Science.gov

Sample records for core burnup calculations

  1. Review of Axial Burnup Distribution Considerations for Burnup Credit Calculations

    SciTech Connect

    Wagner, J.C.; DeHart, M.D.

    2000-03-01

    This report attempts to summarize and consolidate the existing knowledge on axial burnup distribution issues that are important to burnup credit criticality safety calculations. Recently released Nuclear Regulatory Commission (NRC) staff guidance permits limited burnup credit, and thus, has prompted resolution of the axial burnup distribution issue. The reactivity difference between the neutron multiplication factor (keff) calculated with explicit representation of the axial burnup distribution and keff calculated assuming a uniform axial burnup is referred to as the ``end effect.'' This end effect is shown to be dependent on many factors, including the axial-burnup profile, total accumulated burnup, cooling time, initial enrichment, assembly design, and the isotopics considered (i.e., actinide-only or actinides plus fission products). Axial modeling studies, efforts related to the development of axial-profile databases, and the determination of bounding axial profiles are also discussed. Finally, areas that could benefit from further efforts are identified.

  2. Detailed Burnup Calculations for Testing Nuclear Data

    SciTech Connect

    Leszczynski, F.

    2005-05-24

    -section data for burnup calculations, using some of the main available evaluated nuclear data files (ENDF-B-VI-Rel.8, JEFF-3.0, JENDL-3.3), on an isotope-by-isotope basis as much as possible. The selected experimental burnup benchmarks are reference cases for LWR and HWR reactors, with analysis of isotopic composition as a function of burnup. For LWR (H2O-moderated uranium oxide lattices) four benchmarks are included: ATM-104 NEA Burnup credit criticality benchmark; Yankee-Rowe Core V; H.B.Robinson Unit 2 and Turkey Point Unit 3. For HWR (D2O-moderated uranium oxide cluster lattices), three benchmarks were selected: NPD-19-rod Fuel Clusters; Pickering-28-rod Fuel Clusters; and Bruce-37-rod Fuel Clusters. The isotopes with experimental concentration data included in these benchmarks are: Se-79, Sr90, Tc99, Ru106, Sn126, Sb125,1129, Cs133-137, Nd143, 145, Sm149-150, 152, Eul53-155, U234-235, 238, Np237, Pu238-242, Am241-243, and Cm242-248. Results and analysis of differences between calculated and measured absolute and/or relative concentrations of these isotopes for the seven benchmarks are included in this work.

  3. Accident source terms for pressurized water reactors with high-burnup cores calculated using MELCOR 1.8.5.

    SciTech Connect

    Gauntt, Randall O.; Powers, Dana Auburn; Ashbaugh, Scott G.; Leonard, Mark Thomas; Longmire, Pamela

    2010-04-01

    In this study, risk-significant pressurized-water reactor severe accident sequences are examined using MELCOR 1.8.5 to explore the range of fission product releases to the reactor containment building. Advances in the understanding of fission product release and transport behavior and severe accident progression are used to render best estimate analyses of selected accident sequences. Particular emphasis is placed on estimating the effects of high fuel burnup in contrast with low burnup on fission product releases to the containment. Supporting this emphasis, recent data available on fission product release from high-burnup (HBU) fuel from the French VERCOR project are used in this study. The results of these analyses are treated as samples from a population of accident sequences in order to employ approximate order statistics characterization of the results. These trends and tendencies are then compared to the NUREG-1465 alternative source term prescription used today for regulatory applications. In general, greater differences are observed between the state-of-the-art calculations for either HBU or low-burnup (LBU) fuel and the NUREG-1465 containment release fractions than exist between HBU and LBU release fractions. Current analyses suggest that retention of fission products within the vessel and the reactor coolant system (RCS) are greater than contemplated in the NUREG-1465 prescription, and that, overall, release fractions to the containment are therefore lower across the board in the present analyses than suggested in NUREG-1465. The decreased volatility of Cs2MoO4 compared to CsI or CsOH increases the predicted RCS retention of cesium, and as a result, cesium and iodine do not follow identical behaviors with respect to distribution among vessel, RCS, and containment. With respect to the regulatory alternative source term, greater differences are observed between the NUREG-1465 prescription and both HBU and LBU predictions than exist between HBU and LBU

  4. MONTE-CARLO BURNUP CALCULATION UNCERTAINTY QUANTIFICATION AND PROPAGATION DETERMINATION

    SciTech Connect

    Sternat, M.; Nichols, T.

    2011-06-09

    Reactor burnup or depletion codes are used thoroughly in the fields of nuclear forensics and nuclear safeguards. Two common codes include MONTEBURNS and MCNPX/CINDER. These are Monte-Carlo depletion routines utilizing MCNP for neutron transport calculations and either ORIGEN or CINDER for burnup calculations. Uncertainties exist in the MCNP steps, but this information is not passed to the depletion calculations or saved. To quantify this transport uncertainty and determine how it propagates between burnup steps, a statistical analysis of multiple repeated depletion runs is performed. The reactor model chosen is the Oak Ridge Research Reactor (ORR) in a single assembly, infinite lattice configuration. This model was burned for a 150 day cycle broken down into three steps. The output isotopics as well as effective multiplication factor (k-effective) were tabulated and histograms were created at each burnup step using the Scott Method to determine the bin width. The distributions for each code are a statistical benchmark and comparisons made. It was expected that the gram quantities and k-effective histograms would produce normally distributed results since they were produced from a Monte-Carlo routine, but some of the results appear to not. Statistical analyses are performed using the {chi}{sup 2} test against a normal distribution for the k-effective results and several isotopes including {sup 134}Cs, {sup 137}Cs, {sup 235}U, {sup 238}U, {sup 237}Np, {sup 238}Pu, {sup 239}Pu, and {sup 240}Pu.

  5. MONTE-CARLO BURNUP CALCULATION UNCERTAINTY QUANTIFICATION AND PROPAGATION DETERMINATION

    SciTech Connect

    Nichols, T.; Sternat, M.; Charlton, W.

    2011-05-08

    MONTEBURNS is a Monte-Carlo depletion routine utilizing MCNP and ORIGEN 2.2. Uncertainties exist in the MCNP transport calculation, but this information is not passed to the depletion calculation in ORIGEN or saved. To quantify this transport uncertainty and determine how it propagates between burnup steps, a statistical analysis of a multiple repeated depletion runs is performed. The reactor model chosen is the Oak Ridge Research Reactor (ORR) in a single assembly, infinite lattice configuration. This model was burned for a 25.5 day cycle broken down into three steps. The output isotopics as well as effective multiplication factor (k-effective) were tabulated and histograms were created at each burnup step using the Scott Method to determine the bin width. It was expected that the gram quantities and k-effective histograms would produce normally distributed results since they were produced from a Monte-Carlo routine, but some of results do not. The standard deviation at each burnup step was consistent between fission product isotopes as expected, while the uranium isotopes created some unique results. The variation in the quantity of uranium was small enough that, from the reaction rate MCNP tally, round off error occurred producing a set of repeated results with slight variation. Statistical analyses were performed using the {chi}{sup 2} test against a normal distribution for several isotopes and the k-effective results. While the isotopes failed to reject the null hypothesis of being normally distributed, the {chi}{sup 2} statistic grew through the steps in the k-effective test. The null hypothesis was rejected in the later steps. These results suggest, for a high accuracy solution, MCNP cell material quantities less than 100 grams and greater kcode parameters are needed to minimize uncertainty propagation and minimize round off effects.

  6. Comparison of PWR - Burnup calculations with SCALE 5.0/TRITON other burnup codes and experimental results

    SciTech Connect

    Oberle, P.; Broeders, C. H. M.; Dagan, R.

    2006-07-01

    The increasing tendency towards fuel lifetime extension in thermal nuclear reactors motivated validation work for available evaluation tools for nuclear fuel burnup calculations. In this study two deterministic codes with different transport solvers and one Monte Carlo method are investigated. The code system KAPROS/KARBUS uses the classical deterministic First Collision Probability method utilizing a cylinderized Wigner-Seitz cell. In the SCALES.0/TRITON/NEWT code the Extended Step Characteristic method is applied. In a first step the two deterministic codes are compared with experimental results from the KWO-Isotope Correlation Experiment up to 30 MWD/kg HM burnup, published in 1981. Two pin cell calculations are analyzed by comparison of calculated and experimental results for important heavy isotope vectors. The results are very satisfactory. Subsequently, further validation at higher burnup (< 80 MWD/kg HM) is provided by comparison of the two deterministic codes and the Monte Carlo based burnup code MONTEBURNS for PWR UO{sub 2} fuel assembly calculations. Possible reasons for differences in the results are analyzed and discussed. Especially the influence of cross section data and processing is presented. (authors)

  7. Burnup concept for a long-life fast reactor core using MCNPX.

    SciTech Connect

    Holschuh, Thomas Vernon,; Lewis, Tom Goslee,; Parma, Edward J.,

    2013-02-01

    This report describes a reactor design with a burnup concept for a long-life fast reactor core that was evaluated using Monte Carlo N-Particle eXtended (MCNPX). The current trend in advanced reactor design is the concept of a small modular reactor (SMR). However, very few of the SMR designs attempt to substantially increase the lifetime of a reactor core, especially without zone loading, fuel reshuffling, or other artificial mechanisms in the core that %E2%80%9Cflatten%E2%80%9D the power profile, including non-uniform cooling, non-uniform moderation, or strategic poison placement. Historically, the limitations of computing capabilities have prevented acceptable margins in the temporal component of the spatial excess reactivity in a reactor design, due primarily to the error in burnup calculations. This research was performed as an initial scoping analysis into the concept of a long-life fast reactor. It can be shown that a long-life fast reactor concept can be modeled using MCNPX to predict burnup and neutronics behavior. The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional Light Water Reactors (LWRs) or other SMR designs. For the purpose of this study, a single core design was investigated: a relatively small reactor core, yielding a medium amount of power (~200 to 400 MWth). The results of this scoping analysis were successful in providing a preliminary reactor design involving metal U-235/U-238 fuel with HT-9 fuel cladding and sodium coolant at a 20% volume fraction.

  8. Accident source terms for boiling water reactors with high burnup cores.

    SciTech Connect

    Gauntt, Randall O.; Powers, Dana Auburn; Leonard, Mark Thomas

    2007-11-01

    The primary objective of this report is to provide the technical basis for development of recommendations for updates to the NUREG-1465 Source Term for BWRs that will extend its applicability to accidents involving high burnup (HBU) cores. However, a secondary objective is to re-examine the fundamental characteristics of the prescription for fission product release to containment described by NUREG-1465. This secondary objective is motivated by an interest to understand the extent to which research into the release and behaviors of radionuclides under accident conditions has altered best-estimate calculations of the integral response of BWRs to severe core damage sequences and the resulting radiological source terms to containment. This report, therefore, documents specific results of fission product source term analyses that will form the basis for the HBU supplement to NUREG-1465. However, commentary is also provided on observed differences between the composite results of the source term calculations performed here and those reflected NUREG-1465 itself.

  9. Addressing Fission Product Validation in MCNP Burnup Credit Criticality Calculations

    SciTech Connect

    Mueller, Don; Bowen, Douglas G; Marshall, William BJ J

    2015-01-01

    The US Nuclear Regulatory Commission (NRC) Division of Spent Fuel Storage and Transportation issued Interim Staff Guidance (ISG) 8, Revision 3 in September 2012. This ISG provides guidance for NRC staff members’ review of burnup credit (BUC) analyses supporting transport and dry storage of pressurized water reactor spent nuclear fuel (SNF) in casks. The ISG includes guidance for addressing validation of criticality (keff) calculations crediting the presence of a limited set of fission products and minor actinides (FP&MAs). Based on previous work documented in NRC Regulatory Guide (NUREG) Contractor Report (CR)-7109, the ISG recommends that NRC staff members accept the use of either 1.5 or 3% of the FP&MA worth—in addition to bias and bias uncertainty resulting from validation of keff calculations for the major actinides in SNF—to conservatively account for the bias and bias uncertainty associated with the specified unvalidated FP&MAs. The ISG recommends (1) use of 1.5% of the FP&MA worth if a modern version of SCALE and its nuclear data are used and (2) 3% of the FP&MA worth for well qualified, industry standard code systems other than SCALE with the Evaluated Nuclear Data Files, Part B (ENDF/B),-V, ENDF/B-VI, or ENDF/B-VII cross sections libraries. The work presented in this paper provides a basis for extending the use of the 1.5% of the FP&MA worth bias to BUC criticality calculations performed using the Monte Carlo N-Particle (MCNP) code. The extended use of the 1.5% FP&MA worth bias is shown to be acceptable by comparison of FP&MA worths calculated using SCALE and MCNP with ENDF/B-V, -VI, and -VII–based nuclear data. The comparison supports use of the 1.5% FP&MA worth bias when the MCNP code is used for criticality calculations, provided that the cask design is similar to the hypothetical generic BUC-32 cask model and that the credited FP&MA worth is no more than 0.1 Δkeff (ISG-8, Rev. 3, Recommendation 4).

  10. Criticality reference benchmark calculations for burnup credit using spent fuel isotopics

    SciTech Connect

    Bowman, S.M.

    1991-04-01

    To date, criticality analyses performed in support of the certification of spent fuel casks in the United States do not take credit for the reactivity reduction that results from burnup. By taking credit for the fuel burnup, commonly referred to as burnup credit,'' the fuel loading capacity of these casks can be increased. One of the difficulties in implementing burnup credit in criticality analyses is that there have been no critical experiments performed with spent fuel which can be used for computer code validation. In lieu of that, a reference problem set of fresh fuel critical experiments which model various conditions typical of light water reactor (LWR) transportation and storage casks has been identified and used in the validation of SCALE-4. This report documents the use of this same problem set to perform spent fuel criticality benchmark calculations by replacing the actual fresh fuel isotopics from the experiments with six different sets of calculated spent fuel isotopics. The SCALE-4 modules SAS2H and CSAS4 were used to perform the analyses. These calculations do not model actual critical experiments. The calculated k-effectives are not supposed to equal unity and will vary depending on the initial enrichment and burnup of the calculated spent fuel isotopics. 12 refs., 11 tabs.

  11. Methodology for embedded transport core calculation

    NASA Astrophysics Data System (ADS)

    Ivanov, Boyan D.

    The progress in the Nuclear Engineering field leads to developing new generations of Nuclear Power Plants (NPP) with complex rector core designs, such as cores loaded partially with mixed-oxide (MOX) fuel, high burn-up loadings, and cores with advanced designs of fuel assemblies and control rods. Such heterogeneous cores introduce challenges for the diffusion theory that has been used for several decades for calculations of the current Pressurized Water Rector (PWR) cores. To address the difficulties the diffusion approximation encounters new core calculation methodologies need to be developed by improving accuracy, while preserving efficiency of the current reactor core calculations. In this thesis, an advanced core calculation methodology is introduced, based on embedded transport calculations. Two different approaches are investigated. The first approach is based on embedded finite element (FEM), simplified P3 approximation (SP3), fuel assembly (FA) homogenization calculation within the framework of the diffusion core calculation with NEM code (Nodal Expansion Method). The second approach involves embedded FA lattice physics eigenvalue calculation based on collision probability method (CPM) again within the framework of the NEM diffusion core calculation. The second approach is superior to the first because most of the uncertainties introduced by the off-line cross-section generation are eliminated.

  12. Study on core radius minimization for long life Pb-Bi cooled CANDLE burnup scheme based fast reactor

    SciTech Connect

    Afifah, Maryam Su’ud, Zaki; Miura, Ryosuke; Takaki, Naoyuki; Sekimoto, H.

    2015-09-30

    Fast Breeder Reactor had been interested to be developed over the world because it inexhaustible source energy, one of those is CANDLE reactor which is have strategy in burn-up scheme, need not control roads for control burn-up, have a constant core characteristics during energy production and don’t need fuel shuffling. The calculation was made by basic reactor analysis which use Sodium coolant geometry core parameter as a reference core to study on minimum core reactor radius of CANDLE for long life Pb-Bi cooled, also want to perform pure coolant effect comparison between LBE and sodium in a same geometry design. The result show that the minimum core radius of Lead Bismuth cooled CANDLE is 100 cm and 500 MWth thermal output. Lead-Bismuth coolant for CANDLE reactor enable to reduce much reactor size and have a better void coefficient than Sodium cooled as the most coolant for FBR, then we will have a good point in safety analysis.

  13. Study on core radius minimization for long life Pb-Bi cooled CANDLE burnup scheme based fast reactor

    NASA Astrophysics Data System (ADS)

    Afifah, Maryam; Miura, Ryosuke; Su'ud, Zaki; Takaki, Naoyuki; Sekimoto, H.

    2015-09-01

    Fast Breeder Reactor had been interested to be developed over the world because it inexhaustible source energy, one of those is CANDLE reactor which is have strategy in burn-up scheme, need not control roads for control burn-up, have a constant core characteristics during energy production and don't need fuel shuffling. The calculation was made by basic reactor analysis which use Sodium coolant geometry core parameter as a reference core to study on minimum core reactor radius of CANDLE for long life Pb-Bi cooled, also want to perform pure coolant effect comparison between LBE and sodium in a same geometry design. The result show that the minimum core radius of Lead Bismuth cooled CANDLE is 100 cm and 500 MWth thermal output. Lead-Bismuth coolant for CANDLE reactor enable to reduce much reactor size and have a better void coefficient than Sodium cooled as the most coolant for FBR, then we will have a good point in safety analysis.

  14. Spent fuel pool storage calculations using the ISOCRIT burnup credit tool

    SciTech Connect

    Kucukboyaci, Vefa; Marshall, William BJ J

    2012-01-01

    In order to conservatively apply burnup credit in spent fuel pool criticality safety analyses, Westinghouse has developed a software tool, ISOCRIT, for generating depletion isotopics. This tool is used to create isotopics data based on specific reactor input parameters, such as design basis assembly type; bounding power/burnup profiles; reactor specific moderator temperature profiles; pellet percent theoretical density; burnable absorbers, axial blanket regions, and bounding ppm boron concentration. ISOCRIT generates burnup dependent isotopics using PARAGON; Westinghouse's state-of-the-art and licensed lattice physics code. Generation of isotopics and passing the data to the subsequent 3D KENO calculations are performed in an automated fashion, thus reducing the chance for human error. Furthermore, ISOCRIT provides the means for responding to any customer request regarding re-analysis due to changed parameters (e.g., power uprate, exit temperature changes, etc.) with a quick turnaround.

  15. Burnup calculation by the method of first-flight collision probabilities using average chords prior to the first collision

    NASA Astrophysics Data System (ADS)

    Karpushkin, T. Yu.

    2012-12-01

    A technique to calculate the burnup of materials of cells and fuel assemblies using the matrices of first-flight neutron collision probabilities rebuilt at a given burnup step is presented. A method to rebuild and correct first collision probability matrices using average chords prior to the first neutron collision, which are calculated with the help of geometric modules of constructed stochastic neutron trajectories, is described. Results of calculation of the infinite multiplication factor for elementary cells with a modified material composition compared to the reference one as well as calculation of material burnup in the cells and fuel assemblies of a VVER-1000 are presented.

  16. OECD/NEA burnup credit calculational criticality benchmark Phase I-B results

    SciTech Connect

    DeHart, M.D.; Parks, C.V.; Brady, M.C.

    1996-06-01

    In most countries, criticality analysis of LWR fuel stored in racks and casks has assumed that the fuel is fresh with the maximum allowable initial enrichment. This assumption has led to the design of widely spaced and/or highly poisoned storage and transport arrays. If credit is assumed for fuel burnup, initial enrichment limitations can be raised in existing systems, and more compact and economical arrays can be designed. Such reliance on the reduced reactivity of spent fuel for criticality control is referred to as burnup credit. The Burnup Credit Working Group, formed under the auspices of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development, has established a set of well-defined calculational benchmarks designed to study significant aspects of burnup credit computational methods. These benchmarks are intended to provide a means for the intercomparison of computer codes, methods, and data applied in spent fuel analysis. The benchmarks have been divided into multiple phases, each phase focusing on a particular feature of burnup credit analysis. This report summarizes the results and findings of the Phase I-B benchmark, which was proposed to provide a comparison of the ability of different code systems and data libraries to perform depletion analysis for the prediction of spent fuel isotopic concentrations. Results included here represent 21 different sets of calculations submitted by 16 different organizations worldwide and are based on a limited set of nuclides determined to have the most important effect on the neutron multiplication factor of light-water-reactor spent fuel. A comparison of all sets of results demonstrates that most methods agree to within 10% in the ability to estimate the spent fuel concentrations of most actinides. All methods agree within 11% about the average for all fission products studied. Most deviations are less than 10%, and many are less than 5%. The exceptions are Sm 149, Sm 151, and Gd 155.

  17. OECD/NEA Burnup Credit Calculational Criticality Benchmark Phase I-B Results

    SciTech Connect

    DeHart, M.D.

    1993-01-01

    Burnup credit is an ongoing technical concern for many countries that operate commercial nuclear power reactors. In a multinational cooperative effort to resolve burnup credit issues, a Burnup Credit Working Group has been formed under the auspices of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development. This working group has established a set of well-defined calculational benchmarks designed to study significant aspects of burnup credit computational methods. These benchmarks are intended to provide a means for the intercomparison of computer codes, methods, and data applied in spent fuel analysis. The benchmarks have been divided into multiple phases, each phase focusing on a particular feature of burnup credit analysis. This report summarizes the results and findings of the Phase I-B benchmark, which was proposed to provide a comparison of the ability of different code systems and data libraries to perform depletion analysis for the prediction of spent fuel isotopic concentrations. Results included here represent 21 different sets of calculations submitted by 16 different organizations worldwide, and are based on a limited set of nuclides determined to have the most important effect on the neutron multiplication factor of light-water-reactor spent fuel. A comparison of all sets of results demonstrates that most methods are in agreement to within 10% in the ability to estimate the spent fuel concentrations of most actinides. All methods are within 11% agreement about the average for all fission products studied. Furthermore, most deviations are less than 10%, and many are less than 5%. The exceptions are {sup 149}Sm, {sup 151}Sm, and {sup 155}Gd.

  18. Estimating NIRR-1 burn-up and core life time expectancy using the codes WIMS and CITATION

    NASA Astrophysics Data System (ADS)

    Yahaya, B.; Ahmed, Y. A.; Balogun, G. I.; Agbo, S. A.

    The Nigeria Research Reactor-1 (NIRR-1) is a low power miniature neutron source reactor (MNSR) located at the Centre for Energy Research and Training, Ahmadu Bello University, Zaria Nigeria. The reactor went critical with initial core excess reactivity of 3.77 mk. The NIRR-1 cold excess reactivity measured at the time of commissioning was determined to be 4.97 mk, which is more than the licensed range of 3.5-4 mk. Hence some cadmium poison worth -1.2 mk was inserted into one of the inner irradiation sites which act as reactivity regulating device in order to reduce the core excess reactivity to 3.77 mk, which is within recommended licensed range of 3.5 mk and 4.0 mk. In this present study, the burn-up calculations of the NIRR-1 fuel and the estimation of the core life time expectancy after 10 years (the reactor core expected cycle) have been conducted using the codes WIMS and CITATION. The burn-up analyses carried out indicated that the excess reactivity of NIRR-1 follows a linear decreasing trend having 216 Effective Full Power Days (EFPD) operations. The reactivity worth of top beryllium shim data plates was calculated to be 19.072 mk. The result of depletion analysis for NIRR-1 core shows that (7.9947 ± 0.0008) g of U-235 was consumed for the period of 12 years of operating time. The production of the build-up of Pu-239 was found to be (0.0347 ± 0.0043) g. The core life time estimated in this research was found to be 30.33 years. This is in good agreement with the literature

  19. Performance upgrades to the MCNP6 burnup capability for large scale depletion calculations

    SciTech Connect

    Fensin, M. L.; Galloway, J. D.; James, M. R.

    2015-04-11

    The first MCNP based inline Monte Carlo depletion capability was officially released from the Radiation Safety Information and Computational Center as MCNPX 2.6.0. With the merger of MCNPX and MCNP5, MCNP6 combined the capability of both simulation tools, as well as providing new advanced technology, in a single radiation transport code. The new MCNP6 depletion capability was first showcased at the International Congress for Advancements in Nuclear Power Plants (ICAPP) meeting in 2012. At that conference the new capabilities addressed included the combined distributive and shared memory parallel architecture for the burnup capability, improved memory management, physics enhancements, and new predictability as compared to the H.B Robinson Benchmark. At Los Alamos National Laboratory, a special purpose cluster named “tebow,” was constructed such to maximize available RAM per CPU, as well as leveraging swap space with solid state hard drives, to allow larger scale depletion calculations (allowing for significantly more burnable regions than previously examined). As the MCNP6 burnup capability was scaled to larger numbers of burnable regions, a noticeable slowdown was realized.This paper details two specific computational performance strategies for improving calculation speedup: (1) retrieving cross sections during transport; and (2) tallying mechanisms specific to burnup in MCNP. To combat this slowdown new performance upgrades were developed and integrated into MCNP6 1.2.

  20. Performance upgrades to the MCNP6 burnup capability for large scale depletion calculations

    DOE PAGES

    Fensin, M. L.; Galloway, J. D.; James, M. R.

    2015-04-11

    The first MCNP based inline Monte Carlo depletion capability was officially released from the Radiation Safety Information and Computational Center as MCNPX 2.6.0. With the merger of MCNPX and MCNP5, MCNP6 combined the capability of both simulation tools, as well as providing new advanced technology, in a single radiation transport code. The new MCNP6 depletion capability was first showcased at the International Congress for Advancements in Nuclear Power Plants (ICAPP) meeting in 2012. At that conference the new capabilities addressed included the combined distributive and shared memory parallel architecture for the burnup capability, improved memory management, physics enhancements, and newmore » predictability as compared to the H.B Robinson Benchmark. At Los Alamos National Laboratory, a special purpose cluster named “tebow,” was constructed such to maximize available RAM per CPU, as well as leveraging swap space with solid state hard drives, to allow larger scale depletion calculations (allowing for significantly more burnable regions than previously examined). As the MCNP6 burnup capability was scaled to larger numbers of burnable regions, a noticeable slowdown was realized.This paper details two specific computational performance strategies for improving calculation speedup: (1) retrieving cross sections during transport; and (2) tallying mechanisms specific to burnup in MCNP. To combat this slowdown new performance upgrades were developed and integrated into MCNP6 1.2.« less

  1. Advanced Fuel Cycle Initiative - Projected Linear Heat Generation Rate and Burnup Calculations

    SciTech Connect

    Richard G. Ambrosek; Gray S. Chang; Debbie J. Utterbeck

    2005-02-01

    This report provides documentation of the physics analysis performed to determine the linear heat generation rate (LHGR) and burnup calculations for the Advanced Fuel Cycle Initiative (AFCI) tests, AFC-1D, AFC-1H, and AFC-1G. The AFC-1D and AFC-1H tests consists of low-fertile metallic fuel compositions and the AFC-1G test consists of non-fertile and low-fertile nitride compositions. These tests will be irradiated in the East Flux Trap (EFT) positions E1, E2, and E3, respectively, during Advanced Test Reactor (ATR) Cycle 135B.

  2. Propagation of Uncertainty in System Parameters of a LWR Model by Sampling MCNPX Calculations - Burnup Analysis

    NASA Astrophysics Data System (ADS)

    Campolina, Daniel de A. M.; Lima, Claubia P. B.; Veloso, Maria Auxiliadora F.

    2014-06-01

    For all the physical components that comprise a nuclear system there is an uncertainty. Assessing the impact of uncertainties in the simulation of fissionable material systems is essential for a best estimate calculation that has been replacing the conservative model calculations as the computational power increases. The propagation of uncertainty in a simulation using a Monte Carlo code by sampling the input parameters is recent because of the huge computational effort required. In this work a sample space of MCNPX calculations was used to propagate the uncertainty. The sample size was optimized using the Wilks formula for a 95th percentile and a two-sided statistical tolerance interval of 95%. Uncertainties in input parameters of the reactor considered included geometry dimensions and densities. It was showed the capacity of the sampling-based method for burnup when the calculations sample size is optimized and many parameter uncertainties are investigated together, in the same input.

  3. An extended version of the SERPENT-2 code to investigate fuel burn-up and core material evolution of the Molten Salt Fast Reactor

    NASA Astrophysics Data System (ADS)

    Aufiero, M.; Cammi, A.; Fiorina, C.; Leppänen, J.; Luzzi, L.; Ricotti, M. E.

    2013-10-01

    In this work, the Monte Carlo burn-up code SERPENT-2 has been extended and employed to study the material isotopic evolution of the Molten Salt Fast Reactor (MSFR). This promising GEN-IV nuclear reactor concept features peculiar characteristics such as the on-line fuel reprocessing, which prevents the use of commonly available burn-up codes. Besides, the presence of circulating nuclear fuel and radioactive streams from the core to the reprocessing plant requires a precise knowledge of the fuel isotopic composition during the plant operation. The developed extension of SERPENT-2 directly takes into account the effects of on-line fuel reprocessing on burn-up calculations and features a reactivity control algorithm. It is here assessed against a dedicated version of the deterministic ERANOS-based EQL3D procedure (PSI-Switzerland) and adopted to analyze the MSFR fuel salt isotopic evolution. Particular attention is devoted to study the effects of reprocessing time constants and efficiencies on the conversion ratio and the molar concentration of elements relevant for solubility issues (e.g., trivalent actinides and lanthanides). Quantities of interest for fuel handling and safety issues are investigated, including decay heat and activities of hazardous isotopes (neutron and high energy gamma emitters) in the core and in the reprocessing stream. The radiotoxicity generation is also analyzed for the MSFR nominal conditions. The production of helium and the depletion in tungsten content due to nuclear reactions are calculated for the nickel-based alloy selected as reactor structural material of the MSFR. These preliminary evaluations can be helpful in studying the radiation damage of both the primary salt container and the axial reflectors.

  4. Substantiation of parameters of the geometric model of the research reactor core for the calculation using the Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Radaev, A. I.; Schurovskaya, M. V.

    2015-12-01

    The choice of the spatial nodalization for the calculation of the power density and burnup distribution in a research reactor core with fuel assemblies of the IRT-3M and VVR-KN type using the program based on the Monte Carlo code is described. The influence of the spatial nodalization on the results of calculating basic neutronic characteristics and calculation time is investigated.

  5. Substantiation of parameters of the geometric model of the research reactor core for the calculation using the Monte Carlo method

    SciTech Connect

    Radaev, A. I. Schurovskaya, M. V.

    2015-12-15

    The choice of the spatial nodalization for the calculation of the power density and burnup distribution in a research reactor core with fuel assemblies of the IRT-3M and VVR-KN type using the program based on the Monte Carlo code is described. The influence of the spatial nodalization on the results of calculating basic neutronic characteristics and calculation time is investigated.

  6. Extended burnup core management for once-through uranium fuel cycles in LWRS. First annual report for the period 1 July 1979-30 June 1980

    SciTech Connect

    Sesonske, A.

    1980-08-01

    Detailed core management arrangements are developed requiring four operating cycles for the transition from present three-batch loading to an extended burnup four-batch plan for Zion-1. The ARMP code EPRI-NODE-P was used for core modeling. Although this work is preliminary, uranium and economic savings during the transition cycles appear of the order of 6 percent.

  7. Development of Monteburns: A Code That Links MCNP and ORIGEN2 in an Automated Fashion for Burnup Calculations

    SciTech Connect

    Holly R. Trellue

    1998-12-01

    Monteburns is a fully automated tool that links the Monte Carlo transport code MCNP with the radioactive decay and burnup code 0RIGEN2. Monteburns produces many criticality and burnup computational parameters based on material feed/removal specifications, power(s), and time intervals. This code processes input from the user indicating the system geometry, initial material compositions, feed/removal, and other code-specific parameters. Results from MCNP, 0RIGEN2, and other calculations are then output successively as the code runs. The principle function of monteburns is to first transfer one-group cross sections and fluxes from MCNP to 0RIGEN2, and then transfer the resulting material compositions (after irradiation and/or decay) from 0RIGEN2 back to MCNP in a repeated, cyclic fashion. The main requirement of the code is that the user have a working MCNP input file and other input parameters; all interaction with 0RIGEN2 and other calculations are performed by monteburns. This report presents the results obtained from the benchmarking of monteburns to measured and previously obtained data from traditional Light Water Reactor systems. The majority of the differences seen between the two were less than five percent. These were primarily a result of variances in cross sections between MCNP, cross section libraries used by other codes, and observed values. With this understanding, this code can now be used with confidence for burnup calculations in three-dimensional systems. It was designed for use in the Accelerator Transmutation of Waste project at Los Alamos National Laboratory but is also being applied to the analysis of isotopic production/destruction of transuranic actinides in a reactor system. The code has now been shown to sufficiently support these calculations.

  8. Burnup calculations for KIPT accelerator driven subcritical facility using Monte Carlo computer codes-MCB and MCNPX.

    SciTech Connect

    Gohar, Y.; Zhong, Z.; Talamo, A.; Nuclear Engineering Division

    2009-06-09

    Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an electron accelerator driven subcritical (ADS) facility, using the KIPT electron accelerator. The neutron source of the subcritical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The electron beam has a uniform spatial distribution and electron energy in the range of 100 to 200 MeV. The main functions of the subcritical assembly are the production of medical isotopes and the support of the Ukraine nuclear power industry. Neutron physics experiments and material structure analyses are planned using this facility. With the 100 KW electron beam power, the total thermal power of the facility is {approx}375 kW including the fission power of {approx}260 kW. The burnup of the fissile materials and the buildup of fission products reduce continuously the reactivity during the operation, which reduces the neutron flux level and consequently the facility performance. To preserve the neutron flux level during the operation, fuel assemblies should be added after long operating periods to compensate for the lost reactivity. This process requires accurate prediction of the fuel burnup, the decay behavior of the fission produces, and the introduced reactivity from adding fresh fuel assemblies. The recent developments of the Monte Carlo computer codes, the high speed capability of the computer processors, and the parallel computation techniques made it possible to perform three-dimensional detailed burnup simulations. A full detailed three-dimensional geometrical model is used for the burnup simulations with continuous energy nuclear data libraries for the transport calculations and 63-multigroup or one group cross sections libraries for the depletion calculations. Monte Carlo Computer code MCNPX and MCB are utilized for this study. MCNPX transports the

  9. Environment-based pin-power reconstruction method for homogeneous core calculations

    SciTech Connect

    Leroyer, H.; Brosselard, C.; Girardi, E.

    2012-07-01

    Core calculation schemes are usually based on a classical two-step approach associated with assembly and core calculations. During the first step, infinite lattice assemblies calculations relying on a fundamental mode approach are used to generate cross-sections libraries for PWRs core calculations. This fundamental mode hypothesis may be questioned when dealing with loading patterns involving several types of assemblies (UOX, MOX), burnable poisons, control rods and burn-up gradients. This paper proposes a calculation method able to take into account the heterogeneous environment of the assemblies when using homogeneous core calculations and an appropriate pin-power reconstruction. This methodology is applied to MOX assemblies, computed within an environment of UOX assemblies. The new environment-based pin-power reconstruction is then used on various clusters of 3x3 assemblies showing burn-up gradients and UOX/MOX interfaces, and compared to reference calculations performed with APOLLO-2. The results show that UOX/MOX interfaces are much better calculated with the environment-based calculation scheme when compared to the usual pin-power reconstruction method. The power peak is always better located and calculated with the environment-based pin-power reconstruction method on every cluster configuration studied. This study shows that taking into account the environment in transport calculations can significantly improve the pin-power reconstruction so far as it is consistent with the core loading pattern. (authors)

  10. Power excursion analysis for BWR`s at high burnup

    SciTech Connect

    Diamond, D.J.; Neymoith, L.; Kohut, P.

    1996-03-01

    A study has been undertaken to determine the fuel enthalpy during a rod drop accident and during two thermal-hydraulic transients. The objective was to understand the consequences to high burnup fuel and the sources of uncertainty in the calculations. The analysis was done with RAMONA-4B, a computer code that models the neutron kinetics throughout the core along with the thermal-hydraulics in the core, vessel, and steamline. The results showed that the maximum fuel enthalpy in high burnup fuel will be affected by core design, initial conditions, and modeling assumptions. The important parameters in each of these categories are discussed in the paper.

  11. Testing actinide fission yield treatment in CINDER90 for use in MCNP6 burnup calculations

    SciTech Connect

    Fensin, Michael Lorne; Umbel, Marissa

    2015-09-18

    Most of the development of the MCNPX/6 burnup capability focused on features that were applied to the Boltzman transport or used to prepare coefficients for use in CINDER90, with little change to CINDER90 or the CINDER90 data. Though a scheme exists for best solving the coupled Boltzman and Bateman equations, the most significant approximation is that the employed nuclear data are correct and complete. Thus, the CINDER90 library file contains 60 different actinide fission yields encompassing 36 fissionable actinides (thermal, fast, high energy and spontaneous fission). Fission reaction data exists for more than 60 actinides and as a result, fission yield data must be approximated for actinides that do not possess fission yield information. Several types of approximations are used for estimating fission yields for actinides which do not possess explicit fission yield data. The objective of this study is to test whether or not certain approximations of fission yield selection have any impact on predictability of major actinides and fission products. Further we assess which other fission products, available in MCNP6 Tier 3, result in the largest difference in production. Because the CINDER90 library file is in ASCII format and therefore easily amendable, we assess reasons for choosing, as well as compare actinide and major fission product prediction for the H. B. Robinson benchmark for, three separate fission yield selection methods: (1) the current CINDER90 library file method (Base); (2) the element method (Element); and (3) the isobar method (Isobar). Results show that the three methods tested result in similar prediction of major actinides, Tc-99 and Cs-137; however, certain fission products resulted in significantly different production depending on the method of choice.

  12. Testing actinide fission yield treatment in CINDER90 for use in MCNP6 burnup calculations

    DOE PAGES

    Fensin, Michael Lorne; Umbel, Marissa

    2015-09-18

    Most of the development of the MCNPX/6 burnup capability focused on features that were applied to the Boltzman transport or used to prepare coefficients for use in CINDER90, with little change to CINDER90 or the CINDER90 data. Though a scheme exists for best solving the coupled Boltzman and Bateman equations, the most significant approximation is that the employed nuclear data are correct and complete. Thus, the CINDER90 library file contains 60 different actinide fission yields encompassing 36 fissionable actinides (thermal, fast, high energy and spontaneous fission). Fission reaction data exists for more than 60 actinides and as a result, fissionmore » yield data must be approximated for actinides that do not possess fission yield information. Several types of approximations are used for estimating fission yields for actinides which do not possess explicit fission yield data. The objective of this study is to test whether or not certain approximations of fission yield selection have any impact on predictability of major actinides and fission products. Further we assess which other fission products, available in MCNP6 Tier 3, result in the largest difference in production. Because the CINDER90 library file is in ASCII format and therefore easily amendable, we assess reasons for choosing, as well as compare actinide and major fission product prediction for the H. B. Robinson benchmark for, three separate fission yield selection methods: (1) the current CINDER90 library file method (Base); (2) the element method (Element); and (3) the isobar method (Isobar). Results show that the three methods tested result in similar prediction of major actinides, Tc-99 and Cs-137; however, certain fission products resulted in significantly different production depending on the method of choice.« less

  13. Methodology of Fuel Burn Up Fitting in VVER-1000 Reactor Core by Using New Ex-Vessel Neutron Dosimetry and In-Core Measurements and its Application for Routine Reactor Pressure Vessel Fluence Calculations

    NASA Astrophysics Data System (ADS)

    Borodkin, Pavel; Borodkin, Gennady; Khrennikov, Nikolay

    2016-02-01

    Paper describes the new approach of fitting axial fuel burn-up patterns in peripheral fuel assemblies of VVER-1000 type reactors, on the base of ex-core neutron leakage measurements, neutron-physical calculations and in-core SPND measured data. The developed approach uses results of new ex-vessel measurements on different power units through different reactor cycles and their uncertainties to clear the influence of a fitted fuel burn-up profile to the RPV neutron fluence calculations. The new methodology may be recommended to be included in the routine fluence calculations used in RPV lifetime management and may be taken into account during VVER-1000 core burn-up pattern correction.

  14. Demonstration of a high burnup heterogeneous core using ferritic/martensitic materials

    SciTech Connect

    Lovell, A J; Fox, G L; Sutherland, W H; Hecht, S L

    1986-04-11

    The purpose of the Core Demonstration Experiment (CDE) is to demonstrate the capability of a mixed-oxide fuel system to achieve a three year life in a prototypic LMR heterogeneous reactor environment. The CDE assemblies are fabricated using wire-wrapped, large-diameter, advanced-oxide fuel and blanket pins with tempered martensitic HT9 cladding, wire wrap, and duct. The highest power fuel assembly operates with a Beginning of Life (BOL) peak linear pin power of 445 W/cm and a peak cladding temperature of 615C. The fuel and blanket assembly irradiation will start in FFTF Cycle 9 and continue for about 900 Equivalent Full Power Days (EFPD). The successful utilization of the tempered martensitic HT9 alloy in an FFTF test assembly is fully anticipated. The low swelling, observed at intermediate neutron fluence and projected to higher fluences, together with reasonable creep behavior gives acceptable mechanical performance for fuel pins, blanket pins and ducts. Duct length increase, dilation and bow; plus fuel and blanket pin diameter increases remain within specified tolerances. In addition, stress rupture data from unirradiated HT9 imply cumulative damage fractions for the nominal fuel and blanket pins that are low.

  15. Measurement and calculation of high-actinide burnup in the prototype fast reactor

    SciTech Connect

    Broadhead, B.L.; Raman, S.; Dickens, J.K. )

    1991-01-01

    An agreement was signed in May 1979 as a part of a long-term cooperative program between the United Kingdom and the US under the liquid-metal fast breeder reactor agreement of 1976. This agreement included an experiment to carry out irradiations of physics specimens of fissile and fertile actinides to improve our knowledge of basic nuclear physics phenomena. Three fuel pins were prepared by the US to contain the actinide physics samples; two of these pins were irradiated at the Dounreay prototype fast reactor (PFR) for a total irradiation of 63 full-power days. The third pin has only recently been removed from the PFT, following an irradiation of > 500 full-power days. Each pin houses 35 capsules containing milligram quantities of actinide oxides of {sup 231}Pa, {sup 230}Th, {sup 232}Th, {sup 233}U, {sup 234}U, {sup 235}U, {sup 236}U, {sup 238}U, {sup 237}Np, {sup 238}Pu, {sup 239}Pu, {sup 240}Pu, {sup 241}Pu, {sup 242}Pu, {sup 244}Pu, {sup 241}Am, {sup 243}Am, {sup 243}Cm, {sup 244}Cm, {sup 246}Cm, and {sup 248}Cm. Following the return of the first fuel pin (FP-1) to the United States in May 1984, the actinide samples were prepared for studies of fission product yields, isotopics, and material concentrations. The measurements were repeated for the second fuel pin (FP-2) to remedy several problems encountered in the processing of the FP-1 pin. A brief description of the measured and calculated {sup 137}Cs yields for both FP-1 and FP-2 are included in this paper.

  16. IN-CORE FUEL MANAGEMENT: PWR Core Calculations Using MCRAC

    NASA Astrophysics Data System (ADS)

    PetroviĆ, B. G.

    1991-01-01

    The following sections are included: * INTRODUCTION * IN-CORE FUEL MANAGEMENT CALCULATIONS * In-Core Fuel Management * Methodological Problems of In-Core Fuel Management * In-Core Fuel Management Analytical Tools * PENN STATE FUEL MANAGEMENT PACKAGE * Penn State Fuel Management Package (PFMP) * Assembly Data Description (ADD) * Linking PSU-LEOPARD and MCRAC: An Example * MULTICYCLE REACTOR ANALYSIS CODE (MCRAC) * Main Features and Options of MCRAC code * Core geometry * Diffusion equations * 1.5-group model * Multicycle neutronic analysis * Multicycle cost analysis * Criticality search * Power-dependent xenon feedback calculations * Control rod and burnable absorber simulation * Search for LP with flat BOC power distribution * Artificial ADD option * Variable dimensioning technique * RBI version of MCRAC code * Programming changes in PC version * Fuel interchange option * MCRAC Input/Output * General input description * Sample input * Sample output * EXPERIENCE WITH MCRAC CODE * CONCLUSIONS * REFERENCES

  17. Language in calculation: a core mechanism?

    PubMed

    Benn, Yael; Zheng, Ying; Wilkinson, Iain D; Siegal, Michael; Varley, Rosemary

    2012-01-01

    Although there is evidence that exact calculation recruits left hemisphere perisylvian language systems, recent work has shown that exact calculation can be retained despite severe damage to these networks. In this study, we sought to identify a "core" network for calculation and hence to determine the extent to which left hemisphere language areas are part of this network. We examined performance on addition and subtraction problems in two modalities: one using conventional two-digit problems that can be easily encoded into language; the other using novel shape representations. With regard to numerical problems, our results revealed increased left fronto-temporal activity in addition, and increased parietal activity in subtraction, potentially reflecting retrieval of linguistically encoded information during addition. The shape problems elicited activations of occipital, parietal and dorsal temporal regions, reflecting visual reasoning processes. A core activation common to both calculation types involved the superior parietal lobule bilaterally, right temporal sub-gyral area, and left lateralized activations in inferior parietal (BA 40), frontal (BA 6/8/32) and occipital (BA 18) regions. The large bilateral parietal activation could be attributed to visuo-spatial processing in calculation. The inferior parietal region, and particularly the left angular gyrus, was part of the core calculation network. However, given its activation in both shape and number tasks, its role is unlikely to reflect linguistic processing per se. A possibility is that it serves to integrate right hemisphere visuo-spatial and left hemisphere linguistic and executive processing in calculation.

  18. PWR AXIAL BURNUP PROFILE ANALYSIS

    SciTech Connect

    J.M. Acaglione

    2003-09-17

    The purpose of this activity is to develop a representative ''limiting'' axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the ''end-effect''. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package. The scope of this calculation covers an initial enrichment range of 3.0 through 5.0 wt% U-235 and a burnup range of 10 through 50 GWd/MTU. This activity supports the validation of the process for ensuring conservative generation of spent fuel isotopics with respect to criticality safety applications, and the use of burnup credit for commercial spent nuclear fuel. The intended use of these results will be in the development of PWR waste package loading curves, and applications involving burnup credit. Limitations of this evaluation are that the limiting profiles are only confirmed for use with the B&W 15 x 15 fuel assembly design. However, this assembly design is considered bounding of all other typical commercial PWR fuel assembly designs. This calculation is subject to the Quality Assurance Requirements and Description (QARD) because this activity supports investigations of items or barriers on the Q-list (YMP 2001).

  19. Topical report on actinide-only burnup credit for PWR spent nuclear fuel packages. Revision 1

    SciTech Connect

    None, None

    1997-04-01

    A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay. A set of chemical assay benchmarks is presented for this purpose as well as a method for assessing the calculational bias and uncertainty, and conservative correction factors for each isotope. (2) Validate a computer code system to predict the subcritical multiplication factor, k{sub eff}, of a spent nuclear fuel package. Fifty-seven UO{sub 2}, UO{sub 2}/Gd{sub 2}O{sub 3}, and UO{sub 2}/PuO{sub 2} critical experiments have been selected to cover anticipated conditions of SNF. The method uses an upper safety limit on k{sub eff} (which can be a function of the trending parameters) such that the biased k{sub eff}, when increased for the uncertainty is less than 0.95. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. Three bounding axial profiles have been established to assure the ''end effect'' is accounted for conservatively. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). Burnup credit loading curves show the minimum burnup required for a given initial enrichment. The utility burnup record is compared to this requirement after the utility accounts for the uncertainty in its record. Separate curves may be generated for each assembly design, various minimum cooling times and burnable absorber histories. (5) Verify that SNF assemblies meet the package loading criteria

  20. FRAPCON-3: A computer code for the calculation of steady-state, thermal-mechanical behavior of oxide fuel rods for high burnup

    SciTech Connect

    Berna, G.A.; Beyer, G.A.; Davis, K.L.; Lanning, D.D.

    1997-12-01

    FRAPCON-3 is a FORTRAN IV computer code that calculates the steady-state response of light water reactor fuel rods during long-term burnup. The code calculates the temperature, pressure, and deformation of a fuel rod as functions of time-dependent fuel rod power and coolant boundary conditions. The phenomena modeled by the code include (1) heat conduction through the fuel and cladding, (2) cladding elastic and plastic deformation, (3) fuel-cladding mechanical interaction, (4) fission gas release, (5) fuel rod internal gas pressure, (6) heat transfer between fuel and cladding, (7) cladding oxidation, and (8) heat transfer from cladding to coolant. The code contains necessary material properties, water properties, and heat-transfer correlations. The codes` integral predictions of mechanical behavior have not been assessed against a data base, e.g., cladding strain or failure data. Therefore, it is recommended that the code not be used for analyses of cladding stress or strain. FRAPCON-3 is programmed for use on both mainframe computers and UNIX-based workstations such as DEC 5000 or SUN Sparcstation 10. It is also programmed for personal computers with FORTRAN compiler software and at least 8 to 10 megabytes of random access memory (RAM). The FRAPCON-3 code is designed to generate initial conditions for transient fuel rod analysis by the FRAPTRAN computer code (formerly named FRAP-T6).

  1. Bias estimates used in lieu of validation of fission products and minor actinides in MCNP Keff calculations for PWR burnup credit casks

    SciTech Connect

    Mueller, Don E.; Marshall, William J.; Wagner, John C.; Bowen, Douglas G.

    2015-09-01

    The U.S. Nuclear Regulatory Commission (NRC) Division of Spent Fuel Storage and Transportation recently issued Interim Staff Guidance (ISG) 8, Revision 3. This ISG provides guidance for burnup credit (BUC) analyses supporting transport and storage of PWR pressurized water reactor (PWR) fuel in casks. Revision 3 includes guidance for addressing validation of criticality (keff) calculations crediting the presence of a limited set of fission products and minor actinides (FP&MA). Based on previous work documented in NUREG/CR-7109, recommendation 4 of ISG-8, Rev. 3, includes a recommendation to use 1.5 or 3% of the FP&MA worth to conservatively cover the bias due to the specified FP&MAs. This bias is supplementary to the bias and bias uncertainty resulting from validation of keff calculations for the major actinides in SNF and does not address extension to actinides and fission products beyond those identified herein. The work described in this report involves comparison of FP&MA worths calculated using SCALE and MCNP with ENDF/B-V, -VI, and -VII based nuclear data and supports use of the 1.5% FP&MA worth bias when either SCALE or MCNP codes are used for criticality calculations, provided the other conditions of the recommendation 4 are met. The method used in this report may also be applied to demonstrate the applicability of the 1.5% FP&MA worth bias to other codes using ENDF/B V, VI or VII based nuclear data. The method involves use of the applicant s computational method to generate FP&MA worths for a reference SNF cask model using specified spent fuel compositions. The applicant s FP&MA worths are then compared to reference values provided in this report. The applicants FP&MA worths should not exceed the reference results by more than 1.5% of the reference FP&MA worths.

  2. Technical Basis for Peak Reactivity Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    SciTech Connect

    Marshall, William BJ J; Ade, Brian J; Bowman, Stephen M; Gauld, Ian C; Ilas, Germina; Mertyurek, Ugur; Radulescu, Georgeta

    2015-01-01

    Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate application of burnup credit for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase (1) investigates applicability of peak reactivity methods currently used in spent fuel pools (SFPs) to storage and transportation systems and (2) evaluates validation of both reactivity (keff) calculations and burnup credit nuclide concentrations within these methods. The second phase will focus on extending burnup credit beyond peak reactivity. This paper documents the first phase, including an analysis of lattice design parameters and depletion effects, as well as both validation components. Initial efforts related to extended burnup credit are discussed in a companion paper. Peak reactivity analyses have been used in criticality analyses for licensing of BWR fuel in SFPs over the last 20 years. These analyses typically combine credit for the gadolinium burnable absorber present in the fuel with a modest amount of burnup credit. Gadolinium burnable absorbers are used in BWR assemblies to control core reactivity. The burnable absorber significantly reduces assembly reactivity at beginning of life, potentially leading to significant increases in assembly reactivity for burnups less than 15–20 GWd/MTU. The reactivity of each fuel lattice is dependent on gadolinium loading. The number of gadolinium-bearing fuel pins lowers initial lattice reactivity, but it has a small impact on the burnup and reactivity of the peak. The gadolinium concentration in each pin has a small impact on initial lattice reactivity but a significant effect on the reactivity of the peak and the burnup at which the peak occurs. The importance of the lattice parameters and depletion conditions are primarily determined by their impact on the gadolinium depletion. Criticality code validation for BWR burnup

  3. Modifying scoping codes to accurately calculate TMI-cores with lifetimes greater than 500 effective full-power days

    SciTech Connect

    Bai, D.; Levine, S.L. ); Luoma, J.; Mahgerefteh, M. )

    1992-01-01

    The Three Mile Island unit 1 core reloads have been designed using fast but accurate scoping codes, PSUI-LEOPARD and ADMARC. PSUI-LEOPARD has been normalized to EPRI-CPM2 results and used to calculate the two-group constants, whereas ADMARC is a modern two-dimensional, two-group diffusion theory nodal code. Problems in accuracy were encountered for cycles 8 and higher as the core lifetime was increased beyond 500 effective full-power days. This is because the heavier loaded cores in both {sup 235}U and {sup 10}B have harder neutron spectra, which produces a change in the transport effect in the baffle reflector region, and the burnable poison (BP) simulations were not accurate enough for the cores containing the increased amount of {sup 10}B required in the BP rods. In the authors study, a technique has been developed to take into account the change in the transport effect in the baffle region by modifying the fast neutron diffusion coefficient as a function of cycle length and core exposure or burnup. A more accurate BP simulation method is also developed, using integral transport theory and CPM2 data, to calculate the BP contribution to the equivalent fuel assembly (supercell) two-group constants. The net result is that the accuracy of the scoping codes is as good as that produced by CASMO/SIMULATE or CPM2/SIMULATE when comparing with measured data.

  4. Preliminary Study of Burnup Characteristics for a Simplified Small Pebble Bed Reactor

    SciTech Connect

    Irwanto, Dwi; Kato, Yukikata; Obara, Toru; Yamanaka, Ichiro

    2010-06-22

    Simplification of the pebble bed reactor by removing the unloading device from the system was peformed. For this reactor design, a suitable fuel-loading scheme is the Peu a Peu (little by little) fueling scheme. In the Peu a Peu modus, there is no unloading device; as such, the fuels are never discharged and remain at the bottom of the core during reactor operation. This means that the burnup cycle and reactivity is controlled by the addition of fuel. The objectives of the the present study were to find a means of carrying out the exact calculations needed to analyze the Peu a Peu fuel-loading scheme and to optimize the fuel composition, and fuel-loading scheme to achieve better burnup characteristics. The Monte Carlo method is used to perform calculations with high accuracy. Before the calculation of the whole core, the analysis for the infinite geometry was performed. The power generated per mass consumed for each combination of the uranium enrichment and packing fraction was analyzed from the parametric survey. By using the optimal value obtained, a whole-core calculation for the small 20 MWth reactor was performed and the criticality and burnup of this design was analyzed.

  5. Impact investigation of reactor fuel operating parameters on reactivity for use in burnup credit applications

    NASA Astrophysics Data System (ADS)

    Sloma, Tanya Noel

    When representing the behavior of commercial spent nuclear fuel (SNF), credit is sought for the reduced reactivity associated with the net depletion of fissile isotopes and the creation of neutron-absorbing isotopes, a process that begins when a commercial nuclear reactor is first operated at power. Burnup credit accounts for the reduced reactivity potential of a fuel assembly and varies with the fuel burnup, cooling time, and the initial enrichment of fissile material in the fuel. With regard to long-term SNF disposal and transportation, tremendous benefits, such as increased capacity, flexibility of design and system operations, and reduced overall costs, provide an incentive to seek burnup credit for criticality safety evaluations. The Nuclear Regulatory Commission issued Interim Staff Guidance 8, Revision 2 in 2002, endorsing burnup credit of actinide composition changes only; credit due to actinides encompasses approximately 30% of exiting pressurized water reactor SNF inventory and could potentially be increased to 90% if fission product credit were accepted. However, one significant issue for utilizing full burnup credit, compensating for actinide and fission product composition changes, is establishing a set of depletion parameters that produce an adequately conservative representation of the fuel's isotopic inventory. Depletion parameters can have a significant effect on the isotopic inventory of the fuel, and thus the residual reactivity. This research seeks to quantify the reactivity impact on a system from dominant depletion parameters (i.e., fuel temperature, moderator density, burnable poison rod, burnable poison rod history, and soluble boron concentration). Bounding depletion parameters were developed by statistical evaluation of a database containing reactor operating histories. The database was generated from summary reports of commercial reactor criticality data. Through depletion calculations, utilizing the SCALE 6 code package, several light

  6. Isotopic validation for PWR actinide-only burnup credit using Yankee Rowe data

    SciTech Connect

    1997-11-01

    Safety analyses of criticality control systems for transportation packages include an assumption that the spent nuclear fuel (SNF) loaded into the package is fresh or unirradiated. In other words, the spent fuel is assumed to have its original, as-manufactured U-235 isotopic content. The ``fresh fuel`` assumption is very conservative since the potential reactivity of the nuclear fuel is substantially reduced after being irradiated in the reactor core. The concept of taking credit for this reduction in nuclear fuel reactivity due to burnup of the fuel, instead of using the fresh fuel assumption in the criticality safety analysis, is referred to as ``Burnup Credit.`` Burnup credit uses the actual physical composition of the fuel and accounts for the net reduction of fissile material and the buildup of neutron absorbers in the fuel as it is irradiated. Neutron absorbers include actinides and other isotopes generated as a result of the fission process. Using only the change in actinide isotopes in the burnup credit criticality analysis is referred to as ``Actinide-Only Burnup Credit.`` The use of burnup credit in the design of criticality control systems enables more spent fuel to be placed in a package. Increased package capacity results in a reduced number of storage, shipping and disposal containers for a given number of SNF assemblies. Fewer shipments result in a lower risk of accidents associated with the handling and transportation of spent fuel, thus reducing both radiological and nonradiological risk to the public. This paper describes the modeling and the results of comparison between measured and calculated isotopic inventories for a selected number of samples taken from a Yankee Rowe spent fuel assembly.

  7. Core Physics and Kinetics Calculations for the Fissioning Plasma Core Reactor

    NASA Technical Reports Server (NTRS)

    Butler, C.; Albright, D.

    2007-01-01

    Highly efficient, compact nuclear reactors would provide high specific impulse spacecraft propulsion. This analysis and numerical simulation effort has focused on the technical feasibility issues related to the nuclear design characteristics of a novel reactor design. The Fissioning Plasma Core Reactor (FPCR) is a shockwave-driven gaseous-core nuclear reactor, which uses Magneto Hydrodynamic effects to generate electric power to be used for propulsion. The nuclear design of the system depends on two major calculations: core physics calculations and kinetics calculations. Presently, core physics calculations have concentrated on the use of the MCNP4C code. However, initial results from other codes such as COMBINE/VENTURE and SCALE4a. are also shown. Several significant modifications were made to the ISR-developed QCALC1 kinetics analysis code. These modifications include testing the state of the core materials, an improvement to the calculation of the material properties of the core, the addition of an adiabatic core temperature model and improvement of the first order reactivity correction model. The accuracy of these modifications has been verified, and the accuracy of the point-core kinetics model used by the QCALC1 code has also been validated. Previously calculated kinetics results for the FPCR were described in the ISR report, "QCALC1: A code for FPCR Kinetics Model Feasibility Analysis" dated June 1, 2002.

  8. Atomistic calculations of dislocation core energy in aluminium

    NASA Astrophysics Data System (ADS)

    Zhou, X. W.; Sills, R. B.; Ward, D. K.; Karnesky, R. A.

    2017-02-01

    A robust molecular-dynamics simulation method for calculating dislocation core energies has been developed. This method has unique advantages: It does not require artificial boundary conditions, is applicable for mixed dislocations, and can yield converged results regardless of the atomistic system size. Utilizing a high-fidelity bond order potential, we have applied this method in aluminium to calculate the dislocation core energy as a function of the angle β between the dislocation line and the Burgers vector. These calculations show that, for the face-centered-cubic aluminium explored, the dislocation core energy follows the same functional dependence on β as the dislocation elastic energy: Ec=A sin2β +B cos2β , and this dependence is independent of temperature between 100 and 300 K. By further analyzing the energetics of an extended dislocation core, we elucidate the relationship between the core energy and the core radius of a perfect versus an extended dislocation. With our methodology, the dislocation core energy can accurately be accounted for in models of dislocation-mediated plasticity.

  9. Atomistic calculations of dislocation core energy in aluminium

    DOE PAGES

    Zhou, X. W.; Sills, R. B.; Ward, D. K.; ...

    2017-02-16

    A robust molecular dynamics simulation method for calculating dislocation core energies has been developed. This method has unique advantages: it does not require artificial boundary conditions, is applicable for mixed dislocations, and can yield highly converged results regardless of the atomistic system size. Utilizing a high-fidelity bond order potential, we have applied this method in aluminium to calculate the dislocation core energy as a function of the angle β between the dislocation line and Burgers vector. These calculations show that, for the face-centred-cubic aluminium explored, the dislocation core energy follows the same functional dependence on β as the dislocation elasticmore » energy: Ec = A·sin2β + B·cos2β, and this dependence is independent of temperature between 100 and 300 K. By further analysing the energetics of an extended dislocation core, we elucidate the relationship between the core energy and radius of a perfect versus extended dislocation. With our methodology, the dislocation core energy can be accurately accounted for in models of plastic deformation.« less

  10. NEPHTIS: Core depletion validation relying on 2D transport core calculations with the APOLLO2 code

    SciTech Connect

    Damian, F.; Raepsaet, X.; Groizard, M.; Poinot, C.

    2006-07-01

    The CEA, in collaboration with EDF and AREVA-NP, is developing a core modelling tool called NEPHTIS, for Neutronic Process for HTGR Innovating Systems and dedicated at present day to the prismatic block-type HTGR (High Temperature Gas-Cooled Reactors). Due to the lack of usable HTGR experimental results, the confidence in this neutronic computational tool relies essentially on comparisons to reference or best-estimate calculations. In the present analysis, the Aleppo deterministic transport code has been selected as reference for validating core depletion simulations carried out within NEPHTIS. These reference calculations were performed on fully detailed 2D core configurations using the Method of Characteristics. The latter has been validated versus Monte Carlo method for different static core configurations [1], [2] and [3]. All the presented results come from an annular HTGR core loaded with uranium-based fuel (15% enrichment). During the core depletion validation, reactivity, reaction rates distributions and nuclei concentrations have been compared. In addition, the impact of various physical and geometrical parameters such as the core loading (one-through or batch-wise reloading) and the amount of burnable poison has been investigated during the validation phases. The results confirm that NEPHTIS is able to predict the core reactivity with uncertainties of {+-}350 pcm. At the end of the core irradiation, the U-235 consumption is calculated within {+-} 0, 7 % while the plutonium mass discharged from the core is calculated within {+-}1 %. As far as the core power distributions are concerned, small discrepancies ( and < 2.3 %) can be observed on the fuel block-averaged power distribution in the core. (authors)

  11. A PWR Thorium Pin Cell Burnup Benchmark

    SciTech Connect

    Weaver, Kevan Dean; Zhao, X.; Pilat, E. E; Hejzlar, P.

    2000-05-01

    As part of work to evaluate the potential benefits of using thorium in LWR fuel, a thorium fueled benchmark comparison was made in this study between state-of-the-art codes, MOCUP (MCNP4B + ORIGEN2), and CASMO-4 for burnup calculations. The MOCUP runs were done individually at MIT and INEEL, using the same model but with some differences in techniques and cross section libraries. Eigenvalue and isotope concentrations were compared on a PWR pin cell model up to high burnup. The eigenvalue comparison as a function of burnup is good: the maximum difference is within 2% and the average absolute difference less than 1%. The isotope concentration comparisons are better than a set of MOX fuel benchmarks and comparable to a set of uranium fuel benchmarks reported in the literature. The actinide and fission product data sources used in the MOCUP burnup calculations for a typical thorium fuel are documented. Reasons for code vs code differences are analyzed and discussed.

  12. Spatial Kinetics Calculations of MOX Fueled Core: Variant 22

    SciTech Connect

    Pavlovichev, A.M.

    2001-01-11

    This work is part of a Joint US/Russian Project with Weapons-Grade Plutonium Disposition in VVER Reactors and presents the results of spatial kinetics calculational benchmarks. The examinations were carried out with the following purposes: to verify one of spatial neutronic kinetics model elaborated in KI, to understand sensibility of the model to neutronics difference of UOX and MOX cores, to compare in future point and spatial kinetics models (on the base of a set of selected accidents) in view of eventual creation of RELAP option with 3D kinetics. The document contains input data and results of model operation of three emergency dynamic processes in the VVER-1000 core: central control rod ejection by pressure drop caused by destroying of the moving mechanism cover; overcooling of the reactor core caused by steam line rupture and non-closure of steam generator stop valve; and the boron dilution of coolant in part of the VVER-1000 core caused by penetration of the distillate slug into the core at start up of non-working loop.

  13. Fuel burnup analysis for IRIS reactor using MCNPX and WIMS-D5 codes

    NASA Astrophysics Data System (ADS)

    Amin, E. A.; Bashter, I. I.; Hassan, Nabil M.; Mustafa, S. S.

    2017-02-01

    International Reactor Innovative and Secure (IRIS) reactor is a compact power reactor designed with especial features. It contains Integral Fuel Burnable Absorber (IFBA). The core is heterogeneous both axially and radially. This work provides the full core burn up analysis for IRIS reactor using MCNPX and WIMDS-D5 codes. Criticality calculations, radial and axial power distributions and nuclear peaking factor at the different stages of burnup were studied. Effective multiplication factor values for the core were estimated by coupling MCNPX code with WIMS-D5 code and compared with SAS2H/KENO-V code values at different stages of burnup. The two calculation codes show good agreement and correlation. The values of radial and axial powers for the full core were also compared with published results given by SAS2H/KENO-V code (at the beginning and end of reactor operation). The behavior of both radial and axial power distribution is quiet similar to the other data published by SAS2H/KENO-V code. The peaking factor values estimated in the present work are close to its values calculated by SAS2H/KENO-V code.

  14. Triton burnup measurements in KSTAR using a neutron activation system

    NASA Astrophysics Data System (ADS)

    Jo, Jungmin; Cheon, MunSeong; Kim, Jun Young; Rhee, T.; Kim, Junghee; Shi, Yue-Jiang; Isobe, M.; Ogawa, K.; Chung, Kyoung-Jae; Hwang, Y. S.

    2016-11-01

    Measurements of the time-integrated triton burnup for deuterium plasma in Korea Superconducting Tokamak Advanced Research (KSTAR) have been performed following the simultaneous detection of the d-d and d-t neutrons. The d-d neutrons were measured using a 3He proportional counter, fission chamber, and activated indium sample, whereas the d-t neutrons were detected using activated silicon and copper samples. The triton burnup ratio from KSTAR discharges is found to be in the range 0.01%-0.50% depending on the plasma conditions. The measured burnup ratio is compared with the prompt loss fraction of tritons calculated with the Lorentz orbit code and the classical slowing-down time. The burnup ratio is found to increase as plasma current and classical slowing-down time increase.

  15. Differentiating core and co-opted mechanisms in calculation: the neuroimaging of calculation in aphasia.

    PubMed

    Benn, Yael; Wilkinson, Iain D; Zheng, Ying; Cohen Kadosh, Kathrin; Romanowski, Charles A J; Siegal, Michael; Varley, Rosemary

    2013-08-01

    The role of language in exact calculation is the subject of debate. Some behavioral and functional neuroimaging investigations of healthy participants suggest that calculation requires language resources. However, there are also reports of individuals with severe aphasic language impairment who retain calculation ability. One possibility in resolving these discordant findings is that the neural basis of calculation has undergone significant reorganization in aphasic calculators. Using fMRI, we examined brain activations associated with exact addition and subtraction in two patients with severe agrammatic aphasia and retained calculation ability. Behavior and brain activations during two-digit addition and subtraction were compared to those of a group of 11 healthy, age-matched controls. Behavioral results confirmed that both patients retained calculation ability. Imaging findings revealed individual differences in processing, but also a similar activation pattern across patients and controls in bilateral parietal cortices. Patients differed from controls in small areas of increased activation in peri-lesional regions, a shift from left fronto-temporal activation to the contralateral region, and increased activations in bilateral superior parietal regions. Our results suggest that bilateral parietal cortex represents the core of the calculation network and, while healthy controls may recruit language resources to support calculation, these mechanisms are not mandatory in adult cognition.

  16. Designing Critical Experiments in Support of Full Burnup Credit

    SciTech Connect

    Mueller, Don; Roberts, Jeremy A

    2008-01-01

    Burnup credit is the process of accounting for the negative reactivity due to fuel burnup and generation of parasitic absorbers over fuel assembly lifetime. For years, the fresh fuel assumption was used as a simple bound in criticality work for used fuel storage and transportation. More recently, major actinides have been included [1]. However, even this yields a highly conservative estimate in criticality calculations. Because of the numerous economical benefits including all available negative reactivity (i.e., full burnup credit) could provide [2], it is advantageous to work toward full burnup credit. Unfortunately, comparatively little work has been done to include non-major actinides and other fission products (FP) in burnup credit analyses due in part to insufficient experimental data for validation of codes and nuclear data. The Burnup Credit Criticality Experiment (BUCCX) at Sandia National Laboratory was a set of experiments with {sup 103}Rh that have relevance for burnup credit [3]. This work uses TSUNAMI-3D to investigate and adjust a BUCCX model to match isotope-specific, energy-dependent k{sub eff} sensitivity profiles to those of a representative high-capacity cask model (GBC-32) [4] for each FP of interest. The isotopes considered are {sup 149}Sm, {sup 143}Nd, {sup 103}Rh, {sup 133}Cs, {sup 155}Gd, {sup 152}Sm, {sup 99}Tc, {sup 145}Nd, {sup 153}Eu, {sup 147}Sm, {sup 109}Ag, {sup 95}Mo, {sup 150}Sm, {sup 101}Ru, and {sup 151}Eu. The goal is to understand the biases and bias uncertainties inherent in nuclear data, and ultimately, to apply these in support of full burnup credit.

