Sample records for core clock components

  1. Silencing Nicotiana attenuata LHY and ZTL alters circadian rhythms in flowers

    PubMed Central

    Yon, Felipe; Joo, Youngsung; Cortés Llorca, Lucas; Rothe, Eva; Baldwin, Ian T.; Kim, Sang-Gyu

    2016-01-01

    Summary The rhythmic opening/closing and volatile emissions of flowers is known to attract pollinators at specific times. That these rhythms are maintained under constant light or dark conditions suggests a circadian clock involvement. Although a forward and reverse genetic approach led to the identification of core circadian clock components in Arabidopsis thaliana, involvement of these clock components for floral rhythms remained untested likely due to weak diurnal rhythms in A. thaliana flowers.Here we addressed the role of these core clock components in the flowers of the wild tobacco Nicotiana attenuata, whose flowers open at night, emit benzyl acetone (BA) scents, and move vertically through a 140° arc.We first measured N. attenuata floral rhythms under constant light conditions. The results suggest that the circadian clock controls flower opening, BA emission, and pedicel movement, but not flower closing.We generated transgenic N. attenuata lines silenced in the homologous genes of Arabidopsis LATE ELONGATED HYPOCOTYL (LHY) and ZEITLUPE (ZTL), which are known as a core clock component. Silencing NaLHY and NaZTL strongly altered floral rhythms in different ways, indicating that conserved clock components in N. attenuata coordinate these floral rhythms. PMID:26439540

  2. Silencing Nicotiana attenuata LHY and ZTL alters circadian rhythms in flowers.

    PubMed

    Yon, Felipe; Joo, Youngsung; Cortés Llorca, Lucas; Rothe, Eva; Baldwin, Ian T; Kim, Sang-Gyu

    2016-02-01

    The rhythmic opening/closing and volatile emissions of flowers are known to attract pollinators at specific times. That these rhythms are maintained under constant light or dark conditions suggests a circadian clock involvement. Although a forward and reverse genetic approach has led to the identification of core circadian clock components in Arabidopsis thaliana, the involvement of these clock components in floral rhythms has remained untested, probably because of the weak diurnal rhythms in A. thaliana flowers. Here, we addressed the role of these core clock components in the flowers of the wild tobacco Nicotiana attenuata, whose flowers open at night, emit benzyl acetone (BA) scents and move vertically through a 140° arc. We first measured N. attenuata floral rhythms under constant light conditions. The results suggest that the circadian clock controls flower opening, BA emission and pedicel movement, but not flower closing. We generated transgenic N. attenuata lines silenced in the homologous genes of Arabidopsis LATE ELONGATED HYPOCOTYL (LHY) and ZEITLUPE (ZTL), which are known to be core clock components. Silencing NaLHY and NaZTL strongly altered floral rhythms in different ways, indicating that conserved clock components in N. attenuata coordinate these floral rhythms. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  3. Circadian Amplitude Regulation via FBXW7-Targeted REV-ERBα Degradation.

    PubMed

    Zhao, Xuan; Hirota, Tsuyoshi; Han, Xuemei; Cho, Han; Chong, Ling-Wa; Lamia, Katja; Liu, Sihao; Atkins, Annette R; Banayo, Ester; Liddle, Christopher; Yu, Ruth T; Yates, John R; Kay, Steve A; Downes, Michael; Evans, Ronald M

    2016-06-16

    Defects in circadian rhythm influence physiology and behavior with implications for the treatment of sleep disorders, metabolic disease, and cancer. Although core regulatory components of clock rhythmicity have been defined, insight into the mechanisms underpinning amplitude is limited. Here, we show that REV-ERBα, a core inhibitory component of clock transcription, is targeted for ubiquitination and subsequent degradation by the F-box protein FBXW7. By relieving REV-ERBα-dependent repression, FBXW7 provides an unrecognized mechanism for enhancing the amplitude of clock gene transcription. Cyclin-dependent kinase 1 (CDK1)-mediated phosphorylation of REV-ERBα is necessary for FBXW7 recognition. Moreover, targeted hepatic disruption of FBXW7 alters circadian expression of core clock genes and perturbs whole-body lipid and glucose levels. This CDK1-FBXW7 pathway controlling REV-ERBα repression defines an unexpected molecular mechanism for re-engaging the positive transcriptional arm of the clock, as well as a potential route to manipulate clock amplitude via small molecule CDK1 inhibition. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Ambient temperature response establishes ELF3 as a required component of the Arabidopsis core circadian clock

    USDA-ARS?s Scientific Manuscript database

    Circadian clocks synchronize internal processes with environmental cycles to ensure optimal timing of biological events on daily and seasonal timescales. External light and temperature cues set the core molecular oscillator to local conditions. In Arabidopsis, EARLY FLOWERING 3 (ELF3) is thought to ...

  5. Light signaling to the zebrafish circadian clock by Cryptochrome 1a

    PubMed Central

    Tamai, T. Katherine; Young, Lucy C.; Whitmore, David

    2007-01-01

    Zebrafish tissues and cells have the unusual feature of not only containing a circadian clock, but also being directly light-responsive. Several zebrafish genes are induced by light, but little is known about their role in clock resetting or the mechanism by which this might occur. Here we show that Cryptochrome 1a (Cry1a) plays a key role in light entrainment of the zebrafish clock. Intensity and phase response curves reveal a strong correlation between light induction of Cry1a and clock resetting. Overexpression studies show that Cry1a acts as a potent repressor of clock function and mimics the effect of constant light to “stop” the circadian oscillator. Yeast two-hybrid analysis demonstrates that the Cry1a protein interacts directly with specific regions of core clock components, CLOCK and BMAL, blocking their ability to fully dimerize and transactivate downstream targets, providing a likely mechanism for clock resetting. A comparison of entrainment of zebrafish cells to complete versus skeleton photoperiods reveals that clock phase is identical under these two conditions. However, the amplitude of the core clock oscillation is much higher on a complete photoperiod, as are the levels of light-induced Cry1a. We believe that Cry1a acts on the core clock machinery in both a continuous and discrete fashion, leading not only to entrainment, but also to the establishment of a high-amplitude rhythm and even stopping of the clock under long photoperiods. PMID:17785416

  6. Molecular cogs of the insect circadian clock.

    PubMed

    Shirasu, Naoto; Shimohigashi, Yasuyuki; Tominaga, Yoshiya; Shimohigashi, Miki

    2003-08-01

    During the last five years, enormous progress has been made in understanding the molecular basis of circadian systems, mainly by molecular genetic studies using the mouse and fly. Extensive evidence has revealed that the core clock machinery involves "clock genes" and "clock proteins" functioning as molecular cogs. These participate in transcriptional/translational feedback loops and many homologous clock-components in the fruit fly Drosophila are also expressed in mammalian clock tissues with circadian rhythms. Thus, the mechanisms of the central clock seem to be conserved across animal kingdom. However, some recent studies imply that the present widely accepted molecular models of circadian clocks may not always be supported by the experimental evidence.

  7. Prediction of the protein components of a putative Calanus finmarchicus (Crustacea, Copepoda) circadian signaling system using a de novo assembled transcriptome

    PubMed Central

    Christie, Andrew E.; Fontanilla, Tiana M.; Nesbit, Katherine T.; Lenz, Petra H.

    2013-01-01

    Diel vertical migration and seasonal diapause are critical life history events for the copepod Calanus finmarchicus. While much is known about these behaviors phenomenologically, little is known about their molecular underpinnings. Recent studies in insects suggest that some circadian genes/proteins also contribute to the establishment of seasonal diapause. Thus, it is possible that in Calanus these distinct timing regimes share some genetic components. To begin to address this possibility, we used the well-established Drosophila melanogaster circadian system as a reference for mining clock transcripts from a 200,000+ sequence Calanus transcriptome; the proteins encoded by the identified transcripts were also deduced and characterized. Sequences encoding homologs of the Drosophila core clock proteins CLOCK, CYCLE, PERIOD and TIMELESS were identified, as was one encoding CRYPTOCHROME 2, a core clock protein in ancestral insect systems, but absent in Drosophila. Calanus transcripts encoding proteins known to modulate the Drosophila core clock were also identified and characterized, e.g. CLOCKWORK ORANGE, DOUBLETIME, SHAGGY and VRILLE. Alignment and structural analyses of the deduced Calanus proteins with their Drosophila counterparts revealed extensive sequence conservation, particularly in functional domains. Interestingly, reverse BLAST analyses of these sequences against all arthropod proteins typically revealed non-Drosophila isoforms to be most similar to the Calanus queries. This, in combination with the presence of both CRYPTOCHROME 1 (a clock input pathway protein) and CRYPTOCHROME 2 in Calanus, suggests that the organization of the copepod circadian system is an ancestral one, more similar to that of insects like Danaus plexippus than to that of Drosophila. PMID:23727418

  8. Circadian expression profiles of chromatin remodeling factor genes in Arabidopsis.

    PubMed

    Lee, Hong Gil; Lee, Kyounghee; Jang, Kiyoung; Seo, Pil Joon

    2015-01-01

    The circadian clock is a biological time keeper mechanism that regulates biological rhythms to a period of approximately 24 h. The circadian clock enables organisms to anticipate environmental cycles and coordinates internal cellular physiology with external environmental cues. In plants, correct matching of the clock with the environment confers fitness advantages to plant survival and reproduction. Therefore, circadian clock components are regulated at multiple layers to fine-tune the circadian oscillation. Epigenetic regulation provides an additional layer of circadian control. However, little is known about which chromatin remodeling factors are responsible for circadian control. In this work, we analyzed circadian expression of 109 chromatin remodeling factor genes and identified 17 genes that display circadian oscillation. In addition, we also found that a candidate interacts with a core clock component, supporting that clock activity is regulated in part by chromatin modification. As an initial attempt to elucidate the relationship between chromatin modification and circadian oscillation, we identified novel regulatory candidates that provide a platform for future investigations of chromatin regulation of the circadian clock.

  9. Circadian signaling in Homarus americanus: Region-specific de novo assembled transcriptomes show that both the brain and eyestalk ganglia possess the molecular components of a putative clock system.

    PubMed

    Christie, Andrew E; Yu, Andy; Pascual, Micah G; Roncalli, Vittoria; Cieslak, Matthew C; Warner, Amanda N; Lameyer, Tess J; Stanhope, Meredith E; Dickinson, Patsy S; Joe Hull, J

    2018-04-11

    Essentially all organisms exhibit recurring patterns of physiology/behavior that oscillate with a period of ~24-h and are synchronized to the solar day. Crustaceans are no exception, with robust circadian rhythms having been documented in many members of this arthropod subphylum. However, little is known about the molecular underpinnings of their circadian rhythmicity. Moreover, the location of the crustacean central clock has not been firmly established, although both the brain and eyestalk ganglia have been hypothesized as loci. The American lobster, Homarus americanus, is known to exhibit multiple circadian rhythms, and immunodetection data suggest that its central clock is located within the eyestalk ganglia rather than in the brain. Here, brain- and eyestalk ganglia-specific transcriptomes were generated and used to assess the presence/absence of transcripts encoding the commonly recognized protein components of arthropod circadian signaling systems in these two regions of the lobster central nervous system. Transcripts encoding putative homologs of the core clock proteins clock, cryptochrome 2, cycle, period and timeless were found in both the brain and eyestalk ganglia assemblies, as were transcripts encoding similar complements of putative clock-associated, clock input pathway and clock output pathway proteins. The presence and identity of transcripts encoding core clock proteins in both regions were confirmed using PCR. These findings suggest that both the brain and eyestalk ganglia possess all of the molecular components needed for the establishment of a circadian signaling system. Whether the brain and eyestalk clocks are independent of one another or represent a single timekeeping system remains to be determined. Interestingly, while most of the proteins deduced from the identified transcripts are shared by both the brain and eyestalk ganglia, assembly-specific isoforms were also identified, e.g., several period variants, suggesting the possibility of region-specific variation in clock function, especially if the brain and eyestalk clocks represent independent oscillators. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. An expanding universe of circadian networks in higher plants.

    PubMed

    Pruneda-Paz, Jose L; Kay, Steve A

    2010-05-01

    Extensive circadian clock networks regulate almost every biological process in plants. Clock-controlled physiological responses are coupled with daily oscillations in environmental conditions resulting in enhanced fitness and growth vigor. Identification of core clock components and their associated molecular interactions has established the basic network architecture of plant clocks, which consists of multiple interlocked feedback loops. A hierarchical structure of transcriptional feedback overlaid with regulated protein turnover sets the pace of the clock and ultimately drives all clock-controlled processes. Although originally described as linear entities, increasing evidence suggests that many signaling pathways can act as both inputs and outputs within the overall network. Future studies will determine the molecular mechanisms involved in these complex regulatory loops. 2010 Elsevier Ltd. All rights reserved.

  11. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock.

    PubMed

    Sato, Trey K; Panda, Satchidananda; Miraglia, Loren J; Reyes, Teresa M; Rudic, Radu D; McNamara, Peter; Naik, Kinnery A; FitzGerald, Garret A; Kay, Steve A; Hogenesch, John B

    2004-08-19

    The mammalian circadian clock plays an integral role in timing rhythmic physiology and behavior, such as locomotor activity, with anticipated daily environmental changes. The master oscillator resides within the suprachiasmatic nucleus (SCN), which can maintain circadian rhythms in the absence of synchronizing light input. Here, we describe a genomics-based approach to identify circadian activators of Bmal1, itself a key transcriptional activator that is necessary for core oscillator function. Using cell-based functional assays, as well as behavioral and molecular analyses, we identified Rora as an activator of Bmal1 transcription within the SCN. Rora is required for normal Bmal1 expression and consolidation of daily locomotor activity and is regulated by the core clock in the SCN. These results suggest that opposing activities of the orphan nuclear receptors Rora and Rev-erb alpha, which represses Bmal1 expression, are important in the maintenance of circadian clock function.

  12. Molecular targets for small-molecule modulators of circadian clocks

    PubMed Central

    He, Baokun; Chen, Zheng

    2016-01-01

    Background Circadian clocks are endogenous timing systems that regulate various aspects of mammalian metabolism, physiology and behavior. Traditional chronotherapy refers to the administration of drugs in a defined circadian time window to achieve optimal pharmacokinetic and therapeutic efficacies. In recent years, substantial efforts have been dedicated to developing novel small-molecule modulators of circadian clocks. Methods Here, we review the recent progress in the identification of molecular targets of small-molecule clock modulators and their efficacies in clock-related disorders. Specifically, we examine the clock components and regulatory factors as possible molecular targets of small molecules, and we review several key clock-related disorders as promising venues for testing the preventive/therapeutic efficacies of these small molecules. Finally, we also discuss circadian regulation of drug metabolism. Results Small molecules can modulate the period, phase and/or amplitude of the circadian cycle. Core clock proteins, nuclear hormone receptors, and clock-related kinases and other epigenetic regulators are promising molecular targets for small molecules. Through these targets small molecules exert protective effects against clock-related disorders including the metabolic syndrome, immune disorders, sleep disorders and cancer. Small molecules can also modulate circadian drug metabolism and response to existing therapeutics. Conclusion Small-molecule clock modulators target clock components or diverse cellular pathways that functionally impinge upon the clock. Target identification of new small-molecule modulators will deepen our understanding of key regulatory nodes in the circadian network. Studies of clock modulators will facilitate their therapeutic applications, alone or in combination, for clock-related diseases. PMID:26750111

  13. Circadian Timing in the Lung; A Specific Role for Bronchiolar Epithelial Cells

    PubMed Central

    Gibbs, J. E.; Beesley, S.; Plumb, J.; Singh, D.; Farrow, S.; Ray, D. W.; Loudon, A. S. I.

    2015-01-01

    In addition to the core circadian oscillator, located within the suprachiasmatic nucleus, numerous peripheral tissues possess self-sustaining circadian timers. In vivo these are entrained and temporally synchronized by signals conveyed from the core oscillator. In the present study, we examine circadian timing in the lung, determine the cellular localization of core clock proteins in both mouse and human lung tissue, and establish the effects of glucocorticoids (widely used in the treatment of asthma) on the pulmonary clock. Using organotypic lung slices prepared from transgenic mPER2::Luc mice, luciferase levels, which report PER2 expression, were measured over a number of days. We demonstrate a robust circadian rhythm in the mouse lung that is responsive to glucocorticoids. Immunohistochemical techniques were used to localize specific expression of core clock proteins, and the glucocorticoid receptor, to the epithelial cells lining the bronchioles in both mouse and human lung. In the mouse, these were established to be Clara cells. Murine Clara cells retained circadian rhythmicity when grown as a pure population in culture. Furthermore, selective ablation of Clara cells resulted in the loss of circadian rhythm in lung slices, demonstrating the importance of this cell type in maintaining overall pulmonary circadian rhythmicity. In summary, we demonstrate that Clara cells are critical for maintaining coherent circadian oscillations in lung tissue. Their coexpression of the glucocorticoid receptor and core clock components establishes them as a likely interface between humoral suprachiasmatic nucleus output and circadian lung physiology. PMID:18787022

  14. Interrelationship between 3,5,3´-triiodothyronine and the circadian clock in the rodent heart.

    PubMed

    Peliciari-Garcia, Rodrigo Antonio; Prévide, Rafael Maso; Nunes, Maria Tereza; Young, Martin Elliot

    2016-01-01

    Triiodothyronine (T3) is an important modulator of cardiac metabolism and function, often through modulation of gene expression. The cardiomyocyte circadian clock is a transcriptionally based molecular mechanism capable of regulating cardiac processes, in part by modulating responsiveness of the heart to extra-cardiac stimuli/stresses in a time-of-day (TOD)-dependent manner. Although TOD-dependent oscillations in circulating levels of T3 (and its intermediates) have been established, oscillations in T3 sensitivity in the heart is unknown. To investigate the latter possibility, euthyroid male Wistar rats were treated with vehicle or T3 at distinct times of the day, after which induction of known T3 target genes were assessed in the heart (4-h later). The expression of mRNA was assessed by real-time quantitative polymerase chain reaction (qPCR). Here, we report greater T3 induction of transcript levels at the end of the dark phase. Surprisingly, use of cardiomyocyte-specific clock mutant (CCM) mice revealed that TOD-dependent oscillations in T3 sensitivity were independent of this cell autonomous mechanism. Investigation of genes encoding for proteins that affect T3 sensitivity revealed that Dio1, Dio2 and Thrb1 exhibited TOD-dependent variations in the heart, while Thra1 and Thra2 did not. Of these, Dio1 and Thrb1 were increased in the heart at the end of the dark phase. Interestingly, we observed that T3 acutely altered the expression of core clock components (e.g. Bmal1) in the rat heart. To investigate this further, rats were injected with a single dose of T3, after which expression of clock genes was interrogated at 3-h intervals over the subsequent 24-h period. These studies revealed robust effects of T3 on oscillations of both core clock components and clock-controlled genes. In summary, the current study exposed TOD-dependent sensitivity to T3 in the heart and its effects in the circadian clock genes expression.

  15. Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator.

    PubMed

    Huang, W; Pérez-García, P; Pokhilko, A; Millar, A J; Antoshechkin, I; Riechmann, J L; Mas, P

    2012-04-06

    In many organisms, the circadian clock is composed of functionally coupled morning and evening oscillators. In Arabidopsis, oscillator coupling relies on a core loop in which the evening oscillator component TIMING OF CAB EXPRESSION 1 (TOC1) was proposed to activate a subset of morning-expressed oscillator genes. Here, we show that TOC1 does not function as an activator but rather as a general repressor of oscillator gene expression. Repression occurs through TOC1 rhythmic association to the promoters of the oscillator genes. Hormone-dependent induction of TOC1 and analysis of RNA interference plants show that TOC1 prevents the activation of morning-expressed genes at night. Our study overturns the prevailing model of the Arabidopsis circadian clock, showing that the morning and evening oscillator loops are connected through the repressing activity of TOC1.

  16. Crosstalk of clock gene expression and autophagy in aging

    PubMed Central

    Kalfalah, Faiza; Janke, Linda; Schiavi, Alfonso; Tigges, Julia; Ix, Alexander; Ventura, Natascia; Boege, Fritz; Reinke, Hans

    2016-01-01

    Autophagy and the circadian clock counteract tissue degeneration and support longevity in many organisms. Accumulating evidence indicates that aging compromises both the circadian clock and autophagy but the mechanisms involved are unknown. Here we show that the expression levels of transcriptional repressor components of the circadian oscillator, most prominently the human Period homologue PER2, are strongly reduced in primary dermal fibroblasts from aged humans, while raising the expression of PER2 in the same cells partially restores diminished autophagy levels. The link between clock gene expression and autophagy is corroborated by the finding that the circadian clock drives cell-autonomous, rhythmic autophagy levels in immortalized murine fibroblasts, and that siRNA-mediated downregulation of PER2 decreases autophagy levels while leaving core clock oscillations intact. Moreover, the Period homologue lin-42 regulates autophagy and life span in the nematode Caenorhabditis elegans, suggesting an evolutionarily conserved role for Period proteins in autophagy control and aging. Taken together, this study identifies circadian clock proteins as set-point regulators of autophagy and puts forward a model, in which age-related changes of clock gene expression promote declining autophagy levels. PMID:27574892

  17. Crosstalk of clock gene expression and autophagy in aging.

    PubMed

    Kalfalah, Faiza; Janke, Linda; Schiavi, Alfonso; Tigges, Julia; Ix, Alexander; Ventura, Natascia; Boege, Fritz; Reinke, Hans

    2016-08-28

    Autophagy and the circadian clock counteract tissue degeneration and support longevity in many organisms. Accumulating evidence indicates that aging compromises both the circadian clock and autophagy but the mechanisms involved are unknown. Here we show that the expression levels of transcriptional repressor components of the circadian oscillator, most prominently the human Period homologue PER2 , are strongly reduced in primary dermal fibroblasts from aged humans, while raising the expression of PER2 in the same cells partially restores diminished autophagy levels. The link between clock gene expression and autophagy is corroborated by the finding that the circadian clock drives cell-autonomous, rhythmic autophagy levels in immortalized murine fibroblasts, and that siRNA-mediated downregulation of PER2 decreases autophagy levels while leaving core clock oscillations intact. Moreover, the Period homologue lin-42 regulates autophagy and life span in the nematode Caenorhabditis elegans , suggesting an evolutionarily conserved role for Period proteins in autophagy control and aging. Taken together, this study identifies circadian clock proteins as set-point regulators of autophagy and puts forward a model, in which age-related changes of clock gene expression promote declining autophagy levels.

  18. A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock.

    PubMed

    Pruneda-Paz, Jose L; Breton, Ghislain; Para, Alessia; Kay, Steve A

    2009-03-13

    Transcriptional feedback loops constitute the molecular circuitry of the plant circadian clock. In Arabidopsis, a core loop is established between CCA1 and TOC1. Although CCA1 directly represses TOC1, the TOC1 protein has no DNA binding domains, which suggests that it cannot directly regulate CCA1. We established a functional genomic strategy that led to the identification of CHE, a TCP transcription factor that binds specifically to the CCA1 promoter. CHE is a clock component partially redundant with LHY in the repression of CCA1. The expression of CHE is regulated by CCA1, thus adding a CCA1/CHE feedback loop to the Arabidopsis circadian network. Because CHE and TOC1 interact, and CHE binds to the CCA1 promoter, a molecular linkage between TOC1 and CCA1 gene regulation is established.

  19. Sleep loss reduces the DNA-binding of BMAL1, CLOCK, and NPAS2 to specific clock genes in the mouse cerebral cortex.

    PubMed

    Mongrain, Valérie; La Spada, Francesco; Curie, Thomas; Franken, Paul

    2011-01-01

    We have previously demonstrated that clock genes contribute to the homeostatic aspect of sleep regulation. Indeed, mutations in some clock genes modify the markers of sleep homeostasis and an increase in homeostatic sleep drive alters clock gene expression in the forebrain. Here, we investigate a possible mechanism by which sleep deprivation (SD) could alter clock gene expression by quantifying DNA-binding of the core-clock transcription factors CLOCK, NPAS2, and BMAL1 to the cis-regulatory sequences of target clock genes in mice. Using chromatin immunoprecipitation (ChIP), we first showed that, as reported for the liver, DNA-binding of CLOCK and BMAL1 to target clock genes changes in function of time-of-day in the cerebral cortex. Tissue extracts were collected at ZT0 (light onset), -6, -12, and -18, and DNA enrichment of E-box or E'-box containing sequences was measured by qPCR. CLOCK and BMAL1 binding to Cry1, Dbp, Per1, and Per2 depended on time-of-day, with maximum values reached at around ZT6. We then observed that SD, performed between ZT0 and -6, significantly decreased DNA-binding of CLOCK and BMAL1 to Dbp, consistent with the observed decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was also decreased by SD, although SD is known to increase Per2 expression in the cortex. DNA-binding to Per1 and Cry1 was not affected by SD. Our results show that the sleep-wake history can affect the clock molecular machinery directly at the level of chromatin binding thereby altering the cortical expression of Dbp and Per2 and likely other targets. Although the precise dynamics of the relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive, the results also suggest that part of the reported circadian changes in DNA-binding of core clock components in tissues peripheral to the suprachiasmatic nuclei could, in fact, be sleep-wake driven.

  20. Sleep Loss Reduces the DNA-Binding of BMAL1, CLOCK, and NPAS2 to Specific Clock Genes in the Mouse Cerebral Cortex

    PubMed Central

    Curie, Thomas; Franken, Paul

    2011-01-01

    We have previously demonstrated that clock genes contribute to the homeostatic aspect of sleep regulation. Indeed, mutations in some clock genes modify the markers of sleep homeostasis and an increase in homeostatic sleep drive alters clock gene expression in the forebrain. Here, we investigate a possible mechanism by which sleep deprivation (SD) could alter clock gene expression by quantifying DNA-binding of the core-clock transcription factors CLOCK, NPAS2, and BMAL1 to the cis-regulatory sequences of target clock genes in mice. Using chromatin immunoprecipitation (ChIP), we first showed that, as reported for the liver, DNA-binding of CLOCK and BMAL1 to target clock genes changes in function of time-of-day in the cerebral cortex. Tissue extracts were collected at ZT0 (light onset), −6, −12, and −18, and DNA enrichment of E-box or E'-box containing sequences was measured by qPCR. CLOCK and BMAL1 binding to Cry1, Dbp, Per1, and Per2 depended on time-of-day, with maximum values reached at around ZT6. We then observed that SD, performed between ZT0 and −6, significantly decreased DNA-binding of CLOCK and BMAL1 to Dbp, consistent with the observed decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was also decreased by SD, although SD is known to increase Per2 expression in the cortex. DNA-binding to Per1 and Cry1 was not affected by SD. Our results show that the sleep-wake history can affect the clock molecular machinery directly at the level of chromatin binding thereby altering the cortical expression of Dbp and Per2 and likely other targets. Although the precise dynamics of the relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive, the results also suggest that part of the reported circadian changes in DNA-binding of core clock components in tissues peripheral to the suprachiasmatic nuclei could, in fact, be sleep-wake driven. PMID:22039518

  1. Interrelationship between 3,5,3′-triiodothyronine and the circadian clock in the rodent heart

    PubMed Central

    Peliciari-Garcia, Rodrigo Antonio; Prévide, Rafael Maso; Nunes, Maria Tereza; Young, Martin Elliot

    2017-01-01

    Triiodothyronine (T3) is an important modulator of cardiac metabolism and function, often through modulation of gene expression. The cardiomyocyte circadian clock is a transcriptionally-based molecular mechanism capable of regulating cardiac processes, in part by modulating responsiveness of the heart to extra-cardiac stimuli/stresses in a time-of-day- (TOD) dependent manner. Although TOD-dependent oscillations in circulating levels of T3 (and its intermediates) have been established, whether oscillations in T3 sensitivity in the heart occur is unknown. To investigate the latter possibility, euthyroid male Wistar rats were treated with vehicle or T3 at distinct times of the day, after which induction of known T3 target genes were assessed in the heart (4-h later). The expression of mRNA was assessed by Real-Time qPCR. Here, we report greater T3 induction of transcript levels at the end of the dark phase. Surprisingly, use of cardiomyocyte-specific clock mutant (CCM) mice revealed that TOD-dependent oscillations in T3 sensitivity were independent of this cell autonomous mechanism. Investigation of genes encoding for proteins that affect T3 sensitivity revealed that Dio1, Dio2, and Thrb1 exhibited TOD-dependent variations in the heart, while Thra1 and Thra2 did not. Of these, Dio1 and Thrb1 were increased in the heart at the end of the dark phase. Interestingly, we observed that T3 acutely altered the expression of core clock components (e.g., Bmal1) in the rat heart. To investigate this further, rats were injected with a single dose of T3, after which expression of clock genes were interrogated at 3-h intervals over the subsequent 24h-period. These studies revealed robust effects of T3 on oscillations of both core clock components and clock-controlled genes. In summary, the current study exposed time-of-day-dependent rhythms in cardiac T3 sensitivity, and that T3 alters the circadian clock in the heart. PMID:27661292

  2. Obesity in mice with adipocyte-specific deletion of clock component Arntl

    PubMed Central

    Paschos, Georgios K; Ibrahim, Salam; Song, Wen-Liang; Kunieda, Takeshige; Grant, Gregory; Reyes, Teresa M; Bradfield, Christopher A; Vaughan, Cheryl H; Eiden, Michael; Masoodi, Mojgan; Griffin, Julian L; Wang, Fenfen; Lawson, John A; FitzGerald, Garret A

    2013-01-01

    Adipocytes store excess energy in the form of triglycerides and signal the levels of stored energy to the brain. Here we show that adipocyte-specific deletion of Arntl (also known as Bmal1), a gene encoding a core molecular clock component, results in obesity in mice with a shift in the diurnal rhythm of food intake, a result that is not seen when the gene is disrupted in hepatocytes or pancreatic islets. Changes in the expression of hypothalamic neuropeptides that regulate appetite are consistent with feedback from the adipocyte to the central nervous system to time feeding behavior. Ablation of the adipocyte clock is associated with a reduced number of polyunsaturated fatty acids in adipocyte triglycerides. This difference between mutant and wild-type mice is reflected in the circulating concentrations of polyunsaturated fatty acids and nonesterified polyunsaturated fatty acids in hypothalamic neurons that regulate food intake. Thus, this study reveals a role for the adipocyte clock in the temporal organization of energy regulation, highlights timing as a modulator of the adipocyte-hypothalamic axis and shows the impact of timing of food intake on body weight. PMID:23142819

  3. Effects of Different PER Translational Kinetics on the Dynamics of a Core Circadian Clock Model

    PubMed Central

    Nieto, Paula S.; Revelli, Jorge A.; Garbarino-Pico, Eduardo; Condat, Carlos A.; Guido, Mario E.; Tamarit, Francisco A.

    2015-01-01

    Living beings display self-sustained daily rhythms in multiple biological processes, which persist in the absence of external cues since they are generated by endogenous circadian clocks. The period (per) gene is a central player within the core molecular mechanism for keeping circadian time in most animals. Recently, the modulation PER translation has been reported, both in mammals and flies, suggesting that translational regulation of clock components is important for the proper clock gene expression and molecular clock performance. Because translational regulation ultimately implies changes in the kinetics of translation and, therefore, in the circadian clock dynamics, we sought to study how and to what extent the molecular clock dynamics is affected by the kinetics of PER translation. With this objective, we used a minimal mathematical model of the molecular circadian clock to qualitatively characterize the dynamical changes derived from kinetically different PER translational mechanisms. We found that the emergence of self-sustained oscillations with characteristic period, amplitude, and phase lag (time delays) between per mRNA and protein expression depends on the kinetic parameters related to PER translation. Interestingly, under certain conditions, a PER translation mechanism with saturable kinetics introduces longer time delays than a mechanism ruled by a first-order kinetics. In addition, the kinetic laws of PER translation significantly changed the sensitivity of our model to parameters related to the synthesis and degradation of per mRNA and PER degradation. Lastly, we found a set of parameters, with realistic values, for which our model reproduces some experimental results reported recently for Drosophila melanogaster and we present some predictions derived from our analysis. PMID:25607544

  4. Effects of different per translational kinetics on the dynamics of a core circadian clock model.

    PubMed

    Nieto, Paula S; Revelli, Jorge A; Garbarino-Pico, Eduardo; Condat, Carlos A; Guido, Mario E; Tamarit, Francisco A

    2015-01-01

    Living beings display self-sustained daily rhythms in multiple biological processes, which persist in the absence of external cues since they are generated by endogenous circadian clocks. The period (per) gene is a central player within the core molecular mechanism for keeping circadian time in most animals. Recently, the modulation PER translation has been reported, both in mammals and flies, suggesting that translational regulation of clock components is important for the proper clock gene expression and molecular clock performance. Because translational regulation ultimately implies changes in the kinetics of translation and, therefore, in the circadian clock dynamics, we sought to study how and to what extent the molecular clock dynamics is affected by the kinetics of PER translation. With this objective, we used a minimal mathematical model of the molecular circadian clock to qualitatively characterize the dynamical changes derived from kinetically different PER translational mechanisms. We found that the emergence of self-sustained oscillations with characteristic period, amplitude, and phase lag (time delays) between per mRNA and protein expression depends on the kinetic parameters related to PER translation. Interestingly, under certain conditions, a PER translation mechanism with saturable kinetics introduces longer time delays than a mechanism ruled by a first-order kinetics. In addition, the kinetic laws of PER translation significantly changed the sensitivity of our model to parameters related to the synthesis and degradation of per mRNA and PER degradation. Lastly, we found a set of parameters, with realistic values, for which our model reproduces some experimental results reported recently for Drosophila melanogaster and we present some predictions derived from our analysis.

  5. Transcriptional Control of Antioxidant Defense by the Circadian Clock

    PubMed Central

    Patel, Sonal A.; Velingkaar, Nikkhil S.

    2014-01-01

    Abstract Significance: The circadian clock, an internal timekeeping system, is implicated in the regulation of metabolism and physiology, and circadian dysfunctions are associated with pathological changes in model organisms and increased risk of some diseases in humans. Recent Advances: Data obtained in different organisms, including humans, have established a tight connection between the clock and cellular redox signaling making it among the major candidates for a link between the circadian system and physiological processes. Critical Issues: In spite of the recent progress in understanding the importance of the circadian clock in the regulation of reactive oxygen species homeostasis, molecular mechanisms and key regulators are mostly unknown. Future Directions: Here we review, with an emphasis on transcriptional control, the circadian-clock-dependent control of oxidative stress response system as a potential mechanism in age-associated diseases. We will discuss the roles of the core clock components such as brain and muscle ARNT-like 1, Circadian Locomotor Output Cycles Kaput, the circadian-clock-controlled transcriptional factors such as nuclear factor erythroid-2-related factor, and peroxisome proliferator-activated receptor and circadian clock control chromatin modifying enzymes from sirtuin family in the regulation of cellular and organism antioxidant defense. Antioxid. Redox Signal. 20, 2997–3006. PMID:24111970

  6. Circadian rhythms synchronize mitosis in Neurospora crassa.

    PubMed

    Hong, Christian I; Zámborszky, Judit; Baek, Mokryun; Labiscsak, Laszlo; Ju, Kyungsu; Lee, Hyeyeong; Larrondo, Luis F; Goity, Alejandra; Chong, Hin Siong; Belden, William J; Csikász-Nagy, Attila

    2014-01-28

    The cell cycle and the circadian clock communicate with each other, resulting in circadian-gated cell division cycles. Alterations in this network may lead to diseases such as cancer. Therefore, it is critical to identify molecular components that connect these two oscillators. However, molecular mechanisms between the clock and the cell cycle remain largely unknown. A model filamentous fungus, Neurospora crassa, is a multinucleate system used to elucidate molecular mechanisms of circadian rhythms, but not used to investigate the molecular coupling between these two oscillators. In this report, we show that a conserved coupling between the circadian clock and the cell cycle exists via serine/threonine protein kinase-29 (STK-29), the Neurospora homolog of mammalian WEE1 kinase. Based on this finding, we established a mathematical model that predicts circadian oscillations of cell cycle components and circadian clock-dependent synchronized nuclear divisions. We experimentally demonstrate that G1 and G2 cyclins, CLN-1 and CLB-1, respectively, oscillate in a circadian manner with bioluminescence reporters. The oscillations of clb-1 and stk-29 gene expression are abolished in a circadian arrhythmic frq(ko) mutant. Additionally, we show the light-induced phase shifts of a core circadian component, frq, as well as the gene expression of the cell cycle components clb-1 and stk-29, which may alter the timing of divisions. We then used a histone hH1-GFP reporter to observe nuclear divisions over time, and show that a large number of nuclear divisions occur in the evening. Our findings demonstrate the circadian clock-dependent molecular dynamics of cell cycle components that result in synchronized nuclear divisions in Neurospora.

  7. A Combined Computational and Genetic Approach Uncovers Network Interactions of the Cyanobacterial Circadian Clock.

    PubMed

    Boyd, Joseph S; Cheng, Ryan R; Paddock, Mark L; Sancar, Cigdem; Morcos, Faruck; Golden, Susan S

    2016-09-15

    Two-component systems (TCS) that employ histidine kinases (HK) and response regulators (RR) are critical mediators of cellular signaling in bacteria. In the model cyanobacterium Synechococcus elongatus PCC 7942, TCSs control global rhythms of transcription that reflect an integration of time information from the circadian clock with a variety of cellular and environmental inputs. The HK CikA and the SasA/RpaA TCS transduce time information from the circadian oscillator to modulate downstream cellular processes. Despite immense progress in understanding of the circadian clock itself, many of the connections between the clock and other cellular signaling systems have remained enigmatic. To narrow the search for additional TCS components that connect to the clock, we utilized direct-coupling analysis (DCA), a statistical analysis of covariant residues among related amino acid sequences, to infer coevolution of new and known clock TCS components. DCA revealed a high degree of interaction specificity between SasA and CikA with RpaA, as expected, but also with the phosphate-responsive response regulator SphR. Coevolutionary analysis also predicted strong specificity between RpaA and a previously undescribed kinase, HK0480 (herein CikB). A knockout of the gene for CikB (cikB) in a sasA cikA null background eliminated the RpaA phosphorylation and RpaA-controlled transcription that is otherwise present in that background and suppressed cell elongation, supporting the notion that CikB is an interactor with RpaA and the clock network. This study demonstrates the power of DCA to identify subnetworks and key interactions in signaling pathways and of combinatorial mutagenesis to explore the phenotypic consequences. Such a combined strategy is broadly applicable to other prokaryotic systems. Signaling networks are complex and extensive, comprising multiple integrated pathways that respond to cellular and environmental cues. A TCS interaction model, based on DCA, independently confirmed known interactions and revealed a core set of subnetworks within the larger HK-RR set. We validated high-scoring candidate proteins via combinatorial genetics, demonstrating that DCA can be utilized to reduce the search space of complex protein networks and to infer undiscovered specific interactions for signaling proteins in vivo Significantly, new interactions that link circadian response to cell division and fitness in a light/dark cycle were uncovered. The combined analysis also uncovered a more basic core clock, illustrating the synergy and applicability of a combined computational and genetic approach for investigating prokaryotic signaling networks. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Discrete Functions of Nuclear Receptor Rev-erbα Couple Metabolism to the Clock

    PubMed Central

    Zhang, Yuxiang; Fang, Bin; Emmett, Matthew J.; Damle, Manashree; Sun, Zheng; Feng, Dan; Armour, Sean M.; Remsberg, Jarrett R.; Jager, Jennifer; Soccio, Raymond E.; Steger, David J.; Lazar, Mitchell A.

    2015-01-01

    SUMMARY Circadian and metabolic physiology are intricately intertwined, as illustrated by Rev-erbα, a transcription factor (TF) that functions both as a core repressive component of the cell autonomous clock and as a regulator of metabolic genes. Here we show that Rev-erbα modulates the clock and metabolism by different genomic mechanisms. Clock control requires Rev-erbα to bind directly to the genome at its cognate sites, where it competes with activating ROR TFs. By contrast, Rev-erbα regulates metabolic genes primarily by recruiting the HDAC3 corepressor to sites to which it is tethered by cell type-specific transcription factors. Thus, direct competition between Rev-erbα and ROR TFs provides a universal mechanism for self-sustained control of molecular clock across all tissues, whereas Rev-erbα utilizes lineage-determining factors to convey a tissue-specific epigenomic rhythm that regulates metabolism tailored to the specific need of that tissue. PMID:26044300

  9. GENE REGULATION. Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock.

    PubMed

    Zhang, Yuxiang; Fang, Bin; Emmett, Matthew J; Damle, Manashree; Sun, Zheng; Feng, Dan; Armour, Sean M; Remsberg, Jarrett R; Jager, Jennifer; Soccio, Raymond E; Steger, David J; Lazar, Mitchell A

    2015-06-26

    Circadian and metabolic physiology are intricately intertwined, as illustrated by Rev-erbα, a transcription factor (TF) that functions both as a core repressive component of the cell-autonomous clock and as a regulator of metabolic genes. Here, we show that Rev-erbα modulates the clock and metabolism by different genomic mechanisms. Clock control requires Rev-erbα to bind directly to the genome at its cognate sites, where it competes with activating ROR TFs. By contrast, Rev-erbα regulates metabolic genes primarily by recruiting the HDAC3 co-repressor to sites to which it is tethered by cell type-specific transcription factors. Thus, direct competition between Rev-erbα and ROR TFs provides a universal mechanism for self-sustained control of the molecular clock across all tissues, whereas Rev-erbα uses lineage-determining factors to convey a tissue-specific epigenomic rhythm that regulates metabolism tailored to the specific need of that tissue. Copyright © 2015, American Association for the Advancement of Science.

  10. The circadian rhythm of core temperature: effects of physical activity and aging.

    PubMed

    Weinert, Dietmar; Waterhouse, Jim

    2007-02-28

    The circadian rhythm of core temperature depends upon several interacting rhythms, of both endogenous and exogenous origin, but an understanding of the process requires these two components to be separated. Constant routines remove the exogenous (masking) component at source, but they are severely limited in their application. By contrast, several purification methods have successfully reduced the masking component of overt circadian rhythms measured in field circumstances. One important, but incidental, outcome from these methods is that they enable a quantitative estimate of masking effects to be obtained. It has been shown that these effects of activity upon the temperature rhythm show circadian rhythmicity, and more detailed investigations of this have aided our understanding of thermoregulation and the genesis of the circadian rhythm of core temperature itself. The observed circadian rhythm of body temperature varies with age; in comparison with adults, it is poorly developed in the neonate and deteriorates in the aged subject. Comparing masked and purified data enables the reasons for these differences--whether due to the body clock, the effector pathways or organs, or irregularities due to the individual's lifestyle--to begin to be understood. Such investigations stress the immaturity of the circadian rhythm in the human neonate and its deterioration in elderly compared with younger subjects, but they also indicate the robustness of the body clock itself into advanced age, at least in mice.

  11. The orphan receptor Rev-erbα gene is a target of the circadian clock pacemaker

    PubMed Central

    Triqueneaux, Gérard; Thenot, Sandrine; Kakizawa, Tomoko; Antoch, Marina P; Safi, Rachid; Takahashi, Joseph S; Delaunay, Franck; Laudet, Vincent

    2013-01-01

    Rev-erbα is a ubiquitously expressed orphan nuclear receptor which functions as a constitutive transcriptional repressor and is expressed in vertebrates according to a robust circadian rhythm. We report here that two Rev-erbα mRNA isoforms, namely Rev-erbα1 and Rev-erbα2, are generated through alternative promoter usage and that both show a circadian expression pattern in an in vitro system using serum-shocked fibroblasts. Both promoter regions P1 (Rev-erbα1) and P2 (Rev-erbα2) contain several E-box DNA sequences, which function as response elements for the core circadian-clock components: CLOCK and BMAL1. The CLOCK–BMAL1 heterodimer stimulates the activity of both P1 and P2 promoters in transient transfection assay by 3–6-fold. This activation was inhibited by the overexpression of CRY1, a component of the negative limb of the circadian transcriptional loop. Critical E-box elements were mapped within both promoters. This regulation is conserved in vertebrates since we found that the CLOCK–BMAL1 heterodimer also regulates the zebrafish Rev-erbα gene. In line with these data Rev-erbα circadian expression was strongly impaired in the livers of Clock mutant mice and in the pineal glands of zebrafish embryos treated with Clock and Bmal1 antisense oligonucleotides. Together these data demonstrate that CLOCK is a critical regulator of Rev-erbα circadian gene expression in evolutionarily distant vertebrates and suggest a role for Rev-erbα in the circadian clock output. PMID:15591021

  12. Real-time machine vision system using FPGA and soft-core processor

    NASA Astrophysics Data System (ADS)

    Malik, Abdul Waheed; Thörnberg, Benny; Meng, Xiaozhou; Imran, Muhammad

    2012-06-01

    This paper presents a machine vision system for real-time computation of distance and angle of a camera from reference points in the environment. Image pre-processing, component labeling and feature extraction modules were modeled at Register Transfer (RT) level and synthesized for implementation on field programmable gate arrays (FPGA). The extracted image component features were sent from the hardware modules to a soft-core processor, MicroBlaze, for computation of distance and angle. A CMOS imaging sensor operating at a clock frequency of 27MHz was used in our experiments to produce a video stream at the rate of 75 frames per second. Image component labeling and feature extraction modules were running in parallel having a total latency of 13ms. The MicroBlaze was interfaced with the component labeling and feature extraction modules through Fast Simplex Link (FSL). The latency for computing distance and angle of camera from the reference points was measured to be 2ms on the MicroBlaze, running at 100 MHz clock frequency. In this paper, we present the performance analysis, device utilization and power consumption for the designed system. The FPGA based machine vision system that we propose has high frame speed, low latency and a power consumption that is much lower compared to commercially available smart camera solutions.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael, Alicia K.; Fribourgh, Jennifer L.; Chelliah, Yogarany

    The basic helix-loop-helix PAS domain (bHLH-PAS) transcription factor CLOCK:BMAL1 (brain and muscle Arnt-like protein 1) sits at the core of the mammalian circadian transcription/translation feedback loop. Precise control of CLOCK:BMAL1 activity by coactivators and repressors establishes the ~24-h periodicity of gene expression. Formation of a repressive complex, defined by the core clock proteins cryptochrome 1 (CRY1):CLOCK:BMAL1, plays an important role controlling the switch from repression to activation each day. Here in this paper, we show that CRY1 binds directly to the PAS domain core of CLOCK: BMAL1, driven primarily by interaction with the CLOCK PAS-B domain. Integrative modeling and solutionmore » X-ray scattering studies unambiguously position a key loop of the CLOCK PAS-B domain in the secondary pocket of CRY1, analogous to the antenna chromophore-binding pocket of photolyase. CRY1 docks onto the transcription factor alongside the PAS domains, extending above the DNA-binding bHLH domain. Single point mutations at the interface on either CRY1 or CLOCK disrupt formation of the ternary complex, highlighting the importance of this interface for direct regulation of CLOCK:BMAL1 activity by CRY1.« less

  14. Formation of a repressive complex in the mammalian circadian clock is mediated by the secondary pocket of CRY1

    DOE PAGES

    Michael, Alicia K.; Fribourgh, Jennifer L.; Chelliah, Yogarany; ...

    2017-01-31

    The basic helix-loop-helix PAS domain (bHLH-PAS) transcription factor CLOCK:BMAL1 (brain and muscle Arnt-like protein 1) sits at the core of the mammalian circadian transcription/translation feedback loop. Precise control of CLOCK:BMAL1 activity by coactivators and repressors establishes the ~24-h periodicity of gene expression. Formation of a repressive complex, defined by the core clock proteins cryptochrome 1 (CRY1):CLOCK:BMAL1, plays an important role controlling the switch from repression to activation each day. Here in this paper, we show that CRY1 binds directly to the PAS domain core of CLOCK: BMAL1, driven primarily by interaction with the CLOCK PAS-B domain. Integrative modeling and solutionmore » X-ray scattering studies unambiguously position a key loop of the CLOCK PAS-B domain in the secondary pocket of CRY1, analogous to the antenna chromophore-binding pocket of photolyase. CRY1 docks onto the transcription factor alongside the PAS domains, extending above the DNA-binding bHLH domain. Single point mutations at the interface on either CRY1 or CLOCK disrupt formation of the ternary complex, highlighting the importance of this interface for direct regulation of CLOCK:BMAL1 activity by CRY1.« less

  15. Kruppel-like factor KLF10 is a link between the circadian clock and metabolism in liver.

    PubMed

    Guillaumond, Fabienne; Gréchez-Cassiau, Aline; Subramaniam, Malayannan; Brangolo, Sophie; Peteri-Brünback, Brigitta; Staels, Bart; Fiévet, Catherine; Spelsberg, Thomas C; Delaunay, Franck; Teboul, Michèle

    2010-06-01

    The circadian timing system coordinates many aspects of mammalian physiology and behavior in synchrony with the external light/dark cycle. These rhythms are driven by endogenous molecular clocks present in most body cells. Many clock outputs are transcriptional regulators, suggesting that clock genes primarily control physiology through indirect pathways. Here, we show that Krüppel-like factor 10 (KLF10) displays a robust circadian expression pattern in wild-type mouse liver but not in clock-deficient Bmal1 knockout mice. Consistently, the Klf10 promoter recruited the BMAL1 core clock protein and was transactivated by the CLOCK-BMAL1 heterodimer through a conserved E-box response element. Profiling the liver transcriptome from Klf10(-/-) mice identified 158 regulated genes with significant enrichment for transcripts involved in lipid and carbohydrate metabolism. Importantly, approximately 56% of these metabolic genes are clock controlled. Male Klf10(-/-) mice displayed postprandial and fasting hyperglycemia, a phenotype accompanied by a significant time-of-day-dependent upregulation of the gluconeogenic gene Pepck and increased hepatic glucose production. Consistently, functional data showed that the proximal Pepck promoter is repressed directly by KLF10. Klf10(-/-) females were normoglycemic but displayed higher plasma triglycerides. Correspondingly, rhythmic gene expression of components of the lipogenic pathway, including Srebp1c, Fas, and Elovl6, was altered in females. Collectively, these data establish KLF10 as a required circadian transcriptional regulator that links the molecular clock to energy metabolism in the liver.

  16. CRY1 circadian gene variant interacts with carbohydrate intake for insulin resistance in two independent populations: Mediterranean and North American

    USDA-ARS?s Scientific Manuscript database

    Dysregulation in the circadian system induced by variants of clock genes has been associated with type 2 diabetes. Evidence for the role of cryptochromes, core components of the system, in regulating glucose homeostasis is not supported by CRY1 candidate gene association studies for diabetes and ins...

  17. Simple Sequence Repeats Provide a Substrate for Phenotypic Variation in the Neurospora crassa Circadian Clock

    PubMed Central

    Michael, Todd P.; Park, Sohyun; Kim, Tae-Sung; Booth, Jim; Byer, Amanda; Sun, Qi; Chory, Joanne; Lee, Kwangwon

    2007-01-01

    Background WHITE COLLAR-1 (WC-1) mediates interactions between the circadian clock and the environment by acting as both a core clock component and as a blue light photoreceptor in Neurospora crassa. Loss of the amino-terminal polyglutamine (NpolyQ) domain in WC-1 results in an arrhythmic circadian clock; this data is consistent with this simple sequence repeat (SSR) being essential for clock function. Methodology/Principal Findings Since SSRs are often polymorphic in length across natural populations, we reasoned that investigating natural variation of the WC-1 NpolyQ may provide insight into its role in the circadian clock. We observed significant phenotypic variation in the period, phase and temperature compensation of circadian regulated asexual conidiation across 143 N. crassa accessions. In addition to the NpolyQ, we identified two other simple sequence repeats in WC-1. The sizes of all three WC-1 SSRs correlated with polymorphisms in other clock genes, latitude and circadian period length. Furthermore, in a cross between two N. crassa accessions, the WC-1 NpolyQ co-segregated with period length. Conclusions/Significance Natural variation of the WC-1 NpolyQ suggests a mechanism by which period length can be varied and selected for by the local environment that does not deleteriously affect WC-1 activity. Understanding natural variation in the N. crassa circadian clock will facilitate an understanding of how fungi exploit their environments. PMID:17726525

  18. BMAL1-dependent regulation of the mTOR signaling pathway delays aging

    PubMed Central

    Khapre, Rohini V.; Kondratova, Anna A.; Patel, Sonal; Dubrovsky, Yuliya; Wrobel, Michelle; Antoch, Marina P.; Kondratov, Roman V.

    2014-01-01

    The circadian clock, an internal time-keeping system, has been linked with control of aging, but molecular mechanisms of regulation are not known. BMAL1 is a transcriptional factor and core component of the circadian clock; BMAL1 deficiency is associated with premature aging and reduced lifespan. Here we report that activity of mammalian Target of Rapamycin Complex 1 (mTORC1) is increased upon BMAL1 deficiency both in vivo and in cell culture. Increased mTOR signaling is associated with accelerated aging; in accordance with that, treatment with the mTORC1 inhibitor rapamycin increased lifespan of Bmal1−/− mice by 50%. Our data suggest that BMAL1 is a negative regulator of mTORC1 signaling. We propose that the circadian clock controls the activity of the mTOR pathway through BMAL1-dependent mechanisms and this regulation is important for control of aging and metabolism. PMID:24481314

  19. BMAL1-dependent regulation of the mTOR signaling pathway delays aging.

    PubMed

    Khapre, Rohini V; Kondratova, Anna A; Patel, Sonal; Dubrovsky, Yuliya; Wrobel, Michelle; Antoch, Marina P; Kondratov, Roman V

    2014-01-01

    The circadian clock, an internal time-keeping system, has been linked with control of aging, but molecular mechanisms of regulation are not known. BMAL1 is a transcriptional factor and core component of the circadian clock; BMAL1 deficiency is associated with premature aging and reduced lifespan. Here we report that activity of mammalian Target of Rapamycin Complex 1 (mTORC1) is increased upon BMAL1 deficiency both in vivo and in cell culture. Increased mTOR signaling is associated with accelerated aging; in accordance with that, treatment with the mTORC1 inhibitor rapamycin increased lifespan of Bmal1-/- mice by 50%. Our data suggest that BMAL1 is a negative regulator of mTORC1 signaling. We propose that the circadian clock controls the activity of the mTOR pathway through BMAL1-dependent mechanisms and this regulation is important for control of aging and metabolism.

  20. Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames

    PubMed Central

    Janich, Peggy; Arpat, Alaaddin Bulak; Castelo-Szekely, Violeta; Lopes, Maykel; Gatfield, David

    2015-01-01

    Mammalian gene expression displays widespread circadian oscillations. Rhythmic transcription underlies the core clock mechanism, but it cannot explain numerous observations made at the level of protein rhythmicity. We have used ribosome profiling in mouse liver to measure the translation of mRNAs into protein around the clock and at high temporal and nucleotide resolution. We discovered, transcriptome-wide, extensive rhythms in ribosome occupancy and identified a core set of approximately 150 mRNAs subject to particularly robust daily changes in translation efficiency. Cycling proteins produced from nonoscillating transcripts revealed thus-far-unknown rhythmic regulation associated with specific pathways (notably in iron metabolism, through the rhythmic translation of transcripts containing iron responsive elements), and indicated feedback to the rhythmic transcriptome through novel rhythmic transcription factors. Moreover, estimates of relative levels of core clock protein biosynthesis that we deduced from the data explained known features of the circadian clock better than did mRNA expression alone. Finally, we identified uORF translation as a novel regulatory mechanism within the clock circuitry. Consistent with the occurrence of translated uORFs in several core clock transcripts, loss-of-function of Denr, a known regulator of reinitiation after uORF usage and of ribosome recycling, led to circadian period shortening in cells. In summary, our data offer a framework for understanding the dynamics of translational regulation, circadian gene expression, and metabolic control in a solid mammalian organ. PMID:26486724

  1. Manipulating the Cellular Circadian Period of Arginine Vasopressin Neurons Alters the Behavioral Circadian Period.

    PubMed

    Mieda, Michihiro; Okamoto, Hitoshi; Sakurai, Takeshi

    2016-09-26

    As the central pacemaker in mammals, the circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus is a heterogeneous structure consisting of multiple types of GABAergic neurons with distinct chemical identities [1, 2]. Although individual cells have a cellular clock driven by autoregulatory transcriptional/translational feedback loops of clock genes, interneuronal communication among SCN clock neurons is likely essential for the SCN to generate a highly robust, coherent circadian rhythm [1]. However, neuronal mechanisms that determine circadian period length remain unclear. The SCN is composed of two subdivisions: a ventral core region containing vasoactive intestinal peptide (VIP)-producing neurons and a dorsal shell region characterized by arginine vasopressin (AVP)-producing neurons. Here we examined whether AVP neurons act as pacemaker cells that regulate the circadian period of behavior rhythm in mice. The deletion of casein kinase 1 delta (CK1δ) specific to AVP neurons, which was expected to lengthen the period of cellular clocks [3-6], lengthened the free-running period of circadian behavior as well. Conversely, the overexpression of CK1δ specific to SCN AVP neurons shortened the free-running period. PER2::LUC imaging in slices confirmed that cellular circadian periods of the SCN shell were lengthened in mice without CK1δ in AVP neurons. Thus, AVP neurons may be an essential component of circadian pacemaker cells in the SCN. Remarkably, the alteration of the shell-core phase relationship in the SCN of these mice did not impair the generation per se of circadian behavior rhythm, thereby underscoring the robustness of the SCN network. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Identification and temporal expression of putative circadian clock transcripts in the amphipod crustacean Talitrus saltator

    PubMed Central

    O’Grady, Joseph F.; Hoelters, Laura S.; Swain, Martin T.

    2016-01-01

    Background Talitrus saltator is an amphipod crustacean that inhabits the supralittoral zone on sandy beaches in the Northeast Atlantic and Mediterranean. T. saltator exhibits endogenous locomotor activity rhythms and time-compensated sun and moon orientation, both of which necessitate at least one chronometric mechanism. Whilst their behaviour is well studied, currently there are no descriptions of the underlying molecular components of a biological clock in this animal, and very few in other crustacean species. Methods We harvested brain tissue from animals expressing robust circadian activity rhythms and used homology cloning and Illumina RNAseq approaches to sequence and identify the core circadian clock and clock-related genes in these samples. We assessed the temporal expression of these genes in time-course samples from rhythmic animals using RNAseq. Results We identified a comprehensive suite of circadian clock gene homologues in T. saltator including the ‘core’ clock genes period (Talper), cryptochrome 2 (Talcry2), timeless (Taltim), clock (Talclk), and bmal1 (Talbmal1). In addition we describe the sequence and putative structures of 23 clock-associated genes including two unusual, extended isoforms of pigment dispersing hormone (Talpdh). We examined time-course RNAseq expression data, derived from tissues harvested from behaviourally rhythmic animals, to reveal rhythmic expression of these genes with approximately circadian period in Talper and Talbmal1. Of the clock-related genes, casein kinase IIβ (TalckIIβ), ebony (Talebony), jetlag (Taljetlag), pigment dispensing hormone (Talpdh), protein phosphatase 1 (Talpp1), shaggy (Talshaggy), sirt1 (Talsirt1), sirt7 (Talsirt7) and supernumerary limbs (Talslimb) show temporal changes in expression. Discussion We report the sequences of principle genes that comprise the circadian clock of T. saltator and highlight the conserved structural and functional domains of their deduced cognate proteins. Our sequencing data contribute to the growing inventory of described comparative clocks. Expression profiling of the identified clock genes illuminates tantalising targets for experimental manipulation to elucidate the molecular and cellular control of clock-driven phenotypes in this crustacean. PMID:27761341

  3. An Efficient VLSI Architecture for Multi-Channel Spike Sorting Using a Generalized Hebbian Algorithm

    PubMed Central

    Chen, Ying-Lun; Hwang, Wen-Jyi; Ke, Chi-En

    2015-01-01

    A novel VLSI architecture for multi-channel online spike sorting is presented in this paper. In the architecture, the spike detection is based on nonlinear energy operator (NEO), and the feature extraction is carried out by the generalized Hebbian algorithm (GHA). To lower the power consumption and area costs of the circuits, all of the channels share the same core for spike detection and feature extraction operations. Each channel has dedicated buffers for storing the detected spikes and the principal components of that channel. The proposed circuit also contains a clock gating system supplying the clock to only the buffers of channels currently using the computation core to further reduce the power consumption. The architecture has been implemented by an application-specific integrated circuit (ASIC) with 90-nm technology. Comparisons to the existing works show that the proposed architecture has lower power consumption and hardware area costs for real-time multi-channel spike detection and feature extraction. PMID:26287193

  4. An Efficient VLSI Architecture for Multi-Channel Spike Sorting Using a Generalized Hebbian Algorithm.

    PubMed

    Chen, Ying-Lun; Hwang, Wen-Jyi; Ke, Chi-En

    2015-08-13

    A novel VLSI architecture for multi-channel online spike sorting is presented in this paper. In the architecture, the spike detection is based on nonlinear energy operator (NEO), and the feature extraction is carried out by the generalized Hebbian algorithm (GHA). To lower the power consumption and area costs of the circuits, all of the channels share the same core for spike detection and feature extraction operations. Each channel has dedicated buffers for storing the detected spikes and the principal components of that channel. The proposed circuit also contains a clock gating system supplying the clock to only the buffers of channels currently using the computation core to further reduce the power consumption. The architecture has been implemented by an application-specific integrated circuit (ASIC) with 90-nm technology. Comparisons to the existing works show that the proposed architecture has lower power consumption and hardware area costs for real-time multi-channel spike detection and feature extraction.

  5. The Circadian Oscillator of the Cerebral Cortex: Molecular, Biochemical and Behavioral Effects of Deleting the Arntl Clock Gene in Cortical Neurons.

    PubMed

    Bering, Tenna; Carstensen, Mikkel Bloss; Wörtwein, Gitta; Weikop, Pia; Rath, Martin Fredensborg

    2018-02-01

    A molecular circadian oscillator resides in neurons of the cerebral cortex, but its role is unknown. Using the Cre-LoxP method, we have here abolished the core clock gene Arntl in those neurons. This mouse represents the first model carrying a deletion of a circadian clock component specifically in an extrahypothalamic cell type of the brain. Molecular analyses of clock gene expression in the cerebral cortex of the Arntl conditional knockout mouse revealed disrupted circadian expression profiles, whereas clock gene expression in the suprachiasmatic nucleus was still rhythmic, thus showing that Arntl is required for normal function of the cortical circadian oscillator. Daily rhythms in running activity and temperature were not influenced, whereas the resynchronization response to experimental jet-lag exhibited minor though significant differences between genotypes. The tail-suspension test revealed significantly prolonged immobility periods in the knockout mouse indicative of a depressive-like behavioral state. This phenotype was accompanied by reduced norepinephrine levels in the cerebral cortex. Our data show that Arntl is required for normal cortical clock function and further give reason to suspect that the circadian oscillator of the cerebral cortex is involved in regulating both circadian biology and mood-related behavior and biochemistry. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. CLOCK phosphorylation by AKT regulates its nuclear accumulation and circadian gene expression in peripheral tissues.

    PubMed

    Luciano, Amelia K; Zhou, Wenping; Santana, Jeans M; Kyriakides, Cleo; Velazquez, Heino; Sessa, William C

    2018-06-08

    C ircadian l ocomotor o utput c ycles k aput (CLOCK) is a transcription factor that activates transcription of clock-controlled genes by heterodimerizing with BMAL1 and binding to E-box elements on DNA. Although several phosphorylation sites on CLOCK have already been identified, this study characterizes a novel phosphorylation site at serine 845 (Ser-836 in humans). Here, we show that CLOCK is a novel AKT substrate in vitro and in cells, and this phosphorylation site is a negative regulator of CLOCK nuclear localization by acting as a binding site for 14-3-3 proteins. To examine the role of CLOCK phosphorylation in vivo , Clock S845A knockin mice were generated using CRISPR/Cas9 technology. Clock S845A mice are essentially normal with normal central circadian rhythms and hemodynamics. However, examination of core circadian gene expression from peripheral tissues demonstrated that Clock S845A mice have diminished expression of Per2, Reverba, Dbp, and Npas2 in skeletal muscle and Per2, Reverba, Dbp, Per1 , Rora, and Npas2 in the liver during the circadian cycle. The reduction in Dbp levels is associated with reduced H3K9ac at E-boxes where CLOCK binds despite no change in total CLOCK levels. Thus, CLOCK phosphorylation by AKT on Ser-845 regulates its nuclear translocation and the expression levels of certain core circadian genes in insulin-sensitive tissues.

  7. Diurnal Cycling Transcription Factors of Pineapple Revealed by Genome-Wide Annotation and Global Transcriptomic Analysis

    PubMed Central

    Sharma, Anupma; Wai, Ching Man; Ming, Ray

    2017-01-01

    Abstract Circadian clock provides fitness advantage by coordinating internal metabolic and physiological processes to external cyclic environments. Core clock components exhibit daily rhythmic changes in gene expression, and the majority of them are transcription factors (TFs) and transcription coregulators (TCs). We annotated 1,398 TFs from 67 TF families and 80 TCs from 20 TC families in pineapple, and analyzed their tissue-specific and diurnal expression patterns. Approximately 42% of TFs and 45% of TCs displayed diel rhythmic expression, including 177 TF/TCs cycling only in the nonphotosynthetic leaf tissue, 247 cycling only in the photosynthetic leaf tissue, and 201 cycling in both. We identified 68 TF/TCs whose cycling expression was tightly coupled between the photosynthetic and nonphotosynthetic leaf tissues. These TF/TCs likely coordinate key biological processes in pineapple as we demonstrated that this group is enriched in homologous genes that form the core circadian clock in Arabidopsis and includes a STOP1 homolog. Two lines of evidence support the important role of the STOP1 homolog in regulating CAM photosynthesis in pineapple. First, STOP1 responds to acidic pH and regulates a malate channel in multiple plant species. Second, the cycling expression pattern of the pineapple STOP1 and the diurnal pattern of malate accumulation in pineapple leaf are correlated. We further examined duplicate-gene retention and loss in major known circadian genes and refined their evolutionary relationships between pineapple and other plants. Significant variations in duplicate-gene retention and loss were observed for most clock genes in both monocots and dicots. PMID:28922793

  8. Machine Learning Helps Identify CHRONO as a Circadian Clock Component

    PubMed Central

    Venkataraman, Anand; Ramanathan, Chidambaram; Kavakli, Ibrahim H.; Hughes, Michael E.; Baggs, Julie E.; Growe, Jacqueline; Liu, Andrew C.; Kim, Junhyong; Hogenesch, John B.

    2014-01-01

    Over the last decades, researchers have characterized a set of “clock genes” that drive daily rhythms in physiology and behavior. This arduous work has yielded results with far-reaching consequences in metabolic, psychiatric, and neoplastic disorders. Recent attempts to expand our understanding of circadian regulation have moved beyond the mutagenesis screens that identified the first clock components, employing higher throughput genomic and proteomic techniques. In order to further accelerate clock gene discovery, we utilized a computer-assisted approach to identify and prioritize candidate clock components. We used a simple form of probabilistic machine learning to integrate biologically relevant, genome-scale data and ranked genes on their similarity to known clock components. We then used a secondary experimental screen to characterize the top candidates. We found that several physically interact with known clock components in a mammalian two-hybrid screen and modulate in vitro cellular rhythms in an immortalized mouse fibroblast line (NIH 3T3). One candidate, Gene Model 129, interacts with BMAL1 and functionally represses the key driver of molecular rhythms, the BMAL1/CLOCK transcriptional complex. Given these results, we have renamed the gene CHRONO (computationally highlighted repressor of the network oscillator). Bi-molecular fluorescence complementation and co-immunoprecipitation demonstrate that CHRONO represses by abrogating the binding of BMAL1 to its transcriptional co-activator CBP. Most importantly, CHRONO knockout mice display a prolonged free-running circadian period similar to, or more drastic than, six other clock components. We conclude that CHRONO is a functional clock component providing a new layer of control on circadian molecular dynamics. PMID:24737000

  9. Expression conservation within the circadian clock of a monocot: natural variation at barley Ppd-H1 affects circadian expression of flowering time genes, but not clock orthologs.

    PubMed

    Campoli, Chiara; Shtaya, Munqez; Davis, Seth J; von Korff, Maria

    2012-06-21

    The circadian clock is an endogenous mechanism that coordinates biological processes with daily changes in the environment. In plants, circadian rhythms contribute to both agricultural productivity and evolutionary fitness. In barley, the photoperiod response regulator and flowering-time gene Ppd-H1 is orthologous to the Arabidopsis core-clock gene PRR7. However, relatively little is known about the role of Ppd-H1 and other components of the circadian clock in temperate crop species. In this study, we identified barley clock orthologs and tested the effects of natural genetic variation at Ppd-H1 on diurnal and circadian expression of clock and output genes from the photoperiod-response pathway. Barley clock orthologs HvCCA1, HvGI, HvPRR1, HvPRR37 (Ppd-H1), HvPRR73, HvPRR59 and HvPRR95 showed a high level of sequence similarity and conservation of diurnal and circadian expression patterns, when compared to Arabidopsis. The natural mutation at Ppd-H1 did not affect diurnal or circadian cycling of barley clock genes. However, the Ppd-H1 mutant was found to be arrhythmic under free-running conditions for the photoperiod-response genes HvCO1, HvCO2, and the MADS-box transcription factor and vernalization responsive gene Vrn-H1. We suggest that the described eudicot clock is largely conserved in the monocot barley. However, genetic differentiation within gene families and differences in the function of Ppd-H1 suggest evolutionary modification in the angiosperm clock. Our data indicates that natural variation at Ppd-H1 does not affect the expression level of clock genes, but controls photoperiodic output genes. Circadian control of Vrn-H1 in barley suggests that this vernalization responsive gene is also controlled by the photoperiod-response pathway. Structural and functional characterization of the barley circadian clock will set the basis for future studies of the adaptive significance of the circadian clock in Triticeae species.

  10. Automated analysis of long-term grooming behavior in Drosophila using a k-nearest neighbors classifier

    PubMed Central

    Allen, Victoria W; Shirasu-Hiza, Mimi

    2018-01-01

    Despite being pervasive, the control of programmed grooming is poorly understood. We addressed this gap by developing a high-throughput platform that allows long-term detection of grooming in Drosophila melanogaster. In our method, a k-nearest neighbors algorithm automatically classifies fly behavior and finds grooming events with over 90% accuracy in diverse genotypes. Our data show that flies spend ~13% of their waking time grooming, driven largely by two major internal programs. One of these programs regulates the timing of grooming and involves the core circadian clock components cycle, clock, and period. The second program regulates the duration of grooming and, while dependent on cycle and clock, appears to be independent of period. This emerging dual control model in which one program controls timing and another controls duration, resembles the two-process regulatory model of sleep. Together, our quantitative approach presents the opportunity for further dissection of mechanisms controlling long-term grooming in Drosophila. PMID:29485401

  11. Circadian gene expression regulates pulsatile gonadotropin-releasing hormone (GnRH) secretory patterns in the hypothalamic GnRH-secreting GT1-7 cell line.

    PubMed

    Chappell, Patrick E; White, Rachel S; Mellon, Pamela L

    2003-12-03

    Although it has long been established that episodic secretion of gonadotropin-releasing hormone (GnRH) from the hypothalamus is required for normal gonadotropin release, the molecular and cellular mechanisms underlying the synchronous release of GnRH are primarily unknown. We used the GT1-7 mouse hypothalamic cell line as a model for GnRH secretion, because these cells release GnRH in a pulsatile pattern similar to that observed in vivo. To explore possible molecular mechanisms governing secretory timing, we investigated the role of the molecular circadian clock in regulation of GnRH secretion. GT1-7 cells express many known core circadian clock genes, and we demonstrate that oscillations of these components can be induced by stimuli such as serum and the adenylyl cyclase activator forskolin, similar to effects observed in fibroblasts. Strikingly, perturbation of circadian clock function in GT1-7 cells by transient expression of the dominant-negative Clock-Delta19 gene disrupts normal ultradian patterns of GnRH secretion, significantly decreasing mean pulse frequency. Additionally, overexpression of the negative limb clock gene mCry1 in GT1-7 cells substantially increases GnRH pulse amplitude without a commensurate change in pulse frequency, demonstrating that an endogenous biological clock is coupled to the mechanism of neurosecretion in these cells and can regulate multiple secretory parameters. Finally, mice harboring a somatic mutation in the Clock gene are subfertile and exhibit a substantial increase in estrous cycle duration as revealed by examination of vaginal cytology. This effect persists in normal light/dark (LD) cycles, suggesting that a suprachiasmatic nucleus-independent endogenous clock in GnRH neurons is required for eliciting normal pulsatile patterns of GnRH secretion.

  12. Circadian Rhythm Disruption Promotes Lung Tumorigenesis.

    PubMed

    Papagiannakopoulos, Thales; Bauer, Matthew R; Davidson, Shawn M; Heimann, Megan; Subbaraj, Lakshmipriya; Bhutkar, Arjun; Bartlebaugh, Jordan; Vander Heiden, Matthew G; Jacks, Tyler

    2016-08-09

    Circadian rhythms are 24-hr oscillations that control a variety of biological processes in living systems, including two hallmarks of cancer, cell division and metabolism. Circadian rhythm disruption by shift work is associated with greater risk for cancer development and poor prognosis, suggesting a putative tumor-suppressive role for circadian rhythm homeostasis. Using a genetically engineered mouse model of lung adenocarcinoma, we have characterized the effects of circadian rhythm disruption on lung tumorigenesis. We demonstrate that both physiologic perturbation (jet lag) and genetic mutation of the central circadian clock components decreased survival and promoted lung tumor growth and progression. The core circadian genes Per2 and Bmal1 were shown to have cell-autonomous tumor-suppressive roles in transformation and lung tumor progression. Loss of the central clock components led to increased c-Myc expression, enhanced proliferation, and metabolic dysregulation. Our findings demonstrate that both systemic and somatic disruption of circadian rhythms contribute to cancer progression. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Dual PDF signaling pathways reset clocks via TIMELESS and acutely excite target neurons to control circadian behavior.

    PubMed

    Seluzicki, Adam; Flourakis, Matthieu; Kula-Eversole, Elzbieta; Zhang, Luoying; Kilman, Valerie; Allada, Ravi

    2014-03-01

    Molecular circadian clocks are interconnected via neural networks. In Drosophila, PIGMENT-DISPERSING FACTOR (PDF) acts as a master network regulator with dual functions in synchronizing molecular oscillations between disparate PDF(+) and PDF(-) circadian pacemaker neurons and controlling pacemaker neuron output. Yet the mechanisms by which PDF functions are not clear. We demonstrate that genetic inhibition of protein kinase A (PKA) in PDF(-) clock neurons can phenocopy PDF mutants while activated PKA can partially rescue PDF receptor mutants. PKA subunit transcripts are also under clock control in non-PDF DN1p neurons. To address the core clock target of PDF, we rescued per in PDF neurons of arrhythmic per⁰¹ mutants. PDF neuron rescue induced high amplitude rhythms in the clock component TIMELESS (TIM) in per-less DN1p neurons. Complete loss of PDF or PKA inhibition also results in reduced TIM levels in non-PDF neurons of per⁰¹ flies. To address how PDF impacts pacemaker neuron output, we focally applied PDF to DN1p neurons and found that it acutely depolarizes and increases firing rates of DN1p neurons. Surprisingly, these effects are reduced in the presence of an adenylate cyclase inhibitor, yet persist in the presence of PKA inhibition. We have provided evidence for a signaling mechanism (PKA) and a molecular target (TIM) by which PDF resets and synchronizes clocks and demonstrates an acute direct excitatory effect of PDF on target neurons to control neuronal output. The identification of TIM as a target of PDF signaling suggests it is a multimodal integrator of cell autonomous clock, environmental light, and neural network signaling. Moreover, these data reveal a bifurcation of PKA-dependent clock effects and PKA-independent output effects. Taken together, our results provide a molecular and cellular basis for the dual functions of PDF in clock resetting and pacemaker output.

  14. Dual PDF Signaling Pathways Reset Clocks Via TIMELESS and Acutely Excite Target Neurons to Control Circadian Behavior

    PubMed Central

    Seluzicki, Adam; Flourakis, Matthieu; Kula-Eversole, Elzbieta; Zhang, Luoying; Kilman, Valerie; Allada, Ravi

    2014-01-01

    Molecular circadian clocks are interconnected via neural networks. In Drosophila, PIGMENT-DISPERSING FACTOR (PDF) acts as a master network regulator with dual functions in synchronizing molecular oscillations between disparate PDF(+) and PDF(−) circadian pacemaker neurons and controlling pacemaker neuron output. Yet the mechanisms by which PDF functions are not clear. We demonstrate that genetic inhibition of protein kinase A (PKA) in PDF(−) clock neurons can phenocopy PDF mutants while activated PKA can partially rescue PDF receptor mutants. PKA subunit transcripts are also under clock control in non-PDF DN1p neurons. To address the core clock target of PDF, we rescued per in PDF neurons of arrhythmic per01 mutants. PDF neuron rescue induced high amplitude rhythms in the clock component TIMELESS (TIM) in per-less DN1p neurons. Complete loss of PDF or PKA inhibition also results in reduced TIM levels in non-PDF neurons of per01 flies. To address how PDF impacts pacemaker neuron output, we focally applied PDF to DN1p neurons and found that it acutely depolarizes and increases firing rates of DN1p neurons. Surprisingly, these effects are reduced in the presence of an adenylate cyclase inhibitor, yet persist in the presence of PKA inhibition. We have provided evidence for a signaling mechanism (PKA) and a molecular target (TIM) by which PDF resets and synchronizes clocks and demonstrates an acute direct excitatory effect of PDF on target neurons to control neuronal output. The identification of TIM as a target of PDF signaling suggests it is a multimodal integrator of cell autonomous clock, environmental light, and neural network signaling. Moreover, these data reveal a bifurcation of PKA-dependent clock effects and PKA-independent output effects. Taken together, our results provide a molecular and cellular basis for the dual functions of PDF in clock resetting and pacemaker output. PMID:24643294

  15. Segregation of Clock and Non-Clock Regulatory Functions of REV-ERB.

    PubMed

    Butler, Andrew A; Burris, Thomas P

    2015-08-04

    The molecular clock is a master controller of circadian cellular processes that affect growth, metabolic homeostasis, and behavior. A report in Science by Zhang et al. (2015) redefines our understanding of how Rev-erba acts as an internal feedback inhibitor that modulates activity of the core clock while simultaneously regulating tissue-specific metabolic processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Diurnal Cycling Transcription Factors of Pineapple Revealed by Genome-Wide Annotation and Global Transcriptomic Analysis.

    PubMed

    Sharma, Anupma; Wai, Ching Man; Ming, Ray; Yu, Qingyi

    2017-09-01

    Circadian clock provides fitness advantage by coordinating internal metabolic and physiological processes to external cyclic environments. Core clock components exhibit daily rhythmic changes in gene expression, and the majority of them are transcription factors (TFs) and transcription coregulators (TCs). We annotated 1,398 TFs from 67 TF families and 80 TCs from 20 TC families in pineapple, and analyzed their tissue-specific and diurnal expression patterns. Approximately 42% of TFs and 45% of TCs displayed diel rhythmic expression, including 177 TF/TCs cycling only in the nonphotosynthetic leaf tissue, 247 cycling only in the photosynthetic leaf tissue, and 201 cycling in both. We identified 68 TF/TCs whose cycling expression was tightly coupled between the photosynthetic and nonphotosynthetic leaf tissues. These TF/TCs likely coordinate key biological processes in pineapple as we demonstrated that this group is enriched in homologous genes that form the core circadian clock in Arabidopsis and includes a STOP1 homolog. Two lines of evidence support the important role of the STOP1 homolog in regulating CAM photosynthesis in pineapple. First, STOP1 responds to acidic pH and regulates a malate channel in multiple plant species. Second, the cycling expression pattern of the pineapple STOP1 and the diurnal pattern of malate accumulation in pineapple leaf are correlated. We further examined duplicate-gene retention and loss in major known circadian genes and refined their evolutionary relationships between pineapple and other plants. Significant variations in duplicate-gene retention and loss were observed for most clock genes in both monocots and dicots. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Chronic consumption of dietary proanthocyanidins modulates peripheral clocks in healthy and obese rats.

    PubMed

    Ribas-Latre, A; Baselga-Escudero, L; Casanova, E; Arola-Arnal, A; Salvadó, M J; Arola, L; Bladé, C

    2015-02-01

    Circadian rhythm plays an important role in maintaining homeostasis, and its disruption increases the risk of developing metabolic syndrome. Circadian rhythm is maintained by a central clock in the hypothalamus that is entrained by light, but circadian clocks are also present in peripheral tissues. These peripheral clocks are trained by other cues, such as diet. The aim of this study was to determine whether proanthocyanidins, the most abundant polyphenols in the human diet, modulate the expression of clock and clock-controlled genes in the liver, gut and mesenteric white adipose tissue (mWAT) in healthy and obese rats. Grape seed proanthocyanidin extracts (GSPEs) were administered for 21 days at 5, 25 or 50 mg GSPE/kg body weight in healthy rats and 25 mg GSPE/kg body weight in rats with diet-induced obesity. In healthy animals, GSPE administration led to the overexpression of core clock genes in a positive dose-dependent manner. Moreover, the acetylated BMAL1 protein ratio increased with the same pattern in the liver and mWAT. With regards to clock-controlled genes, Per2 was also overexpressed, whereas Rev-erbα and RORα were repressed in a negative dose-dependent manner. Diet-induced obesity always resulted in the overexpression of some core clock and clock-related genes, although the particular gene affected was tissue specific. GSPE administration counteracted disturbances in the clock genes in the liver and gut but was less effective in normalizing the clock gene disruption in WAT. In conclusion, proanthocyanidins have the capacity to modulate peripheral molecular clocks in both healthy and obese states. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. The Drosophila Clock Neuron Network Features Diverse Coupling Modes and Requires Network-wide Coherence for Robust Circadian Rhythms.

    PubMed

    Yao, Zepeng; Bennett, Amelia J; Clem, Jenna L; Shafer, Orie T

    2016-12-13

    In animals, networks of clock neurons containing molecular clocks orchestrate daily rhythms in physiology and behavior. However, how various types of clock neurons communicate and coordinate with one another to produce coherent circadian rhythms is not well understood. Here, we investigate clock neuron coupling in the brain of Drosophila and demonstrate that the fly's various groups of clock neurons display unique and complex coupling relationships to core pacemaker neurons. Furthermore, we find that coordinated free-running rhythms require molecular clock synchrony not only within the well-characterized lateral clock neuron classes but also between lateral clock neurons and dorsal clock neurons. These results uncover unexpected patterns of coupling in the clock neuron network and reveal that robust free-running behavioral rhythms require a coherence of molecular oscillations across most of the fly's clock neuron network. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Epigenetic and Posttranslational Modifications in Light Signal Transduction and the Circadian Clock in Neurospora crassa

    PubMed Central

    Proietto, Marco; Bianchi, Michele Maria; Ballario, Paola; Brenna, Andrea

    2015-01-01

    Blue light, a key abiotic signal, regulates a wide variety of physiological processes in many organisms. One of these phenomena is the circadian rhythm presents in organisms sensitive to the phase-setting effects of blue light and under control of the daily alternation of light and dark. Circadian clocks consist of autoregulatory alternating negative and positive feedback loops intimately connected with the cellular metabolism and biochemical processes. Neurospora crassa provides an excellent model for studying the molecular mechanisms involved in these phenomena. The White Collar Complex (WCC), a blue-light receptor and transcription factor of the circadian oscillator, and Frequency (FRQ), the circadian clock pacemaker, are at the core of the Neurospora circadian system. The eukaryotic circadian clock relies on transcriptional/translational feedback loops: some proteins rhythmically repress their own synthesis by inhibiting the activity of their transcriptional factors, generating self-sustained oscillations over a period of about 24 h. One of the basic mechanisms that perpetuate self-sustained oscillations is post translation modification (PTM). The acronym PTM generically indicates the addition of acetyl, methyl, sumoyl, or phosphoric groups to various types of proteins. The protein can be regulatory or enzymatic or a component of the chromatin. PTMs influence protein stability, interaction, localization, activity, and chromatin packaging. Chromatin modification and PTMs have been implicated in regulating circadian clock function in Neurospora. Research into the epigenetic control of transcription factors such as WCC has yielded new insights into the temporal modulation of light-dependent gene transcription. Here we report on epigenetic and protein PTMs in the regulation of the Neurospora crassa circadian clock. We also present a model that illustrates the molecular mechanisms at the basis of the blue light control of the circadian clock. PMID:26198228

  20. Melatonin promotes circadian rhythm-induced proliferation through Clock/histone deacetylase 3/c-Myc interaction in mouse adipose tissue.

    PubMed

    Liu, Zhenjiang; Gan, Lu; Luo, Dan; Sun, Chao

    2017-05-01

    Melatonin is synthesized in the pineal gland and controls circadian rhythm of peripheral adipose tissue, resulting in changes in body weight. Although core regulatory components of clock rhythmicity have been defined, insight into the mechanisms of circadian rhythm-mediated proliferation in adipose tissue is still limited. Here, we showed that melatonin (20 mg/kg/d) promoted circadian and proliferation processes in white adipose tissue. The circadian amplitudes of brain and muscle aryl hydrocarbon receptor nuclear translocator-like 1 (Bmal1, P<.05) and circadian locomotor output cycles kaput (Clock, P<.05), period 2 (Per2, P<.05), cyclin E (P<.05), and c-Myc (P<.05) were directly increased by melatonin in adipose tissue. Melatonin also promoted cell cycle and increased cell numbers (P<.05), which was correlated with the Clock expression (P<.05). Further analysis demonstrated that Clock bound to the E-box elements in the promoter region of c-Myc and then directly stimulated c-Myc transcription. Moreover, Clock physically interacted with histone deacetylase 3 (HDAC3) and formed a complex with c-Myc to promote adipocyte proliferation. Melatonin also attenuated circadian disruption and promoted adipocyte proliferation in chronic jet-lagged mice and obese mice. Thus, our study found that melatonin promoted adipocyte proliferation by forming a Clock/HDAC3/c-Myc complex and subsequently driving the circadian amplitudes of proliferation genes. Our data reveal a novel mechanism that links circadian rhythm to cell proliferation in adipose tissue. These findings also identify a new potential means for melatonin to prevent and treat sleep deprivation-caused obesity. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Diurnal Corticosterone Presence and Phase Modulate Clock Gene Expression in the Male Rat Prefrontal Cortex

    PubMed Central

    Chun, Lauren E.; Hinds, Laura R.; Spencer, Robert L.

