differentiation to musculoskeletal tissues. MSCs have a well-documented immunomodulatory role, managing the inflammatory response primarily through paracrine signaling. Given these properties, MSCs have been proposed as a potential regenerative cell therapy source for patients with OA. Research efforts are focused on determining the ideal source for derivation, as MSCs are native to several tissues. Furthermore, optimizing the mode of delivery remains a challenge both for appropriate localization of MSCs and for directed guidance toward stemming the local inflammatory process and initiating a regenerative response. Scaffolds and matrices with growth factor adjuvants may prove critical in this effort. The purpose of this review is to summarize the current state of MSC-based therapeutics for OA and discuss potential barriers that must be overcome for successful implementation of cell-based therapy as a routine treatment strategy in orthopedics.

  7. Mesenchymal Stem Cells: A Multimodality Option for Wound Healing.

    PubMed

    Hanson, Summer E

    2012-08-01

    Although significant resources are invested in wound care and healing annually, chronic wounds remain a major medical problem as they often present a more difficult challenge than the underlying disease. Current treatment options include a multitude of dressing materials, topical agents including antibiotics, enzymatic debriders, and growth factors, mechanical debridement, and optimization of medical comorbidities. Even under optimal circumstances, the healing process leads to some form of fibrosis and scarring. Studies suggest that mesenchymal stem/stromal cells (MSCs) isolated from these diverse tissues possess similar biological characteristics, differentiation potential, and immunological properties. Enthusiasm about MSCs for use in reconstruction and regenerative medicine has been fueled by evidence that these cells possess the ability to participate in the tissue repair process through a variety of paracrine mechanisms affecting tissue regeneration and inflammation. Recent advances in stem cell immunobiology have led to increased interest in MSCs as a new therapeutic modality to address chronic wounds and other inflammatory pathology. A thorough understanding of the immunobiology of MSCs is necessary to realize the complement of pathological processes that could be affected by MSC-based therapy. The novel methods reviewed here are highly promising, with the collective goal of identifying new therapeutic approaches to wound healing that are broadly applicable to many chronic diseases, and can safely accelerate the transition of basic research findings into clinical advances in many areas of regenerative medicine and reconstructive surgery.

  8. Proteomic Applications in the Study of Human Mesenchymal Stem Cells

    PubMed Central

    Mateos, Jesús; Fernández Pernas, Pablo; Fafián Labora, Juan; Blanco, Francisco; Arufe, María del Carmen

    2014-01-01

    Mesenchymal stem cells (MSCs) are undifferentiated cells with an unlimited capacity for self-renewal and able to differentiate towards specific lineages under appropriate conditions. MSCs are, a priori, a good target for cell therapy and clinical trials as an alternative to embryonic stem cells, avoiding ethical problems and the chance for malignant transformation in the host. However, regarding MSCs, several biological implications must be solved before their application in cell therapy, such as safe ex vivo expansion and manipulation to obtain an extensive cell quantity amplification number for use in the host without risk accumulation of genetic and epigenetic abnormalities. Cell surface markers for direct characterization of MSCs remain unknown, and the precise molecular mechanisms whereby growth factors stimulate their differentiation are still missing. In the last decade, quantitative proteomics has emerged as a promising set of techniques to address these questions, the answers to which will determine whether MSCs retain their potential for use in cell therapy. Proteomics provides tools to globally analyze cellular activity at the protein level. This proteomic profiling allows the elucidation of connections between broad cellular pathways and molecules that were previously impossible to determine using only traditional biochemical analysis. However; thus far, the results obtained must be orthogonally validated with other approaches. This review will focus on how these techniques have been applied in the evaluation of MSCs for their future applications in safe therapies. PMID:28250369

  9. Immunomodulation of activated hepatic stellate cells by mesenchymal stem cells

    SciTech Connect

    Parekkadan, Biju; Poll, Daan van; Megeed, Zaki; Kobayashi, Naoya; Tilles, Arno W.; Berthiaume, Francois; Yarmush, Martin L.

    2007-11-16

    Bone marrow-derived mesenchymal stem cells (MSCs) have been reported to prevent the development of liver fibrosis in a number of pre-clinical studies. Marked changes in liver histopathology and serological markers of liver function have been observed without a clear understanding of the therapeutic mechanism by which stem cells act. We sought to determine if MSCs could modulate the activity of resident liver cells, specifically hepatic stellate cells (SCs) by paracrine mechanisms using indirect cocultures. Indirect coculture of MSCs and activated SCs led to a significant decrease in collagen deposition and proliferation, while inducing apoptosis of activated SCs. The molecular mechanisms underlying the modulation of SC activity by MSCs were examined. IL-6 secretion from activated SCs induced IL-10 secretion from MSCs, suggesting a dynamic response of MSCs to the SCs in the microenvironment. Blockade of MSC-derived IL-10 and TNF-{alpha} abolished the inhibitory effects of MSCs on SC proliferation and collagen synthesis. In addition, release of HGF by MSCs was responsible for the marked induction of apoptosis in SCs as determined by antibody-neutralization studies. These findings demonstrate that MSCs can modulate the function of activated SCs via paracrine mechanisms provide a plausible explanation for the protective role of MSCs in liver inflammation and fibrosis, which may also be relevant to other models of tissue fibrosis.

  10. Impairment of mesenchymal stem cells derived from oral leukoplakia.

    PubMed

    Zhang, Zhihui; Song, Jiangyuan; Han, Ying; Mu, Dongdong; Su, Sha; Ji, Xiaoli; Liu, Hongwei

    2015-01-01

    Oral leukoplakia is one of the common precancerous lesions in oral mucosa. To compare the biological characteristics and regenerative capacities of mesenchymal stem cells (MSCs) from oral leukoplakia (epithelial hyperplasia and dysplasia) and normal oral mucosa, MSCs were isolated by enzyme digestion. Then these cells were identified by the expression of MSC related markers, STRO-1, CD105 and CD90, with the absent for the hematopoietic stem cell marker CD34 by flow cytometric detection. The self-renewal ability of MSCs from oral leukoplakia was enhanced, while the multipotent differentiation was descended, compared with MSCs from normal oral mucosa. Fibrin gel was used as a carrier for MSCs transplanted into immunocompromised mice to detect their regenerative capacity. The regenerative capacities of MSCs from oral leukoplakia became impaired partly. Collagen IV (Col IV) and matrix metalloproteinases-9 (MMP-9) were selected to analyze the potential mechanism for the functional changes of MSCs from oral leukoplakia by immunochemical and western blot analysis. The expression of Col IV was decreased and that of MMP-9 was increased by MSCs with the progression of oral leukoplakia, especially in MSCs from epithelial dysplasia. The imbalance between regenerative and metabolic self-regulatory functions of MSCs from oral leukoplakia may be related to the progression of this premalignant disorder.

  11. Mesenchymal Stem Cells as Cellular Vectors for Pediatric Neurological Disorders

    PubMed Central

    Phinney, Donald G.; Isakova, Iryna A.

    2014-01-01

    Lysosomal storage diseases are a heterogeneous group of hereditary disorders characterized by a deficiency in lysosomal function. Although these disorders differ in their etiology and phenotype those that affect the nervous system generally manifest as a profound deterioration in neurologic function with age. Over the past several decades implementation of various treatment regimens including bone marrow and cord blood cell transplantation, enzyme replacement, and substrate reduction therapy have proved effective for managing some clinical manifestations of these diseases but their ability to ameliorate neurologic complications remains unclear. Consequently, there exists a need to develop alternative therapies that more effectively target the central nervous system. Recently, direct intracranial transplantation of tissue-specific stem and progenitor cells has been explored as a means to reconstitute metabolic deficiencies in the CNS. In this chapter we discuss the merits of bone marrow-derived mesenchymal stem cells (MSCs) for this purpose. Originally identified as progenitors of connective tissue cell lineages, recent findings have revealed several novel aspects of MSC biology that make them attractive as therapeutic agents in the CNS. We relate these advances in MSC biology to their utility as cellular vectors for treating neurologic sequelae associated with pediatric neurologic disorders. PMID:24858930

  12. Immunomodulation by Mesenchymal Stem Cells in Veterinary Species

    PubMed Central

    Carrade, Danielle D; Borjesson, Dori L

    2013-01-01

    Mesenchymal stem cells (MSC) are adult-derived multipotent stem cells that have been derived from almost every tissue. They are classically defined as spindle-shaped, plastic-adherent cells capable of adipogenic, chondrogenic, and osteogenic differentiation. This capacity for trilineage differentiation has been the foundation for research into the use of MSC to regenerate damaged tissues. Recent studies have shown that MSC interact with cells of the immune system and modulate their function. Although many of the details underlying the mechanisms by which MSC modulate the immune system have been defined for human and rodent (mouse and rat) MSC, much less is known about MSC from other veterinary species. This knowledge gap is particularly important because the clinical use of MSC in veterinary medicine is increasing and far exceeds the use of MSC in human medicine. It is crucial to determine how MSC modulate the immune system for each animal species as well as for MSC derived from any given tissue source. A comparative approach provides a unique translational opportunity to bring novel cell-based therapies to the veterinary market as well as enhance the utility of animal models for human disorders. The current review covers what is currently known about MSC and their immunomodulatory functions in veterinary species, excluding laboratory rodents. PMID:23759523

  13. Prospective Review of Mesenchymal Stem Cells Differentiation into Osteoblasts.

    PubMed

    Garg, Priyanka; Mazur, Matthew M; Buck, Amy C; Wandtke, Meghan E; Liu, Jiayong; Ebraheim, Nabil A

    2017-02-01

    Stem cell research has been a popular topic in the past few decades. This review aims to discuss factors that help regulate, induce, and enhance mesenchymal stem cell (MSC) differentiation into osteoblasts for bone regeneration. The factors analyzed include bone morphogenic protein (BMP), transforming growth factor β (TGF-β), stromal cell-derived factor 1 (SDF-1), insulin-like growth factor type 1 (IGF-1), histone demethylase JMJD3, cyclin dependent kinase 1 (CDK1), fucoidan, Runx2 transcription factor, and TAZ transcriptional coactivator. Methods promoting bone healing are also evaluated in this review that have shown promise in previous studies. Methods tested using animal models include low intensity pulsed ultrasound (LIPUS) with MSC, micro motion, AMD3100 injections, BMP delivery, MSC transplantation, tissue engineering utilizing scaffolds, anti-IL-20 monoclonal antibody, low dose photodynamic therapy, and bone marrow stromal cell transplants. Human clinical trial methods analyzed include osteoblast injections, bone marrow grafts, bone marrow and platelet rich plasma transplantation, tissue engineering using scaffolds, and recombinant human BMP-2. These methods have been shown to promote and accelerate new bone formation. These various methods for enhanced bone regeneration have the potential to be used, following further research, in clinical practice.

  14. Suitability of human mesenchymal stem cells for gene therapy depends on the expansion medium

    SciTech Connect

    Apel, Anja; Groth, Ariane; Schlesinger, Sabine; Bruns, Helge; Schemmer, Peter; Buechler, Markus W.; Herr, Ingrid

    2009-02-01

    Great hope is set in the use of mesenchymal stem cells for gene therapy and regenerative medicine. Since the frequency of this subpopulation of stem cells in bone marrow is low, mesenchymal stem cells are expanded ex vivo and manipulated prior to experimental or clinical use. Different methods for isolation and expansion are available, but the particular effect on the stem cell character is unclear. While the isolation of mesenchymal stem cells by density centrifugation followed by selection of the plastic adherent fraction is frequently used, the composition of expansion media differs. Thus, in the present study we cultured mesenchymal stem cells isolated from five healthy young volunteers in three widely used expansion media and performed a detailed analysis of the effect on morphology, proliferation, clonogenicity, passaging, differentiation and senescence. By this way we clearly show that the type of expansion medium used determines the stem cell character and time of senescence which is critical for future gene therapeutic and regenerative approaches using mesenchymal stem cells.

  15. In vitro protection of adipose tissue-derived mesenchymal stem cells by erythropoietin.

    PubMed

    Ercan, Ertugrul; Bagla, Aysel Guven; Aksoy, Ayca; Gacar, Gulcin; Unal, Z Seda; Asgun, H Fatih; Karaoz, Erdal

    2014-01-01

    Mobilization of stem cells and their differentiation into cardiomyocytes are known to have protective effects after myocardial infarction. The integrity of transplanted mesenchymal stem cells for cardiac regeneration is dependent on cell-cell or cell-matrix interaction, which is adversely affected by reactive oxygen species in an ischemic environment. Treatment with erythropoietin was shown to protect human adipose tissue derived mesenchymal stem cells in an ischemic injury in vitro model. The analyses indicated that expression of erythropoietin receptors played a pivotal role in erythropoietin mediated cell survival. In this study, the anti-apoptotic effect of erythropoietin on stem cells was analyzed in apoptosis-induced human mesenchymal stem cells. Apoptosis was induced in cultured adult human adipose tissue derived mesenchymal stem cells by hydrogen peroxide. A group of cultured cells was also treated with recombinant human erythropoietin in a concentration of 50 ng mL(-1). The degree of apoptosis was analyzed by flow-cytometry and immunohistochemical staining for Caspase 3. The average percentages of apoptotic cells were significantly higher in H2O2-induced stem cells than in cells co-cultured with erythropoietin (63.03 ± 4.96% vs 29 ± 3.41%, p<0.01). We conclude that preconditioning with erythropoietin suppresses apoptosis of mesenchymal stem cells and enhances their survival. Copyright © 2013 Elsevier GmbH. All rights reserved.

  16. Body Management: Mesenchymal Stem Cells Control the Internal Regenerator

    PubMed Central

    Hariri, Robert

    2015-01-01

    Summary It has been assumed that adult tissues cannot regenerate themselves. With the current understanding that every adult tissue has its own intrinsic progenitor or stem cell, it is now clear that almost all tissues have regenerative potential partially related to their innate turnover dynamics. Moreover, it appears that a separate class of local cells originating as perivascular cells appears to provide regulatory oversight for localized tissue regeneration. The management of this regeneration oversight has a profound influence on the use of specific cells for cell therapies as a health care delivery tool set. The multipotent mesenchymal stem cell (MSC), now renamed the medicinal signaling cell, predominantly arises from pericytes released from broken and inflamed blood vessels and appears to function as both an immunomodulatory and a regeneration mediator. MSCs are being tested for their management capabilities to produce therapeutic outcomes in more than 480 clinical trials for a wide range of clinical conditions. Local MSCs function by managing the body’s primary repair and regeneration activities. Supplemental MSCs can be provided from either endogenous or exogenous sources of either allogeneic or autologous origin. This MSC-based therapy has the potential to change how health care is delivered. These medicinal cells are capable of sensing their surroundings. Also, by using its complex signaling circuitry, these cells organize site-specific regenerative responses as if these therapeutic cells were well-programmed modern computers. Given these facts, it appears that we are entering a new age of cellular medicine. Significance This report is a perspective from an active scientist and an active entrepreneur and commercial leader. It is neither a comprehensive review nor a narrowly focused treatise. The broad themes and the analogy to the working component of a computer and that of a cell are meant to draw several important scientific principles and health

  17. The hematopoietic growth factor "erythropoietin" enhances the therapeutic effect of mesenchymal stem cells in Alzheimer's disease.

    PubMed

    Khairallah, M I; Kassem, L A; Yassin, N A; El Din, M A Gamal; Zekri, M; Attia, M

    2014-01-01

    Alzheimer's disease is a neurodegenerative disorder clinically characterized by cognitive dysfunction and by deposition of amyloid plaques, neurofibrillary tangles in the brain. The study investigated the therapeutic effect of combined mesenchymal stem cells and erythropoietin on Alzheimer's disease. Five groups of mice were used: control group, Alzheimer's disease was induced in four groups by a single intraperitoneal injection of 0.8 mg kg(-1) lipopolysaccharide and divided as follows: Alzheimer's disease group, mesenchymal stem cells treated group by injecting mesenchymal stem cells into the tail vein (2 x 10(6) cells), erythropoietin treated group (40 microg kg(-1) b.wt.) injected intraperitoneally 3 times/week for 5 weeks and mesenchymal stem cells and erythropoietin treated group. Locomotor activity and memory were tested using open field and Y-maze. Histological, histochemical, immunohistochemical studies, morphometric measurements were examined in brain sections of all groups. Choline transferase activity, brain derived neurotrophic factor expression and mitochondrial swellings were assessed in cerebral specimens. Lipopolysaccharide decreased locomotor activity, memory, choline transferase activity and brain derived neurotrophic factor. It increased mitochondrial swelling, apoptotic index and amyloid deposition. Combined mesenchymal stem cells and erythropoietin markedly improved all these parameters. This study proved the effective role of mesenchymal stem cells in relieving Alzheimer's disease symptoms and manifestations; it highlighted the important role of erythropoietin in the treatment of Alzheimer's disease.

  18. The potential of mesenchymal stem cells in the management of radiation enteropathy

    PubMed Central

    Chang, P-Y; Qu, Y-Q; Wang, J; Dong, L-H

    2015-01-01

    Although radiotherapy is effective in managing abdominal and pelvic malignant tumors, radiation enteropathy is still unavoidable. This disease severely affects the quality of life of cancer patients due to some refractory lesions, such as intestinal ischemia, mucositis, ulcer, necrosis or even perforation. Current drugs or prevailing therapies are committed to alleviating the symptoms induced by above lesions. But the efficacies achieved by these interventions are still not satisfactory, because the milieus for tissue regeneration are not distinctly improved. In recent years, regenerative therapy for radiation enteropathy by using mesenchymal stem cells is of public interests. Relevant results of preclinical and clinical studies suggest that this regenerative therapy will become an attractive tool in managing radiation enteropathy, because mesenchymal stem cells exhibit their pro-regenerative potentials for healing the injuries in both epithelium and endothelium, minimizing inflammation and protecting irradiated intestine against fibrogenesis through activating intrinsic repair actions. In spite of these encouraging results, whether mesenchymal stem cells promote tumor growth is still an issue of debate. On this basis, we will discuss the advances in anticancer therapy by using mesenchymal stem cells in this review after analyzing the pathogenesis of radiation enteropathy, introducing the advances in managing radiation enteropathy using regenerative therapy and exploring the putative actions by which mesenchymal stem cells repair intestinal injuries. At last, insights gained from the potential risks of mesenchymal stem cell-based therapy for radiation enteropathy patients may provide clinicians with an improved awareness in carrying out their studies. PMID:26247725

  19. The endometrium as a source of mesenchymal stem cells for regenerative medicine.

    PubMed

    Mutlu, Levent; Hufnagel, Demetra; Taylor, Hugh S

    2015-06-01

    Stem cell therapies have opened new frontiers in medicine with the possibility of regenerating lost or damaged cells. Embryonic stem cells, induced pluripotent stem cells, hematopoietic stem cells, and mesenchymal stem cells have been used to derive mature cell types for tissue regeneration and repair. However, the endometrium has emerged as an attractive, novel source of adult stem cells that are easily accessed and demonstrate remarkable differentiation capacity. In this review, we summarize our current understanding of endometrial stem cells and their therapeutic potential in regenerative medicine.

  20. The Endometrium as a Source of Mesenchymal Stem Cells for Regenerative Medicine1

    PubMed Central

    Mutlu, Levent; Hufnagel, Demetra; Taylor, Hugh S.

    2015-01-01

    Stem cell therapies have opened new frontiers in medicine with the possibility of regenerating lost or damaged cells. Embryonic stem cells, induced pluripotent stem cells, hematopoietic stem cells, and mesenchymal stem cells have been used to derive mature cell types for tissue regeneration and repair. However, the endometrium has emerged as an attractive, novel source of adult stem cells that are easily accessed and demonstrate remarkable differentiation capacity. In this review, we summarize our current understanding of endometrial stem cells and their therapeutic potential in regenerative medicine. PMID:25904012

  1. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    PubMed

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments.

  2. The potential of mesenchymal stem cell in prion research.

    PubMed

    Mediano, D R; Sanz-Rubio, D; Ranera, B; Bolea, R; Martín-Burriel, I

    2015-05-01

    Scrapie and bovine spongiform encephalopathy are fatal neurodegenerative diseases caused by the accumulation of a misfolded protein (PrP(res)), the pathological form of the cellular prion protein (PrP(C)). For the last decades, prion research has greatly progressed, but many questions need to be solved about prion replication mechanisms, cell toxicity, differences in genetic susceptibility, species barrier or the nature of prion strains. These studies can be developed in murine models of transmissible spongiform encephalopathies, although development of cell models for prion replication and sample titration could reduce economic and timing costs and also serve for basic research and treatment testing. Some murine cell lines can replicate scrapie strains previously adapted in mice and very few show the toxic effects of prion accumulation. Brain cell primary cultures can be more accurate models but are difficult to develop in naturally susceptible species like humans or domestic ruminants. Stem cells can be differentiated into neuron-like cells and be infected by prions. However, the use of embryo stem cells causes ethical problems in humans. Mesenchymal stem cells (MSCs) can be isolated from many adult tissues, including bone marrow, adipose tissue or even peripheral blood. These cells differentiate into neuronal cells, express PrP(C) and can be infected by prions in vitro. In addition, in the last years, these cells are being used to develop therapies for many diseases, including neurodegenerative diseases. We review here the use of cell models in prion research with a special interest in the potential use of MSCs.

  3. Clinical Trials With Mesenchymal Stem Cells: An Update.

    PubMed

    Squillaro, Tiziana; Peluso, Gianfranco; Galderisi, Umberto

    2016-01-01

    In the last year, the promising features of mesenchymal stem cells (MSCs), including their regenerative properties and ability to differentiate into diverse cell lineages, have generated great interest among researchers whose work has offered intriguing perspectives on cell-based therapies for various diseases. Currently the most commonly used adult stem cells in regenerative medicine, MSCs, can be isolated from several tissues, exhibit a strong capacity for replication in vitro, and can differentiate into osteoblasts, chondrocytes, and adipocytes. However, heterogeneous procedures for isolating and cultivating MSCs among laboratories have prompted the International Society for Cellular Therapy (ISCT) to issue criteria for identifying unique populations of these cells. Consequently, the isolation of MSCs according to ISCT criteria has produced heterogeneous, nonclonal cultures of stromal cells containing stem cells with different multipotent properties, committed progenitors, and differentiated cells. Though the nature and functions of MSCs remain unclear, nonclonal stromal cultures obtained from bone marrow and other tissues currently serve as sources of putative MSCs for therapeutic purposes, and several findings underscore their effectiveness in treating different diseases. To date, 493 MSC-based clinical trials, either complete or ongoing, appear in the database of the US National Institutes of Health. In the present article, we provide a comprehensive review of MSC-based clinical trials conducted worldwide that scrutinizes biological properties of MSCs, elucidates recent clinical findings and clinical trial phases of investigation, highlights therapeutic effects of MSCs, and identifies principal criticisms of the use of these cells. In particular, we analyze clinical trials using MSCs for representative diseases, including hematological disease, graft-versus-host disease, organ transplantation, diabetes, inflammatory diseases, and diseases in the liver, kidney

  4. Mesenchymal stem cells in obesity: insights for translational applications.

    PubMed

    Matsushita, Kenichi; Dzau, Victor J

    2017-10-01

    Obesity is now a major public health problem worldwide. Lifestyle modification to reduce the characteristic excess body adiposity is important in the treatment of obesity, but effective therapeutic intervention is still needed to control what has become an obesity epidemic. Unfortunately, many anti-obesity drugs have been withdrawn from market due to adverse side effects. Bariatric surgery therefore remains the most effective therapy for severe cases, although such surgery is invasive and researchers continue to seek new control strategies for obesity. Mesenchymal stem cells (MSCs) are a major source of adipocyte generation, and studies have been conducted into the potential roles of MSCs in treating obesity. However, despite significant progress in stem cell research and its potential applications for obesity, adipogenesis is a highly complex process and the molecular mechanisms governing MSC adipogenesis remain ill defined. In particular, successful clinical application of MSCs will require extensive identification and characterization of the transcriptional regulators controlling MSC adipogenesis. Since obesity is associated with the incidence of multiple important comorbidities, an in-depth understanding of the relationship between MSC adipogenesis and the comorbidities of obesity is also necessary to evaluate the potential of effective and safe MSC-based therapies for obesity. In addition, brown adipogenesis is an attractive topic from the viewpoint of therapeutic innovation and future research into MSC-based brown adipogenesis could lead to a novel breakthrough. Ongoing stem cell studies and emerging research fields such as epigenetics are expected to elucidate the complicated mechanisms at play in MSC adipogenesis and develop novel MSC-based therapeutic options for obesity. This review discusses the current understanding of MSCs in adipogenesis and their potential clinical applications for obesity.

  5. Epigenetic modulators promote mesenchymal stem cell phenotype switches.

    PubMed

    Alexanian, Arshak R

    2015-07-01

    Discoveries in recent years have suggested that some tissue specific adult stem cells in mammals might have the ability to differentiate into cell types from different germ layers. This phenomenon has been referred to as stem cell transdifferentiation or plasticity. Despite controversy, the current consensus holds that transdifferentiation does occur in mammals, but only within a limited range. Understanding the mechanisms that underlie the switches in phenotype and development of the methods that will promote such type of conversions can open up endless possibilities for regenerative medicine. Epigenetic control contributes to various processes that lead to cellular plasticity and DNA and histone covalent modifications play a key role in these processes. Recently, we have been able to convert human mesenchymal stem cells (hMSCs) into neural-like cells by exposing cells to epigenetic modifiers and neural inducing factors. The goal of this study was to investigate the stability and plasticity of these transdifferentiated cells. To this end, neurally induced MSCs (NI-hMSCs) were exposed to adipocyte inducing factors. Grown for 24-48 h in fat induction media NI-hMSCs reversed their morphology into fibroblast-like cells and regained their proliferative properties. After 3 weeks approximately 6% of hMSCs differentiated into multilocular or plurivacuolar adipocyte cells that demonstrated by Oil Red O staining. Re-exposure of these cultures or the purified adipocytes to neural induction medium induced the cells to re-differentiate into neuronal-like cells. These data suggest that cell plasticity can be manipulated by the combination of small molecule modulators of chromatin modifying enzymes and specific cell signaling pathways.

  6. Therapeutic application of mesenchymal stem cell-derived exosomes: A promising cell-free therapeutic strategy in regenerative medicine.