  17. Validation Work to Support the Idaho National Engineering and Environmental Laboratory Calculational Burnup Methodology Using Shippingport Light Water Breeder Reactor (LWBR) Spent Fuel Assay Data

    SciTech Connect

    J. W. Sterbentz

    1999-08-01

    Six uranium isotopes and fourteen fission product isotopes were calculated on a mass basis at end-of-life (EOL) conditions for three fuel rods from different Light Water Breeder Reactor (LWBR) measurements. The three fuel rods evaluated here were taken from an LWBR seed module, a standard blanket module, and a reflector (Type IV) module. The calculated results were derived using a depletion methodology previously employed to evaluate many of the radionuclide inventories for spent nuclear fuels at the Idaho National Engineering and Environmental Laboratory. The primary goal of the calculational task was to further support the validation of this particular calculational methodology and its application to diverse reactor types and fuels. Result comparisons between the calculated and measured mass concentrations in the three rods indicate good agreement for the three major uranium isotopes (U-233, U-234, U-235) with differences of less than 20%. For the seed and standard blanket rod, the U-233 and U-234 differences were within 5% of the measured values (these two isotopes alone represent greater than 97% of the EOL total uranium mass). For the major krypton and xenon fission product isotopes, differences of less than 20% and less than 30% were observed, respectively. In general, good agreement was obtained for nearly all the measured isotopes. For these isotopes exhibiting significant differences, possible explanations are discussed in terms of measurement uncertainty, complex transmutations, etc.

  18. Burnup credit validation of SCALE-4 using light-water-reactor criticals

    SciTech Connect

    Bowman, S.M.; Hermann, O.W.; Brady, M.C.

    1993-03-01

    The ANSI/ANS 8.1 criticality safety standard recommends validation and benchmarking of the calculational methods used in evaluating criticality safety limits for away-from-reactor applications. The lack of critical experiments with burned light-water reactor (LWR) fuel in racks or in casks necessitates the validation of burnup credit methods by comparison with LWR core criticals. These benchmarks are relevant because they test a methodology`s ability to predict spent fuel isotopic and to evaluate the reactivity effects of heterogeneities and strong absorbers. Data are available to perform analyses at precise state points. As part of the Burnup Credit Analysis Verification (BCAV) Task, the U.S. Department of Energy has sponsored analysis of selected reactor core critical configurations from commercial pressurized-water-reactors (PWRs). The initial analysis methodology used the SCALE-4 code system to analyze a set of reactor critical configurations from Virginia Power`s Slurry and North Anna reactors. However, the analysis procedure was complex and included the calculation of lumped fission products. The methodology has since been revised to simplify both the data requirements and the calculational procedure for the criticality analyst. This revised methodology is validated here by a comparison with three reactor critical configurations from Tennessee Valley Authority`s Sequoyah Unit 2 Cycle 3 and two from Virginia Power`s Slurry Unit 1 Cycle 2.

  19. Effect of Control Blade History, and Axial Coolant Density and Burnup Profiles on BWR Burnup Credit

    SciTech Connect

    Ade, Brian J; Marshall, William BJ J; Martinez-Gonzalez, Jesus S

    2015-05-01

    Oak Ridge National Laboratory (ORNL) and the US Nuclear Regulatory Commission (NRC) have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling water reactor (BWR) fuel in storage and transportation systems (often referred to as casks) and spent fuel pools (SFPs). This work is divided into two main phases. The first phase investigated the applicability of peak reactivity methods currently used in SFPs to transportation and storage casks and the validation of reactivity calculations and spent fuel compositions within these methods. The second phase focuses on extending BUC beyond peak reactivity. This paper documents the analysis of the effects of control blade insertion history, and moderator density and burnup axial profiles for extended BWR BUC.

  20. Burnup credit validation of SCALE-4 using light water reactor criticals

    SciTech Connect

    Bowman, S.M.; Hermann, O.W. ); Brady, M.C. )

    1993-01-01

    The ANSI/ANS 8.1 criticality safety standard recommends validation and benchmarking of the calculational methods used in evaluating criticality safety limits for away-from-reactor applications. The lack of critical experiments with burned light-water-reactor (LWR) fuel in racks or in casks necessitates the validation of burnup credit methods by comparison to LWR core criticals. These are relevant benchmarks because they test a methodology's ability to predict spent fuel isotopics and to evaluate the reactivity effects of heterogeneities and strong absorbers. Data are available to perform analyses at precise state points. The US Department of Energy Burnup Credit Program has sponsored analysis of selected reactor core critical configurations from commercial pressurized-water-reactors (PWRs) in order to validate an appropriate analysis methodology. The initial methodology used the SCALE-4 code system to analyze a set of reactor critical configurations from Virginia Power's Surry and North Anna reactors. The methodology has since been revised to simplify both the data requirements and the calculational procedure for the criticality analyst. This revised methodology is validated here by comparison to three reactor critical configurations from Tennessee Valley Authority's Sequoyah Unit 2 Cycle 3 and two from Virginia Power's Surry Unit 1 Cycle 2.

  1. A multi-platform linking code for fuel burnup and radiotoxicity analysis

    NASA Astrophysics Data System (ADS)

    Cunha, R.; Pereira, C.; Veloso, M. A. F.; Cardoso, F.; Costa, A. L.

    2014-02-01

    A linking code between ORIGEN2.1 and MCNP has been developed at the Departamento de Engenharia Nuclear/UFMG to calculate coupled neutronic/isotopic results for nuclear systems and to produce a large number of criticality, burnup and radiotoxicity results. In its previous version, it evaluated the isotopic composition evolution in a Heat Pipe Power System model as well as the radiotoxicity and radioactivity during lifetime cycles. In the new version, the code presents features such as multi-platform execution and automatic results analysis. Improvements made in the code allow it to perform simulations in a simpler and faster way without compromising accuracy. Initially, the code generates a new input for MCNP based on the decisions of the user. After that, MCNP is run and data, such as recoverable energy per prompt fission neutron, reaction rates and keff, are automatically extracted from the output and used to calculate neutron flux and cross sections. These data are then used to construct new ORIGEN inputs, one for each cell in the core. Each new input is run on ORIGEN and generates outputs that represent the complete isotopic composition of the core on that time step. The results show good agreement between GB (Coupled Neutronic/Isotopic code) and Monteburns (Automated, Multi-Step Monte Carlo Burnup Code System), developed by the Los Alamos National Laboratory.

  2. Design and construction of a prototype advanced on-line fuel burn-up monitoring system for the modular pebble bed reactor

    SciTech Connect

    Su, Bingjing; Hawari, Ayman, I.

    2004-03-30

    Modular Pebble Bed Reactor (MPBR) is a high temperature gas-cooled nuclear power reactor currently under study as a next generation reactor system. In addition to its inherently safe design, a unique feature of this reactor is its multi-pass fuel circulation in which the fuel pebbles are randomly loaded and continuously cycled through the core until they reach their prescribed End-of-Life burn-up limit. Unlike the situation with a conventional light water reactor, depending solely on computational methods to perform in-core fuel management for MPBR will be highly inaccurate. An on-line measurement system is needed to accurately assess whether a given pebble has reached its End-of-Life burn-up limit and thereby provide an on-line, automated go/no-go decision on fuel disposition on a pebble-by-pebble basis. This project investigated approaches to analyzing fuel pebbles in real time using gamma spectroscopy and possibly using passive neutron counting of spontaneous fission neutrons to provide the speed, accuracy, and burn-up range required for burnup determination of MPBR. It involved all phases necessary to develop and construct a burn-up monitor, including a review of the design requirements of the system, identification of detection methodologies, modeling and development of potential designs, and finally, the construction and testing of an operational detector system. Based upon the research work performed in this project, the following conclusions are made. In terms of using gamma spectrometry, two possible approaches were identified for burnup assay. The first approach is based on the measurement of the absolute activity of Cs-137. However, due to spectral interference and the need for absolute calibration of the spectrometer, the uncertainty in burnup determination using this approach was found to range from {approx} {+-}40% at beginning of life to {approx} {+-}10% at the discharge burnup. An alternative approach is to use a relative burnup indicator. In this

  3. Advances in core loss calculations for magnetic materials

    NASA Technical Reports Server (NTRS)

    Triner, J. E.

    1982-01-01

    A new analytical technique which predicts the basic magnetic properties under various operating conditions encountered in state-of-the-art dc-ac/dc converters is discussed. Using a new flux-controlled core excitation circuit, magnetic core characteristics were developed for constant values of ramp flux (square wave voltage excitation) and frequency. From this empirical data, a mathematical loss characteristics equation is developed to analytically predict the specific core loss of several magnetic materials under various waveform excitation conditions. In addition, these characteristics show the circuit designer for the first time the direct functional relatonships between induction level and specific core loss as a function of the two key dc-dc converter operating parameters of input voltage and duty cycle.

  4. Analysis on burnup step effect for evaluating reactor criticality and fuel breeding ratio

    SciTech Connect

    Saputra, Geby; Purnama, Aditya Rizki; Permana, Sidik; Suzuki, Mitsutoshi

    2014-09-30

    Criticality condition of the reactors is one of the important factors for evaluating reactor operation and nuclear fuel breeding ratio is another factor to show nuclear fuel sustainability. This study analyzes the effect of burnup steps and cycle operation step for evaluating the criticality condition of the reactor as well as the performance of nuclear fuel breeding or breeding ratio (BR). Burnup step is performed based on a day step analysis which is varied from 10 days up to 800 days and for cycle operation from 1 cycle up to 8 cycles reactor operations. In addition, calculation efficiency based on the variation of computer processors to run the analysis in term of time (time efficiency in the calculation) have been also investigated. Optimization method for reactor design analysis which is used a large fast breeder reactor type as a reference case was performed by adopting an established reactor design code of JOINT-FR. The results show a criticality condition becomes higher for smaller burnup step (day) and for breeding ratio becomes less for smaller burnup step (day). Some nuclides contribute to make better criticality when smaller burnup step due to individul nuclide half-live. Calculation time for different burnup step shows a correlation with the time consuming requirement for more details step calculation, although the consuming time is not directly equivalent with the how many time the burnup time step is divided.

  5. A Simple Global View of Fuel Burnup

    NASA Astrophysics Data System (ADS)

    Sekimoto, Hiroshi

    2017-01-01

    Reactor physics and fuel burnup are discussed in order to obtain a simple global view of the effects of nuclear reactor characteristics to fuel cycle system performance. It may provide some idea of free thinking and overall vision, though it is still a small part of nuclear energy system. At the beginning of this lecture, governing equations for nuclear reactors are presented. Since the set of these equations is so big and complicated, it is simplified by imposing some extreme conditions and the nuclear equilibrium equation is derived. Some features of future nuclear equilibrium state are obtained by solving this equation. The contribution of a nucleus charged into reactor core to the system performance indexes such as criticality is worth for understanding the importance of each nuclide. It is called nuclide importance and can be evaluated by using the equations adjoint to the nuclear equilibrium equation. Examples of some importances and their application to criticalily search problem are presented.

  6. Review of Technical Studies in the United States in Support of Burnup Credit Regulatory Guidance

    SciTech Connect

    Wagner, John C; Parks, Cecil V; Mueller, Don; Gauld, Ian C

    2010-01-01

    Taking credit for the reduction in reactivity associated with fuel depletion can enable more cost-effective, higher-density storage, transport, disposal, and reprocessing of spent nuclear fuel (SNF) while maintaining sufficient subcritical margin to establish an adequate safety basis. Consequently, there continues to be considerable interest in the United States (U.S.), as well as internationally, in the increased use of burnup credit in SNF operations, particularly related to storage, transport, and disposal of commercial SNF. This interest has motivated numerous technical studies related to the application of burnup credit, both domestically and internationally, as well as the design of SNF storage, transport and disposal systems that rely on burnup credit for maintaining subcriticality. Responding to industry requests and needs, the U.S. Nuclear Regulatory Commission (NRC) initiated a burnup credit research program in 1999, with support from the Oak Ridge National Laboratory (ORNL), to develop regulatory guidance and the supporting technical bases for allowing and expanding the use of burnup credit in pressurized-water reactor SNF storage and transport applications. Although this NRC research program has not been continuous since its inception, considerable progress has been achieved in many key areas in terms of increased understanding of relevant phenomena and issues, availability of relevant information and data, and subsequently updated regulatory guidance for expanded use of burnup credit. This paper reviews technical studies performed by ORNL for the U.S. NRC burnup credit research program. Examples of topics include reactivity effects associated with reactor operating characteristics, fuel assembly characteristics, burnable absorbers, control rods, spatial burnup distributions, cooling time, and assembly misloading; methods and data for validation of isotopic composition predictions; methods and data for validation of criticality calculations; and

  7. Development code for sensitivity and uncertainty analysis of input on the MCNPX for neutronic calculation in PWR core

    NASA Astrophysics Data System (ADS)

    Hartini, Entin; Andiwijayakusuma, Dinan

    2014-09-01

    This research was carried out on the development of code for uncertainty analysis is based on a statistical approach for assessing the uncertainty input parameters. In the butn-up calculation of fuel, uncertainty analysis performed for input parameters fuel density, coolant density and fuel temperature. This calculation is performed during irradiation using Monte Carlo N-Particle Transport. The Uncertainty method based on the probabilities density function. Development code is made in python script to do coupling with MCNPX for criticality and burn-up calculations. Simulation is done by modeling the geometry of PWR terrace, with MCNPX on the power 54 MW with fuel type UO2 pellets. The calculation is done by using the data library continuous energy cross-sections ENDF / B-VI. MCNPX requires nuclear data in ACE format. Development of interfaces for obtaining nuclear data in the form of ACE format of ENDF through special process NJOY calculation to temperature changes in a certain range.

  8. Technical Development on Burn-up Credit for Spent LWR Fuel

    SciTech Connect

    Gauld, I.C.

    2001-12-26

    Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled ''Technical Development on Criticality Safety Management for Spent LWR Fuels.'' Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burnup and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report.

  9. Investigation of intravalence, core-valence and core-core electron correlation effects in polonium atomic structure calculations

    NASA Astrophysics Data System (ADS)

    Quinet, Pascal

    2014-09-01

    A detailed investigation of the atomic structure and radiative parameters involving the lowest states within the 6p4, 6p36d, 6p37s, 6p37p and 6p37d configurations of neutral polonium is reported in the present paper. Using different physical models based on the pseudo-relativistic Hartree-Fock approach, the influence of intravalence, core-valence and core-core electron correlation on the atomic parameters is discussed in detail. This work allowed us to fix the spectroscopic designation of some experimental level energy values and to provide for the first time a set of reliable oscillator strengths corresponding to 31 Po I spectral lines in the wavelength region from 175 to 987 nm.

  10. Full Core 3-D Simulation of a Partial MOX LWR Core

    SciTech Connect

    S. Bays; W. Skerjanc; M. Pope

    2009-05-01

    A comparative analysis and comparison of results obtained between 2-D lattice calculations and 3-D full core nodal calculations, in the frame of MOX fuel design, was conducted. This study revealed a set of advantages and disadvantages, with respect to each method, which can be used to guide the level of accuracy desired for future fuel and fuel cycle calculations. For the purpose of isotopic generation for fuel cycle analyses, the approach of using a 2-D lattice code (i.e., fuel assembly in infinite lattice) gave reasonable predictions of uranium and plutonium isotope concentrations at the predicted 3-D core simulation batch average discharge burnup. However, it was found that the 2-D lattice calculation can under-predict the power of pins located along a shared edge between MOX and UO2 by as much as 20%. In this analysis, this error did not occur in the peak pin. However, this was a coincidence and does not rule out the possibility that the peak pin could occur in a lattice position with high calculation uncertainty in future un-optimized studies. Another important consideration in realistic fuel design is the prediction of the peak axial burnup and neutron fluence. The use of 3-D core simulation gave peak burnup conditions, at the pellet level, to be approximately 1.4 times greater than what can be predicted using back-of-the-envelope assumptions of average specific power and irradiation time.

  11. Recommendations for Addressing Axial Burnup in the PWR Burnup Credit Analyses

    SciTech Connect

    Wagner, J.C.

    2002-10-23

    This report presents studies performed to support the development of a technically justifiable approach for addressing the axial-burnup distribution in pressurized-water reactor (PWR) burnup-credit criticality safety analyses. The effect of the axial-burnup distribution on reactivity and proposed approaches for addressing the axial-burnup distribution are briefly reviewed. A publicly available database of profiles is examined in detail to identify profiles that maximize the neutron multiplication factor, k{sub eff}, assess its adequacy for PWR burnup credit analyses, and investigate the existence of trends with fuel type and/or reactor operations. A statistical evaluation of the k{sub eff} values associated with the profiles in the axial-burnup-profile database was performed, and the most reactive (bounding) profiles were identified as statistical outliers. The impact of these bounding profiles on k{sub eff} is quantified for a high-density burnup credit cask. Analyses are also presented to quantify the potential reactivity consequence of loading assemblies with axial-burnup profiles that are not bounded by the database. The report concludes with a discussion on the issues for consideration and recommendations for addressing axial burnup in criticality safety analyses using burnup credit for dry cask storage and transportation.

  12. Model biases in high-burnup fast reactor simulations

    SciTech Connect

    Touran, N.; Cheatham, J.; Petroski, R.

    2012-07-01

    A new code system called the Advanced Reactor Modeling Interface (ARMI) has been developed that loosely couples multiscale, multiphysics nuclear reactor simulations to provide rapid, user-friendly, high-fidelity full systems analysis. Incorporating neutronic, thermal-hydraulic, safety/transient, fuel performance, core mechanical, and economic analyses, ARMI provides 'one-click' assessments of many multi-disciplined performance metrics and constraints that historically require iterations between many diverse experts. The capabilities of ARMI are implemented in this study to quantify neutronic biases of various modeling approximations typically made in fast reactor analysis at an equilibrium condition, after many repetitive shuffles. Sensitivities at equilibrium that result in very high discharge burnup are considered ( and >20% FIMA), as motivated by the development of the Traveling Wave Reactor. Model approximations discussed include homogenization, neutronic and depletion mesh resolution, thermal-hydraulic coupling, explicit control rod insertion, burnup-dependent cross sections, fission product model, burn chain truncation, and dynamic fuel performance. The sensitivities of these approximations on equilibrium discharge burnup, k{sub eff}, power density, delayed neutron fraction, and coolant temperature coefficient are discussed. (authors)

  13. Instant release fraction and matrix release of high burn-up UO2 spent nuclear fuel: Effect of high burn-up structure and leaching solution composition

    NASA Astrophysics Data System (ADS)

    Serrano-Purroy, D.; Clarens, F.; González-Robles, E.; Glatz, J. P.; Wegen, D. H.; de Pablo, J.; Casas, I.; Giménez, J.; Martínez-Esparza, A.

    2012-08-01

    Two weak points in Performance Assessment (PA) exercises regarding the alteration of Spent Nuclear Fuel (SNF) are the contribution of the so-called Instant Release Fraction (IRF) and the effect of High Burn-Up Structure (HBS). This manuscript focuses on the effect of HBS in matrix (long term) and instant release of a Pressurised Water Reactor (PWR) SNF irradiated in a commercial reactor with a mean Burn-Up (BU) of 60 GWd/tU. In order to study the HBS contribution, two samples from different radial positions have been prepared. One from the centre of the SNF, labelled CORE, and one from the periphery, enriched with HBS and labelled OUT. Static leaching experiments have been carried out with two synthetic leaching solutions: bicarbonate (BIC) and Bentonitic Granitic Groundwater (BGW), and in all cases under oxidising conditions. IRF values have been calculated from the determined Fraction of Inventory in Aqueous Phase (FIAP). In all studied cases, some radionuclides (RN): Rb, Sr and Cs, have shown higher release rates than uranium, especially at the beginning of the experiment, and have been considered as IRF. Redox sensitive RN like Mo and Tc have been found to dissolve slightly faster than uranium and further studies might be needed to confirm if they can also be considered part of the IRF. Most of the remaining studied RN, mainly actinides and lanthanides, have been found to dissolve congruently with the uranium matrix. Finally, Zr, Ru and Rh presented lower release rates than the matrix. Higher matrix release has been determined for CORE than for OUT samples showing that the formation of HBS might have a protective effect against the oxidative corrosion of the SNF. On the contrary, no significant differences have been observed between the two studied leaching solutions (BIC and BGW). Two different IRF contributions have been determined. One corresponding to the fraction of inventory segregated in the external open grain boundaries, directly available to water and

  14. Burnup credit issues in transportation and storage

    SciTech Connect

    Brady, M. C.; Sanders, T. L.; Seager, K. D.; Lake, W. H.

    1992-01-01

    Reliance on the reduced reactivity of spent fuel for criticality control during transportation and storage is referred to as burnup credit. This concept has attracted international interest and is being actively pursued in the United States in the development of a new generation of transport casks. An overview of the US experience in developing a methodology to implement burnup credit in an integrated approach to transport cask design is presented in this paper. Specifically, technical issues related to the analysis, validation and implementation of burnup credit are identified and discussed.

  15. Accident source terms for light-water nuclear power plants using high-burnup or MOX fuel.

    SciTech Connect

    Salay, Michael; Gauntt, Randall O.; Lee, Richard Y.; Powers, Dana Auburn; Leonard, Mark Thomas

    2011-01-01

    Representative accident source terms patterned after the NUREG-1465 Source Term have been developed for high burnup fuel in BWRs and PWRs and for MOX fuel in a PWR with an ice-condenser containment. These source terms have been derived using nonparametric order statistics to develop distributions for the timing of radionuclide release during four accident phases and for release fractions of nine chemical classes of radionuclides as calculated with the MELCOR 1.8.5 accident analysis computer code. The accident phases are those defined in the NUREG-1465 Source Term - gap release, in-vessel release, ex-vessel release, and late in-vessel release. Important differences among the accident source terms derived here and the NUREG-1465 Source Term are not attributable to either fuel burnup or use of MOX fuel. Rather, differences among the source terms are due predominantly to improved understanding of the physics of core meltdown accidents. Heat losses from the degrading reactor core prolong the process of in-vessel release of radionuclides. Improved understanding of the chemistries of tellurium and cesium under reactor accidents changes the predicted behavior characteristics of these radioactive elements relative to what was assumed in the derivation of the NUREG-1465 Source Term. An additional radionuclide chemical class has been defined to account for release of cesium as cesium molybdate which enhances molybdenum release relative to other metallic fission products.

  16. Main steam-line break core shroud loading calculations for BWRs

    SciTech Connect

    Shoop, U.; Feltus, M.A.; Baratta, A.J.

    1995-12-31

    In July 1994, the U.S. Nuclear regulatory Commission sent out Generic Letter 94-03 to all boiling water reactors in the United States, informing them of intergranular stress corrosion cracking of core shrouds found in 2 reactors. The letter directed all to perform safety analysis of the BWR units. Penn State performed scoping calculations to determine the forces experienced by the core shroud during a main-stream line break transient.

  17. Benchmark Calculations for Reflector Effect in Fast Cores by Using the Latest Evaluated Nuclear Data Libraries

    NASA Astrophysics Data System (ADS)

    Fukushima, M.; Ishikawa, M.; Numata, K.; Jin, T.; Kugo, T.

    2014-04-01

    Benchmark calculations for reflector effects in fast cores were performed to validate the reliability of scattering data of structural materials in the major evaluated nuclear data libraries, JENDL-4.0, ENDF/B-VII.1 and JEFF-3.1.2. The criticalities of two FCA and two ZPR cores were analyzed by using a continuous energy Monte Carlo calculation code. The ratios of calculation to experimental values were compared between these cores and the sensitivity analyses were performed. From the results, the replacement reactivity from blanket to SS and Na reflector is better evaluated by JENDL-4.0 than by ENDF/B-VII.1 mainly due to the μbar values of Na and 52Cr.

  18. Deterministic and Monte-Carlo calculation schemes of the EPR core and its heavy steel reflector

    SciTech Connect

    Golfier, H.; Poinot-Salanon, C.; Nicolas, A.; Taieb, J.; Enderle, R.

    2006-07-01

    The aim of this work is to study an EPR core and its heavy reflector with the objective to quantify both the methodological biases within three calculation schemes and the impact on the core neutronic behaviour of the heavy reflector. To reach this, three different calculation schemes are presented here: - A reference calculation using the pointwise Monte-Carlo TRIPOLI4 code - A deterministic one, fully heterogeneous, based on the method of Characteristics - implemented in the APOLLO2 code - A diffusion approach using the mixed-dual finite elements with the CRONOS2 code. The first part of the paper gives the main characteristics of the core configuration chosen for the analyses. In a second part, the three different models and schemes are described and the third part is dedicated to the analysis of the results. (authors)

  19. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals

    SciTech Connect

    Hay, P.J.; Wadt, W.R.

    1985-01-01

    Ab initio effective core potentials (ECP's) have been generated to replace the innermost core electron for third-row (K--Au), fourth-row (Rb--Ag), and fifth-row (Cs--Au) atoms. The outermost core orbitals: corresponding to the ns/sup 2/np/sup 6/ configuration for the three rows here: are not replaced by the ECP but are treated on an equal footing with the nd, (n+1)s and (n+1)p valence orbitals. These ECP's have been derived for use in molecular calculations where these outer core orbitals need to be treated explicitly rather than to be replaced by an ECP. The ECP's for the forth and fifth rows also incorporate the mass--velocity and Darwin relativistic effects into the potentials. Analytic fits to the potentials are presented for use in multicenter integral evaluation. Gaussian orbital valence basis sets are developed for the (3s, 3p, 3d, 4s, 4p), (4s, 4p, 4d, 5s, 5p), and (5s, 5p, 5d, 6s, 6p) ortibals of the three respective rows.

  20. Quantitative first-principles calculations of valence and core excitation spectra of solid C60

    NASA Astrophysics Data System (ADS)

    Fossard, F.; Hug, G.; Gilmore, K.; Kas, J. J.; Rehr, J. J.; Vila, F. D.; Shirley, E. L.

    2017-03-01

    We present calculated valence and C 1 s near-edge excitation spectra of solid C60 and experimental results measured with high-resolution electron energy-loss spectroscopy. The near-edge calculations are carried out using three different methods: solution of the Bethe-Salpeter equation (BSE) as implemented in the ocean suite (Obtaining Core Excitations with Ab Initio methods and the NIST BSE solver), the excited-electron core-hole approach, and the constrained-occupancy method using the Stockholm-Berlin core excitation code, StoBe. The three methods give similar results and are in good agreement with experiment, though the BSE results are the most accurate. The BSE formalism is also used to carry out valence level calculations using the NIST BSE solver. Theoretical results include self-energy corrections to the band gap and bandwidths, lifetime-damping effects, and Debye-Waller effects in the core excitation case. A comparison of spectral features to those observed experimentally illustrates the sensitivity of certain features to computational details, such as self-energy corrections to the band structure and core-hole screening.

  1. New Soft-Core Potential Function for Molecular Dynamics Based Alchemical Free Energy Calculations.

    PubMed

    Gapsys, Vytautas; Seeliger, Daniel; de Groot, Bert L

    2012-07-10

    The fields of rational drug design and protein engineering benefit from accurate free energy calculations based on molecular dynamics simulations. A thermodynamic integration scheme is often used to calculate changes in the free energy of a system by integrating the change of the system's Hamiltonian with respect to a coupling parameter. These methods exploit nonphysical pathways over thermodynamic cycles involving particle introduction and annihilation. Such alchemical transitions require the modification of the classical nonbonded potential energy terms by applying soft-core potential functions to avoid singularity points. In this work, we propose a novel formulation for a soft-core potential to be applied in nonequilibrium free energy calculations that alleviates singularities, numerical instabilities, and additional minima in the potential energy for all combinations of nonbonded interactions at all intermediate alchemical states. The method was validated by application to (a) the free energy calculations of a closed thermodynamic cycle, (b) the mutation influence on protein thermostability, (c) calculations of small ligand solvation free energies, and (d) the estimation of binding free energies of trypsin inhibitors. The results show that the novel soft-core function provides a robust and accurate general purpose solution to alchemical free energy calculations.

  2. VENUS-2 MOX Core Benchmark: Results of ORNL Calculations Using HELIOS-1.4 - Revised Report

    SciTech Connect

    Ellis, RJ

    2001-06-01

    The Task Force on Reactor-Based Plutonium Disposition (TFRPD) was formed by the Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA) to study reactor physics, fuel performance, and fuel cycle issues related to the disposition of weapons-grade (WG) plutonium as mixed-oxide (MOX) reactor fuel. To advance the goals of the TFRPD, 10 countries and 12 institutions participated in a major TFRPD activity: a blind benchmark study to compare code calculations to experimental data for the VENUS-2 MOX core at SCK-CEN in Mol, Belgium. At Oak Ridge National Laboratory, the HELIOS-1.4 code system was used to perform the comprehensive study of pin-cell and MOX core calculations for the VENUS-2 MOX core benchmark study.

  3. Benchmark calculation of no-core Monte Carlo shell model in light nuclei

    SciTech Connect

    Abe, T.; Shimizu, N.; Maris, P.; Vary, J. P.; Otsuka, T.; Utsuno, Y.

    2011-05-06

    The Monte Carlo shell model is firstly applied to the calculation of the no-core shell model in light nuclei. The results are compared with those of the full configuration interaction. The agreements between them are within a few % at most.

  4. High-resolution Valence and Core Excitation Spectra via First-Principles Calculations and Experiment

    NASA Astrophysics Data System (ADS)

    Shirley, Eric; Fossard, F.; Gilmore, K.; Hug, G.; Kas, J. J.; Rehr, J. J.; Vila, F.

    We calculate the optical and C K-edge near edge spectra of crystalline and molecular C60 measured with high-resolution electron energy-loss spectroscopy. The calculations are carried out using at least three different methods: Bethe-Salpeter calculations using the NIST Bethe-Salpeter Equation solver (NBSE) in the valence and OCEAN (Obtaining Core Excitation with Ab initio methods and NBSE) suite [Gilmore et al., Comp. Phys. Comm., (2015)]; excited-core-hole calculations using XCH [D. Prendergast and G. Galli, Phys. Rev. Lett. 96, 215502 (2006)]; and constrained occupancy using StoBe (Stockholm-Berlin core-excitation code) [StoBe-deMon version 3.0, K. Hermann et al. (2009)]. They include self-energy effects, lifetime-damping, and Debye-Waller effects. A comparison of spectral features to those observed illustrates the sensitivity of certain features to computation details (e.g., self-energy corrections and core-hole screening). This may point to limitations of various approximations, e.g. in conventional BSE paradigm and/or the incomplete treatment of vibrational effects. Supported in part by DOE BES Grant DE-FG03-97ER45623 (JJR, JJK, FV).

  5. Use of Relativistic Effective Core Potentials in the Calculation of Electron-Impact Ionization Cross Sections

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Kim, Yong-Ki

    1999-01-01

    Based on the Binary-Encounter-Bethe (BEB) model, the advantage of using relativistic effective core potentials (RECP) in the calculation of total ionization cross sections of heavy atoms or molecules containing heavy atoms is discussed. Numerical examples for Ar, Kr, Xe, and WF6 are presented.

  6. Electronic Structure Calculations and Adaptation Scheme in Multi-core Computing Environments

    SciTech Connect

    Seshagiri, Lakshminarasimhan; Sosonkina, Masha; Zhang, Zhao

    2009-05-20

    Multi-core processing environments have become the norm in the generic computing environment and are being considered for adding an extra dimension to the execution of any application. The T2 Niagara processor is a very unique environment where it consists of eight cores having a capability of running eight threads simultaneously in each of the cores. Applications like General Atomic and Molecular Electronic Structure (GAMESS), used for ab-initio molecular quantum chemistry calculations, can be good indicators of the performance of such machines and would be a guideline for both hardware designers and application programmers. In this paper we try to benchmark the GAMESS performance on a T2 Niagara processor for a couple of molecules. We also show the suitability of using a middleware based adaptation algorithm on GAMESS on such a multi-core environment.

  7. Density functional calculation of core-electron binding energies of transition metal carbonyl and nitrosyl complexes

    NASA Astrophysics Data System (ADS)

    Hu, Ching-Han; Chong, Delano P.

    1996-11-01

    Our recent procedure of the unrestricted generalized transition state (uGTS) model for density functional calculations of core-electron binding energies has been applied to seven carbonyl and nitrosyl inorganic complexes: Fe(CO) 5, Ni(CO) 4, Mn(CO) 4NO, Co(CO) 3NO, Fe(CO) 2(NO) 2, Mn(NO) 3CO and Cr(NO) 4. The exchange-correlation potential is based on a combined functional of Becke's exchange (B88) and Perdew's correlation (P86). The cc-pVTZ basis set was used for the calculation of neutral molecules, while for the partial cation created in the uGTS approach we scaled the cc-pVTZ basis set using a procedure based on Clementi and Raimondi's rules for atomic screening. The average absolute deviation of the calculated core-electron binding energy from experiment is 0.28 eV.

  8. Extended Burnup Demonstration Reactor Fuels Program. Annual progress report, April 1983-March 1984. [BWR

    SciTech Connect

    Exarhos, C.A.

    1985-06-20

    The US Department of Energy, Consumers Power Company, Exxon Nuclear Company, and General Public Utilities Nuclear Corporation have participated since 1979 in a cooperative Extended Burnup Demonstration Program. Under the program, standard ENC-fabricated reload fuel in the Big Rock Point and Oyster Creek reactor cores has been irradiated to discharge burnups at or beyond 35,000 MWD/MTU, one to two cycles beyond its originally projected exposure life. The program provides for examination of the fuel at poolside before and after each extended burnup cycle as well as for limited destructive hot cell examination. The 1984 progress report covers work performed under the EBD program between April 1983 and March 1984. Major milestones reached during the period include completion of a hot cell examination on four high burnup rods from Big Rock Point and of a poolside on the Oyster Creek EBD fuel at discharge. The hot cell examination of four rods at burnups to 37.2 GWD/MTU confirmed poolside measurements on the same fuel, showing the urania and gadolinia-bearing fuel rods to be in excellent condition. No major cladding degradation, pellet restructuring, or pellet-clad interaction was found in any of the samples examined. The Oyster Creek fuel, examined at an assembly average exposure of 34.5 GWD/MTU, showed good performance with regard to both diametral creepdown and clad oxide accumulation.

  9. Burnup Credit Approach Used in the Yucca Mountain License Application

    SciTech Connect

    Scaglione, John M; Wagner, John C

    2010-01-01

    The United States Department of Energy has submitted a license application (LA) for construction authorization of a deep geologic repository at Yucca Mountain, Nevada. The license application is currently under review by the United States Nuclear Regulatory Commission (NRC). This paper will describe the methodology and approach used in the LA to address the issue of criticality and the role of burnup credit during the postclosure period. The most significant and effective measures for prevention of criticality in the repository include multiple redundant barriers that act to isolate fissionable material from water (which can act as a moderator, corrosive agent, and transporter of fissile material); inherent geometry of waste package internals and waste forms; presence of fixed neutron absorbers in waste package internals; and fuel burnup for commercial spent nuclear fuel. A probabilistic approach has been used to screen criticality from the total system performance assessment. Within the probabilistic approach, criticality is considered an event, and the total probability of a criticality event occurring within 10,000 years of disposal is calculated and compared against the regulatory criterion. The total probability of criticality includes contributions associated with both internal (within waste packages) and external (external to waste packages) criticality for each of the initiating events that could lead to waste package breach. The occurrence of and conditions necessary for criticality in the repository have been thoroughly evaluated using a comprehensive range of parameter distributions. A simplified design-basis modeling approach has been used to evaluate the probability of criticality by using numerous significant and conservative assumptions. Burnup credit is used only for evaluations of in-package configurations and uses a combination of conservative and bounding modeling approximations to ensure conservatism. This paper will review the NRC regulatory

  10. Investigation of Burnup Credit Modeling Issues Associated with BWR Fuel

    SciTech Connect

    Wagner, J.C.

    2000-10-12

    /or decreasing the neutron absorber concentration. However, regulations associated with permanent disposal require consideration of scenarios and/or package conditions that are not relevant or credible for storage or transportation, and as a result, necessitate credit for burnup in BWR fuel to maintain capacity objectives. Burnup credit relies on depletion calculations to provide a conservative estimate of spent fuel contents and subsequent criticality calculations to assess the value of k{sub eff} for a spent fuel cask or a fuel configuration under a variety of postulated conditions. Therefore, validation is necessary to quantify biases and uncertainties between analytic predictions and measured isotopics. However, the design and operational aspects of BWRs result in a more heterogeneous and time-varying reactor configuration than those of PWRs. Thus, BWR spent fuel analyses and validation efforts are significantly more complicated than those of their PWR counterparts. BWR spent fuel assemblies are manufactured with variable enrichments, both radially and axially, are exposed to time- and spatially-varying void distributions, contain integral burnable absorber rods, and are subject to partial control-blade insertion during operation. The latter is especially true in older fuel assemblies. Away-from-reactor depletion tools used for characterization of spent fuel have typically been developed and validated for more homogeneous PWR fuel assemblies without integral burnable absorber rods, and thus must be reassessed for BWR configurations to determine a conservative methodology for estimating the isotopic content of spent BWR fuel. This report examines the use of SAS2H8 for calculating spent BWR fuel isotopics for burnup-credit criticality safety analyses and assesses the adequacy of SAS2H for this task. The effects of SAS2H modeling assumptions on calculated spent BWR fuel isotopics and the effects of depletion assumptions on calculated k{sub inf} values are investigated. Detailed

  11. Development of burnup dependent fuel rod model in COBRA-TF

    NASA Astrophysics Data System (ADS)

    Yilmaz, Mine Ozdemir

    The purpose of this research was to develop a burnup dependent fuel thermal conductivity model within Pennsylvania State University, Reactor Dynamics and Fuel Management Group (RDFMG) version of the subchannel thermal-hydraulics code COBRA-TF (CTF). The model takes into account first, the degradation of fuel thermal conductivity with high burnup; and second, the fuel thermal conductivity dependence on the Gadolinium content for both UO2 and MOX fuel rods. The modified Nuclear Fuel Industries (NFI) model for UO2 fuel rods and Duriez/Modified NFI Model for MOX fuel rods were incorporated into CTF and fuel centerline predictions were compared against Halden experimental test data and FRAPCON-3.4 predictions to validate the burnup dependent fuel thermal conductivity model in CTF. Experimental test cases from Halden reactor fuel rods for UO2 fuel rods at Beginning of Life (BOL), through lifetime without Gd2O3 and through lifetime with Gd 2O3 and a MOX fuel rod were simulated with CTF. Since test fuel rod and FRAPCON-3.4 results were based on single rod measurements, CTF was run for a single fuel rod surrounded with a single channel configuration. Input decks for CTF were developed for one fuel rod located at the center of a subchannel (rod-centered subchannel approach). Fuel centerline temperatures predicted by CTF were compared against the measurements from Halden experimental test data and the predictions from FRAPCON-3.4. After implementing the new fuel thermal conductivity model in CTF and validating the model with experimental data, CTF model was applied to steady state and transient calculations. 4x4 PWR fuel bundle configuration from Purdue MOX benchmark was used to apply the new model for steady state and transient calculations. First, one of each high burnup UO2 and MOX fuel rods from 4x4 matrix were selected to carry out single fuel rod calculations and fuel centerline temperatures predicted by CTF/TORT-TD were compared against CTF /TORT-TD /FRAPTRAN

  12. 3D Neutron Transport PWR Full-core Calculation with RMC code

    NASA Astrophysics Data System (ADS)

    Qiu, Yishu; She, Ding; Fan, Xiao; Wang, Kan; Li, Zeguang; Liang, Jingang; Leroyer, Hadrien

    2014-06-01

    Nowadays, there are more and more interests in the use of Monte Carlo codes to calculate the detailed power density distributions in full-core reactors. With the Inspur TS1000 HPC Server of Tsinghua University, several calculations have been done based on the EDF 3D Neutron Transport PWR Full-core benchmark through large-scale parallelism. To investigate and compare the results of the deterministic method and Monte Carlo method, EDF R&D and Department of Engineering Physics of Tsinghua University are having a collaboration to make code to code verification. So in this paper, two codes are used. One is the code COCAGNE developed by the EDF R&D, a deterministic core code, and the other is the Monte Carlo code RMC developed by Department of Engineering Physics in Tsinghua University. First, the full-core model is described and a 26-group calculation was performed by these two codes using the same 26-group cross-section library provided by EDF R&D. Then the parallel and tally performance of RMC is discussed. RMC employs a novel algorithm which can cut down most of the communications. It can be seen clearly that the speedup ratio almost linearly increases with the nodes. Furthermore the cell-mapping method applied by RMC consumes little time to tally even millions of cells. The results of the codes COCAGNE and RMC are compared in three ways. The results of these two codes agree well with each other. It can be concluded that both COCAGNE and RMC are able to provide 3D-transport solutions associated with detailed power density distributions calculation in PWR full-core reactors. Finally, to investigate how many histories are needed to obtain a given standard deviation for a full 3D solution, the non-symmetrized condensed 2-group fluxes of RMC are discussed.

  13. Determination of IRT-2M fuel burnup by gamma spectrometry.

    PubMed

    Koleška, Michal; Viererbl, Ladislav; Marek, Milan; Ernest, Jaroslav; Šunka, Michal; Vinš, Miroslav

    2016-01-01

    A spectrometric system was developed for evaluating spent fuel in the LVR-15 research reactor, which employs highly enriched (36%) IRT-2M-type fuel. Such system allows the measurement of detailed fission product profiles. Within these measurements, nuclides such as (137)Cs, (134)Cs, (144)Ce, (106)Ru and (154)Eu may be detected in fuel assemblies with different cooling times varying between 1.67 and 7.53 years. Burnup calculations using the MCNPX Monte Carlo code data showed good agreement with measurements, though some discrepancies were observed in certain regions. These discrepancies are attributed to the evaluation of irradiation history, reactor regulation pattern and buildup schemes.

  14. Summary of high burnup fuel issues and NRC`s plan of action

    SciTech Connect

    Meyer, R.O.

    1997-01-01

    For the past two years the Office of Nuclear Regulatory Research has concentrated mostly on the so-called reactivity-initiated accidents -- the RIAs -- in this session of the Water Reactor Safety Information Meeting, but this year there is a more varied agenda. RIAs are, of course, not the only events of interest for reactor safety that are affected by extended burnup operation. Their has now been enough time to consider a range of technical issues that arise at high burnup, and a list of such issues being addressed in their research program is given here. (1) High burnup capability of the steady-state code (FRAPCON) used for licensing audit calculations. (2) General capability (including high burnup) of the transient code (FRAPTRAN) used for special studies. (3) Adequacy at high burnup of fuel damage criteria used in regulation for reactivity accidents. (4) Adequacy at high burnup of models and fuel related criteria used in regulation for loss-of-coolant accidents (LOCAs). (5) Effect of high burnup on fuel system damage during normal operation, including control rod insertion problems. A distinction is made between technical issues, which may or may not have direct licensing impacts, and licensing issues. The RIAs became a licensing issue when the French test in CABRI showed that cladding failures could occur at fuel enthalpies much lower than a value currently used in licensing. Fuel assembly distortion became a licensing issue when control rod insertion was affected in some operating plants. In this presentation, these technical issues will be described and the NRC`s plan of action to address them will be discussed.

  15. TORT/MCNP coupling method for the calculation of neutron flux around a core of BWR.

    PubMed

    Kurosawa, Masahiko

    2005-01-01

    For the analysis of BWR neutronics performance, accurate data are required for neutron flux distribution over the In-Reactor Pressure Vessel equipments taking into account the detailed geometrical arrangement. The TORT code can calculate neutron flux around a core of BWR in a three-dimensional geometry model, but has difficulties in fine geometrical modelling and lacks huge computer resource. On the other hand, the MCNP code enables the calculation of the neutron flux with a detailed geometry model, but requires very long sampling time to give enough number of particles. Therefore, a TORT/MCNP coupling method has been developed to eliminate the two problems mentioned above in each code. In this method, the TORT code calculates angular flux distribution on the core surface and the MCNP code calculates neutron spectrum at the points of interest using the flux distribution. The coupling method will be used as the DOT-DOMINO-MORSE code system. This TORT/MCNP coupling method was applied to calculate the neutron flux at points where induced radioactivity data were measured for 54Mn and 60Co and the radioactivity calculations based on the neutron flux obtained from the above method were compared with the measured data.

  16. ISOTOPIC MODEL FOR COMMERCIAL SNF BURNUP CREDIT

    SciTech Connect

    A.H. Wells

    2004-11-17

    The purpose of this report is to demonstrate a process for selecting bounding depletion parameters, show that they are conservative for pressurized water reactor (PWR) and boiling water reactor (BWR) spent nuclear fuel (SNF), and establish the range of burnup for which the parameters are conservative. The general range of applicability is for commercial light water reactor (LWR) SNF with initial enrichments between 2.0 and 5.0 weight percent {sup 235}U and burnups between 10 and 50 gigawatt-day per metric ton of uranium (GWd/MTU).

  17. VENUS-2 MOX Core Benchmark: Results of ORNL Calculations Using HELIOS-1.4

    SciTech Connect

    Ellis, RJ

    2001-02-02

    The Task Force on Reactor-Based Plutonium Disposition, now an Expert Group, was set up through the Organization for Economic Cooperation and Development/Nuclear Energy Agency to facilitate technical assessments of burning weapons-grade plutonium mixed-oxide (MOX) fuel in U.S. pressurized-water reactors and Russian VVER nuclear reactors. More than ten countries participated to advance the work of the Task Force in a major initiative, which was a blind benchmark study to compare code benchmark calculations against experimental data for the VENUS-2 MOX core at SCK-CEN in Mol, Belgium. At the Oak Ridge National Laboratory, the HELIOS-1.4 code was used to perform a comprehensive study of pin-cell and core calculations for the VENUS-2 benchmark.

  18. Liquid iron-sulfur alloys at outer core conditions by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Umemoto, Koichiro; Hirose, Kei; Imada, Saori; Nakajima, Yoichi; Komabayashi, Tetsuya; Tsutsui, Satoshi; Baron, Alfred Q. R.

    2014-10-01

    We perform first-principles calculations to investigate liquid iron-sulfur alloys (Fe, Fe56S8, Fe52S12, and Fe48S16) under high-pressure and high-temperature (150-300 GPa and 4000-6000 K) conditions corresponding to the Earth's outer core. Considering only the density profile, the best match with the preliminary reference Earth model is by liquid Fe-14 wt % S (Fe50S14), assuming sulfur is the only light element. However, its bulk sound velocity is too high, in particular in the deep outer core, suggesting that another light component such as oxygen is required. An experimental check using inelastic X-ray scattering shows good agreement with the calculations. In addition, a present study demonstrates that the Birch's law does not hold for liquid iron-sulfur alloy, consistent with a previous report on pure liquid iron.

  19. Calculation Technique for Kinematic Characteristics of Penetration of Combined Striker with Oblong Core Part Considering Possible Destruction of the Latter

    NASA Astrophysics Data System (ADS)

    Antsiferova, E. V.; Bogdanov, V. V.; Derebenko, E. V.; Lagutina, A. V.; Khmelnikov, E. A.

    2006-08-01

    The up-to-date development of the armored vehicles conditions complication of armor constructions and increased slope of shell armored plates. Combined strikers (C/S) can be used to destroy armored vehicles. We can increase total weight of the core part to increase the striker's power. However, the increase of core part diameter is limited by body dimensions. Thus, we can increase core part weight by increasing its length. Because of C/S interaction with the barriers at large deviation angles, C/S's mechanical trajectory sparks in the barrier. This results in bending stress which occurs in the core part. Because of large deviation angles, the impact of the side surface of oblong core part against the cavity edge occurs. This increases the probability of core part destruction. The calculation technique for oblong core part penetration into different types of barriers is presented. The large number of factors can be calculated using this technique. It is assumed that the core part is destroyed when the tail part impacts against the cavity in the section where specific impact energy exceeds the critical value. Impact elasticity and destruction at bending stress were selected to be destruction criteria. The following core part destruction scenarios were investigated and calculated: (i) core head part is slightly destroyed but tail part of cylindrical shape penetrates deeper; (ii) core tail part is slightly destroyed but head part penetrates deeper, mass loss is taken into account; and (iii) after the impact, the core part is splitted up into two parts, then both of them penetrate into the barrier, one part is of ogival shape, the other is of cylindrical one. This calculation technique was applied to computational program, then critical angles at which core part side surface is still in contact with cavity surface, and the angles at which core part destruction occurs were calculated. Depths of core part penetration for different destruction scenarios were calculated.

  20. Efficient implementation of core-excitation Bethe-Salpeter equation calculations

    NASA Astrophysics Data System (ADS)

    Gilmore, K.; Vinson, John; Shirley, E. L.; Prendergast, D.; Pemmaraju, C. D.; Kas, J. J.; Vila, F. D.; Rehr, J. J.

    2015-12-01

    We present an efficient implementation of the Bethe-Salpeter equation (BSE) method for obtaining core-level spectra including X-ray absorption (XAS), X-ray emission (XES), and both resonant and non-resonant inelastic X-ray scattering spectra (N/RIXS). Calculations are based on density functional theory (DFT) electronic structures generated either by ABINIT or QuantumESPRESSO, both plane-wave basis, pseudopotential codes. This electronic structure is improved through the inclusion of a GW self energy. The projector augmented wave technique is used to evaluate transition matrix elements between core-level and band states. Final two-particle scattering states are obtained with the NIST core-level BSE solver (NBSE). We have previously reported this implementation, which we refer to as OCEAN (Obtaining Core Excitations from Ab initio electronic structure and NBSE) (Vinson et al., 2011). Here, we present additional efficiencies that enable us to evaluate spectra for systems ten times larger than previously possible; containing up to a few thousand electrons. These improvements include the implementation of optimal basis functions that reduce the cost of the initial DFT calculations, more complete parallelization of the screening calculation and of the action of the BSE Hamiltonian, and various memory reductions. Scaling is demonstrated on supercells of SrTiO3 and example spectra for the organic light emitting molecule Tris-(8-hydroxyquinoline)aluminum (Alq3) are presented. The ability to perform large-scale spectral calculations is particularly advantageous for investigating dilute or non-periodic systems such as doped materials, amorphous systems, or complex nano-structures.

  1. THEHYCO-3DT: Thermal hydrodynamic code for the 3 dimensional transient calculation of advanced LMFBR core

    SciTech Connect

    Vitruk, S.G.; Korsun, A.S.; Ushakov, P.A.

    1995-09-01

    The multilevel mathematical model of neutron thermal hydrodynamic processes in a passive safety core without assemblies duct walls and appropriate computer code SKETCH, consisted of thermal hydrodynamic module THEHYCO-3DT and neutron one, are described. A new effective discretization technique for energy, momentum and mass conservation equations is applied in hexagonal - z geometry. The model adequacy and applicability are presented. The results of the calculations show that the model and the computer code could be used in conceptual design of advanced reactors.

  2. Sensitivity and parametric evaluations of significant aspects of burnup credit for PWR spent fuel packages

    SciTech Connect

    DeHart, M.D.

    1996-05-01

    Spent fuel transportation and storage cask designs based on a burnup credit approach must consider issues that are not relevant in casks designed under a fresh-fuel loading assumption. For example, the spent fuel composition must be adequately characterized and the criticality analysis model can be complicated by the need to consider axial burnup variations. Parametric analyses are needed to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel composition and reactivity. Numerical models must be evaluated to determine the sensitivity of criticality safety calculations to modeling assumptions. The purpose of this report is to describe analyses and evaluations performed in order to demonstrate the effect physical parameters and modeling assumptions have on the criticality analysis of spent fuel. The analyses in this report include determination and ranking of the most important actinides and fission products; study of the effect of various depletion scenarios on subsequent criticality calculations; establishment of trends in neutron multiplication as a function of fuel enrichment, burnup, cooling time- and a parametric and modeling evaluation of three-dimensional effects (e.g., axially varying burnup and temperature/density effects) in a conceptual cask design. The sensitivity and parametric evaluations were performed with the consideration of two different burnup credit approaches: (1) only actinides in the fuel are considered in the criticality analysis, and (2) both actinides and fission products are considered. Calculations described in this report were performed using the criticality and depletion sequences available in the SCALE code system and the SCALE 27-group burnup library. Although the results described herein do not constitute a validation of SCALE for use in spent fuel analysis, independent validation efforts have been completed and are described in other reports.

  3. Model for evolution of grain size in the rim region of high burnup UO2 fuel

    NASA Astrophysics Data System (ADS)

    Xiao, Hongxing; Long, Chongsheng; Chen, Hongsheng

    2016-04-01

    The restructuring process of the high burnup structure (HBS) formation in UO2 fuel results in sub-micron size grains that accelerate the fission gas swelling, which will raise some concern over the safety of extended the nuclear fuel operation life in the reactor. A mechanistic and engineering model for evolution of grain size in the rim region of high burnup UO2 fuel based on the experimental observations of the HBS in the literature is presented. The model takes into account dislocations evolution under irradiation and the grain subdivision occur successively at increasing local burnup. It is assumed that the original driving force for subdivision of grain in the HBS of UO2 fuel is the production and accumulation of dislocation loops during irradiation. The dislocation loops can also be annealed through thermal diffusion when the temperature is high enough. The capability of this model is validated by the comparison with the experimental data of temperature threshold of subdivision, dislocation density and sub-grain size as a function of local burnup. It is shown that the calculated results of the dislocation density and subdivided grain size as a function of local burnup are in good agreement with the experimental results.

  4. Sensitivity and Uncertainty Analysis to Burnup Estimates on ADS using the ACAB Code

    SciTech Connect

    Cabellos, O.; Sanz, J.; Rodriguez, A.; Gonzalez, E.; Embid, M.; Alvarez, F.; Reyes, S.

    2005-05-24

    Within the scope of the Accelerator Driven System (ADS) concept for nuclear waste management applications, the burnup uncertainty estimates due to uncertainty in the activation cross sections (XSs) are important regarding both the safety and the efficiency of the waste burning process. We have applied both sensitivity analysis and Monte Carlo methodology to actinides burnup calculations in a lead-bismuth cooled subcritical ADS. The sensitivity analysis is used to identify the reaction XSs and the dominant chains that contribute most significantly to the uncertainty. The Monte Carlo methodology gives the burnup uncertainty estimates due to the synergetic/global effect of the complete set of XS uncertainties. These uncertainty estimates are valuable to assess the need of any experimental or systematic re-evaluation of some uncertainty XSs for ADS.

  5. Economic incentives and recommended development for commercial use of high burnup fuels in the once-through LWR fuel cycle

    SciTech Connect

    Stout, R.B.; Merckx, K.R.; Holm, J.S.

    1981-01-01

    This study calculates the reduced uranium requirements and the economic incentives for increasing the burnup of current design LWR fuels from the current range of 25 to 35 MWD/Kg to a range of 45 to 55 MWD/Kg. The changes in fuel management strategies which may be required to accommodate these high burnup fuels and longer fuel cycles are discussed. The material behavior problems which may present obstacles to achieving high burnup or to license fuel are identified and discussed. These problems are presented in terms of integral fuel response and the informational needs for commercial and licensing acceptance. Research and development programs are outlined which are aimed at achieving a licensing position and commercial acceptance of high burnup fuels.

  6. Calculation of Design Parameters for an Equilibrium LEU Core in the NBSR

    SciTech Connect

    Hanson, A.L.; Diamond, D.

    2011-09-30

    A plan is being developed for the conversion of the NIST research reactor (NBSR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Previously, the design of the LEU fuel had been determined in order to provide the users of the NBSR with the same cycle length as exists for the current HEU fueled reactor. The fuel composition at different points within an equilibrium fuel cycle had also been determined. In the present study, neutronics parameters have been calculated for these times in the fuel cycle for both the existing HEU and the proposed LEU equilibrium cores. The results showed differences between the HEU and LEU cores that would not lead to any significant changes in the safety analysis for the converted core. In general the changes were reasonable except that the figure-of-merit for neutrons that can be used by experimentalists shows there will be a 10% reduction in performance. The calculations included kinetics parameters, reactivity coefficients, reactivity worths of control elements and abnormal configurations, and power distributions.

  7. Coolant Density and Control Blade History Effects in Extended BWR Burnup Credit

    SciTech Connect

    Ade, Brian J; Marshall, William BJ J; Bowman, Stephen M; Gauld, Ian C; Ilas, Germina; Martinez-Gonzalez, Jesus S

    2015-01-01

    Oak Ridge National Laboratory and the US Nuclear Regulatory Commission have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase investigates the applicability of peak reactivity methods currently used for spent fuel pools to spent fuel storage and transportation casks and the validation of reactivity (keff) calculations and predicted spent fuel compositions. The second phase focuses on extending BUC beyond peak reactivity. This paper documents work performed to date investigating some aspects of extended BUC. (The technical basis for application of peak reactivity methods to BWR fuel in storage and transportation systems is presented in a companion paper.) Two reactor operating parameters are being evaluated to establish an adequate basis for extended BWR BUC: (1) the effect of axial void profile and (2) the effect of control blade utilization during operation. A detailed analysis of core simulator data for one cycle of a modern operating BWR plant was performed to determine the range of void profiles and the variability of the profile experienced during irradiation. Although a single cycle does not provide complete data, the data obtained are sufficient to determine the primary effects and to identify conservative modeling approaches. These data were used in a study of the effect of axial void profile. The first stage of the study was determination of the necessary moderator density temporal fidelity in depletion modeling. After the required temporal fidelity was established, multiple void profiles were used to examine the effect on cask reactivity. The results of these studies are being used to develop recommendations for conservatively modeling the void profile effects for BWR depletion calculations. The second operational parameter studied was control blade history. Control blades are inserted in

  8. Calculation of scattering characteristic of complex target on multi-core platform

    NASA Astrophysics Data System (ADS)

    Guo, Xing; Wu, Zhensen; Linghu, Longxiang

    2013-09-01

    The scattering characteristic of complex target from terrestrial and celestial background radiation has been widely used in such engineering fields as remote sensing, feature extraction, tracking and recognition of target thus having been an attractive field for many scientists for decades. In our method, the model of target is constructed using 3DMAX and the surface is divided into triangle facets firstly. Bidirectional Reflectance Distribution Function (BRDF) is introduced and MODTRAN is applied to calculate background radiation for a given time at a given place. Finally the scattering of each facet is added up to get the scattering of the target. As the background radiance comes in all directions and in a wide spectrum and the complex target always consists of thousands of facets, in general it takes hours to complete the calculation. Consequently this limits its use in the real time applications. Recent years have seen the continual development of multi-core CPU. As a result parallel programming on multi-cores has been more and more popular. In this paper, the openMP, Intel CILK ++, Intel Threading Building Blocks (TBB) are used separately to leverage the processing power of multi-cores processors. Our experiments are conducted on a DELL desktop based on an Intel I7- 2600K CPU running at 3.40 GHz with 8 cores and 16.0 GB RAM. The Intel Composer 2013 is employed to build the program. Also in OpenMP implementation, gcc is used. The results demonstrate that highest speedups for three parallel models are 5.06X, 5.02X, 5.15X respectively.

  9. Relativistic semiempirical-core-potential calculations of Sr+ using Laguerre and Slater spinors

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Mitroy, J.; Cheng, Yongjun; Bromley, Michael W. J.

    2016-12-01

    A relativistic description of the structure of heavy alkali-metal atoms and alkali-like ions using S-spinors and L-spinors is developed. The core wave function is defined by a Dirac-Fock calculation using an S-spinor basis. The S-spinor basis is then supplemented with a large set of L-spinors for calculation of the valence wave function in a frozen-core model. The numerical stability of the L-spinor approach is demonstrated by computing the energies and decay rates of several low-lying hydrogen eigenstates, along with the polarizabilities of a Z =60 hydrogenic ion. The approach is then applied to calculate the dynamic polarizabilities of the 5 s , 4 d , and 5 p states of Sr+. The magic wavelengths at which the Stark shifts between different pairs of transitions are 0 are computed. Determination of the magic wavelengths for the 5 s →4 d3/2 and 5 s →4 d5/2 transitions near 417 nm (near the wavelength for the 5 s →5 pj transitions) would allow determination of the oscillator strength ratio for the 5 s →5 p1/2 and 5 s →5 p3/2 transitions.

  10. Accelerating Convergence by Change of Basis for No-Core Configuration Interaction Calculations

    NASA Astrophysics Data System (ADS)

    Flores, Abraham R.; Caprio, Mark A.; Constantinou, Chrysovalantis

    2016-09-01

    Ab initio no-core configuration interaction (NCCI) calculations attempt to describe the structure of nuclei using realistic internucleon interactions. However, we can only describe these many-body systems within the limits of our computational power. As the number of nucleons increases, the calculations require more memory and processing power to reach convergence. Being able to accelerate convergence is crucial in extending the reach of NCCI calculations. Convergence can be obtained through a change of basis, for which we need to compute the overlaps of the radial functions for the new basis with those for the old basis. A large number of overlaps must be computed in order to accurately transform the many-body problem. Using alternative bases also requires the calculation of the one-body matrix elements for operators such as r2 and p2 in the new basis. We report a computer code that uses cubic spline interpolation to compute radial overlaps and radial integrals. This code facilitates using new bases to accelerate the convergence of NCCI calculations. Supported by the US NSF under Grant NSF-PHY05-52843 the US DOE under Grant DE-FG02-95ER-40934.

  11. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi

    SciTech Connect

    Wadt, W.R.; Hay, P.J.

    1985-01-01

    A consistent set of ab initio effective core potentials (ECP) has been generated for the main group elements from Na to Bi using the procedure originally developed by Kahn. The ECP's are derived from all-electron numerical Hartree--Fock atomic wave functions and fit to analytical representations for use in molecular calculations. For Rb to Bi the ECP's are generated from the relativistic Hartree--Fock atomic wave functions of Cowan which incorporate the Darwin and mass--velocity terms. Energy-optimized valence basis sets of (3s3p) primitive Gaussians are presented for use with the ECP's. Comparisons between all-electron and valence-electron ECP calculations are presented for NaF, NaCl, Cl/sub 2/, Cl/sub 2//sup -/, Br/sub 2/, Br/sub 2//sup -/, and Xe/sub 2//sup +/. The results show that the average errors introduced by the ECP's are generally only a few percent.

  12. Whole-core neutron transport calculations without fuel-coolant homogenization

    SciTech Connect

    Smith, M. A.; Tsoulfanidis, N.; Lewis, E. E.; Palmiotti, G.; Taiwo, T. A.

    2000-02-10

    The variational nodal method implemented in the VARIANT code is generalized to perform full core transport calculations without spatial homogenization of cross sections at either the fuel-pin cell or fuel assembly level. The node size is chosen to correspond to one fuel-pin cell in the radial plane. Each node is divided into triangular finite subelements, with the interior spatial flux distribution represented by piecewise linear trial functions. The step change in the cross sections at the fuel-coolant interface can thus be represented explicitly in global calculations while retaining the fill spherical harmonics capability of VARIANT. The resulting method is applied to a two-dimensional seven-group representation of a LWR containing MOX fuel assemblies. Comparisons are made of the accuracy of various space-angle approximations and of the corresponding CPU times.

  13. Emergence of rotational bands in ab initio no-core configuration interaction calculations of light nuclei

    NASA Astrophysics Data System (ADS)

    Caprio, Mark A.; Maris, Pieter; Vary, James P.

    2014-03-01

    The emergence of rotational bands has recently been observed in no-core configuration interaction (NCCI) calculations for p-shell nuclei, as evidenced by rotational patterns for excitation energies, electromagnetic moments, and electromagnetic transitions. Yrast and low-lying excited bands are found. The results demonstrate the possibility of well-developed rotational structure in NCCI calculations, using realistic nucleon-nucleon interactions, and within finite, computationally-accessible configuration spaces. This talk will focus on results for rotation in both the even-mass and odd-mass Be isotopes (7 <= A <= 12). Supported by US DOE (DE-FG02-95ER-40934, DESC0008485 SciDAC/NUCLEI, DE-FG02-87ER40371), US NSF (0904782), and Research Corporation for Science Advancement (Cottrell Scholar Award). Computational resources provided by NERSC (US DOE DE-AC02-05CH11231).

  14. Calculation of core-level excitation in some MAX-phase compounds

    NASA Astrophysics Data System (ADS)

    Wang, Liaoyuan; Rulis, Paul; Ching, W. Y.

    2013-07-01

    We report first-principles spectroscopic calculation of core level excitations in five MAX-phase compounds. The spectra of Ti-K edges in Ti2AlC and Ti2AlN, C-K edge in Ti2AlC, N-K edge in Ti2AlN, and Nb-K edge in Nb2AlC are calculated and found to be in good agreement with reported experimental measurements. Based on this agreement, the Al-K and Al-L3 edges in the same five phases plus the Cr-K and C-K edges in Cr2AlC and the C-K edge in Nb2AlC are calculated as theoretical predictions. We further analyze the anisotropy in the calculated spectra to gain additional insights on the structure-properties relationships in these MAX-phase compounds. These results are further discussed in the context of the local atomic environments of the M, A, and X elements in MAX-phase compounds and in relation to their fundamental electronic structures.

  15. Calculated coupling efficiency between an elliptical-core optical fiber and an optical waveguide over temperature

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.; Weisshaar, Andreas; Li, Jian; Beheim, Glenn

    1995-01-01

    To determine the feasibility of coupling the output of a single-mode optical fiber into a single-mode rib waveguide in a temperature varying environment, a theoretical calculation of the coupling efficiency between the two was investigated. Due to the complex geometry of the rib guide, there is no analytical solution to the wave equation for the guided modes, thus, approximation and/or numerical techniques must be utilized to determine the field patterns of the guide. In this study, three solution methods were used for both the fiber and guide fields; the effective-index method (EIM), Marcatili's approximation, and a Fourier method. These methods were utilized independently to calculate the electric field profile of each component at two temperatures, 20 C and 300 C, representing a nominal and high temperature. Using the electric field profile calculated from each method, the theoretical coupling efficiency between an elliptical-core optical fiber and a rib waveguide was calculated using the overlap integral and the results were compared. It was determined that a high coupling efficiency can be achieved when the two components are aligned. The coupling efficiency was more sensitive to alignment offsets in the y direction than the x, due to the elliptical modal field profile of both components. Changes in the coupling efficiency over temperature were found to be minimal.

  16. Parametric Study of the Effect of Burnable Poison Rods for PWR Burnup Credit

    SciTech Connect

    Wagner, J.C.

    2001-09-28

    The Interim Staff Guidance on burnup credit (ISG-8) issued by the United States Nuclear Regulatory Commission's (U.S. NRC) Spent Fuel Project Office recommends restricting the use of burnup credit to assemblies that have not used burnable absorbers. This recommended restriction eliminates a large portion of the currently discharged spent fuel assemblies from cask loading, and thus severely limits the practical usefulness of burnup credit. In the absence of readily available information on burnable poison rod (BPR) design specifications and usage in U.S. pressurized-water-reactors (PWRs), and the subsequent reactivity effect of BPR exposure on discharged spent nuclear fuel (SNF), NRC staff has indicated a need for additional information in these areas. In response, this report presents a parametric study of the effect of BPR exposure on the reactivity of SNF for various BPR designs, fuel enrichments, and exposure conditions, and documents BPR design specifications. Trends in the reactivity effects of BPRs are established with infinite pin-cell and assembly array calculations with the SCALE and HELIOS code packages, respectively. Subsequently, the reactivity effects of BPRs for typical initial enrichment and burnup combinations are quantified based on three-dimensional (3-D) KENO V.a Monte Carlo calculations with a realistic rail-type cask designed for burnup credit. The calculations demonstrate that the positive reactivity effect due to BPR exposure increases nearly linearly with burnup and is dependent on the number, poison loading, and design of the BPRs and the initial fuel enrichment. Expected typical reactivity increases, based on one-cycle BPR exposure, were found to be less than 1% {Delta}k. Based on the presented analysis, guidance is offered on an appropriate approach for calculating bounding SNF isotopic data for assemblies exposed to BPRs. Although the analyses do not address the issue of validation of depletion methods for assembly designs with BPRs

  17. A simple gamma spectrometry method for evaluating the burnup of MTR-type HEU fuel elements

    NASA Astrophysics Data System (ADS)

    Makmal, T.; Aviv, O.; Gilad, E.

    2016-10-01

    A simple method for the evaluation of the burnup of a materials testing reactor (MTR) fuel element by gamma spectrometry is presented. The method was applied to a highly enriched uranium MTR nuclear fuel element that was irradiated in a 5 MW pool-type research reactor for a total period of 34 years. The experimental approach is based on in-situ measurements of the MTR fuel element in the reactor pool by a portable high-purity germanium detector located in a gamma cell. To corroborate the method, analytical calculations (based on the irradiation history of the fuel element) and computer simulations using a dedicated fuel cycle burnup code ORIGEN2 were performed. The burnup of the MTR fuel element was found to be 52.4±8.8%, which is in good agreement with the analytical calculations and the computer simulations. The method presented here is suitable for research reactors with either a regular or an irregular irradiation regime and for reactors with limited infrastructure and/or resources. In addition, its simplicity and the enhanced safety it confers may render this method suitable for IAEA inspectors in fuel element burnup assessments during on-site inspections.

  18. Lattice Cell Calculations, Slowing Down Theory and Computer Code Wims; Vver Type Reactors

    NASA Astrophysics Data System (ADS)

    Moen, J.; Brekke, A.; Hall, C.

    1991-01-01

    The following sections are included: * INTRODUCTION * WIMS AS A TOOL FOR REACTOR CORE CALCULATIONS * GENERAL STRUCTURE OF THE WIMS CODE * WIMS APPROACH TO THE SLOWING DOWN CALCULATIONS * MULTIGROUP OSCOPIC CROSS SECTIONS, RESONANCE TREATMENT * DETERMINATION OF MULTIGROUP SPECTRA * PHYSICAL MODELS IN MAIN TRANSPORT CALCULATIONS * BURNUP CALCULATIONS * APPLICATION OF WIMSD-4 TO VVER TYPE LATTICES * FINAL REMARKS * REFERENCES * APPENDIX A: DANCOFF FACTOR - STANDARD APPROACH * APPENDIX B: FORMULAS FOR DANCOFF AND BELL FACTORS CALCULATIONS APPLIED IN PREWIM * APPENDIX C: CALCULATION OF ONE GROUP PROBABILITIES Pij IN AN ANNULAR SYSTEM * APPENDIX D: SCHAEFER'S METHOD

  19. High burnup effects in WWER fuel rods

    SciTech Connect

    Smirnov, V.; Smirnov, A.

    1996-03-01

    Since 1987 at the Research Institute of Atomic Reactors, the examinations of the WWER spent fuel assemblies has been carried out. These investigations are aimed to gain information on WWER spent fuel conditions in order to validate the fuel assemblies use during the 3 and 4 year fuel cycle in the WWER-440 and WWER-1000 units. At present time, the aim is to reach an average fuel burnup of 55 MWd/kgU. According to this aim, a new investigation program on the WWER spent fuel elements is started. The main objectives of this program are to study the high burnup effects and their influence on the WWER fuel properties. This paper presented the main statistical values of the WWER-440 and WWER-1000 reactors` fuel assemblies and their fragment parameters. Average burnup of fuel in the investigated fuel assemblies was in the range of 13 to 49.7 MWd/kgU. In this case, the numer of fuel cycles was from 1 to 4 during operation of the fuel assemblies.

  20. Antineutrinos for Reactor Safeguards: Effect of Fuel Loading and Burnup on the Signal

    NASA Astrophysics Data System (ADS)

    Erickson, Anna; Bernstein, Adam; Bowden, Nathaniel

    2014-02-01

    Various types of nuclear reactor related information, including relative power level and fuel evolution parameters, can be inferred remotely using antineutrino detectors. We show that it is possible to verify assembly-level burnup using information derived from an antineutrino detector if the nominal reactor fuel loading is known. Alternatively, if the core power is measured using an independent method, for example, a thermal hydraulic element, and the nominal core behavior is known, the antineutrino detector has a capability to determine previously unknown MOX loading in the core.