    2016-01-01

    Mood disorders are associated with dysregulation of prefrontal cortex (PFC) function, circadian rhythms, and diurnal glucocorticoid (corticosterone [CORT]) circulation. Entrainment of clock gene expression in some peripheral tissues depends on CORT. In this study, we characterized over the course of the day the mRNA expression pattern of the core clock genes Per1, Per2, and Bmal1 in the male rat PFC and suprachiasmatic nucleus (SCN) under different diurnal CORT conditions. In experiment 1, rats were left adrenal-intact (sham) or were adrenalectomized (ADX) followed by 10 daily antiphasic (opposite time of day of the endogenous CORT peak) ip injections of either vehicle or 2.5 mg/kg CORT. In experiment 2, all rats received ADX surgery followed by 13 daily injections of vehicle or CORT either antiphasic or in-phase with the endogenous CORT peak. In sham rats clock gene mRNA levels displayed a diurnal pattern of expression in the PFC and the SCN, but the phase differed between the 2 structures. ADX substantially altered clock gene expression patterns in the PFC. This alteration was normalized by in-phase CORT treatment, whereas antiphasic CORT treatment appears to have eliminated a diurnal pattern (Per1 and Bmal1) or dampened/inverted its phase (Per2). There was very little effect of CORT condition on clock gene expression in the SCN. These experiments suggest that an important component of glucocorticoid circadian physiology entails CORT regulation of the molecular clock in the PFC. Consequently, they also point to a possible mechanism that contributes to PFC disrupted function in disorders associated with abnormal CORT circulation. PMID:26901093

  2. Temperature-dependent resetting of the molecular circadian oscillator in Drosophila

    PubMed Central

    Goda, Tadahiro; Sharp, Brandi; Wijnen, Herman

    2014-01-01

    Circadian clocks responsible for daily time keeping in a wide range of organisms synchronize to daily temperature cycles via pathways that remain poorly understood. To address this problem from the perspective of the molecular oscillator, we monitored temperature-dependent resetting of four of its core components in the fruitfly Drosophila melanogaster: the transcripts and proteins for the clock genes period (per) and timeless (tim). The molecular circadian cycle in adult heads exhibited parallel responses to temperature-mediated resetting at the levels of per transcript, tim transcript and TIM protein. Early phase adjustment specific to per transcript rhythms was explained by clock-independent temperature-driven transcription of per. The cold-induced expression of Drosophila per contrasts with the previously reported heat-induced regulation of mammalian Period 2. An altered and more readily re-entrainable temperature-synchronized circadian oscillator that featured temperature-driven per transcript rhythms and phase-shifted TIM and PER protein rhythms was found for flies of the ‘Tim 4’ genotype, which lacked daily tim transcript oscillations but maintained post-transcriptional temperature entrainment of tim expression. The accelerated molecular and behavioural temperature entrainment observed for Tim 4 flies indicates that clock-controlled tim expression constrains the rate of temperature cycle-mediated circadian resetting. PMID:25165772

  3. Codon usage affects the structure and function of the Drosophila circadian clock protein PERIOD.

    PubMed

    Fu, Jingjing; Murphy, Katherine A; Zhou, Mian; Li, Ying H; Lam, Vu H; Tabuloc, Christine A; Chiu, Joanna C; Liu, Yi

    2016-08-01

    Codon usage bias is a universal feature of all genomes, but its in vivo biological functions in animal systems are not clear. To investigate the in vivo role of codon usage in animals, we took advantage of the sensitivity and robustness of the Drosophila circadian system. By codon-optimizing parts of Drosophila period (dper), a core clock gene that encodes a critical component of the circadian oscillator, we showed that dper codon usage is important for circadian clock function. Codon optimization of dper resulted in conformational changes of the dPER protein, altered dPER phosphorylation profile and stability, and impaired dPER function in the circadian negative feedback loop, which manifests into changes in molecular rhythmicity and abnormal circadian behavioral output. This study provides an in vivo example that demonstrates the role of codon usage in determining protein structure and function in an animal system. These results suggest a universal mechanism in eukaryotes that uses a codon usage "code" within genetic codons to regulate cotranslational protein folding. © 2016 Fu et al.; Published by Cold Spring Harbor Laboratory Press.

  4. NRF2 regulates core and stabilizing circadian clock loops, coupling redox and timekeeping in Mus musculus

    PubMed Central

    Sutter, Carrie Hayes; Olesen, Kristin M; Kensler, Thomas W

    2018-01-01

    Diurnal oscillation of intracellular redox potential is known to couple metabolism with the circadian clock, yet the responsible mechanisms are not well understood. We show here that chemical activation of NRF2 modifies circadian gene expression and rhythmicity, with phenotypes similar to genetic NRF2 activation. Loss of Nrf2 function in mouse fibroblasts, hepatocytes and liver also altered circadian rhythms, suggesting that NRF2 stoichiometry and/or timing of expression are important to timekeeping in some cells. Consistent with this concept, activation of NRF2 at a circadian time corresponding to the peak generation of endogenous oxidative signals resulted in NRF2-dependent reinforcement of circadian amplitude. In hepatocytes, activated NRF2 bound specific enhancer regions of the core clock repressor gene Cry2, increased Cry2 expression and repressed CLOCK/BMAL1-regulated E-box transcription. Together these data indicate that NRF2 and clock comprise an interlocking loop that integrates cellular redox signals into tissue-specific circadian timekeeping. PMID:29481323

  5. Topology and Dynamics of the Zebrafish Segmentation Clock Core Circuit

    PubMed Central

    Schröter, Christian; Isakova, Alina; Hens, Korneel; Soroldoni, Daniele; Gajewski, Martin; Jülicher, Frank; Maerkl, Sebastian J.; Deplancke, Bart; Oates, Andrew C.

    2012-01-01

    During vertebrate embryogenesis, the rhythmic and sequential segmentation of the body axis is regulated by an oscillating genetic network termed the segmentation clock. We describe a new dynamic model for the core pace-making circuit of the zebrafish segmentation clock based on a systematic biochemical investigation of the network's topology and precise measurements of somitogenesis dynamics in novel genetic mutants. We show that the core pace-making circuit consists of two distinct negative feedback loops, one with Her1 homodimers and the other with Her7:Hes6 heterodimers, operating in parallel. To explain the observed single and double mutant phenotypes of her1, her7, and hes6 mutant embryos in our dynamic model, we postulate that the availability and effective stability of the dimers with DNA binding activity is controlled in a “dimer cloud” that contains all possible dimeric combinations between the three factors. This feature of our model predicts that Hes6 protein levels should oscillate despite constant hes6 mRNA production, which we confirm experimentally using novel Hes6 antibodies. The control of the circuit's dynamics by a population of dimers with and without DNA binding activity is a new principle for the segmentation clock and may be relevant to other biological clocks and transcriptional regulatory networks. PMID:22911291

  6. CLOCK gene variation is associated with incidence of type-2 diabetes and cardiovascular diseases in type-2 diabetic subjects: dietary modulation in the PREDIMED randomized trial

    USDA-ARS?s Scientific Manuscript database

    Background Circadian rhythms regulate key biological processes influencing metabolic pathways. Dysregulation is associated with type 2 diabetes (T2D) and cardiovascular diseases (CVD). Circadian rhythms are generated by a transcriptional autoregulatory feedback loop involving core clock genes. CLOCK...

  7. MYC/MIZ1-dependent gene repression inversely coordinates the circadian clock with cell cycle and proliferation.

    PubMed

    Shostak, Anton; Ruppert, Bianca; Ha, Nati; Bruns, Philipp; Toprak, Umut H; Eils, Roland; Schlesner, Matthias; Diernfellner, Axel; Brunner, Michael

    2016-06-24

    The circadian clock and the cell cycle are major cellular systems that organize global physiology in temporal fashion. It seems conceivable that the potentially conflicting programs are coordinated. We show here that overexpression of MYC in U2OS cells attenuates the clock and conversely promotes cell proliferation while downregulation of MYC strengthens the clock and reduces proliferation. Inhibition of the circadian clock is crucially dependent on the formation of repressive complexes of MYC with MIZ1 and subsequent downregulation of the core clock genes BMAL1 (ARNTL), CLOCK and NPAS2. We show furthermore that BMAL1 expression levels correlate inversely with MYC levels in 102 human lymphomas. Our data suggest that MYC acts as a master coordinator that inversely modulates the impact of cell cycle and circadian clock on gene expression.

  8. MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale

    PubMed Central

    Du, Ngoc-Hien; Arpat, Alaaddin Bulak; De Matos, Mara; Gatfield, David

    2014-01-01

    A considerable proportion of mammalian gene expression undergoes circadian oscillations. Post-transcriptional mechanisms likely make important contributions to mRNA abundance rhythms. We have investigated how microRNAs (miRNAs) contribute to core clock and clock-controlled gene expression using mice in which miRNA biogenesis can be inactivated in the liver. While the hepatic core clock was surprisingly resilient to miRNA loss, whole transcriptome sequencing uncovered widespread effects on clock output gene expression. Cyclic transcription paired with miRNA-mediated regulation was thus identified as a frequent phenomenon that affected up to 30% of the rhythmic transcriptome and served to post-transcriptionally adjust the phases and amplitudes of rhythmic mRNA accumulation. However, only few mRNA rhythms were actually generated by miRNAs. Overall, our study suggests that miRNAs function to adapt clock-driven gene expression to tissue-specific requirements. Finally, we pinpoint several miRNAs predicted to act as modulators of rhythmic transcripts, and identify rhythmic pathways particularly prone to miRNA regulation. DOI: http://dx.doi.org/10.7554/eLife.02510.001 PMID:24867642

  9. Time-of-Day Effects on Metabolic and Clock-Related Adjustments to Cold.

    PubMed

    Machado, Frederico Sander Mansur; Zhang, Zhi; Su, Yan; de Goede, Paul; Jansen, Remi; Foppen, Ewout; Coimbra, Cândido Celso; Kalsbeek, Andries

    2018-01-01

    Daily cyclic changes in environmental conditions are key signals for anticipatory and adaptive adjustments of most living species, including mammals. Lower ambient temperature stimulates the thermogenic activity of brown adipose tissue (BAT) and skeletal muscle. Given that the molecular components of the endogenous biological clock interact with thermal and metabolic mechanisms directly involved in the defense of body temperature, the present study evaluated the differential homeostatic responses to a cold stimulus at distinct time-windows of the light/dark-cycle. Male Wistar rats were subjected to a single episode of 3 h cold ambient temperature (4°C) at one of 6 time-points starting at Zeitgeber Times 3, 7, 11, 15, 19, and 23. Metabolic rate, core body temperature, locomotor activity (LA), feeding, and drinking behaviors were recorded during control and cold conditions at each time-point. Immediately after the stimulus, rats were euthanized and both the soleus and BAT were collected for real-time PCR. During the light phase (i.e., inactive phase), cold exposure resulted in a slight hyperthermia ( p  < 0.001). Light phase cold exposure also increased metabolic rate and LA ( p  < 0.001). In addition, the prevalence of fat oxidative metabolism was attenuated during the inactive phase ( p  < 0.001). These metabolic changes were accompanied by time-of-day and tissue-specific changes in core clock gene expression, such as DBP ( p  < 0.0001) and REV-ERBα ( p  < 0.01) in the BAT and CLOCK ( p  < 0.05), PER2 ( p  < 0.05), CRY1 ( p  < 0.05), CRY2 ( p  < 0.01), and REV-ERBα ( p  < 0.05) in the soleus skeletal muscle. Moreover, genes involved in substrate oxidation and thermogenesis were affected in a time-of-day and tissue-specific manner by cold exposure. The time-of-day modulation of substrate mobilization and oxidation during cold exposure provides a clear example of the circadian modulation of physiological and metabolic responses. Interestingly, after cold exposure, time-of-day mostly affected circadian clock gene expression in the soleus muscle, despite comparable changes in LA over the light-dark-cycle. The current findings add further evidence for tissue-specific actions of the internal clock in different peripheral organs such as skeletal muscle and BAT.

  10. Alternative Splicing of Barley Clock Genes in Response to Low Temperature

    PubMed Central

    Calixto, Cristiane P. G.; Simpson, Craig G.; Waugh, Robbie; Brown, John W. S.

    2016-01-01

    Alternative splicing (AS) is a regulated mechanism that generates multiple transcripts from individual genes. It is widespread in eukaryotic genomes and provides an effective way to control gene expression. At low temperatures, AS regulates Arabidopsis clock genes through dynamic changes in the levels of productive mRNAs. We examined AS in barley clock genes to assess whether temperature-dependent AS responses also occur in a monocotyledonous crop species. We identify changes in AS of various barley core clock genes including the barley orthologues of Arabidopsis AtLHY and AtPRR7 which showed the most pronounced AS changes in response to low temperature. The AS events modulate the levels of functional and translatable mRNAs, and potentially protein levels, upon transition to cold. There is some conservation of AS events and/or splicing behaviour of clock genes between Arabidopsis and barley. In addition, novel temperature-dependent AS of the core clock gene HvPPD-H1 (a major determinant of photoperiod response and AtPRR7 orthologue) is conserved in monocots. HvPPD-H1 showed a rapid, temperature-sensitive isoform switch which resulted in changes in abundance of AS variants encoding different protein isoforms. This novel layer of low temperature control of clock gene expression, observed in two very different species, will help our understanding of plant adaptation to different environments and ultimately offer a new range of targets for plant improvement. PMID:27959947

  11. The young age of Earth

    NASA Astrophysics Data System (ADS)

    Zhang, Youxue

    1998-09-01

    Patterson (1956) established that the age of Earth is close to that of meteorites. Over the last 20 years, workers argued for younger age for core differentiation based on Pb-Pb model ages and tungsten isotopic data and for gas retention based on I-Xe modeling. However, disagreement is abundant, and the young age of Earth has not been widely accepted. In this work, I examine all radiogenic noble gases in the atmosphere and use a model-independent approach and total inversion to show that (1) the Xe-closure age of Earth is 109 ± 23 million years younger than the formation of meteorite Bjurbole (˜4560 Ma) and (2) all radiogenic components of noble gases in the atmosphere can be quantitatively accounted for by production and degassing ˜60% of the bulk silicate earth. The agreement between the 129I- 129Xe clock and 244Pu- 238U- 136Xe- 134Xe- 132Xe- 131Xe clock suggests that the volatility of iodine does not affect the 129I- 129Xe clock. Earth's Xe-closure age is 4.45 ± 0.02 Ga, consistent with the model age of Pb and the 146Sm- 142Nd, 147Sm- 143Nd and 182Hf- 182W systematics. On the basis of the consistency of these ages, 4.45 ± 0.02 Ga probably represents the time when the last Martian-sized planetesimal hit Earth and reinitialized the global clocks.

  12. The timing of the human circadian clock is accurately represented by the core body temperature rhythm following phase shifts to a three-cycle light stimulus near the critical zone

    NASA Technical Reports Server (NTRS)

    Jewett, M. E.; Duffy, J. F.; Czeisler, C. A.

    2000-01-01

    A double-stimulus experiment was conducted to evaluate the phase of the underlying circadian clock following light-induced phase shifts of the human circadian system. Circadian phase was assayed by constant routine from the rhythm in core body temperature before and after a three-cycle bright-light stimulus applied near the estimated minimum of the core body temperature rhythm. An identical, consecutive three-cycle light stimulus was then applied, and phase was reassessed. Phase shifts to these consecutive stimuli were no different from those obtained in a previous study following light stimuli applied under steady-state conditions over a range of circadian phases similar to those at which the consecutive stimuli were applied. These data suggest that circadian phase shifts of the core body temperature rhythm in response to a three-cycle stimulus occur within 24 h following the end of the 3-day light stimulus and that this poststimulus temperature rhythm accurately reflects the timing of the underlying circadian clock.

  13. Circadian Rhythms and Sleep in Drosophila melanogaster

    PubMed Central

    Dubowy, Christine; Sehgal, Amita

    2017-01-01

    The advantages of the model organism Drosophila melanogaster, including low genetic redundancy, functional simplicity, and the ability to conduct large-scale genetic screens, have been essential for understanding the molecular nature of circadian (∼24 hr) rhythms, and continue to be valuable in discovering novel regulators of circadian rhythms and sleep. In this review, we discuss the current understanding of these interrelated biological processes in Drosophila and the wider implications of this research. Clock genes period and timeless were first discovered in large-scale Drosophila genetic screens developed in the 1970s. Feedback of period and timeless on their own transcription forms the core of the molecular clock, and accurately timed expression, localization, post-transcriptional modification, and function of these genes is thought to be critical for maintaining the circadian cycle. Regulators, including several phosphatases and kinases, act on different steps of this feedback loop to ensure strong and accurately timed rhythms. Approximately 150 neurons in the fly brain that contain the core components of the molecular clock act together to translate this intracellular cycling into rhythmic behavior. We discuss how different groups of clock neurons serve different functions in allowing clocks to entrain to environmental cues, driving behavioral outputs at different times of day, and allowing flexible behavioral responses in different environmental conditions. The neuropeptide PDF provides an important signal thought to synchronize clock neurons, although the details of how PDF accomplishes this function are still being explored. Secreted signals from clock neurons also influence rhythms in other tissues. SLEEP is, in part, regulated by the circadian clock, which ensures appropriate timing of sleep, but the amount and quality of sleep are also determined by other mechanisms that ensure a homeostatic balance between sleep and wake. Flies have been useful for identifying a large set of genes, molecules, and neuroanatomic loci important for regulating sleep amount. Conserved aspects of sleep regulation in flies and mammals include wake-promoting roles for catecholamine neurotransmitters and involvement of hypothalamus-like regions, although other neuroanatomic regions implicated in sleep in flies have less clear parallels. Sleep is also subject to regulation by factors such as food availability, stress, and social environment. We are beginning to understand how the identified molecules and neurons interact with each other, and with the environment, to regulate sleep. Drosophila researchers can also take advantage of increasing mechanistic understanding of other behaviors, such as learning and memory, courtship, and aggression, to understand how sleep loss impacts these behaviors. Flies thus remain a valuable tool for both discovery of novel molecules and deep mechanistic understanding of sleep and circadian rhythms. PMID:28360128

  14. Circadian clocks govern calorie restriction-mediated life span extension through BMAL1- and IGF-1-dependent mechanisms.

    PubMed

    Patel, Sonal A; Chaudhari, Amol; Gupta, Richa; Velingkaar, Nikkhil; Kondratov, Roman V

    2016-04-01

    Calorie restriction (CR) increases longevity in many species by unknown mechanisms. The circadian clock was proposed as a potential mediator of CR. Deficiency of the core component of the circadian clock-transcriptional factor BMAL1 (brain and muscle ARNT [aryl hydrocarbon receptor nuclear translocator]-like protein 1)-results in accelerated aging. Here we investigated the role of BMAL1 in mechanisms of CR. The 30% CR diet increased the life span of wild-type (WT) mice by 20% compared to mice on anad libitum(AL) diet but failed to increase life span ofBmal1(-/-)mice. BMAL1 deficiency impaired CR-mediated changes in the plasma levels of IGF-1 and insulin. We detected a statistically significantly reduction of IGF-1 in CRvs.AL by 50 to 70% in WT mice at several daily time points tested, while inBmal1(-/-)the reduction was not significant. Insulin levels in WT were reduced by 5 to 9%, whileBmal1(-/-)induced it by 10 to 35% at all time points tested. CR up-regulated the daily average expression ofBmal1(by 150%) and its downstream target genesPeriods(by 470% forPer1and by 130% forPer2). We propose that BMAL1 is an important mediator of CR, and activation of BMAL1 might link CR mechanisms with biologic clocks.-Patel, S. A., Chaudhari, A., Gupta, R., Velingkaar, N., Kondratov, R. V. Circadian clocks govern calorie restriction-mediated life span extension through BMAL1- and IGF-1-dependent mechanisms. © FASEB.

  15. A Technology Demonstration Experiment for Laser Cooled Atomic Clocks in Space

    NASA Technical Reports Server (NTRS)

    Klipstein, W. M.; Kohel, J.; Seidel, D. J.; Thompson, R. J.; Maleki, L.; Gibble, K.

    2000-01-01

    We have been developing a laser-cooling apparatus for flight on the International Space Station (ISS), with the intention of demonstrating linewidths on the cesium clock transition narrower than can be realized on the ground. GLACE (the Glovebox Laser- cooled Atomic Clock Experiment) is scheduled for launch on Utilization Flight 3 (UF3) in 2002, and will be mounted in one of the ISS Glovebox platforms for an anticipated 2-3 week run. Separate flight definition projects funded at NIST and Yale by the Micro- gravity Research Division of NASA as a part of its Laser Cooling and Atomic Physics (LCAP) program will follow GLACE. Core technologies for these and other LCAP missions are being developed at JPL, with the current emphasis on developing components such as the laser and optics subsystem, and non-magnetic vacuum-compatible mechanical shutters. Significant technical challenges in developing a space qualifiable laser cooling apparatus include reducing the volume, mass, and power requirements, while increasing the ruggedness and reliability in order to both withstand typical launch conditions and achieve several months of unattended operation. This work was performed at the Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration.

  16. Circadian clock component REV-ERBα controls homeostatic regulation of pulmonary inflammation.

    PubMed

    Pariollaud, Marie; Gibbs, Julie E; Hopwood, Thomas W; Brown, Sheila; Begley, Nicola; Vonslow, Ryan; Poolman, Toryn; Guo, Baoqiang; Saer, Ben; Jones, D Heulyn; Tellam, James P; Bresciani, Stefano; Tomkinson, Nicholas Co; Wojno-Picon, Justyna; Cooper, Anthony Wj; Daniels, Dion A; Trump, Ryan P; Grant, Daniel; Zuercher, William; Willson, Timothy M; MacDonald, Andrew S; Bolognese, Brian; Podolin, Patricia L; Sanchez, Yolanda; Loudon, Andrew Si; Ray, David W

    2018-06-01

    Recent studies reveal that airway epithelial cells are critical pulmonary circadian pacemaker cells, mediating rhythmic inflammatory responses. Using mouse models, we now identify the rhythmic circadian repressor REV-ERBα as essential to the mechanism coupling the pulmonary clock to innate immunity, involving both myeloid and bronchial epithelial cells in temporal gating and determining amplitude of response to inhaled endotoxin. Dual mutation of REV-ERBα and its paralog REV-ERBβ in bronchial epithelia further augmented inflammatory responses and chemokine activation, but also initiated a basal inflammatory state, revealing a critical homeostatic role for REV-ERB proteins in the suppression of the endogenous proinflammatory mechanism in unchallenged cells. However, REV-ERBα plays the dominant role, as deletion of REV-ERBβ alone had no impact on inflammatory responses. In turn, inflammatory challenges cause striking changes in stability and degradation of REV-ERBα protein, driven by SUMOylation and ubiquitination. We developed a novel selective oxazole-based inverse agonist of REV-ERB, which protects REV-ERBα protein from degradation, and used this to reveal how proinflammatory cytokines trigger rapid degradation of REV-ERBα in the elaboration of an inflammatory response. Thus, dynamic changes in stability of REV-ERBα protein couple the core clock to innate immunity.

  17. Frequency Dependence of Single-event Upset in Advanced Commerical PowerPC Microprocessors

    NASA Technical Reports Server (NTRS)

    Irom, Frokh; Farmanesh, Farhad F.; Swift, Gary M.; Johnston, Allen H.

    2004-01-01

    This paper examines single-event upsets in advanced commercial SOI microprocessors in a dynamic mode, studying SEU sensitivity of General Purpose Registers (GPRs) with clock frequency. Results are presented for SOI processors with feature sizes of 0.18 microns and two different core voltages. Single-event upset from heavy ions is measured for advanced commercial microprocessors in a dynamic mode with clock frequency up to 1GHz. Frequency and core voltage dependence of single-event upsets in registers is discussed.

  18. Large Scale Flutter Data for Design of Rotating Blades Using Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    2012-01-01

    A procedure to compute flutter boundaries of rotating blades is presented; a) Navier-Stokes equations. b) Frequency domain method compatible with industry practice. Procedure is initially validated: a) Unsteady loads with flapping wing experiment. b) Flutter boundary with fixed wing experiment. Large scale flutter computation is demonstrated for rotating blade: a) Single job submission script. b) Flutter boundary in 24 hour wall clock time with 100 cores. c) Linearly scalable with number of cores. Tested with 1000 cores that produced data in 25 hrs for 10 flutter boundaries. Further wall-clock speed-up is possible by performing parallel computations within each case.

  19. Oxyntomodulin regulates resetting of the liver circadian clock by food

    PubMed Central

    Landgraf, Dominic; Tsang, Anthony H; Leliavski, Alexei; Koch, Christiane E; Barclay, Johanna L; Drucker, Daniel J; Oster, Henrik

    2015-01-01

    Circadian clocks coordinate 24-hr rhythms of behavior and physiology. In mammals, a master clock residing in the suprachiasmatic nucleus (SCN) is reset by the light–dark cycle, while timed food intake is a potent synchronizer of peripheral clocks such as the liver. Alterations in food intake rhythms can uncouple peripheral clocks from the SCN, resulting in internal desynchrony, which promotes obesity and metabolic disorders. Pancreas-derived hormones such as insulin and glucagon have been implicated in signaling mealtime to peripheral clocks. In this study, we identify a novel, more direct pathway of food-driven liver clock resetting involving oxyntomodulin (OXM). In mice, food intake stimulates OXM secretion from the gut, which resets liver transcription rhythms via induction of the core clock genes Per1 and 2. Inhibition of OXM signaling blocks food-mediated resetting of hepatocyte clocks. These data reveal a direct link between gastric filling with food and circadian rhythm phasing in metabolic tissues. DOI: http://dx.doi.org/10.7554/eLife.06253.001 PMID:25821984

  20. The metabolic sensor AKIN10 modulates the Arabidopsis circadian clock in a light-dependent manner.

    PubMed

    Shin, Jieun; Sánchez-Villarreal, Alfredo; Davis, Amanda M; Du, Shen-Xiu; Berendzen, Kenneth W; Koncz, Csaba; Ding, Zhaojun; Li, Cuiling; Davis, Seth J

    2017-07-01

    Plants generate rhythmic metabolism during the repetitive day/night cycle. The circadian clock produces internal biological rhythms to synchronize numerous metabolic processes such that they occur at the required time of day. Metabolism conversely influences clock function by controlling circadian period and phase and the expression of core-clock genes. Here, we show that AKIN10, a catalytic subunit of the evolutionarily conserved key energy sensor sucrose non-fermenting 1 (Snf1)-related kinase 1 (SnRK1) complex, plays an important role in the circadian clock. Elevated AKIN10 expression led to delayed peak expression of the circadian clock evening-element GIGANTEA (GI) under diurnal conditions. Moreover, it lengthened clock period specifically under light conditions. Genetic analysis showed that the clock regulator TIME FOR COFFEE (TIC) is required for this effect of AKIN10. Taken together, we propose that AKIN10 conditionally works in a circadian clock input pathway to the circadian oscillator. © 2017 John Wiley & Sons Ltd.

  1. Cholecystokinin (CCK)-expressing neurons in the suprachiasmatic nucleus: innervation, light responsiveness and entrainment in CCK-deficient mice.

    PubMed

    Hannibal, Jens; Hundahl, Christian; Fahrenkrug, Jan; Rehfeld, Jens F; Friis-Hansen, Lennart

    2010-09-01

    The suprachiasmatic nucleus (SCN) is the principal pacemaker driving circadian rhythms of physiology and behaviour. Neurons within the SCN express both classical and neuropeptide transmitters which regulate clock functions. Cholecyctokinin (CCK) is a potent neurotransmitter expressed in neurons of the mammalian SCN, but its role in circadian timing is not known. In the present study, CCK was demonstrated in a distinct population of neurons located in the shell region of the SCN and in a few cells in the core region. The CCK neurons did not express vasopressin or vasoactive intestinal peptide. However, CCK-containing processes make synaptic contacts with both groups of neurons and some CCK cell bodies were innervated by VIPergic neurons. The CCK neurons received no direct input from the three major pathways to the SCN, and the CCK neurons were not light-responsive as evaluated by induction of cFOS, and did not express the core clock protein PER1. Accordingly, CCK-deficient mice showed normal entrainment and had similar τ, light-induced phase shift and negative masking behaviour as wild-type animals. In conclusion, CCK signalling seems not to be involved directly in light-induced resetting of the clock or in regulating core clock function. The expression of CCK in a subpopulation of neurons, which do not belonging to either the VIP or AVP cells but which have synaptic contacts to both cell types and reverse innervation of CCK neurons from VIP neurons, suggests that the CCK neurons may act in non-photic regulation within the clock and/or, via CCK projections, mediate clock information to hypothalamic nuclei. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  2. Regulation of monoamine oxidase A by circadian-clock components implies clock influence on mood.

    PubMed

    Hampp, Gabriele; Ripperger, Jürgen A; Houben, Thijs; Schmutz, Isabelle; Blex, Christian; Perreau-Lenz, Stéphanie; Brunk, Irene; Spanagel, Rainer; Ahnert-Hilger, Gudrun; Meijer, Johanna H; Albrecht, Urs

    2008-05-06

    The circadian clock has been implicated in addiction and several forms of depression [1, 2], indicating interactions between the circadian and the reward systems in the brain [3-5]. Rewards such as food, sex, and drugs influence this system in part by modulating dopamine neurotransmission in the mesolimbic dopamine reward circuit, including the ventral tegmental area (VTA) and the ventral striatum (NAc). Hence, changes in dopamine levels in these brain areas are proposed to influence mood in humans and mice [6-10]. To establish a molecular link between the circadian-clock mechanism and dopamine metabolism, we analyzed the murine promoters of genes encoding key enzymes important in dopamine metabolism. We find that transcription of the monoamine oxidase A (Maoa) promoter is regulated by the clock components BMAL1, NPAS2, and PER2. A mutation in the clock gene Per2 in mice leads to reduced expression and activity of MAOA in the mesolimbic dopaminergic system. Furthermore, we observe increased levels of dopamine and altered neuronal activity in the striatum, and these results probably lead to behavioral alterations observed in Per2 mutant mice in despair-based tests. These findings suggest a role of circadian-clock components in dopamine metabolism highlighting a role of the clock in regulating mood-related behaviors.

  3. A Genome-Wide RNAi Screen for Modifiers of the Circadian Clock in Human Cells

    PubMed Central

    Zhang, Eric E.; Liu, Andrew C.; Hirota, Tsuyoshi; Miraglia, Loren J.; Welch, Genevieve; Pongsawakul, Pagkapol Y.; Liu, Xianzhong; Atwood, Ann; Huss, Jon W.; Janes, Jeff; Su, Andrew I.; Hogenesch, John B.; Kay, Steve A.

    2009-01-01

    Summary Two decades of research identified more than a dozen clock genes and defined a biochemical feedback mechanism of circadian oscillator function. To identify additional clock genes and modifiers, we conducted a genome-wide siRNA screen in a human cellular clock model. Knockdown of nearly a thousand genes reduced rhythm amplitude. Potent effects on period length or increased amplitude were less frequent; we found hundreds of these and confirmed them in secondary screens. Characterization of a subset of these genes demonstrated a dosage-dependent effect on oscillator function. Protein interaction network analysis showed that dozens of gene products directly or indirectly associate with known clock components. Pathway analysis revealed these genes are overrepresented for components of insulin and hedgehog signaling, the cell cycle, and the folate metabolism. Coupled with data showing many of these pathways are clock-regulated, we conclude the clock is interconnected with many aspects of cellular function. PMID:19765810

  4. Pregnancy Suppresses the Daily Rhythmicity of Core Body Temperature and Adipose Metabolic Gene Expression in the Mouse.

    PubMed

    Wharfe, Michaela D; Wyrwoll, Caitlin S; Waddell, Brendan J; Mark, Peter J

    2016-09-01

    Maternal adaptations in lipid metabolism are crucial for pregnancy success due to the role of white adipose tissue as an energy store and the dynamic nature of energy needs across gestation. Because lipid metabolism is regulated by the rhythmic expression of clock genes, it was hypothesized that maternal metabolic adaptations involve changes in both adipose clock gene expression and the rhythmic expression of downstream metabolic genes. Maternal core body temperature (Tc) was investigated as a possible mechanism driving pregnancy-induced changes in clock gene expression. Gonadal adipose tissue and plasma were collected from C57BL/6J mice before and on days 6, 10, 14, and 18 of pregnancy (term 19 d) at 4-hour intervals across a 24-hour period. Adipose expression of clock genes and downstream metabolic genes were determined by quantitative RT-PCR, and Tc was measured by intraperitoneal temperature loggers. Adipose clock gene expression showed robust rhythmicity throughout pregnancy, but absolute levels varied substantially across gestation. Rhythmic expression of the metabolic genes Lipe, Pnpla2, and Lpl was clearly evident before pregnancy; however, this rhythmicity was lost with the onset of pregnancy. Tc rhythm was significantly altered by pregnancy, with a 65% decrease in amplitude by term and a 0.61°C decrease in mesor between days 6 and 18. These changes in Tc, however, did not appear to be linked to adipose clock gene expression across pregnancy. Overall, our data show marked adaptations in the adipose clock in pregnancy, with an apparent decoupling of adipose clock and lipolytic/lipogenic gene rhythms from early in gestation.

  5. Potential Conservation of Circadian Clock Proteins in the phylum Nematoda as Revealed by Bioinformatic Searches

    PubMed Central

    Romanowski, Andrés; Garavaglia, Matías Javier; Goya, María Eugenia; Ghiringhelli, Pablo Daniel; Golombek, Diego Andrés

    2014-01-01

    Although several circadian rhythms have been described in C. elegans, its molecular clock remains elusive. In this work we employed a novel bioinformatic approach, applying probabilistic methodologies, to search for circadian clock proteins of several of the best studied circadian model organisms of different taxa (Mus musculus, Drosophila melanogaster, Neurospora crassa, Arabidopsis thaliana and Synechoccocus elongatus) in the proteomes of C. elegans and other members of the phylum Nematoda. With this approach we found that the Nematoda contain proteins most related to the core and accessory proteins of the insect and mammalian clocks, which provide new insights into the nematode clock and the evolution of the circadian system. PMID:25396739

  6. Potential conservation of circadian clock proteins in the phylum Nematoda as revealed by bioinformatic searches.

    PubMed

    Romanowski, Andrés; Garavaglia, Matías Javier; Goya, María Eugenia; Ghiringhelli, Pablo Daniel; Golombek, Diego Andrés

    2014-01-01

    Although several circadian rhythms have been described in C. elegans, its molecular clock remains elusive. In this work we employed a novel bioinformatic approach, applying probabilistic methodologies, to search for circadian clock proteins of several of the best studied circadian model organisms of different taxa (Mus musculus, Drosophila melanogaster, Neurospora crassa, Arabidopsis thaliana and Synechoccocus elongatus) in the proteomes of C. elegans and other members of the phylum Nematoda. With this approach we found that the Nematoda contain proteins most related to the core and accessory proteins of the insect and mammalian clocks, which provide new insights into the nematode clock and the evolution of the circadian system.

  7. Identification of the Molecular Clockwork of the Oyster Crassostrea gigas

    PubMed Central

    Perrigault, Mickael; Tran, Damien

    2017-01-01

    Molecular clock system constitutes the origin of biological rhythms that allow organisms to anticipate cyclic environmental changes and adapt their behavior and physiology. Components of the molecular clock are largely conserved across a broad range of species but appreciable diversity in clock structure and function is also present especially in invertebrates. The present work aimed at identify and characterize molecular clockwork components in relationship with the monitoring of valve activity behavior in the oyster Crassostrea gigas. Results provided the characterization of most of canonical clock gene including clock, bmal/cycle, period, timeless, vertebrate-type cry, rev-erb, ror as well as other members of the cryptochrome/photolyase family (plant-like cry, 6–4 photolyase). Analyses of transcriptional variations of clock candidates in oysters exposed to light / dark regime and to constant darkness led to the generation of a putative and original clockwork model in C. gigas, intermediate of described systems in vertebrates and insects. This study is the first characterization of a mollusk clockwork. It constitutes essential bases to understand interactions of the different components of the molecular clock in C. gigas as well as the global mechanisms associated to the generation and the synchronization of biological rhythms in oysters. PMID:28072861

  8. An Energy-Aware Runtime Management of Multi-Core Sensory Swarms.

    PubMed

    Kim, Sungchan; Yang, Hoeseok

    2017-08-24

    In sensory swarms, minimizing energy consumption under performance constraint is one of the key objectives. One possible approach to this problem is to monitor application workload that is subject to change at runtime, and to adjust system configuration adaptively to satisfy the performance goal. As today's sensory swarms are usually implemented using multi-core processors with adjustable clock frequency, we propose to monitor the CPU workload periodically and adjust the task-to-core allocation or clock frequency in an energy-efficient way in response to the workload variations. In doing so, we present an online heuristic that determines the most energy-efficient adjustment that satisfies the performance requirement. The proposed method is based on a simple yet effective energy model that is built upon performance prediction using IPC (instructions per cycle) measured online and power equation derived empirically. The use of IPC accounts for memory intensities of a given workload, enabling the accurate prediction of execution time. Hence, the model allows us to rapidly and accurately estimate the effect of the two control knobs, clock frequency adjustment and core allocation. The experiments show that the proposed technique delivers considerable energy saving of up to 45%compared to the state-of-the-art multi-core energy management technique.

  9. An Energy-Aware Runtime Management of Multi-Core Sensory Swarms

    PubMed Central

    Kim, Sungchan

    2017-01-01

    In sensory swarms, minimizing energy consumption under performance constraint is one of the key objectives. One possible approach to this problem is to monitor application workload that is subject to change at runtime, and to adjust system configuration adaptively to satisfy the performance goal. As today’s sensory swarms are usually implemented using multi-core processors with adjustable clock frequency, we propose to monitor the CPU workload periodically and adjust the task-to-core allocation or clock frequency in an energy-efficient way in response to the workload variations. In doing so, we present an online heuristic that determines the most energy-efficient adjustment that satisfies the performance requirement. The proposed method is based on a simple yet effective energy model that is built upon performance prediction using IPC (instructions per cycle) measured online and power equation derived empirically. The use of IPC accounts for memory intensities of a given workload, enabling the accurate prediction of execution time. Hence, the model allows us to rapidly and accurately estimate the effect of the two control knobs, clock frequency adjustment and core allocation. The experiments show that the proposed technique delivers considerable energy saving of up to 45%compared to the state-of-the-art multi-core energy management technique. PMID:28837094

  10. Food-anticipatory activity and liver per1-luc activity in diabetic transgenic rats

    NASA Technical Reports Server (NTRS)

    Davidson, Alec J.; Stokkan, Karl-Arne; Yamazaki, Shin; Menaker, Michael

    2002-01-01

    The mammalian Per1 gene is an important component of the core cellular clock mechanism responsible for circadian rhythms. The rodent liver and other tissues rhythmically express Per1 in vitro but typically damp out within a few cycles. In the liver, the peak of this rhythm occurs in the late subjective night in an ad lib-fed rat, but will show a large phase advance in response to restricted availability of food during the day. The relationship between this shift in the liver clock and food-anticipatory activity (FAA), the circadian behavior entrained by daily feeding, is currently unknown. Insulin is released during feeding in mammals and could serve as an entraining signal to the liver. To test the role of insulin in the shift in liver Per1 expression and the generation of FAA, per-luciferase transgenic rats were made diabetic with a single injection of streptozotocine. Following 1 week of restricted feeding and locomotor activity monitoring, liver was collected for per-luc recording. In two separate experiments, FAA emerged and liver Per1 phase-shifted in response to daytime 8-h food restriction. The results rule out insulin as a necessary component of this system.

  11. Evolutionary divergence of core and post-translational circadian clock genes in the pitcher-plant mosquito, Wyeomyia smithii.

    PubMed

    Tormey, Duncan; Colbourne, John K; Mockaitis, Keithanne; Choi, Jeong-Hyeon; Lopez, Jacqueline; Burkhart, Joshua; Bradshaw, William; Holzapfel, Christina

    2015-10-06

    Internal circadian (circa, about; dies, day) clocks enable organisms to maintain adaptive timing of their daily behavioral activities and physiological functions. Eukaryotic clocks consist of core transcription-translation feedback loops that generate a cycle and post-translational modifiers that maintain that cycle at about 24 h. We use the pitcher-plant mosquito, Wyeomyia smithii (subfamily Culicini, tribe Sabethini), to test whether evolutionary divergence of the circadian clock genes in this species, relative to other insects, has involved primarily genes in the core feedback loops or the post-translational modifiers. Heretofore, there is no reference transcriptome or genome sequence for any mosquito in the tribe Sabethini, which includes over 375 mainly circumtropical species. We sequenced, assembled and annotated the transcriptome of W. smithii containing nearly 95 % of conserved single-copy orthologs in animal genomes. We used the translated contigs and singletons to determine the average rates of circadian clock-gene divergence in W. smithii relative to three other mosquito genera, to Drosophila, to the butterfly, Danaus, and to the wasp, Nasonia. Over 1.08 million cDNA sequence reads were obtained consisting of 432.5 million nucleotides. Their assembly produced 25,904 contigs and 54,418 singletons of which 62 % and 28 % are annotated as protein-coding genes, respectively, sharing homology with other animal proteomes. The W. smithii transcriptome includes all nine circadian transcription-translation feedback-loop genes and all eight post-translational modifier genes we sought to identify (Fig. 1). After aligning translated W. smithii contigs and singletons from this transcriptome with other insects, we determined that there was no significant difference in the average divergence of W. smithii from the six other taxa between the core feedback-loop genes and post-translational modifiers. The characterized transcriptome is sufficiently complete and of sufficient quality to have uncovered all of the insect circadian clock genes we sought to identify (Fig. 1). Relative divergence does not differ between core feedback-loop genes and post-translational modifiers of those genes in a Sabethine species (W. smithii) that has experienced a continual northward dispersal into temperate regions of progressively longer summer day lengths as compared with six other insect taxa. An associated microarray platform derived from this work will enable the investigation of functional genomics of circadian rhythmicity, photoperiodic time measurement, and diapause along a photic and seasonal geographic gradient.

  12. A Time Bomb for Leukemia.

    PubMed

    Maryanovich, Maria; Frenette, Paul S

    2016-04-07

    Alterations of the circadian clock have been linked to cancer development. Puram et al. (in this issue) now uncover differential requirements between healthy hematopoietic and diseased leukemic stem cells for core circadian transcription factors, wherein leukemic cells depend on the clock machinery for survival and growth. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Acute Sleep Loss Induces Tissue-Specific Epigenetic and Transcriptional Alterations to Circadian Clock Genes in Men.

    PubMed

    Cedernaes, Jonathan; Osler, Megan E; Voisin, Sarah; Broman, Jan-Erik; Vogel, Heike; Dickson, Suzanne L; Zierath, Juleen R; Schiöth, Helgi B; Benedict, Christian

    2015-09-01

    Shift workers are at increased risk of metabolic morbidities. Clock genes are known to regulate metabolic processes in peripheral tissues, eg, glucose oxidation. This study aimed to investigate how clock genes are affected at the epigenetic and transcriptional level in peripheral human tissues following acute total sleep deprivation (TSD), mimicking shift work with extended wakefulness. In a randomized, two-period, two-condition, crossover clinical study, 15 healthy men underwent two experimental sessions: x sleep (2230-0700 h) and overnight wakefulness. On the subsequent morning, serum cortisol was measured, followed by skeletal muscle and subcutaneous adipose tissue biopsies for DNA methylation and gene expression analyses of core clock genes (BMAL1, CLOCK, CRY1, PER1). Finally, baseline and 2-h post-oral glucose load plasma glucose concentrations were determined. In adipose tissue, acute sleep deprivation vs sleep increased methylation in the promoter of CRY1 (+4%; P = .026) and in two promoter-interacting enhancer regions of PER1 (+15%; P = .036; +9%; P = .026). In skeletal muscle, TSD vs sleep decreased gene expression of BMAL1 (-18%; P = .033) and CRY1 (-22%; P = .047). Concentrations of serum cortisol, which can reset peripheral tissue clocks, were decreased (2449 ± 932 vs 3178 ± 723 nmol/L; P = .039), whereas postprandial plasma glucose concentrations were elevated after TSD (7.77 ± 1.63 vs 6.59 ± 1.32 mmol/L; P = .011). Our findings demonstrate that a single night of wakefulness can alter the epigenetic and transcriptional profile of core circadian clock genes in key metabolic tissues. Tissue-specific clock alterations could explain why shift work may disrupt metabolic integrity as observed herein.

  14. H2D(+) observations give an age of at least one million years for a cloud core forming Sun-like stars.

    PubMed

    Brünken, Sandra; Sipilä, Olli; Chambers, Edward T; Harju, Jorma; Caselli, Paola; Asvany, Oskar; Honingh, Cornelia E; Kamiński, Tomasz; Menten, Karl M; Stutzki, Jürgen; Schlemmer, Stephan

    2014-12-11

    The age of dense interstellar cloud cores, where stars and planets form, is a crucial parameter in star formation and difficult to measure. Some models predict rapid collapse, whereas others predict timescales of more than one million years (ref. 3). One possible approach to determining the age is through chemical changes as cloud contraction occurs, in particular through indirect measurements of the ratio of the two spin isomers (ortho/para) of molecular hydrogen, H2, which decreases monotonically with age. This has been done for the dense cloud core L183, for which the deuterium fractionation of diazenylium (N2H(+)) was used as a chemical clock to infer that the core has contracted rapidly (on a timescale of less than 700,000 years). Among astronomically observable molecules, the spin isomers of the deuterated trihydrogen cation, ortho-H2D(+) and para-H2D(+), have the most direct chemical connections to H2 (refs 8, 9, 10, 11, 12) and their abundance ratio provides a chemical clock that is sensitive to greater cloud core ages. So far this ratio has not been determined because para-H2D(+) is very difficult to observe. The detection of its rotational ground-state line has only now become possible thanks to accurate measurements of its transition frequency in the laboratory, and recent progress in instrumentation technology. Here we report observations of ortho- and para-H2D(+) emission and absorption, respectively, from the dense cloud core hosting IRAS 16293-2422 A/B, a group of nascent solar-type stars (with ages of less than 100,000 years). Using the ortho/para ratio in conjunction with chemical models, we find that the dense core has been chemically processed for at least one million years. The apparent discrepancy with the earlier N2H(+) work arises because that chemical clock turns off sooner than the H2D(+) clock, but both results imply that star-forming dense cores have ages of about one million years, rather than 100,000 years.

  15. period -1 encodes an ATP-dependent RNA helicase that influences nutritional compensation of the Neurospora circadian clock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emerson, Jillian M.; Bartholomai, Bradley M.; Ringelberg, Carol S.

    Mutants in the period-1 (prd-1) gene, characterized by a recessive allele, display a reduced growth rate and period lengthening of the developmental cycle controlled by the circadian clock. We refined the genetic location of prd-1 and used whole genome sequencing to find the mutation defining it, confirming the identity of prd-1 by rescuing the mutant circadian phenotype via transformation. PRD-1 is an RNA helicase whose orthologs, DDX5 and DDX17 in humans and Dbp2p in yeast, are implicated in various processes including transcriptional regulation, elongation, and termination, 23 ribosome biogenesis, and RNA decay. Although prdi-1smutantssiois an ATP-dependent RNA helicase, member ofmore » a sub-family display a long period (~25 hrs) circadian developmental cycle, they interestingly display a wild type period when the core circadian oscillator is tracked using a frq-luciferase transcriptional fusion under conditions of limiting nutritional carbon; the core oscillator runs with a long period under glucose-sufficient conditions. Thus PRD-1 clearly impacts the circadian oscillator and is not only part of a metabolic oscillator ancillary to the core clock. PRD-1 is an essential protein and its expression is neither light-regulated nor clock-regulated. However, it is transiently induced by glucose; in the presence of sufficient glucose PRD-1 is in the nucleus until glucose runs out which elicits its disappearance from the nucleus. Because circadian period length is carbon concentration-dependent, prd­-1 may be formally viewed as clock mutant with defective nutritional compensation of circadian period length.« less

  16. period -1 encodes an ATP-dependent RNA helicase that influences nutritional compensation of the Neurospora circadian clock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emerson, Jillian M.; Bartholomai, Bradley M.; Ringelberg, Carol S.

    2015-12-08

    Mutants in the period-1 (prd-1) gene, characterized by a recessive allele, display a reduced growth rate and period lengthening of the developmental cycle controlled by the circadian clock. We refined the genetic location of prd-1 and used whole genome sequencing to find the mutation defining it, confirming the identity of prd-1 by rescuing the mutant circadian phenotype via transformation. PRD-1 is an RNA helicase whose orthologs, DDX5 and DDX17 in humans and Dbp2p in yeast, are implicated in various processes including transcriptional regulation, elongation, and termination, 23 ribosome biogenesis, and RNA decay. Although prdi-1smutantssiois an ATP-dependent RNA helicase, member ofmore » a sub-family display a long period (~25 hrs) circadian developmental cycle, they interestingly display a wild type period when the core circadian oscillator is tracked using a frq-luciferase transcriptional fusion under conditions of limiting nutritional carbon; the core oscillator runs with a long period under glucose-sufficient conditions. Thus PRD-1 clearly impacts the circadian oscillator and is not only part of a metabolic oscillator ancillary to the core clock. PRD-1 is an essential protein and its expression is neither light-regulated nor clock-regulated. However, it is transiently induced by glucose; in the presence of sufficient glucose PRD-1 is in the nucleus until glucose runs out which elicits its disappearance from the nucleus. Because circadian period length is carbon concentration-dependent, prd­-1 may be formally viewed as clock mutant with defective nutritional compensation of circadian period length.« less

  17. Clock Technology Development in the Laser Cooling and Atomic Physics (LCAP) Program

    NASA Technical Reports Server (NTRS)

    Seidel, Dave; Thompson, R. J.; Klipstein, W. M.; Kohel, J.; Maleki, L.

    2000-01-01

    This paper presents the Laser Cooling and Atomic Physics (LCAP) program. It focuses on clock technology development. The topics include: 1) Overview of LCAP Flight Projects; 2) Space Clock 101; 3) Physics with Clocks in microgravity; 4) Space Clock Challenges; 5) LCAP Timeline; 6) International Space Station (ISS) Science Platforms; 7) ISS Express Rack; 8) Space Qualification of Components; 9) Laser Configuration; 10) Clock Rate Comparisons: GPS Carrier Phase Frequency Transfer; and 11) ISS Model Views. This paper is presented in viewgraph form.

  18. CLOCK gene variation is associated with incidence of type-2 diabetes and cardiovascular diseases in type-2 diabetic subjects: dietary modulation in the PREDIMED randomized trial.

    PubMed

    Corella, Dolores; Asensio, Eva M; Coltell, Oscar; Sorlí, José V; Estruch, Ramón; Martínez-González, Miguel Ángel; Salas-Salvadó, Jordi; Castañer, Olga; Arós, Fernando; Lapetra, José; Serra-Majem, Lluís; Gómez-Gracia, Enrique; Ortega-Azorín, Carolina; Fiol, Miquel; Espino, Javier Díez; Díaz-López, Andrés; Fitó, Montserrat; Ros, Emilio; Ordovás, José M

    2016-01-07

    Circadian rhythms regulate key biological processes influencing metabolic pathways. Disregulation is associated with type 2 diabetes (T2D) and cardiovascular diseases (CVD). Circadian rhythms are generated by a transcriptional autoregulatory feedback loop involving core clock genes. CLOCK (circadian locomotor output cycles protein kaput), one of those core genes, is known to regulate glucose metabolism in rodent models. Cross-sectional studies in humans have reported associations between this locus and obesity, plasma glucose, hypertension and T2D prevalence, supporting its role in cardiovascular risk. However, no longitudinal study has investigated the association between CLOCK gene variation and T2D or CVD incidence. Moreover, although in a previous work we detected a gene-diet interaction between the CLOCK-rs4580704 (C > G) single nucleotide polymorphism (SNP) and monounsaturated (MUFA) intake on insulin resistance, no interventional study has analyzed gene-diet interactions on T2D or CVD outcomes. We analyzed the association between the CLOCK-rs4580704 SNP and incidence of T2D and CVD longitudinally in 7098 PREDIMED trial (ISRCTN35739639) participants after a median 4.8-year follow-up. We also examined modulation by Mediterranean diet (MedDiet) intervention (high in MUFA) on these associations. We observed a significant association between the CLOCK-rs4580704 SNP and T2D incidence in n = 3671 non-T2D PREDIMED participants, with variant allele (G) carriers showing decreased incidence (dominant model) compared with CC homozygotes (HR: 0.69; 95 % CI 0.54-0.87; P = 0.002). This protection was more significant in the MedDiet intervention group (HR: 0.58; 95 % CI 0.43-0.78; P < 0.001) than in the control group (HR: 0.95; 95 % CI 0.63-1.44; P = 0.818). Moreover, we detected a statistically significant interaction (P = 0.018) between CLOCK-rs4580704 SNP and T2D status on stroke. Thus, only in T2D subjects was CLOCK-rs4580704 SNP associated with stroke risk, G-carriers having decreased risk (HR: 0.61; 95 % CI 0.40-0.94; P = 0.024 versus CC) in the multivariable-adjusted model. In agreement with our previous results showing a protective effect of the G-allele against hyperglycemia, we extended our findings by reporting a novel association with lower T2D incidence and also suggesting a dietary modulation. Moreover, we report for the first time an association between a CLOCK polymorphism and stroke in T2D subjects, suggesting that core clock genes may significantly contribute to increased CVD risk in T2D.

  19. Circadian oscillatory transcriptional programs in grapevine ripening fruits

    PubMed Central

    2014-01-01

    Background Temperature and solar radiation influence Vitis vinifera L. berry ripening. Both environmental conditions fluctuate cyclically on a daily period basis and the strength of this fluctuation affects grape ripening too. Additionally, a molecular circadian clock regulates daily cyclic expression in a large proportion of the plant transcriptome modulating multiple developmental processes in diverse plant organs and developmental phases. Circadian cycling of fruit transcriptomes has not been characterized in detail despite their putative relevance in the final composition of the fruit. Thus, in this study, gene expression throughout 24 h periods in pre-ripe berries of Tempranillo and Verdejo grapevine cultivars was followed to determine whether different ripening transcriptional programs are activated during certain times of day in different grape tissues and genotypes. Results Microarray analyses identified oscillatory transcriptional profiles following circadian variations in the photocycle and the thermocycle. A higher number of expression oscillating transcripts were detected in samples carrying exocarp tissue including biotic stress-responsive transcripts activated around dawn. Thermotolerance-like responses and regulation of circadian clock-related genes were observed in all studied samples. Indeed, homologs of core clock genes were identified in the grapevine genome and, among them, VvREVEILLE1 (VvRVE1), showed a consistent circadian expression rhythm in every grape berry tissue analysed. Light signalling components and terpenoid biosynthetic transcripts were specifically induced during the daytime in Verdejo, a cultivar bearing white-skinned and aromatic berries, whereas transcripts involved in phenylpropanoid biosynthesis were more prominently regulated in Tempranillo, a cultivar bearing black-skinned berries. Conclusions The transcriptome of ripening fruits varies in response to daily environmental changes, which might partially be under the control of circadian clock components. Certain cultivar and berry tissue features could rely on specific circadian oscillatory expression profiles. These findings may help to a better understanding of the progress of berry ripening in short term time scales. PMID:24666982

  20. Genetic Disruption of the Core Circadian Clock Impairs Hippocampus-Dependent Memory

    ERIC Educational Resources Information Center

    Wardlaw, Sarah M.; Phan, Trongha X.; Saraf, Amit; Chen, Xuanmao; Storm, Daniel R.

    2014-01-01

    Perturbing the circadian system by electrolytically lesioning the suprachiasmatic nucleus (SCN) or varying the environmental light:dark schedule impairs memory, suggesting that memory depends on the circadian system. We used a genetic approach to evaluate the role of the molecular clock in memory. Bmal1[superscript -/-] mice, which are arrhythmic…

  1. Barley (Hordeum vulgare) circadian clock genes can respond rapidly to temperature in an EARLY FLOWERING 3-dependent manner

    PubMed Central

    Ford, Brett; Deng, Weiwei; Clausen, Jenni; Oliver, Sandra; Boden, Scott; Hemming, Megan; Trevaskis, Ben

    2016-01-01

    An increase in global temperatures will impact future crop yields. In the cereal crops wheat and barley, high temperatures accelerate reproductive development, reducing the number of grains per plant and final grain yield. Despite this relationship between temperature and cereal yield, it is not clear what genes and molecular pathways mediate the developmental response to increased temperatures. The plant circadian clock can respond to changes in temperature and is important for photoperiod-dependent flowering, and so is a potential mechanism controlling temperature responses in cereal crops. This study examines the relationship between temperature, the circadian clock, and the expression of flowering-time genes in barley (Hordeum vulgare), a crop model for temperate cereals. Transcript levels of barley core circadian clock genes were assayed over a range of temperatures. Transcript levels of core clock genes CCA1, GI, PRR59, PRR73, PRR95, and LUX are increased at higher temperatures. CCA1 and PRR73 respond rapidly to a decrease in temperature whereas GI and PRR59 respond rapidly to an increase in temperature. The response of GI and the PRR genes to changes in temperature is lost in the elf3 mutant indicating that their response to temperature may be dependent on a functional ELF3 gene. PMID:27580625

  2. Spatial gradients of protein-level time delays set the pace of the traveling segmentation clock waves

    PubMed Central

    Ay, Ahmet; Holland, Jack; Sperlea, Adriana; Devakanmalai, Gnanapackiam Sheela; Knierer, Stephan; Sangervasi, Sebastian; Stevenson, Angel; Özbudak, Ertuğrul M.

    2014-01-01

    The vertebrate segmentation clock is a gene expression oscillator controlling rhythmic segmentation of the vertebral column during embryonic development. The period of oscillations becomes longer as cells are displaced along the posterior to anterior axis, which results in traveling waves of clock gene expression sweeping in the unsegmented tissue. Although various hypotheses necessitating the inclusion of additional regulatory genes into the core clock network at different spatial locations have been proposed, the mechanism underlying traveling waves has remained elusive. Here, we combined molecular-level computational modeling and quantitative experimentation to solve this puzzle. Our model predicts the existence of an increasing gradient of gene expression time delays along the posterior to anterior direction to recapitulate spatiotemporal profiles of the traveling segmentation clock waves in different genetic backgrounds in zebrafish. We validated this prediction by measuring an increased time delay of oscillatory Her1 protein production along the unsegmented tissue. Our results refuted the need for spatial expansion of the core feedback loop to explain the occurrence of traveling waves. Spatial regulation of gene expression time delays is a novel way of creating dynamic patterns; this is the first report demonstrating such a control mechanism in any tissue and future investigations will explore the presence of analogous examples in other biological systems. PMID:25336742

  3. Regulatory principles and experimental approaches to the circadian control of starch turnover

    PubMed Central

    Seaton, Daniel D.; Ebenhöh, Oliver; Millar, Andrew J.; Pokhilko, Alexandra

    2014-01-01

    In many plants, starch is synthesized during the day and degraded during the night to avoid carbohydrate starvation in darkness. The circadian clock participates in a dynamic adjustment of starch turnover to changing environmental condition through unknown mechanisms. We used mathematical modelling to explore the possible scenarios for the control of starch turnover by the molecular components of the plant circadian clock. Several classes of plausible models were capable of describing the starch dynamics observed in a range of clock mutant plants and light conditions, including discriminating circadian protocols. Three example models of these classes are studied in detail, differing in several important ways. First, the clock components directly responsible for regulating starch degradation are different in each model. Second, the intermediate species in the pathway may play either an activating or inhibiting role on starch degradation. Third, the system may include a light-dependent interaction between the clock and downstream processes. Finally, the clock may be involved in the regulation of starch synthesis. We discuss the differences among the models’ predictions for diel starch profiles and the properties of the circadian regulators. These suggest additional experiments to elucidate the pathway structure, avoid confounding results and identify the molecular components involved. PMID:24335560

  4. Astrocyte deletion of Bmal1 alters daily locomotor activity and cognitive functions via GABA signalling

    PubMed Central

    Barca-Mayo, Olga; Pons-Espinal, Meritxell; Follert, Philipp; Armirotti, Andrea; Berdondini, Luca; De Pietri Tonelli, Davide

    2017-01-01

    Circadian rhythms are controlled by a network of clock neurons in the central pacemaker, the suprachiasmatic nucleus (SCN). Core clock genes, such as Bmal1, are expressed in SCN neurons and in other brain cells, such as astrocytes. However, the role of astrocytic clock genes in controlling rhythmic behaviour is unknown. Here we show that ablation of Bmal1 in GLAST-positive astrocytes alters circadian locomotor behaviour and cognition in mice. Specifically, deletion of astrocytic Bmal1 has an impact on the neuronal clock through GABA signalling. Importantly, pharmacological modulation of GABAA-receptor signalling completely rescues the behavioural phenotypes. Our results reveal a crucial role of astrocytic Bmal1 for the coordination of neuronal clocks and propose a new cellular target, astrocytes, for neuropharmacology of transient or chronic perturbation of circadian rhythms, where alteration of astrocytic clock genes might contribute to the impairment of the neurobehavioural outputs such as cognition. PMID:28186121

  5. Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration

    PubMed Central

    Musiek, Erik S.; Lim, Miranda M.; Yang, Guangrui; Bauer, Adam Q.; Qi, Laura; Lee, Yool; Roh, Jee Hoon; Ortiz-Gonzalez, Xilma; Dearborn, Joshua T.; Culver, Joseph P.; Herzog, Erik D.; Hogenesch, John B.; Wozniak, David F.; Dikranian, Krikor; Giasson, Benoit I.; Weaver, David R.; Holtzman, David M.; FitzGerald, Garret A.

    2013-01-01

    Brain aging is associated with diminished circadian clock output and decreased expression of the core clock proteins, which regulate many aspects of cellular biochemistry and metabolism. The genes encoding clock proteins are expressed throughout the brain, though it is unknown whether these proteins modulate brain homeostasis. We observed that deletion of circadian clock transcriptional activators aryl hydrocarbon receptor nuclear translocator–like (Bmal1) alone, or circadian locomotor output cycles kaput (Clock) in combination with neuronal PAS domain protein 2 (Npas2), induced severe age-dependent astrogliosis in the cortex and hippocampus. Mice lacking the clock gene repressors period circadian clock 1 (Per1) and period circadian clock 2 (Per2) had no observed astrogliosis. Bmal1 deletion caused the degeneration of synaptic terminals and impaired cortical functional connectivity, as well as neuronal oxidative damage and impaired expression of several redox defense genes. Targeted deletion of Bmal1 in neurons and glia caused similar neuropathology, despite the retention of intact circadian behavioral and sleep-wake rhythms. Reduction of Bmal1 expression promoted neuronal death in primary cultures and in mice treated with a chemical inducer of oxidative injury and striatal neurodegeneration. Our findings indicate that BMAL1 in a complex with CLOCK or NPAS2 regulates cerebral redox homeostasis and connects impaired clock gene function to neurodegeneration. PMID:24270424

  6. Diel pattern of circadian clock and storage protein gene expression in leaves and during seed filling in cowpea (Vigna unguiculata).

    PubMed

    Weiss, Julia; Terry, Marta I; Martos-Fuentes, Marina; Letourneux, Lisa; Ruiz-Hernández, Victoria; Fernández, Juan A; Egea-Cortines, Marcos

    2018-02-14

    Cowpea (Vigna unguiculata) is an important source of protein supply for animal and human nutrition. The major storage globulins VICILIN and LEGUMIN (LEG) are synthesized from several genes including LEGA, LEGB, LEGJ and CVC (CONVICILIN). The current hypothesis is that the plant circadian core clock genes are conserved in a wide array of species and that primary metabolism is to a large extent controlled by the plant circadian clock. Our aim was to investigate a possible link between gene expression of storage proteins and the circadian clock. We identified cowpea orthologues of the core clock genes VunLHY, VunTOC1, VunGI and VunELF3, the protein storage genes VunLEG, VunLEGJ, and VunCVC as well as nine candidate reference genes used in RT-PCR. ELONGATION FACTOR 1-A (ELF1A) resulted the most suitable reference gene. The clock genes VunELF3, VunGI, VunTOC1 and VunLHY showed a rhythmic expression profile in leaves with a typical evening/night and morning/midday phased expression. The diel patterns were not completely robust and only VungGI and VungELF3 retained a rhythmic pattern under free running conditions of darkness. Under field conditions, rhythmicity and phasing apparently faded during early pod and seed development and was regained in ripening pods for VunTOC1 and VunLHY. Mature seeds showed a rhythmic expression of VunGI resembling leaf tissue under controlled growth chamber conditions. Comparing time windows during developmental stages we found that VunCVC and VunLEG were significantly down regulated during the night in mature pods as compared to intermediate ripe pods, while changes in seeds were non-significant due to high variance. The rhythmic expression under field conditions was lost under growth chamber conditions. The core clock gene network is conserved in cowpea leaves showing a robust diel expression pattern except VunELF3 under growth chamber conditions. There appears to be a clock transcriptional reprogramming in pods and seeds compared to leaves. Storage protein deposition may be circadian regulated under field conditions but the strong environmental signals are not met under artificial growth conditions. Diel expression pattern in field conditions may result in better usage of energy for protein storage.

  7. period -1 encodes an ATP-dependent RNA helicase that influences nutritional compensation of the Neurospora circadian clock

    DOE PAGES

    Emerson, Jillian M.; Bartholomai, Bradley M.; Ringelberg, Carol S.; ...

    2015-12-08

    Mutants in the period-1 ( prd­-1) gene, characterized by a recessive allele, display a reduced growth rate and period lengthening of the developmental cycle controlled by the circadian clock. We refined the genetic location of prd­-1 and used whole genome sequencing to find the mutation defining it, confirming the identity of prd­-1 by rescuing the mutant circadian phenotype via transformation. PRD-1 is an RNA helicase whose orthologs, DDX5 and DDX17 in humans and Dbp2p in yeast, are implicated in various processes including transcriptional regulation, elongation, and termination, 23 ribosome biogenesis, and RNA decay. Although prd­-1smutantssiois an ATP-dependent RNA helicase, membermore » of a sub-family display a long period (~25 hrs) circadian developmental cycle, they interestingly display a wild type period when the core circadian oscillator is tracked using a frq-luciferase transcriptional fusion under conditions of limiting nutritional carbon; the core oscillator runs with a long period under glucose-sufficient conditions. Furthermore PRD-1 clearly impacts the circadian oscillator and is not only part of a metabolic oscillator ancillary to the core clock. PRD-1 is an essential protein and its expression is neither light-regulated nor clock-regulated. However, it is transiently induced by glucose; in the presence of sufficient glucose PRD-1 is in the nucleus until glucose runs out which elicits its disappearance from the nucleus. Because circadian period length is carbon concentration-dependent, prd­-1 may be formally viewed as clock mutant with defective nutritional compensation of circadian period length.« less

  8. Clock jitter generator with picoseconds resolution

    NASA Astrophysics Data System (ADS)

    Jovanović, Goran; Stojčev, Mile; Nikolić, Tatjana

    2013-06-01

    The clock is one of the most critical signals in any synchronous system. As CMOS technology has scaled, supply voltages have dropped chip power consumption has increased and the effects of jitter due to clock frequency increase have become critical and jitter budget has become tighter. This article describes design and development of low-cost mixed-signal programmable jitter generator with high resolution. The digital technique is used for coarse-grain and an analogue technique for fine-grain clock phase shifting. Its structure allows injection of various random and deterministic jitter components in a controllable and programmable fashion. Each jitter component can be switched on or off. The jitter generator can be used in jitter tolerance test and jitter transfer function measurement of high-speed synchronous digital circuits. At operating system clock frequency of 220 MHz, a jitter with 4 ps resolution can be injected.

  9. Reciprocal interactions between circadian clocks and aging.

    PubMed

    Banks, Gareth; Nolan, Patrick M; Peirson, Stuart N

    2016-08-01

    Virtually, all biological processes in the body are modulated by an internal circadian clock which optimizes physiological and behavioral performance according to the changing demands of the external 24-h world. This circadian clock undergoes a number of age-related changes, at both the physiological and molecular levels. While these changes have been considered to be part of the normal aging process, there is increasing evidence that disruptions to the circadian system can substantially impact upon aging and these impacts will have clear health implications. Here we review the current data of how both the physiological and core molecular clocks change with age and how feedback from external cues may modulate the aging of the circadian system.

  10. Clock is not a component of Z-bands.

    PubMed

    Wang, Jushuo; Dube, Dipak K; White, Jennifer; Fan, Yingli; Sanger, Jean M; Sanger, Joseph W

    2012-12-01

    The process of Z-band assembly begins with the formation of small Z-bodies composed of a complex of proteins rich in alpha-actinin. As additional proteins are added to nascent myofibrils, Z-bodies are transformed into continuous bands that form coherent discs of interacting proteins at the boundaries of sarcomeres. The steps controlling the transition of Z-bodies to Z-bands are not known. The report that a circadian protein, Clock, was localized in the Z-bands of neonatal rat cardiomyocytes raised the question whether this transcription factor could be involved in Z-band assembly. We found that the anti-Clock antibody used in the reported study also stained the Z-bands and Z-bodies of mouse and avian cardiac and skeletal muscle cells. YFP constructs of Clock that were assembled, however, did not localize to the Z-bands of muscle cells. Controls of Clock's activity showed that cotransfection of muscle cells with pYFP-Clock and pCeFP-BMAL1 led to the expected nuclear localization of YFP-Clock with its binding partner CeFP-BMAL1. Neither CeFP-BMAL1 nor antibodies directed against BMAL1 localized to Z-bands. A bimolecular fluorescence complementation assay (VC-BMAL1 and VN-Clock) confirmed the absence of Clock and BMAL1 from Z-bands, and their nuclear colocalization. A second anti-Clock antibody stained nuclei, but not Z-bands, of cells cotransfected with Clock and BMAL1 plasmids. Western blots of reactions of muscle extracts and purified alpha-actinins with the two anti-Clock antibodies showed that the original antibody cross-reacted with alpha-actinin and the second did not. These results cannot confirm Clock as an active component of Z-bands. © 2012 Wiley Periodicals, Inc. Copyright © 2012 Wiley Periodicals, Inc.

  11. Type II protein arginine methyltransferase 5 (PRMT5) is required for circadian period determination in Arabidopsis thaliana.

    PubMed

    Hong, Sunghyun; Song, Hae-Ryong; Lutz, Kerry; Kerstetter, Randall A; Michael, Todd P; McClung, C Robertson

    2010-12-07

    Posttranslational modification is an important element in circadian clock function from cyanobacteria through plants and mammals. For example, a number of key clock components are phosphorylated and thereby marked for subsequent ubiquitination and degradation. Through forward genetic analysis we demonstrate that protein arginine methyltransferase 5 (PRMT5; At4g31120) is a critical determinant of circadian period in Arabidopsis. PRMT5 is coregulated with a set of 1,253 genes that shows alterations in phase of expression in response to entrainment to thermocycles versus photocycles in constant temperature. PRMT5 encodes a type II protein arginine methyltransferase that catalyzes the symmetric dimethylation of arginine residues (Rsme2). Rsme2 modification has been observed in many taxa, and targets include histones, components of the transcription complex, and components of the spliceosome. Neither arginine methylation nor PRMT5 has been implicated previously in circadian clock function, but the period lengthening associated with mutational disruption of prmt5 indicates that Rsme2 is a decoration important for the Arabidopsis clock and possibly for clocks in general.

  12. Type II protein arginine methyltransferase 5 (PRMT5) is required for circadian period determination in Arabidopsis thaliana

    PubMed Central

    Hong, Sunghyun; Lutz, Kerry; Kerstetter, Randall A.; Michael, Todd P.; McClung, C. Robertson

    2010-01-01

    Posttranslational modification is an important element in circadian clock function from cyanobacteria through plants and mammals. For example, a number of key clock components are phosphorylated and thereby marked for subsequent ubiquitination and degradation. Through forward genetic analysis we demonstrate that protein arginine methyltransferase 5 (PRMT5; At4g31120) is a critical determinant of circadian period in Arabidopsis. PRMT5 is coregulated with a set of 1,253 genes that shows alterations in phase of expression in response to entrainment to thermocycles versus photocycles in constant temperature. PRMT5 encodes a type II protein arginine methyltransferase that catalyzes the symmetric dimethylation of arginine residues (Rsme2). Rsme2 modification has been observed in many taxa, and targets include histones, components of the transcription complex, and components of the spliceosome. Neither arginine methylation nor PRMT5 has been implicated previously in circadian clock function, but the period lengthening associated with mutational disruption of prmt5 indicates that Rsme2 is a decoration important for the Arabidopsis clock and possibly for clocks in general. PMID:21097700

  13. P-CSI v1.0, an accelerated barotropic solver for the high-resolution ocean model component in the Community Earth System Model v2.0

    NASA Astrophysics Data System (ADS)

    Huang, Xiaomeng; Tang, Qiang; Tseng, Yuheng; Hu, Yong; Baker, Allison H.; Bryan, Frank O.; Dennis, John; Fu, Haohuan; Yang, Guangwen

    2016-11-01

    In the Community Earth System Model (CESM), the ocean model is computationally expensive for high-resolution grids and is often the least scalable component for high-resolution production experiments. The major bottleneck is that the barotropic solver scales poorly at high core counts. We design a new barotropic solver to accelerate the high-resolution ocean simulation. The novel solver adopts a Chebyshev-type iterative method to reduce the global communication cost in conjunction with an effective block preconditioner to further reduce the iterations. The algorithm and its computational complexity are theoretically analyzed and compared with other existing methods. We confirm the significant reduction of the global communication time with a competitive convergence rate using a series of idealized tests. Numerical experiments using the CESM 0.1° global ocean model show that the proposed approach results in a factor of 1.7 speed-up over the original method with no loss of accuracy, achieving 10.5 simulated years per wall-clock day on 16 875 cores.

  14. Rapid attenuation of circadian clock gene oscillations in the rat heart following ischemia-reperfusion

    USDA-ARS?s Scientific Manuscript database

    The intracellular circadian clock consists of a series of transcriptional modulators that together allow the cell to perceive the time of day. Circadian clocks have been identified within various components of the cardiovascular system (e.g., cardiomyocytes, vascular smooth muscle cells) and possess...

  15. The light-induced transcriptome of the zebrafish pineal gland reveals complex regulation of the circadian clockwork by light

    PubMed Central

    Ben-Moshe, Zohar; Alon, Shahar; Mracek, Philipp; Faigenbloom, Lior; Tovin, Adi; Vatine, Gad D.; Eisenberg, Eli; Foulkes, Nicholas S.; Gothilf, Yoav

    2014-01-01

    Light constitutes a primary signal whereby endogenous circadian clocks are synchronized (‘entrained’) with the day/night cycle. The molecular mechanisms underlying this vital process are known to require gene activation, yet are incompletely understood. Here, the light-induced transcriptome in the zebrafish central clock organ, the pineal gland, was characterized by messenger RNA (mRNA) sequencing (mRNA-seq) and microarray analyses, resulting in the identification of multiple light-induced mRNAs. Interestingly, a considerable portion of the molecular clock (14 genes) is light-induced in the pineal gland. Four of these genes, encoding the transcription factors dec1, reverbb1, e4bp4-5 and e4bp4-6, differentially affected clock- and light-regulated promoter activation, suggesting that light-input is conveyed to the core clock machinery via diverse mechanisms. Moreover, we show that dec1, as well as the core clock gene per2, is essential for light-entrainment of rhythmic locomotor activity in zebrafish larvae. Additionally, we used microRNA (miRNA) sequencing (miR-seq) and identified pineal-enhanced and light-induced miRNAs. One such miRNA, miR-183, is shown to downregulate e4bp4-6 mRNA through a 3′UTR target site, and importantly, to regulate the rhythmic mRNA levels of aanat2, the key enzyme in melatonin synthesis. Together, this genome-wide approach and functional characterization of light-induced factors indicate a multi-level regulation of the circadian clockwork by light. PMID:24423866

  16. Suppressing the Neurospora crassa circadian clock while maintaining light responsiveness in continuous stirred tank reactors

    PubMed Central

    Cockrell, Allison L.; Pirlo, Russell K.; Babson, David M.; Cusick, Kathleen D.; Soto, Carissa M.; Petersen, Emily R.; Davis, Miah J.; Hong, Christian I.; Lee, Kwangwon; Fitzgerald, Lisa A.; Biffinger, Justin C.

    2015-01-01

    Neurospora crassa has been utilized as a model organism for studying biological, regulatory, and circadian rhythms for over 50 years. These circadian cycles are driven at the molecular level by gene transcription events to prepare for environmental changes. N. crassa is typically found on woody biomass and is commonly studied on agar-containing medium which mimics its natural environment. We report a novel method for disrupting circadian gene transcription while maintaining light responsiveness in N. crassa when held in a steady metabolic state using bioreactors. The arrhythmic transcription of core circadian genes and downstream clock-controlled genes was observed in constant darkness (DD) as determined by reverse transcription-quantitative PCR (RT-qPCR). Nearly all core circadian clock genes were up-regulated upon exposure to light during 11hr light/dark cycle experiments under identical conditions. Our results demonstrate that the natural timing of the robust circadian clock in N. crassa can be disrupted in the dark when maintained in a consistent metabolic state. Thus, these data lead to a path for the production of industrial scale enzymes in the model system, N. crassa, by removing the endogenous negative feedback regulation by the circadian oscillator. PMID:26031221

  17. Circadian clock proteins and immunity.

    PubMed

    Curtis, Anne M; Bellet, Marina M; Sassone-Corsi, Paolo; O'Neill, Luke A J

    2014-02-20

    Immune parameters change with time of day and disruption of circadian rhythms has been linked to inflammatory pathologies. A circadian-clock-controlled immune system might allow an organism to anticipate daily changes in activity and feeding and the associated risk of infection or tissue damage to the host. Responses to bacteria have been shown to vary depending on time of infection, with mice being more at risk of sepsis when challenged ahead of their activity phase. Studies highlight the extent to which the molecular clock, most notably the core clock proteins BMAL1, CLOCK, and REV-ERBα, control fundamental aspects of the immune response. Examples include the BMAL1:CLOCK heterodimer regulating toll-like receptor 9 (TLR9) expression and repressing expression of the inflammatory monocyte chemokine ligand (CCL2) as well as REV-ERBα suppressing the induction of interleukin-6. Understanding the daily rhythm of the immune system could have implications for vaccinations and how we manage infectious and inflammatory diseases. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Circadian clock-deficient mice as a tool for exploring disease etiology.

    PubMed

    Doi, Masao

    2012-01-01

    One of the most significant conceptual changes brought about by the analysis of circadian clock-deficient mice is that abnormalities in the circadian clock are linked not only to sleep arousal disorder but also to a wide variety of common diseases, including hypertension, diabetes, obesity, and cancer. It has recently been shown that the disruption of the two cryptochrome genes Cry1 and Cry2-core elements of the circadian clock-induces salt-dependent hypertension due to abnormally high synthesis of the mineralocorticoid aldosterone by the adrenal gland. This adrenal disorder occurs as a result of increased expression of Hsd3b6, a newly identified steroidogenic enzyme that regulates aldosterone production within the adrenal zona glomerular cells. Importantly, this enzyme is functionally conserved in humans, and the pathophysiologic condition of human idiopathic hyperaldosteronism resembles that of Cry1/2-deficient mice. This review highlights the potential utility of circadian clock-deficient mice as a tool for exploring hitherto unknown disease etiology linked to the circadian clock.

  19. The cyanobacterial circadian clock follows midday in vivo and in vitro

    PubMed Central

    Leypunskiy, Eugene; Lin, Jenny; Yoo, Haneul; Lee, UnJin; Dinner, Aaron R; Rust, Michael J

    2017-01-01

    Circadian rhythms are biological oscillations that schedule daily changes in physiology. Outside the laboratory, circadian clocks do not generally free-run but are driven by daily cues whose timing varies with the seasons. The principles that determine how circadian clocks align to these external cycles are not well understood. Here, we report experimental platforms for driving the cyanobacterial circadian clock both in vivo and in vitro. We find that the phase of the circadian rhythm follows a simple scaling law in light-dark cycles, tracking midday across conditions with variable day length. The core biochemical oscillator comprised of the Kai proteins behaves similarly when driven by metabolic pulses in vitro, indicating that such dynamics are intrinsic to these proteins. We develop a general mathematical framework based on instantaneous transformation of the clock cycle by external cues, which successfully predicts clock behavior under many cycling environments. DOI: http://dx.doi.org/10.7554/eLife.23539.001 PMID:28686160

  20. Redox rhythm reinforces the circadian clock to gate immune response.

    PubMed

    Zhou, Mian; Wang, Wei; Karapetyan, Sargis; Mwimba, Musoki; Marqués, Jorge; Buchler, Nicolas E; Dong, Xinnian

    2015-07-23

    Recent studies have shown that in addition to the transcriptional circadian clock, many organisms, including Arabidopsis, have a circadian redox rhythm driven by the organism's metabolic activities. It has been hypothesized that the redox rhythm is linked to the circadian clock, but the mechanism and the biological significance of this link have only begun to be investigated. Here we report that the master immune regulator NPR1 (non-expressor of pathogenesis-related gene 1) of Arabidopsis is a sensor of the plant's redox state and regulates transcription of core circadian clock genes even in the absence of pathogen challenge. Surprisingly, acute perturbation in the redox status triggered by the immune signal salicylic acid does not compromise the circadian clock but rather leads to its reinforcement. Mathematical modelling and subsequent experiments show that NPR1 reinforces the circadian clock without changing the period by regulating both the morning and the evening clock genes. This balanced network architecture helps plants gate their immune responses towards the morning and minimize costs on growth at night. Our study demonstrates how a sensitive redox rhythm interacts with a robust circadian clock to ensure proper responsiveness to environmental stimuli without compromising fitness of the organism.

  1. A Role for Timely Nuclear Translocation of Clock Repressor Proteins in Setting Circadian Clock Speed

    PubMed Central

    Lee, Euna

    2014-01-01

    By means of a circadian clock system, all the living organisms on earth including human beings can anticipate the environmental rhythmic changes such as light/dark and warm/cold periods in a daily as well as in a yearly manner. Anticipating such environmental changes provide organisms with survival benefits via manifesting behavior and physiology at an advantageous time of the day and year. Cell-autonomous circadian oscillators, governed by transcriptional feedback loop composed of positive and negative elements, are organized into a hierarchical system throughout the organisms and generate an oscillatory expression of a clock gene by itself as well as clock controlled genes (ccgs) with a 24 hr periodicity. In the feedback loop, hetero-dimeric transcription factor complex induces the expression of negative regulatory proteins, which in turn represses the activity of transcription factors to inhibit their own transcription. Thus, for robust oscillatory rhythms of the expression of clock genes as well as ccgs, the precise control of subcellular localization and/or timely translocation of core clock protein are crucial. Here, we discuss how sub-cellular localization and nuclear translocation are controlled in a time-specific manner focusing on the negative regulatory clock proteins. PMID:25258565

  2. Verification of fault-tolerant clock synchronization systems. M.S. Thesis - College of William and Mary, 1992

    NASA Technical Reports Server (NTRS)

    Miner, Paul S.

    1993-01-01

    A critical function in a fault-tolerant computer architecture is the synchronization of the redundant computing elements. The synchronization algorithm must include safeguards to ensure that failed components do not corrupt the behavior of good clocks. Reasoning about fault-tolerant clock synchronization is difficult because of the possibility of subtle interactions involving failed components. Therefore, mechanical proof systems are used to ensure that the verification of the synchronization system is correct. In 1987, Schneider presented a general proof of correctness for several fault-tolerant clock synchronization algorithms. Subsequently, Shankar verified Schneider's proof by using the mechanical proof system EHDM. This proof ensures that any system satisfying its underlying assumptions will provide Byzantine fault-tolerant clock synchronization. The utility of Shankar's mechanization of Schneider's theory for the verification of clock synchronization systems is explored. Some limitations of Shankar's mechanically verified theory were encountered. With minor modifications to the theory, a mechanically checked proof is provided that removes these limitations. The revised theory also allows for proven recovery from transient faults. Use of the revised theory is illustrated with the verification of an abstract design of a clock synchronization system.

  3. A novel approach for clock recovery without pattern effect from degraded signal

    NASA Astrophysics Data System (ADS)

    Wang, Zhaoxin; Wang, Tong; Lou, Caiyun; Huo, Li; Gao, Yizhi

    2003-04-01

    A novel clock recovery scheme using two-ring injection mode-locked fiber ring laser based on all 10 GHz bandwidth components was demonstrated. With this scheme, the clock with low timing jitter was obtained from a degraded 10 Gb/s optical data stream. Optical clock recovery was also achieved from a degraded 20 Gb/s optical data train when the clock division technique in the opto-electronic oscillator (OEO) and the rational harmonic mode-locking technique in the fiber ring laser were applied. No pattern effect was observed in the experiments.

  4. Ultrahigh-speed clock recovery with optical phase lock loop based on four-wave-mixing in a semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Kim, Dong Hwan; Kim, Sang Hyuck; Jo, Jae Cheol; Choi, Sang Sam

    2000-08-01

    A new phase lock loop (PLL) is proposed and demonstrated for clock recovery from 40 Gbps time-division-multiplexed (TDM) optical signal using simple optical phase lock loop circuit. The proposed clock recovery scheme improves the jitter effect in PLL circuit from the clock pulse laser of harmonically-mode locked fiber laser. The cross-correlation component between the optical signal and an optical clock pulse train is detected as a four-wave-mixing (FWM) signal generated in SOA. The lock-in frequency range of the clock recovery is found to be within 10 KHz.

  5. PER, a Circadian Clock Component, Mediates the Suppression of MMP-1 Expression in HaCaT Keratinocytes by cAMP.

    PubMed

    Yeom, Miji; Lee, HansongI; Shin, Seoungwoo; Park, Deokhoon; Jung, Eunsun

    2018-03-23

    Skin circadian clock system responds to daily changes, thereby regulating skin functions. Exposure of the skin to UV irradiation induces the expression of matrix metalloproteinase-1 (MMP-1) and causes DNA damage. It has been reported both DNA repair and DNA replication are regulated by the circadian clock in mouse skin. However, the molecular link between circadian clock and MMP-1 has little been investigated. We found PERIOD protein, a morning clock component, represses the expression of MMP-1 in human keratinocytes by using a PER-knockdown strategy. Treatment with siPer3 alleviated the suppression of MMP-1 expression induced by forskolin. Results revealed PER3 suppresses the expression of MMP-1 via cAMP signaling pathway. Additionally, we screened for an activator of PER that could repress the expression of MMP-1 using HaCaT cell line containing PER promoter-luciferase reporter gene. Results showed Lespedeza capitate extract (LCE) increased PER promoter activity. LCE inhibited the expression of MMP-1 and its effect of LCE was abolished in knockdown of PER2 or PER3, demonstrating LCE can repress the expression of MMP-1 through PER. Since circadian clock component PER can regulate MMP-1 expression, it might be a new molecular mechanism to develop therapeutics to alleviate skin aging and skin cancer.

