Energy efficient engine. Core engine bearings, drives and configuration: Detailed design report
NASA Technical Reports Server (NTRS)
Broman, C. L.
1981-01-01
The detailed design of the forward and aft sumps, the accessory drive system, the lubrication system, and the piping/manifold configuration to be employed in the core engine test of the Energy Efficient Engine is addressed. The design goals for the above components were established based on the requirements of the test cell engine.
Turbofan Engine Core Compartment Vent Aerodynamic Configuration Development Methodology
NASA Technical Reports Server (NTRS)
Hebert, Leonard J.
2006-01-01
This paper presents an overview of the design methodology used in the development of the aerodynamic configuration of the nacelle core compartment vent for a typical Boeing commercial airplane together with design challenges for future design efforts. Core compartment vents exhaust engine subsystem flows from the space contained between the engine case and the nacelle of an airplane propulsion system. These subsystem flows typically consist of precooler, oil cooler, turbine case cooling, compartment cooling and nacelle leakage air. The design of core compartment vents is challenging due to stringent design requirements, mass flow sensitivity of the system to small changes in vent exit pressure ratio, and the need to maximize overall exhaust system performance at cruise conditions.
Energy efficient engine fan component detailed design report
NASA Technical Reports Server (NTRS)
Halle, J. E.; Michael, C. J.
1981-01-01
The fan component which was designed for the energy efficient engine is an advanced high performance, single stage system and is based on technology advancements in aerodynamics and structure mechanics. Two fan components were designed, both meeting the integrated core/low spool engine efficiency goal of 84.5%. The primary configuration, envisioned for a future flight propulsion system, features a shroudless, hollow blade and offers a predicted efficiency of 87.3%. A more conventional blade was designed, as a back up, for the integrated core/low spool demonstrator engine. The alternate blade configuration has a predicted efficiency of 86.3% for the future flight propulsion system. Both fan configurations meet goals established for efficiency surge margin, structural integrity and durability.
NASA Technical Reports Server (NTRS)
Reid, L.; Moore, R. D.
1978-01-01
The detailed design and overall performances of four inlet stages for an advanced core compressor are presented. These four stages represent two levels of design total pressure ratio (1.82 and 2.05), two levels of rotor aspect ratio (1.19 and 1.63), and two levels of stator aspect ratio (1.26 and 1.78). The individual stages were tested over the stable operating flow range at 70, 90, and 100 percent of design speeds. The performances of the low aspect ratio configurations were substantially better than those of the high aspect ratio configurations. The two low aspect ratio configurations achieved peak efficiencies of 0.876 and 0.872 and corresponding stage efficiencies of 0.845 and 0.840. The high aspect ratio configurations achieved peak ratio efficiencies of 0.851 and 0.849 and corresponding stage efficiencies of 0.821 and 0.831.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Pavel V. Tsvetkov
2009-05-20
This project assessed the advantages and limitations of using minor actinides as a fuel component to achieve ultra-long life Very High Temperature Reactor (VHTR) configurations. Researchers considered and compared the capabilities of pebble-bed and prismatic core designs with advanced actinide fuels to achieve ultra-long operation without refueling. Since both core designs permit flexibility in component configuration, fuel utilization, and fuel management, it is possible to improve fissile properties of minor actinides by neutron spectrum shifting through configuration adjustments. The project studied advanced actinide fuels, which could reduce the long-term radio-toxicity and heat load of high-level waste sent to a geologicmore » repository and enable recovery of the energy contained in spent fuel. The ultra-long core life autonomous approach may reduce the technical need for additional repositories and is capable to improve marketability of the Generation IV VHTR by allowing worldwide deployment, including remote regions and regions with limited industrial resources. Utilization of minor actinides in nuclear reactors facilitates developments of new fuel cycles towards sustainable nuclear energy scenarios.« less
Spacewire Routers Implemented with FPGA Technology
NASA Astrophysics Data System (ADS)
Habinc, Sandi; Isomaki, Marko
2011-08-01
Routers are an integral part of SpaceWire networks. Aeroflex Gaisler has developed a highly configurable SpaceWire router VHDL IP core to meet the needs for technology independent router designs. The main design goals have been configurability, technology independence, support of the standard and expandability. The IP core being technologically independent allows it to be used in both ASIC and FPGA technology. The latter is now being used to produce versatile standard products that can reach the market faster than for example an ASIC based product.