    PubMed

    Motavaf, M; Pakravan, K; Babashah, S; Malekvandfard, F; Masoumi, M; Sadeghizadeh, M

    2016-06-30

    Mesenchymal stem cells have emerged as promising therapeutic candidates in regenerative medicine. The mechanisms underlying mesenchymal stem cells regenerative properties were initially attributed to their engraftment in injured tissues and their subsequent transdifferentiation to repair and replace damaged cells. However, studies in animal models and patients indicated that the low number of transplanted mesenchymal stem cells localize to the target tissue and transdifferentiate to appropriate cell lineage. Instead the regenerative potential of mesenchymal stem cells has been found - at least in part - to be mediated via their paracrine actions. Recently, a secreted group of vesicles, called "exosome" has been identified as major mediator of mesenchymal stem cells therapeutic efficacy. In this review, we will summarize the current literature on administration of exosomes released by mesenchymal stem cells in regenerative medicine and suggest how they could help to improve tissue regeneration following injury.

  7. Human mesenchymal stem cells enhance the systemic effects of radiotherapy

    PubMed Central

    de Araújo Farias, Virgínea; O'Valle, Francisco; Lerma, Borja Alonso; Ruiz de Almodóvar, Carmen; López-Peñalver, Jesús J.; Nieto, Ana; Santos, Ana; Fernández, Beatriz Irene; Guerra-Librero, Ana; Ruiz-Ruiz, María Carmen; Guirado, Damián; Schmidt, Thomas; Oliver, Francisco Javier; Ruiz de Almodóvar, José Mariano

    2015-01-01

    The outcome of radiotherapy treatment might be further improved by a better understanding of individual variations in tumor radiosensitivity and normal tissue reactions, including the bystander effect. For many tumors, however, a definitive cure cannot be achieved, despite the availablity of more and more effective cancer treatments. Therefore, any improvement in the efficacy of radiotherapy will undoubtedly benefit a significant number of patients. Many experimental studies measure a bystander component of tumor cell death after radiotherapy, which highlights the importance of confirming these observations in a preclinical situation. Mesenchymal stem cells (MSCs) have been investigated for use in the treatment of cancers as they are able to both preferentially home onto tumors and become incorporated into their stroma. This process increases after radiation therapy. In our study we show that in vitro MSCs, when activated with a low dose of radiation, are a source of anti-tumor cytokines that decrease the proliferative activity of tumor cells, producing a potent cytotoxic synergistic effect on tumor cells. In vivo administration of unirradiated mesenchymal cells together with radiation leads to an increased efficacy of radiotherapy, thus leading to an enhancement of short and long range bystander effects on primary-irradiated tumors and distant-non-irradiated tumors. Our experiments indicate an increased cell loss rate and the decrease in the tumor cell proliferation activity as the major mechanisms underlying the delayed tumor growth and are a strong indicator of the synergistic effect between RT and MSC when they are applied together for tumor treatment in this model. PMID:26378036

  8. Extracellular acidity strengthens mesenchymal stem cells to promote melanoma progression

    PubMed Central

    Peppicelli, Silvia; Bianchini, Francesca; Toti, Alessandra; Laurenzana, Anna; Fibbi, Gabriella; Calorini, Lido

    2015-01-01

    Mesenchymal stem cells (MSC) participate to tumor stroma development and several evidence suggests that they play a role in facilitating cancer progression. Because melanoma often shows extracellular pH low enough to influence host cell as tumor cell behavior, the aim of this study is to elucidate whether acidity affects cross talk between MSC and melanoma cells to disclose new liaisons promoting melanoma progression, and to offer new therapeutic opportunities. We found that MSC grown in a low pH medium (LpH-MSC) stimulate melanoma xenografts more than MSC grown in a standard pH medium. LpH-MSC express a higher level of TGFβ that is instrumental of epithelial-to-mesenchymal transition (EMT)-like phenotype induction in melanoma cells. LpH-MSC profile also shows a switching to an oxidative phosphorylation metabolism that was accompanied by a forced glycolytic pathway of melanoma cells grown in LpH-MSC-conditioned medium. Metformin, an inhibitor of mitochondrial respiratory chain was able to reconvert oxidative metabolism and abrogate TGFβ expression in LpH-MSC. In addition, esomeprazole, a proton pump inhibitor activated in acidosis, blocked TGFβ expression in LpH-MSC through the downregulation of IkB. Both agents, metformin and esomeprazole, inhibited EMT profile in melanoma cells grown in LpH-MSC medium, and reduced glycolytic markers. Thus, acidosis of tumor microenvironment potentiates the pro-tumoral activity of MSC and orchestrates for a new potential symbiosis, which could be target to limit melanoma progression. PMID:26496168

  9. Mesenchymal stem cell and regenerative medicine: regeneration versus immunomodulatory challenges

    PubMed Central

    Law, Sujata; Chaudhuri, Samaresh

    2013-01-01

    Mesenchymal Stem cells (MSC) are now presented with the opportunities of multifunctional therapeutic approaches. Several reports are in support of their self-renewal, capacity for multipotent differentiation, and immunomodulatory properties. They are unique to contribute to the regeneration of mesenchymal tissues such as bone, cartilage, muscle, ligament, tendon, and adipose. In addition to promising trials in regenerative medicine, such as in the treatment of major bone defects and myocardial infarction, MSC has shown a therapeutic effect other than direct hematopoiesis support in hematopoietic reconstruction. MSCs are identified by the expression of many molecules including CD105 (SH2) and CD73(SH3/4) and are negative for the hematopoietic markers CD34, CD45, and CD14. Manufacturing of MSC for clinical trials is also an important aspect as their differentiation, homing and Immunomodulatory properties may differ. Their suppressive effects on immune cells, including T cells, B cells, NK cells and DC cells, suggest MSCs as a novel therapy for GVHD and other autoimmune disorders. Since the cells by themselves are non-immunogenic, tissue matching between MSC donor and recipient is not essential and, MSC may be the first cell type able to be used as an “off-the-shelf” therapeutic product. Following a successful transplantation, the migration of MSC to the site of injury refers to the involvement of chemokines and chemokine receptors of respective specificity. It has been demonstrated that cultured MSCs have the ability to engraft into healthy as well as injured tissue and can differentiate into several cell types in vivo, which facilitates MSC to be an ideal tool for regenerative therapy in different disease types. However, some observations have raised questions about the limitations for proper use of MSC considering some critical factors that warn regular clinical use. PMID:23671814

  10. Application of mesenchymal stem cells in bone regenerative procedures in oral implantology. A literature review

    PubMed Central

    Viña, Jose A.; El-Alami, Marya; Gambini, Juan; Borras, Consuelo; Viña, Jose

    2014-01-01

    Objective: The aim of this work was to review de literature about the role of mesenchymal stem cells in bone regenerative procedures in oral implantology, specifically, in the time require to promote bone regeneration. Study Design: A bibliographic search was carried out in PUBMED with a combination of different key words. Animal and human studies that assessed histomorphometrically the influence of mesenchymal stem cells on bone regeneration procedures in oral implantology surgeries were examined. Reults: - Alveolar regeneration: Different controlled histomorphometric animal studies showed that bone regeneration is faster using stem cells seeded in scaffolds than using scaffolds or platelet rich plasma alone. Human studies revealed that stem cells increase bone regeneration. - Maxillary sinus lift: Controlled studies in animals and in humans showed higher bone regeneration applying stem cells compared with controls. - Periimplantary bone regeneration and alveolar distraction: Studies in animals showed higher regeneration when stem cells are used. In humans, no evidence of applying mesenchymal stem cells in these regeneration procedures was found. Conclusion: Stem cells may promote bone regeneration and be useful in bone regenerative procedures in oral implantology, but no firm conclusions can be drawn from the rather limited clinical studies so far performed. Key words:Mesenchymal stem cells, bone regeneration, dental implants, oral surgery, tissue engineering. PMID:24596637

  11. Carvacrol promotes angiogenic paracrine potential and endothelial differentiation of human mesenchymal stem cells at low concentrations.

    PubMed

    Matluobi, Danial; Araghi, Atefeh; Maragheh, Behnaz Faramarzian Azimi; Rezabakhsh, Aysa; Soltani, Sina; Khaksar, Majid; Siavashi, Vahid; Feyzi, Adel; Bagheri, Hesam Saghaei; Rahbarghazi, Reza; Montazersaheb, Soheila

    2017-08-19

    Phenolic monoterpene compound, named Carvacrol, has been found to exert different biological outcomes. It has been accepted that the angiogenic activity of human mesenchymal stem cells was crucial in the pursuit of appropriate regeneration. In the current experiment, we investigated the contribution of Carvacrol on the angiogenic behavior of primary human mesenchymal stem cells. Mesenchymal stem cells were exposed to Carvacrol in a dose ranging from 25 to 200μM for 48h. We measured cell survival rate by MTT assay and migration rate by a scratch test. The oxidative status was monitored by measuring SOD, GPx activity. The endothelial differentiation was studied by evaluating the level of VE-cadherin and vWF by real-time PCR and ELISA analyses. The content of VEGF and tubulogenesis behavior was monitored in vitro. We also conducted Matrigel plug in vivo CAM assay to assess the angiogenic potential of conditioned media from human mesenchymal stem cells after exposure to Carvacrol. Carvacrol was able to increase mesenchymal stem cell survival and migration rate (p<0.05). An increased activity of SOD was obtained while GPx activity unchanged or reduced. We confirmed the endothelial differentiation of stem cells by detecting vWF and VE-cadherin expression (p<0.05). The VEGF expression was increased and mesenchymal stem cells conditioned media improved angiogenesis tube formation in vitro (p<0.05). Moreover, histological analysis revealed an enhanced microvascular density at the site of Matrigel plug in CAM assay. Our data shed lights on the possibility of a Carvacrol to induce angiogenesis in human mesenchymal stem cells by modulating cell differentiation and paracrine angiogenic response. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Isolation and purification of rabbit mesenchymal stem cells using an optimized protocol.

    PubMed

    Lin, Chunbo; Shen, Maorong; Chen, Weiping; Li, Xiaofeng; Luo, Daoming; Cai, Jinhong; Yang, Yuan

    2015-11-01

    Mesenchymal stem cells were first isolated and grown in vitro by Friedenstein over 40 yr ago; however, their isolation remains challenging as they lack unique markers for identification and are present in very small quantities in mesenchymal tissues and bone marrow. Using whole marrow samples, common methods for mesenchymal stem cell isolation are the adhesion method and density gradient fractionation. The whole marrow sample adhesion method still results in the nonspecific isolation of mononuclear cells, and activation and/or potential loss of target cells. Density gradient fractionation methods are complicated, and may result in contamination with toxic substances that affect cell viability. In the present study, we developed an optimized protocol for the isolation and purification of mesenchymal stem cells based on the principles of hypotonic lysis and natural sedimentation.

  13. The Telomerase Activity of Selenium-Induced Human Umbilical Cord Mesenchymal Stem Cells Is Associated with Different Levels of c-Myc and p53 Expression.

    PubMed

    Hosseinzadeh Anvar, Leila; Hosseini-Asl, Saeid; Mohammadzadeh-Vardin, Mohammad; Sagha, Mohsen

    2017-01-01

    Selenium-as a trace element-is nutritionally essential for humans. It prevents cancerous growth by inhibiting the telomerase activity but the mechanism involved in regulation of telomerase activity in normal telomerase-positive cells remains to be elucidated. Here, we find out whether the effect of sodium selenite and selenomethionine on telomerase activity in human umbilical cord-derived mesenchymal stem cells (hUCMSCs) is associated with different levels of c-Myc and p53 expression. The use of different staining methods including ethidium bromide/acridine orange and DAPI in addition to telomeric repeat amplification protocol assay and real-time PCR indicated that different forms of selenium have opposite impacts on c-Myc and p53 expressions in both hUCMSCs and AGS, a gastric adenocarcinoma cell line, as a positive control. Our findings suggest that the signaling pathways involved in the regulation of telomerase activity in malignant and normal telomerase-positive cell types are somewhat different, at least on the c-Myc and P53 expression levels.

  14. Therapeutic Effects of CUR-Activated Human Umbilical Cord Mesenchymal Stem Cells on 1-Methyl-4-phenylpyridine-Induced Parkinson's Disease Cell Model.

    PubMed

    Jinfeng, Li; Yunliang, Wang; Xinshan, Liu; Yutong, Wang; Shanshan, Wang; Peng, Xue; Xiaopeng, Yang; Zhixiu, Xu; Qingshan, Lu; Honglei, Yin; Xia, Cao; Hongwei, Wang; Bingzhen, Cao

    2016-01-01

    The purpose of this study is to evaluate the therapeutic effects of human umbilical cord-derived mesenchymal stem cells (hUC-MSC) activated by curcumin (CUR) on PC12 cells induced by 1-methyl-4-phenylpyridinium ion (MPP+), a cell model of Parkinson's disease (PD). The supernatant of hUC-MSC and hUC-MSC activated by 5 µmol/L CUR (hUC-MSC-CUR) were collected in accordance with the same concentration. The cell proliferation and differentiation potential to dopaminergic neuronal cells and antioxidation were observed in PC12 cells after being treated with the above two supernatants and 5 µmol/L CUR. The results showed that the hUC-MSC-CUR could more obviously promote the proliferation and the expression of tyrosine hydroxylase (TH) and microtubule associated protein-2 (MAP2) and significantly decreased the expression of nitric oxide (NO) and inducible nitric oxide synthase (iNOS) in PC12 cells. Furtherly, cytokines detection gave a clue that the expression of IL-6, IL-10, and NGF was significantly higher in the group treated with the hUC-MSC-CUR compared to those of other two groups. Therefore, the hUC-MSC-CUR may be a potential strategy to promote the proliferation and differentiation of PD cell model, therefore providing new insights into a novel therapeutic approach in PD.

  15. Protection against RAGE-mediated neuronal cell death by sRAGE-secreting human mesenchymal stem cells in 5xFAD transgenic mouse model.

    PubMed

    Son, Myeongjoo; Oh, Seyeon; Park, Hyunjin; Ahn, Hyosang; Choi, Junwon; Kim, Hyungho; Lee, Hye Sun; Lee, Sojung; Park, Hye-Jeong; Kim, Seung U; Lee, Bonghee; Byun, Kyunghee

    2017-07-29

    Alzheimer's disease (AD), which is the most commonly encountered neurodegenerative disease, causes synaptic dysfunction and neuronal loss due to various pathological processes that include tau abnormality and amyloid beta (Aβ) accumulation. Aβ stimulates the secretion and the synthesis of Receptor for Advanced Glycation End products (RAGE) ligand by activating microglial cells, and has been reported to cause neuronal cell death in Aβ1-42 treated rats and in mice with neurotoxin-induced Parkinson's disease. The soluble form of RAGE (sRAGE) is known to reduce inflammation, and to decrease microglial cell activation and Aβ deposition, and thus, it protects from neuronal cell death in AD. However, sRAGE protein has too a short half-life for therapeutic purposes. We developed sRAGE-secreting umbilical cord derived mesenchymal stem cells (sRAGE-MSCs) to enhance the inhibitory effects of sRAGE on Aβ deposition and to reduce the secretion and synthesis of RAGE ligands in 5xFAD mice. In addition, these cells improved the viability of injected MSCs, and enhanced the protective effects of sRAGE by inhibiting the binding of RAGE and RAGE ligands in 5xFAD mice. These findings suggest sRAGE protein from sRAGE-MSCs has better protection against neuronal cell death than sRAGE protein or single MSC treatment by inhibiting the RAGE cell death cascade and RAGE-induce inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. E1A-engineered human umbilical cord mesenchymal stem cells as carriers and amplifiers for adenovirus suppress hepatocarcinoma in mice

    PubMed Central

    Li, Zhenzhen; Ye, Zhou; Zhang, Xiaolong; Zhang, Qing; Fan, Dongmei; Zhang, Yanjun; Luo, Hongbo R.; Yuan, Xiangfei; Li, Zongfang; Xiong, Dongsheng

    2016-01-01

    Gene therapy is an attractive approach for hepatocellular carcinoma (HCC) patients. Nevertheless, efficient transgene delivery remains a challenge. In this study, we explored a new targeted system based on human umbilical cord-derived mesenchymal stem cells (HUMSCs), which were engineered to deliver adenovirus to tumor sites, and to replicate and assemble into new adenovirus against HCC. Our results showed that HUMSCs infected by Ad-hTERTp-IL24 followed by LentiR.E1A infection could specifically migrate to HepG2 tumor cells and support adenoviral replication in vitro and in vivo 36 h after LentiR.E1A infection. Ad-hTERTp-IL24 specifically inhibited HepG2 cells growth, and this inhibitory effect was enhanced by low doses of 5-fluorouracil (5-Fu), because the expression levels of coxsackie adenovirus receptor (CAR) and integrin ανβ3 on tumor cells were significantly increased, causing higher viral uptake. Compared with the no treatment groups, Ad-hTERTp-IL24 and LentiR.E1A co-loaded HUMSCs exhibited significant anti-tumor activity in vivo, particularly in combination with low doses of 5-Fu. In summary, this study provides a promising targeted gene therapeutic strategy dependent on the tumor tropism of HUMSCs, to improve the outcome of virotherapy for tumor patients especially those with metastatic diseases. PMID:27322080

  17. Transcriptional Dynamics of Immortalized Human Mesenchymal Stem Cells during Transformation.

    PubMed

    Takeuchi, Masao; Higashino, Atsunori; Takeuchi, Kikuko; Hori, Yutaro; Koshiba-Takeuchi, Kazuko; Makino, Hatsune; Monobe, Yoko; Kishida, Marina; Adachi, Jun; Takeuchi, Jun; Tomonaga, Takeshi; Umezawa, Akihiro; Kameoka, Yosuke; Akagi, Ken-Ichi

    2015-01-01

    Comprehensive analysis of alterations in gene expression along with neoplastic transformation in human cells provides valuable information about the molecular mechanisms underlying transformation. To further address these questions, we performed whole transcriptome analysis to the human mesenchymal stem cell line, UE6E7T-3, which was immortalized with hTERT and human papillomavirus type 16 E6/E7 genes, in association with progress of transformation in these cells. At early stages of culture, UE6E7T-3 cells preferentially lost one copy of chromosome 13, as previously described; in addition, tumor suppressor genes, DNA repair genes, and apoptosis-activating genes were overexpressed. After the loss of chromosome 13, additional aneuploidy and genetic alterations that drove progressive transformation, were observed. At this stage, the cell line expressed oncogenes as well as genes related to anti-apoptotic functions, cell-cycle progression, and chromosome instability (CIN); these pro-tumorigenic changes were concomitant with a decrease in tumor suppressor gene expression. At later stages after prolong culture, the cells exhibited chromosome translocations, acquired anchorage-independent growth and tumorigenicity in nude mice, (sarcoma) and exhibited increased expression of genes encoding growth factor and DNA repair genes, and decreased expression of adhesion genes. In particular, glypican-5 (GPC5), which encodes a cell-surface proteoglycan that might be a biomarker for sarcoma, was expressed at high levels in association with transformation. Patched (Ptc1), the cell surface receptor for hedgehog (Hh) signaling, was also significantly overexpressed and co-localized with GPC5. Knockdown of GPC5 expression decreased cell proliferation, suggesting that it plays a key role in growth in U3-DT cells (transformants derived from UE6E7T-3 cells) through the Hh signaling pathway. Thus, the UE6E7T-3 cell culture model is a useful tool for assessing the functional contribution of

  18. Transcriptional Dynamics of Immortalized Human Mesenchymal Stem Cells during Transformation

    PubMed Central

    Hori, Yutaro; Koshiba-Takeuchi, Kazuko; Makino, Hatsune; Monobe, Yoko; Kishida, Marina; Adachi, Jun; Takeuchi, Jun; Tomonaga, Takeshi; Umezawa, Akihiro; Kameoka, Yosuke; Akagi, Ken-ichi

    2015-01-01

    Comprehensive analysis of alterations in gene expression along with neoplastic transformation in human cells provides valuable information about the molecular mechanisms underlying transformation. To further address these questions, we performed whole transcriptome analysis to the human mesenchymal stem cell line, UE6E7T-3, which was immortalized with hTERT and human papillomavirus type 16 E6/E7 genes, in association with progress of transformation in these cells. At early stages of culture, UE6E7T-3 cells preferentially lost one copy of chromosome 13, as previously described; in addition, tumor suppressor genes, DNA repair genes, and apoptosis-activating genes were overexpressed. After the loss of chromosome 13, additional aneuploidy and genetic alterations that drove progressive transformation, were observed. At this stage, the cell line expressed oncogenes as well as genes related to anti-apoptotic functions, cell-cycle progression, and chromosome instability (CIN); these pro-tumorigenic changes were concomitant with a decrease in tumor suppressor gene expression. At later stages after prolong culture, the cells exhibited chromosome translocations, acquired anchorage-independent growth and tumorigenicity in nude mice, (sarcoma) and exhibited increased expression of genes encoding growth factor and DNA repair genes, and decreased expression of adhesion genes. In particular, glypican-5 (GPC5), which encodes a cell-surface proteoglycan that might be a biomarker for sarcoma, was expressed at high levels in association with transformation. Patched (Ptc1), the cell surface receptor for hedgehog (Hh) signaling, was also significantly overexpressed and co-localized with GPC5. Knockdown of GPC5 expression decreased cell proliferation, suggesting that it plays a key role in growth in U3-DT cells (transformants derived from UE6E7T-3 cells) through the Hh signaling pathway. Thus, the UE6E7T-3 cell culture model is a useful tool for assessing the functional contribution of

  19. Effect of cell culture using chitosan membranes on stemness marker genes in mesenchymal stem cells.

    PubMed

    Li, Zhiqiang; Tian, Xiaojun; Yuan, Yan; Song, Zhixiu; Zhang, Lili; Wang, Xia; Li, Tong

    2013-06-01

    Mesenchymal stem cell (MSC) therapy is a promising treatment for diseases of the nervous system. However, MSCs often lose their stemness and homing abilities when cultured in conventional two‑dimensional (2D) systems. Consequently, it is important to explore novel culture methods for MSC-based therapies in clinical practice. To investigate the effect of a cell culture using chitosan membranes on MSCs, the morphology of MSCs cultured using chitosan membranes was observed and the expression of stemness marker genes was analyzed. We demonstrated that MSCs cultured using chitosan membranes form spheroids. Additionally, the expression of stemness marker genes, including Oct4, Sox2 and Nanog, increased significantly when MSCs were cultured using chitosan membranes compared with 2D culture systems. Finally, MSCs cultured using chitosan membranes were found to have an increased potential to differentiate into nerve cells and chrondrocytes. In conclusion, we demonstrated that MSCs cultured on chitosan membranes maintain their stemness and homing abilities. This finding may be further investigated for the development of novel cell-based therapies for diseases involving neuron-like cells and chondrogenesis.

  20. Mesenchymal Stem Cells Retain Their Defining Stem Cell Characteristics After Exposure to Ionizing Radiation

    SciTech Connect

    Nicolay, Nils H.; Sommer, Eva; Lopez, Ramon; Wirkner, Ute; Trinh, Thuy; Sisombath, Sonevisay; Debus, Jürgen; Ho, Anthony D.; Saffrich, Rainer; Huber, Peter E.

    2013-12-01

    Purpose: Mesenchymal stem cells (MSCs) have the ability to migrate to lesion sites and undergo differentiation into functional tissues. Although this function may be important for tissue regeneration after radiation therapy, the influence of ionizing radiation (IR) on cellular survival and the functional aspects of differentiation and stem cell characteristics of MSCs have remained largely unknown. Methods and Materials: Radiation sensitivity of human primary MSCs from healthy volunteers and primary human fibroblast cells was examined, and cellular morphology, cell cycle effects, apoptosis, and differentiation potential after exposure to IR were assessed. Stem cell gene expression patterns after exposure to IR were studied using gene arrays. Results: MSCs were not more radiosensitive than human primary fibroblasts, whereas there were considerable differences regarding radiation sensitivity within individual MSCs. Cellular morphology, cytoskeletal architecture, and cell motility were not markedly altered by IR. Even after high radiation doses up to 10 Gy, MSCs maintained their differentiation potential. Compared to primary fibroblast cells, MSCs did not show an increase in irradiation-induced apoptosis. Gene expression analyses revealed an upregulation of various genes involved in DNA damage response and DNA repair, but expression of established MSC surface markers appeared only marginally influenced by IR. Conclusions: These data suggest that human MSCs are not more radiosensitive than differentiated primary fibroblasts. In addition, upon photon irradiation, MSCs were able to retain their defining stem cell characteristics both on a functional level and regarding stem cell marker expression.

  1. Directed Fusion of Mesenchymal Stem Cells with Cardiomyocytes via VSV-G Facilitates Stem Cell Programming

    PubMed Central

    Kouris, Nicholas A.; Schaefer, Jeremy A.; Hatta, Masato; Freeman, Brian T.; Kamp, Timothy J.; Kawaoka, Yoshihiro; Ogle, Brenda M.

    2012-01-01

    Mesenchymal stem cells (MSCs) spontaneously fuse with somatic cells in vivo, albeit rarely, and the fusion products are capable of tissue-specific function (mature trait) or proliferation (immature trait), depending on the microenvironment. That stem cells can be programmed, or somatic cells reprogrammed, in this fashion suggests that stem cell fusion holds promise as a therapeutic approach for the repair of damaged tissues, especially tissues not readily capable of functional regeneration, such as the myocardium. In an attempt to increase the frequency of stem cell fusion and, in so doing, increase the potential for cardiac tissue repair, we expressed the fusogen of the vesicular stomatitis virus (VSV-G) in human MSCs. We found VSV-G expressing MSCs (vMSCs) fused with cardiomyocytes (CMs) and these fusion products adopted a CM-like phenotype and morphology in vitro. In vivo, vMSCs delivered to damaged mouse myocardium via a collagen patch were able to home to the myocardium and fuse to cells within the infarct and peri-infarct region of the myocardium. This study provides a basis for the investigation of the biological impact of fusion of stem cells with CMs in vivo and illustrates how viral fusion proteins might better enable such studies. PMID:22701126

  2. Visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury

    PubMed Central

    Zhang, Rui-ping; Xu, Cheng; Liu, Yin; Li, Jian-ding; Xie, Jun

    2015-01-01

    An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T7-8. Superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cord via the subarachnoid space. An outer magnetic field was used to successfully guide the labeled cells to the lesion site. Prussian blue staining showed that more bone marrow mesenchymal stem cells reached the lesion site in these rats than in those without magnetic guidance or superparamagnetic iron oxide labeling, and immunofluorescence revealed a greater number of complete axons at the lesion site. Moreover, the Basso, Beattie and Bresnahan (BBB) locomotor rating scale scores were the highest in rats with superparamagnetic labeling and magnetic guidance. Our data confirm that superparamagnetic iron oxide nanoparticles effectively label bone marrow mesenchymal stem cells and impart sufficient magnetism to respond to the external magnetic field guides. More importantly, superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells can be dynamically and non-invasively tracked in vivo using magnetic resonance imaging. Superparamagnetic iron oxide labeling of bone marrow mesenchymal stem cells coupled with magnetic guidance offers a promising avenue for the clinical treatment of spinal cord injury. PMID:25878588

  3. Titanium phosphate glass microcarriers induce enhanced osteogenic cell proliferation and human mesenchymal stem cell protein expression

    PubMed Central

    Lakhkar, Nilay J; M Day, Richard; Kim, Hae-Won; Ludka, Katarzyna; Mordan, Nicola J; Salih, Vehid; Knowles, Jonathan C

    2015-01-01

    In this study, we have developed 50- to 100-µm-sized titanium phosphate glass microcarriers (denoted as Ti5) that show enhanced proliferation of human mesenchymal stem cells and MG63 osteosarcoma cells, as well as enhanced human mesenchymal stem cell expression of bone differentiation markers, in comparison with commercially available glass microspheres at all time points. We also demonstrate that these microcarriers provide superior human mesenchymal stem cell proliferation with conventional Dulbecco’s Modified Eagle medium than with a specially developed commercial stem cell medium. The microcarrier proliferative capacity is revealed by a 24-fold increase in MG63 cell numbers in spinner flask bioreactor studies performed over a 7-day period, versus only a 6-fold increase in control microspheres under the same conditions; the corresponding values of Ti5 and control microspheres under static culture are 8-fold and 7-fold, respectively. The capability of guided osteogenic differentiation is confirmed by ELISAs for bone morphogenetic protein-2 and osteopontin, which reveal significantly greater expression of these markers, especially osteopontin, by human mesenchymal stem cells on the Ti5 microspheres than on the control. Scanning electron microscopy and confocal laser scanning microscopy images reveal favorable MG63 and human mesenchymal stem cell adhesion on the Ti5 microsphere surfaces. Thus, the results demonstrate the suitability of the developed microspheres for use as microcarriers in bone tissue engineering applications. PMID:26668711

  4. Engineering Superficial Zone Chondrocytes from Mesenchymal Stem Cells

    PubMed Central

    Coates, Emily E.