  6. Twenty-nine-gauge dual-chandelier retroillumination for the non-open-sky continuous curvilinear capsulorhexis in the penetrating keratoplasty triple procedure.

    PubMed

    Yokokura, Shunji; Hariya, Takehiro; Kobayashi, Wataru; Meguro, Yasuhiko; Nishida, Kohji; Nakazawa, Toru

    2017-03-01

    We describe a technique for the penetrating keratoplasty (PKP) triple procedure that uses 29-gauge dual-chandelier illumination during creation of a non-open-sky continuous curvilinear capsulorhexis (CCC). The chandeliers are inserted through the pars plana into the vitreous cavity through the bulbar conjunctiva at the 3 o'clock and 9 o'clock positions. We compared this approach with that of a core vitrectomy, in which a single 25-gauge port is inserted into the vitreous cavity transconjunctivally through the upper temporal pars plana. The area of halation around the corneal opacity was significantly smaller in the 29-gauge group than in the 25-gauge group. The reduction in halation improved visibility of the anterior capsule and enabled the surgeon to perform CCC with greater safety. The 29-gauge chandelier system was more suitable than the 25-gauge chandelier system for the non-open-sky CCC component of the PKP triple procedure. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  7. Characterisation of circadian rhythms of various duckweeds.

    PubMed

    Muranaka, T; Okada, M; Yomo, J; Kubota, S; Oyama, T

    2015-01-01

    The plant circadian clock controls various physiological phenomena that are important for adaptation to natural day-night cycles. Many components of the circadian clock have been identified in Arabidopsis thaliana, the model plant for molecular genetic studies. Recent studies revealed evolutionary conservation of clock components in green plants. Homologues of clock-related genes have been isolated from Lemna gibba and Lemna aequinoctialis, and it has been demonstrated that these homologues function in the clock system in a manner similar to their functioning in Arabidopsis. While clock components are widely conserved, circadian phenomena display diversity even within the Lemna genus. In order to survey the full extent of diversity in circadian rhythms among duckweed plants, we characterised the circadian rhythms of duckweed by employing a semi-transient bioluminescent reporter system. Using a particle bombardment method, circadian bioluminescent reporters were introduced into nine strains representing five duckweed species: Spirodela polyrhiza, Landoltia punctata, Lemna gibba, L. aequinoctialis and Wolffia columbiana. We then monitored luciferase (luc+) reporter activities driven by AtCCA1, ZmUBQ1 or CaMV35S promoters under entrainment and free-running conditions. Under entrainment, AtCCA1::luc+ showed similar diurnal rhythms in all strains. This suggests that the mechanism of biological timing under day-night cycles is conserved throughout the evolution of duckweeds. Under free-running conditions, we observed circadian rhythms of AtCCA1::luc+, ZmUBQ1::luc+ and CaMV35S::luc+. These circadian rhythms showed diversity in period length and sustainability, suggesting that circadian clock mechanisms are somewhat diversified among duckweeds. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  8. Mapping the magnetic field vector in a fountain clock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gertsvolf, Marina; Marmet, Louis

    2011-12-15

    We show how the mapping of the magnetic field vector components can be achieved in a fountain clock by measuring the Larmor transition frequency in atoms that are used as a spatial probe. We control two vector components of the magnetic field and apply audio frequency magnetic pulses to localize and measure the field vector through Zeeman spectroscopy.

  9. Diurnal oscillations of soybean circadian clock and drought responsive genes.

    PubMed

    Marcolino-Gomes, Juliana; Rodrigues, Fabiana Aparecida; Fuganti-Pagliarini, Renata; Bendix, Claire; Nakayama, Thiago Jonas; Celaya, Brandon; Molinari, Hugo Bruno Correa; de Oliveira, Maria Cristina Neves; Harmon, Frank G; Nepomuceno, Alexandre

    2014-01-01

    Rhythms produced by the endogenous circadian clock play a critical role in allowing plants to respond and adapt to the environment. While there is a well-established regulatory link between the circadian clock and responses to abiotic stress in model plants, little is known of the circadian system in crop species like soybean. This study examines how drought impacts diurnal oscillation of both drought responsive and circadian clock genes in soybean. Drought stress induced marked changes in gene expression of several circadian clock-like components, such as LCL1-, GmELF4- and PRR-like genes, which had reduced expression in stressed plants. The same conditions produced a phase advance of expression for the GmTOC1-like, GmLUX-like and GmPRR7-like genes. Similarly, the rhythmic expression pattern of the soybean drought-responsive genes DREB-, bZIP-, GOLS-, RAB18- and Remorin-like changed significantly after plant exposure to drought. In silico analysis of promoter regions of these genes revealed the presence of cis-elements associated both with stress and circadian clock regulation. Furthermore, some soybean genes with upstream ABRE elements were responsive to abscisic acid treatment. Our results indicate that some connection between the drought response and the circadian clock may exist in soybean since (i) drought stress affects gene expression of circadian clock components and (ii) several stress responsive genes display diurnal oscillation in soybeans.

  10. Diurnal Oscillations of Soybean Circadian Clock and Drought Responsive Genes

    PubMed Central

    Marcolino-Gomes, Juliana; Rodrigues, Fabiana Aparecida; Fuganti-Pagliarini, Renata; Bendix, Claire; Nakayama, Thiago Jonas; Celaya, Brandon; Molinari, Hugo Bruno Correa; de Oliveira, Maria Cristina Neves; Harmon, Frank G.; Nepomuceno, Alexandre

    2014-01-01

    Rhythms produced by the endogenous circadian clock play a critical role in allowing plants to respond and adapt to the environment. While there is a well-established regulatory link between the circadian clock and responses to abiotic stress in model plants, little is known of the circadian system in crop species like soybean. This study examines how drought impacts diurnal oscillation of both drought responsive and circadian clock genes in soybean. Drought stress induced marked changes in gene expression of several circadian clock-like components, such as LCL1-, GmELF4- and PRR-like genes, which had reduced expression in stressed plants. The same conditions produced a phase advance of expression for the GmTOC1-like, GmLUX-like and GmPRR7-like genes. Similarly, the rhythmic expression pattern of the soybean drought-responsive genes DREB-, bZIP-, GOLS-, RAB18- and Remorin-like changed significantly after plant exposure to drought. In silico analysis of promoter regions of these genes revealed the presence of cis-elements associated both with stress and circadian clock regulation. Furthermore, some soybean genes with upstream ABRE elements were responsive to abscisic acid treatment. Our results indicate that some connection between the drought response and the circadian clock may exist in soybean since (i) drought stress affects gene expression of circadian clock components and (ii) several stress responsive genes display diurnal oscillation in soybeans. PMID:24475115

  11. Analysis of clock-regulated genes in Neurospora reveals widespread posttranscriptional control of metabolic potential

    PubMed Central

    Hurley, Jennifer M.; Dasgupta, Arko; Emerson, Jillian M.; Zhou, Xiaoying; Ringelberg, Carol S.; Knabe, Nicole; Lipzen, Anna M.; Lindquist, Erika A.; Daum, Christopher G.; Barry, Kerrie W.; Grigoriev, Igor V.; Smith, Kristina M.; Galagan, James E.; Bell-Pedersen, Deborah; Freitag, Michael; Cheng, Chao; Loros, Jennifer J.; Dunlap, Jay C.

    2014-01-01

    Neurospora crassa has been for decades a principal model for filamentous fungal genetics and physiology as well as for understanding the mechanism of circadian clocks. Eukaryotic fungal and animal clocks comprise transcription-translation–based feedback loops that control rhythmic transcription of a substantial fraction of these transcriptomes, yielding the changes in protein abundance that mediate circadian regulation of physiology and metabolism: Understanding circadian control of gene expression is key to understanding eukaryotic, including fungal, physiology. Indeed, the isolation of clock-controlled genes (ccgs) was pioneered in Neurospora where circadian output begins with binding of the core circadian transcription factor WCC to a subset of ccg promoters, including those of many transcription factors. High temporal resolution (2-h) sampling over 48 h using RNA sequencing (RNA-Seq) identified circadianly expressed genes in Neurospora, revealing that from ∼10% to as much 40% of the transcriptome can be expressed under circadian control. Functional classifications of these genes revealed strong enrichment in pathways involving metabolism, protein synthesis, and stress responses; in broad terms, daytime metabolic potential favors catabolism, energy production, and precursor assembly, whereas night activities favor biosynthesis of cellular components and growth. Discriminative regular expression motif elicitation (DREME) identified key promoter motifs highly correlated with the temporal regulation of ccgs. Correlations between ccg abundance from RNA-Seq, the degree of ccg-promoter activation as reported by ccg-promoter–luciferase fusions, and binding of WCC as measured by ChIP-Seq, are not strong. Therefore, although circadian activation is critical to ccg rhythmicity, posttranscriptional regulation plays a major role in determining rhythmicity at the mRNA level. PMID:25362047

  12. Ultralow-Power Digital Correlator for Microwave Polarimetry

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Hass, K. Joseph

    2004-01-01

    A recently developed high-speed digital correlator is especially well suited for processing readings of a passive microwave polarimeter. This circuit computes the autocorrelations of, and the cross-correlations among, data in four digital input streams representing samples of in-phase (I) and quadrature (Q) components of two intermediate-frequency (IF) signals, denoted A and B, that are generated in heterodyne reception of two microwave signals. The IF signals arriving at the correlator input terminals have been digitized to three levels (-1,0,1) at a sampling rate up to 500 MHz. Two bits (representing sign and magnitude) are needed to represent the instantaneous datum in each input channel; hence, eight bits are needed to represent the four input signals during any given cycle of the sampling clock. The accumulation (integration) time for the correlation is programmable in increments of 2(exp 8) cycles of the sampling clock, up to a maximum of 2(exp 24) cycles. The basic functionality of the correlator is embodied in 16 correlation slices, each of which contains identical logic circuits and counters (see figure). The first stage of each correlation slice is a logic gate that computes one of the desired correlations (for example, the autocorrelation of the I component of A or the negative of the cross-correlation of the I component of A and the Q component of B). The sampling of the output of the logic gate output is controlled by the sampling-clock signal, and an 8-bit counter increments in every clock cycle when the logic gate generates output. The most significant bit of the 8-bit counter is sampled by a 16-bit counter with a clock signal at 2(exp 8) the frequency of the sampling clock. The 16-bit counter is incremented every time the 8-bit counter rolls over.

  13. Single-Event Upset and Scaling Trends in New Generation of the Commercial SOI PowerPC Microprocessors

    NASA Technical Reports Server (NTRS)

    Irom, Farokh; Farmanesh, Farhad; Kouba, Coy K.

    2006-01-01

    SEU from heavy-ions is measured for SOI PowerPC microprocessors. Results for 0.13 micron PowerPC with 1.1V core voltages increases over 1.3V versions. This suggests that improvement in SEU for scaled devices may be reversed. In recent years there has been interest in the possible use of unhardened commercial microprocessors in space because of their superior performance compared to hardened processors. However, unhardened devices are susceptible to upset from radiation space. More information is needed on how they respond to radiation before they can be used in space. Only a limited number of advanced microprocessors have been subjected to radiation tests, which are designed with lower clock frequencies and higher internal core voltage voltages than recent devices [1-6]. However the trend for commercial Silicon-on-insulator (SOI) microprocessors is to reduce feature size and internal core voltage and increase the clock frequency. Commercial microprocessors with the PowerPC architecture are now available that use partially depleted SOI processes with feature size of 90 nm and internal core voltage as low as 1.0 V and clock frequency in the GHz range. Previously, we reported SEU measurements for SOI commercial PowerPCs with feature size of 0.18 and 0.13 m [7, 8]. The results showed an order of magnitude reduction in saturated cross section compared to CMOS bulk counterparts. This paper examines SEUs in advanced commercial SOI microprocessors, focusing on SEU sensitivity of D-Cache and hangs with feature size and internal core voltage. Results are presented for the Motorola SOI processor with feature sizes of 0.13 microns and internal core voltages of 1.3 and 1.1 V. These results are compared with results for the Motorola SOI processors with feature size of 0.18 microns and internal core voltage of 1.6 and 1.3 V.

  14. Initial atomic coherences and Ramsey frequency pulling in fountain clocks

    NASA Astrophysics Data System (ADS)

    Gerginov, Vladislav; Nemitz, Nils; Weyers, Stefan

    2014-09-01

    In the uncertainty budget of primary atomic cesium fountain clocks, evaluations of frequency-pulling shifts of the hyperfine clock transition caused by unintentional excitation of its nearby transitions (Rabi and Ramsey pulling) have been based so far on an approach developed for cesium beam clocks. We re-evaluate this type of frequency pulling in fountain clocks and pay particular attention to the effect of initial coherent atomic states. We find significantly enhanced frequency shifts caused by Ramsey pulling due to sublevel population imbalance and corresponding coherences within the state-selected hyperfine component of the initial atom ground state. Such shifts are experimentally investigated in an atomic fountain clock and quantitative agreement with the predictions of the model is demonstrated.

  15. SKIP Is a Component of the Spliceosome Linking Alternative Splicing and the Circadian Clock in Arabidopsis[W

    PubMed Central

    Wang, Xiaoxue; Wu, Fangming; Xie, Qiguang; Wang, Huamei; Wang, Ying; Yue, Yanling; Gahura, Ondrej; Ma, Shuangshuang; Liu, Lei; Cao, Ying; Jiao, Yuling; Puta, Frantisek; McClung, C. Robertson; Xu, Xiaodong; Ma, Ligeng

    2012-01-01

    Circadian clocks generate endogenous rhythms in most organisms from cyanobacteria to humans and facilitate entrainment to environmental diurnal cycles, thus conferring a fitness advantage. Both transcriptional and posttranslational mechanisms are prominent in the basic network architecture of circadian systems. Posttranscriptional regulation, including mRNA processing, is emerging as a critical step for clock function. However, little is known about the molecular mechanisms linking RNA metabolism to the circadian clock network. Here, we report that a conserved SNW/Ski-interacting protein (SKIP) domain protein, SKIP, a splicing factor and component of the spliceosome, is involved in posttranscriptional regulation of circadian clock genes in Arabidopsis thaliana. Mutation in SKIP lengthens the circadian period in a temperature-sensitive manner and affects light input and the sensitivity of the clock to light resetting. SKIP physically interacts with the spliceosomal splicing factor Ser/Arg-rich protein45 and associates with the pre-mRNA of clock genes, such as PSEUDORESPONSE REGULATOR7 (PRR7) and PRR9, and is necessary for the regulation of their alternative splicing and mRNA maturation. Genome-wide investigations reveal that SKIP functions in regulating alternative splicing of many genes, presumably through modulating recognition or cleavage of 5′ and 3′ splice donor and acceptor sites. Our study addresses a fundamental question on how the mRNA splicing machinery contributes to circadian clock function at a posttranscriptional level. PMID:22942380

  16. Design of a delay-locked-loop-based time-to-digital converter

    NASA Astrophysics Data System (ADS)

    Zhaoxin, Ma; Xuefei, Bai; Lu, Huang

    2013-09-01

    A time-to-digital converter (TDC) based on a reset-free and anti-harmonic delay-locked loop (DLL) circuit for wireless positioning systems is discussed and described. The DLL that generates 32-phase clocks and a cycle period detector is employed to avoid “false locking". Driven by multiphase clocks, an encoder detects pulses and outputs the phase of the clock when the pulse arrives. The proposed TDC was implemented in SMIC 0.18 μm CMOS technology, and its core area occupies 0.7 × 0.55 mm2. The reference frequency ranges from 20 to 150 MHz. An LSB resolution of 521 ps can be achieved by using a reference clock of 60 MHz and the DNL is less than ±0.75 LSB. It dissipates 31.5 mW at 1.8 V supply voltage.

  17. Identification of Small Molecule Activators of Cryptochrome

    PubMed Central

    Hirota, Tsuyoshi; Lee, Jae Wook; St. John, Peter C.; Sawa, Mariko; Iwaisako, Keiko; Noguchi, Takako; Pongsawakul, Pagkapol Y.; Sonntag, Tim; Welsh, David K.; Brenner, David A.; Doyle, Francis J.; Schultz, Peter G.; Kay, Steve A.

    2013-01-01

    Impairment of the circadian clock has been associated with numerous disorders, including metabolic disease. Although small molecules that modulate clock function might offer therapeutic approaches to such diseases, only a few compound have been identified that selectively target core clock proteins. From an unbiased cell-based circadian screen, we identified KL001, a small molecule that specifically interacts with cryptochrome (CRY). KL001 prevented ubiquitin-dependent degradation of CRY, resulting in lengthening of the circadian period. In combination with mathematical modeling, KL001 revealed that CRY1 and CRY2 share a similar functional role in the period regulation. Furthermore, KL001- mediated CRY stabilization inhibited glucagon-induced gluconeogenesis in primary hepatocytes. KL001 thus provides a tool to study the regulation of CRY-dependent physiology and aid development of clock-based therapeutics of diabetes. PMID:22798407

  18. Transcriptional oscillation of canonical clock genes in mouse peripheral tissues

    PubMed Central

    Yamamoto, Takuro; Nakahata, Yasukazu; Soma, Haruhiko; Akashi, Makoto; Mamine, Takayoshi; Takumi, Toru

    2004-01-01

    Background The circadian rhythm of about 24 hours is a fundamental physiological function observed in almost all organisms from prokaryotes to humans. Identification of clock genes has allowed us to study the molecular bases for circadian behaviors and temporal physiological processes such as hormonal secretion, and has prompted the idea that molecular clocks reside not only in a central pacemaker, the suprachiasmatic nuclei (SCN) of hypothalamus in mammals, but also in peripheral tissues, even in immortalized cells. Furthermore, previous molecular dissection revealed that the mechanism of circadian oscillation at a molecular level is based on transcriptional regulation of clock and clock-controlled genes. Results We systematically analyzed the mRNA expression of clock and clock-controlled genes in mouse peripheral tissues. Eight genes (mBmal1, mNpas2, mRev-erbα, mDbp, mRev-erbβ, mPer3, mPer1 and mPer2; given in the temporal order of the rhythm peak) showed robust circadian expressions of mRNAs in all tissues except testis, suggesting that these genes are core molecules of the molecular biological clock. The bioinformatics analysis revealed that these genes have one or a combination of 3 transcriptional elements (RORE, DBPE, and E-box), which are conserved among human, mouse, and rat genome sequences, and indicated that these 3 elements may be responsible for the biological timing of expression of canonical clock genes. Conclusions The observation of oscillatory profiles of canonical clock genes is not only useful for physiological and pathological examination of the circadian clock in various organs but also important for systematic understanding of transcriptional regulation on a genome-wide basis. Our finding of the oscillatory expression of canonical clock genes with a temporal order provides us an interesting hypothesis, that cyclic timing of all clock and clock-controlled genes may be dependent on several transcriptional elements including 3 known elements, E-box, RORE, and DBPE. PMID:15473909

  19. Targeting the Circadian Clock to Treat Cancer

    Cancer.gov

    Two compounds that target components of the circadian clock killed several types of cancer cells in the lab and slowed the growth of brain cancer in mice without harming healthy cells, as this Cancer Currents post reports.

  20. Conservation and Divergence of Circadian Clock Operation in a Stress-Inducible Crassulacean Acid Metabolism Species Reveals Clock Compensation against Stress1

    PubMed Central

    Boxall, Susanna F.; Foster, Jonathan M.; Bohnert, Hans J.; Cushman, John C.; Nimmo, Hugh G.; Hartwell, James

    2005-01-01

    One of the best-characterized physiological rhythms in plants is the circadian rhythm of CO2 metabolism in Crassulacean acid metabolism (CAM) plants, which is the focus here. The central components of the plant circadian clock have been studied in detail only in Arabidopsis (Arabidopsis thaliana). Full-length cDNAs have been obtained encoding orthologs of CIRCADIAN CLOCK-ASSOCIATED1 (CCA1)/LATE ELONGATED HYPOCOTYL (LHY), TIMING OF CAB EXPRESSION1 (TOC1), EARLY FLOWERING4 (ELF4), ZEITLUPE (ZTL), FLAVIN-BINDING KELCH REPEAT F-BOX1 (FKF1), EARLY FLOWERING3 (ELF3), and a partial cDNA encoding GIGANTEA in the model stress-inducible CAM plant, Mesembryanthemum crystallinum (Common Ice Plant). TOC1 and LHY/CCA1 are under reciprocal circadian control in a manner similar to their regulation in Arabidopsis. ELF4, FKF1, ZTL, GIGANTEA, and ELF3 are under circadian control in C3 and CAM leaves. ELF4 transcripts peak in the evening and are unaffected by CAM induction. FKF1 shows an abrupt transcript peak 3 h before subjective dusk. ELF3 transcripts appear in the evening, consistent with their role in gating light input to the circadian clock. Intriguingly, ZTL transcripts do not oscillate in Arabidopsis, but do in M. crystallinum. The transcript abundance of the clock-associated genes in M. crystallinum is largely unaffected by development and salt stress, revealing compensation of the central circadian clock against development and abiotic stress in addition to the well-known temperature compensation. Importantly, the clock in M. crystallinum is very similar to that in Arabidopsis, indicating that such a clock could control CAM without requiring additional components of the central oscillator or a novel CAM oscillator. PMID:15734916

  1. A role for clock genes in sleep homeostasis.

    PubMed

    Franken, Paul

    2013-10-01

    The timing and quality of both sleep and wakefulness are thought to be regulated by the interaction of two processes. One of these two processes keeps track of the prior sleep-wake history and controls the homeostatic need for sleep while the other sets the time-of-day that sleep preferably occurs. The molecular pathways underlying the latter, circadian process have been studied in detail and their key role in physiological time-keeping has been well established. Analyses of sleep in mice and flies lacking core circadian clock gene proteins have demonstrated, however, that besides disrupting circadian rhythms, also sleep homeostatic processes were affected. Subsequent studies revealed that sleep loss alters both the mRNA levels and the specific DNA-binding of the key circadian transcriptional regulators to their target sequences in the mouse brain. The fact that sleep loss impinges on the very core of the molecular circadian circuitry might explain why both inadequate sleep and disrupted circadian rhythms can similarly lead to metabolic pathology. The evidence for a role for clock genes in sleep homeostasis will be reviewed here. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Apparatus and method for compensating for clock drift in downhole drilling components

    DOEpatents

    Hall, David R [Provo, UT; Pixton, David S [Lehi, UT; Johnson, Monte L [Orem, UT; Bartholomew, David B [Springville, UT; Hall, Jr., H. Tracy

    2007-08-07

    A precise downhole clock that compensates for drift includes a prescaler configured to receive electrical pulses from an oscillator. The prescaler is configured to output a series of clock pulses. The prescaler outputs each clock pulse after counting a preloaded number of electrical pulses from the oscillator. The prescaler is operably connected to a compensator module for adjusting the number loaded into the prescaler. By adjusting the number that is loaded into the prescaler, the timing may be advanced or retarded to more accurately synchronize the clock pulses with a reference time source. The compensator module is controlled by a counter-based trigger module configured to trigger the compensator module to load a value into the prescaler. Finally, a time-base logic module is configured to calculate the drift of the downhole clock by comparing the time of the downhole clock with a reference time source.

  3. Parallel Measurement of Circadian Clock Gene Expression and Hormone Secretion in Human Primary Cell Cultures.

    PubMed

    Petrenko, Volodymyr; Saini, Camille; Perrin, Laurent; Dibner, Charna

    2016-11-11

    Circadian clocks are functional in all light-sensitive organisms, allowing for an adaptation to the external world by anticipating daily environmental changes. Considerable progress in our understanding of the tight connection between the circadian clock and most aspects of physiology has been made in the field over the last decade. However, unraveling the molecular basis that underlies the function of the circadian oscillator in humans stays of highest technical challenge. Here, we provide a detailed description of an experimental approach for long-term (2-5 days) bioluminescence recording and outflow medium collection in cultured human primary cells. For this purpose, we have transduced primary cells with a lentiviral luciferase reporter that is under control of a core clock gene promoter, which allows for the parallel assessment of hormone secretion and circadian bioluminescence. Furthermore, we describe the conditions for disrupting the circadian clock in primary human cells by transfecting siRNA targeting CLOCK. Our results on the circadian regulation of insulin secretion by human pancreatic islets, and myokine secretion by human skeletal muscle cells, are presented here to illustrate the application of this methodology. These settings can be used to study the molecular makeup of human peripheral clocks and to analyze their functional impact on primary cells under physiological or pathophysiological conditions.

  4. Thyroxine differentially modulates the peripheral clock: lessons from the human hair follicle.

    PubMed

    Hardman, Jonathan A; Haslam, Iain S; Farjo, Nilofer; Farjo, Bessam; Paus, Ralf

    2015-01-01

    The human hair follicle (HF) exhibits peripheral clock activity, with knock-down of clock genes (BMAL1 and PER1) prolonging active hair growth (anagen) and increasing pigmentation. Similarly, thyroid hormones prolong anagen and stimulate pigmentation in cultured human HFs. In addition they are recognized as key regulators of the central clock that controls circadian rhythmicity. Therefore, we asked whether thyroxine (T4) also influences peripheral clock activity in the human HF. Over 24 hours we found a significant reduction in protein levels of BMAL1 and PER1, with their transcript levels also decreasing significantly. Furthermore, while all clock genes maintained their rhythmicity in both the control and T4 treated HFs, there was a significant reduction in the amplitude of BMAL1 and PER1 in T4 (100 nM) treated HFs. Accompanying this, cell-cycle progression marker Cyclin D1 was also assessed appearing to show an induced circadian rhythmicity by T4 however, this was not significant. Contrary to short term cultures, after 6 days, transcript and/or protein levels of all core clock genes (BMAL1, PER1, clock, CRY1, CRY2) were up-regulated in T4 treated HFs. BMAL1 and PER1 mRNA was also up-regulated in the HF bulge, the location of HF epithelial stem cells. Together this provides the first direct evidence that T4 modulates the expression of the peripheral molecular clock. Thus, patients with thyroid dysfunction may also show a disordered peripheral clock, which raises the possibility that short term, pulsatile treatment with T4 might permit one to modulate circadian activity in peripheral tissues as a target to treat clock-related disease.

  5. Dim Light at Night Prior to Adolescence Increases Adult Anxiety-like Behaviors

    PubMed Central

    Cissé, Yasmine M.; Peng, Juan; Nelson, Randy J.

    2017-01-01

    Dim light at night (dLAN) disrupts circadian organization and influences adult behavior. We examined early dLAN exposure on adult affective responses. Beginning 3 (juvenile) or 5 weeks (adolescent) of age, mice were maintained in standard light-dark cycles or exposed to nightly dLAN (5 lux) for 5 weeks, then anxiety-like and fear responses were assessed. Hypothalami were collected around the clock to assess core clock genes. Exposure to dLAN at either age increased anxiety-like responses in adults. Clock and Rev-ERB expression were altered by exposure to dLAN. In contrast to adults, dLAN exposure during early life increases anxiety and fear behavior. PMID:27592634

  6. Dim light at night prior to adolescence increases adult anxiety-like behaviors.

    PubMed

    Cissé, Yasmine M; Peng, Juan; Nelson, Randy J

    2016-01-01

    Dim light at night (dLAN) disrupts circadian organization and influences adult behavior. We examined early dLAN exposure on adult affective responses. Beginning 3 (juvenile) or 5 weeks (adolescent) of age, mice were maintained in standard light-dark cycles or exposed to nightly dLAN (5 lx) for 5 weeks, then anxiety-like and fear responses were assessed. Hypothalami were collected around the clock to assess core clock genes. Exposure to dLAN at either age increased anxiety-like responses in adults. Clock and Rev-ERB expression were altered by exposure to dLAN. In contrast to adults, dLAN exposure during early life increases anxiety and fear behavior.

  7. The development of a Kalman filter clock predictor

    NASA Technical Reports Server (NTRS)

    Davis, John A.; Greenhall, Charles A.; Boudjemaa, Redoane

    2005-01-01

    A Kalman filter based clock predictor is developed, and its performance evaluated using both simulated and real data. The clock predictor is shown to possess a neat to optimal Prediction Error Variance (PEV) when the underlying noise consists of one of the power law noise processes commonly encountered in time and frequency measurements. The predictor's performance is the presence of multiple noise processes is also examined. The relationship between the PEV obtained in the presence of multiple noise processes and those obtained for the individual component noise processes is examined. Comparisons are made with a simple linear clock predictor. The clock predictor is used to predict future values of the time offset between pairs of NPL's active hydrogen masers.

  8. Cell cycle progression is required for zebrafish somite morphogenesis but not segmentation clock function

    PubMed Central

    Zhang, Lixia; Kendrick, Christina; Jülich, Dörthe; Holley, Scott A.

    2010-01-01

    Summary Cell division, differentiation and morphogenesis are coordinated during embryonic development and frequently in disarray in pathologies such as cancer. Here, we present a zebrafish mutant that ceases mitosis at the beginning of gastrulation, but undergoes axis elongation and develops blood, muscle and a beating heart. We identify the mutation as being in early mitotic inhibitor 1 (emi1), a negative regulator of the Anaphase Promoting Complex, and utilize the mutant to examine the role of the cell cycle in somitogenesis. The mutant phenotype indicates that axis elongation during the segmentation period is substantially driven by cell migration. We find that the segmentation clock, which regulates somitogenesis, functions normally in the absence of cell cycle progression and observe that mitosis is a modest source of noise for the clock. Somite morphogenesis involves the epithelialization of the somite border cells around a core of mesenchyme. As in wild-type embryos, somite boundary cells are polarized along a Fibronectin matrix in emi1−/−. The mutants also display evidence of segment polarity. However, in the absence of a normal cell cycle, somites appear to hyper-epithelialize as the internal mesenchymal cells exit the core of the somite after initial boundary formation. Thus, cell cycle progression is not required during the segmentation period for segmentation clock function but is necessary for normal segmental arrangement of epithelial borders and internal mesenchymal cells. PMID:18480162

  9. Establishment of an in vitro cell line experimental system for the study of inhalational anesthetic mechanisms.

    PubMed

    Nagamoto, Seiji; Iijima, Norio; Ishii, Hirotaka; Takumi, Ken; Higo, Shimpei; Aikawa, Satoko; Anzai, Megumi; Matsuo, Izumi; Nakagawa, Shinji; Takashima, Naoyuki; Shigeyoshi, Yasufumi; Sakamoto, Atsuhiro; Ozawa, Hitoshi

    2016-05-04

    General anesthesia affects the expression of clock genes in various organs. Expression of Per2, a core component of the circadian clock, is markedly and reversibly suppressed by sevoflurane in the suprachiasmatic nucleus (SCN), and is considered to be a biochemical marker of anesthetic effect in the brain. The SCN contains various types of neurons, and this complexity makes it difficult to investigate the molecular mechanisms of anesthesia. Here, we established an in vitro experimental system using a cell line to investigate the mechanisms underlying anesthetic action. Development of the system comprised two steps: first, we developed a system for application of inhalational anesthetics and incubation; next, we established cultures of anesthetic-responsive cells expressing mPer2 promoter-dLuc. GT1-7 cells, derived from the mouse hypothalamus, responded to sevoflurane by reversibly decreasing mPer2-promoter-driven bioluminescence. Interestingly, the suppression of bioluminescence was found only in the serum-starved GT1-7 cells, which showed neuron-like morphology, but not in growing cells, suggesting that neuron-like characteristics are required for anesthetic effects in GT1-7 cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Timing as a sexually selected trait: the right mate at the right moment.

    PubMed

    Hau, Michaela; Dominoni, Davide; Casagrande, Stefania; Buck, C Loren; Wagner, Gabriela; Hazlerigg, David; Greives, Timothy; Hut, Roelof A

    2017-11-19

    Sexual selection favours the expression of traits in one sex that attract members of the opposite sex for mating. The nature of sexually selected traits such as vocalization, colour and ornamentation, their fitness benefits as well as their costs have received ample attention in field and laboratory studies. However, sexually selected traits may not always be expressed: coloration and ornaments often follow a seasonal pattern and behaviours may be displayed only at specific times of the day. Despite the widely recognized differences in the daily and seasonal timing of traits and their consequences for reproductive success, the actions of sexual selection on the temporal organization of traits has received only scant attention. Drawing on selected examples from bird and mammal studies, here we summarize the current evidence for the daily and seasonal timing of traits. We highlight that molecular advances in chronobiology have opened exciting new opportunities for identifying the genetic targets that sexual selection may act on to shape the timing of trait expression. Furthermore, known genetic links between daily and seasonal timing mechanisms lead to the hypothesis that selection on one timescale may simultaneously also affect the other. We emphasize that studies on the timing of sexual displays of both males and females from wild populations will be invaluable for understanding the nature of sexual selection and its potential to act on differences within and between the sexes in timing. Molecular approaches will be important for pinpointing genetic components of biological rhythms that are targeted by sexual selection, and to clarify whether these represent core or peripheral components of endogenous clocks. Finally, we call for a renewed integration of the fields of evolution, behavioural ecology and chronobiology to tackle the exciting question of how sexual selection contributes to the evolution of biological clocks.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'. © 2017 The Author(s).

  11. RACE and Calculations of Three-dimensional Distributed Cavity Phase Shifts

    NASA Technical Reports Server (NTRS)

    Li, Ruoxin; Gibble, Kurt

    2003-01-01

    The design for RACE, a Rb-clock flight experiment for the ISS, is described. The cold collision shift and multiple launching (juggling) have important implications for the design and the resulting clock accuracy and stability. We present and discuss the double clock design for RACE. This design reduces the noise contributions of the local oscillator and simplifies and enhances an accuracy evaluation of the clock. As we try to push beyond the current accuracies of clocks, new systematic errors become important. The best fountain clocks are using cylindrical TE(sub 011) microwave cavities. We recently pointed out that many atoms pass through a node of the standing wave microwave field in these cavities. Previous studies have shown potentially large frequency shifts for atoms passing through nodes in a TE(sub 013) cavity. The shift occurs because there is a small traveling wave component due to the absorption of the copper cavity walls. The small traveling wave component leads to position dependent phase shifts. To study these effects, we perform Finite Element calculations. Three-dimensional Finite Element calculations require significant computer resources. Here we show that the cylindrical boundary condition can be Fourier decomposed to a short series of two-dimensional problems. This dramatically reduces the time and memory required and we obtain (3D) phase distributions for a variety of cavities. With these results, we will be able to analyze this frequency shift in fountain and future space clocks.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keith, Dove; Finlay, Liam; Butler, Judy

    Highlights: • 24 month old rats were supplemented with 0.2% lipoic acid in the diet for 2 weeks. • Lipoic acid shifts phase of core circadian clock proteins. • Lipoic acid corrects age-induced desynchronized lipid metabolism rhythms. - Abstract: It is well established that lipid metabolism is controlled, in part, by circadian clocks. However, circadian clocks lose temporal precision with age and correlates with elevated incidence in dyslipidemia and metabolic syndrome in older adults. Because our lab has shown that lipoic acid (LA) improves lipid homeostasis in aged animals, we hypothesized that LA affects the circadian clock to achieve thesemore » results. We fed 24 month old male F344 rats a diet supplemented with 0.2% (w/w) LA for 2 weeks prior to sacrifice and quantified hepatic circadian clock protein levels and clock-controlled lipid metabolic enzymes. LA treatment caused a significant phase-shift in the expression patterns of the circadian clock proteins Period (Per) 2, Brain and Muscle Arnt-Like1 (BMAL1), and Reverse Erythroblastosis virus (Rev-erb) β without altering the amplitude of protein levels during the light phase of the day. LA also significantly altered the oscillatory patterns of clock-controlled proteins associated with lipid metabolism. The level of peroxisome proliferator-activated receptor (PPAR) α was significantly increased and acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) were both significantly reduced, suggesting that the LA-supplemented aged animals are in a catabolic state. We conclude that LA remediates some of the dyslipidemic processes associated with advanced age, and this mechanism may be at least partially through entrainment of circadian clocks.« less

  13. Effects of continuous white light and 12h white-12h blue light-cycles on the expression of clock genes in diencephalon, liver, and skeletal muscle in chicks.

    PubMed

    Honda, Kazuhisa; Kondo, Makoto; Hiramoto, Daichi; Saneyasu, Takaoki; Kamisoyama, Hiroshi

    2017-05-01

    The core circadian clock mechanism relies on a feedback loop comprised of clock genes, such as the brain and muscle Arnt-like 1 (Bmal1), chriptochrome 1 (Cry1), and period 3 (Per3). Exposure to the light-dark cycle synchronizes the master circadian clock in the brain, and which then synchronizes circadian clocks in peripheral tissues. Birds have long been used as a model for the investigation of circadian rhythm in human neurobiology. In the present study, we examined the effects of continuous light and the combination of white and blue light on the expression of clock genes (Bmal1, Cry1, and Per3) in the central and peripheral tissues in chicks. Seventy two day-old male chicks were weighed, allocated to three groups and maintained under three light schedules: 12h white light-12h dark-cycles group (control); 24h white light group (WW group); 12h white light-12h blue light-cycles group (WB group). The mRNA levels of clock genes in the diencephalon were significantly different between the control and WW groups. On the other hand, the alteration in the mRNA levels of clock genes was similar between the control and WB groups. Similar phenomena were observed in the liver and skeletal muscle (biceps femoris). These results suggest that 12h white-12h blue light-cycles did not disrupt the circadian rhythm of clock gene expression in chicks. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The mammalian retina as a clock

    NASA Technical Reports Server (NTRS)

    Tosini, Gianluca; Fukuhara, Chiaki

    2002-01-01

    Many physiological, cellular, and biochemical parameters in the retina of vertebrates show daily rhythms that, in many cases, also persist under constant conditions. This demonstrates that they are driven by a circadian pacemaker. The presence of an autonomous circadian clock in the retina of vertebrates was first demonstrated in Xenopus laevis and then, several years later, in mammals. In X. laevis and in chicken, the retinal circadian pacemaker has been localized in the photoreceptor layer, whereas in mammals, such information is not yet available. Recent advances in molecular techniques have led to the identification of a group of genes that are believed to constitute the molecular core of the circadian clock. These genes are expressed in the retina, although with a slightly different 24-h profile from that observed in the central circadian pacemaker. This result suggests that some difference (at the molecular level) may exist between the retinal clock and the clock located in the suprachiasmatic nuclei of hypothalamus. The present review will focus on the current knowledge of the retinal rhythmicity and the mechanisms responsible for its control.

  15. Extra-hypothalamic brain clocks in songbirds: Photoperiodic state dependent clock gene oscillations in night-migratory blackheaded buntings, Emberiza melanocephala.

    PubMed

    Singh, Devraj; Kumar, Vinod

    2017-04-01

    The avian circadian pacemaker system is comprised of independent clocks in the retina, pineal and hypothalamus, as shown by daily and circadian oscillations of core clock genes (Per2, Cry1, Bmal1 and Clock) in several birds including migratory blackheaded buntings (Emberiza melanocephala). This study investigated the extra-hypothalamic brain circadian clocks in blackheaded buntings, and measured Per2, Cry1, Cry2, Bmal1 and Clock mRNA expressions at 4h intervals over 24h beginning 1h after light-on in the left and right telencephalon, optic tectum and cerebellum, the brain regions involved in several physiological and cognitive functions. Because of seasonal alterations in the circadian clock dependent brain functions, we measured daily clock gene oscillations in buntings photoperiod-induced with the non-migratory state under short days (SDnM), and the pre-migratory (LDpM), migratory (LDM) and post-migratory (refractory, LDR) states under long days. Daily Per2 oscillations were not altered with changes in the photoperiodic states, except for about 2-3h phase difference in the optic tectum between the SDnM and LDpM states. However, there were about 3-5h differences in the phase and 2 to 4 fold change in the amplitude of daily Bmal1 and Cry1 mRNA oscillations between the photoperiod-induced states. Further, Cry2 and Clock genes lacked a significant oscillation, except in Cb (Cry2) and TeO and Rt (Clock) under LDR state. Overall, these results show the presence of circadian clocks in extra-hypothalamic brain regions of blackheaded buntings, and suggest tissue-dependent alterations in the waveforms of mRNA oscillations with transitions in the photoperiod-induced seasonal states in a long-day species. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Role of monochromatic light on daily variation of clock gene expression in the pineal gland of chick.

    PubMed

    Jiang, Nan; Wang, Zixu; Cao, Jing; Dong, Yulan; Chen, Yaoxing

    2016-11-01

    The avian pineal gland is a master clock that can receive external photic cues and translate them into output rhythms. To clarify whether a shift in light wavelength can influence the circadian expression in chick pineal gland, a total of 240 Arbor Acre male broilers were exposed to white light (WL), red light (RL), green light (GL) or blue light (BL). After 2weeks light illumination, circadian expressions of seven core clock genes in pineal gland and the level of melatonin in plasma were examined. The results showed after illumination with monochromatic light, 24h profiles of all clock gene mRNAs retained circadian oscillation, except that RL tended to disrupt the rhythm of cCry2. Compared to WL, BL advanced the acrophases of the negative elements (cCry1, cCry2, cPer2 and cPer3) by 0.1-1.5h and delayed those of positive elements (cClock, cBmal1 and cBmal2) by 0.2-0.8h. And, RL advanced all clock genes except cClock and cPer2 by 0.3-2.1h, while GL delayed all clock genes by 0.5-1.5h except cBmal2. Meanwhile, GL increased the amplitude and mesor of positive and reduced both parameters of negative clock genes, but RL showed the opposite pattern. Although the acrophase of plasma melatonin was advanced by both GL and RL, the melatonin level was significantly increased in GL and decreased in RL. This tendency was consistent with the variations in the positive clock gene mRNA levels under monochromatic light and contrasted with those of negative clock genes. Therefore, we speculate that GL may enhance positive clock genes expression, leading to melatonin synthesis, whereas RL may enhance negative genes expression, suppressing melatonin synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Ethics Education in Midwifery Education Programs in the United States.

    PubMed

    Megregian, Michele

    2016-09-01

    Familiarity with ethical concepts is a required competency for new graduates and a component of accreditation for midwifery education programs in the United States. While midwifery educators have acknowledged the importance of ethics education in midwifery programs, little is known about current methods, format, or evaluation of ethics education. A Web-based survey was developed for program directors of accredited midwifery education programs in the United States. Clock hours, formats, venues, content topics, barriers, and evaluation methods were evaluated by descriptive analysis. Fifty-one percent of programs completed the online survey (25/49). Of these, only 7 (28%) offer ethics as a stand-alone class, although all responding programs integrate some ethics education into other core classes. Programs show variation in format, venue, resources, and clock hours dedicated to ethics education. The most frequent barrier to ethics education is an already crowded curriculum (60%), although 32% of programs denied any barriers at all. The majority of programs include the ethical concepts of informed consent, shared decision making, and effective communication in curriculum content. This survey found that there is considerable variation in ethics education in terms of content, format, and evaluation among accredited midwifery education programs in the United States. Midwifery educators have an opportunity to explore the ethical dilemmas unique to maternity care from a midwifery perspective. There is also the opportunity to create a comprehensive and dynamic midwifery ethics curriculum, which incorporates both stand-alone ethics courses and ethics concepts that are woven throughout the core midwifery curriculum. © 2016 by the American College of Nurse-Midwives.

  18. A Circadian Clock-Regulated Toggle Switch Explains AtGRP7 and AtGRP8 Oscillations in Arabidopsis thaliana

    PubMed Central

    Schmal, Christoph; Reimann, Peter; Staiger, Dorothee

    2013-01-01

    The circadian clock controls many physiological processes in higher plants and causes a large fraction of the genome to be expressed with a 24h rhythm. The transcripts encoding the RNA-binding proteins AtGRP7 (Arabidopsis thaliana Glycine Rich Protein 7) and AtGRP8 oscillate with evening peaks. The circadian clock components CCA1 and LHY negatively affect AtGRP7 expression at the level of transcription. AtGRP7 and AtGRP8, in turn, negatively auto-regulate and reciprocally cross-regulate post-transcriptionally: high protein levels promote the generation of an alternative splice form that is rapidly degraded. This clock-regulated feedback loop has been proposed to act as a molecular slave oscillator in clock output. While mathematical models describing the circadian core oscillator in Arabidopsis thaliana were introduced recently, we propose here the first model of a circadian slave oscillator. We define the slave oscillator in terms of ordinary differential equations and identify the model's parameters by an optimization procedure based on experimental results. The model successfully reproduces the pertinent experimental findings such as waveforms, phases, and half-lives of the time-dependent concentrations. Furthermore, we obtain insights into possible mechanisms underlying the observed experimental dynamics: the negative auto-regulation and reciprocal cross-regulation via alternative splicing could be responsible for the sharply peaking waveforms of the AtGRP7 and AtGRP8 mRNA. Moreover, our results suggest that the AtGRP8 transcript oscillations are subordinated to those of AtGRP7 due to a higher impact of AtGRP7 protein on alternative splicing of its own and of the AtGRP8 pre-mRNA compared to the impact of AtGRP8 protein. Importantly, a bifurcation analysis provides theoretical evidence that the slave oscillator could be a toggle switch, arising from the reciprocal cross-regulation at the post-transcriptional level. In view of this, transcriptional repression of AtGRP7 and AtGRP8 by LHY and CCA1 induces oscillations of the toggle switch, leading to the observed high-amplitude oscillations of AtGRP7 mRNA. PMID:23555221

  19. Real-Time Distributed Embedded Oscillator Operating Frequency Monitoring

    NASA Technical Reports Server (NTRS)

    Pollock, Julie; Oliver, Brett; Brickner, Christopher

    2012-01-01

    A document discusses the utilization of embedded clocks inside of operating network data links as an auxiliary clock source to satisfy local oscillator monitoring requirements. Modem network interfaces, typically serial network links, often contain embedded clocking information of very tight precision to recover data from the link. This embedded clocking data can be utilized by the receiving device to monitor the local oscillator for tolerance to required specifications, often important in high-integrity fault-tolerant applications. A device can utilize a received embedded clock to determine if the local or the remote device is out of tolerance by using a single link. The local device can determine if it is failing, assuming a single fault model, with two or more active links. Network fabric components, containing many operational links, can potentially determine faulty remote or local devices in the presence of multiple faults. Two methods of implementation are described. In one method, a recovered clock can be directly used to monitor the local clock as a direct replacement of an external local oscillator. This scheme is consistent with a general clock monitoring function whereby clock sources are clocking two counters and compared over a fixed interval of time. In another method, overflow/underflow conditions can be used to detect clock relationships for monitoring. These network interfaces often provide clock compensation circuitry to allow data to be transferred from the received (network) clock domain to the internal clock domain. This circuit could be modified to detect overflow/underflow conditions of the buffering required and report a fast or slow receive clock, respectively.

  20. A new stochastic model considering satellite clock interpolation errors in precise point positioning

    NASA Astrophysics Data System (ADS)

    Wang, Shengli; Yang, Fanlin; Gao, Wang; Yan, Lizi; Ge, Yulong

    2018-03-01

    Precise clock products are typically interpolated based on the sampling interval of the observational data when they are used for in precise point positioning. However, due to the occurrence of white noise in atomic clocks, a residual component of such noise will inevitable reside within the observations when clock errors are interpolated, and such noise will affect the resolution of the positioning results. In this paper, which is based on a twenty-one-week analysis of the atomic clock noise characteristics of numerous satellites, a new stochastic observation model that considers satellite clock interpolation errors is proposed. First, the systematic error of each satellite in the IGR clock product was extracted using a wavelet de-noising method to obtain the empirical characteristics of atomic clock noise within each clock product. Then, based on those empirical characteristics, a stochastic observation model was structured that considered the satellite clock interpolation errors. Subsequently, the IGR and IGS clock products at different time intervals were used for experimental validation. A verification using 179 stations worldwide from the IGS showed that, compared with the conventional model, the convergence times using the stochastic model proposed in this study were respectively shortened by 4.8% and 4.0% when the IGR and IGS 300-s-interval clock products were used and by 19.1% and 19.4% when the 900-s-interval clock products were used. Furthermore, the disturbances during the initial phase of the calculation were also effectively improved.

  1. Single-ion, transportable optical atomic clocks

    NASA Astrophysics Data System (ADS)

    Delehaye, Marion; Lacroûte, Clément

    2018-03-01

    For the past 15 years, tremendous progress within the fields of laser stabilization, optical frequency combs and atom cooling and trapping have allowed the realization of optical atomic clocks with unrivaled performances. These instruments can perform frequency comparisons with fractional uncertainties well below ?, finding applications in fundamental physics tests, relativistic geodesy and time and frequency metrology. Even though most optical clocks are currently laboratory setups, several proposals for using these clocks for field measurements or within an optical clock network have been published, and most of time and frequency metrology institutes have started to develop transportable optical clocks. For the purpose of this special issue, we chose to focus on trapped-ion optical clocks. Even though their short-term fractional frequency stability is impaired by a lower signal-to-noise ratio, they offer a high potential for compactness: trapped ions demand low optical powers and simple loading schemes, and can be trapped in small vacuum chambers. We review recent advances on the clock key components, including ion trap and ultra-stable optical cavity, as well as existing projects and experiments which draw the picture of what future transportable, single-ion optical clocks may resemble.

  2. Early sex-specific modulation of the molecular clock in trauma.

    PubMed

    Mehraj, Vikram; Wiramus, Sandrine; Capo, Christian; Leone, Marc; Mege, Jean-Louis; Textoris, Julien

    2014-01-01

    Immune system biology and most physiologic functions are tightly linked to circadian rhythms. Time of day-dependent variations in many biologic parameters also play a fundamental role in the disease process. We previously showed that the genes encoding the peripheral molecular clock were modulated in a sex-dependent manner in Q fever. Here, we examined severe trauma patients at admission to the intensive care unit. Using quantitative real-time polymerase chain reaction, the whole-blood expression of the molecular clock components ARNTL, CLOCK, and PER2 was assessed in male and female trauma patients. Healthy volunteers of both sexes were used as controls. We observed a significant overexpression of both ARNTL and CLOCK in male trauma patients. We report, for the first time, the sex-related modulation of the molecular clock genes in the blood following severe trauma. These results emphasize the role of circadian rhythms in the immune response in trauma patients. Epidemiologic study, level IV.

  3. The design and development of low- and high-voltage ASICs for space-borne CCD cameras

    NASA Astrophysics Data System (ADS)

    Waltham, N.; Morrissey, Q.; Clapp, M.; Bell, S.; Jones, L.; Torbet, M.

    2017-12-01

    The CCD remains the pre-eminent visible and UV wavelength image sensor in space science, Earth and planetary remote sensing. However, the design of space-qualified CCD readout electronics is a significant challenge with requirements for low-volume, low-mass, low-power, high-reliability and tolerance to space radiation. Space-qualified components are frequently unavailable and up-screened commercial components seldom meet project or international space agency requirements. In this paper, we describe an alternative approach of designing and space-qualifying a series of low- and high-voltage mixed-signal application-specific integrated circuits (ASICs), the ongoing development of two low-voltage ASICs with successful flight heritage, and two new high-voltage designs. A challenging sub-system of any CCD camera is the video processing and digitisation electronics. We describe recent developments to improve performance and tolerance to radiation-induced single event latchup of a CCD video processing ASIC originally developed for NASA's Solar Terrestrial Relations Observatory and Solar Dynamics Observatory. We also describe a programme to develop two high-voltage ASICs to address the challenges presented with generating a CCD's bias voltages and drive clocks. A 0.35 μm, 50 V tolerant, CMOS process has been used to combine standard low-voltage 3.3 V transistors with high-voltage 50 V diffused MOSFET transistors that enable output buffers to drive CCD bias drains, gates and clock electrodes directly. We describe a CCD bias voltage generator ASIC that provides 24 independent and programmable 0-32 V outputs. Each channel incorporates a 10-bit digital-to-analogue converter, provides current drive of up to 20 mA into loads of 10 μF, and includes current-limiting and short-circuit protection. An on-chip telemetry system with a 12-bit analogue-to-digital converter enables the outputs and multiple off-chip camera voltages to be monitored. The ASIC can drive one or more CCDs and replaces the many discrete components required in current cameras. We also describe a CCD clock driver ASIC that provides six independent and programmable drivers with high-current capacity. The device enables various CCD clock parameters to be programmed independently, for example the clock-low and clock-high voltage levels, and the clock-rise and clock-fall times, allowing configuration for serial clock frequencies in the range 0.1-2 MHz and image clock frequencies in the range 10-100 kHz. Finally, we demonstrate the impact and importance of this technology for the development of compact, high-performance and low-power integrated focal plane electronics.

  4. A 2-to-48-MHz Phase-Locked Loop

    NASA Technical Reports Server (NTRS)

    Koudelka, Robert D.

    2004-01-01

    A 2-to-48-MHz phase-locked loop (PLL), developed for the U.S. space program, meets or exceeds all space shuttle clock electrical interface requirements by taking as its reference a 2-to-48-MHz clock signal and outputting a phaselocked clock signal set at the same frequency as the reference clock with transistor- transistor logic (TTL) voltage levels. Because it is more adaptable than other PLLs, the new PLL can be used in industries that employ signaling devices and as a tool in future space missions. A conventional PLL consists of a phase/frequency detector, loop filter, and voltage-controlled oscillator in which each component exists individually and is integrated into a single device. PLL components phase-lock to a single frequency or to a narrow bandwidth of frequencies. It is this design, however, that prohibits them from maintaining phase lock to a dynamically changing reference clock when a large bandwidth is required a deficiency the new PLL overcomes. Since most PLL components require their voltage-controlled oscillators to operate at greater than 2-MHz frequencies, conventional PLLs often cannot achieve the low-frequency phase lock allowed by the new PLL. The 2-to-48-MHz PLL is built on a wire-wrap board with pins wired to three position jumpers; this makes changing configurations easy. It responds to variations in voltage-controlled oscillator (VCO) ranges, duty cycle, signal-to-noise ratio (SNR), amplitude, and jitter, exceeding design specifications. A consensus state machine, implemented in a VCO range detector which assures the PLL continues to operate in the correct range, is the primary control state machine for the 2-to-48-MHz PLL circuit. By using seven overlapping frequency ranges with hysteresis, the PLL output sets the resulting phase-locked clock signal at a frequency that agrees with the reference clock with TTL voltage levels. As a space-shuttle tool, the new PLL circuit takes the noisy, degraded reference clock signals as input and outputs phase-locked clock signals of the same frequency but with a corrected wave shape. Since its configuration circuit can be easily changed, the new PLL can do the following: readily respond to variations in VCO ranges, duty cycle, SNR, amplitude, and jitter; continuously operate in the correct VCO range because of its consensus state machine; and use its range detector implements to overlap seven frequency ranges with hysteresis, thus giving the current design a flexibility that exceeds anything available at the time of this development. These features will benefit any industry in which safe and timely clock signals are vital to operation.

  5. Orthogonal recursive bisection as data decomposition strategy for massively parallel cardiac simulations.

    PubMed

    Reumann, Matthias; Fitch, Blake G; Rayshubskiy, Aleksandr; Pitman, Michael C; Rice, John J

    2011-06-01

    We present the orthogonal recursive bisection algorithm that hierarchically segments the anatomical model structure into subvolumes that are distributed to cores. The anatomy is derived from the Visible Human Project, with electrophysiology based on the FitzHugh-Nagumo (FHN) and ten Tusscher (TT04) models with monodomain diffusion. Benchmark simulations with up to 16,384 and 32,768 cores on IBM Blue Gene/P and L supercomputers for both FHN and TT04 results show good load balancing with almost perfect speedup factors that are close to linear with the number of cores. Hence, strong scaling is demonstrated. With 32,768 cores, a 1000 ms simulation of full heart beat requires about 6.5 min of wall clock time for a simulation of the FHN model. For the largest machine partitions, the simulations execute at a rate of 0.548 s (BG/P) and 0.394 s (BG/L) of wall clock time per 1 ms of simulation time. To our knowledge, these simulations show strong scaling to substantially higher numbers of cores than reported previously for organ-level simulation of the heart, thus significantly reducing run times. The ability to reduce runtimes could play a critical role in enabling wider use of cardiac models in research and clinical applications.

  6. Differential sorting of the vesicular glutamate transporter 1 into a defined vesicular pool is regulated by light signaling involving the clock gene Period2.

    PubMed

    Yelamanchili, Sowmya V; Pendyala, Gurudutt; Brunk, Irene; Darna, Mahesh; Albrecht, Urs; Ahnert-Hilger, Gudrun

    2006-06-09

    Synaptic strength depends on the amount of neurotransmitter stored in synaptic vesicles. The vesicular transmitter content has recently been shown to be directly dependent on the expression levels of vesicular neurotransmitter transporters indicating that the transport capacity of synaptic vesicles is a critical determinant for synaptic efficacy. Using synaptic vesicles prepared from whole brain at different times of the day we now show that the amount of vesicular glutamate transporter (VGLUT) 1 undergoes strong diurnal cycling. VGLUT1 protein levels are high before the start of the light period, decline at noon, increase again before start of the dark period, and decline again at midnight. Mice kept in complete darkness showed within a 24-h period only a single peak of VGLUT1 expression in the middle of the rest phase. In contrast, mice lacking the period gene Period 2, a core component of the circadian clock, did not show any light-cycle-dependent changes of VGLUT1 levels. No other of several synaptic vesicle proteins examined underwent circadian cycling. Circadian cycling of VGLUT1 was not seen when analyzing homogenate or synaptosomes, the starting fraction for vesicle preparation. Circadian cycling of VGLUT1 was also not reflected at the mRNA level. We conclude that nerve terminals are endowed with mechanisms that regulate quantal size by changing the copy number of transporters in synaptic vesicles. A reduced amount of VGLUT1 per vesicle is probably achieved by means of selective sorting controlled by clock genes.

  7. Entrainment of the Mammalian Cell Cycle by the Circadian Clock: Modeling Two Coupled Cellular Rhythms

    PubMed Central

    Gérard, Claude; Goldbeter, Albert

    2012-01-01

    The cell division cycle and the circadian clock represent two major cellular rhythms. These two periodic processes are coupled in multiple ways, given that several molecular components of the cell cycle network are controlled in a circadian manner. For example, in the network of cyclin-dependent kinases (Cdks) that governs progression along the successive phases of the cell cycle, the synthesis of the kinase Wee1, which inhibits the G2/M transition, is enhanced by the complex CLOCK-BMAL1 that plays a central role in the circadian clock network. Another component of the latter network, REV-ERBα, inhibits the synthesis of the Cdk inhibitor p21. Moreover, the synthesis of the oncogene c-Myc, which promotes G1 cyclin synthesis, is repressed by CLOCK-BMAL1. Using detailed computational models for the two networks we investigate the conditions in which the mammalian cell cycle can be entrained by the circadian clock. We show that the cell cycle can be brought to oscillate at a period of 24 h or 48 h when its autonomous period prior to coupling is in an appropriate range. The model indicates that the combination of multiple modes of coupling does not necessarily facilitate entrainment of the cell cycle by the circadian clock. Entrainment can also occur as a result of circadian variations in the level of a growth factor controlling entry into G1. Outside the range of entrainment, the coupling to the circadian clock may lead to disconnected oscillations in the cell cycle and the circadian system, or to complex oscillatory dynamics of the cell cycle in the form of endoreplication, complex periodic oscillations or chaos. The model predicts that the transition from entrainment to 24 h or 48 h might occur when the strength of coupling to the circadian clock or the level of growth factor decrease below critical values. PMID:22693436

  8. Molecular genetic analysis of circadian timekeeping in Drosophila

    PubMed Central

    Hardin, Paul E.

    2014-01-01

    A genetic screen for mutants that alter circadian rhythms in Drosophila identified the first clock gene - the period (per) gene. The per gene is a central player within a transcriptional feedback loop that represents the core mechanism for keeping circadian time in Drosophila and other animals. The per feedback loop, or core loop, is interlocked with the Clock (Clk) feedback loop, but whether the Clk feedback loop contributes to circadian timekeeping is not known. A series of distinct molecular events are thought to control transcriptional feedback in the core loop. The time it takes to complete these events should take much less than 24h, thus delays must be imposed at different steps within the core loop. As new clock genes are identified, the molecular mechanisms responsible for these delays have been revealed in ever-increasing detail, and provide an in depth accounting of how transcriptional feedback loops keep circadian time. The phase of these feedback loops shift to maintain synchrony with environmental cycles, the most reliable of which is light. Although a great deal is known about cell-autonomous mechanisms of light-induced phase shifting by CRYPTOCHROME (CRY), much less is known about non-cell autonomous mechanisms. CRY mediates phase shifts through an uncharacterized mechanism in certain brain oscillator neurons, and carries out a dual role as a photoreceptor and transcription factor in other tissues. Here I will review how transcriptional feedback loops function to keep time in Drosophila, how they impose delays to maintain a 24h cycle, and how they maintain synchrony with environmental light:dark cycles. The transcriptional feedback loops that keep time in Drosophila are well conserved in other animals, thus what we learn about these loops in Drosophila should continue to provide insight into the operation of analogous transcriptional feedback loops in other animals. PMID:21924977

  9. Circadian CLOCK gene polymorphisms in relation to sleep patterns and obesity in African Americans: findings from the Jackson heart study.

    PubMed

    Riestra, Pia; Gebreab, Samson Y; Xu, Ruihua; Khan, Rumana J; Gaye, Amadou; Correa, Adolfo; Min, Nancy; Sims, Mario; Davis, Sharon K

    2017-06-23

    Circadian rhythms regulate key biological processes and the dysregulation of the intrinsic clock mechanism affects sleep patterns and obesity onset. The CLOCK (circadian locomotor output cycles protein kaput) gene encodes a core transcription factor of the molecular circadian clock influencing diverse metabolic pathways, including glucose and lipid homeostasis. The primary objective of this study was to evaluate the associations between CLOCK single nucleotide polymorphisms (SNPs) and body mass index (BMI). We also evaluated the association of SNPs with BMI related factors such as sleep duration and quality, adiponectin and leptin, in 2962 participants (1116 men and 1810 women) from the Jackson Heart Study. Genotype data for the selected 23 CLOCK gene SNPS was obtained by imputation with IMPUTE2 software and reference phase data from the 1000 genome project. Genetic analyses were conducted with PLINK RESULTS: We found a significant association between the CLOCK SNP rs2070062 and sleep duration, participants carriers of the T allele showed significantly shorter sleep duration compared to non-carriers after the adjustment for individual proportions of European ancestry (PEA), socio economic status (SES), body mass index (BMI), alcohol consumption and smoking status that reach the significance threshold after multiple testing correction. In addition, we found nominal associations of the CLOCK SNP rs6853192 with longer sleep duration and the rs6820823, rs3792603 and rs11726609 with BMI. However, these associations did not reach the significance threshold after correction for multiple testing. In this work, CLOCK gene variants were associated with sleep duration and BMI suggesting that the effects of these polymorphisms on circadian rhythmicity may affect sleep duration and body weight regulation in Africans Americans.

  10. BMAL1 and CLOCK proteins in regulating UVB-induced apoptosis and DNA damage responses in human keratinocytes.

    PubMed

    Sun, Yang; Wang, Peiling; Li, Hongyu; Dai, Jun

    2018-06-26

    A diverse array of biological processes are under circadian controls. In mouse skin, ultraviolet ray (UVR)-induced apoptosis and DNA damage responses are time-of-day dependent, which are controlled by core clock proteins. This study investigates the roles of clock proteins in regulating UVB responses in human keratinocytes (HKCs). We found that the messenger RNA expression of brain and muscle ARNT-like 1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK) genes is altered by low doses (5 mJ/cm 2 ) of UVB in the immortalized HaCat HKCs cell line. Although depletion of BMAL1 or CLOCK has no effect on the activation of Rad3-related protein kinases-checkpoint kinase 1-p53 mediated DNA damage checkpoints, it leads to suppression of UVB-stimulated apoptotic responses, and downregulation of UVB-elevated expression of DNA damage marker γ-H2AX and cell cycle inhibitor p21. Diminished apoptotic responses are also observed in primary HKCs depleted of BMAL1 or CLOCK after UVB irradiation. While CLOCK depletion shows a suppressive effect on UVB-induced p53 protein accumulation, depletion of either clock gene triggers early keratinocyte differentiation of HKCs at their steady state. These results suggest that UVB-induced apoptosis and DNA damage responses are controlled by clock proteins, but via different mechanisms in the immortalized human adult low calcium temperature and primary HKCs. Given the implication of UVB in photoaging and photocarcinogenesis, mechanistic elucidation of circadian controls on UVB effects in human skin will be critical and beneficial for prevention and treatment of skin cancers and other skin-related diseases. © 2018 Wiley Periodicals, Inc.

  11. Effect of monochromatic light on circadian rhythmic expression of clock genes in the hypothalamus of chick.

    PubMed

    Jiang, Nan; Wang, Zixu; Cao, Jing; Dong, Yulan; Chen, Yaoxing

    2017-08-01

    To clarify the effect of monochromatic light on circadian clock gene expression in chick hypothalamus, a total 240 newly hatched chickens were reared under blue light (BL), green light (GL), red light (RL) and white light (WL), respectively. On the post-hatched day 14, 24-h profiles of seven core clock genes (cClock, cBmal1, cBmal2, cCry1, cCry2, cPer2 and cPer3) were measured at six time points (CT 0, CT 4, CT 8, CT 12, CT 16, CT 20, circadian time). We found all these clock genes expressed with a significant rhythmicity in different light wavelength groups. Meanwhile, cClock and cBmal1 showed a high level under GL, and followed a corresponding high expression of cCry1. However, RL decreased the expression levels of these genes. Be consistent with the mRNA level, CLOCK and BMAL1 proteins also showed a high level under GL. The CLOCK-like immunoreactive neurons were observed not only in the SCN, but also in the non-SCN brain region such as the nucleus anterior medialis hypothalami, the periventricularis nucleus, the paraventricular nucleus and the median eminence. All these results are consistent with the auto-regulatory circadian feedback loop, and indicate that GL may play an important role on the circadian time generation and development in the chick hypothalamus. Our results also suggest that the circadian clock in the chick hypothalamus such as non-SCN brain region were involved in the regulation of photo information. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Circadian rhythm genes mediate fenvalerate-induced inhibition of testosterone synthesis in mouse Leydig cells.

    PubMed

    Guo, Yichen; Shen, Ouxi; Han, Jingjing; Duan, Hongyu; Yang, Siyuan; Zhu, Zhenghong; Tong, Jian; Zhang, Jie

    2017-01-01

    Fenvalerate (Fen), a widely used pesticide, is known to impair male reproductive functions by mechanisms that remain to be elucidated. Recent studies indicated that circadian clock genes may play an important role in successful male reproduction. The aim of this study was to determine the effects of Fen on circadian clock genes involved in the biosynthesis of testosterone using TM3 cells derived from mouse Leydig cells. Data demonstrated that the circadian rhythm of testosterone synthesis in TM3 cells was disturbed following Fen treatment as evidenced by changes in the circadian rhythmicity of core clock genes (Bmal1, Rev-erbα, Rorα). Further, the observed altered rhythms were accompanied by increased intracellular Ca 2+ levels and modified steroidogenic acute regulatory (StAR) mRNA expression. Thus, data suggested that Fen inhibits testosterone synthesis via pathways involving intracellular Ca 2+ and clock genes (Bmal1, Rev-Erbα, Rorα) as well as StAR mRNA expression in TM3 cells.

  13. The Logic of Circadian Organization in Drosophila

    PubMed Central

    Dissel, Stephane; Hansen, Celia N.; Özkaya, Özge; Hemsley, Matthew; Kyriacou, Charalambos P.; Rosato, Ezio

    2014-01-01

    Summary Background In the fruit fly Drosophila melanogaster, interlocked negative transcription/translation feedback loops provide the core of the circadian clock that generates rhythmic phenotypes. Although the current molecular model portrays the oscillator as cell autonomous, cross-talk among clock neurons is essential for robust cycling behavior. Nevertheless, the functional organization of the neuronal network remains obscure. Results Here we show that shortening or lengthening of the circadian period of locomotor activity can be obtained either by targeting different groups of clock cells with the same genetic manipulation or by challenging the same group of cells with activators and repressors of neuronal excitability. Conclusions Based on these observations we interpret circadian rhythmicity as an emerging property of the circadian network and we propose an initial model for its architectural design. PMID:25220056

  14. CLOCKΔ19 mutation modifies the manner of synchrony among oscillation neurons in the suprachiasmatic nucleus.

    PubMed

    Sujino, Mitsugu; Asakawa, Takeshi; Nagano, Mamoru; Koinuma, Satoshi; Masumoto, Koh-Hei; Shigeyoshi, Yasufumi

    2018-01-16

    In mammals, the principal circadian oscillator exists in the hypothalamic suprachiasmatic nucleus (SCN). In the SCN, CLOCK works as an essential component of molecular circadian oscillation, and ClockΔ19 mutant mice show unique characteristics of circadian rhythms such as extended free running periods, amplitude attenuation, and high-magnitude phase-resetting responses. Here we investigated what modifications occur in the spatiotemporal organization of clock gene expression in the SCN of ClockΔ19 mutants. The cultured SCN, sampled from neonatal homozygous ClockΔ19 mice on an ICR strain comprising PERIOD2::LUCIFERASE, demonstrated that the Clock gene mutation not only extends the circadian period, but also affects the spatial phase and period distribution of circadian oscillations in the SCN. In addition, disruption of the synchronization among neurons markedly attenuated the amplitude of the circadian rhythm of individual oscillating neurons in the mutant SCN. Further, with numerical simulations based on the present studies, the findings suggested that, in the SCN of the ClockΔ19 mutant mice, stable oscillation was preserved by the interaction among oscillating neurons, and that the orderly phase and period distribution that makes a phase wave are dependent on the functionality of CLOCK.

  15. Circadian locomotor output cycles kaput affects the proliferation and migration of breast cancer cells by regulating the expression of E-cadherin via IQ motif containing GTPase activating protein 1.

    PubMed

    Li, Xiaoxue; Wang, Siyang; Yang, Shuhong; Ying, Junjie; Yu, Hang; Yang, Chunlei; Liu, Yanyou; Wang, Yuhui; Cheng, Shuting; Xiao, Jing; Guo, Huiling; Jiang, Zhou; Wang, Zhengrong

    2018-05-01

    The circadian rhythm regulates numerous physiological activities, including sleep and wakefulness, behavior, immunity and metabolism. Previous studies have demonstrated that circadian rhythm disorder is associated with the occurrence of tumors. Responsible for regulating a number of functions, the Circadian locomotor output cycles kaput ( Clock ) gene is one of the core regulatory genes of circadian rhythm. The Clock gene has also been implicated in the occurrence and development of tumors in previously studies. The present study evaluated the role of the Clock gene in the proliferation and migration of mouse breast cancer 4T1 cells, and investigated its possible regulatory pathways and mechanisms. It was reported that downregulation of Clock facilitated the proliferation and migration of breast cancer cells. Further investigation revealed the involvement of IQ motif containing GTPase activating protein 1 (IQGAP1) protein expression in the Clock regulatory pathway, further influencing the expression of E-cadherin, a known proprietor of tumor cell migration and invasion. To the best of our knowledge, the present study is the first to report that Clock , acting through the regulation of the scaffolding protein IQGAP1, regulates the downstream expression of E-cadherin, thereby affecting tumor cell structure and motility. These results confirmed the role of Clock in breast cancer tumor etiology and provide insight regarding the molecular avenues of its regulatory nature, which may translate beyond breast cancer into other known functions of the gene.

  16. A chemical biology approach reveals period shortening of the mammalian circadian clock by specific inhibition of GSK-3beta.

    PubMed

    Hirota, Tsuyoshi; Lewis, Warren G; Liu, Andrew C; Lee, Jae Wook; Schultz, Peter G; Kay, Steve A

    2008-12-30

    The circadian clock controls daily oscillations of gene expression at the cellular level. We report the development of a high-throughput circadian functional assay system that consists of luminescent reporter cells, screening automation, and a data analysis pipeline. We applied this system to further dissect the molecular mechanisms underlying the mammalian circadian clock using a chemical biology approach. We analyzed the effect of 1,280 pharmacologically active compounds with diverse structures on the circadian period length that is indicative of the core clock mechanism. Our screening paradigm identified many compounds previously known to change the circadian period or phase, demonstrating the validity of the assay system. Furthermore, we found that small molecule inhibitors of glycogen synthase kinase 3 (GSK-3) consistently caused a strong short period phenotype in contrast to the well-known period lengthening by lithium, another presumed GSK-3 inhibitor. siRNA-mediated knockdown of GSK-3beta also caused a short period, confirming the phenotype obtained with the small molecule inhibitors. These results clarify the role of GSK-3beta in the period regulation of the mammalian clockworks and highlight the effectiveness of chemical biology in exploring unidentified mechanisms of the circadian clock.

  17. Clock Genes and Altered Sleep–Wake Rhythms: Their Role in the Development of Psychiatric Disorders

    PubMed Central

    Charrier, Annaëlle; Olliac, Bertrand; Roubertoux, Pierre; Tordjman, Sylvie

    2017-01-01

    In mammals, the circadian clocks network (central and peripheral oscillators) controls circadian rhythms and orchestrates the expression of a range of downstream genes, allowing the organism to anticipate and adapt to environmental changes. Beyond their role in circadian rhythms, several studies have highlighted that circadian clock genes may have a more widespread physiological effect on cognition, mood, and reward-related behaviors. Furthermore, single nucleotide polymorphisms in core circadian clock genes have been associated with psychiatric disorders (such as autism spectrum disorder, schizophrenia, anxiety disorders, major depressive disorder, bipolar disorder, and attention deficit hyperactivity disorder). However, the underlying mechanisms of these associations remain to be ascertained and the cause–effect relationships are not clearly established. The objective of this article is to clarify the role of clock genes and altered sleep–wake rhythms in the development of psychiatric disorders (sleep problems are often observed at early onset of psychiatric disorders). First, the molecular mechanisms of circadian rhythms are described. Then, the relationships between disrupted circadian rhythms, including sleep–wake rhythms, and psychiatric disorders are discussed. Further research may open interesting perspectives with promising avenues for early detection and therapeutic intervention in psychiatric disorders. PMID:28468274

  18. Clock Genes and Altered Sleep-Wake Rhythms: Their Role in the Development of Psychiatric Disorders.

    PubMed

    Charrier, Annaëlle; Olliac, Bertrand; Roubertoux, Pierre; Tordjman, Sylvie

    2017-04-29

    In mammals, the circadian clocks network (central and peripheral oscillators) controls circadian rhythms and orchestrates the expression of a range of downstream genes, allowing the organism to anticipate and adapt to environmental changes. Beyond their role in circadian rhythms, several studies have highlighted that circadian clock genes may have a more widespread physiological effect on cognition, mood, and reward-related behaviors. Furthermore, single nucleotide polymorphisms in core circadian clock genes have been associated with psychiatric disorders (such as autism spectrum disorder, schizophrenia, anxiety disorders, major depressive disorder, bipolar disorder, and attention deficit hyperactivity disorder). However, the underlying mechanisms of these associations remain to be ascertained and the cause-effect relationships are not clearly established. The objective of this article is to clarify the role of clock genes and altered sleep-wake rhythms in the development of psychiatric disorders (sleep problems are often observed at early onset of psychiatric disorders). First, the molecular mechanisms of circadian rhythms are described. Then, the relationships between disrupted circadian rhythms, including sleep-wake rhythms, and psychiatric disorders are discussed. Further research may open interesting perspectives with promising avenues for early detection and therapeutic intervention in psychiatric disorders.

  19. Temperature compensation and temperature sensation in the circadian clock

    PubMed Central

    Kidd, Philip B.; Young, Michael W.; Siggia, Eric D.

    2015-01-01

    All known circadian clocks have an endogenous period that is remarkably insensitive to temperature, a property known as temperature compensation, while at the same time being readily entrained by a diurnal temperature oscillation. Although temperature compensation and entrainment are defining features of circadian clocks, their mechanisms remain poorly understood. Most models presume that multiple steps in the circadian cycle are temperature-dependent, thus facilitating temperature entrainment, but then insist that the effect of changes around the cycle sums to zero to enforce temperature compensation. An alternative theory proposes that the circadian oscillator evolved from an adaptive temperature sensor: a gene circuit that responds only to temperature changes. This theory implies that temperature changes should linearly rescale the amplitudes of clock component oscillations but leave phase relationships and shapes unchanged. We show using timeless luciferase reporter measurements and Western blots against TIMELESS protein that this prediction is satisfied by the Drosophila circadian clock. We also review evidence for pathways that couple temperature to the circadian clock, and show previously unidentified evidence for coupling between the Drosophila clock and the heat-shock pathway. PMID:26578788

  20. SEU/SET Tolerant Phase-Locked Loops

    NASA Technical Reports Server (NTRS)

    Shuler, Robert L., Jr.

    2010-01-01

    The phase-locked loop (PLL) is an old and widely used circuit for frequency and phase demodulation, carrier and clock recovery, and frequency synthesis [1]. Its implementations range from discrete components to fully integrated circuits and even to firmware or software. Often the PLL is a highly critical component of a system, as for example when it is used to derive the on-chip clock, but as of this writing no definitive single-event upset (SET)/single-event transient (SET) tolerant PLL circuit has been described. This chapter hopes to rectify that situation, at least in regard to PLLs that are used to generate clocks. Older literature on fault-tolerant PLLs deals with detection of a hard failure, which is recovered by replacement, repair, or manual restart of discrete component systems. Several patents exist along these lines (6349391, 6272647, and 7089442). A newer approach is to harden the parts of a PLL system, to one degree or another, such as by using a voltage-based charge pump or a triple modular redundant (TMR) voted voltage-controlled oscillator (VCO). A more comprehensive approach is to harden by triplication and voting (TMR) all the digital pieces (primarily the divider) of a frequency synthesis PLL, but this still leaves room for errors in the VCO and the loop filter. Instead of hardening or voting pieces of a system, such as a frequency synthesis system (i.e., clock multiplier), we will show how the entire system can be voted. There are two main ways of doing this, each with advantages and drawbacks. We will show how each has advantages in certain areas, depending on the lock acquisition and tracking characteristics of the PLL. Because of this dependency on PLL characteristics, we will briefly revisit the theory of PLLs. But first we will describe the characteristics of voters and their correct application, as some literature does not follow the voting procedure that guarantees elimination of errors. Additionally, we will find that voting clocks is a bit trickier than voting data where an infallible clock is assumed. It is our job here to produce (or recover) that assumed infallible clock!

  1. A Novel Photonic Clock and Carrier Recovery Device

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve; Lutes, George; Maleki, Lute

    1996-01-01

    As data communication rates climb toward ten Gb/s, clock recovery and synchronization become more difficult, if not impossible, using conventional electronic circuits. We present in this article experimental results of a high speed clock and carrier recovery using a novel device called a photonic oscillator that we recently developed in our laboratory. This device is capable of recovering clock signals up to 70 GHz. To recover the clock, the incoming data is injected into the photonic oscillator either through the optical injection port or the electrical injection port. The free running photonic oscillator is tuned to oscillate at a nominal frequency equal to the clock frequency of the incoming data. With the injection of the data, the photonic oscillator will be quickly locked to clock frequency of the data stream while rejecting other frequency components associated with the data. Consequently, the output of the locked photonic oscillator is a continuous periodical wave synchronized with the incoming data or simply the recovered clock. We have demonstrated a clock to spur ratio of more than 60 dB of the recovered clock using this technique. Similar to the clock recovery, the photonic oscillator can be used to recover a high frequency carrier degraded by noise and an improvement of about 50 dB in signal-to-noise ratio was demonstrated. The photonic oscillator has both electrical and optical inputs and outputs and can be directly interfaced with a photonic system without signal conversion. In addition to clock and carrier recovery, the photonic oscillator can also be used for (1) stable high frequency clock signal generation, (2) frequency multiplication, (3) square wave and comb frequency generation, and (4) photonic phase locked loop.

  2. A gallium-arsenide digital phase shifter for clock and control signal distribution in high-speed digital systems

    NASA Technical Reports Server (NTRS)

    Fouts, Douglas J.

    1992-01-01

    The design, implementation, testing, and applications of a gallium-arsenide digital phase shifter and fan-out buffer are described. The integrated circuit provides a method for adjusting the phase of high-speed clock and control signals in digital systems, without the need for pruning cables, multiplexing between cables of different lengths, delay lines, or similar techniques. The phase of signals distributed with the described chip can be dynamically adjusted in eight different steps of approximately 60 ps per step. The IC also serves as a fan-out buffer and provides 12 in-phase outputs. The chip is useful for distributing high-speed clock and control signals in synchronous digital systems, especially if components are distributed over a large physical area or if there is a large number of components.

  3. Structure of frequency-interacting RNA helicase from Neurospora crassa reveals high flexibility in a domain critical for circadian rhythm and RNA surveillance.

    PubMed

    Morales, Yalemi; Olsen, Keith J; Bulcher, Jacqueline M; Johnson, Sean J

    2018-01-01

    The FRH (frequency-interacting RNA helicase) protein is the Neurospora crassa homolog of yeast Mtr4, an essential RNA helicase that plays a central role in RNA metabolism as an activator of the nuclear RNA exosome. FRH is also a required component of the circadian clock, mediating protein interactions that result in the rhythmic repression of gene expression. Here we show that FRH unwinds RNA substrates in vitro with a kinetic profile similar to Mtr4, indicating that while FRH has acquired additional functionality, its core helicase function remains intact. In contrast with the earlier FRH structures, a new crystal form of FRH results in an ATP binding site that is undisturbed by crystal contacts and adopts a conformation consistent with nucleotide binding and hydrolysis. Strikingly, this new FRH structure adopts an arch domain conformation that is dramatically altered from previous structures. Comparison of the existing FRH structures reveals conserved hinge points that appear to facilitate arch motion. Regions in the arch have been previously shown to mediate a variety of protein-protein interactions critical for RNA surveillance and circadian clock functions. The conformational changes highlighted in the FRH structures provide a platform for investigating the relationship between arch dynamics and Mtr4/FRH function.

  4. Body Temperature Cycles Control Rhythmic Alternative Splicing in Mammals.

    PubMed

    Preußner, Marco; Goldammer, Gesine; Neumann, Alexander; Haltenhof, Tom; Rautenstrauch, Pia; Müller-McNicoll, Michaela; Heyd, Florian

    2017-08-03

    The core body temperature of all mammals oscillates with the time of the day. However, direct molecular consequences of small, physiological changes in body temperature remain largely elusive. Here we show that body temperature cycles drive rhythmic SR protein phosphorylation to control an alternative splicing (AS) program. A temperature change of 1°C is sufficient to induce a concerted splicing switch in a large group of functionally related genes, rendering this splicing-based thermometer much more sensitive than previously described temperature-sensing mechanisms. AS of two exons in the 5' UTR of the TATA-box binding protein (Tbp) highlights the general impact of this mechanism, as it results in rhythmic TBP protein levels with implications for global gene expression in vivo. Together our data establish body temperature-driven AS as a core clock-independent oscillator in mammalian peripheral clocks. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. VRILLE Controls PDF Neuropeptide Accumulation and Arborization Rhythms in Small Ventrolateral Neurons to Drive Rhythmic Behavior in Drosophila.

    PubMed

    Gunawardhana, Kushan L; Hardin, Paul E

    2017-11-20

    In Drosophila, the circadian clock is comprised of transcriptional feedback loops that control rhythmic gene expression responsible for daily rhythms in physiology, metabolism, and behavior. The core feedback loop, which employs CLOCK-CYCLE (CLK-CYC) activators and PERIOD-TIMELESS (PER-TIM) repressors to drive rhythmic transcription peaking at dusk, is required for circadian timekeeping and overt behavioral rhythms. CLK-CYC also activates an interlocked feedback loop, which uses the PAR DOMAIN PROTEIN 1ε (PDP1ε) activator and the VRILLE (VRI) repressor to drive rhythmic transcription peaking at dawn. Although Pdp1ε mutants disrupt activity rhythms without eliminating clock function, whether vri is required for clock function and/or output is not known. Using a conditionally inactivatable transgene to rescue vri developmental lethality, we show that clock function persists after vri inactivation but that activity rhythms are abolished. The inactivation of vri disrupts multiple output pathways thought to be important for activity rhythms, including PDF accumulation and arborization rhythms in the small ventrolateral neuron (sLN v ) dorsal projection. These results demonstrate that vri acts as a key regulator of clock output and suggest that the primary function of the interlocked feedback loop in Drosophila is to drive rhythmic transcription required for overt rhythms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Circadian rhythmicity of active GSK3 isoforms modulates molecular clock gene rhythms in the suprachiasmatic nucleus.

    PubMed

    Besing, Rachel C; Paul, Jodi R; Hablitz, Lauren M; Rogers, Courtney O; Johnson, Russell L; Young, Martin E; Gamble, Karen L

    2015-04-01

    The suprachiasmatic nucleus (SCN) drives and synchronizes daily rhythms at the cellular level via transcriptional-translational feedback loops comprising clock genes such as Bmal1 and Period (Per). Glycogen synthase kinase 3 (GSK3), a serine/threonine kinase, phosphorylates at least 5 core clock proteins and shows diurnal variation in phosphorylation state (inactivation) of the GSK3β isoform. Whether phosphorylation of the other primary isoform (GSK3α) varies across the subjective day-night cycle is unknown. The purpose of this study was to determine if the endogenous rhythm of GSK3 (α and β) phosphorylation is critical for rhythmic BMAL1 expression and normal amplitude and periodicity of the molecular clock in the SCN. Significant circadian rhythmicity of phosphorylated GSK3 (α and β) was observed in the SCN from wild-type mice housed in constant darkness for 2 weeks. Importantly, chronic activation of both GSK3 isoforms impaired rhythmicity of the GSK3 target BMAL1. Furthermore, chronic pharmacological inhibition of GSK3 with 20 µM CHIR-99021 enhanced the amplitude and shortened the period of PER2::luciferase rhythms in organotypic SCN slice cultures. These results support the model that GSK3 activity status is regulated by the circadian clock and that GSK3 feeds back to regulate the molecular clock amplitude in the SCN. © 2015 The Author(s).