  1. Effect of Control Blade History, and Axial Coolant Density and Burnup Profiles on BWR Burnup Credit

    SciTech Connect

    Marshall, William BJ J

    2016-01-01

    A technical basis for peak reactivity boiling water reactor (BWR) burnup credit (BUC) methods was recently generated, and the technical basis for extended BWR BUC is now being developed. In this paper, a number of effects related to extended BWR BUC are analyzed, including three major operational effects in BWRs: the coolant density axial distribution, the use of control blades during operation, and the axial burnup profile. Specifically, uniform axial moderator density profiles are analyzed and compared to previous results and an additional temporal fidelity study combing moderator density profiles for three different fuel assemblies is presented. Realistic control blade histories and cask criticality results are compared to previously generated constructed control blade histories. Finally, a preliminary study of the axial burnup profile is provided.

  2. Radionuclide inventories : ORIGEN2.2 isotopic depletion calculation for high burnup low-enriched uranium and weapons-grade mixed-oxide pressurized-water reactor fuel assemblies.

    SciTech Connect

    Gauntt, Randall O.; Ross, Kyle W.; Smith, James Dean; Longmire, Pamela

    2010-04-01

    The Oak Ridge National Laboratory computer code, ORIGEN2.2 (CCC-371, 2002), was used to obtain the elemental composition of irradiated low-enriched uranium (LEU)/mixed-oxide (MOX) pressurized-water reactor fuel assemblies. Described in this report are the input parameters for the ORIGEN2.2 calculations. The rationale for performing the ORIGEN2.2 calculation was to generate inventories to be used to populate MELCOR radionuclide classes. Therefore the ORIGEN2.2 output was subsequently manipulated. The procedures performed in this data reduction process are also described herein. A listing of the ORIGEN2.2 input deck for two-cycle MOX is provided in the appendix. The final output from this data reduction process was three tables containing the radionuclide inventories for LEU/MOX in elemental form. Masses, thermal powers, and activities were reported for each category.

  3. Calculations of current densities for neutral and doubly charged persubstituted benzenes using effective core potentials.

    PubMed

    Rauhalahti, Markus; Taubert, Stefan; Sundholm, Dage; Liégeois, Vincent

    2017-03-08

    Magnetically induced current density susceptibilities and ring-current strengths have been calculated for neutral and doubly charged persubstituted benzenes C6X6 and C6X6(2+) with X = F, Cl, Br, I, At, SeH, SeMe, TeH, TeMe, and SbH2. The current densities have been calculated using the gauge-including magnetically induced current (GIMIC) method, which has been interfaced to the Gaussian electronic structure code rendering current density calculations using effective core potentials (ECP) feasible. Relativistic effects on the ring-current strengths have been assessed by employing ECP calculations of the current densities. Comparison of the ring-current strengths obtained in calculations on C6At6 and C6At6(2+) using relativistic and non-relativistic ECPs show that scalar relativistic effects have only a small influence on the ring-current strengths. Comparisons of the ring-current strengths and ring-current profiles show that the C6I6(2+), C6At6(2+), C6(SeH)6(2+), C6(SeMe)6(2+), C6(TeH)6(2+), C6(TeMe)6(2+), and C6(SbH2)6(2+) dications are doubly aromatic sustaining spatially separated ring currents in the carbon ring and in the exterior of the molecule. The C6I6(+) radical cation is also found to be doubly aromatic with a weaker ring current than obtained for the dication.

  4. Extended Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    SciTech Connect

    Ade, Brian J; Bowman, Stephen M; Gauld, Ian C; Ilas, Germina; Martinez, J. S.

    2015-01-01

    [Full Text] Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase investigates the applicability of peak reactivity methods currently used for spent fuel pools to spent fuel storage and transportation casks and the validation of reactivity (keff) calculations and depleted fuel compositions. The second phase focuses on extending BUC beyond peak reactivity. This paper documents work performed to date, investigating some aspects of extended BUC, and it also describes the plan to complete the evaluations. The technical basis for application of peak reactivity methods to BWR fuel in storage and transportation systems is presented in a companion paper. Two reactor operating parameters are being evaluated to establish an adequate basis for extended BWR BUC, including investigation of the axial void profile effect and the effect of control blade utilization during operation. A detailed analysis of core simulator data for one cycle of an operating BWR plant was performed to determine the range of void profiles and the variability of the profile experienced during irradiation. While a single cycle does not provide complete data, the data obtained are sufficient to use to determine the primary effects and identify conservative modeling approaches. Using data resulting from a single cycle, the axial void profile is studied by first determining the temporal fidelity necessary in depletion modeling, and then using multiple void profiles to examine the effect of the void profile on cask reactivity. The results of these studies are being used to develop recommendations for conservatively modeling the void profile effects for BWR depletion calculations. The second operational parameter studied is control blade exposure. Control blades

  5. Ab Initio No-Core Shell Model Calculations Using Realistic Two- and Three-Body Interactions

    SciTech Connect

    Navratil, P; Ormand, W E; Forssen, C; Caurier, E

    2004-11-30

    There has been significant progress in the ab initio approaches to the structure of light nuclei. One such method is the ab initio no-core shell model (NCSM). Starting from realistic two- and three-nucleon interactions this method can predict low-lying levels in p-shell nuclei. In this contribution, we present a brief overview of the NCSM with examples of recent applications. We highlight our study of the parity inversion in {sup 11}Be, for which calculations were performed in basis spaces up to 9{Dirac_h}{Omega} (dimensions reaching 7 x 10{sup 8}). We also present our latest results for the p-shell nuclei using the Tucson-Melbourne TM three-nucleon interaction with several proposed parameter sets.

  6. Depletion analysis of the UMLRR reactor core using MCNP6

    NASA Astrophysics Data System (ADS)

    Odera, Dim Udochukwu

    Accurate knowledge of the neutron flux and temporal nuclide inventory in reactor physics calculations is necessary for a variety of application in nuclear engineering such as criticality safety, safeguards, and spent fuel storage. The Monte Carlo N- Particle (MCNP6) code with integrated buildup depletion code (CINDER90) provides a high-fidelity tool that can be used to perform 3D, full core simulation to evaluate fissile material utilization, and nuclide inventory calculations as a function of burnup. The University of Massachusetts Lowell Research Reactor (UMLRR) reactor has been modeled with the deterministic based code, VENTURE and with an older version of MCNP (MCNP5). The MIT developed MCODE (MCNP ORIGEN DEPLETION CODE) was used previously to perform some limited depletion calculations. This work chronicles the use of MCNP6, released in June 2013, to perform coupled neutronics and depletion calculation. The results are compared to previously benchmarked results. Furthermore, the code is used to determine the ratio of fission products 134Cs and 137Cs (burnup indicators), and the resultant ratio is compared to the burnup of the UMLRR.

  7. Applicability of 3D Monte Carlo simulations for local values calculations in a PWR core

    NASA Astrophysics Data System (ADS)

    Bernard, Franck; Cochet, Bertrand; Jinaphanh, Alexis; Jacquet, Olivier

    2014-06-01

    As technical support of the French Nuclear Safety Authority, IRSN has been developing the MORET Monte Carlo code for many years in the framework of criticality safety assessment and is now working to extend its application to reactor physics. For that purpose, beside the validation for criticality safety (more than 2000 benchmarks from the ICSBEP Handbook have been modeled and analyzed), a complementary validation phase for reactor physics has been started, with benchmarks from IRPHEP Handbook and others. In particular, to evaluate the applicability of MORET and other Monte Carlo codes for local flux or power density calculations in large power reactors, it has been decided to contribute to the "Monte Carlo Performance Benchmark" (hosted by OECD/NEA). The aim of this benchmark is to monitor, in forthcoming decades, the performance progress of detailed Monte Carlo full core calculations. More precisely, it measures their advancement towards achieving high statistical accuracy in reasonable computation time for local power at fuel pellet level. A full PWR reactor core is modeled to compute local power densities for more than 6 million fuel regions. This paper presents results obtained at IRSN for this benchmark with MORET and comparisons with MCNP. The number of fuel elements is so large that source convergence as well as statistical convergence issues could cause large errors in local tallies, especially in peripheral zones. Various sampling or tracking methods have been implemented in MORET, and their operational effects on such a complex case have been studied. Beyond convergence issues, to compute local values in so many fuel regions could cause prohibitive slowing down of neutron tracking. To avoid this, energy grid unification and tallies preparation before tracking have been implemented, tested and proved to be successful. In this particular case, IRSN obtained promising results with MORET compared to MCNP, in terms of local power densities, standard

  8. Benefits of the delta K of depletion benchmarks for burnup credit validation

    SciTech Connect

    Lancaster, D.; Machiels, A.

    2012-07-01

    Pressurized Water Reactor (PWR) burnup credit validation is demonstrated using the benchmarks for quantifying fuel reactivity decrements, published as 'Benchmarks for Quantifying Fuel Reactivity Depletion Uncertainty,' EPRI Report 1022909 (August 2011). This demonstration uses the depletion module TRITON available in the SCALE 6.1 code system followed by criticality calculations using KENO-Va. The difference between the predicted depletion reactivity and the benchmark's depletion reactivity is a bias for the criticality calculations. The uncertainty in the benchmarks is the depletion reactivity uncertainty. This depletion bias and uncertainty is used with the bias and uncertainty from fresh UO{sub 2} critical experiments to determine the criticality safety limits on the neutron multiplication factor, k{sub eff}. The analysis shows that SCALE 6.1 with the ENDF/B-VII 238-group cross section library supports the use of a depletion bias of only 0.0015 in delta k if cooling is ignored and 0.0025 if cooling is credited. The uncertainty in the depletion bias is 0.0064. Reliance on the ENDF/B V cross section library produces much larger disagreement with the benchmarks. The analysis covers numerous combinations of depletion and criticality options. In all cases, the historical uncertainty of 5% of the delta k of depletion ('Kopp memo') was shown to be conservative for fuel with more than 30 GWD/MTU burnup. Since this historically assumed burnup uncertainty is not a function of burnup, the Kopp memo's recommended bias and uncertainty may be exceeded at low burnups, but its absolute magnitude is small. (authors)

  9. Assessment of Reactivity Margins and Loading Curves for PWR Burnup Credit Cask Designs

    SciTech Connect

    Wagner, J.C.

    2002-12-17

    This report presents studies to assess reactivity margins and loading curves for pressurized water reactor (PWR) burnup-credit criticality safety evaluations. The studies are based on a generic high-density 32-assembly cask and systematically vary individual calculational (depletion and criticality) assumptions to demonstrate the impact on the predicted effective neutron multiplication factor, k{sub eff}, and burnup-credit loading curves. The purpose of this report is to provide a greater understanding of the importance of input parameter variations and quantify the impact of calculational assumptions on the outcome of a burnup-credit evaluation. This study should provide guidance to regulators and industry on the technical areas where improved information will most enhance the estimation of accurate subcritical margins. Based on these studies, areas where future work may provide the most benefit are identified. The report also includes an evaluation of the degree of burnup credit needed for high-density casks to transport the current spent nuclear fuel inventory. By comparing PWR discharge data to actinide-only based loading curves and determining the number of assemblies that meet the loading criteria, this evaluation finds that additional negative reactivity (through either increased credit for fuel burnup or cask design/utilization modifications) is necessary to accommodate the majority of current spent fuel assemblies in high-capacity casks. Assemblies that are not acceptable for loading in the prototypic high-capacity cask may be stored or transported by other means (e.g., lower capacity casks that utilize flux traps and/or increased fixed poison concentrations or high-capacity casks with design/utilization modifications).

  10. Radiochemical Assays of Irradiated VVER-440 Fuel for Use in Spent Fuel Burnup Credit Activities

    SciTech Connect

    Jardine, L J

    2005-04-25

    The objective of this spent fuel burnup credit work was to study and describe a VVER-440 reactor spent fuel assembly (FA) initial state before irradiation, its operational irradiation history and the resulting radionuclide distribution in the fuel assembly after irradiation. This work includes the following stages: (1) to pick out and select a specific spent (irradiated) FA for examination; (2) to describe the FA initial state before irradiation; (3) to describe the irradiation history, including thermal calculations; (4) to examine the burnup distribution of select radionuclides along the FA height and cross-section; (5) to examine the radionuclide distributions; (6) to determine the Kr-85 release into the plenum; (7) to select and prepare FA rod specimens for destructive examinations; (8) to determine the radionuclide compositions, isotope masses and burnup in the rod specimens; and (9) to analyze, document and process the results. The specific workscope included the destructive assay (DA) of spent fuel assembly rod segments with an {approx}38.5 MWd/KgU burnup from a single VVER-440 fuel assembly from the Novovorenezh reactor in Russia. Based on irradiation history criteria, four rods from the fuel assembly were selected and removed from the assembly for examination. Next, 8 sections were cut from the four rods and sent for destructive analysis of radionuclides by radiochemical analyses. The results were documented in a series of seven reports over a period of {approx}1 1/2 years.

  11. Testing the improved method for calculating the radiation heat generation at the periphery of the BOR-60 reactor core

    SciTech Connect

    Varivtsev, A. V. Zhemkov, I. Yu.

    2014-12-15

    The application of the improved method for calculating the radiation heat generation in the elements of an experimental device located at the periphery of the BOR-60 reactor core results in a significant reduction in the discrepancies between the calculated and the experimental data. This allows us to conclude that the improved method has an advantage over the one used earlier.

  12. Core follow calculation with the nTRACER numerical reactor and verification using power reactor measurement data

    SciTech Connect

    Jung, Y. S.; Joo, H. G.; Yoon, J. I.

    2013-07-01

    The nTRACER direct whole core transport code employing the planar MOC solution based 3-D calculation method, the subgroup method for resonance treatment, the Krylov matrix exponential method for depletion, and a subchannel thermal/hydraulic calculation solver was developed for practical high-fidelity simulation of power reactors. Its accuracy and performance is verified by comparing with the measurement data obtained for three pressurized water reactor cores. It is demonstrated that accurate and detailed multi-physic simulation of power reactors is practically realizable without any prior calculations or adjustments. (authors)

  13. Timescale Calculations for Ice Core Drilling Sites on the Temperate Ice Caps in Iceland

    NASA Astrophysics Data System (ADS)

    Thorsteinsson, T.; Einarsson, B.

    2005-12-01

    calculation within the caldera rims is complicated by an unusual ice-flow pattern but results strongly indicate that a 700-800 m ice core could yield a record covering historical time in Iceland (870 AD - present). Model results predict that by 90% of ice depth, the annual layers have thinned to 17 cm at the Hofsjokull summit and 8 cm within the Bardarbunga caldera. Annual layers of this thickness are detectable with the methods used in pilot ice core drilling and processing efforts in Iceland in recent years.

  14. Calculations of ADS with deep subcritical uranium active cores - comparison with experiments and predictions

    NASA Astrophysics Data System (ADS)

    Zhivkov, P.; Furman, W.; Stoyanov, Ch

    2014-09-01

    The main characteristics of the neutron field formed within the massive (512 kg) natural uranium target assembly (TA) QUINTA irradiated by deuteron beam of JINR Nuclotron with energies 1,2,4, and 8 GeV as well as the spatial distributions and the integral numbers of (n,f), (n,γ) and (n,xn)- reactions were calculated and compared with experimental data [1] . The MCNPX 27e code with ISABEL/ABLA/FLUKA and INCL4/ABLA models of intra-nuclear cascade (INC) and experimental cross-sections of the corresponding reactions were used. Special attention was paid to the elucidation of the role of charged particles (protons and pions) in the fission of natural uranium of TA QUINTA. Extensive calculations have been done for quasi-infinite (with very small neutron leakage) depleted uranium TA BURAN having mass about 20 t which are intended to be used in experiments at Nuclotron in 2014-2016. As in the case of TA QUINTA which really models the central zone of TA BURAN the total numbers of fissions, produced 239Pu nuclei and total neutron multiplicities are predicted to be proportional to proton or deuteron energy up to 12 GeV. But obtained values of beam power gain are practically constant in studied incident energy range and are approximately four. These values are in contradiction with the experimental result [2] obtained for the depleted uranium core weighting three tons at incident proton energy 0.66 GeV.

  15. Microstructural modeling of thermal conductivity of high burn-up mixed oxide fuel

    NASA Astrophysics Data System (ADS)

    Teague, Melissa; Tonks, Michael; Novascone, Stephen; Hayes, Steven

    2014-01-01

    Predicting the thermal conductivity of oxide fuels as a function of burn-up and temperature is fundamental to the efficient and safe operation of nuclear reactors. However, modeling the thermal conductivity of fuel is greatly complicated by the radially inhomogeneous nature of irradiated fuel in both composition and microstructure. In this work, radially and temperature-dependent models for effective thermal conductivity were developed utilizing optical micrographs of high burn-up mixed oxide fuel. The micrographs were employed to create finite element meshes with the OOF2 software. The meshes were then used to calculate the effective thermal conductivity of the microstructures using the BISON [1] fuel performance code. The new thermal conductivity models were used to calculate thermal profiles at end of life for the fuel pellets. These results were compared to thermal conductivity models from the literature, and comparison between the new finite element-based thermal conductivity model and the Duriez-Lucuta model was favorable.

  16. Microstructural Modeling of Thermal Conductivity of High Burn-up Mixed Oxide Fuel

    SciTech Connect

    Melissa Teague; Michael Tonks; Stephen Novascone; Steven Hayes

    2014-01-01

    Predicting the thermal conductivity of oxide fuels as a function of burn-up and temperature is fundamental to the efficient and safe operation of nuclear reactors. However, modeling the thermal conductivity of fuel is greatly complicated by the radially inhomogeneous nature of irradiated fuel in both composition and microstructure. In this work, radially and temperature-dependent models for effective thermal conductivity were developed utilizing optical micrographs of high burn-up mixed oxide fuel. The micrographs were employed to create finite element meshes with the OOF2 software. The meshes were then used to calculate the effective thermal conductivity of the microstructures using the BISON fuel performance code. The new thermal conductivity models were used to calculate thermal profiles at end of life for the fuel pellets. These results were compared to thermal conductivity models from the literature, and comparison between the new finite element-based thermal conductivity model and the Duriez–Lucuta model was favorable.

  17. Determination of deuterium–tritium critical burn-up parameter by four temperature theory

    SciTech Connect

    Nazirzadeh, M.; Ghasemizad, A.; Khanbabei, B.

    2015-12-15

    Conditions for thermonuclear burn-up of an equimolar mixture of deuterium-tritium in non-equilibrium plasma have been investigated by four temperature theory. The photon distribution shape significantly affects the nature of thermonuclear burn. In three temperature model, the photon distribution is Planckian but in four temperature theory the photon distribution has a pure Planck form below a certain cut-off energy and then for photon energy above this cut-off energy makes a transition to Bose-Einstein distribution with a finite chemical potential. The objective was to develop four temperature theory in a plasma to calculate the critical burn up parameter which depends upon initial density, the plasma components initial temperatures, and hot spot size. All the obtained results from four temperature theory model are compared with 3 temperature model. It is shown that the values of critical burn-up parameter calculated by four temperature theory are smaller than those of three temperature model.

  18. S∧4 Reactor: Operating Lifetime and Estimates of Temperature and Burnup Reactivity Coefficients

    NASA Astrophysics Data System (ADS)

    King, Jeffrey C.; El-Genk, Mohamed S.

    2006-01-01

    The S∧4 reactor has a sectored, Mo-14%Re solid core for avoidance of single point failures in reactor cooling and Closed Brayton Cycle (CBC) energy conversion. The reactor is loaded with UN fuel, cooled with a He-Xe gas mixture at ~1200 K and operates at steady thermal power of 550 kW. Following a launch abort accident, the axial and radial BeO reflectors easily disassemble upon impact so that the bare reactor is subcriticial when submerged in wet sand or seawater and the core voids are filled with seawater. Spectral Shift Absorber (SSA) additives have been shown to increase the UN fuel enrichment and significantly reduce the total mass of the reactor. This paper investigates the effects of SSA additions on the temperature and burnup reactivity coefficients and the operational lifetime of the S∧4 reactor. SSAs slightly decrease the temperature reactivity feedback coefficient, but significantly increase the operating lifetime by decreasing the burnup reactivity coefficient. With no SSAs, fuel enrichment is only 58.5 wt% and the estimated operating lifetime is the shortest (7.6 years) with the highest temperature and burnup reactivity feedback coefficients (-0.2709 ¢/K and -1.3470 $/atom%). With europium-151 and gadolinium-155 additions, the enrichment (91.5 and 94 wt%) and operating lifetime (9.9 and 9.8 years) of the S∧4 reactor are the highest while the temperature and burnup reactivity coefficients (-0.2382 and -0.2447 ¢/K -0.9073 and 0.8502 $/atom%) are the lowest.

  19. Multipurpose Advanced 'inherently' Safe Reactor (MARS): Core design studies

    SciTech Connect

    Golfier, H.; Poinot, C.; Delpech, M.; Mignot, G.

    2006-07-01

    In the year 2005, in collaboration with CEA, the University of Rome 'La Sapienza' investigated a new core model with the aim at increasing the performances of the reference one, by extending the burn-up to 60 GWD/t in the case of multi-loading strategy and investigating the characteristics and limitations of a 'once-through' option, in order to enhance the proliferation resistance. In the first part of this paper, the objectives of this study and the methods of calculation are briefly described, while in the second part the calculation results are presented. (authors)

  20. Half or full core hole in density functional theory X-ray absorption spectrum calculations of water?

    PubMed

    Cavalleri, Matteo; Odelius, Michael; Nordlund, Dennis; Nilsson, Anders; Pettersson, Lars G M

    2005-08-07

    We analyze the performance of two different core-hole potentials in the theoretical modeling of XAS of ice, liquid and gas phase water; the use of a full core-hole (FCH) in the calculations, as suggested by Hetenyi et al. [B. Hetenyi, F. De Angelis, P. Giamozzi and R. Car, J. Chem. Phys., 2004, 120(18), 8632], gives poor agreement with experiment in terms of intensity distribution as well as transition energies, while the half core hole (HCH) potential, in the case of water, provides a better compromise between initial and final state effects, leading to good agreement with the experimental data.

  1. Evaluation of Fission Product Critical Experiments and Associated Biases for Burnup Credit Validation

    SciTech Connect

    Mueller, Don; Rearden, Bradley T; Reed, Davis Allan

    2010-01-01

    One of the challenges associated with implementation of burnup credit is the validation of criticality calculations used in the safety evaluation; in particular the availability and use of applicable critical experiment data. The purpose of the validation is to quantify the relationship between reality and calculated results. Validation and determination of bias and bias uncertainty require the identification of sets of critical experiments that are similar to the criticality safety models. A principal challenge for crediting fission products (FP) in a burnup credit safety evaluation is the limited availability of relevant FP critical experiments for bias and bias uncertainty determination. This paper provides an evaluation of the available critical experiments that include FPs, along with bounding, burnup-dependent estimates of FP biases generated by combining energy dependent sensitivity data for a typical burnup credit application with the nuclear data uncertainty information distributed with SCALE 6. A method for determining separate bias and bias uncertainty values for individual FPs and illustrative results is presented. Finally, a FP bias calculation method based on data adjustment techniques and reactivity sensitivity coefficients calculated with the SCALE sensitivity/uncertainty tools and some typical results is presented. Using the methods described in this paper, the cross-section bias for a representative high-capacity spent fuel cask associated with the ENDF/B-VII nuclear data for 16 most important stable or near stable FPs is predicted to be no greater than 2% of the total worth of the 16 FPs, or less than 0.13 % k/k.

  2. Benefits of actinide-only burnup credit for shutdown PWRs

    SciTech Connect

    Lancaster, D.; Fuentes, E.; Kang, C.; Rivard, D.

    1998-02-01

    Owners of PWRs that are shutdown prior to resolution of interim storage or permanent disposal issues have to make difficult decisions on what to do with their spent fuel. Maine Yankee is currently evaluating multiple options for spent fuel storage. Their spent fuel pool has 1,434 assemblies. In order to evaluate the value to a utility of actinide-only burnup credit, analysis of the number of canisters required with and without burnup credit was made. In order to perform the analysis, loading curves were developed for the Holtec Hi-Star 100/MPC-32. The MPC-32 is hoped to be representative of future burnup credit designs from many vendors. The loading curves were generated using the actinide-only burnup credit currently under NRC review. The canister was analyzed for full loading (32 assemblies) and with partial loadings of 30 and 28 assemblies. If no burnup credit is used the maximum capacity was assumed to be 24 assemblies. this reduced capacity is due to the space required for flux traps which are needed to sufficiently reduce the canister reactivity for the fresh fuel assumption. Without burnup credit the 1,343 assemblies would require 60 canisters. If all the fuel could be loaded into the 32 assembly canisters only 45 canisters would be required. Although the actinide-only burnup credit approach is very conservative, the total number of canisters required is only 47 which is only two short of the minimum possible number of canisters. The utility is expected to buy the canister and the storage overpack. A reasonable cost estimate for the canister plus overpack is $500,000. Actinide-only burnup credit would save 13 canisters and overpacks which is a savings of about $6.5 million. This savings is somewhat reduced since burnup credit requires a verification measurement of burnup. The measurement costs for these assemblies can be estimated as about $1 million. The net savings would be $5.5 million.

  3. Analysis of burnup and isotopic compositions of BWR 9 x 9 UO{sub 2} fuel assemblies

    SciTech Connect

    Suzuki, M.; Yamamoto, T.; Ando, Y.; Nakajima, T.

    2012-07-01

    In order to extend isotopic composition data focusing on fission product nuclides, measurements are progressing using facilities of JAEA for five samples taken from high burnup BWR 9 x 9 UO{sub 2} fuel assemblies. Neutronics analysis with an infinite assembly model was applied to the preliminary measurement data using a continuous-energy Monte Carlo burnup calculation code MVP-BURN with nuclear libraries based on JENDL-3.3 and JENDL-4.0. The burnups of the samples were determined to be 28.0, 39.3, 56.6, 68.1, and 64.0 GWd/t by the Nd-148 method. They were compared with those calculated using node-average irradiation histories of power and in-channel void fractions which were taken from the plant data. The comparison results showed that the deviations of the calculated burnups from the measurements were -4 to 3%. It was confirmed that adopting the nuclear data library based on JENDL-4.0 reduced the deviations of the calculated isotopic compositions from the measurements for {sup 238}Pu, {sup 144}Nd, {sup 145}Nd, {sup 146}Nd, {sup 148}Nd, {sup 134}Cs, {sup 154}Eu, {sup 152}Sm, {sup 154}Gd, and {sup 157}Gd. On the other hand, the effect of the revision in the nuclear. data library on the neutronics analysis was not significant for major U and Pu isotopes. (authors)

  4. Uncertainties in the effects of burnup and their impact on criticality safety licensing criteria

    SciTech Connect

    Carlson, R.W.; Fisher, L.E.

    1990-07-13

    Current criteria for criticality safety for spent fuel shipping and storage casks are conservative because no credit is permitted for the effects of burnup of the fuel inside the cask. Cask designs that will transport and store large numbers of fuel assemblies (20 or more) must devote a substantial part of their payload to criticality control measures if they are to meet this criteria. The Department of Energy is developing the data necessary to support safety analyses that incorporate the effects of burnup for the next generation of spent fuel shipping casks. The efforts described here are devoted to the development of acceptance criteria that will be the basis for accepting safety analyses. Preliminary estimates of the uncertainties of the effects of burnup have been developed to provide a basis for the consideration of critically safety criteria. The criticality safety margins in a spent fuel shipping or storage cask are dominated by the portions of a fuel assembly that are in low power regions of a reactor core, and the reactor operating conditions are very different from spent fuel storage or transport cask conditions. Consequently, the experience that has been gathered during years of reactor operation does not apply directly to the prediction of criticality safety margins for spent fuel shipping or storage casks. The preliminary estimates of the uncertainties presented in this paper must be refined by both analytical and empirical studies that address both the magnitude of the uncertainties and their interdependence. 9 refs., 5 figs.

  5. Preparation of higher-actinide burnup and cross section samples. [LMFBR

    SciTech Connect

    Adair, H.L.; Kobisk, E.H.; Quinby, T.C.; Thomas, D.K.; Dailey, J.M.

    1981-01-01

    A joint research program involving the United States and the United Kingdom was instigated about four years ago for the purpose of studying burnup of higher actinides using in-core irradiation in the fast reactor at Dounreay, Scotland. Simultaneously, determination of cross sections of a wide variety of higher actinide isotopes was proposed. Coincidental neutron flux and energy spectral measurements were to be made using vanadium encapsulated dosimetry materials in the immediate region of the burnup and cross section samples. The higher actinide samples chosen for the burnup study were /sup 241/Am and /sup 244/Cm in the forms of Am/sub 2/O/sub 3/, Cm/sub 2/O/sub 3/, and Am/sub 6/ Cm(RE)/sub 7/O/sub 21/, where (RE) represents a mixture of lanthanide sesquioxides. It is the purpose of this paper to describe technology development and its application in the preparation of the fuel specimens and the cross section specimens that are being used in this cooperative program.

  6. Detailed microscopic calculation of stellar electron and positron capture rates on 24Mg for O+Ne+Mg core simulations

    NASA Astrophysics Data System (ADS)

    Nabi, Jameel-Un

    2008-09-01

    A few white dwarfs, located in binary systems, may acquire sufficiently high mass-accretion rates resulting in the burning of carbon and oxygen under nondegenerate conditions forming an O+Ne+Mg core. These O+Ne+Mg cores are gravitationally less bound than more massive progenitor stars and can release more energy due to the nuclear burning. They are also amongst the probable candidates for low entropy r-process sites. Recent observations of subluminous Type II-P supernovae (e.g. 2005cs, 2003gd, 1999br and 1997D) were able to rekindle the interest in 8-10 Modot which develop O+Ne+Mg cores. Microscopic calculations of capture rates on 24Mg, which may contribute significantly to the collapse of O+Ne+Mg cores, using the shell model and the proton-neutron quasiparticle random-phase approximation (pn-QRPA) theory, were performed earlier and comparisons made. Simulators, however, may require these capture rates on a fine scale. For the first time, a detailed microscopic calculation of the electron and positron capture rates on 24Mg on an extensive temperature-density scale is presented here. This type of scale is more appropriate for interpolation purposes and of greater utility for simulation codes. The calculations are done using the pn-QRPA theory using a separable interaction. The deformation parameter, believed to be a key parameter in QRPA calculations, is adopted from experimental data to increase the reliability of the QRPA results further. The resulting calculated rates are up to a factor of 14 or more enhanced as compared to shell model rates and may lead to some interesting scenarios for core collapse simulators.

  7. Computational Benchmark for Estimation of Reactivity Margin from Fission Products and Minor Actinides in PWR Burnup Credit

    SciTech Connect

    Wagner, J.C.

    2001-08-02

    This report proposes and documents a computational benchmark problem for the estimation of the additional reactivity margin available in spent nuclear fuel (SNF) from fission products and minor actinides in a burnup-credit storage/transport environment, relative to SNF compositions containing only the major actinides. The benchmark problem/configuration is a generic burnup credit cask designed to hold 32 pressurized water reactor (PWR) assemblies. The purpose of this computational benchmark is to provide a reference configuration for the estimation of the additional reactivity margin, which is encouraged in the U.S. Nuclear Regulatory Commission (NRC) guidance for partial burnup credit (ISG8), and document reference estimations of the additional reactivity margin as a function of initial enrichment, burnup, and cooling time. Consequently, the geometry and material specifications are provided in sufficient detail to enable independent evaluations. Estimates of additional reactivity margin for this reference configuration may be compared to those of similar burnup-credit casks to provide an indication of the validity of design-specific estimates of fission-product margin. The reference solutions were generated with the SAS2H-depletion and CSAS25-criticality sequences of the SCALE 4.4a package. Although the SAS2H and CSAS25 sequences have been extensively validated elsewhere, the reference solutions are not directly or indirectly based on experimental results. Consequently, this computational benchmark cannot be used to satisfy the ANS 8.1 requirements for validation of calculational methods and is not intended to be used to establish biases for burnup credit analyses.

  8. Verification study of thorium cross section in MVP calculation of thorium based fuel core using experimental data

    SciTech Connect

    Mai, V. T.; Fujii, T.; Wada, K.; Kitada, T.; Takaki, N.; Yamaguchi, A.; Watanabe, H.; Unesaki, H.

    2012-07-01

    Considering the importance of thorium data and concerning about the accuracy of Th-232 cross section library, a series of experiments of thorium critical core carried out at KUCA facility of Kyoto Univ. Research Reactor Inst. have been analyzed. The core was composed of pure thorium plates and 93% enriched uranium plates, solid polyethylene moderator with hydro to U-235 ratio of 140 and Th-232 to U-235 ratio of 15.2. Calculations of the effective multiplication factor, control rod worth, reactivity worth of Th plates have been conducted by MVP code using JENDL-4.0 library [1]. At the experiment site, after achieving the critical state with 51 fuel rods inserted inside the reactor, the measurements of the reactivity worth of control rod and thorium sample are carried out. By comparing with the experimental data, the calculation overestimates the effective multiplication factor about 0.90%. Reactivity worth of the control rods evaluation using MVP is acceptable with the maximum discrepancy about the statistical error of the measured data. The calculated results agree to the measurement ones within the difference range of 3.1% for the reactivity worth of one Th plate. From this investigation, further experiments and research on Th-232 cross section library need to be conducted to provide more reliable data for thorium based fuel core design and safety calculation. (authors)

  9. Update on the PWR axial burnup profile database

    SciTech Connect

    Cacciapouti, R.F.; Volkinburg, S.V.

    1995-12-01

    A pressurized water reactor database was developed to evaluate the axial burnup profiles of various reactor types. The data showed that the various types exhibit similar behavior, especially at the top and bottom of the assembly. From the existing data, bounding axial burnup profiles can be developed to envelope the various pressurized water reactor assembly deigns. The database encompasses most of the PWR fuel designs and contains sufficient data to provide reliable statistics.

  10. Methodology for the Weapons-Grade MOX Fuel Burnup Analysis in the Advanced Test Reactor

    SciTech Connect

    G. S. Chang

    2005-08-01

    A UNIX BASH (Bourne Again SHell) script CMO has been written and validated at the Idaho National Laboratory (INL) to couple the Monte Carlo transport code MCNP with the depletion and buildup code ORIGEN-2 (CMO). The new Monte Carlo burnup analysis methodology in this paper consists of MCNP coupling through CMO with ORIGEN-2, and is therefore called the MCWO. MCWO is a fully automated tool that links the Monte Carlo transport code MCNP with the radioactive decay and burnup code ORIGEN-2. MCWO is capable of handling a large number of fuel burnup and material loading specifications, Advanced Test Reactor (ATR) lobe powers, and irradiation time intervals. MCWO processes user input that specifies the system geometry, initial material compositions, feed/removal specifications, and other code-specific parameters. Calculated results from MCNP, ORIGEN-2, and data process module calculations are output in succession as MCWO executes. The principal function of MCWO is to transfer one-group cross-section and flux values from MCNP to ORIGEN-2, and then transfer the resulting material compositions (after irradiation and/or decay) from ORIGEN-2 back to MCNP in a repeated, cyclic fashion. The basic requirements of MCWO are a working MCNP input file and some additional input parameters; all interaction with ORIGEN-2 as well as other calculations are performed by CMO. This paper presents the MCWO-calculated results for the Reduced Enrichment Research and Test Reactor (RERTR) experiments RERTR-1 and RERTR-2 as well as the Weapons-Grade Mixed Oxide (WG-MOX) fuel testing in ATR. Calculations performed for the WG-MOX test irradiation, which is managed by the Oak Ridge National Laboratory (ORNL), supports the DOE Fissile Materials Disposition Program (FMDP). The MCWO-calculated results are compared with measured data.

  11. Modeling depletion simulations for a high-burnup, highly heterogeneous BWR fuel assembly with scale

    SciTech Connect

    Smith, H. J.

    2012-07-01

    Extensive SCALE isotopic validation studies have been performed for various PWR fuel assembly designs and operating conditions, and to a lesser extent for BWR fuel assembly designs. However, no SCALE validation work has been documented for newer, highly heterogeneous BWR fuel assembly designs at high burnup. Isotopic benchmark calculations of the earlier, more geometrically uniform BWR fuel assemblies are less sensitive to simplification of the operating history details and certain modeling assumptions than heterogeneous fuel assemblies, particularly at high burnup. This analysis shows the capability of SCALE to simulate a complex highly heterogeneous SVEA96 Optima fuel assembly and illustrates the importance of the need for the highest possible accuracy and precision in isotope measurements intended to be used as benchmark-quality results. In addition, this analysis quantifies the impact of various modeling assumptions on the results. The sample for which the simulation results are reported here achieved a burnup 62 GWd/MTU and was analyzed as part of the MALIBU Extension program. (authors)

  12. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg

    SciTech Connect

    Hay, P.J.; Wadt, W.R.

    1985-01-01

    Ab initio effective core potentials (ECP's) have been generated to replace the Coulomb, exchange, and core-orthogonality effects of the chemically inert core electron in the transition metal atoms Sc to Hg. For the second and third transition series relative ECP's have been generated which also incorporate the mass--velocity and Darwin relativistic effects into the potential. The ab initio ECP's should facilitate valence electron calculations on molecules containing transition-metal atoms with accuracies approaching all-electron calculations at a fraction of the computational cost. Analytic fits to the potentials are presented for use in multicenter integral evaluation. Gaussian orbital valence basis sets are developed for the (3d,4s,4p), (4d,5s,5p), and (5d,6s,6p) orbitals of the first, second, and third transition series atoms, respectively. All-electron and valence-electron atomic excitation energies are also compared for the low-lying states of Sc--Hg, and the valence-electron calculations are found to reproduce the all-electron excitation energies (typically within a few tenths of an eV).

  13. Transmission electron microscopy and ab initio calculations to relate interfacial intermixing and the magnetism of core/shell nanoparticles

    SciTech Connect

    Chi, C.-C.; Hsiao, C.-H.; Ouyang, Chuenhou; Skoropata, E.; Lierop, J. van

    2015-05-07

    Significant efforts towards understanding bi-magnetic core-shell nanoparticles are underway currently as they provide a pathway towards properties unavailable with single-phased systems. Recently, we have demonstrated that the magnetism of γ-Fe2O3/CoO core-shell nanoparticles, in particular, at high temperatures, originates essentially from an interfacial doped iron-oxide layer that is formed by the migration of Co{sup 2+} from the CoO shell into the surface layers of the γ-Fe2O3 core [Skoropata et al., Phys. Rev. B 89, 024410 (2014)]. To examine directly the nature of the intermixed layer, we have used high-resolution transmission electron microscopy (HRTEM) and first-principles calculations to examine the impact of the core-shell intermixing at the atomic level. By analyzing the HRTEM images and energy dispersive spectra, the level and nature of intermixing was confirmed, mainly as doping of Co into the octahedral site vacancies of γ-Fe2O3. The average Co doping depths for different processing temperatures (150 °C and 235 °C) were 0.56 nm and 0.78 nm (determined to within 5% through simulation), respectively, establishing that the amount of core-shell intermixing can be altered purposefully with an appropriate change in synthesis conditions. Through first-principles calculations, we find that the intermixing phase of γ-Fe2O3 with Co doping is ferromagnetic, with even higher magnetization as compared to that of pure γ-Fe2O3. In addition, we show that Co doping into different octahedral sites can cause different magnetizations. This was reflected in a change in overall nanoparticle magnetization, where we observed a 25% reduction in magnetization for the 235 °C versus the 150 °C sample, despite a thicker intermixed layer.

  14. Simulating the Dynamics of Earth's Core: Using NCCS Supercomputers Speeds Calculations

    NASA Technical Reports Server (NTRS)

    2002-01-01

    If one wanted to study Earth's core directly, one would have to drill through about 1,800 miles of solid rock to reach liquid core-keeping the tunnel from collapsing under pressures that are more than 1 million atmospheres and then sink an instrument package to the bottom that could operate at 8,000 F with 10,000 tons of force crushing every square inch of its surface. Even then, several of these tunnels would probably be needed to obtain enough data. Faced with difficult or impossible tasks such as these, scientists use other available sources of information - such as seismology, mineralogy, geomagnetism, geodesy, and, above all, physical principles - to derive a model of the core and, study it by running computer simulations. One NASA researcher is doing just that on NCCS computers. Physicist and applied mathematician Weijia Kuang, of the Space Geodesy Branch, and his collaborators at Goddard have what he calls the,"second - ever" working, usable, self-consistent, fully dynamic, three-dimensional geodynamic model (see "The Geodynamic Theory"). Kuang runs his model simulations on the supercomputers at the NCCS. He and Jeremy Bloxham, of Harvard University, developed the original version, written in Fortran 77, in 1996.

  15. Measurement and calculation of fast neutron and gamma spectra in well defined cores in LR-0 reactor.

    PubMed

    Košťál, Michal; Matěj, Zdeněk; Cvachovec, František; Rypar, Vojtěch; Losa, Evžen; Rejchrt, Jiří; Mravec, Filip; Veškrna, Martin

    2017-02-01

    A well-defined neutron spectrum is essential for many types of experimental topics and is also important for both calibration and testing of spectrometric and dosimetric detectors. Provided it is well described, such a spectrum can also be employed as a reference neutron field that is suitable for validating selected cross sections. The present paper aims to compare calculations and measurements of such a well-defined spectra in geometrically similar cores of the LR-0 reactor with fuel containing slightly different enrichments (2%, 3.3% and 3.6%). The common feature to all cores is a centrally located dry channel which can be used for the insertion of studied materials. The calculation of neutron and gamma spectra was realized with the MCNP6 code using ENDF/B-VII.0, JEFF-3.1, JENDL-3.3, ROSFOND-2010 and CENDL-3.1 nuclear data libraries. Only minor differences in neutron and gamma spectra were found in the comparison of the presented reactor cores with different fuel enrichments. One exception is the gamma spectrum in the higher energy region (above 8MeV), where more pronounced variations could be observed.

  16. Component mode synthesis methods applied to 3D heterogeneous core calculations, using the mixed dual finite element solver MINOS

    SciTech Connect

    Guerin, P.; Baudron, A. M.; Lautard, J. J.

    2006-07-01

    This paper describes a new technique for determining the pin power in heterogeneous core calculations. It is based on a domain decomposition with overlapping sub-domains and a component mode synthesis technique for the global flux determination. Local basis functions are used to span a discrete space that allows fundamental global mode approximation through a Galerkin technique. Two approaches are given to obtain these local basis functions: in the first one (Component Mode Synthesis method), the first few spatial eigenfunctions are computed on each sub-domain, using periodic boundary conditions. In the second one (Factorized Component Mode Synthesis method), only the fundamental mode is computed, and we use a factorization principle for the flux in order to replace the higher order Eigenmodes. These different local spatial functions are extended to the global domain by defining them as zero outside the sub-domain. These methods are well-fitted for heterogeneous core calculations because the spatial interface modes are taken into account in the domain decomposition. Although these methods could be applied to higher order angular approximations - particularly easily to a SPN approximation - the numerical results we provide are obtained using a diffusion model. We show the methods' accuracy for reactor cores loaded with UOX and MOX assemblies, for which standard reconstruction techniques are known to perform poorly. Furthermore, we show that our methods are highly and easily parallelizable. (authors)

  17. An empirical formulation to describe the evolution of the high burnup structure

    NASA Astrophysics Data System (ADS)

    Lemes, Martín; Soba, Alejandro; Denis, Alicia

    2015-01-01

    In the present work the behavior of fuel pellets for LWR power reactors in the high burnup range (average burnup higher than about 45 MWd/kgU) is analyzed. For extended irradiation periods, a considerable Pu concentration is reached in the pellet periphery (rim zone), that contributes to local burnup. Gradually, a new microstructure develops in that ring, characterized by small grains and large pores as compared with those of the original material. In this region Xe is absent from the solid lattice (although it continues to be dissolved in the rest of the pellet). The porous microstructure in the pellet edge causes local changes in the mechanical and thermal properties, thus affecting the overall fuel behavior. It is generally accepted that the evolution of porosity in the high burnup structure (HBS) is determinant of the retention capacity of the fission gases rejected from the fuel matrix. This is the reason why, during the latest years a considerable effort has been devoted to characterizing the parameters that influence porosity. Although the mechanisms governing the microstructural transformation have not been completely elucidated yet, some empirical expressions can be given, and this is the intention of the present work, for representing the main physical parameters. Starting from several works published in the open literature, some mathematical expressions were developed to describe the behavior and progress of porosity at local burnup values ranging from 60 to 300 MWd/kgU. The analysis includes the interactions of different orders between pores, the growth of the pore radius by capturing vacancies, the evolution of porosity, pore number density and overpressure within the closed pores, the inventory of fission gas dissolved in the matrix and retained in the pores. The model is mathematically expressed by a system of non-linear differential equations. In the present work, results of this calculation scheme are compared with experimental data available in

  18. Modeling Cladding-Coolant Heat Transfer of High-Burnup Fuel During RIA

    SciTech Connect

    Wenfeng Liu; Kazimi, Mujid S.

    2006-07-01

    This paper describes a model for the cladding-coolant heat transfer of high burnup fuel during a Reactivity Initiated Accident (RIA) which is implemented in the fuel performance code FRAPTRAN 1.2. The minimum stable film boiling temperature, affected by the subcooling and the clad oxidation, is modeled by a modified Henry correlation. This accounts for the effects of thermal properties of the cladding surface on the transient temperature drop during liquid-solid contact. The transition boiling regime is described as the interpolation of the heat flux between two anchor points on the boiling curve: the Critical Heat Flux (CHF) and minimum stable film boiling. The CHF correlation is based on the Zuber hydrodynamic model multiplied by a subcooling factor. Frederking correlation is chosen to model the film boiling regime. The heat conduction through the oxide layer of the cladding surface of high burnup fuel is calculated by solving heat conduction equations with thermal properties of zirconia taken from MATPRO. This model is validated in the FRAPTRAN code for test cases of both high burnup and fresh test fuel rods including the burnup level (0--56 MW d/kg), peak fuel enthalpy deposit (70--190 cal/g), degree of subcooling (0--80 deg. C), and extent of oxidation (0--25 micron). The modified code demonstrates the capability of differentiating between the departure from nucleate boiling (DNB) and none-DNB cases. The predicted peak cladding temperature (PCT) and duration of DNB achieves generally good agreement with the experimental data. It is found that the cladding surface oxidation of high burnup fuel causes an early rewetting of cladding or suppresses DNB due to two factors: 1) Thick zirconia layer may delay the heat conducted to the surface while keeping the surface heat transfer in the most effective nucleate boiling regime. 2) The transient liquid-solid contact resulting from vapor breaking down would cause a lower interface temperature for an oxidized surface

  19. Three-Dimensional Full Core Power Calculations for Pressurized Water Reactors

    SciTech Connect

    Evans, Thomas M; Davidson, Gregory G; Slaybaugh, Rachel N

    2010-01-01

    We have implemented a new multilevel parallel decomposition in the Denovo discrete ordinates radiation transport code. In concert with Krylov subspace iterative solvers, the multilevel decomposition allows concurrency over energy in addition to space-angle. The original space-angle partitioning in Denovo placed an eective limit on the scalability of the transport solver that was highly dependent on the problem size. The added phase-space concurrency combined with the high-performance Krylov solvers has enabled weak scaling to 100K cores on the Jaguar XT5 supercomputer. Furthermore, the multilevel decomposition provides enough concurrency to scale to exascale computing and beyond.

  20. No-Core Shell Model Calculations in Light Nuclei with Three-Nucleon Forces

    SciTech Connect

    Barrett, B R; Vary, J P; Nogga, A; Navratil, P; Ormand, W E

    2004-01-08

    The ab initio No-Core Shell Model (NCSM) has recently been expanded to include nucleon-nucleon (NN) and three-nucleon (3N) interactions at the three-body cluster level. Here it is used to predict binding energies and spectra of p-shell nuclei based on realistic NN and 3N interactions. It is shown that 3N force (3NF) properties can be studied in these nuclear systems. First results show that interactions based on chiral perturbation theory lead to a realistic description of {sup 6}Li.

  1. Use of burnup credit for transportation and storage

    SciTech Connect

    Sanders, T.L.; Ewing, R.I. ); Lake, W.H. )

    1991-01-01

    Burnup credit is the application of the effects of fuel burnup to nuclear criticality design. When burnup credit is considered in the design of storage facilities and transportation casks for spent fuel, the objectives are to reduce the requirements for storage space and to increase the payload of casks with acceptable nuclear criticality safety margins. The spent-fuel carrying capacities of previous-generation transport casks have been limited primarily by requirements to remove heat and/or to provide shielding. Shielding and heat transfer requirements for casks designed to transport older spent fuel with longer decay times are reduced significantly. Thus a considerable weight margin is available to the designer for increasing the payload capacity. One method to achieve an increase in capacity is to reduce fuel assembly spacing. The amount of reduction in assembly spacing is limited by criticality and fuel support structural concerns. The optimum fuel assembly spacing provides the maximum cask loading within a basket that has adequate criticality control and sufficient structural integrity for regulatory accident scenarios. The incorporation of burnup credit in cask designs could result in considerable benefits in the transport of spent fuel. The acceptance of burnup credit for the design of transport casks depends on the resolution of system safety issues and the uncertainties that affect the determination of criticality safety margins. The remainder of this report will examine these issues and the integrated approach under way to resolve them. 20 refs., 2 figs.

  2. Chemical states of fission products in irradiated (U 0.3Pu 0.7)C 1+ x fuel at high burn-ups

    NASA Astrophysics Data System (ADS)

    Agarwal, Renu; Venugopal, V.

    2006-12-01

    The chemical states of fission products have been theoretically determined for the irradiated carbide fuel of Fast Breeder Test Reactor (FBTR) at Kalpakkam, India, at different burn-ups. The SOLGASMIX-PV computer code was used to determine the equilibrium chemical composition of the fuel. The system was assumed to be composed of a gaseous phase at one atmosphere pressure, and various solid phases. The distribution of elements in these phases and their chemical states at different temperatures were calculated as a function of burn-up. The FBTR fuel, (U 0.3Pu 0.7)C 1+ x, was loaded with C/M values in the range, 1.03-1.06. The present calculations indicated that even for the lowest starting C/M of 1.03 in the FBTR fuel, the liquid metal phase of (U, Pu), should not appear at a burn-up as high as 150 GWd/t.

  3. Reactivity and isotopic composition of spent PWR (pressurized-water-reactor) fuel as a function of initial enrichment, burnup, and cooling time

    SciTech Connect

    Cerne, S.P.; Hermann, O.W.; Westfall, R.M.

    1987-10-01

    This study presents the reactivity loss of spent PWR fuel due to burnup in terms of the infinite lattice multiplications factor, k/sub infinity/. Calculations were performed using the SAS2 and CSAS1 control modules of the SCALE system. The k/sub infinity/ values calculated for all combinations of six enrichments, seven burnups, and five cooling times. The results are presented as a primary function of enrichment in both tabular and graphic form. An equation has been developed to estimate the tabulated values of k/sub infinity/'s by specifying enrichment, cooling time, and burnup. Atom densities for fresh fuel, and spent fuel at cooling times of 2, 10, and 20 years are included. 13 refs., 8 figs., 8 tabs.

  4. Some Nuclear Calculations of U-235-D2O Gaseous-Core Cavity Reactors

    NASA Technical Reports Server (NTRS)

    Ragsdale, Robert G.; Hyland, Robert E.

    1961-01-01

    The results of a multigroup, diffusion theory study of spherical gaseous-core cavity reactors are presented in this report. The reactor cavity of gaseous U235 is enclosed by a region of hydrogen gas and is separated from an external D2O moderator-reflector by a zirconium structural shell. Some cylindrical reactors are also investigated. A parametric study of spherical reactors indicates that, for the range of variables studied, critical mass increases as: (1) Fuel region is compressed within the reactor cavity, (2) moderator thickness is decreased, (3) structural shell thickness is increased, and (4) moderator temperature is increased. A buckling analogy is used to estimate the critical mass of fully reflected cylindrical reactors from spherical results without fuel compression. For a reactor cavity of a 120-centimeter radius uniformly filled with fuel, no structural shell, a moderator temperature of 70 F, and a moderator thickness of 100 centimeters, the critical mass of a spherical reactor is 3.1 kilograms while that of a cylinder with a length-to-diameter ratio of 1.0 (L/D = 1) is approximately 3.8 kilograms and, with L/D = 2, 5.9 kilograms. For the range of variables considered for U235-D2O gaseous-core cavity reactors, the systems are characterized by 95 to 99 percent thermal absorptions, with the flux reaching a maximum in the moderator about 10 to 15 centimeters from the reactor cavity.

  5. AB initio free energy calculations of the solubility of silica in metallic hydrogen and application to giant planet cores

    SciTech Connect

    González-Cataldo, F.; Wilson, Hugh F.; Militzer, B.

    2014-05-20

    By combining density functional molecular dynamics simulations with a thermodynamic integration technique, we determine the free energy of metallic hydrogen and silica, SiO{sub 2}, at megabar pressures and thousands of degrees Kelvin. Our ab initio solubility calculations show that silica dissolves into fluid hydrogen above 5000 K for pressures from 10 and 40 Mbars, which has implications for the evolution of rocky cores in giant gas planets like Jupiter, Saturn, and a substantial fraction of known extrasolar planets. Our findings underline the necessity of considering the erosion and redistribution of core materials in giant planet evolution models, but they also demonstrate that hot metallic hydrogen is a good solvent at megabar pressures, which has implications for high-pressure experiments.

  6. Approach for validating actinide and fission product compositions for burnup credit criticality safety analyses

    DOE PAGES

    Radulescu, Georgeta; Gauld, Ian C.; Ilas, Germina; ...

    2014-11-01

    This paper describes a depletion code validation approach for criticality safety analysis using burnup credit for actinide and fission product nuclides in spent nuclear fuel (SNF) compositions. The technical basis for determining the uncertainties in the calculated nuclide concentrations is comparison of calculations to available measurements obtained from destructive radiochemical assay of SNF samples. Probability distributions developed for the uncertainties in the calculated nuclide concentrations were applied to the SNF compositions of a criticality safety analysis model by the use of a Monte Carlo uncertainty sampling method to determine bias and bias uncertainty in effective neutron multiplication factor. Application ofmore » the Monte Carlo uncertainty sampling approach is demonstrated for representative criticality safety analysis models of pressurized water reactor spent fuel pool storage racks and transportation packages using burnup-dependent nuclide concentrations calculated with SCALE 6.1 and the ENDF/B-VII nuclear data. Furthermore, the validation approach and results support a recent revision of the U.S. Nuclear Regulatory Commission Interim Staff Guidance 8.« less

  7. Approach for validating actinide and fission product compositions for burnup credit criticality safety analyses

    SciTech Connect

    Radulescu, Georgeta; Gauld, Ian C.; Ilas, Germina; Wagner, John C.

    2014-11-01

    This paper describes a depletion code validation approach for criticality safety analysis using burnup credit for actinide and fission product nuclides in spent nuclear fuel (SNF) compositions. The technical basis for determining the uncertainties in the calculated nuclide concentrations is comparison of calculations to available measurements obtained from destructive radiochemical assay of SNF samples. Probability distributions developed for the uncertainties in the calculated nuclide concentrations were applied to the SNF compositions of a criticality safety analysis model by the use of a Monte Carlo uncertainty sampling method to determine bias and bias uncertainty in effective neutron multiplication factor. Application of the Monte Carlo uncertainty sampling approach is demonstrated for representative criticality safety analysis models of pressurized water reactor spent fuel pool storage racks and transportation packages using burnup-dependent nuclide concentrations calculated with SCALE 6.1 and the ENDF/B-VII nuclear data. Furthermore, the validation approach and results support a recent revision of the U.S. Nuclear Regulatory Commission Interim Staff Guidance 8.

  8. Ab initio calculations in the symplectic no-core configuration interaction framework

    NASA Astrophysics Data System (ADS)

    McCoy, Anna; Caprio, Mark; Dytrych, Tomas

    2016-09-01

    A major challenge in quantitatively predicting nuclear structure directly from realistic nucleon-nucleon interactions, i.e., ab initio, arises due to an explosion in the dimension of the traditional Slater determinant basis as the number of nucleons and included shells increases. The need for including highly excited configurations arises, in large part, because the kinetic energy induces strong coupling across shells. However, the kinetic energy conserves symplectic symmetry. By combining this symplectic symmetry with the no-core configuration interaction (NCCI) framework, we reduce the size of basis necessary to obtain accurate results for p-shell nuclei. Supported by the US DOE under Grants DE-AC05-06OR23100 and DE-FG02-95ER-40934, and the Czech Science Foundation under Grant No. 16-16772S.

  9. Test problem for thermal-hydraulics and neutronic coupled calculation fore ALFREAD reactor core

    NASA Astrophysics Data System (ADS)

    Filip, A.; Darie, G.; Saldikov, I. S.; Smirnov, A. D.; Tikhomirov, G. V.

    2017-01-01

    The beginning of a new era of nuclear reactor requires technological advances and also multiples studies. The European Liquid metal cooled Fast breeder Reactor is one of the designs for the generation IV nuclear reactor, selected by ENEA. A pioneer of its time, ELFR needs a demonstrator in order to prove the feasibility of this project and to acquire more data and experience in operating a LFR. For this reason the ALFRED project was started and it is expected to be under operation by the year 2030. This paper has the objective of analyzing the neutronic and thermohydraulics of the ALFRED core by the means of a coupled scheme. The selected code for neutronic simulation is MCNP and the selected code for thermohydraulics is ANSYS.

  10. Effective delayed neutron fraction and prompt neutron lifetime of Tehran research reactor mixed-core.

    PubMed

    Lashkari, A; Khalafi, H; Kazeminejad, H

    2013-05-01

    In this work, kinetic parameters of Tehran research reactor (TRR) mixed cores have been calculated. The mixed core configurations are made by replacement of the low enriched uranium control fuel elements with highly enriched uranium control fuel elements in the reference core. The MTR_PC package, a nuclear reactor analysis tool, is used to perform the analysis. Simulations were carried out to compute effective delayed neutron fraction and prompt neutron lifetime. Calculation of kinetic parameters is necessary for reactivity and power excursion transient analysis. The results of this research show that effective delayed neutron fraction decreases and prompt neutron lifetime increases with the fuels burn-up. Also, by increasing the number of highly enriched uranium control fuel elements in the reference core, the prompt neutron lifetime increases, but effective delayed neutron fraction does not show any considerable change.

  11. Effective delayed neutron fraction and prompt neutron lifetime of Tehran research reactor mixed-core

    PubMed Central

    Lashkari, A.; Khalafi, H.; Kazeminejad, H.

    2013-01-01

    In this work, kinetic parameters of Tehran research reactor (TRR) mixed cores have been calculated. The mixed core configurations are made by replacement of the low enriched uranium control fuel elements with highly enriched uranium control fuel elements in the reference core. The MTR_PC package, a nuclear reactor analysis tool, is used to perform the analysis. Simulations were carried out to compute effective delayed neutron fraction and prompt neutron lifetime. Calculation of kinetic parameters is necessary for reactivity and power excursion transient analysis. The results of this research show that effective delayed neutron fraction decreases and prompt neutron lifetime increases with the fuels burn-up. Also, by increasing the number of highly enriched uranium control fuel elements in the reference core, the prompt neutron lifetime increases, but effective delayed neutron fraction does not show any considerable change. PMID:24976672

  12. High-burnup fuel and the impact on fuel management

    SciTech Connect

    Cacciapouti, R.J.; Weader, R.J.

    1996-12-31

    Competition in the electric utility industry has forced utilities to reduce cost. For a nuclear utility, this means a reduction of both the nuclear fuel cost and the operating and maintenance cost. To this extent, utilities are pursuing longer cycles. To reduce the nuclear fuel cost, utilities are trying to reduce batch size while increasing cycle length. Yankee Atomic Electric Company has performed a number of fuel cycle studies to optimize both batch size and cycle length; however, certain burnup-related constraints are encountered. As a result of these circumstances, longer fuel cycles make it increasingly difficult to simultaneously meet the burnup-related fuel design constraints and the technical specification limits. Longer cycles require fuel assemblies to operate for longer times at relatively high power. If utilities continue to pursue longer cycles to help reduce nuclear fuel cost, changes may need to be made to existing fuel burnup limits.

  13. Numerical Tests for the Problem of U-Pu Fuel Burnup in Fuel Rod and Polycell Models Using the MCNP Code

    NASA Astrophysics Data System (ADS)

    Muratov, V. G.; Lopatkin, A. V.

    An important aspect in the verification of the engineering techniques used in the safety analysis of MOX-fuelled reactors, is the preparation of test calculations to determine nuclide composition variations under irradiation and analysis of burnup problem errors resulting from various factors, such as, for instance, the effect of nuclear data uncertainties on nuclide concentration calculations. So far, no universally recognized tests have been devised. A calculation technique has been developed for solving the problem using the up-to-date calculation tools and the latest versions of nuclear libraries. Initially, in 1997, a code was drawn up in an effort under ISTC Project No. 116 to calculate the burnup in one VVER-1000 fuel rod, using the MCNP Code. Later on, the authors developed a computation technique which allows calculating fuel burnup in models of a fuel rod, or a fuel assembly, or the whole reactor. It became possible to apply it to fuel burnup in all types of nuclear reactors and subcritical blankets.

  14. Numerical calculation of the radiation exposure from galactic cosmic rays at aviation altitudes with the PANDOCA core model

    NASA Astrophysics Data System (ADS)

    Matthiä, Daniel; Meier, Matthias M.; Reitz, Günther

    2014-03-01

    The increased radiation exposure at aviation altitudes is of public interest as well as of legal relevance in many countries. The dose rates that are elevated compared to sea level are mainly caused by galactic cosmic ray particles interacting with the atmosphere and producing a complex radiation field at aviation altitudes. The intensity and composition of this radiation field mainly depend on altitude, geomagnetic shielding, and primary particle intensity. In this work, we present a model based on Monte Carlo simulations, which retrospectively estimates secondary particle fluence as well as ambient dose equivalent rates and effective dose rates at any point in the atmosphere. This model will be used as the physical core in the Professional Aviation Dose Calculator (PANDOCA) software developed by the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt) for the calculation of route doses in aviation. The calculations are based on galactic cosmic ray spectra taking into account primary nuclei from hydrogen to iron by direct transport calculations of hydrogen and helium nuclei and approximating heavier nuclei by the number of protons equaling the corresponding atomic number. A comparison to experimental data recorded on several flights with a tissue equivalent proportional counter shows a very good agreement between model calculations and measurements.

  15. Isotopic biases for actinide-only burnup credit

    SciTech Connect

    Rahimi, M.; Lancaster, D.; Hoeffer, B.; Nichols, M.

    1997-04-01

    The primary purpose of this paper is to present the new methodology for establishing bias and uncertainty associated with isotopic prediction in spent fuel assemblies for burnup credit analysis. The analysis applies to the design of criticality control systems for spent fuel casks. A total of 54 spent fuel samples were modeled and analyzed using the Shielding Analyses Sequence (SAS2H). Multiple regression analysis and a trending test were performed to develop isotopic correction factors for 10 actinide burnup credit isotopes. 5 refs., 1 tab.

  16. Findings of an international study on burnup credit

    SciTech Connect

    Brady, M.C.; Takano, M.; Okuno, H.; DeHart, M.D.; Nouri, A.; Sartori, E.

    1996-08-01

    Findings from a four year study by an international benchmarking group in the comparison of computational methods for evaluating burnup credit in criticality safety analyses are presented in this paper. Approximately 20 participants from 11 countries have provided results for most problems. Four detailed benchmark problems for Pressurized Water Reactor (PWR) fuel have been completed and are summarized in this paper. Preliminary results from current work addressing burnup credit for Boiling Water Reactor (BWR) fuel will also be discussed as well as planned activities for additional benchmarks including Mixed-Oxide (MOX) fuels, subcritical benchmarks, international databases, and other activities.

  17. DANDE: a linked code system for core neutronics/depletion analysis

    SciTech Connect

    LaBauve, R.J.; England, T.R.; George, D.C.; MacFarlane, R.E.; Wilson, W.B.

    1985-06-01

    This report describes DANDE - a modular neutronics, depletion code system for reactor analysis. It consists of nuclear data processing, core physics, and fuel depletion modules, and allows one to use diffusion and transport methods interchangeably in core neutronics calculations. This latter capability is especially important in the design of small modular cores. Additional unique features include the capability of updating the nuclear data file during a calculation; a detailed treatment of depletion, burnable poisons as well as fuel; and the ability to make geometric changes such as control rod repositioning and fuel relocation in the course of a calculation. The detailed treatment of reactor fuel burnup, fission-product creation and decay, as well as inventories of higher-order actinides is a necessity when predicting the behavior of reactor fuel under increased burn conditions. The operation of the code system is made clear in this report by following a sample problem.

  18. Insights Into the PA Neutral Atom: from AN Evaluation of PA2+ Outer-Core Correlation Energy Calculations

    NASA Astrophysics Data System (ADS)

    Mrozik, Michael K.; Pitzer, Russell M.; Bursten, Bruce E.

    2010-06-01

    Since the identification of f-orbital contribution to the bonding in PaO+, investigations into Pa cations have hoped to characterize as many of the electronic states possible.1 Electronic states of the Pan+ (n=0-4) ions have been investigated using multi-reference spin-orbit configuration interaction (MR-SOCI). Initial investigations using Dunning style correlation consistent double-{ζ} basis sets are re-examined with a larger triple-{ζ} basis, with the hope of supporting the order of electronic states. Calculations using Hartree-Fock and CI calculations on the neutral atom did not produce the known order of states. A case study was deemed necessary on similar electron configurations present in the low energy states of Pa2+ more specifically those generated from the 5f26d1 and 5f16d2 configurations. Comparison in the Pa2+ ion is complicated by the lack of experimental results, but the states are presumed to be similar sequence as those in the neutral atom, with the addition of two electrons in the 7s shell. In evaluating the impact of inclusion of the outer core, calculations including valence-outer core correlation were completed for the 5d, 6s, and 6p shells of the Pa2+ ion. The magnitude of these individual shell correlation calculations will allow for identification of the energy level shifts associated with even and odd configurations, better describing the energy order in both the Pa2+ ion case study and for the neutral Pa atom. Upon completion of this aspect of the Pa neutral atom study, the knowledge of the energy levels in the Pan+ (n=0-4) family of ions will be greatly expanded, and may yield a model for future studies of atomic actinide systems. Gibson {et al.} Organometallics 2007, 26, 3947-3956.

  19. Ab initio no core calculations of light nuclei and preludes to Hamiltonian quantum field theory

    SciTech Connect

    Vary, J. P.; Maris, P.; Honkanen, H.; Li, J.; Shirokov, A. M.; Brodsky, S. J.; Harindranath, A.

    2009-12-17

    Recent advances in ab initio quantum many-body methods and growth in computer power now enable highly precise calculations of nuclear structure. The precision has attained a level sufficient to make clear statements on the nature of 3-body forces in nuclear physics. Total binding energies, spin-dependent structure effects, and electroweak properties of light nuclei play major roles in pinpointing properties of the underlying strong interaction. Eventually, we anticipate a theory bridge with immense predictive power from QCD through nuclear forces to nuclear structure and nuclear reactions. Light front Hamiltonian quantum field theory offers an attractive pathway and we outline key elements.

  20. Ab initio no core calculations of light nuclei and preludes to Hamiltonian quantum field theory

    SciTech Connect

    Vary, J.P.; Maris, P.; Shirokov, A.M.; Honkanen, H.; li, J.; Brodsky, S.J.; Harindranath, A.; Teramond, G.F.de; /Costa Rica U.

    2009-08-03

    Recent advances in ab initio quantum many-body methods and growth in computer power now enable highly precise calculations of nuclear structure. The precision has attained a level sufficient to make clear statements on the nature of 3-body forces in nuclear physics. Total binding energies, spin-dependent structure effects, and electroweak properties of light nuclei play major roles in pinpointing properties of the underlying strong interaction. Eventually,we anticipate a theory bridge with immense predictive power from QCD through nuclear forces to nuclear structure and nuclear reactions. Light front Hamiltonian quantum field theory offers an attractive pathway and we outline key elements.

  1. Validation of a method for prediction of isotopic concentrations in burnup credit applications

    SciTech Connect

    DeHart, M.D.; Hermann, O.W.; Parks, C.V.

    1995-09-01

    Unlike fresh fuel assumptions typically employed in the criticality safety analysis of spent fuel configurations, burnup credit applications rely on depletion and decay calculations to predict the isotopic composition of spent fuel. These isotopics are used in subsequent criticality calculations to assess the reduced worth of the spent fuel. To validate the codes and data used in depletion approaches, experimental measurements are compared with numerical predictions for relevant spent fuel samples. This paper describes a set of experimentally characterized pressurized-water-reactor (PWR) fuel samples and provides a comparison to results of SCALE-4 depletion calculations. An approach to determine biases and uncertainties between calculated and measured isotopic concentrations is discussed, together with a method to statistically combine these terms to obtain a conservative estimate of spent fuel isotopic concentrations.

  2. Chemical solver to compute molecule and grain abundances and non-ideal MHD resistivities in prestellar core-collapse calculations

    NASA Astrophysics Data System (ADS)

    Marchand, P.; Masson, J.; Chabrier, G.; Hennebelle, P.; Commerçon, B.; Vaytet, N.

    2016-07-01

    We develop a detailed chemical network relevant to calculate the conditions that are characteristic of prestellar core collapse. We solve the system of time-dependent differential equations to calculate the equilibrium abundances of molecules and dust grains, with a size distribution given by size-bins for these latter. These abundances are used to compute the different non-ideal magneto-hydrodynamics resistivities (ambipolar, Ohmic and Hall), needed to carry out simulations of protostellar collapse. For the first time in this context, we take into account the evaporation of the grains, the thermal ionisation of potassium, sodium, and hydrogen at high temperature, and the thermionic emission of grains in the chemical network, and we explore the impact of various cosmic ray ionisation rates. All these processes significantly affect the non-ideal magneto-hydrodynamics resistivities, which will modify the dynamics of the collapse. Ambipolar diffusion and Hall effect dominate at low densities, up to nH = 1012 cm-3, after which Ohmic diffusion takes over. We find that the time-scale needed to reach chemical equilibrium is always shorter than the typical dynamical (free fall) one. This allows us to build a large, multi-dimensional multi-species equilibrium abundance table over a large temperature, density and ionisation rate ranges. This table, which we make accessible to the community, is used during first and second prestellar core collapse calculations to compute the non-ideal magneto-hydrodynamics resistivities, yielding a consistent dynamical-chemical description of this process. The multi-dimensional multi-species equilibrium abundance table and a copy of the code are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A18

  3. An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Isotopic Composition Predictions

    SciTech Connect

    Radulescu, Georgeta; Gauld, Ian C; Ilas, Germina; Wagner, John C

    2011-01-01

    The expanded use of burnup credit in the United States (U.S.) for storage and transport casks, particularly in the acceptance of credit for fission products, has been constrained by the availability of experimental fission product data to support code validation. The U.S. Nuclear Regulatory Commission (NRC) staff has noted that the rationale for restricting the Interim Staff Guidance on burnup credit for storage and transportation casks (ISG-8) to actinide-only is based largely on the lack of clear, definitive experiments that can be used to estimate the bias and uncertainty for computational analyses associated with using burnup credit. To address the issues of burnup credit criticality validation, the NRC initiated a project with the Oak Ridge National Laboratory to (1) develop and establish a technically sound validation approach for commercial spent nuclear fuel (SNF) criticality safety evaluations based on best-available data and methods and (2) apply the approach for representative SNF storage and transport configurations/conditions to demonstrate its usage and applicability, as well as to provide reference bias results. The purpose of this paper is to describe the isotopic composition (depletion) validation approach and resulting observations and recommendations. Validation of the criticality calculations is addressed in a companion paper at this conference. For isotopic composition validation, the approach is to determine burnup-dependent bias and uncertainty in the effective neutron multiplication factor (keff) due to bias and uncertainty in isotopic predictions, via comparisons of isotopic composition predictions (calculated) and measured isotopic compositions from destructive radiochemical assay utilizing as much assay data as is available, and a best-estimate Monte Carlo based method. This paper (1) provides a detailed description of the burnup credit isotopic validation approach and its technical bases, (2) describes the application of the approach for

  4. Need for higher fuel burnup at the Hatch Plant

    SciTech Connect

    Beckhman, J.T.