    2014-01-01

    Recent cartilage engineering efforts have focused on development of zonally organized tissue. However, there remains a need for protocols that differentiate progenitor populations into chondrocytes of zonal phenotype. Here, we evaluate the potential of coculture of bovine mesenchymal stem cells (MSCs) and zonal explants of bovine cartilage tissue to drive MSC differentiation to chondrocytes with the superficial zone phenotype. Two coculture systems were set up: one between alginate encapsulated MSCs and superficial zone cartilage explants, and one between MSCs and middle/deep zone cartilage explants. Chondrogenic and superficial zone markers were monitored over a 21-day differentiation period via gene and protein expression. A control conditioned media study was used to determine the impact of communication via soluble factors between cell populations during differentiation. At day 21, results show superficial zone explant coculture without transforming-growth factor β3 supplementation induces upregulation of chondrogenic gene expression markers SOX9 and type II collagen 3.4-fold and 11.4-fold, respectively, over standard chondrogenic control media. Further, coculture of MSCs and superficial zone explants can be used to upregulate mRNA expression of the superficial zone marker proteoglycan-4 in MSCs (1.75-fold over chondrogenic control at day 21), indicating the superficial zone chondrocyte phenotype. Gene expression data show middle/deep zone explant and MSC coculture did not induce the chondrogenesis observed in superficial zone explant coculture. Likewise, poor chondrogenesis was observed in all conditioned media groups. Results highlight the importance of superficial zone cartilage and cells in guiding stem cell fate and regulating differentiation of MSCs to chondrocytes of the superficial zone type. PMID:24279336

  5. Establishing Criteria for Human Mesenchymal Stem Cell Potency

    PubMed Central

    Samsonraj, Rebekah M.; Rai, Bina; Sathiyanathan, Padmapriya; Puan, Kia Joo; Rötzschke, Olaf; Hui, James H.; Raghunath, Michael; Stanton, Lawrence W.; Nurcombe, Victor

    2015-01-01

    Abstract This study sought to identify critical determinants of mesenchymal stem cell (MSC) potency using in vitro and in vivo attributes of cells isolated from the bone marrow of age‐ and sex‐matched donors. Adherence to plastic was not indicative of potency, yet capacity for long‐term expansion in vitro varied considerably between donors, allowing the grouping of MSCs from the donors into either those with high‐growth capacity or low‐growth capacity. Using this grouping strategy, high‐growth capacity MSCs were smaller in size, had greater colony‐forming efficiency, and had longer telomeres. Cell‐surface biomarker analysis revealed that the International Society for Cellular Therapy (ISCT) criteria did not distinguish between high‐growth capacity and low‐growth capacity MSCs, whereas STRO‐1 and platelet‐derived growth factor receptor alpha were preferentially expressed on high‐growth capacity MSCs. These cells also had the highest mean expression of the mRNA transcripts TWIST‐1 and DERMO‐1. Irrespective of these differences, both groups of donor MSCs produced similar levels of key growth factors and cytokines involved in tissue regeneration and were capable of multilineage differentiation. However, high‐growth capacity MSCs produced approximately double the volume of mineralized tissue compared to low‐growth capacity MSCs when assessed for ectopic bone‐forming ability. The additional phenotypic criteria presented in this study when combined with the existing ISCT minimum criteria and working proposal will permit an improved assessment of MSC potency and provide a basis for establishing the quality of MSCs prior to their therapeutic application. Stem Cells 2015;33:1878–1891 PMID:25752682

  6. Microenvironmental changes during differentiation of mesenchymal stem cells towards chondrocytes

    PubMed Central

    Djouad, Farida; Delorme, Bruno; Maurice, Marielle; Bony, Claire; Apparailly, Florence; Louis-Plence, Pascale; Canovas, François; Charbord, Pierre; Noël, Danièle; Jorgensen, Christian

    2007-01-01

    Chondrogenesis is a process involving stem-cell differentiation through the coordinated effects of growth/differentiation factors and extracellular matrix (ECM) components. Recently, mesenchymal stem cells (MSCs) were found within the cartilage, which constitutes a specific niche composed of ECM proteins with unique features. Therefore, we hypothesized that the induction of MSC differentiation towards chondrocytes might be induced and/or influenced by molecules from the microenvironment. Using microarray analysis, we previously identified genes that are regulated during MSC differentiation towards chondrocytes. In this study, we wanted to precisely assess the differential expression of genes associated with the microenvironment using a large-scale real-time PCR assay, according to the simultaneous detection of up to 384 mRNAs in one sample. Chondrogenesis of bone-marrow-derived human MSCs was induced by culture in micropellet for various periods of time. Total RNA was extracted and submitted to quantitative RT-PCR. We identified molecules already known to be involved in attachment and cell migration, including syndecans, glypicans, gelsolin, decorin, fibronectin, and type II, IX and XI collagens. Importantly, we detected the expression of molecules that were not previously associated with MSCs or chondrocytes, namely metalloproteases (MMP-7 and MMP-28), molecules of the connective tissue growth factor (CTGF); cef10/cyr61 and nov (CCN) family (CCN3 and CCN4), chemokines and their receptors chemokine CXC motif ligand (CXCL1), Fms-related tyrosine kinase 3 ligand (FlT3L), chemokine CC motif receptor (CCR3 and CCR4), molecules with A Disintegrin And Metalloproteinase domain (ADAM8, ADAM9, ADAM19, ADAM23, A Disintegrin And Metalloproteinase with thrombospondin type 1 motif ADAMTS-4 and ADAMTS-5), cadherins (4 and 13) and integrins (α4, α7 and β5). Our data suggest that crosstalk between ECM components of the microenvironment and MSCs within the cartilage is

  7. Osteogenic potency of nacre on human mesenchymal stem cells.

    PubMed

    Green, David W; Kwon, Hyuk-Jae; Jung, Han-Sung

    2015-03-01

    Nacre seashell is a natural osteoinductive biomaterial with strong effects on osteoprogenitors, osteoblasts, and osteoclasts during bone tissue formation and morphogenesis. Although nacre has shown, in one study, to induce bridging of new bone across large non-union bone defects in 8 individual human patients, there have been no succeeding human surgical studies to confirm this outstanding potency. But the molecular mechanisms associated with nacre osteoinduction and the influence on bone marrow-derived mesenchymal stem cells (BMSC's), skeletal stem cells or bone marrow stromal cells remain elusive. In this study we highlight the phenotypic and biochemical effects of Pinctada maxima nacre chips and the global nacre soluble protein matrix (SPM) on primary human bone marrow-derived stromal cells (hBMSCs) in vitro. In static co-culture with nacre chips, the hBMSCs secreted Alkaline phosphatase (ALP) at levels that exceeded bone morphogenetic protein (rhBMP-2) treatment. Concentrated preparation of SPM applied to Stro-1 selected hBMSC's led to rapid ALP secretions, at concentrations exceeding the untreated controls even in osteogenic conditions. Within 21 days the same population of Stro-1 selected hBMSCs proliferated and secreted collagens I-IV, indicating the premature onset of an osteoblast phenotype. The same SPM was found to promote unselected hBMSC differentiation with osteocalcin detected at 7 days, and proliferation increased at 7 days in a dose-dependent manner. In conclusion, nacre particles and nacre SPM induced the early stages of human bone cell differentiation, indicating that they may be promising soluble factors with osteoinductive capacity in primary human bone cell progenitors such as, hBMSC's.

  8. Therapeutic properties of mesenchymal stem cells for autism spectrum disorders.

    PubMed

    Gesundheit, Benjamin; Ashwood, Paul; Keating, Armand; Naor, David; Melamed, Michal; Rosenzweig, Joshua P

    2015-03-01

    Recent studies of autism spectrum disorders (ASD) highlight hyperactivity of the immune system, irregular neuronal growth and increased size and number of microglia. Though the small sample size in many of these studies limits extrapolation to all individuals with ASD, there is mounting evidence of both immune and nervous system related pathogenesis in at least a subset of patients with ASD. Given the disturbing rise in incidence rates for ASD, and the fact that no pharmacological therapy for ASD has been approved by the Food and Drug Administration (FDA), there is an urgent need for new therapeutic options. Research in the therapeutic effects of mesenchymal stem cells (MSC) for other immunological and neurological conditions has shown promising results in preclinical and even clinical studies. MSC have demonstrated the ability to suppress the immune system and to promote neurogenesis with a promising safety profile. The working hypothesis of this paper is that the potentially synergistic ability of MSC to modulate a hyperactive immune system and its ability to promote neurogenesis make it an attractive potential therapeutic option specifically for ASD. Theoretical mechanisms of action will be suggested, but further research is necessary to support these hypothetical pathways. The choice of tissue source, type of cell, and most appropriate ages for therapeutic intervention remain open questions for further consideration. Concern over poor regulatory control of stem cell studies or treatment, and the unique ethical challenges that each child with ASD presents, demands that future research be conducted with particular caution before widespread use of the proposed therapeutic intervention is implemented.

  9. Mesenchymal Stem Cell Conditioning Promotes Rat Oligodendroglial Cell Maturation

    PubMed Central

    Jadasz, Janusz Joachim; Kremer, David; Göttle, Peter; Tzekova, Nevena; Domke, Julia; Rivera, Francisco J.; Adjaye, James; Hartung, Hans-Peter; Aigner, Ludwig; Küry, Patrick

    2013-01-01

    Oligodendroglial progenitor/precursor cells (OPCs) represent the main cellular source for the generation of new myelinating oligodendrocytes in the adult central nervous system (CNS). In demyelinating diseases such as multiple sclerosis (MS) myelin repair activities based on recruitment, activation and differentiation of resident OPCs can be observed. However, the overall degree of successful remyelination is limited and the existence of an MS-derived anti-oligodendrogenic milieu prevents OPCs from contributing to myelin repair. It is therefore of considerable interest to understand oligodendroglial homeostasis and maturation processes in order to enable the development of remyelination therapies. Mesenchymal stem cells (MSC) have been shown to exert positive immunomodulatory effects, reduce demyelination, increase neuroprotection and to promote adult neural stem cell differentiation towards the oligodendroglial lineage. We here addressed whether MSC secreted factors can boost the OPC’s oligodendrogenic capacity in a myelin non-permissive environment. To this end, we analyzed cellular morphologies, expression and regulation of key factors involved in oligodendroglial fate and maturation of primary rat cells upon incubation with MSC-conditioned medium. This demonstrated that MSC-derived soluble factors promote and accelerate oligodendroglial differentiation, even under astrocytic endorsing conditions. Accelerated maturation resulted in elevated levels of myelin expression, reduced glial fibrillary acidic protein expression and was accompanied by downregulation of prominent inhibitory differentiation factors such as Id2 and Id4. We thus conclude that apart from their suggested application as potential anti-inflammatory and immunomodulatory MS treatment, these cells might also be exploited to support endogenous myelin repair activities. PMID:23951248

  10. Microenvironmental changes during differentiation of mesenchymal stem cells towards chondrocytes.

    PubMed

    Djouad, Farida; Delorme, Bruno; Maurice, Marielle; Bony, Claire; Apparailly, Florence; Louis-Plence, Pascale; Canovas, François; Charbord, Pierre; Noël, Danièle; Jorgensen, Christian

    2007-01-01

    Chondrogenesis is a process involving stem-cell differentiation through the coordinated effects of growth/differentiation factors and extracellular matrix (ECM) components. Recently, mesenchymal stem cells (MSCs) were found within the cartilage, which constitutes a specific niche composed of ECM proteins with unique features. Therefore, we hypothesized that the induction of MSC differentiation towards chondrocytes might be induced and/or influenced by molecules from the microenvironment. Using microarray analysis, we previously identified genes that are regulated during MSC differentiation towards chondrocytes. In this study, we wanted to precisely assess the differential expression of genes associated with the microenvironment using a large-scale real-time PCR assay, according to the simultaneous detection of up to 384 mRNAs in one sample. Chondrogenesis of bone-marrow-derived human MSCs was induced by culture in micropellet for various periods of time. Total RNA was extracted and submitted to quantitative RT-PCR. We identified molecules already known to be involved in attachment and cell migration, including syndecans, glypicans, gelsolin, decorin, fibronectin, and type II, IX and XI collagens. Importantly, we detected the expression of molecules that were not previously associated with MSCs or chondrocytes, namely metalloproteases (MMP-7 and MMP-28), molecules of the connective tissue growth factor (CTGF); cef10/cyr61 and nov (CCN) family (CCN3 and CCN4), chemokines and their receptors chemokine CXC motif ligand (CXCL1), Fms-related tyrosine kinase 3 ligand (FlT3L), chemokine CC motif receptor (CCR3 and CCR4), molecules with A Disintegrin And Metalloproteinase domain (ADAM8, ADAM9, ADAM19, ADAM23, A Disintegrin And Metalloproteinase with thrombospondin type 1 motif ADAMTS-4 and ADAMTS-5), cadherins (4 and 13) and integrins (alpha4, alpha7 and beta5). Our data suggest that crosstalk between ECM components of the microenvironment and MSCs within the cartilage is

  11. Platelet Lysates Produced from Expired Platelet Concentrates Support Growth and Osteogenic Differentiation of Mesenchymal Stem Cells

    PubMed Central

    Jonsdottir-Buch, Sandra Mjoll; Lieder, Ramona; Sigurjonsson, Olafur Eysteinn

    2013-01-01

    Background Mesenchymal stem cells are promising candidates in regenerative cell therapy. Conventional culture methods involve the use of animal substances, specifically fetal bovine serum as growth supplement. Since the use of animal-derived products is undesirable for human applications, platelet lysates produced from human platelets are an attractive alternative. This is especially true if platelet lysates from already approved transfusion units at blood banks can be utilized. The purpose of this study was to produce human platelet lysates from expired, blood bank-approved platelet concentrates and evaluate their use as growth supplement in the culture of mesenchymal stem cells. Methodology/Principal Findings In this study, bone marrow-derived mesenchymal stem cells were cultured with one of three culture supplements; fetal bovine serum, lysates from freshly prepared human platelet concentrates, or lysates from expired human platelet concentrates. The effects of these platelet-derived culture supplements on basic mesenchymal stem cell characteristics were evaluated. All cultures maintained the typical mesenchymal stem cell surface marker expression, trilineage differentiation potential, and the ability to suppress in vitro immune responses. However, mesenchymal stem cells supplemented with platelet lysates proliferated faster than traditionally cultured cells and increased the expression of the osteogenic marker gene RUNX-2; yet no difference between the use of fresh and expired platelet concentrates was observed. Conclusion/Significance Our findings suggest that human platelet lysates produced from expired platelet concentrates can be used as an alternative to fetal bovine serum for mesenchymal stem cell culture to the same extent as lysates from fresh platelets. PMID:23874839

  12. Factors affecting directional migration of bone marrow mesenchymal stem cells to the injured spinal cord.

    PubMed

    Xia, Peng; Pan, Su; Cheng, Jieping; Yang, Maoguang; Qi, Zhiping; Hou, Tingting; Yang, Xiaoyu

    2014-09-15

    Microtubule-associated protein 1B plays an important role in axon guidance and neuronal migration. In the present study, we sought to discover the mechanisms underlying microtubule-associated protein 1B mediation of axon guidance and neuronal migration. We exposed bone marrow mesenchymal stem cells to okadaic acid or N-acetyl-D-erythro-sphingosine (an inhibitor and stimulator, respectively, of protein phosphatase 2A) for 24 hours. The expression of the phosphorylated form of type I microtubule-associated protein 1B in the cells was greater after exposure to okadaic acid and lower after N-acetyl-D-erythro-sphingosine. We then injected the bone marrow mesenchymal stem cells through the ear vein into rabbit models of spinal cord contusion. The migration of bone marrow mesenchymal stem cells towards the injured spinal cord was poorer in cells exposed to okadaic acid- and N-acetyl-D-erythro-sphingosine than in non-treated bone marrow mesenchymal stem cells. Finally, we blocked phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways in rabbit bone marrow mesenchymal stem cells using the inhibitors LY294002 and U0126, respectively. LY294002 resulted in an elevated expression of phosphorylated type I microtubule-associated protein 1B, whereas U0126 caused a reduction in expression. The present data indicate that PI3K and ERK1/2 in bone marrow mesenchymal stem cells modulate the phosphorylation of microtubule-associated protein 1B via a cross-signaling network, and affect the migratory efficiency of bone marrow mesenchymal stem cells towards injured spinal cord.

  13. Radiation response of mesenchymal stem cells derived from bone marrow and human pluripotent stem cells.

    PubMed

    Islam, Mohammad S; Stemig, Melissa E; Takahashi, Yutaka; Hui, Susanta K

    2015-03-01

    Mesenchymal stem cells (MSCs) isolated from human pluripotent stem cells are comparable with bone marrow-derived MSCs in their function and immunophenotype. The purpose of this exploratory study was comparative evaluation of the radiation responses of mesenchymal stem cells derived from bone marrow- (BMMSCs) and from human embryonic stem cells (hESMSCs). BMMSCs and hESMSCs were irradiated at 0 Gy (control) to 16 Gy using a linear accelerator commonly used for cancer treatment. Cells were harvested immediately after irradiation, and at 1 and 5 days after irradiation. Cell cycle analysis, colony forming ability (CFU-F), differentiation ability, and expression of osteogenic-specific runt-related transcription factor 2 (RUNX2), adipogenic peroxisome proliferator-activated receptor gamma (PPARγ), oxidative stress-specific dismutase-1 (SOD1) and Glutathione peroxidase (GPX1) were analyzed. Irradiation arrested cell cycle progression in BMMSCs and hESMSCs. Colony formation ability of irradiated MSCs decreased in a dose-dependent manner. Irradiated hESMSCs showed higher adipogenic differentiation compared with BMMSCs, together with an increase in the adipogenic PPARγ expression. PPARγ expression was upregulated as early as 4 h after irradiation, along with the expression of SOD1. More than 70% downregulation was found in Wnt3A, Wnt4, Wnt 7A, Wnt10A and Wnt11 in BMMSCs, but not in hESMSCs. hESMSCs are highly proliferative but radiosensitive compared with BMMSCs. Increased PPARγ expression relative to RUNX2 and downregulation of Wnt ligands in irradiated MSCs suggest Wnt mediated the fate determination of irradiated MSCs.

  14. Mesenchymal stem cell characteristics of dental pulp and periodontal ligament stem cells after in vivo transplantation.

    PubMed

    Lei, Ming; Li, Kun; Li, Bei; Gao, Li-Na; Chen, Fa-Ming; Jin, Yan

    2014-08-01

    Mesenchymal stem cells (MSCs) isolated from human postnatal dental pulp and periodontal ligament (PDL) tissues can give rise to multilineage differentiation in vitro and generate related dental tissues in vivo. However, the cell properties of human dental pulp stem cells (DPSCs) and PDL stem cells (PDLSCs) after in vivo implantation remain largely unidentified. In this study, cells were re-isolated from in vivo-generated dental pulp-like and PDL-like tissues (termed re-DPCs and re-PDLCs, respectively) as a result of ectopic transplantation of human DPSC and PDLSC sheets. The cell characteristics in terms of colony-forming ability, cell surface antigens and multi-differentiation potentials were all evaluated before and after implantation. It was found that re-DPCs and re-PDLCs were of human and mesenchymal origin and positive for MSC markers such as STRO-1, CD146, CD29, CD90 and CD105; and, to some extent, re-DPCs could maintain their colony forming abilities. Moreover, both cell types were able to form mineral deposits and differentiate into adipocytes and chondrocytes; however, quantitative analysis and related gene expression determination showed that the osteo-/chondro-differentiation capabilities of re-DPCs and re-PDLCs were significantly reduced compared to those of DPSCs and PDLSCs, respectively (P < 0.05); re-PDLCs showed a greater reduction potential than re-DPCs. We conclude that DPSCs and PDLSCs may maintain their MSC characteristics after in vivo implantation and, compared to PDLSCs, DPSCs appear much more stable under in vivo conditions. These findings provide additional cellular and molecular evidence that supports expanding the use of dental tissue-derived stem cells in cell therapy and tissue engineering.

  15. Perivascular Stem Cells: A Prospectively Purified Mesenchymal Stem Cell Population for Bone Tissue Engineering

    PubMed Central

    James, Aaron W.; Zara, Janette N.; Zhang, Xinli; Askarinam, Asal; Goyal, Raghav; Chiang, Michael; Yuan, Wei; Chang, Le; Corselli, Mirko; Shen, Jia; Pang, Shen; Stoker, David; Wu, Ben

    2012-01-01

    Adipose tissue is an ideal source of mesenchymal stem cells for bone tissue engineering: it is largely dispensable and readily accessible with minimal morbidity. However, the stromal vascular fraction (SVF) of adipose tissue is a heterogeneous cell population, which leads to unreliable bone formation. In the present study, we prospectively purified human perivascular stem cells (PSCs) from adipose tissue and compared their bone-forming capacity with that of traditionally derived SVF. PSCs are a population (sorted by fluorescence-activated cell sorting) of pericytes (CD146+CD34−CD45−) and adventitial cells (CD146−CD34+CD45−), each of which we have previously reported to have properties of mesenchymal stem cells. Here, we found that PSCs underwent osteogenic differentiation in vitro and formed bone after intramuscular implantation without the need for predifferentiation. We next sought to optimize PSCs for in vivo bone formation, adopting a demineralized bone matrix for osteoinduction and tricalcium phosphate particle formulation for protein release. Patient-matched, purified PSCs formed significantly more bone in comparison with traditionally derived SVF by all parameters. Recombinant bone morphogenetic protein 2 increased in vivo bone formation but with a massive adipogenic response. In contrast, recombinant Nel-like molecule 1 (NELL-1; a novel osteoinductive growth factor) selectively enhanced bone formation. These studies suggest that adipose-derived human PSCs are a new cell source for future efforts in skeletal regenerative medicine. Moreover, PSCs are a stem cell-based therapeutic that is readily approvable by the U.S. Food and Drug Administration, with potentially increased safety, purity, identity, potency, and efficacy. Finally, NELL-1 is a candidate growth factor able to induce human PSC osteogenesis. PMID:23197855

  16. Perivascular stem cells: a prospectively purified mesenchymal stem cell population for bone tissue engineering.

    PubMed

    James, Aaron W; Zara, Janette N; Zhang, Xinli; Askarinam, Asal; Goyal, Raghav; Chiang, Michael; Yuan, Wei; Chang, Le; Corselli, Mirko; Shen, Jia; Pang, Shen; Stoker, David; Wu, Ben; Ting, Kang; Péault, Bruno; Soo, Chia

    2012-06-01

    Adipose tissue is an ideal source of mesenchymal stem cells for bone tissue engineering: it is largely dispensable and readily accessible with minimal morbidity. However, the stromal vascular fraction (SVF) of adipose tissue is a heterogeneous cell population, which leads to unreliable bone formation. In the present study, we prospectively purified human perivascular stem cells (PSCs) from adipose tissue and compared their bone-forming capacity with that of traditionally derived SVF. PSCs are a population (sorted by fluorescence-activated cell sorting) of pericytes (CD146+CD34-CD45-) and adventitial cells (CD146-CD34+CD45-), each of which we have previously reported to have properties of mesenchymal stem cells. Here, we found that PSCs underwent osteogenic differentiation in vitro and formed bone after intramuscular implantation without the need for predifferentiation. We next sought to optimize PSCs for in vivo bone formation, adopting a demineralized bone matrix for osteoinduction and tricalcium phosphate particle formulation for protein release. Patient-matched, purified PSCs formed significantly more bone in comparison with traditionally derived SVF by all parameters. Recombinant bone morphogenetic protein 2 increased in vivo bone formation but with a massive adipogenic response. In contrast, recombinant Nel-like molecule 1 (NELL-1; a novel osteoinductive growth factor) selectively enhanced bone formation. These studies suggest that adipose-derived human PSCs are a new cell source for future efforts in skeletal regenerative medicine. Moreover, PSCs are a stem cell-based therapeutic that is readily approvable by the U.S. Food and Drug Administration, with potentially increased safety, purity, identity, potency, and efficacy. Finally, NELL-1 is a candidate growth factor able to induce human PSC osteogenesis.