  7. Illuminating the circadian clock in monarch butterfly migration.

    PubMed

    Froy, Oren; Gotter, Anthony L; Casselman, Amy L; Reppert, Steven M

    2003-05-23

    Migratory monarch butterflies use a time-compensated Sun compass to navigate to their overwintering grounds in Mexico. Here, we report that constant light, which disrupts circadian clock function at both the behavioral and molecular levels in monarchs, also disrupts the time-compensated component of flight navigation. We further show that ultraviolet light is important for flight navigation but is not required for photic entrainment of circadian rhythms. Tracing these distinct light-input pathways into the brain should aid our understanding of the clock-compass mechanisms necessary for successful migration.

  8. Correction of clock errors in seismic data using noise cross-correlations

    NASA Astrophysics Data System (ADS)

    Hable, Sarah; Sigloch, Karin; Barruol, Guilhem; Hadziioannou, Céline

    2017-04-01

    Correct and verifiable timing of seismic records is crucial for most seismological applications. For seismic land stations, frequent synchronization of the internal station clock with a GPS signal should ensure accurate timing, but loss of GPS synchronization is a common occurrence, especially for remote, temporary stations. In such cases, retrieval of clock timing has been a long-standing problem. The same timing problem applies to Ocean Bottom Seismometers (OBS), where no GPS signal can be received during deployment and only two GPS synchronizations can be attempted upon deployment and recovery. If successful, a skew correction is usually applied, where the final timing deviation is interpolated linearly across the entire operation period. If GPS synchronization upon recovery fails, then even this simple and unverified, first-order correction is not possible. In recent years, the usage of cross-correlation functions (CCFs) of ambient seismic noise has been demonstrated as a clock-correction method for certain network geometries. We demonstrate the great potential of this technique for island stations and OBS that were installed in the course of the Réunion Hotspot and Upper Mantle - Réunions Unterer Mantel (RHUM-RUM) project in the western Indian Ocean. Four stations on the island La Réunion were affected by clock errors of up to several minutes due to a missing GPS signal. CCFs are calculated for each day and compared with a reference cross-correlation function (RCF), which is usually the average of all CCFs. The clock error of each day is then determined from the measured shift between the daily CCFs and the RCF. To improve the accuracy of the method, CCFs are computed for several land stations and all three seismic components. Averaging over these station pairs and their 9 component pairs reduces the standard deviation of the clock errors by a factor of 4 (from 80 ms to 20 ms). This procedure permits a continuous monitoring of clock errors where small clock drifts (1 ms/day) as well as large clock jumps (6 min) are identified. The same method is applied to records of five OBS stations deployed within a radius of 150 km around La Réunion. The assumption of a linear clock drift is verified by correlating OBS for which GPS-based skew corrections were available with land stations. For two OBS stations without skew estimates, we find clock drifts of 0.9 ms/day and 0.4 ms/day. This study salvages expensive seismic records from remote regions that would be otherwise lost for seismicity or tomography studies.

  9. Core clock, SUB1, and ABAR genes mediate flooding and drought responses via alternative splicing in soybean.

    PubMed

    Syed, Naeem H; Prince, Silvas J; Mutava, Raymond N; Patil, Gunvant; Li, Song; Chen, Wei; Babu, Valliyodan; Joshi, Trupti; Khan, Saad; Nguyen, Henry T

    2015-12-01

    Circadian clocks are a great evolutionary innovation and provide competitive advantage during the day/night cycle and under changing environmental conditions. The circadian clock mediates expression of a large proportion of genes in plants, achieving a harmonious relationship between energy metabolism, photosynthesis, and biotic and abiotic stress responses. Here it is shown that multiple paralogues of clock genes are present in soybean (Glycine max) and mediate flooding and drought responses. Differential expression of many clock and SUB1 genes was found under flooding and drought conditions. Furthermore, natural variation in the amplitude and phase shifts in PRR7 and TOC1 genes was also discovered under drought and flooding conditions, respectively. PRR3 exhibited flooding- and drought-specific splicing patterns and may work in concert with PRR7 and TOC1 to achieve energy homeostasis under flooding and drought conditions. Higher expression of TOC1 also coincides with elevated levels of abscisic acid (ABA) and variation in glucose levels in the morning and afternoon, indicating that this response to abiotic stress is mediated by ABA, endogenous sugar levels, and the circadian clock to fine-tune photosynthesis and energy utilization under stress conditions. It is proposed that the presence of multiple clock gene paralogues with variation in DNA sequence, phase, and period could be used to screen exotic germplasm to find sources for drought and flooding tolerance. Furthermore, fine tuning of multiple clock gene paralogues (via a genetic engineering approach) should also facilitate the development of flooding- and drought-tolerant soybean varieties. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. General anesthesia alters time perception by phase shifting the circadian clock.

    PubMed

    Cheeseman, James F; Winnebeck, Eva C; Millar, Craig D; Kirkland, Lisa S; Sleigh, James; Goodwin, Mark; Pawley, Matt D M; Bloch, Guy; Lehmann, Konstantin; Menzel, Randolf; Warman, Guy R

    2012-05-01

    Following general anesthesia, people are often confused about the time of day and experience sleep disruption and fatigue. It has been hypothesized that these symptoms may be caused by general anesthesia affecting the circadian clock. The circadian clock is fundamental to our well-being because it regulates almost all aspects of our daily biochemistry, physiology, and behavior. Here, we investigated the effects of the most common general anesthetic, isoflurane, on time perception and the circadian clock using the honeybee (Apis mellifera) as a model. A 6-h daytime anesthetic systematically altered the time-compensated sun compass orientation of the bees, with a mean anticlockwise shift in vanishing bearing of 87° in the Southern Hemisphere and a clockwise shift in flight direction of 58° in the Northern Hemisphere. Using the same 6-h anesthetic treatment, time-trained bees showed a delay in the start of foraging of 3.3 h, and whole-hive locomotor-activity rhythms were delayed by an average of 4.3 h. We show that these effects are all attributable to a phase delay in the core molecular clockwork. mRNA oscillations of the central clock genes cryptochrome-m and period were delayed by 4.9 and 4.3 h, respectively. However, this effect is dependent on the time of day of administration, as is common for clock effects, and nighttime anesthesia did not shift the clock. Taken together, our results suggest that general anesthesia during the day causes a persistent and marked shift of the clock effectively inducing "jet lag" and causing impaired time perception. Managing this effect in humans is likely to help expedite postoperative recovery.

  11. Loss of circadian rhythm of circulating insulin concentration induced by high-fat diet intake is associated with disrupted rhythmic expression of circadian clock genes in the liver.

    PubMed

    Honma, Kazue; Hikosaka, Maki; Mochizuki, Kazuki; Goda, Toshinao

    2016-04-01

    Peripheral clock genes show a circadian rhythm is correlated with the timing of feeding in peripheral tissues. It was reported that these clock genes are strongly regulated by insulin action and that a high-fat diet (HFD) intake in C57BL/6J mice for 21days induced insulin secretion during the dark phase and reduced the circadian rhythm of clock genes. In this study, we examined the circadian expression patterns of these clock genes in insulin-resistant animal models with excess secretion of insulin during the day. We examined whether insulin resistance induced by a HFD intake for 80days altered blood parameters (glucose and insulin concentrations) and expression of mRNA and proteins encoded by clock and functional genes in the liver using male ICR mice. Serum insulin concentrations were continuously higher during the day in mice fed a HFD than control mice. Expression of lipogenesis-related genes (Fas and Accβ) and the transcription factor Chrebp peaked at zeitgeber time (ZT)24 in the liver of control mice. A HFD intake reduced the expression of these genes at ZT24 and disrupted the circadian rhythm. Expression of Bmal1 and Clock, transcription factors that compose the core feedback loop, showed circadian variation and were synchronously associated with Fas gene expression in control mice, but not in those fed a HFD. These results indicate that the disruption of the circadian rhythm of insulin secretion by HFD intake is closely associated with the disappearance of circadian expression of lipogenic and clock genes in the liver of mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Age-Related Changes in the Expression of the Circadian Clock Protein PERIOD in Drosophila Glial Cells

    PubMed Central

    Long, Dani M.; Giebultowicz, Jadwiga M.

    2018-01-01

    Circadian clocks consist of molecular negative feedback loops that coordinate physiological, neurological, and behavioral variables into “circa” 24-h rhythms. Rhythms in behavioral and other circadian outputs tend to weaken during aging, as evident in progressive disruptions of sleep-wake cycles in aging organisms. However, less is known about the molecular changes in the expression of clock genes and proteins that may lead to the weakening of circadian outputs. Western blot studies have demonstrated that the expression of the core clock protein PERIOD (PER) declines in the heads of aged Drosophila melanogaster flies. This age-related decline in PER does not occur in the central pacemaker neurons but has been demonstrated so far in retinal photoreceptors. Besides photoreceptors, clock proteins are also expressed in fly glia, which play important roles in neuronal homeostasis and are further categorized into subtypes based on morphology and function. While previous studies of mammalian glial cells have demonstrated the presence of functional clocks in astrocytes and microglia, it is not known which glial cell types in Drosophila express clock proteins and how their expression may change in aged individuals. Here, we conducted immunocytochemistry experiments to identify which glial subtypes express PER protein suggestive of functional circadian clocks. Glial cell subtypes that showed night-time accumulation and day-time absence in PER consistent with oscillations reported in the pacemaker neurons were selected to compare the level of PER protein between young and old flies. Our data demonstrate that some glial subtypes show rhythmic PER expression and the relative PER levels become dampened with advanced age. Identification of glial cell types that display age-related dampening of PER levels may help to understand the cellular changes that contribute to the loss of homeostasis in the aging brain. PMID:29375400

  13. A Methodology for the Design and Verification of Globally Asynchronous/Locally Synchronous Architectures

    NASA Technical Reports Server (NTRS)

    Miller, Steven P.; Whalen, Mike W.; O'Brien, Dan; Heimdahl, Mats P.; Joshi, Anjali

    2005-01-01

    Recent advanced in model-checking have made it practical to formally verify the correctness of many complex synchronous systems (i.e., systems driven by a single clock). However, many computer systems are implemented by asynchronously composing several synchronous components, where each component has its own clock and these clocks are not synchronized. Formal verification of such Globally Asynchronous/Locally Synchronous (GA/LS) architectures is a much more difficult task. In this report, we describe a methodology for developing and reasoning about such systems. This approach allows a developer to start from an ideal system specification and refine it along two axes. Along one axis, the system can be refined one component at a time towards an implementation. Along the other axis, the behavior of the system can be relaxed to produce a more cost effective but still acceptable solution. We illustrate this process by applying it to the synchronization logic of a Dual Fight Guidance System, evolving the system from an ideal case in which the components do not fail and communicate synchronously to one in which the components can fail and communicate asynchronously. For each step, we show how the system requirements have to change if the system is to be implemented and prove that each implementation meets the revised system requirements through modelchecking.

  14. Real-time estimation of BDS/GPS high-rate satellite clock offsets using sequential least squares

    NASA Astrophysics Data System (ADS)

    Fu, Wenju; Yang, Yuanxi; Zhang, Qin; Huang, Guanwen

    2018-07-01

    The real-time precise satellite clock product is one of key prerequisites for real-time Precise Point Positioning (PPP). The accuracy of the 24-hour predicted satellite clock product with 15 min sampling interval and an update of 6 h provided by the International GNSS Service (IGS) is only 3 ns, which could not meet the needs of all real-time PPP applications. The real-time estimation of high-rate satellite clock offsets is an efficient method for improving the accuracy. In this paper, the sequential least squares method to estimate real-time satellite clock offsets with high sample rate is proposed to improve the computational speed by applying an optimized sparse matrix operation to compute the normal equation and using special measures to take full advantage of modern computer power. The method is first applied to BeiDou Navigation Satellite System (BDS) and provides real-time estimation with a 1 s sample rate. The results show that the amount of time taken to process a single epoch is about 0.12 s using 28 stations. The Standard Deviation (STD) and Root Mean Square (RMS) of the real-time estimated BDS satellite clock offsets are 0.17 ns and 0.44 ns respectively when compared to German Research Center for Geosciences (GFZ) final clock products. The positioning performance of the real-time estimated satellite clock offsets is evaluated. The RMSs of the real-time BDS kinematic PPP in east, north, and vertical components are 7.6 cm, 6.4 cm and 19.6 cm respectively. The method is also applied to Global Positioning System (GPS) with a 10 s sample rate and the computational time of most epochs is less than 1.5 s with 75 stations. The STD and RMS of the real-time estimated GPS satellite clocks are 0.11 ns and 0.27 ns, respectively. The accuracies of 5.6 cm, 2.6 cm and 7.9 cm in east, north, and vertical components are achieved for the real-time GPS kinematic PPP.

  15. BDS Precise Point Positioning for Seismic Displacements Monitoring: Benefit from the High-Rate Satellite Clock Corrections

    PubMed Central

    Geng, Tao; Su, Xing; Fang, Rongxin; Xie, Xin; Zhao, Qile; Liu, Jingnan

    2016-01-01

    In order to satisfy the requirement of high-rate high-precision applications, 1 Hz BeiDou Navigation Satellite System (BDS) satellite clock corrections are generated based on precise orbit products, and the quality of the generated clock products is assessed by comparing with those from the other analysis centers. The comparisons show that the root mean square (RMS) of clock errors of geostationary Earth orbits (GEO) is about 0.63 ns, whereas those of inclined geosynchronous orbits (IGSO) and medium Earth orbits (MEO) are about 0.2–0.3 ns and 0.1 ns, respectively. Then, the 1 Hz clock products are used for BDS precise point positioning (PPP) to retrieve seismic displacements of the 2015 Mw 7.8 Gorkha, Nepal, earthquake. The derived seismic displacements from BDS PPP are consistent with those from the Global Positioning System (GPS) PPP, with RMS of 0.29, 0.38, and 1.08 cm in east, north, and vertical components, respectively. In addition, the BDS PPP solutions with different clock intervals of 1 s, 5 s, 30 s, and 300 s are processed and compared with each other. The results demonstrate that PPP with 300 s clock intervals is the worst and that with 1 s clock interval is the best. For the scenario of 5 s clock intervals, the precision of PPP solutions is almost the same to 1 s results. Considering the time consumption of clock estimates, we suggest that 5 s clock interval is competent for high-rate BDS solutions. PMID:27999384

  16. BDS Precise Point Positioning for Seismic Displacements Monitoring: Benefit from the High-Rate Satellite Clock Corrections.

    PubMed

    Geng, Tao; Su, Xing; Fang, Rongxin; Xie, Xin; Zhao, Qile; Liu, Jingnan

    2016-12-20

    In order to satisfy the requirement of high-rate high-precision applications, 1 Hz BeiDou Navigation Satellite System (BDS) satellite clock corrections are generated based on precise orbit products, and the quality of the generated clock products is assessed by comparing with those from the other analysis centers. The comparisons show that the root mean square (RMS) of clock errors of geostationary Earth orbits (GEO) is about 0.63 ns, whereas those of inclined geosynchronous orbits (IGSO) and medium Earth orbits (MEO) are about 0.2-0.3 ns and 0.1 ns, respectively. Then, the 1 Hz clock products are used for BDS precise point positioning (PPP) to retrieve seismic displacements of the 2015 Mw 7.8 Gorkha, Nepal, earthquake. The derived seismic displacements from BDS PPP are consistent with those from the Global Positioning System (GPS) PPP, with RMS of 0.29, 0.38, and 1.08 cm in east, north, and vertical components, respectively. In addition, the BDS PPP solutions with different clock intervals of 1 s, 5 s, 30 s, and 300 s are processed and compared with each other. The results demonstrate that PPP with 300 s clock intervals is the worst and that with 1 s clock interval is the best. For the scenario of 5 s clock intervals, the precision of PPP solutions is almost the same to 1 s results. Considering the time consumption of clock estimates, we suggest that 5 s clock interval is competent for high-rate BDS solutions.

  17. Visuoconstructional Impairment in Subtypes of Mild Cognitive Impairment

    PubMed Central

    Ahmed, Samrah; Brennan, Laura; Eppig, Joel; Price, Catherine C.; Lamar, Melissa; Delano-Wood, Lisa; Bangen, Katherine J.; Edmonds, Emily C.; Clark, Lindsey; Nation, Daniel A.; Jak, Amy; Au, Rhoda; Swenson, Rodney; Bondi, Mark W.; Libon, David J.

    2018-01-01

    Clock Drawing Test performance was examined alongside other neuropsychological tests in mild cognitive impairment (MCI). We tested the hypothesis that clock-drawing errors are related to executive impairment. The current research examined 86 patients with MCI for whom, in prior research, cluster analysis was used to sort patients into dysexecutive (dMCI, n=22), amnestic (aMCI, n=13), and multi-domain (mMCI, n=51) subtypes. First, principal components analysis (PCA) and linear regression examined relations between clock-drawing errors and neuropsychological test performance independent of MCI subtype. Second, between-group differences were assessed with analysis of variance (ANOVA) where MCI subgroups were compared to normal controls (NC). PCA yielded a 3-group solution. Contrary to expectations, clock-drawing errors loaded with lower performance on naming/lexical retrieval, rather than with executive tests. Regression analyses found increasing clock-drawing errors to command were associated with worse performance only on naming/lexical retrieval tests. ANOVAs revealed no differences in clock-drawing errors between dMCI versus mMCI or aMCI versus NCs. Both the dMCI and mMCI groups generated more clock-drawing errors than the aMCI and NC groups in the command condition. In MCI, language-related skills contribute to clock-drawing impairment. PMID:26397732

  18. Experimental verification of clock noise transfer and components for space based gravitational wave detectors.

    PubMed

    Sweeney, Dylan; Mueller, Guido

    2012-11-05

    The Laser Interferometer Space Antenna (LISA) and other space based gravitational wave detector designs require a laser communication subsystem to, among other things, transfer clock signals between spacecraft (SC) in order to cancel clock noise in post-processing. The original LISA baseline design requires frequency synthesizers to convert each SC clock into a 2 GHz signal, and electro-optic modulators (EOMs) to modulate this 2 GHz clock signal onto the laser light. Both the frequency synthesizers and the EOMs must operate with a phase fidelity of 2×10(-4)cycles/√Hz. In this paper we present measurements of the phase fidelity of frequency synthesizers and EOMs. We found that both the frequency synthesizers and the EOMs meet the requirement when tested independently and together. We also performed an electronic test of the clock noise transfer using frequency synthesizers and the University of Florida LISA Interferometry (UFLIS) phasemeter. We found that by applying a time varying fractional delay filter we could suppress the clock noise to a level below our measurement limit, which is currently determined by timing jitter and is less than an order of magnitude above the LISA requirement for phase measurements.

  19. Optically guided atom interferometer tuned to magic wavelength

    NASA Astrophysics Data System (ADS)

    Akatsuka, Tomoya; Takahashi, Tadahiro; Katori, Hidetoshi

    2017-11-01

    We demonstrate an atom interferometer operating on the 1S0-3P0 clock transition of 87Sr atoms in a “magic” optical guide, where the light shift perturbations of the guiding potential are canceled. As a proof-of-principle demonstration, a Mach-Zehnder interferometer is set horizontally to map the acceleration introduced by the focused optical guide. This magic guide interferometer on the clock transition is applicable to atomic elements where magic wavelengths can be found. Possible applications of the magic guide interferometer, including a hollow-core fiber interferometer and gradiometer, are discussed.

  20. Timescales Of The Influence Of IMF Clock Angle In Controlling The Characteristics Of Magnetospheric Dynamics

    NASA Astrophysics Data System (ADS)

    Grocott, A.; Milan, S. E.

    2013-12-01

    We exploit a database of high-latitude ionospheric electric potential patterns, derived from radar observations of plasma convection in the northern hemisphere from the years 2000 - 2006, to investigate the timescales of interplanetary magnetic field (IMF) penetration into the magnetosphere. We parameterise the convection observations by IMF clock angle, θ (the angle between geocentric solar magnetic (GSM) north and the projection of the IMF vector onto the GSM Y-Z plane), and by an IMF timescale, τB (the length of time that a similar clock angle has been maintained prior to the convection observations being made). We find that the nature of the ionospheric convection changes with IMF clock angle, as expected from previous time-averaged studies, and that for τB ~ 30 mins the convection patterns closely resemble their time-averaged counterparts. However, we also find that for certain IMF clock angles, in particular those with a northward BZ component and significant BY (dusk-dawn) component, the patterns evolve with increasing τB to less resemble their time-averaged counterparts, showing a marked enhancement in dusk-dawn asymmetry as τB approaches 10 hours. We discuss these findings in terms of the effects of the persistent penetration of a quasi-steady IMF into the magnetosphere, and its implications for understanding different modes of magnetospheric dynamics.

  1. Regulation of the clock gene expression in human adipose tissue by weight loss.

    PubMed

    Pivovarova, O; Gögebakan, Ö; Sucher, S; Groth, J; Murahovschi, V; Kessler, K; Osterhoff, M; Rudovich, N; Kramer, A; Pfeiffer, A F H

    2016-06-01

    The circadian clock coordinates numerous metabolic processes to adapt physiological responses to light-dark and feeding regimens and is itself regulated by metabolic cues. The implication of the circadian clock in the regulation of energy balance and body weight is widely studied in rodents but not in humans. Here we investigated (1) whether the expression of clock genes in human adipose tissue is changed by weight loss and (2) whether these alterations are associated with metabolic parameters. Subcutaneous adipose tissue (SAT) samples were collected before and after 8 weeks of weight loss on an 800 kcal per day hypocaloric diet (plus 200 g per day vegetables) at the same time of the day. Fifty overweight subjects who lost at least 8% weight after 8 weeks were selected for the study. The expression of 10 clock genes and key metabolic and inflammatory genes in adipose tissue was determined by quantitative real-time PCR. The expression of core clock genes PER2 and NR1D1 was increased after the weight loss. Correlations of PERIOD expression with body mass index (BMI) and serum total, high-density lipoprotein and low-density lipoprotein (LDL) cholesterol levels and of NR1D1 expression with total and LDL cholesterol were found that became non-significant after correction for multiple testing. Clock gene expression levels and their weight loss-induced changes tightly correlated with each other and with genes involved in fat metabolism (FASN, CPT1A, LPL, PPARG, PGC1A, ADIPOQ), energy metabolism (SIRT1), autophagy (LC3A, LC3B) and inflammatory response (NFKB1, NFKBIA, NLRP3, EMR1). Clock gene expression in human SAT is regulated by body weight changes and associated with BMI, serum cholesterol levels and the expression of metabolic and inflammatory genes. Our data confirm the tight crosstalk between molecular clock and metabolic and inflammatory pathways involved in adapting adipose tissue metabolism to changes of the energy intake in humans.

  2. Pacemaker-neuron–dependent disturbance of the molecular clockwork by a Drosophila CLOCK mutant homologous to the mouse Clock mutation

    PubMed Central

    Lee, Euna; Cho, Eunjoo; Kang, Doo Hyun; Jeong, Eun Hee; Chen, Zheng; Yoo, Seung-Hee; Kim, Eun Young

    2016-01-01

    Circadian clocks are composed of transcriptional/translational feedback loops (TTFLs) at the cellular level. In Drosophila TTFLs, the transcription factor dCLOCK (dCLK)/CYCLE (CYC) activates clock target gene expression, which is repressed by the physical interaction with PERIOD (PER). Here, we show that amino acids (AA) 657–707 of dCLK, a region that is homologous to the mouse Clock exon 19-encoded region, is crucial for PER binding and E-box–dependent transactivation in S2 cells. Consistently, in transgenic flies expressing dCLK with an AA657–707 deletion in the Clock (Clkout) genetic background (p{dClk-Δ};Clkout), oscillation of core clock genes’ mRNAs displayed diminished amplitude compared with control flies, and the highly abundant dCLKΔ657–707 showed significantly decreased binding to PER. Behaviorally, the p{dClk-Δ};Clkout flies exhibited arrhythmic locomotor behavior in the photic entrainment condition but showed anticipatory activities of temperature transition and improved free-running rhythms in the temperature entrainment condition. Surprisingly, p{dClk-Δ};Clkout flies showed pacemaker-neuron–dependent alterations in molecular rhythms; the abundance of dCLK target clock proteins was reduced in ventral lateral neurons (LNvs) but not in dorsal neurons (DNs) in both entrainment conditions. In p{dClk-Δ};Clkout flies, however, strong but delayed molecular oscillations in temperature cycle-sensitive pacemaker neurons, such as DN1s and DN2s, were correlated with delayed anticipatory activities of temperature transition. Taken together, our study reveals that the LNv molecular clockwork is more sensitive than the clockwork of DNs to dysregulation of dCLK by AA657–707 deletion. Therefore, we propose that the dCLK/CYC-controlled TTFL operates differently in subsets of pacemaker neurons, which may contribute to their specific functions. PMID:27489346

  3. A sense of time: how molecular clocks organize metabolism.

    PubMed

    Kohsaka, Akira; Bass, Joseph

    2007-01-01

    The discovery of an internal temporal clockwork that coordinates behavior and metabolism according to the rising and setting of the sun was first revealed in flies and plants. However, in the past decade, a molecular transcription-translation feedback loop with similar properties has also been identified in mammals. In mammals, this transcriptional oscillator programs 24-hour cycles in sleep, activity and feeding within the master pacemaker neurons of the suprachiasmatic nucleus of the hypothalamus. More recent studies have shown that the core transcription mechanism is also present in other locations within the brain, in addition to many peripheral tissues. Processes ranging from glucose transport to gluconeogenesis, lipolysis, adipogenesis and mitochondrial oxidative phosphorylation are controlled through overlapping transcription networks that are tied to the clock and are thus time sensitive. Because disruption of tissue timing occurs when food intake, activity and sleep are altered, understanding how these many tissue clocks are synchronized to tick at the same time each day, and determining how each tissue 'senses time' set by these molecular clocks might open new insight into human disease, including disorders of sleep, circadian disruption, diabetes and obesity.

  4. Post-transcriptional control of the mammalian circadian clock: implications for health and disease.

    PubMed

    Preußner, Marco; Heyd, Florian

    2016-06-01

    Many aspects of human physiology and behavior display rhythmicity with a period of approximately 24 h. Rhythmic changes are controlled by an endogenous time keeper, the circadian clock, and include sleep-wake cycles, physical and mental performance capability, blood pressure, and body temperature. Consequently, many diseases, such as metabolic, sleep, autoimmune and mental disorders and cancer, are connected to the circadian rhythm. The development of therapies that take circadian biology into account is thus a promising strategy to improve treatments of diverse disorders, ranging from allergic syndromes to cancer. Circadian alteration of body functions and behavior are, at the molecular level, controlled and mediated by widespread changes in gene expression that happen in anticipation of predictably changing requirements during the day. At the core of the molecular clockwork is a well-studied transcription-translation negative feedback loop. However, evidence is emerging that additional post-transcriptional, RNA-based mechanisms are required to maintain proper clock function. Here, we will discuss recent work implicating regulated mRNA stability, translation and alternative splicing in the control of the mammalian circadian clock, and its role in health and disease.

  5. A fluorescence spotlight on the clockwork development and metabolism of bone.

    PubMed

    Iimura, Tadahiro; Nakane, Ayako; Sugiyama, Mayu; Sato, Hiroki; Makino, Yuji; Watanabe, Takashi; Takagi, Yuzo; Numano, Rika; Yamaguchi, Akira

    2012-05-01

    Biological phenomena that exhibit periodic activity are often referred as biorhythms or biological clocks. Among these, circadian rhythms, cyclic patterns reflecting a 24-h cycle, are the most obvious in many physiological activities including bone growth and metabolism. In the late 1990s, several clock genes were isolated and their primary structures and functions were identified. The feedback loop model of transcriptional factors was proposed to work as a circadian core oscillator not only in the suprachiasmatic nuclei of the anterior hypothalamus, which is recognized as the mammalian central clock, but also in various peripheral tissues including cartilage and bone. Looking back to embryonic development, the fundamental architecture of skeletal patterning is regulated by ultradian clocks that are defined as biorhythms that cycle more than once every 24 h. As post-genomic approaches, transcriptome analysis by micro-array and bioimaging assays to detect luminescent and fluorescent signals have been exploited to uncover a more comprehensive set of genes and spatio-temporal regulation of the clockwork machinery in animal models. In this review paper, we provide an overview of topics related to these molecular clocks in skeletal biology and medicine, and discuss how fluorescence imaging approaches can contribute to widening our views of this realm of biomedical science.

  6. Structure of the frequency-interacting RNA helicase: a protein interaction hub for the circadian clock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conrad, Karen S.; Hurley, Jennifer M.; Widom, Joanne

    In the Neurospora crassa circadian clock, a protein complex of frequency (FRQ), casein kinase 1a (CK1a), and the FRQ-interacting RNA Helicase (FRH) rhythmically represses gene expression by the white-collar complex (WCC). FRH crystal structures in several conformations and bound to ADP/RNA reveal differences between FRH and the yeast homolog Mtr4 that clarify the distinct role of FRH in the clock. The FRQ-interacting region at the FRH N-terminus has variable structure in the absence of FRQ. A known mutation that disrupts circadian rhythms (R806H) resides in a positively charged surface of the KOW domain, far removed from the helicase core. Here,more » we show that changes to other similarly located residues modulate interactions with the WCC and FRQ. A V142G substitution near the N-terminus also alters FRQ and WCC binding to FRH, but produces an unusual short clock period. Finally, these data support the assertion that FRH helicase activity does not play an essential role in the clock, but rather FRH acts to mediate contacts among FRQ, CK1a and the WCC through interactions involving its N-terminus and KOW module.« less

  7. The peripheral clock regulates human pigmentation.

    PubMed

    Hardman, Jonathan A; Tobin, Desmond J; Haslam, Iain S; Farjo, Nilofer; Farjo, Bessam; Al-Nuaimi, Yusur; Grimaldi, Benedetto; Paus, Ralf

    2015-04-01

    Although the regulation of pigmentation is well characterized, it remains unclear whether cell-autonomous controls regulate the cyclic on-off switching of pigmentation in the hair follicle (HF). As human HFs and epidermal melanocytes express clock genes and proteins, and given that core clock genes (PER1, BMAL1) modulate human HF cycling, we investigated whether peripheral clock activity influences human HF pigmentation. We found that silencing BMAL1 or PER1 in human HFs increased HF melanin content. Furthermore, tyrosinase expression and activity, as well as TYRP1 and TYRP2 mRNA levels, gp100 protein expression, melanocyte dendricity, and the number gp100+ HF melanocytes, were all significantly increased in BMAL1 and/or PER1-silenced HFs. BMAL1 or PER1 silencing also increased epidermal melanin content, gp100 protein expression, and tyrosinase activity in human skin. These effects reflect direct modulation of melanocytes, as BMAL1 and/or PER1 silencing in isolated melanocytes increased tyrosinase activity and TYRP1/2 expression. Mechanistically, BMAL1 knockdown reduces PER1 transcription, and PER1 silencing induces phosphorylation of the master regulator of melanogenesis, microphthalmia-associated transcription factor, thus stimulating human melanogenesis and melanocyte activity in situ and in vitro. Therefore, the molecular clock operates as a cell-autonomous modulator of human pigmentation and may be targeted for future therapeutic strategies.

  8. Lung Adenocarcinoma Distally Rewires Hepatic Circadian Homeostasis

    PubMed Central

    Masri, Selma; Papagiannakopoulos, Thales; Kinouchi, Kenichiro; Liu, Yu; Cervantes, Marlene; Baldi, Pierre; Jacks, Tyler; Sassone-Corsi, Paolo

    2016-01-01

    SUMMARY The circadian clock controls metabolic and physiological processes through finely tuned molecular mechanisms. The clock is remarkably plastic and adapts to exogenous zeitgebers, such as light and nutrition. How a pathological condition in a given tissue influences systemic circadian homeostasis in other tissues remains an unanswered question of conceptual and biomedical importance. Here we show that lung adenocarcinoma operates as an endogenous reorganizer of circadian metabolism. High-throughput transcriptomics and metabolomics revealed unique signatures of transcripts and metabolites cycling exclusively in livers of tumor-bearing mice. Remarkably, lung cancer has no effect on the core clock, but rather reprograms hepatic metabolism through altered pro-inflammatory response via the STAT3-Socs3 pathway. This results in disruption of AKT, AMPK and SREBP signaling, leading to altered insulin, glucose and lipid metabolism. Thus, lung adenocarcinoma functions as a potent endogenous circadian organizer (ECO), which rewires the pathophysiological dimension of a distal tissue such as the liver. PMID:27153497

  9. Adult Circadian Behavior in Drosophila Requires Developmental Expression of cycle, But Not period

    PubMed Central

    Kim, Min-Ho; Rao, Neethi Varadaraja; Bonilla, Gloribel; Wijnen, Herman

    2011-01-01

    Circadian clocks have evolved as internal time keeping mechanisms that allow anticipation of daily environmental changes and organization of a daily program of physiological and behavioral rhythms. To better examine the mechanisms underlying circadian clocks in animals and to ask whether clock gene expression and function during development affected subsequent daily time keeping in the adult, we used the genetic tools available in Drosophila to conditionally manipulate the function of the CYCLE component of the positive regulator CLOCK/CYCLE (CLK/CYC) or its negative feedback inhibitor PERIOD (PER). Differential manipulation of clock function during development and in adulthood indicated that there is no developmental requirement for either a running clock mechanism or expression of per. However, conditional suppression of CLK/CYC activity either via per over-expression or cyc depletion during metamorphosis resulted in persistent arrhythmic behavior in the adult. Two distinct mechanisms were identified that may contribute to this developmental function of CLK/CYC and both involve the ventral lateral clock neurons (LNvs) that are crucial to circadian control of locomotor behavior: (1) selective depletion of cyc expression in the LNvs resulted in abnormal peptidergic small-LNv dorsal projections, and (2) PER expression rhythms in the adult LNvs appeared to be affected by developmental inhibition of CLK/CYC activity. Given the conservation of clock genes and circuits among animals, this study provides a rationale for investigating a possible similar developmental role of the homologous mammalian CLOCK/BMAL1 complex. PMID:21750685

  10. Dim light at night disrupts molecular circadian rhythms and increases body weight.

    PubMed

    Fonken, Laura K; Aubrecht, Taryn G; Meléndez-Fernández, O Hecmarie; Weil, Zachary M; Nelson, Randy J

    2013-08-01

    With the exception of high latitudes, life has evolved under bright days and dark nights. Most organisms have developed endogenously driven circadian rhythms that are synchronized to this daily light/dark cycle. In recent years, humans have shifted away from the naturally occurring solar light cycle in favor of artificial and sometimes irregular light schedules produced by electric lighting. Exposure to unnatural light cycles is increasingly associated with obesity and metabolic syndrome; however, the means by which environmental lighting alters metabolism are poorly understood. Thus, we exposed mice to dim light at night and investigated changes in the circadian system and metabolism. Here we report that exposure to ecologically relevant levels of dim (5 lux) light at night altered core circadian clock rhythms in the hypothalamus at both the gene and protein level. Circadian rhythms in clock expression persisted during light at night; however, the amplitude of Per1 and Per2 rhythms was attenuated in the hypothalamus. Circadian oscillations were also altered in peripheral tissues critical for metabolic regulation. Exposure to dimly illuminated, as compared to dark, nights decreased the rhythmic expression in all but one of the core circadian clock genes assessed in the liver. Additionally, mice exposed to dim light at night attenuated Rev-Erb expression in the liver and adipose tissue. Changes in the circadian clock were associated with temporal alterations in feeding behavior and increased weight gain. These results are significant because they provide evidence that mild changes in environmental lighting can alter circadian and metabolic function. Detailed analysis of temporal changes induced by nighttime light exposure may provide insight into the onset and progression of obesity and metabolic syndrome, as well as other disorders involving sleep and circadian rhythm disruption.

  11. The compression of perceived time in a hot environment depends on physiological and psychological factors.

    PubMed

    Tamm, Maria; Jakobson, Ainika; Havik, Merle; Burk, Andres; Timpmann, Saima; Allik, Jüri; Oöpik, Vahur; Kreegipuu, Kairi

    2014-01-01

    The human perception of time was observed under extremely hot conditions. Young healthy men performed a time production task repeatedly in 4 experimental trials in either a temperate (22 °C, relative humidity 35%) or a hot (42 °C, relative humidity 18%) environment and with or without a moderate-intensity treadmill exercise. Within 1 hour, the produced durations indicated a significant compression of short intervals (0.5 to 10 s) in the combination of exercising and high ambient temperature, while neither variable/condition alone was enough to yield the effect. Temporal judgement was analysed in relation to different indicators of arousal, such as critical flicker frequency (CFF), core temperature, heart rate, and subjective ratings of fatigue and exertion. The arousal-sensitive internal clock model (originally proposed by Treisman) is used to explain the temporal compression while exercising in heat. As a result, we suggest that the psychological response to heat stress, the more precisely perceived fatigue, is important in describing the relationship between core temperature and time perception. Temporal compression is related to higher core temperature, but only if a certain level of perceived fatigue is accounted for, implying the existence of a thermoemotional internal clock.

  12. Ras-mediated deregulation of the circadian clock in cancer.

    PubMed

    Relógio, Angela; Thomas, Philippe; Medina-Pérez, Paula; Reischl, Silke; Bervoets, Sander; Gloc, Ewa; Riemer, Pamela; Mang-Fatehi, Shila; Maier, Bert; Schäfer, Reinhold; Leser, Ulf; Herzel, Hanspeter; Kramer, Achim; Sers, Christine

    2014-01-01

    Circadian rhythms are essential to the temporal regulation of molecular processes in living systems and as such to life itself. Deregulation of these rhythms leads to failures in biological processes and eventually to the manifestation of pathological phenotypes including cancer. To address the questions as to what are the elicitors of a disrupted clock in cancer, we applied a systems biology approach to correlate experimental, bioinformatics and modelling data from several cell line models for colorectal and skin cancer. We found strong and weak circadian oscillators within the same type of cancer and identified a set of genes, which allows the discrimination between the two oscillator-types. Among those genes are IFNGR2, PITX2, RFWD2, PPARγ, LOXL2, Rab6 and SPARC, all involved in cancer-related pathways. Using a bioinformatics approach, we extended the core-clock network and present its interconnection to the discriminative set of genes. Interestingly, such gene signatures link the clock to oncogenic pathways like the RAS/MAPK pathway. To investigate the potential impact of the RAS/MAPK pathway - a major driver of colorectal carcinogenesis - on the circadian clock, we used a computational model which predicted that perturbation of BMAL1-mediated transcription can generate the circadian phenotypes similar to those observed in metastatic cell lines. Using an inducible RAS expression system, we show that overexpression of RAS disrupts the circadian clock and leads to an increase of the circadian period while RAS inhibition causes a shortening of period length, as predicted by our mathematical simulations. Together, our data demonstrate that perturbations induced by a single oncogene are sufficient to deregulate the mammalian circadian clock.

  13. Multiple PAR and E4BP4 bZIP transcription factors in zebrafish: diverse spatial and temporal expression patterns.

    PubMed

    Ben-Moshe, Zohar; Vatine, Gad; Alon, Shahar; Tovin, Adi; Mracek, Philipp; Foulkes, Nicholas S; Gothilf, Yoav

    2010-09-01

    Circadian rhythms of physiology and behavior are generated by an autonomous circadian oscillator that is synchronized daily with the environment, mainly by light input. The PAR subfamily of transcriptional activators and the related E4BP4 repressor belonging to the basic leucine zipper (bZIP) family are clock-controlled genes that are suggested to mediate downstream circadian clock processes and to feedback onto the core oscillator. Here, the authors report the characterization of these genes in the zebrafish, an increasingly important model in the field of chronobiology. Five novel PAR and six novel e4bp4 zebrafish homolog genes were identified using bioinformatic tools and their coding sequences were cloned. Based on their evolutionary relationships, these genes were annotated as ztef2, zhlf1 and zhlf2, zdbp1 and zdbp2, and ze4bp4-1 to -6. The spatial and temporal mRNA expression pattern of each of these factors was characterized in zebrafish embryos in the context of a functional circadian clock and regulation by light. Nine of the factors exhibited augmented and rhythmic expression in the pineal gland, a central clock organ in zebrafish. Moreover, these genes were found to be regulated, to variable extents, by the circadian clock and/or by light. Differential expression patterns of multiple paralogs in zebrafish suggest multiple roles for these factors within the vertebrate circadian clock. This study, in the genetically accessible zebrafish model, lays the foundation for further research regarding the involvement and specific roles of PAR and E4BP4 transcription factors in the vertebrate circadian clock mechanism.

  14. Anabolic Heterogeneity Following Resistance Training: A Role for Circadian Rhythm?

    PubMed

    Camera, Donny M

    2018-01-01

    It is now well established that resistance exercise stimulates muscle protein synthesis and promotes gains in muscle mass and strength. However, considerable variability exists following standardized resistance training programs in the magnitude of muscle cross-sectional area and strength responses from one individual to another. Several studies have recently posited that alterations in satellite cell population, myogenic gene expression and microRNAs may contribute to individual variability in anabolic adaptation. One emerging factor that may also explain the variability in responses to resistance exercise is circadian rhythms and underlying molecular clock signals. The molecular clock is found in most cells within the body, including skeletal muscle, and principally functions to optimize the timing of specific cellular events around a 24 h cycle. Accumulating evidence investigating the skeletal muscle molecular clock indicates that exercise-induced contraction and its timing may regulate gene expression and protein synthesis responses which, over time, can influence and modulate key physiological responses such as muscle hypertrophy and increased strength. Therefore, the circadian clock may play a key role in the heterogeneous anabolic responses with resistance exercise. The central aim of this Hypothesis and Theory is to discuss and propose the potential interplay between the circadian molecular clock and established molecular mechanisms mediating muscle anabolic responses with resistance training. This article begins with a current review of the mechanisms associated with the heterogeneity in muscle anabolism with resistance training before introducing the molecular pathways regulating circadian function in skeletal muscle. Recent work showing members of the core molecular clock system can regulate myogenic and translational signaling pathways is also discussed, forming the basis for a possible role of the circadian clock in the variable anabolic responses with resistance exercise.

  15. The cardiomyocyte molecular clock, regulation of Scn5a, and arrhythmia susceptibility

    PubMed Central

    Lefta, Mellani; Zhang, Xiping; Bartos, Daniel; Feng, Han-Zhong; Zhao, Yihua; Patwardhan, Abhijit; Jin, Jian-Ping; Esser, Karyn A.; Delisle, Brian P.

    2013-01-01

    The molecular clock mechanism underlies circadian rhythms and is defined by a transcription-translation feedback loop. Bmal1 encodes a core molecular clock transcription factor. Germline Bmal1 knockout mice show a loss of circadian variation in heart rate and blood pressure, and they develop dilated cardiomyopathy. We tested the role of the molecular clock in adult cardiomyocytes by generating mice that allow for the inducible cardiomyocyte-specific deletion of Bmal1 (iCSΔBmal1). ECG telemetry showed that cardiomyocyte-specific deletion of Bmal1 (iCSΔBmal1−/−) in adult mice slowed heart rate, prolonged RR and QRS intervals, and increased episodes of arrhythmia. Moreover, isolated iCSΔBmal1−/− hearts were more susceptible to arrhythmia during electromechanical stimulation. Examination of candidate cardiac ion channel genes showed that Scn5a, which encodes the principle cardiac voltage-gated Na+ channel (NaV1.5), was circadianly expressed in control mouse and rat hearts but not in iCSΔBmal1−/− hearts. In vitro studies confirmed circadian expression of a human Scn5a promoter-luciferase reporter construct and determined that overexpression of clock factors transactivated the Scn5a promoter. Loss of Scn5a circadian expression in iCSΔBmal1−/− hearts was associated with decreased levels of NaV1.5 and Na+ current in ventricular myocytes. We conclude that disruption of the molecular clock in the adult heart slows heart rate, increases arrhythmias, and decreases the functional expression of Scn5a. These findings suggest a potential link between environmental factors that alter the cardiomyocyte molecular clock and factors that influence arrhythmia susceptibility in humans. PMID:23364267

  16. Circadian clock function is disrupted by environmental tobacco/cigarette smoke, leading to lung inflammation and injury via a SIRT1-BMAL1 pathway

    PubMed Central

    Hwang, Jae-Woong; Sundar, Isaac K.; Yao, Hongwei; Sellix, Michael T.; Rahman, Irfan

    2014-01-01

    Patients with obstructive lung diseases display abnormal circadian rhythms in lung function. We determined the mechanism whereby environmental tobacco/cigarette smoke (CS) modulates expression of the core clock gene BMAL1, through Sirtuin1 (SIRT1) deacetylase during lung inflammatory and injurious responses. Adult C57BL6/J and various mice mutant for SIRT1 and BMAL1 were exposed to both chronic (6 mo) and acute (3 and 10 d) CS, and we measured the rhythmic expression of clock genes, circadian rhythms of locomotor activity, lung function, and inflammatory and emphysematous responses in the lungs. CS exposure (100–300 mg/m3 particulates) altered clock gene expression and reduced locomotor activity by disrupting the central and peripheral clocks and increased lung inflammation, causing emphysema in mice. BMAL1 was acetylated and degraded in the lungs of mice exposed to CS and in patients with chronic obstructive pulmonary disease (COPD), compared with lungs of the nonsmoking controls, linking it mechanistically to CS-induced reduction of SIRT1. Targeted deletion of Bmal1 in lung epithelium augmented inflammation in response to CS, which was not attenuated by the selective SIRT1 activator SRT1720 (EC50=0.16 μM) in these mice. Thus, the circadian clock, specifically the enhancer BMAL1 in epithelium, plays a pivotal role, mediated by SIRT1-dependent BMAL1, in the regulation of CS-induced lung inflammatory and injurious responses.— Hwang, J.-W., Sundar, I. K., Yao, H., Sellix, M. T., Rahman, I. Circadian clock function is disrupted by environmental tobacco/cigarette smoke, leading to lung inflammation and injury via a SIRT1-BMAL1 pathway. PMID:24025728

  17. The circadian clock of Neurospora crassa.

    PubMed

    Baker, Christopher L; Loros, Jennifer J; Dunlap, Jay C

    2012-01-01

    Circadian clocks organize our inner physiology with respect to the external world, providing life with the ability to anticipate and thereby better prepare for major fluctuations in its environment. Circadian systems are widely represented in nearly all major branches of life, except archaebacteria, and within the eukaryotes, the filamentous fungus Neurospora crassa has served for nearly half a century as a durable model organism for uncovering the basic circadian physiology and molecular biology. Studies using Neurospora have clarified our fundamental understanding of the clock as nested positive and negative feedback loops regulated through transcriptional and post-transcriptional processes. These feedback loops are centered on a limited number of proteins that form molecular complexes, and their regulation provides a physical explanation for nearly all clock properties. This review will introduce the basics of circadian rhythms, the model filamentous fungus N. crassa, and provide an overview of the molecular components and regulation of the circadian clock. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  18. Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana

    PubMed Central

    Locke, James C W; Kozma-Bognár, László; Gould, Peter D; Fehér, Balázs; Kevei, Éva; Nagy, Ferenc; Turner, Matthew S; Hall, Anthony; Millar, Andrew J

    2006-01-01

    Our computational model of the circadian clock comprised the feedback loop between LATE ELONGATED HYPOCOTYL (LHY), CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and TIMING OF CAB EXPRESSION 1 (TOC1), and a predicted, interlocking feedback loop involving TOC1 and a hypothetical component Y. Experiments based on model predictions suggested GIGANTEA (GI) as a candidate for Y. We now extend the model to include a recently demonstrated feedback loop between the TOC1 homologues PSEUDO-RESPONSE REGULATOR 7 (PRR7), PRR9 and LHY and CCA1. This three-loop network explains the rhythmic phenotype of toc1 mutant alleles. Model predictions fit closely to new data on the gi;lhy;cca1 mutant, which confirm that GI is a major contributor to Y function. Analysis of the three-loop network suggests that the plant clock consists of morning and evening oscillators, coupled intracellularly, which may be analogous to coupled, morning and evening clock cells in Drosophila and the mouse. PMID:17102804

  19. A novel power-efficient high-speed clock management unit using quantum-dot cellular automata

    NASA Astrophysics Data System (ADS)

    Abutaleb, M. M.

    2017-04-01

    Quantum-dot cellular automata (QCA) is one of the most attractive alternatives for complementary metal-oxide semiconductor technology. The QCA widely supports a new paradigm in the field of nanotechnology that has the potential for high density, low power, and high speed. The clock manager is an essential building block in the new microwave and radio frequency integrated circuits. This paper describes a novel QCA-based clock management unit (CMU) that provides innovative clocking capabilities. The proposed CMU is achieved by utilizing edge-triggered D-type flip-flops (D-FFs) in the design of frequency synthesizer and phase splitter. Edge-triggered D-FF structures proposed in this paper have the successful QCA implementation and simulation with the least complexity and power dissipation as compared to earlier structures. The frequency synthesizer is used to generate new clock frequencies from the reference clock frequency based on a combination of power-of-two frequency dividers. The phase splitter is integrated with the frequency synthesizer to generate four clock signals that are 90o out of phase with each other. This paper demonstrates that the proposed QCA CMU structure has a superior performance. Furthermore, the proposed CMU is straightforwardly scalable due to the use of modular component architecture.

  20. Casein Kinase 1 Promotes Synchrony of the Circadian Clock Network

    PubMed Central

    Zheng, Xiangzhong; Sowcik, Mallory; Chen, Dechun

    2014-01-01

    Casein kinase 1, known as DOUBLETIME (DBT) in Drosophila melanogaster, is a critical component of the circadian clock that phosphorylates and promotes degradation of the PERIOD (PER) protein. However, other functions of DBT in circadian regulation are not clear, in part because severe reduction of dbt causes preadult lethality. Here we report the molecular and behavioral phenotype of a viable dbtEY02910 loss-of-function mutant. We found that DBT protein levels are dramatically reduced in adult dbtEY02910 flies, and the majority of mutant flies display arrhythmic behavior, with a few showing weak, long-period (∼32 h) rhythms. Peak phosphorylation of PER is delayed, and both hyper- and hypophosphorylated forms of the PER and CLOCK proteins are present throughout the day. In addition, molecular oscillations of the circadian clock are dampened. In the central brain, PER and TIM expression is heterogeneous and decoupled in the canonical clock neurons of the dbtEY02910 mutants. We also report an interaction between dbt and the signaling pathway involving pigment dispersing factor (PDF), a synchronizing peptide in the clock network. These data thus demonstrate that overall reduction of DBT causes long and arrhythmic behavior, and they reveal an unexpected role of DBT in promoting synchrony of the circadian clock network. PMID:24820422

  1. Circadian clocks in the cnidaria: environmental entrainment, molecular regulation, and organismal outputs.

    PubMed

    Reitzel, Adam M; Tarrant, Ann M; Levy, Oren

    2013-07-01

    The circadian clock is a molecular network that translates predictable environmental signals, such as light levels, into organismal responses, including behavior and physiology. Regular oscillations of the molecular components of the clock enable individuals to anticipate regularly fluctuating environmental conditions. Cnidarians play important roles in benthic and pelagic marine environments and also occupy a key evolutionary position as the likely sister group to the bilaterians. Together, these attributes make members of this phylum attractive as models for testing hypotheses on roles for circadian clocks in regulating behavior, physiology, and reproduction as well as those regarding the deep evolutionary conservation of circadian regulatory pathways in animal evolution. Here, we review and synthesize the field of cnidarian circadian biology by discussing the diverse effects of daily light cycles on cnidarians, summarizing the molecular evidence for the conservation of a bilaterian-like circadian clock in anthozoan cnidarians, and presenting new empirical data supporting the presence of a conserved feed-forward loop in the starlet sea anemone, Nematostella vectensis. Furthermore, we discuss critical gaps in our current knowledge about the cnidarian clock, including the functions directly regulated by the clock and the precise molecular interactions that drive the oscillating gene-expression patterns. We conclude that the field of cnidarian circadian biology is moving rapidly toward linking molecular mechanisms with physiology and behavior.

  2. Reproducibility in a multiprocessor system

    DOEpatents

    Bellofatto, Ralph A; Chen, Dong; Coteus, Paul W; Eisley, Noel A; Gara, Alan; Gooding, Thomas M; Haring, Rudolf A; Heidelberger, Philip; Kopcsay, Gerard V; Liebsch, Thomas A; Ohmacht, Martin; Reed, Don D; Senger, Robert M; Steinmacher-Burow, Burkhard; Sugawara, Yutaka

    2013-11-26

    Fixing a problem is usually greatly aided if the problem is reproducible. To ensure reproducibility of a multiprocessor system, the following aspects are proposed; a deterministic system start state, a single system clock, phase alignment of clocks in the system, system-wide synchronization events, reproducible execution of system components, deterministic chip interfaces, zero-impact communication with the system, precise stop of the system and a scan of the system state.

  3. Suppressed cellular oscillations in after-hours mutant mice are associated with enhanced circadian phase-resetting

    PubMed Central

    Guilding, Clare; Scott, Fiona; Bechtold, David A; Brown, Timothy M; Wegner, Sven; Piggins, Hugh D

    2013-01-01

    Within the core molecular clock, protein phosphorylation and degradation play a vital role in determining circadian period. The ‘after-hours’ (Afh) mutation in mouse slows the degradation of the core clock protein Cryptochrome, lengthening the period of the molecular clock in the suprachiasmatic nuclei (SCN) and behavioural wheel-running rhythms. However, we do not yet know how the Afh mutation affects other aspects of physiology or the activity of circadian oscillators in other brain regions. Here we report that daily rhythms of metabolism and ingestive behaviours are altered in these animals, as are PERIOD2::LUCIFERASE (PER2::LUC) rhythms in mediobasal hypothalamic nuclei, which influence these behaviours. Overall there is a trend towards period lengthening and a decrease in amplitude of PER2::LUC rhythms throughout the brain. Imaging of single cells from the arcuate and dorsomedial hypothalamic nuclei revealed this reduction in tissue oscillator amplitude to be due to a decrease in the amplitude, rather than a desynchrony, of single cells. Consistent with existing models of oscillator function, this cellular phenotype was associated with a greater susceptibility to phase-shifting stimuli in vivo and in vitro, with light evoking high-amplitude Type 0 resetting in Afh mutant mice. Together, these findings reveal unexpected consequences of the Afh mutation on the amplitude and synchrony of individual cellular oscillators in the SCN. PMID:23207594

  4. Impact of memory bottleneck on the performance of graphics processing units

    NASA Astrophysics Data System (ADS)

    Son, Dong Oh; Choi, Hong Jun; Kim, Jong Myon; Kim, Cheol Hong

    2015-12-01

    Recent graphics processing units (GPUs) can process general-purpose applications as well as graphics applications with the help of various user-friendly application programming interfaces (APIs) supported by GPU vendors. Unfortunately, utilizing the hardware resource in the GPU efficiently is a challenging problem, since the GPU architecture is totally different to the traditional CPU architecture. To solve this problem, many studies have focused on the techniques for improving the system performance using GPUs. In this work, we analyze the GPU performance varying GPU parameters such as the number of cores and clock frequency. According to our simulations, the GPU performance can be improved by 125.8% and 16.2% on average as the number of cores and clock frequency increase, respectively. However, the performance is saturated when memory bottleneck problems incur due to huge data requests to the memory. The performance of GPUs can be improved as the memory bottleneck is reduced by changing GPU parameters dynamically.

  5. GPS satellite clock determination in case of inter-frequency clock biases for triple-frequency precise point positioning

    NASA Astrophysics Data System (ADS)

    Guo, Jiang; Geng, Jianghui

    2017-12-01

    Significant time-varying inter-frequency clock biases (IFCBs) within GPS observations prevent the application of the legacy L1/L2 ionosphere-free clock products on L5 signals. Conventional approaches overcoming this problem are to estimate L1/L5 ionosphere-free clocks in addition to their L1/L2 counterparts or to compute IFCBs between the L1/L2 and L1/L5 clocks which are later modeled through a harmonic analysis. In contrast, we start from the undifferenced uncombined GNSS model and propose an alternative approach where a second satellite clock parameter dedicated to the L5 signals is estimated along with the legacy L1/L2 clock. In this manner, we do not need to rely on the correlated L1/L2 and L1/L5 ionosphere-free observables which complicates triple-frequency GPS stochastic models, or account for the unfavorable time-varying hardware biases in undifferenced GPS functional models since they can be absorbed by the L5 clocks. An extra advantage over the ionosphere-free model is that external ionosphere constraints can potentially be introduced to improve PPP. With 27 days of triple-frequency GPS data from globally distributed stations, we find that the RMS of the positioning differences between our GPS model and all conventional models is below 1 mm for all east, north and up components, demonstrating the effectiveness of our model in addressing triple-frequency observations and time-varying IFCBs. Moreover, we can combine the L1/L2 and L5 clocks derived from our model to calculate precisely the L1/L5 clocks which in practice only depart from their legacy counterparts by less than 0.006 ns in RMS. Our triple-frequency GPS model proves convenient and efficient in combating time-varying IFCBs and can be generalized to more than three frequency signals for satellite clock determination.

  6. Implementation of kernels on the Maestro processor

    NASA Astrophysics Data System (ADS)

    Suh, Jinwoo; Kang, D. I. D.; Crago, S. P.

    Currently, most microprocessors use multiple cores to increase performance while limiting power usage. Some processors use not just a few cores, but tens of cores or even 100 cores. One such many-core microprocessor is the Maestro processor, which is based on Tilera's TILE64 processor. The Maestro chip is a 49-core, general-purpose, radiation-hardened processor designed for space applications. The Maestro processor, unlike the TILE64, has a floating point unit (FPU) in each core for improved floating point performance. The Maestro processor runs at 342 MHz clock frequency. On the Maestro processor, we implemented several widely used kernels: matrix multiplication, vector add, FIR filter, and FFT. We measured and analyzed the performance of these kernels. The achieved performance was up to 5.7 GFLOPS, and the speedup compared to single tile was up to 49 using 49 tiles.

  7. The Importance of Stochastic Effects for Explaining Entrainment in the Zebrafish Circadian Clock.

    PubMed

    Heussen, Raphaela; Whitmore, David

    2015-01-01

    The circadian clock plays a pivotal role in modulating physiological processes and has been implicated, either directly or indirectly, in a range of pathological states including cancer. Here we investigate how the circadian clock is entrained by external cues such as light. Working with zebrafish cell lines and combining light pulse experiments with simulation efforts focused on the role of synchronization effects, we find that even very modest doses of light exposure are sufficient to trigger some entrainment, whereby a higher light intensity or duration correlates with strength of the circadian signal. Moreover, we observe in the simulations that stochastic effects may be considered an essential feature of the circadian clock in order to explain the circadian signal decay in prolonged darkness, as well as light initiated resynchronization as a strong component of entrainment.

  8. 5-Gb/s 0.18-μm CMOS 2:1 multiplexer with integrated clock extraction

    NASA Astrophysics Data System (ADS)

    Changchun, Zhang; Zhigong, Wang; Si, Shi; Peng, Miao; Ling, Tian

    2009-09-01

    A 5-Gb/s 2:1 MUX (multiplexer) with an on-chip integrated clock extraction circuit which possesses the function of automatic phase alignment (APA), has been designed and fabricated in SMIC's 0.18 μm CMOS technology. The chip area is 670 × 780 μm2. At a single supply voltage of 1.8 V, the total power consumption is 112 mW with an input sensitivity of less than 50 mV and an output single-ended swing of above 300 mV. The measurement results show that the IC can work reliably at any input data rate between 1.8 and 2.6 Gb/s with no need for external components, reference clock, or phase alignment between data and clock. It can be used in a parallel optic-fiber data interconnecting system.

  9. Turbulent Flow Field Measurements of Separate Flow Round and Chevron Nozzles with Pylon Interaction Using Particle Image Velocimetry

    NASA Technical Reports Server (NTRS)

    Doty, Michael J.; Henerson, Brenda S.; Kinzie, Kevin W.

    2004-01-01

    Particle Image Velocimetry (PIV) measurements for six separate flow bypass ratio five nozzle configurations have recently been obtained in the NASA Langley Jet Noise Laboratory. The six configurations include a baseline configuration with round core and fan nozzles, an eight-chevron core nozzle at two different clocking positions, and repeats of these configurations with a pylon included. One run condition representative of takeoff was investigated for all cases with the core nozzle pressure ratio set to 1.56 and the total temperature to 828 K. The fan nozzle pressure ratio was set to 1.75 with a total temperature of 350 K, and the freestream Mach number was M = 0.28. The unsteady flow field measurements provided by PIV complement recent computational, acoustic, and mean flow field studies performed at NASA Langley for the same nozzle configurations and run condition. The PIV baseline configuration measurements show good agreement with mean flow field data as well as existing PIV data acquired at NASA Glenn. Nonetheless, the baseline configuration turbulence profile indicates an asymmetric flow field, despite careful attention to concentricity. The presence of the pylon increases the upper shear layer turbulence levels while simultaneously decreasing the turbulence levels in the lower shear layer. In addition, a slightly shorter potential core length is observed with the addition of the pylon. Finally, comparisons of computational results with PIV measurements are favorable for mean flow, slightly over-predicted for Reynolds shear stress, and underpredicted for Reynolds normal stress components.

  10. Quantum Clock Synchronization with a Single Qudit

    NASA Astrophysics Data System (ADS)

    Tavakoli, Armin; Cabello, Adán; Żukowski, Marek; Bourennane, Mohamed

    2015-01-01

    Clock synchronization for nonfaulty processes in multiprocess networks is indispensable for a variety of technologies. A reliable system must be able to resynchronize the nonfaulty processes upon some components failing causing the distribution of incorrect or conflicting information in the network. The task of synchronizing such networks is related to Byzantine agreement (BA), which can classically be solved using recursive algorithms if and only if less than one-third of the processes are faulty. Here we introduce a nonrecursive quantum algorithm, based on a quantum solution of the detectable BA, which achieves clock synchronization in the presence of arbitrary many faulty processes by using only a single quantum system.

  11. Real Time GPS- Satellite Clock Estimation Development of a RTIGS Web Service

    NASA Astrophysics Data System (ADS)

    Opitz, M.; Weber, R.; Caissy, M.

    2006-12-01

    Since 3 years the IGS (International GNSS Service) Real-Time Working Group disseminates via Internet raw observation data of a subset of stations of the IGS network. This observation data can be used to establish a real-time integrity monitoring of the IGS predicted orbits (Ultra Rapid (IGU-) Orbits) and clocks, according to the recommendations of the IGS Workshop 2004 in Bern. The Institute for "Geodesy and Geophysics" of the TU-Vienna develops in cooperation with the IGS Real-Time Working Group the software "RTR- Control", which currently provides a real-time integrity monitoring of predicted IGU Clock Corrections to GPS Time. Our poster presents the results of a prototype version which is in operation since August this year. Besides RTR-Control allows for the comparison of pseudoranges measured at any permanent station in the global network with theoretical pseudoranges calculated on basis of the IGU- orbits. Thus, the programme can diagnose incorrectly predicted satellite orbits and clocks as well as detect multi-path distorted pseudoranges in real- time. RTR- Control calculates every 15 seconds Satellite Clock Corrections with respect to the most recent IGU- clocks (updated in a 6 hours interval). The clock estimations are referenced to a stable station clock (H-maser) with a small offset to GPS- time. This real-time Satellite Clocks are corrected for individual outliers and modelling errors. The most recent GPS- Satellite Clock Corrections (updated every 60 seconds) are published in Real Time via the Internet. The user group interested in a rigorous integrity monitoring comprises on the one hand the components of IGS itself to qualify the issued orbital data and on the other hand all users of the IGS Ultra Rapid Products (e.g. for PPP in Real Time).

  12. Circadian Clock Dysfunction and Psychiatric Disease: Could Fruit Flies have a Say?

    PubMed Central

    Zordan, Mauro Agostino; Sandrelli, Federica

    2015-01-01

    There is evidence of a link between the circadian system and psychiatric diseases. Studies in humans and mammals suggest that environmental and/or genetic disruption of the circadian system leads to an increased liability to psychiatric disease. Disruption of clock genes and/or the clock network might be related to the etiology of these pathologies; also, some genes, known for their circadian clock functions, might be associated to mental illnesses through clock-independent pleiotropy. Here, we examine the features which we believe make Drosophila melanogaster a model apt to study the role of the circadian clock in psychiatric disease. Despite differences in the organization of the clock system, the molecular architecture of the Drosophila and mammalian circadian oscillators are comparable and many components are evolutionarily related. In addition, Drosophila has a rather complex nervous system, which shares much at the cell and neurobiological level with humans, i.e., a tripartite brain, the main neurotransmitter systems, and behavioral traits: circadian behavior, learning and memory, motivation, addiction, social behavior. There is evidence that the Drosophila brain shares some homologies with the vertebrate cerebellum, basal ganglia, and hypothalamus-pituitary-adrenal axis, the dysfunctions of which have been tied to mental illness. We discuss Drosophila in comparison to mammals with reference to the: organization of the brain and neurotransmitter systems; architecture of the circadian clock; clock-controlled behaviors. We sum up current knowledge on behavioral endophenotypes, which are amenable to modeling in flies, such as defects involving sleep, cognition, or social interactions, and discuss the relationship of the circadian system to these traits. Finally, we consider if Drosophila could be a valuable asset to understand the relationship between circadian clock malfunction and psychiatric disease. PMID:25941512

  13. Design of Chronomodulated Drug Delivery System of Valsartan: In Vitro Characterization.

    PubMed

    Sokar, M; Hanafy, A; Elkamel, A; El-Gamal, S

    2015-01-01

    The aim of the present study was to design and evaluate a chronomodulated time-clock pulsatile tablets of valsartan to release it after a certain lag time, independent of the gastrointestinal pH, in its absorption window to cope with the circadian rhythm of human body for blood pressure elevation. Core tablets were prepared by direct compression of a homogenous mixture of valsartan, Avicel PH101, croscarmellose sodium, magnesium stearate and Aerosil. The core tablets were then sprayed coated with a sealing layer formed of ethyl cellulose that was subsequently coated with a release-controlling layer. Three different aqueous dispersions namely; carnauba wax or beeswax or a mixture in a ratio of 2.5:1, respectively, were used to form five time-clock tablet formulations having the release controlling layer with different thickness {B5, B10, B20, BW5 and CW5}. Quality control testing were carried out to the core tablets. Differential scanning calorimetry was also performed to detect the possible drug excipient interaction in the core tablet formulation. The release was carried out, for the prepared time-clock tablet formulations, in 0.1 N hydrochloric acid for the first 2 h, followed by phosphate buffer (pH 6.8) for 4.5 h. The effect of pH on valsartan release was studied through a release study in 0.1 N hydrochloric acid for 6.5 h. Two phase dissolution study was performed to the selected time-clock tablet formulation to predict the drug permeation through the gastrointestinal tract. Stability study of the selected formula was performed at 25°/60% RH and at 40°/75% RH for 3 months. Results showed that a release-controlling layer composed of a mixture of carnauba wax and beeswax in a ratio of 2.5:1 showed a reasonable release lag time. The release lag time of the tablets increased with the increase of the coat thickness, thus B20>B10>B5 with corresponding lag time values of 4.5, 3 and 2.5 h, respectively. Selected B5 tablet formula exhibited a reasonable lag time after which the highest, complete % drug release at pH 6.8 was obtained. In addition, a good partitioning of valsartan, between the aqueous and organic phases in a ratio of 1:7, was observed. The selected formula was stable for at least 3 months under standard long-term and accelerated storage conditions. In conclusion, in vitro studies revealed that the novel time-clock system could be used successfully to deliver valsartan in a pulsatile pH-independent manner. It provided a desirable lag time followed by a rapid and complete drug release accompanied by an expected effective permeation through the biological membranes upon release in the duodenum; the window of absorption, as indicated by the two phase release study.

  14. Design of Chronomodulated Drug Delivery System of Valsartan: In Vitro Characterization

    PubMed Central

    Sokar, M.; Hanafy, A.; Elkamel, A.; El-Gamal, S.

    2015-01-01

    The aim of the present study was to design and evaluate a chronomodulated time-clock pulsatile tablets of valsartan to release it after a certain lag time, independent of the gastrointestinal pH, in its absorption window to cope with the circadian rhythm of human body for blood pressure elevation. Core tablets were prepared by direct compression of a homogenous mixture of valsartan, Avicel PH101, croscarmellose sodium, magnesium stearate and Aerosil. The core tablets were then sprayed coated with a sealing layer formed of ethyl cellulose that was subsequently coated with a release-controlling layer. Three different aqueous dispersions namely; carnauba wax or beeswax or a mixture in a ratio of 2.5:1, respectively, were used to form five time-clock tablet formulations having the release controlling layer with different thickness {B5, B10, B20, BW5 and CW5}. Quality control testing were carried out to the core tablets. Differential scanning calorimetry was also performed to detect the possible drug excipient interaction in the core tablet formulation. The release was carried out, for the prepared time-clock tablet formulations, in 0.1 N hydrochloric acid for the first 2 h, followed by phosphate buffer (pH 6.8) for 4.5 h. The effect of pH on valsartan release was studied through a release study in 0.1 N hydrochloric acid for 6.5 h. Two phase dissolution study was performed to the selected time-clock tablet formulation to predict the drug permeation through the gastrointestinal tract. Stability study of the selected formula was performed at 25°/60% RH and at 40°/75% RH for 3 months. Results showed that a release-controlling layer composed of a mixture of carnauba wax and beeswax in a ratio of 2.5:1 showed a reasonable release lag time. The release lag time of the tablets increased with the increase of the coat thickness, thus B20>B10>B5 with corresponding lag time values of 4.5, 3 and 2.5 h, respectively. Selected B5 tablet formula exhibited a reasonable lag time after which the highest, complete % drug release at pH 6.8 was obtained. In addition, a good partitioning of valsartan, between the aqueous and organic phases in a ratio of 1:7, was observed. The selected formula was stable for at least 3 months under standard long-term and accelerated storage conditions. In conclusion, in vitro studies revealed that the novel time-clock system could be used successfully to deliver valsartan in a pulsatile pH-independent manner. It provided a desirable lag time followed by a rapid and complete drug release accompanied by an expected effective permeation through the biological membranes upon release in the duodenum; the window of absorption, as indicated by the two phase release study. PMID:26664064

  15. Speeding up spin-component-scaled third-order pertubation theory with the chain of spheres approximation: the COSX-SCS-MP3 method

    NASA Astrophysics Data System (ADS)

    Izsák, Róbert; Neese, Frank

    2013-07-01

    The 'chain of spheres' approximation, developed earlier for the efficient evaluation of the self-consistent field exchange term, is introduced here into the evaluation of the external exchange term of higher order correlation methods. Its performance is studied in the specific case of the spin-component-scaled third-order Møller--Plesset perturbation (SCS-MP3) theory. The results indicate that the approximation performs excellently in terms of both computer time and achievable accuracy. Significant speedups over a conventional method are obtained for larger systems and basis sets. Owing to this development, SCS-MP3 calculations on molecules of the size of penicillin (42 atoms) with a polarised triple-zeta basis set can be performed in ∼3 hours using 16 cores of an Intel Xeon E7-8837 processor with a 2.67 GHz clock speed, which represents a speedup by a factor of 8-9 compared to the previously most efficient algorithm. Thus, the increased accuracy offered by SCS-MP3 can now be explored for at least medium-sized molecules.

  16. Mice Lacking EGR1 Have Impaired Clock Gene (BMAL1) Oscillation, Locomotor Activity, and Body Temperature.

    PubMed

    Riedel, Casper Schwartz; Georg, Birgitte; Jørgensen, Henrik L; Hannibal, Jens; Fahrenkrug, Jan

    2018-01-01

    Early growth response transcription factor 1 (EGR1) is expressed in the suprachiasmatic nucleus (SCN) after light stimulation. We used EGR1-deficient mice to address the role of EGR1 in the clock function and light-induced resetting of the clock. The diurnal rhythms of expression of the clock genes BMAL1 and PER1 in the SCN were evaluated by semi-quantitative in situ hybridization. We found no difference in the expression of PER1 mRNA between wildtype and EGR1-deficient mice; however, the daily rhythm of BMAL1 mRNA was completely abolished in the EGR1-deficient mice. In addition, we evaluated the circadian running wheel activity, telemetric locomotor activity, and core body temperature of the mice. Loss of EGR1 neither altered light-induced phase shifts at subjective night nor affected negative masking. Overall, circadian light entrainment was found in EGR1-deficient mice but they displayed a reduced locomotor activity and an altered temperature regulation compared to wild type mice. When placed in running wheels, a subpopulation of EGR1-deficient mice displayed a more disrupted activity rhythm with no measurable endogenous period length (tau). In conclusion, the present study provides the first evidence that the circadian clock in the SCN is disturbed in mice deficient of EGR1.

  17. Body weight, metabolism and clock genes

    PubMed Central

    2010-01-01

    Biological rhythms are present in the lives of almost all organisms ranging from plants to more evolved creatures. These oscillations allow the anticipation of many physiological and behavioral mechanisms thus enabling coordination of rhythms in a timely manner, adaption to environmental changes and more efficient organization of the cellular processes responsible for survival of both the individual and the species. Many components of energy homeostasis exhibit circadian rhythms, which are regulated by central (suprachiasmatic nucleus) and peripheral (located in other tissues) circadian clocks. Adipocyte plays an important role in the regulation of energy homeostasis, the signaling of satiety and cellular differentiation and proliferation. Also, the adipocyte circadian clock is probably involved in the control of many of these functions. Thus, circadian clocks are implicated in the control of energy balance, feeding behavior and consequently in the regulation of body weight. In this regard, alterations in clock genes and rhythms can interfere with the complex mechanism of metabolic and hormonal anticipation, contributing to multifactorial diseases such as obesity and diabetes. The aim of this review was to define circadian clocks by describing their functioning and role in the whole body and in adipocyte metabolism, as well as their influence on body weight control and the development of obesity. PMID:20712885

  18. Metabolism as an Integral Cog in the Mammalian Circadian Clockwork

    PubMed Central

    Gamble, Karen L.; Young, Martin E.

    2013-01-01

    Circadian rhythms are an integral part of life. These rhythms are apparent in virtually all biological processes studies to date, ranging from the individual cell (e.g., DNA synthesis) to the whole organism (e.g., behaviors such as physical activity). Oscillations in metabolism have been characterized extensively in various organisms, including mammals. These metabolic rhythms often parallel behaviors such as sleep/wake and fasting/feeding cycles that occur on a daily basis. What has become increasingly clear over the past several decades is that many metabolic oscillations are driven by cell autonomous circadian clocks, which orchestrate metabolic processes in a temporally appropriate manner. During the process of identifying the mechanisms by which clocks influence metabolism, molecular-based studies have revealed that metabolism should be considered an integral circadian clock component. The implications of such an interrelationship include the establishment of a vicious cycle during cardiometabolic disease states, wherein metabolism-induced perturbations in the circadian clock exacerbate metabolic dysfunction. The purpose of this review is therefore to highlight recent insights gained regarding links between cell autonomous circadian clocks and metabolism, and the implications of clock dysfunction in the pathogenesis of cardiometabolic diseases. PMID:23594144

  19. Progress Toward a Compact, Highly Stable Ion Clock

    NASA Technical Reports Server (NTRS)

    Prestage, John; Chung, Sang

    2009-01-01

    There was an update on the subject of two previous NASA Tech Briefs articles: Compact, Highly Stable Ion Clock (NPO-43075), Vol. 32, No. 5 (May 2008), page 63; and Neon as a Buffer Gas for a Mercury-Ion Clock (NPO-42919), Vol. 32, No. 7 (July 2008), page 62. To recapitulate: A developmental miniature mercury-ion clock has stability comparable to that of a hydrogen-maser clock. The ion-handling components are housed in a sealed vacuum tube, wherein a getter pump maintains the partial vacuum, and the evacuated tube is backfilled with mercury vapor in a neon buffer gas. There was progress in the development of the clock, with emphasis on the design, fabrication, pump-down, and bake-out of the vacuum tube (based on established practice in the travelingwave- tube-amplifier industry) and the ability of the tube to retain a vacuum after a year of operation. Other developments include some aspects of the operation of mercury-vapor source (a small appendage oven containing HgO) so as to maintain the optimum low concentration of mercury vapor, and further efforts to miniaturize the vacuum and optical subsystems to fit within a volume of 2 L.

  20. Data and clock transmission interface for the WCDA in LHAASO

    NASA Astrophysics Data System (ADS)

    Chu, S. P.; Zhao, L.; Jiang, Z. Y.; Ma, C.; Gao, X. S.; Yang, Y. F.; Liu, S. B.; An, Q.

    2016-12-01

    The Water Cherenkov Detector Array (WCDA) is one of the major components of the Large High Altitude Air Shower Observatory (LHAASO). In the WCDA, 3600 Photomultiplier Tubes (PMTs) and the Front End Electronics (FEEs) are scattered over a 90000 m2 area, while high precision time measurements (0.5 ns RMS) are required in the readout electronics. To meet this requirement, the clock has to be distributed to the FEEs with high precision. Due to the ``triggerless'' architecture, high speed data transfer is required based on the TCP/IP protocol. To simplify the readout electronics architecture and be consistent with the whole LHAASO readout electronics, the White Rabbit (WR) switches are used to transfer clock, data, and commands via a single fiber of about 400 meters. In this paper, a prototype of data and clock transmission interface for LHAASO WCDA is developed. The performance tests are conducted and the results indicate that the clock synchronization precision of the data and clock transmission is better than 50 ps. The data transmission throughput can reach 400 Mbps for one FEE board and 180 Mbps for 4 FEE boards sharing one up link port in WR switch, which is better than the requirement of the LHAASO WCDA.

  1. Cycles of circadian illuminance are sufficient to entrain and maintain circadian locomotor rhythms in Drosophila

    NASA Astrophysics Data System (ADS)

    Cho, Eunjoo; Oh, Ji Hye; Lee, Euna; Do, Young Rag; Kim, Eun Young

    2016-11-01

    Light at night disrupts the circadian clock and causes serious health problems in the modern world. Here, we show that newly developed four-package light-emitting diodes (LEDs) can provide harmless lighting at night. To quantify the effects of light on the circadian clock, we employed the concept of circadian illuminance (CIL). CIL represents the amount of light weighted toward the wavelengths to which the circadian clock is most sensitive, whereas visual illuminance (VIL) represents the total amount of visible light. Exposure to 12 h:12 h cycles of white LED light with high and low CIL values but a constant VIL value (conditions hereafter referred to as CH/CL) can entrain behavioral and molecular circadian rhythms in flies. Moreover, flies re-entrain to phase shift in the CH/CL cycle. Core-clock proteins are required for the rhythmic behaviors seen with this LED lighting scheme. Taken together, this study provides a guide for designing healthful white LED lights for use at night, and proposes the use of the CIL value for estimating the harmful effects of any light source on organismal health.

  2. PFKFB3 Control of Cancer Growth by Responding to Circadian Clock Outputs

    PubMed Central

    Chen, Lili; Zhao, Jiajia; Tang, Qingming; Li, Honggui; Zhang, Chenguang; Yu, Ran; Zhao, Yan; Huo, Yuqing; Wu, Chaodong

    2016-01-01

    Circadian clock dysregulation promotes cancer growth. Here we show that PFKFB3, the gene that encodes for inducible 6-phosphofructo-2-kinase as an essential supporting enzyme of cancer cell survival through stimulating glycolysis, mediates circadian control of carcinogenesis. In patients with tongue cancers, PFKFB3 expression in both cancers and its surrounding tissues was increased significantly compared with that in the control, and was accompanied with dys-regulated expression of core circadian genes. In the in vitro systems, SCC9 tongue cancer cells displayed rhythmic expression of PFKFB3 and CLOCK that was distinct from control KC cells. Furthermore, PFKFB3 expression in SCC9 cells was stimulated by CLOCK through binding and enhancing the transcription activity of PFKFB3 promoter. Inhibition of PFKFB3 at zeitgeber time 7 (ZT7), but not at ZT19 caused significant decreases in lactate production and in cell proliferation. Consistently, PFKFB3 inhibition in mice at circadian time (CT) 7, but not CT19 significantly reduced the growth of implanted neoplasms. Taken together, these findings demonstrate PFKFB3 as a mediator of circadian control of cancer growth, thereby highlighting the importance of time-based PFKFB3 inhibition in cancer treatment. PMID:27079271

  3. Role of melatonin combined with exercise as a switch-like regulator for circadian behavior in advanced osteoarthritic knee.

    PubMed

    Hong, Yunkyung; Kim, Hyunsoo; Lee, Seunghoon; Jin, Yunho; Choi, Jeonghyun; Lee, Sang-Rae; Chang, Kyu-Tae; Hong, Yonggeun

    2017-11-14

    Here, we show the role of melatonin combined with or without exercise as a determinant of multicellular behavior in osteoarthritis. We address the relationship between the molecular components governing local circadian clock and changes in the osteoarthritic musculoskeletal axis. Melatonin was injected subcutaneously in animals with advanced knee osteoarthritis (OA) for 4 weeks. Concurrently, moderate treadmill exercise was applied for 30 min/day. Morphometric, histological, and gene/protein-level analyses were performed in the cartilage, synovium, bone, and gastrocnemius muscle. Primary cultured chondrocytes repeatedly exposed to TNF-α were used in an in vitro study. The symptoms of OA include gait disturbance, osteophyte formation, and abnormal metabolism of the extracellular matrix (ECM) of the cartilage. Low-level expression of clock genes was accompanied by aberrant changes in cartilage specimens. Nanomolar doses of melatonin restored the expression of clock-controlled genes and corrected the abnormal chondrocyte phenotype. Melatonin combined with or without exercise prevented periarticular muscle damage as well as cartilage degeneration. But prolonged melatonin administration promoted the proteolytic cleavage of RANKL protein in the synovium, leading to severe subchondral bone erosion. These musculoskeletal changes apparently occurred via the regulation of molecular clock components, suggesting a role of melatonin as a switch-like regulator for the OA phenotype.

  4. Clock distribution system for digital computers

    DOEpatents

    Wyman, Robert H.; Loomis, Jr., Herschel H.

    1981-01-01

    Apparatus for eliminating, in each clock distribution amplifier of a clock distribution system, sequential pulse catch-up error due to one pulse "overtaking" a prior clock pulse. The apparatus includes timing means to produce a periodic electromagnetic signal with a fundamental frequency having a fundamental frequency component V'.sub.01 (t); an array of N signal characteristic detector means, with detector means No. 1 receiving the timing means signal and producing a change-of-state signal V.sub.1 (t) in response to receipt of a signal above a predetermined threshold; N substantially identical filter means, one filter means being operatively associated with each detector means, for receiving the change-of-state signal V.sub.n (t) and producing a modified change-of-state signal V'.sub.n (t) (n=1, . . . , N) having a fundamental frequency component that is substantially proportional to V'.sub.01 (t-.theta..sub.n (t) with a cumulative phase shift .theta..sub.n (t) having a time derivative that may be made uniformly and arbitrarily small; and with the detector means n+1 (1.ltoreq.n

  5. Circadian Clocks in the Cnidaria: Environmental Entrainment, Molecular Regulation, and Organismal Outputs

    PubMed Central

    Reitzel, Adam M.; Tarrant, Ann M.; Levy, Oren

    2013-01-01

    The circadian clock is a molecular network that translates predictable environmental signals, such as light levels, into organismal responses, including behavior and physiology. Regular oscillations of the molecular components of the clock enable individuals to anticipate regularly fluctuating environmental conditions. Cnidarians play important roles in benthic and pelagic marine environments and also occupy a key evolutionary position as the likely sister group to the bilaterians. Together, these attributes make members of this phylum attractive as models for testing hypotheses on roles for circadian clocks in regulating behavior, physiology, and reproduction as well as those regarding the deep evolutionary conservation of circadian regulatory pathways in animal evolution. Here, we review and synthesize the field of cnidarian circadian biology by discussing the diverse effects of daily light cycles on cnidarians, summarizing the molecular evidence for the conservation of a bilaterian-like circadian clock in anthozoan cnidarians, and presenting new empirical data supporting the presence of a conserved feed-forward loop in the starlet sea anemone, Nematostella vectensis. Furthermore, we discuss critical gaps in our current knowledge about the cnidarian clock, including the functions directly regulated by the clock and the precise molecular interactions that drive the oscillating gene-expression patterns. We conclude that the field of cnidarian circadian biology is moving rapidly toward linking molecular mechanisms with physiology and behavior. PMID:23620252

  6. A Screening of UNF Targets Identifies Rnb, a Novel Regulator of Drosophila Circadian Rhythms.

    PubMed

    Kozlov, Anatoly; Jaumouillé, Edouard; Machado Almeida, Pedro; Koch, Rafael; Rodriguez, Joseph; Abruzzi, Katharine C; Nagoshi, Emi

    2017-07-12

    Behavioral circadian rhythms are controlled by multioscillator networks comprising functionally different subgroups of clock neurons. Studies have demonstrated that molecular clocks in the fruit fly Drosophila melanogaster are regulated differently in clock neuron subclasses to support their specific functions (Lee et al., 2016; Top et al., 2016). The nuclear receptor unfulfilled ( unf ) represents a regulatory node that provides the small ventral lateral neurons (s-LNvs) unique characteristics as the master pacemaker (Beuchle et al., 2012). We previously showed that UNF interacts with the s-LNv molecular clocks by regulating transcription of the core clock gene period ( per ) (Jaumouillé et al., 2015). To gain more insight into the mechanisms by which UNF contributes to the functioning of the circadian master pacemaker, we identified UNF target genes using chromatin immunoprecipitation. Our data demonstrate that a previously uncharacterized gene CG7837 , which we termed R and B ( Rnb ), acts downstream of UNF to regulate the function of the s-LNvs as the master circadian pacemaker. Mutations and LNv-targeted adult-restricted knockdown of Rnb impair locomotor rhythms. RNB localizes to the nucleus, and its loss-of-function blunts the molecular rhythms and output rhythms of the s-LNvs, particularly the circadian rhythms in PDF accumulation and axonal arbor remodeling. These results establish a second pathway by which UNF interacts with the molecular clocks in the s-LNvs and highlight the mechanistic differences in the molecular clockwork within the pacemaker circuit. SIGNIFICANCE STATEMENT Circadian behavior is generated by a pacemaker circuit comprising diverse classes of pacemaker neurons, each of which contains a molecular clock. In addition to the anatomical and functional diversity, recent studies have shown the mechanistic differences in the molecular clockwork among the pacemaker neurons in Drosophila Here, we identified the molecular characteristics distinguishing the s-LNvs, the master pacemaker of the locomotor rhythms, from other clock neuron subtypes. We demonstrated that a newly identified gene Rnb is an s-LNv-specific regulator of the molecular clock and essential for the generation of circadian locomotor behavior. Our results provide additional evidence to the emerging view that the differential regulation of the molecular clocks underlies the functional differences among the pacemaker neuron subgroups. Copyright © 2017 the authors 0270-6474/17/376673-13$15.00/0.