The common engine concept for ALS application - A cost reduction approach
NASA Technical Reports Server (NTRS)
Bair, E. K.; Schindler, C. M.
1989-01-01
Future launch systems require the application of propulsion systems which have been designed and developed to meet mission model needs while providing high degrees of reliability and cost effectiveness. Vehicle configurations which utilize different propellant combinations for booster and core stages can benefit from a common engine approach where a single engine design can be configured to operate on either set of propellants and thus serve as either a booster or core engine. Engine design concepts and mission application for a vehicle employing a common engine are discussed. Engine program cost estimates were made and cost savings, over the design and development of two unique engines, estimated.
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.
1995-01-01
A structurally efficient hat-stiffened panel concept that utilizes a structural foam as stiffener core has been designed for aircraft primary structural applications. This stiffener concept utilizes a manufacturing process that can be adapted readily to grid-stiffened structural configurations which possess inherent damage tolerance characteristics due to their multiplicity of load paths. The foam-filled hat-stiffener concept in a prismatically stiffened panel configuration is more efficient than most other stiffened panel configurations in a load range that is typical for both fuselage and wing structures. The prismatically stiffened panel concept investigated here has been designed using AS4/3502 preimpregnated tape and Rohacell foam core and evaluated for its buckling and postbuckling behavior with and without low-speed impact damage. The results from single-stiffener and multi-stiffener specimens suggest that this structural concept responds to loading as anticipated and has good damage tolerance characteristics.
Managing Security in FPGA-Based Embedded Systems
2008-01-01
Trans. De- sign Automation of Electronic Systems (TODAES), vol. 13, no. 3, July 2008, article 44. c©2008 ACM with permission.5) of the function would need...in the finished design. In addition, the life cycle can be subverted when engineers inject unintended functionality, some of which might be malicious...cores and a moat size of two. There are several different drawbridge configurations between the cores. (IOB: I/O block; CLB: configuration logic block
Field-Reversed Configuration Power Plant Critical-Issue Scoping Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santarius, J. F.; Mogahed, E. A.; Emmert, G. A.
A team from the Universities of Wisconsin, Washington, and Illinois performed an engineering scoping study of critical issues for field-reversed configuration (FRC) power plants. The key tasks for this research were (1) systems analysis for deuterium-tritium (D-T) FRC fusion power plants, and (2) conceptual design of the blanket and shield module for an FRC fusion core. For the engineering conceptual design of the fusion core, the project team focused on intermediate-term technology. For example, one decision was to use steele structure. The FRC systems analysis led to a fusion power plant with attractive features including modest size, cylindrical symmetry, goodmore » thermal efficiency (52%), relatively easy maintenance, and a high ratio of electric power to fusion core mass, indicating that it would have favorable economics.« less
Understanding the haling power depletion (HPD) method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levine, S.; Blyth, T.; Ivanov, K.
2012-07-01
The Pennsylvania State Univ. (PSU) is using the university version of the Studsvik Scandpower Code System (CMS) for research and education purposes. Preparations have been made to incorporate the CMS into the PSU Nuclear Engineering graduate class 'Nuclear Fuel Management' course. The information presented in this paper was developed during the preparation of the material for the course. The Haling Power Depletion (HPD) was presented in the course for the first time. The HPD method has been criticized as not valid by many in the field even though it has been successfully applied at PSU for the past 20 years.more » It was noticed that the radial power distribution (RPD) for low leakage cores during depletion remained similar to that of the HPD during most of the cycle. Thus, the Haling Power Depletion (HPD) may be used conveniently mainly for low leakage cores. Studies were then made to better understand the HPD and the results are presented in this paper. Many different core configurations can be computed quickly with the HPD without using Burnable Poisons (BP) to produce several excellent low leakage core configurations that are viable for power production. Once the HPD core configuration is chosen for further analysis, techniques are available for establishing the BP design to prevent violating any of the safety constraints in such HPD calculated cores. In summary, in this paper it has been shown that the HPD method can be used for guiding the design for the low leakage core. (authors)« less
Preliminary structural design of a lunar transfer vehicle aerobrake. M.S. Thesis
NASA Technical Reports Server (NTRS)
Bush, Lance B.