  17. Markers of stemness in equine mesenchymal stem cells: a plea for uniformity.

    PubMed

    De Schauwer, Catharina; Meyer, Evelyne; Van de Walle, Gerlinde R; Van Soom, Ann

    2011-05-01

    Mesenchymal stromal cells (MSC) are a very promising subpopulation of adult stem cells for cell-based regenerative therapies in veterinary medicine. Despite major progress in the knowledge on adult stem cells during recent years, a proper identification of MSC remains a challenge. In human medicine, the Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy (ISCT) recently proposed three criteria to define MSC. Firstly, cells must be plastic-adherent when maintained under standard culture conditions. Secondly, MSC must express CD73, CD90 and CD105, and lack expression of CD34, CD45, CD14 or CD11b, CD79α or CD19 and MHC class II antigens. Thirdly, MSC must be able to differentiate into osteoblasts, adipocytes and chondroblasts in vitro. Successful isolation and differentiation of equine MSC from different sources such as bone marrow, fat tissue, umbilical cord blood, Wharton's Jelly or peripheral blood has been widely reported. However, their unequivocal immunophenotyping is hampered by the lack of a single specific marker and the limited availability of monoclonal anti-horse antibodies, which are two major factors complicating successful research on equine MSC. Detection of gene expression on mRNA level is hereby a valuable alternative, although the need still exists to test several antibody clones in search for cross-reactivity. To date, commercial antibodies recognizing equine epitopes are only available for CD13, CD44 and MHC-II. Moreover, as the expression of certain adult stem cell markers may differ between species, it is mandatory to define a set of CD markers which can be uniformly applied for the identification of equine MSC. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Hydrophilic polyurethane matrix promotes chondrogenesis of mesenchymal stem cells.

    PubMed

    Nalluri, Sandeep M; Krishnan, G Rajesh; Cheah, Calvin; Arzumand, Ayesha; Yuan, Yuan; Richardson, Caley A; Yang, Shuying; Sarkar, Debanjan

    2015-09-01

    Segmental polyurethanes exhibit biphasic morphology and can control cell fate by providing distinct matrix guided signals to increase the chondrogenic potential of mesenchymal stem cells (MSCs). Polyethylene glycol (PEG) based hydrophilic polyurethanes can deliver differential signals to MSCs through their matrix phases where hard segments are cell-interactive domains and PEG based soft segments are minimally interactive with cells. These coordinated communications can modulate cell-matrix interactions to control cell shape and size for chondrogenesis. Biphasic character and hydrophilicity of polyurethanes with gel like architecture provide a synthetic matrix conducive for chondrogenesis of MSCs, as evidenced by deposition of cartilage-associated extracellular matrix. Compared to monophasic hydrogels, presence of cell interactive domains in hydrophilic polyurethanes gels can balance cell-cell and cell-matrix interactions. These results demonstrate the correlation between lineage commitment and the changes in cell shape, cell-matrix interaction, and cell-cell adhesion during chondrogenic differentiation which is regulated by polyurethane phase morphology, and thus, represent hydrophilic polyurethanes as promising synthetic matrices for cartilage regeneration.

  19. Engineering mesenchymal stem cells for regenerative medicine and drug delivery.

    PubMed

    Park, Ji Sun; Suryaprakash, Smruthi; Lao, Yeh-Hsing; Leong, Kam W

    2015-08-01

    Researchers have applied mesenchymal stem cells (MSC) to a variety of therapeutic scenarios by harnessing their multipotent, regenerative, and immunosuppressive properties with tropisms toward inflamed, hypoxic, and cancerous sites. Although MSC-based therapies have been shown to be safe and effective to a certain degree, the efficacy remains low in most cases when MSC are applied alone. To enhance their therapeutic efficacy, researchers have equipped MSC with targeted delivery functions using genetic engineering, therapeutic agent incorporation, and cell surface modification. MSC can be genetically modified virally or non-virally to overexpress therapeutic proteins that complement their innate properties. MSC can also be primed with non-peptidic drugs or magnetic nanoparticles for enhanced efficacy and externally regulated targeting, respectively. Furthermore, MSC can be functionalized with targeting moieties to augment their homing toward therapeutic sites using enzymatic modification, chemical conjugation, or non-covalent interactions. These engineering techniques are still works in progress, requiring optimization to improve the therapeutic efficacy and targeting effectiveness while minimizing any loss of MSC function. In this review, we will highlight the advanced techniques of engineering MSC, describe their promise and the challenges of translation into clinical settings, and suggest future perspectives on realizing their full potential for MSC-based therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Mesenchymal stem cells and cancer: friends or enemies?

    PubMed

    Hong, In-Sun; Lee, Hwa-Yong; Kang, Kyung-Sun

    2014-10-01

    There is increasing evidence that mesenchymal stem cells (MSCs) have the ability to migrate and engraft into tumor sites and exert stimulatory effects on cancer cell growth, invasion and even metastasis through direct and/or indirect interaction with tumor cells. However, these pro-tumorigenic effects of MSCs are still being discovered and may even involve opposing effects. MSCs can be friends or enemies of cancer cells: they may stimulate tumor development by regulating immune surveillance, growth, and angiogenesis. On the other hand, they may inhibit tumor growth by inhibiting survival signaling such as Wnt and Akt pathway. MSCs have also been proposed as an attractive candidate for the delivery of anti-tumor agents, owing to their ability to home into tumor sites and to secrete cytokines. Detailed information about the mutual interactions between tumor cells and MSCs will undoubtedly lead to safer and more effective clinical therapy for tumors. In this article, we summarize a number of findings to provide current information on the potential roles of MSCs in tumor development; we then discuss the therapeutic potential of engineered MSCs to reveal any meaningful clinical applications.

  1. Osteogenic Differentiation of Mesenchymal Stem Cells in Defined Protein Beads

    PubMed Central

    Lund, Amanda W.; Bush, Jeff A.; Plopper, George E.; Stegemann, Jan P.

    2008-01-01

    There is a need to develop improved methods for directing and maintaining the differentiation of human mesenchymal stem cells (hMSC) for regenerative medicine. Here, we present a method for embedding cells in defined protein microenvironments for the directed osteogenic differentiation of hMSC. Composite matrices of collagen I and agarose were produced by emulsification and simultaneous polymerization in the presence of hMSC to produce 30–150 μm diameter hydrogel “beads.” The proliferation, morphology, osteogenic gene expression, and calcium deposition of hMSC in bead environments were compared to other two- and three-dimensional culture environments over 14–21 days in culture. Cells embedded within 40% collagen beads exhibited equivalent proliferation rates to those in gel disks, but showed upregulation of bone sialoprotein and increased calcium deposition over 2D controls. Osteocalcin gene expression was not changed in 3D beads and disks, while collagen type I gene expression was downregulated relative to cells in 2D culture. The hydrogel bead format allows controlled cell differentiation and is a cell delivery vehicle that may also enhance vascular invasion and host incorporation. Our results indicate that the application of such beads can be used to promote the osteogenic phenotype in hMSC, which is an important step toward using them in bone repair applications. PMID:18431753

  2. Mesenchymal stem cell mechanobiology and emerging experimental platforms

    PubMed Central

    MacQueen, Luke; Sun, Yu; Simmons, Craig A.

    2013-01-01

    Experimental control over progenitor cell lineage specification can be achieved by modulating properties of the cell's microenvironment. These include physical properties of the cell adhesion substrate, such as rigidity, topography and deformation owing to dynamic mechanical forces. Multipotent mesenchymal stem cells (MSCs) generate contractile forces to sense and remodel their extracellular microenvironments and thereby obtain information that directs broad aspects of MSC function, including lineage specification. Various physical factors are important regulators of MSC function, but improved understanding of MSC mechanobiology requires novel experimental platforms. Engineers are bridging this gap by developing tools to control mechanical factors with improved precision and throughput, thereby enabling biological investigation of mechanics-driven MSC function. In this review, we introduce MSC mechanobiology and review emerging cell culture platforms that enable new insights into mechanobiological control of MSCs. Our main goals are to provide engineers and microtechnology developers with an up-to-date description of MSC mechanobiology that is relevant to the design of experimental platforms and to introduce biologists to these emerging platforms. PMID:23635493

  3. Hydrophilic polyurethane matrix promotes chondrogenesis of mesenchymal stem cells☆

    PubMed Central

    Nalluri, Sandeep M.; Krishnan, G. Rajesh; Cheah, Calvin; Arzumand, Ayesha; Yuan, Yuan; Richardson, Caley A.; Yang, Shuying; Sarkar, Debanjan

    2016-01-01

    Segmental polyurethanes exhibit biphasic morphology and can control cell fate by providing distinct matrix guided signals to increase the chondrogenic potential of mesenchymal stem cells (MSCs). Polyethylene glycol (PEG) based hydrophilic polyurethanes can deliver differential signals to MSCs through their matrix phases where hard segments are cell-interactive domains and PEG based soft segments are minimally interactive with cells. These coordinated communications can modulate cell–matrix interactions to control cell shape and size for chondrogenesis. Biphasic character and hydrophilicity of polyurethanes with gel like architecture provide a synthetic matrix conducive for chondrogenesis of MSCs, as evidenced by deposition of cartilage-associated extracellular matrix. Compared to monophasic hydrogels, presence of cell interactive domains in hydrophilic polyurethanes gels can balance cell–cell and cell–matrix interactions. These results demonstrate the correlation between lineage commitment and the changes in cell shape, cell–matrix interaction, and cell–cell adhesion during chondrogenic differentiation which is regulated by polyurethane phase morphology, and thus, represent hydrophilic polyurethanes as promising synthetic matrices for cartilage regeneration. PMID:26046282

  4. [Ultrastructure of human umbilical cord mesenchymal stem cells].

    PubMed

    Qiao, Shu-Min; Chen, Guang-Hua; Wang, Yi; Wu, De-Pei

    2012-04-01

    The purpose of this study was to observe the ultrastructure of human umbilical cord mesenchymal stem cells (hUCMSC). hUCMSC from full-term newborn umbilical cord were isolated and cultured by collagenase digestion, and then subcultured, amplification, and cell morphology was observed by microscopy. The immunophenotype and trilineage differentiation potential of hUCMSCs at passage 3 were analyzed. Transmission electron microscopy and scanning electron microscopy were used to observe the ultrastructure of hUCMSC. The results indicated that appearance of hUCMSC was spindle-shaped and polygonal, and nuclei were observed. hUCMSC expressed immunophenotype CD44, CD73, CD105, did not express CD34, CD45, CD31 and human leukocyte antigen HLA-DR. hUCMSC were capable of adipogenic, osteogenic, and cartilage differentiation; the short and thick microvilli processes were seen at the surface of hUCMSC by scanning electron microscope. Two different cell morphologies of hUCMSC were seen under transmission electron microscope, the one was a quiescent period in which a large and round or oval nucleus only one nucleolus were seen, cytoplasmic organelles were less; the other was in a relatively active period in which one or two nuclei in the same one cell were observed, the organelles were rich, structure was clear, expansion of the mitochondria was visible. It is concluded that the cells successfully isolated and cultured from umbilical cord, which possess biological characteristics of MSC and display two different states of ultrastructure.

  5. Oxidative stress induces senescence in human mesenchymal stem cells

    SciTech Connect

    Brandl, Anita; Meyer, Matthias; Bechmann, Volker; Nerlich, Michael; Angele, Peter

    2011-07-01

    Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated {beta}-galactosidase positivity. Prolonged low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.

  6. Mesenchymal stem cells enhance growth and metastasis of colon cancer.

    PubMed

    Shinagawa, Kei; Kitadai, Yasuhiko; Tanaka, Miwako; Sumida, Tomonori; Kodama, Michiyo; Higashi, Yukihito; Tanaka, Shinji; Yasui, Wataru; Chayama, Kazuaki

    2010-11-15

    Recently, mesenchymal stem cells (MSCs) were reported to migrate to tumor stroma as well as injured tissue. We examined the role of human MSCs in tumor stroma using an orthotopic nude mice model of KM12SM colon cancer. In in vivo experiments, systemically injected MSCs migrated to the stroma of orthotopic colon tumors and metastatic liver tumors. Orthotopic transplantation of KM12SM cells mixed with MSCs resulted in greater tumor weight than did transplantation of KM12SM cells alone. The survival rate was significantly lower in the mixed-cell group, and liver metastasis was seen only in this group. Moreover, tumors resulting from transplantation of mixed cells had a significantly higher proliferating cell nuclear antigen labeling index, significantly greater microvessel area and significantly lower apoptotic index. Splenic injection of KM12SM cells mixed with MSCs, in comparison to splenic injection of KM12SM cells alone, resulted in a significantly greater number of liver metastases. MSCs incorporated into the stroma of primary and metastatic tumors expressed α-smooth muscle actin and platelet-derived growth factor receptor-β as carcinoma-associated fibroblast (CAF) markers. In in vitro experiments, KM12SM cells recruited MSCs, and MSCs stimulated migration and invasion of tumor cells through the release of soluble factors. Collectively, MSCs migrate and differentiate into CAFs in tumor stroma, and they promote growth and metastasis of colon cancer by enhancing angiogenesis, migration and invasion and by inhibiting apoptosis of tumor cells.

  7. Proteomic techniques for characterisation of mesenchymal stem cell secretome.

    PubMed

    Kupcova Skalnikova, Helena

    2013-12-01

    Mesenchymal stem cells (MSCs) are multipotent cells with a substantial potential in human regenerative medicine due to their ability to migrate to sites of injury, capability to suppress immune response and accessibility in large amount from patient's own bone marrow or fat tissue. It has been increasingly observed that the transplanted MSCs did not necessarily engraft and differentiate at the site of injury but might exert their therapeutic effects through secreted trophic signals. The MSCs secrete a variety of autocrine/paracrine factors, called secretome, that support regenerative processes in the damaged tissue, induce angiogenesis, protect cells from apoptotic cell death and modulate immune system. The cell culture medium conditioned by MSCs or osteogenic, chondrogenic as well as adipogenic precursors derived from MSCs has become a subject of intensive proteomic profiling in the search for and identification of released factors and microvesicles that might be applicable in regenerative medicine. Jointly with the methods for MSC isolation, expansion and differentiation, proteomic analysis of MSC secretome was enabled recently mainly due to the extensive development in protein separation techniques, mass spectrometry, immunological methods and bioinformatics. This review describes proteomic techniques currently applied or prospectively applicable in MSC secretomics, with a particular focus on preparation of the secretome sample, protein/peptide separation, mass spectrometry and protein quantification techniques, analysis of posttranslational modifications, immunological techniques, isolation and characterisation of secreted vesicles and exosomes, analysis of cytokine-encoding mRNAs and bioinformatics.

  8. [Mesenchymal stem cells - The challenge of a good therapeutic product].

    PubMed

    Sensebé, Luc; Bourin, Philippe

    2011-03-01

    Mesenchymal stem cells (or stromal cells) have been initially characterized in bone marrow, but since, they have been identified in almost every tissue. Their multiple properties, namely differentiative capacity, production of cytokines and trophic molecules, and their immunosuppressive potential undoubtedly offer many therapeutic advantages, both for regenerative medecine or to relieve immune or inflammatory diseases. This is illustrated by the high number (> 100) of ongoing clinical trials with these cells. However, a prerequsite for their safe use in clinics is to guarantee that their production meet the good manufacturing practices, and that the final product is validated by adequate controls. It is thus quite a challenge to move from procedures defined for a research use to large scale production that fits with the national and international rules in terms of standardisation and controls. This underlines the importance of developping interacting networks between research teams, physicians and the industrial R&D departments. This fruitful collaboration will ensure the definition of appropriate and safe procedures for a successful therapeutic application.

  9. Mesenchymal stem cell seeding promotes reendothelialization of the endovascular stent.

    PubMed

    Wu, Xue; Wang, Guixue; Tang, Chaojun; Zhang, Dechuan; Li, Zhenggong; Du, Dingyuan; Zhang, Zhengcai

    2011-09-01

    This study is designed to make a novel cell seeding stent and to evaluate reendothelialization and anti-restenosis after the stent implantation. In comparison with cell seeding stents utilized in previous studies, Mesenchymal stem cells (MSCs) have advantages on promoting of issue repair. Thus it was employed to improve the reendothelialization effects of endovascular stent in present work. MSCs were isolated by density gradient centrifugation and determined as CD29(+) CD44(+) CD34(-) cells by immunofluorescence and immunocytochemistry; gluten and polylysine coated stents were prepared by ultrasonic atomization spray, and MSCs seeded stents were made through rotation culture according to the optimized conditions that were determined in previous studies. The results from animal experiments, in which male New Zealand white rabbits were used, show that the reendothelialization of MSCs coated stents can be completed within one month; in comparison with 316L stainless steel stents (316L SS stents) and gluten and polylysine coated stents, the intimal hyperplasia and in-stent restenosis are significantly inhibited by MSCs coated stents. Endovascular stent seeded with MSCs promotes reendothelialization and inhibits the intimal hyperplasia and in-stent restenosis compared with the 316L SS stents and the gluten and polylysine coated stents.

  10. Mesenchymal Stem Cells in the Treatment of Traumatic Brain Injury.

    PubMed

    Hasan, Anwarul; Deeb, George; Rahal, Rahaf; Atwi, Khairallah; Mondello, Stefania; Marei, Hany Elsayed; Gali, Amr; Sleiman, Eliana

    2017-01-01

    Traumatic brain injury (TBI) is characterized by a disruption in the normal function of the brain due to an injury following a trauma, which can potentially cause severe physical, cognitive, and emotional impairment. The primary insult to the brain initiates secondary injury cascades consisting of multiple complex biochemical responses of the brain that significantly influence the overall severity of the brain damage and clinical sequelae. The use of mesenchymal stem cells (MSCs) offers huge potential for application in the treatment of TBI. MSCs have immunosuppressive properties that reduce inflammation in injured tissue. As such, they could be used to modulate the secondary mechanisms of injury and halt the progression of the secondary insult in the brain after injury. Particularly, MSCs are capable of secreting growth factors that facilitate the regrowth of neurons in the brain. The relative abundance of harvest sources of MSCs also makes them particularly appealing. Recently, numerous studies have investigated the effects of infusion of MSCs into animal models of TBI. The results have shown significant improvement in the motor function of the damaged brain tissues. In this review, we summarize the recent advances in the application of MSCs in the treatment of TBI. The review starts with a brief introduction of the pathophysiology of TBI, followed by the biology of MSCs, and the application of MSCs in TBI treatment. The challenges associated with the application of MSCs in the treatment of TBI and strategies to address those challenges in the future have also been discussed.

  11. Bone Marrow-Derived Mesenchymal Stem Cells Drive Lymphangiogenesis

    PubMed Central

    Maertens, Ludovic; Erpicum, Charlotte; Detry, Benoit; Blacher, Silvia; Lenoir, Bénédicte; Carnet, Oriane; Péqueux, Christel; Cataldo, Didier; Lecomte, Julie; Paupert, Jenny; Noel, Agnès

    2014-01-01

    It is now well accepted that multipotent Bone-Marrow Mesenchymal Stem Cells (BM-MSC) contribute to cancer progression through several mechanisms including angiogenesis. However, their involvement during the lymphangiogenic process is poorly described. Using BM-MSC isolated from mice of two different backgrounds, we demonstrate a paracrine lymphangiogenic action of BM-MSC both in vivo and in vitro. Co-injection of BM-MSC and tumor cells in mice increased the in vivo tumor growth and intratumoral lymphatic vessel density. In addition, BM-MSC or their conditioned medium stimulated the recruitment of lymphatic vessels in vivo in an ear sponge assay, and ex vivo in the lymphatic ring assay (LRA). In vitro, MSC conditioned medium also increased the proliferation rate and the migration of both primary lymphatic endothelial cells (LEC) and an immortalized lymphatic endothelial cell line. Mechanistically, these pro-lymphangiogenic effects relied on the secretion of Vascular Endothelial Growth Factor (VEGF)-A by BM-MSC that activates VEGF Receptor (VEGFR)-2 pathway on LEC. Indeed, the trapping of VEGF-A in MSC conditioned medium by soluble VEGF Receptors (sVEGFR)-1, -2 or the inhibition of VEGFR-2 activity by a specific inhibitor (ZM 323881) both decreased LEC proliferation, migration and the phosphorylation of their main downstream target ERK1/2. This study provides direct unprecedented evidence for a paracrine lymphangiogenic action of BM-MSC via the production of VEGF-A which acts on LEC VEGFR-2. PMID:25222747

  12. Chondrogenic Differentiation of Mesenchymal Stem Cells: Challenges and Unfulfilled Expectations

    PubMed Central

    Somoza, Rodrigo A.; Welter, Jean F.; Correa, Diego

    2014-01-01

    Articular cartilage repair and regeneration provides a substantial challenge in Regenerative Medicine because of the high degree of morphological and mechanical complexity intrinsic to hyaline cartilage due, in part, to its extracellular matrix. Cartilage remains one of the most difficult tissues to heal; even state-of-the-art regenerative medicine technology cannot yet provide authentic cartilage resurfacing. Mesenchymal stem cells (MSCs) were once believed to be the panacea for cartilage repair and regeneration, but despite years of research, they have not fulfilled these expectations. It has been observed that MSCs have an intrinsic differentiation program reminiscent of endochondral bone formation, which they follow after exposure to specific reagents as a part of current differentiation protocols. Efforts have been made to avoid the resulting hypertrophic fate of MSCs; however, so far, none of these has recreated a fully functional articular hyaline cartilage without chondrocytes exhibiting a hypertrophic phenotype. We reviewed the current literature in an attempt to understand why MSCs have failed to regenerate articular cartilage. The challenges that must be overcome before MSC-based tissue engineering can become a front-line technology for successful articular cartilage regeneration are highlighted. PMID:24749845

  13. Electroacupuncture Promotes CNS-Dependent Release of Mesenchymal Stem Cells.

    PubMed

    Salazar, Tatiana E; Richardson, Matthew R; Beli, Eleni; Ripsch, Matthew S; George, John; Kim, Youngsook; Duan, Yaqian; Moldovan, Leni; Yan, Yuanqing; Bhatwadekar, Ashay; Jadhav, Vaishnavi; Smith, Jared A; McGorray, Susan; Bertone, Alicia L; Traktuev, Dmitri O; March, Keith L; Colon-Perez, Luis M; Avin, Keith; Sims, Emily; Mund, Julie A; Case, Jamie; Deng, Shaolin; Kim, Min Su; McDavitt, Bruce; Boulton, Michael E; Thinschmidt, Jeffrey; Li Calzi, Sergio; Fitz, Stephanie D; Fuchs, Robyn K; Warden, Stuart J; McKinley, Todd; Shekhar, Anantha; Febo, Marcelo; Johnson, Phillip L; Chang, Lung Ji; Gao, Zhanguo; Kolonin, Mikhail G; Lai, Song; Ma, Jinfeng; Dong, Xinzhong; White, Fletcher A; Xie, Huisheng; Yoder, Mervin C; Grant, Maria B

    2017-03-16

    Electro-acupuncture (EA) performed in rats and humans using front-limb acupuncture sites, LI-4 and LI-11, and Du-14 and Du-20 increased functional connectivity between the anterior hypothalamus and the amygdala and mobilized mesenchymal stem cells (MSC) into the systemic circulation. In human subjects, the source of the MSC was found to be primarily adipose tissue whereas in rodents the tissue sources were considered more heterogeneous. Pharmacological disinhibition of rat hypothalamus enhanced sympathetic nervous system (SNS) activation and similarly resulted in a release of MSC into the circulation. EA-mediated SNS activation was further supported by browning of white adipose tissue in rats. EA treatment of rats undergoing partial rupture of the Achilles tendon resulted in reduced mechanical hyperalgesia, increased serum IL-10 levels and tendon remodeling, effects blocked in propranolol-treated rodents. To distinguish the afferent role of the peripheral nervous system, phosphoinositide-interacting regulator of transient receptor potential channels (Pirt)-GCaMP3 (genetically encoded calcium sensor) mice were treated with EA directed at hind limb immune points, ST-36 and Liv-3 and resulted in a rapid activation of primary sensory neurons. EA activated sensory ganglia and SNS centers to mediate the release of MSC that can enhance tissue repair, increase anti-inflammatory cytokine production and provide pronounced analgesic relief. This article is protected by copyright. All rights reserved.

  14. Engineering Mesenchymal Stem Cells for Regenerative Medicine and Drug Delivery

    PubMed Central

    Park, Ji Sun; Suryaprakash, Smruthi; Lao, Yeh-Hsing; Leong, Kam W.

    2015-01-01

    Researchers have applied mesenchymal stem cells (MSC) to a variety of therapeutic scenarios by harnessing their multipotent, regenerative, and immunosuppressive properties with tropisms toward inflamed, hypoxic, and cancerous sites. Although MSC-based therapies have been shown to be safe and effective to a certain degree, the efficacy remains low in most cases when MSC are applied alone. To enhance their therapeutic efficacy, researchers have equipped MSC with targeted delivery functions using genetic engineering, therapeutic agent incorporation, and cell surface modification. MSC can be genetically modified virally or non-virally to overexpress therapeutic proteins that complement their innate properties. MSC can also be primed with non-peptidic drugs or magnetic nanoparticles for enhanced efficacy and externally regulated targeting, respectively. Furthermore, MSC can be functionalized with targeting moieties to augment their homing toward therapeutic sites using enzymatic modification, chemical conjugation, or non-covalent interactions. These engineering techniques are still works in progress, requiring optimization to improve the therapeutic efficacy and targeting effectiveness while minimizing any loss of MSC function. In this review, we will highlight the advanced techniques of engineering MSC, describe their promise and the challenges of translation into clinical settings, and suggest future perspectives on realizing their full potential for MSC-based therapy. PMID:25770356

  15. Current Methods of Adipogenic Differentiation of Mesenchymal Stem Cells

    PubMed Central

    Scott, Michelle A.; Nguyen, Virginia T.; Levi, Benjamin

    2011-01-01

    There has been a recent increase in our understanding in the isolation, culture, and differentiation of mesenchymal stem cells (MSCs). Concomitantly, the availability of MSCs has increased, with cells now commercially available, including human MSCs from adipose tissue and bone marrow. Despite an increased understanding of MSC biology and an increase in their availability, standardization of techniques for adipogenic differentiation of MSCs is lacking. The following review will explore the variability in adipogenic differentiation in vitro, specifically in 3T3-L1 and primary MSCs derived from both adipose tissue and bone marrow. A review of alternative methods of adipogenic induction is also presented, including the use of specific peroxisome proliferator-activated receptor-gamma agonists as well as bone morphogenetic proteins. Finally, we define a standard, commonly used adipogenic differentiation medium in the hopes that this will be adopted for the future standardization of laboratory techniques—however, we also highlight the essentially arbitrary nature of this decision. With the current, rapid pace of electronic publications, it becomes imperative for standardization of such basic techniques so that interlaboratory results may be easily compared and interpreted. PMID:21526925

  16. Mesenchymal stem cell therapy for injured growth plate.

    PubMed

    Shukrimi, Awang B; Afizah, Mohd H; Schmitt, Jacqueline F; Hui, James H P

    2013-01-01

    The growth plate has a limited self-healing capacity. Fractures sustained to the growth plate of young children could cause growth disturbances like angular deformity or growth arrest. Established therapies for injured physis only address related complications. Mesenchymal stem cells (MSCs) are multipotent cells which are capable of differentiating into various cells of the musculoskeletal system. Various MSC types have been tested for physeal regeneration, through in vivo lapine, porcine and ovine models, for the duration of 4-16 weeks. The created defect sizes ranged from 7-50% of the growth plate area, to simulate clinically-encountered cases. In vitro models have also been investigated, as a means to screen potential treatments. The effects of MSCs gathered from these models have revealed its function in the prevention of bone bridge formation, with the subsequent development of organized physeal repair tissue. Possible influential factors like the number of implanted MSCs, preconditioned state, growth factors, chondrocyte-MSC interaction and scaffolds are discussed. Possible further studies to optimize physeal repair based on MSC therapy in articular cartilage are also included.