  7. The JPL near-real-time VLBI system and its application to clock synchronization and earth orientation measurements

    NASA Technical Reports Server (NTRS)

    Callahan, P. S.; Eubanks, T. M.; Roth, M. G.; Steppe, J. A.; Esposito, P. B.

    1983-01-01

    The JPL near-real-time VLBI system called Block I is discussed. The hardware and software of the system are described, and the Time and Earth Motion Precision Observations (TEMPO) which utilize Block I are discussed. These observations are designed to provide interstation clock synchronization to 10 nsec and to determine earth orientation (UT1 and polar motion - UTPM) to 30 cm or better in each component. TEMPO results for clock synchronization and UTPM are presented with data from the July 1980-August 1981 analyzed using the most recent JPL solution software and source catalog. Future plans for TEMPO and Block I are discussed.

  8. Neon as a Buffer Gas for a Mercury-Ion Clock

    NASA Technical Reports Server (NTRS)

    Prestage, John; Chung, Sang

    2008-01-01

    A developmental miniature mercury-ion clock has stability comparable to that of a hydrogen-maser clock. The ion-handling components are housed in a sealed vacuum tube, wherein a getter pump is used to maintain the partial vacuum, and the evacuated tube is backfilled with mercury vapor in a buffer gas. Neon was determined to be the best choice for the buffer gas: The pressure-induced frequency pulling by neon was found to be only about two-fifths of that of helium. Furthermore, because neon diffuses through solids much more slowly than does helium, the operational lifetime of a tube backfilled with neon could be considerably longer than that of a tube backfilled with helium.

  9. Constructive polarization modulation for coherent population trapping clock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Peter, E-mail: enxue.yun@obspm.fr; Danet, Jean-Marie; Holleville, David

    2014-12-08

    We propose a constructive polarization modulation scheme for atomic clocks based on coherent population trapping (CPT). In this scheme, the polarization of a bichromatic laser beam is modulated between two opposite circular polarizations to avoid trapping the atomic populations in the extreme Zeeman sublevels. We show that if an appropriate phase modulation between the two optical components of the bichromatic laser is applied synchronously, the two CPT dark states which are produced successively by the alternate polarizations add constructively. Measured CPT resonance contrasts up to 20% in one-pulse CPT and 12% in two-pulse Ramsey-CPT experiments are reported, demonstrating the potentialmore » of this scheme for applications to high performance atomic clocks.« less

  10. A Timer for Synchronous Digital Systems

    NASA Technical Reports Server (NTRS)

    McKenney, Elizabeth; Irwin, Philip

    2003-01-01

    The Real-Time Interferometer Control Systems Testbed (RICST) timing board is a VersaModule Eurocard (VME)-based board that can generate up to 16 simultaneous, phase-locked timing signals at a rate defined by the user. It can also generate all seven VME interrupt requests (IRQs). The RICST timing board is suitable mainly for robotic, aerospace, and real-time applications. Several circuit boards on the market are capable of generating periodic IRQs. Most are associated with Global Positioning System (GPS) receivers and Inter Range Instrumentation Group (IRIG) time-code generators, whereas this board uses either an internal VME clock or an externally generated clock signal to synchronize multiple components of the system. The primary advantage of this board is that there is no discernible jitter in the output clock waveforms because the signals are divided down from a high-frequency clock signal instead of being phase-locked from a lower frequency. The primary disadvantage to this board, relative to other periodic-IRQ-generating boards, is that it is more difficult to synchronize the system to wall clock time.

  11. The circadian molecular clock regulates adult hippocampal neurogenesis by controlling the timing of cell-cycle entry and exit.

    PubMed

    Bouchard-Cannon, Pascale; Mendoza-Viveros, Lucia; Yuen, Andrew; Kærn, Mads; Cheng, Hai-Ying M

    2013-11-27

    The subgranular zone (SGZ) of the adult hippocampus contains a pool of quiescent neural progenitor cells (QNPs) that are capable of entering the cell cycle and producing newborn neurons. The mechanisms that control the timing and extent of adult neurogenesis are not well understood. Here, we show that QNPs of the adult SGZ express molecular-clock components and proliferate in a rhythmic fashion. The clock proteins PERIOD2 and BMAL1 are critical for proper control of neurogenesis. The absence of PERIOD2 abolishes the gating of cell-cycle entrance of QNPs, whereas genetic ablation of bmal1 results in constitutively high levels of proliferation and delayed cell-cycle exit. We use mathematical model simulations to show that these observations may arise from clock-driven expression of a cell-cycle inhibitor that targets the cyclin D/Cdk4-6 complex. Our findings may have broad implications for the circadian clock in timing cell-cycle events of other stem cell populations throughout the body. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Fish Oil Accelerates Diet-Induced Entrainment of the Mouse Peripheral Clock via GPR120

    PubMed Central

    Itokawa, Misa; Nagahama, Hiroki; Ohtsu, Teiji; Furutani, Naoki; Kamagata, Mayo; Yang, Zhi-Hong; Hirasawa, Akira; Tahara, Yu; Shibata, Shigenobu

    2015-01-01

    The circadian peripheral clock is entrained by restricted feeding (RF) at a fixed time of day, and insulin secretion regulates RF-induced entrainment of the peripheral clock in mice. Thus, carbohydrate-rich food may be ideal for facilitating RF-induced entrainment, although the role of dietary oils in insulin secretion and RF-induced entrainment has not been described. The soybean oil component of standard mouse chow was substituted with fish or soybean oil containing docosahexaenoic acid (DHA) and/or eicosapentaenoic acid (EPA). Tuna oil (high DHA/EPA), menhaden oil (standard), and DHA/EPA dissolved in soybean oil increased insulin secretion and facilitated RF-induced phase shifts of the liver clock as represented by the bioluminescence rhythms of PER2::LUCIFERASE knock-in mice. In this model, insulin depletion blocked the effect of tuna oil and fish oil had no effect on mice deficient for GPR120, a polyunsaturated fatty acid receptor. These results suggest food containing fish oil or DHA/EPA is ideal for adjusting the peripheral clock. PMID:26161796

  13. Valproic acid disrupts the oscillatory expression of core circadian rhythm transcription factors.

    PubMed

    Griggs, Chanel A; Malm, Scott W; Jaime-Frias, Rosa; Smith, Catharine L

    2018-01-15

    Valproic acid (VPA) is a well-established therapeutic used in treatment of seizure and mood disorders as well as migraines and a known hepatotoxicant. About 50% of VPA users experience metabolic disruptions, including weight gain, hyperlipidemia, and hyperinsulinemia, among others. Several of these metabolic abnormalities are similar to the effects of circadian rhythm disruption. In the current study, we examine the effect of VPA exposure on the expression of core circadian transcription factors that drive the circadian clock via a transcription-translation feedback loop. In cells with an unsynchronized clock, VPA simultaneously upregulated the expression of genes encoding core circadian transcription factors that regulate the positive and negative limbs of the feedback loop. Using low dose glucocorticoid, we synchronized cultured fibroblast cells to a circadian oscillatory pattern. Whether VPA was added at the time of synchronization or 12h later at CT12, we found that VPA disrupted the oscillatory expression of multiple genes encoding essential transcription factors that regulate circadian rhythm. Therefore, we conclude that VPA has a potent effect on the circadian rhythm transcription-translation feedback loop that may be linked to negative VPA side effects in humans. Furthermore, our study suggests potential chronopharmacology implications of VPA usage. Copyright © 2017. Published by Elsevier Inc.

  14. Optimizing Performance of Combustion Chemistry Solvers on Intel's Many Integrated Core (MIC) Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitaraman, Hariswaran; Grout, Ray W

    This work investigates novel algorithm designs and optimization techniques for restructuring chemistry integrators in zero and multidimensional combustion solvers, which can then be effectively used on the emerging generation of Intel's Many Integrated Core/Xeon Phi processors. These processors offer increased computing performance via large number of lightweight cores at relatively lower clock speeds compared to traditional processors (e.g. Intel Sandybridge/Ivybridge) used in current supercomputers. This style of processor can be productively used for chemistry integrators that form a costly part of computational combustion codes, in spite of their relatively lower clock speeds. Performance commensurate with traditional processors is achieved heremore » through the combination of careful memory layout, exposing multiple levels of fine grain parallelism and through extensive use of vendor supported libraries (Cilk Plus and Math Kernel Libraries). Important optimization techniques for efficient memory usage and vectorization have been identified and quantified. These optimizations resulted in a factor of ~ 3 speed-up using Intel 2013 compiler and ~ 1.5 using Intel 2017 compiler for large chemical mechanisms compared to the unoptimized version on the Intel Xeon Phi. The strategies, especially with respect to memory usage and vectorization, should also be beneficial for general purpose computational fluid dynamics codes.« less

  15. Manipulating the circadian and sleep cycles to protect against metabolic disease.

    PubMed

    Nohara, Kazunari; Yoo, Seung-Hee; Chen, Zheng Jake

    2015-01-01

    Modernization of human society parallels an epidemic of metabolic disorders including obesity. Apart from excess caloric intake, a 24/7 lifestyle poses another important challenge to our metabolic health. Recent research under both laboratory and epidemiological settings has indicated that abnormal temporal organization of sleep and wakeful activities including food intake is a significant risk factor for metabolic disease. The circadian clock system is our intrinsic biological timer that regulates internal rhythms such as the sleep/wake cycle and also responses to external stimuli including light and food. Initially thought to be mainly involved in the timing of sleep, the clock, and/or clock genes may also play a role in sleep architecture and homeostasis. Importantly, an extensive body of evidence has firmly established a master regulatory role of the clock in energy balance. Together, a close relationship between well-timed circadian/sleep cycles and metabolic health is emerging. Exploiting this functional connection, an important holistic strategy toward curbing the epidemic of metabolic disorders (e.g., obesity) involves corrective measures on the circadian clock and sleep. In addition to behavioral and environmental interventions including meal timing and light control, pharmacological agents targeting sleep and circadian clocks promise convenient and effective applications. Recent studies, for example, have reported small molecules targeting specific clock components and displaying robust beneficial effects on sleep and metabolism. Furthermore, a group of clock-amplitude-enhancing small molecules (CEMs) identified via high-throughput chemical screens are of particular interest for future in vivo studies of their metabolic and sleep efficacies. Elucidating the functional relationship between clock, sleep, and metabolism will also have far-reaching implications for various chronic human diseases and aging.

  16. Modelling and Analysis of the Feeding Regimen Induced Entrainment of Hepatocyte Circadian Oscillators Using Petri Nets

    PubMed Central

    Tareen, Samar Hayat Khan; Ahmad, Jamil

    2015-01-01

    Circadian rhythms are certain periodic behaviours exhibited by living organism at different levels, including cellular and system-wide scales. Recent studies have found that the circadian rhythms of several peripheral organs in mammals, such as the liver, are able to entrain their clocks to received signals independent of other system level clocks, in particular when responding to signals generated during feeding. These studies have found SIRT1, PARP1, and HSF1 proteins to be the major influencers of the core CLOCKBMAL1:PER-CRY circadian clock. These entities, along with abstracted feeding induced signals were modelled collectively in this study using Petri Nets. The properties of the model show that the circadian system itself is strongly robust, and is able to continually evolve. The modelled feeding regimens suggest that the usual 3 meals/day and 2 meals/day feeding regimens are beneficial with any more or less meals/day negatively affecting the system. PMID:25789928

  17. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock★

    PubMed Central

    Dyar, Kenneth A.; Ciciliot, Stefano; Wright, Lauren E.; Biensø, Rasmus S.; Tagliazucchi, Guidantonio M.; Patel, Vishal R.; Forcato, Mattia; Paz, Marcia I.P.; Gudiksen, Anders; Solagna, Francesca; Albiero, Mattia; Moretti, Irene; Eckel-Mahan, Kristin L.; Baldi, Pierre; Sassone-Corsi, Paolo; Rizzuto, Rosario; Bicciato, Silvio; Pilegaard, Henriette; Blaauw, Bert; Schiaffino, Stefano

    2013-01-01

    Circadian rhythms control metabolism and energy homeostasis, but the role of the skeletal muscle clock has never been explored. We generated conditional and inducible mouse lines with muscle-specific ablation of the core clock gene Bmal1. Skeletal muscles from these mice showed impaired insulin-stimulated glucose uptake with reduced protein levels of GLUT4, the insulin-dependent glucose transporter, and TBC1D1, a Rab-GTPase involved in GLUT4 translocation. Pyruvate dehydrogenase (PDH) activity was also reduced due to altered expression of circadian genes Pdk4 and Pdp1, coding for PDH kinase and phosphatase, respectively. PDH inhibition leads to reduced glucose oxidation and diversion of glycolytic intermediates to alternative metabolic pathways, as revealed by metabolome analysis. The impaired glucose metabolism induced by muscle-specific Bmal1 knockout suggests that a major physiological role of the muscle clock is to prepare for the transition from the rest/fasting phase to the active/feeding phase, when glucose becomes the predominant fuel for skeletal muscle. PMID:24567902

  18. Running climate model on a commercial cloud computing environment: A case study using Community Earth System Model (CESM) on Amazon AWS

    NASA Astrophysics Data System (ADS)

    Chen, Xiuhong; Huang, Xianglei; Jiao, Chaoyi; Flanner, Mark G.; Raeker, Todd; Palen, Brock

    2017-01-01

    The suites of numerical models used for simulating climate of our planet are usually run on dedicated high-performance computing (HPC) resources. This study investigates an alternative to the usual approach, i.e. carrying out climate model simulations on commercially available cloud computing environment. We test the performance and reliability of running the CESM (Community Earth System Model), a flagship climate model in the United States developed by the National Center for Atmospheric Research (NCAR), on Amazon Web Service (AWS) EC2, the cloud computing environment by Amazon.com, Inc. StarCluster is used to create virtual computing cluster on the AWS EC2 for the CESM simulations. The wall-clock time for one year of CESM simulation on the AWS EC2 virtual cluster is comparable to the time spent for the same simulation on a local dedicated high-performance computing cluster with InfiniBand connections. The CESM simulation can be efficiently scaled with the number of CPU cores on the AWS EC2 virtual cluster environment up to 64 cores. For the standard configuration of the CESM at a spatial resolution of 1.9° latitude by 2.5° longitude, increasing the number of cores from 16 to 64 reduces the wall-clock running time by more than 50% and the scaling is nearly linear. Beyond 64 cores, the communication latency starts to outweigh the benefit of distributed computing and the parallel speedup becomes nearly unchanged.

  19. Clock genes × stress × reward interactions in alcohol and substance use disorders.

    PubMed

    Perreau-Lenz, Stéphanie; Spanagel, Rainer

    2015-06-01

    Adverse life events and highly stressful environments have deleterious consequences for mental health. Those environmental factors can potentiate alcohol and drug abuse in vulnerable individuals carrying specific genetic risk factors, hence producing the final risk for alcohol- and substance-use disorders development. The nature of these genes remains to be fully determined, but studies indicate their direct or indirect relation to the stress hypothalamo-pituitary-adrenal (HPA) axis and/or reward systems. Over the past decade, clock genes have been revealed to be key-players in influencing acute and chronic alcohol/drug effects. In parallel, the influence of chronic stress and stressful life events in promoting alcohol and substance use and abuse has been demonstrated. Furthermore, the reciprocal interaction of clock genes with various HPA-axis components, as well as the evidence for an implication of clock genes in stress-induced alcohol abuse, have led to the idea that clock genes, and Period genes in particular, may represent key genetic factors to consider when examining gene × environment interaction in the etiology of addiction. The aim of the present review is to summarize findings linking clock genes, stress, and alcohol and substance abuse, and to propose potential underlying neurobiological mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Design and implementation of fast bipolar clock drivers for CCD imaging systems in space applications

    NASA Astrophysics Data System (ADS)

    Jayarajan, Jayesh; Kumar, Nishant; Verma, Amarnath; Thaker, Ramkrishna

    2016-05-01

    Drive electronics for generating fast, bipolar clocks, which can drive capacitive loads of the order of 5-10nF are indispensable for present day Charge Coupled Devices (CCDs). Design of these high speed bipolar clocks is challenging because of the capacitive loads that have to be driven and a strict constraint on the rise and fall times. Designing drive electronics circuits for space applications becomes even more challenging due to limited number of available discrete devices, which can survive in the harsh radiation prone space environment. This paper presents the design, simulations and test results of a set of such high speed, bipolar clock drivers. The design has been tested under a thermal cycle of -15 deg C to +55 deg C under vacuum conditions and has been designed using radiation hardened components. The test results show that the design meets the stringent rise/fall time requirements of 50+/-10ns for Multiple Vertical CCD (VCCD) clocks and 20+/-5ns for Horizontal CCD (HCCD) clocks with sufficient design margins across full temperature range, with a pixel readout rate of 6.6MHz. The full design has been realized in flexi-rigid PCB with package volume of 140x160x50 mm3.

  1. Ortho-H2 and the age of prestellar cores

    NASA Astrophysics Data System (ADS)

    Pagani, L.; Lesaffre, P.; Jorfi, M.; Honvault, P.; González-Lezana, T.; Faure, A.

    2013-03-01

    Prestellar cores form from the contraction of cold gas and dust material in dark clouds before they collapse to form protostars. Several concurrent theories exist to describe this contraction but they are currently difficult to distinguish. One major difference is the timescale involved in forming the prestellar cores: some theories advocate nearly free-fall speed via, e.g., rapid turbulence decay, while others can accommodate much longer periods to let the gas accumulate via, e.g., ambipolar diffusion. To tell the difference between these theories, measuring the age of prestellar cores could greatly help. However, no reliable clock currently exists. We present a simple chemical clock based on the regulation of the deuteration by the abundance of ortho-H2 that slowly decays away from the ortho-para statistical ratio of 3 down to or less than 0.001. We use a chemical network fully coupled to a hydrodynamical model that follows the contraction of a cloud, starting from uniform density, and reaches a density profile typical of a prestellar core. We compute the N2D+/N2H+ ratio along the density profile. The disappearance of ortho-H2 is tied to the duration of the contraction and the N2D+/N2H+ ratio increases in the wake of the ortho-H2 abundance decrease. By adjusting the time of contraction, we obtain different deuteration profiles that we can compare to the observations. Our model can test fast contractions (from 104 to 106 cm-3 in ~0.5 My) and slow contractions (from 104 to 106 cm-3 in ~5 My). We have tested the sensitivity of the models to various initial conditions. The slow-contraction deuteration profile is approximately insensitive to these variations, while the fast-contraction deuteration profile shows significant variations. We found that, in all cases, the deuteration profile remains clearly distinguishable whether it comes from the fast collapse or the slow collapse. We also study the para-D2H+/ortho-H2D+ ratio and find that its variation is not monotonic, so it does not discriminate between models. Applying this model to L183 (=L134N), we find that the N2D+/N2H+ ratio would be higher than unity for evolutionary timescales of a few megayears independently of other parameters, such as cosmic ray ionization rate or grain size (within reasonable ranges). A good fit to the observations is only obtained for fast contraction (≤0.7 My from the beginning of the contraction and ≤4 My from the birth of the molecular cloud based on the need to keep a high ortho-H2 abundance when the contraction starts - ortho-H2/para-H2 ≥ 0.2 - to match the observations). This chemical clock therefore rules out slow contraction in L183 and steady-state chemical models, since steady state is clearly not reached here. This clock should be applied to other cores to help distinguish slow and fast contraction theories over a large sample of cases. Appendices are available in electronic form at http://www.aanda.org

  2. Light at night alters daily patterns of cortisol and clock proteins in female Siberian hamsters.

    PubMed

    Bedrosian, T A; Galan, A; Vaughn, C A; Weil, Z M; Nelson, R J

    2013-06-01

    Humans and other organisms have adapted to a 24-h solar cycle in response to life on Earth. The rotation of the planet on its axis and its revolution around the sun cause predictable daily and seasonal patterns in day length. To successfully anticipate and adapt to these patterns in the environment, a variety of biological processes oscillate with a daily rhythm of approximately 24 h in length. These rhythms arise from hierarchally-coupled cellular clocks generated by positive and negative transcription factors of core circadian clock gene expression. From these endogenous cellular clocks, overt rhythms in activity and patterns in hormone secretion and other homeostatic processes emerge. These circadian rhythms in physiology and behaviour can be organised by a variety of cues, although they are most potently entrained by light. In recent history, there has been a major change from naturally-occurring light cycles set by the sun, to artificial and sometimes erratic light cycles determined by the use of electric lighting. Virtually every individual living in an industrialised country experiences light at night (LAN) but, despite its prevalence, the biological effects of such unnatural lighting have not been fully considered. Using female Siberian hamsters (Phodopus sungorus), we investigated the effects of chronic nightly exposure to dim light on daily rhythms in locomotor activity, serum cortisol concentrations and brain expression of circadian clock proteins (i.e. PER1, PER2, BMAL1). Although locomotor activity remained entrained to the light cycle, the diurnal fluctuation of cortisol concentrations was blunted and the expression patterns of clock proteins in the suprachiasmatic nucleus and hippocampus were altered. These results demonstrate that chronic exposure to dim LAN can dramatically affect fundamental cellular function and emergent physiology. © 2013 British Society for Neuroendocrinology.

  3. Diurnal rhythmicity of the clock genes Per1 and Per2 in the rat ovary.

    PubMed

    Fahrenkrug, Jan; Georg, Birgitte; Hannibal, Jens; Hindersson, Peter; Gräs, Søren

    2006-08-01

    Circadian rhythms are generated by endogenous clocks in the central brain oscillator, the suprachiasmatic nucleus, and peripheral tissues. The molecular basis for the circadian clock consists of a number of genes and proteins that form transcriptional/translational feedback loops. In the mammalian gonads, clock genes have been reported in the testes, but the expression pattern is developmental rather than circadian. Here we investigated the daily expression of the two core clock genes, Per1 and Per2, in the rat ovary using real-time RT-PCR, in situ hybridization histochemistry, and immunohistochemistry. Both Per1 and Per2 mRNA displayed a statistically significant rhythmic oscillation in the ovary with a period of 24 h in: 1) a group of rats during proestrus and estrus under 12-h light,12-h dark cycles; 2) a second group of rats representing a mixture of all 4 d of the estrous cycle under 12-h light,12-h dark conditions; and 3) a third group of rats representing a mixture of all 4 d of estrous cycle during continuous darkness. Per1 mRNA was low at Zeitgeber time 0-2 and peaked at Zeitgeber time 12-14, whereas Per2 mRNA was delayed by approximately 4 h relative to Per1. By in situ hybridization histochemistry, Per mRNAs were localized to steroidogenic cells in preantral, antral, and preovulatory follicles; corpora lutea; and interstitial glandular tissue. With newly developed antisera, we substantiated the expression of Per1 and Per2 in these cells by single/double immunohistochemistry. Furthermore, we visualized the temporal intracellular movements of PER1 and PER2 proteins. These findings suggest the existence of an ovarian circadian clock, which may play a role both locally and in the hypothalamo-pituitary-ovarian axis.

  4. Altered dynamics in the circadian oscillation of clock genes in dermal fibroblasts of patients suffering from idiopathic hypersomnia.

    PubMed

    Lippert, Julian; Halfter, Hartmut; Heidbreder, Anna; Röhr, Dominik; Gess, Burkhard; Boentert, Mathias; Osada, Nani; Young, Peter

    2014-01-01

    From single cell organisms to the most complex life forms, the 24-hour circadian rhythm is important for numerous aspects of physiology and behavior such as daily periodic fluctuations in body temperature and sleep-wake cycles. Influenced by environmental cues - mainly by light input -, the central pacemaker in the thalamic suprachiasmatic nuclei (SCN) controls and regulates the internal clock mechanisms which are present in peripheral tissues. In order to correlate modifications in the molecular mechanisms of circadian rhythm with the pathophysiology of idiopathic hypersomnia, this study aimed to investigate the dynamics of the expression of circadian clock genes in dermal fibroblasts of idiopathic hypersomniacs (IH) in comparison to those of healthy controls (HC). Ten clinically and polysomnographically proven IH patients were recruited from the department of sleep medicine of the University Hospital of Muenster. Clinical diagnosis was done by two consecutive polysomnographies (PSG) and Multiple Sleep Latency Test (MSLT). Fourteen clinical healthy volunteers served as control group. Dermal fibroblasts were obtained via punch biopsy and grown in cell culture. The expression of circadian clock genes was investigated by semiquantitative Reverse Transcriptase-PCR qRT-PCR analysis, confirming periodical oscillation of expression of the core circadian clock genes BMAL1, PER1/2 and CRY1/2. The amplitude of the rhythmically expressed BMAL1, PER1 and PER2 was significantly dampened in dermal fibroblasts of IH compared to HC over two circadian periods whereas the overall expression of only the key transcriptional factor BMAL1 was significantly reduced in IH. Our study suggests for the first time an aberrant dynamics in the circadian clock in IH. These findings may serve to better understand some clinical features of the pathophysiology in sleep - wake rhythms in IH.

  5. Altered Dynamics in the Circadian Oscillation of Clock Genes in Dermal Fibroblasts of Patients Suffering from Idiopathic Hypersomnia

    PubMed Central

    Lippert, Julian; Halfter, Hartmut; Heidbreder, Anna; Röhr, Dominik; Gess, Burkhard; Boentert, Mathias; Osada, Nani; Young, Peter

    2014-01-01

    From single cell organisms to the most complex life forms, the 24-hour circadian rhythm is important for numerous aspects of physiology and behavior such as daily periodic fluctuations in body temperature and sleep-wake cycles. Influenced by environmental cues – mainly by light input -, the central pacemaker in the thalamic suprachiasmatic nuclei (SCN) controls and regulates the internal clock mechanisms which are present in peripheral tissues. In order to correlate modifications in the molecular mechanisms of circadian rhythm with the pathophysiology of idiopathic hypersomnia, this study aimed to investigate the dynamics of the expression of circadian clock genes in dermal fibroblasts of idiopathic hypersomniacs (IH) in comparison to those of healthy controls (HC). Ten clinically and polysomnographically proven IH patients were recruited from the department of sleep medicine of the University Hospital of Muenster. Clinical diagnosis was done by two consecutive polysomnographies (PSG) and Multiple Sleep Latency Test (MSLT). Fourteen clinical healthy volunteers served as control group. Dermal fibroblasts were obtained via punch biopsy and grown in cell culture. The expression of circadian clock genes was investigated by semiquantitative Reverse Transcriptase-PCR qRT-PCR analysis, confirming periodical oscillation of expression of the core circadian clock genes BMAL1, PER1/2 and CRY1/2. The amplitude of the rhythmically expressed BMAL1, PER1 and PER2 was significantly dampened in dermal fibroblasts of IH compared to HC over two circadian periods whereas the overall expression of only the key transcriptional factor BMAL1 was significantly reduced in IH. Our study suggests for the first time an aberrant dynamics in the circadian clock in IH. These findings may serve to better understand some clinical features of the pathophysiology in sleep – wake rhythms in IH. PMID:24454829

  6. Energy consumption estimation of an OMAP-based Android operating system

    NASA Astrophysics Data System (ADS)

    González, Gabriel; Juárez, Eduardo; Castro, Juan José; Sanz, César

    2011-05-01

    System-level energy optimization of battery-powered multimedia embedded systems has recently become a design goal. The poor operational time of multimedia terminals makes computationally demanding applications impractical in real scenarios. For instance, the so-called smart-phones are currently unable to remain in operation longer than several hours. The OMAP3530 processor basically consists of two processing cores, a General Purpose Processor (GPP) and a Digital Signal Processor (DSP). The former, an ARM Cortex-A8 processor, is aimed to run a generic Operating System (OS) while the latter, a DSP core based on the C64x+, has architecture optimized for video processing. The BeagleBoard, a commercial prototyping board based on the OMAP processor, has been used to test the Android Operating System and measure its performance. The board has 128 MB of SDRAM external memory, 256 MB of Flash external memory and several interfaces. Note that the clock frequency of the ARM and DSP OMAP cores is 600 MHz and 430 MHz, respectively. This paper describes the energy consumption estimation of the processes and multimedia applications of an Android v1.6 (Donut) OS on the OMAP3530-Based BeagleBoard. In addition, tools to communicate the two processing cores have been employed. A test-bench to profile the OS resource usage has been developed. As far as the energy estimates concern, the OMAP processor energy consumption model provided by the manufacturer has been used. The model is basically divided in two energy components. The former, the baseline core energy, describes the energy consumption that is independent of any chip activity. The latter, the module active energy, describes the energy consumed by the active modules depending on resource usage.

  7. GPS/GLONASS Combined Precise Point Positioning with Receiver Clock Modeling

    PubMed Central

    Wang, Fuhong; Chen, Xinghan; Guo, Fei

    2015-01-01

    Research has demonstrated that receiver clock modeling can reduce the correlation coefficients among the parameters of receiver clock bias, station height and zenith tropospheric delay. This paper introduces the receiver clock modeling to GPS/GLONASS combined precise point positioning (PPP), aiming to better separate the receiver clock bias and station coordinates and therefore improve positioning accuracy. Firstly, the basic mathematic models including the GPS/GLONASS observation equations, stochastic model, and receiver clock model are briefly introduced. Then datasets from several IGS stations equipped with high-stability atomic clocks are used for kinematic PPP tests. To investigate the performance of PPP, including the positioning accuracy and convergence time, a week of (1–7 January 2014) GPS/GLONASS data retrieved from these IGS stations are processed with different schemes. The results indicate that the positioning accuracy as well as convergence time can benefit from the receiver clock modeling. This is particularly pronounced for the vertical component. Statistic RMSs show that the average improvement of three-dimensional positioning accuracy reaches up to 30%–40%. Sometimes, it even reaches over 60% for specific stations. Compared to the GPS-only PPP, solutions of the GPS/GLONASS combined PPP are much better no matter if the receiver clock offsets are modeled or not, indicating that the positioning accuracy and reliability are significantly improved with the additional GLONASS satellites in the case of insufficient number of GPS satellites or poor geometry conditions. In addition to the receiver clock modeling, the impacts of different inter-system timing bias (ISB) models are investigated. For the case of a sufficient number of satellites with fairly good geometry, the PPP performances are not seriously affected by the ISB model due to the low correlation between the ISB and the other parameters. However, the refinement of ISB model weakens the correlation between coordinates and ISB estimates and finally enhance the PPP performance in the case of poor observation conditions. PMID:26134106

  8. A single chip 2 Gbit/s clock recovery subsystem for digital communications

    NASA Astrophysics Data System (ADS)

    Hickling, Ronald M.

    A self-contained clock recovery/data resynchronizer phase locked loop (PLL) for use in microwave and fiber optic digital communications has been fabricated using GaAs integrated circuit technology. The IC contains the analog and digital components for the PLL: an edge-triggered phase detector based on a 1.2 GHz phase/frequency comparator, an op amp for creating the loop filter, and a VCO based on a differential source-coupled pair amplifier.

  9. Pigment-dispersing factor (PDF) has different effects on Drosophila's circadian clocks in the accessory medulla and in the dorsal brain.

    PubMed

    Wülbeck, Corinna; Grieshaber, Eva; Helfrich-Förster, Charlotte

    2008-10-01

    The neuropeptide pigment-dispersing factor (PDF) is a key transmitter in the circadian clock of Drosophila melanogaster. Here we studied the rhythmic behavior of neural mutants with modified arborizations of the large PDF neurons. In sine oculis(1) (so(1)) mutants we found a higher density of PDF fibers in the fly's pacemaker center, the accessory medulla. These flies exhibited a significantly longer period (24.6 h) than control flies. When PDF levels were elevated to very high levels in the dorsal brain as true for so(mda) mutants and small optic lobes;so(1) double mutants (sol(1);so( 1)), a short-period component split off the long period in behavioral rhythmicity. The short period became shorter the higher the amount of PDF in this brain region and reached a value of approximately 21 h. The period alterations were clearly dependent on PDF, because so(1);Pdf 01 and so(mda);Pdf 01 double mutants showed a single free-running component with a period similar to Pdf 01 mutants (approximately 22.5 h) and significantly longer than the short period of so(mda) mutants. These observations indicate that PDF feeds back on the clock neurons and changes their period. Obviously, PDF lengthens the period of some clock neurons and shortens that of others.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chacon, Luis; Stanier, Adam John

    Here, we demonstrate a scalable fully implicit algorithm for the two-field low-β extended MHD model. This reduced model describes plasma behavior in the presence of strong guide fields, and is of significant practical impact both in nature and in laboratory plasmas. The model displays strong hyperbolic behavior, as manifested by the presence of fast dispersive waves, which make a fully implicit treatment very challenging. In this study, we employ a Jacobian-free Newton–Krylov nonlinear solver, for which we propose a physics-based preconditioner that renders the linearized set of equations suitable for inversion with multigrid methods. As a result, the algorithm ismore » shown to scale both algorithmically (i.e., the iteration count is insensitive to grid refinement and timestep size) and in parallel in a weak-scaling sense, with the wall-clock time scaling weakly with the number of cores for up to 4096 cores. For a 4096 × 4096 mesh, we demonstrate a wall-clock-time speedup of ~6700 with respect to explicit algorithms. The model is validated linearly (against linear theory predictions) and nonlinearly (against fully kinetic simulations), demonstrating excellent agreement.« less

  11. Generation of optical OFDM signals using 21.4 GS/s real time digital signal processing.

    PubMed

    Benlachtar, Yannis; Watts, Philip M; Bouziane, Rachid; Milder, Peter; Rangaraj, Deepak; Cartolano, Anthony; Koutsoyannis, Robert; Hoe, James C; Püschel, Markus; Glick, Madeleine; Killey, Robert I

    2009-09-28

    We demonstrate a field programmable gate array (FPGA) based optical orthogonal frequency division multiplexing (OFDM) transmitter implementing real time digital signal processing at a sample rate of 21.4 GS/s. The QPSK-OFDM signal is generated using an 8 bit, 128 point inverse fast Fourier transform (IFFT) core, performing one transform per clock cycle at a clock speed of 167.2 MHz and can be deployed with either a direct-detection or a coherent receiver. The hardware design and the main digital signal processing functions are described, and we show that the main performance limitation is due to the low (4-bit) resolution of the digital-to-analog converter (DAC) and the 8-bit resolution of the IFFT core used. We analyze the back-to-back performance of the transmitter generating an 8.36 Gb/s optical single sideband (SSB) OFDM signal using digital up-conversion, suitable for direct-detection. Additionally, we use the device to transmit 8.36 Gb/s SSB OFDM signals over 200 km of uncompensated standard single mode fiber achieving an overall BER<10(-3).

  12. Study of additive manufactured microwave cavities for pulsed optically pumped atomic clock applications

    NASA Astrophysics Data System (ADS)

    Affolderbach, C.; Moreno, W.; Ivanov, A. E.; Debogovic, T.; Pellaton, M.; Skrivervik, A. K.; de Rijk, E.; Mileti, G.

    2018-03-01

    Additive manufacturing (AM) of passive microwave components is of high interest for the cost-effective and rapid prototyping or manufacture of devices with complex geometries. Here, we present an experimental study on the properties of recently demonstrated microwave resonator cavities manufactured by AM, in view of their applications to high-performance compact atomic clocks. The microwave cavities employ a loop-gap geometry using six electrodes. The critical electrode structures were manufactured monolithically using two different approaches: Stereolithography (SLA) of a polymer followed by metal coating and Selective Laser Melting (SLM) of aluminum. The tested microwave cavities show the desired TE011-like resonant mode at the Rb clock frequency of ≈6.835 GHz, with a microwave magnetic field highly parallel to the quantization axis across the vapor cell. When operated in an atomic clock setup, the measured atomic Rabi oscillations are comparable to those observed for conventionally manufactured cavities and indicate a good uniformity of the field amplitude across the vapor cell. Employing a time-domain Ramsey scheme on one of the SLA cavities, high-contrast (34%) Ramsey fringes are observed for the Rb clock transition, along with a narrow (166 Hz linewidth) central fringe. The measured clock stability of 2.2 × 10-13 τ-1/2 up to the integration time of 30 s is comparable to the current state-of-the-art stabilities of compact vapor-cell clocks based on conventional microwave cavities and thus demonstrates the feasibility of the approach.

  13. Misalignment with the external light environment drives metabolic and cardiac dysfunction.

    PubMed

    West, Alexander C; Smith, Laura; Ray, David W; Loudon, Andrew S I; Brown, Timothy M; Bechtold, David A

    2017-09-12

    Most organisms use internal biological clocks to match behavioural and physiological processes to specific phases of the day-night cycle. Central to this is the synchronisation of internal processes across multiple organ systems. Environmental desynchrony (e.g. shift work) profoundly impacts human health, increasing cardiovascular disease and diabetes risk, yet the underlying mechanisms remain unclear. Here, we characterise the impact of desynchrony between the internal clock and the external light-dark (LD) cycle on mammalian physiology. We reveal that even under stable LD environments, phase misalignment has a profound effect, with decreased metabolic efficiency and disrupted cardiac function including prolonged QT interval duration. Importantly, physiological dysfunction is not driven by disrupted core clock function, nor by an internal desynchrony between organs, but rather the altered phase relationship between the internal clockwork and the external environment. We suggest phase misalignment as a major driver of pathologies associated with shift work, chronotype and social jetlag.The misalignment between internal circadian rhythm and the day-night cycle can be caused by genetic, behavioural and environmental factors, and may have a profound impact on human physiology. Here West et al. show that desynchrony between the internal clock and the external environment alter metabolic parameters and cardiac function in mice.

  14. Timing Embryo Segmentation: Dynamics and Regulatory Mechanisms of the Vertebrate Segmentation Clock

    PubMed Central

    Resende, Tatiana P.; Andrade, Raquel P.; Palmeirim, Isabel

    2014-01-01

    All vertebrate species present a segmented body, easily observed in the vertebrate column and its associated components, which provides a high degree of motility to the adult body and efficient protection of the internal organs. The sequential formation of the segmented precursors of the vertebral column during embryonic development, the somites, is governed by an oscillating genetic network, the somitogenesis molecular clock. Herein, we provide an overview of the molecular clock operating during somite formation and its underlying molecular regulatory mechanisms. Human congenital vertebral malformations have been associated with perturbations in these oscillatory mechanisms. Thus, a better comprehension of the molecular mechanisms regulating somite formation is required in order to fully understand the origin of human skeletal malformations. PMID:24895605

  15. Expression of circadian gens in different rat tissues is sensitive marker of in vivo silver nanoparticles action

    NASA Astrophysics Data System (ADS)

    Minchenko, D. O.; Yavorovsky, O. P.; Zinchenko, T. O.; Komisarenko, S. V.; Minchenko, O. H.

    2012-09-01

    Circadian factors PER1, PER2, ARNTL and CLOCK are important molecular components of biological clock system and play a fundamental role in the metabolism at both the behavioral and molecular levels and potentially have great importance for understanding metabolic health and disease, because disturbance the circadian processes lead to developing of different pathology. The antibacterial effect of silver nanoparticles has resulted in their extensive application in health, electronics, home products, and for water disinfection, but little is yet known about their toxicity. These nanoparticles induce blood-brain barrier destruction, astrocyte swelling, cause degeneration of neurons and impair neurodevelopment as well as embryonic development. We studied the expression of genes encoded the key molecular components of circadian clock system in different rat organs after intratracheally instilled silver nanoparticles which quite rapidly translocate from the lungs into the blood stream and accumulate in different tissues. We have shown that silver nanoparticles significantly affect the expression levels of PER1, PER2, ARNTL and CLOCK mRNA in different rat tissues in time-dependent and tissue-specific manner. High level of PER1, ARNTL and CLOCK mRNA expression was observed in the lung on the 1st 3rd and 14th day after treatment of rats with silver nanoparticles. At the same time, the expression level of PER1 mRNA in the brain and liver increases predominantly on the 1st and 14th day but decreases in the testis. Significant increase of the expression level of PER2 and ARNTL mRNA was detected only in the brain of treated by silver nanoparticles rats. Besides that, intratracheally instilled silver nanoparticles significantly reduced the expression levels of CLOCK mRNA in the brain, heart and kidney. No significant changes in the expression level of PER2 mRNA were found in the lung, liver, heart and testis, except kidney where this mRNA expression decreases on the 3rd and 14th day after treatment of rats with silver nanoparticles. It was also shown that expression level of PFKFB4, a key enzyme of glycolysis regulation, gradually reduces in the brain from 1st to 14th day being up to 4 fold less on 14th day after treatment of animals with silver nanoparticles. Thus, the intratracheally instilled silver nanoparticles significantly affect the expression of PER1, PER2, ARNTL, and CLOCK genes which are an important molecular component of circadian clock system. This is because a disruption of the circadian processes leads to a development of various pathologic processes. The results of this study clearly demonstrate that circadian genes could be a sensitive test for detection of silver nanoparticles toxic action and suggest that more caution is needed in biomedical applications of silver nanoparticles as well as higher level of safety in silver nanoparticles production industry.

  16. COSMIC-LAB: Double BSS sequences as signatures of the Core Collapse phenomenon in star clusters.

    NASA Astrophysics Data System (ADS)

    Ferraro, Francesco

    2011-10-01

    Globular Clusters {GCs} are old stellar systems tracing key stages of the star formation and chemical enrichment history of the early Universe and the galaxy assembly phase. As part of a project {COSMIC-LAB} aimed at using GCs as natural laboratories to study the complex interplay between dynamics and stellar evolution, here we present a proposal dealing with the role of Blue Straggler Stars {BSS}.BSS are core-hydrogen burning stars more massive than the main-sequence turnoff population. The canonical scenarios for BSS formation are either the mass transfer between binary companions, or stellar mergers induced by collisions. We have recently discovered two distinct and parallel sequences of BSS in the core of M30 {Ferraro et al. 2009, Nature 462, 1082}. We suggested that each of the two sequences is populated by BSS formed by one of the two processes, both triggered by the cluster core collapse, that, based on the observed BSS properties, must have occurred 1-2 Gyr ago. Following this scenario, we have identified a powerful "clock" to date the occurrence of this key event in the GC history.Here we propose to secure WFC3 images of 4 post-core collapse GCs, reaching S/N=200 at the BSS magnitude level, in order to determine the ubiquity of the BSS double sequence and calibrate the "dynamical clock". This requires very high spatial resolution and very high precision photometry capabilities that are unique to the HST. The modest amount of requested time will have a deep impact on the current and future generations of dynamical evolutionary models of collisional stellar systems.

  17. The antiphasic regulatory module comprising CDF5 and its antisense RNA FLORE links the circadian clock to photoperiodic flowering.

    PubMed

    Henriques, Rossana; Wang, Huan; Liu, Jun; Boix, Marc; Huang, Li-Fang; Chua, Nam-Hai

    2017-11-01

    Circadian rhythms of gene expression are generated by the combinatorial action of transcriptional and translational feedback loops as well as chromatin remodelling events. Recently, long noncoding RNAs (lncRNAs) that are natural antisense transcripts (NATs) to transcripts encoding central oscillator components were proposed as modulators of core clock function in mammals (Per) and fungi (frq/qrf). Although oscillating lncRNAs exist in plants, their functional characterization is at an initial stage. By screening an Arabidopsis thaliana lncRNA custom-made array we identified CDF5 LONG NONCODING RNA (FLORE), a circadian-regulated lncRNA that is a NAT of CDF5. Quantitative real-time RT-PCR confirmed the circadian regulation of FLORE, whereas GUS-staining and flowering time evaluation were used to determine its biological function. FLORE and CDF5 antiphasic expression reflects mutual inhibition in a similar way to frq/qrf. Moreover, whereas the CDF5 protein delays flowering by directly repressing FT transcription, FLORE promotes it by repressing several CDFs (CDF1, CDF3, CDF5) and increasing FT transcript levels, indicating both cis and trans function. We propose that the CDF5/FLORE NAT pair constitutes an additional circadian regulatory module with conserved (mutual inhibition) and unique (function in trans) features, able to fine-tune its own circadian oscillation, and consequently, adjust the onset of flowering to favourable environmental conditions. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  18. Coherent Population Trapping and Optical Ramsey Interference for Compact Rubidium Clock Development

    NASA Astrophysics Data System (ADS)

    Warren, Zachary Aron

    Coherent population trapping (CPT) and optical Ramsey interference provide new avenues for developing compact, high-performance atomic clocks. In this work, I have studied the fundamental aspects of CPT and optical Ramsey interference for Raman clock development. This thesis research is composed of two parts: theoretical and experimental studies. The theoretical component of the research was initially based on pre-existing atomic models of a three-level ?-type system in which the phenomena of CPT and Ramsey interference are formed. This model served as a starting point for studying basic characteristics of CPT and Ramsey interference such as power dependence of CPT, effects of average detuning, and ground-state decoherence on linewidth, which directly impact the performance of the Raman clock. The basic three-level model was also used to model pulsed CPT excitation and measure light shift in Ramsey interference which imposes a fundamental limit on the long-term frequency stability of the Raman clock. The theoretical calculations illustrate reduction (or suppression) of light shift in Ramsey interference as an important advantage over CPT for Raman clock development. To make the model more accurate than an ideal three-level system, I developed a comprehensive atomic model using density-matrix equations including all sixteen Zeeman sublevels in the D1 manifold of 87Rb atoms in a vapor medium. The multi-level atomic model has been used for investigating characteristics of CPT and Ramsey interference under different optical excitation schemes pertaining to the polarization states of the frequency-modulated CPT beam in a Raman clock. It is also used to study the effects of axial and traverse magnetic fields on the contrast of CPT and Ramsey interference. More importantly, the multi-level atomic model is also used to accurately calculate light shift in Ramsey interference in the D1 manifold of 87Rb atoms by taking into account all possible off-resonant excitations and the ground-state decoherence among the Zeeman sublevels. Light shift suppression in Ramsey interference with pulse saturation is also found to be evident in this comprehensive model. In the experimental component of the research, I designed a prototype of the Raman clock using a small (2 cm in length), buffer-gas filled, and isotopically pure 87Rb cell. A fiber-coupled waveguide electro-optic modulator was used to generate the frequency-modulated CPT beam for the experiments. The experimental setup was operated either by continuous excitation or pulsed excitation for experimentally characterizing CPT and Ramsey interference under different experimental conditions and for testing different optical excitation schemes which were investigated theoretically. Several iterations of the clock physics package were developed in order to attain better frequency stability performance in the Raman clock. The experimental work also provided a basis to develop a new repeated-query technique for producing an ultra-narrow linewidth central fringe with a high S/N ratio, and suppressing the side fringes in Ramsey interference. The above described research was carried out keeping in mind compact, high-performance clock development, which relies on technologies that can be miniaturized. Vapor cell based atomic clocks are ideal candidates for compact clock technology. The CPT phenomenon, observed by Raman excitation in a vapor medium, is a promising candidate for compact, high-performance Raman clock development. However, atom-field interaction involved in a vapor medium is often more complex than other media such as cold atom or atomic beam. It is difficult to model this interaction in order to predict its influence on CPT characteristics and, hence, the performance of the Raman clock. This dissertation addresses one such problem by developing a comprehensive atomic model to investigate light shift and modification of light shift in the Raman clock, particularly with pulsed excitation. It demonstrates a clear possibility of reducing (or suppressing) the light shift associated with Ramsey interference in a vapor medium for achieving higher frequency stability in the Raman clock. Additionally, theoretical comparisons of various optical excitation techniques have been calculated to demonstrate the relative strengths and weaknesses of different schemes for Raman clock development. (Abstract shortened by ProQuest.).

  19. Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis.

    PubMed

    Alabadí, David; Yanovsky, Marcelo J; Más, Paloma; Harmer, Stacey L; Kay, Steve A

    2002-04-30

    Circadian clocks are autoregulatory, endogenous mechanisms that allow organisms, from bacteria to humans, to advantageously time a wide range of activities within 24-hr environmental cycles. CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) are thought to be important components of the circadian clock in the model plant Arabidopsis. The similar circadian phenotypes of lines overexpressing either CCA1 or LHY have suggested that the functions of these two transcription factors are largely overlapping. cca1-1 plants, which lack CCA1 protein, show a short-period phenotype for the expression of several genes when assayed under constant light conditions. This suggests that LHY function is able to only partially compensate for the lack of CCA1 protein, resulting in a clock with a faster pace in cca1-1 plants. We have obtained plants lacking CCA1 and with LHY function strongly reduced, cca1-1 lhy-R, and show that these plants are unable to maintain sustained oscillations in both constant light and constant darkness. However, these plants exhibit some circadian function in light/dark cycles, showing that the Arabidopsis circadian clock is not entirely dependent on CCA1 and LHY activities.

  20. Circadian Rhythms in Cyanobacteria

    PubMed Central

    Golden, Susan S.

    2015-01-01

    SUMMARY Life on earth is subject to daily and predictable fluctuations in light intensity, temperature, and humidity created by rotation of the earth. Circadian rhythms, generated by a circadian clock, control temporal programs of cellular physiology to facilitate adaptation to daily environmental changes. Circadian rhythms are nearly ubiquitous and are found in both prokaryotic and eukaryotic organisms. Here we introduce the molecular mechanism of the circadian clock in the model cyanobacterium Synechococcus elongatus PCC 7942. We review the current understanding of the cyanobacterial clock, emphasizing recent work that has generated a more comprehensive understanding of how the circadian oscillator becomes synchronized with the external environment and how information from the oscillator is transmitted to generate rhythms of biological activity. These results have changed how we think about the clock, shifting away from a linear model to one in which the clock is viewed as an interactive network of multifunctional components that are integrated into the context of the cell in order to pace and reset the oscillator. We conclude with a discussion of how this basic timekeeping mechanism differs in other cyanobacterial species and how information gleaned from work in cyanobacteria can be translated to understanding rhythmic phenomena in other prokaryotic systems. PMID:26335718

  1. Atomic Clocks with Suppressed Blackbody Radiation Shift

    NASA Astrophysics Data System (ADS)

    Yudin, V. I.; Taichenachev, A. V.; Okhapkin, M. V.; Bagayev, S. N.; Tamm, Chr.; Peik, E.; Huntemann, N.; Mehlstäubler, T. E.; Riehle, F.

    2011-07-01

    We develop a concept of atomic clocks where the blackbody radiation shift and its fluctuations can be suppressed by 1-3 orders of magnitude independent of the environmental temperature. The suppression is based on the fact that in a system with two accessible clock transitions (with frequencies ν1 and ν2) which are exposed to the same thermal environment, there exists a “synthetic” frequency νsyn ∝ (ν1-ɛ12ν2) largely immune to the blackbody radiation shift. For example, in the case of Yb+171 it is possible to create a synthetic-frequency-based clock in which the fractional blackbody radiation shift can be suppressed to the level of 10-18 in a broad interval near room temperature (300±15K). We also propose a realization of our method with the use of an optical frequency comb generator stabilized to both frequencies ν1 and ν2, where the frequency νsyn is generated as one of the components of the comb spectrum.

  2. An open-source, extensible system for laboratory timing and control

    NASA Astrophysics Data System (ADS)

    Gaskell, Peter E.; Thorn, Jeremy J.; Alba, Sequoia; Steck, Daniel A.

    2009-11-01

    We describe a simple system for timing and control, which provides control of analog, digital, and radio-frequency signals. Our system differs from most common laboratory setups in that it is open source, built from off-the-shelf components, synchronized to a common and accurate clock, and connected over an Ethernet network. A simple bus architecture facilitates creating new and specialized devices with only moderate experience in circuit design. Each device operates independently, requiring only an Ethernet network connection to the controlling computer, a clock signal, and a trigger signal. This makes the system highly robust and scalable. The devices can all be connected to a single external clock, allowing synchronous operation of a large number of devices for situations requiring precise timing of many parallel control and acquisition channels. Provided an accurate enough clock, these devices are capable of triggering events separated by one day with near-microsecond precision. We have achieved precisions of ˜0.1 ppb (parts per 109) over 16 s.

  3. Performance evaluation of throughput computing workloads using multi-core processors and graphics processors

    NASA Astrophysics Data System (ADS)

    Dave, Gaurav P.; Sureshkumar, N.; Blessy Trencia Lincy, S. S.

    2017-11-01

    Current trend in processor manufacturing focuses on multi-core architectures rather than increasing the clock speed for performance improvement. Graphic processors have become as commodity hardware for providing fast co-processing in computer systems. Developments in IoT, social networking web applications, big data created huge demand for data processing activities and such kind of throughput intensive applications inherently contains data level parallelism which is more suited for SIMD architecture based GPU. This paper reviews the architectural aspects of multi/many core processors and graphics processors. Different case studies are taken to compare performance of throughput computing applications using shared memory programming in OpenMP and CUDA API based programming.

  4. Light and the circadian clock mediate time-specific changes in sensitivity to UV-B stress under light/dark cycles

    PubMed Central

    Takeuchi, Tomomi; Newton, Linsey; Burkhardt, Alyssa; Mason, Saundra; Farré, Eva M.

    2014-01-01

    In Arabidopsis, the circadian clock regulates UV-B-mediated changes in gene expression. Here it is shown that circadian clock components are able to inhibit UV-B-induced gene expression in a gene-by-gene-specific manner and act downstream of the initial UV-B sensing by COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1) and UVR8 (UV RESISTANCE LOCUS 8). For example, the UV-B induction of ELIP1 (EARLY LIGHT INDUCIBLE PROTEIN 1) and PRR9 (PSEUDO-RESPONSE REGULATOR 9) is directly regulated by LUX (LUX ARRYTHMO), ELF4 (EARLY FLOWERING 4), and ELF3. Moreover, time-dependent changes in plant sensitivity to UV-B damage were observed. Wild-type Arabidopsis plants, but not circadian clock mutants, were more sensitive to UV-B treatment during the night periods than during the light periods under diel cycles. Experiments performed under short cycles of 6h light and 6h darkness showed that the increased stress sensitivity of plants to UV-B in the dark only occurred during the subjective night and not during the subjective day in wild-type seedlings. In contrast, the stress sensitivity of Arabidopsis mutants with a compromised circadian clock was still influenced by the light condition during the subjective day. Taken together, the results show that the clock and light modulate plant sensitivity to UV-B stress at different times of the day. PMID:25147271

  5. 10Gbit/s all-optical NRZ to RZ conversion based on TOAD

    NASA Astrophysics Data System (ADS)

    Yan, Yumei; Yin, Lina; Zhou, Yunfeng; Liu, Guoming; Wu, Jian; Lin, Jintong

    2006-01-01

    Future network will include wavelength division multiplexing (WDM) and optical time division multiplexing (OTDM) technologies. All-optical format conversion between their respective preferable data formats, non-return-to-zero (NRZ) and return-to-zero (RZ), may become an important technology. In this paper, 10Gbit/s all-optical NRZ-to-RZ conversion is demonstrated based on terahertz optical asymmetric demultiplexer (TOAD) using clock all-optically recovered from the NRZ signal for the first time. The clock component is enhanced in an SOA and the pseudo-return-to-zero (PRZ) signal is filtered. The PRZ signal is input into an injection mode-locked fiber ring laser for clock recovery. The recovered clock and the NRZ signal are input into TOAD as pump signal and probe signal, respectively, and format conversion is performed. The quality of the converted RZ signal is determined by that of the recovered clock and the NRZ signal, whereas hardly influenced by gain recovery time of the SOA. In the experimental demonstration, the obtained RZ signal has an extinction ratio of 8.7dB and low pattern dependency. After conversion, the spectrum broadens obviously and shows multimode structure with spectrum interval of 0.08nm, which matches with the bit rate 10Gbit/s. Furthermore, this format conversion method has some tolerance on the pattern dependency of the clock signal.

  6. Does exercise training impact clock genes in patients with coronary artery disease and type 2 diabetes mellitus?

    PubMed

    Steidle-Kloc, Eva; Schönfelder, Martin; Müller, Edith; Sixt, Sebastian; Schuler, Gerhard; Patsch, Wolfgang; Niebauer, Josef

    2016-09-01

    Recent findings revealed negative effects of deregulated molecular circadian rhythm in coronary artery disease (CAD) and type 2 diabetes mellitus (T2DM). Physical exercise training (ET) has been shown to promote anti-diabetic and anti-atherogenic responses in skeletal muscle of these patients, but the role of the circadian clock-machinery remains unknown. This study investigated whether mRNA expression of clock genes in skeletal muscle of CAD and T2DM patients is influenced by physical ET intervention. Nineteen patients with CAD and T2DM (age 64 ± 5 years) were randomised to either six months of ET (four weeks of in-hospital ET followed by a five-month ambulatory programme) or usual care. At the beginning of the study, after four weeks and after six months parameters of metabolic and cardiovascular risk factors, and physical exercise capacity were assessed. Gene expression was measured in skeletal muscle biopsies by quantitative real-time polymerase chain reaction (PCR). A selection of clock genes and associated components (circadian locomoter output cycle kaput protein (CLOCK), period (PER) 1, cryptochrome (CRY) 2 and aminolevulinate-deltA-synthase-1 (ALAS1)) was reliably measured and used for further analysis. A time-dependent effect in gene expression was observed in CLOCK (p = 0.013) and a significant interaction between time and intervention was observed for ALAS1 (p = 0.032; p = 0.014) as a result of ET. This is the first study to analyse clock gene expression in skeletal muscles of patients with CAD and T2DM participating in a long-lasting exercise intervention. ET, as one of the cornerstones in prevention and rehabilitation of CAD and T2DM, exerts no effects on CLOCK genes but meaningful effects on the clock-associated gene ALAS1. © The European Society of Cardiology 2016.

  7. Circadian Rhythms in Diet-Induced Obesity.

    PubMed

    Engin, Atilla

    2017-01-01

    The biological clocks of the circadian timing system coordinate cellular and physiological processes and synchronizes these with daily cycles, feeding patterns also regulates circadian clocks. The clock genes and adipocytokines show circadian rhythmicity. Dysfunction of these genes are involved in the alteration of these adipokines during the development of obesity. Food availability promotes the stimuli associated with food intake which is a circadian oscillator outside of the suprachiasmatic nucleus (SCN). Its circadian rhythm is arranged with the predictable daily mealtimes. Food anticipatory activity is mediated by a self-sustained circadian timing and its principal component is food entrained oscillator. However, the hypothalamus has a crucial role in the regulation of energy balance rather than food intake. Fatty acids or their metabolites can modulate neuronal activity by brain nutrient-sensing neurons involved in the regulation of energy and glucose homeostasis. The timing of three-meal schedules indicates close association with the plasma levels of insulin and preceding food availability. Desynchronization between the central and peripheral clocks by altered timing of food intake and diet composition can lead to uncoupling of peripheral clocks from the central pacemaker and to the development of metabolic disorders. Metabolic dysfunction is associated with circadian disturbances at both central and peripheral levels and, eventual disruption of circadian clock functioning can lead to obesity. While CLOCK expression levels are increased with high fat diet-induced obesity, peroxisome proliferator-activated receptor (PPAR) alpha increases the transcriptional level of brain and muscle ARNT-like 1 (BMAL1) in obese subjects. Consequently, disruption of clock genes results in dyslipidemia, insulin resistance and obesity. Modifying the time of feeding alone can greatly affect body weight. Changes in the circadian clock are associated with temporal alterations in feeding behavior and increased weight gain. Thus, shift work is associated with increased risk for obesity, diabetes and cardio-vascular diseases as a result of unusual eating time and disruption of circadian rhythm.

  8. Calcium and cAMP directly modulate the speed of the Drosophila circadian clock.

    PubMed

    Palacios-Muñoz, Angelina; Ewer, John

    2018-06-01

    Circadian clocks impose daily periodicities to animal behavior and physiology. At their core, circadian rhythms are produced by intracellular transcriptional/translational feedback loops (TTFL). TTFLs may be altered by extracellular signals whose actions are mediated intracellularly by calcium and cAMP. In mammals these messengers act directly on TTFLs via the calcium/cAMP-dependent transcription factor, CREB. In the fruit fly, Drosophila melanogaster, calcium and cAMP also regulate the periodicity of circadian locomotor activity rhythmicity, but whether this is due to direct actions on the TTFLs themselves or are a consequence of changes induced to the complex interrelationship between different classes of central pacemaker neurons is unclear. Here we investigated this question focusing on the peripheral clock housed in the non-neuronal prothoracic gland (PG), which, together with the central pacemaker in the brain, controls the timing of adult emergence. We show that genetic manipulations that increased and decreased the levels of calcium and cAMP in the PG caused, respectively, a shortening and a lengthening of the periodicity of emergence. Importantly, knockdown of CREB in the PG caused an arrhythmic pattern of eclosion. Interestingly, the same manipulations directed at central pacemaker neurons caused arrhythmicity of eclosion and of adult locomotor activity, suggesting a common mechanism. Our results reveal that the calcium and cAMP pathways can alter the functioning of the clock itself. In the PG, these messengers, acting as outputs of the clock or as second messengers for stimuli external to the PG, could also contribute to the circadian gating of adult emergence.

  9. Interdependence of nutrient metabolism and the circadian clock system: Importance for metabolic health.

    PubMed

    Ribas-Latre, Aleix; Eckel-Mahan, Kristin

    2016-03-01

    While additional research is needed, a number of large epidemiological studies show an association between circadian disruption and metabolic disorders. Specifically, obesity, insulin resistance, cardiovascular disease, and other signs of metabolic syndrome all have been linked to circadian disruption in humans. Studies in other species support this association and generally reveal that feeding that is not in phase with the external light/dark cycle, as often occurs with night or rotating shift workers, is disadvantageous in terms of energy balance. As food is a strong driver of circadian rhythms in the periphery, understanding how nutrient metabolism drives clocks across the body is important for dissecting out why circadian misalignment may produce such metabolic effects. A number of circadian clock proteins as well as their accessory proteins (such as nuclear receptors) are highly sensitive to nutrient metabolism. Macronutrients and micronutrients can function as zeitgebers for the clock in a tissue-specific way and can thus impair synchrony between clocks across the body, or potentially restore synchrony in the case of circadian misalignment. Circadian nuclear receptors are particularly sensitive to nutrient metabolism and can alter tissue-specific rhythms in response to changes in the diet. Finally, SNPs in human clock genes appear to be correlated with diet-specific responses and along with chronotype eventually may provide valuable information from a clinical perspective on how to use diet and nutrition to treat metabolic disorders. This article presents a background of the circadian clock components and their interrelated metabolic and transcriptional feedback loops, followed by a review of some recent studies in humans and rodents that address the effects of nutrient metabolism on the circadian clock and vice versa. We focus on studies in which results suggest that nutrients provide an opportunity to restore or, alternatively, can destroy synchrony between peripheral clocks and the central pacemaker in the brain as well as between peripheral clocks themselves. In addition, we review several studies looking at clock gene SNPs in humans and the metabolic phenotypes or tendencies associated with particular clock gene mutations. Targeted use of specific nutrients based on chronotype has the potential for immense clinical utility in the future. Macronutrients and micronutrients have the ability to function as zeitgebers for the clock by activating or modulating specific clock proteins or accessory proteins (such as nuclear receptors). Circadian clock control by nutrients can be tissue-specific. With a better understanding of the mechanisms that support nutrient-induced circadian control in specific tissues, human chronotype and SNP information might eventually be used to tailor nutritional regimens for metabolic disease treatment and thus be an important part of personalized medicine's future.

  10. The statistical analysis of circadian phase and amplitude in constant-routine core-temperature data

    NASA Technical Reports Server (NTRS)

    Brown, E. N.; Czeisler, C. A.

    1992-01-01

    Accurate estimation of the phases and amplitude of the endogenous circadian pacemaker from constant-routine core-temperature series is crucial for making inferences about the properties of the human biological clock from data collected under this protocol. This paper presents a set of statistical methods based on a harmonic-regression-plus-correlated-noise model for estimating the phases and the amplitude of the endogenous circadian pacemaker from constant-routine core-temperature data. The methods include a Bayesian Monte Carlo procedure for computing the uncertainty in these circadian functions. We illustrate the techniques with a detailed study of a single subject's core-temperature series and describe their relationship to other statistical methods for circadian data analysis. In our laboratory, these methods have been successfully used to analyze more than 300 constant routines and provide a highly reliable means of extracting phase and amplitude information from core-temperature data.

  11. Organization of the Drosophila circadian control circuit.

    PubMed

    Nitabach, Michael N; Taghert, Paul H

    2008-01-22

    Molecular genetics has revealed the identities of several components of the fundamental circadian molecular oscillator - an evolutionarily conserved molecular mechanism of transcription and translation that can operate in a cell-autonomous manner. Therefore, it was surprising when studies of circadian rhythmic behavior in the fruit fly Drosophila suggested that the normal operations of circadian clock cells, which house the molecular oscillator, in fact depend on non-cell-autonomous effects - interactions between the clock cells themselves. Here we review several genetic analyses that broadly extend that viewpoint. They support a model whereby the approximately 150 circadian clock cells in the brain of the fly are sub-divided into functionally discrete rhythmic centers. These centers alternatively cooperate or compete to control the different episodes of rhythmic behavior that define the fly's daily activity profile.

  12. Class IIa Histone Deacetylases Are Conserved Regulators of Circadian Function*

    PubMed Central

    Fogg, Paul C. M.; O'Neill, John S.; Dobrzycki, Tomasz; Calvert, Shaun; Lord, Emma C.; McIntosh, Rebecca L. L.; Elliott, Christopher J. H.; Sweeney, Sean T.; Hastings, Michael H.; Chawla, Sangeeta

    2014-01-01

    Class IIa histone deacetylases (HDACs) regulate the activity of many transcription factors to influence liver gluconeogenesis and the development of specialized cells, including muscle, neurons, and lymphocytes. Here, we describe a conserved role for class IIa HDACs in sustaining robust circadian behavioral rhythms in Drosophila and cellular rhythms in mammalian cells. In mouse fibroblasts, overexpression of HDAC5 severely disrupts transcriptional rhythms of core clock genes. HDAC5 overexpression decreases BMAL1 acetylation on Lys-537 and pharmacological inhibition of class IIa HDACs increases BMAL1 acetylation. Furthermore, we observe cyclical nucleocytoplasmic shuttling of HDAC5 in mouse fibroblasts that is characteristically circadian. Mutation of the Drosophila homolog HDAC4 impairs locomotor activity rhythms of flies and decreases period mRNA levels. RNAi-mediated knockdown of HDAC4 in Drosophila clock cells also dampens circadian function. Given that the localization of class IIa HDACs is signal-regulated and influenced by Ca2+ and cAMP signals, our findings offer a mechanism by which extracellular stimuli that generate these signals can feed into the molecular clock machinery. PMID:25271152

  13. Class IIa histone deacetylases are conserved regulators of circadian function.

    PubMed

    Fogg, Paul C M; O'Neill, John S; Dobrzycki, Tomasz; Calvert, Shaun; Lord, Emma C; McIntosh, Rebecca L L; Elliott, Christopher J H; Sweeney, Sean T; Hastings, Michael H; Chawla, Sangeeta

    2014-12-05

    Class IIa histone deacetylases (HDACs) regulate the activity of many transcription factors to influence liver gluconeogenesis and the development of specialized cells, including muscle, neurons, and lymphocytes. Here, we describe a conserved role for class IIa HDACs in sustaining robust circadian behavioral rhythms in Drosophila and cellular rhythms in mammalian cells. In mouse fibroblasts, overexpression of HDAC5 severely disrupts transcriptional rhythms of core clock genes. HDAC5 overexpression decreases BMAL1 acetylation on Lys-537 and pharmacological inhibition of class IIa HDACs increases BMAL1 acetylation. Furthermore, we observe cyclical nucleocytoplasmic shuttling of HDAC5 in mouse fibroblasts that is characteristically circadian. Mutation of the Drosophila homolog HDAC4 impairs locomotor activity rhythms of flies and decreases period mRNA levels. RNAi-mediated knockdown of HDAC4 in Drosophila clock cells also dampens circadian function. Given that the localization of class IIa HDACs is signal-regulated and influenced by Ca(2+) and cAMP signals, our findings offer a mechanism by which extracellular stimuli that generate these signals can feed into the molecular clock machinery. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Dim Light at Night Disrupts Molecular Circadian Rhythms and Affects Metabolism

    PubMed Central

    Fonken, Laura K.; Aubrecht, Taryn G.; Meléndez-Fernández, O. Hecmarie; Weil, Zachary M.; Nelson, Randy J.

    2014-01-01

    With the exception of high latitudes, life has evolved under bright days and dark nights. Most organisms have developed endogenously driven circadian rhythms which are synchronized to this daily light/dark cycle. In recent years, humans have shifted away from the naturally occurring solar light cycle in favor of artificial and sometimes irregular light schedules produced by electrical lighting. Exposure to unnatural light cycles is increasingly associated with obesity and metabolic syndrome; however the means by which environmental lighting alters metabolism are poorly understood. Thus, we exposed mice to nighttime light and investigated changes in the circadian system and body weight. Here we report that exposure to ecologically relevant levels of dim (5 lux) light at night attenuate core circadian clock rhythms in the SCN at both the gene and protein level. Moreover, circadian clock rhythms were perturbed in the liver by nighttime light exposure. Changes in the circadian clock were associated with temporal alterations in feeding behavior and increased weight gain. These results are significant because they provide mechanistic evidence for how mild changes in environmental lighting can alter circadian and metabolic function. PMID:23929553

  15. Drosophila CLOCK target gene characterization: implications for circadian tissue-specific gene expression

    PubMed Central

    Abruzzi, Katharine Compton; Rodriguez, Joseph; Menet, Jerome S.; Desrochers, Jennifer; Zadina, Abigail; Luo, Weifei; Tkachev, Sasha; Rosbash, Michael

    2011-01-01

    CLOCK (CLK) is a master transcriptional regulator of the circadian clock in Drosophila. To identify CLK direct target genes and address circadian transcriptional regulation in Drosophila, we performed chromatin immunoprecipitation (ChIP) tiling array assays (ChIP–chip) with a number of circadian proteins. CLK binding cycles on at least 800 sites with maximal binding in the early night. The CLK partner protein CYCLE (CYC) is on most of these sites. The CLK/CYC heterodimer is joined 4–6 h later by the transcriptional repressor PERIOD (PER), indicating that the majority of CLK targets are regulated similarly to core circadian genes. About 30% of target genes also show cycling RNA polymerase II (Pol II) binding. Many of these generate cycling RNAs despite not being documented in prior RNA cycling studies. This is due in part to different RNA isoforms and to fly head tissue heterogeneity. CLK has specific targets in different tissues, implying that important CLK partner proteins and/or mechanisms contribute to gene-specific and tissue-specific regulation. PMID:22085964

  16. The effects of graded levels of calorie restriction: VI. Impact of short-term graded calorie restriction on transcriptomic responses of the hypothalamic hunger and circadian signaling pathways.

    PubMed

    Derous, Davina; Mitchell, Sharon E; Green, Cara L; Chen, Luonan; Han, Jing-Dong J; Wang, Yingchun; Promislow, Daniel E L; Lusseau, David; Speakman, John R; Douglas, Alex

    2016-04-01

    Food intake and circadian rhythms are regulated by hypothalamic neuropeptides and circulating hormones, which could mediate the anti-ageing effect of calorie restriction (CR). We tested whether these two signaling pathways mediate CR by quantifying hypothalamic transcripts of male C57BL/6 mice exposed to graded levels of CR (10 % to 40 %) for 3 months. We found that the graded CR manipulation resulted in upregulation of core circadian rhythm genes, which correlated negatively with circulating levels of leptin, insulin-like growth factor 1 (IGF-1), insulin, and tumor necrosis factor alpha (TNF-α). In addition, key components in the hunger signaling pathway were expressed in a manner reflecting elevated hunger at greater levels of restriction, and which also correlated negatively with circulating levels of insulin, TNF-α, leptin and IGF-1. Lastly, phenotypes, such as food anticipatory activity and body temperature, were associated with expression levels of both hunger genes and core clock genes. Our results suggest modulation of the hunger and circadian signaling pathways in response to altered levels of circulating hormones, that are themselves downstream of morphological changes resulting from CR treatment, may be important elements in the response to CR, driving some of the key phenotypic outcomes.

  17. The effects of graded levels of calorie restriction: VI. Impact of short-term graded calorie restriction on transcriptomic responses of the hypothalamic hunger and circadian signaling pathways

    PubMed Central

    Green, Cara L.; Chen, Luonan; Han, Jing‐Dong J.; Wang, Yingchun; Promislow, Daniel E.L.; Lusseau, David; Speakman, John R.; Douglas, Alex

    2016-01-01

    Food intake and circadian rhythms are regulated by hypothalamic neuropeptides and circulating hormones, which could mediate the anti‐ageing effect of calorie restriction (CR). We tested whether these two signaling pathways mediate CR by quantifying hypothalamic transcripts of male C57BL/6 mice exposed to graded levels of CR (10 % to 40 %) for 3 months. We found that the graded CR manipulation resulted in upregulation of core circadian rhythm genes, which correlated negatively with circulating levels of leptin, insulin‐like growth factor 1 (IGF‐1), insulin, and tumor necrosis factor alpha (TNF‐α). In addition, key components in the hunger signaling pathway were expressed in a manner reflecting elevated hunger at greater levels of restriction, and which also correlated negatively with circulating levels of insulin, TNF‐α, leptin and IGF‐1. Lastly, phenotypes, such as food anticipatory activity and body temperature, were associated with expression levels of both hunger genes and core clock genes. Our results suggest modulation of the hunger and circadian signaling pathways in response to altered levels of circulating hormones, that are themselves downstream of morphological changes resulting from CR treatment, may be important elements in the response to CR, driving some of the key phenotypic outcomes. PMID:26945906

  18. A high performance cost-effective digital complex correlator for an X-band polarimetry survey.

    PubMed

    Bergano, Miguel; Rocha, Armando; Cupido, Luís; Barbosa, Domingos; Villela, Thyrso; Boas, José Vilas; Rocha, Graça; Smoot, George F

    2016-01-01

    The detailed knowledge of the Milky Way radio emission is important to characterize galactic foregrounds masking extragalactic and cosmological signals. The update of the global sky models describing radio emissions over a very large spectral band requires high sensitivity experiments capable of observing large sky areas with long integration times. Here, we present the design of a new 10 GHz (X-band) polarimeter digital back-end to map the polarization components of the galactic synchrotron radiation field of the Northern Hemisphere sky. The design follows the digital processing trends in radio astronomy and implements a large bandwidth (1 GHz) digital complex cross-correlator to extract the Stokes parameters of the incoming synchrotron radiation field. The hardware constraints cover the implemented VLSI hardware description language code and the preliminary results. The implementation is based on the simultaneous digitized acquisition of the Cartesian components of the two linear receiver polarization channels. The design strategy involves a double data rate acquisition of the ADC interleaved parallel bus, and field programmable gate array device programming at the register transfer mode. The digital core of the back-end is capable of processing 32 Gbps and is built around an Altera field programmable gate array clocked at 250 MHz, 1 GSps analog to digital converters and a clock generator. The control of the field programmable gate array internal signal delays and a convenient use of its phase locked loops provide the timing requirements to achieve the target bandwidths and sensitivity. This solution is convenient for radio astronomy experiments requiring large bandwidth, high functionality, high volume availability and low cost. Of particular interest, this correlator was developed for the Galactic Emission Mapping project and is suitable for large sky area polarization continuum surveys. The solutions may also be adapted to be used at signal processing subsystem levels for large projects like the square kilometer array testbeds.

  19. High resolution time interval meter

    DOEpatents

    Martin, A.D.

    1986-05-09

    Method and apparatus are provided for measuring the time interval between two events to a higher resolution than reliability available from conventional circuits and component. An internal clock pulse is provided at a frequency compatible with conventional component operating frequencies for reliable operation. Lumped constant delay circuits are provided for generating outputs at delay intervals corresponding to the desired high resolution. An initiation START pulse is input to generate first high resolution data. A termination STOP pulse is input to generate second high resolution data. Internal counters count at the low frequency internal clock pulse rate between the START and STOP pulses. The first and second high resolution data are logically combined to directly provide high resolution data to one counter and correct the count in the low resolution counter to obtain a high resolution time interval measurement.

  20. The chondrocyte clock gene Bmal1 controls cartilage homeostasis and integrity.

    PubMed

    Dudek, Michal; Gossan, Nicole; Yang, Nan; Im, Hee-Jeong; Ruckshanthi, Jayalath P D; Yoshitane, Hikari; Li, Xin; Jin, Ding; Wang, Ping; Boudiffa, Maya; Bellantuono, Ilaria; Fukada, Yoshitaka; Boot-Handford, Ray P; Meng, Qing-Jun

    2016-01-01

    Osteoarthritis (OA) is the most prevalent and debilitating joint disease, and there are currently no effective disease-modifying treatments available. Multiple risk factors for OA, such as aging, result in progressive damage and loss of articular cartilage. Autonomous circadian clocks have been identified in mouse cartilage, and environmental disruption of circadian rhythms in mice predisposes animals to OA-like damage. However, the contribution of the cartilage clock mechanisms to the maintenance of tissue homeostasis is still unclear. Here, we have shown that expression of the core clock transcription factor BMAL1 is disrupted in human OA cartilage and in aged mouse cartilage. Furthermore, targeted Bmal1 ablation in mouse chondrocytes abolished their circadian rhythm and caused progressive degeneration of articular cartilage. We determined that BMAL1 directs the circadian expression of many genes implicated in cartilage homeostasis, including those involved in catabolic, anabolic, and apoptotic pathways. Loss of BMAL1 reduced the levels of phosphorylated SMAD2/3 (p-SMAD2/3) and NFATC2 and decreased expression of the major matrix-related genes Sox9, Acan, and Col2a1, but increased p-SMAD1/5 levels. Together, these results define a regulatory mechanism that links chondrocyte BMAL1 to the maintenance and repair of cartilage and suggest that circadian rhythm disruption is a risk factor for joint diseases such as OA.

  1. The chondrocyte clock gene Bmal1 controls cartilage homeostasis and integrity

    PubMed Central

    Dudek, Michal; Gossan, Nicole; Yang, Nan; Im, Hee-Jeong; Ruckshanthi, Jayalath P.D.; Yoshitane, Hikari; Li, Xin; Jin, Ding; Wang, Ping; Boudiffa, Maya; Bellantuono, Ilaria; Fukada, Yoshitaka; Boot-Handford, Ray P.; Meng, Qing-Jun

    2015-01-01

    Osteoarthritis (OA) is the most prevalent and debilitating joint disease, and there are currently no effective disease-modifying treatments available. Multiple risk factors for OA, such as aging, result in progressive damage and loss of articular cartilage. Autonomous circadian clocks have been identified in mouse cartilage, and environmental disruption of circadian rhythms in mice predisposes animals to OA-like damage. However, the contribution of the cartilage clock mechanisms to the maintenance of tissue homeostasis is still unclear. Here, we have shown that expression of the core clock transcription factor BMAL1 is disrupted in human OA cartilage and in aged mouse cartilage. Furthermore, targeted Bmal1 ablation in mouse chondrocytes abolished their circadian rhythm and caused progressive degeneration of articular cartilage. We determined that BMAL1 directs the circadian expression of many genes implicated in cartilage homeostasis, including those involved in catabolic, anabolic, and apoptotic pathways. Loss of BMAL1 reduced the levels of phosphorylated SMAD2/3 (p-SMAD2/3) and NFATC2 and decreased expression of the major matrix-related genes Sox9, Acan, and Col2a1, but increased p-SMAD1/5 levels. Together, these results define a regulatory mechanism that links chondrocyte BMAL1 to the maintenance and repair of cartilage and suggest that circadian rhythm disruption is a risk factor for joint diseases such as OA. PMID:26657859

  2. TIME FOR COFFEE Represses Accumulation of the MYC2 Transcription Factor to Provide Time-of-Day Regulation of Jasmonate Signaling in Arabidopsis[C][W][OA

    PubMed Central

    Shin, Jieun; Heidrich, Katharina; Sanchez-Villarreal, Alfredo; Parker, Jane E.; Davis, Seth J.

    2012-01-01

    Plants are confronted with predictable daily biotic and abiotic stresses that result from the day–night cycle. The circadian clock provides an anticipation mechanism to respond to these daily stress signals to increase fitness. Jasmonate (JA) is a phytohormone that mediates various growth and stress responses. Here, we found that the circadian-clock component TIME FOR COFFEE (TIC) acts as a negative factor in the JA-signaling pathway. We showed that the tic mutant is hypersensitive to growth-repressive effects of JA and displays altered JA-regulated gene expression. TIC was found to interact with MYC2, a key transcription factor of JA signaling. From this, we discovered that the circadian clock rhythmically regulates JA signaling. TIC is a key determinant in this circadian-gated process, and as a result, the tic mutant is defective in rhythmic JA responses to pathogen infection. TIC acts here by inhibiting MYC2 protein accumulation and by controlling the transcriptional repression of CORONATINE INSENSITIVE1 in an evening-phase–specific manner. Taken together, we propose that TIC acts as an output component of the circadian oscillator to influence JA signaling directly. PMID:22693280

  3. Homomorphic Filtering for Improving Time Synchronization in Wireless Networks

    PubMed Central

    Castillo-Secilla, José María; Palomares, José Manuel; León, Fernando; Olivares, Joaquín

    2017-01-01

    Wireless sensor networks are used to sample the environment in a distributed way. Therefore, it is mandatory for all of the measurements to be tightly synchronized in order to guarantee that every sensor is sampling the environment at the exact same instant of time. The synchronization drift gets bigger in environments suffering from temperature variations. Thus, this work is focused on improving time synchronization under deployments with temperature variations. The working hypothesis demonstrated in this work is that the clock skew of two nodes (the ratio of the real frequencies of the oscillators) is composed of a multiplicative combination of two main components: the clock skew due to the variations between the cut of the crystal of each oscillator and the clock skew due to the different temperatures affecting the nodes. By applying a nonlinear filtering, the homomorphic filtering, both components are separated in an effective way. A correction factor based on temperature, which can be applied to any synchronization protocol, is proposed. For testing it, an improvement of the FTSP synchronization protocol has been developed and physically tested under temperature variation scenarios using TelosB motes flashed with the IEEE 802.15.4 implementation supplied by TinyOS. PMID:28425955

  4. Homomorphic Filtering for Improving Time Synchronization in Wireless Networks.

    PubMed

    Castillo-Secilla, José María; Palomares, José Manuel; León, Fernando; Olivares, Joaquín

    2017-04-20

    Wireless sensor networks are used to sample the environment in a distributed way. Therefore, it is mandatory for all of the measurements to be tightly synchronized in order to guarantee that every sensor is sampling the environment at the exact same instant of time. The synchronization drift gets bigger in environments suffering from temperature variations. Thus, this work is focused on improving time synchronization under deployments with temperature variations. The working hypothesis demonstrated in this work is that the clock skew of two nodes (the ratio of the real frequencies of the oscillators) is composed of a multiplicative combination of two main components: the clock skew due to the variations between the cut of the crystal of each oscillator and the clock skew due to the different temperatures affecting the nodes. By applying a nonlinear filtering, the homomorphic filtering, both components are separated in an effective way. A correction factor based on temperature, which can be applied to any synchronization protocol, is proposed. For testing it, an improvement of the FTSP synchronization protocol has been developed and physically tested under temperature variation scenarios using TelosB motes flashed with the IEEE 802.15.4 implementation supplied by TinyOS.

  5. Sub-mm Scale Fiber Guided Deep/Vacuum Ultra-Violet Optical Source for Trapped Mercury Ion Clocks

    NASA Technical Reports Server (NTRS)

    Yi, Lin; Burt, Eric A.; Huang, Shouhua; Tjoelker, Robert L.

    2013-01-01

    We demonstrate the functionality of a mercury capillary lamp with a diameter in the sub-mm range and deep ultraviolet (DUV)/ vacuum ultraviolet (VUV) radiation delivery via an optical fiber integrated with the capillary. DUV spectrum control is observed by varying the fabrication parameters such as buffer gas type and pressure, capillary diameter, electrical resonator design, and temperature. We also show spectroscopic data of the 199Hg+ hyper-fine transition at 40.5GHz when applying the above fiber optical design. We present efforts toward micro-plasma generation in hollow-core photonic crystal fiber with related optical design and theoretical estimations. This new approach towards a more practical DUV optical interface could benefit trapped ion clock developments for future ultra-stable frequency reference and time-keeping applications.

  6. Automation of extrusion of porous cable products based on a digital controller

    NASA Astrophysics Data System (ADS)

    Chostkovskii, B. K.; Mitroshin, V. N.

    2017-07-01

    This paper presents a new approach to designing an automated system for monitoring and controlling the process of applying porous insulation material on a conductive cable core, which is based on using structurally and parametrically optimized digital controllers of an arbitrary order instead of calculating typical PID controllers using known methods. The digital controller is clocked by signals from the clock length sensor of a measuring wheel, instead of a timer signal, and this provides the robust properties of the system with respect to the changing insulation speed. Digital controller parameters are tuned to provide the operating parameters of the manufactured cable using a simulation model of stochastic extrusion and are minimized by moving a regular simplex in the parameter space of the tuned controller.

  7. Time-related dynamics of variation in core clock gene expression levels in tissues relevant to the immune system.

    PubMed

    Mazzoccoli, G; Sothern, R B; Greco, A; Pazienza, V; Vinciguerra, M; Liu, S; Cai, Y

    2011-01-01

    Immune parameters show rhythmic changes with a 24-h periodicity driven by an internal circadian timing system that relies on clock genes (CGs). CGs form interlocked transcription-translation feedback loops to generate and maintain 24-h mRNA and protein oscillations. In this study we evaluate and compare the profiles and the dynamics of variation of CG expression in peripheral blood, and two lymphoid tissues of mice. Expression levels of seven recognized key CGs (mBmal1, mClock, mPer1, mPer2, mCry1, mCry2, and Rev-erbalpha) were evaluated by quantitative RT- PCR in spleen, thymus and peripheral blood of C57BL/6 male mice housed on a 12-h light (L)-dark (D) cycle and sacrificed every 4 h for 24 h (3-4 mice/time point). We found a statistically significant time-effect in spleen (S), thymus (T) and blood (B) for the original values of expression level of mBmal1 (S), mClock (T, B), mPer1 (S, B), mPer2 (S), mCry1 (S), mCry2 (B) and mRev-Erbalpha (S, T, B) and for the fractional variation calculated between single time-point expression value of mBmal1 (B), mPer2 (T), mCry2 (B) and mRev-Erbalpha (S). A significant 24-h rhythm was validated for five CGs in blood (mClock, mPer1, mPer2, mCry2, mRev-Erbalpha), for four CGs in the spleen (mBmal1, mPer1, mPer2, mRev-Erbalpha), and for three CGs in the thymus (mClock, mPer2, mRev-Erbalpha). The original values of acrophases for mBmal1, mClock, mPer1, mPer2, mCry1 and mCry2 were very similar for spleen and thymus and advanced by several hours for peripheral blood compared to the lymphoid tissues, whereas the phases of mRev-Erbalpha were coincident for all three tissues. In conclusion, central and peripheral lymphoid tissues in the mouse show different sequences of activation of clock gene expression compared to peripheral blood. These differences may underlie the compartmental pattern of web functioning in the immune system.