    1996-03-01

    Hatch is a BWR 4 and has been in operation for some time. The first unit became commercial about 1975. Obtaining higher burnups, or higher average discharge exposures, is nothing new at Hatch. Since we have started, the discharge exposure of the plant has increased. Now, of course, we are not approaching the numbers currently being discussed but, the average discharge exposure has increased from around 20,000 MWD/MTU in the early to mid-1980s to 34,000 MWD/MTU in 1994, I am talking about batch average values. There are also peak bundle and peak rod values. You will have to make the conversions if you think in one way or the other because I am talking in batch averages. During Hatch`s operating history we have had some problems with fuel failure. Higher burnup fuel raises a concern about how much fuel failure you are going to have. Fuel failure is, of course, an economic issue with us. Back in the early 1980s, we had a problem with crud-induced localized corrosion, known as CILC. We have gotten over that, but we had some times when it was up around 27 fuel failures a year. That is not a pleasant time to live through because it is not what you want from an economic viewpoint or any other. We have gotten that down. We have had some fuel failures recently, but they have not been related to fuel burnup or to corrosion. In fact, the number of failures has decreased from the early 1980s to the 90s even though burnup increased during that time. The fuel failures are more debris-related-type failures. In addition to increasing burnups, utilities are actively evaluating or have already incorporated power uprate and longer fuel cycles (e.g., 2-year cycles). The goal is to balance out the higher power density, longer cycles, higher burnup, and to have no leakers. Why do we as an industry want to have higher burnup fuel? That is what I want to tell you a little bit about.

  5. Analysis and comparison of CVS-ADC approaches up to third order for the calculation of core-excited states

    NASA Astrophysics Data System (ADS)

    Wenzel, Jan; Holzer, Andre; Wormit, Michael; Dreuw, Andreas

    2015-06-01

    The extended second order algebraic-diagrammatic construction (ADC(2)-x) scheme for the polarization operator in combination with core-valence separation (CVS) approximation is well known to be a powerful quantum chemical method for the calculation of core-excited states and the description of X-ray absorption spectra. For the first time, the implementation and results of the third order approach CVS-ADC(3) are reported. Therefore, the CVS approximation has been applied to the ADC(3) working equations and the resulting terms have been implemented efficiently in the adcman program. By treating the α and β spins separately from each other, the unrestricted variant CVS-UADC(3) for the treatment of open-shell systems has been implemented as well. The performance and accuracy of the CVS-ADC(3) method are demonstrated with respect to a set of small and middle-sized organic molecules. Therefore, the results obtained at the CVS-ADC(3) level are compared with CVS-ADC(2)-x values as well as experimental data by calculating complete basis set limits. The influence of basis sets is further investigated by employing a large set of different basis sets. Besides the accuracy of core-excitation energies and oscillator strengths, the importance of cartesian basis functions and the treatment of orbital relaxation effects are analyzed in this work as well as computational timings. It turns out that at the CVS-ADC(3) level, the results are not further improved compared to CVS-ADC(2)-x and experimental data, because the fortuitous error compensation inherent in the CVS-ADC(2)-x approach is broken. While CVS-ADC(3) overestimates the core excitation energies on average by 0.61% ± 0.31%, CVS-ADC(2)-x provides an averaged underestimation of -0.22% ± 0.12%. Eventually, the best agreement with experiments can be achieved using the CVS-ADC(2)-x method in combination with a diffuse cartesian basis set at least at the triple-ζ level.

  6. Analysis and comparison of CVS-ADC approaches up to third order for the calculation of core-excited states.

    PubMed

    Wenzel, Jan; Holzer, Andre; Wormit, Michael; Dreuw, Andreas

    2015-06-07

    The extended second order algebraic-diagrammatic construction (ADC(2)-x) scheme for the polarization operator in combination with core-valence separation (CVS) approximation is well known to be a powerful quantum chemical method for the calculation of core-excited states and the description of X-ray absorption spectra. For the first time, the implementation and results of the third order approach CVS-ADC(3) are reported. Therefore, the CVS approximation has been applied to the ADC(3) working equations and the resulting terms have been implemented efficiently in the adcman program. By treating the α and β spins separately from each other, the unrestricted variant CVS-UADC(3) for the treatment of open-shell systems has been implemented as well. The performance and accuracy of the CVS-ADC(3) method are demonstrated with respect to a set of small and middle-sized organic molecules. Therefore, the results obtained at the CVS-ADC(3) level are compared with CVS-ADC(2)-x values as well as experimental data by calculating complete basis set limits. The influence of basis sets is further investigated by employing a large set of different basis sets. Besides the accuracy of core-excitation energies and oscillator strengths, the importance of cartesian basis functions and the treatment of orbital relaxation effects are analyzed in this work as well as computational timings. It turns out that at the CVS-ADC(3) level, the results are not further improved compared to CVS-ADC(2)-x and experimental data, because the fortuitous error compensation inherent in the CVS-ADC(2)-x approach is broken. While CVS-ADC(3) overestimates the core excitation energies on average by 0.61% ± 0.31%, CVS-ADC(2)-x provides an averaged underestimation of -0.22% ± 0.12%. Eventually, the best agreement with experiments can be achieved using the CVS-ADC(2)-x method in combination with a diffuse cartesian basis set at least at the triple-ζ level.

  7. Evaluation of accuracy of calculations of VVER-1000 core states with incomplete covering of fuel by the absorber

    SciTech Connect

    Tikhomirov, A. V.; Ponomarenko, G. L.

    2012-07-01

    An additional verification of bundled software (BS) SAPFIR-95 and amp;RC [1] and code KORSAR/GP [2] was performed. Both software products were developed in A.P. Alexandrov NITI and certified by ROSTEKHNADZOR of RF for numeric simulation of stationary, transitional and emergency conditions of VVER reactors. A benchmark model for neutronics calculations was created within the limits of this work. The cold subcritical state of VVER - 1000 reactor stationary fuelling was simulated on the basis of FA with an increased height of the fuel column (TVS-2M) considering detailed presentation of radial and front neutron reflectors. A case of passing of pure condensate slug through the core in initially deep subcritical state during start of the first RCP set after refueling was considered as an examined condition of reactor operation. A relatively small size of the slug, its spatial position near the reflectors (lower and lateral), as well as failure of the inserted control rods of the control and protection system (CPS CR) to reach the lower limit of the fuel column stipulate for methodical complexity of a correct calculation of the neutron multiplication constant (K{sub eff}) using engineering codes. Code RC was used as a test program in the process of reactor calculated 3-D modeling. Code MCNP5 [3] was used as the precision program, which solves the equation of neutrons transfer by Monte-Carlo method and which was developed in the US (Los-Alamos). As a result of comparative calculations dependency of K{sub eff} on two parameters was evaluated - boron acid concentration (Cb) and CPS CR position. Reactivity effect was evaluated, which is implemented as a result of failure of all CPS control rods to reach the lower fuel limit calculated using the engineering codes mentioned above. (authors)

  8. Ab initio no-core configuration interaction calculations of electromagnetic observables for p-shell nuclei using natural orbitals

    NASA Astrophysics Data System (ADS)

    Constantinou, Chrysovalantis; Caprio, Mark A.; Vary, James P.; Maris, Pieter

    2016-09-01

    The goal of ab initio nuclear theory is to provide quantitative predictions of nuclear observables, by solving the many-body problem starting from the internucleon interaction. The solution of the many-body problem involves large spaces with dimensions that grow fast with the number of nucleons and single-particle states included in the space. Convergence of nuclear observables in the employed space using an adequate set of single-particle orbitals is essential for making quantitative predictions. Long-range nuclear observables, such as the matrix elements of the E 2 operator, converge slowly when conventional oscillator single-particle orbitals are used for no-core configuration interaction (NCCI) calculations. Natural orbitals, obtained by diagonalizing the one-body density matrix from an initial NCCI calculation in the harmonic oscillator basis, provide accelerated convergence since they are adapted to the properties of the many-body wave function of the nucleus under study. We explore the convergence of electromagnetic observables of p-shell nuclei obtained using natural orbitals for NCCI calculations. Supported by the US DOE under Grants DE-FG02-95ER-40934, DESC0008485 (SciDAC/NUCLEI), and DE-FG02-87ER40371. Computational resources provided by NERSC (supported by US DOE Contract DE-AC02-05CH11231) and the Notre Dame Center for Research Computing.

  9. Hybrid density functional-molecular mechanics calculations for core-electron binding energies of glycine in water solution.

    PubMed

    Niskanen, Johannes; Arul Murugan, N; Rinkevicius, Zilvinas; Vahtras, Olav; Li, Cui; Monti, Susanna; Carravetta, Vincenzo; Agren, Hans

    2013-01-07

    We report hybrid density functional theory-molecular mechanics (DFT/MM) calculations performed for glycine in water solution at different pH values. In this paper, we discuss several aspects of the quantum mechanics-molecular mechanics (QM/MM) simulations where the dynamics and spectral binding energy shifts are computed sequentially, and where the latter are evaluated over a set of configurations generated by molecular or Car-Parrinello dynamics simulations. In the used model, core ionization takes place in glycine as a quantum mechanical (QM) system modeled with DFT, and the solution is described with expedient force fields in a large molecular mechanical (MM) volume of water molecules. The contribution to the core electronic binding energy from all interactions within and between the two (DFT and MM) parts is accounted for, except charge transfer and dispersion. While the obtained results were found to be in qualitative agreement with experiment, their precision must be qualified with respect to the problem of counter ions, charge transfer and optimal division of QM and MM parts of the system. Results are compared to those of a recent study [Ottoson et al., J. Am. Chem. Soc., 2011, 133, 3120].

  10. Performance of heterogeneous computing with graphics processing unit and many integrated core for hartree potential calculations on a numerical grid.

    PubMed

    Choi, Sunghwan; Kwon, Oh-Kyoung; Kim, Jaewook; Kim, Woo Youn

    2016-09-15

    We investigated the performance of heterogeneous computing with graphics processing units (GPUs) and many integrated core (MIC) with 20 CPU cores (20×CPU). As a practical example toward large scale electronic structure calculations using grid-based methods, we evaluated the Hartree potentials of silver nanoparticles with various sizes (3.1, 3.7, 4.9, 6.1, and 6.9 nm) via a direct integral method supported by the sinc basis set. The so-called work stealing scheduler was used for efficient heterogeneous computing via the balanced dynamic distribution of workloads between all processors on a given architecture without any prior information on their individual performances. 20×CPU + 1GPU was up to ∼1.5 and ∼3.1 times faster than 1GPU and 20×CPU, respectively. 20×CPU + 2GPU was ∼4.3 times faster than 20×CPU. The performance enhancement by CPU + MIC was considerably lower than expected because of the large initialization overhead of MIC, although its theoretical performance is similar with that of CPU + GPU. © 2016 Wiley Periodicals, Inc.

  11. Massively parallel algorithm and implementation of RI-MP2 energy calculation for peta-scale many-core supercomputers.

    PubMed

    Katouda, Michio; Naruse, Akira; Hirano, Yukihiko; Nakajima, Takahito

    2016-11-15

    A new parallel algorithm and its implementation for the RI-MP2 energy calculation utilizing peta-flop-class many-core supercomputers are presented. Some improvements from the previous algorithm (J. Chem. Theory Comput. 2013, 9, 5373) have been performed: (1) a dual-level hierarchical parallelization scheme that enables the use of more than 10,000 Message Passing Interface (MPI) processes and (2) a new data communication scheme that reduces network communication overhead. A multi-node and multi-GPU implementation of the present algorithm is presented for calculations on a central processing unit (CPU)/graphics processing unit (GPU) hybrid supercomputer. Benchmark results of the new algorithm and its implementation using the K computer (CPU clustering system) and TSUBAME 2.5 (CPU/GPU hybrid system) demonstrate high efficiency. The peak performance of 3.1 PFLOPS is attained using 80,199 nodes of the K computer. The peak performance of the multi-node and multi-GPU implementation is 514 TFLOPS using 1349 nodes and 4047 GPUs of TSUBAME 2.5. © 2016 Wiley Periodicals, Inc.

  12. Void effect analysis of Pb-208 of fast reactors with modified CANDLE burn-up scheme

    SciTech Connect

    Widiawati, Nina Su’ud, Zaki

    2015-09-30

    Void effect analysis of Pb-208 as coolant of fast reactors with modified candle burn-up scheme has been conducted. Lead cooled fast reactor (LFR) is one of the fourth-generation reactor designs. The reactor is designed with a thermal power output of 500 MWt. Modified CANDLE burn-up scheme allows the reactor to have long life operation by supplying only natural uranium as fuel cycle input. This scheme introducing discrete region, the fuel is initially put in region 1, after one cycle of 10 years of burn up it is shifted to region 2 and region 1 is filled by fresh natural uranium fuel. The reactor is designed for 100 years with 10 regions arranged axially. The results of neutronic calculation showed that the void coefficients ranged from −0.6695443 % at BOC to −0.5273626 % at EOC for 500 MWt reactor. The void coefficients of Pb-208 more negative than Pb-nat. The results showed that the reactors with Pb-208 coolant have better level of safety than Pb-nat.

  13. Recent advances in the practical and accurate calculation of core and valence XPS spectra of polymers: From interpretation to simulation?

    NASA Astrophysics Data System (ADS)

    Bureau, Christophe; Chong, Delano P.; Endo, Kazunaka; Delhalle, Joseph; Lecayon, Gérard; Le Moël, Alain

    1997-08-01

    Core and valence X-ray Photoelectron Spectroscopies (XPS) are routinely used to obtain information on the chemical composition, bonding and homogeneity of polymer surfaces. In spite of their apparent conceptual simplicity, Core and Valence Electron Binding Energies (CEBEs and VEBEs) a few electron-volts (eV) or fractions of an eV apart are difficult to interpret. We present some results obtained with various recent theoretical approaches. An emphasis is made on a procedure based on the Density Functional Theory (DFT) that enables the calculation of CEBEs and VEBEs which are in remarkable agreement with experiment. The method has been tested on numerous small (3-6 atoms) to fairly large (15-25 atoms) molecules, and shows an average absolute deviation with experiment of only 0.20 eV for CEBEs and 0.30 eV for VEBEs, i.e. compatible with the resolution of the best XPS experiments carried out at the moment. Besides the quality of its predictions, the procedure takes advantage of the speed and CPU time scaling of DFT as a function of system size: it is computationally tractable, even for surprisingly large systems such as polymers, and may be an interesting accurate alternative to interpret and simulate XPS-probing on real systems. We illustrate the usefullness and pitfalls of this approach in fundamental as well as applied fields such as in the study of Polyacrylonitrile (PAN), Polytetrafluoroethylene (PTFE), Polyvinyldifluoride (PVdF) and γ-Aminopropyltriethoxysilane (γ-APS, an adhesion promoter).

  14. The Fork+ burnup measurement system: Design and first measurement campaign

    SciTech Connect

    Olson, C.E.; Bronowski, D.R.; McMurtry, W.; Ewing, R.; Jordan, R.; Rivard, D.

    1998-12-31

    Previous work with the original Fork detector showed that burnup as determined by reactor records could be accurately allocated to spent nuclear fuel assemblies. The original Fork detector, designed by Los Alamos National Laboratory, used an ion chamber to measure gross gamma count and a fission chamber to measure neutrons from an activation source, {sup 244}Cm. In its review of the draft Topical Report on Burnup Credit, the US Nuclear Regulatory Commission indicated it felt uncomfortable with a measurement system that depended on reactor records for calibration. The Fork+ system was developed at Sandia National Laboratories under the sponsorship of the Electric Power Research Institute with the aim of providing this independent measurement capability. The initial Fork+ prototype was used in a measurement campaign at the Maine Yankee reactor. The campaign confirmed the applicability of the sensor approach in the Fork+ system and the efficiency of the hand-portable Fork+ prototype in making fuel assembly measurements. It also indicated potential design modifications that will be necessary before the Fork+ can be used effectively on high-burnup spent fuel.

  15. Two-dimensional DORT discrete ordinates X-Y geometry neutron flux calculations for the Halden Heavy Boiling Water Reactor core configurations

    SciTech Connect

    Slater, C.O.

    1990-07-01

    Results are reported for two-dimensional discrete ordinates, X-Y geometry calculations performed for seven Halden Heavy Boiling Water Reactor core configurations. The calculations were performed in support of an effort to reassess the neutron fluence received by the reactor vessel. Nickel foil measurement data indicated considerable underprediction of fluences by the previously used multigroup removal- diffusion method. Therefore, calculations by a more accurate method were deemed appropriate. For each core configuration, data are presented for (1) integral fluxes in the core and near the vessel wall, (2) neutron spectra at selected locations, (3) isoflux contours superimposed on the geometry models, (4) plots of the geometry models, and (5) input for the calculations. The initial calculations were performed with several mesh sizes. Comparisons of the results from these calculations indicated that the uncertainty in the calculated fluxes should be less than 10%. However, three-dimensional effects (such as axial asymmetry in the fuel loading) could contribute to much greater uncertainty in the calculated neutron fluxes. 7 refs., 22 figs., 11 tabs.

  16. On the importance of thermodynamic self-consistency for calculating clusterlike pair correlations in hard-core double Yukawa fluids

    NASA Astrophysics Data System (ADS)

    Kim, Jung Min; Castañeda-Priego, Ramón; Liu, Yun; Wagner, Norman J.

    2011-02-01

    Understanding the mechanisms of clustering in colloids, nanoparticles, and proteins is of significant interest in material science and both chemical and pharmaceutical industries. Recently, using an integral equation theory formalism, Bomont et al. [J. Chem. Phys. 132, 184508 (2010)] studied theoretically the temperature dependence, at a fixed density, of the cluster formation in systems where particles interact with a hard-core double Yukawa potential composed of a short-range attraction and a long-range repulsion. In this paper, we provide evidence that the low-q peak in the static structure factor, frequently associated with the formation of clusters, is a common behavior in systems with competing interactions. In particular, we demonstrate that, based on a thermodynamic self-consistency criterion, accurate structural functions are obtained for different choices of closure relations. Moreover, we explore the dependence of the low-q peak on the particle number density, temperature, and potential parameters. Our findings indicate that enforcing thermodynamic self-consistency is the key factor to calculate both thermodynamic properties and static structure factors, including the low-q behavior, for colloidal dispersions with both attractive and repulsive interactions. Additionally, a simple analysis of the mean number of neighboring particles provides a qualitative description of some of the cluster features.

  17. Extended burnup fuel - a beneficial environmental step for the nuclear fuel cycle

    SciTech Connect

    Tulenko, J.S. )

    1992-01-01

    The beneficial environmental effects generated by extending the burnup of light water reactors (LWR) fuel covers the entire fuel cycle from cradle (mining) to grave (fuel disposal). The purpose of this paper is to outline the beneficial efforts of extending burnup and show how a proposed financial incentive waste charge would encourage the development and utilization of extended burnup. Environmental consciousness demands that economic incentives be implemented to encourage utilities to extend burnup of their LWR fuel. This paper builds on earlier work and focuses and extends their results. The cornerstone of the positive environmental effects of extended burnup results from the increased plutonium energy generation as burnup is increased and residence time is increased.

  18. Assessment of Fission Product Cross-Section Data for Burnup Credit Applications

    SciTech Connect

    Leal, Luiz C; Derrien, Herve; Dunn, Michael E; Mueller, Don

    2007-12-01

    Past efforts by the Department of Energy (DOE), the Electric Power Research Institute (EPRI), the Nuclear Regulatory Commission (NRC), and others have provided sufficient technical information to enable the NRC to issue regulatory guidance for implementation of pressurized-water reactor (PWR) burnup credit; however, consideration of only the reactivity change due to the major actinides is recommended in the guidance. Moreover, DOE, NRC, and EPRI have noted the need for additional scientific and technical data to justify expanding PWR burnup credit to include fission product (FP) nuclides and enable burnup credit implementation for boiling-water reactor (BWR) spent nuclear fuel (SNF). The criticality safety assessment needed for burnup credit applications will utilize computational analyses of packages containing SNF with FP nuclides. Over the years, significant efforts have been devoted to the nuclear data evaluation of major isotopes pertinent to reactor applications (i.e., uranium, plutonium, etc.); however, efforts to evaluate FP cross-section data in the resonance region have been less thorough relative to actinide data. In particular, resonance region cross-section measurements with corresponding R-matrix resonance analyses have not been performed for FP nuclides. Therefore, the objective of this work is to assess the status and performance of existing FP cross-section and cross-section uncertainty data in the resonance region for use in burnup credit analyses. Recommendations for new cross-section measurements and/or evaluations are made based on the data assessment. The assessment focuses on seven primary FP isotopes (103Rh, 133Cs, 143Nd, 149Sm, 151Sm, 152Sm, and 155Gd) that impact reactivity analyses of transportation packages and two FP isotopes (153Eu and 155Eu) that impact prediction of 155Gd concentrations. Much of the assessment work was completed in 2005, and the assessment focused on the latest FP cross-section evaluations available in the

  19. Nuclear Data Uncertainties for Typical LWR Fuel Assemblies and a Simple Reactor Core

    NASA Astrophysics Data System (ADS)

    Rochman, D.; Leray, O.; Hursin, M.; Ferroukhi, H.; Vasiliev, A.; Aures, A.; Bostelmann, F.; Zwermann, W.; Cabellos, O.; Diez, C. J.; Dyrda, J.; Garcia-Herranz, N.; Castro, E.; van der Marck, S.; Sjöstrand, H.; Hernandez, A.; Fleming, M.; Sublet, J.-Ch.; Fiorito, L.

    2017-01-01

    The impact of the current nuclear data library covariances such as in ENDF/B-VII.1, JEFF-3.2, JENDL-4.0, SCALE and TENDL, for relevant current reactors is presented in this work. The uncertainties due to nuclear data are calculated for existing PWR and BWR fuel assemblies (with burn-up up to 40 GWd/tHM, followed by 10 years of cooling time) and for a simplified PWR full core model (without burn-up) for quantities such as k∞, macroscopic cross sections, pin power or isotope inventory. In this work, the method of propagation of uncertainties is based on random sampling of nuclear data, either from covariance files or directly from basic parameters. Additionally, possible biases on calculated quantities are investigated such as the self-shielding treatment. Different calculation schemes are used, based on CASMO, SCALE, DRAGON, MCNP or FISPACT-II, thus simulating real-life assignments for technical-support organizations. The outcome of such a study is a comparison of uncertainties with two consequences. One: although this study is not expected to lead to similar results between the involved calculation schemes, it provides an insight on what can happen when calculating uncertainties and allows to give some perspectives on the range of validity on these uncertainties. Two: it allows to dress a picture of the state of the knowledge as of today, using existing nuclear data library covariances and current methods.

  20. A Feasibility Study to Determine Cooling Time and Burnup of ATR Fuel Using a Nondestructive Technique and Three Types of Gamma-ray Detectors

    SciTech Connect

    Jorge Navarro; Rahmat Aryaeinejad,; David W. Nigg

    2011-05-01

    A Feasibility Study to Determine Cooling Time and Burnup of ATR Fuel Using a Nondestructive Technique1 Rahmat Aryaeinejad, Jorge Navarro, and David W Nigg Idaho National Laboratory Abstract Effective and efficient Advanced Test Reactor (ATR) fuel management require state of the art core modeling tools. These new tools will need isotopic and burnup validation data before they are put into production. To create isotopic, burn up validation libraries and to determine the setup for permanent fuel scanner system a feasibility study was perform. The study consisted in measuring short and long cooling time fuel elements at the ATR canal. Three gamma spectroscopy detectors (HPGe, LaBr3, and HPXe) and two system configurations (above and under water) were used in the feasibility study. The first stage of the study was to investigate which detector and system configuration would be better suited for different scenarios. The second stage of the feasibility study was to create burnup and cooling time calibrations using experimental isotopic data collected and ORIGEN 2.2 burnup data. The results of the study establish that a better spectra resolution is achieve with an above the water configuration and that three detectors can be used in the permanent fuel scanner system for different situations. In addition it was conclude that a number of isotopic ratios and absolute measurements could be used to predict ATR fuel burnup and cooling times. 1This work was supported by the U.S. Depart¬ment of Energy (DOE) under Battelle Energy Alliance, LLC Contract No. DE-AC07-05ID14517.

  1. Gamma-Ray Simulated Spectrum Deconvolution of a LaBr₃ 1-in. x 1-in. Scintillator for Nondestructive ATR Fuel Burnup On-Site Predictions

    SciTech Connect

    Navarro, Jorge; Ring, Terry A.; Nigg, David W.

    2015-03-01

    A deconvolution method for a LaBr₃ 1"x1" detector for nondestructive Advanced Test Reactor (ATR) fuel burnup applications was developed. The method consisted of obtaining the detector response function, applying a deconvolution algorithm to 1”x1” LaBr₃ simulated, data along with evaluating the effects that deconvolution have on nondestructively determining ATR fuel burnup. The simulated response function of the detector was obtained using MCNPX as well with experimental data. The Maximum-Likelihood Expectation Maximization (MLEM) deconvolution algorithm was selected to enhance one-isotope source-simulated and fuel- simulated spectra. The final evaluation of the study consisted of measuring the performance of the fuel burnup calibration curve for the convoluted and deconvoluted cases. The methodology was developed in order to help design a reliable, high resolution, rugged and robust detection system for the ATR fuel canal capable of collecting high performance data for model validation, along with a system that can calculate burnup and using experimental scintillator detector data.

  2. Gamma-Ray Simulated Spectrum Deconvolution of a LaBr₃ 1-in. x 1-in. Scintillator for Nondestructive ATR Fuel Burnup On-Site Predictions

    DOE PAGES

    Navarro, Jorge; Ring, Terry A.; Nigg, David W.

    2015-03-01

    A deconvolution method for a LaBr₃ 1"x1" detector for nondestructive Advanced Test Reactor (ATR) fuel burnup applications was developed. The method consisted of obtaining the detector response function, applying a deconvolution algorithm to 1”x1” LaBr₃ simulated, data along with evaluating the effects that deconvolution have on nondestructively determining ATR fuel burnup. The simulated response function of the detector was obtained using MCNPX as well with experimental data. The Maximum-Likelihood Expectation Maximization (MLEM) deconvolution algorithm was selected to enhance one-isotope source-simulated and fuel- simulated spectra. The final evaluation of the study consisted of measuring the performance of the fuel burnup calibrationmore » curve for the convoluted and deconvoluted cases. The methodology was developed in order to help design a reliable, high resolution, rugged and robust detection system for the ATR fuel canal capable of collecting high performance data for model validation, along with a system that can calculate burnup and using experimental scintillator detector data.« less

  3. Lattice cell and full core physics of internally cooled annular fuel in heavy water moderated reactors

    SciTech Connect

    Armstrong, J.; Hamilton, H.; Hyland, B.

    2013-07-01

    A program is underway at Atomic Energy of Canada Limited (AECL) to develop a new fuel bundle concept to enable greater burnups for PT-HWR (pressure tube heavy water reactor) cores. One option that AECL is investigating is an internally cooled annular fuel (ICAF) element concept. ICAF contains annular cylindrical pellets with cladding on the inner and outer diameters. Coolant flows along the outside of the element and through the centre. With such a concept, the maximum fuel temperature as a function of linear element rating is significantly reduced compared to conventional, solid-rod type fuel. The preliminary ICAF bundle concept considered in this study contains 24 half-metre long internally cooled annular fuel elements and one non-fuelled centre pin. The introduction of the non-fuelled centre pin reduces the coolant void reactivity (CVR), which is the increase in reactivity that occurs on voiding the coolant in accident scenarios. Lattice cell and full core physics calculations of the preliminary ICAF fuel bundle concept have been performed for medium burnups of approximately 18 GWd/tU using WIMS-AECL and reactor fuel simulation program (RFSP). The results will be used to assist in concept configuration optimization. The effects of radial and axial core power distributions, linear element power ratings, refuelling rates and operational power ramps have been analyzed. The results suggest that burnups of greater than 18 GWd/tU can be achieved in current reactor designs. At approximately 18 GWd/tU, expected maximum linear element ratings in a PT-HWR with online-refuelling are approximately 90 kW/m. These conditions would be prohibitive for solid-rod fuel, but may be possible in ICAF fuel given the reduced maximum fuel temperature as a function of linear element rating. (authors)

  4. Impact of Reactor Operating Parameters on Cask Reactivity in BWR Burnup Credit

    SciTech Connect

    Ilas, Germina; Betzler, Benjamin R; Ade, Brian J

    2017-01-01

    This paper discusses the effect of reactor operating parameters used in fuel depletion calculations on spent fuel cask reactivity, with relevance for boiling-water reactor (BWR) burnup credit (BUC) applications. Assessments that used generic BWR fuel assembly and spent fuel cask configurations are presented. The considered operating parameters, which were independently varied in the depletion simulations for the assembly, included fuel temperature, bypass water density, specific power, and operating history. Different operating history scenarios were considered for the assembly depletion to determine the effect of relative power distribution during the irradiation cycles, as well as the downtime between cycles. Depletion, decay, and criticality simulations were performed using computer codes and associated nuclear data within the SCALE code system. Results quantifying the dependence of cask reactivity on the assembly depletion parameters are presented herein.

  5. Effects of microstructural constraints on the transport of fission products in uranium dioxide at low burnups

    NASA Astrophysics Data System (ADS)

    Lim, Harn Chyi; Rudman, Karin; Krishnan, Kapil; McDonald, Robert; Dickerson, Patricia; Gong, Bowen; Peralta, Pedro

    2016-08-01

    Diffusion of fission gases in UO2 is studied at low burnups, before bubble growth and coalescence along grain boundaries (GBs) become dominant, using a 3-D finite element model that incorporates actual UO2 microstructures. Grain boundary diffusivities are assigned based on crystallography with lattice and GB diffusion coupled with temperature to account for temperature gradients. Heterogeneity of GB properties and connectivity can induce regions where concentration is locally higher than without GB diffusion. These regions are produced by "bottlenecks" in the GB network because of lack of connectivity among high diffusivity GBs due to crystallographic constraints, and they can lead to localized swelling. Effective diffusivities were calculated assuming a uniform distribution of high diffusivity among GBs. Results indicate an increase over the bulk diffusivity with a clear grain size effect and that connectivity and properties of different GBs become important factors on the variability of fission product concentration at the microscale.

  6. Determination of nuclear fuel burn-up axial profile by neutron emission measurement

    NASA Astrophysics Data System (ADS)

    Prokopowicz, Rafal; Pytel, Krzysztof

    2016-12-01

    Burning-up of nuclear fuel is usually not a space-isotropic phenomenon. It depends on both the neutron flux density and energy spectrum distribution during fuel operation in a nuclear reactor. This paper presents the method of measurement of burn-up spatial distribution of spent nuclear fuel element. The method is based on recording of the neutron emission from investigated fuel element. Based on performed analyses and calculations, a suitable measuring setup has been designed and constructed. The subjects of investigation were fuel elements used in the MARIA research reactor, operated by National Centre for Nuclear Research in Świerk, Poland. The results of measurements made over a period of several years by means of the described method are presented in the paper.

  7. Neutron transport-burnup code MCORGS and its application in fusion fission hybrid blanket conceptual research

    NASA Astrophysics Data System (ADS)

    Shi, Xue-Ming; Peng, Xian-Jue

    2016-09-01

    Fusion science and technology has made progress in the last decades. However, commercialization of fusion reactors still faces challenges relating to higher fusion energy gain, irradiation-resistant material, and tritium self-sufficiency. Fusion Fission Hybrid Reactors (FFHR) can be introduced to accelerate the early application of fusion energy. Traditionally, FFHRs have been classified as either breeders or transmuters. Both need partition of plutonium from spent fuel, which will pose nuclear proliferation risks. A conceptual design of a Fusion Fission Hybrid Reactor for Energy (FFHR-E), which can make full use of natural uranium with lower nuclear proliferation risk, is presented. The fusion core parameters are similar to those of the International Thermonuclear Experimental Reactor. An alloy of natural uranium and zirconium is adopted in the fission blanket, which is cooled by light water. In order to model blanket burnup problems, a linkage code MCORGS, which couples MCNP4B and ORIGEN-S, is developed and validated through several typical benchmarks. The average blanket energy Multiplication and Tritium Breeding Ratio can be maintained at 10 and 1.15 respectively over tens of years of continuous irradiation. If simple reprocessing without separation of plutonium from uranium is adopted every few years, FFHR-E can achieve better neutronic performance. MCORGS has also been used to analyze the ultra-deep burnup model of Laser Inertial Confinement Fusion Fission Energy (LIFE) from LLNL, and a new blanket design that uses Pb instead of Be as the neutron multiplier is proposed. In addition, MCORGS has been used to simulate the fluid transmuter model of the In-Zinerater from Sandia. A brief comparison of LIFE, In-Zinerater, and FFHR-E will be given.

  8. New results from the NSRR experiments with high burnup fuel

    SciTech Connect

    Fuketa, Toyoshi; Ishijima, Kiyomi; Mori, Yukihide

    1996-03-01

    Results obtained in the NSRR power burst experiments with irradiated PWR fuel rods with fuel burnup up to 50 MWd/kgU are described and discussed in this paper. Data concerning test method, test fuel rod, pulse irradiation, transient records during the pulse and post irradiation examination are described, and interpretations and discussions on fission gas release and fuel pellet fragmentation are presented. During the pulse-irradiation experiment with 50 MWd/kgU PWR fuel rod, the fuel rod failed at considerably low energy deposition level, and large amount of fission gas release and fragmentation of fuel pellets were observed.

  9. KUGEL: a thermal, hydraulic, fuel performance, and gaseous fission product release code for pebble bed reactor core analysis

    SciTech Connect

    Shamasundar, B.I.; Fehrenbach, M.E.

    1981-05-01

    The KUGEL computer code is designed to perform thermal/hydraulic analysis and coated-fuel particle performance calculations for axisymmetric pebble bed reactor (PBR) cores. This computer code was developed as part of a Department of Energy (DOE)-funded study designed to verify the published core performance data on PBRs. The KUGEL code is designed to interface directly with the 2DB code, a two-dimensional neutron diffusion code, to obtain distributions of thermal power, fission rate, fuel burnup, and fast neutron fluence, which are needed for thermal/hydraulic and fuel performance calculations. The code is variably dimensioned so that problem size can be easily varied. An interpolation routine allows variable mesh size to be used between the 2DB output and the two-dimensional thermal/hydraulic calculations.

  10. Calculated Coupling Efficiency Between an Elliptical-Core Optical Fiber and a Silicon Oxynitride Rib Waveguide [Corrected Copy

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.; Beheim, Glenn

    1995-01-01

    The effective-index method and Marcatili's technique were utilized independently to calculate the electric field profile of a rib channel waveguide. Using the electric field profile calculated from each method, the theoretical coupling efficiency between a single-mode optical fiber and a rib waveguide was calculated using the overlap integral. Perfect alignment was assumed and the coupling efficiency calculated. The coupling efficiency calculation was then repeated for a range of transverse offsets.

  11. Calculation of magnetic field-induced current densities for humans from EAS countertop activation/deactivation devices that use ferromagnetic cores

    NASA Astrophysics Data System (ADS)

    Li, Qingxiang; Gandhi, Om P.

    2005-01-01

    Compliance testing of electronic article surveillance (EAS) devices requires that induced current densities in central nervous system (CNS) tissues, i.e. brain and the spinal cord, be less than the prescribed safety limits. Even though ferromagnetic cores are mostly used for activation/deactivation of embedded magnetic tags, assumed equivalent air-core coils with guessed increased number of ampere turns have always been used to calculate the magnetic fields for the proximal region to which a customer is exposed. We show that at low frequencies up to several kilohertz, duality of electric and magnetic circuits may be exploited such that the shaped high reluctance core is modelled as though it was a higher conductivity electric circuit of the corresponding shape. The proposed procedure is tested by examples of two magnetic cores typical of countertop activation/deactivation devices. The equivalent exposure magnetic fields obtained from the dual electric fields are shown to be in excellent agreement (within ±5%) with those measured for these ferromagnetic EAS devices. The previously proposed impedance method is then used to calculate the induced current densities for a 1.974 × 1.974 × 2.93 mm resolution anatomic model of a human. For the two considered EAS systems using excitation currents of 5000 A turns at 200 Hz, the maximum 1 cm2 area-averaged induced current densities in the CNS tissues are calculated and found to be less than the ICNIRP safety limits.

  12. Microstructural Characterization of High Burn-up Mixed Oxide Fast Reactor Fuel

    SciTech Connect

    Melissa C. Teague; Brian P. Gorman; Steven L. Hayes; Douglas L. Porter; Jeffrey King

    2013-10-01

    High burn-up mixed oxide fuel with local burn-ups of 3.4–23.7% FIMA (fissions per initial metal atom) were destructively examined as part of a research project to understand the performance of oxide fuel at extreme burn-ups. Optical metallography of fuel cross-sections measured the fuel-to-cladding gap, clad thickness, and central void evolution in the samples. The fuel-to-cladding gap closed significantly in samples with burn-ups below 7–9% FIMA. Samples with burn-ups in excess of 7–9% FIMA had a reopening of the fuel-to-cladding gap and evidence of joint oxide-gain (JOG) formation. Signs of axial fuel migration to the top of the fuel column were observed in the fuel pin with a peak burn-up of 23.7% FIMA. Additionally, high burn-up structure (HBS) was observed in the two highest burn-up samples (23.7% and 21.3% FIMA). The HBS layers were found to be 3–5 times thicker than the layers found in typical LWR fuel. The results of the study indicate that formation of JOG and or HBS prevents any significant fuel-cladding mechanical interaction from occurring, thereby extending the potential life of the fuel elements.

  13. Preliminary safety analysis of Pb-Bi cooled 800 MWt modified CANDLE burn-up scheme based fast reactors

    SciTech Connect

    Su'ud, Zaki; Sekimoto, H.

    2014-09-30

    Pb-Bi Cooled fast reactors with modified CANDLE burn-up scheme with 10 regions and 10 years cycle length has been investigated from neutronic aspects. In this study the safety aspect of such reactors have been investigated and discussed. Several condition of unprotected loss of flow (ULOF) and unprotected rod run-out transient over power (UTOP) have been simulated and the results show that the reactors excellent safety performance. At 80 seconds after unprotected loss of flow condition, the core flow rate drop to about 25% of its initial flow and slowly move toward its natural circulation level. The maximum fuel temperature can be managed below 1000°C and the maximum cladding temperature can be managed below 700°C. The dominant reactivity feedback is radial core expansion and Doppler effect, followed by coolant density effect and fuel axial expansion effect.

  14. Attainable Burnup in a LIFE Engine Loaded with Depleted Uranium

    SciTech Connect

    Fratoni, M; Kramer, K J; Latkowski, J F

    2009-11-30

    The Laser Inertial Fusion-based Energy (LIFE) system uses a laser-based fusion source for electricity production. The (D,T) reaction, beside a pure fusion system, allows the option to drive a sub-critical fission blanket in order to increase the total energy gain. In a typical fusion-fission LIFE engine the fission blanket is a spherical shell around the fusion source, preceded by a beryllium shell for neutron multiplications by means of (n,2n) reactions. The fuel is in the form of TRISO particles dispersed in carbon pebbles, cooled by flibe. The optimal design features 80 cm thick blanket, 16 cm multiplier, and 20% TRISO packing factor. A blanket loaded with depleted uranium and depleted in a single batch with continuous mixing can achieve burnup as high as {approx}85% FIMA while generating 2,000 MW of total thermal power and producing enough tritium to be used for fusion. A multi-segment blanket with a central promotion shuffling scheme enhances burnup to {approx}90% FIMA, whereas a blanket that is operated with continuous refueling achieves only 82% FIMA under the same constraints of thermal power and tritium self-sufficiency. Both, multi-segment and continuous refueling eliminate the need for a fissile breeding phase.

  15. Very High Temperature Reactor (VHTR) Deep Burn Core and Fuel Analysis -- Complete Design Selection for the Pebble Bed Reactor

    SciTech Connect

    B. Boer; A. M. Ougouag

    2010-09-01

    burnup level, while retaining its inherent safety characteristics. Using generic pebble bed reactor cores, this task will perform physics calculations to evaluate the capabilities of the pebble bed reactor to perform utilization and destruction of LWR used-fuel transuranics. The task will use established benchmarked models, and will introduce modeling advancements appropriate to the nature of the fuel considered (high TRU content and high burn-up).

  16. Study on Ultra-Long Life,Small U-Zr Metallic Fuelled Core With Burnable Poison

    SciTech Connect

    Kenji Tsuji; Hiromitsu Inagaki; Akira Nishikawa; Hisato Matsumiya; Yoshiaki Sakashita; Yasuyuki Moriki; Mitsuaki Yamaoka; Norihiko Handa

    2002-07-01

    A conceptual design for a 50 MWe sodium cooled, U-Pu-Zr metallic fuelled, fast reactor core, which aims at a core lifetime of 30 years, has been performed [1]. As for the compensation for a large burn-up reactivity through 30 years, an axially movable reflector, which is located around the core, carries the major part of it and a burnable poison does the rest. This concept has achieved not only a long core lifetime but also a high discharged burn-up. On this study, a conceptual design for a small fast reactor loading U-Zr metallic fuelled core instead of U-Pu-Zr fuelled core has been conducted, based on the original core arrangement of 4S reactor [2]. Within the range of this study including safety requirements, adopting the burnable poison would be effective to construct a core concept that achieves both a long lifetime and a high discharged burn-up. (authors)

  17. The burnup dependence of light water reactor spent fuel oxidation

    SciTech Connect

    Hanson, B.D.

    1998-07-01

    Over the temperature range of interest for dry storage or for placement of spent fuel in a permanent repository under the conditions now being considered, UO{sub 2} is thermodynamically unstable with respect to oxidation to higher oxides. The multiple valence states of uranium allow for the accommodation of interstitial oxygen atoms in the fuel matrix. A variety of stoichiometric and nonstoichiometric phases is therefore possible as the fuel oxidizers from UO{sub 2} to higher oxides. The oxidation of UO{sub 2} has been studied extensively for over 40 years. It has been shown that spent fuel and unirradiated UO{sub 2} oxidize via different mechanisms and at different rates. The oxidation of LWR spent fuel from UO{sub 2} to UO{sub 2.4} was studied previously and is reasonably well understood. The study presented here was initiated to determine the mechanism and rate of oxidation from UO{sub 2.4} to higher oxides. During the early stages of this work, a large variability in the oxidation behavior of samples oxidized under nearly identical conditions was found. Based on previous work on the effect of dopants on UO{sub 2} oxidation and this initial variability, it was hypothesized that the substitution of fission product and actinide impurities for uranium atoms in the spent fuel matrix was the cause of the variable oxidation behavior. Since the impurity concentration is roughly proportional to the burnup of a specimen, the oxidation behavior of spent fuel was expected to be a function of both temperature and burnup. This report (1) summarizes the previous oxidation work for both unirradiated UO{sub 2} and spent fuel (Section 2.2) and presents the theoretical basis for the burnup (i.e., impurity concentration) dependence of the rate of oxidation (Sections 2.3, 2.4, and 2.5), (2) describes the experimental approach (Section 3) and results (Section 4) for the current oxidation tests on spent fuel, and (3) establishes a simple model to determine the activation energies

  18. Shutdown-induced tensile stress in monolithic miniplates as a possible cause of plate pillowing at very high burnup

    SciTech Connect

    Medvedev, Pavel G; Ozaltun, Hakan; Robinson, Adam Brady; Rabin, Barry H

    2014-04-01

    Post-irradiation examination of Reduced Enrichment for Research and Test Reactors (RERTR)-12 miniplates showed that in-reactor pillowing occurred in at least 4 plates, rendering performance of these plates unacceptable. To address in-reactor failures, efforts are underway to define the mechanisms responsible for in-reactor pillowing, and to suggest improvements to the fuel plate design and operational conditions. To achieve these objectives, the mechanical response of monolithic fuel to fission and thermally-induced stresses was modeled using a commercial finite element analysis code. Calculations of stresses and deformations in monolithic miniplates during irradiation and after the shutdown revealed that the tensile stress generated in the fuel increased from 2 MPa to 100 MPa at shutdown. The increase in tensile stress at shutdown possibly explains in-reactor pillowing of several RERTR-12 miniplates irradiated to the peak local burnup of up to 1.11x1022 fissions/cm3 . This paper presents the modeling approach and calculation results, and compares results with post-irradiation examinations and mechanical testing of irradiated fuel. The implications for the safe use of the monolithic fuel in research reactors are discussed, including the influence of fuel burnup and power on the magnitude of the shutdown-induced tensile stress.

  19. Mechanical Fatigue Testing of High Burnup Fuel for Transportation Applications

    SciTech Connect

    Wang, Jy-An John; Wang, Hong

    2015-05-01

    This report describes testing designed to determine the ability of high burnup (HBU) (>45 GWd/MTU) spent fuel to maintain its integrity under normal conditions of transportation. An innovative system, Cyclic Integrated Reversible-bending Fatigue Tester (CIRFT), has been developed at Oak Ridge National Laboratory (ORNL) to test and evaluate the mechanical behavior of spent nuclear fuel (SNF) under conditions relevant to storage and transportation. The CIRFT system is composed of a U-frame equipped with load cells for imposing the pure bending loads on the SNF rod test specimen and measuring the in-situ curvature of the fuel rod during bending using a set up with three linear variable differential transformers (LVDTs).

  20. Assessment of reactivity transient experiments with high burnup fuel

    SciTech Connect

    Ozer, O.; Yang, R.L.; Rashid, Y.R.; Montgomery, R.O.

    1996-03-01

    A few recent experiments aimed at determining the response of high-burnup LWR fuel during a reactivity initiated accident (RIA) have raised concerns that existing failure criteria may be inappropriate for such fuel. In particular, three experiments (SPERT CDC-859, NSRR HBO-1 and CABRI REP Na-1) appear to have resulted in fuel failures at only a fraction of the anticipated enthalpy levels. In evaluating the results of such RIA simulation experiments, however, it is necessary that the following two key considerations be taken into account: (1) Are the experiments representative of conditions that LWR fuel would experience during an in-reactor RIA event? (2) Is the fuel that is being utilized in the tests representative of the present (or anticipated) population of LWR fuel? Conducting experiments under conditions that can not occur in-reactor can trigger response modes that could not take place during in-reactor operation. Similarly, using unrepresentative fuel samples for the tests will produce failure information that is of limited relevance to commercial LWR fuel. This is particularly important for high-burnup fuel since the manner under which the test samples are base-irradiated prior to the test will impact the mechanical properties of the cladding and will therefore affect the RIA response. A good example of this effect can be seen in the results of the SPERT CDC-859 test and in the NSRR JM-4 and JM-5 tests. The conditions under which the fuel used for these tests was fabricated and/or base-irradiated prior to the RIA pulse resulted in the formation of multiple cladding defects in the form of hydride blisters. When this fuel was subjected to the RIA power pulse, it failed by developing multiple cracks that were closely correlated with the locations of the pre-existing hydride blisters. In the case of the JM tests, many of the cracks formed within the blisters themselves and did not propagate beyond the heavily hydrided regions.

  1. Benchmark of Atucha-2 PHWR RELAP5-3D control rod model by Monte Carlo MCNP5 core calculation

    SciTech Connect

    Pecchia, M.; D'Auria, F.; Mazzantini, O.

    2012-07-01

    Atucha-2 is a Siemens-designed PHWR reactor under construction in the Republic of Argentina. Its geometrical complexity and peculiarities require the adoption of advanced Monte Carlo codes for performing realistic neutronic simulations. Therefore core models of Atucha-2 PHWR were developed using MCNP5. In this work a methodology was set up to collect the flux in the hexagonal mesh by which the Atucha-2 core is represented. The scope of this activity is to evaluate the effect of obliquely inserted control rod on neutron flux in order to validate the RELAP5-3D{sup C}/NESTLE three dimensional neutron kinetic coupled thermal-hydraulic model, applied by GRNSPG/UNIPI for performing selected transients of Chapter 15 FSAR of Atucha-2. (authors)

  2. Efficiency and accuracy of the perturbation response coefficient generation method for whole core comet calculations in BWR and CANDU configurations

    SciTech Connect

    Zhang, D.; Rahnema, F.

    2013-07-01

    The coarse mesh transport method (COMET) is a highly accurate and efficient computational tool which predicts whole-core neutronics behaviors for heterogeneous reactor cores via a pre-computed eigenvalue-dependent response coefficient (function) library. Recently, a high order perturbation method was developed to significantly improve the efficiency of the library generation method. In that work, the method's accuracy and efficiency was tested in a small PWR benchmark problem. This paper extends the application of the perturbation method to include problems typical of the other water reactor cores such as BWR and CANDU bundles. It is found that the response coefficients predicted by the perturbation method for typical BWR bundles agree very well with those directly computed by the Monte Carlo method. The average and maximum relative errors in the surface-to-surface response coefficients are 0.02%-0.05% and 0.06%-0.25%, respectively. For CANDU bundles, the corresponding quantities are 0.01%-0.05% and 0.04% -0.15%. It is concluded that the perturbation method is highly accurate and efficient with a wide range of applicability. (authors)

  3. A highly heterogeneous 3D PWR core benchmark: deterministic and Monte Carlo method comparison

    NASA Astrophysics Data System (ADS)

    Jaboulay, J.-C.; Damian, F.; Douce, S.; Lopez, F.; Guenaut, C.; Aggery, A.; Poinot-Salanon, C.

    2014-06-01

    Physical analyses of the LWR potential performances with regards to the fuel utilization require an important part of the work dedicated to the validation of the deterministic models used for theses analyses. Advances in both codes and computer technology give the opportunity to perform the validation of these models on complex 3D core configurations closed to the physical situations encountered (both steady-state and transient configurations). In this paper, we used the Monte Carlo Transport code TRIPOLI-4®; to describe a whole 3D large-scale and highly-heterogeneous LWR core. The aim of this study is to validate the deterministic CRONOS2 code to Monte Carlo code TRIPOLI-4®; in a relevant PWR core configuration. As a consequence, a 3D pin by pin model with a consistent number of volumes (4.3 millions) and media (around 23,000) is established to precisely characterize the core at equilibrium cycle, namely using a refined burn-up and moderator density maps. The configuration selected for this analysis is a very heterogeneous PWR high conversion core with fissile (MOX fuel) and fertile zones (depleted uranium). Furthermore, a tight pitch lattice is selcted (to increase conversion of 238U in 239Pu) that leads to harder neutron spectrum compared to standard PWR assembly. In these conditions two main subjects will be discussed: the Monte Carlo variance calculation and the assessment of the diffusion operator with two energy groups for the core calculation.

  4. Temperature and burnup correlated fuel-cladding chemical interaction in U-10ZR metallic fuel

    NASA Astrophysics Data System (ADS)

    Carmack, William J.

    Metallic fuels are proposed for use in advanced sodium cooled fast reactors and provide a number of advantages over other fuel types considering their fabricability, performance, recyclability, and safety. Resistance to cladding "breach" and subsequent release of fission products and fuel constituents to the nuclear power plant primary coolant system is a key performance parameter for a nuclear fuel system. In metallic fuel, FCCI weakens the cladding, especially at high power-high temperature operation, contributing to fuel pin breach. Empirical relationships for FCCI have been developed from a large body of data collected from in-pile (EBR-II) and out-of-pile experiments [1]. However, these relationships are unreliable in predicting FCCI outside the range of EBR-II experimental data. This dissertation examines new FCCI data extracted from the MFF-series of prototypic length metallic fuel irradiations performed in the Fast Flux Test Facility (FFTF). The fuel in these assemblies operated a temperature and burnup conditions similar to that in EBR-II but with axial fuel height three times longer than EBR-II experiments. Comparing FCCI formation data from FFTF and EBR-II provides new insight into FCCI formation kinetics. A model is developed combining both production and diffusion of lanthanides to the fuel-cladding interface and subsequent reaction with the cladding. The model allows these phenomena to be influenced by fuel burnup (lanthanide concentrations) and operating temperature. Parameters in the model are adjusted to reproduce measured FCCI layer thicknesses from EBR-II and FFTF. The model predicts that, under appropriate conditions, rate of FCCI formation can be controlled by either fission product transport or by the reaction rate of the interaction species at the fuel-cladding interface. This dissertation will help forward the design of metallic fuel systems for advanced sodium cooled fast reactors by allowing the prediction of FCCI layer formation in full

  5. High frequency acoustic microscopy for the determination of porosity and Young's modulus in high burnup uranium dioxide nuclear fuel

    SciTech Connect

    Marchetti, M.; Laux, D.; Cappia, F.; Laurie, M.; Van Uffelen, P.; Rondinella, V.V.; Despaux, G.

    2015-07-01

    During irradiation UO{sub 2} nuclear fuel experiences the development of a non-uniform distribution of porosity which contributes to establish varying mechanical properties along the radius of the pellet. Radial variations of the porosity and of elastic properties in high burnup UO{sub 2} pellet can be investigated via high frequency acoustic microscopy. Ultrasound waves are generated by a piezoelectric transducer and focused on the sample, after having travelled through a coupling liquid. The elastic properties of the material are related to the velocity of the generated Rayleigh surface wave (VR). A 67 MWd/kgU UO{sub 2} pellet was characterized using the acoustic microscope installed in the hot cells of the Institute of Transuranium Elements: 90 MHz frequency was applied, methanol was used as coupling liquid and VR was measured at different radial positions. By comparing the porosity values obtained via acoustic microscopy with those determined using ceramographic image analysis a good agreement was found, especially in the areas close to the centre. In addition Young's modulus was calculated and its radial profile was correlated to the corresponding burnup profile. (authors)

  6. Development of Technical Basis for Burnup Credit Regulatory Guidance in the United States

    SciTech Connect

    Parks, Cecil V; Wagner, John C; Mueller, Don; Gauld, Ian C

    2011-01-01

    In the United States (U.S.) there has been and continues to be considerable interest in the increased use of burnup credit as part of the safety basis for SNF systems and this interest has motivated numerous technical studies related to the application of burnup credit for maintaining subcriticality. Responding to industry requests and needs, the U.S. Nuclear Regulatory Commission initiated a burnup credit research program, with support from the Oak Ridge National Laboratory, to develop regulatory guidance and the supporting technical basis for allowing and expanding the use of burnup credit in pressurized-water reactor SNF storage and transport applications. The objective of this paper is to summarize the work and significant accomplishments, with references to the technical reports and publications for complete details.

  7. First-principles core-level X-ray photoelectron spectroscopy calculation on arsenic defects in silicon crystal

    SciTech Connect

    Kishi, Hiroki; Miyazawa, Miki; Matsushima, Naoki; Yamauchi, Jun

    2014-02-21

    We investigate the X-ray photoelectron spectroscopy (XPS) binding energies of As 3d in Si for various defects in neutral and charged states by first-principles calculation. It is found that the complexes of a substitutional As and a vacancy in charged and neutral states explain the experimentally observed unknown peak very well.

  8. French investigations of high burnup effect on LOCA thermomecanical behavior. Part two. Oxidation and quenching experiments under simulated LOCA conditions with high burnup clad material

    SciTech Connect

    GrandJean, C.; Cauvin, R.; Lebuffe, C.

    1997-01-01

    In the frame of the high burnup fuel studies to support a possible extension of the current discharge burnup limit, experimental programs have been undertaken, jointly by EDF and IPSN in order to study the thermal-shock behavior of high burnup fuel claddings under typical LOCA conditions. The TAGUS program used unirradiated cladding samples, bare or bearing a pre-corrosion state simulating the end-of-life state of high burnup fuel claddings: the TAGCIR program used actually irradiated cladding samples taken from high burnup rods irradiated over 5 cycles in a commercial EDF PWR and having reached a rod burnup close to 60 GWd/tU. The thermal-shock failure tests consisted in oxidizing the cladding samples under steam flow, on both inner and outer faces or on the outer face alone, and subjecting them to a final water quench. The heating was provided by an inductive furnace the power of which being regulated through monitoring of the sample surface temperature with use of a single-wave optical pyrometer. Analysis of the irradiated tests (TAGCIR series) evidenced an increased oxidation rate as compared to similar tests on unirradiated samples. Results of the quenching tests series on unirradiated and irradiated samples are plotted under the usual presentation of failure maps relative to the oxidation parameters ECR (equivalent cladding reacted) or e{sub {beta}} (thickness of the remaining beta phase layer) as a function of the oxidation temperature. Comparison of the failure limits for irradiated specimens to those for unirradiated specimens indicates a lower brittleness under two side oxidation and possibly the opposite under one-side oxidation. The tentative analysis of the oxidation and quenching tests results on irradiated samples reveals the important role played by the hydrogen charged during in-reactor corrosion on the oxidation kinetics and the failure bearing capability of the cladding under LOCA transient conditions.

  9. High Burnup Effects Program A State-of-the-Technology Assessment

    SciTech Connect

    Rising, K. H.; Bradley, E. R.; Williford, R. E.; Freshley, M D.

    1982-06-01

    Various analytical models and empirical correlations describing the fission gas release phenomenon were examined. An evaluation was made of the current pertinent experimental data on the subject of high burnup fission gas release. Data reported by individual investigators were compared and evaluated in relation to their applicability to the content and scope of the High Burnup Effects Program. These evaluations then form the bases for defining the data needs, and the selection of variables to be studied in this program.

  10. LWR fuel-cycle costs as a function of burnup. Final report

    SciTech Connect

    Franks, W.; Goldstein, L.; Joseph, L.; Nikmohammadian, N.

    1984-11-01

    Utilities may be able to decrease fuel-cycle costs as much as 5% in PWRs and 6% in BWRs by increasing discharge burnup to optimum practical limits. With one exception, this analysis of 12- and 18-month fuel cycles indicated a potential for still further cost reductions at higher burnup rates than those considered (39 GWd/MtU for BWRs and 55 GWd/MtU for PWRs).

  11. WIMS/PANTHER analysis of UO{sub 2}/MOX cores using embedded super-cells

    SciTech Connect

    Knight, M.; Bryce, P.; Hall, S.

    2012-07-01

    This paper describes a method of analysing PWR UO{sub 2}MOX cores with WIMS/PANTHER. Embedded super-cells, run within the reactor code, are used to correct the standard methodology of using 2-group smeared data from single assembly lattice calculations. In many other codes the weakness of this standard approach has been improved for MOX by imposing a more realistic environment in the lattice code, or by improving the sophistication of the reactor code. In this approach an intermediate set of calculations is introduced, leaving both lattice and reactor calculations broadly unchanged. The essence of the approach is that the whole core is broken down into a set of 'embedded' super-cells, each extending over just four quarter assemblies, with zero leakage imposed at the assembly mid-lines. Each supercell is solved twice, first with a detailed multi-group pin-by-pin solution, and then with the standard single assembly approach. Correction factors are defined by comparing the two solutions, and these can be applied in whole core calculations. The restriction that all such calculations are modelled with zero leakage means that they are independent of each other and of the core-wide flux shape. This allows parallel pre-calculation for the entire cycle once the loading pattern has been determined, in much the same way that single assembly lattice calculations can be pre-calculated once the range of fuel types is known. Comparisons against a whole core pin-by-pin reference demonstrates that the embedding process does not introduce a significant error, even after burnup and refuelling. Comparisons against a WIMS reference demonstrate that a pin-by-pin multi-group diffusion solution is capable of capturing the main interface effects. This therefore defines a practical approach for achieving results close to lattice code accuracy, but broadly at the cost of a standard reactor calculation. (authors)

  12. Calculation of Design Parameters for an Equilibrium LEU Core in the NBSR using a U7Mo Dispersion Fuel

    SciTech Connect

    Hanson A. L.; Diamond D.

    2014-06-30

    A plan is being developed for the conversion of the NIST research reactor (NBSR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. The LEU fuel may be a monolithic foil (LEUm) of U10Mo (10% molybdenum by weight in an alloy with uranium) or a dispersion of U7Mo in aluminum (LEUd). A previous report provided neutronic calculations for the LEUm fuel and this report presents the neutronics parameters for the LEUd fuel. The neutronics parameters for the LEUd fuel are compared to those previously obtained for the present HEU fuel and the proposed LEUm fuel. The results show no significant differences between the LEUm and the LEUd other than the LEUd fuel requires slightly less uranium than the LEUm fuel due to less molybdenum being present. The calculations include kinetics parameters, reactivity coefficients, reactivity worths of control elements and abnormal configurations, and power distributions under normal operation and with misloaded fuel elements.

  13. Global variance reduction for Monte Carlo reactor physics calculations

    SciTech Connect

    Zhang, Q.; Abdel-Khalik, H. S.

    2013-07-01

    Over the past few decades, hybrid Monte-Carlo-Deterministic (MC-DT) techniques have been mostly focusing on the development of techniques primarily with shielding applications in mind, i.e. problems featuring a limited number of responses. This paper focuses on the application of a new hybrid MC-DT technique: the SUBSPACE method, for reactor analysis calculation. The SUBSPACE method is designed to overcome the lack of efficiency that hampers the application of MC methods in routine analysis calculations on the assembly level where typically one needs to execute the flux solver in the order of 10{sup 3}-10{sup 5} times. It places high premium on attaining high computational efficiency for reactor analysis application by identifying and capitalizing on the existing correlations between responses of interest. This paper places particular emphasis on using the SUBSPACE method for preparing homogenized few-group cross section sets on the assembly level for subsequent use in full-core diffusion calculations. A BWR assembly model is employed to calculate homogenized few-group cross sections for different burn-up steps. It is found that using the SUBSPACE method significant speedup can be achieved over the state of the art FW-CADIS method. While the presented speed-up alone is not sufficient to render the MC method competitive with the DT method, we believe this work will become a major step on the way of leveraging the accuracy of MC calculations for assembly calculations. (authors)

  14. Investigation of the Performance of D2O-Cooled High-Conversion Reactors for Fuel Cycle Calculations

    SciTech Connect

    Hikaru Hiruta; Gilles Youinou

    2013-09-01

    This report presents FY13 activities for the analysis of D2O cooled tight-pitch High-Conversion PWRs (HCPWRs) with U-Pu and Th-U fueled cores aiming at break-even or near breeder conditions while retaining the negative void reactivity. The analyses are carried out from several aspects which could not be covered in FY12 activities. SCALE 6.1 code system is utilized, and a series of simple 3D fuel pin-cell models are developed in order to perform Monte Carlo based criticality and burnup calculations. The performance of U-Pu fueled cores with axial and internal blankets is analyzed in terms of their impact on the relative fissile Pu mass balance, initial Pu enrichment, and void coefficient. In FY12, Pu conversion performances of D2O-cooled HCPWRs fueled with MOX were evaluated with small sized axial/internal DU blankets (approximately 4cm of axial length) in order to ensure the negative void reactivity, which evidently limits the conversion performance of HCPWRs. In this fiscal year report, the axial sizes of DU blankets are extended up to 30 cm in order to evaluate the amount of DU necessary to reach break-even and/or breeding conditions. Several attempts are made in order to attain the milestone of the HCPWR designs (i.e., break-even condition and negative void reactivity) by modeling of HCPWRs under different conditions such as boiling of D2O coolant, MOX with different 235U enrichment, and different target burnups. A similar set of analyses are performed for Th-U fueled cores. Several promising characteristics of 233U over other fissile like 239Pu and 235U, most notably its higher fission neutrons per absorption in thermal and epithermal ranges combined with lower ___ in the fast range than 239Pu allows Th-U cores to be taller than MOX ones. Such an advantage results in 4% higher relative fissile mass balance than that of U-Pu fueled cores while retaining the negative void reactivity until the target burnup of 51 GWd/t. Several other distinctions between U-Pu and

  15. Two-component relativistic density-functional calculations of the dimers of the halogens from bromine through element 117 using effective core potential and all-electron methods.

    PubMed

    Mitin, Alexander V; van Wüllen, Christoph

    2006-02-14

    A two-component quasirelativistic Hamiltonian based on spin-dependent effective core potentials is used to calculate ionization energies and electron affinities of the heavy halogen atom bromine through the superheavy element 117 (eka-astatine) as well as spectroscopic constants of the homonuclear dimers of these atoms. We describe a two-component Hartree-Fock and density-functional program that treats spin-orbit coupling self-consistently within the orbital optimization procedure. A comparison with results from high-order Douglas-Kroll calculations--for the superheavy systems also with zeroth-order regular approximation and four-component Dirac results--demonstrates the validity of the pseudopotential approximation. The density-functional (but not the Hartree-Fock) results show very satisfactory agreement with theoretical coupled cluster as well as experimental data where available, such that the theoretical results can serve as an estimate for the hitherto unknown properties of astatine, element 117, and their dimers.

  16. An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses--Criticality (keff) Predictions

    SciTech Connect

    Scaglione, John M; Mueller, Don; Wagner, John C

    2011-01-01

    One of the most significant remaining challenges associated with expanded implementation of burnup credit in the United States is the validation of depletion and criticality calculations used in the safety evaluation - in particular, the availability and use of applicable measured data to support validation, especially for fission products. Applicants and regulatory reviewers have been constrained by both a scarcity of data and a lack of clear technical basis or approach for use of the data. U.S. Nuclear Regulatory Commission (NRC) staff have noted that the rationale for restricting their Interim Staff Guidance on burnup credit (ISG-8) to actinide-only is based largely on the lack of clear, definitive experiments that can be used to estimate the bias and uncertainty for computational analyses associated with using burnup credit. To address the issue of validation, the NRC initiated a project with the Oak Ridge National Laboratory to (1) develop and establish a technically sound validation approach (both depletion and criticality) for commercial spent nuclear fuel (SNF) criticality safety evaluations based on best-available data and methods and (2) apply the approach for representative SNF storage and transport configurations/conditions to demonstrate its usage and applicability, as well as to provide reference bias results. The purpose of this paper is to describe the criticality (k{sub eff}) validation approach, and resulting observations and recommendations. Validation of the isotopic composition (depletion) calculations is addressed in a companion paper at this conference. For criticality validation, the approach is to utilize (1) available laboratory critical experiment (LCE) data from the International Handbook of Evaluated Criticality Safety Benchmark Experiments and the French Haut Taux de Combustion (HTC) program to support validation of the principal actinides and (2) calculated sensitivities, nuclear data uncertainties, and the limited available fission

  17. Technical Data to Justify Full Burnup Credit in Criticality Safety Licensing Analysis

    SciTech Connect

    Enercon Services, Inc.

    2011-03-14

    Enercon Services, Inc. (ENERCON) was requested under Task Order No.2 to identify scientific and technical data needed to benchmark and justify Full Burnup Credit, which adds 16 fission products and 4 minor actinides1 to Actinide-Only burnup credit. The historical perspective for Full Burnup Credit is discussed, and interviews of organizations participating in burnup credit activities are summarized as a basis for identifying additional data needs and making recommendation. Input from burnup credit participants representing two segments of the commercial nuclear industry is provided. First, the Electric Power Research Institute (EPRI) has been very active in the development of Full Burnup Credit, representing the interests of nuclear utilities in achieving capacity gains for storage and transport casks. EPRI and its utility customers are interested in a swift resolution of the validation issues that are delaying the implementation of Full Burnup Credit [EPRI 2010b]. Second, used nuclear fuel storage and transportation Cask Vendors favor improving burnup credit beyond Actinide-Only burnup credit, although their discussion of specific burnup credit achievements and data needs was limited citing business sensitive and technical proprietary concerns. While Cask Vendor proprietary items are not specifically identified in this report, the needs of all nuclear industry participants are reflected in the conclusions and recommendations of this report. In addition, Oak Ridge National Laboratory (ORNL) and Sandia National Laboratory (SNL) were interviewed for their input into additional data needs to achieve Full Burnup Credit. ORNL was very open to discussions of Full Burnup Credit, with several telecoms and a visit by ENERCON to ORNL. For many years, ORNL has provided extensive support to the NRC regarding burnup credit in all of its forms. Discussions with ORNL focused on potential resolutions to the validation issues for the use of fission products. SNL was helpful in

  18. High Burn-Up Spent Nuclear Fuel Vibration Integrity Study

    SciTech Connect

    Wang, Jy-An John; Wang, Hong; Jiang, Hao; Bevard, Bruce Balkcom; Howard, Rob L; Scaglione, John M

    2015-01-01

    The Oak Ridge National Laboratory (ORNL) has developed the cyclic integrated reversible-bending fatigue tester (CIRFT) approach to successfully demonstrate the controllable fatigue fracture on high burnup (HBU) spent nuclear fuel (SNF) in a normal vibration mode. CIRFT enables examination of the underlying mechanisms of SNF system dynamic performance. Due to the inhomogeneous composite structure of the SNF system, the detailed mechanisms of the pellet-pellet and pellet-clad interactions and the stress concentration effects at the pellet-pellet interface cannot be readily obtained from a CIRFT system measurement. Therefore, finite element analyses (FEAs) are used to translate the global moment-curvature measurement into local stress-strain profiles for further investigation. The major findings of CIRFT on the HBU SNF are as follows: SNF system interface bonding plays an important role in SNF vibration performance. Fuel structure contributes to SNF system stiffness. There are significant variations in stress and curvature of SNF systems during vibration cycles resulting from segment pellets and clad interactions. SNF failure initiates at the pellet-pellet interface region and appears to be spontaneous.