1992-01-01
An aerobrake concept for a Lunar transfer vehicle was weight optimized through the use of the Taguchi design method, structural finite element analyses and structural sizing routines. Six design parameters were chosen to represent the aerobrake structural configuration. The design parameters included honeycomb core thickness, diameter to depth ratio, shape, material, number of concentric ring frames, and number of radial frames. Each parameter was assigned three levels. The minimum weight aerobrake configuration resulting from the study was approx. half the weight of the average of all twenty seven experimental configurations. The parameters having the most significant impact on the aerobrake structural weight were identified.
NASA Technical Reports Server (NTRS)
Asbury, Scott C.; Yetter, Jeffrey A.
2000-01-01
The NASA Langley Configuration Aerodynamics Branch has conducted an experimental investigation to study the static performance of innovative thrust reverser concepts applicable to high-bypass-ratio turbofan engines. Testing was conducted on a conventional separate-flow exhaust system configuration, a conventional cascade thrust reverser configuration, and six innovative thrust reverser configurations. The innovative thrust reverser configurations consisted of a cascade thrust reverser with porous fan-duct blocker, a blockerless thrust reverser, two core-mounted target thrust reversers, a multi-door crocodile thrust reverser, and a wing-mounted thrust reverser. Each of the innovative thrust reverser concepts offer potential weight savings and/or design simplifications over a conventional cascade thrust reverser design. Testing was conducted in the Jet-Exit Test Facility at NASA Langley Research Center using a 7.9%-scale exhaust system model with a fan-to-core bypass ratio of approximately 9.0. All tests were conducted with no external flow and cold, high-pressure air was used to simulate core and fan exhaust flows. Results show that the innovative thrust reverser concepts achieved thrust reverser performance levels which, when taking into account the potential for system simplification and reduced weight, may make them competitive with, or potentially more cost effective than current state-of-the-art thrust reverser systems.
NASA Astrophysics Data System (ADS)
Damahuri, Abdul Hannan Bin; Mohamed, Hassan; Aziz Mohamed, Abdul; Idris, Faridah
2018-01-01
Thorium is one of the elements that needs to be explored for nuclear fuel research and development. One of the popular core configurations of thorium fuel is seed-blanket configuration or also known as Radkowsky Thorium Fuel concept. The seed will act as a supplier of neutrons, which will be placed inside of the core. The blanket, on the other hand, is the consumer of neutrons that is located at outermost of the core. In this work, a neutronic analysis of seed-blanket configuration for the TRIGA PUSPATI Reactor (RTP) is carried out using Monte Carlo method. The reactor, which has been operated since 1982 use uranium zirconium hydride (U-ZrH1.6) as the fuel and have multiple uranium weight which are 8.5, 12 and 20 wt.%. The pool type reactor is one and only research reactor that located in Malaysia. The design of core included the Uranium Zirconium Hydride located at the centre of the core that will act as the seed to supply neutron. The thorium oxide that will act as blanket situated outside of seed region will receive neutron to transmute 232Th to 233U. The neutron multiplication factor or criticality of each configuration is estimated. Results show that the highest initial criticality achieved is 1.30153.