  17. Expression of blood group genes by mesenchymal stem cells

    PubMed Central

    Schäfer, Richard; Schnaidt, Martina; Klaffschenkel, Roland A.; Siegel, Georg; Schüle, Michael; Rädlein, Maria Anna; Hermanutz-Klein, Ursula; Ayturan, Miriam; Buadze, Marine; Gassner, Christoph; Danielyan, Lusine; Kluba, Torsten; Northoff, Hinnak; Flegel, Willy A.

    2011-01-01

    Incompatible blood group antigens are highly immunogenic and can cause graft rejections. Focusing on distinct carbohydrate- and protein-based membrane structures, defined by blood group antigens, we investigated human bone marrow-derived mesenchymal stem cells (MSCs) cultured in human serum. The presence of H (CD173), ABO, RhD, RhCE, RhAG, Kell, urea transporter type B (SLC14A1, previously known as JK), and Duffy antigen receptor of chemokines (DARC) was evaluated at the levels of genome, transcriptome and antigen. Fucosyltransferase-1 (FUT1), RHCE, KEL, SLC14A1 (JK) and DARC mRNA were transcribed in MSCs. FUT1 mRNA transcription was lost during differentiation. The mRNA transcription of SLC14A1 (JK) decreased during chondrogenic differentiation, while that of DARC increased during adipogenic differentiation. All MSCs synthesized SLC14A1 (JK) but no DARC protein. However, none of the protein antigens tested occurred on the surface, indicating a lack of associated protein function in the membrane. As A and B antigens are neither expressed nor adsorbed, concerns of ABO compatibility with human serum supplements during culture are alleviated. The H antigen expression by GD2dim+ MSCs identified two distinct MSC subpopulations and enabled their isolation. We hypothesize that GD2dim+H+ MSCs retain a better “stemness”. Because immunogenic blood group antigens are lacking, they cannot affect MSC engraftment in vivo, which is promising for clinical applications. PMID:21418181

  18. Characterization and spinal fusion effect of rabbit mesenchymal stem cells

    PubMed Central

    2013-01-01

    Background The surface markers of mesenchymal stem cells (MSCs) of rabbits have been reported only sporadically. However, interest in the spinal fusion effect of MSCs has risen recently. The purpose of this research was to study the surface markers and spinal fusion effect of rabbit MSCs. Results Of our rabbit MSCs, 2% expressed CD14, CD29, and CD45, 1% expressed CD90 and 97% expressed CD44. These results implied the MSCs were negative for CD14, CD29, CD45, and CD90, but positive for CD44. The surgical results showed that satisfactory fusion occurred in 10 rabbits (83%) in the study group and unsatisfactory fusion in 2 (17%). In the control group, satisfactory fusion was found in 3 rabbits (25%) and unsatisfactory fusion in 9 (75%). Statistical analysis showed the study group had significantly better spinal fusion results than the control group. Conclusions The surface markers of human and rabbit MSCs are not exactly the same. Rabbit MSCs do not have positive reactivity for CD29 and CD90, which are invariably present on human MSCs. The allogeneic undifferentiated rabbit MSCs were able to promote spinal fusion and did not induce an adverse immune response. PMID:24325928

  19. Mesenchymal Stem Cells Subpopulations: Application for Orthopedic Regenerative Medicine

    PubMed Central

    Camacho-Morales, Alberto

    2016-01-01

    Research on mesenchymal stem cells (MSCs) continues to progress rapidly. Nevertheless, the field faces several challenges, such as inherent cell heterogeneity and the absence of unique MSCs markers. Due to MSCs' ability to differentiate into multiple tissues, these cells represent a promising tool for new cell-based therapies. However, for tissue engineering applications, it is critical to start with a well-defined cell population. Additionally, evidence that MSCs subpopulations may also feature distinct characteristics and regeneration potential has arisen. In this report, we present an overview of the identification of MSCs based on the expression of several surface markers and their current tissue sources. We review the use of MSCs subpopulations in recent years and the main methodologies that have addressed their isolation, and we emphasize the most-used surface markers for selection, isolation, and characterization. Next, we discuss the osteogenic and chondrogenic differentiation from MSCs subpopulations. We conclude that MSCs subpopulation selection is not a minor concern because each subpopulation has particular potential for promoting the differentiation into osteoblasts and chondrocytes. The accurate selection of the subpopulation advances possibilities suitable for preclinical and clinical studies and determines the safest and most efficacious regeneration process. PMID:27725838

  20. Amniotic mesenchymal stem cells enhance normal fetal wound healing.

    PubMed

    Klein, Justin D; Turner, Christopher G B; Steigman, Shaun A; Ahmed, Azra; Zurakowski, David; Eriksson, Elof; Fauza, Dario O

    2011-06-01

    Fetal wound healing involves minimal inflammation and limited scarring. Its mechanisms, which remain to be fully elucidated, hold valuable clues for wound healing modulation and the development of regenerative strategies. We sought to determine whether fetal wound healing includes a hitherto unrecognized cellular component. Two sets of fetal lambs underwent consecutive experiments at midgestation. First, fetuses received an intra-amniotic infusion of labeled autologous amniotic mesenchymal stem cells (aMSCs), in parallel to different surgical manipulations. Subsequently, fetuses underwent creation of 2 symmetrical, size-matched skin wounds, both encased by a titanium chamber. One of the chambers was left open and the other covered with a semipermeable membrane that allowed for passage of water and all molecules, but not any cells. Survivors from both experiments had their wounds analyzed at different time points before term. Labeled aMSCs were documented in all concurrent surgical wounds. Covered wounds showed a significantly slower healing rate than open wounds. Paired comparisons indicated significantly lower elastin levels in covered wounds at the mid time points, with no significant differences in collagen levels. No significant changes in hyaluronic acid levels were detected between the wound types. Immunohistochemistry for substance P was positive in both open and covered wounds. We conclude that fetal wound healing encompasses an autologous yet exogenous cellular component in naturally occurring aMSCs. Although seemingly not absolutely essential to the healing process, amniotic cells expedite wound closure and enhance its extracellular matrix profile. Further scrutiny into translational implications of this finding is warranted.

  1. Novel supplier of mesenchymal stem cell: subacromial bursa.

    PubMed

    Lhee, S-H; Jo, Y H; Kim, B Y; Nam, B M; Nemeno, J G; Lee, S; Yang, W; Lee, J I

    2013-10-01

    Mesenchymal stem cells (MSCs) are multipotent stromal elements that can differentiate into a variety of cell types. MSCs are good sources of therapeutic cells for degenerative diseases. For these reason, many researchers have focused on searching for other sources of MSCs. To obtain MSCs for clinical use requires surgery of the donor that therefore can induce donor morbidity, since the common sources at present are bone marrow and adipose tissues. In this study, we investigated the existence of MSCs in postoperative discarded tissues. Subacromial bursal tissues were obtained from the shoulders of 3 injured patients. The cells from the bursa tissues were isolated through treatment with collagenase. The isolated cells were then seeded and expanded by serial passaging under normal culture system. To evaluate MSC characteristics of the cells, their MSC markers were confirmed by mRNA and protein expression. Multipotent ability was assessed using differentiation media and immunohistochemistry. Cells from the bursa expressed MSCs markers-CD29, CD73, CD90, and PDGFRB (platelet-derived growth factor receptor-beta). Moreover, as to their multipotency, bursal cells differentiated into adipocytes (fat cells), osteocytes (bone cells), and chondrocytes (cartilage cells). In summary, we showed that MSCs could be generated from the subacromial bursa, which is medical waste after surgery.

  2. Mesenchymal Stem Cells in the Treatment of Traumatic Brain Injury

    PubMed Central

    Hasan, Anwarul; Deeb, George; Rahal, Rahaf; Atwi, Khairallah; Mondello, Stefania; Marei, Hany Elsayed; Gali, Amr; Sleiman, Eliana

    2017-01-01

    Traumatic brain injury (TBI) is characterized by a disruption in the normal function of the brain due to an injury following a trauma, which can potentially cause severe physical, cognitive, and emotional impairment. The primary insult to the brain initiates secondary injury cascades consisting of multiple complex biochemical responses of the brain that significantly influence the overall severity of the brain damage and clinical sequelae. The use of mesenchymal stem cells (MSCs) offers huge potential for application in the treatment of TBI. MSCs have immunosuppressive properties that reduce inflammation in injured tissue. As such, they could be used to modulate the secondary mechanisms of injury and halt the progression of the secondary insult in the brain after injury. Particularly, MSCs are capable of secreting growth factors that facilitate the regrowth of neurons in the brain. The relative abundance of harvest sources of MSCs also makes them particularly appealing. Recently, numerous studies have investigated the effects of infusion of MSCs into animal models of TBI. The results have shown significant improvement in the motor function of the damaged brain tissues. In this review, we summarize the recent advances in the application of MSCs in the treatment of TBI. The review starts with a brief introduction of the pathophysiology of TBI, followed by the biology of MSCs, and the application of MSCs in TBI treatment. The challenges associated with the application of MSCs in the treatment of TBI and strategies to address those challenges in the future have also been discussed. PMID:28265255

  3. Cell Fate and Differentiation of Bone Marrow Mesenchymal Stem Cells

    PubMed Central

    Jimi, Eijiro

    2016-01-01

    Osteoblasts and bone marrow adipocytes originate from bone marrow mesenchymal stem cells (BMMSCs) and there appears to be a reciprocal relationship between adipogenesis and osteoblastogenesis. Alterations in the balance between adipogenesis and osteoblastogenesis in BMMSCs wherein adipogenesis is increased relative to osteoblastogenesis are associated with decreased bone quality and quantity. Several proteins have been reported to regulate this reciprocal relationship but the exact nature of the signals regulating the balance between osteoblast and adipocyte formation within the bone marrow space remains to be determined. In this review, we focus on the role of Transducin-Like Enhancer of Split 3 (TLE3), which was recently reported to regulate the balance between osteoblast and adipocyte formation from BMMSCs. We also discuss evidence implicating canonical Wnt signalling, which plays important roles in both adipogenesis and osteoblastogenesis, in regulating TLE3 expression. Currently, there is demand for new effective therapies that target the stimulation of osteoblast differentiation to enhance bone formation. We speculate that reducing TLE3 expression or activity in BMMSCs could be a useful approach towards increasing osteoblast numbers and reducing adipogenesis in the bone marrow environment. PMID:27298623

  4. Epac Activation Regulates Human Mesenchymal Stem Cells Migration and Adhesion.

    PubMed

    Yu, Jiao-Le; Deng, Ruixia; Chung, Sookja K; Chan, Godfrey Chi-Fung

    2016-04-01

    How to enhance the homing of human mesenchymal stem cells (hMSCs) to the target tissues remains a clinical challenge nowadays. To overcome this barrier, the mechanism responsible for the hMSCs migration and engraftment has to be defined. Currently, the exact mechanism involved in migration and adhesion of hMSCs remains unknown. Exchange protein directly activated by cAMP (Epac), a novel protein discovered in cAMP signaling pathway, may have a potential role in regulating cells adhesion and migration by triggering the downstream Rap family signaling cascades. However, the exact role of Epac in cells homing is elusive. Our study evaluated the role of Epac in the homing of hMSCs. We confirmed that hMSCs expressed functional Epac and its activation enhanced the migration and adhesion of hMSCs significantly. The Epac activation was further found to be contributed directly to the chemotactic responses induced by stromal cell derived factor-1 (SDF-1) which is a known chemokine in regulating hMSCs homing. These findings suggested Epac is connected to the SDF-1 signaling cascades. In conclusion, our study revealed that Epac plays a role in hMSCs homing by promoting adhesion and migration. Appropriate manipulation of Epac may enhance the homing of hMSCs and facilitate their future clinical applications.

  5. Human mesenchymal stem cell homing induced by SKOV3 cells

    PubMed Central

    Fan, Dongmei; Xie, Xiaojuan; Qi, Pengwei; Yang, Xianan; Jin, Ximeng

    2017-01-01

    Human mesenchymal stem cell (hMSC) homing is the migration of endogenous and exogenous hMSCS to the target organs and the subsequent colonization under the action chemotaxic factors. This is an important process involved in the repair of damaged tissues. However, we know little about the mechanism of hMSC homing. Stromal cell derived factor-1 (SDF-1) is a cytokine secreted by stromal cells. Its only receptor CXCR4 is widely expressed in blood cells, immune cells and cells in the central nervous system. SDF-1/CXCR4 signaling pathway plays an important role in hMSC homing and tissue repair. Human cbll1 gene encodes E3 ubiquitin-protein ligase Hakai (also known as CBLL1) consisting of RING-finger domain that is involved in ubiquitination, endocytosis and degradation of epithelial cadherin (E-cadherin) as well as in the regulation of cell proliferation. We successfully constructed LV3-CXCR4 siRNA lentiviral vector, LV3-CBLL1 RNAi lentiviral vector and the corresponding cell systems which were used to induce hMSC homing in the presence of SKOV3 cells. Thus the mechanism of hMSC homing was studied. PMID:28337256

  6. Allogeneic Mesenchymal Stem Cell Treatment Induces Specific Alloantibodies in Horses

    PubMed Central

    2016-01-01

    Background. It is unknown whether horses that receive allogeneic mesenchymal stem cells (MSCs) injections develop specific humoral immune response. Our goal was to develop and validate a flow cytometric MSC crossmatch procedure and to determine if horses that received allogeneic MSCs in a clinical setting developed measurable antibodies following MSC administration. Methods. Serum was collected from a total of 19 horses enrolled in 3 different research projects. Horses in the 3 studies all received unmatched allogeneic MSCs. Bone marrow (BM) or adipose tissue derived MSCs (ad-MSCs) were administered via intravenous, intra-arterial, intratendon, or intraocular routes. Anti-MSCs and anti-bovine serum albumin antibodies were detected via flow cytometry and ELISA, respectively. Results. Overall, anti-MSC antibodies were detected in 37% of the horses. The majority of horses (89%) were positive for anti-bovine serum albumin (BSA) antibodies prior to and after MSC injection. Finally, there was no correlation between the amount of anti-BSA antibody and the development of anti-MSC antibodies. Conclusion. Anti allo-MSC antibody development was common; however, the significance of these antibodies is unknown. There was no correlation between either the presence or absence of antibodies and the percent antibody binding to MSCs and any adverse reaction to a MSC injection. PMID:27648075

  7. Clopidogrel Enhances Mesenchymal Stem Cell Proliferation Following Periodontitis

    PubMed Central

    Coimbra, L.S.; Steffens, J.P.; Alsadun, S.; Albiero, M.L.; Rossa, C.; Pignolo, R.J.; Spolidorio, L.C.; Graves, D.T.

    2015-01-01

    Bone formation is dependent on the differentiation of osteoblasts from mesenchymal stem cells (MSCs). In addition to serving as progenitors, MSCs reduce inflammation and produce factors that stimulate tissue formation. Upon injury, MSCs migrate to the periodontium, where they contribute to regeneration. We examined the effect of clopidogrel and aspirin on MSCs following induction of periodontitis in rats by placement of ligatures. We showed that after the removal of ligatures, which induces resolution of periodontal inflammation, clopidogrel had a significant effect on reducing the inflammatory infiltrate. It also increased the number of osteoblasts and MSCs. Mechanistically, the latter was linked to increased proliferation of MSCs in vivo and in vitro. When given prior to inducing periodontitis, clopidogrel had little effect on MSC or osteoblasts numbers. Applying aspirin before or after induction of periodontitis did not have a significant effect on the parameters measured. These results suggest that clopidogrel may have a positive effect on MSCs in conditions where a reparative process has been initiated. PMID:26220958

  8. Intra-articular Implantation of Mesenchymal Stem Cells, Part 2

    PubMed Central

    Kraeutler, Matthew J.; Mitchell, Justin J.; Chahla, Jorge; McCarty, Eric C.; Pascual-Garrido, Cecilia

    2017-01-01

    Knee osteoarthritis (OA) after partial or total meniscectomy is a prevalent issue that patients must face. Various methods of replacing meniscal tissue have been studied to avoid this progression, including meniscal allograft transplantation, meniscal scaffolds, and synthetic meniscus replacement. Studies have shown that meniscal scaffolds may improve symptoms but have not been shown to prevent progression of OA. Recently, mesenchymal stem cells (MSCs) have been proposed as a possible biological therapy for meniscal regeneration. Several animal studies and 1 human study have evaluated the effect of transplanting MSCs into the knee joint after partial meniscectomy. The purpose of this review was to assess the outcomes of intra-articular transplantation of MSCs on meniscal regeneration in animals and humans after partial meniscectomy. Limited results from animal studies suggest that there is some potential for intra-articular injection of MSCs for the regeneration of meniscal tissue. However, further studies are necessary to determine the quality of regenerated meniscal tissue through histological and biomechanical testing. PMID:28203596

  9. Human Mesenchymal Stem Cell Morphology and Migration on Microtextured Titanium

    PubMed Central

    Banik, Brittany L.; Riley, Thomas R.; Platt, Christina J.; Brown, Justin L.

    2016-01-01

    The implant used in spinal fusion procedures is an essential component to achieving successful arthrodesis. At the cellular level, the implant impacts healing and fusion through a series of steps: first, mesenchymal stem cells (MSCs) need to adhere and proliferate to cover the implant; second, the MSCs must differentiate into osteoblasts; third, the osteoid matrix produced by the osteoblasts needs to generate new bone tissue, thoroughly integrating the implant with the vertebrate above and below. Previous research has demonstrated that microtextured titanium is advantageous over smooth titanium and PEEK implants for both promoting osteogenic differentiation and integrating with host bone tissue; however, no investigation to date has examined the early morphology and migration of MSCs on these surfaces. This study details cell spreading and morphology changes over 24 h, rate and directionality of migration 6–18 h post-seeding, differentiation markers at 10 days, and the long-term morphology of MSCs at 7 days, on microtextured, acid-etched titanium (endoskeleton), smooth titanium, and smooth PEEK surfaces. The results demonstrate that in all metrics, the two titanium surfaces outperformed the PEEK surface. Furthermore, the rough acid-etched titanium surface presented the most favorable overall results, demonstrating the random migration needed to efficiently cover a surface in addition to morphologies consistent with osteoblasts and preosteoblasts. PMID:27243001

  10. Current methods of adipogenic differentiation of mesenchymal stem cells.

    PubMed

    Scott, Michelle A; Nguyen, Virginia T; Levi, Benjamin; James, Aaron W

    2011-10-01

    There has been a recent increase in our understanding in the isolation, culture, and differentiation of mesenchymal stem cells (MSCs). Concomitantly, the availability of MSCs has increased, with cells now commercially available, including human MSCs from adipose tissue and bone marrow. Despite an increased understanding of MSC biology and an increase in their availability, standardization of techniques for adipogenic differentiation of MSCs is lacking. The following review will explore the variability in adipogenic differentiation in vitro, specifically in 3T3-L1 and primary MSCs derived from both adipose tissue and bone marrow. A review of alternative methods of adipogenic induction is also presented, including the use of specific peroxisome proliferator-activated receptor-gamma agonists as well as bone morphogenetic proteins. Finally, we define a standard, commonly used adipogenic differentiation medium in the hopes that this will be adopted for the future standardization of laboratory techniques--however, we also highlight the essentially arbitrary nature of this decision. With the current, rapid pace of electronic publications, it becomes imperative for standardization of such basic techniques so that interlaboratory results may be easily compared and interpreted.

  11. Mesenchymal Stem Cells Respond to Hypoxia by Increasing Diacylglycerols.

    PubMed

    Lakatos, Kinga; Kalomoiris, Stefanos; Merkely, Béla; Nolta, Jan A; Fierro, Fernando A

    2016-02-01

    Mesenchymal stem cells (MSC) are currently being tested clinically for a plethora of conditions, with most approaches relying on the secretion of paracrine signals by MSC to modulate the immune system, promote wound healing, and induce angiogenesis. Hypoxia has been shown to affect MSC proliferation, differentiation, survival and secretory profile. Here, we investigate changes in the lipid composition of human bone marrow-derived MSC after exposure to hypoxia. Using mass spectrometry, we compared the lipid profiles of MSC derived from five different donors, cultured for two days in either normoxia (control) or hypoxia (1% oxygen). Hypoxia induced a significant increase of total triglycerides, fatty acids and diacylglycerols (DG). Remarkably, reduction of DG levels using the phosphatidylcholine-specific phospholipase C inhibitor D609 inhibited the secretion of VEGF and Angiopoietin-2, but increased the secretion of interleukin-8, without affecting significantly their respective mRNA levels. Functionally, incubation of MSC in hypoxia with D609 inhibited the potential of the cells to promote migration of human endothelial cells in a wound/scratch assay. Hence, we show that hypoxia induces in MSC an increase of DG that may affect the angiogenic potential of these cells. © 2015 Wiley Periodicals, Inc.

  12. Mesenchymal stem cells upregulate Treg cells via sHLA-G in SLE patients.

    PubMed

    Chen, Chen; Liang, Jun; Yao, Genhong; Chen, Haifeng; Shi, Bingyu; Zhang, Zhuoya; Zhao, Cheng; Zhang, Huayong; Sun, Lingyun

    2017-03-01

    Soluble human leukocyte antigen-G (sHLA-G) is a non-classical HLA class I molecule, exhibiting strong immunosuppressive properties by inducing the differentiation of T regulatory cells (Treg). Mesenchymal stem cells (MSCs) transplantation alleviates disease progression in systemic lupus erythematosus (SLE) patients. However, the underlying mechanisms are largely unknown. To explore whether sHLA-G is involved in upregulating effects of MSCs on Treg, which contributes to therapeutic effects of MSCs transplantation in SLE. The serum sHLA-G levels of SLE patients and healthy controls were detected by ELISA. The percentages of peripheral blood CD4+ILT2+, CD8+ILT2+, CD19+ILT2+ cells and Treg cells were examined by flow cytometry. Ten patients with active SLE, refractory to conventional therapies, were infused with umbilical cord derived MSCs (UC-MSCs) and serum sHLA-G was measured 24h and 1month after infusion. The mice were divided into three groups: C57BL/6 mice, B6.MRL-Fas(lpr) mice infused with phosphate buffer saline (PBS), and B6.MRL-Fas(lpr) mice infused with bone marrow MSCs (BM-MSCs). Then, the concentrations of serum Qa-2 were detected. Peripheral blood mononuclear cells (PBMCs) were isolated from SLE patients and co-cultured with UC-MSCs for 3days at different ratios (50:1, 10:1, and 2:1) with or without HLA-G antibody, and the frequencies of CD4+CD25+Foxp3+ T cells were then determined by flow cytometry. The concentrations of serum sHLA-G were comparable between SLE patients and healthy controls. However, there was a negative correlation between sHLA-G levels and SLE disease activity index (SLEDAI) scores in active SLE patients (SLEDAI>4). We found that serum sHLA-G levels were negatively correlated with blood urea nitrogen, serum creatinine and 24-hour urine protein in SLE patients. The sHLA-G levels were significantly lower in SLE patients with renal involvement than those without renal involvement. The expression of ILT2 on CD4+ T cells from SLE patients

  13. Epigenetic remodeling of chromatin architecture: exploring tumor differentiation therapies in mesenchymal stem cells and sarcomas.

    PubMed

    Siddiqi, Sara; Mills, Joslyn; Matushansky, Igor

    2010-03-01

    Sarcomas are the mesenchymal-derived malignant tumors of connective tissues (e.g., fat, bone, and cartilage) presumed to arise from aberrant development or differentiation of mesenchymal stem cells (MSCs). Appropriate control of stem cell maintenance versus differentiation allows for normal connective tissue development. Current theories suggest that loss of this control--through accumulation of genetic lesions in MSCs at various points in the differentiation process--leads to development of sarcomas, including undifferentiated, high grade sarcoma tumors. The initiation of stem cell differentiation is highly associated with alteration of gene expression, which depends on chromatin remodeling. Epigenetic chromatin modifying agents have been shown to induce cancer cell differentiation and are currently being used clinically to treat cancer. This review will focus on the importance of epigenetic chromatin remodeling in the context of mesenchymal stem cells, sarcoma tumorigenesis and differentiation therapy.

  14. Mesenchymal and induced pluripotent stem cells: general insights and clinical perspectives

    PubMed Central

    Zomer, Helena D; Vidane, Atanásio S; Gonçalves, Natalia N; Ambrósio, Carlos E

    2015-01-01

    Mesenchymal stem cells have awakened a great deal of interest in regenerative medicine due to their plasticity, and immunomodulatory and anti-inflammatory properties. They are high-yield and can be acquired through noninvasive methods from adult tissues. Moreover, they are nontumorigenic and are the most widely studied. On the other hand, induced pluripotent stem (iPS) cells can be derived directly from adult cells through gene reprogramming. The new iPS technology avoids the embryo destruction or manipulation to generate pluripotent cells, therefore, are exempt from ethical implication surrounding embryonic stem cell use. The pre-differentiation of iPS cells ensures the safety of future approaches. Both mesenchymal stem cells and iPS cells can be used for autologous cell transplantations without the risk of immune rejection and represent a great opportunity for future alternative therapies. In this review we discussed the therapeutic perspectives using mesenchymal and iPS cells. PMID:26451119

  15. A porous membrane-mediated isolation of mesenchymal stem cells from human embryonic stem cells.

    PubMed

    Hong, Ki-Sung; Bae, Daekyeong; Choi, Youngsok; Kang, Sun-Woong; Moon, Sung-Hwan; Lee, Hoon Taek; Chung, Hyung-Min

    2015-03-01

    Pluripotent human embryonic stem cells (hESCs) acquire mesenchymal characteristics during the epithelial-mesenchymal transition (EMT) process. Here, we report a simple and an efficient isolation method for mesenchymal stem cells (MSCs) from hESCs undergoing EMT using a commercialized porous membrane transwell culture insert. Suspension culture of hESC colonies results in the formation of embryoid bodies, which adhered on the upper compartment of 8 μm porous membrane in the presence of EMG2-MV media. The population migrating through the permeable membrane to the lower compartment not only exhibited EMT markers but also expressed high levels of a panel of typical MSC surface antigen markers, and demonstrated multipotent differentiation capability. In addition, they have a prolonged proliferation capacity without characteristics and chromosomal changes. Furthermore, the isolated MSCs significantly enhanced cardiac functions in a rat model of myocardial infarction (MI) as measured by the left ventricle wall thickness (MI control, 32.9%±3.2% vs. hESCs-MSCs, 38.7%±2.4%), scar length (MI control, 46.1%±2.5% vs. hESCs-MSCs, 41.8%±1.3%), fibrosis area (MI control, 34.3%±1.6% vs. hESCs-MSCs, 28.9%±3.5%), and capillary density. Our findings demonstrate an ease with which hESCs-MSCs can be effectively isolated using the porous membrane, which overcomes the lack of availability of MSCs for therapeutic applications in various diseased animal models.