  19. Fuel Burnup and Fuel Pool Shielding Analysis for Bushehr Nuclear Reactor VVER-1000

    NASA Astrophysics Data System (ADS)

    Hadad, Kamal; Ayobian, Navid

    Bushehr Nuclear power plant (BNPP) is currently under construction. The VVER-1000 reactor will be loaded with 126 tons of about 4% enriched fuel having 3-years life cycle. The spent fuel (SF) will be transferred into the spent fuel pool (SPF), where it stays for 8 years before being transferred to Russia. The SPF plays a crucial role during 8 years when the SP resides in there. This paper investigates the shielding of this structure as it is designed to shield the SF radiation. In this study, the SF isotope inventory, for different cycles and with different burnups, was calculated using WIMS/4D transport code. Using MCNP4C nuclear code, the intensity of γ rays was obtained in different layers of SFP shields. These layers include the water above fuel assemblies (FA) in pool, concrete wall of the pool and water laid above transferring fuels. Results show that γ rays leakage from the shield in the mentioned layers are in agreement with the plant's PSAR data. Finally we analyzed an accident were the water height above the FA in the pool drops to 47 cm. In this case it was observed that exposure dose above pool, 10 and 30 days from the accident, are still high and in the levels of 1000 and 758 R/hr.

  20. sp2/sp3 hybridization ratio in amorphous carbon from C 1s core-level shifts: X-ray photoelectron spectroscopy and first-principles calculation

    NASA Astrophysics Data System (ADS)

    Haerle, Rainer; Riedo, Elisa; Pasquarello, Alfredo; Baldereschi, Alfonso

    2002-01-01

    Using a combined experimental and theoretical approach, we address C 1s core-level shifts in amorphous carbon. Experimental results are obtained by x-ray photoelectron spectroscopy (XPS) and electron-energy-loss spectroscopy (EELS) on thin-film samples of different atomic density, obtained by a pulsed-laser deposition growth process. The XPS spectra are deconvoluted into two contributions, which are attributed to sp2- and sp3-hybridized atoms, respectively, separated by 0.9 eV, independent of atomic density. The sp3 hybridization content extracted from XPS is consistent with the atomic density derived from the plasmon energy in the EELS spectrum. In our theoretical study, we generate several periodic model structures of amorphous carbon of different densities applying two schemes of increasing accuracy in sequence. We first use a molecular-dynamics approach, based on an environmental-dependent tight-binding Hamiltonian to quench the systems from the liquid phase. The final model structures are then obtained by further atomic relaxation using a first-principles pseudopotential plane-wave approach within density-functional theory. Within the latter framework, we also calculate carbon 1s core-level shifts for our disordered model structures. We find that the shifts associated to threefold- and fourfold- coordinated carbon atoms give rise to two distinct peaks separated by about 1.0 eV, independent of density, in close agreement with experimental observations. This provides strong support for decomposing the XPS spectra into two peaks resulting from sp2- and sp3-hybridized atoms. Core-hole relaxations effects account for about 30% of the calculated shifts.

  1. NICIL: A Stand Alone Library to Self-Consistently Calculate Non-Ideal Magnetohydrodynamic Coefficients in Molecular Cloud Cores

    NASA Astrophysics Data System (ADS)

    Wurster, James

    2016-09-01

    In this paper, we introduce Nicil: Non-Ideal magnetohydrodynamics Coefficients and Ionisation Library. Nicil is a stand-alone Fortran90 module that calculates the ionisation values and the coefficients of the non-ideal magnetohydrodynamics terms of Ohmic resistivity, the Hall effect, and ambipolar diffusion. The module is fully parameterised such that the user can decide which processes to include and decide upon the values of the free parameters, making this a versatile and customisable code. The module includes both cosmic ray and thermal ionisation; the former includes two ion species and three species of dust grains (positively charged, negatively charged, and neutral), and the latter includes five elements which can be doubly ionised. We demonstrate tests of the module, and then describe how to implement it into an existing numerical code.

  2. Calculation and comparison of xenon and samarium reactivities of the HEU, LEU core in the low power research reactor.

    PubMed

    Dawahra, S; Khattab, K; Saba, G

    2015-07-01

    Comparative studies for the conversion of the fuel from HEU to LEU in the Miniature Neutron Source Reactor (MNSR) have been performed using the MCNP4C and GETERA codes. The precise calculations of (135)Xe and (149)Sm concentrations and reactivities were carried out and compared during the MNSR operation time and after shutdown for the existing HEU fuel (UAl4-Al, 90% enriched) and the potential LEU fuels (U3Si2-Al, U3Si-Al, U9Mo-Al, 19.75% enriched and UO2, 12.6% enriched) in this paper using the MCNP4C and GETERA codes. It was found that the (135)Xe and (149)Sm reactivities did not reach their equilibrium reactivities during the daily operating time of the reactor. The (149)Sm reactivities could be neglected compared to (135)Xe reactivities during the reactor operating time and after shutdown. The calculations for the UAl4-Al produced the highest (135)Xe reactivity in all the studied fuel group during the reactor operation (0.39 mk) and after the reactor shutdown (0.735 mk), It followed by U3Si-Al (0.34 mk, 0.653 mk), U3Si2-Al (0.33 mk, 0.634 mk), U9Mo-Al (0.3 mk, 0.568 mk) and UO2 (0.24 mk, 0.448 mk) fuels, respectively. Finally, the results showed that the UO2 was the best candidate for fuel conversion to LEU in the MNSR since it gave the lowest (135)Xe reactivity during the reactor operation and after shutdown.

  3. Contribution of fuel vibrations to ex-core neutron noise during the first and second fuel cycles of the Sequoyah-1 pressurized water reactor

    SciTech Connect

    Sweeney, F.J.; March-Leuba, J.; Smith, C.M.

    1984-01-01

    Noise measurements were performed during the first and second fuel cycles of the Sequoyah-1 pressurized water reactor (PWR) to observe long-term changes in the ex-core neutron signatures. Increases in the ex-core neutron noise amplitude were observed throughout the 0.1- to 50.0-Hz range. In-core noise measurements indicate that fuel assembly vibrations contribute significantly to the ex-core neutron noise at nearly all frequencies in this range, probably due to mechanical or acoustic coupling with other vibrating internal structures. Space-dependent kinetics calculations show that ex-core neutron noise induced by fixed-amplitude fuel assembly vibrations will increase over a fuel cycle because of soluble boron and fuel concentration changes associated with burnup. These reactivity effects can also lead to 180/sup 0/ phase shifts between cross-core detectors. We concluded that it may be difficult to separate the changes in neutron noise due to attenuation (shielding) effects of structural vibrations from changes due to reactivity effects of fuel assembly motion on the basis of neutron noise amplitude or phase information. Amplitudes of core support barrel vibrations inferred from ex-core neutron noise measurements using calculated scale factors are likely to have a high degree of uncertainty, since these scale factors usually do not account for neutron noise generated by fuel assembly vibrations. Modifications in fuel management or design may also lead to altered neutron noise signature behavior over a fuel cycle.

  4. New high burnup fuel models for NRC`s licensing audit code, FRAPCON

    SciTech Connect

    Lanning, D.D.; Beyer, C.E.; Painter, C.L.

    1996-03-01

    Fuel behavior models have recently been updated within the U.S. Nuclear Regulatory Commission steady-state FRAPCON code used for auditing of fuel vendor/utility-codes and analyses. These modeling updates have concentrated on providing a best estimate prediction of steady-state fuel behavior up to the maximum burnup level s of current data (60 to 65 GWd/MTU rod-average). A decade has passed since these models were last updated. Currently, some U.S. utilities and fuel vendors are requesting approval for rod-average burnups greater than 60 GWd/MTU; however, until these recent updates the NRC did not have valid fuel performance models at these higher burnup levels. Pacific Northwest Laboratory (PNL) has reviewed 15 separate effects models within the FRAPCON fuel performance code (References 1 and 2) and identified nine models that needed updating for improved prediction of fuel behavior at high burnup levels. The six separate effects models not updated were the cladding thermal properties, cladding thermal expansion, cladding creepdown, fuel specific heat, fuel thermal expansion and open gap conductance. Comparison of these models to the currently available data indicates that these models still adequately predict the data within data uncertainties. The nine models identified as needing improvement for predicting high-burnup behavior are fission gas release (FGR), fuel thermal conductivity (accounting for both high burnup effects and burnable poison additions), fuel swelling, fuel relocation, radial power distribution, fuel-cladding contact gap conductance, cladding corrosion, cladding mechanical properties and cladding axial growth. Each of the updated models will be described in the following sections and the model predictions will be compared to currently available high burnup data.

  5. Investigation of the Effect of Fixed Absorbers on the Reactivity of PWR Spent Nuclear Fuel for Burnup Credit

    SciTech Connect

    Wagner, John C.; Sanders, Charlotta E.

    2002-08-15

    The effect of fixed absorbers on the reactivity of pressurized water reactor (PWR) spent nuclear fuel (SNF) in support of burnup-credit criticality safety analyses is examined. A fuel assembly burned in conjunction with fixed absorbers may have a higher reactivity for a given burnup than an assembly that has not used fixed absorbers. As a result, guidance on burnup credit, issued by the U.S. Nuclear Regulatory Commission's Spent Fuel Project Office, recommends restricting the use of burnup credit to assemblies that have not used burnable absorbers. This recommendation eliminates a large portion of the currently discharged SNF from loading in burnup credit casks and thus severely limits the practical usefulness of burnup credit. Therefore, data are needed to support the extension of burnup credit to additional SNF. This research investigates the effect of various fixed absorbers, including integral burnable absorbers, burnable poison rods, control rods, and axial power shaping rods, on the reactivity of PWR SNF. Trends in reactivity with relevant parameters (e.g., initial fuel enrichment, burnup and absorber type, exposure, and design) are established, and anticipated reactivity effects are quantified. Where appropriate, recommendations are offered for addressing the reactivity effects of the fixed absorbers in burnup-credit safety analyses.

  6. Core physics analysis of 100% MOX Core in IRIS

    SciTech Connect

    Franceschini, F.; Petrovic, B.

    2006-07-01

    International Reactor Innovative and Secure (IRIS) is an advanced small-to-medium-size (1000 MWt) Pressurized Water Reactor (PWR), targeting deployment around 2015. Its reference core design is based on the current Westinghouse UO{sub 2} fuel with less than 5% {sup 235}U, and the analysis has been previously completed confirming good performance. The full MOX fuel core is currently under evaluation as one of the alternatives for the second wave of IRIS reactors. A full 3-D neutronic analysis has been performed to examine main core performance parameters, such as critical boron concentration, peaking factors, discharge burnup, etc. The enhanced moderation of the IRIS fuel lattice facilitates MOX core design, and all the obtained results are within the requirements, confirming viability of this option from the reactor physics standpoint. (authors)

  7. Analyse de l'impact de l'environnement dans un schema de calcul a deux etapes avec DRAGON et DONJON

    NASA Astrophysics Data System (ADS)

    Bodin, Christophe

    The calculation of the neutron flux is an important data that is used to determine the dynamic of the core of a Pressurized Water Reactor (PWR). However the transport equation which gives the neutron flux, cannot be solved in three dimensions over the whole core, in evolution because of the power of the current computers, which are too slow. So some simplifications are necessary to calculate this flux. Two-levels schemes are used, where, in a first step, some macroscopic cross sections libraries are generated by solving the transport equation using infinite lattice calculations on two dimensions assemblies. These sections are generally homogenized on the whole assembly and condensed to two energy groups. In a second step, the whole core calculation is carried out using the diffusion equation, with the cross sections of the libraries previously generated, interpolated at the values of the different parameters. However the core of a PWR is made up of many assemblies, that can contain two types of fuel : Uranium OXyde (UOX) or plutonium and uranium Mixed OXyde (MOX). Moreover all these assemblies have different burnup because each one can be used for three or four cycles depending on the PWR. So that imply some burnup gradients. Thus the hypothesis of the infinite lattice used to generate the cross sections libraries can be highly inaccurate. The first goal of this project is to generate cross sections libraries that take into account the environment and to evaluate the impact of this heterogeneous environment on the core calculation. The flux obtained with the diffusion equation at the end of the core calculation is not accurate enough, du to the homogenization by assembly, to determine and to locate the hotspot factor, which represents an important industrial problematic. The principle of the power reconstruction method (PRM) is to reconstruct the more accurately possible the flux in the pins, with a combination of the diffusion flux and some microscopic flux which

  8. Steady-state irradiation testing of U-Pu-Zr fuel to >18% burnup

    SciTech Connect

    Pahl, R.G.; Wisner, R.S. ); Billone, M.C.; Hofman, G.L. )

    1990-01-01

    Tests of austenitic stainless steel clad U-xP-10Zr fuel (x=o, 8, 19 wt. %) to peak burnups as high as 18.4 at. % have been completed in the EBR-II. Fuel swelling and fractional fission gas release are slowly increasing functions of burnup beyond 2 at. % burnup. Increasing plutonium content in the fuel reduces swelling and decreases the amount of fission gas which diffuses from fuel to plenum. LIFE-METAL code modelling of cladding strains is consistent with creep by fission gas loading and irradiation-induced swelling mechanisms. Fuel/cladding chemical interaction involves the ingress of rare-earth fission products. Constituent redistribution in the fuel had not limited steady-state performance. Cladding breach behavior at closure welds, in the gas plenum, and in the fuel column region have been benign events. 3 refs., 5 figs.

  9. Review of Halden Reactor Project high burnup fuel data that can be used in safety analyses

    SciTech Connect

    Wiesenack, W.

    1996-03-01

    The fuels and materials testing programmes carried out at the OECD Halden Reactor Project are aimed at providing data in support of a mechanistic understanding of phenomena, especially as related to high burnup fuel. The investigations are focused on identifying long term property changes, and irradiation techniques and instrumentation have been developed over the years which enable to assess fuel behaviour and properties in-pile. The fuel-cladding gap has an influence on both thermal and mechanical behaviour. Improved gap conductance due to gap closure at high exposure is observed even in the case of a strong contamination with released fission gas. On the other hand, pellet-cladding mechanical interaction, which is measured with cladding elongation detectors and diameter gauges, is re-established after a phase with less interaction and is increasing. These developments are exemplified with data showing changes of fuel temperature, hydraulic diameter and cladding elongation with burnup. Fuel swelling and cladding primary and secondary creep have been successfully measured in-pile. They provide data for, e.g., the possible cladding lift-off to be accounted for at high burnup. Fuel conductivity degradation is observed as a gradual temperature increase with burnup. This affects stored heat, fission gas release and temperature dependent fuel behaviour in general. The Halden Project`s data base on fission gas release shows that the phenomenon is associated with an accumulation of gas atoms at the grain boundaries to a critical concentration before appreciable release occurs. This is accompanied by an increase of the surface-to-volume ratio measured in-pile in gas flow experiments. A typical observation at high burnup is also that a burst release of fission gas may occur during a power decrease. Gas flow and pressure equilibration experiments have shown that axial communication is severely restricted at high burnup.

  10. 78 FR 67348 - Invitation for Public Comment on Draft Test Plan for the High Burnup Dry Storage Cask Research...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ... Invitation for Public Comment on Draft Test Plan for the High Burnup Dry Storage Cask Research and... notice of request for public comment on its draft test plan for the High Burnup Dry Storage Cask Research... of dry storage cask systems and experiments would be beneficial. A draft test plan for the...

  11. Accelerated event-by-event Monte Carlo microdosimetric calculations of electrons and protons tracks on a multi-core CPU and a CUDA-enabled GPU.

    PubMed

    Kalantzis, Georgios; Tachibana, Hidenobu

    2014-01-01

    For microdosimetric calculations event-by-event Monte Carlo (MC) methods are considered the most accurate. The main shortcoming of those methods is the extensive requirement for computational time. In this work we present an event-by-event MC code of low projectile energy electron and proton tracks for accelerated microdosimetric MC simulations on a graphic processing unit (GPU). Additionally, a hybrid implementation scheme was realized by employing OpenMP and CUDA in such a way that both GPU and multi-core CPU were utilized simultaneously. The two implementation schemes have been tested and compared with the sequential single threaded MC code on the CPU. Performance comparison was established on the speed-up for a set of benchmarking cases of electron and proton tracks. A maximum speedup of 67.2 was achieved for the GPU-based MC code, while a further improvement of the speedup up to 20% was achieved for the hybrid approach. The results indicate the capability of our CPU-GPU implementation for accelerated MC microdosimetric calculations of both electron and proton tracks without loss of accuracy.

  12. Temperature and Burnup Correlated FCCI in U-10Zr Metallic Fuel

    SciTech Connect

    William J. Carmack

    2012-05-01

    the EBR-II and study of the differences between the two fuel systems is critical for design of large advanced sodium cooled fast reactor systems. Comparing FCCI layer formation data between FFTF and EBR-II indicates that the same diffusion model can be used to represent the two systems when considering time, temperature, burnup history, and axial temperature and power profiles. This dissertation shows that FCCI formation peaks further below the top of the fuel column in FFTF experiments than has been observed in EBR-II experiments. The work provided in this dissertation will help forward the design of advanced metallic fuel systems for advanced sodium cooled fast reactors by allowing the prediction of FCCI layer formation in full length reactor designs. This will allow the accurate lifetime prediction of fuel performance capability for new advanced sodium cooled fast reactors with extended core designs.

  13. Post Irradiation Examination Plan for High-Burnup Demonstration Project Sister Rods

    SciTech Connect

    Scaglione, John M; Montgomery, Rose; Bevard, Bruce Balkcom

    2016-04-01

    This test plan describes the experimental work to be implemented by the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) to characterize high burnup (HBU) spent nuclear fuel (SNF) in conjunction with the High Burnup Dry Storage Cask Research and Development Project and serves to coordinate and integrate the multi-year experimental program to collect and develop data regarding the continued storage and eventual transport of HBU (i.e., >45 GWd/MTU) SNF. The work scope involves the development, performance, technical integration, and oversight of measurements and collection of relevant data, guided by analyses and demonstration of need.

  14. Progress of the RIA experiments with high burnup fuels and their evaluation in JAERI

    SciTech Connect

    Ishijima, Kiyomi; Fuketa, Toyoshi

    1997-01-01

    Recent results obtained in the NSRR power burst experiments with high burnup PWR fuel rods are described and discussed in this paper. Data concerning test condition, transient records during pulse irradiation and post irradiation examination are described. Another high burnup PWR fuel rod failed in the test HBO-5 at the slightly higher energy deposition than that in the test HBO-1. The failure mechanism of the test HBO-5 is the same as that of the test HBO-1, that is, hydride-assisted PCMI. Some influence of the thermocouples welding on the failure behavior of the HBO-5 rod was observed.

  15. Nuclear Energy Research Initiative. Development of a Stabilized Light Water Reactor Fuel Matrix for Extended Burnup

    SciTech Connect

    BD Hanson; J Abrefah; SC Marschman; SG Prussin

    2000-09-08

    The main objective of this project is to develop an advanced fuel matrix capable of achieving extended burnup while improving safety margins and reliability for present operations. In the course of this project, the authors improve understanding of the mechanism for high burnup structure (HBS) formation and attempt to design a fuel to minimize its formation. The use of soluble dopants in the UO{sub 2} matrix to stabilize the matrix and minimize fuel-side corrosion of the cladding is the main focus.

  16. Post Irradiation Examination for Advanced Materials at Burnups Exceeding the Current Limit

    SciTech Connect

    John H. Strumpell

    2004-12-31

    Permitting fuel to be irradiated to higher burnups limits can reduce the amount of spent nuclear fuel (SNF) requiring storage and/or disposal and enable plants to operate with longer more economical cycle lengths and/or at higher power levels. Therefore, Framatome ANP (FANP) and the B&W Owner's Group (BWOG) have introduced a new fuel rod design with an advanced M5 cladding material and have irradiated several test fuel rods through four cycles. The U.S. Department of Energy (DOE) joined FANP and the BWOG in supporting this project during its final phase of collecting and evaluating high burnup data through post irradiation examination (PIE).

  17. The effect of nickel on the properties of iron at the conditions of Earth's inner core: Ab initio calculations of seismic wave velocities of Fe-Ni alloys

    NASA Astrophysics Data System (ADS)

    Martorell, Benjamí; Brodholt, John; Wood, Ian G.; Vočadlo, Lidunka

    2013-03-01

    We have performed athermal periodic plane-wave density functional calculations within the generalised gradient approximation on the bcc, fcc and hcp structures of Fe1-XNiX alloys (X=0, 0.0625, 0.125, 0.25, and 1) in order to obtain their relative stability and elastic properties at 360 GPa and 0 K. For the hcp structure, using ab initio molecular dynamics, we have also calculated the elastic properties and wave velocities for X=0, 0.0625, and 0.125, at 360 GPa and 5500 K, with further calculations for X=0, and 0.125 at 360 GPa and 2000 K. At 0 K, the hcp structure is the most stable for X=0, 0.0625, 0.125, and 0.25, with the fcc structure becoming the most stable above X˜0.45; the bcc structure is not the most stable phase for any composition. At 0 K, compressional and shear wave velocities are structure dependent; in the case of fcc the velocities are very similar to pure Fe, but for the hcp structure the addition of Ni strongly reduces VS. Ni also reduced velocities in fcc iron, but to a lesser extent. However, at 5500 K and 360 GPa, Ni has little effect on the wave velocities of the hcp structure, which remain similar to those of pure iron throughout the range of compositions studied and, in the case of VS, >30% greater than that from seismological models. The effect of temperature on Fe-Ni alloys is, therefore, very significant, indicating that conclusions based on the extrapolation of results obtained at much lower temperatures must be treated with great caution. The significance of temperature is confirmed by the additional simulation at 2000 K for X=0, and 0.125 which reveals a remarkably linear temperature dependence of the change in VS relative to that of pure iron. At 0 K, the maximum anisotropy in VP is found to be only very weakly dependent on nickel content, but dependent on structure, being ˜15% for fcc and ˜8% for hcp. For the hcp structure at 2000 and 5500 K, the maximum anisotropy in VP is also ˜8% and almost independent of the Ni content. We

  18. An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses: Criticality (keff) Predictions

    DOE PAGES

    Scaglione, John M.; Mueller, Don E.; Wagner, John C.

    2014-12-01

    One of the most important remaining challenges associated with expanded implementation of burnup credit in the United States is the validation of depletion and criticality calculations used in the safety evaluation—in particular, the availability and use of applicable measured data to support validation, especially for fission products (FPs). Applicants and regulatory reviewers have been constrained by both a scarcity of data and a lack of clear technical basis or approach for use of the data. In this study, this paper describes a validation approach for commercial spent nuclear fuel (SNF) criticality safety (keff) evaluations based on best-available data and methodsmore » and applies the approach for representative SNF storage and transport configurations/conditions to demonstrate its usage and applicability, as well as to provide reference bias results. The criticality validation approach utilizes not only available laboratory critical experiment (LCE) data from the International Handbook of Evaluated Criticality Safety Benchmark Experiments and the French Haut Taux de Combustion program to support validation of the principal actinides but also calculated sensitivities, nuclear data uncertainties, and limited available FP LCE data to predict and verify individual biases for relevant minor actinides and FPs. The results demonstrate that (a) sufficient critical experiment data exist to adequately validate keff calculations via conventional validation approaches for the primary actinides, (b) sensitivity-based critical experiment selection is more appropriate for generating accurate application model bias and uncertainty, and (c) calculated sensitivities and nuclear data uncertainties can be used for generating conservative estimates of bias for minor actinides and FPs. Results based on the SCALE 6.1 and the ENDF/B-VII.0 cross-section libraries indicate that a conservative estimate of the bias for the minor actinides and FPs is 1.5% of their worth within the

  19. Calculational methodology and associated uncertainties: Sensitivity and uncertainty analysis of reactor performance parameters

    SciTech Connect

    Kujawski, E.; Weisbin, C.R.

    1982-01-01

    This chapter considers the calculational methodology and associated uncertainties both for the design of large LMFBR's and the analysis of critical assemblies (fast critical experiments) as performed by several groups within the US. Discusses cross-section processing; calculational methodology for the design problem; core physics computations; design-oriented approximations; benchmark analyses; and determination of calculational corrections and associated uncertainties for a critical assembly. Presents a detailed analysis of the sources of calculational uncertainties for the critical assembly ZPR-6/7 to illustrate the quantitative assessment of calculational correction factors and uncertainties. Examines calculational uncertainties that arise from many different sources including intrinsic limitations of computational methods; design-oriented approximations related to reactor modeling; computational capability and code availability; economic limitations; and the skill of the reactor analyst. Emphasizes that the actual design uncertainties in most of the parameters, with the possible exception of burnup, are likely to be less than might be indicated by the results presented in this chapter because reactor designers routinely apply bias factors (usually derived from critical experiments) to their calculated results.

  20. Postirradiation examination of the HT9 clad fuel test X425 at 2.9% burnup

    SciTech Connect

    Pahl, R G; Beck, W N; Sanecki, J E

    1987-11-01

    The X425 experiment was the first EBR-II subassembly to be irradiated with U-Pu-Zr metallic fuel clad in the HT9 alloy. This report summarizes our initial postirradiation examination of selected elements from X425 at 2.9% peak burnup. Fuel microstructure, swelling behavior, fission gas release, and fuel/clad chemical interaction are discussed.

  1. Oxygen potential measurements in high burnup LWR U0 2 fuel

    NASA Astrophysics Data System (ADS)

    Matzke, Hj.

    1995-05-01

    A miniature solid state galvanic cell was used to measure the oxygen potential Δ overlineG( O2) of reactor irradiated U0 2 fuel at different burnups in the range of 28 to ⩾ 150 GWd d/t M. This very high burnup was achieved in the rim region of a fuel with a cross section average burnup of 75 GWd d/t M. The fuels had different enrichments and therefore different contributions of fission of 235U and 239Pu. The temperature range covered was 900 to 1350 K. None of the fuels showed a significant oxidation. Rather, if allowance is made for the dissolved rare earth fission products and the Pu formed during irradiation, some of the fuels were very slightly substoichiometric and the highest possible degree of oxidation corresponded to U0 2.001. In general, the Δ overlineG( O2) at 750°C was about -400 kJ/mol, corresponding to the Δ overlineG( O2) of the reaction Mo + O 2 → MoO 2. The implication of these results which are in contrast to commonly assumed ideas that U0 2 fuel oxidizes due to burnup, are discussed and the importance of the fission product Mo and of the zircaloy clad as oxygen buffers is outlined.

  2. Multiscale modeling of thermal conductivity of high burnup structures in UO2 fuels

    SciTech Connect

    Bai, Xian -Ming; Tonks, Michael R.; Zhang, Yongfeng; Hales, Jason D.

    2015-12-22

    The high burnup structure forming at the rim region in UO2 based nuclear fuel pellets has interesting physical properties such as improved thermal conductivity, even though it contains a high density of grain boundaries and micron-size gas bubbles. To understand this counterintuitive phenomenon, mesoscale heat conduction simulations with inputs from atomistic simulations and experiments were conducted to study the thermal conductivities of a small-grain high burnup microstructure and two large-grain unrestructured microstructures. We concluded that the phonon scattering effects caused by small point defects such as dispersed Xe atoms in the grain interior must be included in order to correctly predict the thermal transport properties of these microstructures. In extreme cases, even a small concentration of dispersed Xe atoms such as 10-5 can result in a lower thermal conductivity in the large-grain unrestructured microstructures than in the small-grain high burnup structure. The high-density grain boundaries in a high burnup structure act as defect sinks and can reduce the concentration of point defects in its grain interior and improve its thermal conductivity in comparison with its large-grain counterparts. Furthermore, an analytical model was developed to describe the thermal conductivity at different concentrations of dispersed Xe, bubble porosities, and grain sizes. Upon calibration, the model is robust and agrees well with independent heat conduction modeling over a wide range of microstructural parameters.

  3. Multiscale modeling of thermal conductivity of high burnup structures in UO2 fuels

    DOE PAGES

    Bai, Xian -Ming; Tonks, Michael R.; Zhang, Yongfeng; ...

    2015-12-22

    The high burnup structure forming at the rim region in UO2 based nuclear fuel pellets has interesting physical properties such as improved thermal conductivity, even though it contains a high density of grain boundaries and micron-size gas bubbles. To understand this counterintuitive phenomenon, mesoscale heat conduction simulations with inputs from atomistic simulations and experiments were conducted to study the thermal conductivities of a small-grain high burnup microstructure and two large-grain unrestructured microstructures. We concluded that the phonon scattering effects caused by small point defects such as dispersed Xe atoms in the grain interior must be included in order to correctlymore » predict the thermal transport properties of these microstructures. In extreme cases, even a small concentration of dispersed Xe atoms such as 10-5 can result in a lower thermal conductivity in the large-grain unrestructured microstructures than in the small-grain high burnup structure. The high-density grain boundaries in a high burnup structure act as defect sinks and can reduce the concentration of point defects in its grain interior and improve its thermal conductivity in comparison with its large-grain counterparts. Furthermore, an analytical model was developed to describe the thermal conductivity at different concentrations of dispersed Xe, bubble porosities, and grain sizes. Upon calibration, the model is robust and agrees well with independent heat conduction modeling over a wide range of microstructural parameters.« less

  4. Evaluation of Cross-Section Sensitivities in Computing Burnup Credit Fission Product Concentrations

    SciTech Connect

    Gauld, I.C.

    2005-08-12

    U.S. Nuclear Regulatory Commission Interim Staff Guidance 8 (ISG-8) for burnup credit covers actinides only, a position based primarily on the lack of definitive critical experiments and adequate radiochemical assay data that can be used to quantify the uncertainty associated with fission product credit. The accuracy of fission product neutron cross sections is paramount to the accuracy of criticality analyses that credit fission products in two respects: (1) the microscopic cross sections determine the reactivity worth of the fission products in spent fuel and (2) the cross sections determine the reaction rates during irradiation and thus influence the accuracy of predicted final concentrations of the fission products in the spent fuel. This report evaluates and quantifies the importance of the fission product cross sections in predicting concentrations of fission products proposed for use in burnup credit. The study includes an assessment of the major fission products in burnup credit and their production precursors. Finally, the cross-section importances, or sensitivities, are combined with the importance of each major fission product to the system eigenvalue (k{sub eff}) to determine the net importance of cross sections to k{sub eff}. The importances established the following fission products, listed in descending order of priority, that are most likely to benefit burnup credit when their cross-section uncertainties are reduced: {sup 151}Sm, {sup 103}Rh, {sup 155}Eu, {sup 150}Sm, {sup 152}Sm, {sup 153}Eu, {sup 154}Eu, and {sup 143}Nd.

  5. The Effect of Pitch, Burnup, and Absorbers on a TRIGA Spent-Fuel Pool Criticality Safety

    SciTech Connect

    Logar, Marjan; Jeraj, Robert; Glumac, Bogdan

    2003-02-15

    It has been shown that supercriticality might occur for some postulated accident conditions at the TRIGA spent-fuel pool. However, the effect of burnup was not accounted for in previous studies. In this work, the combined effect of fuel burnup, pitch among fuel elements, and number of uniformly mixed absorber rods for a square arrangement on the spent-fuel pool k{sub eff} is investigated.The Monte Carlo computer code MCNP4B with the ENDF-B/VI library and detailed three dimensional geometry was used. The WIMS-D code was used to model the isotopic composition of the standard TRIGA and FLIP fuel for 5, 10, 20 and 30% burnup level and 2- and 4-yr cooling time.The results show that out of the three studied effects, pitch from contact (3.75 cm) up to rack design pitch (8 cm), number of absorbers from zero to eight, and burnup up to 30%, the pitch has the greatest influence on the multiplication factor k{sub eff}. In the interval in which the pitch was changed, k{sub eff} decreased for up to {approx}0.4 for standard and {approx}0.3 for FLIP fuel. The number of absorber rods affects the multiplication factor much less. This effect is bigger for more compact arrangements, e.g., for contact of standard fuel elements with eight absorber rods among them, k{sub eff} values are smaller for {approx}0.2 ({approx}0.1 for FLIP) than for arrangements without absorber rods almost regardless of the burnup. The effect of burnup is the smallest. For standard fuel elements, it is {approx}0.1 for almost all pitches and numbers of absorbers. For FLIP fuel, it is smaller for a factor of 3, but increases with the burnup for compact arrangements. Cooling time of fuel has just a minor effect on the k{sub eff} of spent-fuel pool and can be neglected in spent-fuel pool design.

  6. Estimation of average burnup of damaged fuels loaded in Fukushima Dai-ichi reactors by using the {sup 134}Cs/{sup 137}Cs ratio method

    SciTech Connect

    Endo, T.; Sato, S.; Yamamoto, A.

    2012-07-01

    Average burnup of damaged fuels loaded in Fukushima Dai-ichi reactors is estimated, using the {sup 134}Cs/{sup 137}Cs ratio method for measured radioactivities of {sup 134}Cs and {sup 137}Cs in contaminated soils within the range of 100 km from the Fukushima Dai-ichi nuclear power plants. As a result, the measured {sup 134}Cs/{sup 137}Cs ratio from the contaminated soil is 0.996{+-}0.07 as of March 11, 2011. Based on the {sup 134}Cs/{sup 137}Cs ratio method, the estimated burnup of damaged fuels is approximately 17.2{+-}1.5 [GWd/tHM]. It is noted that the numerical results of various calculation codes (SRAC2006/PIJ, SCALE6.0/TRITON, and MVP-BURN) are almost the same evaluation values of {sup 134}Cs/ {sup 137}Cs ratio with same evaluated nuclear data library (ENDF-B/VII.0). The void fraction effect in depletion calculation has a major impact on {sup 134}Cs/{sup 137}Cs ratio compared with the differences between JENDL-4.0 and ENDF-B/VII.0. (authors)

  7. Accurate density-functional calculation of core-electron binding energies with a scaled polarized triple-zeta basis set. (III). Extension to open-shell molecules

    NASA Astrophysics Data System (ADS)

    Hu, Ching-Han; Chong, Delano P.

    1997-03-01

    Density functional theory and the unrestricted generalized transition state (uGTS) model were applied to study the core-electron binding energies (CEBEs) of open-shell molecules. Basis set scaling based on Clementi and Raimondi's rules for atomic screening was used along with the cc-pVTZ basis set. The scaled pVTZ basis set is almost as good as the cc-pV5Z and complete basis set limit in predicting CEBEs. For small molecules (O 2, NO, NF 2 and NO 2) the average absolute deviation (aad) of our prediction (scaled pVTZ) is only 0.29 eV. For the larger molecule (CF 3) 2NO the aad is 0.56 eV, compared with experimental uncertainty of 0.5 eV. Theoretical predicted multiplet splittings for the small molecules agree quite well with experiment: the average deviation is -0.33 eV. For (CF 3) 2NO the calculated multiplet splittings are much smaller than the experimental ones. We also predict the CEBEs of PO, SN and SO, which have not been observed experimentally.

  8. High-temperature ab initio calculations on FeSi and NiSi at conditions relevant to small planetary cores

    NASA Astrophysics Data System (ADS)

    Wann, E. T. H.; Vočadlo, L.; Wood, I. G.

    2017-02-01

    The Fe-Ni-Si system is potentially a very important component of terrestrial planetary cores. However, at present, even the behaviour of the FeSi and NiSi end members is poorly understood, especially at low to moderate pressures—the data for FeSi are contradictory and NiSi has been little studied. For FeSi, there is general agreement that there is a phase transition from the ɛ-FeSi to the CsCl structure with increasing pressure, but, in experiments, there is disagreement as to the position and slope of the phase boundary and the range of coexistence of the two phases. In this paper we have used ab initio lattice dynamics calculations to determine the phase boundary between the ɛ-FeSi and CsCl structures as a function of pressure and temperature in both FeSi and NiSi. For FeSi, we find that the transition pressure at zero Kelvin is 11 GPa and that the boundary between the ɛ-FeSi and CsCl phases varies little with temperature, having a slight negative Clapeyron slope, going from 11 GPa at 300 K to 3 GPa at 2000 K. For NiSi, there is much greater variation of the transition pressure with temperature, with a much shallower negative Clapeyron slope, going from 156 GPa at 300 K to 94 GPa at 2000 K.

  9. High Burnup Dry Storage Cask Research and Development Project, Final Test Plan

    SciTech Connect

    2014-02-27

    EPRI is leading a project team to develop and implement the first five years of a Test Plan to collect data from a SNF dry storage system containing high burnup fuel.12 The Test Plan defined in this document outlines the data to be collected, and the storage system design, procedures, and licensing necessary to implement the Test Plan.13 The main goals of the proposed test are to provide confirmatory data14 for models, future SNF dry storage cask design, and to support license renewals and new licenses for ISFSIs. To provide data that is most relevant to high burnup fuel in dry storage, the design of the test storage system must mimic real conditions that high burnup SNF experiences during all stages of dry storage: loading, cask drying, inert gas backfilling, and transfer to the ISFSI for multi-year storage.15 Along with other optional modeling, SETs, and SSTs, the data collected in this Test Plan can be used to evaluate the integrity of dry storage systems and the high burnup fuel contained therein over many decades. It should be noted that the Test Plan described in this document discusses essential activities that go beyond the first five years of Test Plan implementation.16 The first five years of the Test Plan include activities up through loading the cask, initiating the data collection, and beginning the long-term storage period at the ISFSI. The Test Plan encompasses the overall project that includes activities that may not be completed until 15 or more years from now, including continued data collection, shipment of the Research Project Cask to a Fuel Examination Facility, opening the cask at the Fuel Examination Facility, and examining the high burnup fuel after the initial storage period.

  10. Irradiation experiment on fast reactor metal fuels containing minor actinides up to 7 at.% burnup

    SciTech Connect

    Ohta, H.; Yokoo, T.; Ogata, T.; Inoue, T.; Ougier, M.; Glatz, J.P.; Fontaine, B.; Breton, L.

    2007-07-01

    Fast reactor metal fuels containing minor actinides (MAs: Np, Am, Cm) and rare earths (REs) have been irradiated in the fast reactor PHENIX. In this experiment, four types of fuel alloys, U-19Pu-10Zr, U-19Pu-10Zr-2MA-2RE, U-19Pu-10Zr-5MA-5RE and U-19Pu-10Zr-5MA (wt.%), are loaded into part of standard metal fuel stacks. The postirradiation examinations will be conducted at {approx}2.4, {approx}7 and {approx}11 at.% burnup. As for the low-burnup fuel pins, nondestructive postirradiation tests have already been performed and the fuel integrity was confirmed. Furthermore, the irradiation experiment for the intermediate burnup goal of {approx}7 at.% was completed in July 2006. For the irradiation period of 356.63 equivalent full-power days, the neutron flux level remained in the range of 3.5-3.6 x 10{sup 15} n/cm{sup 2}/s at the axial peak position. On the other hand, the maximum linear power of fuel alloys decreased gradually from 305-315 W/cm (beginning of irradiation) to 250-260 W/cm (end of irradiation). The discharged peak burnup was estimated to be 6.59-7.23 at.%. The irradiation behavior of MA-containing metal fuels up to 7 at.% burnup was predicted using the ALFUS code, which was developed for U-Pu-Zr ternary fuel performance analysis. As a result, it was evaluated that the fuel temperature is distributed between {approx}410 deg. C and {approx}645 deg. C at the end of the irradiation experiment. From the stress-strain analysis based on the preliminarily employed cladding irradiation properties and the FCMI stress distribution history, it was predicted that a cladding strain of not more than 0.9% would appear. (authors)

  11. A Two-Step Approach to Uncertainty Quantification of Core Simulators

    SciTech Connect

    Yankov, Artem; Collins, Benjamin; Klein, Markus; Jessee, Matthew A.; Zwermann, Winfried; Velkov, Kiril; Pautz, Andreas; Downar, Thomas

    2012-01-01

    For the multiple sources of error introduced into the standard computational regime for simulating reactor cores, rigorous uncertainty analysis methods are available primarily to quantify the effects of cross section uncertainties. Two methods for propagating cross section uncertainties through core simulators are the XSUSA statistical approach and the “two-step” method. The XSUSA approach, which is based on the SUSA code package, is fundamentally a stochastic sampling method. Alternatively, the two-step method utilizes generalized perturbation theory in the first step and stochastic sampling in the second step. The consistency of these two methods in quantifying uncertainties in the multiplication factor and in the core power distribution was examined in the framework of phase I-3 of the OECD Uncertainty Analysis in Modeling benchmark. With the Three Mile Island Unit 1 core as a base model for analysis, the XSUSA and two-step methods were applied with certain limitations, and the results were compared to those produced by other stochastic sampling-based codes. Based on the uncertainty analysis results, conclusions were drawn as to the method that is currently more viable for computing uncertainties in burnup and transient calculations.

  12. Comparison of XSUSA and "Two-Step" Approaches for Full Core Uncertainty Quantification

    SciTech Connect

    Yankov, Artem; Klein, M.; Jessee, Matthew Anderson; Zwermann, W.; Velkov, Kiril; Pautz, Andreas; Collins, Benjamin; Downar, Thomas

    2012-01-01

    While there are multiple sources of error that are introduced into the standard computational regime for simulating reactor cores, rigorous uncertainty analysis methods are available primarily for quantifying the effects of cross section uncertainties. Two methods for propagating cross section uncertainties through core simulators are the XSUSA statistical approach and the 'Two-Step' method. The XSUSA approach, which is based on the SUSA code package, is fundamentally a stochastic sampling method. Alternatively, the Two-Step method utilizes generalized perturbation theory in the first step and stochastic sampling in the second step. The consistency of these two methods in quantifying uncertainties in the multiplication factor and in the core power distribution will be examined in the framework of phase I-3 of the UAM Benchmark. Using the TMI core as a base model for analysis, the XSUSA and Two-Step methods are applied with certain limitations and the results are compared to those produced by other stochastic sampling-based codes. Based on the uncertainty analysis results, conclusions are made for which method is currently a more viable option for computing uncertainties in burnup and transient calculations.

  13. A Two-Step Approach to Uncertainty Quantification of Core Simulators

    DOE PAGES

    Yankov, Artem; Collins, Benjamin; Klein, Markus; ...

    2012-01-01

    For the multiple sources of error introduced into the standard computational regime for simulating reactor cores, rigorous uncertainty analysis methods are available primarily to quantify the effects of cross section uncertainties. Two methods for propagating cross section uncertainties through core simulators are the XSUSA statistical approach and the “two-step” method. The XSUSA approach, which is based on the SUSA code package, is fundamentally a stochastic sampling method. Alternatively, the two-step method utilizes generalized perturbation theory in the first step and stochastic sampling in the second step. The consistency of these two methods in quantifying uncertainties in the multiplication factor andmore » in the core power distribution was examined in the framework of phase I-3 of the OECD Uncertainty Analysis in Modeling benchmark. With the Three Mile Island Unit 1 core as a base model for analysis, the XSUSA and two-step methods were applied with certain limitations, and the results were compared to those produced by other stochastic sampling-based codes. Based on the uncertainty analysis results, conclusions were drawn as to the method that is currently more viable for computing uncertainties in burnup and transient calculations.« less

  14. Core Optimization of a Deep-Burn Pebble Bed Reactor

    SciTech Connect

    Brian Boer; Abderrafi M. Ougouag

    2010-06-01

    Achieving a high fuel burnup in the Deep-Burn (DB) pebble bed reactor design, while remaining within the limits for fuel temperature, power peaking and temperature reactivity feedback, is challenging. The high content of Pu and Minor Actinides in the Deep-Burn fuel significantly impacts the thermal neutron energy spectrum as compared to a ’standard’ UO2 fueled core. This can result in power and temperature peaking in the pebble bed core in locally thermalized regions near the graphite reflectors. Furthermore, the interplay of the Pu resonances of the neutron absorption cross sections at low-lying energies can lead to a positive temperature reactivity coefficient for the graphite moderator at certain operating conditions. The DB concept focuses on the destruction of spent fuel transuranics in TRISO coated particle fueled gas-cooled reactors with the aim of a fractional fuel burnup of 60-70% in fissions per initial metal atom (FIMA), using a single-pass, multi in-core fuel (re)cycling scheme. In principle, the DB pebble bed concept employs the same reactor designs as the present low enriched uranium core designs, i.e. the 400 MWth Pebble Bed Modular Reactor (PBMR-400). A Pu and Minor Actinide fueled PBMR-400 design serves as the starting point for a core optimization study. The fuel temperature, power peak, temperature reactivity coefficients, and burnup capabilities of the modified designs are analyzed with the PEBBED code. A code-to-code coupling with the PASTA code allows for the analysis of the TRISO fuel performance for both normal and Loss Of Forced Cooling conditions. An improved core design is sought, maximizing the fuel discharge burnup, while retaining negative temperature reactivity feedback coefficients for the entire temperature range and avoiding high fuel temperatures (fuel failure probabilities).

  15. Validation of updated neutronic calculation models proposed for Atucha-II PHWR. Part II: Benchmark comparisons of PUMA core parameters with MCNP5 and improvements due to a simple cell heterogeneity correction

    SciTech Connect

    Grant, C.; Mollerach, R.; Leszczynski, F.; Serra, O.; Marconi, J.; Fink, J.

    2006-07-01

    In 2005 the Argentine Government took the decision to complete the construction of the Atucha-II nuclear power plant, which has been progressing slowly during the last ten years. Atucha-II is a 745 MWe nuclear station moderated and cooled with heavy water, of German (Siemens) design located in Argentina. It has a pressure vessel design with 451 vertical coolant channels and the fuel assemblies (FA) are clusters of 37 natural UO{sub 2} rods with an active length of 530 cm. For the reactor physics area, a revision and update of reactor physics calculation methods and models was recently carried out covering cell, supercell (control rod) and core calculations. This paper presents benchmark comparisons of core parameters of a slightly idealized model of the Atucha-I core obtained with the PUMA reactor code with MCNP5. The Atucha-I core was selected because it is smaller, similar from a neutronic point of view, more symmetric than Atucha-II, and has some experimental data available. To validate the new models benchmark comparisons of k-effective, channel power and axial power distributions obtained with PUMA and MCNP5 have been performed. In addition, a simple cell heterogeneity correction recently introduced in PUMA is presented, which improves significantly the agreement of calculated channel powers with MCNP5. To complete the validation, the calculation of some of the critical configurations of the Atucha-I reactor measured during the experiments performed at first criticality is also presented. (authors)

  16. Potential of pin-by-pin SPN calculations as an industrial reference

    SciTech Connect

    Fliscounakis, M.; Girardi, E.; Courau, T.; Couyras, D.

    2012-07-01

    This paper aims at analysing the potential of pin-by-pin SP{sub n} calculations to compute the neutronic flux in PWR cores as an alternative to the diffusion approximation. As far as pin-by-pin calculations are concerned, a SPH equivalence is used to preserve the reactions rates. The use of SPH equivalence is a common practice in core diffusion calculations. In this paper, a methodology to generalize the equivalence procedure in the SP{sub n} equations context is presented. In order to verify and validate the equivalence procedure, SP{sub n} calculations are compared to 2D transport reference results obtained with the APOLL02 code. The validation cases consist in 3x3 analytical assembly color sets involving burn-up heterogeneities, UOX/MOX interfaces, and control rods. Considering various energy discretizations (up to 26 groups) and flux development orders (up to 7) for the SP{sub n} equations, results show that 26-group SP{sub 3} calculations are very close to the transport reference (with pin production rates discrepancies < 1%). This proves the high interest of pin-by-pin SP{sub n} calculations as an industrial reference when relying on 26 energy groups combined with SP{sub 3} flux development order. Additionally, the SP{sub n} results are compared to diffusion pin-by-pin calculations, in order to evaluate the potential benefit of using a SP{sub n} solver as an alternative to diffusion. Discrepancies on pin-production rates are less than 1.6% for 6-group SP{sub 3} calculations against 3.2% for 2-group diffusion calculations. This shows that SP{sub n} solvers may be considered as an alternative to multigroup diffusion. (authors)

  17. Influence of the tritium beta(-) decay on low-temperature thermonuclear burn-up in deuterium-tritium mixtures

    PubMed

    Frolov

    2000-09-01

    Low-temperature (Tburn-up in deuterium-tritium mixtures with various deuterium-tritium-helium-3 ratios is considered. The general dependence is studied for the critical burn-up parameter x(c)=rhor(c) upon the initial temperature T, density rho(0), and tritium molar concentration y for the [D]:y[T]:(1-y)[3He] mixture. In particular, it is shown that, if the tritium concentration y decreases, then the critical burn-up parameter x(c)(T,rho(0),y) grows very quickly (at fixed T and rho(0)). This means that tritium beta(-) decay significantly complicates thermonuclear burn-up in deuterium-tritium mixtures.

  18. The Challenges Associated with High Burnup and High Temperature for UO2 TRISO-Coated Particle Fuel

    SciTech Connect

    David Petti; John Maki

    2005-02-01

    The fuel service conditions for the DOE Next Generation Nuclear Plant (NGNP) will be challenging. All major fuel related design parameters (burnup, temperature, fast neutron fluence, power density, particle packing fraction) exceed the values that were qualified in the successful German UO2 TRISO-coated particle fuel development program in the 1980s. While TRISO-coated particle fuel has been irradiated at NGNP relevant levels for two or three of the design parameters, no data exist for TRISO-coated particle fuel for all five parameters simultaneously. Of particular concern are the high burnup and high temperatures expected in the NGNP. In this paper, where possible, we evaluate the challenges associated with high burnup and high temperature quantitatively by examining the performance of the fuel in terms of different known failure mechanisms. Potential design solutions to ameliorate the negative effects of high burnup and high temperature are also discussed.

  19. Calculation of the Phenix end-of-life test 'Control Rod Withdrawal' with the ERANOS code

    SciTech Connect

    Tiberi, V.

    2012-07-01

    The Inst. of Radiological Protection and Nuclear Safety (IRSN) acts as technical support to French public authorities. As such, IRSN is in charge of safety assessment of operating and under construction reactors, as well as future projects. In this framework, one current objective of IRSN is to evaluate the ability and accuracy of numerical tools to foresee consequences of accidents. Neutronic studies step in the safety assessment from different points of view among which the core design and its protection system. They are necessary to evaluate the core behavior in case of accident in order to assess the integrity of the first barrier and the absence of a prompt criticality risk. To reach this objective one main physical quantity has to be evaluated accurately: the neutronic power distribution in core during whole reactor lifetime. Phenix end of life tests, carried out in 2009, aim at increasing the experience feedback on sodium cooled fast reactors. These experiments have been done in the framework of the development of the 4. generation of nuclear reactors. Ten tests have been carried out: 6 on neutronic and fuel aspects, 2 on thermal hydraulics and 2 for the emergency shutdown. Two of them have been chosen for an international exercise on thermal hydraulics and neutronics in the frame of an IAEA Coordinated Research Project. Concerning neutronics, the Control Rod Withdrawal test is relevant for safety because it allows evaluating the capability of calculation tools to compute the radial power distribution on fast reactors core configurations in which the flux field is very deformed. IRSN participated to this benchmark with the ERANOS code developed by CEA for fast reactors studies. This paper presents the results obtained in the framework of the benchmark activity. A relatively good agreement was found with available measures considering the approximations done in the modeling. The work underlines the importance of burn-up calculations in order to have a fine

  20. Flux reconstruction methods for assembly calculations in the code APOLLO2

    SciTech Connect

    Zmijarevic, I.; Masiello, E.; Sanchez, R.

    2006-07-01

    A technique for flux reconstruction has been incorporated in the code APOLLO2 allowing for fast generation of accurate burnup libraries. The burnup flux is obtained as the product of a pivot flux from a large-macro-group heterogeneous-assembly calculation times an energy shape factor based on a fine-energy flux. The latter is obtained from a fast multicell calculation for a few types of representative cells in the assembly. The reconstruction formula preserves the reaction rates predicted by the large-macro-group, heterogeneous-assembly calculation. Analysis of a BWR MOX benchmark shows that the reactivity error for a 70 MWd/t burnup cycle did not exceed 90 pcm and the maximum error in pin powers did not exceed 1%. (authors)

  1. Experience with incomplete control rod insertion in fuel with burnup exceeding approximately 40 GWD/MTU

    SciTech Connect

    Kee, E.

    1997-01-01

    Analysis and measurement experience with fuel assemblies having incomplete control rod insertion at burnups of approximately 40 GWD/MTU is presented. Control rod motion dynamics and simplified structural analyses are presented and compared to measurement data. Fuel assembly growth measurements taken with the plant Refueling Machine Z-Tape are described and presented. Bow measurements (including plug gauging) are described and potential improvements are suggested. The measurements described and analysis performed show that sufficient guide tube bow (either from creep or yield buckling) is present in some high burnup assemblies to stop the control rods before they reach their full limit of travel. Recommendations are made that, if implemented, could improve cost performance related to testing and analysis activities.

  2. THE EFFECT OF BURNUP AND SEPARATION EFFICIENCY ON URANIUM UTILIZATION AND RADIOTOXICITY

    SciTech Connect

    Samuel Bays; Steven Piet

    2001-11-01

    This paper addresses two fundamental issues of fuel cycle sustainability. The two primary issues of interest are efficient use of the natural uranium resource (cradle), and management of nuclear waste radiotoxicity (grave). Both uranium utilization and radiotoxicity are directly influenced by the burnup achieved during irradiation (transmutation related) and where applicable the separation efficiency (partitioning related). Burnup influences the in-growth of transuranics by breeding them into the fuel cycle. Transuranic breeding is virtually essential to resource sustainability because it increases utilization of naturally abundant fertile U-238. However, the direct consequence of this build-up is the in-growth of transuranic isotopes which generally increase the source of future geologically committed radiotoxicity. For scenarios involving recycle, separation efficiency influences the degree to which this transuranic source term is removed from active service in the fuel stream and made a disposal legacy of human activity.

  3. Thermal properties of U-Mo alloys irradiated to moderate burnup and power

    NASA Astrophysics Data System (ADS)

    Burkes, Douglas E.; Casella, Andrew M.; Casella, Amanda J.; Buck, Edgar C.; Pool, Karl N.; MacFarlan, Paul J.; Edwards, Matthew K.; Smith, Frances N.

    2015-09-01

    A variety of physical and thermal property measurements as a function of temperature and fission density were performed on irradiated U-Mo alloy monolithic fuel samples with a Zr diffusion barrier and clad in aluminum alloy 6061. The U-Mo alloy density, thermal diffusivity, and thermal conductivity are strongly influenced by increasing burnup, mainly as the result of irradiation induced recrystallization and fission gas bubble formation and coalescence. U-Mo chemistry, specifically Mo content, and specific heat capacity was not as sensitive to increasing burnup. Measurements indicated that thermal conductivity of the U-Mo alloy decreased approximately 30% for a fission density of 3.30 × 1021 fissions cm-3 and approximately 45% for a fission density of 4.52 × 1021 fissions cm-3 from unirradiated values at 200 °C. An empirical thermal conductivity degradation model developed previously and summarized here agrees well with the experimental measurements.

  4. Draft evaluation of the frequency for gas sampling for the high burnup confirmatory data project

    SciTech Connect

    Stockman, Christine T.; Alsaed, Halim A.; Bryan, Charles R.

    2015-03-26

    This report fulfills the M3 milestone M3FT-15SN0802041, “Draft Evaluation of the Frequency for Gas Sampling for the High Burn-up Storage Demonstration Project” under Work Package FT-15SN080204, “ST Field Demonstration Support – SNL”. This report provides a technically based gas sampling frequency strategy for the High Burnup (HBU) Confirmatory Data Project. The evaluation of: 1) the types and magnitudes of gases that could be present in the project cask and, 2) the degradation mechanisms that could change gas compositions culminates in an adaptive gas sampling frequency strategy. This adaptive strategy is compared against the sampling frequency that has been developed based on operational considerations. Gas sampling will provide information on the presence of residual water (and byproducts associated with its reactions and decomposition) and breach of cladding, which could inform the decision of when to open the project cask.

  5. Thermal properties of U–Mo alloys irradiated to moderate burnup and power

    SciTech Connect

    Burkes, Douglas E.; Casella, Andrew M.; Casella, Amanda J.; Buck, Edgar C.; Pool, Karl N.; MacFarlan, Paul J.; Edwards, Matthew K.; Smith, Frances N.

    2015-09-01

    A variety of physical and thermal property measurements as a function of temperature and fission density were performed on irradiated U-Mo alloy monolithic fuel samples with a Zr diffusion barrier and clad in aluminum alloy 6061. The U-Mo alloy density, thermal diffusivity, and thermal conductivity are strongly influenced by increasing burnup, mainly as the result of irradiation induced recrystallization and fission gas bubble formation and coalescence. U-Mo chemistry, specifically Mo content, and specific heat capacity was not as sensitive to increasing burnup. Measurements indicated that thermal conductivity of the U-Mo alloy decreased approximately 30% for a fission density of 2.88 × 1021 fissions cm-3 and approximately 45% for a fission density of 4.08 × 1021 fissions cm-3 from unirradiated values at 200 oC. An empirical thermal conductivity degradation model developed previously and summarized here agrees well with the experimental measurements.

  6. FRAPCON-3: Modifications to fuel rod material properties and performance models for high-burnup application

    SciTech Connect

    Lanning, D.D.; Beyer, C.E.; Painter, C.L.

    1997-12-01

    This volume describes the fuel rod material and performance models that were updated for the FRAPCON-3 steady-state fuel rod performance code. The property and performance models were changed to account for behavior at extended burnup levels up to 65 Gwd/MTU. The property and performance models updated were the fission gas release, fuel thermal conductivity, fuel swelling, fuel relocation, radial power distribution, solid-solid contact gap conductance, cladding corrosion and hydriding, cladding mechanical properties, and cladding axial growth. Each updated property and model was compared to well characterized data up to high burnup levels. The installation of these properties and models in the FRAPCON-3 code along with input instructions are provided in Volume 2 of this report and Volume 3 provides a code assessment based on comparison to integral performance data. The updated FRAPCON-3 code is intended to replace the earlier codes FRAPCON-2 and GAPCON-THERMAL-2. 94 refs., 61 figs., 9 tabs.

  7. Analytical core loss calculations for magnetic materials used in high frequency high power converter applications. Ph.D. Thesis - Toledo Univ.

    NASA Technical Reports Server (NTRS)

    Triner, J. E.

    1979-01-01

    The basic magnetic properties under various operating conditions encountered in the state-of-the-art DC-AC/DC converters are examined. Using a novel core excitation circuit, the basic B-H and loss characteristics of various core materials may be observed as a function of circuit configuration, frequency of operation, input voltage, and pulse-width modulation conditions. From this empirical data, a mathematical loss characteristics equation is developed to analytically predict the specific core loss of several magnetic materials under various waveform excitation conditions.

  8. Advanced Corrosion-Resistant Zr Alloys for High Burnup and Generation IV Applications

    SciTech Connect

    Arthur Motta; Yong Hwan Jeong; R.J. Comstock; G.S. Was; Y.S. Kim

    2006-10-31

    The objective of this collaboration between four institutions in the US and Korea is to demonstrate a technical basis for the improvement of the corrosion resistance of zirconium-based alloys in more extreme operating environments (such as those present in severe fuel duty,cycles (high burnup, boiling, aggressive chemistry) andto investigate the feasibility (from the point of view of corrosion rate) of using advanced zirconium-based alloys in a supercritical water environment.

  9. Experimental Test Plan for PWR Sister Rods in the High Burnup Spent Fuel Data Project

    SciTech Connect

    Montgomery, Rose; Scaglione, John M; Bevard, Bruce Balkcom; Hanson, Brady; Billone, Dr. Michael

    2016-01-01

    The High Burnup Spent Fuel Data project pulled 25 sister rods (9 from the project assemblies and 16 from similar HBU assemblies) for characterization. The 25 sister rods are all high burnup and cover the range of modern domestic cladding alloys. The 25 sister rods were shipped to Oak Ridge National Laboratory (ORNL) in early 2016 for detailed non-destructive and destructive examination. Examinations are intended to provide baseline data on the initial physical state of the cladding and fuel prior to the loading, drying, and long-term dry storage process. Further examinations are focused on determining the effects of temperatures encountered during and following drying. Similar tests will be performed on rods taken from the project assemblies at the end of their long-term storage in a TN-32 dry storage cask (the cask rods ) to identify any significant changes in the fuel rods that may have occurred during the dry storage period. Additionally, some of the sister rods will be used for separate effects testing to expand the applicability of the project data to the fleet, and to address some of the data-related gaps associated with extended storage and subsequent transportation of high burnup fuel. A draft test plan is being developed that describes the experimental work to be conducted on the sister rods. This paper summarizes the draft test plan and necessary coordination activities for the multi-year experimental program to supply data relevant to the assessment of the safety of long-term storage followed by transportation of high burnup spent fuel.

  10. Physics implications of oxide and metal fuel on the design of small LMFBR cores

    SciTech Connect

    Orechwa, Y.; Khalil, H.

    1984-09-17

    Slower growth projections in the demand for electricity and advances in metal fuel technology have shifted some of the emphasis in fast reactor development in the US from large oxide cores to small cores and also renewed interest in metal fuel. Cores constrained by diameter and fuel burnup exhibit many similar neutronic performance characteristics. However, some parameters such as reactivity coefficients, for example, are very different. The physics parameters of the four cores studied suggest that metal fueled cores, although less developed than oxide cores, are more flexible in adapting to currently changing deployment scenarios.

  11. Analysis of Burnup and Economic Potential of Alternative Fuel Materials in Thermal Reactors

    SciTech Connect

    Oggianu, Stella Maris; No, Hee Cheon; Kazimi, Mujid S.

    2003-09-15

    A strategy is proposed for the assessment of nuclear fuel material economic potential use in future light water reactors (LWRs). In this methodology, both the required enrichment and the fuel performance limits are considered. In order to select the best fuel candidate, the optimal burnup that produces the lowest annual fuel cost within the burnup potential for a given fuel material and smear density ratio is determined.Several nuclear materials are presented as examples of the application of the methodology proposed in this paper. The alternative fuels considered include uranium dioxide (UO{sub 2}), uranium carbide (UC), uranium nitride (UN), metallic uranium (U-Zr alloy), combined thorium and uranium oxides (ThO{sub 2}/UO{sub 2}), and combined thorium and uranium metals (U/Th). For these examples, a typical LWR lattice geometry in a zirconium-based cladding was assumed. The uncertainties in the results presented are large due to the scarcity of experimental data regarding the behavior of the considered materials at high burnups. Also, chemical compatibility issues are to be considered separately.The same methodology can be applied in the future to evaluate the economic potential of other nuclear fuel materials including different cladding designs, dispersions of ceramics into ceramics, dispersions of ceramics into metals, and also for geometries other than the traditional circular fuel pin.

  12. Oxygen potential in the rim region of high burnup UO 2 fuel

    NASA Astrophysics Data System (ADS)

    Matzke, Hj.

    1994-01-01

    Small specimens from the rim region (< 200 μm from the fuel surface) of a UO 2 fuel rod with an average burnup of 7.6% FIMA were analysed in a miniaturized galvanic cell to determine their oxygen potential Δ Ḡ(O 2) . These fuel pieces represented the porous rim structure with very small grains known to be formed near the periphery of high burnup UO 2 fuel pellets. The oxygen potential of the rim material was very low, corresponding to that of unirradiated stoichiometric UO 2, or to that of slightly substoichiometric UO 2 containing rare earth fission products. No indication of oxidation due to fission was found, though most fission was that of Pu. Measurements on pieces from the inner, unrestructured fuel showed somewhat higher oxygen potentials corresponding to those of very slightly substoichiometric fuel if allowance is made for the incorporation of rare earths. These results are in contrast to some generally accepted ideas of burnup effects, and the possible reasons and implications are discussed.

  13. Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation - Vandellos II Reactor

    SciTech Connect

    Ilas, Germina; Gauld, Ian C

    2011-01-01

    This report is one of the several recent NUREG/CR reports documenting benchmark-quality radiochemical assay data and the use of the data to validate computer code predictions of isotopic composition for spent nuclear fuel, to establish the uncertainty and bias associated with code predictions. The experimental data analyzed in the current report were acquired from a high-burnup fuel program coordinated by Spanish organizations. The measurements included extensive actinide and fission product data of importance to spent fuel safety applications, including burnup credit, decay heat, and radiation source terms. Six unique spent fuel samples from three uranium oxide fuel rods were analyzed. The fuel rods had a 4.5 wt % {sup 235}U initial enrichment and were irradiated in the Vandellos II pressurized water reactor operated in Spain. The burnups of the fuel samples range from 42 to 78 GWd/MTU. The measurements were used to validate the two-dimensional depletion sequence TRITON in the SCALE computer code system.

  14. Review and Prioritization of Technical Issues Related to Burnup Credit for LWR Fuel

    SciTech Connect

    Parks, C V; DeHart, M D; Wagner, John C

    2000-03-13

    This report has been prepared to review relevant background information and provide technical discussion that will help initiate a PIRT (Phenomena Identification and Ranking Tables) process for use of burnup credit in light-water reactor (LWR) spent fuel storage and transport cask applications. The PIRT process will be used by the NRC Office of Nuclear Regulatory Research to help prioritize and guide a coordinated program of research and as a means to obtain input/feedback from industry and other interested parties. The review and discussion in this report are based on knowledge and experience gained from work performed in the United States and other countries. Current regulatory practice and perceived industry needs are also reviewed as a background for prioritizing technical needs that will facilitate safe practice in the use of burnup credit. Relevant physics and analysis phenomenon are identified, and an assessment of their importance to burnup credit implementation is given. Finally, phenomena that need to be better understood for effective licensing, together with technical issues that require resolution, are presented and discussed in the form of a prioritization ranking and initial draft program plan.

  15. Grain and burnup dependence of spent fuel oxidation: geological repository impact

    SciTech Connect

    Hanson, B. D.; Kansa, E. J.; Stoot, R.B.

    1998-10-15

    Further refinements to the oxidation model of Stout et al. have been made. The present model incorporates the burnup dependence of the oxidation rate in addition to an allowance for a distribution of grain sizes. The model was tested by comparing the model results with the oxidation histories of spent fuel samples oxidized in Thermogravimetric Analysis (TGA) or Oven Dry-Bath (ODB) experiments. The comparison between the experimental and model results are remarkably close and confirm the assumption that grain-size distributions and activation energies are the important parameters to predicting oxidation behavior. The burnup dependence of the activation energy was shown to have a greater effect than decreasing the effective grain size in suppressing the rate of the reaction U{sub 4}O{sub 9}(rightwards arrow)U{sub 3} O{sub 4}. Model results predict that U{sub 3}O{sub 8} formation of spent fuels exposed to oxygen will be suppressed even for high burnup fuels that have undergone restructuring in the rim region, provided the repository temperature is kept sufficient.

  16. Irradiation performance of PFBR MOX fuel after 112 GWd/t burn-up

    NASA Astrophysics Data System (ADS)

    Venkiteswaran, C. N.; Jayaraj, V. V.; Ojha, B. K.; Anandaraj, V.; Padalakshmi, M.; Vinodkumar, S.; Karthik, V.; Vijaykumar, Ran; Vijayaraghavan, A.; Divakar, R.; Johny, T.; Joseph, Jojo; Thirunavakkarasu, S.; Saravanan, T.; Philip, John; Rao, B. P. C.; Kasiviswanathan, K. V.; Jayakumar, T.

    2014-06-01

    The 500 MWe Prototype Fast Breeder Reactor (PFBR) which is in advanced stage of construction at Kalpakkam, India, will use mixed oxide (MOX) fuel with a target burnup of 100 GWd/t. The fuel pellet is of annular design to enable operation at a peak linear power of 450 W/cm with the requirement of minimum duration of pre-conditioning. The performance of the MOX fuel and the D9 clad and wrapper material was assessed through Post Irradiation Examinations (PIE) after test irradiation of 37 fuel pin subassembly in Fast Breeder Test Reactor (FBTR) to a burn-up of 112 GWd/t. Fission product distribution, swelling and fuel-clad gap evolution, central hole diameter variation, restructuring, fission gas release and clad wastage due to fuel-clad chemical interaction were evaluated through non-destructive and destructive examinations. The examinations have indicated that the MOX fuel can safely attain the desired target burn-up in PFBR.

  17. The Impact of Prostate Volume, Number of Biopsy Cores and American Urological Association Symptom Score on the Sensitivity of Cancer Detection Using the Prostate Cancer Prevention Trial Risk Calculator

    PubMed Central

    Ankerst, Donna P.; Till, Cathee; Boeck, Andreas; Goodman, Phyllis; Tangen, Catherine M.; Feng, Ziding; Partin, Alan W.; Chan, Daniel W.; Sokoll, Lori; Kagan, Jacob; Wei, John T.; Thompson, Ian M.

    2013-01-01

    Purpose We assessed the independent predictive value of prostate volume, number of biopsy cores and AUASS (American Urological Association symptom score) compared to risk factors included in the PCPTRC (Prostate Cancer Prevention Trial risk calculator for prostate cancer) and PCPTHG (Prostate Cancer Prevention Trial risk calculator for high grade cancer [Gleason grade 7 or greater]). Materials and Methods Of 5,519 PCPT (Prostate Cancer Prevention Trial) participants the 4,958 used to construct the PCPTRC with AUASS and prostate specific antigen 10 ng/ml or less were included on logistic regression analysis. Risk algorithms were evaluated in 571 EDRN (Early Detection Research Network) participants using the ROC AUC. Results A total of 1,094 participants (22.1%) had prostate cancer, of whom 232 (21.2%) had high grade disease. For prostate cancer prediction higher prostate specific antigen, abnormal digital rectal examination, family history of prostate cancer and number of cores were associated with increased risk, while volume was associated with decreased risk. Excluding prostate volume and number of cores, a history of negative biopsy and increased AUASS were also associated with lower risk. For high grade cancer higher prostate specific antigen, abnormal digital rectal examination, black race and number of cores were associated with increased risk and volume, while AUASS was associated with decreased risk. The AUC of the PCPTRC adjusted for volume and number of cores was 72.7% using EDRN data and 68.2% when adjusted for AUASS alone vs 67.6% for the PCPTRC. For high grade disease the AUC was 74.8% and 74.0%, respectively, vs 73.5% for the PCPTHG. Conclusions Adjusted PCPT risk calculators for volume, number of cores and AUASS improve cancer detection. PMID:23313212

  18. Role of Minor Actinides for Long-Life Reactor Cores

    SciTech Connect

    Saito, M.; Artisyuk, V.; Shmelev, A.; Nikitin, K.; Peryoga, Y

    2002-07-01

    The paper addresses the study on advanced fuel cycles for LWR oriented to high burnup values that exceed 100 GWd/tHM, thus giving the chance to establish the long-life reactor cores without fuel reloading on site. The key element of this approach is a broad involvement of Minor Actinides whose admixture to 20% enriched uranium fuel provides safe release of initial reactivity excess and improved proliferation resistance properties. (authors)

  19. Performance and design considerations in metal fueled cores. [LMFBR

    SciTech Connect

    Orechwa, Y.; Khalil, H.; Turski, R.B.

    1984-01-01

    To focus future metal fuel development requirements a study was performed to quantify the relationship between some critical core design parameters. The fuel studied was U-Pu-Zr alloy. Of interest are performance parameters, such as peak Pu enrichment, burnup swing, fast fluence, breeding ratio, and their relation to core parameters such as reactor size, degree of core heterogeneity, pin diameter, and linear heat rating. These performance parameters, while numericaly different from those of ceramic fuels, were found to exhibit the same qualitative dependence on the key design variables.