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess; Barbara H. Dolphin; James W. Sterbentz
2013-03-01
In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters.more » Four benchmark experiments were evaluated in this report: Cores 1, 1A, 2, and 3. These core configurations represent the hexagonal close packing (HCP) configurations of the HTR-PROTEUS experiment with a moderator-to-fuel pebble ratio of 1:2. Core 1 represents the only configuration utilizing ZEBRA control rods. Cores 1A, 2, and 3 use withdrawable, hollow, stainless steel control rods. Cores 1 and 1A are similar except for the use of different control rods; Core 1A also has one less layer of pebbles (21 layers instead of 22). Core 2 retains the first 16 layers of pebbles from Cores 1 and 1A and has 16 layers of moderator pebbles stacked above the fueled layers. Core 3 retains the first 17 layers of pebbles but has polyethylene rods inserted between pebbles to simulate water ingress. The additional partial pebble layer (layer 18) for Core 3 was not included as it was used for core operations and not the reported critical configuration. Cores 1, 1A, 2, and 3 were determined to be acceptable benchmark experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess; Barbara H. Dolphin; James W. Sterbentz
2012-03-01
In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters.more » Four benchmark experiments were evaluated in this report: Cores 1, 1A, 2, and 3. These core configurations represent the hexagonal close packing (HCP) configurations of the HTR-PROTEUS experiment with a moderator-to-fuel pebble ratio of 1:2. Core 1 represents the only configuration utilizing ZEBRA control rods. Cores 1A, 2, and 3 use withdrawable, hollow, stainless steel control rods. Cores 1 and 1A are similar except for the use of different control rods; Core 1A also has one less layer of pebbles (21 layers instead of 22). Core 2 retains the first 16 layers of pebbles from Cores 1 and 1A and has 16 layers of moderator pebbles stacked above the fueled layers. Core 3 retains the first 17 layers of pebbles but has polyethylene rods inserted between pebbles to simulate water ingress. The additional partial pebble layer (layer 18) for Core 3 was not included as it was used for core operations and not the reported critical configuration. Cores 1, 1A, 2, and 3 were determined to be acceptable benchmark experiments.« less
Design of a Resistively Heated Thermal Hydraulic Simulator for Nuclear Rocket Reactor Cores
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Foote, John P.; Ramachandran, Narayanan; Wang, Ten-See; Anghaie, Samim
2007-01-01
A preliminary design study is presented for a non-nuclear test facility which uses ohmic heating to replicate the thermal hydraulic characteristics of solid core nuclear reactor fuel element passages. The basis for this testing capability is a recently commissioned nuclear thermal rocket environments simulator, which uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce high-temperature pressurized hydrogen flows representative of reactor core environments, excepting radiation effects. Initially, the baseline test fixture for this non-nuclear environments simulator was configured for long duration hot hydrogen exposure of small cylindrical material specimens as a low cost means of evaluating material compatibility. It became evident, however, that additional functionality enhancements were needed to permit a critical examination of thermal hydraulic effects in fuel element passages. Thus, a design configuration was conceived whereby a short tubular material specimen, representing a fuel element passage segment, is surrounded by a backside resistive tungsten heater element and mounted within a self-contained module that inserts directly into the baseline test fixture assembly. With this configuration, it becomes possible to create an inward directed radial thermal gradient within the tubular material specimen such that the wall-to-gas heat flux characteristics of a typical fuel element passage are effectively simulated. The results of a preliminary engineering study for this innovative concept are fully summarized, including high-fidelity multi-physics thermal hydraulic simulations and detailed design features.
Aerodynamics inside a rapid compression machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Gaurav; Sung, Chih-Jen
2006-04-15
The aerodynamics inside a rapid compression machine after the end of compression is investigated using planar laser-induced fluorescence (PLIF) of acetone. To study the effect of reaction chamber configuration on the resulting aerodynamics and temperature field, experiments are conducted and compared using a creviced piston and a flat piston under varying conditions. Results show that the flat piston design leads to significant mixing of the cold vortex with the hot core region, which causes alternate hot and cold regions inside the combustion chamber. At higher pressures, the effect of the vortex is reduced. The creviced piston head configuration is demonstratedmore » to result in drastic reduction of the effect of the vortex. Experimental conditions are also simulated using the Star-CD computational fluid dynamics package. Computed results closely match with experimental observation. Numerical results indicate that with a flat piston design, gas velocity after compression is very high and the core region shrinks quickly due to rapid entrainment of cold gases. Whereas, for a creviced piston head design, gas velocity after compression is significantly lower and the core region remains unaffected for a long duration. As a consequence, for the flat piston, adiabatic core assumption can significantly overpredict the maximum temperature after the end of compression. For the creviced piston, the adiabatic core assumption is found to be valid even up to 100 ms after compression. This work therefore experimentally and numerically substantiates the importance of piston head design for achieving a homogeneous core region inside a rapid compression machine. (author)« less
The effect of core configuration on temperature coefficient of reactivity in IRR-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bettan, M.; Silverman, I.; Shapira, M.