  8. The Arabidopsis SRR1 gene mediates phyB signaling and is required for normal circadian clock function

    PubMed Central

    Staiger, Dorothee; Allenbach, Laure; Salathia, Neeraj; Fiechter, Vincent; Davis, Seth J.; Millar, Andrew J.; Chory, Joanne; Fankhauser, Christian

    2003-01-01

    Plants possess several photoreceptors to sense the light environment. In Arabidopsis cryptochromes and phytochromes play roles in photomorphogenesis and in the light input pathways that synchronize the circadian clock with the external world. We have identified SRR1 (sensitivity to red light reduced), a gene that plays an important role in phytochrome B (phyB)-mediated light signaling. The recessive srr1 null allele and phyB mutants display a number of similar phenotypes indicating that SRR1 is required for normal phyB signaling. Genetic analysis suggests that SRR1 works both in the phyB pathway but also independently of phyB. srr1 mutants are affected in multiple outputs of the circadian clock in continuous light conditions, including leaf movement and expression of the clock components, CCA1 and TOC1. Clock-regulated gene expression is also impaired during day–night cycles and in constant darkness. The circadian phenotypes of srr1 mutants in all three conditions suggest that SRR1 activity is required for normal oscillator function. The SRR1 gene was identified and shown to code for a protein conserved in numerous eukaryotes including mammals and flies, implicating a conserved role for this protein in both the animal and plant kingdoms. PMID:12533513

  9. A scalable, fully implicit algorithm for the reduced two-field low-β extended MHD model

    DOE PAGES

    Chacon, Luis; Stanier, Adam John

    2016-12-01

    Here, we demonstrate a scalable fully implicit algorithm for the two-field low-β extended MHD model. This reduced model describes plasma behavior in the presence of strong guide fields, and is of significant practical impact both in nature and in laboratory plasmas. The model displays strong hyperbolic behavior, as manifested by the presence of fast dispersive waves, which make a fully implicit treatment very challenging. In this study, we employ a Jacobian-free Newton–Krylov nonlinear solver, for which we propose a physics-based preconditioner that renders the linearized set of equations suitable for inversion with multigrid methods. As a result, the algorithm ismore » shown to scale both algorithmically (i.e., the iteration count is insensitive to grid refinement and timestep size) and in parallel in a weak-scaling sense, with the wall-clock time scaling weakly with the number of cores for up to 4096 cores. For a 4096 × 4096 mesh, we demonstrate a wall-clock-time speedup of ~6700 with respect to explicit algorithms. The model is validated linearly (against linear theory predictions) and nonlinearly (against fully kinetic simulations), demonstrating excellent agreement.« less

  10. Design and Evaluation of a Clock Multiplexing Circuit for the SSRL Booster Accelerator Timing System - Oral Presentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Araya, Million

    2015-08-25

    SPEAR3 is a 234 m circular storage ring at SLAC’s synchrotron radiation facility (SSRL) in which a 3 GeV electron beam is stored for user access. Typically the electron beam decays with a time constant of approximately 10hr due to electron lose. In order to replenish the lost electrons, a booster synchrotron is used to accelerate fresh electrons up to 3GeV for injection into SPEAR3. In order to maintain a constant electron beam current of 500mA, the injection process occurs at 5 minute intervals. At these times the booster synchrotron accelerates electrons for injection at a 10Hz rate. A 10Hzmore » 'injection ready' clock pulse train is generated when the booster synchrotron is operating. Between injection intervalswhere the booster is not running and hence the 10 Hz ‘injection ready’ signal is not present-a 10Hz clock is derived from the power line supplied by Pacific Gas and Electric (PG&E) to keep track of the injection timing. For this project I constructed a multiplexing circuit to 'switch' between the booster synchrotron 'injection ready' clock signal and PG&E based clock signal. The circuit uses digital IC components and is capable of making glitch-free transitions between the two clocks. This report details construction of a prototype multiplexing circuit including test results and suggests improvement opportunities for the final design.« less

  11. Design and Evaluation of a Clock Multiplexing Circuit for the SSRL Booster Accelerator Timing System - Final Paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Araya, Million

    2015-08-21

    SPEAR3 is a 234 m circular storage ring at SLAC’s synchrotron radiation facility (SSRL) in which a 3 GeV electron beam is stored for user access. Typically the electron beam decays with a time constant of approximately 10hr due to electron lose. In order to replenish the lost electrons, a booster synchrotron is used to accelerate fresh electrons up to 3GeV for injection into SPEAR3. In order to maintain a constant electron beam current of 500mA, the injection process occurs at 5 minute intervals. At these times the booster synchrotron accelerates electrons for injection at a 10Hz rate. A 10Hzmore » 'injection ready' clock pulse train is generated when the booster synchrotron is operating. Between injection intervals-where the booster is not running and hence the 10 Hz ‘injection ready’ signal is not present-a 10Hz clock is derived from the power line supplied by Pacific Gas and Electric (PG&E) to keep track of the injection timing. For this project I constructed a multiplexing circuit to 'switch' between the booster synchrotron 'injection ready' clock signal and PG&E based clock signal. The circuit uses digital IC components and is capable of making glitch-free transitions between the two clocks. This report details construction of a prototype multiplexing circuit including test results and suggests improvement opportunities for the final design.« less

  12. Glucose Alters Per2 Rhythmicity Independent of AMPK, Whereas AMPK Inhibitor Compound C Causes Profound Repression of Clock Genes and AgRP in mHypoE-37 Hypothalamic Neurons.

    PubMed

    Oosterman, Johanneke E; Belsham, Denise D

    2016-01-01

    Specific neurons in the hypothalamus are regulated by peripheral hormones and nutrients to maintain proper metabolic control. It is unclear if nutrients can directly control clock gene expression. We have therefore utilized the immortalized, hypothalamic cell line mHypoE-37, which exhibits robust circadian rhythms of core clock genes. mHypoE-37 neurons were exposed to 0.5 or 5.5 mM glucose, comparable to physiological levels in the brain. Per2 and Bmal1 mRNAs were assessed every 3 hours over 36 hours. Incubation with 5.5 mM glucose significantly shortened the period and delayed the phase of Per2 mRNA levels, but had no effect on Bmal1. Glucose had no significant effect on phospho-GSK3β, whereas AMPK phosphorylation was altered. Thus, the AMPK inhibitor Compound C was utilized, and mRNA levels of Per2, Bmal1, Cryptochrome1 (Cry1), agouti-related peptide (AgRP), carnitine palmitoyltransferase 1C (Cpt1c), and O-linked N-acetylglucosamine transferase (Ogt) were measured. Remarkably, Compound C dramatically reduced transcript levels of Per2, Bmal1, Cry1, and AgRP, but not Cpt1c or Ogt. Because AMPK was not inhibited at the same time or concentrations as the clock genes, we suggest that the effect of Compound C on gene expression occurs through an AMPK-independent mechanism. The consequences of inhibition of the rhythmic expression of clock genes, and in turn downstream metabolic mediators, such as AgRP, could have detrimental effects on overall metabolic processes. Importantly, the effects of the most commonly used AMPK inhibitor Compound C should be interpreted with caution, considering its role in AMPK-independent repression of specific genes, and especially clock gene rhythm dysregulation.

  13. Glucose Alters Per2 Rhythmicity Independent of AMPK, Whereas AMPK Inhibitor Compound C Causes Profound Repression of Clock Genes and AgRP in mHypoE-37 Hypothalamic Neurons

    PubMed Central

    Oosterman, Johanneke E.; Belsham, Denise D.

    2016-01-01

    Specific neurons in the hypothalamus are regulated by peripheral hormones and nutrients to maintain proper metabolic control. It is unclear if nutrients can directly control clock gene expression. We have therefore utilized the immortalized, hypothalamic cell line mHypoE-37, which exhibits robust circadian rhythms of core clock genes. mHypoE-37 neurons were exposed to 0.5 or 5.5 mM glucose, comparable to physiological levels in the brain. Per2 and Bmal1 mRNAs were assessed every 3 hours over 36 hours. Incubation with 5.5 mM glucose significantly shortened the period and delayed the phase of Per2 mRNA levels, but had no effect on Bmal1. Glucose had no significant effect on phospho-GSK3β, whereas AMPK phosphorylation was altered. Thus, the AMPK inhibitor Compound C was utilized, and mRNA levels of Per2, Bmal1, Cryptochrome1 (Cry1), agouti-related peptide (AgRP), carnitine palmitoyltransferase 1C (Cpt1c), and O-linked N-acetylglucosamine transferase (Ogt) were measured. Remarkably, Compound C dramatically reduced transcript levels of Per2, Bmal1, Cry1, and AgRP, but not Cpt1c or Ogt. Because AMPK was not inhibited at the same time or concentrations as the clock genes, we suggest that the effect of Compound C on gene expression occurs through an AMPK-independent mechanism. The consequences of inhibition of the rhythmic expression of clock genes, and in turn downstream metabolic mediators, such as AgRP, could have detrimental effects on overall metabolic processes. Importantly, the effects of the most commonly used AMPK inhibitor Compound C should be interpreted with caution, considering its role in AMPK-independent repression of specific genes, and especially clock gene rhythm dysregulation. PMID:26784927

  14. Silicon microdisk-based full adders for optical computing.

    PubMed

    Ying, Zhoufeng; Wang, Zheng; Zhao, Zheng; Dhar, Shounak; Pan, David Z; Soref, Richard; Chen, Ray T

    2018-03-01

    Due to the projected saturation of Moore's law, as well as the drastically increasing trend of bandwidth with lower power consumption, silicon photonics has emerged as one of the most promising alternatives that has attracted a lasting interest due to the accessibility and maturity of ultra-compact passive and active integrated photonic components. In this Letter, we demonstrate a ripple-carry electro-optic 2-bit full adder using microdisks, which replaces the core part of an electrical full adder by optical counterparts and uses light to carry signals from one bit to the next with high bandwidth and low power consumption per bit. All control signals of the operands are applied simultaneously within each clock cycle. Thus, the severe latency issue that accumulates as the size of the full adder increases can be circumvented, allowing for an improvement in computing speed and a reduction in power consumption. This approach paves the way for future high-speed optical computing systems in the post-Moore's law era.

  15. Constant Light Desynchronizes Olfactory versus Object and Visuospatial Recognition Memory Performance

    PubMed Central

    Tam, Shu K.E.; Hasan, Sibah; Brown, Laurence A.; Jagannath, Aarti; Hankins, Mark W.; Foster, Russell G.; Vyazovskiy, Vladyslav V.

    2017-01-01

    Circadian rhythms optimize physiology and behavior to the varying demands of the 24 h day. The master circadian clock is located in the suprachiasmatic nuclei (SCN) of the hypothalamus and it regulates circadian oscillators in tissues throughout the body to prevent internal desynchrony. Here, we demonstrate for the first time that, under standard 12 h:12 h light/dark (LD) cycles, object, visuospatial, and olfactory recognition performance in C57BL/6J mice is consistently better at midday relative to midnight. However, under repeated exposure to constant light (rLL), recognition performance becomes desynchronized, with object and visuospatial performance better at subjective midday and olfactory performance better at subjective midnight. This desynchrony in behavioral performance is mirrored by changes in expression of the canonical clock genes Period1 and Period2 (Per1 and Per2), as well as the immediate-early gene Fos in the SCN, dorsal hippocampus, and olfactory bulb. Under rLL, rhythmic Per1 and Fos expression is attenuated in the SCN. In contrast, hippocampal gene expression remains rhythmic, mirroring object and visuospatial performance. Strikingly, Per1 and Fos expression in the olfactory bulb is reversed, mirroring the inverted olfactory performance. Temporal desynchrony among these regions does not result in arrhythmicity because core body temperature and exploratory activity rhythms persist under rLL. Our data provide the first demonstration that abnormal lighting conditions can give rise to temporal desynchrony between autonomous circadian oscillators in different regions, with different consequences for performance across different sensory domains. Such a dispersed network of dissociable circadian oscillators may provide greater flexibility when faced with conflicting environmental signals. SIGNIFICANCE STATEMENT A master circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus regulates physiology and behavior across the 24 h day by synchronizing peripheral clocks throughout the brain and body. Without the SCN, these peripheral clocks rapidly become desynchronized. Here, we provide a unique demonstration that, under lighting conditions in which the central clock in the SCN is dampened, peripheral oscillators in the hippocampus and olfactory bulb become desynchronized, along with the behavioral processes mediated by these clocks. Multiple clocks that adopt different phase relationships may enable processes occurring in different brain regions to be optimized to specific phases of the 24 h day. Moreover, such a dispersed network of dissociable circadian clocks may provide greater flexibility when faced with conflicting environmental signals (e.g., seasonal changes in photoperiod). PMID:28264977

  16. Coarse-grained component concurrency in Earth system modeling: parallelizing atmospheric radiative transfer in the GFDL AM3 model using the Flexible Modeling System coupling framework

    NASA Astrophysics Data System (ADS)

    Balaji, V.; Benson, Rusty; Wyman, Bruce; Held, Isaac

    2016-10-01

    Climate models represent a large variety of processes on a variety of timescales and space scales, a canonical example of multi-physics multi-scale modeling. Current hardware trends, such as Graphical Processing Units (GPUs) and Many Integrated Core (MIC) chips, are based on, at best, marginal increases in clock speed, coupled with vast increases in concurrency, particularly at the fine grain. Multi-physics codes face particular challenges in achieving fine-grained concurrency, as different physics and dynamics components have different computational profiles, and universal solutions are hard to come by. We propose here one approach for multi-physics codes. These codes are typically structured as components interacting via software frameworks. The component structure of a typical Earth system model consists of a hierarchical and recursive tree of components, each representing a different climate process or dynamical system. This recursive structure generally encompasses a modest level of concurrency at the highest level (e.g., atmosphere and ocean on different processor sets) with serial organization underneath. We propose to extend concurrency much further by running more and more lower- and higher-level components in parallel with each other. Each component can further be parallelized on the fine grain, potentially offering a major increase in the scalability of Earth system models. We present here first results from this approach, called coarse-grained component concurrency, or CCC. Within the Geophysical Fluid Dynamics Laboratory (GFDL) Flexible Modeling System (FMS), the atmospheric radiative transfer component has been configured to run in parallel with a composite component consisting of every other atmospheric component, including the atmospheric dynamics and all other atmospheric physics components. We will explore the algorithmic challenges involved in such an approach, and present results from such simulations. Plans to achieve even greater levels of coarse-grained concurrency by extending this approach within other components, such as the ocean, will be discussed.

  17. Cryptochrome 2 expression level is critical for adrenocorticotropin stimulation of cortisol production in the capuchin monkey adrenal.

    PubMed

    Torres-Farfan, C; Abarzua-Catalan, L; Valenzuela, F J; Mendez, N; Richter, H G; Valenzuela, G J; Serón-Ferré, M

    2009-06-01

    Timely production of glucocorticoid hormones in response to ACTH is essential for survival by coordinating energy intake and expenditure and acting as homeostatic regulators against stress. Adrenal cortisol response to ACTH is clock time dependent, suggesting that an intrinsic circadian oscillator in the adrenal cortex contributes to modulate the response to ACTH. Circadian clock gene expression has been reported in the adrenal cortex of several species. However, there are no reports accounting for potential involvement of adrenal clock proteins on cortisol response to ACTH. Here we explored whether the clock protein cryptochrome 2 (CRY2) knockdown modifies the adrenal response to ACTH in a primate. Adrenal gland explants from adult capuchin monkey (n = 5) were preincubated for 6 h with transfection vehicle (control) or with two different Cry2 antisense and sense probes followed by 48 h incubation in medium alone (no ACTH) or with 100 nm ACTH. Under control and sense conditions, ACTH increased cortisol production, whereas CRY2 suppression inhibited ACTH-stimulated cortisol production. Expression of the steroidogenic enzymes steroidogenic acute regulatory protein and 3beta-hydroxysteroid dehydrogenase at 48 h of incubation was increased by ACTH in control explants and suppressed by Cry2 knockdown. Additionally, we found that Cry2 knockdown decreased the expression of the clock gene brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein (Bmal1) at the mRNA and protein levels. Altogether these results strongly support that the clock protein CRY2 is involved in the mechanism by which ACTH increases the expression of steroidogenic acute regulatory protein and 3beta-hydroxysteroid dehydrogenase. Thus, adequate expression levels of components of the adrenal circadian clock are required for an appropriate cortisol response to ACTH.

  18. Advancing Navigation, Timing, and Science with the Deep Space Atomic Clock

    NASA Technical Reports Server (NTRS)

    Ely, Todd A.; Seubert, Jill; Bell, Julia

    2014-01-01

    NASA's Deep Space Atomic Clock mission is developing a small, highly stable mercury ion atomic clock with an Allan deviation of at most 1e-14 at one day, and with current estimates near 3e-15. This stability enables one-way radiometric tracking data with accuracy equivalent to and, in certain conditions, better than current two-way deep space tracking data; allowing a shift to a more efficient and flexible one-way deep space navigation architecture. DSAC-enabled one-way tracking will benefit navigation and radio science by increasing the quantity and quality of tracking data. Additionally, DSAC would be a key component to fully-autonomous onboard radio navigation useful for time-sensitive situations. Potential deep space applications of DSAC are presented, including orbit determination of a Mars orbiter and gravity science on a Europa flyby mission.

  19. Biochemical Frequency Control by Synchronisation of Coupled Repressilators: An In Silico Study of Modules for Circadian Clock Systems

    PubMed Central

    Hinze, Thomas; Schumann, Mathias; Bodenstein, Christian; Heiland, Ines; Schuster, Stefan

    2011-01-01

    Exploration of chronobiological systems emerges as a growing research field within bioinformatics focusing on various applications in medicine, agriculture, and material sciences. From a systems biological perspective, the question arises whether biological control systems for regulation of oscillatory signals and their technical counterparts utilise similar mechanisms. If so, modelling approaches and parameterisation adopted from building blocks can help to identify general components for frequency control in circadian clocks along with gaining insight into mechanisms of clock synchronisation to external stimuli like the daily rhythm of sunlight and darkness. Phase-locked loops could be an interesting candidate in this context. Both, biology and engineering, can benefit from a unified view resulting from systems modularisation. In a first experimental study, we analyse a model of coupled repressilators. We demonstrate its ability to synchronise clock signals in a monofrequential manner. Several oscillators initially deviate in phase difference and frequency with respect to explicit reaction and diffusion rates. Accordingly, the duration of the synchronisation process depends on dedicated reaction and diffusion parameters whose settings still lack to be sufficiently captured analytically. PMID:22046179

  20. Hunting for dark matter with ultra-stable fibre as frequency delay system.

    PubMed

    Yang, Wanpeng; Li, Dawei; Zhang, Shuangyou; Zhao, Jianye

    2015-07-10

    Many cosmological observations point towards the existence of dark-matter(DM) particles and consider them as the main component of the matter content of the universe. The goal of revealing the nature of dark-matter has triggered the development of new, extremely sensitive detectors. It has been demonstrated that the frequencies and phases of optical clock have a transient shift during the DMs' arrival due to the DM-SM(Standard Model) coupling. A simple, reliable and feasible experimental scheme is firstly proposed in this paper, based on "frequency-delay system" to search dark-matter by "self-frequency comparison" of an optical clock. During the arrival of a dark-matter, frequency discrepancy is expected between two signals with a short time difference(~ms) of the same optical clock to exhibit the interaction between atoms and dark-matter. Furthermore, this process can determine the exact position of dark-matter when it is crossing the optical clocks, therefore a network of detecting stations located in different places is recommended to reduce the misjudgment risk to an acceptable level.

  1. Hunting for dark matter with ultra-stable fibre as frequency delay system

    PubMed Central

    Yang, Wanpeng; Li, Dawei; Zhang, Shuangyou; Zhao, Jianye

    2015-01-01

    Many cosmological observations point towards the existence of dark-matter(DM) particles and consider them as the main component of the matter content of the universe. The goal of revealing the nature of dark-matter has triggered the development of new, extremely sensitive detectors. It has been demonstrated that the frequencies and phases of optical clock have a transient shift during the DMs’ arrival due to the DM-SM(Standard Model) coupling. A simple, reliable and feasible experimental scheme is firstly proposed in this paper, based on “frequency-delay system” to search dark-matter by “self-frequency comparison” of an optical clock. During the arrival of a dark-matter, frequency discrepancy is expected between two signals with a short time difference(~ms) of the same optical clock to exhibit the interaction between atoms and dark-matter. Furthermore, this process can determine the exact position of dark-matter when it is crossing the optical clocks, therefore a network of detecting stations located in different places is recommended to reduce the misjudgment risk to an acceptable level. PMID:26159113

  2. Multiple layers of posttranslational regulation refine circadian clock activity in Arabidopsis.

    PubMed

    Seo, Pil Joon; Mas, Paloma

    2014-01-01

    The circadian clock is a cellular time-keeper mechanism that regulates biological rhythms with a period of ~24 h. The circadian rhythms in metabolism, physiology, and development are synchronized by environmental cues such as light and temperature. In plants, proper matching of the internal circadian time with the external environment confers fitness advantages on plant survival and propagation. Accordingly, plants have evolved elaborated regulatory mechanisms that precisely control the circadian oscillations. Transcriptional feedback regulation of several clock components has been well characterized over the past years. However, the importance of additional regulatory mechanisms such as chromatin remodeling, protein complexes, protein phosphorylation, and stability is only starting to emerge. The multiple layers of circadian regulation enable plants to properly synchronize with the environmental cycles and to fine-tune the circadian oscillations. This review focuses on the diverse posttranslational events that regulate circadian clock function. We discuss the mechanistic insights explaining how plants articulate a high degree of complexity in their regulatory networks to maintain circadian homeostasis and to generate highly precise waveforms of circadian expression and activity.

  3. Atomic Clock Based on Opto-Electronic Oscillator

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Yu, Nan

    2005-01-01

    A proposed highly accurate clock or oscillator would be based on the concept of an opto-electronic oscillator (OEO) stabilized to an atomic transition. Opto-electronic oscillators, which have been described in a number of prior NASA Tech Briefs articles, generate signals at frequencies in the gigahertz range characterized by high spectral purity but not by longterm stability or accuracy. On the other hand, the signals generated by previously developed atomic clocks are characterized by long-term stability and accuracy but not by spectral purity. The proposed atomic clock would provide high spectral purity plus long-term stability and accuracy a combination of characteristics needed to realize advanced developments in communications and navigation. In addition, it should be possible to miniaturize the proposed atomic clock. When a laser beam is modulated by a microwave signal and applied to a photodetector, the electrical output of the photodetector includes a component at the microwave frequency. In atomic clocks of a type known as Raman clocks or coherent-population-trapping (CPT) clocks, microwave outputs are obtained from laser beams modulated, in each case, to create two sidebands that differ in frequency by the amount of a hyperfine transition in the ground state of atoms of an element in vapor form in a cell. The combination of these sidebands produces a transparency in the population of a higher electronic level that can be reached from either of the two ground-state hyperfine levels by absorption of a photon. The beam is transmitted through the vapor to a photodetector. The components of light scattered or transmitted by the atoms in the two hyperfine levels mix in the photodetector and thereby give rise to a signal at the hyperfine- transition frequency. The proposed atomic clock would include an OEO and a rubidium- or cesium- vapor cell operating in the CPT/Raman regime (see figure). In the OEO portion of this atomic clock, as in a typical prior OEO, a laser beam would pass through an electro-optical modulator, the modulated beam would be fed into a fiber-optic delay line, and the delayed beam would be fed to a photodetector. The electrical output of the photodetector would be detected, amplified, filtered, and fed back to the microwave input port of the modulator. The laser would be chosen to have the same wavelength as that of the pertinent ground-state/higher-state transition of the atoms in the vapor. The modulator/ filter combination would be designed to operate at the microwave frequency of the hyperfine transition. Part of the laser beam would be tapped from the fiberoptic loop of the OEO and introduced into the vapor cell. After passing through the cell, this portion of the beam would be detected differentially with a tapped portion of the fiber-optically-delayed beam. The electrical output of the photodetector would be amplified and filtered in a loop that would control a DC bias applied to the modulator. In this manner, the long-term stability and accuracy of the atomic transition would be transferred to the OEO.

  4. What time is it? Deep learning approaches for circadian rhythms.

    PubMed

    Agostinelli, Forest; Ceglia, Nicholas; Shahbaba, Babak; Sassone-Corsi, Paolo; Baldi, Pierre

    2016-06-15

    Circadian rhythms date back to the origins of life, are found in virtually every species and every cell, and play fundamental roles in functions ranging from metabolism to cognition. Modern high-throughput technologies allow the measurement of concentrations of transcripts, metabolites and other species along the circadian cycle creating novel computational challenges and opportunities, including the problems of inferring whether a given species oscillate in circadian fashion or not, and inferring the time at which a set of measurements was taken. We first curate several large synthetic and biological time series datasets containing labels for both periodic and aperiodic signals. We then use deep learning methods to develop and train BIO_CYCLE, a system to robustly estimate which signals are periodic in high-throughput circadian experiments, producing estimates of amplitudes, periods, phases, as well as several statistical significance measures. Using the curated data, BIO_CYCLE is compared to other approaches and shown to achieve state-of-the-art performance across multiple metrics. We then use deep learning methods to develop and train BIO_CLOCK to robustly estimate the time at which a particular single-time-point transcriptomic experiment was carried. In most cases, BIO_CLOCK can reliably predict time, within approximately 1 h, using the expression levels of only a small number of core clock genes. BIO_CLOCK is shown to work reasonably well across tissue types, and often with only small degradation across conditions. BIO_CLOCK is used to annotate most mouse experiments found in the GEO database with an inferred time stamp. All data and software are publicly available on the CircadiOmics web portal: circadiomics.igb.uci.edu/ fagostin@uci.edu or pfbaldi@uci.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  5. Chronic phase advance alters circadian physiological rhythms and peripheral molecular clocks

    PubMed Central

    Wolff, Gretchen; Duncan, Marilyn J.

    2013-01-01

    Shifting the onset of light, acutely or chronically, can profoundly affect responses to infection, tumor progression, development of metabolic disease, and mortality in mammals. To date, the majority of phase-shifting studies have focused on acute exposure to a shift in the timing of the light cycle, whereas the consequences of chronic phase shifts alone on molecular rhythms in peripheral tissues such as skeletal muscle have not been studied. In this study, we tested the effect of chronic phase advance on the molecular clock mechanism in two phenotypically different skeletal muscles. The phase advance protocol (CPA) involved 6-h phase advances (earlier light onset) every 4 days for 8 wk. Analysis of the molecular clock, via bioluminescence recording, in the soleus and flexor digitorum brevis (FDB) muscles and lung demonstrated that CPA advanced the phase of the rhythm when studied immediately after CPA. However, if the mice were placed into free-running conditions (DD) for 2 wk after CPA, the molecular clock was not phase shifted in the two muscles but was still shifted in the lung. Wheel running behavior remained rhythmic in CPA mice; however, the endogenous period length of the free-running rhythm was significantly shorter than that of control mice. Core body temperature, cage activity, and heart rate remained rhythmic throughout the experiment, although the onset of the rhythms was significantly delayed with CPA. These results provide clues that lifestyles associated with chronic environmental desynchrony, such as shift work, can have disruptive effects on the molecular clock mechanism in peripheral tissues, including both types of skeletal muscle. Whether this can contribute, long term, to increased incidence of insulin resistance/metabolic disease requires further study. PMID:23703115

  6. Repeated psychosocial stress at night affects the circadian activity rhythm of male mice.

    PubMed

    Bartlang, Manuela S; Oster, Henrik; Helfrich-Förster, Charlotte

    2015-06-01

    We have recently shown that molecular rhythms in the murine suprachiasmatic nucleus (SCN) are affected by repeated social defeat (SD) during the dark/active phase (social defeat dark [SDD]), while repeated SD during the light/inactive phase (social defeat light [SDL]) had no influence on PERIOD2::LUCIFERASE explant rhythms in the SCN. Here we assessed the effects of the same stress paradigm by in vivo biotelemetry on 2 output rhythms of the circadian clock (i.e., activity and core body temperature) in wild-type (WT) and clock-deficient Period (Per)1/2 double-mutant mice during and following repeated SDL and SDD. In general, stress had more pronounced effects on activity compared to body temperature rhythms. Throughout the SD procedure, activity and body temperature were markedly increased during the 2 h of stressor exposure at zeitgeber time (ZT) 1 to ZT3 (SDL mice) and ZT13 to ZT15 (SDD mice), which was compensated by decreased activity during the remaining dark phase (SDL and SDD mice) and light phase (SDL mice) in both genotypes. Considerable differences in the activity between SDL and SDD mice were seen in the poststress period. SDD mice exhibited a reduced first activity bout at ZT13, delayed activity onset, and, consequently, a more narrow activity bandwidth compared with single-housed control (SHC) and SDL mice. Given that this effect was absent in Per1/2 mutant SDD mice and persisted under constant darkness conditions in SDD WT mice, it suggests an involvement of the endogenous clock. Taken together, the present findings demonstrate that SDD has long-lasting consequences for the functional output of the biological clock that, at least in part, appear to depend on the clock genes Per1 and Per2. © 2015 The Author(s).

  7. What time is it? Deep learning approaches for circadian rhythms

    PubMed Central

    Agostinelli, Forest; Ceglia, Nicholas; Shahbaba, Babak; Sassone-Corsi, Paolo; Baldi, Pierre

    2016-01-01

    Motivation: Circadian rhythms date back to the origins of life, are found in virtually every species and every cell, and play fundamental roles in functions ranging from metabolism to cognition. Modern high-throughput technologies allow the measurement of concentrations of transcripts, metabolites and other species along the circadian cycle creating novel computational challenges and opportunities, including the problems of inferring whether a given species oscillate in circadian fashion or not, and inferring the time at which a set of measurements was taken. Results: We first curate several large synthetic and biological time series datasets containing labels for both periodic and aperiodic signals. We then use deep learning methods to develop and train BIO_CYCLE, a system to robustly estimate which signals are periodic in high-throughput circadian experiments, producing estimates of amplitudes, periods, phases, as well as several statistical significance measures. Using the curated data, BIO_CYCLE is compared to other approaches and shown to achieve state-of-the-art performance across multiple metrics. We then use deep learning methods to develop and train BIO_CLOCK to robustly estimate the time at which a particular single-time-point transcriptomic experiment was carried. In most cases, BIO_CLOCK can reliably predict time, within approximately 1 h, using the expression levels of only a small number of core clock genes. BIO_CLOCK is shown to work reasonably well across tissue types, and often with only small degradation across conditions. BIO_CLOCK is used to annotate most mouse experiments found in the GEO database with an inferred time stamp. Availability and Implementation: All data and software are publicly available on the CircadiOmics web portal: circadiomics.igb.uci.edu/. Contacts: fagostin@uci.edu or pfbaldi@uci.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307647

  8. Performance Analysis of Beidou-2/Beidou-3e Combined Solution with Emphasis on Precise Orbit Determination and Precise Point Positioning

    PubMed Central

    Xu, Xiaolong; Li, Min; Li, Wenwen; Liu, Jingnan

    2018-01-01

    In 2015, the plan for global coverage by the Chinese BeiDou Navigation Satellite System was launched. Five global BeiDou experimental satellites (BeiDou-3e) are in orbit for testing. To analyze the performances of precise orbit determination (POD) and precise point positioning (PPP) of onboard BeiDou satellites, about two months of data from 24 tracking stations were used. According to quality analysis of BeiDou-2/BeiDou-3e data, there is no satellite-induced code bias in BeiDou-3e satellites, which has been found in BeiDou-2 satellites. This phenomenon indicates that the quality issues of pseudorange data in BeiDou satellites have been solved well. POD results indicate that the BeiDou-3e orbit precision is comparable to that of BeiDou-2 satellites. The ambiguity fixed solution improved the orbit consistency of inclined geosynchronous orbit satellites in along-track and cross-track directions, but had little effect in the radial direction. Satellite laser ranging of BeiDou-3e medium Earth orbit satellites (MEOs) achieved a standard deviation of about 4 cm. Differences in clock offset series after the removal of reference clock in overlapping arcs were used to assess clock quality, and standard deviation of clock offset could reach 0.18 ns on average, which was in agreement with the orbit precision. For static PPP, when BeiDou-3e satellites were included, the positioning performance for horizontal components was improved slightly. For kinematic PPP, when global positioning satellites (GPS) were combined with BeiDou-2 and BeiDou-3e satellites, the convergence time was 13.5 min with a precision of 2–3 cm for horizontal components, and 3–4 cm for the vertical component. PMID:29304000

  9. Mechanisms of Breast Cancer in Shift Workers: DNA Methylation in Five Core Circadian Genes in Nurses Working Night Shifts.

    PubMed

    Samulin Erdem, Johanna; Skare, Øivind; Petersen-Øverleir, Marte; Notø, Heidi Ødegaard; Lie, Jenny-Anne S; Reszka, Edyta; Pepłońska, Beata; Zienolddiny, Shanbeh

    2017-01-01

    Shift work has been suggested to be associated with breast cancer risk, and circadian disruption in shift workers is hypothesized as one of the mechanisms of increased cancer risk. There is, however, insufficient molecular evidence supporting this hypothesis. Using the quantitative methodology of pyrosequencing, epigenetic changes in 5-methyl cytosine (5mC) in five circadian genes CLOCK , BMAL1 , CRY1, PER1 and PER2 in female nurses working night shift work (278 breast cancer cases, 280 controls) were analyzed. In breast cancer cases, a medium exposure to night work was associated with increased methylation levels of the CLOCK (p=0.050), BMAL1 (p=0.001) and CRY1 (p=0.040) genes, compared with controls. Within the cases, analysis of the effects of shift work on the methylation patterns showed that methylation of CRY1 was lower in those who had worked night shift and had a high exposure (p=0.006) compared with cases that had worked only days. For cases with a medium exposure to night work, an increase in BMAL1 (p=0.003) and PER1 (p=0.035) methylation was observed compared with day working (unexposed) cases. The methylation levels of the five core circadian genes were also analyzed in relation to the estrogen and progesterone receptors status of the tumors in the cases, and no correlations were observed. Furthermore, nineteen polymorphisms in the five circadian genes were assessed for their effects on the methylation levels of the respective genes, but no associations were found. In summary, our data suggest that epigenetic regulation of CLOCK , BMAL1, CRY1 and PER1 may contribute to breast cancer in shift workers.

  10. Mechanisms of Breast Cancer in Shift Workers: DNA Methylation in Five Core Circadian Genes in Nurses Working Night Shifts

    PubMed Central

    Samulin Erdem, Johanna; Skare, Øivind; Petersen-Øverleir, Marte; Notø, Heidi Ødegaard; Lie, Jenny-Anne S.; Reszka, Edyta; Pepłońska, Beata; Zienolddiny, Shanbeh

    2017-01-01

    Shift work has been suggested to be associated with breast cancer risk, and circadian disruption in shift workers is hypothesized as one of the mechanisms of increased cancer risk. There is, however, insufficient molecular evidence supporting this hypothesis. Using the quantitative methodology of pyrosequencing, epigenetic changes in 5-methyl cytosine (5mC) in five circadian genes CLOCK, BMAL1, CRY1, PER1 and PER2 in female nurses working night shift work (278 breast cancer cases, 280 controls) were analyzed. In breast cancer cases, a medium exposure to night work was associated with increased methylation levels of the CLOCK (p=0.050), BMAL1 (p=0.001) and CRY1 (p=0.040) genes, compared with controls. Within the cases, analysis of the effects of shift work on the methylation patterns showed that methylation of CRY1 was lower in those who had worked night shift and had a high exposure (p=0.006) compared with cases that had worked only days. For cases with a medium exposure to night work, an increase in BMAL1 (p=0.003) and PER1 (p=0.035) methylation was observed compared with day working (unexposed) cases. The methylation levels of the five core circadian genes were also analyzed in relation to the estrogen and progesterone receptors status of the tumors in the cases, and no correlations were observed. Furthermore, nineteen polymorphisms in the five circadian genes were assessed for their effects on the methylation levels of the respective genes, but no associations were found. In summary, our data suggest that epigenetic regulation of CLOCK, BMAL1, CRY1 and PER1 may contribute to breast cancer in shift workers. PMID:28928877

  11. Formal development of a clock synchronization circuit

    NASA Technical Reports Server (NTRS)

    Miner, Paul S.

    1995-01-01

    This talk presents the latest stage in formal development of a fault-tolerant clock synchronization circuit. The development spans from a high level specification of the required properties to a circuit realizing the core function of the system. An abstract description of an algorithm has been verified to satisfy the high-level properties using the mechanical verification system EHDM. This abstract description is recast as a behavioral specification input to the Digital Design Derivation system (DDD) developed at Indiana University. DDD provides a formal design algebra for developing correct digital hardware. Using DDD as the principle design environment, a core circuit implementing the clock synchronization algorithm was developed. The design process consisted of standard DDD transformations augmented with an ad hoc refinement justified using the Prototype Verification System (PVS) from SRI International. Subsequent to the above development, Wilfredo Torres-Pomales discovered an area-efficient realization of the same function. Establishing correctness of this optimization requires reasoning in arithmetic, so a general verification is outside the domain of both DDD transformations and model-checking techniques. DDD represents digital hardware by systems of mutually recursive stream equations. A collection of PVS theories was developed to aid in reasoning about DDD-style streams. These theories include a combinator for defining streams that satisfy stream equations, and a means for proving stream equivalence by exhibiting a stream bisimulation. DDD was used to isolate the sub-system involved in Torres-Pomales' optimization. The equivalence between the original design and the optimized verified was verified in PVS by exhibiting a suitable bisimulation. The verification depended upon type constraints on the input streams and made extensive use of the PVS type system. The dependent types in PVS provided a useful mechanism for defining an appropriate bisimulation.

  12. PIC codes for plasma accelerators on emerging computer architectures (GPUS, Multicore/Manycore CPUS)

    NASA Astrophysics Data System (ADS)

    Vincenti, Henri

    2016-03-01

    The advent of exascale computers will enable 3D simulations of a new laser-plasma interaction regimes that were previously out of reach of current Petasale computers. However, the paradigm used to write current PIC codes will have to change in order to fully exploit the potentialities of these new computing architectures. Indeed, achieving Exascale computing facilities in the next decade will be a great challenge in terms of energy consumption and will imply hardware developments directly impacting our way of implementing PIC codes. As data movement (from die to network) is by far the most energy consuming part of an algorithm future computers will tend to increase memory locality at the hardware level and reduce energy consumption related to data movement by using more and more cores on each compute nodes (''fat nodes'') that will have a reduced clock speed to allow for efficient cooling. To compensate for frequency decrease, CPU machine vendors are making use of long SIMD instruction registers that are able to process multiple data with one arithmetic operator in one clock cycle. SIMD register length is expected to double every four years. GPU's also have a reduced clock speed per core and can process Multiple Instructions on Multiple Datas (MIMD). At the software level Particle-In-Cell (PIC) codes will thus have to achieve both good memory locality and vectorization (for Multicore/Manycore CPU) to fully take advantage of these upcoming architectures. In this talk, we present the portable solutions we implemented in our high performance skeleton PIC code PICSAR to both achieve good memory locality and cache reuse as well as good vectorization on SIMD architectures. We also present the portable solutions used to parallelize the Pseudo-sepctral quasi-cylindrical code FBPIC on GPUs using the Numba python compiler.

  13. Temporal phasing of locomotor activity, heart rate rhythmicity, and core body temperature is disrupted in VIP receptor 2-deficient mice.

    PubMed

    Hannibal, Jens; Hsiung, Hansen M; Fahrenkrug, Jan

    2011-03-01

    Neurons of the brain's biological clock located in the hypothalamic suprachiasmatic nucleus (SCN) generate circadian rhythms of physiology (core body temperature, hormone secretion, locomotor activity, sleep/wake, and heart rate) with distinct temporal phasing when entrained by the light/dark (LD) cycle. The neuropeptide vasoactive intestinal polypetide (VIP) and its receptor (VPAC2) are highly expressed in the SCN. Recent studies indicate that VIPergic signaling plays an essential role in the maintenance of ongoing circadian rhythmicity by synchronizing SCN cells and by maintaining rhythmicity within individual neurons. To further increase the understanding of the role of VPAC2 signaling in circadian regulation, we implanted telemetric devices and simultaneously measured core body temperature, spontaneous activity, and heart rate in a strain of VPAC2-deficient mice and compared these observations with observations made from mice examined by wheel-running activity. The study demonstrates that VPAC2 signaling is necessary for a functional circadian clock driving locomotor activity, core body temperature, and heart rate rhythmicity, since VPAC2-deficient mice lose the rhythms in all three parameters when placed under constant conditions (of either light or darkness). Furthermore, although 24-h rhythms for three parameters are retained in VPAC2-deficient mice during the LD cycle, the temperature rhythm displays markedly altered time course and profile, rising earlier and peaking ∼4-6 h prior to that of wild-type mice. The use of telemetric devices to measure circadian locomotor activity, temperature, and heart rate, together with the classical determination of circadian rhythms of wheel-running activity, raises questions about how representative wheel-running activity may be of other behavioral parameters, especially when animals have altered circadian phenotype.

  14. A Distributed Synchronization and Timing System on the EAST Tokamak

    NASA Astrophysics Data System (ADS)

    Luo, Jiarong; Wu, Yichun; Shu, Yantai

    2008-08-01

    A key requirement for the EAST distributed control system (EASTDCS) is time synchronization to an accuracy of <1 mus. In 2006 a Distributed Synchronization and Timing System (DSTS) was set up, which is based on the ATmega128 AVR microcontroller and the Nut/OS embedded Real Time Operating System (RTOS). The DSTS provides the control and the data acquisition systems with reference clocks (0.01 Hz 10 MHz) and delayed trigger times ( 1 mus 4294 s). These are produced by a Core Module Unit (CMU) connected by optical fibres to many Local Synchronized Node Units (LSNU). The fibres provide immunity from electrical noise and are of equal length to match clock and trigger delays between systems. This paper describes the architecture of the DSTS on the EAST tokamak and provides an overview of the characteristics of the main and local units.

  15. Mouse genotypes drive the liver and adrenal gland clocks

    NASA Astrophysics Data System (ADS)

    Košir, Rok; Prosenc Zmrzljak, Uršula; Korenčič, Anja; Juvan, Peter; Ačimovič, Jure; Rozman, Damjana

    2016-08-01

    Circadian rhythms regulate a plethora of physiological processes. Perturbations of the rhythm can result in pathologies which are frequently studied in inbred mouse strains. We show that the genotype of mouse lines defines the circadian gene expression patterns. Expression of majority of core clock and output metabolic genes are phase delayed in the C56BL/6J line compared to 129S2 in the adrenal glands and the liver. Circadian amplitudes are generally higher in the 129S2 line. Experiments in dark - dark (DD) and light - dark conditions (LD), exome sequencing and data mining proposed that mouse lines differ in single nucleotide variants in the binding regions of clock related transcription factors in open chromatin regions. A possible mechanisms of differential circadian expression could be the entrainment and transmission of the light signal to peripheral organs. This is supported by the genotype effect in adrenal glands that is largest under LD, and by the high number of single nucleotide variants in the Receptor, Kinase and G-protein coupled receptor Panther molecular function categories. Different phenotypes of the two mouse lines and changed amino acid sequence of the Period 2 protein possibly contribute further to the observed differences in circadian gene expression.

  16. Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver.

    PubMed

    Mauvoisin, Daniel; Wang, Jingkui; Jouffe, Céline; Martin, Eva; Atger, Florian; Waridel, Patrice; Quadroni, Manfredo; Gachon, Frédéric; Naef, Felix

    2014-01-07

    Diurnal oscillations of gene expression controlled by the circadian clock underlie rhythmic physiology across most living organisms. Although such rhythms have been extensively studied at the level of transcription and mRNA accumulation, little is known about the accumulation patterns of proteins. Here, we quantified temporal profiles in the murine hepatic proteome under physiological light-dark conditions using stable isotope labeling by amino acids quantitative MS. Our analysis identified over 5,000 proteins, of which several hundred showed robust diurnal oscillations with peak phases enriched in the morning and during the night and related to core hepatic physiological functions. Combined mathematical modeling of temporal protein and mRNA profiles indicated that proteins accumulate with reduced amplitudes and significant delays, consistent with protein half-life data. Moreover, a group comprising about one-half of the rhythmic proteins showed no corresponding rhythmic mRNAs, indicating significant translational or posttranslational diurnal control. Such rhythms were highly enriched in secreted proteins accumulating tightly during the night. Also, these rhythms persisted in clock-deficient animals subjected to rhythmic feeding, suggesting that food-related entrainment signals influence rhythms in circulating plasma factors.

  17. Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver

    PubMed Central

    Mauvoisin, Daniel; Wang, Jingkui; Jouffe, Céline; Martin, Eva; Atger, Florian; Waridel, Patrice; Quadroni, Manfredo; Gachon, Frédéric; Naef, Felix

    2014-01-01

    Diurnal oscillations of gene expression controlled by the circadian clock underlie rhythmic physiology across most living organisms. Although such rhythms have been extensively studied at the level of transcription and mRNA accumulation, little is known about the accumulation patterns of proteins. Here, we quantified temporal profiles in the murine hepatic proteome under physiological light–dark conditions using stable isotope labeling by amino acids quantitative MS. Our analysis identified over 5,000 proteins, of which several hundred showed robust diurnal oscillations with peak phases enriched in the morning and during the night and related to core hepatic physiological functions. Combined mathematical modeling of temporal protein and mRNA profiles indicated that proteins accumulate with reduced amplitudes and significant delays, consistent with protein half-life data. Moreover, a group comprising about one-half of the rhythmic proteins showed no corresponding rhythmic mRNAs, indicating significant translational or posttranslational diurnal control. Such rhythms were highly enriched in secreted proteins accumulating tightly during the night. Also, these rhythms persisted in clock-deficient animals subjected to rhythmic feeding, suggesting that food-related entrainment signals influence rhythms in circulating plasma factors. PMID:24344304

  18. Quantifying the robustness of circadian oscillations at the single-cell level

    NASA Astrophysics Data System (ADS)

    Lambert, Guillaume; Rust, Michael

    2014-03-01

    Cyanobacteria are light-harvesting microorganisms that contribute to 30% of the photosynthetic activity on Earth and contain one of the simplest circadian systems in the animal kingdom. In Synechococcus elongatus , a species of freshwater cyanobacterium, circadian oscillations are regulated by the KaiABC system, a trio of interacting proteins that act as a biomolecular pacemaker of the circadian system. While the core oscillator precisely anticipates Earth's 24h light/dark cycle, it is unclear how much individual cells benefit from the expression and maintenance of a circadian clock. By studying the growth dynamics of individual S . elongatus cells under sudden light variations, we show that several aspects of cellular growth, such as a cell's division probability and its elongation rate, are tightly coupled to the circadian clock. We propose that the evolution and maintenance of a circadian clock increases the fitness of cells by allowing them to take advantage of cyclical light/dark environments by alternating between two phenotypes: expansionary, where cells grow and divide at a fast pace during the first part of the day, and conservative, where cells enter a more quiescent state to better prepare to the stresses associated with the night's prolonged darkness.

  19. Effects of exercise on circadian rhythms and mobility in aging Drosophila melanogaster.

    PubMed

    Rakshit, Kuntol; Wambua, Rebecca; Giebultowicz, Tomasz M; Giebultowicz, Jadwiga M

    2013-11-01

    Daily life functions such as sleep and feeding oscillate with circa 24 h period due to endogenous circadian rhythms generated by circadian clocks. Genetic or environmental disruption of circadian rhythms is associated with various aging-related phenotypes. Circadian rhythms decay during normal aging, and there is a need to explore strategies that could avert age-related changes in the circadian system. Exercise was reported to delay aging in mammals. Here, we investigated whether daily exercise via stimulation of upward climbing movement could improve circadian rest/activity rhythms in aging Drosophila melanogaster. We found that repeated exercise regimen did not strengthen circadian locomotor activity rhythms in aging flies and had no effect on their lifespan. We also tested the effects of exercise on mobility and determined that regular exercise lowered age-specific climbing ability in both wild type and clock mutant flies. Interestingly, the climbing ability was most significantly reduced in flies carrying a null mutation in the core clock gene period, while rescue of this gene significantly improved climbing to wild type levels. Our work highlights the importance of period in sustaining endurance in aging flies exposed to physical challenge. © 2013.

  20. Blocking synaptic transmission with tetanus toxin light chain reveals modes of neurotransmission in the PDF-positive circadian clock neurons of Drosophila melanogaster.

    PubMed

    Umezaki, Yujiro; Yasuyama, Kouji; Nakagoshi, Hideki; Tomioka, Kenji

    2011-09-01

    Circadian locomotor rhythms of Drosophila melanogaster are controlled by a neuronal circuit composed of approximately 150 clock neurons that are roughly classified into seven groups. In the circuit, a group of neurons expressing pigment-dispersing factor (PDF) play an important role in organizing the pacemaking system. Recent studies imply that unknown chemical neurotransmitter(s) (UNT) other than PDF is also expressed in the PDF-positive neurons. To explore its role in the circadian pacemaker, we examined the circadian locomotor rhythms of pdf-Gal4/UAS-TNT transgenic flies in which chemical synaptic transmission in PDF-positive neurons was blocked by expressed tetanus toxin light chain (TNT). In constant darkness (DD), the flies showed a free-running rhythm, which was similar to that of wild-type flies but significantly different from pdf null mutants. Under constant light conditions (LL), however, they often showed complex rhythms with a short period and a long period component. The UNT is thus likely involved in the synaptic transmission in the clock network and its release caused by LL leads to arrhythmicity. Immunocytochemistry revealed that LL induced phase separation in TIMELESS (TIM) cycling among some of the PDF-positive and PDF-negative clock neurons in the transgenic flies. These results suggest that both PDF and UNT play important roles in the Drosophila circadian clock, and activation of PDF pathway alone by LL leads to the complex locomotor rhythm through desynchronized oscillation among some of the clock neurons. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Drosophila TIM binds importin α1, and acts as an adapter to transport PER to the nucleus.

    PubMed

    Jang, A Reum; Moravcevic, Katarina; Saez, Lino; Young, Michael W; Sehgal, Amita

    2015-02-01

    Regulated nuclear entry of clock proteins is a conserved feature of eukaryotic circadian clocks and serves to separate the phase of mRNA activation from mRNA repression in the molecular feedback loop. In Drosophila, nuclear entry of the clock proteins, PERIOD (PER) and TIMELESS (TIM), is tightly controlled, and impairments of this process produce profound behavioral phenotypes. We report here that nuclear entry of PER-TIM in clock cells, and consequently behavioral rhythms, require a specific member of a classic nuclear import pathway, Importin α1 (IMPα1). In addition to IMPα1, rhythmic behavior and nuclear expression of PER-TIM require a specific nuclear pore protein, Nup153, and Ran-GTPase. IMPα1 can also drive rapid and efficient nuclear expression of TIM and PER in cultured cells, although the effect on PER is mediated by TIM. Mapping of interaction domains between IMPα1 and TIM/PER suggests that TIM is the primary cargo for the importin machinery. This is supported by attenuated interaction of IMPα1 with TIM carrying a mutation previously shown to prevent nuclear entry of TIM and PER. TIM is detected at the nuclear envelope, and computational modeling suggests that it contains HEAT-ARM repeats typically found in karyopherins, consistent with its role as a co-transporter for PER. These findings suggest that although PER is the major timekeeper of the clock, TIM is the primary target of nuclear import mechanisms. Thus, the circadian clock uses specific components of the importin pathway with a novel twist in that TIM serves a karyopherin-like role for PER.

  2. CULLIN-3 Controls TIMELESS Oscillations in the Drosophila Circadian Clock

    PubMed Central

    Lamouroux, Annie; Chélot, Elisabeth; Rouyer, François

    2012-01-01

    Eukaryotic circadian clocks rely on transcriptional feedback loops. In Drosophila, the PERIOD (PER) and TIMELESS (TIM) proteins accumulate during the night, inhibit the activity of the CLOCK (CLK)/CYCLE (CYC) transcriptional complex, and are degraded in the early morning. The control of PER and TIM oscillations largely depends on post-translational mechanisms. They involve both light-dependent and light-independent pathways that rely on the phosphorylation, ubiquitination, and proteasomal degradation of the clock proteins. SLMB, which is part of a CULLIN-1-based E3 ubiquitin ligase complex, is required for the circadian degradation of phosphorylated PER. We show here that CULLIN-3 (CUL-3) is required for the circadian control of PER and TIM oscillations. Expression of either Cul-3 RNAi or dominant negative forms of CUL-3 in the clock neurons alters locomotor behavior and dampens PER and TIM oscillations in light-dark cycles. In constant conditions, CUL-3 deregulation induces behavioral arrhythmicity and rapidly abolishes TIM cycling, with slower effects on PER. CUL-3 affects TIM accumulation more strongly in the absence of PER and forms protein complexes with hypo-phosphorylated TIM. In contrast, SLMB affects TIM more strongly in the presence of PER and preferentially associates with phosphorylated TIM. CUL-3 and SLMB show additive effects on TIM and PER, suggesting different roles for the two ubiquitination complexes on PER and TIM cycling. This work thus shows that CUL-3 is a new component of the Drosophila clock, which plays an important role in the control of TIM oscillations. PMID:22879814

  3. Synaptic connections of PDF-immunoreactive lateral neurons projecting to the dorsal protocerebrum of Drosophila melanogaster.

    PubMed

    Yasuyama, Kouji; Meinertzhagen, Ian A

    2010-02-01

    Recent studies in Drosophila melanogaster indicate that the neuropeptide pigment-dispersing factor (PDF) is an important output signal from a set of major clock neurons, s-LN(v)s (small ventral lateral neurons), which transmit the circadian phase to subsets of other clock neurons, DNs (dorsal neurons). Both s-LN(v)s and DNs have fiber projections to the dorsal protocerebrum of the brain, so that this area is a conspicuous locus for coupling between different subsets of clock neurons. To unravel the neural circuits underlying the fly's circadian rhythms, we examined the detailed subcellular morphology of the PDF-positive fibers of the s-LN(v)s in the dorsal protocerebrum, focusing on their synaptic connections, using preembedding immunoelectron microscopy. To examine the distribution of synapses, we also reconstructed the three-dimensional morphology of PDF-positive varicosities from fiber profiles in the dorsal protocerebrum. The varicosities contained large dense-core vesicles (DCVs), and also numerous small clear vesicles, forming divergent output synapses onto unlabeled neurites. The DCVs apparently dock at nonsynaptic sites, suggesting their nonsynaptic release. In addition, a 3D reconstruction revealed the presence of input synapses onto the PDF-positive fibers. These were detected less frequently than output sites. These observations suggest that the PDF-positive clock neurons receive neural inputs directly through synaptic connections in the dorsal protocerebrum, in addition to supplying dual outputs, either synaptic or via paracrine release of the DCV contents, to unidentified target neurons.

  4. Compact Optical Atomic Clock Based on a Two-Photon Transition in Rubidium

    NASA Astrophysics Data System (ADS)

    Martin, Kyle W.; Phelps, Gretchen; Lemke, Nathan D.; Bigelow, Matthew S.; Stuhl, Benjamin; Wojcik, Michael; Holt, Michael; Coddington, Ian; Bishop, Michael W.; Burke, John H.

    2018-01-01

    Extralaboratory atomic clocks are necessary for a wide array of applications (e.g., satellite-based navigation and communication). Building upon existing vapor-cell and laser technologies, we describe an optical atomic clock, designed around a simple and manufacturable architecture, that utilizes the 778-nm two-photon transition in rubidium and yields fractional-frequency instabilities of 4 ×10-13/√{τ (s ) } for τ from 1 to 10 000 s. We present a complete stability budget for this system and explore the required conditions under which a fractional-frequency instability of 1 ×10-15 can be maintained on long time scales. We provide a precise characterization of the leading sensitivities to external processes, including magnetic fields and fluctuations of the vapor-cell temperature and 778-nm laser power. The system is constructed primarily from commercially available components, an attractive feature from the standpoint of the commercialization and deployment of optical frequency standards.

  5. Scalable polylithic on-package integratable apparatus and method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khare, Surhud; Somasekhar, Dinesh; Borkar, Shekhar Y.

    Described is an apparatus which comprises: a first die including: a processing core; a crossbar switch coupled to the processing core; and a first edge interface coupled to the crossbar switch; and a second die including: a first edge interface positioned at a periphery of the second die and coupled to the first edge interface of the first die, wherein the first edge interface of the first die and the first edge interface of the second die are positioned across each other; a clock synchronization circuit coupled to the second edge interface; and a memory interface coupled to the clockmore » synchronization circuit.« less

  6. Laser Cooled Atomic Clocks in Space

    NASA Technical Reports Server (NTRS)

    Thompson, R. J.; Kohel, J.; Klipstein, W. M.; Seidel, D. J.; Maleki, L.

    2000-01-01

    The goals of the Glovebox Laser-cooled Atomic Clock Experiment (GLACE) are: (1) first utilization of tunable, frequency-stabilized lasers in space, (2) demonstrate laser cooling and trapping in microgravity, (3) demonstrate longest 'perturbation-free' interaction time for a precision measurement on neutral atoms, (4) Resolve Ramsey fringes 2-10 times narrower than achievable on Earth. The approach taken is: the use of COTS components, and the utilization of prototype hardware from LCAP flight definition experiments. The launch date is scheduled for Oct. 2002. The Microgravity Science Glovebox (MSG) specifications are reviewed, and a picture of the MSG is shown.

  7. Optical interconnections and networks; Proceedings of the Meeting, The Hague, Netherlands, Mar. 14, 15, 1990

    NASA Technical Reports Server (NTRS)

    Bartelt, Hartmut (Editor)

    1990-01-01

    The conference presents papers on interconnections, clock distribution, neural networks, and components and materials. Particular attention is given to a comparison of optical and electrical data interconnections at the board and backplane levels, a wafer-level optical interconnection network layout, an analysis and simulation of photonic switch networks, and the integration of picosecond GaAs photoconductive devices with silicon circuits for optical clocking and interconnects. Consideration is also given to the optical implementation of neural networks, invariance in an optoelectronic implementation of neural networks, and the recording of reversible patterns in polymer lightguides.

  8. Proceedings of the Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting (15th) Held at Washington, DC on 6-8 December 1983,

    DTIC Science & Technology

    1984-04-02

    clock is an absolute technique with a 14 0 • ,4 precision of about 0.1 )us The results of the portable clock experiment indicate that LF sync...also gains direct access to the U. S. primary frequency standard, NBS-6. Access to1 BS-6 makes it possible to set an absolute limit of one part in 10...of the components in these equations are uncorrelated we may take vari- ances of each of these equations and the cross terms will average to zero 117

  9. Deficiency of circadian clock protein BMAL1 in mice results in a low bone mass phenotype.

    PubMed

    Samsa, William E; Vasanji, Amit; Midura, Ronald J; Kondratov, Roman V

    2016-03-01

    The circadian clock is an endogenous time keeping system that controls the physiology and behavior of many organisms. The transcription factor Brain and Muscle ARNT-like Protein 1 (BMAL1) is a component of the circadian clock and necessary for clock function. Bmal1(-/-) mice display accelerated aging and many accompanying age associated pathologies. Here, we report that mice deficient for BMAL1 have a low bone mass phenotype that is absent at birth and progressively worsens over their lifespan. Accelerated aging of these mice is associated with the formation of bony bridges occurring across the metaphysis to the epiphysis, resulting in shorter long bones. Using micro-computed tomography we show that Bmal1(-/-) mice have reductions in cortical and trabecular bone volume and other micro-structural parameters and a lower bone mineral density. Histology shows a deficiency of BMAL1 results in a reduced number of active osteoblasts and osteocytes in vivo. Isolation of bone marrow derived mesenchymal stem cells from Bmal1(-/-) mice demonstrate a reduced ability to differentiate into osteoblasts in vitro, which likely explains the observed reductions in osteoblasts and osteocytes, and may contribute to the observed osteopenia. Our data support the role of the circadian clock in the regulation of bone homeostasis and shows that BMAL1 deficiency results in a low bone mass phenotype. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Deficiency of Circadian Clock Protein BMAL1 in Mice Results in a Low Bone Mass Phenotype

    PubMed Central

    Samsa, William E.; Vasanji, Amit; Midura, Ronald J.; Kondratov, Roman V.

    2016-01-01

    The circadian clock is an endogenous time keeping system that controls the physiology and behavior of many organisms. The transcription factor Brain and Muscle ARNT-like Protein 1 (BMAL1) is a component of the circadian clock and necessary for clock function. Bmal1−/− mice display accelerated aging and many accompanying age associated pathologies. Here, we report that mice deficient for BMAL1 have a low bone mass phenotype that is absent at birth and progressively worsens over their lifespan. Accelerated aging of these mice is associated with the formation of bony bridges occurring across the metaphysis to the epiphysis, resulting in shorter long bones. Using micro-computed tomography we show that Bmal1−/− mice have reductions in cortical and trabecular bone volume and other micro-structural parameters and a lower bone mineral density. Histology shows a deficiency of BMAL1 results in a reduced number of active osteoblasts and osteocytes in vivo. Isolation of bone marrow derived mesenchymal stem cells from Bmal1−/− mice demonstrate a reduced ability to differentiate into osteoblasts in vitro, which likely explains the observed reductions in osteoblasts and osteocytes, and may contribute to the observed osteopenia. Our data support the role of the circadian clock in the regulation of bone homeostasis and shows that BMAL1 deficiency results in a low bone mass phenotype. PMID:26789548

  11. Compact atomic clocks and stabilised laser for space applications

    NASA Astrophysics Data System (ADS)

    Mileti, Gaetano; Affolderbach, Christoph; Matthey-de-l'Endroit, Renaud

    2016-07-01

    We present our developments towards next generation compact vapour-cell based atomic frequency standards using a tunable laser diode instead of a traditional discharge lamp. The realisation of two types of Rubidium clocks addressing specific applications is in progress: high performance frequency standards for demanding applications such as satellite navigation, and chip-scale atomic clocks, allowing further miniaturisation of the system. The stabilised laser source constitutes the main technological novelty of these new standards, allowing a more efficient preparation and interrogation of the atoms and hence an improvement of the clock performances. However, before this key component may be employed in a commercial and ultimately in a space-qualified instrument, further studies are necessary to demonstrate their suitability, in particular concerning their reliability and long-term operation. The talk will present our preliminary investigations on this subject. The stabilised laser diode technology developed for our atomic clocks has several other applications on ground and in space. We will conclude our talk by illustrating this for the example of a recently completed ESA project on a 1.6 microns wavelength reference for a future space-borne Lidar. This source is based on a Rubidium vapour cell providing the necessary stability and accuracy, while a second harmonic generator and a compact optical comb generated from an electro-optic modulator allow to transfer these properties from the Rubidium wavelength (780nm) to the desired spectral range.

  12. Symphony: A Framework for Accurate and Holistic WSN Simulation

    PubMed Central

    Riliskis, Laurynas; Osipov, Evgeny

    2015-01-01

    Research on wireless sensor networks has progressed rapidly over the last decade, and these technologies have been widely adopted for both industrial and domestic uses. Several operating systems have been developed, along with a multitude of network protocols for all layers of the communication stack. Industrial Wireless Sensor Network (WSN) systems must satisfy strict criteria and are typically more complex and larger in scale than domestic systems. Together with the non-deterministic behavior of network hardware in real settings, this greatly complicates the debugging and testing of WSN functionality. To facilitate the testing, validation, and debugging of large-scale WSN systems, we have developed a simulation framework that accurately reproduces the processes that occur inside real equipment, including both hardware- and software-induced delays. The core of the framework consists of a virtualized operating system and an emulated hardware platform that is integrated with the general purpose network simulator ns-3. Our framework enables the user to adjust the real code base as would be done in real deployments and also to test the boundary effects of different hardware components on the performance of distributed applications and protocols. Additionally we have developed a clock emulator with several different skew models and a component that handles sensory data feeds. The new framework should substantially shorten WSN application development cycles. PMID:25723144

  13. Coding for Single-Line Transmission

    NASA Technical Reports Server (NTRS)

    Madison, L. G.

    1983-01-01

    Digital transmission code combines data and clock signals into single waveform. MADCODE needs four standard integrated circuits in generator and converter plus five small discrete components. MADCODE allows simple coding and decoding for transmission of digital signals over single line.

  14. QPPM receiver for free-space laser communications

    NASA Technical Reports Server (NTRS)

    Budinger, J. M.; Mohamed, J. H.; Nagy, L. A.; Lizanich, P. J.; Mortensen, D. J.

    1994-01-01

    A prototype receiver developed at NASA Lewis Research Center for direct detection and demodulation of quaternary pulse position modulated (QPPM) optical carriers is described. The receiver enables dual-channel communications at 325-Megabits per second (Mbps) per channel. The optical components of the prototype receiver are briefly described. The electronic components, comprising the analog signal conditioning, slot clock recovery, matched filter and maximum likelihood data recovery circuits are described in more detail. A novel digital symbol clock recovery technique is presented as an alternative to conventional analog methods. Simulated link degradations including noise and pointing-error induced amplitude variations are applied. The bit-error-rate performance of the electronic portion of the prototype receiver under varying optical signal-to-noise power ratios is found to be within 1.5-dB of theory. Implementation of the receiver as a hybrid of analog and digital application specific integrated circuits is planned.

  15. Optical Communication with Semiconductor Laser Diode. Interim Progress Report. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic; Sun, Xiaoli

    1989-01-01

    Theoretical and experimental performance limits of a free-space direct detection optical communication system were studied using a semiconductor laser diode as the optical transmitter and a silicon avalanche photodiode (APD) as the receiver photodetector. Optical systems using these components are under consideration as replacements for microwave satellite communication links. Optical pulse position modulation (PPM) was chosen as the signal format. An experimental system was constructed that used an aluminum gallium arsenide semiconductor laser diode as the transmitter and a silicon avalanche photodiode photodetector. The system used Q=4 PPM signaling at a source data rate of 25 megabits per second. The PPM signal format requires regeneration of PPM slot clock and word clock waveforms in the receiver. A nearly exact computational procedure was developed to compute receiver bit error rate without using the Gaussion approximation. A transition detector slot clock recovery system using a phase lock loop was developed and implemented. A novel word clock recovery system was also developed. It was found that the results of the nearly exact computational procedure agreed well with actual measurements of receiver performance. The receiver sensitivity achieved was the closest to the quantum limit yet reported for an optical communication system of this type.

  16. The GABA(A) receptor RDL acts in peptidergic PDF neurons to promote sleep in Drosophila.

    PubMed

    Chung, Brian Y; Kilman, Valerie L; Keath, J Russel; Pitman, Jena L; Allada, Ravi

    2009-03-10

    Sleep is regulated by a circadian clock that times sleep and wake to specific times of day and a homeostat that drives sleep as a function of prior wakefulness. To analyze the role of the circadian clock, we have used the fruit fly Drosophila. Flies display the core behavioral features of sleep, including relative immobility, elevated arousal thresholds, and homeostatic regulation. We assessed sleep-wake modulation by a core set of circadian pacemaker neurons that express the neuropeptide PDF. We find that disruption of PDF function increases sleep during the late night in light:dark and the first subjective day of constant darkness. Flies deploy genetic and neurotransmitter pathways to regulate sleep that are similar to those of their mammalian counterparts, including GABA. We find that RNA interference-mediated knockdown of the GABA(A) receptor gene, Resistant to dieldrin (Rdl), in PDF neurons reduces sleep, consistent with a role for GABA in inhibiting PDF neuron function. Patch-clamp electrophysiology reveals GABA-activated picrotoxin-sensitive chloride currents on PDF+ neurons. In addition, RDL is detectable most strongly on the large subset of PDF+ pacemaker neurons. These results suggest that GABAergic inhibition of arousal-promoting PDF neurons is an important mode of sleep-wake regulation in vivo.

  17. A Neural Network Underlying Circadian Entrainment and Photoperiodic Adjustment of Sleep and Activity in Drosophila.

    PubMed

    Schlichting, Matthias; Menegazzi, Pamela; Lelito, Katharine R; Yao, Zepeng; Buhl, Edgar; Dalla Benetta, Elena; Bahle, Andrew; Denike, Jennifer; Hodge, James John; Helfrich-Förster, Charlotte; Shafer, Orie Thomas

    2016-08-31

    A sensitivity of the circadian clock to light/dark cycles ensures that biological rhythms maintain optimal phase relationships with the external day. In animals, the circadian clock neuron network (CCNN) driving sleep/activity rhythms receives light input from multiple photoreceptors, but how these photoreceptors modulate CCNN components is not well understood. Here we show that the Hofbauer-Buchner eyelets differentially modulate two classes of ventral lateral neurons (LNvs) within the Drosophila CCNN. The eyelets antagonize Cryptochrome (CRY)- and compound-eye-based photoreception in the large LNvs while synergizing CRY-mediated photoreception in the small LNvs. Furthermore, we show that the large LNvs interact with subsets of "evening cells" to adjust the timing of the evening peak of activity in a day length-dependent manner. Our work identifies a peptidergic connection between the large LNvs and a group of evening cells that is critical for the seasonal adjustment of circadian rhythms. In animals, circadian clocks have evolved to orchestrate the timing of behavior and metabolism. Consistent timing requires the entrainment these clocks to the solar day, a process that is critical for an organism's health. Light cycles are the most important external cue for the entrainment of circadian clocks, and the circadian system uses multiple photoreceptors to link timekeeping to the light/dark cycle. How light information from these photorecptors is integrated into the circadian clock neuron network to support entrainment is not understood. Our results establish that input from the HB eyelets differentially impacts the physiology of neuronal subgroups. This input pathway, together with input from the compound eyes, precisely times the activity of flies under long summer days. Our results provide a mechanistic model of light transduction and integration into the circadian system, identifying new and unexpected network motifs within the circadian clock neuron network. Copyright © 2016 the authors 0270-6474/16/369084-13$15.00/0.

  18. The clock and wavefront model revisited.

    PubMed

    Murray, Philip J; Maini, Philip K; Baker, Ruth E

    2011-08-21

    The currently accepted interpretation of the clock and wavefront model of somitogenesis is that a posteriorly moving molecular gradient sequentially slows the rate of clock oscillations, resulting in a spatial readout of temporal oscillations. However, while molecular components of the clocks and wavefronts have now been identified in the pre-somitic mesoderm (PSM), there is not yet conclusive evidence demonstrating that the observed molecular wavefronts act to slow clock oscillations. Here we present an alternative formulation of the clock and wavefront model in which oscillator coupling, already known to play a key role in oscillator synchronisation, plays a fundamentally important role in the slowing of oscillations along the anterior-posterior (AP) axis. Our model has three parameters which can be determined, in any given species, by the measurement of three quantities: the clock period in the posterior PSM, somite length and the length of the PSM. A travelling wavefront, which slows oscillations along the AP axis, is an emergent feature of the model. Using the model we predict: (a) the distance between moving stripes of gene expression; (b) the number of moving stripes of gene expression and (c) the oscillator period profile along the AP axis. Predictions regarding the stripe data are verified using existing zebrafish data. We simulate a range of experimental perturbations and demonstrate how the model can be used to unambiguously define a reference frame along the AP axis. Comparing data from zebrafish, chick, mouse and snake, we demonstrate that: (a) variation in patterning profiles is accounted for by a single nondimensional parameter; the ratio of coupling strengths; and (b) the period profile along the AP axis is conserved across species. Thus the model is consistent with the idea that, although the genes involved in pattern propagation in the PSM vary, there is a conserved patterning mechanism across species. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Drosophila TIM Binds Importin α1, and Acts as an Adapter to Transport PER to the Nucleus

    PubMed Central

    Jang, A. Reum; Moravcevic, Katarina; Saez, Lino; Young, Michael W.; Sehgal, Amita

    2015-01-01

    Regulated nuclear entry of clock proteins is a conserved feature of eukaryotic circadian clocks and serves to separate the phase of mRNA activation from mRNA repression in the molecular feedback loop. In Drosophila, nuclear entry of the clock proteins, PERIOD (PER) and TIMELESS (TIM), is tightly controlled, and impairments of this process produce profound behavioral phenotypes. We report here that nuclear entry of PER-TIM in clock cells, and consequently behavioral rhythms, require a specific member of a classic nuclear import pathway, Importin α1 (IMPα1). In addition to IMPα1, rhythmic behavior and nuclear expression of PER-TIM require a specific nuclear pore protein, Nup153, and Ran-GTPase. IMPα1 can also drive rapid and efficient nuclear expression of TIM and PER in cultured cells, although the effect on PER is mediated by TIM. Mapping of interaction domains between IMPα1 and TIM/PER suggests that TIM is the primary cargo for the importin machinery. This is supported by attenuated interaction of IMPα1 with TIM carrying a mutation previously shown to prevent nuclear entry of TIM and PER. TIM is detected at the nuclear envelope, and computational modeling suggests that it contains HEAT-ARM repeats typically found in karyopherins, consistent with its role as a co-transporter for PER. These findings suggest that although PER is the major timekeeper of the clock, TIM is the primary target of nuclear import mechanisms. Thus, the circadian clock uses specific components of the importin pathway with a novel twist in that TIM serves a karyopherin-like role for PER. PMID:25674790

  20. Human Chronotypes from a Theoretical Perspective

    PubMed Central

    Kramer, Achim; Herzel, Hanspeter

    2013-01-01

    The endogenous circadian timing system has evolved to synchronize an organism to periodically recurring environmental conditions. Those external time cues are called Zeitgebers. When entrained by a Zeitgeber, the intrinsic oscillator adopts a fixed phase relation to the Zeitgeber. Here, we systematically study how the phase of entrainment depends on clock and Zeitgeber properties. We combine numerical simulations of amplitude-phase models with predictions from analytically tractable models. In this way we derive relations between the phase of entrainment to the mismatch between the endogenous and Zeitgeber period, the Zeitgeber strength, and the range of entrainment. A core result is the “180° rule” asserting that the phase varies over a range of about 180° within the entrainment range. The 180° rule implies that clocks with a narrow entrainment range (“strong oscillators”) exhibit quite flexible entrainment phases. We argue that this high sensitivity of the entrainment phase contributes to the wide range of human chronotypes. PMID:23544070

  1. Chronobiology of bipolar disorder: therapeutic implication.

    PubMed

    Dallaspezia, Sara; Benedetti, Francesco

    2015-08-01

    Multiple lines of evidence suggest that psychopathological symptoms of bipolar disorder arise in part from a malfunction of the circadian system, linking the disease with an abnormal internal timing. Alterations in circadian rhythms and sleep are core elements in the disorders, characterizing both mania and depression and having recently been shown during euthymia. Several human genetic studies have implicated specific genes that make up the genesis of circadian rhythms in the manifestation of mood disorders with polymorphisms in molecular clock genes not only showing an association with the disorder but having also been linked to its phenotypic particularities. Many medications used to treat the disorder, such as antidepressant and mood stabilizers, affect the circadian clock. Finally, circadian rhythms and sleep researches have been the starting point of the developing of chronobiological therapies. These interventions are safe, rapid and effective and they should be considered first-line strategies for bipolar depression.

  2. Multifrequency zero-jitter delay-locked loop

    NASA Astrophysics Data System (ADS)

    Efendovich, Avner; Afek, Yachin; Sella, Coby; Bikowsky, Zeev

    1994-01-01

    The approach of an all-digital phase locked loop is used in this delay-locked loop circuit. This design is designated to a system with two processing units, a master CPU and a slave system chip, that share the same bus. It allows maximum utilization of the bus, as the minimal skew between the clocks of the two components significantly reduces idle periods, and also set-up and hold times. Changes in the operating frequency are possible, without falling out of synchronization. Due to the special lead-lag phase detector, the jitter of the clock is zero, when the loop is locked, under any working conditions.

  3. Ultra-stable clock laser system development towards space applications.

    PubMed

    Świerad, Dariusz; Häfner, Sebastian; Vogt, Stefan; Venon, Bertrand; Holleville, David; Bize, Sébastien; Kulosa, André; Bode, Sebastian; Singh, Yeshpal; Bongs, Kai; Rasel, Ernst Maria; Lodewyck, Jérôme; Le Targat, Rodolphe; Lisdat, Christian; Sterr, Uwe

    2016-09-26

    The increasing performance of optical lattice clocks has made them attractive for scientific applications in space and thus has pushed the development of their components including the interrogation lasers of the clock transitions towards being suitable for space, which amongst others requires making them more power efficient, radiation hardened, smaller, lighter as well as more mechanically stable. Here we present the development towards a space-compatible interrogation laser system for a strontium lattice clock constructed within the Space Optical Clock (SOC2) project where we have concentrated on mechanical rigidity and size. The laser reaches a fractional frequency instability of 7.9 × 10 -16 at 300 ms averaging time. The laser system uses a single extended cavity diode laser that gives enough power for interrogating the atoms, frequency comparison by a frequency comb and diagnostics. It includes fibre link stabilisation to the atomic package and to the comb. The optics module containing the laser has dimensions 60 × 45 × 8 cm 3 ; and the ultra-stable reference cavity used for frequency stabilisation with its vacuum system takes 30 × 30 × 30 cm 3 . The acceleration sensitivities in three orthogonal directions of the cavity are 3.6 × 10 -10 /g, 5.8 × 10 -10 /g and 3.1 × 10 -10 /g, where g ≈ 9.8 m/s 2 is the standard gravitational acceleration.

  4. Chronobiology and obesity: Interactions between circadian rhythms and energy regulation.

    PubMed

    Summa, Keith C; Turek, Fred W

    2014-05-01

    Recent advances in the understanding of the molecular, genetic, neural, and physiologic basis for the generation and organization of circadian clocks in mammals have revealed profound bidirectional interactions between the circadian clock system and pathways critical for the regulation of metabolism and energy balance. The discovery that mice harboring a mutation in the core circadian gene circadian locomotor output cycles kaput (Clock) develop obesity and evidence of the metabolic syndrome represented a seminal moment for the field, clearly establishing a link between circadian rhythms, energy balance, and metabolism at the genetic level. Subsequent studies have characterized in great detail the depth and magnitude of the circadian clock's crucial role in regulating body weight and other metabolic processes. Dietary nutrients have been shown to influence circadian rhythms at both molecular and behavioral levels; and many nuclear hormone receptors, which bind nutrients as well as other circulating ligands, have been observed to exhibit robust circadian rhythms of expression in peripheral metabolic tissues. Furthermore, the daily timing of food intake has itself been shown to affect body weight regulation in mammals, likely through, at least in part, regulation of the temporal expression patterns of metabolic genes. Taken together, these and other related findings have transformed our understanding of the important role of time, on a 24-h scale, in the complex physiologic processes of energy balance and coordinated regulation of metabolism. This research has implications for human metabolic disease and may provide unique and novel insights into the development of new therapeutic strategies to control and combat the epidemic of obesity. © 2014 American Society for Nutrition.

  5. False Operation of Static Random Access Memory Cells under Alternating Current Power Supply Voltage Variation

    NASA Astrophysics Data System (ADS)

    Sawada, Takuya; Takata, Hidehiro; Nii, Koji; Nagata, Makoto

    2013-04-01

    Static random access memory (SRAM) cores exhibit susceptibility against power supply voltage variation. False operation is investigated among SRAM cells under sinusoidal voltage variation on power lines introduced by direct RF power injection. A standard SRAM core of 16 kbyte in a 90 nm 1.5 V technology is diagnosed with built-in self test and on-die noise monitor techniques. The sensitivity of bit error rate is shown to be high against the frequency of injected voltage variation, while it is not greatly influenced by the difference in frequency and phase against SRAM clocking. It is also observed that the distribution of false bits is substantially random in a cell array.

  6. A Formal Approach to the Provably Correct Synthesis of Mission Critical Embedded Software for Multi Core Embedded Platforms

    DTIC Science & Technology

    2014-04-01

    synchronization primitives based on preset templates can result in over synchronization if unchecked, possibly creating deadlock situations. Further...inputs rather than enforcing synchronization with a global clock. MRICDF models software as a network of communicating actors. Four primitive actors...control wants to send interrupt or not. Since this is shared buffer, a semaphore mechanism is assumed to synchronize the read/write of this buffer. The

  7. ADAPTable Sensor Systems Phase 2. Topic 2: Reusable Core Software. Distributed Synchronization Software for the Sensor Nodes

    DTIC Science & Technology

    2015-03-01

    Wireless Sensor Network Using Unreliable GPS Signals Daniel R. Fuhrmann*, Joshua Stomberg§, Saeid Nooshabadi*§ Dustin McIntire†, William Merill... wireless sensor network , when the timing jitter is subject to a empirically determined bimodal non-Gaussian distribution. Specifically, we 1) estimate the...over a nominal 19.2 MHz frequency with an adjustment made every four hours. Index Terms— clock synchronization, GPS, wireless sensor networks , Kalman

  8. A Gravity-Responsive Time-Keeping Protein of the Plant and Animal Cell Surface

    NASA Technical Reports Server (NTRS)

    Morre, D. James

    2003-01-01

    The hypothesis under investigation was that a ubiquinol (NADH) oxidase protein of the cell surface with protein disulfide-thiol interchange activity (= NOX protein) is a plant and animal time-keeping ultradian (period of less than 24 h) driver of both cell enlargement and the biological clock that responds to gravity. Despite considerable work in a large number of laboratories spanning several decades, this is, to my knowledge, our work is the first demonstration of a time-keeping biochemical reaction that is both gravity-responsive and growth-related and that has been shown to determine circadian periodicity. As such, the NOX protein may represent both the long-sought biological gravity receptor and the core oscillator of the cellular biological clock. Completed studies have resulted in 12 publications and two issued NASA-owned patents of the clock activity. The gravity response and autoentrainment were characterized in cultured mammalian cells and in two plant systems together with entrainment by light and small molecules (melatonin). The molecular basis of the oscillatory behavior was investigated using spectroscopic methods (Fourier transform infrared and circular dichroism) and high resolution electron microscopy. We have also applied these findings to an understanding of the response to hypergravity. Statistical methods for analysis of time series phenomena were developed (Foster et al., 2003).

  9. Testing the Molecular Clock Using the Best Fossil Record: Case Studies from the Planktic Foraminifera

    NASA Astrophysics Data System (ADS)

    Steel, B. A.; Kucera, M.; Darling, K.

    2004-12-01

    Criticism of molecular clock studies often centres on inadequate calibration and a perceived lack of correlation between reproductive isolation and recognisable morphological evolution. Since many major groups (e.g. birds, mammals, reptiles) have a poor fossil record, it is often difficult to test and refute these limitations. Planktic foraminifera represent an exception to this rule. Deep-sea sediments are super-abundant in foraminifera, and large numbers of specimens and occurrences are easily garnered from Ocean Drilling Programme cores. Planktic foraminifera therefore represent an ideal model group with which to test and refine molecular clock studies. Since the 1990AƒAøAøâ_sA¬Aøâ_zAøs, genetic sequences (principally 18S r-RNA) have been extracted from living planktic foraminifera, and a large genetic library has developed. Our study attempts to contextualise and test molecular data, particularly AƒAøAøâ_sA¬A<Å"molecular clockAƒAøAøâ_sA¬Aøâ_zAø dates, utilising material from two ODP cores (Site 926A (Atlantic) and 806 (Pacific), to examine the evolutionary history of two sibling-species complexes (Globigerinella siphonifera and Globigerinoides ruber, both common shallow-water species and both of considerable palaeoceanographic utility). Recent genetic studies have suggested that these two AƒAøAøâ_sA¬A<Å"super-speciesAƒAøAøâ_sA¬Aøâ_zAø in fact consist of a number of isolated forms, with contrasting ecologies and longevities, which in Recent and sub-Recent sediments can be distinguished either on the basis of pore ultrastructure (Gl. siphonifera) or test colouration (Gs. ruber). In both cases, molecular clock estimates are indicative of ancient (7-11 Ma) intra-species cryptic divergences, which seem to be considerably older than fossil dates. In particular, the calculated molecular split between the two forms of Gs. ruber (AƒAøAøâ_sA¬A<Å"whiteAƒAøAøâ_sA¬Aøâ_zAø and AƒAøAøâ_sA¬A<Å"pinkAƒAøAøâ_sA¬Aøâ_zAø) of around 11 Ma is considerably discordant with the fossil date of around 0.7 Ma. At first glance, this may appear to be a classic case of molecular over-estimation, often a feature of clock models, especially where, as in the foraminifera, substitution rates may vary widely. However, there is good reason to suspect that fossil range of the derived AƒAøAøâ_sA¬A<Å"pinkAƒAøAøâ_sA¬Aøâ_zAø form may have been artificially truncated by diagenetic degradation of the meta-stable test pigmentation. The deep molecular splits for Gl. siphonifera (around 7 Ma for the two main morphologically distinguishable sub-types), whilst not so obviously at odds with the fossil record, still belie the very small amount of morphological evolution observed within the plexus. We have used morphometric methods on a large (over 2000 pooled specimens) dataset in an effort to independently test the molecular clock, using SEM-based measurement of pore metrics (for Gl. siphonifera) and a multivariate analysis of whole-test characteristics (for Gs. ruber). Comparison of results for the two species suggests interesting patterns; whilst the two cryptic sub-types of Gl. siphonifera seemingly can be traced through time and seem to respond to external oceanographic forcing, the sub-types of Gs. ruber appear to be truly cryptic, and cannot be distinguished in the fossil record beyond 0.7 Ma. This raises two important points; firstly, the molecular clock (at least for foraminifera) bears considerable scrutiny, appears to be relatively robust to substitution bias and is seemingly broadly in accordance with morphological data; and secondly, the relationship between form and function in planktic foraminifera appears to be ill-defined, raising important questions for functional morphology.

  10. Motivational Modulation of Rhythms of the Expression of the Clock Protein PER2 in the Limbic Forebrain.

    PubMed

    Amir, Shimon; Stewart, Jane

    2009-05-15

    Key molecular components of the mammalian circadian clock are expressed rhythmically in many brain areas and peripheral tissues in mammals. Here we review findings from our work on rhythms of expression of the clock protein Period2 (PER2) in four regions of the limbic forebrain known to be important in the regulation of motivational and emotional states. These regions include the oval nucleus of the bed nucleus of the stria terminalis (BNSTov), the central nucleus of the amygdala (CEA), the basolateral amygdala (BLA), and the dentate gyrus (DG). Daily rhythms in the expression of PER2 in these regions are controlled by the master circadian pacemaker, the suprachiasmatic nucleus (SCN), but, importantly, they are also sensitive to homeostatic perturbations and to hormonal states that directly influence motivated behavior. Thus, circadian information from the SCN and homeostatic signals are integrated in these regions of the limbic forebrain to affect the temporal organization of motivational and emotional processes.