  16. Mesenchymal stem cells in the dental tissues: perspectives for tissue regeneration.

    PubMed

    Estrela, Carlos; Alencar, Ana Helena Gonçalves de; Kitten, Gregory Thomas; Vencio, Eneida Franco; Gava, Elisandra

    2011-01-01

    In recent years, stem cell research has grown exponentially owing to the recognition that stem cell-based therapies have the potential to improve the life of patients with conditions that range from Alzheimer's disease to cardiac ischemia and regenerative medicine, like bone or tooth loss. Based on their ability to rescue and/or repair injured tissue and partially restore organ function, multiple types of stem/progenitor cells have been speculated. Growing evidence demonstrates that stem cells are primarily found in niches and that certain tissues contain more stem cells than others. Among these tissues, the dental tissues are considered a rich source of mesenchymal stem cells that are suitable for tissue engineering applications. It is known that these stem cells have the potential to differentiate into several cell types, including odontoblasts, neural progenitors, osteoblasts, chondrocytes, and adipocytes. In dentistry, stem cell biology and tissue engineering are of great interest since may provide an innovative for generation of clinical material and/or tissue regeneration. Mesenchymal stem cells were demonstrated in dental tissues, including dental pulp, periodontal ligament, dental papilla, and dental follicle. These stem cells can be isolated and grown under defined tissue culture conditions, and are potential cells for use in tissue engineering, including, dental tissue, nerves and bone regeneration. More recently, another source of stem cell has been successfully generated from human somatic cells into a pluripotent stage, the induced pluripotent stem cells (iPS cells), allowing creation of patient- and disease-specific stem cells. Collectively, the multipotency, high proliferation rates, and accessibility make the dental stem cell an attractive source of mesenchymal stem cells for tissue regeneration. This review describes new findings in the field of dental stem cell research and on their potential use in the tissue regeneration.

  17. Pro-coagulant activity of human mesenchymal stem cells.

    PubMed

    Christy, Barbara A; Herzig, Maryanne C; Montgomery, Robbie K; Delavan, Christopher; Bynum, James A; Reddoch, Kristin M; Cap, Andrew P

    2017-04-05

    Allogeneic mesenchymal stem cells (MSCs) show great potential for the treatment of military and civilian trauma, based on their reduced immunogenicity and ability to modulate inflammation and immune function in the recipient. Although generally considered to be safe, MSCs express tissue factor (TF), a potent activator of coagulation. In the current study, we evaluated multiple MSC populations for tissue factor expression and pro-coagulant activity in order to characterize safety considerations for systemic use of MSCs in trauma patients who may have altered coagulation homeostasis. Multiple MSC populations derived from either human adipose tissue or bone marrow were expanded in the recommended stem cell media. Stem cell identity was confirmed using a well-characterized panel of positive and negative markers. Tissue factor expression on the cell surface was evaluated by flow cytometry with anti-CD142 antibody. Effects on blood coagulation were determined by thromboelastography (TEG) and calibrated automated thrombogram (CAT) assays using platelet poor plasma or whole blood. MSCs express tissue factor on their surfaces and are pro-coagulant in the presence of blood or plasma. The adipose-derived MSCs (Ad-MSC) evaluated were more pro-coagulant and expressed more tissue factor than bone marrow MSCs (BM-MSCs), which showed a greater variability in TF expression. BM-MSCs were identified that exhibited low pro-coagulant activity, whereas all Ad-MSCs examined exhibited high pro-coagulant activity. The percentage of cells in a given population expressing surface tissue factor correlates roughly with functional pro-coagulant activity. MSC tissue factor expression and pro-coagulant activity change over time in culture. All MSC populations are not equivalent; care should be taken to select cells for clinical use that minimize potential safety problems and maximize chance of patient benefit. Adipose-derived MSCs appear more consistently pro-coagulant than BM-MSCs, presenting a

  18. GMP-grade human fetal liver-derived mesenchymal stem cells for clinical transplantation.

    PubMed

    Larijani, Bagher; Aghayan, Hamid-Reza; Goodarzi, Parisa; Arjmand, Babak

    2015-01-01

    Stem cell therapy seems a promising avenue in regenerative medicine. Within various stem cells, mesenchymal stem cells have progressively used for cellular therapy. Because of the age-related decreasing in the frequency and differentiating capacity of adult MSCs, fetal tissues such as fetal liver, lung, pancreas, spleen, etc. have been introduced as an alternative source of MSCs for cellular therapy. On the other hand, using stem cells as advanced therapy medicinal products, must be performed in compliance with cGMP as a quality assurance system to ensure the safety, quality, and identity of cell products during translation from the basic stem cell sciences into clinical cell transplantation. In this chapter the authors have demonstrated the manufacturing of GMP-grade human fetal liver-derived mesenchymal stem cells.

  19. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    SciTech Connect

    Varga, Nora; Vereb, Zoltan; Rajnavoelgyi, Eva; Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs; Apati, Agota

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  20. Adipose stem cells as alternatives for bone marrow mesenchymal stem cells in oral ulcer healing.

    PubMed

    Aziz Aly, Lobna Abdel; Menoufy, Hala El-; Ragae, Alyaa; Rashed, Laila Ahmed; Sabry, Dina

    2012-11-01

    Adipose tissue is now recognized as an accessible, abundant, and reliable site for the isolation of adult stem cells suitable for tissue engineering and regenerative medicine applications. Oral ulcers were induced by topical application of formocresol in the oral cavity of dogs. Transplantation of undifferentiated GFP-labeled Autologous Bone Marrow Stem Cell (BMSCs), Adipose Derived Stem Cell (ADSCs) or vehicle (saline) was injected around the ulcer in each group. The healing process of the ulcer was monitored clinically and histopathologically. Gene expression of vascular endothelial growth factor (VEGF) was detected in MSCs by Reverse Transcription-Polymerase Chain Reaction (RT-PCR). Expression of VEGF and collagen genes was detected in biopsies from all ulcers. MSCs expressed mRNA for VEGF MSCs transplantation significantly accelerated oral ulcer healing compared with controls. There was increased expression of both collagen and VEGF genes in MSCs-treated ulcers compared to controls. MSCs transplantation may help to accelerate oral ulcer healing, possibly through the induction of angiogenesis by VEGF together with increased intracellular matrix formation as detected by increased collagen gene expression. This body of work has provided evidence supporting clinical applications of adipose-derived cells in safety and efficacy trials as an alternative for bone marrow mesenchymal stem cells in oral ulcer healing.

  1. Adipose Stem Cells as Alternatives for Bone Marrow Mesenchymal Stem Cells in Oral Ulcer Healing

    PubMed Central

    Aziz Aly, Lobna Abdel; Menoufy, Hala El-; Ragae, Alyaa; Rashed, Laila Ahmed; Sabry, Dina

    2012-01-01

    Background and Objectives Adipose tissue is now recognized as an accessible, abundant, and reliable site for the isolation of adult stem cells suitable for tissue engineering and regenerative medicine applications. Methods and Results Oral ulcers were induced by topical application of formocresol in the oral cavity of dogs. Transplantation of undifferentiated GFP-labeled Autologous Bone Marrow Stem Cell (BMSCs), Adipose Derived Stem Cell (ADSCs) or vehicle (saline) was injected around the ulcer in each group. The healing process of the ulcer was monitored clinically and histopathologically. Gene expression of vascular endothelial growth factor (VEGF) was detected in MSCs by Reverse Transcription-Polymerase Chain Reaction (RT-PCR). Expression of VEGF and collagen genes was detected in biopsies from all ulcers. Results: MSCs expressed mRNA for VEGF MSCs transplantation significantly accelerated oral ulcer healing compared with controls. There was increased expression of both collagen and VEGF genes in MSCs-treated ulcers compared to controls. Conclusions MSCs transplantation may help to accelerate oral ulcer healing, possibly through the induction of angiogenesis by VEGF together with increased intracellular matrix formation as detected by increased collagen gene expression. This body of work has provided evidence supporting clinical applications of adipose-derived cells in safety and efficacy trials as an alternative for bone marrow mesenchymal stem cells in oral ulcer healing. PMID:24298363

  2. Endothelial cells direct mesenchymal stem cells toward a smooth muscle cell fate.

    PubMed

    Lin, Cho-Hao; Lilly, Brenda

    2014-11-01

    Under defined conditions, mesenchymal stem cells can differentiate into unique cell types, making them attractive candidates for cell-based disease therapies. Ischemic diseases would greatly benefit from treatments that include the formation of new blood vessels from mesenchymal stem cells. However, blood vessels are complex structures composed of endothelial cells and smooth muscle cells, and their assembly and function in a diseased environment is reliant upon joining with the pre-existing vasculature. Although endothelial cell/smooth muscle cell interactions are well known, how endothelial cells may influence mesenchymal stem cells and facilitate their differentiation has not been defined. Therefore, we sought to explore how endothelial cells might drive mesenchymal stem cells toward a smooth muscle fate. Our data show that cocultured endothelial cells induce smooth muscle cell differentiation in mesenchymal stem cells. Endothelial cells can promote a contractile phenotype, reduce proliferation, and enhance collagen synthesis and secretion. Our data show that Notch signaling is essential for endothelial cell-dependent differentiation, and this differentiation pathway is largely independent of growth factor signaling mechanisms.

  3. Mesenchymal stem cells derived from adipose tissue are not affected by renal disease.

    PubMed

    Roemeling-van Rhijn, Marieke; Reinders, Marlies E J; de Klein, Annelies; Douben, Hannie; Korevaar, Sander S; Mensah, Fane K F; Dor, Frank J M F; IJzermans, Jan N M; Betjes, Michiel G H; Baan, Carla C; Weimar, Willem; Hoogduijn, Martin J

    2012-10-01

    Mesenchymal stem cells are a potential therapeutic agent in renal disease and kidney transplantation. Autologous cell use in kidney transplantation is preferred to avoid anti-HLA reactivity; however, the influence of renal disease on mesenchymal stem cells is unknown. To investigate the feasibility of autologous cell therapy in patients with renal disease, we isolated these cells from subcutaneous adipose tissue of healthy controls and patients with renal disease and compared them phenotypically and functionally. The mesenchymal stem cells from both groups showed similar morphology and differentiation capacity, and were both over 90% positive for CD73, CD105, and CD166, and negative for CD31 and CD45. They demonstrated comparable population doubling times, rates of apoptosis, and were both capable of inhibiting allo-antigen- and anti-CD3/CD28-activated peripheral blood mononuclear cell proliferation. In response to immune activation they both increased the expression of pro-inflammatory and anti-inflammatory factors. These mesenchymal stem cells were genetically stable after extensive expansion and, importantly, were not affected by uremic serum. Thus, mesenchymal stem cells of patients with renal disease have similar characteristics and functionality as those from healthy controls. Hence, our results indicate the feasibility of their use in autologous cell therapy in patients with renal disease.

  4. [Proliferation and osteogenic differentiation of mesenchymal stem cells in hydrogels of human blood plasma].

    PubMed

    Linero, Itali M; Doncel, Adriana; Chaparro, Orlando

    2014-01-01

    The use of mesenchymal stem cells in clinical practice has increased considerably in the last decade because they play a supporting role in the processes of tissue repair and regeneration, becoming the main tool of cell therapy for the treatment of diseases functionally affecting bone and cartilage tissue . To evaluate in vitro the proliferative and osteogenic differentiation ability of mesenchymal stem cells derived from human adipose tissue in a blood plasma hydrogel. Mesenchymal stem cells were obtained from human adipose tissue explants and characterized by flow cytometry. Their multipotentiality was demonstrated by their ability to differentiate to adipogenic and osteogenic lineages. Cell proliferation and osteogenic differentiation ability of the cells cultured in blood plasma hydrogels were also evaluated. Mesenchymal stem cells derived from human adipose tissue growing in human blood plasma hydrogels showed a pattern of proliferation similar to that of the cells cultured in monolayer and also maintained their ability to differentiate to osteogenic lineage. Human blood plasma hydrogels are a suitable support for proliferation and osteogenic differentiation of mesenchymal stem cells derived from human adipose tissue and provides a substrate that is autologous, biocompatible, reabsorbable, easy to use, potentially injectable and economic, which could be used as a successful strategy for the management and clinical application of cell therapy in regenerative medicine.

  5. Cell culture density affects the stemness gene expression of adipose tissue-derived mesenchymal stem cells.

    PubMed

    Kim, Dae Seong; Lee, Myoung Woo; Lee, Tae-Hee; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2017-03-01

    The results of clinical trials using mesenchymal stem cells (MSCs) are controversial due to the heterogeneity of human MSCs and differences in culture conditions. In this regard, it is important to identify gene expression patterns according to culture conditions, and to determine how the cells are expanded and when they should be clinically used. In the current study, stemness gene expression was investigated in adipose tissue-derived MSCs (AT-MSCs) harvested following culture at different densities. AT-MSCs were plated at a density of 200 or 5,000 cells/cm(2). After 7 days of culture, stemness gene expression was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. The proliferation rate of AT-MSCs harvested at a low density (~50% confluent) was higher than that of AT-MSCs harvested at a high density (~90% confluent). Although there were differences in the expression levels of stemness gene, such as octamer-binding transcription factor 4, nanog homeobox (Nanog), SRY-box 2, Kruppel like factor 4, v-myc avian myelocytomatosis viral oncogene homolog (c-Myc), and lin-28 homolog A, in the AT-MSCs obtained from different donors, RT-qPCR analysis demonstrated differential gene expression patterns according to the cell culture density. Expression levels of stemness genes, particularly Nanog and c-Myc, were upregulated in AT-MSCs harvested at a low density (~50% confluent) in comparison to AT-MSCs from the same donor harvested at a high density (~90% confluent). These results imply that culture conditions, such as the cell density at harvesting, modulate the stemness gene expression and proliferation of MSCs.

  6. Mesenchymal stem cells as therapeutics and vehicles for gene and drug delivery.

    PubMed

    Porada, Christopher D; Almeida-Porada, Graça

    2010-09-30

    Mesenchymal stem cells (MSCs) possess a set of several fairly unique properties which make them ideally suited both for cellular therapies/regenerative medicine, and as vehicles for gene and drug delivery. These include: 1) relative ease of isolation; 2) the ability to differentiate into a wide variety of seemingly functional cell types of both mesenchymal and non-mesenchymal origin; 3) the ability to be extensively expanded in culture without a loss of differentiative capacity; 4) they are not only hypoimmunogenic, but they produce immunosuppression upon transplantation; 5) their pronounced anti-inflammatory properties; and 6) their ability to home to damaged tissues, tumors, and metastases following in vivo administration. In this review, we summarize the latest research in the use of mesenchymal stem cells in regenerative medicine, as immunomodulatory/anti-inflammatory agents, and as vehicles for transferring both therapeutic genes in genetic disease and genes designed to destroy malignant cells. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Mesenchymal Stem Cells as Therapeutics and Vehicles for Gene and Drug Delivery

    PubMed Central

    Porada, Christopher D.; Almeida-Porada, Graça

    2010-01-01

    Mesenchymal stem cells (MSCs) possess a set of several fairly unique properties which make them ideally suited both for cellular therapies/regenerative medicine, and as vehicles for gene and drug delivery. These include: 1) relative ease of isolation; 2) the ability to differentiate into a wide variety of seemingly functional cell types of both mesenchymal and non-mesenchymal origin; 3) the ability to be extensively expanded in culture without a loss of differentiative capacity; 4) they are not only hypoimmunogenic, but they produce immunosuppression upon transplantation; 5) their pronounced anti-inflammatory properties; and 6) their ability to home to damaged tissues, tumors, and metastases following in vivo administration. In this review, we summarize the latest research in the use of mesenchymal stem cells in regenerative medicine, as immunomodulatory/anti-inflammatory agents, and as vehicles for transferring both therapeutic genes in genetic disease and genes designed to destroy malignant cells. PMID:20828588

  8. Pluripotent stem cells isolated from umbilical cord form embryonic like bodies in a mesenchymal layer culture.

    PubMed

    Tsagias, Nikos; Kouzi-Koliakos, Kokkona; Karagiannis, Vasileios; Tsikouras, P; Koliakos, George G

    2015-03-01

    Recently the matrix of umbilical cord began to use as an alternative source of stem cells additionally to the blood of umbilical cord. Umbilical cord has been used mainly for mesenchymal stem cell banking. The immunological characteristics of mesenchymal stem cells in combination with their ability to avoid rejection make them an attractive biological material for transplantations. In this study the isolation of small in size pluripotent stem cells from umbilical cord expressing early transcription factors with characteristics that resemble to embryonic stem cells is investigated. Pluripotent stem cells were isolated from human umbilical cords, by a new strategy method based on unique characteristics such as the small size and the positivity on early transcription factors OCT and Nanog. An enriched population of CXCR4(+) OCT(+) Nanog(+) CD45(-) small stem cells from the cord was isolated. This fraction was able to create alkaline phosphatase positive like spheres forms in a mesenchymal layer with multilineage differentiation capacity. Our results were assessed by RT PCR and electophoresis for the pluripotent genes. These data suggest that umbilical cord provides an attractive source not only of mesenchymal stem cells but moreover of pluripotent stem cells. The method described herein should be applied in the field of stem cell banking in addition to the classical umbilical cord harvesting method. Isolation of a population of cells with pluripotent characteristics from umbilical cord. Adoption of a second centrifugation step for the pluripotent stem isolation. Increasing the value of the cord and explaining the pluripotency. This work will enhance the value of umbilical cord harvesting.

  9. Human dental pulp mesenchymal stem cells isolation and osteoblast differentiation.

    PubMed

    Alkhalil, Moustafa; Smajilagić, Amer; Redžić, Amira

    2015-02-01

    This study was focused on the isolation and characterization of mesenchymal stem cells (MSCs) from human dental pulp (DPSC). The study was performed in the Department for Oral and Cranio-Maxillo- Facial Surgey Hamad Medical Corporation, Doha, Qatar and Weill Cornell Medical Colleague Doha, Qatar, in period 2010-2011. Dental pulp was extracted from premolars and third molars of 19 healthy patients. The pulp was digested in a solution of 3 mg/mL collagenase type I and 4 mg/mL dispase for 1 hour at 37C. After filtration, cells were cultured in Dulbecco's Modified Eagle Medium (DMEM Low Glucoses) with 20% Fetal Bovine Serum (FBS), 2mM L-glutamine and antibiotics (100 U/mL penicillin, 100 ug/mL streptomycin) at 37 °C under 5% CO2. Cultures were treated with osteoinductive medium for differentiation MSC in to the osteoblast cell line. Staining with Alizarin red were used for the detection of the osteoblast production and calcification new formed tissue. On the total of three out of 19 patients it was possible to isolate DPMSCs after 2 to 3 weeks: in one patient it was not possible to expand MSCs because of infection, and in other two patients positive Alizarin red staining reaction showed osteogenic differentiation capability and strong mineralization in vitro. The main advantage of using DPSC is absence of morbidity. MSCs could be isolated noninvasively from teeth, routinely extracted in the clinic and discarded as medical waste. Standardization of clinical and laboratory protocols for DPMSCs isolation and team work coordination could lead to significantly improved result.

  10. Allogeneic Mesenchymal Stem Cell Transplantation in Dogs With Keratoconjunctivitis Sicca

    PubMed Central

    Bittencourt, Maura K. W.; Barros, Michele A.; Martins, João Flávio P.; Vasconcellos, Jose Paulo C.; Morais, Bruna P.; Pompeia, Celine; Bittencourt, Matheus Domingues; Evangelho, Karine dos Santos; Kerkis, Irina; Wenceslau, Cristiane V.

    2016-01-01

    Keratoconjunctivitis sicca (KCS) is a dysfunction in tear production associated with clinical signs, which include conjunctival hyperemia, ocular discharge, discomfort, pain, and, eventually, corneal vascularization and pigmentation. Immunosuppressive drugs are routinely administrated for long periods to treat KCS but with side effects and limited results. Evaluation of the clinical benefits of intralacrimal transplantation of allogeneic mesenchymal stem cells (MSCs) in dogs with mild–moderate and severe KCS was done. A total of 24 eyes with KCS from 15 dogs of different breeds were enrolled in the present study. A single transplantation of MSCs (1 × 106) directly into lacrimal glands (dorsal and third eyelid) was performed. The Schirmer tear tests (STTs) and ocular surface improvements were used to assess short- and long-term effects of these cells. The STTs were carried out on day 0 (before MSCs transplantation) and on days 7, 14, 21, and 28, as well as 6 and 12 months after MSC transplantation. Our data demonstrate that allogeneic MSC transplantation in KCS dogs is safe since no adverse effects were observed immediately after transplantation and in short- and long-term follow-ups. A statistically significant increase in the STT and ocular surface improvements was found in all eyes studied. In all the eyes with mild–moderate KCS, STT values reverted to those of healthy eyes, while in eyes with severe KCS, although complete reversion was not found, there was improvement in tear production and in other clinical signs. Our study shows that a single dose of a low number of MSCs can be used to treat KCS in dogs. In contrast to immunosuppressive drug use, MSC transplantation has an effect over a long period (up to 12 months), even after a single administration, and does not require daily drug administration. PMID:28003932

  11. Mesenchymal stem cell secretome and regenerative therapy after cancer.

    PubMed

    Zimmerlin, Ludovic; Park, Tea Soon; Zambidis, Elias T; Donnenberg, Vera S; Donnenberg, Albert D

    2013-12-01

    Cancer treatment generally relies on tumor ablative techniques that can lead to major functional or disfiguring defects. These post-therapy impairments require the development of safe regenerative therapy strategies during cancer remission. Many current tissue repair approaches exploit paracrine (immunomodulatory, pro-angiogenic, anti-apoptotic and pro-survival effects) or restoring (functional or structural tissue repair) properties of mesenchymal stem/stromal cells (MSC). Yet, a major concern in the application of regenerative therapies during cancer remission remains the possible triggering of cancer recurrence. Tumor relapse implies the persistence of rare subsets of tumor-initiating cancer cells which can escape anti-cancer therapies and lie dormant in specific niches awaiting reactivation via unknown stimuli. Many of the components required for successful regenerative therapy (revascularization, immunosuppression, cellular homing, tissue growth promotion) are also critical for tumor progression and metastasis. While bi-directional crosstalk between tumorigenic cells (especially aggressive cancer cell lines) and MSC (including tumor stroma-resident populations) has been demonstrated in a variety of cancers, the effects of local or systemic MSC delivery for regenerative purposes on persisting cancer cells during remission remain controversial. Both pro- and anti-tumorigenic effects of MSC have been reported in the literature. Our own data using breast cancer clinical isolates have suggested that dormant-like tumor-initiating cells do not respond to MSC signals, unlike actively dividing cancer cells which benefited from the presence of supportive MSC. The secretome of MSC isolated from various tissues may partially diverge, but it includes a core of cytokines (i.e. CCL2, CCL5, IL-6, TGFβ, VEGF), which have been implicated in tumor growth and/or metastasis. This article reviews published models for studying interactions between MSC and cancer cells with a focus

  12. Isolation of Mesenchymal Stem Cells from Human Deciduous Teeth Pulp

    PubMed Central

    Tsai, Aileen I.; Hong, Hsiang-Hsi; Fu, Jen-Fen; Chang, Chih-Chun; Wang, I-Kuan; Huang, Wen-Hung; Weng, Cheng-Hao; Hsu, Ching-Wei

    2017-01-01

    This study aimed to identify predictors of success rate of mesenchymal stem cell (MSC) isolation from human deciduous teeth pulp. A total of 161 deciduous teeth were extracted at the dental clinic of Chang Gung Memorial Hospital. The MSCs were isolated from dental pulps using a standard protocol. In total, 128 colonies of MSCs were obtained and the success rate was 79.5%. Compared to teeth not yielding MSCs successfully, those successfully yielding MSCs were found to have less severe dental caries (no/mild-to-moderate/severe: 63.3/24.2/12.5% versus 12.5/42.4/42.4%, P < 0.001) and less frequent pulpitis (no/yes: 95.3/4.7% versus 51.5/48.5%, P < 0.001). In a multivariate regression model, it was confirmed that the absence of dental caries (OR = 4.741, 95% CI = 1.564–14.371, P = 0.006) and pulpitis (OR = 9.111, 95% CI = 2.921–28.420, P < 0.001) was significant determinants of the successful procurement of MSCs. MSCs derived from pulps with pulpitis expressed longer colony doubling time than pulps without pulpitis. Furthermore, there were higher expressions of proinflammatory cytokines, interleukin- (IL-) 6 and monocyte chemoattractant protein- (MCP-) 1, P < 0.01, and innate immune response [toll-like receptor 1 (TLR1) and TLR8, P < 0.05; TLR2, TLR3, and TLR6, P < 0.01] in the inflamed than noninflamed pulps. Therefore, a carious deciduous tooth or tooth with pulpitis was relatively unsuitable for MSC processing and isolation. PMID:28377925

  13. Mesenchymal stem cell therapy in the treatment of hip osteoarthritis

    PubMed Central

    Mardones, Rodrigo; Jofré, Claudio M.; Tobar, L.