  20. Results of a Neutronic Simulation of HTR-Proteus Core 4.2 using PEBBED and other INL Reactor Physics Tools: FY-09 Report

    SciTech Connect

    Hans D. Gougar

    2009-08-01

    The Idaho National Laboratory’s deterministic neutronics analysis codes and methods were applied to the computation of the core multiplication factor of the HTR-Proteus pebble bed reactor critical facility. A combination of unit cell calculations (COMBINE-PEBDAN), 1-D discrete ordinates transport (SCAMP), and nodal diffusion calculations (PEBBED) were employed to yield keff and flux profiles. Preliminary results indicate that these tools, as currently configured and used, do not yield satisfactory estimates of keff. If control rods are not modeled, these methods can deliver much better agreement with experimental core eigenvalues which suggests that development efforts should focus on modeling control rod and other absorber regions. Under some assumptions and in 1D subcore analyses, diffusion theory agrees well with transport. This suggests that developments in specific areas can produce a viable core simulation approach. Some corrections have been identified and can be further developed, specifically: treatment of the upper void region, treatment of inter-pebble streaming, and explicit (multiscale) transport modeling of TRISO fuel particles as a first step in cross section generation. Until corrections are made that yield better agreement with experiment, conclusions from core design and burnup analyses should be regarded as qualitative and not benchmark quality.

  1. VORCOR: A computer program for calculating characteristics of wings with edge vortex separation by using a vortex-filament and-core model

    NASA Technical Reports Server (NTRS)

    Pao, J. L.; Mehrotra, S. C.; Lan, C. E.

    1982-01-01

    A computer code base on an improved vortex filament/vortex core method for predicting aerodynamic characteristics of slender wings with edge vortex separations is developed. The code is applicable to camber wings, straked wings or wings with leading edge vortex flaps at subsonic speeds. The prediction of lifting pressure distribution and the computer time are improved by using a pair of concentrated vortex cores above the wing surface. The main features of this computer program are: (1) arbitrary camber shape may be defined and an option for exactly defining leading edge flap geometry is also provided; (2) the side edge vortex system is incorporated.

  2. Computational model for calculating body-core temperature elevation in rabbits due to whole-body exposure at 2.45 GHz.

    PubMed

    Hirata, Akimasa; Sugiyama, Hironori; Kojima, Masami; Kawai, Hiroki; Yamashiro, Yoko; Fujiwara, Osamu; Watanabe, Soichi; Sasaki, Kazuyuki

    2008-06-21

    In the current international guidelines and standards with regard to human exposure to electromagnetic waves, the basic restriction is defined in terms of the whole-body average-specific absorption rate. The rationale for the guidelines is that the characteristic pattern of thermoregulatory response is observed for the whole-body average SAR above a certain level. However, the relationship between energy absorption and temperature elevation was not well quantified. In this study, we improved our thermal computation model for rabbits, which was developed for localized exposure on eye, in order to investigate the body-core temperature elevation due to whole-body exposure at 2.45 GHz. The effect of anesthesia on the body-core temperature elevation was also discussed in comparison with measured results. For the whole-body average SAR of 3.0 W kg(-1), the body-core temperature in rabbits elevates with time, without becoming saturated. The administration of anesthesia suppressed body-core temperature elevation, which is attributed to the reduced basal metabolic rate.

  3. Computational model for calculating body-core temperature elevation in rabbits due to whole-body exposure at 2.45 GHz

    NASA Astrophysics Data System (ADS)

    Hirata, Akimasa; Sugiyama, Hironori; Kojima, Masami; Kawai, Hiroki; Yamashiro, Yoko; Fujiwara, Osamu; Watanabe, Soichi; Sasaki, Kazuyuki

    2008-06-01

    In the current international guidelines and standards with regard to human exposure to electromagnetic waves, the basic restriction is defined in terms of the whole-body average-specific absorption rate. The rationale for the guidelines is that the characteristic pattern of thermoregulatory response is observed for the whole-body average SAR above a certain level. However, the relationship between energy absorption and temperature elevation was not well quantified. In this study, we improved our thermal computation model for rabbits, which was developed for localized exposure on eye, in order to investigate the body-core temperature elevation due to whole-body exposure at 2.45 GHz. The effect of anesthesia on the body-core temperature elevation was also discussed in comparison with measured results. For the whole-body average SAR of 3.0 W kg-1, the body-core temperature in rabbits elevates with time, without becoming saturated. The administration of anesthesia suppressed body-core temperature elevation, which is attributed to the reduced basal metabolic rate.

  4. Calculating core-level excitations and X-ray absorption spectra of medium-sized closed-shell molecules with the algebraic-diagrammatic construction scheme for the polarization propagator.

    PubMed

    Wenzel, Jan; Wormit, Michael; Dreuw, Andreas

    2014-10-05

    Core-level excitations are generated by absorption of high-energy radiation such as X-rays. To describe these energetically high-lying excited states theoretically, we have implemented a variant of the algebraic-diagrammatic construction scheme of second-order ADC(2) by applying the core-valence separation (CVS) approximation to the ADC(2) working equations. Besides excitation energies, the CVS-ADC(2) method also provides access to properties of core-excited states, thereby allowing for the calculation of X-ray absorption spectra. To demonstrate the potential of our implementation of CVS-ADC(2), we have chosen medium-sized molecules as examples that have either biological importance or find application in organic electronics. The calculated results of CVS-ADC(2) are compared with standard TD-DFT/B3LYP values and experimental data. In particular, the extended variant, CVS-ADC(2)-x, provides the most accurate results, and the agreement between the calculated values and experiment is remarkable.

  5. Low Burnup Inert Matrix Fuels Performance: TRANSURANUS Analysis of the Halden IFA-652 First Irradiation Cycle

    SciTech Connect

    Calabrese, R.; Vettraino, F.; Tverberg, T.

    2006-07-01

    The inert matrix fuels are a promising option to reduce-eliminate worldwide plutonium stockpiles by burning it in LWRs. These fuels, where plutonium is hosted in a U-free inert matrix phase, may reach high burning efficiency while preventing new plutonium build-up under irradiation. A specific investigation on CSZ and thoria inert matrices has been developed by ENEA since several years. In-pile testing on the ENEA-conceived innovative fuels is ongoing in the OECD Halden HBWR since June 2000 (IFA-652 experiment). The registered burnup at the end of 2005 is about 38 MWd.kgU{sub eq}{sup -1} vs. 45 MWd.kgU{sub eq}{sup -1} (40 MWd.kgUOX{sub eq}{sup -1}) target. Fuel pins are equipped with fuel temperature thermocouples, internal pressure transducers and fuel stack elongation sensors, with the task of studying thermal conductivity and its degradation with burnup, densification-swelling behaviour and the FGR. In this paper, the response at low burnup (< 7 MWd.kgU{sub eq}{sup -1}) of CSZ-based fuels loaded in IFA-652, is analysed by means of the TRANSURANUS code. To this purpose, a comprehensive modelling of the above mentioned un-irradiated fuels, mainly relying on the thermophysical characterisation performed at the JRC/ITU-Karlsruhe, has been implemented in a custom TRANSURANUS version (TU-IMF). A comparison of the code predictions vs. the experimental data, aimed at evaluating the early-stage under irradiation phenomena, particularly densification and relocation, has been performed. (authors)

  6. Criticality Analysis of Assembly Misload in a PWR Burnup Credit Cask

    SciTech Connect

    Wagner, J. C.

    2008-01-31

    The Interim Staff Guidance on bumup credit (ISG-8) for spent fuel in storage and transportation casks, issued by the Nuclear Regulatory Commission's Spent Fuel Project Office, recommends a bumup measurement for each assembly to confirm the reactor record and compliance with the assembly bumup value used for loading acceptance. This recommendation is intended to prevent unauthorized loading (misloading) of assemblies due to inaccuracies in reactor burnup records and/or improper assembly identification, thereby ensuring that the appropriate subcritical margin is maintained. This report presents a computational criticality safety analysis of the consequences of misloading fuel assemblies in a highcapacity cask that relies on burnup credit for criticality safety. The purpose of this report is to provide a quantitative understanding of the effects of fuel misloading events on safety margins. A wide variety of fuel-misloading configurations are investigated and results are provided for informational purposes. This report does not address the likelihood of occurrence for any of the misload configurations considered. For representative, qualified bumup-enrichment combinations, with and without fission products included, misloading two assemblies that are underburned by 75% results in an increase in keff of 0.025-0.045, while misloading four assemblies that are underburned by 50% also results in an increase in keff of 0.025-0.045. For the cask and conditions considered, a reduction in bumup of 20% in all assemblies results in an increase in kff of less than 0.035. Misloading a single fresh assembly with 3, 4, or 5 wt% 235U enrichment results in an increase in keffof--0.02, 0.04, or 0.06, respectively. The report concludes with a summary of these and other important findings, as well as a discussion of relevant issues that should be considered when assessing the appropriate role of burnup measurements.

  7. An analysis of nuclear fuel burnup in the AGR-1 TRISO fuel experiment using gamma spectrometry, mass spectrometry, and computational simulation techniques

    SciTech Connect

    Harp, Jason M.; Demkowicz, Paul A.; Winston, Philip L.; Sterbentz, James W.

    2014-09-03

    AGR 1 was the first in a series of experiments designed to test US TRISO fuel under high temperature gas-cooled reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post irradiation examination (PIE) at INL and Oak Ridge National Laboratory. One component of the AGR 1 PIE is the experimental evaluation of the burnup of the fuel by two separate techniques. Gamma spectrometry was used to non destructively evaluate the burnup of all 72 of the TRISO fuel compacts that comprised the AGR 1 experiment. Two methods for evaluating burnup by gamma spectrometry were developed, one based on the Cs 137 activity and the other based on the ratio of Cs 134 and Cs 137 activities. Burnup values determined from both methods compared well with the values predicted from simulations. The highest measured burnup was 20.1% FIMA for the direct method and 20.0% FIMA for the ratio method (compared to 19.56% FIMA from simulations). An advantage of the ratio method is that the burnup of the cylindrical fuel compacts can determined in small (2.5 mm) axial increments and an axial burnup profile can be produced. Destructive chemical analysis by inductively coupled mass spectrometry (ICP MS) was then performed on selected compacts that were representative of the expected range of fuel burnups in the experiment to compare with the burnup values determined by gamma spectrometry. The compacts analyzed by mass spectrometry had a burnup range of 19.3% FIMA to 10.7% FIMA. The mass spectrometry evaluation of burnup for the four compacts agreed well with the gamma spectrometry burnup evaluations and the expected burnup from simulation. For all four compacts analyzed by mass spectrometry, the maximum range in the three experimentally determined values and the predicted value was 6% or less. Furthermore, the results confirm the accuracy of the nondestructive burnup evaluation from gamma spectrometry

  8. An analysis of nuclear fuel burnup in the AGR-1 TRISO fuel experiment using gamma spectrometry, mass spectrometry, and computational simulation techniques

    DOE PAGES

    Harp, Jason M.; Demkowicz, Paul A.; Winston, Philip L.; ...

    2014-09-03

    AGR 1 was the first in a series of experiments designed to test US TRISO fuel under high temperature gas-cooled reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post irradiation examination (PIE) at INL and Oak Ridge National Laboratory. One component of the AGR 1 PIE is the experimental evaluation of the burnup of the fuel by two separate techniques. Gamma spectrometry was used to non destructively evaluate the burnup of all 72 of the TRISO fuel compacts that comprised the AGR 1 experiment. Two methodsmore » for evaluating burnup by gamma spectrometry were developed, one based on the Cs 137 activity and the other based on the ratio of Cs 134 and Cs 137 activities. Burnup values determined from both methods compared well with the values predicted from simulations. The highest measured burnup was 20.1% FIMA for the direct method and 20.0% FIMA for the ratio method (compared to 19.56% FIMA from simulations). An advantage of the ratio method is that the burnup of the cylindrical fuel compacts can determined in small (2.5 mm) axial increments and an axial burnup profile can be produced. Destructive chemical analysis by inductively coupled mass spectrometry (ICP MS) was then performed on selected compacts that were representative of the expected range of fuel burnups in the experiment to compare with the burnup values determined by gamma spectrometry. The compacts analyzed by mass spectrometry had a burnup range of 19.3% FIMA to 10.7% FIMA. The mass spectrometry evaluation of burnup for the four compacts agreed well with the gamma spectrometry burnup evaluations and the expected burnup from simulation. For all four compacts analyzed by mass spectrometry, the maximum range in the three experimentally determined values and the predicted value was 6% or less. Furthermore, the results confirm the accuracy of the nondestructive burnup evaluation from gamma

  9. Effects of Lower Drying-Storage Temperature on the Ductility of High-Burnup PWR Cladding

    SciTech Connect

    Billone, M. C.; Burtseva, T. A.

    2016-08-30

    The purpose of this research effort is to determine the effects of canister and/or cask drying and storage on radial hydride precipitation in, and potential embrittlement of, high-burnup (HBU) pressurized water reactor (PWR) cladding alloys during cooling for a range of peak drying-storage temperatures (PCT) and hoop stresses. Extensive precipitation of radial hydrides could lower the failure hoop stresses and strains, relative to limits established for as-irradiated cladding from discharged fuel rods stored in pools, at temperatures below the ductile-to-brittle transition temperature (DBTT).

  10. Core-core and core-valence correlation

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1988-01-01

    The effect of (1s) core correlation on properties and energy separations was analyzed using full configuration-interaction (FCI) calculations. The Be 1 S - 1 P, the C 3 P - 5 S and CH+ 1 Sigma + or - 1 Pi separations, and CH+ spectroscopic constants, dipole moment and 1 Sigma + - 1 Pi transition dipole moment were studied. The results of the FCI calculations are compared to those obtained using approximate methods. In addition, the generation of atomic natural orbital (ANO) basis sets, as a method for contracting a primitive basis set for both valence and core correlation, is discussed. When both core-core and core-valence correlation are included in the calculation, no suitable truncated CI approach consistently reproduces the FCI, and contraction of the basis set is very difficult. If the (nearly constant) core-core correlation is eliminated, and only the core-valence correlation is included, CASSCF/MRCI approached reproduce the FCI results and basis set contraction is significantly easier.

  11. Critical assessment of the pore size distribution in the rim region of high burnup UO2 fuels

    NASA Astrophysics Data System (ADS)

    Cappia, F.; Pizzocri, D.; Schubert, A.; Van Uffelen, P.; Paperini, G.; Pellottiero, D.; Macián-Juan, R.; Rondinella, V. V.

    2016-11-01

    A new methodology is introduced to analyse porosity data in the high burnup structure. Image analysis is coupled with the adaptive kernel density estimator to obtain a detailed characterisation of the pore size distribution, without a-priori assumption on the functional form of the distribution. Subsequently, stereological analysis is carried out. The method shows advantages compared to the classical approach based on the histogram in terms of detail in the description and accuracy within the experimental limits. Results are compared to the approximation of a log-normal distribution. In the investigated local burnup range (80-200 GWd/tHM), the agreement of the two approaches is satisfactory. From the obtained total pore density and mean pore diameter as a function of local burnup, pore coarsening is observed starting from ≈100 GWd/tHM, in agreement with a previous investigation.

  12. A semi-empirical model for the formation and depletion of the high burnup structure in UO2

    NASA Astrophysics Data System (ADS)

    Pizzocri, D.; Cappia, F.; Luzzi, L.; Pastore, G.; Rondinella, V. V.; Van Uffelen, P.

    2017-04-01

    In the rim zone of UO2 nuclear fuel pellets, the combination of high burnup and low temperature drives a microstructural change, leading to the formation of the high burnup structure (HBS). In this work, we propose a semi-empirical model to describe the formation of the HBS, which embraces the polygonisation/recrystallization process and the depletion of intra-granular fission gas, describing them as inherently related. For this purpose, we performed grain-size measurements on samples at radial positions in which the restructuring was incomplete. Based on these new experimental data, we infer an exponential reduction of the average grain size with local effective burnup, paired with a simultaneous depletion of intra-granular fission gas driven by diffusion. The comparison with currently used models indicates the applicability of the herein developed model within integral fuel performance codes.

  13. Development and validation of burnup dependent computational schemes for the analysis of assemblies with advanced lattice codes

    NASA Astrophysics Data System (ADS)

    Ramamoorthy, Karthikeyan

    The main aim of this research is the development and validation of computational schemes for advanced lattice codes. The advanced lattice code which forms the primary part of this research is "DRAGON Version4". The code has unique features like self shielding calculation with capabilities to represent distributed and mutual resonance shielding effects, leakage models with space-dependent isotropic or anisotropic streaming effect, availability of the method of characteristics (MOC), burnup calculation with reaction-detailed energy production etc. Qualified reactor physics codes are essential for the study of all existing and envisaged designs of nuclear reactors. Any new design would require a thorough analysis of all the safety parameters and burnup dependent behaviour. Any reactor physics calculation requires the estimation of neutron fluxes in various regions of the problem domain. The calculation goes through several levels before the desired solution is obtained. Each level of the lattice calculation has its own significance and any compromise at any step will lead to poor final result. The various levels include choice of nuclear data library and energy group boundaries into which the multigroup library is cast; self shielding of nuclear data depending on the heterogeneous geometry and composition; tracking of geometry, keeping error in volume and surface to an acceptable minimum; generation of regionwise and groupwise collision probabilities or MOC-related information and their subsequent normalization thereof, solution of transport equation using the previously generated groupwise information and obtaining the fluxes and reaction rates in various regions of the lattice; depletion of fuel and of other materials based on normalization with constant power or constant flux. Of the above mentioned levels, the present research will mainly focus on two aspects, namely self shielding and depletion. The behaviour of the system is determined by composition of resonant

  14. Radionuclide Data and Calculations and Loss-On-Ignition, X-Ray Fluorescence, and ICP-AES Data from Cores in Catchments of the Animas River, Colorado

    USGS Publications Warehouse

    Church, Stanley E.; Rice, Cyndi A.; Marot, Marci E.

    2008-01-01

    The U.S. Departments of Agriculture and Interior Abandoned Mine Lands (AML) Initiative is focused on the evaluation of the effect of past mining practices on the water quality and the riparian and aquatic habitats of impacted stream reaches downstream from historical mining districts located primarily on Federal lands. This problem is manifest in the eleven western states (west of longitude 102 degrees) where the majority of hardrock mines that had past production are located on Federal lands. In areas of temperate climate and moderate to heavy precipitation, the effects of rapid chemical and physical weathering of sulfides exposed on mine-waste dumps and acidic drainage from mines have resulted in elevated metal concentrations in the stream water and stream-bed sediment. The result of these mineral weathering processes has an unquantified impact on the quality of the water and the aquatic and riparian habitats that may limit their recreational resource value. One of the confounding factors in these studies is the determination of the component of metals derived from hydrothermally altered but unmined portions of these drainage basins. Several watersheds have been studied to evaluate the effects of acid mine drainage and acid rock drainage on the near-surface environment. The Animas River watershed in southwestern Colorado contains a large number of past-producing metal mines that have affected the watershed. Beginning in October 1996, the U.S. Geological Survey (USGS) began a collaborative study of these effects under the USGS-AML Initiative. In this report, we present the radionuclide and geochemical analytical results of sediment coring during 1997-1999 from two cores from oxbow lakes 0.5 mi. upstream from the 32nd Street Bridge near Durango, Colo., and from three cores from beaver ponds within the Mineral Creek drainage basin near Silverton, Colo.

  15. Development and preliminary verification of the 3D core neutronic code: COCO

    SciTech Connect

    Lu, H.; Mo, K.; Li, W.; Bai, N.; Li, J.

    2012-07-01

    As the recent blooming economic growth and following environmental concerns (China)) is proactively pushing forward nuclear power development and encouraging the tapping of clean energy. Under this situation, CGNPC, as one of the largest energy enterprises in China, is planning to develop its own nuclear related technology in order to support more and more nuclear plants either under construction or being operation. This paper introduces the recent progress in software development for CGNPC. The focus is placed on the physical models and preliminary verification results during the recent development of the 3D Core Neutronic Code: COCO. In the COCO code, the non-linear Green's function method is employed to calculate the neutron flux. In order to use the discontinuity factor, the Neumann (second kind) boundary condition is utilized in the Green's function nodal method. Additionally, the COCO code also includes the necessary physical models, e.g. single-channel thermal-hydraulic module, burnup module, pin power reconstruction module and cross-section interpolation module. The preliminary verification result shows that the COCO code is sufficient for reactor core design and analysis for pressurized water reactor (PWR). (authors)

  16. EBSD and TEM Characterization of High Burn-up Mixed Oxide Fuel

    SciTech Connect

    Teague, Melissa C.; Gorman, Brian P.; Miller, Brandon D.; King, Jeffrey

    2014-01-01

    Understanding and studying the irradiation behavior of high burn-up oxide fuel is critical to licensing of future fast breeder reactors. Advancements in experimental techniques and equipment are allowing for new insights into previously irradiated samples. In this work dual column focused ion beam (FIB)/scanning electron microscope (SEM) was utilized to prepared transmission electron microscope samples from mixed oxide fuel with a burn-up of 6.7% FIMA. Utilizing the FIB/SEM for preparation resulted in samples with a dose rate of <0.5 mRem/h compared to approximately 1.1 R/h for a traditionally prepared TEM sample. The TEM analysis showed that the sample taken from the cooler rim region of the fuel pellet had approximately 2.5x higher dislocation density than that of the sample taken from the mid-radius due to the lower irradiation temperature of the rim. The dual column FIB/SEM was additionally used to prepared and serially slice approximately 25 um cubes. High quality electron back scatter diffraction (EBSD) were collected from the face at each step, showing, for the first time, the ability to obtain EBSD data from high activity irradiated fuel.

  17. An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses: Criticality (keff) Predictions

    SciTech Connect

    Scaglione, John M.; Mueller, Don E.; Wagner, John C.

    2014-12-01

    One of the most important remaining challenges associated with expanded implementation of burnup credit in the United States is the validation of depletion and criticality calculations used in the safety evaluation—in particular, the availability and use of applicable measured data to support validation, especially for fission products (FPs). Applicants and regulatory reviewers have been constrained by both a scarcity of data and a lack of clear technical basis or approach for use of the data. In this study, this paper describes a validation approach for commercial spent nuclear fuel (SNF) criticality safety (keff) evaluations based on best-available data and methods and applies the approach for representative SNF storage and transport configurations/conditions to demonstrate its usage and applicability, as well as to provide reference bias results. The criticality validation approach utilizes not only available laboratory critical experiment (LCE) data from the International Handbook of Evaluated Criticality Safety Benchmark Experiments and the French Haut Taux de Combustion program to support validation of the principal actinides but also calculated sensitivities, nuclear data uncertainties, and limited available FP LCE data to predict and verify individual biases for relevant minor actinides and FPs. The results demonstrate that (a) sufficient critical experiment data exist to adequately validate keff calculations via conventional validation approaches for the primary actinides, (b) sensitivity-based critical experiment selection is more appropriate for generating accurate application model bias and uncertainty, and (c) calculated sensitivities and nuclear data uncertainties can be used for generating conservative estimates of bias for minor actinides and FPs. Results based on the SCALE 6.1 and the ENDF/B-VII.0 cross-section libraries indicate that a conservative estimate of the bias for the minor actinides and FPs is 1.5% of their worth

  18. Determination of plutonium content in high burnup pressurized water reactor fuel samples and its use for isotope correlations for isotopic composition of plutonium.

    PubMed

    Joe, Kihsoo; Jeon, Young-Shin; Han, Sun-Ho; Lee, Chang-Heon; Ha, Yeong-Keong; Song, Kyuseok

    2012-06-01

    The content of plutonium isotopes in high burnup pressurized water reactor fuel samples was examined using both alpha spectrometry and mass spectrometry after anion exchange separation. The measured values were compared with results calculated by the ORIGEN-2 code. On average, the ratios (m/c) of the measured values (m) over the calculated values (c) were 1.22±0.16 for (238)Pu, 1.02±0.14 for (239)Pu, 1.08±0.06 for (240)Pu, 1.06±0.16 for (241)Pu, and 1.13±0.08 for (242)Pu. Using the Pu data obtained in this work, correlations were derived between the alpha activity ratios of (238)Pu/((239)Pu+(240)Pu), the alpha specific activities of Pu, and the atom % abundances of the Pu isotopes. Using these correlations, the atom % abundances of the plutonium isotopes in the target samples were calculated. These calculated results agreed within a range from 2 to 8% of the experimentally derived values according to the isotopes of plutonium.

  19. Atomic force calculations within the all-electron FLAPW method: Treatment of core states and discontinuities at the muffin-tin sphere boundary

    NASA Astrophysics Data System (ADS)

    Klüppelberg, Daniel A.; Betzinger, Markus; Blügel, Stefan

    2015-01-01

    We analyze the accuracy of the atomic force within the all-electron full-potential linearized augmented plane-wave (FLAPW) method using the force formalism of Yu et al. [Phys. Rev. B 43, 6411 (1991), 10.1103/PhysRevB.43.6411]. A refinement of this formalism is presented that explicitly takes into account the tail of high-lying core states leaking out of the muffin-tin sphere and considers the small discontinuities of LAPW wave function, density, and potential at the muffin-tin sphere boundaries. For MgO and EuTiO3 it is demonstrated that these amendments substantially improve the acoustic sum rule and the symmetry of the force constant matrix. Sum rule and symmetry are realized with an accuracy of μ Htr /aB .

  20. Metallic inert matrix fuel concept for minor actinides incineration to achieve ultra-high burn-up

    NASA Astrophysics Data System (ADS)

    Lipkina, K.; Savchenko, A.; Skupov, M.; Glushenkov, A.; Vatulin, A.; Uferov, O.; Ivanov, Y.; Kulakov, G.; Ershov, S.; Maranchak, S.; Kozlov, A.; Maynikov, E.; Konova, K.

    2014-09-01

    The advantages of using Inert Matrix Fuel (IMF) in a design of an isolated arrangement of fuel are considered, with emphasis on, low temperatures in the fuel center, achievement of high burn-ups, and an environment friendly process for the fuel element fabrication. Changes in the currently existing concept of IMF usage are suggested, involving novel IMF design in the nuclear fuel cycle.

  1. 77 FR 26050 - Burnup Credit in the Criticality Safety Analyses of Pressurized Water Reactor Spent Fuel in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... criticality safety analyses of pressurized water reactor spent nuclear fuel (SNF) in transportation packages... Doc No: 2012-10618] NUCLEAR REGULATORY COMMISSION [NRC-2012-0100] Burnup Credit in the Criticality... the Criticality Safety Analyses of PWR Spent Fuel in Transportation and Storage Casks.'' This...

  2. Auxiliary basis sets for density-fitted correlated wavefunction calculations: weighted core-valence and ECP basis sets for post-d elements.

    PubMed

    Hättig, Christof; Schmitz, Gunnar; Kossmann, Jörg

    2012-05-14

    We report optimised auxiliary basis sets for the resolution-of-the-identity (or density-fitting) approximation of two-electron integrals in second-order Møller-Plesset perturbation theory (MP2) and similar electronic structure calculations with correlation-consistent basis sets for the post-d elements Ga-Kr, In-Xe, and Tl-Rn. The auxiliary basis sets are optimised such that the density-fitting error is negligible compared to the one-electron basis set error. To check to which extent this criterion is fulfilled we estimated for a test set of 80 molecules the basis set limit of the correlation energy at the MP2 level and evaluated the remaining density-fitting and the one-electron basis set errors. The resulting auxiliary basis sets are only 2-6 times larger than the corresponding one-electron basis sets and lead in MP2 calculations to speed-ups of the integral evaluation by one to three orders of magnitude. The density-fitting errors in the correlation energy are at least hundred times smaller than the one-electron basis set error, i.e. in the order of only 1-100 μH per atom.

  3. Core-level electronic structure of solid-phase glycine, glycyl-glycine, diglycyl-glycine, and polyglycine: X-ray photoemission analysis and Hartree-Fock calculations of their zwitterions.

    PubMed

    Chatterjee, Avisek; Zhao, Liyan; Zhang, Lei; Pradhan, Debabrata; Zhou, Xiaojing; Leung, K T

    2008-09-14

    X-ray photoelectron spectroscopy (XPS) has been used to investigate the core-level electronic structures of glycine (G) and its peptides, including glycyl-glycine (GG), diglycyl-glycine (GGG), and polyglycine (poly-G), in their powder forms. Increasing the number of G units in the peptides does not change the locations of the respective C 1s, N 1s, and O 1s features corresponding to different functional groups: -COO(-), -NH(3)(+), >CH(2), and -CONH-. The electronic structures of the zwitterions of these molecules have been calculated as isolated molecules and as molecules in an aqueous environment under the periodic boundary conditions by quantum-mechanical and molecular mechanics methods. In the case of glycine zwitterion, the binding energies of the C 1s, N 1s, and O 1s XPS features are found to be in reasonable accord with the respective orbital energies obtained by Hartree-Fock self-consistent-field calculations, within the context of Koopmans' approximation. However, considerably worse agreement in the binding energies is found for the larger zwitterions (with the specific conformations considered in this work), indicating the need for higher-level calculations. The present work shows that optimizing the zwitterion in an aqueous environment under the periodic boundary conditions by molecular mechanics could be a very cost-effective approach for calculating the electronic structures of large, complex biomolecular systems.

  4. Data Mining Techniques to Estimate Plutonium, Initial Enrichment, Burnup, and Cooling Time in Spent Fuel Assemblies

    SciTech Connect

    Trellue, Holly Renee; Fugate, Michael Lynn; Tobin, Stephen Joesph

    2015-03-19

    The Next Generation Safeguards Initiative (NGSI), Office of Nonproliferation and Arms Control (NPAC), National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE) has sponsored a multi-laboratory, university, international partner collaboration to (1) detect replaced or missing pins from spent fuel assemblies (SFA) to confirm item integrity and deter diversion, (2) determine plutonium mass and related plutonium and uranium fissile mass parameters in SFAs, and (3) verify initial enrichment (IE), burnup (BU), and cooling time (CT) of facility declaration for SFAs. A wide variety of nondestructive assay (NDA) techniques were researched to achieve these goals [Veal, 2010 and Humphrey, 2012]. In addition, the project includes two related activities with facility-specific benefits: (1) determination of heat content and (2) determination of reactivity (multiplication). In this research, a subset of 11 integrated NDA techniques was researched using data mining solutions at Los Alamos National Laboratory (LANL) for their ability to achieve the above goals.

  5. Fuel modeling at high burn-up: recent development of the GERMINAL code

    NASA Astrophysics Data System (ADS)

    Melis, J.-C.; Piron, J.-P.; Roche, L.

    1993-09-01

    In the frame of research and development on fast breeder reactors fuels, CEA/DEC is developing the computer code GERMINAL to study fuel pin thermal and mechanical behaviour during steady-state and accidental conditions. The development of the GERMINAL 1 code is foreseen in two steps: (1) The GERMINAL 1-1 version which is presently delivered fully documented with a physical qualification guaranteed up to 8 at%. (2) The GERMINAL 1-2 version which, in addition to what is presently treated in GERMINAL 1-1, includes the treatment of high burn-up effects on the the fission gas release and the fuel-clad interface (called JOG). The validation of GERMINAL 1-2 is presently in progress and will include specific experiments (JOG tests) performed in the CABRI reactor.

  6. The impact of interface bonding efficiency on high-burnup spent nuclear fuel dynamic performance

    SciTech Connect

    Jiang, Hao; Wang, Jy-An John; Wang, Hong

    2016-09-26

    Finite element analysis (FEA) was used to investigate the impact of interfacial bonding efficiency at pellet-pellet and pellet-clad interfaces of high-burnup (HBU) spent nuclear fuel (SNF) on system dynamic performance. Bending moments M were applied to FEA model to evaluate the system responses. From bending curvature, κ, flexural rigidity EI can be estimated as EI = M/κ. The FEA simulation results were benchmarked with experimental results from cyclic integrated reversal bending fatigue test (CIRFT) of HBR fuel rods. The consequence of interface debonding between fuel pellets and cladding is a redistribution of the loads carried by the fuel pellets to the clad, which results in a reduction in composite rod system flexural rigidity. Furthermore, the interface bonding efficiency at the pellet-pellet and pellet-clad interfaces can significantly dictate the SNF system dynamic performance. With the consideration of interface bonding efficiency, the HBU SNF fuel property was estimated with CIRFT test data.

  7. Fission-detector determination of D-D triton burnup fraction in beam-heated TFTR (Tokamak Fusion Test Reactor) plasmas

    SciTech Connect

    Jassby, D.L.; Hendel, H.W.; Barnes, C.W.; Bosch, S.; Cecil, F.E.; McCune, D.C.; Nieschmidt, E.B.; Strachan, J.D.

    1987-06-01

    After the end of a neutral-beam injection pulse into a low-density TFTR plasma, once the beam-injected deuterons have thermalized, the neutron emission is dominated by the 14-MeV neutron production from D-D triton burnup. Ordinary fission detectors can measure the 14-MeV emission rate, which can be extrapolated back in time to estimate the equilibrium triton burnup fraction. The fractional burnup determined by this method is in the range of 0.3 to 1.5% for TFTR discharges to date, and is consistent with classical confinement and slowing down. 10 refs., 3 figs.

  8. Advanced MOX Core Design Study of Sodium Cooled Reactors in Current Feasibility Study on Commercialized Fast Reactor Cycle Systems in Japan

    SciTech Connect

    Mizuno, T.; Niwa, H.

    2002-07-01

    The Sodium cooled MOX core design studies are performed with the target burnup of 150 GWd/t and measures against the recriticality issues in core disruptive accidents (CDAs). Four types of core are comparatively studied in viewpoints of core performance and reliability. Result shows that all the types of core satisfy the target and that the homogeneous core with axial blanket partial elimination subassembly is the most superior concept in case the effectiveness of measures against recriticality issues by the axial blanket partial elimination is assured. (authors)

  9. RIA Limits Based On Commercial PWR Core Response To RIA

    SciTech Connect

    Beard, Charles L.; Mitchell, David B.; Slagle, William H.

    2006-07-01

    Reactivity insertion accident (RIA) limits have been under intense review by regulators since 1993 with respect to what should be the proper limit as a function of burnup. Some national regulators have imposed new lower limits while in the United States the limits are still under review. The data being evaluated with respect to RIA limits come from specialized test reactors. However, the use of test reactor data needs to be balanced against the response of a commercial PWR core in setting reasonable limits to insure the health and safety of the public without unnecessary restrictions on core design and operation. The energy deposition limits for a RIA were set in the 1970's based on testing in CDC (SPERT), TREAT, PBF and NSRR test reactors. The US limits given in radially averaged enthalpy are 170 cal/gm for fuel cladding failure and 280 cal/gm for coolability. Testing conducted in the 1990's in the CABRI, NSRR and IGR test reactors have demonstrated that the cladding failure threshold is reduced with burnup, with the primary impact due to hydrogen pickup for in-reactor corrosion. Based on a review of this data very low enthalpy limits have been proposed. In reviewing proposed limits from RIL-0401(1) it was observed that much of the data used to anchor the low allowable energy deposition levels was from recent NSRR tests which do not represent commercial PWR reactor conditions. The particular characteristics of the NSRR test compared to commercial PWR reactor characteristics are: - Short pulse width: 4.5 ms vs > 8 ms; - Low temperature conditions: < 100 deg. F vs 532 deg. F. - Low pressure environment: atmospheric vs {approx} 2200 psi. A review of the historical RIA database indicates that some of the key NSRR data used to support the RIL was atypical compared to the overall RIA database. Based on this detailed review of the RIA database and the response of commercial PWR core, the following view points are proposed. - The Failure limit should reflect local fuel

  10. Ductile-to-brittle transition temperature for high-burnup cladding alloys exposed to simulated drying-storage conditions

    NASA Astrophysics Data System (ADS)

    Billone, M. C.; Burtseva, T. A.; Einziger, R. E.

    2013-02-01

    Structural analyses of dry casks containing high-burnup fuel require cladding mechanical properties and failure limits to assess fuel behavior. Pre-storage drying-transfer operations and early stage storage subject cladding to higher temperatures and much higher pressure-induced tensile hoop stresses relative to in-reactor operation and pool storage. Under these conditions, radial hydrides may precipitate during slow cooling and provide an additional embrittlement mechanism as the cladding temperature decreases below the ductile-to-brittle transition temperature (DBTT). A test procedure was developed to simulate the effects of drying-storage temperature histories. Following drying-storage simulation, samples were subjected to ring-compression test (RCT) loading, which was used as a ductility screening test and to simulate pinch-type loading that may occur during cask transport. RCT samples with <2% offset strain prior to >50% wall cracking were assessed as brittle. Prior to testing high-burnup cladding, many tests were conducted with pre-hydrided Zircaloy-4 (Zry-4) and ZIRLO™ to determine target 400 °C hoop stresses for high-burnup rodlets. Zry-4 cladding segments, from a 67-GWd/MTU fuel rod, with 520-620 wppm hydrogen and ZIRLO™ cladding segments from a 70-GWd/MTU fuel rod, with 350-650 wppm hydrogen were defueled and tested. Following drying-storage simulation, the extent of radial-hydride precipitation was characterized by the radial-hydride continuity factor. It was found that the DBTT was dependent on: cladding material, irradiation conditions, and drying-storage histories (stress at maximum temperature). High-burnup ZIRLO™ exhibited higher susceptible to radial-hydride formation and embrittlement than high-burnup Zry-4. It was also observed that uniformly pre-hydrided, non-irradiated cladding was not a good surrogate for high-burnup cladding because of the high density of circumferential hydrides across the wall and the high metal-matrix ductility for

  11. Automated Design and Optimization of Pebble-bed Reactor Cores

    SciTech Connect

    Hans D. Gougar; Abderrafi M. Ougouag; William K. Terry

    2010-07-01

    We present a conceptual design approach for high-temperature gas-cooled reactors using recirculating pebble-bed cores. The design approach employs PEBBED, a reactor physics code specifically designed to solve for and analyze the asymptotic burnup state of pebble-bed reactors, in conjunction with a genetic algorithm to obtain a core that maximizes a fitness value that is a function of user-specified parameters. The uniqueness of the asymptotic core state and the small number of independent parameters that define it suggest that core geometry and fuel cycle can be efficiently optimized toward a specified objective. PEBBED exploits a novel representation of the distribution of pebbles that enables efficient coupling of the burnup and neutron diffusion solvers. With this method, even complex pebble recirculation schemes can be expressed in terms of a few parameters that are amenable to modern optimization techniques. With PEBBED, the user chooses the type and range of core physics parameters that represent the design space. A set of traits, each with acceptable and preferred values expressed by a simple fitness function, is used to evaluate the candidate reactor cores. The stochastic search algorithm automatically drives the generation of core parameters toward the optimal core as defined by the user. The optimized design can then be modeled and analyzed in greater detail using higher resolution and more computationally demanding tools to confirm the desired characteristics. For this study, the design of pebble-bed high temperature reactor concepts subjected to demanding physical constraints demonstrated the efficacy of the PEBBED algorithm.

  12. Validation of the REBUS-3/RCT methodologies for EBR-II core-follow analysis

    SciTech Connect

    McKnight, R.D.

    1992-01-01

    One of the many tasks to be completed at EBR-2/FCF (Fuel Cycle Facility) regarding fuel cycle closure for the Integral Fast Reactor (IFR) is to develop and install the systems to be used for fissile material accountancy and control. The IFR fuel cycle and pyrometallurgical process scheme determine the degree of actinide of actinide buildup in the reload fuel assemblies. Inventories of curium, americium and neptunium in the fuel will affect the radiation and thermal environmental conditions at the fuel fabrication stations, the chemistry of reprocessing, and the neutronic performance of the core. Thus, it is important that validated calculational tools be put in place for accurately determining isotopic mass and neutronic inputs to FCF for both operational and material control and accountancy purposes. The primary goal of this work is to validate the REBUS-2/RCT codes as tools which can adequately compute the burnup and isotopic distribution in binary- and ternary-fueled Mark-3, Mark-4, and Mark-5 subassemblies. 6 refs.

  13. Calculation of radiation induced swelling of uranium mononitride using the digital computer program CYGRO 2

    NASA Technical Reports Server (NTRS)

    Davison, H. W.; Fiero, I. B.

    1971-01-01

    Fuel volume swelling and clad diametral creep strains were calculated for five fuel pins, clad with either T-111 (Ta-8W-2.4Hf) or PWC-11 (Nb-1Zr-0.1C). The fuel pins were irradiated to burnups between 2.7 and 4.6%. Clad temperatures were between 1750 and 2400 F (1228 and 1589 K). The maximum percentage difference between calculated and experimentally measured values of volumetric fuel swelling is 60%.

  14. Recent view to the results of pulse tests in the IGR reactor with high burn-up fuel

    SciTech Connect

    Asmolov, V.; Yegorova, L.

    1996-03-01

    Testing of 43 fuel elements (13 fuel elements with high burn-up fuel, 10 fuel elements with preirradiated cladding and fresh fuel, and 20 non-irradiated fuel elements) was carried out in the IGR pulse reactor with a half width of the reactor power pulse of about 0.7 sec. Tests were conducted in capsules with no coolant flow and with standard initial conditions in the capsule of 20{degrees}C and 0.2 MPa. Two types of coolant were used: water and air. One purpose of the test program was to determine the thresholds and mechanisms of fuel rod failure under RIA conditions for VVER fuel rods over their entire exposure range, from zero to high burn-up. These failure thresholds are often used in safety analyses. The tests and analyses were designed to reveal the influence on fuel rod failure of (1) the mechanical properties of the cladding, (2) the pellet-to-cladding gap, (3) fuel burn-up, (4) fuel-to-coolant heat transfer, and other parameters. The resulting data base can also be used for validation of computer codes used for analyzing fuel rod behavior. Three types of test specimens were used in the tests, and diagrams of these specimens are shown in Fig. 1. {open_quotes}Type-C{close_quotes} specimens were re-fabricated from commercial fuel rods of the VVER-1000 type that had been subjected to many power cycles of operation in the Novovoronezh Nuclear Power Plant (NV NPP). {open_quotes}Type-D{close_quotes} specimens were fabricated from the same commercial fuel rods used above, but the high burn-up oxide fuel was removed from the cladding and was replaced with fresh oxide fuel pellets. {open_quotes}Type-D{close_quotes} specimens thus provided a means of separating the effects of the cladding and the oxide fuel pellets and were used to examine cladding effects only.

  15. Characterization of the non-uniqueness of used nuclear fuel burnup signatures through a Mesh-Adaptive Direct Search

    NASA Astrophysics Data System (ADS)

    Skutnik, Steven E.; Davis, David R.

    2016-05-01

    The use of passive gamma and neutron signatures from fission indicators is a common means of estimating used fuel burnup, enrichment, and cooling time. However, while characteristic fission product signatures such as 134Cs, 137Cs, 154Eu, and others are generally reliable estimators for used fuel burnup within the context where the assembly initial enrichment and the discharge time are known, in the absence of initial enrichment and/or cooling time information (such as when applying NDA measurements in a safeguards/verification context), these fission product indicators no longer yield a unique solution for assembly enrichment, burnup, and cooling time after discharge. Through the use of a new Mesh-Adaptive Direct Search (MADS) algorithm, it is possible to directly probe the shape of this "degeneracy space" characteristic of individual nuclides (and combinations thereof), both as a function of constrained parameters (such as the assembly irradiation history) and unconstrained parameters (e.g., the cooling time before measurement and the measurement precision for particular indicator nuclides). In doing so, this affords the identification of potential means of narrowing the uncertainty space of potential assembly enrichment, burnup, and cooling time combinations, thereby bounding estimates of assembly plutonium content. In particular, combinations of gamma-emitting nuclides with distinct half-lives (e.g., 134Cs with 137Cs and 154Eu) in conjunction with gross neutron counting (via 244Cm) are able to reasonably constrain the degeneracy space of possible solutions to a space small enough to perform useful discrimination and verification of fuel assemblies based on their irradiation history.

  16. Accuracy of Monte Carlo Criticality Calculations During BR2 Operation

    SciTech Connect

    Kalcheva, Silva; Koonen, Edgar; Ponsard, Bernard

    2005-08-15

    The Belgian Material Test Reactor BR2 is a strongly heterogeneous high-flux engineering test reactor at SCK-CEN (Centre d'Etude de l'Energie Nucleaire) in Mol with a thermal power of 60 to 100 MW. It deploys highly enriched uranium, water-cooled concentric plate fuel elements, positioned inside a beryllium reflector with a complex hyperboloid arrangement of test holes. The objective of this paper is to validate the MCNP and ORIGEN-S three-dimensional (3-D) model for reactivity predictions of the entire BR2 core during reactor operation. We employ the Monte Carlo code MCNP-4C to evaluate the effective multiplication factor k{sub eff} and 3-D space-dependent specific power distribution. The one-dimensional code ORIGEN-S is used to calculate the isotopic fuel depletion versus burnup and to prepare a database with depleted fuel compositions. The approach taken is to evaluate the 3-D power distribution at each time step and along with the database to evaluate the 3-D isotopic fuel depletion at the next step and to deduce the corresponding shim rod positions of the reactor operation. The capabilities of both codes are fully exploited without constraints on the number of involved isotope depletion chains or an increase of the computational time. The reactor has a complex operation, with important shutdowns between cycles, and its reactivity is strongly influenced by poisons, mainly {sup 3}He and {sup 6}Li from the beryllium reflector, and the burnable absorbers {sup 149}Sm and {sup 10}B in the fresh UAl{sub x} fuel. The computational predictions for the shim rod positions at various restarts are within 0.5 $ ({beta}{sub eff} = 0.0072)

  17. Blind prediction exercise on modeling of PHWR fuel at extended burnup

    NASA Astrophysics Data System (ADS)

    Sah, D. N.; Viswanathan, U. K.; Viswanadham, C. S.; Unnikrishnan, K.; Rath, B. N.

    2008-12-01

    A blind prediction exercise was organised on Indian Pressurised Heavy Water Reactor (PHWR) fuel to investigate the predictive capability of existing codes for their application at extended burnup and to identify areas of improvement. The blind problem for this exercise was based on a PHWR fuel bundle irradiated in Kakrapar Atomic Power Station-I (KAPS-I) up to about 15 000 MWd/tU and subjected to detailed post-irradiation examination (PIE) in the hot cells facility at BARC. Eleven computer codes from seven countries participated in this exercise. The participants provided blind predictions of fuel temperature, fission gas release, internal gas pressure and other performance parameters for the fuel pins. The predictions were compared with the experimental PIE data which included fuel temperature derived from fuel restructuring, fission gas release measured by fuel pin puncturing, internal gas pressure in pin, cladding oxidation and fuel microstructural data. The details of the blind problem and an analysis of the results of blind predictions by the codes vis-à-vis measured data are provided in this paper.

  18. SEM Characterization of the High Burn-up Microstructure of U-7Mo Alloy

    SciTech Connect

    Dennis D. Keiser, Jr.; Jan-Fong Jue; Jian Gan; Brandon Miller; Adam Robinson; Pavel Medvedev; James Madden; Dan Wachs; M. Teague

    2014-04-01

    During irradiation, the microstructure of U-7Mo evolves until at a fission density near 5x1021 f/cm3 a high-burnup microstructure exists that is very different than what was observed at lower fission densities. This microstructure is dominated by randomly distributed, relatively large, homogeneous fission gas bubbles. The bubble superlattice has collapsed in many microstructural regions, and the fuel grain sizes, in many areas, become sub-micron in diameter with both amorphous fuel and crystalline fuel present. Solid fission product precipitates can be found inside the fission gas bubbles. To generate more information about the characteristics of the high-fission density microstructure, three samples irradiated in the RERTR-7 experiment have been characterized using a scanning electron microscope equipped with a focused ion beam. The FIB was used to generate samples for SEM imaging and to perform 3D reconstruction of the microstructure, which can be used to look for evidence of possible fission gas bubble interlinkage.

  19. Production of CO during burnup of (Th, U)O 2 kerneled HTR fuel particles

    NASA Astrophysics Data System (ADS)

    Proksch, Emil; Strigl, Anton; Nabielek, Heinz

    1985-10-01

    The CO content of irradiated (Th, U)O 2 kerneled HTR fuel particles has been measured by mass spectrometry. An evaluation of all the data thus obtained showed that the oxygen release, O/f (atoms per fission), during irradiation is governed by thermodynamic equilibrium; O/f is a function of the irradiation temperature T(K), the initial Th/U-235 ratio N, and the burnup F (fissions per initial heavy metal atom). Within the limits of 1073 < T < 2273, 4 < N <50, and 0.04 < F < 0.17, the oxygen release can be represented by the expression log 10O/f = 0.96 - 4420/T + 0.4 log 10N + 0.3 log 10F . The attainment of equilibrium proceeds rather slowly; at 1473 K it takes about 130 h to reach 99% of the equilibrium value. Coated particles which had undergone large fission-product losses showed significantly increased oxygen release values.

  20. TEM Characterization of High Burn-up Microstructure of U-7Mo Alloy

    SciTech Connect

    Jian Gan; Brandon Miller; Dennis Keiser; Adam Robinson; James Madden; Pavel Medvedev; Daniel Wachs

    2014-04-01

    As an essential part of global nuclear non-proliferation effort, the RERTR program is developing low enriched U-Mo fuels (< 20% U-235) for use in research and test reactors that currently employ highly enriched uranium fuels. One type of fuel being developed is a dispersion fuel plate comprised of U-7Mo particles dispersed in Al alloy matrix. Recent TEM characterizations of the ATR irradiated U-7Mo dispersion fuel plates include the samples with a local fission densities of 4.5, 5.2, 5.6 and 6.3 E+21 fissions/cm3 and irradiation temperatures of 101-136?C. The development of the irradiated microstructure of the U-7Mo fuel particles consists of fission gas bubble superlattice, large gas bubbles, solid fission product precipitates and their association to the large gas bubbles, grain subdivision to tens or hundreds of nanometer size, collapse of bubble superlattice, and amorphisation. This presentation will describe the observed microstructures specifically focusing on the U-7Mo fuel particles. The impact of the observed microstructure on the fuel performance and the comparison of the relevant features with that of the high burn-up UO2 fuels will be discussed.

  1. The impact of interface bonding efficiency on high-burnup spent nuclear fuel dynamic performance

    DOE PAGES

    Jiang, Hao; Wang, Jy-An John; Wang, Hong

    2016-09-26

    Finite element analysis (FEA) was used to investigate the impact of interfacial bonding efficiency at pellet-pellet and pellet-clad interfaces of high-burnup (HBU) spent nuclear fuel (SNF) on system dynamic performance. Bending moments M were applied to FEA model to evaluate the system responses. From bending curvature, κ, flexural rigidity EI can be estimated as EI = M/κ. The FEA simulation results were benchmarked with experimental results from cyclic integrated reversal bending fatigue test (CIRFT) of HBR fuel rods. The consequence of interface debonding between fuel pellets and cladding is a redistribution of the loads carried by the fuel pellets tomore » the clad, which results in a reduction in composite rod system flexural rigidity. Furthermore, the interface bonding efficiency at the pellet-pellet and pellet-clad interfaces can significantly dictate the SNF system dynamic performance. With the consideration of interface bonding efficiency, the HBU SNF fuel property was estimated with CIRFT test data.« less

  2. On the oxidation state of UO 2 nuclear fuel at a burn-up of around 100 MWd/kgHM

    NASA Astrophysics Data System (ADS)

    Walker, C. T.; Rondinella, V. V.; Papaioannou, D.; Winckel, S. Van; Goll, W.; Manzel, R.

    2005-10-01

    Results for the radial distribution of the oxygen potential and stoichiometry of a PWR fuel with an average pellet burn-up of 102 MWd/kgHM are presented. The local Δ G bar (O2) of the fuel was measured using a miniature solid state galvanic cell, the local O/U ratio was calculated from the lattice parameter measured by micro-X-ray diffraction and the local O/M ratio was derived from the fuel composition determined by ICP-MS. During irradiation the O/U ratio of the fuel decreased from 2.005 to 1.991 ± 0.008. The average fuel O/M ratio was 1.973 compared with the stoichiometric value of 1.949. The amount of free oxygen in the fuel, represented by the difference between these two quantities, increased from the centre to periphery of the pellet. Similarly, the Δ G bar (O2) of the fuel increased from -370 kJ mol-1 at r/r0 = 0.1 to -293 kJ mol-1 at r/r0 = 0.975. Thus, the Δ G bar (O2) of the fuel had not been buffered by the oxidation of fission product Mo. About one-quarter of the free oxygen accumulated during the irradiation had been gettered by the Zircaloy cladding.

  3. A feasibility and optimization study to determine cooling time and burnup of advanced test reactor fuels using a nondestructive technique

    SciTech Connect

    Navarro, Jorge

    2013-12-01

    The goal of this study presented is to determine the best available non-destructive technique necessary to collect validation data as well as to determine burn-up and cooling time of the fuel elements onsite at the Advanced Test Reactor (ATR) canal. This study makes a recommendation of the viability of implementing a permanent fuel scanning system at the ATR canal and leads3 to the full design of a permanent fuel scan system. The study consisted at first in determining if it was possible and which equipment was necessary to collect useful spectra from ATR fuel elements at the canal adjacent to the reactor. Once it was establish that useful spectra can be obtained at the ATR canal the next step was to determine which detector and which configuration was better suited to predict burnup and cooling time of fuel elements non-destructively. Three different detectors of High Purity Germanium (HPGe), Lanthanum Bromide (LaBr3), and High Pressure Xenon (HPXe) in two system configurations of above and below the water pool were used during the study. The data collected and analyzed was used to create burnup and cooling time calibration prediction curves for ATR fuel. The next stage of the study was to determine which of the three detectors tested was better suited for the permanent system. From spectra taken and the calibration curves obtained, it was determined that although the HPGe detector yielded better results, a detector that could better withstand the harsh environment of the ATR canal was needed. The in-situ nature of the measurements required a rugged fuel scanning system, low in maintenance and easy to control system. Based on the ATR canal feasibility measurements and calibration results it was determined that the LaBr3 detector was the best alternative for canal in-situ measurements; however in order to enhance the quality of the spectra collected using this scintillator a deconvolution method was developed. Following the development of the deconvolution method

  4. Regulatory Perspective on Potential Fuel Reconfiguration and Its Implication to High Burnup Spent Fuel Storage and Transportation - 13042

    SciTech Connect

    Li, Zhian; Rahimi, Meraj; Tang, David; Aissa, Mourad; Flaganan, Michelle; Wagner, John C.

    2013-07-01

    The recent experiments conducted by Argonne National Laboratory on high burnup fuel cladding material property show that the ductile to brittle transition temperature of high burnup fuel cladding is dependent on: (1) cladding material, (2) irradiation conditions, and (3) drying-storage histories (stress at maximum temperature) [1]. The experiment results also show that the ductile to brittle temperature increases as the fuel burnup increases. These results indicate that the current knowledge in cladding material property is insufficient to determine the structural performance of the cladding of high burnup fuel after it has been stored in a dry cask storage system for some time. The uncertainties in material property and the elevated ductile to brittle transition temperature impose a challenge to the storage cask and transportation packaging designs because the cask designs may not be able to rely on the structural integrity of the fuel assembly for control of fissile material, radiation source, and decay heat source distributions. The fuel may reconfigure during further storage and/or the subsequent transportation conditions. In addition, the fraction of radioactive materials available for release from spent fuel under normal condition of storage and transport may also change. The spent fuel storage and/or transportation packaging vendors, spent fuel shippers, and the regulator may need to consider this possible fuel reconfiguration and its impact on the packages' ability to meet the safety requirements of Part 72 and Part 71 of Title 10 of the Code of Federal Regulations. The United States Nuclear Regulatory Commission (NRC) is working with the scientists at Oak Ridge National Laboratory (ORNL) to assess the impact of fuel reconfiguration on the safety of the dry storage systems and transportation packages. The NRC Division of Spent Fuel Storage and Transportation has formed a task force to work on the safety and regulatory concerns in relevance to high burnup

  5. Thermal property change of MOX and UO2 irradiated up to high burnup of 74 GWd/t

    NASA Astrophysics Data System (ADS)

    Nakae, Nobuo; Akiyama, Hidetoshi; Miura, Hiromichi; Baba, Toshikazu; Kamimura, Katsuichiro; Kurematsu, Shigeru; Kosaka, Yuji; Yoshino, Aya; Kitagawa, Takaaki

    2013-09-01

    Thermal property is important because it controls fuel behavior under irradiation. The thermal property change at high burnup of more than 70 GWd/t is examined. Two kinds of MOX fuel rods, which were fabricated by MIMAS and SBR methods, and one referenced UO2 fuel rod were used in the experiment. These rods were taken from the pre-irradiated rods (IFA 609/626, of which irradiation test were carried out by Japanese PWR group) and re-fabricated and re-irradiated in HBWR as IFA 702 by JNES. The specification of fuel corresponds to that of 17 × 17 PWR type fuel and the axially averaged linear heat rates (LHR) of MOX rods are 25 kW/m (BOL of IFA 702) and 20 kW/m (EOL of IFA 702). The axial peak burnups achieved are about 74 GWd/t for both of MOX and UO2. Centerline temperature and plenum gas pressure were measured in situ during irradiation. The measured centerline temperature is plotted against LHR at the position where thermocouples are fixed. The slopes of MOX are corresponded to each other, but that of UO2 is higher than those of MOX. This implies that the thermal conductivity of MOX is higher than that of UO2 at high burnup under the condition that the pellet-cladding gap is closed during irradiation. Gap closure is confirmed by the metallography of the postirradiation examinations. It is understood that thermal conductivity of MOX is lower than that of UO2 before irradiation since phonon scattering with plutonium in MOX becomes remarkable. A phonon scattering with plutonium decreases in MOX when burnup proceeds. Thus, thermal conductivity of MOX becomes close to that of UO2. A reverse phenomenon is observed at high burnup region. The phonon scattering with fission products such as Nd and Zr causes a degradation of thermal conductivity of burnt fuel. It might be speculated that this scattering effect causes the phenomenon and the mechanism is discussed here.

  6. Analysis on Reactor Criticality Condition and Fuel Conversion Capability Based on Different Loaded Plutonium Composition in FBR Core

    NASA Astrophysics Data System (ADS)

    Permana, Sidik; Saputra, Geby; Suzuki, Mitsutoshi; Saito, Masaki

    2017-01-01

    Reactor criticality condition and fuel conversion capability are depending on the fuel arrangement schemes, reactor core geometry and fuel burnup process as well as the effect of different fuel cycle and fuel composition. Criticality condition of reactor core and breeding ratio capability have been investigated in this present study based on fast breeder reactor (FBR) type for different loaded fuel compositions of plutonium in the fuel core regions. Loaded fuel of Plutonium compositions are based on spent nuclear fuel (SNF) of light water reactor (LWR) for different fuel burnup process and cooling time conditions of the reactors. Obtained results show that different initial fuels of plutonium gives a significant chance in criticality conditions and fuel conversion capability. Loaded plutonium based on higher burnup process gives a reduction value of criticality condition or less excess reactivity. It also obtains more fuel breeding ratio capability or more breeding gain. Some loaded plutonium based on longer cooling time of LWR gives less excess reactivity and in the same time, it gives higher breeding ratio capability of the reactors. More composition of even mass plutonium isotopes gives more absorption neutron which affects to decresing criticality or less excess reactivity in the core. Similar condition that more absorption neutron by fertile material or even mass plutonium will produce more fissile material or odd mass plutonium isotopes to increase the breeding gain of the reactor.

  7. Sodium fast reactor evaluation: Core materials

    NASA Astrophysics Data System (ADS)

    Cheon, Jin Sik; Lee, Chan Bock; Lee, Byoung Oon; Raison, J. P.; Mizuno, T.; Delage, F.; Carmack, J.

    2009-07-01

    In the framework of the Generation IV Sodium Fast Reactor (SFR) Program the Advanced Fuel Project has conducted an evaluation of the available fuel systems supporting future sodium cooled fast reactors. In this paper the status of available and developmental materials for SFR core cladding and duct applications is reviewed. To satisfy the Generation IV SFR fuel requirements, an advanced cladding needs to be developed. The candidate cladding materials are austenitic steels, ferritic/martensitic (F/M) steels, and oxide dispersion strengthened (ODS) steels. A large amount of irradiation testing is required, and the compatibility of cladding with TRU-loaded fuel at high temperatures and high burnup must be investigated. The more promising F/M steels (compared to HT9) might be able to meet the dose requirements of over 200 dpa for ducts in the GEN-IV SFR systems.

  8. Calculation of the radionuclides in PWR spent fuel samples for SFR experiment planning.

    SciTech Connect

    Naegeli, Robert Earl

    2004-06-01

    This report documents the calculation of radionuclide content in the pressurized water reactor (PWR) spent fuel samples planned for use in the Spent Fuel Ratio (SPR) Experiments at Sandia National Laboratories, Albuquerque, New Mexico (SNL) to aid in experiment planning. The calculation methods using the ORIGEN2 and ORIGEN-ARP computer codes and the input modeling of the planned PWR spent fuel from the H. B. Robinson and the Surry nuclear power plants are discussed. The safety hazards for the calculated nuclide inventories in the spent fuel samples are characterized by the potential airborne dose and by the portion of the nuclear facility hazard category 2 and 3 thresholds that the experiment samples would present. In addition, the gamma ray photon energy source for the nuclide inventories is tabulated to facilitate subsequent calculation of the direct and shielded dose rates expected from the samples. The relative hazards of the high burnup 72 gigawatt-day per metric ton of uranium (GWd/MTU) spent fuel from H. B. Robinson and the medium burnup 36 GWd/MTU spent fuel from Surry are compared against a parametric calculation of various fuel burnups to assess the potential for higher hazard PWR fuel samples.

  9. FY14 Status Report: CIRFT Testing Results on High Burnup UNF

    SciTech Connect

    Wang, Jy-An John; Wang, Hong; Jiang, Hao

    2014-09-01

    The objective of this project is to perform a systematic study of SNF/UNF (spent nuclear fuel/or used nuclear fuel) integrity under simulated transportation environments by using hot cell testing technology developed recently at Oak Ridge National Laboratory (ORNL), CIRFT (Cyclic Integrated Reversible-Bending Fatigue Tester). Under Nuclear Regulatory Commission (NRC) sponsorship, ORNL completed four benchmarking tests, four static tests, and twelve dynamic or cycle tests on H. B. Robinson (HBR) high burn-up (HBU) fuel. With support from the US Department of Energy and the NRC, CIRFT testing has been continued. The CIRFT testing was conducted on three HBR rods (R3, R4, and R5), with two specimens failed and one specimen un-failed. The total number of cycles in the test of un-failed specimens went over 2.23 107; the test was stopped as because the specimen did not show any sign of failure. The data analysis on all the HBR SNF rods demonstrated that it is necessary to characterize the fatigue life of used fuel rods in terms of both the curvature amplitude and the maximum of absolute of curvature extremes. The latter is significant because the maxima of extremes signify the maximum of tensile stress of the outer fiber of the bending rod. So far, a large variety of hydrogen contents has been covered in the CIRFT testing on HBR rods. It has been shown that the load amplitude is the dominant factor that controls the lifetime of bending rods, but the hydrogen content also has an important effect on the lifetime attained, according to the load range tested.

  10. Accurate density-functional calculation of core-electron binding energies with a scaled polarized triple-zeta basis set. Twelve test cases and application to three C 2H 4O 2 isomers

    NASA Astrophysics Data System (ADS)

    Chong, Delano P.; Hu, Ching-Han; Duffy, Patrick

    1996-02-01

    A scaling procedure based on Clementi and Raimondi's rules for atomic screening was proposed for atomic orbital basis sets in the unrestricted generalized transition state (uGTS) model of density functional calculation of core-electron binding energies (CEBEs). The exchange-correlation potential is based on a combined functional of Becke's exchange (B88) and Perdew's correlation (P86). This proposal was tested on CEBEs of twelve small molecules, including F 2, N 2 and H 2O, and applied to the computation of CEBEs of three isomers of C 2H 4O 2: acetic acid (CH 3COOH), methyl formate (HCOOCH 3), and glycolic aldehyde (CH 2OHCHO). In all cases, the new scaled pVTZ basis performs almost as well as the much larger cc-pV5Z and the average absolute difference between the results from the scaled pVTZ and estimated complete basis set limits is 0.04 eV.

  11. Nuclide Importance to Criticality Safety, Decay Heating, and Source Terms Related to Transport and Interim Storage of High-Burnup LWR Fuel

    SciTech Connect

    Gauld, I. C.; Ryman, J. C.

    2000-12-11

    This report investigates trends in the radiological decay properties and changes in relative nuclide importance associated with increasing enrichments and burnup for spent LWR fuel as they affect the areas of criticality safety, thermal analysis (decay heat), and shielding analysis of spent fuel transport and storage casks. To facilitate identifying the changes in the spent fuel compositions that most directly impact these application areas, the dominant nuclides in each area have been identified and ranked by importance. The importance is investigated as a function of increasing burnup to assist in identifying the key changes in spent fuel characteristics between conventional- and extended-burnup regimes. Studies involving both pressurized water-reactor (PWR) fuel assemblies and boiling-water-reactor (BWR) assemblies are included. This study is seen to be a necessary first step in identifying the high-burnup spent fuel characteristics that may adversely affect the accuracy of current computational methods and data, assess the potential impact on previous guidance on isotopic source terms and decay-heat values, and thus help identify areas for methods and data improvement. Finally, several recommendations on the direction of possible future code validation efforts for high-burnup spent fuel predictions are presented.

  12. Fuel Breeding and Core Behavior Analyses on In Core Fuel Management of Water Cooled Thorium Reactors

    SciTech Connect

    Permana, Sidik; Sekimoto, Hiroshi; Waris, Abdul; Subhki, Muhamad Nurul; Ismail,

    2010-12-23

    Thorium fuel cycle with recycled U-233 has been widely recognized having some contributions to improve the water-cooled breeder reactor program which has been shown by a feasible area of breeding and negative void reactivity which confirms that fissile of 233U contributes to better fuel breeding and effective for obtaining negative void reactivity coefficient as the main fissile material. The present study has the objective to estimate the effect of whole core configuration as well as burnup effects to the reactor core profile by adopting two dimensional model of fuel core management. About more than 40 months of cycle period has been employed for one cycle fuel irradiation of three batches fuel system for large water cooled thorium reactors. All position of fuel arrangement contributes to the total core conversion ratio which gives conversion ratio less than unity of at the BOC and it contributes to higher than unity (1.01) at the EOC after some irradiation process. Inner part and central part give the important part of breeding contribution with increasing burnup process, while criticality is reduced with increasing the irradiation time. Feasibility of breeding capability of water-cooled thorium reactors for whole core fuel arrangement has confirmed from the obtained conversion ratio which shows higher than unity. Whole core analysis on evaluating reactivity change which is caused by the change of voided condition has been employed for conservative assumption that 100% coolant and moderator are voided. It obtained always a negative void reactivity coefficient during reactor operation which shows relatively more negative void coefficient at BOC (fresh fuel composition), and it becomes less negative void coefficient with increasing the operation time. Negative value of void reactivity coefficient shows the reactor has good safety properties in relation to the reactivity profile which is the main parameter in term of criticality safety analysis. Therefore, this

  13. Study of the triton-burnup process in different JET scenarios using neutron monitor based on CVD diamond

    NASA Astrophysics Data System (ADS)

    Nemtsev, G.; Amosov, V.; Meshchaninov, S.; Popovichev, S.; Rodionov, R.

    2016-11-01

    We present the results of analysis of triton burn-up process using the data from diamond detector. Neutron monitor based on CVD diamond was installed in JET torus hall close to the plasma center. We measure the part of 14 MeV neutrons in scenarios where plasma current varies in a range of 1-3 MA. In this experiment diamond neutron monitor was also able to detect strong gamma bursts produced by runaway electrons arising during the disruptions. We can conclude that CVD diamond detector will contribute to the study of fast particles confinement and help predict the disruption events in future tokamaks.

  14. Determination of initial fuel state and number of reactor shutdowns in archived low-burnup uranium targets

    DOE PAGES

    Byerly, Benjamin; Tandon, Lav; Hayes-Sterbenz, Anna; ...

    2015-10-26

    This article presents a method for destructive analysis of irradiated uranium (U) targets, with a focus on collection and measurement of long-lived (t1/2 > ~10 years) and stable fission product isotopes of ruthenium and cesium. Long-lived and stable isotopes of these elements can provide information on reactor conditions (e.g. flux, irradiation time, cooling time) in old samples (> 5–10 years) whose short-lived fission products have decayed away. The separation and analytical procedures were tested on archived U reactor targets at Los Alamos National Laboratory as part of an effort to evaluate reactor models at low-burnup.

  15. Determination of initial fuel state and number of reactor shutdowns in archived low-burnup uranium targets

    SciTech Connect

    Byerly, Benjamin; Tandon, Lav; Hayes-Sterbenz, Anna; Martinez, Patrick; Keller, Russ; Stanley, Floyd; Spencer, Khalil; Thomas, Mariam; Xu, Ning; Schappert, Michael; Fulwyler, James

    2015-10-26

    This article presents a method for destructive analysis of irradiated uranium (U) targets, with a focus on collection and measurement of long-lived (t1/2 > ~10 years) and stable fission product isotopes of ruthenium and cesium. Long-lived and stable isotopes of these elements can provide information on reactor conditions (e.g. flux, irradiation time, cooling time) in old samples (> 5–10 years) whose short-lived fission products have decayed away. The separation and analytical procedures were tested on archived U reactor targets at Los Alamos National Laboratory as part of an effort to evaluate reactor models at low-burnup.

  16. Instant release of fission products in leaching experiments with high burn-up nuclear fuels in the framework of the Euratom project FIRST- Nuclides

    NASA Astrophysics Data System (ADS)

    Lemmens, K.; González-Robles, E.; Kienzler, B.; Curti, E.; Serrano-Purroy, D.; Sureda, R.; Martínez-Torrents, A.; Roth, O.; Slonszki, E.; Mennecart, T.; Günther-Leopold, I.; Hózer, Z.

    2017-02-01

    The instant release of fission products from high burn-up UO2 fuels and one MOX fuel was investigated by means of leach tests. The samples covered PWR and BWR fuels at average rod burn-up in the range of 45-63 GWd/tHM and included clad fuel segments, fuel segments with opened cladding, fuel fragments and fuel powder. The tests were performed with sodium chloride - bicarbonate solutions under oxidizing conditions and, for one test, in reducing Ar/H2 atmosphere. The iodine and cesium release could be partially explained by the differences in sample preparation, leading to different sizes and properties of the exposed surface areas. Iodine and cesium releases tend to correlate with FGR and linear power rating, but the scatter of the data is significant. Although the gap between the fuel and the cladding was closed in some high burn-up samples, fissures still provide possible preferential transport pathways.