  11. KPNB1 mediates PER/CRY nuclear translocation and circadian clock function.

    PubMed

    Lee, Yool; Jang, A Reum; Francey, Lauren J; Sehgal, Amita; Hogenesch, John B

    2015-08-29

    Regulated nuclear translocation of the PER/CRY repressor complex is critical for negative feedback regulation of the circadian clock of mammals. However, the precise molecular mechanism is not fully understood. Here, we report that KPNB1, an importin β component of the ncRNA repressor of nuclear factor of activated T cells (NRON) ribonucleoprotein complex, mediates nuclear translocation and repressor function of the PER/CRY complex. RNAi depletion of KPNB1 traps the PER/CRY complex in the cytoplasm by blocking nuclear entry of PER proteins in human cells. KPNB1 interacts mainly with PER proteins and directs PER/CRY nuclear transport in a circadian fashion. Interestingly, KPNB1 regulates the PER/CRY nuclear entry and repressor function, independently of importin α, its classical partner. Moreover, inducible inhibition of the conserved Drosophila importin β in lateral neurons abolishes behavioral rhythms in flies. Collectively, these data show that KPNB1 is required for timely nuclear import of PER/CRY in the negative feedback regulation of the circadian clock.

  12. Optimization on fixed low latency implementation of the GBT core in FPGA

    DOE PAGES

    Chen, K.; Chen, H.; Wu, W.; ...

    2017-07-11

    We present that in the upgrade of ATLAS experiment, the front-end electronics components are subjected to a large radiation background. Meanwhile high speed optical links are required for the data transmission between the on-detector and off-detector electronics. The GBT architecture and the Versatile Link (VL) project are designed by CERN to support the 4.8 Gbps line rate bidirectional high-speed data transmission which is called GBT link. In the ATLAS upgrade, besides the link with on-detector, the GBT link is also used between different off-detector systems. The GBTX ASIC is designed for the on-detector front-end, correspondingly for the off-detector electronics, themore » GBT architecture is implemented in Field Programmable Gate Arrays (FPGA). CERN launches the GBT-FPGA project to provide examples in different types of FPGA. In the ATLAS upgrade framework, the Front-End LInk eXchange (FELIX) system is used to interface the front end electronics of several ATLAS subsystems. The GBT link is used between them, to transfer the detector data and the timing, trigger, control and monitoring information. The trigger signal distributed in the down-link from FELIX to the front-end requires a fixed and low latency. In this paper, several optimizations on the GBT-FPGA IP core are introduced, to achieve a lower fixed latency. For FELIX, a common firmware will be used to interface different front-ends with support of both GBT modes: the forward error correction mode and the wide mode. The modified GBT-FPGA core has the ability to switch between the GBT modes without FPGA reprogramming. Finally, the system clock distribution of the multi-channel FELIX firmware is also discussed in this paper.« less

  13. Optimization on fixed low latency implementation of the GBT core in FPGA

    NASA Astrophysics Data System (ADS)

    Chen, K.; Chen, H.; Wu, W.; Xu, H.; Yao, L.

    2017-07-01

    In the upgrade of ATLAS experiment [1], the front-end electronics components are subjected to a large radiation background. Meanwhile high speed optical links are required for the data transmission between the on-detector and off-detector electronics. The GBT architecture and the Versatile Link (VL) project are designed by CERN to support the 4.8 Gbps line rate bidirectional high-speed data transmission which is called GBT link [2]. In the ATLAS upgrade, besides the link with on-detector, the GBT link is also used between different off-detector systems. The GBTX ASIC is designed for the on-detector front-end, correspondingly for the off-detector electronics, the GBT architecture is implemented in Field Programmable Gate Arrays (FPGA). CERN launches the GBT-FPGA project to provide examples in different types of FPGA [3]. In the ATLAS upgrade framework, the Front-End LInk eXchange (FELIX) system [4, 5] is used to interface the front-end electronics of several ATLAS subsystems. The GBT link is used between them, to transfer the detector data and the timing, trigger, control and monitoring information. The trigger signal distributed in the down-link from FELIX to the front-end requires a fixed and low latency. In this paper, several optimizations on the GBT-FPGA IP core are introduced, to achieve a lower fixed latency. For FELIX, a common firmware will be used to interface different front-ends with support of both GBT modes: the forward error correction mode and the wide mode. The modified GBT-FPGA core has the ability to switch between the GBT modes without FPGA reprogramming. The system clock distribution of the multi-channel FELIX firmware is also discussed in this paper.

  14. Compact, Highly Stable Ion Atomic Clock

    NASA Technical Reports Server (NTRS)

    Prestage, John

    2008-01-01

    A mercury-ion clock now at the breadboard stage of development (see figure) has a stability comparable to that of a hydrogen-maser clock: In tests, the clock exhibited an Allan deviation of between 2 x 10(exp -13) and 3 x 10(exp -13) at a measurement time of 1 second, averaging to about 10(exp -15) at 1 day. However, the clock occupies a volume of only about 2 liters . about a hundredth of the volume of a hydrogen-maser clock. The ion-handling parts of the apparatus are housed in a sealed vacuum tube, wherein only a getter pump is used to maintain the vacuum. Hence, this apparatus is a prototype of a generation of small, potentially portable high-precision clocks for diverse ground- and space-based navigation and radio science applications. Furthermore, this new ion-clock technology is about 100 times more stable and precise than the rubidium atomic clocks currently in use in the NAV STAR GPS Earth-orbiting satellites. In this clock, mercury ions are shuttled between a quadrupole and a 16-pole linear radio-frequency trap. In the quadrupole trap, the ions are tightly confined and optical state selection from a Hg-202 radio-frequency-discharge ultraviolet lamp is carried out. In the 16-pole trap, the ions are more loosely confined and atomic transitions resonant at frequency of about 40.507 GHz are interrogated by use of a microwave beam at that frequency. The trapping of ions effectively eliminates the frequency pulling caused by wall collisions inherent to gas-cell clocks. The shuttling of the ions between the two traps enables separation of the state-selection process from the clock microwave- resonance process, so that each of these processes can be optimized independently of the other. The basic ion-shuttling, two-trap scheme as described thus far is not new: it has been the basis of designs of prior larger clocks. The novelty of the present development lies in major redesigns of its physics package (the ion traps and the vacuum and optical subsystems) to effect the desired reduction of size to a volume of no more than a couple of liters. The redesign effort has included selection of materials for the vacuum tube, ion trap, and ultraviolet windows that withstand bakeout at a temperature of approx.450 C in preparation for sealing the tube to contain the vacuum. This part of the redesign effort follows the approach taken in the development of such other vacuum-tube electronic components as flight traveling- wave-tube amplifiers having operational and shelf lives as long as 15 years. The redesign effort has also included a thorough study of residual-gas-induced shifts of the ion-clock frequency and a study of alternative gases as candidates for use as a buffer gas within the sealed tube. It has been found that neon is more suitable than is helium, which has been traditionally used for this purpose, in that the pressure-induced frequency pulling by neon is between a third and a half of that of helium. In addition, because neon diffuses through solids much more slowly than does helium, the loss of neon by diffusion over the operational lifetime is expected to be negligible.

  15. Nondestructive and intuitive determination of circadian chlorophyll rhythms in soybean leaves using multispectral imaging

    PubMed Central

    Pan, Wen-Juan; Wang, Xia; Deng, Yong-Ren; Li, Jia-Hang; Chen, Wei; Chiang, John Y.; Yang, Jian-Bo; Zheng, Lei

    2015-01-01

    The circadian clock, synchronized by daily cyclic environmental cues, regulates diverse aspects of plant growth and development and increases plant fitness. Even though much is known regarding the molecular mechanism of circadian clock, it remains challenging to quantify the temporal variation of major photosynthesis products as well as their metabolic output in higher plants in a real-time, nondestructive and intuitive manner. In order to reveal the spatial-temporal scenarios of photosynthesis and yield formation regulated by circadian clock, multispectral imaging technique has been employed for nondestructive determination of circadian chlorophyll rhythms in soybean leaves. By utilizing partial least square regression analysis, the determination coefficients R2, 0.9483 for chlorophyll a and 0.8906 for chlorophyll b, were reached, respectively. The predicted chlorophyll contents extracted from multispectral data showed an approximately 24-h rhythm which could be entrained by external light conditions, consistent with the chlorophyll contents measured by chemical analyses. Visualization of chlorophyll map in each pixel offers an effective way to analyse spatial-temporal distribution of chlorophyll. Our results revealed the potentiality of multispectral imaging as a feasible nondestructive universal assay for examining clock function and robustness, as well as monitoring chlorophyll a and b and other biochemical components in plants. PMID:26059057

  16. Nondestructive and intuitive determination of circadian chlorophyll rhythms in soybean leaves using multispectral imaging

    NASA Astrophysics Data System (ADS)

    Pan, Wen-Juan; Wang, Xia; Deng, Yong-Ren; Li, Jia-Hang; Chen, Wei; Chiang, John Y.; Yang, Jian-Bo; Zheng, Lei

    2015-06-01

    The circadian clock, synchronized by daily cyclic environmental cues, regulates diverse aspects of plant growth and development and increases plant fitness. Even though much is known regarding the molecular mechanism of circadian clock, it remains challenging to quantify the temporal variation of major photosynthesis products as well as their metabolic output in higher plants in a real-time, nondestructive and intuitive manner. In order to reveal the spatial-temporal scenarios of photosynthesis and yield formation regulated by circadian clock, multispectral imaging technique has been employed for nondestructive determination of circadian chlorophyll rhythms in soybean leaves. By utilizing partial least square regression analysis, the determination coefficients R2, 0.9483 for chlorophyll a and 0.8906 for chlorophyll b, were reached, respectively. The predicted chlorophyll contents extracted from multispectral data showed an approximately 24-h rhythm which could be entrained by external light conditions, consistent with the chlorophyll contents measured by chemical analyses. Visualization of chlorophyll map in each pixel offers an effective way to analyse spatial-temporal distribution of chlorophyll. Our results revealed the potentiality of multispectral imaging as a feasible nondestructive universal assay for examining clock function and robustness, as well as monitoring chlorophyll a and b and other biochemical components in plants.

  17. The trigger card system for the MAJORANA DEMONSTRATOR

    NASA Astrophysics Data System (ADS)

    Thompson, William; Anderson, John; Howe, Mark; Meijer, Sam; Wilkerson, John; Majorana Collaboration

    2014-09-01

    The aim of the MAJORANA DEMONSTRATOR is to demonstrate the feasibility of providing low enough background levels to search for neutrinoless double-beta decay (0 νββ) in an array of germanium detectors enriched to 87% in 76Ge. Currently, it is unknown if this decay process occurs; however, observation of such a decay process would show that lepton number is violated, confirm that neutrinos are Majorana particles, and yield information on the absolute mass scale of the neutrino. With current experimental results indicating a half-life greater than 2 x 1025 years for this decay, the minimization of background events is of critical importance. Utilizing time correlation, coincidence testing is able to reject multi-detector events that may otherwise be mistaken for 0 νββ when viewed independently. Here, we present both the hardware and software of the trigger card system, which provides a common clock to all digitizers and the muon veto system, thereby enabling the rejection of background events through coincidence testing. Current experimental results demonstrate the accuracy of the distributed clock to be within two clock pulses (20 ns) across all system components. A test system is used to validate the data acquisition system. The aim of the MAJORANA DEMONSTRATOR is to demonstrate the feasibility of providing low enough background levels to search for neutrinoless double-beta decay (0 νββ) in an array of germanium detectors enriched to 87% in 76Ge. Currently, it is unknown if this decay process occurs; however, observation of such a decay process would show that lepton number is violated, confirm that neutrinos are Majorana particles, and yield information on the absolute mass scale of the neutrino. With current experimental results indicating a half-life greater than 2 x 1025 years for this decay, the minimization of background events is of critical importance. Utilizing time correlation, coincidence testing is able to reject multi-detector events that may otherwise be mistaken for 0 νββ when viewed independently. Here, we present both the hardware and software of the trigger card system, which provides a common clock to all digitizers and the muon veto system, thereby enabling the rejection of background events through coincidence testing. Current experimental results demonstrate the accuracy of the distributed clock to be within two clock pulses (20 ns) across all system components. A test system is used to validate the data acquisition system. We acknowledge support from the Office of Nuclear Physics in the DOE Office of Science, the Particle Astrophysics and REU Programs of the NSF, and the Sanford Underground Research Laboratory.

  18. Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre

    PubMed Central

    Okaba, Shoichi; Takano, Tetsushi; Benabid, Fetah; Bradley, Tom; Vincetti, Luca; Maizelis, Zakhar; Yampol'skii, Valery; Nori, Franco; Katori, Hidetoshi

    2014-01-01

    Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom–atom and atom–wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom–atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the 1S0−3P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time. PMID:24934478

  19. Multiple circadian transcriptional elements cooperatively regulate cell-autonomous transcriptional oscillation of Period3, a mammalian clock gene.

    PubMed

    Matsumura, Ritsuko; Akashi, Makoto

    2017-09-29

    Cell-autonomous oscillation in clock gene expression drives circadian rhythms. The development of comprehensive analytical techniques, such as bioinformatics and ChIP-sequencing, has enabled the genome-wide identification of potential circadian transcriptional elements that regulate the transcriptional oscillation of clock genes. However, detailed analyses using traditional biochemical and molecular-biological approaches, such as binding and reporter assays, are still necessary to determine whether these potential circadian transcriptional elements are actually functional and how significantly they contribute to driving transcriptional oscillation. Here, we focused on the molecular mechanism of transcriptional oscillations in the mammalian clock gene Period3 ( Per3 ). The PER3 protein is essential for robust peripheral clocks and is a key component in circadian output processes. We found three E box-like elements located upstream of human Per3 transcription start sites that additively contributed to cell-autonomous transcriptional oscillation. However, we also found that Per3 is still expressed in a circadian manner when all three E box-like elements are functionally impaired. We noted that Per3 transcription was activated by the synergistic actions of two D box-like elements and the three E box-like elements, leading to a drastic increase in circadian amplitude. Interestingly, circadian expression of Per3 was completely disrupted only when all five transcriptional elements were functionally impaired. These results indicate that three E box-like and two D box-like elements cooperatively and redundantly regulate cell-autonomous transcriptional oscillation of Per3 . © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Giant gain from spontaneously generated coherence in Y-type double quantum dot structure

    NASA Astrophysics Data System (ADS)

    Al-Nashy, B.; Razzaghi, Sonia; Al-Musawi, Muwaffaq Abdullah; Rasooli Saghai, H.; Al-Khursan, Amin H.

    A theoretical model was presented for linear susceptibility using density matrix theory for Y-configuration of double quantum dots (QDs) system including spontaneously generated coherence (SGC). Two SGC components are included for this system: V, and Λ subsystems. It is shown that at high V-component, the system have a giga gain. At low Λ-system component; it is possible to controls the light speed between superluminal and subluminal using one parameter by increasing SGC component of the V-system. This have applications in quantum information storage and spatially-varying temporal clock.

  1. CHEMICAL DIAGNOSTICS OF THE MASSIVE STAR CLUSTER-FORMING CLOUD G33.92+0.11. I. {sup 13}CS, CH{sub 3}OH, CH{sub 3}N, OCS, H{sub 2}S, SO{sub 2}, and SiO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minh, Young Chol; Liu, Hauyu Baobab; Galvań-Madrid, Roberto

    2016-06-20

    Large chemical diversity was found in the gas clumps associated with the massive star cluster-forming G33.92+0.11 region with sub-arcsecond angular resolution (0.″6–0.″8) observations with ALMA. The most prominent gas clumps are associated with the dust emission peaks A1, A2, and A5. The close correlation between CH{sub 3}OH and OCS in the emission distributions strongly suggests that these species share a common origin of hot core grain mantle evaporation. The latest generation of star clusters are forming in the A5 clump, as indicated by multiple SiO outflows and its rich hot core chemistry. We also found a narrow SiO emission associatedmore » with the outflows, which may trace a cooled component of the outflows. Part of the chemical complexity may have resulted from the accreting gas from the ambient clouds, especially in the northern part of A1 and the southern part of A2. The chemical diversity found in this region is believed to mainly result from the different chemical evolutionary timescales of massive star formation. In particular, the abundance ratio between CH{sub 3}OH and CH{sub 3}CN may be a good chemical clock for the early phase of star formation.« less

  2. On Variations in the Level of PER in Glial Clocks of Drosophila Optic Lobe and Its Negative Regulation by PDF Signaling.

    PubMed

    Górska-Andrzejak, Jolanta; Chwastek, Elżbieta M; Walkowicz, Lucyna; Witek, Kacper

    2018-01-01

    We show that the level of the core protein of the circadian clock Period (PER) expressed by glial peripheral oscillators depends on their location in the Drosophila optic lobe. It appears to be controlled by the ventral lateral neurons (LNvs) that release the circadian neurotransmitter Pigment Dispersing Factor (PDF). We demonstrate that glial cells of the distal medulla neuropil (dMnGl) that lie in the vicinity of the PDF-releasing terminals of the LNvs possess receptors for PDF (PDFRs) and express PER at significantly higher level than other types of glia. Surprisingly, the amplitude of PER molecular oscillations in dMnGl is increased twofold in PDF-free environment, that is in Pdf 0 mutants. The Pdf 0 mutants also reveal an increased level of glia-specific protein REPO in dMnGl. The photoreceptors of the compound eye (R-cells) of the PDF-null flies, on the other hand, exhibit de-synchrony of PER molecular oscillations, which manifests itself as increased variability of PER-specific immunofluorescence among the R-cells. Moreover, the daily pattern of expression of the presynaptic protein Bruchpilot (BRP) in the lamina terminals of the R-cells is changed in Pdf 0 mutant. Considering that PDFRs are also expressed by the marginal glia of the lamina that surround the R-cell terminals, the LNv pacemakers appear to be the likely modulators of molecular cycling in the peripheral clocks of both the glial cells and the photoreceptors of the compound eye. Consequently, some form of PDF-based coupling of the glial clocks and the photoreceptors of the eye with the central LNv pacemakers must be operational.

  3. On Variations in the Level of PER in Glial Clocks of Drosophila Optic Lobe and Its Negative Regulation by PDF Signaling

    PubMed Central

    Górska-Andrzejak, Jolanta; Chwastek, Elżbieta M.; Walkowicz, Lucyna; Witek, Kacper

    2018-01-01

    We show that the level of the core protein of the circadian clock Period (PER) expressed by glial peripheral oscillators depends on their location in the Drosophila optic lobe. It appears to be controlled by the ventral lateral neurons (LNvs) that release the circadian neurotransmitter Pigment Dispersing Factor (PDF). We demonstrate that glial cells of the distal medulla neuropil (dMnGl) that lie in the vicinity of the PDF-releasing terminals of the LNvs possess receptors for PDF (PDFRs) and express PER at significantly higher level than other types of glia. Surprisingly, the amplitude of PER molecular oscillations in dMnGl is increased twofold in PDF-free environment, that is in Pdf0 mutants. The Pdf0 mutants also reveal an increased level of glia-specific protein REPO in dMnGl. The photoreceptors of the compound eye (R-cells) of the PDF-null flies, on the other hand, exhibit de-synchrony of PER molecular oscillations, which manifests itself as increased variability of PER-specific immunofluorescence among the R-cells. Moreover, the daily pattern of expression of the presynaptic protein Bruchpilot (BRP) in the lamina terminals of the R-cells is changed in Pdf0 mutant. Considering that PDFRs are also expressed by the marginal glia of the lamina that surround the R-cell terminals, the LNv pacemakers appear to be the likely modulators of molecular cycling in the peripheral clocks of both the glial cells and the photoreceptors of the compound eye. Consequently, some form of PDF-based coupling of the glial clocks and the photoreceptors of the eye with the central LNv pacemakers must be operational. PMID:29615925

  4. The frequency of Th17 cells in the small intestine exhibits a day-night variation dependent on circadian clock activity.

    PubMed

    Thu Le, Ha Pham; Nakamura, Yuki; Oh-Oka, Kyoko; Ishimaru, Kayoko; Nakajima, Shotaro; Nakao, Atsuhito

    2017-08-19

    Interleukin-17-producing CD4 + T helper (Th17) cells are a key immune lineage that protects against bacterial and fungal infections at mucosal surfaces. At steady state, Th17 cells are abundant in the small intestinal mucosa of mice. There are several mechanisms for regulating the population of Th17 cells in the small intestine, reflecting the importance of maintaining their numbers in the correct balance. Here we demonstrate the existence of a time-of-day-dependent variation in the frequency of Th17 cells in the lamina propria of the small intestine in wild-type mice, which was not observed in mice with a loss-of-function mutation of the core circadian gene Clock or in mice housed under aberrant light/dark conditions. Consistent with this, expression of CCL20, a chemokine that regulates homeostatic trafficking of Th17 cells to the small intestine, exhibited circadian rhythms in the small intestine of wild-type, but not Clock-mutated, mice. In support of these observations, the magnitude of ovalbumin (OVA)-specific antibody and T-cell responses in mice sensitized with OVA plus cholera toxin, a mucosal Th17 cell-dependent adjuvant, was correlated with daily variations in the proportion of Th17 cells in the small intestine. These results suggest that the proportion of Th17 cells in the small intestine exhibits a day-night variation in association with CCL20 expression, which depends on circadian clock activity. The findings provide novel insight into the regulation of the Th17 cell population in the small intestine at steady state, which may have translational potential for mucosal vaccination strategies. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The circadian oscillator in Synechococcus elongatus controls metabolite partitioning during diurnal growth.

    PubMed

    Diamond, Spencer; Jun, Darae; Rubin, Benjamin E; Golden, Susan S

    2015-04-14

    Synechococcus elongatus PCC 7942 is a genetically tractable model cyanobacterium that has been engineered to produce industrially relevant biomolecules and is the best-studied model for a prokaryotic circadian clock. However, the organism is commonly grown in continuous light in the laboratory, and data on metabolic processes under diurnal conditions are lacking. Moreover, the influence of the circadian clock on diurnal metabolism has been investigated only briefly. Here, we demonstrate that the circadian oscillator influences rhythms of metabolism during diurnal growth, even though light-dark cycles can drive metabolic rhythms independently. Moreover, the phenotype associated with loss of the core oscillator protein, KaiC, is distinct from that caused by absence of the circadian output transcriptional regulator, RpaA (regulator of phycobilisome-associated A). Although RpaA activity is important for carbon degradation at night, KaiC is dispensable for those processes. Untargeted metabolomics analysis and glycogen kinetics suggest that functional KaiC is important for metabolite partitioning in the morning. Additionally, output from the oscillator functions to inhibit RpaA activity in the morning, and kaiC-null strains expressing a mutant KaiC phosphomimetic, KaiC-pST, in which the oscillator is locked in the most active output state, phenocopies a ΔrpaA strain. Inhibition of RpaA by the oscillator in the morning suppresses metabolic processes that normally are active at night, and kaiC-null strains show indications of oxidative pentose phosphate pathway activation as well as increased abundance of primary metabolites. Inhibitory clock output may serve to allow secondary metabolite biosynthesis in the morning, and some metabolites resulting from these processes may feed back to reinforce clock timing.

  6. Vaccinia-related kinase 3 (VRK3) sets the circadian period and amplitude by affecting the subcellular localization of clock proteins in mammalian cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Nayoung; Department of Brain Science, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, Kyunggi-do, 16499; Song, Jieun

    In the eukaryotic circadian clock machinery, negative feedback repression of CLOCK (CLK) and BMAL1 transcriptional activity by PERIOD (PER) and CRYPTOCHROME (CRY) underlies the basis for 24 h rhythmic gene expression. Thus, precise regulation of the time-dependent nuclear entry of circadian repressors is crucial to generating normal circadian rhythms. Here, we sought to identify novel kinase(s) that regulate nuclear entry of mammalian CRY1 (mCRY1) with an unbiased screening using red fluorescent protein (RFP)-tagged human kinome expression plasmids in mammalian cells. Transient expression of human vaccinia-related kinase 3 (hVRK3) reduced the nuclear presence of mCRY1. hVRK3 expression also induced alterations in themore » subcellular localization of other core clock proteins, including mCRY2, mPER2, and BMAL1. In contrast, the subcellular localization of mCLK was not changed. Given that singly expressed mCLK mostly resides in the cytoplasm and that nuclear localization sequence (NLS) mutation of hVRK3 attenuated the effect of hVRK3 co-expression on subcellular localization, ectopically expressed hVRK3 presumably reduces the retention of proteins in the nucleus. Finally, downregulation of hvrk3 using siRNA reduced the amplitude and lengthened the period of the cellular bioluminescence rhythm. Taken together, these data suggest that VRK3 plays a role in setting the amplitude and period length of circadian rhythms in mammalian cells. - Highlights: • Screening was performed to identify kinases that regulate CRY1 subcellular localization. • VRK3 alters the subcellular localization of CRY1, CRY2, PER2, and BMAL1. • VRK3 knock-down alters the circadian bioluminescence rhythm in mammalian cells.« less

  7. Pharmacological Targeting the REV-ERBs in Sleep/Wake Regulation

    PubMed Central

    Amador, Ariadna; Huitron-Resendiz, Salvador; Roberts, Amanda J.; Kamenecka, Theodore M.; Solt, Laura A.; Burris, Thomas P.

    2016-01-01

    The circadian clock maintains appropriate timing for a wide range of behaviors and physiological processes. Circadian behaviors such as sleep and wakefulness are intrinsically dependent on the precise oscillation of the endogenous molecular machinery that regulates the circadian clock. The identical core clock machinery regulates myriad endocrine and metabolic functions providing a link between sleep and metabolic health. The REV-ERBs (REV-ERBα and REV-ERBβ) are nuclear receptors that are key regulators of the molecular clock and have been successfully targeted using small molecule ligands. Recent studies in mice suggest that REV-ERB-specific synthetic agonists modulate metabolic activity as well as alter sleep architecture, inducing wakefulness during the light period. Therefore, these small molecules represent unique tools to extensively study REV-ERB regulation of sleep and wakefulness. In these studies, our aim was to further investigate the therapeutic potential of targeting the REV-ERBs for regulation of sleep by characterizing efficacy, and optimal dosing time of the REV-ERB agonist SR9009 using electroencephalographic (EEG) recordings. Applying different experimental paradigms in mice, our studies establish that SR9009 does not lose efficacy when administered more than once a day, nor does tolerance develop when administered once a day over a three-day dosing regimen. Moreover, through use of a time response paradigm, we determined that although there is an optimal time for administration of SR9009 in terms of maximal efficacy, there is a 12-hour window in which SR9009 elicited a response. Our studies indicate that the REV-ERBs are potential therapeutic targets for treating sleep problems as those encountered as a consequence of shift work or jet lag. PMID:27603791

  8. Moving to the Rhythm with Clock (Circadian) Genes, Autophagy, mTOR, and SIRT1 in Degenerative Disease and Cancer.

    PubMed

    Maiese, Kenneth

    2017-01-01

    The mammalian circadian clock and its associated clock genes are increasingly been recognized as critical components for a number of physiological and disease processes that extend beyond hormone release, thermal regulation, and sleep-wake cycles. New evidence suggests that clinical behavior disruptions that involve prolonged shift work and even space travel may negatively impact circadian rhythm and lead to multi-system disease. In light of the significant role circadian rhythm can hold over the body's normal physiology as well as disease processes, we examined and discussed the impact circadian rhythm and clock genes hold over lifespan, neurodegenerative disorders, and tumorigenesis. In experimental models, lifespan is significantly reduced with the introduction of arrhythmic mutants and leads to an increase in oxidative stress exposure. Interestingly, patients with Alzheimer's disease and Parkinson's disease may suffer disease onset or progression as a result of alterations in the DNA methylation of clock genes as well as prolonged pharmacological treatment for these disorders that may lead to impairment of circadian rhythm function. Tumorigenesis also can occur with the loss of a maintained circadian rhythm and lead to an increased risk for nasopharyngeal carcinoma, breast cancer, and metastatic colorectal cancer. Interestingly, the circadian clock system relies upon the regulation of the critical pathways of autophagy, the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), and silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) as well as proliferative mechanisms that involve the wingless pathway of Wnt/β-catenin pathway to foster cell survival during injury and block tumor cell growth. Future targeting of the pathways of autophagy, mTOR, SIRT1, and Wnt that control mammalian circadian rhythm may hold the key for the development of novel and effective therapies against aging- related disorders, neurodegenerative disease, and tumorigenesis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Accuracy Performance Evaluation of Beidou Navigation Satellite System

    NASA Astrophysics Data System (ADS)

    Wang, W.; Hu, Y. N.

    2017-03-01

    Accuracy is one of the key elements of the regional Beidou Navigation Satellite System (BDS) performance standard. In this paper, we review the definition specification and evaluation standard of the BDS accuracy. Current accuracy of the regional BDS is analyzed through the ground measurements and compared with GPS in terms of dilution of precision (DOP), signal-in-space user range error (SIS URE), and positioning accuracy. The Positioning DOP (PDOP) map of BDS around Chinese mainland is compared with that of GPS. The GPS PDOP is between 1.0-2.0 and does not vary with the user latitude and longitude, while the BDS PDOP varies between 1.5-5.0, and increases as the user latitude increases, and as the user longitude apart from 118°. The accuracies of the broadcast orbits of BDS are assessed by taking the precise orbits from International GNSS Service (IGS) as the reference, and by making satellite laser ranging (SLR) residuals. The radial errors of the BDS inclined geosynchronous orbit (IGSO) and medium orbit (MEO) satellites broadcast orbits are at the 0.5m level, which are larger than those of GPS satellites at the 0.2m level. The SLR residuals of geosynchronous orbit (GEO) satellites are 65.0cm, which are larger than those of IGSO, and MEO satellites, at the 50.0cm level. The accuracy of broadcast clock offset parameters of BDS is computed by taking the clock measurements of Two-way Satellite Radio Time Frequency Transfer as the reference. Affected by the age of broadcast clock parameters, the error of the broadcast clock offset parameters of the MEO satellites is the largest, at the 0.80m level. Finally, measurements of the multi-GNSS (MGEX) receivers are used for positioning accuracy assessment of BDS and GPS. It is concluded that the positioning accuracy of regional BDS is better than 10m at the horizontal component and the vertical component. The combined positioning accuracy of both systems is better than one specific system.

  10. A homeostatic clock sets daughter centriole size in flies

    PubMed Central

    Aydogan, Mustafa G.; Steinacker, Thomas L.; Novak, Zsofia A.; Baumbach, Janina; Muschalik, Nadine

    2018-01-01

    Centrioles are highly structured organelles whose size is remarkably consistent within any given cell type. New centrioles are born when Polo-like kinase 4 (Plk4) recruits Ana2/STIL and Sas-6 to the side of an existing “mother” centriole. These two proteins then assemble into a cartwheel, which grows outwards to form the structural core of a new daughter. Here, we show that in early Drosophila melanogaster embryos, daughter centrioles grow at a linear rate during early S-phase and abruptly stop growing when they reach their correct size in mid- to late S-phase. Unexpectedly, the cartwheel grows from its proximal end, and Plk4 determines both the rate and period of centriole growth: the more active the centriolar Plk4, the faster centrioles grow, but the faster centriolar Plk4 is inactivated and growth ceases. Thus, Plk4 functions as a homeostatic clock, establishing an inverse relationship between growth rate and period to ensure that daughter centrioles grow to the correct size. PMID:29500190

  11. Testing the Foundations of Relativity Using Cryogenic Optical Resonators

    NASA Astrophysics Data System (ADS)

    Müller, H.; Braxmaier, C.; Herrmann, S.; Pradl, O.; Lämmerzahl, C.; Mlynek, J.; Schiller, S.; Peters, A.

    We present a new generation of experiments using cryogenic optical resonators(COREs) to test the foundations of relativity. The experiments test the isotropy of the speed of light (Michelson-Morley experiment), the independece of the speed of light from the velocity of the laboratory (Kennedy-Thorndike experiments), and the gravitational redshift for clocks based on an electronic transition. Compared with the best previous results, our tests have already yielded improvements up to a factor of three. Future versions promise significant improvements.

  12. Contractor point of view for system development and test program

    NASA Technical Reports Server (NTRS)

    Koide, F. K.; Ringer, D. E.; Earl, C. E.

    1981-01-01

    Industry's practice of testing space qualified hardware is examined. An overview of the Global Positioning System (GPS) Test Program is discussed from the component level to the sub-system compatibility tests with the space vehicle and finally to the launch site tests, all related to the Rubidium clock.

  13. A CMOS 0.18 μm 600 MHz clock multiplier PLL and a pseudo-LVDS driver for the high speed data transmission for the ALICE Inner Tracking System front-end chip

    NASA Astrophysics Data System (ADS)

    Lattuca, A.; Mazza, G.; Aglieri Rinella, G.; Cavicchioli, C.; Chanlek, N.; Collu, A.; Degerli, Y.; Dorokhov, A.; Flouzat, C.; Gajanana, D.; Gao, C.; Guilloux, F.; Hillemanns, H.; Hristozkov, S.; Junique, A.; Keil, M.; Kim, D.; Kofarago, M.; Kugathasan, T.; Kwon, Y.; Mager, M.; Sielewicz, K. Marek; Marin Tobon, C. Augusto; Marras, D.; Martinengo, P.; Mugnier, H.; Musa, L.; Pham, T. Hung; Puggioni, C.; Reidt, F.; Riedler, P.; Rousset, J.; Siddhanta, S.; Snoeys, W.; Song, M.; Usai, G.; Van Hoorne, J. Willem; Yang, P.

    2016-01-01

    This work presents the 600 MHz clock multiplier PLL and the pseudo-LVDS driver which are two essential components of the Data Transmission Unit (DTU), a fast serial link for the 1.2 Gb/s data transmission of the ALICE inner detector front-end chip (ALPIDE). The PLL multiplies the 40 MHz input clock in order to obtain the 600 MHz and the 200 MHz clock for a fast serializer which works in Double Data Rate mode. The outputs of the serializer feed the pseudo-LVDS driver inputs which transmits the data from the pixel chip to the patch panel with a limited number of signal lines. The driver drives a 5.3 m-6.5 m long differential transmission line by steering a maximum of 5 mA of current at the target speed. To overcome bandwidth limitations coming from the long cables the pre-emphasis can be applied to the output. Currents for the main and pre-emphasis driver can individually be adjusted using on-chip digital-to-analog converters. The circuits will be integrated in the pixel chip and are designed in the same 0.18 μm CMOS technology and will operate from the same 1.8 V supply. Design and test results of both circuits are presented.

  14. New Approaches for DC Balanced SpaceWire

    NASA Technical Reports Server (NTRS)

    Kisin, Alex; Rakow, Glenn

    2016-01-01

    Direct Current (DC) line balanced SpaceWire is attractive for a number of reasons. Firstly, a DC line balanced interface provides the ability to isolate the physical layer with either a transformer or capacitor to achieve higher common mode voltage rejection and/or the complete galvanic isolation in the case of a transformer. Secondly, it provides the possibility to reduce the number of conductors and transceivers in the classical SpaceWire interface by half by eliminating the Strobe line. Depending on the modulator scheme - the clock data recovery frequency requirements may be only twice that of the transmit clock, or even match the transmit clock: depending on the Field Programmable Gate Array (FPGA) decoder design. In this paper, several different implementation scenarios will be discussed. Two of these scenarios are backward compatible with the existing SpaceWire hardware standards except for changes at the character level. Three other scenarios, while decreasing by half the standard SpaceWire hardware components, will require changes at both the character and signal levels and work with fixed rates. Other scenarios with variable data rates will require an additional SpaceWire interface handshake initialization sequence.

  15. A Systems-Level Analysis Reveals Circadian Regulation of Splicing in Colorectal Cancer.

    PubMed

    El-Athman, Rukeia; Fuhr, Luise; Relógio, Angela

    2018-06-20

    Accumulating evidence points to a significant role of the circadian clock in the regulation of splicing in various organisms, including mammals. Both dysregulated circadian rhythms and aberrant pre-mRNA splicing are frequently implicated in human disease, in particular in cancer. To investigate the role of the circadian clock in the regulation of splicing in a cancer progression context at the systems-level, we conducted a genome-wide analysis and compared the rhythmic transcriptional profiles of colon carcinoma cell lines SW480 and SW620, derived from primary and metastatic sites of the same patient, respectively. We identified spliceosome components and splicing factors with cell-specific circadian expression patterns including SRSF1, HNRNPLL, ESRP1, and RBM 8A, as well as altered alternative splicing events and circadian alternative splicing patterns of output genes (e.g., VEGFA, NCAM1, FGFR2, CD44) in our cellular model. Our data reveals a remarkable interplay between the circadian clock and pre-mRNA splicing with putative consequences in tumor progression and metastasis. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  16. The circadian coordination of cell biology.

    PubMed

    Chaix, Amandine; Zarrinpar, Amir; Panda, Satchidananda

    2016-10-10

    Circadian clocks are cell-autonomous timing mechanisms that organize cell functions in a 24-h periodicity. In mammals, the main circadian oscillator consists of transcription-translation feedback loops composed of transcriptional regulators, enzymes, and scaffolds that generate and sustain daily oscillations of their own transcript and protein levels. The clock components and their targets impart rhythmic functions to many gene products through transcriptional, posttranscriptional, translational, and posttranslational mechanisms. This, in turn, temporally coordinates many signaling pathways, metabolic activity, organelles' structure and functions, as well as the cell cycle and the tissue-specific functions of differentiated cells. When the functions of these circadian oscillators are disrupted by age, environment, or genetic mutation, the temporal coordination of cellular functions is lost, reducing organismal health and fitness. © 2016 Chaix et al.

  17. Nine-channel mid-power bipolar pulse generator based on a field programmable gate array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haylock, Ben, E-mail: benjamin.haylock2@griffithuni.edu.au; Lenzini, Francesco; Kasture, Sachin

    Many channel arbitrary pulse sequence generation is required for the electro-optic reconfiguration of optical waveguide networks in Lithium Niobate. Here we describe a scalable solution to the requirement for mid-power bipolar parallel outputs, based on pulse patterns generated by an externally clocked field programmable gate array. Positive and negative pulses can be generated at repetition rates up to 80 MHz with pulse width adjustable in increments of 1.6 ns across nine independent outputs. Each channel can provide 1.5 W of RF power and can be synchronised with the operation of other components in an optical network such as light sourcesmore » and detectors through an external clock with adjustable delay.« less

  18. Candidate genes have sex-specific effects on timing of spring migration and moult speed in a long-distance migratory bird.

    PubMed

    Bazzi, Gaia; Podofillini, Stefano; Gatti, Emanuele; Gianfranceschi, Luca; Cecere, Jacopo G; Spina, Fernando; Saino, Nicola; Rubolini, Diego

    2017-10-01

    The timing of major life-history events, such as migration and moult, is set by endogenous circadian and circannual clocks, that have been well characterized at the molecular level. Conversely, the genetic sources of variation in phenology and in other behavioral traits have been sparsely addressed. It has been proposed that inter-individual variability in the timing of seasonal events may arise from allelic polymorphism at phenological candidate genes involved in the signaling cascade of the endogenous clocks. In this study of a long-distance migratory passerine bird, the willow warbler Phylloscopus trochilus , we investigated whether allelic variation at 5 polymorphic loci of 4 candidate genes ( Adcyap1 , Clock , Creb1 , and Npas2 ), predicted 2 major components of the annual schedule, namely timing of spring migration across the central Mediterranean sea and moult speed, the latter gauged from ptilochronological analyses of tail feathers moulted in the African winter quarters. We identified a novel Clock gene locus ( Clock region 3) showing polyQ polymorphism, which was however not significantly associated with any phenotypic trait. Npas2 allele size predicted male (but not female) spring migration date, with males bearing longer alleles migrating significantly earlier than those bearing shorter alleles. Creb1 allele size significantly predicted male (but not female) moult speed, longer alleles being associated with faster moult. All other genotype-phenotype associations were statistically non-significant. These findings provide new evidence for a role of candidate genes in modulating the phenology of different circannual activities in long-distance migratory birds, and for the occurrence of sex-specific candidate gene effects.

  19. THE mPER2 CLOCK GENE MODULATES COCAINE ACTIONS IN THE MOUSE CIRCADIAN SYSTEM

    PubMed Central

    Brager, Allison J.; Stowie, Adam C.; Prosser, Rebecca A.; Glass, J. David

    2014-01-01

    Cocaine is a potent disruptor of photic and non-photic pathways for circadian entrainment of the master circadian clock of the suprachiasmatic nucleus (SCN). These actions of cocaine likely involve its modulation of molecular (clock gene) components for SCN clock timekeeping. At present, however, the physiological basis of such an interaction is unclear. To address this question, we compared photic and non-photic phase-resetting responses between wild-type (WT) and Per2 mutant mice expressing nonfunctional PER2 protein to systemic and intra-SCN cocaine administrations. In the systemic trials, cocaine was administered i.p. (20 mg/kg) either at midday or prior to a light pulse in the early night to assess its non-photic and photic behavioral phase-resetting actions, respectively. In the intra-SCN trial, cocaine was administered by reverse microdialysis at midday to determine if the SCN is a direct target for its non-photic phase-resetting action. Non-photic phase-advancing responses to i.p. cocaine at midday were significantly (~3.5-fold) greater in Per2 mutants than WTs. However, the phase-advancing action of intra-SCN cocaine perfusion at midday did not differ between genotypes. In the light pulse trial, Per2 mutants exhibited larger photic phase-delays than did WTs, and the attenuating action of cocaine on this response was proportionately larger than in WTs. These data indicate that the Per2 clock gene is a potent modulator of cocaine’s actions in the circadian system. With regard to non-photic phase-resetting, the SCN is confirmed as a direct target of cocaine action; however, Per2 modulation of this effect likely occurs outside of the SCN. PMID:23333842

  20. An FPGA computing demo core for space charge simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jinyuan; Huang, Yifei; /Fermilab

    2009-01-01

    In accelerator physics, space charge simulation requires large amount of computing power. In a particle system, each calculation requires time/resource consuming operations such as multiplications, divisions, and square roots. Because of the flexibility of field programmable gate arrays (FPGAs), we implemented this task with efficient use of the available computing resources and completely eliminated non-calculating operations that are indispensable in regular micro-processors (e.g. instruction fetch, instruction decoding, etc.). We designed and tested a 16-bit demo core for computing Coulomb's force in an Altera Cyclone II FPGA device. To save resources, the inverse square-root cube operation in our design is computedmore » using a memory look-up table addressed with nine to ten most significant non-zero bits. At 200 MHz internal clock, our demo core reaches a throughput of 200 M pairs/s/core, faster than a typical 2 GHz micro-processor by about a factor of 10. Temperature and power consumption of FPGAs were also lower than those of micro-processors. Fast and convenient, FPGAs can serve as alternatives to time-consuming micro-processors for space charge simulation.« less

  1. Novel concepts on pregnancy clocks and alarms: redundancy and synergy in human parturition

    PubMed Central

    Menon, Ramkumar; Bonney, Elizabeth A.; Condon, Jennifer; Mesiano, Sam; Taylor, Robert N.

    2016-01-01

    The signals and mechanisms that synchronize the timing of human parturition remain a mystery and a better understanding of these processes is essential to avert adverse pregnancy outcomes. Although our insights into human labor initiation have been informed by studies in animal models, the timing of parturition relative to fetal maturation varies among viviparous species, indicative of phylogenetically different clocks and alarms; but what is clear is that important common pathways must converge to control the birth process. For example, in all species, parturition involves the transition of the myometrium from a relaxed to a highly excitable state, where the muscle rhythmically and forcefully contracts, softening the cervical extracellular matrix to allow distensibility and dilatation and thus a shearing of the fetal membranes to facilitate their rupture. We review a number of theories promulgated to explain how a variety of different timing mechanisms, including fetal membrane cell senescence, circadian endocrine clocks, and inflammatory and mechanical factors, are coordinated as initiators and effectors of parturition. Many of these factors have been independently described with a focus on specific tissue compartments. In this review, we put forth the core hypothesis that fetal membrane (amnion and chorion) senescence is the initiator of a coordinated, redundant signal cascade leading to parturition. Whether modified by oxidative stress or other factors, this process constitutes a counting device, i.e. a clock, that measures maturation of the fetal organ systems and the production of hormones and other soluble mediators (including alarmins) and that promotes inflammation and orchestrates an immune cascade to propagate signals across different uterine compartments. This mechanism in turn sensitizes decidual responsiveness and eventually promotes functional progesterone withdrawal in the myometrium, leading to increased myometrial cell contraction and the triggering of parturition. Linkage of these processes allows convergence and integration of the gestational clocks and alarms, prompting a timely and safe birth. In summary, we provide a comprehensive synthesis of the mediators that contribute to the timing of human labor. Integrating these concepts will provide a better understanding of human parturition and ultimately improve pregnancy outcomes. PMID:27363410

  2. Parallelizing Compiler Framework and API for Power Reduction and Software Productivity of Real-Time Heterogeneous Multicores

    NASA Astrophysics Data System (ADS)

    Hayashi, Akihiro; Wada, Yasutaka; Watanabe, Takeshi; Sekiguchi, Takeshi; Mase, Masayoshi; Shirako, Jun; Kimura, Keiji; Kasahara, Hironori

    Heterogeneous multicores have been attracting much attention to attain high performance keeping power consumption low in wide spread of areas. However, heterogeneous multicores force programmers very difficult programming. The long application program development period lowers product competitiveness. In order to overcome such a situation, this paper proposes a compilation framework which bridges a gap between programmers and heterogeneous multicores. In particular, this paper describes the compilation framework based on OSCAR compiler. It realizes coarse grain task parallel processing, data transfer using a DMA controller, power reduction control from user programs with DVFS and clock gating on various heterogeneous multicores from different vendors. This paper also evaluates processing performance and the power reduction by the proposed framework on a newly developed 15 core heterogeneous multicore chip named RP-X integrating 8 general purpose processor cores and 3 types of accelerator cores which was developed by Renesas Electronics, Hitachi, Tokyo Institute of Technology and Waseda University. The framework attains speedups up to 32x for an optical flow program with eight general purpose processor cores and four DRP(Dynamically Reconfigurable Processor) accelerator cores against sequential execution by a single processor core and 80% of power reduction for the real-time AAC encoding.

  3. Efficiently Scheduling Multi-core Guest Virtual Machines on Multi-core Hosts in Network Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoginath, Srikanth B; Perumalla, Kalyan S

    2011-01-01

    Virtual machine (VM)-based simulation is a method used by network simulators to incorporate realistic application behaviors by executing actual VMs as high-fidelity surrogates for simulated end-hosts. A critical requirement in such a method is the simulation time-ordered scheduling and execution of the VMs. Prior approaches such as time dilation are less efficient due to the high degree of multiplexing possible when multiple multi-core VMs are simulated on multi-core host systems. We present a new simulation time-ordered scheduler to efficiently schedule multi-core VMs on multi-core real hosts, with a virtual clock realized on each virtual core. The distinguishing features of ourmore » approach are: (1) customizable granularity of the VM scheduling time unit on the simulation time axis, (2) ability to take arbitrary leaps in virtual time by VMs to maximize the utilization of host (real) cores when guest virtual cores idle, and (3) empirically determinable optimality in the tradeoff between total execution (real) time and time-ordering accuracy levels. Experiments show that it is possible to get nearly perfect time-ordered execution, with a slight cost in total run time, relative to optimized non-simulation VM schedulers. Interestingly, with our time-ordered scheduler, it is also possible to reduce the time-ordering error from over 50% of non-simulation scheduler to less than 1% realized by our scheduler, with almost the same run time efficiency as that of the highly efficient non-simulation VM schedulers.« less

  4. The GABAA Receptor RDL Acts in Peptidergic PDF Neurons to Promote Sleep in Drosophila

    PubMed Central

    Chung, Brian Y.; Kilman, Valerie L.; Keath, J. Russel; Pitman, Jena L.; Allada, Ravi

    2011-01-01

    SUMMARY Sleep is regulated by a circadian clock that largely times sleep and wake to occur at specific times of day and a sleep homeostat that drives sleep as a function of duration of prior wakefulness[1]. To better understand the role of the circadian clock in sleep regulation, we have been using the fruit fly Drosophila melanogaster[2]. Fruit flies display all of the core behavioral features of sleep including relative immobility, elevated arousal thresholds and homeostatic regulation[2, 3]. We assessed sleep-wake modulation by a core set of 20 circadian pacemaker neurons that express the neuropeptide PDF. We find that PDF neuron ablation, loss of pdf or its receptor pdfr results in increased sleep during the late night in light:dark (LD) conditions and more prominent increases on the first subjective day of constant darkness (DD). Flies deploy similar genetic and neurotransmitter pathways to regulate sleep as their mammalian counterparts, including GABA[4]. We find that RNAi-mediated knockdown of the GABAA receptor gene, Resistant to dieldrin (Rdl), in PDF neurons, reduced sleep consistent with a role for GABA in inhibiting PDF neuron function. Patch clamp electrophysiology reveals GABA-activated picrotoxin-sensitive chloride currents on PDF+ neurons. In addition, RDL is detectable most strongly on the large subset of PDF+ pacemaker neurons. These results suggest that GABAergic inhibition of arousal promoting PDF neurons is an important mode of sleep-wake regulation in vivo. PMID:19230663

  5. Oscillator metrology with software defined radio.

    PubMed

    Sherman, Jeff A; Jördens, Robert

    2016-05-01

    Analog electrical elements such as mixers, filters, transfer oscillators, isolating buffers, dividers, and even transmission lines contribute technical noise and unwanted environmental coupling in time and frequency measurements. Software defined radio (SDR) techniques replace many of these analog components with digital signal processing (DSP) on rapidly sampled signals. We demonstrate that, generically, commercially available multi-channel SDRs are capable of time and frequency metrology, outperforming purpose-built devices by as much as an order-of-magnitude. For example, for signals at 10 MHz and 6 GHz, we observe SDR time deviation noise floors of about 20 fs and 1 fs, respectively, in under 10 ms of averaging. Examining the other complex signal component, we find a relative amplitude measurement instability of 3 × 10(-7) at 5 MHz. We discuss the scalability of a SDR-based system for simultaneous measurement of many clocks. SDR's frequency agility allows for comparison of oscillators at widely different frequencies. We demonstrate a novel and extreme example with optical clock frequencies differing by many terahertz: using a femtosecond-laser frequency comb and SDR, we show femtosecond-level time comparisons of ultra-stable lasers with zero measurement dead-time.

  6. Occupied and unoccupied electronic structures of an L-cysteine film studied by core-absorption and resonant photoelectron spectroscopies

    NASA Astrophysics Data System (ADS)

    Kamada, M.; Hideshima, T.; Azuma, J.; Yamamoto, I.; Imamura, M.; Takahashi, K.

    2016-04-01

    Unoccupied and occupied electronic structures of an L-cysteine film have been studied by absorption and resonant photoelectron spectroscopies. Core absorptions at S-L, C-K, N-K, and O-K levels indicate that the lower unoccupied states are predominantly composed of oxygen-2p, carbon-2p, and sulfur-4s+3d orbitals, while higher unoccupied states may be attributed dominantly to nitrogen-np (n ≥ 3), oxygen-np (n ≥ 3), and sulfur-ns+md (n ≥ 4, m ≥ 3) orbitals. Resonant photoelectron spectra at S-L23 and O-K levels indicate that the highest occupied state is originated from sulfur-3sp orbitals, while oxygen-2sp orbitals contribute to the deeper valence states. The delocalization lifetimes of the oxygen-1s and sulfur-2p excited states are estimated from a core-hole clock method to be about 9 ± 1 and 125 ± 25 fs, respectively.

  7. Occupied and unoccupied electronic structures of an L-cysteine film studied by core-absorption and resonant photoelectron spectroscopies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamada, M., E-mail: kamada@cc.saga-u.ac.jp; Hideshima, T.; Azuma, J.

    2016-04-15

    Unoccupied and occupied electronic structures of an L-cysteine film have been studied by absorption and resonant photoelectron spectroscopies. Core absorptions at S-L, C-K, N-K, and O-K levels indicate that the lower unoccupied states are predominantly composed of oxygen-2p, carbon-2p, and sulfur-4s+3d orbitals, while higher unoccupied states may be attributed dominantly to nitrogen-np (n ≥ 3), oxygen-np (n ≥ 3), and sulfur-ns+md (n ≥ 4,  m ≥ 3) orbitals. Resonant photoelectron spectra at S-L{sub 23} and O-K levels indicate that the highest occupied state is originated from sulfur-3sp orbitals, while oxygen-2sp orbitals contribute to the deeper valence states. The delocalization lifetimesmore » of the oxygen-1s and sulfur-2p excited states are estimated from a core-hole clock method to be about 9 ± 1 and 125 ± 25 fs, respectively.« less

  8. Performance analysis of the GR712RC dual-core LEON3FT SPARC V8 processor in an asymmetric multi-processing environment

    NASA Astrophysics Data System (ADS)

    Giusi, Giovanni; Liu, Scige J.; Galli, Emanuele; Di Giorgio, Anna M.; Farina, Maria; Vertolli, Nello; Di Lellis, Andrea M.

    2016-07-01

    In this paper we present the results of a series of performance tests carried out on a prototype board mounting the Cobham Gaisler GR712RC Dual Core LEON3FT processor. The aim was the characterization of the performances of the dual core processor when used for executing a highly demanding lossless compression task, acting on data segments continuously copied from the static memory to the processor RAM. The selection of the compression activity to evaluate the performances was driven by the possibility of a comparison with previously executed tests on the Cobham/Aeroflex Gaisler UT699 LEON3FT SPARC™ V8. The results of the test activity have shown a factor 1.6 of improvement with respect to the previous tests, which can easily be improved by adopting a faster onboard board clock, and provided indications on the best size of the data chunks to be used in the compression activity.

  9. Common features in diverse insect clocks.

    PubMed

    Numata, Hideharu; Miyazaki, Yosuke; Ikeno, Tomoko

    2015-01-01

    This review describes common features among diverse biological clocks in insects, including circadian, circatidal, circalunar/circasemilunar, and circannual clocks. These clocks control various behaviors, physiological functions, and developmental events, enabling adaptation to periodic environmental changes. Circadian clocks also function in time-compensation for celestial navigation and in the measurement of day or night length for photoperiodism. Phase response curves for such clocks reported thus far exhibit close similarities; specifically, the circannual clock in Anthrenus verbasci shows striking similarity to circadian clocks in its phase response. It is suggested that diverse biological clocks share physiological properties in their phase responses irrespective of period length. Molecular and physiological mechanisms are best understood for the optic-lobe and mid-brain circadian clocks, although there is no direct evidence that these clocks are involved in rhythmic phenomena other than circadian rhythms in daily events. Circadian clocks have also been localized in peripheral tissues, and research on their role in various rhythmic phenomena has been started. Although clock genes have been identified as controllers of circadian rhythms in daily events, some of these genes have also been shown to be involved in photoperiodism and possibly in time-compensated celestial navigation. In contrast, there is no experimental evidence indicating that any known clock gene is involved in biological clocks other than circadian clocks.

  10. Global synchronization of parallel processors using clock pulse width modulation

    DOEpatents

    Chen, Dong; Ellavsky, Matthew R.; Franke, Ross L.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Jeanson, Mark J.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Littrell, Daniel; Ohmacht, Martin; Reed, Don D.; Schenck, Brandon E.; Swetz, Richard A.

    2013-04-02

    A circuit generates a global clock signal with a pulse width modification to synchronize processors in a parallel computing system. The circuit may include a hardware module and a clock splitter. The hardware module may generate a clock signal and performs a pulse width modification on the clock signal. The pulse width modification changes a pulse width within a clock period in the clock signal. The clock splitter may distribute the pulse width modified clock signal to a plurality of processors in the parallel computing system.

  11. Integer ambiguity resolution in precise point positioning: method comparison

    NASA Astrophysics Data System (ADS)

    Geng, Jianghui; Meng, Xiaolin; Dodson, Alan H.; Teferle, Felix N.

    2010-09-01

    Integer ambiguity resolution at a single receiver can be implemented by applying improved satellite products where the fractional-cycle biases (FCBs) have been separated from the integer ambiguities in a network solution. One method to achieve these products is to estimate the FCBs by averaging the fractional parts of the float ambiguity estimates, and the other is to estimate the integer-recovery clocks by fixing the undifferenced ambiguities to integers in advance. In this paper, we theoretically prove the equivalence of the ambiguity-fixed position estimates derived from these two methods by assuming that the FCBs are hardware-dependent and only they are assimilated into the clocks and ambiguities. To verify this equivalence, we implement both methods in the Position and Navigation Data Analyst software to process 1 year of GPS data from a global network of about 350 stations. The mean biases between all daily position estimates derived from these two methods are only 0.2, 0.1 and 0.0 mm, whereas the standard deviations of all position differences are only 1.3, 0.8 and 2.0 mm for the East, North and Up components, respectively. Moreover, the differences of the position repeatabilities are below 0.2 mm on average for all three components. The RMS of the position estimates minus those from the International GNSS Service weekly solutions for the former method differs by below 0.1 mm on average for each component from that for the latter method. Therefore, considering the recognized millimeter-level precision of current GPS-derived daily positions, these statistics empirically demonstrate the theoretical equivalence of the ambiguity-fixed position estimates derived from these two methods. In practice, we note that the former method is compatible with current official clock-generation methods, whereas the latter method is not, but can potentially lead to slightly better positioning quality.

  12. Central and peripheral clocks are coupled by a neuropeptide pathway in Drosophila

    PubMed Central

    Selcho, Mareike; Millán, Carola; Palacios-Muñoz, Angelina; Ruf, Franziska; Ubillo, Lilian; Chen, Jiangtian; Bergmann, Gregor; Ito, Chihiro; Silva, Valeria; Wegener, Christian; Ewer, John

    2017-01-01

    Animal circadian clocks consist of central and peripheral pacemakers, which are coordinated to produce daily rhythms in physiology and behaviour. Despite its importance for optimal performance and health, the mechanism of clock coordination is poorly understood. Here we dissect the pathway through which the circadian clock of Drosophila imposes daily rhythmicity to the pattern of adult emergence. Rhythmicity depends on the coupling between the brain clock and a peripheral clock in the prothoracic gland (PG), which produces the steroid hormone, ecdysone. Time information from the central clock is transmitted via the neuropeptide, sNPF, to non-clock neurons that produce the neuropeptide, PTTH. These secretory neurons then forward time information to the PG clock. We also show that the central clock exerts a dominant role on the peripheral clock. This use of two coupled clocks could serve as a paradigm to understand how daily steroid hormone rhythms are generated in animals. PMID:28555616

  13. USNO Master Clock - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › USNO › Precise Time › Master Clock USNO Logo USNO Navigation Master Clock GPS Display Clocks TWSTT Telephone Time NTP Info USNO Master Clock clock vault The USNO Master Clock is the

  14. A laboratory simulation of Arabidopsis seed dormancy cycling provides new insight into its regulation by clock genes and the dormancy-related genes DOG1, MFT, CIPK23 and PHYA.

    PubMed

    Footitt, Steven; Ölçer-Footitt, Hülya; Hambidge, Angela J; Finch-Savage, William E

    2017-08-01

    Environmental signals drive seed dormancy cycling in the soil to synchronize germination with the optimal time of year, a process essential for species' fitness and survival. Previous correlation of transcription profiles in exhumed seeds with annual environmental signals revealed the coordination of dormancy-regulating mechanisms with the soil environment. Here, we developed a rapid and robust laboratory dormancy cycling simulation. The utility of this simulation was tested in two ways: firstly, using mutants in known dormancy-related genes [DELAY OF GERMINATION 1 (DOG1), MOTHER OF FLOWERING TIME (MFT), CBL-INTERACTING PROTEIN KINASE 23 (CIPK23) and PHYTOCHROME A (PHYA)] and secondly, using further mutants, we test the hypothesis that components of the circadian clock are involved in coordination of the annual seed dormancy cycle. The rate of dormancy induction and relief differed in all lines tested. In the mutants, dog1-2 and mft2, dormancy induction was reduced but not absent. DOG1 is not absolutely required for dormancy. In cipk23 and phyA dormancy, induction was accelerated. Involvement of the clock in dormancy cycling was clear when mutants in the morning and evening loops of the clock were compared. Dormancy induction was faster when the morning loop was compromised and delayed when the evening loop was compromised. © 2017 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  15. Circadian Enhancers Coordinate Multiple Phases of Rhythmic Gene Transcription In Vivo

    PubMed Central

    Fang, Bin; Everett, Logan J.; Jager, Jennifer; Briggs, Erika; Armour, Sean M.; Feng, Dan; Roy, Ankur; Gerhart-Hines, Zachary; Sun, Zheng; Lazar, Mitchell A.

    2014-01-01

    SUMMARY Mammalian transcriptomes display complex circadian rhythms with multiple phases of gene expression that cannot be accounted for by current models of the molecular clock. We have determined the underlying mechanisms by measuring nascent RNA transcription around the clock in mouse liver. Unbiased examination of eRNAs that cluster in specific circadian phases identified functional enhancers driven by distinct transcription factors (TFs). We further identify on a global scale the components of the TF cistromes that function to orchestrate circadian gene expression. Integrated genomic analyses also revealed novel mechanisms by which a single circadian factor controls opposing transcriptional phases. These findings shed new light on the diversity and specificity of TF function in the generation of multiple phases of circadian gene transcription in a mammalian organ. PMID:25416951

  16. Irradiation setup at the U-120M cyclotron facility

    NASA Astrophysics Data System (ADS)

    Křížek, F.; Ferencei, J.; Matlocha, T.; Pospíšil, J.; Príbeli, P.; Raskina, V.; Isakov, A.; Štursa, J.; Vaňát, T.; Vysoká, K.

    2018-06-01

    This paper describes parameters of the proton beams provided by the U-120M cyclotron and the related irradiation setup at the open access irradiation facility at the Nuclear Physics Institute of the Czech Academy of Sciences. The facility is suitable for testing radiation hardness of various electronic components. The use of the setup is illustrated by a measurement of an error rate for errors caused by Single Event Transients in an SRAM-based Xilinx XC3S200 FPGA. This measurement provides an estimate of a possible occurrence of Single Event Transients. Data suggest that the variation of error rate of the Single Event Effects for different clock phase shifts is not significant enough to use clock phase alignment with the beam as a fault mitigation technique.

  17. Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo.

    PubMed

    Fang, Bin; Everett, Logan J; Jager, Jennifer; Briggs, Erika; Armour, Sean M; Feng, Dan; Roy, Ankur; Gerhart-Hines, Zachary; Sun, Zheng; Lazar, Mitchell A

    2014-11-20

    Mammalian transcriptomes display complex circadian rhythms with multiple phases of gene expression that cannot be accounted for by current models of the molecular clock. We have determined the underlying mechanisms by measuring nascent RNA transcription around the clock in mouse liver. Unbiased examination of enhancer RNAs (eRNAs) that cluster in specific circadian phases identified functional enhancers driven by distinct transcription factors (TFs). We further identify on a global scale the components of the TF cistromes that function to orchestrate circadian gene expression. Integrated genomic analyses also revealed mechanisms by which a single circadian factor controls opposing transcriptional phases. These findings shed light on the diversity and specificity of TF function in the generation of multiple phases of circadian gene transcription in a mammalian organ.

  18. Generation of oscillating gene regulatory network motifs

    NASA Astrophysics Data System (ADS)

    van Dorp, M.; Lannoo, B.; Carlon, E.

    2013-07-01

    Using an improved version of an evolutionary algorithm originally proposed by François and Hakim [Proc. Natl. Acad. Sci. USAPNASA60027-842410.1073/pnas.0304532101 101, 580 (2004)], we generated small gene regulatory networks in which the concentration of a target protein oscillates in time. These networks may serve as candidates for oscillatory modules to be found in larger regulatory networks and protein interaction networks. The algorithm was run for 105 times to produce a large set of oscillating modules, which were systematically classified and analyzed. The robustness of the oscillations against variations of the kinetic rates was also determined, to filter out the least robust cases. Furthermore, we show that the set of evolved networks can serve as a database of models whose behavior can be compared to experimentally observed oscillations. The algorithm found three smallest (core) oscillators in which nonlinearities and number of components are minimal. Two of those are two-gene modules: the mixed feedback loop, already discussed in the literature, and an autorepressed gene coupled with a heterodimer. The third one is a single gene module which is competitively regulated by a monomer and a dimer. The evolutionary algorithm also generated larger oscillating networks, which are in part extensions of the three core modules and in part genuinely new modules. The latter includes oscillators which do not rely on feedback induced by transcription factors, but are purely of post-transcriptional type. Analysis of post-transcriptional mechanisms of oscillation may provide useful information for circadian clock research, as recent experiments showed that circadian rhythms are maintained even in the absence of transcription.

  19. All-digital phase-locked loop with 50-cycle lock time suitable for high-performance microprocessors

    NASA Astrophysics Data System (ADS)

    Dunning, Jim; Garcia, Gerald; Lundberg, Jim; Nuckolls, Ed

    1995-04-01

    A frequency-synthesizing, all-digital phase-locked loop (ADPLL) is fully integrated with a 0.5 micron CMOS microprocessor. The ADPLL has a 50-cycle phase lock, has a gain mechanism independent of process, voltage, and temperature, and is immune to input jitter. A digitally-controlled oscillator (DCO) forms the core of the ADPLL and operates from 50 to 550 MHz, running at 4x the reference clock frequency. The DCO has 16 b of binarily weighted control and achieves LSB resolution under 500 fs.

  20. Turning Back the Clock: Inferring the History of the Eight O'clock Arc

    NASA Astrophysics Data System (ADS)

    Finkelstein, Steven L.; Papovich, Casey; Rudnick, Gregory; Egami, Eiichi; Le Floc'h, Emeric; Rieke, Marcia J.; Rigby, Jane R.; Willmer, Christopher N. A.

    2009-07-01

    We present the results from an optical and near-infrared (NIR) spectroscopic study of the ultraviolet-luminous z = 2.73 galaxy, the 8 o'clock arc. Due to gravitational lensing, this galaxy is magnified by a factor of μ > 10, allowing in-depth measurements which are usually unfeasible at such redshifts. In the optical spectra, we measured the systemic redshift of the galaxy, z = 2.7322± 0.0012, using stellar photospheric lines. This differs from the redshift of absorption lines in the interstellar medium, z = 2.7302 ± 0.0006, implying gas outflows on the order of 160 km s-1. With H- and K-band NIR spectra, we have measured nebular emission lines of Hα, Hβ, Hγ, [N II], and [O III], which have a redshift z = 2.7333 ± 0.0001, consistent with the derived systemic redshift. From the Balmer decrement, we measured the dust extinction in this galaxy to be A 5500 = 1.17 ± 36 mag. Correcting the Hα line flux for dust extinction as well as the assumed lensing factor, we measure a star formation rate (SFR) of ~270 M sun yr-1, which is higher than ~85% of star-forming galaxies at z ~ 2-3. Using combinations of all detected emission lines, we find that the 8 o'clock arc has a gas-phase metallicity of ~0.8 Z sun, showing that enrichment at high redshift is not rare, even in blue, star-forming galaxies. Studying spectra from two of the arc components separately, we find that one component dominates both the dust extinction and SFR, although the metallicities between the two components are similar. We derive the mass via stellar population modeling, and find that the arc has a total stellar mass of ~4.2 × 1011 M sun, which falls on the mass-metallicity relation at z ~ 2. Finally, we estimate the total gas mass, and find it to be only ~12% of the stellar mass, implying that the 8 o'clock arc is likely nearing the end of a starburst. Based partly on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (USA), the Science and Technology Facilities Council (UK), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia e Tecnologia (Brazil), and SECYT (Argentina). Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  1. [Elevated expression of CLOCK is associated with poor prognosis in hepatocellular carcinoma].

    PubMed

    Li, Bo; Yang, Xiliang; Li, Jiaqi; Yang, Yi; Yan, Zhaoyong; Zhang, Hongxin; Mu, Jiao

    2018-02-01

    Objective To evaluate the expression of circadian locomotor output cycles kaput (CLOCK) and its effects on cell growth in hepatocellular carcinoma (HCC). Methods The expression of CLOCK in 158 pairs of human HCC tissues and matched noncancerous samples was detected by immunohistochemical (IHC) staining. The expression of CLOCK in HCC patients was also verified using the data from GEO and TCGA (a total of 356 cases). The relationship between CLOCK expression and clinicopathological features of HCC patients was analyzed by single factor statistical analysis. Kaplan-Meier survival curves of HCC patients were drawn to study the relationship between the expression level of CLOCK and the survival state. The effect of CLOCK on the growth of HepG2 cells was detected by MTS assay. Results The expression of CLOCK in HCC tissues was significantly higher than that in the adjacent tissues, and the up-regulation of CLOCK expression in HCC tissue was also confirmed in the public data of HCC (356 cases). HCC patients were divided into low CLOCK expression group and high CLOCK expression group. Univariate analysis showed that the expression of CLOCK was related to tumor size, TNM stage, and portal vein invasion in HCC patients. HCC patients with low CLOCK expression had longer overall survival time and relapse-free survival time than those with high CLOCK expression. The proliferation of cells significantly decreased after the expression of CLOCK was knocked down in HepG2 cells. Conclusion The expression of CLOCK in HCC tissues was much higher than that in normal liver tissues, and the high expression of CLOCK indicated the poor prognosis. The knockdown of CLOCK in HCC cells could inhibit the proliferation of HepG2 cells.

  2. Temporal Ordering of Dynamic Expression Data from Detailed Spatial Expression Maps.

    PubMed

    Bailey, Charlotte S L; Bone, Robert A; Murray, Philip J; Dale, J Kim

    2017-02-09

    During somitogenesis, pairs of epithelial somites form in a progressive manner, budding off from the anterior end of the pre-somitic mesoderm (PSM) with a strict species-specific periodicity. The periodicity of the process is regulated by a molecular oscillator, known as the "segmentation clock," acting in the PSM cells. This clock drives the oscillatory patterns of gene expression across the PSM in a posterior-anterior direction. These so-called clock genes are key components of three signaling pathways: Wnt, Notch, and fibroblast growth factor (FGF). In addition, Notch signaling is essential for synchronizing intracellular oscillations in neighboring cells. We recently gained insight into how this may be mechanistically regulated. Upon ligand activation, the Notch receptor is cleaved, releasing the intracellular domain (NICD), which moves to the nucleus and regulates gene expression. NICD is highly labile, and its phosphorylation-dependent turnover acts to restrict Notch signaling. The profile of NICD production (and degradation) in the PSM is known to be oscillatory and to resemble that of a clock gene. We recently reported that both the Notch receptor and the Delta ligand, which mediate intercellular coupling, themselves exhibit dynamic expression at both the mRNA and protein levels. In this article, we describe the sensitive detection methods and detailed image analysis tools that we used, in combination with the computational modeling that we designed, to extract and overlay expression data from distinct points in the expression cycle. This allowed us to construct a spatio-temporal picture of the dynamic expression profile for the receptor, the ligand, and the Notch target clock genes throughout an oscillation cycle. Here, we describe the protocols used to generate and culture the PSM explants, as well as the procedure to stain for the mRNA or protein. We also explain how the confocal images were subsequently analyzed and temporally ordered computationally to generate ordered sequences of clock expression snapshots, hereafter defined as "kymographs," for the visualization of the spatiotemporal expression of Delta-like1 (Dll1) and Notch1 throughout the PSM.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brewer, Forrest; Incandela, Joseph

    This project was slated to design and develop Rad-Hard IP components for 1Gb/s links and supporting hardware designs such as PLL, SER/DES, pad drivers and receivers and custom protocol hardware for the 1Gb/s channel. Also included in the proposal was a study of a hardened memory to be used as a packet buffer for channel and data concentrator components to meet the 1 Gb/s specification. Over the course of the proposal, technology change and innovation of hardware designs lead us away from the 1 Gb/s goal to contemplate much higher performance link IP which, we believed better met the goalsmore » of physics experiments. Note that CERN microelectronics had managed to create a 4.7 Gb/s link designed to drive optical fibers and containing infrastructure for connecting much lower bandwidth front-end devices. Our own work to that point had shown the possibility of constructing a link with much lower power, lower physical overhead but of equivalent performance that could be designed to integrate directly onto the front-end ASIC (ADC and data encoding) designs. Substantial overall power savings and experimental simplicity could be achieved by eliminating data transmission to data concentrators and data concentrators and related hardened buffering themselves, with conversion to optical media at a removed distance from the experiment core. We had already developed and tested Rad-Hard SER/DES components (1Gb in 130nm standard cells) and redundant Pad Drivers/Receivers (3+ Gb/s designed and measured performance), and had a viable 1Gb/s link design based on redundant a stuttered clock receiver and classical PLL, so the basic goals of the proposal had been achieved. Below, in chronological order, are the products and tools we constructed, as well as our tests and publications.« less

  4. Precise orbit determination and rapid orbit recovery supported by time synchronization

    NASA Astrophysics Data System (ADS)

    Guo, Rui; Zhou, JianHua; Hu, XiaoGong; Liu, Li; Tang, Bo; Li, XiaoJie; Wu, Shan

    2015-06-01

    In order to maintain optimal signal coverage, GNSS satellites have to experience orbital maneuvers. For China's COMPASS system, precise orbit determination (POD) as well as rapid orbit recovery after maneuvers contribute to the overall Positioning, Navigation and Timing (PNT) service performance in terms of accuracy and availability. However, strong statistical correlations between clock offsets and the radial component of a satellite's positions require long data arcs for POD to converge. We propose here a new strategy which relies on time synchronization between ground tracking stations and in-orbit satellites. By fixing satellite clock offsets measured by the satellite station two-way synchronization (SSTS) systems and receiver clock offsets, POD and orbital recovery performance can be improved significantly. Using the Satellite Laser Ranging (SLR) as orbital accuracy evaluation, we find the 4-hr recovered orbit achieves about 0.71 m residual root mean square (RMS) error of fit SLR data, the recovery time is improved from 24-hr to 4-hr compared with the conventional POD without time synchronization support. In addition, SLR evaluation shows that for 1-hr prediction, about 1.47 m accuracy is achieved with the new proposed POD strategy.

  5. New Approaches for Direct Current (DC) Balanced SpaceWire

    NASA Technical Reports Server (NTRS)

    Kisin, Alex; Rakow, Glenn

    2016-01-01

    Direct Current (DC) line balanced SpaceWire is attractive for a number of reasons. Firstly, a DC line balanced interface provides the ability to isolate the physical layer with either a transformer or capacitor to achieve higher common mode voltage rejection and or the complete galvanic isolation in the case of a transformer. And secondly, it provides the possibility to reduce the number of conductors and transceivers in the classical SpaceWire interface by half by eliminating the Strobe line. Depending on the modulator scheme the clock data recovery frequency requirements may be only twice that of the transmit clock, or even match the transmit clock: depending on the Field Programmable Gate Array (FPGA) decoder design. In this paper, several different implementation scenarios will be discussed. Two of these scenarios are backward compatible with the existing SpaceWire hardware standards except for changes at the character level. Three other scenarios, while decreasing by half the standard SpaceWire hardware components, will require changes at both the character and signal levels and work with fixed rates. Other scenarios with variable data rates will require an additional SpaceWire interface handshake initialization sequence.

  6. Drifts and Environmental Disturbances in Atomic Clock Subsystems: Quantifying Local Oscillator, Control Loop, and Ion Resonance Interactions.

    PubMed

    Enzer, Daphna G; Diener, William A; Murphy, David W; Rao, Shanti R; Tjoelker, Robert L

    2017-03-01

    Linear ion trap frequency standards are among the most stable continuously operating frequency references and clocks. Depending on the application, they have been operated with a variety of local oscillators (LOs), including quartz ultrastable oscillators, hydrogen-masers, and cryogenic sapphire oscillators. The short-, intermediate-, and long-term stability of the frequency output is a complicated function of the fundamental performances, the time dependence of environmental disturbances, the atomic interrogation algorithm, the implemented control loop, and the environmental sensitivity of the LO and the atomic system components. For applications that require moving these references out of controlled lab spaces and into less stable environments, such as fieldwork or spaceflight, a deeper understanding is needed of how disturbances at different timescales impact the various subsystems of the clock and ultimately the output stability. In this paper, we analyze which perturbations have an impact and to what degree. We also report on a computational model of a control loop, which keeps the microwave source locked to the ion resonance. This model is shown to agree with laboratory measurements of how well the feedback removes various disturbances and also with a useful analytic approach we developed for predicting these impacts.

  7. The [Y/Mg] clock works for evolved solar metallicity stars

    NASA Astrophysics Data System (ADS)

    Slumstrup, D.; Grundahl, F.; Brogaard, K.; Thygesen, A. O.; Nissen, P. E.; Jessen-Hansen, J.; Van Eylen, V.; Pedersen, M. G.

    2017-08-01

    Aims: Previously [Y/Mg] has been proven to be an age indicator for solar twins. Here, we investigate if this relation also holds for helium-core-burning stars of solar metallicity. Methods: High resolution and high signal-to-noise ratio (S/N) spectroscopic data of stars in the helium-core-burning phase have been obtained with the FIES spectrograph on the NOT 2.56 m telescope and the HIRES spectrograph on the Keck I 10 m telescope. They have been analyzed to determine the chemical abundances of four open clusters with close to solar metallicity; NGC 6811, NGC 6819, M 67 and NGC 188. The abundances are derived from equivalent widths of spectral lines using ATLAS9 model atmospheres with parameters determined from the excitation and ionization balance of Fe lines. Results from asteroseismology and binary studies were used as priors on the atmospheric parameters, where especially the log g is determined to much higher precision than what is possible with spectroscopy. Results: It is confirmed that the four open clusters are close to solar metallicity and they follow the [Y/Mg] vs. age trend previously found for solar twins. Conclusions: The [Y/Mg] vs. age clock also works for giant stars in the helium-core burning phase, which vastly increases the possibilities to estimate the age of stars not only in the solar neighborhood, but in large parts of the Galaxy, due to the brighter nature of evolved stars compared to dwarfs. Based on spectroscopic observations made with two telescopes: the Nordic Optical Telescope operated by NOTSA at the Observatorio del Roque de los Muchachos (La Palma, Spain) of the Instituto de Astrofísica de Canarias and the Keck I Telescope at the W.M. Keck Observatory (Mauna Kea, Hawaii, USA) operated by the California Institute of Technology, the University of California and the National Aeronautics and Space Administration.

  8. Temperature oscillations drive cycles in the activity of MMP-2,9 secreted by a human trabecular meshwork cell line.

    PubMed

    Li, Stanley Ka-Lok; Banerjee, Juni; Jang, Christopher; Sehgal, Amita; Stone, Richard A; Civan, Mortimer M

    2015-02-05

    Aqueous humor inflow falls 50% during sleeping hours without proportional fall in IOP, partly reflecting reduced outflow facility. The mechanisms underlying outflow facility cycling are unknown. One outflow facility regulator is matrix metalloproteinase (MMP) release from trabecular meshwork (TM) cells. Because anterior segment temperature must oscillate due to core temperature cycling and eyelid closure during sleep, we tested whether physiologically relevant temperature oscillations drive cycles in the activity of secreted MMP. Temperature of transformed normal human TM cells (hTM5 line) was fixed or alternated 12 hours/12 hours between 33°C and 37°C. Activity of secreted MMP-2 and MMP-9 was measured by zymography, and gene expression by RT-PCR and quantitative PCR. Raising temperature to 37°C increased, and lowering to 33°C reduced, activity of secreted MMP. Switching between 37°C and 33°C altered MMP-9 by 40% ± 3% and MMP-2 by 22% ± 2%. Peripheral circadian clocks did not mediate temperature-driven cycling of MMP secretion because MMP-release oscillations did not persist at constant temperature after 3 to 6 days of alternating temperatures, and temperature cycles did not entrain clock-gene expression in these cells. Furthermore, inhibiting heat shock transcription factor 1, which links temperature and peripheral clock-gene oscillations, inhibited MMP-9 but not MMP-2 temperature-driven MMP cycling. Inhibition of heat-sensitive TRPV1 channels altered total MMP secretion but not temperature-induced modulations. Inhibiting cold-sensitive TRPM-8 channels had no effect. Physiologically relevant temperature oscillations drive fluctuations of secreted MMP-2 and MMP-9 activity in hTM5 cells independent of peripheral clock genes and temperature-sensitive TRP channels. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  9. Bayesian Morphological Clock Methods Resurrect Placoderm Monophyly and Reveal Rapid Early Evolution in Jawed Vertebrates.

    PubMed

    King, Benedict; Qiao, Tuo; Lee, Michael S Y; Zhu, Min; Long, John A

    2017-07-01

    The phylogeny of early gnathostomes provides an important framework for understanding one of the most significant evolutionary events, the origin and diversification of jawed vertebrates. A series of recent cladistic analyses have suggested that the placoderms, an extinct group of armoured fish, form a paraphyletic group basal to all other jawed vertebrates. We revised and expanded this morphological data set, most notably by sampling autapomorphies in a similar way to parsimony-informative traits, thus ensuring this data (unlike most existing morphological data sets) satisfied an important assumption of Bayesian tip-dated morphological clock approaches. We also found problems with characters supporting placoderm paraphyly, including character correlation and incorrect codings. Analysis of this data set reveals that paraphyly and monophyly of core placoderms (excluding maxillate forms) are essentially equally parsimonious. The two alternative topologies have different root positions for the jawed vertebrates but are otherwise similar. However, analysis using tip-dated clock methods reveals strong support for placoderm monophyly, due to this analysis favoring trees with more balanced rates of evolution. Furthermore, enforcing placoderm paraphyly results in higher levels and unusual patterns of rate heterogeneity among branches, similar to that generated from simulated trees reconstructed with incorrect root positions. These simulations also show that Bayesian tip-dated clock methods outperform parsimony when the outgroup is largely uninformative (e.g., due to inapplicable characters), as might be the case here. The analysis also reveals that gnathostomes underwent a rapid burst of evolution during the Silurian period which declined during the Early Devonian. This rapid evolution during a period with few articulated fossils might partly explain the difficulty in ascertaining the root position of jawed vertebrates. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. CLOCK regulates mammary epithelial cell growth and differentiation

    PubMed Central

    Crodian, Jennifer; Suárez-Trujillo, Aridany; Erickson, Emily; Weldon, Bethany; Crow, Kristi; Cummings, Shelby; Chen, Yulu; Shamay, Avi; Mabjeesh, Sameer J.; Plaut, Karen

    2016-01-01

    Circadian clocks influence virtually all physiological processes, including lactation. Here, we investigate the role of the CLOCK gene in regulation of mammary epithelial cell growth and differentiation. Comparison of mammary morphology in late-pregnant wild-type and ClockΔ19 mice, showed that gland development was negatively impacted by genetic loss of a functional timing system. To understand whether these effects were due, in part, to loss of CLOCK function in the gland, the mouse mammary epithelial cell line, HC11, was transfected with short hairpin RNA that targeted Clock (shClock). Cells transfected with shClock expressed 70% less Clock mRNA than wild-type (WT) HC11 cultures, which resulted in significantly depressed levels of CLOCK protein (P < 0.05). HC11 lines carrying shClock had four-fold higher growth rates (P < 0.05), and the percentage of cells in G1 phase was significantly higher (90.1 ± 1.1% of shClock vs. 71.3 ± 3.6% of WT-HC11) following serum starvation. Quantitative-PCR (qPCR) analysis showed shClock had significant effects (P < 0.0001) on relative expression levels of Ccnd1, Wee1, and Tp63. qPCR analysis of the effect of shClock on Fasn and Cdh1 expression in undifferentiated cultures and cultures treated 96 h with dexamethasone, insulin, and prolactin (differentiated) found levels were reduced by twofold and threefold, respectively (P < 0.05), in shClock line relative to WT cultures. Abundance of CDH1 and TP63 proteins were significantly reduced in cultures transfected with shClock. These data support how CLOCK plays a role in regulation of epithelial cell growth and differentiation in the mammary gland. PMID:27707717

  11. Using Integer Clocks to Verify the Timing-Sync Sensor Network Protocol

    NASA Technical Reports Server (NTRS)

    Huang, Xiaowan; Singh, Anu; Smolka, Scott A.

    2010-01-01

    We use the UPPAAL model checker for Timed Automata to verify the Timing-Sync time-synchronization protocol for sensor networks (TPSN). The TPSN protocol seeks to provide network-wide synchronization of the distributed clocks in a sensor network. Clock-synchronization algorithms for sensor networks such as TPSN must be able to perform arithmetic on clock values to calculate clock drift and network propagation delays. They must be able to read the value of a local clock and assign it to another local clock. Such operations are not directly supported by the theory of Timed Automata. To overcome this formal-modeling obstacle, we augment the UPPAAL specification language with the integer clock derived type. Integer clocks, which are essentially integer variables that are periodically incremented by a global pulse generator, greatly facilitate the encoding of the operations required to synchronize clocks as in the TPSN protocol. With this integer-clock-based model of TPSN in hand, we use UPPAAL to verify that the protocol achieves network-wide time synchronization and is devoid of deadlock. We also use the UPPAAL Tracer tool to illustrate how integer clocks can be used to capture clock drift and resynchronization during protocol execution

  12. Aberrant Proteostasis of BMAL1 Underlies Circadian Abnormalities in a Paradigmatic mTOR-opathy.

    PubMed

    Lipton, Jonathan O; Boyle, Lara M; Yuan, Elizabeth D; Hochstrasser, Kevin J; Chifamba, Fortunate F; Nathan, Ashwin; Tsai, Peter T; Davis, Fred; Sahin, Mustafa

    2017-07-25

    Tuberous sclerosis complex (TSC) is a neurodevelopmental disorder characterized by mutations in either the TSC1 or TSC2 genes, whose products form a critical inhibitor of the mechanistic target of rapamycin (mTOR). Loss of TSC1/2 gene function renders an mTOR-overactivated state. Clinically, TSC manifests with epilepsy, intellectual disability, autism, and sleep dysfunction. Here, we report that mouse models of TSC have abnormal circadian rhythms. We show that mTOR regulates the proteostasis of the core clock protein BMAL1, affecting its translation, degradation, and subcellular localization. This results in elevated levels of BMAL1 and a dysfunctional clock that displays abnormal timekeeping under constant conditions and exaggerated responses to phase resetting. Genetically lowering the dose of BMAL1 rescues circadian behavioral phenotypes in TSC mouse models. These findings indicate that BMAL1 deregulation is a feature of the mTOR-activated state and suggest a molecular mechanism for mitigating circadian phenotypes in a neurodevelopmental disorder. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Genetic disruption of the core circadian clock impairs hippocampus-dependent memory.