    2017-01-01

    Abstract This study was performed to investigate the safety and efficacy of the intra-articular infusion of ex vivo expanded autologous bone marrow-derived mesenchymal stem cells (BM-MSC) to a cohort of patients with articular cartilage defects in the hip. The above rationale is sustained by the notion that MSCs express a chondrocyte differential potential and produce extracellular matrix molecules as well as regulatory signals, that may well contribute to cure the function of the damaged hip joint. A cohort of 10 patients with functional and radiological evidences of hip osteoarthritis, either in one or both legs, was included in the study. BM-MSC (the cell product) were prepared and infused into the damaged articulation(s) of each patient (60 × 106 cells in 3 weekly/doses). Before and after completion of the cell infusion scheme, patients were evaluated (hip scores for pain, stiffness, physical function, range of motion), to assess whether the infusion of the respective cell product was beneficial. The intra-articular injection of three consecutive weekly doses of ex vivo expanded autologous BM-MSC to patients with articular cartilage defects in the hip and proved to be a safe and clinically effective treatment in the restoration of hip function and range of motion. In addition, the statistical significance of the above data is in line with the observation that the radiographic scores (Tönnis Classification of Osteoarthritis) of the damaged leg(s) remained without variation in 9 out of 10 patients, after the administration of the cell product. PMID:28630737

  14. Mechanisms of strain-mediated mesenchymal stem cell apoptosis.

    PubMed

    Kearney, E M; Prendergast, P J; Campbell, V A

    2008-12-01

    Mechanical conditioning of mesenchymal stem cells (MSCs) has been adopted widely as a biophysical signal to aid tissue engineering applications. The replication of in vivo mechanical signaling has been used in in vitro environments to regulate cell differentiation, and extracellular matrix synthesis, so that both the chemical and mechanical properties of the tissue-engineered construct are compatible with the implant site. While research in these areas contributes to tissue engineering, the effects of mechanical strain on MSC apoptosis remain poorly defined. To evaluate the effects of uniaxial cyclic tensile strain on MSC apoptosis and to investigate mechanotransduction associated with strain-mediated cell death, MSCs seeded on a 2D silicone membrane were stimulated by a range of strain magnitudes for 3 days. Mechanotransduction was investigated using the stretch-activated cation channel blocker gadolinium chloride, the L-type voltage-activated calcium channel blocker nicardipine, the c-jun NH(2)-terminal kinase (JNK) blocker D-JNK inhibitor 1, and the calpain inhibitor MDL 28170. Apoptosis was assessed through DNA fragmentation using the terminal deoxynucleotidyl transferase mediated-UTP-end nick labeling method. Results demonstrated that tensile strains of 7.5% or greater induce apoptosis in MSCs. L-type voltage-activated calcium channels coupled mechanical stress to activation of calpain and JNK, which lead to apoptosis through DNA fragmentation. The definition of the in vitro boundary conditions for tensile strain and MSCs along with a proposed mechanism for apoptosis induced by mechanical events positively contributes to the development of MSC biology, bioreactor design for tissue engineering, and development of computational methods for mechanobiology.

  15. Mesenchymal stem cells in treating autism: Novel insights

    PubMed Central

    Siniscalco, Dario; Bradstreet, James Jeffrey; Sych, Nataliia; Antonucci, Nicola

    2014-01-01

    Autism spectrum disorders (ASDs) are complex neurodevelopmental disorders characterized by dysfunctions in social interactions, abnormal to absent verbal communication, restricted interests, and repetitive stereotypic verbal and non-verbal behaviors, influencing the ability to relate to and communicate. The core symptoms of ASDs concern the cognitive, emotional, and neurobehavioural domains. The prevalence of autism appears to be increasing at an alarming rate, yet there is a lack of effective and definitive pharmacological options. This has created an increased sense of urgency, and the need to identify novel therapies. Given the growing awareness of immune dysregulation in a significant portion of the autistic population, cell therapies have been proposed and applied to ASDs. In particular, mesenchymal stem cells (MSCs) possess the immunological properties which make them promising candidates in regenerative medicine. MSC therapy may be applicable to several diseases associated with inflammation and tissue damage, where subsequent regeneration and repair is necessary. MSCs could exert a positive effect in ASDs through the following mechanisms: stimulation of repair in the damaged tissue, e.g., inflammatory bowel disease; synthesizing and releasing anti-inflammatory cytokines and survival-promoting growth factors; integrating into existing neural and synaptic network, and restoring plasticity. The paracrine mechanisms of MSCs show interesting potential in ASD treatment. Promising and impressive results have been reported from the few clinical studies published to date, although the exact mechanisms of action of MSCs in ASDs to restore functions are still largely unknown. The potential role of MSCs in mediating ASD recovery is discussed in light of the newest findings from recent clinical studies. PMID:24772244

  16. Endometriotic mesenchymal stem cells exhibit a distinct immune phenotype.

    PubMed

    Koippallil Gopalakrishnan Nair, Aghila Rani; Pandit, Hrishikesh; Warty, Neeta; Madan, Taruna

    2015-04-01

    Endometriosis is a significant debilitating gynecological problem affecting women of the reproductive age group and post-menopause. Recent reports suggest a role for endometriotic mesenchymal stem cells (ectopic MSCs) in the pathogenesis of endometriosis. To investigate the plausible mechanisms leading to the pathogenic behavior of ectopic MSCs, we compared the immunomodulatory properties of eutopic (healthy) and ectopic MSCs. We analyzed MSC phenotypes, differentiation potential, differential gene expression for an array of pattern recognition receptors (PRRs) and pro-inflammatory cytokine release along with markers of migration and angiogenesis among eutopic and ectopic MSCs. Further, alterations in immunosuppressive functions of eutopic and ectopic MSCs were examined by co-culturing them with mitogen-activated allogeneic PBMCs. Transcripts of PRRs such as all Toll-like receptors (TLR1-10), except TLR8, collectins (CL-L1, CL-P1 and CL-K1), NOD-1 and NOD-2 receptors and secreted pro-inflammatory cytokines like IL-6, IFN-γ, vascular endothelial growth factor (VEGF), epidermal growth factor and MCP-1 were significantly up-regulated in ectopic MSCs. The anti-inflammatory cytokine transforming growth factor-β showed significant down-regulation, while IL-10 showed a significant increase in ectopic MSCs. Further, ectopic MSCs showed up-regulated expression for markers of migration and angiogenesis such as matrix metalloproteinase-2 (MMP-2), MMP-3 and MMP-9 and VEGF, respectively. We report here that proliferation of PBMCs was less inhibited upon co-culture with ectopic MSCs compared with eutopic MSCs. The findings suggest that ectopic MSCs with increased levels of TLRs, collectins, pro-inflammatory cytokines and markers of migration and angiogenesis exhibit a distinct immune phenotype compared to eutopic MSCs. This distinct phenotype may be responsible for the reduced immunosuppressive property of ectopic MSCs and may be associated with the pathogenesis of

  17. Mesenchymal stem cell therapy in the treatment of hip osteoarthritis.

    PubMed

    Mardones, Rodrigo; Jofré, Claudio M; Tobar, L; Minguell, José J

    2017-07-01

    This study was performed to investigate the safety and efficacy of the intra-articular infusion of ex vivo expanded autologous bone marrow-derived mesenchymal stem cells (BM-MSC) to a cohort of patients with articular cartilage defects in the hip. The above rationale is sustained by the notion that MSCs express a chondrocyte differential potential and produce extracellular matrix molecules as well as regulatory signals, that may well contribute to cure the function of the damaged hip joint. A cohort of 10 patients with functional and radiological evidences of hip osteoarthritis, either in one or both legs, was included in the study. BM-MSC (the cell product) were prepared and infused into the damaged articulation(s) of each patient (60 × 10(6) cells in 3 weekly/doses). Before and after completion of the cell infusion scheme, patients were evaluated (hip scores for pain, stiffness, physical function, range of motion), to assess whether the infusion of the respective cell product was beneficial. The intra-articular injection of three consecutive weekly doses of ex vivo expanded autologous BM-MSC to patients with articular cartilage defects in the hip and proved to be a safe and clinically effective treatment in the restoration of hip function and range of motion. In addition, the statistical significance of the above data is in line with the observation that the radiographic scores (Tönnis Classification of Osteoarthritis) of the damaged leg(s) remained without variation in 9 out of 10 patients, after the administration of the cell product.

  18. Sodium Tungstate for Promoting Mesenchymal Stem Cell Chondrogenesis.

    PubMed

    Khader, Ateka; Sherman, Lauren S; Rameshwar, Pranela; Arinzeh, Treena L

    2016-12-15

    Articular cartilage has a limited ability to heal. Mesenchymal stem cells (MSCs) derived from the bone marrow have shown promise as a cell type for cartilage regeneration strategies. In this study, sodium tungstate (Na2WO4), which is an insulin mimetic, was evaluated for the first time as an inductive factor to enhance human MSC chondrogenesis. MSCs were seeded onto three-dimensional electrospun scaffolds in growth medium (GM), complete chondrogenic induction medium (CCM) containing insulin, and CCM without insulin. Na2WO4 was added to the media leading to final concentrations of 0, 0.01, 0.1, and 1 mM. Chondrogenic differentiation was assessed by biochemical analyses, immunostaining, and gene expression. Cytotoxicity using human peripheral blood mononuclear cells (PBMCS) was also investigated. The chondrogenic differentiation of MSCs was enhanced in the presence of low concentrations of Na2WO4 compared to control, without Na2WO4. In the induction medium containing insulin, cells in 0.01 mM Na2WO4 produced significantly higher sulfated glycosaminoglycans, collagen type II, and chondrogenic gene expression than all other groups at day 28. Cells in 0.1 mM Na2WO4 had significantly higher collagen II production and significantly higher sox-9 and aggrecan gene expression compared to control at day 28. Cells in GM and induction medium without insulin containing low concentrations of Na2WO4 also expressed chondrogenic markers. Na2WO4 did not stimulate PBMC proliferation or apoptosis. The results demonstrate that Na2WO4 enhances chondrogenic differentiation of MSCs, does not have a toxic effect, and may be useful for MSC-based approaches for cartilage repair.

  19. Adipogenic differentiation of mesenchymal stem cells on micropatterned polyelectrolyte surfaces.

    PubMed

    Kawazoe, Naoki; Guo, Likun; Wozniak, Michal J; Imaizumi, Yumie; Tateishi, Tetsuya; Zhang, Xingdong; Chen, Guoping

    2009-01-01

    Three kinds of photoreactive polyelectrolytes of polyallylamine (PAAm), poly(acrylic acid) (PAAc), and poly(vinyl alcohol) (PVA) were synthesized by the introduction of azidophenyl groups in the respective polymers. The photoreactive PAAm, PAAc, and PVA were micropatterned on polystyrene surfaces by photolithography. Observation with optical microscopy and scanning probe microscopy demonstrated the formation of a striped pattern of polyelectrolytes with a width of 200 microm. The micropatterned polyelectrolytes swelled in water. The micropatterned surfaces were used for cell culture of mesenchymal stem cells (MSCs) and their effects on adipogenic differentiation were investigated. The MSCs adhered to and proliferated evenly on the PAAm- and PAAc-patterned surfaces while they formed a cell pattern on the PVA-patterned surface. The PAAm-, PAAc-grafted, and polystyrene surfaces supported cell adhesion while the PVA-grafted surface did not. When cultured in adipogenic differentiation medium, the adipogenic differentiation of MSCs on the polyelectrolyte-patterned surfaces was demonstrated by the formation of lipid vacuoles and gene expression analysis. Oil Red-O-positive cells showed an even distribution on the PAAm- and PAAc-patterned surfaces, while they showed a pattern on the PVA-patterned surface. The fraction of Oil RedO-positive cells increased with culture time. The MSCs cultured on the PAAm-, PAAc-grafted, and polystyrene surfaces in adipogenic differentiation medium expressed the adipogenesis marker genes of peroxisome proliferator-activated receptor gamma2 (PPARgamma2), lipoprotein lipase (LPL), and fatty acid binding protein 4 (FABP4). These results indicate that the PAAm-, and PAAc-grafted, and polystyrene surfaces supported the adipogenesis of MSCs while a PVA-grafted surface did not.

  20. Mesenchymal Stem Cells for Ischemic Stroke: Progress and Possibilities.

    PubMed

    Maria Ferri, Anna Lucia; Bersano, Anna; Lisini, Daniela; Boncoraglio, Giorgio; Frigerio, Simona; Parati, Eugenio

    2016-05-27

    Stroke is the most common neurological cause of morbidity and mortality in industrialized countries, afflicting 15 million people every year. The numbers are expected to increase, mostly due to aging populations. One in five stroke patients dies, and one in three are left with permanent disabilities. Although some acute phase therapies such as intravenous recombinant tissue plasminogen activator (rt-PA) andendovascular treatment have been shown to improve ischemic stroke outcome, these therapies are available only for a small proportion of patients. The use of stem cells to replace brain cells lost during stroke is a long-term goal, and one which is difficult to achieve given that transplanted cells must integrate and restore neural pathways to regain function of damaged parts of the brain. Over the past decade the use of mesenchymal stromal cells (MSCs) as therapy has emerged as a particularly attractive option. MSCs are a class of multipotent, self-renewing cells that give rise to differentiated progeny when implanted into appropriate tissues. Herein, we present a review of the application of MSCs in ischemic stroke, including the source of MSCs, the route and timing of their delivery into the brain and the endpoints measured. Experimental data of transplantation of MSCs in animal stroke models suggest an improved functional recovery. The transplantation of MSCs influences a wide range of events by modulating the inflammatory environment, stimulating endogenous neurogenesis and angiogenesis and reducing the formation of glial scar, although the precise, underlying mechanism of this phenomenon remains unknown. The results from early clinical trials highlight the need to optimize variables such as cell selection and route of administration in order to translate these results into safe and successful clinical applications.

  1. Mesenchymal stem cell durotaxis depends on substrate stiffness gradient strength.

    PubMed

    Vincent, Ludovic G; Choi, Yu Suk; Alonso-Latorre, Baldomero; del Álamo, Juan C; Engler, Adam J

    2013-04-01

    Mesenchymal stem cells (MSCs) respond to the elasticity of their environment, which varies between and within tissues. Stiffness gradients within tissues can result from pathological conditions, but also occur through normal variation, such as in muscle. MSC migration can be directed by shallow stiffness gradients before differentiating. Gradients with fine control over substrate compliance - both in range and rate of change (strength) - are needed to better understand mechanical regulation of MSC migration in normal and diseased states. We describe polyacrylamide stiffness gradient fabrication using three distinct systems, generating stiffness gradients of physiological (1 Pa/μm), pathological (10 Pa/μm), and step change (≥ 100Pa/μm) strength. All gradients spanned a range of physiologically relevant elastic moduli for soft tissues (1-12 kPa). MSCs migrated to the stiffest region on each gradient. Time-lapse microscopy revealed that migration velocity correlated directly with gradient strength. Directed migration was reduced in the presence of the contractile agonist lysophosphatidic acid (LPA) and cytoskeleton-perturbing drugs nocodazole and cytochalasin. LPA- and nocodazole-treated cells remained spread and protrusive on the substrate, while cytochalasin-treated cells did not. Nocodazole-treated cells spread in a similar manner to untreated cells, but exhibited greatly diminished traction forces. These data suggest that a functional actin cytoskeleton is required for migration whereas microtubules are required for directed migration. The data also imply that, in vivo, MSCs may preferentially accumulate in regions of high elastic modulus and make a greater contribution to tissue repairs in these locations. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Mesenchymal stem cell-derived extracellular vesicles attenuate kidney inflammation.

    PubMed

    Eirin, Alfonso; Zhu, Xiang-Yang; Puranik, Amrutesh S; Tang, Hui; McGurren, Kelly A; van Wijnen, Andre J; Lerman, Amir; Lerman, Lilach O

    2017-07-01

    Mesenchymal stem/stromal cells (MSCs) have distinct capability for renal repair, but may have safety concerns. MSC-derived extracellular vesicles emerged as a novel noncellular alternative. Using a porcine model of metabolic syndrome and renal artery stenosis we tested whether extracellular vesicles attenuate renal inflammation, and if this capacity is mediated by their cargo of the anti-inflammatory cytokine interleukin (IL) 10. Pigs with metabolic syndrome were studied after 16 weeks of renal artery stenosis untreated or treated four weeks earlier with a single intrarenal delivery of extracellular vesicles harvested from adipose tissue-derived autologous MSCs. Lean and sham metabolic syndrome animals served as controls (seven each). Five additional pigs with metabolic syndrome and renal artery stenosis received extracellular vesicles with pre-silenced IL10 (IL10 knock-down). Single-kidney renal blood flow, glomerular filtration rate, and oxygenation were studied in vivo and renal injury pathways ex vivo. Retention of extracellular vesicles in the stenotic kidney peaked two days after delivery and decreased thereafter. Four weeks after injection, extracellular vesicle fragments colocalized with stenotic-kidney tubular cells and macrophages, indicating internalization or fusion. Extracellular vesicle delivery attenuated renal inflammation, and improved medullary oxygenation and fibrosis. Renal blood flow and glomerular filtration rate fell in metabolic syndrome and renal artery stenosis compared to metabolic syndrome, but was restored in pigs treated with extracellular vesicles. These renoprotective effects were blunted in pigs treated with IL10-depleted extracellular vesicles. Thus, extracellular vesicle-based regenerative strategies might be useful for patients with metabolic syndrome and renal artery stenosis. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  3. HA1077 enhances the cytokeratin expression of mesenchymal stem cells.

    PubMed

    Xiaodong, Bai; Xianhua, Liu; Xiaojie, Liu

    2010-01-01

    The objective of the study is to investigate the effect of fasudil [1-(5-isoquinolinesulfonyl) homopiperazine] (HA1077, calcium antagonist vasodilator and an inhibitor of RhoA kinase) on expression of cytokeratin (CK), DNA multiplication, and synthesis of mesenchymal stem cells (MSC). After rats were killed, MSC were separated from rats and proliferated in culture medium. The cells were randomly divided into control group, HA1077 control group, induction group, and HA1077 group. The percentage of CK19+MSC, proliferating cell nuclear antigen (PCNA), and cell cycle were determined. The test was repeated for five times. SPSS 12 software was used to analyze all the data. A P value <.05 and P < .01 were considered to be significant. The flow cytometry result showed that 1) the isolated MSC were uniformly positive for CD44, SSEA-1, CD105 but were negative for CD34, CD14, and CD45. 2) In the HA1077 control group, the percentage of CK19+MSC was similar to that in control group, which was lower than that in the induction group. In the HA1077 group, the percentage of CK19+MSC was higher than in the induction group (P < .01), in HA1077 control group (P < .01), and in control group (P < .01). 3) PCNA-positive rate in HA1077 group was highest among the groups. PCNA-positive rate of induction group was higher than that of control group and HA1077 control group. The cell cycle analysis showed that the quantity of MSC in S phase of HA1077 group was also highest. The quantity of MSC in S phase of induction group was higher than that of control group and HA1077 control group. There was no difference between the HA1077 control group and control group. HA1077 can repair burn wounds in future by promoting MSC differentiating into epidermal cell through DNA multiplication and synthesis.

  4. Immunomodulation of Mesenchymal Stem Cells in discogenic pain.

    PubMed

    Miguélez-Rivera, Laura; Pérez-Castrillo, Saúl; González-Fernández, Maria Luisa; Prieto-Fernández, Julio Gabriel; López-González, María Elisa; García-Cosamalón, José; Villar-Suárez, Vega

    2017-09-19

    Back pain is a highly prevalent health problem in the world today and has a great economic impact on the healthcare budgets. Intervertebral disc degeneration has been identified as a main cause of back pain. Inflammatory cytokines produced by macrophages or disc cells in an inflammatory environment play an important role in painful progressive degeneration of intervertebral disc. Mesenchymal stem cells (MSCs) have shown to have immunosuppressive and anti-inflammatory properties. MSCs express a variety of chemokines and cytokines receptors having tropism to inflammation sites. To develop an in vitro controlled and standardized model of inflammation and degeneration of intervertebral disc with rat cells and to evaluate the protective and immunomodulatory effect of conditioned medium from the culture of MSCs to improve the conditions presented in herniated disc and discogenic pain processes. This is an experimental study. In this study, an in vitro model of inflammation and degeneration of intervertebral disc has been developed and the effectiveness of conditioned medium from the culture of MSCs. This study was financially supported by the Fundación Leonesa Proneurociencias that invested 10.000 $ and no conflict of interest is declared. Conditioned medium from MSCs down-regulated the expression of various pro-inflammatory cytokines produced in the pathogenesis of discogenic pain such as IL-1β, IL-6, IL-17 and TNF. MSCs represent a promising alternative strategy in the treatment of intervertebral disc degeneration inasmuch as there is currently no treatment which leads to a complete remission of long-term pain in the absence of drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Density-Dependent Metabolic Heterogeneity in Human Mesenchymal Stem Cells

    PubMed Central

    Liu, Yijun; Munoz, Nathalie; Bunnell, Bruce A.; Logan, Timothy M.; Ma, Teng

    2016-01-01

    Human mesenchymal stem cells (hMSCs) are intrinsically heterogeneous and comprise subpopulations that differ in their proliferation, multi-potency, and functional properties, which are commonly demonstrated by culturing hMSCs at different plating densities. The objective of this study was to investigate the metabolic profiles of different subpopulations of hMSC by testing the hypothesis that the clonogenic hMSC subpopulation, which is selectively enriched in clonal density (CD) and low density (LD) culture (10 and 100 cells per square centimeter, respectively), possesses a metabolic phenotype that differs from that of hMSC in medium- or high-density (MD: 1,000 and HD: 3,000 cells per square centimeter, respectively). Cells at CD and LD conditions exhibited elevated expression of CD146 and colony forming unit-fibroblast compared with cells at MD- or HD. Global metabolic profiles revealed by gas chromatography-mass spectrometry of cell extracts showed clear distinction between LD and HD cultures, and density-dependent differences in coupling of glycolysis to the TCA cycle. Metabolic inhibitors revealed density-dependent differences in glycolysis versus oxidative phosphorylation (OXPHOS) for ATP generation, in glutamine metabolism, in the dependence on the pentose phosphate pathway for maintaining cellular redox state, and sensitivity to exogenous reactive oxygen species. We also show that active OXPHOS is not required for proliferation in LD culture but that OXPHOS activity increases senescence in HD culture. Together, the results revealed heterogeneity in hMSC culture exists at the level of primary metabolism. The unique metabolic characteristics of the clonogenic subpopulation suggest a novel approach for optimizing in vitro expansion of hMSCs. PMID:26274841

  6. Stroke Induces Mesenchymal Stem Cell Migration to Infarcted Brain Areas Via CXCR4 and C-Met Signaling.

    PubMed

    Bang, Oh Young; Moon, Gyeong Joon; Kim, Dong Hee; Lee, Ji Hyun; Kim, Sooyoon; Son, Jeong Pyo; Cho, Yeon Hee; Chang, Won Hyuk; Kim, Yun-Hee

    2017-05-25

    Mesenchymal stem cells circulate between organs to repair and maintain tissues. Mesenchymal stem cells cultured with fetal bovine serum have therapeutic effects when intravenously administered after stroke. However, only a small number of mesenchymal stem cells reach the brain. We hypothesized that the serum from stroke patients increases mesenchymal stem cells trophism toward the infarcted brain area. Mesenchymal stem cells were grown in fetal bovine serum, normal serum from normal rats, or stroke serum from ischemic stroke rats. Compared to the fetal bovine serum group, the stroke serum group but not the normal serum group showed significantly greater migration toward the infarcted brain area in the in vitro and in vivo models (p < 0.05). Both C-X-C chemokine receptor type 4 and c-Met expression levels significantly increased in the stroke serum group than the others. The enhanced mesenchymal stem cells migration of the stroke serum group was abolished by inhibition of signaling. Serum levels of chemokines, cytokines, matrix metalloproteinase, and growth factors were higher in stroke serum than in normal serum. Behavioral tests showed a significant improvement in the recovery after stroke in the stroke serum group than the others. Stroke induces mesenchymal stem cells migration to the infarcted brain area via C-X-C chemokine receptor type 4 and c-Met signaling. Culture expansion using the serum from stroke patients could constitute a novel preconditioning method to enhance the therapeutic efficiency of mesenchymal stem cells.

  7. Encapsulation of factor IX–engineered mesenchymal stem cells in fibrinogen–alginate microcapsules enhances their viability and transgene secretion

    PubMed Central

    Sayyar, Bahareh; Dodd, Megan; Wen, Jianping; Ma, Shirley; Marquez-Curtis, Leah; Janowska-Wieczorek, Anna

    2012-01-01

    Cell microencapsulation holds significant promise as a strategy for cellular therapies; however, inadequate survival and functionality of the enclosed cells limit its application in hemophilia treatment. Here, we evaluated the use of alginate-based microcapsules to enhance the viability and transgene secretion of human cord blood–derived mesenchymal stem cells in three-dimensional cultures. Given the positive effects of extracellular matrix molecules on mesenchymal stem cell growth, we tested whether fibrinogen-supplemented alginate microcapsules can improve the efficiency of encapsulated factor IX–engineered mesenchymal stem cells as a treatment of hemophilia B. We found that fibrinogen-supplemented alginate microcapsules (a) significantly enhanced the viability and proliferation of factor IX–engineered mesenchymal stem cells and (b) increased factor IX secretion by mesenchymal stem cells compared to mesenchymal stem cells in nonsupplemented microcapsules. Moreover, we observed the osteogenic, but not chondrogenic or adipogenic, differentiation capability of factor IX–engineered cord blood mesenchymal stem cells and their efficient factor IX secretion while encapsulated in fibrinogen-supplemented alginate microcapsules. Thus, the use of engineered mesenchymal stem cells encapsulated in fibrinogen-modified microcapsules may have potential application in the treatment of hemophilia or other protein deficiency diseases. PMID:23316273

  8. Encapsulation of factor IX-engineered mesenchymal stem cells in fibrinogen-alginate microcapsules enhances their viability and transgene secretion.

    PubMed

    Sayyar, Bahareh; Dodd, Megan; Wen, Jianping; Ma, Shirley; Marquez-Curtis, Leah; Janowska-Wieczorek, Anna; Hortelano, Gonzalo

    2012-01-01

    Cell microencapsulation holds significant promise as a strategy for cellular therapies; however, inadequate survival and functionality of the enclosed cells limit its application in hemophilia treatment. Here, we evaluated the use of alginate-based microcapsules to enhance the viability and transgene secretion of human cord blood-derived mesenchymal stem cells in three-dimensional cultures. Given the positive effects of extracellular matrix molecules on mesenchymal stem cell growth, we tested whether fibrinogen-supplemented alginate microcapsules can improve the efficiency of encapsulated factor IX-engineered mesenchymal stem cells as a treatment of hemophilia B. We found that fibrinogen-supplemented alginate microcapsules (a) significantly enhanced the viability and proliferation of factor IX-engineered mesenchymal stem cells and (b) increased factor IX secretion by mesenchymal stem cells compared to mesenchymal stem cells in nonsupplemented microcapsules. Moreover, we observed the osteogenic, but not chondrogenic or adipogenic, differentiation capability of factor IX-engineered cord blood mesenchymal stem cells and their efficient factor IX secretion while encapsulated in fibrinogen-supplemented alginate microcapsules. Thus, the use of engineered mesenchymal stem cells encapsulated in fibrinogen-modified microcapsules may have potential application in the treatment of hemophilia or other protein deficiency diseases.

  9. Bone marrow mesenchymal stem cells repair spinal cord ischemia/reperfusion injury by promoting axonal growth and anti-autophagy.