  17. Experiment Safety Assurance Package for the 40- to 50-GWd/MT Burnup Phase of Mixed Oxide Fuel Irradiation in Small I-Hole Positions in the Advanced Test Reactor

    SciTech Connect

    Khericha, Soli T

    2002-06-01

    This experiment safety assurance package (ESAP) is a revision of the last MOX ESAP issued in February 2001(Khericha 2001). The purpose of this revision is to identify the changes in the loading pattern and to provide a basis to continue irradiation up to ~42 GWd/MT burnup (+ 2.5% as predicted by MCNP (Monte Carlo N-Particle) transport code before the preliminary postirradiation examination (PIE) results for 40 GWd/MT burnup are available. Note that the safety analysis performed for the last ESAP is still applicable and no additional analysis is required (Khericha 2001). In July 2001, it was decided to reconfigure the test assembly using the loading pattern for Phase IV, Part 3, at the end of Phase IV, Part 1, as the loading pattern for Phase IV, Parts 2 and 3. Three capsule assemblies will be irradiated until the highest burnup capsule assembly accumulates: ~50 GWd/MT burnup, based on the MCNP code predictions. The last ESAP suggests that at the end of Phase IV, Part 1, we remove the two highest burnup capsule assemblies (@ ~40 GWd/MT burnup) and send them to ORNL for PIE. Then, irradiate the test assembly using the loading pattern for Phase IV, Part 2, until the highest burnup capsule reaches ~40 GWd/MT burnup per MCNP-predicted values.

  18. Experiment Safety Assurance Package for the 40- to 50-GWd/MT Burnup Phase of Mixed Oxide Fuel Irradiation in Small I-Hole Positions in the Advanced Test Reactor

    SciTech Connect

    Khericha, S.T.

    2002-06-30

    This experiment safety assurance package (ESAP) is a revision of the last MOX ESAP issued in February 2001(Khericha 2001). The purpose of this revision is to identify the changes in the loading pattern and to provide a basis to continue irradiation up to {approx}42 GWd/MT burnup (+ 2.5%) as predicted by MCNP (Monte Carlo N-Particle) transport code before the preliminary postirradiation examination (PIE) results for 40 GWd/MT burnup are available. Note that the safety analysis performed for the last ESAP is still applicable and no additional analysis is required (Khericha 2001). In July 2001, it was decided to reconfigure the test assembly using the loading pattern for Phase IV, Part 3, at the end of Phase IV, Part 1, as the loading pattern for Phase IV, Parts 2 and 3. Three capsule assemblies will be irradiated until the highest burnup capsule assembly accumulates: {approx}50 GWd/MT burnup, based on the MCNP code predictions. The last ESAP suggests that at the end of Phase IV, Part 1, we remove the two highest burnup capsule assemblies ({at} {approx}40 GWd/MT burnup) and send them to ORNL for PIE. Then, irradiate the test assembly using the loading pattern for Phase IV, Part 2, until the highest burnup capsule reaches {approx}40 GWd/MT burnup per MCNP-predicted values.

  19. Fuel Assembly Calculations Using the Method of Discrete Ordinates

    SciTech Connect

    Pautz, Andreas; Langenbuch, Siegfried

    2005-02-15

    The discrete ordinates code DORT is employed to treat pin cell and fuel assembly configurations in two spatial dimensions. Despite DORT's restriction to regular (i.e., Cartesian) coordinates, we demonstrate its ability to calculate accurate pin power distributions and eigenvalues of typical reactor fuel lattices. Several numerical experiments have been performed to investigate the effects of spatial, angular, and energy discretization and to quantify their impact on the results. DORT is also used to homogenize and collapse cross-section sets within the framework of the coupled transport/burnup code system KENOREST.

  20. A liquid-metal reactor core demonstration experiment using HT-9

    SciTech Connect

    Bridges, A.E.; Waltar, A.E.; Leggett, R.D.; Baker, R.B. ); Ethridge, J.L. )

    1993-06-01

    The use of the ferritic/martensitic HT-9 alloy as the cladding and duct material for the attainment of the high fuel burnup levels critical to the viability of an economical liquid-metal reactor fuel system. The CDE, a partial core loading of fuel and blanket assemblies in the US Department of Energy's Fast Flux Test Facility, has successfully attained its irradiation exposure goal of 3 yr. Consisting of ten fuel and six blanket assemblies in a heterogeneous core configuration, the CDE has clearly demonstrated the capability of the advanced fuel and blanket designs to attain high burnups and fast fluences. Each CDE fuel assembly consisted of 169 large-diameter fuel pins comprising mixed-oxide annular fuel pellets in sealed HT-9 cladding tubes. Each CDE blanket assembly consisted of 91 large-diameter pins comprising solid depleted uranium dioxide pellets in sealed HT-9 cladding tubes. The maximum-exposure CDE fuel assembly reached a peak pellet burnup of 163,900 MWd/ton metal (M) and a peak fast fluence (E > 0.1 MeV) of 23.3 [times] 10[sup 22] n/cm[sup 2]. The maximum-exposure CDE blanket assembly reached a peak pellet burnup of 43 100 MWd/ton M and a peak fast fluence (E . 0.1 MeV) of 22.8 [times] 10[sup 22] n/cm[sup 2]. Lead test fuel assemblies built to CDE specifications continue their successful irradiation and have attained burnups of > 238,000 MWd/ton M with accumulated fast fluences (E > 0.1 MeV) of > 38 [times] 10[sup 22] n/cm[sup 2]. In-core measurements of HT-9 ducts and withdrawal loads of the assemblies indicate that duct distortion will not be a factor that limits the lifetime of the fuel or blanket assemblies. Comparison of the measured and predicted coolant outlet temperatures from the peak CDE fuel and blanket assemblies indicate the irradiation of the CDE has proceeded as planned. The CDE represents a tremendous success in demonstrating the lifetime capabilities of this advanced oxide system using the HT-9 ferritic alloy for structural materials.

  1. Neutron Transport and Nuclear Burnup Analysis for the Laser Inertial Confinement Fusion-Fission Energy (LIFE) Engine

    SciTech Connect

    Kramer, K J; Latkowski, J F; Abbott, R P; Boyd, J K; Powers, J J; Seifried, J E

    2008-10-24

    Lawrence Livermore National Laboratory is currently developing a hybrid fusion-fission nuclear energy system, called LIFE, to generate power and burn nuclear waste. We utilize inertial confinement fusion to drive a subcritical fission blanket surrounding the fusion chamber. It is composed of TRISO-based fuel cooled by the molten salt flibe. Low-yield (37.5 MJ) targets and a repetition rate of 13.3 Hz produce a 500 MW fusion source that is coupled to the subcritical blanket, which provides an additional gain of 4-8, depending on the fuel. In the present work, we describe the neutron transport and nuclear burnup analysis. We utilize standard analysis tools including, the Monte Carlo N-Particle (MCNP) transport code, ORIGEN2 and Monteburns to perform the nuclear design. These analyses focus primarily on a fuel composed of depleted uranium not requiring chemical reprocessing or enrichment. However, other fuels such as weapons grade plutonium and highly-enriched uranium are also under consideration. In addition, we have developed a methodology using {sup 6}Li as a burnable poison to replace the tritium burned in the fusion targets and to maintain constant power over the lifetime of the engine. The results from depleted uranium analyses suggest up to 99% burnup of actinides is attainable while maintaining full power at 2GW for more than five decades.

  2. Solvent extraction studies with high-burnup Fast Flux Test Facility fuel in the Solvent Extraction Test Facility

    SciTech Connect

    Benker, D.E.; Bigelow, J.E.; Bond, W.D.; Chattin, F.R.; King, L.J.; Kitts, F.G.; Ross, R.G.; Stacy, R.G.

    1986-10-01

    A batch of high-burnup fuel from the Fast Flux Test Facility (FFTF) was processed in the Solvent Extraction Test Facility (SETF) during Campaign 9. The fuel had a burnup of {similar_to}0 MWd/kg and a cooling time of {similar_to} year. Two runs were made with this fuel; in the first, the solvent contained 30% tri-n-butyl phosphate (TBP) and partitioning of the uranium and plutonium was effected by reducing the plutonium with hydroxylamine nitrate (HAN); in the second, the solvent contained 10% TBP and a low operating temperature was used in an attempt to partition without reducing the plutonium valence. The plutonium reoxidation problem, which was present in previous runs that used HAN, may have been solved by lowering the temperature and acidity in the partition contactor. An automatic control system was used to maintain high loadings of heavy metals in the coextraction-coscrub contactor in order to increase its efficiency while maintaining low losses of uranium and plutonium to the aqueous raffinate. An in-line photometer system was used to measure the plutonium concentration in an intermediate extraction stage; and based on this data, a computer algorithm determined the appropriate adjustments in the addition rate of the extractant. The control system was successfully demonstrated in a preliminary run with purified uranium. However, a variety of equipment and start up problems prevented an extended demonstration from being accomplished during the runs with the FFTF fuel.

  3. 24. A CORE WORKER DISPLAYS THE CORE BOX AND CORES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. A CORE WORKER DISPLAYS THE CORE BOX AND CORES FOR A BRASS GATE VALVE BODY MADE ON A CORE BOX, CA. 1950. - Stockham Pipe & Fittings Company, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  4. Relativistic frozen core potential scheme with relaxation of core electrons

    NASA Astrophysics Data System (ADS)

    Nakajima, Yuya; Seino, Junji; Hayami, Masao; Nakai, Hiromi

    2016-10-01

    This letter proposes a relaxation scheme for core electrons based on the frozen core potential method at the infinite-order Douglas-Kroll-Hess level, called FCP-CR. The core electrons are self-consistently relaxed using frozen molecular valence potentials after the valence SCF calculation is performed. The efficiency of FCP-CR is confirmed by calculations of gold clusters. Furthermore, FCP-CR reproduces the results of the all-electron method for the energies of coinage metal dimers and the core ionization energies and core level shifts of vinyl acetate and three tungsten complexes at the Hartree-Fock and/or symmetry-adapted cluster configuration interaction levels.

  5. Radiation Damage Calculations for the FUBR and BEATRIX Irradiations of Lithium Compounds in EBR-II and FFTF

    SciTech Connect

    LR Greenwood

    1999-06-17

    The Fusion Breeder Reactor (FUBR) and Breeder Exchange Matrix (BEATRIX) experiments were cooperative efforts by members of the International Energy Agency to investigate the irradiation behavior of solid breeder materials for tritium production to support future fusion reactors. Lithium ceramic materials including Li{sub 2}O, LiAlO{sub 2}, Li{sub 4}SiO{sub 4}, and Li{sub 2}ZrO{sub 3} with varying {sup 6}Li enrichments from 0 to 95% were irradiated in a series of experiments in the Experimental Breeder Reactor (EBR II) and in the Fast Flux Test Facility (FFTF) over a period of about 10 years from 1982 to 1992. These experiments were characterized in terms of the nominal fast neutron fluences and measured {sup 6}Li burnup factors, as determined by either mass spectrometry or helium measurements. Radiation damage in these compounds is caused by both the {sup 6}Li-burnup reaction and by all other possible neutron reactions with the atoms in the compound materials. In this report, displacements per atom (dpa) values have been calculated for each type of material in each of the various irradiations that were conducted. Values up to 11% {sup 6}Li-burnup and 130 dpa are predicted for the longest irradiations. The dpa cross sections were calculated for each compound using the SPECOMP computer code. Details of the dpa calculations are presented in the report. Total dpa factors were determined with the SPECTER computer code by averaging the dpa cross sections over the measured or calculated neutron flux spectra for each series of irradiations. Using these new calculations, previously measured radiation damage effects in these lithium compounds can be compared or correlated with other irradiation data on the basis of the dpa factor as well as {sup 6}Li-burnup.

  6. Bolus calculators.

    PubMed

    Schmidt, Signe; Nørgaard, Kirsten

    2014-09-01

    Matching meal insulin to carbohydrate intake, blood glucose, and activity level is recommended in type 1 diabetes management. Calculating an appropriate insulin bolus size several times per day is, however, challenging and resource demanding. Accordingly, there is a need for bolus calculators to support patients in insulin treatment decisions. Currently, bolus calculators are available integrated in insulin pumps, as stand-alone devices and in the form of software applications that can be downloaded to, for example, smartphones. Functionality and complexity of bolus calculators vary greatly, and the few handfuls of published bolus calculator studies are heterogeneous with regard to study design, intervention, duration, and outcome measures. Furthermore, many factors unrelated to the specific device affect outcomes from bolus calculator use and therefore bolus calculator study comparisons should be conducted cautiously. Despite these reservations, there seems to be increasing evidence that bolus calculators may improve glycemic control and treatment satisfaction in patients who use the devices actively and as intended.

  7. Fully Coupled Modeling of Burnup-Dependent (U1- y , Pu y )O2- x Mixed Oxide Fast Reactor Fuel Performance

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Zhou, Wenzhong; Zhou, Wei

    2016-03-01

    During the fast reactor nuclear fuel fission reaction, fission gases accumulate and form pores with the increase of fuel burnup, which decreases the fuel thermal conductivity, leading to overheating of the fuel element. The diffusion of plutonium and oxygen with high temperature gradient is also one of the important fuel performance concerns as it will affect the fuel material properties, power distribution, and overall performance of the fuel pin. In order to investigate these important issues, the (U1- y Pu y )O2- x fuel pellet is studied by fully coupling thermal transport, deformation, oxygen diffusion, fission gas release and swelling, and plutonium redistribution to evaluate the effects on each other with burnup-dependent models, accounting for the evolution of fuel porosity. The approach was developed using self-defined multiphysics models based on the framework of COMSOL Multiphysics to manage the nonlinearities associated with fast reactor mixed oxide fuel performance analysis. The modeling results showed a consistent fuel performance comparable with the previous results. Burnup degrades the fuel thermal conductivity, resulting in a significant fuel temperature increase. The fission gas release increased rapidly first and then steadily with the burnup increase. The fuel porosity increased dramatically at the beginning of the burnup and then kept constant as the fission gas released to the fuel free volume, causing the fuel temperature to increase. Another important finding is that the deviation from stoichiometry of oxygen affects greatly not only the fuel properties, for example, thermal conductivity, but also the fuel performance, for example, temperature distribution, porosity evolution, grain size growth, fission gas release, deformation, and plutonium redistribution. Special attention needs to be paid to the deviation from stoichiometry of oxygen in fuel fabrication. Plutonium content will also affect the fuel material properties and performance

  8. French investigations of high burnup effect on LOCA thermomechanical behavior: Part 1. Experimental programmes in support of LOCA design methodologies

    SciTech Connect

    Waeckel, N.; Cauvin, R.; Lebuffe, C.

    1997-01-01

    Within the framework of Burn-Up extension request, EDF, FRAMATOME, CEA and IPSN have carried out experimental programmes in order to provide the design of fuel rods under LOCA conditions with relevant data. The design methods used in France for LOCA are based on standard Appendix K methodology updated to take into account some penalties related to the actual conditions of the Nuclear Power Plant. Best-Estimate assessments are used as well. Experimental programmes concern plastic deformation and burst behavior of advanced claddings (EDGAR) and thermal shock quenching behavior of highly irradiated claddings (TAGCIR). The former reveals the important role played by the {alpha}/{beta} transformation kinetics related to advanced alloys (Niobium alloys) and the latter the significative impact of hydrogen charged during in-reactor corrosion on oxidation kinetics and failure behavior in terms of cooling rates.

  9. MOX capsule post-irradiation examination. Volume 2: Test plan for 30-GWd/MT burnup fuel

    SciTech Connect

    Morris, R.N.

    1997-12-01

    This test plan is a Level-2 document as defined in the Fissile Materials Disposition Program Light-Water Reactor Mixed-Oxide Fuel Irradiation Test Project Plan. The planned post-irradiation examination (PIE) work to be performed on the mixed uranium and plutonium oxide fuel capsules that have received burnups of approximately 30 GWd/MT is described. The major emphasis of this PIE task will be material interactions, particularly indications of gallium transport and interactions. This PIE will include gamma scanning, ceramography, metallography, pellet radial gallium analysis, and clad gallium analysis. A preliminary PIE report will be generated before all the work is completed so that the progress of the fuel irradiation may be known in a timely manner.

  10. JAEA Studies on High Burnup Fuel Behaviors during Reactivity-Initiated Accident and Loss-of-Coolant Accident

    SciTech Connect

    Fuketa, Toyoshi; Sugiyama, Tomoyuki; Nagase, Fumihisa; Suzuki, Motoe

    2007-07-01

    The objectives of fuel safety research program at Japan Atomic Energy Agency (JAEA) are; to evaluate adequacy of present safety criteria and safety margins; to provide a database for future regulation on higher burnup UO{sub 2} and MOX fuels, new cladding and pellets; and to provide reasonably mechanistic computer codes for regulatory application. The JAEA program is comprised of reactivity-initiated accident (RIA) studies including pulse-irradiation experiments in the NSRR and cladding mechanical tests, loss-of-coolant accident (LOCA) tests including integral thermal shock test and oxidation rate measurement, development and verification of computer codes FEMAXI-6 and RANNS, and so on. In addition to an overview of the fuel safety research at JAEA, most recent progresses in the RIA and LOCA tests programs and the codes development are described and discussed in the paper. (authors)

  11. Start-up fuel and power flattening of sodium-cooled candle core

    SciTech Connect

    Takaki, Naoyuki; Sagawa, Yu; Umino, Akitake; Sekimoto, Hiroshi

    2013-07-01

    The hard neutron spectrum and unique power shape of CANDLE enable its distinctive performances such as achieving high burnup more than 30% and exempting necessity of both enrichment and reprocessing. On the other hand, they also cause several challenging problems. One is how the initial fuel can be prepared to start up the first CANDLE reactor because the equilibrium fuel composition that enables stable CANDLE burning is complex both in axial and radial directions. Another prominent problem is high radial power peaking factor that worsens averaged burnup, namely resource utilization factor in once-through mode and shorten the life time of structure materials. The purposes of this study are to solve these two problems. Several ideas for core configurations and startup fuel using single enrichment uranium and iron as a substitute of fission products are studied. As a result, it is found that low enriched uranium is applicable to ignite the core but all concepts examined here exceeded heat limits. Adjustment in enrichment and height of active and burnt zone is opened for future work. Sodium duct assemblies and thorium fuel assemblies loaded in the center region are studied as measures to reduce radial power peaking factor. Replacing 37 fuels by thorium fuel assemblies in the zeroth to third row provides well-balanced performance with flattened radial power distribution. The CANDLE core loaded with natural uranium in the outer and thorium in the center region achieved 35.6% of averaged burnup and 7.0 years of cladding life time owing to mitigated local fast neutron irradiation at the center. Using thorium with natural or depleted uranium in CANDLE reactor is also beneficial to diversifying fission resource and extending available term of fission energy without expansion of needs for enrichment and reprocessing.

  12. Core layering

    NASA Astrophysics Data System (ADS)

    Jacobson, S. A.; Rubie, D. C.; Hernlund, J. W.; Morbidelli, A.

    2015-12-01

    We have created a planetary accretion and differentiation model that self-consistently builds and evolves Earth's core. From this model, we show that the core grows stably stratified as the result of rising metal-silicate equilibration temperatures and pressures, which increases the concentrations of light element impurities into each newer core addition. This stable stratification would naturally resist convection and frustrate the onset of a geodynamo, however, late giant impacts could mechanically mix the distinct accreted core layers creating large homogenous regions. Within these regions, a geodynamo may operate. From this model, we interpret the difference between the planetary magnetic fields of Earth and Venus as a difference in giant impact histories. Our planetary accretion model is a numerical N-body integration of the Grand Tack scenario [1]—the most successful terrestrial planet formation model to date [2,3]. Then, we take the accretion histories of Earth-like and Venus-like planets from this model and post-process the growth of each terrestrial planet according to a well-tested planetary differentiation model [4,5]. This model fits Earth's mantle by modifying the oxygen content of the pre-cursor planetesimals and embryos as well as the conditions of metal-silicate equilibration. Other non-volatile major, minor and trace elements included in the model are assumed to be in CI chondrite proportions. The results from this model across many simulated terrestrial planet growth histories are robust. If the kinetic energy delivered by larger impacts is neglected, the core of each planet grows with a strong stable stratification that would significantly impede convection. However, if giant impact mixing is very efficient or if the impact history delivers large impacts late, than the stable stratification can be removed. [1] Walsh et al. Nature 475 (2011) [2] O'Brien et al. Icarus 223 (2014) [3] Jacobson & Morbidelli PTRSA 372 (2014) [4] Rubie et al. EPSL 301

  13. Gas core reactors for actinide transmutation and breeder applications

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.

    1978-01-01

    This work consists of design power plant studies for four types of reactor systems: uranium plasma core breeder, uranium plasma core actinide transmuter, UF6 breeder and UF6 actinide transmuter. The plasma core systems can be coupled to MHD generators to obtain high efficiency electrical power generation. A 1074 MWt UF6 breeder reactor was designed with a breeding ratio of 1.002 to guard against diversion of fuel. Using molten salt technology and a superheated steam cycle, an efficiency of 39.2% was obtained for the plant and the U233 inventory in the core and heat exchangers was limited to 105 Kg. It was found that the UF6 reactor can produce high fluxes (10 to the 14th power n/sq cm-sec) necessary for efficient burnup of actinide. However, the buildup of fissile isotopes posed severe heat transfer problems. Therefore, the flux in the actinide region must be decreased with time. Consequently, only beginning-of-life conditions were considered for the power plant design. A 577 MWt UF6 actinide transmutation reactor power plant was designed to operate with 39.3% efficiency and 102 Kg of U233 in the core and heat exchanger for beginning-of-life conditions.

  14. Prise en compte d'un couplage fin neutronique-thermique dans les calculs d'assemblage pour les reacteurs a eau pressurisee

    NASA Astrophysics Data System (ADS)

    Greiner, Nathan

    Core simulations for Pressurized Water Reactors (PWR) is insured by a set of computer codes which allows, under certain assumptions, to approximate the physical quantities of interest, such as the effective multiplication factor or the power or temperature distributions. The neutronics calculation scheme relies on three great steps : -- the production of an isotopic cross-sections library ; -- the production of a reactor database through the lattice calculation ; -- the full-core calculation. In the lattice calculation, in which Boltzmann's transport equation is solved over an assembly geometry, the temperature distribution is uniform and constant during irradiation. This represents a set of approximations since, on the one hand, the temperature distribution in the assembly is not uniform (strong temperature gradients in the fuel pins, discrepancies between the fuel pins) and on the other hand, irradiation causes the thermal properties of the pins to change, which modifies the temperature distribution. Our work aims at implementing and introducing a neutronics-thermomechanics coupling into the lattice calculation to finely discretize the temperature distribution and to study its effects. To perform the study, CEA (Commissariat a l'Energie Atomique et aux Energies Alternatives) lattice code APOLLO2 was used for neutronics and EDF (Electricite De France) code C3THER was used for the thermal calculations. We show very small effects of the pin-scaled coupling when comparing the use of a temperature profile with the use of an uniform temperature over UOX-type and MOX-type fuels. We next investigate the thermal feedback using an assembly-scaled coupling taking into account the presence of large water gaps on an UOX-type assembly at burnup 0. We show the very small impact on the calculation of the hot spot factor. Finally, the coupling is introduced into the isotopic depletion calculation and we show that reactivity and isotopic number densities deviations remain small

  15. Viscosity of the earth's core.

    NASA Technical Reports Server (NTRS)

    Gans, R. F.

    1972-01-01

    Calculation of the viscosity of the core at the boundary of the inner and outer core. It is assumed that this boundary is a melting transition and the viscosity limits of the Andrade (1934,1952) hypothesis (3.7 to 18.5 cp) are adopted. The corresponding kinematic viscosities are such that the precessional system explored by Malkus (1968) would be unstable. Whether it would be sufficiently unstable to overcome a severely subadiabatic temperature gradient cannot be determined.

  16. On the condition of UO2 nuclear fuel irradiated in a PWR to a burn-up in excess of 110 MWd/kgHM

    NASA Astrophysics Data System (ADS)

    Restani, R.; Horvath, M.; Goll, W.; Bertsch, J.; Gavillet, D.; Hermann, A.; Martin, M.; Walker, C. T.

    2016-12-01

    Post-irradiation examination results are presented for UO2 fuel from a PWR fuel rod that had been irradiated to an average burn-up of 105 MWd/kgHM and showed high fission gas release of 42%. The radial distribution of xenon and the partitioning of fission gas between bubbles and the fuel matrix was investigated using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and electron probe microanalysis. It is concluded that release from the fuel at intermediate radial positions was mainly responsible for the high fission gas release. In this region thermal release had occurred from the high burn-up structure (HBS) at some point after the sixth irradiation cycle. The LA-ICP-MS results indicate that gas release had also occurred from the HBS in the vicinity of the pellet periphery. It is shown that the gas pressure in the HBS pores is well below the pressure that the fuel can sustain.

  17. Effect of burn-up on the thermal conductivity of uranium-gadolinium dioxide up to 100 GWd/tHM

    NASA Astrophysics Data System (ADS)

    Staicu, D.; Rondinella, V. V.; Walker, C. T.; Papaioannou, D.; Konings, R. J. M.; Ronchi, C.; Sheindlin, M.; Sasahara, A.; Sonoda, T.; Kinoshita, M.

    2014-10-01

    The thermal diffusivity of reactor irradiated (U,Gd)O2 fuels has been measured, for burn-ups from 33 to 97 GWd tHM-1 and for irradiation temperatures from 670 to 1580 K. Measurements under thermal annealing cycles were performed in order to investigate the recovery of the thermal conductivity as a function of temperature. The analysis of the results showed a lower thermal conductivity for (U,Gd)O2 when compared to UO2, with similar effects of the burn-up and irradiation temperature. A correlation for the thermal conductivity could be proposed on the basis of that for UO2 presented in an earlier work, which describes the separate effects of soluble fission products, of fission gas frozen in dynamical solution and of radiation damage.

  18. Nuclear Data Uncertainty Propagation in Depletion Calculations Using Cross Section Uncertainties in One-group or Multi-group

    NASA Astrophysics Data System (ADS)

    Díez, C. J.; Cabellos, O.; Martínez, J. S.

    2015-01-01

    Several approaches have been developed in last decades to tackle nuclear data uncertainty propagation problems of burn-up calculations. One approach proposed was the Hybrid Method, where uncertainties in nuclear data are propagated only on the depletion part of a burn-up problem. Because only depletion is addressed, only one-group cross sections are necessary, and hence, their collapsed one-group uncertainties. This approach has been applied successfully in several advanced reactor systems like EFIT (ADS-like reactor) or ESFR (Sodium fast reactor) to assess uncertainties on the isotopic composition. However, a comparison with using multi-group energy structures was not carried out, and has to be performed in order to analyse the limitations of using one-group uncertainties.

  19. Nuclear Data Uncertainty Propagation in Depletion Calculations Using Cross Section Uncertainties in One-group or Multi-group

    SciTech Connect

    Díez, C.J.; Cabellos, O.; Martínez, J.S.

    2015-01-15

    Several approaches have been developed in last decades to tackle nuclear data uncertainty propagation problems of burn-up calculations. One approach proposed was the Hybrid Method, where uncertainties in nuclear data are propagated only on the depletion part of a burn-up problem. Because only depletion is addressed, only one-group cross sections are necessary, and hence, their collapsed one-group uncertainties. This approach has been applied successfully in several advanced reactor systems like EFIT (ADS-like reactor) or ESFR (Sodium fast reactor) to assess uncertainties on the isotopic composition. However, a comparison with using multi-group energy structures was not carried out, and has to be performed in order to analyse the limitations of using one-group uncertainties.

  20. Raman micro-spectroscopy of UOX and MOX spent nuclear fuel characterization and oxidation resistance of the high burn-up structure

    NASA Astrophysics Data System (ADS)

    Jegou, C.; Gennisson, M.; Peuget, S.; Desgranges, L.; Guimbretière, G.; Magnin, M.; Talip, Z.; Simon, P.

    2015-03-01

    Raman micro-spectroscopy was applied to study the structure and oxidation resistance of UO2 (burnup 60 GWd/tHM) and MOX (burnup 47 GWd/tHM) irradiated fuels. The Raman technique, adapted to working under extreme conditions, enabled structural information to be obtained at the cubic micrometer scale in various zones of interest within irradiated fuel (central and zones like the Rim for UOX60, and the plutonium-enriched agglomerates for MOX47 characterized by a high burn-up structure), and the study of their oxidation resistance. As regards the structural information after irradiation, the spectra obtained make up a set of data consistent with the systematic presence of the T2g band characteristic of the fluorite structure, and of a triplet band located between 500 and 700 cm-1. The existence of this triplet can be attributed to the presence of defects originating in changes to the fuel chemistry occurring in the reactor (presence of fission products) and to the accumulation of irradiation damage. As concerns the oxidation resistance of the different zones of interest, Raman spectroscopy results confirmed the good stability of the restructured zones (plutonium-enriched agglomerates and Rim) rich in fission products compared to the non-restructured UO2 grains. A greater structural stability was noticed in the case of high plutonium content agglomerates, as this element favors the maintenance of the fluorite structure.

  1. Analysis of fresh fuel critical experiments appropriate for burnup credit validation

    SciTech Connect

    DeHart, M.D.; Bowman, S.M.

    1995-10-01

    The ANS/ANS-8.1 standard requires that calculational methods used in determining criticality safety limits for applications outside reactors be validated by comparison with appropriate critical experiments. This report provides a detailed description of 34 fresh fuel critical experiments and their analyses using the SCALE-4.2 code system and the 27-group ENDF/B-IV cross-section library. The 34 critical experiments were selected based on geometry, material, and neutron interaction characteristics that are applicable to a transportation cask loaded with pressurized-water-reactor spent fuel. These 34 experiments are a representative subset of a much larger data base of low-enriched uranium and mixed-oxide critical experiments. A statistical approach is described and used to obtain an estimate of the bias and uncertainty in the calculational methods and to predict a confidence limit for a calculated neutron multiplication factor. The SCALE-4.2 results for a superset of approximately 100 criticals are included in uncertainty analyses, but descriptions of the individual criticals are not included.

  2. Solvent extraction studies with low-burnup Fast Flux Test Facility fuel in the Solvent Extraction Test Facility

    SciTech Connect

    Benker, D.E.; Bigelow, J.E.; Bond, W.D.; Chattin, F.R.; King, L.J.; Kitts, F.G.; Ross, R.G.; Stacy, R.G.

    1985-01-01

    A batch of irradiated Fast Flux Test Facility (FFTF) fuel was processed for the first time in the Solvent Extraction Test Facility (SETF) at the Oak Ridge National Laboratory (ORNL) during Campaign 7. The average burnup of the fuel was only 0.2 atom %, but the cooling time was short enough ({similar_to}2 years) so that {sup 95}Zr was detected in the feed. This short cooling permitted our first measurement of {sup 95}Zr decontamination factors (DFs) without having to use tracers. No operational problems were noted in the operation of the extraction-scrubbing contactor, and low uranium and plutonium losses (< 0.01%) were measured. Fission product DFs were improved noticeably by increasing the number of scrub stages from six to eight. Two flowsheet options for making pure uranium and plutonium products (total partitioning) were tested. Each flowsheet used hydroxylamine nitrate for reducing plutonium. Good products were obtained (uranium DFs of > 10{sup 3} and plutonium DFs of > 10{sup 4}), but each flowsheet was troubled with plutonium reoxidation. Adding hydrazine and lowering the plutonium concentration lessened the problem but did not eliminate it. About 370 g of plutonium was recovered from these tests, purified by anion exchange, converted to PuO{sub 2}, and transferred to the fuel refabrication program. 7 references.

  3. Automated Core Design

    SciTech Connect

    Kobayashi, Yoko; Aiyoshi, Eitaro

    2005-07-15

    Multistate searching methods are a subfield of distributed artificial intelligence that aims to provide both principles for construction of complex systems involving multiple states and mechanisms for coordination of independent agents' actions. This paper proposes a multistate searching algorithm with reinforcement learning for the automatic core design of a boiling water reactor. The characteristics of this algorithm are that the coupling structure and the coupling operation suitable for the assigned problem are assumed and an optimal solution is obtained by mutual interference in multistate transitions using multiagents. Calculations in an actual plant confirmed that the proposed algorithm increased the convergence ability of the optimization process.

  4. Enhancement of REBUS-3/DIF3D for whole-core neutronic analysis of prismatic very high temperature reactor (VHTR).

    SciTech Connect

    Lee, C. H.; Zhong, Z.; Taiwo, T.A.; Yang, W.S.; Khalil, H.S.; Smith, M.A.; Nuclear Engineering Division

    2006-10-13

    Enhancements have been made to the REBUS-3/DIF3D code suite to facilitate its use for the design and analysis of prismatic Very High Temperature Reactors (VHTRs). A new cross section structure, using table-lookup, has been incorporated to account for cross section changes with burnup and fuel and moderator temperatures. For representing these cross section dependencies, three new modules have been developed using FORTRAN 90/95 object-oriented data structures and implemented within the REBUS-3 code system. These modules provide a cross section storage procedure, construct microscopic cross section data for all isotopes, and contain a single block of banded scattering data for efficient data management. Fission products other than I, Xe, Pm, and Sm, can be merged into a single lumped fission product to save storage space, memory, and computing time without sacrificing the REBUS-3 solution accuracy. A simple thermal-hydraulic (thermal-fluid) feedback model has been developed for prismatic VHTR cores and implemented in REBUS-3 for temperature feedback calculations. Axial conduction was neglected in the formulation because of its small magnitude compared to radial (planar) conduction. With the simple model, the average fuel and graphite temperatures are accurately estimated compared to reference STAR-CD results. The feedback module is currently operational for the non-equilibrium fuel cycle analysis option of REBUS-3. Future work should include the extension of this capability to the equilibrium cycle option of the code and additional verification of the feedback module. For the simulation of control rods in VHTR cores, macroscopic cross section deviations (deltas) have been defined to account for the effect of control rod insertion. The REBUS-3 code has been modified to use the appropriately revised cross sections when control rods are inserted in a calculation node. In order to represent asymmetric core blocks (e.g., fuel blocks or reflector blocks containing

  5. Firewood calculator

    SciTech Connect

    Clark, A.; Curtis, A.B.; Darwin, W.N.

    1981-01-01

    Rotating cardboard discs are used to read off total tree or topwood firewood volume (tons or cords) that can be expected from trees of d.b.h. 6 to 24 inches and tree height 10 to 90 feet. One side of the calculator is used for broadleaved species with deliquescent crowns and the other side for braodleaves with excurrent crowns.

  6. BWR AXIAL PROFILE

    SciTech Connect

    J. Huffer

    2004-09-28

    The purpose of this calculation is to develop axial profiles for estimating the axial variation in burnup of a boiling water reactor (BWR) assembly spent nuclear fuel (SNF) given the average burnup of an assembly. A discharged fuel assembly typically exhibits higher burnup in the center and lower burnup at the ends of the assembly. Criticality safety analyses taking credit for SNF burnup must account for axially varying burnup relative to calculations based on uniformly distributed assembly average burnup due to the under-burned tips. Thus, accounting for axially varying burnup in criticality analyses is also referred to as accounting for the ''end effect'' reactivity. The magnitude of the reactivity change due to ''end effect'' is dependent on the initial assembly enrichment, the assembly average burnup, and the particular axial profile characterizing the burnup distribution. The set of bounding axial profiles should incorporate multiple BWR core designs and provide statistical confidence (95 percent confidence that 95 percent of the population is bound by the profile) that end nodes are conservatively represented. The profiles should also conserve the overall burnup of the fuel assembly. More background on BWR axial profiles is provided in Attachment I.

  7. HTTF Core Stress Analysis

    SciTech Connect

    Brian D. Hawkes; Richard Schultz

    2012-07-01

    In accordance with the need to determine whether cracking of the ceramic core disks which will be constructed and used in the High Temperature Test Facility (HTTF) for heatup and cooldown experiments, a set of calculation were performed using Abaqus to investigate the thermal stresses levels and likelihood for cracking. The calculations showed that using the material properties provided for the Greencast 94F ceramic, cracking is predicted to occur. However, this modeling does not predict the size or length of the actual cracks. It is quite likely that cracks will be narrow with rough walls which would impede the flow of coolant gases entering the cracks. Based on data recorded at Oregon State University using Greencast 94F samples that were heated and cooled at prescribed rates, it was concluded that the likelihood that the cracks would be detrimental to the experimental objectives is small.

  8. On the use of moderating material to enhance the feedback coefficients in SFR cores with high minor actinide content

    SciTech Connect

    Merk, B.; Weiss, F. P.

    2012-07-01

    The use of fine distributed moderating material to enhance the feedback effects and to reduce the sodium void effecting sodium cooled fast reactor cores is described. The influence of the moderating material on the neutron spectrum, the power distribution, and the burnup distribution is shown. The consequences of the use of fine distributed moderating material into fuel assemblies with fuel configurations foreseen for minor actinide transmutation is analyzed and the transmutation efficiency is compared. The degradation of the feedback effects due to the insertion of minor actinides and the compensation by the use of moderating materials is discussed. (authors)

  9. Using Coupled Mesoscale Experiments and Simulations to Investigate High Burn-Up Oxide Fuel Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Teague, Melissa C.; Fromm, Bradley S.; Tonks, Michael R.; Field, David P.

    2014-12-01

    Nuclear energy is a mature technology with a small carbon footprint. However, work is needed to make current reactor technology more accident tolerant and to allow reactor fuel to be burned in a reactor for longer periods of time. Optimizing the reactor fuel performance is essentially a materials science problem. The current understanding of fuel microstructure have been limited by the difficulty in studying the structure and chemistry of irradiated fuel samples at the mesoscale. Here, we take advantage of recent advances in experimental capabilities to characterize the microstructure in 3D of irradiated mixed oxide (MOX) fuel taken from two radial positions in the fuel pellet. We also reconstruct these microstructures using Idaho National Laboratory's MARMOT code and calculate the impact of microstructure heterogeneities on the effective thermal conductivity using mesoscale heat conduction simulations. The thermal conductivities of both samples are higher than the bulk MOX thermal conductivity because of the formation of metallic precipitates and because we do not currently consider phonon scattering due to defects smaller than the experimental resolution. We also used the results to investigate the accuracy of simple thermal conductivity approximations and equations to convert 2D thermal conductivities to 3D. It was found that these approximations struggle to predict the complex thermal transport interactions between metal precipitates and voids.

  10. HOW STARLESS ARE STARLESS CORES?

    SciTech Connect

    Schnee, Scott; Friesen, Rachel; Di Francesco, James; Johnstone, Doug; Enoch, Melissa; Sadavoy, Sarah

    2012-01-20

    In this paper, we present the results of Combined Array for Research in Millimeter-wave Astronomy continuum and spectral line observations of the dense core Per-Bolo 45. Although this core has previously been classified as starless, we find evidence for an outflow and conclude that Per-Bolo 45 is actually an embedded, low-luminosity protostar. We discuss the impact of newly discovered, low-luminosity, embedded objects in the Perseus molecular cloud on starless core and protostar lifetimes. We estimate that the starless core lifetime has been overestimated by 4%-18% and the Class 0/I protostellar lifetime has been underestimated by 5%-20%. Given the relatively large systematic uncertainties involved in these calculations, variations on the order of 10% do not significantly change either core lifetimes or the expected protostellar luminosity function. Finally, we suggest that high-resolution (sub)millimeter surveys of known cores lacking near-infrared and mid-infrared emission are necessary to make an accurate census of starless cores.

  11. Plasma core reactor applications

    NASA Technical Reports Server (NTRS)

    Latham, T. S.; Rodgers, R. J.

    1976-01-01

    Analytical and experimental investigations were conducted to demonstrate the feasibility of fissioning uranium plasma core reactors and to characterize space and terrestrial applications for such reactors. Uranium hexafluoride fuel is injected into core cavities and confined away from the surface by argon buffer gas injected tangentially from the peripheral walls. Radiant heat transfer calculations were performed for a six-cavity reactor configuration. Axial working fluid channels are located along a fraction of each cavity peripheral wall. Results of calculations for outward-directed radiant energy fluxes corresponding to radiating temperatures of 2000 to 5000 K indicate total operating pressures from 80 to 650 atm, centerline temperatures from 6900 to 30,000 K, and total radiated powers from 25 to 2500 MW, respectively. Applications are described for this type of reactor such as (1) high-thrust, high specific impulse space propulsion, (2) highly efficient systems for generation of electricity, and (3) hydrogen or synthetic fuel production systems using the intense radiant energy fluxes.

  12. Separation of metallic residues from the dissolution of a high-burnup BWR fuel using nitrogen trifluoride

    SciTech Connect

    McNamara, Bruce K.; Buck, Edgar C.; Soderquist, Chuck Z.; Smith, Frances N.; Mausolf, Edward J.; Scheele, Randall D.

    2014-03-23

    Nitrogen trifluoride (NF3) was used to fluorinate the metallic residue from the dissolution of a high burnup, boiling water reactor fuel (~70 MWd/kgU). The metallic residue included the noble metal phase (containing ruthenium, rhodium, palladium, technetium, and molybdenum), and smaller amounts of zirconium, selenium, tellurium, and silver. Exposing the noble metal phase to 10% NF3 in argon between 400 and 550°C, removed molybdenum and technetium near 400°C as their volatile fluorides, and ruthenium near 500C as its volatile fluoride. The events were thermally and temporally distinct and the conditions specified are a recipe to separate these transition metals from each other and from the noble metal phase nonvolatile residue. Depletion of the volatile fluorides resulted in substantial exothermicity. Thermal excursion behavior was recorded under non-adiabatic, isothermal conditions that typically minimize heat release. Physical characterization of the metallic noble phase and its thermal behavior are consistent with high kinetic velocity reactions encouraged by the nanoparticulate phase or perhaps catalytic influences of the mixed platinum metals with nearly pure phase structure. Post-fluorination, only two phases were present in the residual nonvolatile fraction. These were identified as a nano-crystalline, metallic palladium cubic phase and a hexagonal rhodium trifluoride (RhF3) phase. The two phases were distinct as the sub-µm crystallites of metallic palladium were in contrast to the RhF3 phase, which grew from the parent nano-crystalline noble-metal phase during fluorination, to acicular crystals exceeding 20-µm in length.

  13. Core materials development for the fuel cycle R&D program

    NASA Astrophysics Data System (ADS)

    Maloy, S. A.; Toloczko, M.; Cole, J.; Byun, T. S.

    2011-08-01

    The Fuel Cycle Research and Development program is investigating methods of burning minor actinides in a transmutation fuel. One of the challenges of achieving this goal is to develop fuels capable of reaching extreme burnup levels (e.g. 40%). To achieve such high burnup levels' fast reactor core materials (cladding and duct) must be able to withstand very high doses (>300 dpa design goal) while in contact with the coolant and the fuel. Thus, these materials must withstand radiation effects that promote low temperature embrittlement, radiation induced segregation, high temperature helium embrittlement, swelling, accelerated creep, corrosion with the coolant, and chemical interaction with the fuel (FCCI). To develop and qualify materials to a total fluence greater than 200 dpa requires development of advanced alloys and irradiations in fast reactors to test these alloys. Test specimens of ferritic/martensitic alloys (T91/HT-9) previously irradiated in the FFTF reactor up to 210 dpa at a temperature range of 350-750 °C are presently being tested. This includes analysis of a duct made of HT-9 after irradiation to a total dose of 155 dpa at temperatures from 370 to 510 °C. Compact tension, charpy and tensile specimens have been machined from this duct and mechanical testing as well as SANS and Mossbauer spectroscopy are currently being performed. Initial results from compression testing and Charpy testing reveal a strong increase in yield stress (˜400 MPa) and a large increase in DBTT (up to 230 °C) for specimens irradiated at 383 °C to a dose of 28 dpa. Less hardening and a smaller increase in DBTT was observed for specimens irradiated at higher temperatures up to 500 °C. Advanced radiation tolerant materials are also being developed to enable the desired extreme fuel burnup levels. Specifically, coatings are being developed to minimize FCCI, and research is underway to fabricate large heats of radiation tolerant oxide dispersion steels with homogeneous oxide

  14. The whole-core LEU silicide fuel demonstration in the JMTR

    SciTech Connect

    Aso, Tomokazu; Akashi, Kazutomo; Nagao, Yoshiharu

    1997-08-01

    The JMTR was fully converted to LEU silicide (U{sub 3}Si{sub 2}) fuel with cadmium wires as burnable absorber in January, 1994. The reduced enrichment program for the JMTR was initiated in 1979, and the conversion to MEU (enrichment ; 45%) aluminide fuel was carried out in 1986 as the first step of the program. The final goal of the program was terminated by the present LEU conversion. This paper describes the results of core physics measurement through the conversion phase from MEU fuel core to LEU fuel core. Measured excess reactivities of the LEU fuel cores are mostly in good agreement with predicted values. Reactivity effect and burnup of cadmium wires, therefore, were proved to be well predicted. Control rod worth in the LEU fuel core is mostly less than that in the MEU fuel core. Shutdown margin was verified to be within the safety limit. There is no significant difference in temperature coefficient of reactivity between the MEU and LEU fuel cores. These results verified that the JMTR was successfully and safely converted to LEU fuel. Extension of the operating cycle period was achieved and reduction of spend fuel elements is expected by using the fuel with high uranium density.

  15. Evolution of the core physics concept for the Canadian supercritical water reactor

    SciTech Connect

    Pencer, J.; Colton, A.; Wang, X.; Gaudet, M.; Hamilton, H.; Yetisir, M.

    2013-07-01

    The supercritical water cooled reactor (SCWR) is one of the advanced reactor concepts chosen by the GEN-IV International Forum (GIF) for research and development efforts. Canada's contribution is the Canadian SCWR, a heavy water moderated, pressure tube supercritical light water cooled reactor. Recent developments in the SCWR lattice and core concepts, primarily the introduction of a large central flow tube filled with coolant combined with a two-ring fuel assembly, have enabled significant improvements compared to earlier concepts. These improvements include a reduction in coolant void reactivity (CVR) by more than 10 mk, and an almost 40% increase in fuel exit burnup, which is achieved via balanced power distribution between the fuel pins in the fuel assembly. In this paper the evolution of the physics concept is reviewed, and the present lattice and core physics concepts are presented.

  16. FRAPTRAN Predictability of High Burnup Advanced Fuel Performance: Analysis of the CABRI CIP0-1 and CIP0-2 Experiments

    SciTech Connect

    Del Barrio, M.T.; Herranz, L.E.

    2007-07-01

    Adequacy of analytical tools to estimate advanced high burnup fuel during a power pulse need to be soundly proven. Most of models in codes dealing with transient are extrapolations of those developed for lower irradiations. In addition, lack of open information prevents often a proper account of mechanical properties of new advanced cladding material. These circumstances make experimental programs on high burnup fuel performance an indispensable tool to enhance safety codes predictability through building up sound databases on which models can be extended or developed and on which suitable code performance can be proven. The experiments CIP0-1 and CIP0-2, carried out on 2002 in the CABRI reactor, can be seen as reference tests to investigate high burnup fuel response to RIA transients. Fuel rods of up to 75 GWd/tU (average rod burnup) encapsulated in advanced cladding materials (ZIRLO and M5) were submitted to power pulses of about 30 ms of half maximum width that injected 90-100 cal/g after 1.2 s. None of the rodlets failed during the experiments, but they underwent deformation that was experimentally determined. The FRAPTRAN code has been used for the analysis of these RIA tests. The fuel rod characterization necessary for FRAPTRAN at the end of the base irradiation, prior to the transient, was provided by FRAPCON-3. An investigation of major deviations of fuel rod characterization at the end of the base irradiation has highlighted that thermal uncertainties could result in outstanding discrepancies in FGR estimates. Transient comparison with the available data shows that FRAPTRAN presents a relatively good agreement in permanent clad hoop strain and overestimates significantly the axial elongation of the cladding. The potential effect of approximations made in describing the cladding mechanical behavior, the fuel-to-clad relative movement and the pre-transient gap width, have been all discussed. Given existing uncertainties, a conclusive statement could not be

  17. Inner Core Rotation from Geomagnetic Westward Drift and a Stationary Spherical Vortex in Earth's Core

    NASA Technical Reports Server (NTRS)

    Voorhies, C. V.

    1999-01-01

    The idea that geomagnetic westward drift indicates convective leveling of the planetary momentum gradient within Earth's core is pursued in search of a differentially rotating mean state, upon which various oscillations and secular effects might be superimposed. The desired state conforms to roughly spherical boundary conditions, minimizes dissipative interference with convective cooling in the bulk of the core, yet may aide core cooling by depositing heat in the uppermost core and lower mantle. The variational calculus of stationary dissipation applied to a spherical vortex within the core yields an interesting differential rotation profile akin to spherical Couette flow bounded by thin Hartmann layers. Four boundary conditions are required. To concentrate shear induced dissipation near the core-mantle boundary, these are taken to be: (i) no-slip at the core-mantle interface; (ii) geomagnetically estimated bulk westward flow at the base of the core-mantle boundary layer; (iii) no-slip at the inner-outer core interface; and, to describe magnetic locking of the inner core to the deep outer core, (iv) hydrodynamically stress-free at the inner-outer core boundary. By boldly assuming the axial core angular momentum anomaly to be zero, the super-rotation of the inner core is calculated to be at most 1.5 degrees per year.

  18. Inner Core Rotation from Geomagnetic Westward Drift and a Stationary Spherical Vortex in Earth's Core

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    1998-01-01

    The idea that geomagnetic westward drift indicates convective leveling of the planetary momentum gradient within Earth's core is pursued in search of a differentially rotating mean state, upon which various oscillations and secular effects might be superimposed. The desired state conforms to roughly spherical boundary conditions, minimizes dissipative interference with convective cooling in the bulk of the core, yet may aid core cooling by depositing heat in the uppermost core and lower mantle. The variational calculus of stationary dissipation applied to a spherical vortex within the core yields an interesting differential rotation profile, akin to spherical Couette flow bounded by thin Hartmann layers. Four boundary conditions are required. To concentrate shear induced dissipation near the core-mantle boundary, these are taken to be: (i) no-slip at the core-mantle interface; (ii) geomagnetically estimated bulk westward flow at the base of the core-mantle boundary layer; (iii) no-slip at the inner-outer core interface; and, to describe magnetic locking of the inner core to the deep outer core; (iv) hydrodynamically stress-free at the inner-outer core boundary. By boldly assuming the axial core angular momentum anomaly to be zero, the super-rotation of the inner core relative to the mantle is calculated to be at most 1.5 deg./yr.

  19. Experiment Safety Assurance Package for the 40- to 52-GWd/MT Burnup Phase of Mixed Oxide Fuel Irradiation in Small I-hole Positions in the Advanced Test Reactor

    SciTech Connect

    S. T. Khericha; R. C. Pedersen

    2003-09-01

    This experiment safety assurance package (ESAP) is a revision of the last mixed uranium and plutonium oxide (MOX) ESAP issued in June 2002). The purpose of this revision is to provide a basis to continue irradiation up to 52 GWd/MT burnup [as predicted by MCNP (Monte Carlo N-Particle) transport code The last ESAP provided basis for irradiation, at a linear heat generation rate (LHGR) no greater than 9 kW/ft, of the highest burnup capsule assembly to 50 GWd/MT. This ESAP extends the basis for irradiation, at a LHGR no greater than 5 kW/ft, of the highest burnup capsule assembly from 50 to 52 GWd/MT.

  20. Pressure Vessel Calculations for VVER-440 Reactors

    NASA Astrophysics Data System (ADS)

    Hordósy, G.; Hegyi, Gy.; Keresztúri, A.; Maráczy, Cs.; Temesvári, E.; Vértes, P.; Zsolnay, É.

    2003-06-01

    Monte Carlo calculations were performed for a selected cycle of the Paks NPP Unit II to test a computational model. In the model the source term was calculated by the core design code KARATE and the neutron transport calculations were performed by the MCNP. Different forms of the source specification were examined. The calculated results were compared with measurements and in most cases fairly good agreement was found.

  1. Enhancement of the inherent self-protection of the fast sodium reactor cores with oxide fuel

    SciTech Connect

    Eliseev, V.A.; Malisheva, I.V.; Matveev, V.I.; Egorov, A.V.; Maslov, P.A.

    2013-07-01

    With the development and research into the generation IV fast sodium reactors, great attention is paid to the enhancement of the core inherent self-protection characteristics. One of the problems dealt here is connected with the reduction of the reactivity margin so that the control rods running should not result in the core overheating and melting. In this paper we consider the possibilities of improving the core of BN-1200 with oxide fuel by a known method of introducing an axial fertile layer into the core. But unlike earlier studies this paper looks at the possibility of using such a layer not only for improving breeding, but also for reducing sodium void reactivity effect (SVRE). This proposed improvement of the BN-1200 core does not solve the problem of strong interference in control and protection system (CPS) rods of BN-1200, but they reduce significantly the reactivity margin for burn-up compensation. This helps compensate all the reactivity balances in the improved core configurations without violating constraints on SVRE value.

  2. Full core analysis of IRIS reactor by using MCNPX.

    PubMed

    Amin, E A; Bashter, I I; Hassan, Nabil M; Mustafa, S S

    2016-07-01

    This paper describes neutronic analysis for fresh fuelled IRIS (International Reactor Innovative and Secure) reactor by MCNPX code. The analysis included criticality calculations, radial power and axial power distribution, nuclear peaking factor and axial offset percent at the beginning of fuel cycle. The effective multiplication factor obtained by MCNPX code is compared with previous calculations by HELIOS/NESTLE, CASMO/SIMULATE, modified CORD-2 nodal calculations and SAS2H/KENO-V code systems. It is found that k-eff value obtained by MCNPX is closer to CORD-2 value. The radial and axial powers are compared with other published results carried out using SAS2H/KENO-V code. Moreover, the WIMS-D5 code is used for studying the effect of enriched boron in form of ZrB2 on the effective multiplication factor (K-eff) of the fuel pin. In this part of calculation, K-eff is calculated at different concentrations of Boron-10 in mg/cm at different stages of burnup of unit cell. The results of this part are compared with published results performed by HELIOS code.

  3. Advances in fuel management and on-line core monitoring

    SciTech Connect

    Stout, R.B.; Hansen, L.E.; Patten, T.W.

    1988-01-01

    Advanced Nuclear Fuels Corporation (ANF) has developed and implemented advanced core power distribution monitoring methods for BWRs and PWRs based on the three dimensional nodal simulator codes used for incore fuel management design and analysis. The use of these methods has resulted in a more accurate assessment of the core power distribution and corresponding increased operating margins. These increased margins allow for more economical fuel cycle designs. Since the initial application in 1982, ANF has made enhancements to the incore monitoring system. These enhancements have permitted more rapid analysis of local power changes, power distribution projections during ascent to full power and on-line statistical analysis of the incore detector signal. The on-line analysis implemented in BWRs has also been developed for application PWRs. In the future, reactors are expected to operate with longer fuel cycles, more aggressive low radial leakage loadings, load follow and use higher burnup fuel. These advances will require more burnable neutron absorbers and more sophisticated fuel designs. To accommodate these advances, the fuel management methodologies and measurement system will require improvements. The state-of-the-art methods provided by ANF provide incore monitoring systems compatible with these expected needs.

  4. Alcohol Calorie Calculator

    MedlinePlus

    ... Alcohol Calorie Calculator Weekly Total 0 Calories Alcohol Calorie Calculator Find out the number of beer and ... Calories College Alcohol Policies Interactive Body Calculators Alcohol Calorie Calculator Alcohol Cost Calculator Alcohol BAC Calculator Alcohol ...

  5. Academic Rigor: The Core of the Core

    ERIC Educational Resources Information Center

    Brunner, Judy

    2013-01-01

    Some educators see the Common Core State Standards as reason for stress, most recognize the positive possibilities associated with them and are willing to make the professional commitment to implementing them so that academic rigor for all students will increase. But business leaders, parents, and the authors of the Common Core are not the only…

  6. Core excitation effects in the breakup of halo nuclei

    SciTech Connect

    Moro, A. M.; Diego, R. de; Lay, J. A.; Crespo, R.; Johnson, R. C.; Arias, J. M.; Gomez-Camacho, J.

    2012-10-20

    The role of core excitation in the structure and dynamics of two-body halo nuclei is investigated. We present calculations for the resonant breakup of {sup 11}Be on protons at an incident energy of 63.7 MeV/nucleon, where core excitation effects were shown to be important. To describe the reaction, we use a recently developed extension of the DWBA formalism which incorporates these core excitation effects within the no-recoil approximation. The validity of the no-recoil approximation is also examined by comparing with DWBA calculations which take into account core recoil. In addition, calculations with two different continuum representations are presented and compared.

  7. Development of New Cladding Materials Applied for Advanced LWR Aiming at Ultra-high Burn-up and Fast Neutron Spectrum

    SciTech Connect

    Kiuchi, K.; Ogawa, H.; Ioka, I.; Kuroda, Y.; Anegawa, T.

    2002-07-01

    The ultra-high burnup more than 100 GWd/t and fast neutron spectrum tailoring are considered to be the most promising technologies applied to the advanced MOX LWRs for minimizing the electrical cost and waste management. The development of new cladding materials with the excellent irradiation properties has been conducted to realize these needs. Comparing with UO{sub 2}, to increase the internal pressure by FP gas release is accelerated with the co-production of Xe and He in MOX fuels. New stainless steels with the excellent irradiation properties, creep strength and compatibilities to high temperature water were selected to attain the reliability. The irradiation assisted stress corrosion cracking through the past experience in LWR plants is possible to inhibit by new steel making process. The problems of tritium release and PCMI is possible to inhibit by ductile niobium alloy lining. (authors)

  8. Trends in adsorbate induced core level shifts

    NASA Astrophysics Data System (ADS)

    Nilsson, Viktor; Van den Bossche, Maxime; Hellman, Anders; Grönbeck, Henrik

    2015-10-01

    Photoelectron core level spectroscopy is commonly used to monitor atomic and molecular adsorption on metal surfaces. As changes in the electron binding energies are convoluted measures with different origins, calculations are often used to facilitate the decoding of experimental signatures. The interpretation could in this sense benefit from knowledge on trends in surface core level shifts for different metals and adsorbates. Here, density functional theory calculations have been used to systematically evaluate core level shifts for (111) and (100) surfaces of 3d, 4d, and 5d transition metals upon CO, H, O and S adsorption. The results reveal trends and several non-intuitive cases. Moreover, the difficulties correlating core level shifts with charging and d-band shifts are underlined.

  9. Preliminary Content Evaluation of the North Anna High Burn-Up Sister Fuel Rod Segments for Transportation in the 10-160B and NAC-LWT

    SciTech Connect

    Ketusky, E.

    2016-08-09

    The U.S. Department of Energy’s (DOE’s) Used Fuel Disposition Campaign (UFDC) Program has transported high-burnup nuclear sister fuel rods from a commercial nuclear power plant for purposes of evaluation and testing. The evaluation and testing of high-burnup used nuclear fuel is integral to DOE initiatives to collect information useful in determining the integrity of fuel cladding for future safe transportation of the fuel, and for determining the effects of aging, on the integrity of UNF subjected to extended storage and subsequent transportation. The UFDC Program, in collaboration with the U.S. Nuclear Regulatory Commission and the commercial nuclear industry, has obtained individual used nuclear fuel rods for testing. The rods have been received at Oak Ridge National Laboratory (ORNL) for both separate effects testing (SET) and small-scale testing (SST). To meet the research objectives, testing on multiple 6 inch fuel rod pins cut from the rods at ORNL will be performed at Pacific Northwest National Laboratory (PNNL). Up to 10 rod equivalents will be shipped. Options were evaluated for multiple shipments using the 10-160B (based on 4.5 rod equivalents) and a single shipment using the NAC-LWT. Based on the original INL/Virginia Power transfer agreement, the rods are assumed to 152 inches in length with a 0.374-inch diameter. This report provides a preliminary content evaluation for use of the 10-160B and NAC-LWT for transporting those fuel rod pins from ORNL to PNNL. This report documents the acceptability of using these packagings to transport the fuel segments from ORNL to PNNL based on the following evaluations: enrichment, A2 evaluation, Pu-239 FGE evaluation, heat load, shielding (both gamma and neutron), and content weight/structural evaluation.

  10. Evaluation of hoop creep behaviors in long-term dry storage condition of pre-hydrided and high burn-up nuclear fuel cladding

    SciTech Connect

    Kim, Sun-Ki; Bang, J.G.; Kim, D.H.; Yang, Y.S.

    2007-07-01

    Related to the degradation of the mechanical properties of Zr-based nuclear fuel cladding tubes under long term dry storage condition, the mechanical tests which can simulate the degradation of the mechanical properties properly are needed. Especially, the degradation of the mechanical properties by creep mechanism seems to be dominant under long term dry storage condition. Accordingly, in this paper, ring creep tests were performed in order to evaluate the creep behaviors of high burn-up fuel cladding under a hoop loading condition in a hot cell. The tests are performed with Zircaloy-4 fuel cladding whose burn-up is approximately {approx}60,000 MWd/tU in the temperature range from 350 deg. to 550 deg.. The tests are also performed with pre-hydrided Zircaloy-4 and ZIRLO up to 1,000 ppm. First of all, the hoop loading grip for the ring creep test was designed in order that a constant curvature of the specimen was maintained during the creep deformation, and the graphite lubricant was used to minimize the friction between the outer surface of the die insert and the inner surface of the ring specimen. The specimen for the ring creep test was designed to limit the deformation within the gauge section and to maximize the uniformity of the strain distribution. It was confirmed that the mechanical properties under a hoop loading condition can be correctly evaluated by using this test technique. In this paper, secondary creep rate with increasing hydrogen content are drawn, and then kinetic data such as pre-exponential factor and activation energy for creep process are also drawn. In addition, creep life are predicted by obtaining LMP (Larson-Miller parameter) correlation in the function of hydrogen content and applied stress to yield stress ratio. (authors)

  11. Calculation Method for the Projection of Future Spent Nuclear Fuel Discharges

    SciTech Connect

    B. McLeod

    2002-02-28

    This report describes the calculation method developed for the projection of future utility spent nuclear fuel (SNF) discharges in regard to their timing, quantity, burnup, and initial enrichment. This projection method complements the utility-supplied RW-859 data on historic discharges and short-term projections of SNF discharges by providing long-term projections that complete the total life cycle of discharges for each of the current U.S. nuclear power reactors. The method was initially developed in mid-1999 to update the SNF discharge projection associated with the 1995 RW-859 utility survey (CRWMS M&O 1996). and was further developed as described in Rev. 00 of this report (CRWMS M&O 2001a). Primary input to the projection of SNF discharges is the utility projection of the next five discharges from each nuclear unit, which is provided via the revised final version of the Energy Information Administration (EIA) 1998 RW-859 utility survey (EIA 2000a). The projection calculation method is implemented via a set of Excel 97 spreadsheets. These calculations provide the interface between receipt of the utility five-discharge projections that are provided in the RW-859 survey, and the delivery of projected life-cycle SNF discharge quantities and characteristics in the format requisite for performing logistics analysis to support design of the Civilian Radioactive Waste Management System (CRWMS). Calculation method improvements described in this report include the addition of a reactor-specific maximum enrichment-based discharge burnup limit. This limit is the consequence of the enrichment limit, currently 5 percent. which is imposed as a Nuclear Regulatory Commission (NRC) license condition on nuclear fuel fabrication plants. In addition, the calculation method now includes the capability for projecting future nuclear plant power upratings, consistent with many such recent plant uprates and the prospect of additional future uprates. Finally. this report summarizes the

  12. Coring Sample Acquisition Tool

    NASA Technical Reports Server (NTRS)

    Haddad, Nicolas E.; Murray, Saben D.; Walkemeyer, Phillip E.; Badescu, Mircea; Sherrit, Stewart; Bao, Xiaoqi; Kriechbaum, Kristopher L.; Richardson, Megan; Klein, Kerry J.

    2012-01-01

    A sample acquisition tool (SAT) has been developed that can be used autonomously to sample drill and capture rock cores. The tool is designed to accommodate core transfer using a sample tube to the IMSAH (integrated Mars sample acquisition and handling) SHEC (sample handling, encapsulation, and containerization) without ever touching the pristine core sample in the transfer process.

  13. Dislocation core radii near elastic stability limits

    NASA Astrophysics Data System (ADS)

    Sawyer, C. A.; Morris, J. W., Jr.; Chrzan, D. C.

    2013-04-01

    Recent studies of transition metal alloys with compositions that place them near their limits of elastic stability [e.g., near the body-centered-cubic (BCC) to hexagonal-close-packed (HCP) transition] suggest interesting behavior for the dislocation cores. Specifically, the dislocation core size is predicted to diverge as the stability limit is approached. Here a simple analysis rooted in elasticity theory and the computation of ideal strength is used to analyze this divergence. This analysis indicates that dislocation core radii should diverge as the elastic limits of stability are approached in the BCC, HCP, and face-centered-cubic (FCC) structures. Moreover, external stresses and dislocation-induced stresses also increase the core radii. Density functional theory based total-energy calculations are combined with anisotropic elasticity theory to compute numerical estimates of dislocation core radii.

  14. Stellar core collapse and supernova

    SciTech Connect

    Wilson, J.R.; Mayle, R.; Woosley, S.E.; Weaver, T.

    1985-04-01

    Massive stars that end their stable evolution as their iron cores collapse to a neutron star or black hole long been considered good candidates for producing Type II supernovae. For many years the outward propagation of the shock wave produced by the bounce of these iron cores has been studied as a possible mechanism for the explosion. For the most part, the results of these studies have not been particularly encouraging, except, perhaps, in the case of very low mass iron cores or very soft nuclear equations of state. The shock stalls, overwhelmed by photodisintegration and neutrino losses, and the star does not explode. More recently, slow late time heating of the envelope of the incipient neutron star has been found to be capable of rejuvenating the stalled shock and producing an explosion after all. The present paper discusses this late time heating and presents results from numerical calculations of the evolution, core collapse, and subsequent explosion of a number of recent stellar models. For the first time they all, except perhaps the most massive, explode with reasonable choices of input physics. 39 refs., 17 figs., 1 tab.

  15. BN-600 full MOX core benchmark analysis.

    SciTech Connect

    Kim, Y. I.; Hill, R. N.; Grimm, K.; Rimpault, G.; Newton, T.; Li, Z. H.; Rineiski, A.; Mohanakrishan, P.; Ishikawa, M.; Lee, K. B.; Danilytchev, A.; Stogov, V.; Nuclear Engineering Division; International Atomic Energy Agency; CEA SERCO Assurance; China Inst. of Atomic Energy; Forschnungszentrum Karlsruhe; Indira Gandhi Centre for Atomic Research; Japan Nuclear Cycle Development Inst.; Korea Atomic Energy Research Inst.; Inst. of Physics and Power Engineering

    2004-01-01

    As a follow-up of the BN-600 hybrid core benchmark, a full MOX core benchmark was performed within the framework of the IAEA co-ordinated research project. Discrepancies between the values of main reactivity coefficients obtained by the participants for the BN-600 full MOX core benchmark appear to be larger than those in the previous hybrid core benchmarks on traditional core configurations. This arises due to uncertainties in the proper modelling of the axial sodium plenum above the core. It was recognized that the sodium density coefficient strongly depends on the core model configuration of interest (hybrid core vs. fully MOX fuelled core with sodium plenum above the core) in conjunction with the calculation method (diffusion vs. transport theory). The effects of the discrepancies revealed between the participants results on the ULOF and UTOP transient behaviours of the BN-600 full MOX core were investigated in simplified transient analyses. Generally the diffusion approximation predicts more benign consequences for the ULOF accident but more hazardous ones for the UTOP accident when compared with the transport theory results. The heterogeneity effect does not have any significant effect on the simulation of the transient. The comparison of the transient analyses results concluded that the fuel Doppler coefficient and the sodium density coefficient are the two most important coefficients in understanding the ULOF transient behaviour. In particular, the uncertainty in evaluating the sodium density coefficient distribution has the largest impact on the description of reactor dynamics. This is because the maximum sodium temperature rise takes place at the top of the core and in the sodium plenum.

  16. Mercury's thermal evolution and core crystallization regime

    NASA Astrophysics Data System (ADS)

    Rivoldini, A.; Van Hoolst, T.; Dumberry, M.; Steinle-Neumann, G.

    2015-10-01

    Unlike the Earth, where the liquid core isentrope is shallower than the core liquidus, at the lower pressures inside Mercury's core the isentrope can be steeper than the melting temperature. As a consequence, upon cooling, the isentrope may first enter a solid stability field near the core mantle boundary and produce ironrich snow that sinks under gravity and produces buoyant upwellings of iron depleted fluid. Similar to bottom up crystallization, crystallization initiated near the top might generate sufficient buoyancy flux to drive magnetic field generation by compositional convection.In this study we model Mercury's thermal evolution by taking into account the formation of iron-rich snow to assess when the conditions for an internally magnetic field can be satisfied. We employ a thermodynamic consistent description of the iron high-pressure phase diagram and thermoelastic properties of iron alloys as well as the most recent data about the thermal conductivity of core materials. We use a 1-dimensional parametrized thermal evolution model in the stagnant lid regime for the mantle (e.g. [1]) that is coupled to the core. The model for the mantle takes into account the formation of the crust due to melting at depth. Mantle convection is driven by heat producing radioactive elements, heat loss from secular cooling and from the heat supplied by the core. The heat generated inside the core is mainly provided from secular cooling, from the latent heat released at iron freezing, and from gravitational energy resulting form the release of light elements at the inner core-outer core boundary as well as from the sinking of iron-rich snow and subsequent upwellings of light elements in the snow zone. If the heat flow out of the core is smaller than the heat transported along the core isentrope a thermal boundary will from at the top of the outer core. To determine the extension of the convecting region inside the liquid core we calculate the convective power [2]. Finally, we

  17. Banded transformer cores

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W. T. (Inventor)

    1974-01-01

    A banded transformer core formed by positioning a pair of mated, similar core halves on a supporting pedestal. The core halves are encircled with a strap, selectively applying tension whereby a compressive force is applied to the core edge for reducing the innate air gap. A dc magnetic field is employed in supporting the core halves during initial phases of the banding operation, while an ac magnetic field subsequently is employed for detecting dimension changes occurring in the air gaps as tension is applied to the strap.

  18. Application of Origen2.1 in the decay photon spectrum calculation of spallation products

    NASA Astrophysics Data System (ADS)

    Hong, Shuang; Yang, Yong-Wei; Xu, Hu-Shan; Meng, Hai-Yan; Zhang, Lu; Liu, Zhao-Qing; Gao, Yu-Cui; Chen, Kang

    2016-11-01

    Origen2.1 is a widely used computer code for calculating the burnup, decay, and processing of radioactive materials. However, the nuclide library of Origen2.1 is used for existing reactors like pressurized water reactors. To calculate the photon spectrum released by the decay of spallation products, we have made specific libraries for the ADS tungsten spallation target, based on the results given by the FLUKA Monte Carlo code. All the data used to make the Origen2.1 libraries are obtained from Nuclear structure & decay Data (NuDat2.6). The accumulated activity of spallation products and the contribution of nuclides to photon emission are given in this paper. Supported by Strategic Priority Research Program of Chinese Academy of Sciences (XDA03030102)

  19. Impact of nuclear data on sodium-cooled fast reactor calculations

    NASA Astrophysics Data System (ADS)

    Aures, Alexander; Bostelmann, Friederike; Zwermann, Winfried; Velkov, Kiril

    2016-03-01

    Neutron transport and depletion calculations are performed in combination with various nuclear data libraries in order to assess the impact of nuclear data on safety-relevant parameters of sodium-cooled fast reactors. These calculations are supplemented by systematic uncertainty analyses with respect to nuclear data. Analysed quantities are the multiplication factor and nuclide densities as a function of burn-up and the Doppler and Na-void reactivity coefficients at begin of cycle. While ENDF/B-VII.0 / -VII.1 yield rather consistent results, larger discrepancies are observed between the JEFF libraries. While the newest evaluation, JEFF-3.2, agrees with the ENDF/B-VII libraries, the JEFF-3.1.2 library yields significant larger multiplication factors.