    PubMed

    Wardlaw, Sarah M; Phan, Trongha X; Saraf, Amit; Chen, Xuanmao; Storm, Daniel R

    2014-08-01

    Perturbing the circadian system by electrolytically lesioning the suprachiasmatic nucleus (SCN) or varying the environmental light:dark schedule impairs memory, suggesting that memory depends on the circadian system. We used a genetic approach to evaluate the role of the molecular clock in memory. Bmal1-/- mice, which are arrhythmic under constant conditions, were examined for hippocampus-dependent memory, LTP at the Schaffer-collateral synapse, and signal transduction activity in the hippocampus. Bmal1-/- mice exhibit impaired contextual fear and spatial memory. Furthermore, LTP in hippocampal slices from Bmal1-/- mice is also significantly decreased relative to that from wild-type mice. Activation of Erk1,2 MAP kinase (MAPK) during training for contextual fear memory and diurnal oscillation of MAPK activity and cAMP in the hippocampus is also lost in Bmal1-/- mice, suggesting that the memory defects are due to reduction of the memory consolidation pathway in the hippocampus. We conclude that critical signaling events in the hippocampus required for memory depend on BMAL1. © 2014 Wardlaw et al.; Published by Cold Spring Harbor Laboratory Press.

  14. The choroid plexus harbors a circadian oscillator modulated by estrogens.

    PubMed

    Quintela, Telma; Albuquerque, Tânia; Lundkvist, Gabriella; Carmine Belin, Andrea; Talhada, Daniela; Gonçalves, Isabel; Carro, Eva; Santos, Cecília R A

    2018-02-01

    The suprachiasmatic nucleus (SCN) of the hypothalamus is considered the master circadian oscillator in mammals. However, extra-SCN structures in the brain also display daily rhythms. Recently, we have demonstrated that the choroid plexus (CP) expresses core clock genes that are subjected to circadian regulation in a sex-dependent manner. By using CP explants cultured from female knock-in mice carrying the Period-luciferase transgene, we show that CP exhibits endogenous circadian rhythms of PERIOD2::LUCIFERASE expression. Furthermore, we demonstrate that estrogen declines following ovariectomy modulates the daily rhythm expression of Bmal1, Per1 and Per2 in female rat CP, corroborating data obtained in experiments where rat CP epithelial cell (CPEC) cultures were incubated with 17β-estradiol (E2). The molecular mechanism underlying these effects was also investigated, and we provide evidence that the estrogen receptor (ER) mediates the response of clock genes to E2. In conclusion, our study proves that the CP harbors a circadian oscillator that is modulated by estrogens and demonstrates that E2 regulation occurs through an estrogen-receptor-dependent mechanism.

  15. A clock-aided positioning algorithm based on Kalman model of GNSS receiver clock bias

    NASA Astrophysics Data System (ADS)

    Zhu, Lingyao; Li, Zishen; Yuan, Hong

    2017-10-01

    The modeling and forecasting of the receiver clock bias is of practical significance, including the improvement of positioning accuracy, etc. When the clock frequency of the receiver is stable, the model can be established according to the historical clock bias data and the clock bias of the following time can be predicted. For this, we adopted the Kalman model to predict the receiver clock bias based on the calculated clock bias data obtained from the laboratory via sliding mode. Meanwhile, the relevant clock-aided positioning algorithm was presented. The results show that: the Kalman model can be used in practical work; and that under the condition that only 3 satellite signal can be received, this clock-aided positioning results can meet the needs of civilian users, which improves the continuity of positioning in harsh conditions.

  16. Variable frequency microprocessor clock generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branson, C.N.

    A microprocessor-based system is described comprising: a digital central microprocessor provided with a clock input and having a rate of operation determined by the frequency of a clock signal input thereto; memory means operably coupled to the central microprocessor for storing programs respectively including a plurality of instructions and addressable by the central microprocessor; peripheral device operably connected to the central microprocessor, the first peripheral device being addressable by the central microprocessor for control thereby; a system clock generator for generating a digital reference clock signal having a reference frequency rate; and frequency rate reduction circuit means connected between themore » clock generator and the clock input of the central microprocessor for selectively dividing the reference clock signal to generate a microprocessor clock signal as an input to the central microprocessor for clocking the central microprocessor.« less

  17. Status of Core Products of the International GNSS Service

    NASA Astrophysics Data System (ADS)

    Choi, K. K.

    2014-12-01

    The International GNSS Service (IGS) has been providing high accuracy GNSS orbits, clocks and Earth Rotation Parameters (ERP) in three different time intervals. The quality of the IGS core products are regularly monitored since 2010, and the level of accuracies has not been changed noticeably. The Final and Rapid orbit's accuracies are known to be about ~2.5 cm and the near-real time (observed) Ultra-rapid orbit is about 3 cm. The real-time orbits obtained by propagating the Ultra-rapid orbits shows an accuracy of about 5 cm. The most significant error source of the real-time orbit is the sub-daily variation of the Earth orientation. Number of IGS08 core sites has been decreasing with the rate of ~0.13 stations per week due to equipment changes and natural disasters such as Earthquakes. This paper summarizes the quality state of the IGS core products for 2014, and the upcoming new official product IGV, Glonass Ultra-rapid orbit product which have been experimental for last 4 years. Eight IGS Analysis Centers (ACs) have completed their efforts to participate in the second reprocessing campaign (repro2). Based on their input, this paper summarizes the models and methodologies each AC have adopted for this campaign.

  18. Entanglement of quantum clocks through gravity

    NASA Astrophysics Data System (ADS)

    Castro Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav

    2017-03-01

    In general relativity, the picture of space-time assigns an ideal clock to each world line. Being ideal, gravitational effects due to these clocks are ignored and the flow of time according to one clock is not affected by the presence of clocks along nearby world lines. However, if time is defined operationally, as a pointer position of a physical clock that obeys the principles of general relativity and quantum mechanics, such a picture is, at most, a convenient fiction. Specifically, we show that the general relativistic mass-energy equivalence implies gravitational interaction between the clocks, whereas the quantum mechanical superposition of energy eigenstates leads to a nonfixed metric background. Based only on the assumption that both principles hold in this situation, we show that the clocks necessarily get entangled through time dilation effect, which eventually leads to a loss of coherence of a single clock. Hence, the time as measured by a single clock is not well defined. However, the general relativistic notion of time is recovered in the classical limit of clocks.

  19. Entanglement of quantum clocks through gravity.

    PubMed

    Castro Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav

    2017-03-21

    In general relativity, the picture of space-time assigns an ideal clock to each world line. Being ideal, gravitational effects due to these clocks are ignored and the flow of time according to one clock is not affected by the presence of clocks along nearby world lines. However, if time is defined operationally, as a pointer position of a physical clock that obeys the principles of general relativity and quantum mechanics, such a picture is, at most, a convenient fiction. Specifically, we show that the general relativistic mass-energy equivalence implies gravitational interaction between the clocks, whereas the quantum mechanical superposition of energy eigenstates leads to a nonfixed metric background. Based only on the assumption that both principles hold in this situation, we show that the clocks necessarily get entangled through time dilation effect, which eventually leads to a loss of coherence of a single clock. Hence, the time as measured by a single clock is not well defined. However, the general relativistic notion of time is recovered in the classical limit of clocks.

  20. Geopotential measurements with synchronously linked optical lattice clocks

    NASA Astrophysics Data System (ADS)

    Takano, Tetsushi; Takamoto, Masao; Ushijima, Ichiro; Ohmae, Noriaki; Akatsuka, Tomoya; Yamaguchi, Atsushi; Kuroishi, Yuki; Munekane, Hiroshi; Miyahara, Basara; Katori, Hidetoshi

    2016-10-01

    According to Einstein's theory of relativity, the passage of time changes in a gravitational field. On Earth, raising a clock by 1 cm increases its apparent tick rate by 1.1 parts in 1018, allowing chronometric levelling through comparison of optical clocks. Here, we demonstrate such geopotential measurements by determining the height difference of master and slave clocks separated by 15 km with an uncertainty of 5 cm. A subharmonic of the master clock laser is delivered through a telecom fibre to synchronously operate the distant clocks. Clocks operated under such phase coherence reject clock laser noise and facilitate proposals for linking clocks and interferometers. Taken over half a year, 11 measurements determine the fractional frequency difference between the two clocks to be 1,652.9(5.9) × 10-18, consistent with an independent measurement by levelling and gravimetry. Our system demonstrates a building block for an internet of clocks, which may constitute ‘quantum benchmarks’, serving as height references with dynamic responses.

  1. Oscillator networks with tissue-specific circadian clocks in plants.

    PubMed

    Inoue, Keisuke; Araki, Takashi; Endo, Motomu

    2017-09-08

    Many organisms rely on circadian clocks to synchronize their biological processes with the 24-h rotation of the earth. In mammals, the circadian clock consists of a central clock in the suprachiasmatic nucleus and peripheral clocks in other tissues. The central clock is tightly coupled to synchronize rhythmicity and can organize peripheral clocks through neural and hormonal signals. In contrast to mammals, it has long been assumed that the circadian clocks in each plant cell is able to be entrained by external light, and they are only weakly coupled to each other. Recently, however, several reports have demonstrated that plants have unique oscillator networks with tissue-specific circadian clocks. Here, we introduce our current view regarding tissue-specific properties and oscillator networks of plant circadian clocks. Accumulating evidence suggests that plants have multiple oscillators, which show distinct properties and reside in different tissues. A direct tissue-isolation technique and micrografting have clearly demonstrated that plants have hierarchical oscillator networks consisting of multiple tissue-specific clocks. Copyright © 2017. Published by Elsevier Ltd.

  2. Entanglement of quantum clocks through gravity

    PubMed Central

    Castro Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav

    2017-01-01

    In general relativity, the picture of space–time assigns an ideal clock to each world line. Being ideal, gravitational effects due to these clocks are ignored and the flow of time according to one clock is not affected by the presence of clocks along nearby world lines. However, if time is defined operationally, as a pointer position of a physical clock that obeys the principles of general relativity and quantum mechanics, such a picture is, at most, a convenient fiction. Specifically, we show that the general relativistic mass–energy equivalence implies gravitational interaction between the clocks, whereas the quantum mechanical superposition of energy eigenstates leads to a nonfixed metric background. Based only on the assumption that both principles hold in this situation, we show that the clocks necessarily get entangled through time dilation effect, which eventually leads to a loss of coherence of a single clock. Hence, the time as measured by a single clock is not well defined. However, the general relativistic notion of time is recovered in the classical limit of clocks. PMID:28270623

  3. Electromagnetic synchronisation of clocks with finite separation in a rotating system

    NASA Astrophysics Data System (ADS)

    Cohen, J. M.; Moses, H. E.; Rosenblum, A.

    1984-11-01

    For clocks on the vertices of a triangle, it is shown that clock synchronisation using electromagnetic signals between finitely spaced clocks in a rotating frame leads to the same synchronization error as a closely spaced band of clocks along the same light path. In addition, the above result is generalized to n equally spaced clocks.

  4. Biological timing and the clock metaphor: oscillatory and hourglass mechanisms.

    PubMed

    Rensing, L; Meyer-Grahle, U; Ruoff, P

    2001-05-01

    Living organisms have developed a multitude of timing mechanisms--"biological clocks." Their mechanisms are based on either oscillations (oscillatory clocks) or unidirectional processes (hourglass clocks). Oscillatory clocks comprise circatidal, circalunidian, circadian, circalunar, and circannual oscillations--which keep time with environmental periodicities--as well as ultradian oscillations, ovarian cycles, and oscillations in development and in the brain, which keep time with biological timescales. These clocks mainly determine time points at specific phases of their oscillations. Hourglass clocks are predominantly found in development and aging and also in the brain. They determine time intervals (duration). More complex timing systems combine oscillatory and hourglass mechanisms, such as the case for cell cycle, sleep initiation, or brain clocks, whereas others combine external and internal periodicities (photoperiodism, seasonal reproduction). A definition of a biological clock may be derived from its control of functions external to its own processes and its use in determining temporal order (sequences of events) or durations. Biological and chemical oscillators are characterized by positive and negative feedback (or feedforward) mechanisms. During evolution, living organisms made use of the many existing oscillations for signal transmission, movement, and pump mechanisms, as well as for clocks. Some clocks, such as the circadian clock, that time with environmental periodicities are usually compensated (stabilized) against temperature, whereas other clocks, such as the cell cycle, that keep time with an organismic timescale are not compensated. This difference may be related to the predominance of negative feedback in the first class of clocks and a predominance of positive feedback (autocatalytic amplification) in the second class. The present knowledge of a compensated clock (the circadian oscillator) and an uncompensated clock (the cell cycle), as well as relevant models, are briefly re viewed. Hourglass clocks are based on linear or exponential unidirectional processes that trigger events mainly in the course of development and aging. An important hourglass mechanism within the aging process is the limitation of cell division capacity by the length of telomeres. The mechanism of this clock is briefly reviewed. In all clock mechanisms, thresholds at which "dependent variables" are triggered play an important role.

  5. The Clock mutant mouse is a novel experimental model for nocturia and nocturnal polyuria.

    PubMed

    Ihara, Tatsuya; Mitsui, Takahiko; Nakamura, Yuki; Kira, Satoru; Miyamoto, Tatsuya; Nakagomi, Hiroshi; Sawada, Norifumi; Hirayama, Yuri; Shibata, Keisuke; Shigetomi, Eiji; Shinozaki, Yoichi; Yoshiyama, Mitsuharu; Andersson, Karl-Erik; Nakao, Atsuhito; Takeda, Masayuki; Koizumi, Schuichi

    2017-04-01

    The pathophysiologies of nocturia (NOC) and nocturnal polyuria (NP) are multifactorial and their etiologies remain unclear in a large number of patients. Clock genes exist in most cells and organs, and the products of Clock regulate circadian rhythms as representative clock genes. Clock genes regulate lower urinary tract function, and a newly suggested concept is that abnormalities in clock genes cause lower urinary tract symptoms. In the present study, we investigated the voiding behavior of Clock mutant (Clock Δ19/Δ19 ) mice in order to determine the effects of clock genes on NOC/NP. Male C57BL/6 mice aged 8-12 weeks (WT) and male C57BL/6 Clock Δ19/Δ19 mice aged 8 weeks were used. They were bred under 12 hr light/dark conditions for 2 weeks and voiding behavior was investigated by measuring water intake volume, urine volume, urine volume/void, and voiding frequency in metabolic cages in the dark and light periods. No significant differences were observed in behavior patterns between Clock Δ19/Δ19 and WT mice. Clock Δ19/Δ19 mice showed greater voiding frequencies and urine volumes during the sleep phase than WT mice. The diurnal change in urine volume/void between the dark and light periods in WT mice was absent in Clock Δ19/Δ19 mice. Additionally, functional bladder capacity was significantly lower in Clock Δ19/Δ19 mice than in WT mice. We demonstrated that Clock Δ19/Δ19 mice showed the phenotype of NOC/NP. The Clock Δ19/Δ19 mouse may be used as an animal model of NOC and NP. Neurourol. Urodynam. 36:1034-1038, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Radiation hard programmable delay line for LHCb calorimeter upgrade

    NASA Astrophysics Data System (ADS)

    Mauricio, J.; Gascón, D.; Vilasís, X.; Picatoste, E.; Machefert, F.; Lefrancois, J.; Duarte, O.; Beigbeder, C.

    2014-01-01

    This paper describes the implementation of a SPI-programmable clock delay chip based on a Delay Locked Loop (DLL) in order to shift the phase of the LHC clock (25 ns) in steps of 1ns, with less than 5 ps jitter and 23 ps of DNL. The delay lines will be integrated into ICECAL, the LHCb calorimeter front-end analog signal processing ASIC in the near future. The stringent noise requirements on the ASIC imply minimizing the noise contribution of digital components. This is accomplished by implementing the DLL in differential mode. To achieve the required radiation tolerance several techniques are applied: double guard rings between PMOS and NMOS transistors as well as glitch suppressors and TMR Registers. This 5.7 mm2 chip has been implemented in CMOS 0.35 μm technology.

  7. A Circadian Clock Gene, Cry, Affects Heart Morphogenesis and Function in Drosophila as Revealed by Optical Coherence Microscopy

    PubMed Central

    Zeng, Xianxu; Tate, Rebecca E.; McKee, Mary L.; Capen, Diane E.; Zhang, Zhan; Tanzi, Rudolph E.; Zhou, Chao

    2015-01-01

    Circadian rhythms are endogenous, entrainable oscillations of physical, mental and behavioural processes in response to local environmental cues such as daylight, which are present in the living beings, including humans. Circadian rhythms have been related to cardiovascular function and pathology. However, the role that circadian clock genes play in heart development and function in a whole animal in vivo are poorly understood. The Drosophila cryptochrome (dCry) is a circadian clock gene that encodes a major component of the circadian clock negative feedback loop. Compared to the embryonic stage, the relative expression levels of dCry showed a significant increase (>100-fold) in Drosophila during the pupa and adult stages. In this study, we utilized an ultrahigh resolution optical coherence microscopy (OCM) system to perform non-invasive and longitudinal analysis of functional and morphological changes in the Drosophila heart throughout its post-embryonic lifecycle for the first time. The Drosophila heart exhibited major morphological and functional alterations during its development. Notably, heart rate (HR) and cardiac activity period (CAP) of Drosophila showed significant variations during the pupa stage, when heart remodeling took place. From the M-mode (2D + time) OCM images, cardiac structural and functional parameters of Drosophila at different developmental stages were quantitatively determined. In order to study the functional role of dCry on Drosophila heart development, we silenced dCry by RNAi in the Drosophila heart and mesoderm, and quantitatively measured heart morphology and function in those flies throughout its development. Silencing of dCry resulted in slower HR, reduced CAP, smaller heart chamber size, pupal lethality and disrupted posterior segmentation that was related to increased expression of a posterior compartment protein, wingless. Collectively, our studies provided novel evidence that the circadian clock gene, dCry, plays an essential role in heart morphogenesis and function. PMID:26348211

  8. Computer Aided Wirewrap Interconnect.

    DTIC Science & Technology

    1980-11-01

    ECLI (180 MHz System Clock Generated via Ring Oscillator) Clock Waveform: Synchronous Phase 0 Output Binary Counter: Power Plane Noie: (Loaded) LSB...LOGIC (ECL) (185 MHz System Clock Generated via Ring Oscillator) Clock Woveform Synchronous Phase 0 Output Binary Counter- Power Plane Voise (Loaded...High Speed .. ......... . 98 Clock Signals Into Logic Panels in a Multiboard System On-Eoard Clock Distribution Via Fanout .... ......... 102 Through

  9. Circadian clock gene plays a key role on ovarian cycle and spontaneous abortion.

    PubMed

    Li, Ruiwen; Cheng, Shuting; Wang, Zhengrong

    2015-01-01

    Circadian locomotor output cycles protein kaput (CLOCK) plays a key role in maintaining circadian rhythms and activation of downstream elements. However, its function on human female reproductive system remains unknown. To investigate the potential role of CLOCK, CLOCK-shRNAs were transfected into mouse 129 ES cells or injected into the ovaries of adult female mice. Western blotting was utilized to analyze the protein interactions and flow cytometry was used to assess apoptosis. The expression of CLOCK peaked at the 6th week in the healthy fetuses. However, an abnormal expression of CLOCK was detected in fetuses from spontaneous miscarriage. To determine the effect of CLOCK on female fertility, a small hairpin RNA (shRNA) strategy was used to specifically knockdown the CLOCK gene expression in vitro and in vivo. Knockdown of CLOCK induced apoptosis in mouse embryonic stem (mES) cells and inhibited the proliferation in mES cells in vitro. CLOCK knockdown also led to decreased release of oocytes and smaller litter size compared with control in vivo. Collectively, theses findings indicate that CLOCK plays an important role in fertility and that the CLOCK knockdown leads to reduction in reproduction and increased miscarriage risk. © 2015 S. Karger AG, Basel.

  10. Novel concepts on pregnancy clocks and alarms: redundancy and synergy in human parturition.

    PubMed

    Menon, Ramkumar; Bonney, Elizabeth A; Condon, Jennifer; Mesiano, Sam; Taylor, Robert N

    2016-09-01

    The signals and mechanisms that synchronize the timing of human parturition remain a mystery and a better understanding of these processes is essential to avert adverse pregnancy outcomes. Although our insights into human labor initiation have been informed by studies in animal models, the timing of parturition relative to fetal maturation varies among viviparous species, indicative of phylogenetically different clocks and alarms; but what is clear is that important common pathways must converge to control the birth process. For example, in all species, parturition involves the transition of the myometrium from a relaxed to a highly excitable state, where the muscle rhythmically and forcefully contracts, softening the cervical extracellular matrix to allow distensibility and dilatation and thus a shearing of the fetal membranes to facilitate their rupture. We review a number of theories promulgated to explain how a variety of different timing mechanisms, including fetal membrane cell senescence, circadian endocrine clocks, and inflammatory and mechanical factors, are coordinated as initiators and effectors of parturition. Many of these factors have been independently described with a focus on specific tissue compartments.In this review, we put forth the core hypothesis that fetal membrane (amnion and chorion) senescence is the initiator of a coordinated, redundant signal cascade leading to parturition. Whether modified by oxidative stress or other factors, this process constitutes a counting device, i.e. a clock, that measures maturation of the fetal organ systems and the production of hormones and other soluble mediators (including alarmins) and that promotes inflammation and orchestrates an immune cascade to propagate signals across different uterine compartments. This mechanism in turn sensitizes decidual responsiveness and eventually promotes functional progesterone withdrawal in the myometrium, leading to increased myometrial cell contraction and the triggering of parturition. Linkage of these processes allows convergence and integration of the gestational clocks and alarms, prompting a timely and safe birth. In summary, we provide a comprehensive synthesis of the mediators that contribute to the timing of human labor. Integrating these concepts will provide a better understanding of human parturition and ultimately improve pregnancy outcomes. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. The sympathy of two pendulum clocks: beyond Huygens' observations.

    PubMed

    Peña Ramirez, Jonatan; Olvera, Luis Alberto; Nijmeijer, Henk; Alvarez, Joaquin

    2016-03-29

    This paper introduces a modern version of the classical Huygens' experiment on synchronization of pendulum clocks. The version presented here consists of two monumental pendulum clocks--ad hoc designed and fabricated--which are coupled through a wooden structure. It is demonstrated that the coupled clocks exhibit 'sympathetic' motion, i.e. the pendula of the clocks oscillate in consonance and in the same direction. Interestingly, when the clocks are synchronized, the common oscillation frequency decreases, i.e. the clocks become slow and inaccurate. In order to rigorously explain these findings, a mathematical model for the coupled clocks is obtained by using well-established physical and mechanical laws and likewise, a theoretical analysis is conducted. Ultimately, the sympathy of two monumental pendulum clocks, interacting via a flexible coupling structure, is experimentally, numerically, and analytically demonstrated.

  12. A Blind Circadian Clock in Cavefish Reveals that Opsins Mediate Peripheral Clock Photoreception

    PubMed Central

    Cavallari, Nicola; Frigato, Elena; Vallone, Daniela; Fröhlich, Nadine; Lopez-Olmeda, Jose Fernando; Foà, Augusto; Berti, Roberto; Sánchez-Vázquez, Francisco Javier; Bertolucci, Cristiano; Foulkes, Nicholas S.

    2011-01-01

    The circadian clock is synchronized with the day-night cycle primarily by light. Fish represent fascinating models for deciphering the light input pathway to the vertebrate clock since fish cell clocks are regulated by direct light exposure. Here we have performed a comparative, functional analysis of the circadian clock involving the zebrafish that is normally exposed to the day-night cycle and a cavefish species that has evolved in perpetual darkness. Our results reveal that the cavefish retains a food-entrainable clock that oscillates with an infradian period. Importantly, however, this clock is not regulated by light. This comparative study pinpoints the two extra-retinal photoreceptors Melanopsin (Opn4m2) and TMT-opsin as essential upstream elements of the peripheral clock light input pathway. PMID:21909239

  13. Regulation of circadian clock transcriptional output by CLOCK:BMAL1

    PubMed Central

    Trott, Alexandra J.

    2018-01-01

    The mammalian circadian clock relies on the transcription factor CLOCK:BMAL1 to coordinate the rhythmic expression of 15% of the transcriptome and control the daily regulation of biological functions. The recent characterization of CLOCK:BMAL1 cistrome revealed that although CLOCK:BMAL1 binds synchronously to all of its target genes, its transcriptional output is highly heterogeneous. By performing a meta-analysis of several independent genome-wide datasets, we found that the binding of other transcription factors at CLOCK:BMAL1 enhancers likely contribute to the heterogeneity of CLOCK:BMAL1 transcriptional output. While CLOCK:BMAL1 rhythmic DNA binding promotes rhythmic nucleosome removal, it is not sufficient to generate transcriptionally active enhancers as assessed by H3K27ac signal, RNA Polymerase II recruitment, and eRNA expression. Instead, the transcriptional activity of CLOCK:BMAL1 enhancers appears to rely on the activity of ubiquitously expressed transcription factors, and not tissue-specific transcription factors, recruited at nearby binding sites. The contribution of other transcription factors is exemplified by how fasting, which effects several transcription factors but not CLOCK:BMAL1, either decreases or increases the amplitude of many rhythmically expressed CLOCK:BMAL1 target genes. Together, our analysis suggests that CLOCK:BMAL1 promotes a transcriptionally permissive chromatin landscape that primes its target genes for transcription activation rather than directly activating transcription, and provides a new framework to explain how environmental or pathological conditions can reprogram the rhythmic expression of clock-controlled genes. PMID:29300726

  14. The Drosophila Circadian Clock Gates Sleep through Time-of-Day Dependent Modulation of Sleep-Promoting Neurons.

    PubMed

    Cavanaugh, Daniel J; Vigderman, Abigail S; Dean, Terry; Garbe, David S; Sehgal, Amita

    2016-02-01

    Sleep is under the control of homeostatic and circadian processes, which interact to determine sleep timing and duration, but the mechanisms through which the circadian system modulates sleep are largely unknown. We therefore used adult-specific, temporally controlled neuronal activation and inhibition to identify an interaction between the circadian clock and a novel population of sleep-promoting neurons in Drosophila. Transgenic flies expressed either dTRPA1, a neuronal activator, or Shibire(ts1), an inhibitor of synaptic release, in small subsets of neurons. Sleep, as determined by activity monitoring and video tracking, was assessed before and after temperature-induced activation or inhibition using these effector molecules. We compared the effect of these manipulations in control flies and in mutant flies that lacked components of the molecular circadian clock. Adult-specific activation or inhibition of a population of neurons that projects to the sleep-promoting dorsal Fan-Shaped Body resulted in bidirectional control over sleep. Interestingly, the magnitude of the sleep changes were time-of-day dependent. Activation of sleep-promoting neurons was maximally effective during the middle of the day and night, and was relatively ineffective during the day-to-night and night-to-day transitions. These time-ofday specific effects were absent in flies that lacked functional circadian clocks. We conclude that the circadian system functions to gate sleep through active inhibition at specific times of day. These data identify a mechanism through which the circadian system prevents premature sleep onset in the late evening, when homeostatic sleep drive is high. © 2016 Associated Professional Sleep Societies, LLC.

  15. Oscillating PDF in termini of circadian pacemaker neurons and synchronous molecular clocks in downstream neurons are not sufficient for sustenance of activity rhythms in constant darkness.

    PubMed

    Prakash, Pavitra; Nambiar, Aishwarya; Sheeba, Vasu

    2017-01-01

    In Drosophila, neuropeptide Pigment Dispersing Factor (PDF) is expressed in small and large ventral Lateral Neurons (sLNv and lLNv), among which sLNv are critical for activity rhythms in constant darkness. Studies show that this is mediated by rhythmic accumulation and likely secretion of PDF from sLNv dorsal projections, which in turn synchronises molecular oscillations in downstream circadian neurons. Using targeted expression of a neurodegenerative protein Huntingtin in LNv, we evoke a selective loss of neuropeptide PDF and clock protein PERIOD from sLNv soma. However, PDF is not lost from sLNv dorsal projections and lLNv. These flies are behaviourally arrhythmic in constant darkness despite persistence of PDF oscillations in sLNv dorsal projections and synchronous PERIOD oscillations in downstream circadian neurons. We find that PDF oscillations in sLNv dorsal projections are not sufficient for sustenance of activity rhythms in constant darkness and this is suggestive of an additional component that is possibly dependent on sLNv molecular clock and PDF in sLNv soma. Additionally, despite loss of PERIOD in sLNv, their activity rhythms entrain to light/dark cycles indicating that sLNv molecular clocks are not necessary for entrainment. Under constant light, these flies lack PDF from both soma and dorsal projections of sLNv, and when subjected to light/dark cycles, show morning and evening anticipation and accurately phased morning and evening peaks. Thus, under light/dark cycles, PDF in sLNv is not necessary for morning anticipation.

  16. Oscillating PDF in termini of circadian pacemaker neurons and synchronous molecular clocks in downstream neurons are not sufficient for sustenance of activity rhythms in constant darkness

    PubMed Central

    Prakash, Pavitra; Nambiar, Aishwarya; Sheeba, Vasu

    2017-01-01

    In Drosophila, neuropeptide Pigment Dispersing Factor (PDF) is expressed in small and large ventral Lateral Neurons (sLNv and lLNv), among which sLNv are critical for activity rhythms in constant darkness. Studies show that this is mediated by rhythmic accumulation and likely secretion of PDF from sLNv dorsal projections, which in turn synchronises molecular oscillations in downstream circadian neurons. Using targeted expression of a neurodegenerative protein Huntingtin in LNv, we evoke a selective loss of neuropeptide PDF and clock protein PERIOD from sLNv soma. However, PDF is not lost from sLNv dorsal projections and lLNv. These flies are behaviourally arrhythmic in constant darkness despite persistence of PDF oscillations in sLNv dorsal projections and synchronous PERIOD oscillations in downstream circadian neurons. We find that PDF oscillations in sLNv dorsal projections are not sufficient for sustenance of activity rhythms in constant darkness and this is suggestive of an additional component that is possibly dependent on sLNv molecular clock and PDF in sLNv soma. Additionally, despite loss of PERIOD in sLNv, their activity rhythms entrain to light/dark cycles indicating that sLNv molecular clocks are not necessary for entrainment. Under constant light, these flies lack PDF from both soma and dorsal projections of sLNv, and when subjected to light/dark cycles, show morning and evening anticipation and accurately phased morning and evening peaks. Thus, under light/dark cycles, PDF in sLNv is not necessary for morning anticipation. PMID:28558035

  17. Circadian, Carbon, and Light Control of Expansion Growth and Leaf Movement1[OPEN

    PubMed Central

    Flis, Anna

    2017-01-01

    We used Phytotyping4D to investigate the contribution of clock and light signaling to the diurnal regulation of rosette expansion growth and leaf movement in Arabidopsis (Arabidopsis thaliana). Wild-type plants and clock mutants with a short (lhycca1) and long (prr7prr9) period were analyzed in a T24 cycle and in T-cycles that were closer to the mutants’ period. Wild types also were analyzed in various photoperiods and after transfer to free-running light or darkness. Rosette expansion and leaf movement exhibited a circadian oscillation, with superimposed transients after dawn and dusk. Diurnal responses were modified in clock mutants. lhycca1 exhibited an inhibition of growth at the end of night and growth rose earlier after dawn, whereas prr7prr9 showed decreased growth for the first part of the light period. Some features were partly rescued by a matching T-cycle, like the inhibition in lhycca1 at the end of the night, indicating that it is due to premature exhaustion of starch. Other features were not rescued, revealing that the clock also regulates expansion growth more directly. Expansion growth was faster at night than in the daytime, whereas published work has shown that the synthesis of cellular components is faster in the day than at nighttime. This temporal uncoupling became larger in short photoperiods and may reflect the differing dependence of expansion and biosynthesis on energy, carbon, and water. While it has been proposed that leaf expansion and movement are causally linked, we did not observe a consistent temporal relationship between expansion and leaf movement. PMID:28559360

  18. Is It Time to Start Reconsidering the Teaching of Time?

    ERIC Educational Resources Information Center

    Hurrell, Derek

    2017-01-01

    When teaching the measurement attribute of time, most teachers are aware that just getting students to read a clock is a task with its own challenges, but is developing this skill and understanding enough? What else do teachers need to make sure they cover, in order to give students a chance of developing this important component of being a…

  19. Components of the Motor Program: The Cerebellum as an Internal Clock. Cognitive Science Program, Technical Report No 86-7.

    ERIC Educational Resources Information Center

    Ivry, Richard B.; Keele, Steven W.

    This report summarizes the initial phase of research with neurological patients on timing functions. Parkinsonian, cerebellar, cortical and peripheral neuropathy patients as well as college aged and elderly control subjects were tested on two separate measures of timing functions. The first task involved the production of timed intervals and used…

  20. A component of retinal light adaptation mediated by the thyroid hormone cascade.

    PubMed

    Bedolla, Diana E; Torre, Vincent

    2011-01-01

    Analysis with DNA-microrrays and real time PCR show that several genes involved in the thyroid hormone cascade, such as deiodinase 2 and 3 (Dio2 and Dio3) are differentially regulated by the circadian clock and by changes of the ambient light. The expression level of Dio2 in adult rats (2-3 months of age) kept continuously in darkness is modulated by the circadian clock and is up-regulated by 2 fold at midday. When the diurnal ambient light was on, the expression level of Dio2 increased by 4-8 fold and a consequent increase of the related protein was detected around the nuclei of retinal photoreceptors and of neurons in inner and outer nuclear layers. The expression level of Dio3 had a different temporal pattern and was down-regulated by diurnal light. Our results suggest that DIO2 and DIO3 have a role not only in the developing retina but also in the adult retina and are powerfully regulated by light. As the thyroid hormone is a ligand-inducible transcription factor controlling the expression of several target genes, the transcriptional activation of Dio2 could be a novel genomic component of light adaptation.

  1. A Component of Retinal Light Adaptation Mediated by the Thyroid Hormone Cascade

    PubMed Central

    Bedolla, Diana E.; Torre, Vincent

    2011-01-01

    Analysis with DNA-microrrays and real time PCR show that several genes involved in the thyroid hormone cascade, such as deiodinase 2 and 3 (Dio2 and Dio3) are differentially regulated by the circadian clock and by changes of the ambient light. The expression level of Dio2 in adult rats (2–3 months of age) kept continuously in darkness is modulated by the circadian clock and is up-regulated by 2 fold at midday. When the diurnal ambient light was on, the expression level of Dio2 increased by 4–8 fold and a consequent increase of the related protein was detected around the nuclei of retinal photoreceptors and of neurons in inner and outer nuclear layers. The expression level of Dio3 had a different temporal pattern and was down-regulated by diurnal light. Our results suggest that DIO2 and DIO3 have a role not only in the developing retina but also in the adult retina and are powerfully regulated by light. As the thyroid hormone is a ligand-inducible transcription factor controlling the expression of several target genes, the transcriptional activation of Dio2 could be a novel genomic component of light adaptation. PMID:22039463

  2. Evaluation and analysis of real-time precise orbits and clocks products from different IGS analysis centers

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Yang, Hongzhou; Gao, Yang; Yao, Yibin; Xu, Chaoqian

    2018-06-01

    To meet the increasing demands from the real-time Precise Point Positioning (PPP) users, the real-time satellite orbit and clock products are generated by different International GNSS Service (IGS) real-time analysis centers and can be publicly received through the Internet. Based on different data sources and processing strategies, the real-time products from different analysis centers therefore differ in availability and accuracy. The main objective of this paper is to evaluate availability and accuracy of different real-time products and their effects on real-time PPP. A total of nine commonly used Real-Time Service (RTS) products, namely IGS01, IGS03, CLK01, CLK15, CLK22, CLK52, CLK70, CLK81 and CLK90, will be evaluated in this paper. Because not all RTS products support multi-GNSS, only GPS products are analyzed in this paper. Firstly, the availability of all RTS products is analyzed in two levels. The first level is the epoch availability, indicating whether there is outage for that epoch. The second level is the satellite availability, which defines the available satellite number for each epoch. Then the accuracy of different RTS products is investigated on nominal accuracy and the accuracy degradation over time. Results show that Root-Mean-Square Error (RMSE) of satellite orbit ranges from 3.8 cm to 7.5 cm for different RTS products. While the mean Standard Deviations of Errors (STDE) of satellite clocks range from 1.9 cm to 5.6 cm. The modified Signal In Space Range Error (SISRE) for all products are from 1.3 cm to 5.5 cm for different RTS products. The accuracy degradation of the orbit has the linear trend for all RTS products and the satellite clock degradation depends on the satellite clock types. The Rb clocks on board of GPS IIF satellites have the smallest degradation rate of less than 3 cm over 10 min while the Cs clocks on board of GPS IIF have the largest degradation rate of more than 10 cm over 10 min. Finally, the real-time kinematic PPP is carried out to investigate the effects of different real-time products. The CLK90 has the best performance and mean RMSE of 26 globally distributed IGS stations in three components are 3.2 cm, 6.6 cm and 8.5 cm. And the second-best positioning results are using IGS03 products.

  3. Susceptibility of Redundant Versus Singular Clock Domains Implemented in SRAM-Based FPGA TMR Designs

    NASA Technical Reports Server (NTRS)

    Berg, Melanie D.; LaBel, Kenneth A.; Pellish, Jonathan

    2016-01-01

    We present the challenges that arise when using redundant clock domains due to their clock-skew. Radiation data show that a singular clock domain (DTMR) provides an improved TMR methodology for SRAM-based FPGAs over redundant clocks.

  4. International Classification of Functioning, Disability and Health Core Sets for cerebral palsy, autism spectrum disorder, and attention-deficit-hyperactivity disorder.

    PubMed

    Schiariti, Verónica; Mahdi, Soheil; Bölte, Sven

    2018-05-30

    Capturing functional information is crucial in childhood disability. The International Classification of Functioning, Disability and Health (ICF) Core Sets promote assessments of functional abilities and disabilities in clinical practice regarding circumscribed diagnoses. However, the specificity of ICF Core Sets for childhood-onset disabilities has been doubted. This study aimed to identify content commonalities and differences among the ICF Core Sets for cerebral palsy (CP), and the newly developed Core Sets for autism spectrum disorder (ASD) and attention-deficit-hyperactivity disorder (ADHD). The categories within each Core Set were aggregated at the ICF component and chapter levels. Content comparison was conducted using descriptive analyses. The activities and participation component of the ICF was the most covered across all Core Sets. Main differences included representation of ICF components and coverage of ICF chapters within each component. CP included all ICF components, while ADHD and ASD predominantly focused on activities and participation. Environmental factors were highly represented in the ADHD Core Sets (40.5%) compared to the ASD (28%) and CP (27%) Core Sets. International Classification of Functioning, Disability and Health Core Sets for CP, ASD, and ADHD capture both common but also unique functional information, showing the importance of creating condition-specific, ICF-based tools to build functional profiles of individuals with childhood-onset disabilities. The International Classification of Functioning, Disability and Health (ICF) Core Sets for cerebral palsy (CP), autism spectrum disorder (ASD), and attention-deficit-hyperactivity disorder (ADHD) include unique functional information. The ICF-based tools for CP, ASD, and ADHD differ in terms of representation and coverage of ICF components and ICF chapters. Representation of environmental factors uniquely influences functioning and disability across ICF Core Sets for CP, ASD and ADHD. © 2018 Mac Keith Press.

  5. The circadian clock in cancer development and therapy

    USDA-ARS?s Scientific Manuscript database

    Most aspects of mammalian function display circadian rhythms driven by an endogenous clock. The circadian clock is operated by genes and comprises a central clock in the brain that responds to environmental cues and controls subordinate clocks in peripheral tissues via circadian output pathways. The...

  6. Dual-Mode Operation of an Optical Lattice Clock Using Strontium and Ytterbium Atoms.

    PubMed

    Akamatsu, Daisuke; Kobayashi, Takumi; Hisai, Yusuke; Tanabe, Takehiko; Hosaka, Kazumoto; Yasuda, Masami; Hong, Feng-Lei

    2018-06-01

    We have developed an optical lattice clock that can operate in dual modes: a strontium (Sr) clock mode and an ytterbium (Yb) clock mode. Dual-mode operation of the Sr-Yb optical lattice clock is achieved by alternately cooling and trapping 87 Sr and 171 Yb atoms inside the vacuum chamber of the clock. Optical lattices for Sr and Yb atoms were arranged with horizontal and vertical configurations, respectively, resulting in a small distance of the order of between the trapped Sr and Yb atoms. The 1 S 0 - 3 P 0 clock transitions in the trapped atoms were interrogated in turn and the clock lasers were stabilized to the transitions. We demonstrated the frequency ratio measurement of the Sr and Yb clock transitions by using the dual-mode operation of the Sr-Yb optical lattice clock. The dual-mode operation can reduce the uncertainty of the blackbody radiation shift in the frequency ratio measurement, because both Sr and Yb atoms share the same blackbody radiation.

  7. Derivation and experimental verification of clock synchronization theory

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L.

    1994-01-01

    The objective of this work is to validate mathematically derived clock synchronization theories and their associated algorithms through experiment. Two theories are considered, the Interactive Convergence Clock Synchronization Algorithm and the Mid-Point Algorithm. Special clock circuitry was designed and built so that several operating conditions and failure modes (including malicious failures) could be tested. Both theories are shown to predict conservative upper bounds (i.e., measured values of clock skew were always less than the theory prediction). Insight gained during experimentation led to alternative derivations of the theories. These new theories accurately predict the clock system's behavior. It is found that a 100% penalty is paid to tolerate worst case failures. It is also shown that under optimal conditions (with minimum error and no failures) the clock skew can be as much as 3 clock ticks. Clock skew grows to 6 clock ticks when failures are present. Finally, it is concluded that one cannot rely solely on test procedures or theoretical analysis to predict worst case conditions. conditions.

  8. Experimental validation of clock synchronization algorithms

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L.; Graham, R. Lynn

    1992-01-01

    The objective of this work is to validate mathematically derived clock synchronization theories and their associated algorithms through experiment. Two theories are considered, the Interactive Convergence Clock Synchronization Algorithm and the Midpoint Algorithm. Special clock circuitry was designed and built so that several operating conditions and failure modes (including malicious failures) could be tested. Both theories are shown to predict conservative upper bounds (i.e., measured values of clock skew were always less than the theory prediction). Insight gained during experimentation led to alternative derivations of the theories. These new theories accurately predict the behavior of the clock system. It is found that a 100 percent penalty is paid to tolerate worst-case failures. It is also shown that under optimal conditions (with minimum error and no failures) the clock skew can be as much as three clock ticks. Clock skew grows to six clock ticks when failures are present. Finally, it is concluded that one cannot rely solely on test procedures or theoretical analysis to predict worst-case conditions.

  9. Clock Drawing in Spatial Neglect: A Comprehensive Analysis of Clock Perimeter, Placement, and Accuracy

    PubMed Central

    Chen, Peii; Goedert, Kelly M.

    2012-01-01

    Clock drawings produced by right-brain-damaged (RBD) individuals with spatial neglect often contain an abundance of empty space on the left while numbers and hands are placed on the right. However, the clock perimeter is rarely compromised in neglect patients’ drawings. By analyzing clock drawings produced by 71 RBD and 40 healthy adults, this study investigated whether the geometric characteristics of the clock perimeter reveal novel insights to understanding spatial neglect. Neglect participants drew smaller clocks than either healthy or non-neglect RBD participants. While healthy participants’ clock perimeter was close to circular, RBD participants drew radially extended ellipses. The mechanisms for these phenomena were investigated by examining the relation between clock-drawing characteristics and performance on six subtests of the Behavioral Inattention Test (BIT). The findings indicated that the clock shape was independent of any BIT subtest or the drawing placement on the test sheet and that the clock size was significantly predicted by one BIT subtest: the poorer the figure and shape copying, the smaller the clock perimeter. Further analyses revealed that in all participants, clocks decreased in size as they were placed farther from the center of the paper. However, even when neglect participants placed their clocks towards the center of the page, they were smaller than those produced by healthy or non-neglect RBD participants. These results suggest a neglect-specific reduction in the subjectively available workspace for graphic production from memory, consistent with the hypothesis that neglect patients are impaired in the ability to enlarge the attentional aperture. PMID:22390278

  10. Circadian processes in the RNA life cycle.

    PubMed

    Torres, Manon; Becquet, Denis; Franc, Jean-Louis; François-Bellan, Anne-Marie

    2018-05-01

    The circadian clock drives daily rhythms of multiple physiological processes, allowing organisms to anticipate and adjust to periodic changes in environmental conditions. These physiological rhythms are associated with robust oscillations in the expression of at least 30% of expressed genes. While the ability for the endogenous timekeeping system to generate a 24-hr cycle is a cell-autonomous mechanism based on negative autoregulatory feedback loops of transcription and translation involving core-clock genes and their protein products, it is now increasingly evident that additional mechanisms also govern the circadian oscillations of clock-controlled genes. Such mechanisms can take place post-transcriptionally during the course of the RNA life cycle. It has been shown that many steps during RNA processing are regulated in a circadian manner, thus contributing to circadian gene expression. These steps include mRNA capping, alternative splicing, changes in splicing efficiency, and changes in RNA stability controlled by the tail length of polyadenylation or the use of alternative polyadenylation sites. RNA transport can also follow a circadian pattern, with a circadian nuclear retention driven by rhythmic expression within the nucleus of particular bodies (the paraspeckles) and circadian export to the cytoplasm driven by rhythmic proteins acting like cargo. Finally, RNA degradation may also follow a circadian pattern through the rhythmic involvement of miRNAs. In this review, we summarize the current knowledge of the post-transcriptional circadian mechanisms known to play a prominent role in shaping circadian gene expression in mammals. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Processing > RNA Editing and Modification RNA Export and Localization > Nuclear Export/Import. © 2018 Wiley Periodicals, Inc.

  11. Melatonin: a universal time messenger.

    PubMed

    Erren, Thomas C; Reiter, Russel J

    2015-01-01

    Temporal organization plays a key role in humans, and presumably all species on Earth. A core building block of the chronobiological architecture is the master clock, located in the suprachi asmatic nuclei [SCN], which organizes "when" things happen in sub-cellular biochemistry, cells, organs and organisms, including humans. Conceptually, time messenging should follow a 5 step-cascade. While abundant evidence suggests how steps 1 through 4 work, step 5 of "how is central time information transmitted througout the body?" awaits elucidation. Step 1: Light provides information on environmental (external) time; Step 2: Ocular interfaces between light and biological (internal) time are intrinsically photosensitive retinal ganglion cells [ipRGS] and rods and cones; Step 3: Via the retinohypothalamic tract external time information reaches the light-dependent master clock in the brain, viz the SCN; Step 4: The SCN translate environmental time information into biological time and distribute this information to numerous brain structures via a melanopsin-based network. Step 5: Melatonin, we propose, transmits, or is a messenger of, internal time information to all parts of the body to allow temporal organization which is orchestrated by the SCN. Key reasons why we expect melatonin to have such role include: First, melatonin, as the chemical expression of darkness, is centrally involved in time- and timing-related processes such as encoding clock and calendar information in the brain; Second, melatonin travels throughout the body without limits and is thus a ubiquitous molecule. The chemial conservation of melatonin in all tested species could make this molecule a candidate for a universal time messenger, possibly constituting a legacy of an all-embracing evolutionary history.

  12. Nurses' fidelity to theory-based core components when implementing Family Health Conversations - a qualitative inquiry.

    PubMed

    Östlund, Ulrika; Bäckström, Britt; Lindh, Viveca; Sundin, Karin; Saveman, Britt-Inger

    2015-09-01

    A family systems nursing intervention, Family Health Conversation, has been developed in Sweden by adapting the Calgary Family Assessment and Intervention Models and the Illness Beliefs Model. The intervention has several theoretical assumptions, and one way translate the theory into practice is to identify core components. This may produce higher levels of fidelity to the intervention. Besides information about how to implement an intervention in accordance to how it was developed, evaluating whether it was actually implemented as intended is important. Accordingly, we describe the nurses' fidelity to the identified core components of Family Health Conversation. Six nurses, working in alternating pairs, conducted Family Health Conversations with seven families in which a family member younger than 65 had suffered a stroke. The intervention contained a series of three-1-hour conversations held at 2-3 week intervals. The nurses followed a conversation structure based on 12 core components identified from theoretical assumptions. The transcripts of the 21 conversations were analysed using manifest qualitative content analysis with a deductive approach. The 'core components' seemed to be useful even if nurses' fidelity varied among the core components. Some components were followed relatively well, but others were not. This indicates that the process for achieving fidelity to the intervention can be improved, and that it is necessary for nurses to continually learn theory and to practise family systems nursing. We suggest this can be accomplished through reflections, role play and training on the core components. Furthermore, as in this study, joint reflections on how the core components have been implemented can lead to deeper understanding and knowledge of how Family Health Conversation can be delivered as intended. © 2014 Nordic College of Caring Science.

  13. Comparative cell cycle transcriptomics reveals synchronization of developmental transcription factor networks in cancer cells

    PubMed Central

    Johard, Helena; Mahdessian, Diana; Fedr, Radek; Marks, Carolyn; Medalová, Jiřina; Souček, Karel; Lundberg, Emma; Linnarsson, Sten; Bryja, Vítězslav; Sekyrova, Petra; Altun, Mikael; Andäng, Michael

    2017-01-01

    The cell cycle coordinates core functions such as replication and cell division. However, cell-cycle-regulated transcription in the control of non-core functions, such as cell identity maintenance through specific transcription factors (TFs) and signalling pathways remains unclear. Here, we provide a resource consisting of mapped transcriptomes in unsynchronized HeLa and U2OS cancer cells sorted for cell cycle phase by Fucci reporter expression. We developed a novel algorithm for data analysis that enables efficient visualization and data comparisons and identified cell cycle synchronization of Notch signalling and TFs associated with development. Furthermore, the cell cycle synchronizes with the circadian clock, providing a possible link between developmental transcriptional networks and the cell cycle. In conclusion we find that cell cycle synchronized transcriptional patterns are temporally compartmentalized and more complex than previously anticipated, involving genes, which control cell identity and development. PMID:29228002

  14. Decadal Cycles in the Human Cardiovascular System

    PubMed Central

    Halberg, Franz; Cornelissen, Germaine; Sothern, Robert B.; Hillman, Dewayne; Watanabe, Yoshihiko; Haus, Erhard; Schwartzkopff, Othild; Best, William R.

    2013-01-01

    Seven of the eight authors of this report each performed physiologic self-surveillance, some around the clock for decades. We here document the presence of long cycles (decadals, including circaundecennians) in the time structure of systolic (S) and diastolic (D) blood pressure (BP) and heart rate (HR). Because of the non-stationary nature in time and space of these and other physiologic and environmental periodic components that, like the wind, can appear and disappear in a given or other geographic location at one or another time, they have been called “Aeolian”. The nonlinear estimation of the uncertainties of the periods (τs) of two or more variables being compared has been used to determine whether these components are congruent or not, depending on whether their CIs (95% confidence intervals) overlap or not. Among others, congruence has been found for components with τs clustering around 10 years in us and around us. There is a selective assortment among individuals, variables and cycle characteristics (mean and circadian amplitude and acrophase). Apart from basic interest, like other nonphotic solar signatures such as transyears with periods slightly longer than one year or about 33-year Brückner-Egeson-Lockyer (BEL) cycles, about 10-year and longer cycles present in 7 of 7 self-monitoring individuals are of interest in the diagnosis of Vascular Variability Anomalies (VVAs), including MESOR-hypertension, and others. Some of the other VVAs, such as a circadian overswing, i.e., CHAT (Circadian Hyper-Aplitude-Tension), or an excessive pulse pressure, based on repeated 7-day around-the-clock records, can represent a risk of severe cardiovascular events, greater than that of a high BP. The differential diagnosis of physiologic cycles, infradians (components with a τ longer than 28 hours) as well as circadians awaits the collection of reference values for the infradian parameters of the cycles described herein. Just as in stroke-prone spontaneously hypertensive rats during the weeks after weaning CHAT precedes an elevation of the BP MESOR, a decadal overswing seems to precede the occurrence of high BP in two of the subjects here examined. Only around-the-clock monitoring in health for the collection of reference values will allow on their basis the differential diagnosis of the onsets of a circadian versus a circadecadal overswing in BP and the specification whether, and if so, when to initiate hypotensive non-drug or drug treatment. PMID:24860279

  15. The Effects of Race Conditions when Implementing Single-Source Redundant Clock Trees in Triple Modular Redundant Synchronous Architectures

    NASA Technical Reports Server (NTRS)

    Berg, Melanie D.; Label, Kenneth A.; Pellish, Jonathan

    2016-01-01

    We present the challenges that arise when using redundant clock domains due to their clock-skew. Heavy-ion radiation data show that a singular clock domain (DTMR) provides an improved TMR methodology for SRAM-based FPGAs over redundant clocks.

  16. Real-time simulation clock

    NASA Technical Reports Server (NTRS)

    Bennington, Donald R. (Inventor); Crawford, Daniel J. (Inventor)

    1990-01-01

    The invention is a clock for synchronizing operations within a high-speed, distributed data processing network. The clock is actually a distributed system comprising a central clock and multiple site clock interface units (SCIUs) which are connected by means of a fiber optic star network and which operate under control of separate clock software. The presently preferred embodiment is a part of the flight simulation system now in current use at the NASA Langley Research Center.

  17. The mammalian circadian clock and its entrainment by stress and exercise.

    PubMed

    Tahara, Yu; Aoyama, Shinya; Shibata, Shigenobu

    2017-01-01

    The mammalian circadian clock regulates day-night fluctuations in various physiological processes. The circadian clock consists of the central clock in the suprachiasmatic nucleus of the hypothalamus and peripheral clocks in peripheral tissues. External environmental cues, including light/dark cycles, food intake, stress, and exercise, provide important information for adjusting clock phases. This review focuses on stress and exercise as potent entrainment signals for both central and peripheral clocks, especially in regard to the timing of stimuli, types of stressors/exercises, and differences in the responses of rodents and humans. We suggest that the common signaling pathways of clock entrainment by stress and exercise involve sympathetic nervous activation and glucocorticoid release. Furthermore, we demonstrate that physiological responses to stress and exercise depend on time of day. Therefore, using exercise to maintain the circadian clock at an appropriate phase and amplitude might be effective for preventing obesity, diabetes, and cardiovascular disease.

  18. Noninvasive method for assessing the human circadian clock using hair follicle cells

    PubMed Central

    Akashi, Makoto; Soma, Haruhiko; Yamamoto, Takuro; Tsugitomi, Asuka; Yamashita, Shiko; Yamamoto, Takuya; Nishida, Eisuke; Yasuda, Akio; Liao, James K.; Node, Koichi

    2010-01-01

    A thorough understanding of the circadian clock requires qualitative evaluation of circadian clock gene expression. Thus far, no simple and effective method for detecting human clock gene expression has become available. This limitation has greatly hampered our understanding of human circadian rhythm. Here we report a convenient, reliable, and less invasive method for detecting human clock gene expression using biopsy samples of hair follicle cells from the head or chin. We show that the circadian phase of clock gene expression in hair follicle cells accurately reflects that of individual behavioral rhythms, demonstrating that this strategy is appropriate for evaluating the human peripheral circadian clock. Furthermore, using this method, we indicate that rotating shift workers suffer from a serious time lag between circadian gene expression rhythms and lifestyle. Qualitative evaluation of clock gene expression in hair follicle cells, therefore, may be an effective approach for studying the human circadian clock in the clinical setting. PMID:20798039

  19. Novel transcriptional networks regulated by CLOCK in human neurons.

    PubMed

    Fontenot, Miles R; Berto, Stefano; Liu, Yuxiang; Werthmann, Gordon; Douglas, Connor; Usui, Noriyoshi; Gleason, Kelly; Tamminga, Carol A; Takahashi, Joseph S; Konopka, Genevieve

    2017-11-01

    The molecular mechanisms underlying human brain evolution are not fully understood; however, previous work suggested that expression of the transcription factor CLOCK in the human cortex might be relevant to human cognition and disease. In this study, we investigated this novel transcriptional role for CLOCK in human neurons by performing chromatin immunoprecipitation sequencing for endogenous CLOCK in adult neocortices and RNA sequencing following CLOCK knockdown in differentiated human neurons in vitro. These data suggested that CLOCK regulates the expression of genes involved in neuronal migration, and a functional assay showed that CLOCK knockdown increased neuronal migratory distance. Furthermore, dysregulation of CLOCK disrupts coexpressed networks of genes implicated in neuropsychiatric disorders, and the expression of these networks is driven by hub genes with human-specific patterns of expression. These data support a role for CLOCK-regulated transcriptional cascades involved in human brain evolution and function. © 2017 Fontenot et al.; Published by Cold Spring Harbor Laboratory Press.

  20. Generating clock signals for a cycle accurate, cycle reproducible FPGA based hardware accelerator

    DOEpatents

    Asaad, Sameth W.; Kapur, Mohit

    2016-01-05

    A method, system and computer program product are disclosed for generating clock signals for a cycle accurate FPGA based hardware accelerator used to simulate operations of a device-under-test (DUT). In one embodiment, the DUT includes multiple device clocks generating multiple device clock signals at multiple frequencies and at a defined frequency ratio; and the FPG hardware accelerator includes multiple accelerator clocks generating multiple accelerator clock signals to operate the FPGA hardware accelerator to simulate the operations of the DUT. In one embodiment, operations of the DUT are mapped to the FPGA hardware accelerator, and the accelerator clock signals are generated at multiple frequencies and at the defined frequency ratio of the frequencies of the multiple device clocks, to maintain cycle accuracy between the DUT and the FPGA hardware accelerator. In an embodiment, the FPGA hardware accelerator may be used to control the frequencies of the multiple device clocks.

  1. The circadian clock network in the brain of different Drosophila species.

    PubMed

    Hermann, Christiane; Saccon, Rachele; Senthilan, Pingkalai R; Domnik, Lilith; Dircksen, Heinrich; Yoshii, Taishi; Helfrich-Förster, Charlotte

    2013-02-01

    Comparative studies on cellular and molecular clock mechanisms have revealed striking similarities in the organization of the clocks among different animal groups. To gain evolutionary insight into the properties of the clock network within the Drosophila genus, we analyzed sequence identities and similarities of clock protein homologues and immunostained brains of 10 different Drosophila species using antibodies against vrille (VRI), PAR-protein domain1 (PDP1), and cryptochrome (CRY). We found that the clock network of both subgenera Sophophora and Drosophila consists of all lateral and dorsal clock neuron clusters that were previously described in Drosophila melanogaster. Immunostaining against CRY and the neuropeptide pigment-dispersing factor (PDF), however, revealed species-specific differences. All species of the Drosophila subgenus and D. pseudoobscura of the Sophophora subgenus completely lacked CRY in the large ventrolateral clock neurons (lLN(v) s) and showed reduced PDF immunostaining in the small ventrolateral clock neurons (sLN(v) s). In contrast, we found the expression of the ion transport peptide (ITP) to be consistent within the fifth sLN(v) and one dorsolateral clock neuron (LN(d) ) in all investigated species, suggesting a conserved putative function of this neuropeptide in the clock. We conclude that the general anatomy of the clock network is highly conserved throughout the Drosophila genus, although there is variation in PDF and CRY expression. Our comparative study is a first step toward understanding the organization of the circadian clock in Drosophila species adapted to different habitats. Copyright © 2012 Wiley Periodicals, Inc.

  2. Core Intervention Components: Identifying and Operationalizing What Makes Programs Work. ASPE Research Brief

    ERIC Educational Resources Information Center

    Blase, Karen; Fixsen, Dean

    2013-01-01

    This brief is part of a series that explores key implementation considerations. It focuses on the importance of identifying, operationalizing, and implementing the "core components" of evidence-based and evidence-informed interventions that likely are critical to producing positive outcomes. The brief offers a definition of "core components",…

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, K.; Chen, H.; Wu, W.

    We present that in the upgrade of ATLAS experiment, the front-end electronics components are subjected to a large radiation background. Meanwhile high speed optical links are required for the data transmission between the on-detector and off-detector electronics. The GBT architecture and the Versatile Link (VL) project are designed by CERN to support the 4.8 Gbps line rate bidirectional high-speed data transmission which is called GBT link. In the ATLAS upgrade, besides the link with on-detector, the GBT link is also used between different off-detector systems. The GBTX ASIC is designed for the on-detector front-end, correspondingly for the off-detector electronics, themore » GBT architecture is implemented in Field Programmable Gate Arrays (FPGA). CERN launches the GBT-FPGA project to provide examples in different types of FPGA. In the ATLAS upgrade framework, the Front-End LInk eXchange (FELIX) system is used to interface the front end electronics of several ATLAS subsystems. The GBT link is used between them, to transfer the detector data and the timing, trigger, control and monitoring information. The trigger signal distributed in the down-link from FELIX to the front-end requires a fixed and low latency. In this paper, several optimizations on the GBT-FPGA IP core are introduced, to achieve a lower fixed latency. For FELIX, a common firmware will be used to interface different front-ends with support of both GBT modes: the forward error correction mode and the wide mode. The modified GBT-FPGA core has the ability to switch between the GBT modes without FPGA reprogramming. Finally, the system clock distribution of the multi-channel FELIX firmware is also discussed in this paper.« less

  4. Nuts and bolts of running a pulmonary embolism response team: results from an organizational survey of the National PERT™ Consortium members.

    PubMed

    Barnes, Geoffrey; Giri, Jay; Courtney, D Mark; Naydenov, Soophia; Wood, Todd; Rosovsky, Rachel; Rosenfield, Kenneth; Kabrhel, Christopher

    2017-08-01

    Pulmonary embolism response teams (PERT) are developing rapidly to operationalize multi-disciplinary care for acute pulmonary embolism patients. Our objective is to describe the core components of PERT necessary for newly developing programs. An online organizational survey of active National PERT™ Consortium members was performed between April and June 2016. Analysis, including descriptive statistics and Kruskal-Wallis tests, was performed on centers self-reporting a fully operational PERT program. The survey response rate was 80%. Of the 31 institutions that responded (71% academic), 19 had fully functioning PERT programs. These programs were run by steering committees (17/19, 89%) more often than individual physicians (2/19, 11%). Most PERT programs involved 3-5 different specialties (14/19, 74%), which did not vary based on hospital size or academic affiliation. Of programs using multidisciplinary discussions, these occurred via phone or conference call (12/18, 67%), with a minority of these utilizing 'virtual meeting' software (2/12, 17%). Guidelines for appropriate activations were provided at 16/19 (84%) hospitals. Most PERT programs offered around-the-clock catheter-based or surgical care (17/19, 89%). Outpatient follow up usually occurred in personal physician clinics (15/19, 79%) or dedicated PERT clinics (9/19, 47%), which were only available at academic institutions. PERT programs can be implemented, with similar structures, at small and large, community and academic medical centers. While all PERT programs incorporate team-based multi-disciplinary care into their core structure, several different models exist with varying personnel and resource utilization. Understanding how different PERT programs impact clinical care remains to be investigated.

  5. NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    NASA's Earth Science Data Systems (ESDS) Program has evolved over the last two decades, and currently has several core and community components. Core components provide the basic operational capabilities to process, archive, manage and distribute data from NASA missions. Community components provide a path for peer-reviewed research in Earth Science Informatics to feed into the evolution of the core components. The Earth Observing System Data and Information System (EOSDIS) is a core component consisting of twelve Distributed Active Archive Centers (DAACs) and eight Science Investigator-led Processing Systems spread across the U.S. The presentation covers how the ESDS Program continues to evolve and benefits from as well as contributes to advances in Earth Science Informatics.

  6. Differential maturation of rhythmic clock gene expression during early development in medaka (Oryzias latipes).

    PubMed

    Cuesta, Ines H; Lahiri, Kajori; Lopez-Olmeda, Jose Fernando; Loosli, Felix; Foulkes, Nicholas S; Vallone, Daniela

    2014-05-01

    One key challenge for the field of chronobiology is to identify how circadian clock function emerges during early embryonic development. Teleosts such as the zebrafish are ideal models for studying circadian clock ontogeny since the entire process of development occurs ex utero in an optically transparent chorion. Medaka (Oryzias latipes) represents another powerful fish model for exploring early clock function with, like the zebrafish, many tools available for detailed genetic analysis. However, to date there have been no reports documenting circadian clock gene expression during medaka development. Here we have characterized the expression of key clock genes in various developmental stages and in adult tissues of medaka. As previously reported for other fish, light dark cycles are required for the emergence of clock gene expression rhythms in this species. While rhythmic expression of per and cry genes is detected very early during development and seems to be light driven, rhythmic clock and bmal expression appears much later around hatching time. Furthermore, the maturation of clock function seems to correlate with the appearance of rhythmic expression of these positive elements of the clock feedback loop. By accelerating development through elevated temperatures or by artificially removing the chorion, we show an earlier onset of rhythmicity in clock and bmal expression. Thus, differential maturation of key elements of the medaka clock mechanism depends on the developmental stage and the presence of the chorion.

  7. Low Variation in the Polymorphic Clock Gene Poly-Q Region Despite Population Genetic Structure across Barn Swallow (Hirundo rustica) Populations

    PubMed Central

    Dor, Roi; Lovette, Irby J.; Safran, Rebecca J.; Billerman, Shawn M.; Huber, Gernot H.; Vortman, Yoni; Lotem, Arnon; McGowan, Andrew; Evans, Matthew R.; Cooper, Caren B.; Winkler, David W.

    2011-01-01

    Recent studies of several species have reported a latitudinal cline in the circadian clock gene, Clock, which influences rhythms in both physiology and behavior. Latitudinal variation in this gene may hence reflect local adaptation to seasonal variation. In some bird populations, there is also an among-individual association between Clock poly-Q genotype and clutch initiation date and incubation period. We examined Clock poly-Q allele variation in the Barn Swallow (Hirundo rustica), a species with a cosmopolitan geographic distribution and considerable variation in life-history traits that may be influenced by the circadian clock. We genotyped Barn Swallows from five populations (from three subspecies) and compared variation at the Clock locus to that at microsatellite loci and mitochondrial DNA (mtDNA). We found very low variation in the Clock poly-Q region, as >96% of individuals were homozygous, and the two other alleles at this locus were globally rare. Genetic differentiation based on the Clock poly-Q locus was not correlated with genetic differentiation based on either microsatellite loci or mtDNA sequences. Our results show that high diversity in Clock poly-Q is not general across avian species. The low Clock variation in the background of heterogeneity in microsatellite and mtDNA loci in Barn Swallows may be an outcome of stabilizing selection on the Clock locus. PMID:22216124

  8. Design of the Protocol Processor for the ROBUS-2 Communication System

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo; Malekpour, Mahyar R.; Miner, Paul S.

    2005-01-01

    The ROBUS-2 Protocol Processor (RPP) is a custom-designed hardware component implementing the functionality of the ROBUS-2 fault-tolerant communication system. The Reliable Optical Bus (ROBUS) is the core communication system of the Scalable Processor-Independent Design for Enhanced Reliability (SPIDER), a general-purpose fault tolerant integrated modular architecture currently under development at NASA Langley Research Center. ROBUS is a time-division multiple access (TDMA) broadcast communication system with medium access control by means of time-indexed communication schedule. ROBUS-2 is a developmental version of the ROBUS providing guaranteed fault-tolerant services to the attached processing elements (PEs), in the presence of a bounded number of faults. These services include message broadcast (Byzantine Agreement), dynamic communication schedule update, time reference (clock synchronization), and distributed diagnosis (group membership). ROBUS also features fault-tolerant startup and restart capabilities. ROBUS-2 tolerates internal as well as PE faults, and incorporates a dynamic self-reconfiguration capability driven by the internal diagnostic system. ROBUS consists of RPPs connected to each other by a lower-level physical communication network. The RPP has a pipelined architecture and the design is parameterized in the behavioral and structural domains. The design of the RPP enables the bus to achieve a PE-message throughput that approaches the available bandwidth at the physical layer.

  9. Alternative splicing and nonsense-mediated decay of circadian clock genes under environmental stress conditions in Arabidopsis

    PubMed Central

    2014-01-01

    Background The circadian clock enables living organisms to anticipate recurring daily and seasonal fluctuations in their growth habitats and synchronize their biology to the environmental cycle. The plant circadian clock consists of multiple transcription-translation feedback loops that are entrained by environmental signals, such as light and temperature. In recent years, alternative splicing emerges as an important molecular mechanism that modulates the clock function in plants. Several clock genes are known to undergo alternative splicing in response to changes in environmental conditions, suggesting that the clock function is intimately associated with environmental responses via the alternative splicing of the clock genes. However, the alternative splicing events of the clock genes have not been studied at the molecular level. Results We systematically examined whether major clock genes undergo alternative splicing under various environmental conditions in Arabidopsis. We also investigated the fates of the RNA splice variants of the clock genes. It was found that the clock genes, including EARLY FLOWERING 3 (ELF3) and ZEITLUPE (ZTL) that have not been studied in terms of alternative splicing, undergo extensive alternative splicing through diverse modes of splicing events, such as intron retention, exon skipping, and selection of alternative 5′ splice site. Their alternative splicing patterns were differentially influenced by changes in photoperiod, temperature extremes, and salt stress. Notably, the RNA splice variants of TIMING OF CAB EXPRESSION 1 (TOC1) and ELF3 were degraded through the nonsense-mediated decay (NMD) pathway, whereas those of other clock genes were insensitive to NMD. Conclusion Taken together, our observations demonstrate that the major clock genes examined undergo extensive alternative splicing under various environmental conditions, suggesting that alternative splicing is a molecular scheme that underlies the linkage between the clock and environmental stress adaptation in plants. It is also envisioned that alternative splicing of the clock genes plays more complex roles than previously expected. PMID:24885185

  10. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis.

    PubMed

    Thaiss, Christoph A; Zeevi, David; Levy, Maayan; Zilberman-Schapira, Gili; Suez, Jotham; Tengeler, Anouk C; Abramson, Lior; Katz, Meirav N; Korem, Tal; Zmora, Niv; Kuperman, Yael; Biton, Inbal; Gilad, Shlomit; Harmelin, Alon; Shapiro, Hagit; Halpern, Zamir; Segal, Eran; Elinav, Eran

    2014-10-23

    All domains of life feature diverse molecular clock machineries that synchronize physiological processes to diurnal environmental fluctuations. However, no mechanisms are known to cross-regulate prokaryotic and eukaryotic circadian rhythms in multikingdom ecosystems. Here, we show that the intestinal microbiota, in both mice and humans, exhibits diurnal oscillations that are influenced by feeding rhythms, leading to time-specific compositional and functional profiles over the course of a day. Ablation of host molecular clock components or induction of jet lag leads to aberrant microbiota diurnal fluctuations and dysbiosis, driven by impaired feeding rhythmicity. Consequently, jet-lag-induced dysbiosis in both mice and humans promotes glucose intolerance and obesity that are transferrable to germ-free mice upon fecal transplantation. Together, these findings provide evidence of coordinated metaorganism diurnal rhythmicity and offer a microbiome-dependent mechanism for common metabolic disturbances in humans with aberrant circadian rhythms, such as those documented in shift workers and frequent flyers.

  11. A seafloor electromagnetic receiver for marine magnetotellurics and marine controlled-source electromagnetic sounding

    NASA Astrophysics Data System (ADS)

    Chen, Kai; Wei, Wen-Bo; Deng, Ming; Wu, Zhong-Liang; Yu, Gang

    2015-09-01

    In planning and executing marine controlled-source electromagnetic methods, seafloor electromagnetic receivers must overcome the problems of noise, clock drift, and power consumption. To design a receiver that performs well and overcomes the abovementioned problems, we performed forward modeling of the E-field abnormal response and established the receiver's characteristics. We describe the design optimization and the properties of each component, that is, low-noise induction coil sensor, low-noise Ag/AgCl electrode, low-noise chopper amplifier, digital temperature-compensated crystal oscillator module, acoustic telemetry modem, and burn wire system. Finally, we discuss the results of onshore and offshore field tests to show the effectiveness of the developed seafloor electromagnetic receiver and its performance: typical E-field noise of 0.12 nV/m/rt(Hz) at 0.5 Hz, dynamic range higher than 120 dB, clock drift lower than 1 ms/day, and continuous operation of at least 21 days.

  12. An immune clock of human pregnancy

    PubMed Central

    Aghaeepour, Nima; Ganio, Edward A.; Mcilwain, David; Tsai, Amy S.; Tingle, Martha; Van Gassen, Sofie; Gaudilliere, Dyani K.; Baca, Quentin; McNeil, Leslie; Okada, Robin; Ghaemi, Mohammad S.; Furman, David; Wong, Ronald J.; Winn, Virginia D.; Druzin, Maurice L.; El-Sayed, Yaser Y.; Quaintance, Cecele; Gibbs, Ronald; Darmstadt, Gary L.; Shaw, Gary M.; Stevenson, David K.; Tibshirani, Robert; Nolan, Garry P.; Lewis, David B.; Angst, Martin S.; Gaudilliere, Brice

    2017-01-01

    The maintenance of pregnancy relies on finely tuned immune adaptations. We demonstrate that these adaptations are precisely timed, reflecting an immune clock of pregnancy in women delivering at term. Using mass cytometry, the abundance and functional responses of all major immune cell subsets were quantified in serial blood samples collected throughout pregnancy. Cell signaling–based Elastic Net, a regularized regression method adapted from the elastic net algorithm, was developed to infer and prospectively validate a predictive model of interrelated immune events that accurately captures the chronology of pregnancy. Model components highlighted existing knowledge and revealed previously unreported biology, including a critical role for the interleukin-2–dependent STAT5ab signaling pathway in modulating T cell function during pregnancy. These findings unravel the precise timing of immunological events occurring during a term pregnancy and provide the analytical framework to identify immunological deviations implicated in pregnancy-related pathologies. PMID:28864494

  13. Flexible programmable logic module

    DOEpatents

    Robertson, Perry J.; Hutchinson, Robert L.; Pierson, Lyndon G.

    2001-01-01

    The circuit module of this invention is a VME board containing a plurality of programmable logic devices (PLDs), a controlled impedance clock tree, and interconnecting buses. The PLDs are arranged to permit systolic processing of a problem by offering wide data buses and a plurality of processing nodes. The board contains a clock reference and clock distribution tree that can drive each of the PLDs with two critically timed clock references. External clock references can be used to drive additional circuit modules all operating from the same synchronous clock reference.

  14. Circadian and extracircadian exploration during daytime hours of circulating corticosterone and other endocrine chronomes.

    PubMed

    Jozsa, R; Olah, A; Cornélissen, G; Csernus, V; Otsuka, K; Zeman, M; Nagy, G; Kaszaki, J; Stebelova, K; Csokas, N; Pan, W; Herold, M; Bakken, E E; Halberg, F

    2005-10-01

    During 7 consecutive days, blood and several tissues were collected during daytime working hours only, three times per day at 4-h intervals from inbred Wistar rats, which had been previously standardized for 1 month in two rooms on a regimen of 12 h of light (L) alternating with 12 h of darkness (LD12:12). In one room, lights were on from 09:00 to 21:00 and in the other room, lights were on from 21:00 to 09:00 (DL12:12; reversed lighting regimen). This setup provides a convenient design to study circadian and extracircadian variations over long (e.g., 7-day) spans. Prior checking of certain circadian rhythms in animals reared in the room on reversed lighting (DL) as compared with animals in the usual (LD) regimen provided evidence that the 180 degrees phase-shift had occurred. These measurements were limited to the circadian (and not extended to infradian) variation. As marker rhythm, the core temperature of a subsample of rats was measured every 4 h around the clock (by night as well as by day) before the start of the 7-day sampling. An antiphase of the circadian rhythm in core temperature was thus demonstrated between rats in the LD vs. DL rooms. A sex difference in core temperature was also found in each room. A reversed rhythm in animals kept in DL and an antiphase between rats kept in DL vs. LD was again shown for the circulating corticosterone rhythm documented in subsamples of 8 animals of each sex sampled around the clock during the first approximately 1.5 day of the 7-day sampling. The findings were in keeping with the proposition that sampling rats at three timepoints 4 h apart during daytime from two rooms on opposite lighting regimens allows the assessment of circadian changes, the daytime samples from animals kept on the reversed lighting regimen accounting for the samples that would have to be obtained by night from animals kept in the room with the usual lighting regimen. During the 7-day-long follow-up, circadian and extracircadian spectral components were mapped for serum corticosterone, taking into account the large day-to-day variability. A third check on the synchronization of the animals to their respective lighting regimen was a comparison (and a good agreement) between studies carried out earlier on the same variables and the circadian results obtained on core temperature and serum corticosterone in this study as a whole. The present study happened to start on the day of the second extremum of a moderate double magnetic storm. The study of any associations of corticosterone with the storm is beyond our scope herein, as are the results on circulating prolactin, characterized by a greater variability and a larger sex difference than corticosterone. Sex differences and extracircadian aspects of prolactin and endothelin determined in the same samples are reported elsewhere, as are results on melatonin. Prior studies on melatonin were confirmed insofar as a circadian profile is concerned by sampling on two antiphasic lighting regimens, as also reported elsewhere. Accordingly, a circadian map for the rat will eventually be extended by the result of this study and aligned with other maps with the qualification of the unassessed contribution in this study of a magnetic storm.

  15. High Performance Clocks and Gravity Field Determination

    NASA Astrophysics Data System (ADS)

    Müller, J.; Dirkx, D.; Kopeikin, S. M.; Lion, G.; Panet, I.; Petit, G.; Visser, P. N. A. M.

    2018-02-01

    Time measured by an ideal clock crucially depends on the gravitational potential and velocity of the clock according to general relativity. Technological advances in manufacturing high-precision atomic clocks have rapidly improved their accuracy and stability over the last decade that approached the level of 10^{-18}. This notable achievement along with the direct sensitivity of clocks to the strength of the gravitational field make them practically important for various geodetic applications that are addressed in the present paper. Based on a fully relativistic description of the background gravitational physics, we discuss the impact of those highly-precise clocks on the realization of reference frames and time scales used in geodesy. We discuss the current definitions of basic geodetic concepts and come to the conclusion that the advances in clocks and other metrological technologies will soon require the re-definition of time scales or, at least, clarification to ensure their continuity and consistent use in practice. The relative frequency shift between two clocks is directly related to the difference in the values of the gravity potential at the points of clock's localization. According to general relativity the relative accuracy of clocks in 10^{-18} is equivalent to measuring the gravitational red shift effect between two clocks with the height difference amounting to 1 cm. This makes the clocks an indispensable tool in high-precision geodesy in addition to laser ranging and space geodetic techniques. We show how clock measurements can provide geopotential numbers for the realization of gravity-field-related height systems and can resolve discrepancies in classically-determined height systems as well as between national height systems. Another application of clocks is the direct use of observed potential differences for the improved recovery of regional gravity field solutions. Finally, clock measurements for space-borne gravimetry are analyzed along with closely-related deficiencies of this method like an extra-ordinary knowledge of the spacecraft velocity, etc. For all these applications besides the near-future prospects, we also discuss the challenges that are related to using those novel clock data in geodesy.

  16. Closeout of CRADA JSA 2012S004: Chapter 5, Integrated Control System, of the document of the ESS Conceptual Design Report, publicly available at https://europeanspallationsource.se/accelerator-documents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satogata, Todd

    2013-04-22

    The integrated control system (ICS) is responsible for the whole ESS machine and facility: accelerator, target, neutron scattering instruments and conventional facilities. This unified approach keeps the costs of development, maintenance and support relatively low. ESS has selected a standardised, field-proven controls framework, the Experimental Physics and Industrial Control System (EPICS), which was originally developed jointly by Argonne and Los Alamos National Laboratories. Complementing this selection are best practices and experience from similar facilities regarding platform standardisation, control system development and device integration and commissioning. The components of ICS include the control system core, the control boxes, the BLED databasemore » management system, and the human machine interface. The control system core is a set of systems and tools that make it possible for the control system to provide required data, information and services to engineers, operators, physicists and the facility itself. The core components are the timing system that makes possible clock synchronisation across the facility, the machine protection system (MPS) and the personnel protection system (PPS) that prevent damage to the machine and personnel, and a set of control system services. Control boxes are servers that control a collection of equipment (for example a radio frequency cavity). The integrated control system will include many control boxes that can be assigned to one supplier, such as an internal team, a collaborating institute or a commercial vendor. This approach facilitates a clear division of responsibilities and makes integration much easier. A control box is composed of a standardised hardware platform, components, development tools and services. On the top level, it interfaces with the core control system components (timing, MPS, PPS) and with the human-machine interface. At the bottom, it interfaces with the equipment and parts of the facility through a set of analog and digital signals, real-time control loops and other communication buses. The ICS central data management system is named BLED (beam line element databases). BLED is a set of databases, tools and services that is used to store, manage and access data. It holds vital control system configuration and physics-related (lattice) information about the accelerator, target and instruments. It facilitates control system configuration by bringing together direct input-output controller (IOC) con guration and real-time data from proton and neutron beam line models. BLED also simplifies development and speeds up the code-test-debug cycle. The set of tools that access BLED will be tailored to the needs of different categories of users, such as ESS staff physicists, engineers, and operators; external partner laboratories; and visiting experimental instrument users. The human-machine interface is vital to providing a high-quality experience to ICS users. It encompasses a wide array of devices and software tools, from control room screens to engineer terminal windows; from beam physics data tools to post-mortem data analysis tools. It serves users with a wide range of skills from widely varied backgrounds. The Controls Group is developing a set of user profiles to accommodate this diverse range of use-cases and users.« less

  17. Circadian rhythms and light responsiveness of mammalian clock gene, Clock and BMAL1, transcripts in the rat retina.

    PubMed

    Namihira, M; Honma, S; Abe, H; Tanahashi, Y; Ikeda, M; Honma, K

    1999-08-13

    Circadian expression and light-responsiveness of the mammalian clock genes, Clock and BMAL1, in the rat retina were examined by in situ hydbribization under constant darkness. A small but significant daily variation was detected in the Clock transcript level, but not in BMAL1. Light increased the Clock and BMAL1 expressions significantly when examined 60 min after exposure. The light-induced gene expression was phase-dependent for Clock and peaked at ZT2, while rather constant throughout the day for BMAL1. These findings suggest that Clock and BMAL1 play different roles in the generation of circadian rhytm in the retina from those in the suprachiasmatic nucleus. Different roles are also suggested between the two genes in the photic signal transduction in the retina.

  18. The sympathy of two pendulum clocks: beyond Huygens’ observations

    PubMed Central

    Peña Ramirez, Jonatan; Olvera, Luis Alberto; Nijmeijer, Henk; Alvarez, Joaquin

    2016-01-01

    This paper introduces a modern version of the classical Huygens’ experiment on synchronization of pendulum clocks. The version presented here consists of two monumental pendulum clocks—ad hoc designed and fabricated—which are coupled through a wooden structure. It is demonstrated that the coupled clocks exhibit ‘sympathetic’ motion, i.e. the pendula of the clocks oscillate in consonance and in the same direction. Interestingly, when the clocks are synchronized, the common oscillation frequency decreases, i.e. the clocks become slow and inaccurate. In order to rigorously explain these findings, a mathematical model for the coupled clocks is obtained by using well-established physical and mechanical laws and likewise, a theoretical analysis is conducted. Ultimately, the sympathy of two monumental pendulum clocks, interacting via a flexible coupling structure, is experimentally, numerically, and analytically demonstrated. PMID:27020903

  19. A precise clock distribution network for MRPC-based experiments

    NASA Astrophysics Data System (ADS)

    Wang, S.; Cao, P.; Shang, L.; An, Q.

    2016-06-01

    In high energy physics experiments, the MRPC (Multi-Gap Resistive Plate Chamber) detectors are widely used recently which can provide higher-resolution measurement for particle identification. However, the application of MRPC detectors leads to a series of challenges in electronics design with large number of front-end electronic channels, especially for distributing clock precisely. To deal with these challenges, this paper presents a universal scheme of clock transmission network for MRPC-based experiments with advantages of both precise clock distribution and global command synchronization. For precise clock distributing, the clock network is designed into a tree architecture with two stages: the first one has a point-to-multipoint long range bidirectional distribution with optical channels and the second one has a fan-out structure with copper link inside readout crates. To guarantee the precision of clock frequency or phase, the r-PTP (reduced Precision Time Protocol) and the DDMTD (digital Dual Mixer Time Difference) methods are used for frequency synthesis, phase measurement and adjustment, which is implemented by FPGA (Field Programmable Gate Array) in real-time. In addition, to synchronize global command execution, based upon this clock distribution network, synchronous signals are coded with clock for transmission. With technique of encoding/decoding and clock data recovery, signals such as global triggers or system control commands, can be distributed to all front-end channels synchronously, which greatly simplifies the system design. The experimental results show that both the clock jitter (RMS) and the clock skew can be less than 100 ps.

  20. Circadian Clock genes Per2 and clock regulate steroid production, cell proliferation, and luteinizing hormone receptor transcription in ovarian granulosa cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimizu, Takashi, E-mail: shimizut@obihiro.ac.jp; Hirai, Yuko; Murayama, Chiaki

    2011-08-19

    Highlights: {yields} Treatment with Per2 and Clock siRNAs decreased the number of granulosa cells and LHr expression. {yields}Per2 siRNA treatment did not stimulate the production of estradiol and expression of P450arom. {yields} Clock siRNA treatment inhibited the production of estradiol and expression of P450arom mRNA. {yields}Per2 and Clock siRNA treatment increased and unchanged, respectively, progesterone production in FSH-treated granulosa cells. {yields} The expression of StAR mRNA was increased by Per2 siRNA and unchanged by Clock siRNA. -- Abstract: Circadian Clock genes are associated with the estrous cycle in female animals. Treatment with Per2 and Clock siRNAs decreased the number ofmore » granulosa cells and LHr expression in follicle-stimulating hormone FSH-treated granulosa cells. Per2 siRNA treatment did not stimulate the production of estradiol and expression of P450arom, whereas Clock siRNA treatment inhibited the production of estradiol and expression of P450arom mRNA. Per2 and Clock siRNA treatment increased and unchanged, respectively, progesterone production in FSH-treated granulosa cells. Similarly, expression of StAR mRNA was increased by Per2 siRNA and unchanged by Clock siRNA. Our data provide a new insight that Per2 and Clock have different action on ovarian granulosa cell functions.« less

Top