    PubMed

    Yin, Fei; Meng, Chunyang; Lu, Rifeng; Li, Lei; Zhang, Ying; Chen, Hao; Qin, Yonggang; Guo, Li

    2014-09-15

    Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after transplantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are known to protect against spinal cord ischemia/reperfusion injury through anti-apoptotic effects, the precise mechanisms remain unclear. In the present study, bone marrow mesenchymal stem cells were cultured and proliferated, then transplanted into rats with ischemia/reperfusion injury via retro-orbital injection. Immunohistochemistry and immunofluorescence with subsequent quantification revealed that the expression of the axonal regeneration marker, growth associated protein-43, and the neuronal marker, microtubule-associated protein 2, significantly increased in rats with bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Furthermore, the expression of the autophagy marker, microtubule-associated protein light chain 3B, and Beclin 1, was significantly reduced in rats with the bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Western blot analysis showed that the expression of growth associated protein-43 and neurofilament-H increased but light chain 3B and Beclin 1 decreased in rats with the bone marrow mesenchymal stem cell transplantation. Our results therefore suggest that bone marrow mesenchymal stem cell transplantation promotes neurite growth and regeneration and prevents autophagy. These responses may likely be mechanisms underlying the protective effect of bone marrow mesenchymal stem cells against spinal cord ischemia/reperfusion injury.

  10. Mesenchymal stem cells cultured on magnetic nanowire substrates

    NASA Astrophysics Data System (ADS)

    Perez, Jose E.; Ravasi, Timothy; Kosel, Jürgen

    2017-02-01

    Stem cells have been shown to respond to extracellular mechanical stimuli by regulating their fate through the activation of specific signaling pathways. In this work, an array of iron nanowires (NWs) aligned perpendicularly to the surface was fabricated by pulsed electrodepositon in porous alumina templates followed by a partial removal of the alumina to reveal 2-3 μm of the NWs. This resulted in alumina substrates with densely arranged NWs of 33 nm in diameter separated by 100 nm. The substrates were characterized by scanning electron microscopy (SEM) energy dispersive x-ray analysis and vibrating sample magnetometer. The NW array was then used as a platform for the culture of human mesenchymal stem cells (hMSCs). The cells were stained for the cell nucleus and actin filaments, as well as immuno-stained for the focal adhesion protein vinculin, and then observed by fluorescence microscopy in order to characterize their spreading behavior. Calcein AM/ethidium homodimer-1 staining allowed the determination of cell viability. The interface between the cells and the NWs was studied using SEM. Results showed that hMSCs underwent a re-organization of actin filaments that translated into a change from an elongated to a spherical cell shape. Actin filaments and vinculin accumulated in bundles, suggesting the attachment and formation of focal adhesion points of the cells on the NWs. Though the overall number of cells attached on the NWs was lower compared to the control, the attached cells maintained a high viability (>90%) for up to 6 d. Analysis of the interface between the NWs and the cells confirmed the re-organization of F-actin and revealed the adhesion points of the cells on the NWs. Additionally, a net of filopodia surrounded each cell, suggesting the probing of the array to find additional adhesion points. The cells maintained their round shape for up to 6 d of culture. Overall, the NW array is a promising nanostructured platform for studying and influencing h

  11. Mesenchymal stem cells cultured on magnetic nanowire substrates.

    PubMed

    Perez, Jose E; Ravasi, Timothy; Kosel, Jürgen

    2017-02-03

    Stem cells have been shown to respond to extracellular mechanical stimuli by regulating their fate through the activation of specific signaling pathways. In this work, an array of iron nanowires (NWs) aligned perpendicularly to the surface was fabricated by pulsed electrodepositon in porous alumina templates followed by a partial removal of the alumina to reveal 2-3 μm of the NWs. This resulted in alumina substrates with densely arranged NWs of 33 nm in diameter separated by 100 nm. The substrates were characterized by scanning electron microscopy (SEM) energy dispersive x-ray analysis and vibrating sample magnetometer. The NW array was then used as a platform for the culture of human mesenchymal stem cells (hMSCs). The cells were stained for the cell nucleus and actin filaments, as well as immuno-stained for the focal adhesion protein vinculin, and then observed by fluorescence microscopy in order to characterize their spreading behavior. Calcein AM/ethidium homodimer-1 staining allowed the determination of cell viability. The interface between the cells and the NWs was studied using SEM. Results showed that hMSCs underwent a re-organization of actin filaments that translated into a change from an elongated to a spherical cell shape. Actin filaments and vinculin accumulated in bundles, suggesting the attachment and formation of focal adhesion points of the cells on the NWs. Though the overall number of cells attached on the NWs was lower compared to the control, the attached cells maintained a high viability (>90%) for up to 6 d. Analysis of the interface between the NWs and the cells confirmed the re-organization of F-actin and revealed the adhesion points of the cells on the NWs. Additionally, a net of filopodia surrounded each cell, suggesting the probing of the array to find additional adhesion points. The cells maintained their round shape for up to 6 d of culture. Overall, the NW array is a promising nanostructured platform for studying and influencing h

  12. Generating Rho-0 Cells Using Mesenchymal Stem Cell Lines

    PubMed Central

    Fernández-Moreno, Mercedes; Hermida-Gómez, Tamara; Gallardo, M. Esther; Dalmao-Fernández, Andrea; Rego-Pérez, Ignacio; Garesse, Rafael

    2016-01-01

    Introduction The generation of Rho-0 cells requires the use of an immortalization process, or tumor cell selection, followed by culture in the presence of ethidium bromide (EtBr), incurring the drawbacks its use entails. The purpose of this work was to generate Rho-0 cells using human mesenchymal stem cells (hMSCs) with reagents having the ability to remove mitochondrial DNA (mtDNA) more safely than by using EtBr. Methodology Two immortalized hMSC lines (3a6 and KP) were used; 143B.TK-Rho-0 cells were used as reference control. For generation of Rho-0 hMSCs, cells were cultured in medium supplemented with each tested reagent. Total DNA was isolated and mtDNA content was measured by real-time polymerase chain reaction (PCR). Phenotypic characterization and gene expression assays were performed to determine whether 3a6 Rho-0 hMSCs maintain the same stem properties as untreated 3a6 hMSCs. To evaluate whether 3a6 Rho-0 hMSCs had a phenotype similar to that of 143B.TK-Rho-0 cells, in terms of reactive oxygen species (ROS) production, apoptotic levels and mitochondrial membrane potential (Δψm) were measured by flow cytometry and mitochondrial respiration was evaluated using a SeaHorse XFp Extracellular Flux Analyzer. The differentiation capacity of 3a6 and 3a6 Rho-0 hMSCs was evaluated using real-time PCR, comparing the relative expression of genes involved in osteogenesis, adipogenesis and chondrogenesis. Results The results showed the capacity of the 3a6 cell line to deplete its mtDNA and to survive in culture with uridine. Of all tested drugs, Stavudine (dt4) was the most effective in producing 3a6-Rho cells. The data indicate that hMSC Rho-0 cells continue to express the characteristic MSC cell surface receptor pattern. Phenotypic characterization showed that 3a6 Rho-0 cells resembled 143B.TK-Rho-0 cells, indicating that hMSC Rho-0 cells are Rho-0 cells. While the adipogenic capability was higher in 3a6 Rho-0 cells than in 3a6 cells, the osteogenic and chondrogenic

  13. Vitamin C Treatment Promotes Mesenchymal Stem Cell Sheet Formation and Tissue Regeneration by Elevating Telomerase Activity

    PubMed Central

    Wei, F.L.; Qu, C.Y.; Song, T.L.; Ding, G.; Fan, Z.P.; Liu, D.Y.; Liu, Y.; Zhang, C.M.; Shi, S.; Wang, S.L.

    2011-01-01

    Cell sheet engineering has been developed as an alternative approach to improve mesenchymal stem cell-mediated tissue regeneration. In this study, we found that vitamin C (Vc) was capable of inducing telomerase activity in periodontal ligament stem cells (PDLSCs), leading to the up-regulated expression of extracellular matrix type I collagen, fibronectin, and integrin β1, stem cell markers Oct4, Sox2, and Nanog as well as osteogenic markers RUNX2, ALP, OCN. Under Vc treatment, PDLSCs can form cell sheet structures because of increased cell matrix production. Interestingly, PDLSC sheets demonstrated a significant improvement in tissue regeneration compared with untreated control dissociated PDLSCs and offered an effective treatment for periodontal defects in a swine model. In addition, bone marrow mesenchymal stem cell sheets and umbilical cord mesenchymal stem cell sheets were also well constructed using this method. The development of Vc-mediated mesenchymal stem cell sheets may provide an easy and practical approach for cell-based tissue regeneration. PMID:22105792

  14. Angiogenesis in rat uterine cicatrix after injection of autologous bone marrow mesenchymal stem cells.

    PubMed

    Maiborodin, I V; Yakimova, N V; Matveyeva, V A; Pekarev, O G; Maiborodina, E I; Pekareva, E O

    2011-04-01

    Results of injection of autologous bone marrow mesenchymal stem cells with transfected GFP gene into the rat uterine horn cicatrix were studied by light microscopy. Large groups of blood vessels with blood cells inside were seen after injection of autologous bone marrow cells into the cicatrix on the right horn, formed 2 months after its ligation; no groups of vessels of this kind were found in the cicatrix in the contralateral horn. Examination of unstained sections in reflected UV light showed sufficiently bright fluorescence in the endothelium and outer vascular membrane in the uterine horn cicatrix only on the side of injection. Hence, autologous mesenchymal stem cells injected into the cicatrix formed the blood vessels due to differentiation into endotheliocytes and pericytes. The expression of GFP gene not only in the vascular endothelium, but also in vascular outer membranes indicated that autologous mesenchymal stem cells differentiated in the endothelial and pericytic directions.

  15. Gastrocnemius tendon strain in a dog treated with autologous mesenchymal stem cells and a custom orthosis.

    PubMed

    Case, J Brad; Palmer, Ross; Valdes-Martinez, Alex; Egger, Erick L; Haussler, Kevin K

    2013-05-01

    To report clinical findings and outcome in a dog with gastrocnemius tendon strain treated with autologous mesenchymal stem cells and a custom orthosis. Clinical report. A 4-year-old spayed female Border Collie. Bone-marrow derived, autologous mesenchymal stem cells were transplanted into the tendon core lesion. A custom, progressive, dynamic orthosis was fit to the tarsus. Serial orthopedic examinations and ultrasonography as well as long-term force-plate gait analysis were utilized for follow up. Lameness subjectively resolved and peak vertical force increased from 43% to 92% of the contralateral pelvic limb. Serial ultrasonographic examinations revealed improved but incomplete restoration of normal linear fiber pattern of the gastrocnemius tendon. Findings suggest that autologous mesenchymal stem cell transplantation with custom, progressive, dynamic orthosis may be a viable, minimally invasive technique for treatment of calcaneal tendon injuries in dogs. © Copyright 2013 by The American College of Veterinary Surgeons.

  16. Characterization of neural stemness status through the neurogenesis process for bone marrow mesenchymal stem cells

    PubMed Central

    Mohammad, Maeda H; Al-shammari, Ahmed M; Al-Juboory, Ahmad Adnan; Yaseen, Nahi Y

    2016-01-01

    The in vitro isolation, identification, differentiation, and neurogenesis characterization of the sources of mesenchymal stem cells (MSCs) were investigated to produce two types of cells in culture: neural cells and neural stem cells (NSCs). These types of stem cells were used as successful sources for the further treatment of central nervous system defects and injuries. The mouse bone marrow MSCs were used as the source of the stem cells in this study. β-Mercaptoethanol (BME) was used as the main inducer of the neurogenesis pathway to induce neural cells and to identify NSCs. Three types of neural markers were used: nestin as the immaturation stage marker, neurofilament light chain as the early neural marker, and microtubule-associated protein 2 as the maturation marker through different time intervals in the neurogenesis process starting from the MSCs, (as undifferentiated cells), NSCs, production stages, and toward neuron cells (as differentiated cells). The results of different exposure times to BME of the neural markers analysis done by immunocytochemistry and real time-polymerase chain reaction helped us to identify the exact timing for the neural stemness state. The results showed that the best exposure time that may be used for the production of NSCs was 6 hours. The best maintenance media for NSCs were also identified. Furthermore, we optimized exposure to BME with different times and concentrations, which could be an interesting way to modulate specific neuronal differentiation and obtain autologous neuronal phenotypes. This study was able to characterize NSCs in culture under differentiation for neurogenesis in the pathway of the neural differentiation process by studying the expressed neural genes and the ability to maintain these NSCs in culture for further differentiation in thousands of functional neurons for the treatment of brain and spinal cord injuries and defects. PMID:27143939

  17. Characterization of neural stemness status through the neurogenesis process for bone marrow mesenchymal stem cells.

    PubMed

    Mohammad, Maeda H; Al-Shammari, Ahmed M; Al-Juboory, Ahmad Adnan; Yaseen, Nahi Y

    2016-01-01

    The in vitro isolation, identification, differentiation, and neurogenesis characterization of the sources of mesenchymal stem cells (MSCs) were investigated to produce two types of cells in culture: neural cells and neural stem cells (NSCs). These types of stem cells were used as successful sources for the further treatment of central nervous system defects and injuries. The mouse bone marrow MSCs were used as the source of the stem cells in this study. β-Mercaptoethanol (BME) was used as the main inducer of the neurogenesis pathway to induce neural cells and to identify NSCs. Three types of neural markers were used: nestin as the immaturation stage marker, neurofilament light chain as the early neural marker, and microtubule-associated protein 2 as the maturation marker through different time intervals in the neurogenesis process starting from the MSCs, (as undifferentiated cells), NSCs, production stages, and toward neuron cells (as differentiated cells). The results of different exposure times to BME of the neural markers analysis done by immunocytochemistry and real time-polymerase chain reaction helped us to identify the exact timing for the neural stemness state. The results showed that the best exposure time that may be used for the production of NSCs was 6 hours. The best maintenance media for NSCs were also identified. Furthermore, we optimized exposure to BME with different times and concentrations, which could be an interesting way to modulate specific neuronal differentiation and obtain autologous neuronal phenotypes. This study was able to characterize NSCs in culture under differentiation for neurogenesis in the pathway of the neural differentiation process by studying the expressed neural genes and the ability to maintain these NSCs in culture for further differentiation in thousands of functional neurons for the treatment of brain and spinal cord injuries and defects.

  18. Mesenchymal stem cells maintain long-term in vitro stemness during explant culture.

    PubMed

    Otte, Anna; Bucan, Vesna; Reimers, Kerstin; Hass, Ralf

    2013-12-01

    The advantage of mesenchymal stem cells (MSC) in view of cell and/or tissue replacement after transplantation and their prolonged clinical use raises heavy debates not only in the fields of tissue engineering and regenerative medicine to date. Explant culture of umbilical cord (UC) tissue pieces for more than 190 days demonstrated a similar morphology and proliferation rate of outgrowing MSC as compared to UC tissue cultured for 15 days. Flow cytometric analysis revealed the expression of the typical UC-MSC markers CD73, CD90, and CD105 with concomitant absence of CD14, CD31, CD34, and CD45 in all MSC populations. Moreover, subculture of these long-term tissue-derived MSC exhibited nearly identical population doublings and cell cycle distributions and demonstrated the typical MSC surface markers expression until passage 10 in all different explant cultures. Stem cell-like characteristics were also maintained throughout the long term MSC explant cultures, including telomerase activity and the potential to differentiate along the adipogenic, chondrogenic and osteogenic lineage. In contrast, subculture of MSC for more than 10 passages in the absence of the UC tissue microenvironment was uniformly associated with significantly reduced population doublings, cell cycle accumulation in G0/G1, increased senescence and a diminished expression of MCS markers indicating a progressive loss of stemness in all cultures. Together, these findings demonstrated that the stem cell characteristics of MSC can be maintained during long term in vitro culture in the presence of the originating tissue pieces suggesting that the corresponding tissue provides a microenvironment which is essential for keeping MSC in a stem cell-like state.

  19. Genetic engineering of mesenchymal stem cells and its application in human disease therapy.

    PubMed

    Hodgkinson, Conrad P; Gomez, José A; Mirotsou, Maria; Dzau, Victor J

    2010-11-01

    The use of stem cells for tissue regeneration and repair is advancing both at the bench and bedside. Stem cells isolated from bone marrow are currently being tested for their therapeutic potential in a variety of clinical conditions including cardiovascular injury, kidney failure, cancer, and neurological and bone disorders. Despite the advantages, stem cell therapy is still limited by low survival, engraftment, and homing to damage area as well as inefficiencies in differentiating into fully functional tissues. Genetic engineering of mesenchymal stem cells is being explored as a means to circumvent some of these problems. This review presents the current understanding of the use of genetically engineered mesenchymal stem cells in human disease therapy with emphasis on genetic modifications aimed to improve survival, homing, angiogenesis, and heart function after myocardial infarction. Advancements in other disease areas are also discussed.

  20. Towards Personalized Regenerative Cell Therapy: Mesenchymal Stem Cells Derived from Human Induced Pluripotent Stem Cells.

    PubMed

    Lin, Lin; Bolund, Lars; Luo, Yonglun

    2016-01-01

    Mesenchymal stem cells (MSCs) are adult stem cells with the capacity of self-renewal and multilineage differentiation, and can be isolated from several adult tissues. However, isolating MSCs from adult tissues for cell therapy is hampered by the invasive procedure, the rarity of the cells and their attenuated proliferation capacity when cultivated and expanded in vitro. Human MSCs derived from induced pluripotent stem cells (iPSC-MSCs) have now evolved as a promising alternative cell source for MSCs and regenerative medicine. Several groups, including ours, have reported successful derivation of functional iPSC-MSCs and applied these cells in MSC-based therapeutic testing. Still, the current experience and understanding of iPSC-MSCs with respect to production methods, safety and efficacy are primitive. In this review, we highlight the methodological progress in iPSC-MSC research, describing the importance of choosing the right sources of iPSCs, iPSC reprogramming methods, iPSC culture systems, embryoid body intermediates, pathway inhibitors, basal medium, serum, growth factors and culture surface coating. We also highlight some progress in the application of iPSC-MSCs in direct cell therapy, tissue engineering and gene therapy.

  1. Cancer stem cell niche models and contribution by mesenchymal stroma/stem cells.

    PubMed

    Melzer, Catharina; von der Ohe, Juliane; Lehnert, Hendrik; Ungefroren, Hendrik; Hass, Ralf

    2017-02-01

    The initiation and progression of malignant tumors is driven by distinct subsets of tumor-initiating or cancer stem-like cells (CSCs) which develop therapy/apoptosis resistance and self-renewal capacity. In order to be able to eradicate these CSCs with novel classes of anti-cancer therapeutics, a better understanding of their biology and clinically-relevant traits is mandatory. Several requirements and functions of a CSC niche physiology are combined with current concepts for CSC generation such as development in a hierarchical tumor model, by stochastic processes, or via a retrodifferentiation program. Moreover, progressive adaptation of endothelial cells and recruited immune and stromal cells to the tumor site substantially contribute to generate a tumor growth-permissive environment resembling a CSC niche. Particular emphasis is put on the pivotal role of multipotent mesenchymal stroma/stem cells (MSCs) in supporting CSC development by various kinds of interaction and cell fusion to form hybrid tumor cells. A better knowledge of CSC niche physiology may increase the chances that cancer stemness-depleting interventions ultimately result in arrest of tumor growth and metastasis.

  2. Efficient engineering of vascularized ectopic bone from human embryonic stem cell-derived mesenchymal stem cells.

    PubMed

    Domev, Hagit; Amit, Michal; Laevsky, Ilana; Dar, Ayelet; Itskovitz-Eldor, Joseph

    2012-11-01

    Human mesenchymal stem cells (hMSCs) can be derived from various adult and fetal tissues. However, the quality of tissues for the isolation of adult and fetal hMSCs is donor dependent with a nonreproducible yield. In addition, tissue engineering and cell therapy require large-scale production of a pure population of lineage-restricted stem cells that can be easily induced to differentiate into a specific cell type. Therefore, human embryonic stem cells (hESCs) can provide an alternative, plentiful source for generation of reproducible hMSCs. We have developed efficient differentiation protocols for derivation of hMSCs from hESCs, including coculture with murine OP9 stromal cells and feeder layer-free system. Our protocols have resulted in the generation of up to 49% of hMSCs, which expressed CD105, CD90, CD29, and CD44. The hMSCs exhibited high adipogenic, chondrocytic, and osteogenic differentiation in vitro. The latter correlated with osteocalcin secretion and vascular endothelial growth factor (VEGF) production by the differentiating hMSCs. hMSC-derived osteoblasts further differentiated and formed ectopic bone in vivo, and induced the formation of blood vessels in Matrigel implants. Our protocol enables generation of a purified population of hESC-derived MSCs, with the potential of differentiating into several mesodermal lineages, and particularly into vasculogenesis-inducing osteoblasts, which can contribute to the development of bone repair protocols.

  3. Physiologically Low Oxygen Enhances Biomolecule Production and Stemness of Mesenchymal Stem Cell Spheroids.

    PubMed

    Shearier, Emily; Xing, Qi; Qian, Zichen; Zhao, Feng

    2016-04-01

    Multicellular human mesenchymal stem cell (hMSC) spheroids have been demonstrated to be valuable in a variety of applications, including cartilage regeneration, wound healing, and neoangiogenesis. Physiological relevant low oxygen culture can significantly improve in vitro hMSC expansion by preventing cell differentiation. We hypothesize that hypoxia-cultured hMSC spheroids can better maintain the regenerative properties of hMSCs. In this study, hMSC spheroids were fabricated using hanging drop method and cultured under 2% O2 and 20% O2 for up to 96 h. Spheroid diameter and viability were examined, as well as extracellular matrix (ECM) components and growth factor levels between the two oxygen tensions at different time points. Stemness was measured among the spheroid culture conditions and compared to two-dimensional cell cultures. Spheroid viability and structural integrity were studied using different needle gauges to ensure no damage would occur when implemented in vivo. Spheroid attachment and integration within a tissue substitute were also demonstrated. The results showed that a three-dimensional hMSC spheroid cultured at low oxygen conditions can enhance the production of ECM proteins and growth factors, while maintaining the spheroids' stemness and ability to be injected, attached, and potentially be integrated within a tissue.

  4. Decellularized ECM effects on human mesenchymal stem cell stemness and differentiation.

    PubMed

    Rao Pattabhi, Sudhakara; Martinez, Jessica S; Keller, Thomas C S

    2014-01-01

    Microenvironment extracellular matrices (ECMs) influence cell adhesion, proliferation and differentiation. The ECMs of different microenvironments have distinctive compositions and architectures. This investigation addresses effects ECMs deposited by a variety of cell types and decellularized with a cold-EDTA protocol have on multipotent human mesenchymal stromal/stem cell (hMSC) behavior and differentiation. The cold-EDTA protocol removes intact cells from ECM, with minimal ECM damage and contamination. The decellularized ECMs deposited by cultured hMSCs, osteogenic hMSCs, and two smooth muscle cell (SMC) lines were tested for distinctive effects on the behavior and differentiation of early passage ('naïve') hMSC plated and cultured on the decellularized ECMs. Uninduced hMSC decellularized ECM enhanced naïve hMSC proliferation and cell motility while maintaining stemness. Decellularized ECM deposited by osteogenic hMSCs early in the differentiation process stimulated naïve hMSCs osteogenesis and substrate biomineralization in the absence of added dexamethasone, but this osteogenic induction potential was lower in ECMs decellularized later in the osteogenic hMSC differentiation process. Decellularized ECMs deposited by two smooth muscle cell lines induced naïve hMSCs to become smooth muscle cell-like with distinctive phenotypic characteristics of contractile and synthetic smooth muscle cells. This investigation demonstrates a useful approach for obtaining functional cell-deposited ECM and highlights the importance of ECM specificity in influencing stem cell behavior.

  5. Differentiation of hepatocytes from induced pluripotent stem cells derived from human hair follicle mesenchymal stem cells.

    PubMed

    Shi, Xu; Lv, Shuang; He, Xia; Liu, Xiaomei; Sun, Meiyu; Li, Meiying; Chi, Guangfan; Li, Yulin

    2016-10-01

    Due to the limitations of organ donors and immune rejection in severe liver diseases, stem cell-based therapy presents a promising application for tissue repair and regeneration. As a novel cell source, mesenchymal stem cells separated from human hair follicles (HF-MSCs) are convenient to obtain and have no age limit. To date, the differentiation of HF-MSCs into hepatocytes has not been reported. In this study, we explored whether HF-MSCs and HF-MSC-derived-induced pluripotent stem cells (HF-iPS) could differentiate into hepatocytes in vitro. Flow cytometry, Oil Red O stain and Alizarin Red stain were used to identify the characteristics of HF-MSCs. The expression of liver-specific gene was detected by immunofluorescence and Quantitative Polymerase Chain Reaction. Periodic Acid-Schiff stain, Indocyanine Green stain and Low-Density Lipoprotein stain were performed to evaluate the functions of induced hepatocyte-like cells (HLCs). HF-MSCs were unable to differentiate into HLCs using previously reported procedures for MSCs from other tissues. However, HF-iPS efficiently induced the generation of HLCs that expressed hepatocyte markers and drug metabolism-related genes. HF-iPS can be used as novel and alternative cellular tools for inducing hepatocytes in vitro, simultaneously benefiting from utilizing HF-MSCs as a noninvasive and convenient cell source for reprogramming.

  6. Spontaneous transformation of adult mesenchymal stem cells from cynomolgus macaques in vitro

    SciTech Connect

    Ren, Zhenhua; Wang, Jiayin; Zhu, Wanwan; Guan, Yunqian; Zou, Chunlin; Chen, Zhiguo; Zhang, Y. Alex

    2011-12-10

    Mesenchymal stem cells (MSCs) have shown potential clinical utility in cell therapy and tissue engineering, due to their ability to proliferate as well as to differentiate into multiple lineages, including osteogenic, adipogenic, and chondrogenic specifications. Therefore, it is crucial to assess the safety of MSCs while extensive expansion ex vivo is a prerequisite to obtain the cell numbers for cell transplantation. Here we show that MSCs derived from adult cynomolgus monkey can undergo spontaneous transformation following in vitro culture. In comparison with MSCs, the spontaneously transformed mesenchymal cells (TMCs) display significantly different growth pattern and morphology, reminiscent of the characteristics of tumor cells. Importantly, TMCs are highly tumorigenic, causing subcutaneous tumors when injected into NOD/SCID mice. Moreover, no multiple differentiation potential of TMCs is observed in vitro or in vivo, suggesting that spontaneously transformed adult stem cells may not necessarily turn into cancer stem cells. These data indicate a direct transformation of cynomolgus monkey MSCs into tumor cells following long-term expansion in vitro. The spontaneous transformation of the cultured cynomolgus monkey MSCs may have important implications for ongoing clinical trials and for models of