  20. Advanced Core Design And Fuel Management For Pebble-Bed Reactors

    SciTech Connect

    Hans D. Gougar; Abderrafi M. Ougouag; William K. Terry

    2004-10-01

    A method for designing and optimizing recirculating pebble-bed reactor cores is presented. At the heart of the method is a new reactor physics computer code, PEBBED, which accurately and efficiently computes the neutronic and material properties of the asymptotic (equilibrium) fuel cycle. This core state is shown to be unique for a given core geometry, power level, discharge burnup, and fuel circulation policy. Fuel circulation in the pebble-bed can be described in terms of a few well?defined parameters and expressed as a recirculation matrix. The implementation of a few heat?transfer relations suitable for high-temperature gas-cooled reactors allows for the rapid estimation of thermal properties critical for safe operation. Thus, modeling and design optimization of a given pebble-bed core can be performed quickly and efficiently via the manipulation of a limited number key parameters. Automation of the optimization process is achieved by manipulation of these parameters using a genetic algorithm. The end result is an economical, passively safe, proliferation-resistant nuclear power plant.

  1. Modeling and design of a reload PWR core for a 48-month fuel cycle

    SciTech Connect

    McMahon, M.V.; Driscoll, M.J.; Todreas, N.E.

    1997-05-01

    The objective of this research was to use state-of-the-art nuclear and fuel performance packages to evaluate the feasibility and costs of a 48 calendar month core in existing pressurized water reactor (PWR) designs, considering the full range of practical design and economic considerations. The driving force behind this research is the desire to make nuclear power more economically competitive with fossil fuel options by expanding the scope for achievement of higher capacity factors. Using CASMO/SIMULATE, a core design with fuel enriched to 7{sup w}/{sub o} U{sup 235} for a single batch loaded, 48-month fuel cycle has been developed. This core achieves an ultra-long cycle length without exceeding current fuel burnup limits. The design uses two different types of burnable poisons. Gadolinium in the form of gadolinium oxide (Gd{sub 2}O{sub 3}) mixed with the UO{sub 2} of selected pins is sued to hold down initial reactivity and to control flux peaking throughout the life of the core. A zirconium di-boride (ZrB{sub 2}) integral fuel burnable absorber (IFBA) coating on the Gd{sub 2}O{sub 3}-UO{sub 2} fuel pellets is added to reduce the critical soluble boron concentration in the reactor coolant to within acceptable limits. Fuel performance issues of concern to this design are also outlined and areas which will require further research are highlighted.

  2. On the consistent definition of spin-orbit effects calculated by relativistic effective core potentials with one-electron spin-orbit operators: Comparison of spin-orbit effects for Tl, TlH, TlH3, PbH2, and PbH4

    NASA Astrophysics Data System (ADS)

    Han, Young-Kyu; Bae, Cheolbeom; Lee, Yoon Sup

    1999-05-01

    The spin-orbit effects for Tl, TlH, TlH3, PbH2, and PbH4 are evaluated by two-component calculations using several relativistic effective core potentials (RECP) with one-electron spin-orbit operators. The used RECPs are shape-consistent RECPs derived by Wildman et al. [J. Chem. Phys. 107, 9975 (1997)] and three sets of energy-consistent (or adjusted) RECPs published by Schwerdtfeger et al. [Phys. Scr. 36, 453 (1987); J. Chem. Phys. 90, 762 (1989)], Küchle et al. [Mol. Phys. 74, 1245 (1991)], and Leininger et al. [Chem. Phys. 217, 19 (1997)]. The shape-consistent RECP results are in very good agreement with the Küchle et al. energy-consistent RECP results for all the molecules studied here and all-electron results for TlH. The RECPs of Schwerdtfeger et al. and Leininger et al. seem to provide qualitatively different spin-orbit effects. If one defines spin-free RECP as the potential average of the corresponding two-component RECP, all RECPs give very similar spin-orbit effects for all the cases. Most of the discrepancies of molecular spin-orbit effects among various RECPs reported in the literature may originate from different definitions of RECPs with or without a spin-orbit term and not from the inherent difference in spin-orbit operators.

  3. HYDRATE CORE DRILLING TESTS

    SciTech Connect

    John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

    2002-11-01

    The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate formation comprised of coarse, large

  4. 23. CORE WORKER OPERATING A COREBLOWER THAT PNEUMATICALLY FILLED CORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. CORE WORKER OPERATING A CORE-BLOWER THAT PNEUMATICALLY FILLED CORE BOXES WITH RESIGN IMPREGNATED SAND AND CREATED A CORE THAT THEN REQUIRED BAKING, CA. 1950. - Stockham Pipe & Fittings Company, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  5. HENRY'S LAW CALCULATOR

    EPA Science Inventory

    On-Site was developed to provide modelers and model reviewers with prepackaged tools ("calculators") for performing site assessment calculations. The philosophy behind OnSite is that the convenience of the prepackaged calculators helps provide consistency for simple calculations,...

  6. Predicting Activation of Experiments Inside the Annular Core Research Reactor

    SciTech Connect

    Greenberg, Joseph Isaac

    2015-11-01

    The objective of this thesis is to create a program to quickly estimate the radioactivity and decay of experiments conducted inside of the Annular Core Research Reactor at Sandia National Laboratories and eliminate the need for users to write code. This is achieved by model the neutron fluxes in the reactor’s central cavity where experiments are conducted for 4 different neutron spectra using MCNP. The desired neutron spectrum, experiment material composition, and reactor power level are then input into CINDER2008 burnup code to obtain activation and decay information for every isotope generated. DREAD creates all of the files required for CINDER2008 through user selected inputs in a graphical user interface and executes the program for the user and displays the resulting estimation for dose rate at various distances. The DREAD program was validated by weighing and measuring various experiments in the different spectra and then collecting dose rate information after they were irradiated and comparing it to the dose rates that DREAD predicted. The program provides results with an average of 17% higher estimates than the actual values and takes seconds to execute.

  7. Core-Cutoff Tool

    NASA Technical Reports Server (NTRS)

    Gheen, Darrell

    2007-01-01

    A tool makes a cut perpendicular to the cylindrical axis of a core hole at a predetermined depth to free the core at that depth. The tool does not damage the surrounding material from which the core was cut, and it operates within the core-hole kerf. Coring usually begins with use of a hole saw or a hollow cylindrical abrasive cutting tool to make an annular hole that leaves the core (sometimes called the plug ) in place. In this approach to coring as practiced heretofore, the core is removed forcibly in a manner chosen to shear the core, preferably at or near the greatest depth of the core hole. Unfortunately, such forcible removal often damages both the core and the surrounding material (see Figure 1). In an alternative prior approach, especially applicable to toxic or fragile material, a core is formed and freed by means of milling operations that generate much material waste. In contrast, the present tool eliminates the damage associated with the hole-saw approach and reduces the extent of milling operations (and, hence, reduces the waste) associated with the milling approach. The present tool (see Figure 2) includes an inner sleeve and an outer sleeve and resembles the hollow cylindrical tool used to cut the core hole. The sleeves are thin enough that this tool fits within the kerf of the core hole. The inner sleeve is attached to a shaft that, in turn, can be attached to a drill motor or handle for turning the tool. This tool also includes a cutting wire attached to the distal ends of both sleeves. The cutting wire is long enough that with sufficient relative rotation of the inner and outer sleeves, the wire can cut all the way to the center of the core. The tool is inserted in the kerf until its distal end is seated at the full depth. The inner sleeve is then turned. During turning, frictional drag on the outer core pulls the cutting wire into contact with the core. The cutting force of the wire against the core increases with the tension in the wire and

  8. Evaluation of the Start-Up Core Physics Tests at Japan's High Temperature Engineering Test Reactor (Annular Core Loadings)

    SciTech Connect

    John D. Bess; Nozomu Fujimoto; James W. Sterbentz; Luka Snoj; Atsushi Zukeran

    2010-03-01

    The High Temperature Engineering Test Reactor (HTTR) of the Japan Atomic Energy Agency (JAEA) is a 30 MWth, graphite-moderated, helium-cooled reactor that was constructed with the objectives to establish and upgrade the technological basis for advanced high-temperature gas-cooled reactors (HTGRs) as well as to conduct various irradiation tests for innovative high-temperature research. The core size of the HTTR represents about one-half of that of future HTGRs, and the high excess reactivity of the HTTR, necessary for compensation of temperature, xenon, and burnup effects during power operations, is similar to that of future HTGRs. During the start-up core physics tests of the HTTR, various annular cores were formed to provide experimental data for verification of design codes for future HTGRs. The Japanese government approved construction of the HTTR in the 1989 fiscal year budget; construction began at the Oarai Research and Development Center in March 1991 and was completed May 1996. Fuel loading began July 1, 1998, from the core periphery. The first criticality was attained with an annular core on November 10, 1998 at 14:18, followed by a series of start-up core physics tests until a fully-loaded core was developed on December 16, 1998. Criticality tests were carried out into January 1999. The first full power operation with an average core outlet temperature of 850ºC was completed on December 7, 2001, and operational licensing of the HTTR was approved on March 6, 2002. The HTTR attained high temperature operation at 950 ºC in April 19, 2004. After a series of safety demonstration tests, it will be used as the heat source in a hydrogen production system by 2015. Hot zero-power critical, rise-to-power, irradiation, and safety demonstration testing , have also been performed with the HTTR, representing additional means for computational validation efforts. Power tests were performed in steps from 0 to 30 MW, with various tests performed at each step to confirm

  9. Core sample extractor

    NASA Technical Reports Server (NTRS)

    Akins, James; Cobb, Billy; Hart, Steve; Leaptrotte, Jeff; Milhollin, James; Pernik, Mark

    1989-01-01

    The problem of retrieving and storing core samples from a hole drilled on the lunar surface is addressed. The total depth of the hole in question is 50 meters with a maximum diameter of 100 millimeters. The core sample itself has a diameter of 60 millimeters and will be two meters in length. It is therefore necessary to retrieve and store 25 core samples per hole. The design utilizes a control system that will stop the mechanism at a certain depth, a cam-linkage system that will fracture the core, and a storage system that will save and catalogue the cores to be extracted. The Rod Changer and Storage Design Group will provide the necessary tooling to get into the hole as well as to the core. The mechanical design for the cam-linkage system as well as the conceptual design of the storage device are described.

  10. The core paradox.

    NASA Technical Reports Server (NTRS)

    Kennedy, G. C.; Higgins, G. H.

    1973-01-01

    Rebuttal of suggestions from various critics attempting to provide an escape from the seeming paradox originated by Higgins and Kennedy's (1971) proposed possibility that the liquid in the outer core was thermally stably stratified and that this stratification might prove a powerful inhibitor to circulation of the outer core fluid of the kind postulated for the generation of the earth's magnetic field. These suggestions are examined and shown to provide no reasonable escape from the core paradox.

  11. Calculation of kinetic spatial weighting factors in power reactors

    SciTech Connect

    Sweeney, F.J.; Renier, J.P.

    1982-01-01

    Ex-core neutron detector kinetic (frequency-dependent) spatial sensitivities (weighting factors) for in-core neutron sources were determined by performing space-dependent, transport and diffusion theory, kinetic detector adjoint calculations in which both source propagation through fission processes and the frequency dependence of the reactivity-to-power transfer function were considered. This study was pursued to overcome the shortcomings of previous calculations of ex-core detector weighting factors for in-core neutron sources using discrete-ordinate shielding or point kernel techniques.

  12. Core Research Center

    USGS Publications Warehouse

    Hicks, Joshua; Adrian, Betty

    2009-01-01

    The Core Research Center (CRC) of the U.S. Geological Survey (USGS), located at the Denver Federal Center in Lakewood, Colo., currently houses rock core from more than 8,500 boreholes representing about 1.7 million feet of rock core from 35 States and cuttings from 54,000 boreholes representing 238 million feet of drilling in 28 States. Although most of the boreholes are located in the Rocky Mountain region, the geologic and geographic diversity of samples have helped the CRC become one of the largest and most heavily used public core repositories in the United States. Many of the boreholes represented in the collection were drilled for energy and mineral exploration, and many of the cores and cuttings were donated to the CRC by private companies in these industries. Some cores and cuttings were collected by the USGS along with other government agencies. Approximately one-half of the cores are slabbed and photographed. More than 18,000 thin sections and a large volume of analytical data from the cores and cuttings are also accessible. A growing collection of digital images of the cores are also becoming available on the CRC Web site Internet http://geology.cr.usgs.gov/crc/.

  13. Design of a weapons-grade plutonium assembly for optimal burnup in a standard pressurized water reactor

    NASA Astrophysics Data System (ADS)

    Alonso-Vargas, Gustavo

    We created a new MOX fuel assembly design that can be used in standard Westinghouse pressurized water reactors (PWR) to maximize the plutonium throughput while introducing the lowest perturbation possible to the control and safety systems of the reactor. Our assembly design, which is called MIX-33, appears to be a good option for the disposition of weapons-grade plutonium (WG-Pu), increasing the plutonium disposition rate by 8% compared to a previous Westinghouse design. It is based in two novel ideas: the use of both uranium and plutonium fuel pins in the same assembly, and the increase of the moderation ratio of the assembly. We replaced 8 fuel pins by water holes to increase the moderation ratio. We can transition smoothly from a full LEU core to a full MIX-33 core meeting the operational and safety regulations of a standard PWR. Given a MOX supply interruption scenario we can transition smoothly to full LEU meeting the safety regulations and using standard LEU assemblies with uniform enriched pin-wise distribution. If the MOX supply is interrupted for only one cycle, we are able to transition back to full MIX-33 core. However, in this case we probably need to de-rate the power by a few percent for a few weeks at the beginning of the cycle (BOC) to accommodate high peaking. For comparison we created another assembly design without extra water holes, which we called "MIX-25". It behaves in all the conditions analyzed in a similar way to the MIX-33 but it does present minor control problems. These can be solved by making small modifications to the control and safety systems, namely by enriching the boron-10 content of some boron absorbers. Thus, the addition of water holes replacing fuel pins helps to improve the MIX-33 performance and eliminate the difficulties seen in the MIX-25 design. We also performed a benchmarking analysis to test the code CASMO-3 to analyze WG-Pu assemblies, using the code MCNP-4A to compare. We found good agreement between CASMO-3 and

  14. Can Psychiatric Rehabilitation Be Core to CORE?

    ERIC Educational Resources Information Center

    Olney, Marjorie F.; Gill, Kenneth J.

    2016-01-01

    Purpose: In this article, we seek to determine whether psychiatric rehabilitation principles and practices have been more fully incorporated into the Council on Rehabilitation Education (CORE) standards, the extent to which they are covered in four rehabilitation counseling "foundations" textbooks, and how they are reflected in the…

  15. Iron diffusion from first principles calculations

    NASA Astrophysics Data System (ADS)

    Wann, E.; Ammann, M. W.; Vocadlo, L.; Wood, I. G.; Lord, O. T.; Brodholt, J. P.; Dobson, D. P.

    2013-12-01

    The cores of Earth and other terrestrial planets are made up largely of iron1 and it is therefore very important to understand iron's physical properties. Chemical diffusion is one such property and is central to many processes, such as crystal growth, and viscosity. Debate still surrounds the explanation for the seismologically observed anisotropy of the inner core2, and hypotheses include convection3, anisotropic growth4 and dendritic growth5, all of which depend on diffusion. In addition to this, the main deformation mechanism at the inner-outer core boundary is believed to be diffusion creep6. It is clear, therefore, that to gain a comprehensive understanding of the core, a thorough understanding of diffusion is necessary. The extremely high pressures and temperatures of the Earth's core make experiments at these conditions a challenge. Low-temperature and low-pressure experimental data must be extrapolated across a very wide gap to reach the relevant conditions, resulting in very poorly constrained values for diffusivity and viscosity. In addition to these dangers of extrapolation, preliminary results show that magnetisation plays a major role in the activation energies for diffusion at low pressures therefore creating a break down in homologous scaling to high pressures. First principles calculations provide a means of investigating diffusivity at core conditions, have already been shown to be in very good agreement with experiments7, and will certainly provide a better estimate for diffusivity than extrapolation. Here, we present first principles simulations of self-diffusion in solid iron for the FCC, BCC and HCP structures at core conditions in addition to low-temperature and low-pressure calculations relevant to experimental data. 1. Birch, F. Density and composition of mantle and core. Journal of Geophysical Research 69, 4377-4388 (1964). 2. Irving, J. C. E. & Deuss, A. Hemispherical structure in inner core velocity anisotropy. Journal of Geophysical

  16. A Critical Review of Practice of Equating the Reactivity of Spent Fuel to Fresh Fuel in Burnup Credit Criticality Safety Analyses for PWR Spent Fuel Pool Storage

    SciTech Connect

    Wagner, J.C.; Parks, C.V.

    2000-09-01

    This research examines the practice of equating the reactivity of spent fuel to that of fresh fuel for the purpose of performing burnup credit criticality safety analyses for PWR spent fuel pool (SFP) storage conditions. The investigation consists of comparing k{sub inf} estimates based on reactivity equivalent fresh fuel enrichment (REFFE) to k{sub inf} estimates using the actual spent fuel isotopics. Analyses of selected storage configurations common in PWR SFPs show that this practice yields nonconservative results (on the order of a few tenths of a percent) in configurations in which the spent fuel is adjacent to higher-reactivity assemblies (e.g., fresh or lower-burned assemblies) and yields conservative results in configurations in which spent fuel is adjacent to lower-reactivity assemblies (e.g., higher-burned fuel or empty cells). When the REFFE is determined based on unborated water moderation, analyses for storage conditions with soluble boron present reveal significant nonconservative results associated with the use of the REFFE. This observation is considered to be important, especially considering the recent allowance of credit for soluble boron up to 5% in reactivity. Finally, it is shown that the practice of equating the reactivity of spent fuel to fresh fuel is acceptable, provided the conditions for which the REFFE was determined remain unchanged. Determination of the REFFE for a reference configuration and subsequent use of the REFFE for different configurations violates the basis used for the determination of the REFFE and, thus, may lead to inaccurate, and possibly, nonconservative estimates of reactivity. A significant concentration ({approximately}2000 ppm) of soluble boron is typically (but not necessarily required to be) present in PWR SFPs, of which only a portion ({le} 500 ppm) may be credited in safety analyses. Thus, a large subcritical margin currently exists that more than accounts for errors or uncertainties associated with the use of

  17. Hydrologic characterization of four cores from the Geysers Coring Project

    SciTech Connect

    Persoff, Peter; Hulen, Jeffrey B.

    1996-01-24

    Results of hydrologic tests conducted on four representative core plugs from Geysers Coring Project drill hole SB-15-D have been related to detailed mineralogic and textural characterization of the plugs to yield new information about permeability, porosity, and capillary-pressure characteristics of the uppermost Geysers steam reservoir and its immediately overlying caprock. The core plugs are all fine- to medium-grained, Franciscan-assemblage (late Mesozoic) metagraywacke with sparse Franciscan metamorphic quartz-calcite veins and late Cenozoic, hydrothermal quartz-calcite-pyrite veins. The matrices of three plugs from the caprock are rich in metamorphic mixed-layer illite/smectite and disseminated hydrothermal pyrite; the reservoir plug instead contains abundant illite and only minor pyrite. The reservoir plug and one caprock plug are sparsely disrupted by latest-stage, unmineralized microfractures which both follow and crosscut veinlets but which could be artifacts. Porosities of the plugs, measured by Boyles-law gas expansion, range between 1.9 and 2.5%. Gas permeability and Klinkenberg slip factor were calculated from gas-pressure-pulse-decay measurements using a specially designed permeameter with small (2 mL) reservoirs. Matrix permeabilities in the range 10-21 m² ( = 1 nanodarcy) were measured for two plugs that included mineral-filled veins but no unfilled microfractures. Greater permeabilities were measured on plugs that contained microfractures; at 500 psi net confining pressure, an effective aperture of 1.6 µm was estimated for one plug. Capillary pressure curves were determined for three cores by measuring saturation as weight gain of plugs equilibrated with atmospheres in which the relative humidity was controlled by saturated brines.

  18. Thermal Neutron Capture and Thermal Neutron Burn-up of K isomeric state of 177mLu: a way to the Neutron Super-Elastic Scattering cross section

    SciTech Connect

    Roig, O.; Belier, G.; Meot, V.; Daugas, J.-M.; Romain, P.

    2006-03-13

    Thermal neutron radiative capture and burn-up measurements of the K isomeric state in 177Lu form part of an original method to indirectly obtain the neutron super-elastic scattering cross section at thermal energy. Neutron super-elastic scattering, also called neutron inelastic acceleration, occurs during the neutron collisions with an excited nuclear level. In this reaction, the nucleus could partly transfer its excitation energy to the scattered neutron.

  19. KSI's Cross Insulated Core Transformer Technology

    SciTech Connect

    Uhmeyer, Uwe

    2009-08-04

    Cross Insulated Core Transformer (CCT) technology improves on Insulated Core Transformer (ICT) implementations. ICT systems are widely used in very high voltage, high power, power supply systems. In an ICT transformer ferrite core sections are insulated from their neighboring ferrite cores. Flux leakage is present at each of these insulated gaps. The flux loss is raised to the power of stages in the ICT design causing output voltage efficiency to taper off with increasing stages. KSI's CCT technology utilizes a patented technique to compensate the flux loss at each stage of an ICT system. Design equations to calculate the flux compensation capacitor value are presented. CCT provides corona free operation of the HV stack. KSI's CCT based High Voltage power supply systems offer high efficiency operation, high frequency switching, low stored energy and smaller size over comparable ICT systems.

  20. Making an Ice Core.

    ERIC Educational Resources Information Center

    Kopaska-Merkel, David C.

    1995-01-01

    Explains an activity in which students construct a simulated ice core. Materials required include only a freezer, food coloring, a bottle, and water. This hands-on exercise demonstrates how a glacier is formed, how ice cores are studied, and the nature of precision and accuracy in measurement. Suitable for grades three through eight. (Author/PVD)

  1. Core Concepts of Kinesiology.

    ERIC Educational Resources Information Center

    Hudson, Jackie L.

    1995-01-01

    Core concepts of kinesiology are the basis of communication about movement that facilitate progression of skill levels. The article defines and exemplifies each of 10 core concepts: range of motion, speed of motion, number of segments, nature of segments, balance, coordination, compactness, extension at release/contact, path of projection, and…

  2. CORE - Performance Feedback System

    SciTech Connect

    2009-10-02

    CORE is an architecture to bridge the gaps between disparate data integration and delivery of disparate information visualization. The CORE Technology Program includes a suite of tools and user-centered staff that can facilitate rapid delivery of a deployable integrated information to users.

  3. Iowa Core Annual Report

    ERIC Educational Resources Information Center

    Iowa Department of Education, 2015

    2015-01-01

    One central component of a great school system is a clear set of expectations, or standards, that educators help all students reach. In Iowa, that effort is known as the Iowa Core. The Iowa Core represents the statewide academic standards, which describe what students should know and be able to do in math, science, English language arts, and…

  4. Ice Core Investigations

    ERIC Educational Resources Information Center

    Krim, Jessica; Brody, Michael

    2008-01-01

    What can glaciers tell us about volcanoes and atmospheric conditions? How does this information relate to our understanding of climate change? Ice Core Investigations is an original and innovative activity that explores these types of questions. It brings together popular science issues such as research, climate change, ice core drilling, and air…

  5. Modular core holder

    SciTech Connect

    Mueller, J.; Cole, C.W.; Hamid, S.; Lucas, J.K.

    1991-03-05

    This patent describes a modular core holder. It comprises: a sleeve, forming an internal cavity for receiving a core. The sleeve including segments; support means, overlying the sleeve, for supporting the sleeve; and access means, positioned between at least two of the segments of the sleeve, for allowing measurement of conditions within the internal cavity.

  6. More on the Core

    ERIC Educational Resources Information Center

    Chan, Monnica

    2013-01-01

    From a higher education perspective, new "Common Core" standards could improve student college-readiness levels, reduce institutional remediation rates, and close education gaps in and between states. As a national initiative to create common educational standards for students across multiple states, the Common Core State Standards…

  7. Mercury's core evolution

    NASA Astrophysics Data System (ADS)

    Deproost, Marie-Hélène; Rivoldini, Attilio; Van Hoolst, Tim

    2016-10-01

    Remote sensing data of Mercury's surface by MESSENGER indicate that Mercury formed under reducing conditions. As a consequence, silicon is likely the main light element in the core together with a possible small fraction of sulfur. Compared to sulfur, which does almost not partition into solid iron at Mercury's core conditions and strongly decreases the melting temperature, silicon partitions almost equally well between solid and liquid iron and is not very effective at reducing the melting temperature of iron. Silicon as the major light element constituent instead of sulfur therefore implies a significantly higher core liquidus temperature and a decrease in the vigor of compositional convection generated by the release of light elements upon inner core formation.Due to the immiscibility in liquid Fe-Si-S at low pressure (below 15 GPa), the core might also not be homogeneous and consist of an inner S-poor Fe-Si core below a thinner Si-poor Fe-S layer. Here, we study the consequences of a silicon-rich core and the effect of the blanketing Fe-S layer on the thermal evolution of Mercury's core and on the generation of a magnetic field.

  8. NFE Core Bibliographies.

    ERIC Educational Resources Information Center

    Michigan State Univ., East Lansing. Inst. for International Studies in Education.

    This collection of core bibliographies, which expands on an initial bibliography published in 1979 of the core resources housed in the Non-Formal Education Information Center at Michigan State University, comprises a basic stock of materials on nonformal education and women in development that have been contributed by development planners,…

  9. VLBI Observations of the Free Core Nutations

    NASA Astrophysics Data System (ADS)

    Smylie, D. E.

    2012-12-01

    At core scale lengths with periods from a few hours to days, the Coriolis acceleration dominates the Lorentz force density and core modes can be considered as purely mechanical. One of the most interesting core modes is the spin-over mode, which reflects the ability of the outer core to rotate about an axis different from that of either the inner core or the shell. It has a nearly diurnal period. In the Earth frame of reference, this mode produces the nearly diurnal retrograde wobble. In the space frame of reference it is accompanied by the free core nutations. When the flattening of the boundaries of the fluid outer core and the figure-figure gravitational coupling are taken into account, as well as the deformability of the boundaries, both a retrograde free core nutation and a prograde free core nutation are found. The retrograde free core nutation was first predicted by Poincare (1910) for a completly fluid, incompressible core bounded by a rigid shell. In a variational calculation of wobble-nutation modes in realistic Earth models, Jiang (1993) found the classical retrograde free core nutation (RFCN) but discovered a prograde free core nutation (PFCN) as well. VLBI residuals in longitude and obliquity compared to the 1980 IAU nutation series, and their standard errors, were downloaded from the Goddard Space Flight Center website, for the period August 3, 1979 to March 6, 2003, giving 3343 points over a span of 8617 days. In an overlapping segment analysis, the discrete Fourier transform (DFT) for each segment was found for the corresponding series of unequally spaced nutation residuals by singular value decomposition (SVD), with the number of singular values eliminated determined by the satisfaction of Parseval's theorem. Both the RFCN and the PFCN resonances were found in the resulting power spectrum. The nutation resonances were found to be in free decay, the half-life of the PFCN at 2620 days and that of the RFCN at 2229 days, with Ekman boundary layer

  10. Internal core tightener

    DOEpatents

    Brynsvold, Glen V.; Snyder, Jr., Harold J.

    1976-06-22

    An internal core tightener which is a linear actuated (vertical actuation motion) expanding device utilizing a minimum of moving parts to perform the lateral tightening function. The key features are: (1) large contact areas to transmit loads during reactor operation; (2) actuation cam surfaces loaded only during clamping and unclamping operation; (3) separation of the parts and internal operation involved in the holding function from those involved in the actuation function; and (4) preloaded pads with compliant travel at each face of the hexagonal assembly at the two clamping planes to accommodate thermal expansion and irradiation induced swelling. The latter feature enables use of a "fixed" outer core boundary, and thus eliminates the uncertainty in gross core dimensions, and potential for rapid core reactivity changes as a result of core dimensional change.

  11. Lunar Core and Tides

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2004-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2,3,4] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening, which in the past has been marginal but improving [3,4,5], now seems significant. Direct detection of the core moment has not yet been achieved.

  12. PRIZMA predictions of in-core detection indications in the VVER-1000 reactor

    NASA Astrophysics Data System (ADS)

    Kandiev, Yadgar Z.; Kashayeva, Elena A.; Malyshin, Gennady N.; Modestov, Dmitry G.; Khatuntsev, Kirill E.

    2014-06-01

    The paper describes calculations which were done by the PRIZMA code(1) to predict indications of in-core rhodium detectors in the VVER-1000 reactor for some core fragments with allowance for fuel and rhodium burnout.

  13. Dynamic origin of vortex core switching in soft magnetic nanodots.

    PubMed

    Guslienko, Konstantin Yu; Lee, Ki-Suk; Kim, Sang-Koog

    2008-01-18

    The magnetic vortex with in-plane curling magnetization and out-of-plane magnetization at the core is a unique ground state in nanoscale magnetic elements. This kind of magnetic vortex can be used, through its downward or upward core orientation, as a memory unit for information storage, and thus, controllable core switching deserves some special attention. Our analytical and micromagnetic calculations reveal that the origin of vortex core reversal is a gyrotropic field. This field is induced by vortex dynamic motion and is proportional to the velocity of the moving vortex. Our calculations elucidate the physical origin of the vortex core dynamic reversal, and, thereby, offer a key to effective manipulation of the vortex core orientation.

  14. Enhanced transferability for Bethe-Salpeter Calculations

    NASA Astrophysics Data System (ADS)

    Shirley, Eric L.

    2015-03-01

    We have systematized projector-augmented-wave methods to reliably augment plane-wave/pseudopotential Bloch functions in atomic core regions for purposes of performing screening calculations, evaluating transition matrix elements, and evaluating Slater integrals in the condensed matter environment. This has improved the accuracy of core-hole screening, adherence to sum rules, and control of the strength of absorption features. This also ensures that transition matrix elements and concomitant core excitation spectra are reliable over significant energy ranges. To accomplish this, we improve the quality of the pseudopotentials (which become harder), extending norm conservation, and increasing the number of ``valence electrons.'' We present results for both insulators and metals, and for both core and valence excitations. Comparison to experimental data is a key part of this work. We also emphasize what approximations remain to be tackled in the treatment of electronic excitation spectra, many of which are more difficult to treat than what is within the scope of this work.

  15. A 100 MWe advanced sodium-cooled fast reactor core concept

    SciTech Connect

    Kim, T. K.; Grandy, C.; Hill, R. N.

    2012-07-01

    An Advanced sodium-cooled Fast Reactor core concept (AFR-100) was developed targeting a small electrical grid to be transportable to the plant site and operable for a long time without frequent refueling. The reactor power rating was strategically decided to be 100 MWe, and the core barrel diameter was limited to 3.0 m for transportability. The design parameters were determined by relaxing the peak fast fluence limit and bulk coolant outlet temperature to beyond irradiation experience assuming that advanced cladding and structural materials developed under US-DOE programs would be available when the AFR-100 is deployed. With a de-rated power density and U-Zr binary metallic fuel, the AFR-100 can maintain criticality for 30 years without refueling. The average discharge burnup of 101 MWd/kg is comparable to conventional design values, but the peak discharge fast fluence of {approx}6x10{sup 23} neutrons/cm{sup 2} is beyond the current irradiation experiences with HT-9 cladding. The evaluated reactivity coefficients provide sufficient negative feedbacks and the reactivity control systems provide sufficient shutdown margins. The integral reactivity parameters obtained from quasi-static reactivity balance analysis indicate that the AFR-100 meets the sufficient conditions for acceptable asymptotic core outlet temperature following postulated unprotected accidents. Additionally, the AFR-100 has sufficient thermal margins by grouping the fuel assemblies into eight orifice zones. (authors)

  16. 34. DESPATCH CORE OVENS, GREY IRON FOUNDRY CORE ROOM, BAKES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. DESPATCH CORE OVENS, GREY IRON FOUNDRY CORE ROOM, BAKES CORES THAT ARE NOT MADE ON HEATED OR COLD BOX CORE MACHINES, TO SET BINDING AGENTS MIXED WITH THE SAND CREATING CORES HARD ENOUGH TO WITHSTAND THE FLOW OF MOLTEN IRON INSIDE A MOLD. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  17. Direct Measurement of Initial Enrichment and Burn-up of Spent Fuel Assembly with a Differential Die-Away Technique Based Instrument

    SciTech Connect

    Henzl, Vladimir; Swinhoe, Martyn T.; Tobin, Stephen J.

    2012-07-16

    A key objective of the Next Generation Safeguards Initiative (NGSI) is to utilize non-destructive assay (NDA) techniques to determine the elemental plutonium (Pu) content in a commercial-grade nuclear spent fuel assembly (SFA). In the third year of the NGSI Spent Fuel NDA project, the research focus is on the integration of a few NDA techniques. One of the reoccurring challenges to the accurate determination of Pu content has been the explicit dependence of the measured signal on the presence of neutron absorbers which build up in the assembly in accordance with its operating and irradiation history. The history of any SFA is often summarized by the parameters of burn-up (BU), initial enrichment (IE) and cooling time (CT). While such parameters can typically be provided by the operator, the ability to directly measure and verify them would significantly enhance the autonomy of the IAEA inspectorate. Within this paper, we demonstrate that an instrument based on a Differential Die-Away technique is in principle capable of direct measurement of IE and, should the CT be known, also the BU.

  18. Electron probe microanalysis of a METAPHIX UPuZr metallic alloy fuel irradiated to 7.0 at.% burn-up

    NASA Astrophysics Data System (ADS)

    Brémier, S.; Inagaki, K.; Capriotti, L.; Poeml, P.; Ogata, T.; Ohta, H.; Rondinella, V. V.

    2016-11-01

    The METAPHIX project is a collaboration between CRIEPI and JRC-ITU investigating safety and performance of a closed fuel cycle option based on fast reactor metal alloy fuels containing Minor Actinides (MA). The aim of the project is to investigate the behaviour of this type of fuel and demonstrate the transmutation of MA under irradiation. A UPuZr metallic fuel sample irradiated to a burn-up of 7 at.% was examined by electron probe microanalysis. The fuel sample was extensively characterised qualitatively and quantitatively using elemental X-ray imaging and point analysis techniques. The analyses reveal a significant redistribution of the fuel components along the fuel radius highlighting a nearly complete depletion of Zr in the central part of the fuel. Numerous rare earth and fission products secondary phases are present in various compositions. Fuel cladding chemical interaction was observed with creation of a number of intermediary layers affecting a cladding depth of 15-20 μm and migration of cladding elements to the fuel.

  19. Distillation Calculations with a Programmable Calculator.

    ERIC Educational Resources Information Center

    Walker, Charles A.; Halpern, Bret L.

    1983-01-01

    Describes a three-step approach for teaching multicomponent distillation to undergraduates, emphasizing patterns of distribution as an aid to understanding the separation processes. Indicates that the second step can be carried out by programmable calculators. (A more complete set of programs for additional calculations is available from the…

  20. Multiple Core Galaxies

    NASA Technical Reports Server (NTRS)

    Miller, R.H.; Morrison, David (Technical Monitor)

    1994-01-01

    Nuclei of galaxies often show complicated density structures and perplexing kinematic signatures. In the past we have reported numerical experiments indicating a natural tendency for galaxies to show nuclei offset with respect to nearby isophotes and for the nucleus to have a radial velocity different from the galaxy's systemic velocity. Other experiments show normal mode oscillations in galaxies with large amplitudes. These oscillations do not damp appreciably over a Hubble time. The common thread running through all these is that galaxies often show evidence of ringing, bouncing, or sloshing around in unexpected ways, even though they have not been disturbed by any external event. Recent observational evidence shows yet another phenomenon indicating the dynamical complexity of central regions of galaxies: multiple cores (M31, Markarian 315 and 463 for example). These systems can hardly be static. We noted long-lived multiple core systems in galaxies in numerical experiments some years ago, and we have more recently followed up with a series of experiments on multiple core galaxies, starting with two cores. The relevant parameters are the energy in the orbiting clumps, their relative.masses, the (local) strength of the potential well representing the parent galaxy, and the number of cores. We have studied the dependence of the merger rates and the nature of the final merger product on these parameters. Individual cores survive much longer in stronger background potentials. Cores can survive for a substantial fraction of a Hubble time if they travel on reasonable orbits.

  1. A NEW METHOD TO QUANTIFY CORE TEMPERATURE INSTABILITY IN RODENTS.

    EPA Science Inventory

    Methods to quantify instability of autonomic systems such as temperature regulation should be important in toxicant and drug safety studies. Stability of core temperature (Tc) in laboratory rodents is susceptible to a variety of stimuli. Calculating the temperature differential o...

  2. Global Core Plasma Model

    NASA Technical Reports Server (NTRS)

    Gallagher, Dennis L.; Craven, P. D.; Comfort, R. H.

    1999-01-01

    Abstract. The Global Core Plasma Model (GCPM) provides, empirically derived, core plasma density as a function of geomagnetic and solar conditions throughout the inner magnetosphere. It is continuous in value and gradient and is composed of separate models for the ionosphere, the plasmasphere, the plasmapause, the trough, and the polar cap. The relative composition of plasmaspheric H+, He+, and O+ is included in the GCPM. A blunt plasmaspheric bulge and rotation of the bulge with changing geomagnetic conditions is included. The GCPM is an amalgam of density models, intended to serve as a framework for continued improvement as new measurements become available and are used to characterize core plasma density, composition, and temperature.

  3. Core shroud corner joints

    DOEpatents

    Gilmore, Charles B.; Forsyth, David R.

    2013-09-10

    A core shroud is provided, which includes a number of planar members, a number of unitary corners, and a number of subassemblies each comprising a combination of the planar members and the unitary corners. Each unitary corner comprises a unitary extrusion including a first planar portion and a second planar portion disposed perpendicularly with respect to the first planar portion. At least one of the subassemblies comprises a plurality of the unitary corners disposed side-by-side in an alternating opposing relationship. A plurality of the subassemblies can be combined to form a quarter perimeter segment of the core shroud. Four quarter perimeter segments join together to form the core shroud.

  4. A Technique to Determine Billet Core Charge Weight for P/M Fuel Tubes

    SciTech Connect

    Peacock, H.B.

    2001-07-02

    The core length in an extruded tube depends on the weight of powder in the billet core. In the past, the amount of aluminum powder needed to give a specified core length was determined empirically. This report gives a technique for calculating the weight of aluminum powder for the P/M core. An equation has been derived which can be used to determine the amount of aluminum needed for P/M billet core charge weights. Good agreement was obtained when compared to Mark 22 tube extrusion data. From the calculated charge weight, the elastomeric bag can be designed and made to compact the U3O8-Al core.

  5. Programmable calculator stress analysis

    SciTech Connect

    Van Gulick, L.A.

    1983-01-01

    Advanced programmable alphanumeric calculators are well suited for closed-form calculation of pressure-vessel stresses. They offer adequate computing power, portability, special programming features, and simple interactive execution procedures. Representative programs that demonstrate calculator capabilities are presented. Problems treated are stress and strength calculations in thick-walled pressure vessels and the computation of stresses near head/pressure-vessel junctures.

  6. Photoevaporating transitional discs and molecular cloud cores

    NASA Astrophysics Data System (ADS)

    Li, Min; Sui, Ning

    2017-04-01

    We investigate the evolution of photoevaporating protoplanetary discs including mass influx from molecular cloud cores. We examine the influence of cloud core properties on the formation and evolution of transitional discs. We use one-dimensional thin disc assumption and calculate the evolution of the protoplanetary disc. The effects of X-ray photoevaporation are also included. Our calculations suggest that most discs should experience the transitional disc phase within 10 Myr. The formation time of a gap and its initial location are functions of the properties of the cloud cores. In some circumstances, discs can open two gaps by photoevaporation alone. The two gaps form when the gas in the disc can expand to large radius and if the mass at large radius is sufficiently small. The surface density profile of the disc determines whether the two gaps can form. Since the structure of a disc is determined by the properties of a molecular cloud core, the core properties determine the formation of two gaps in the disc. We further find that even when the photoevaporation rate is reduced to 10 per cent of the standard value, two gaps can still form in the disc. The only difference is that the formation time is delayed.

  7. Analyses of Weapons-Grade MOX VVER-1000 Neutronics Benchmarks: Pin-Cell Calculations with SCALE/SAS2H

    SciTech Connect

    Ellis, R.J.

    2001-01-11

    A series of unit pin-cell benchmark problems have been analyzed related to irradiation of mixed oxide fuel in VVER-1000s (water-water energetic reactors). One-dimensional, discrete-ordinates eigenvalue calculations of these benchmarks were performed at ORNL using the SAS2H control sequence module of the SCALE-4.3 computational code system, as part of the Fissile Materials Disposition Program (FMDP) of the US DOE. Calculations were also performed using the SCALE module CSAS to confirm the results. The 238 neutron energy group SCALE nuclear data library 238GROUPNDF5 (based on ENDF/B-V) was used for all calculations. The VVER-1000 pin-cell benchmark cases modeled with SAS2H included zero-burnup calculations for eight fuel material variants (from LEU UO{sub 2} to weapons-grade MOX) at five different reactor states, and three fuel depletion cases up to high burnup. Results of the SAS2H analyses of the VVER-1000 neutronics benchmarks are presented in this report. Good general agreement was obtained between the SAS2H results, the ORNL results using HELIOS-1.4 with ENDF/B-VI nuclear data, and the results from several Russian benchmark studies using the codes TVS-M, MCU-RFFI/A, and WIMS-ABBN. This SAS2H benchmark study is useful for the verification of HELIOS calculations, the HELIOS code being the principal computational tool at ORNL for physics studies of assembly design for weapons-grade plutonium disposition in Russian reactors.

  8. On the Minimum Core Mass for Giant Planet Formation

    NASA Astrophysics Data System (ADS)

    Piso, Ana-Maria; Youdin, Andrew; Murray-Clay, Ruth

    2013-07-01

    The core accretion model proposes that giant planets form by the accretion of gas onto a solid protoplanetary core. Previous studies have found that there exists a "critical core mass" past which hydrostatic solutions can no longer be found and unstable atmosphere collapse occurs. This core mass is typically quoted to be around 10Me. In standard calculations of the critical core mass, planetesimal accretion deposits enough heat to alter the luminosity of the atmosphere, increasing the core mass required for the atmosphere to collapse. In this study we consider the limiting case in which planetesimal accretion is negligible and Kelvin-Helmholtz contraction dominates the luminosity evolution of the planet. We develop a two-layer atmosphere model with an inner convective region and an outer radiative zone that matches onto the protoplanetary disk, and we determine the minimum core mass for a giant planet to form within the typical disk lifetime for a variety of disk conditions. We denote this mass as critical core mass. The absolute minimum core mass required to nucleate atmosphere collapse is ˜ 8Me at 5 AU and steadily decreases to ˜ 3.5Me at 100 AU, for an ideal diatomic gas with a solar composition and a standard ISM opacity law. Lower opacity and disk temperature significantly reduce the critical core mass, while a decrease in the mean molecular weight of the nebular gas results in a larger critical core mass. Our results yield lower mass cores than corresponding studies for large planetesimal accretion rates.

  9. Azimuthal-spin-wave-mode-driven vortex-core reversals

    SciTech Connect

    Yoo, Myoung-Woo; Kim, Sang-Koog

    2015-01-14

    We studied, by micromagnetic numerical calculations, asymmetric vortex-core reversals driven by the m = −1 and m = +1 azimuthal spin-wave modes' excitations in soft magnetic circular nano-disks. We addressed the similarities and differences between the asymmetric core reversals in terms of the temporal evolutions of the correlated core-motion speed, locally concentrated perpendicular gyrofield, and magnetization dip near the original vortex core. The criterion for the core reversals was found to be the magnetization dip that must reach the out-of-plane magnetization component, m{sub z} = −p, with the initial polarization p, where p = +1 (−1) for the upward (downward) core magnetization. The core-motion speed and the associated perpendicular gyrofield, variable and controllable with static perpendicular field, H{sub z}, applied perpendicularly to the disk plane, must reach their threshold values to meet the ultimate core-reversal criterion. Also, we determined the H{sub z} strength and direction dependence of the core-switching time and threshold exciting field strength required for the core reversals, whose parameters are essential in the application aspect. This work offers deeper insights into the azimuthal spin-wave-driven core-reversal dynamics as well as an efficient means of controlling the azimuthal-modes-driven core reversals.

  10. Core assembly storage structure

    DOEpatents

    Jones, Jr., Charles E.; Brunings, Jay E.

    1988-01-01

    A structure for the storage of core assemblies from a liquid metal-cooled nuclear reactor. The structure comprises an enclosed housing having a substantially flat horizontal top plate, a bottom plate and substantially vertical wall members extending therebetween. A plurality of thimble members extend downwardly through the top plate. Each thimble member is closed at its bottom end and has an open end adjacent said top plate. Each thimble member has a length and diameter greater than that of the core assembly to be stored therein. The housing is provided with an inlet duct for the admission of cooling air and an exhaust duct for the discharge of air therefrom, such that when hot core assemblies are placed in the thimbles, the heat generated will by convection cause air to flow from the inlet duct around the thimbles and out the exhaust duct maintaining the core assemblies at a safe temperature without the necessity of auxiliary powered cooling equipment.

  11. Magnetorotational iron core collapse

    NASA Technical Reports Server (NTRS)

    Symbalisty, E. M. D.

    1984-01-01

    During its final evolutionary stages, a massive star, as considered in current astrophysical theory, undergoes rapid collapse, thereby triggering a sequence of a catastrophic event which results in a Type II supernova explosion. A remnant neutron star or a black hole is left after the explosion. Stellar collapse occurs, when thermonuclear fusion has consumed the lighter elements present. At this stage, the core consists of iron. Difficulties arise regarding an appropriate model with respect to the core collapse. The present investigation is concerned with the evolution of a Type II supernova core including the effects of rotation and magnetic fields. A simple neutrino model is developed which reproduced the spherically symmetric results of Bowers and Wilson (1982). Several two-dimensional computational models of stellar collapse are studied, taking into account a case in which a 15 solar masses iron core was artificially given rotational and magnetic energy.

  12. Contaminated Sediment Core Profiling

    EPA Science Inventory

    Evaluating the environmental risk of sites containing contaminated sediments often poses major challenges due in part to the absence of detailed information available for a given location. Sediment core profiling is often utilized during preliminary environmental investigations ...

  13. INTEGRAL core programme

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Schoenfelder, V.; Ubertini, P.; Winkler, C.

    1997-01-01

    The International Gamma Ray Astrophysics Laboratory (INTEGRAL) mission is described with emphasis on the INTEGRAL core program. The progress made in the planning activities for the core program is reported on. The INTEGRAL mission has a nominal lifetime of two years with a five year extension option. The observing time will be divided between the core program (between 30 and 35 percent during the first two years) and general observations. The core program consists of three main elements: the deep survey of the Galactic plane in the central radian of the Galaxy; frequent scans of the Galactic plane in the search for transient sources, and pointed observations of several selected sources. The allocation of the observation time is detailed and the sensitivities of the observations are outlined.

  14. Biospecimen Core Resource - TCGA

    Cancer.gov

    The Cancer Genome Atlas (TCGA) Biospecimen Core Resource centralized laboratory reviews and processes blood and tissue samples and their associated data using optimized standard operating procedures for the entire TCGA Research Network.

  15. Impact of modeling Choices on Inventory and In-Cask Criticality Calculations for Forsmark 3 BWR Spent Fuel

    SciTech Connect

    Martinez-Gonzalez, Jesus S.; Ade, Brian J.; Bowman, Stephen M.; Gauld, Ian C.; Ilas, Germina; Marshall, William BJ J.

    2015-01-01

    Simulation of boiling water reactor (BWR) fuel depletion poses a challenge for nuclide inventory validation and nuclear criticality safety analyses. This challenge is due to the complex operating conditions and assembly design heterogeneities that characterize these nuclear systems. Fuel depletion simulations and in-cask criticality calculations are affected by (1) completeness of design information, (2) variability of operating conditions needed for modeling purposes, and (3) possible modeling choices. These effects must be identified, quantified, and ranked according to their significance. This paper presents an investigation of BWR fuel depletion using a complete set of actual design specifications and detailed operational data available for five operating cycles of the Swedish BWR Forsmark 3 reactor. The data includes detailed axial profiles of power, burnup, and void fraction in a very fine temporal mesh for a GE14 (10×10) fuel assembly. The specifications of this case can be used to assess the impacts of different modeling choices on inventory prediction and in-cask criticality, specifically regarding the key parameters that drive inventory and reactivity throughout fuel burnup. This study focused on the effects of the fidelity with which power history and void fraction distributions are modeled. The corresponding sensitivity of the reactivity in storage configurations is assessed, and the impacts of modeling choices on decay heat and inventory are addressed.

  16. Core bounce supernovae

    SciTech Connect

    Cooperstein, J.

    1987-01-01

    The gravitational collapse mechanism for Type II supernovae is considered, concentrating on the direct implosion - core bounce - hydrodynamic explosion picture. We examine the influence of the stiffness of the dense matter equation of state and discuss how the shock wave is formed. Its chances of success are determined by the equation of state, general relativistic effects, neutrino transport, and the size of presupernova iron core. 12 refs., 1 tab.

  17. Nuclear core positioning system

    DOEpatents

    Garkisch, Hans D.; Yant, Howard W.; Patterson, John F.

    1979-01-01

    A structural support system for the core of a nuclear reactor which achieves relatively restricted clearances at operating conditions and yet allows sufficient clearance between fuel assemblies at refueling temperatures. Axially displaced spacer pads having variable between pad spacing and a temperature compensated radial restraint system are utilized to maintain clearances between the fuel elements. The core support plates are constructed of metals specially chosen such that differential thermal expansion produces positive restraint at operating temperatures.

  18. Micro coring apparatus

    NASA Technical Reports Server (NTRS)

    Collins, David; Brooks, Marshall; Chen, Paul; Dwelle, Paul; Fischer, Ben

    1989-01-01

    A micro-coring apparatus for lunar exploration applications, that is compatible with the other components of the Walking Mobile Platform, was designed. The primary purpose of core sampling is to gain an understanding of the geological composition and properties of the prescribed environment. This procedure has been used extensively for Earth studies and in limited applications during lunar explorations. The corer is described and analyzed for effectiveness.

  19. MCNP LWR Core Generator

    SciTech Connect

    Fischer, Noah A.

    2012-08-14

    The reactor core input generator allows for MCNP input files to be tailored to design specifications and generated in seconds. Full reactor models can now easily be created by specifying a small set of parameters and generating an MCNP input for a full reactor core. Axial zoning of the core will allow for density variation in the fuel and moderator, with pin-by-pin fidelity, so that BWR cores can more accurately be modeled. LWR core work in progress: (1) Reflectivity option for specifying 1/4, 1/2, or full core simulation; (2) Axial zoning for moderator densities that vary with height; (3) Generating multiple types of assemblies for different fuel enrichments; and (4) Parameters for specifying BWR box walls. Fuel pin work in progress: (1) Radial and azimuthal zoning for generating further unique materials in fuel rods; (2) Options for specifying different types of fuel for MOX or multiple burn assemblies; (3) Additional options for replacing fuel rods with burnable poison rods; and (4) Control rod/blade modeling.

  20. Emergency core cooling system

    DOEpatents

    Schenewerk, William E.; Glasgow, Lyle E.

    1983-01-01

    A liquid metal cooled fast breeder reactor provided with an emergency core cooling system includes a reactor vessel which contains a reactor core comprising an array of fuel assemblies and a plurality of blanket assemblies. The reactor core is immersed in a pool of liquid metal coolant. The reactor also includes a primary coolant system comprising a pump and conduits for circulating liquid metal coolant to the reactor core and through the fuel and blanket assemblies of the core. A converging-diverging venturi nozzle with an intermediate throat section is provided in between the assemblies and the pump. The intermediate throat section of the nozzle is provided with at least one opening which is in fluid communication with the pool of liquid sodium. In normal operation, coolant flows from the pump through the nozzle to the assemblies with very little fluid flowing through the opening in the throat. However, when the pump is not running, residual heat in the core causes fluid from the pool to flow through the opening in the throat of the nozzle and outwardly through the nozzle to the assemblies, thus providing a means of removing decay heat.

  1. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor

    SciTech Connect

    Francesco Venneri; Chang-Keun Jo; Jae-Man Noh; Yonghee Kim; Claudio Filippone; Jonghwa Chang; Chris Hamilton; Young-Min Kim; Ji-Su Jun; Moon-Sung Cho; Hong-Sik Lim; MIchael A. Pope; Abderrafi M. Ougouag; Vincent Descotes; Brian Boer

    2010-09-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450

  2. Hybrid Analysis of Engine Core Noise

    NASA Astrophysics Data System (ADS)

    O'Brien, Jeffrey; Kim, Jeonglae; Ihme, Matthias

    2015-11-01

    Core noise, or the noise generated within an aircraft engine, is becoming an increasing concern for the aviation industry as other noise sources are progressively reduced. The prediction of core noise generation and propagation is especially challenging for computationalists since it involves extensive multiphysics including chemical reaction and moving blades in addition to the aerothermochemical effects of heated jets. In this work, a representative engine flow path is constructed using experimentally verified geometries to simulate the physics of core noise. A combustor, single-stage turbine, nozzle and jet are modeled in separate calculations using appropriate high fidelity techniques including LES, actuator disk theory and Ffowcs-Williams Hawkings surfaces. A one way coupling procedure is developed for passing fluctuations downstream through the flowpath. This method effectively isolates the core noise from other acoustic sources, enables straightforward study of the interaction between core noise and jet exhaust, and allows for simple distinction between direct and indirect noise. The impact of core noise on the farfield jet acoustics is studied extensively and the relative efficiency of different disturbance types and shapes is examined in detail.

  3. The expanded FindCore method for identification of a core atom set for assessment of protein structure prediction.

    PubMed

    Snyder, David A; Grullon, Jennifer; Huang, Yuanpeng J; Tejero, Roberto; Montelione, Gaetano T

    2014-02-01

    Maximizing the scientific impact of NMR-based structure determination requires robust and statistically sound methods for assessing the precision of NMR-derived structures. In particular, a method to define a core atom set for calculating superimpositions and validating structure predictions is critical to the use of NMR-derived structures as targets in the CASP competition. FindCore (Snyder and Montelione, Proteins 2005;59:673-686) is a superimposition independent method for identifying a core atom set and partitioning that set into domains. However, as FindCore optimizes superimposition by sensitively excluding not-well-defined atoms, the FindCore core may not comprise all atoms suitable for use in certain applications of NMR structures, including the CASP assessment process. Adapting the FindCore approach to assess predicted models against experimental NMR structures in CASP10 required modification of the FindCore method. This paper describes conventions and a standard protocol to calculate an "Expanded FindCore" atom set suitable for validation and application in biological and biophysical contexts. A key application of the Expanded FindCore method is to identify a core set of atoms in the experimental NMR structure for which it makes sense to validate predicted protein structure models. We demonstrate the application of this Expanded FindCore method in characterizing well-defined regions of 18 NMR-derived CASP10 target structures. The Expanded FindCore protocol defines "expanded core atom sets" that match an expert's intuition of which parts of the structure are sufficiently well defined to use in assessing CASP model predictions. We also illustrate the impact of this analysis on the CASP GDT assessment scores.

  4. Pre-supernova Neutrino Emissions from ONe Cores in the Progenitors of Core-collapse Supernovae: Are They Distinguishable from Those of Fe Cores?

    NASA Astrophysics Data System (ADS)

    Kato, Chinami; Delfan Azari, Milad; Yamada, Shoichi; Takahashi, Koh; Umeda, Hideyuki; Yoshida, Takashi; Ishidoshiro, Koji

    2015-08-01

    Aiming to distinguish two types of progenitors of core-collapse supernovae, i.e., one with a core composed mainly of oxygen and neon (abbreviated as ONe core) and the other with an iron core (or Fe core), we calculated the luminosities and spectra of neutrinos emitted from these cores prior to gravitational collapse, taking neutrino oscillation into account. We found that the total energies emitted as {\\bar{ν }}{{e}} from the ONe core are ≲ {10}46 {erg}, which is much smaller than ˜ {10}47 {erg} for Fe cores. The average energy, on the other hand, is twice as large for the ONe core as those for the Fe cores. The neutrinos produced by the plasmon decays in the ONe core are more numerous than those from the electron-positron annihilation in both cores, but they have much lower average energies ≲ 1 {MeV}. Although it is difficult to detect the pre-supernova neutrinos from the ONe core even if it is located within 200 pc from Earth, we expect ˜9-43 and ˜7-61 events for Fe cores at KamLAND and Super-Kamiokande, respectively, depending on the progenitor mass and neutrino-mass hierarchy. These numbers might be increased by an order of magnitude if we envisage next-generation detectors such as JUNO. We will hence be able to distinguish the two types of progenitors by the detection or nondetection of the pre-supernova neutrinos if they are close enough (≲ 1 {kpc}).

  5. Checkerboard seed-blanket thorium fuel core concepts for heavy water moderated reactors

    SciTech Connect

    Bromley, B.P.; Hyland, B.

    2013-07-01

    New reactor concepts to implement thorium-based fuel cycles have been explored to achieve maximum resource utilization. Pressure tube heavy water reactors (PT-HWR) are highly advantageous for implementing the use of thorium-based fuels because of their high neutron economy and on-line re-fuelling capability. The use of heterogeneous seed-blanket core concepts in a PT-HWR where higher-fissile-content seed fuel bundles are physically separate from lower-fissile-content blanket bundles allows more flexibility and control in fuel management to maximize the fissile utilization and conversion of fertile fuel. The lattice concept chosen was a 35-element bundle made with a homogeneous mixture of reactor grade Pu (about 67 wt% fissile) and Th, and with a central zirconia rod to help reduce coolant void reactivity. Several checkerboard heterogeneous seed-blanket core concepts with plutonium-thorium-based fuels in a 700-MWe-class PT-HWR were analyzed, using a once-through thorium (OTT) cycle. Different combinations of seed and blanket fuel were tested to determine the impact on core-average burnup, fissile utilization, power distributions, and other performance parameters. It was found that various checkerboard core concepts can achieve a fissile utilization that is up to 26% higher than that achieved in a PT-HWR using more conventional natural uranium fuel bundles. Up to 60% of the Pu is consumed; up to 43% of the energy is produced from thorium, and up to 303 kg/year of Pa-233/U-233/U-235 are produced. Checkerboard cores with about 50% of low-power blanket bundles may require power de-rating (65% to 74%) to avoid exceeding maximum limits for channel and bundle powers and linear element ratings. (authors)

  6. Annular seed-blanket thorium fuel core concepts for heavy water moderated reactors

    SciTech Connect

    Bromley, B.P.; Hyland, B.

    2013-07-01

    New reactor concepts to implement thorium-based fuel cycles have been explored to achieve maximum resource utilization. Pressure tube heavy water reactors (PT-HWR) are highly advantageous for implementing the use of thorium-based fuels because of their high neutron economy and on-line re-fuelling capability. The use of heterogeneous seed-blanket core concepts in a PT-HWR where higher-fissile-content seed fuel bundles are physically separate from lower-fissile-content blanket bundles allows more flexibility and control in fuel management to maximize the fissile utilization and conversion of fertile fuel. The lattice concept chosen is a 35-element bundle made with a homogeneous mixture of reactor grade Pu and Th, and with a central zirconia rod to help reduce coolant void reactivity. Several annular heterogeneous seed-blanket core concepts with plutonium-thorium-based fuels in a 700-MWe-class PT-HWR were analyzed, using a once-through thorium (OTT) cycle. Different combinations of seed and blanket fuel were tested to determine the impact on core-average burnup, fissile utilization, power distributions, and other performance parameters. It was found that the various core concepts can achieve a fissile utilization that is up to 30% higher than is currently achieved in a PT-HWR using conventional natural uranium fuel bundles. Up to 67% of the Pu is consumed; up to 43% of the energy is produced from thorium, and up to 363 kg/year of U-233 is produced. Seed-blanket cores with ∼50% content of low-power blanket bundles may require power de-rating (∼58% to 65%) to avoid exceeding maximum limits for peak channel power, bundle power and linear element ratings. (authors)

  7. Core Noise - Increasing Importance

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduced-Perceived-Noise Technical Challenge; and the current research activities in the core-noise area, with additional details given about the development of a high-fidelity combustor-noise prediction capability as well as activities supporting the development of improved reduced-order, physics-based models for combustor-noise prediction. The need for benchmark data for validation of high-fidelity and modeling work and the value of a potential future diagnostic facility for testing of core-noise-reduction concepts are indicated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor

  8. Recent developments in pressure coring

    SciTech Connect

    McFall, A. L.

    1980-01-01

    The current rapid growth in the number of enhanced oil and gas recovery projects has created a strong demand for reservoir data such as true residual oil saturations. The companies providing pressure coring services have moved to fill this need. Two recent developments have emerged with the potential of significantly improving the present performance of pressure coring. Coring bits utilizing synthetic diamond cutters have demonstrated coring rates of one-foot per minute while improving core recovery. It is also apparent that cores of a near-unconsolidated nature are more easily recovered. In addition, a special low invasion fluid that is placed in the core retriever has demonstrated reduced core washing by the drilling mud and a decrease in the complexity of preparing cores for analysis. This paper describes the design, laboratory, and field testing efforts that led to these coring improvements. Also, experience in utilizing these developments while recovering over 100 cores is discussed.

  9. Pressure Core Characterization

    NASA Astrophysics Data System (ADS)

    Santamarina, J. C.

    2014-12-01

    Natural gas hydrates form under high fluid pressure and low temperature, and are found in permafrost, deep lakes or ocean sediments. Hydrate dissociation by depressurization and/or heating is accompanied by a multifold hydrate volume expansion and host sediments with low permeability experience massive destructuration. Proper characterization requires coring, recovery, manipulation and testing under P-T conditions within the stability field. Pressure core technology allows for the reliable characterization of hydrate bearing sediments within the stability field in order to address scientific and engineering needs, including the measurement of parameters used in hydro-thermo-mechanical analyses, and the monitoring of hydrate dissociation under controlled pressure, temperature, effective stress and chemical conditions. Inherent sampling effects remain and need to be addressed in test protocols and data interpretation. Pressure core technology has been deployed to study hydrate bearing sediments at several locations around the world. In addition to pressure core testing, a comprehensive characterization program should include sediment analysis, testing of reconstituted specimens (with and without synthetic hydrate), and in situ testing. Pressure core characterization technology can be used to study other gas-charged formations such as deep sea sediments, coal bed methane and gas shales.

  10. Core Noise Reduction

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduce-Perceived-Noise Technical Challenge; and the current research activities in the core noise area. Recent work1 on the turbine-transmission loss of combustor noise is briefly described, two2,3 new NRA efforts in the core-noise area are outlined, and an effort to develop CMC-based acoustic liners for broadband noise reduction suitable for turbofan-core application is delineated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. The Subsonic Fixed Wing Project's Reduce-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries.

  11. Personal Finance Calculations.

    ERIC Educational Resources Information Center

    Argo, Mark

    1982-01-01

    Contains explanations and examples of mathematical calculations for a secondary level course on personal finance. How to calculate total monetary cost of an item, monthly payments, different types of interest, annual percentage rates, and unit pricing is explained. (RM)

  12. Calculators, Computers, and Classrooms.

    ERIC Educational Resources Information Center

    Higgins, Jon L.; Kirschner, Vicky

    Suggestions for using four-function calculators, programmable calculators, and microcomputers are considered in this collection of 36 articles. The first section contains articles considering general implications for mathematics curricula implied by the freedom calculators offer students from routine computation, enabling them to focus on results…

  13. Molten core retention assembly

    DOEpatents

    Lampe, Robert F.

    1976-06-22

    Molten fuel produced in a core overheating accident is caught by a molten core retention assembly consisting of a horizontal baffle plate having a plurality of openings therein, heat exchange tubes having flow holes near the top thereof mounted in the openings, and a cylindrical, imperforate baffle attached to the plate and surrounding the tubes. The baffle assembly is supported from the core support plate of the reactor by a plurality of hanger rods which are welded to radial beams passing under the baffle plate and intermittently welded thereto. Preferably the upper end of the cylindrical baffle terminates in an outwardly facing lip to which are welded a plurality of bearings having slots therein adapted to accept the hanger rods.

  14. Earth's core iron

    NASA Astrophysics Data System (ADS)

    Geophysicist J. Michael Brown of Texas A & M University noted recently at the Spring AGU Meeting in Baltimore that the structure and phase of metallic iron at pressures of the earth's inner core (approximately 3.3 Mbar) could have great significance in defining geometrical aspects of the core itself. Brown worked at the Los Alamos Scientific Laboratory with R.B. McQueen to redetermine the phase relations of metallic iron in a series of new shock-wave experiments. They found the melting point of iron at conditions equal to those at the boundary of the earth's outer (liquid) and inner (solid) cores to be 6000°±500°C (Geophysical Research Letters, 7, 533-536, 1980).

  15. How Do Calculators Calculate Trigonometric Functions?

    ERIC Educational Resources Information Center

    Underwood, Jeremy M.; Edwards, Bruce H.

    How does your calculator quickly produce values of trigonometric functions? You might be surprised to learn that it does not use series or polynomial approximations, but rather the so-called CORDIC method. This paper will focus on the geometry of the CORDIC method, as originally developed by Volder in 1959. This algorithm is a wonderful…

  16. CORE SATURATION BLOCKING OSCILLATOR

    DOEpatents

    Spinrad, R.J.

    1961-10-17

    A blocking oscillator which relies on core saturation regulation to control the output pulse width is described. In this arrangement an external magnetic loop is provided in which a saturable portion forms the core of a feedback transformer used with the thermionic or semi-conductor active element. A first stationary magnetic loop establishes a level of flux through the saturation portion of the loop. A second adjustable magnet moves the flux level to select a saturation point giving the desired output pulse width. (AEC)

  17. CORE ANALYSIS, DESIGN AND OPTIMIZATION OF A DEEP-BURN PEBBLE BED REACTOR

    SciTech Connect

    B. Boer; A. M. Ougouag

    2010-05-01

    Achieving a high burnup in the Deep-Burn pebble bed reactor design, while remaining within the limits for fuel temperature, power peaking and temperature reactivity feedback, is challenging. The high content of Pu and Minor Actinides in the Deep-Burn fuel significantly impacts the thermal neutron energy spectrum. This can result in power and temperature peaking in the pebble bed core in locally thermalized regions near the graphite reflectors. Furthermore, the interplay of the Pu resonances of the neutron absorption cross sections at low-lying energies can lead to a positive temperature reactivity coefficient for the graphite moderator at certain operating conditions. To investigate the aforementioned effects a code system using existing codes has been developed for neutronic, thermal-hydraulic and fuel depletion analysis of Deep-Burn pebble bed reactors. A core analysis of a Deep-Burn Pebble Bed Modular Reactor (400 MWth) design has been performed for two Deep-Burn fuel types and possible improvements of the design with regard to power peaking and temperature reactivity feedback are identified.

  18. Coupling the core analysis program DeCART to the fuel performance application BISON

    SciTech Connect

    Gleicher, F. N.; Spencer, B.; Novascone, S.; Williamson, R.; Martineau, R. C.; Rose, M.; Downar, T. J.; Collins, B.

    2013-07-01

    The 3D neutron transport and core analysis program DeCART was coupled to the fuels performance application BISON to provide a higher fidelity tool for fuel performance simulation. This project is motivated by the desire to couple a high fidelity core analysis program (based on the method of characteristics) to a high fidelity fuel performance program, both of which can simulate 3D problems. DeCART provides sub-pin level resolution of the multigroup neutron flux, with resonance treatment, during burnup or a fast transient. BISON implicitly solves coupled thermomechanical equations for the fuel on a sub-millimeter level finite element mesh. A method was developed for mapping the fission rate density and fast neutron flux from DeCART to BISON. Multiple depletion cases were run with one-way data transfer from DeCART to BISON. The one-way data transfer of fission rate density is shown to agree with the fission rate density obtained from an internal Lassman-style model in BISON. One-way data transfer was also demonstrated in a 3D case in which azimuthal asymmetry was induced in the fission rate density profile of a fuel rod modeled in DeCART. Two-way data transfer was established by mapping the temperature distribution from BISON to DeCART. A Picard iterative algorithm was developed for the loose coupling with two-way data transfer. (authors)

  19. Followup calculations for the UVAR LEU conversion

    SciTech Connect

    Rydin, R.A.; Hosticka, B.; Burns, T.

    1995-12-31

    The UVAR reactor was successfully converted to LEU fuel in April 1994. Void coefficient measurements were made on the 4-by-4 fully-graphite-reflected LEU-1 core configuration, and an isothermal temperature coefficient measurement was made on the operational 4-by-5 partially-graphite-reflected LEU-2 core configuration. Both of these experiments have now been modeled in their critical configurations using the 3DBUM code. The LEU cores were also modeled using the Monte Carlo code MCNP in order to obtain a neutron/gamma source for BNCT filter design calculations. Advanced BNCT filters have been evaluated using both MCNP and the discrete ordinates code DORT. The results indicate that the UVAR would be an ideal source for the BNCT treatment of brain tumors.

  20. In-Core Fuel Management with Biased Multiobjective Function Optimization

    SciTech Connect

    Shatilla, Youssef A.; Little, David C.; Penkrot, Jack A.; Holland, Richard Andrew

    2000-06-15

    The capability of biased multiobjective function optimization has been added to the Westinghouse Electric Company's (Westinghouse's) Advanced Loading Pattern Search code (ALPS). The search process, given a user-defined set of design constraints, proceeds to minimize a global parameter called the total value associated with constraints compliance (VACC), an importance-weighted measure of the deviation from limit and/or margin target. The search process takes into consideration two equally important user-defined factors while minimizing the VACC, namely, the relative importance of each constraint with respect to the others and the optimization of each constraint according to its own objective function. Hence, trading off margin-to-design limits from where it is abundantly available to where it is badly needed can now be accomplished. Two practical methods are provided to the user for input of constraints and associated objective functions. One consists of establishing design limits based on traditional core design parameters such as assembly/pin burnup, power, or reactivity. The second method allows the user to write a program, or script, to define a logic not possible through ordinary means. This method of script writing was made possible through the application resident compiler feature of the technical user language integration processor (tulip), developed at Westinghouse. For the optimization problems studied, ALPS not only produced candidate loading patterns (LPs) that met all of the conflicting design constraints, but in cases where the design appeared to be over constrained gave a wide range of LPs that came very close to meeting all the constraints based on the associated objective functions.