1997-08-01
Experiments designed to measure the effect of coolant moderator temperature on core reactivity in an HEU swimming pool type reactor were performed. The moderator temperature coefficient of reactivity ({alpha}{sub {omega}}) was obtained and found to be different in two core loadings. The measured {alpha}{sub {omega}} of one core loading was {minus}13 pcm/{degrees}C at the temperature range of 23-30{degrees}C. This value of {alpha}{sub {omega}} is comparable to the data published by the IAEA. The {alpha}{sub {omega}} measured in the second core loading was found to be {minus}8 pcm/{degrees}C at the same temperature range. Another phenomenon considered in this study is coremore » behavior during reactivity insertion transient. The results were compared to a core simulation using the Dynamic Simulator for Nuclear Power Plants. It was found that in the second core loading factors other than the moderator temperature influence the core reactivity more than expected. These effects proved to be extremely dependent on core configuration and may in certain core loadings render the reactor`s reactivity coefficient undesirable.« less
Weight optimization of an aerobrake structural concept for a lunar transfer vehicle
NASA Technical Reports Server (NTRS)
Bush, Lance B.; Unal, Resit; Rowell, Lawrence F.; Rehder, John J.
1992-01-01
An aerobrake structural concept for a lunar transfer vehicle was weight optimized through the use of the Taguchi design method, finite element analyses, and element sizing routines. Six design parameters were chosen to represent the aerobrake structural configuration. The design parameters included honeycomb core thickness, diameter-depth ratio, shape, material, number of concentric ring frames, and number of radial frames. Each parameter was assigned three levels. The aerobrake structural configuration with the minimum weight was 44 percent less than the average weight of all the remaining satisfactory experimental configurations. In addition, the results of this study have served to bolster the advocacy of the Taguchi method for aerospace vehicle design. Both reduced analysis time and an optimized design demonstrated the applicability of the Taguchi method to aerospace vehicle design.
NASA Technical Reports Server (NTRS)
1990-01-01
Spang & Company's new configuration of converter transformer cores is a composite of gapped and ungapped cores assembled together in concentric relationship. The net effect of the composite design is to combine the protection from saturation offered by the gapped core with the lower magnetizing requirement of the ungapped core. The uncut core functions under normal operating conditions and the cut core takes over during abnormal operation to prevent power surges and their potentially destructive effect on transistors. Principal customers are aerospace and defense manufacturers. Cores also have applicability in commercial products where precise power regulation is required, as in the power supplies for large mainframe computers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lell, R. M.; Morman, J. A.; Schaefer, R.W.
ZPR-6 Assembly 7 (ZPR-6/7) encompasses a series of experiments performed at the ZPR-6 facility at Argonne National Laboratory in 1970 and 1971 as part of the Demonstration Reactor Benchmark Program (Reference 1). Assembly 7 simulated a large sodium-cooled LMFBR with mixed oxide fuel, depleted uranium radial and axial blankets, and a core H/D near unity. ZPR-6/7 was designed to test fast reactor physics data and methods, so configurations in the Assembly 7 program were as simple as possible in terms of geometry and composition. ZPR-6/7 had a very uniform core assembled from small plates of depleted uranium, sodium, iron oxide,more » U{sub 3}O{sub 8} and Pu-U-Mo alloy loaded into stainless steel drawers. The steel drawers were placed in square stainless steel tubes in the two halves of a split table machine. ZPR-6/7 had a simple, symmetric core unit cell whose neutronic characteristics were dominated by plutonium and {sup 238}U. The core was surrounded by thick radial and axial regions of depleted uranium to simulate radial and axial blankets and to isolate the core from the surrounding room. The ZPR-6/7 program encompassed 139 separate core loadings which include the initial approach to critical and all subsequent core loading changes required to perform specific experiments and measurements. In this context a loading refers to a particular configuration of fueled drawers, radial blanket drawers and experimental equipment (if present) in the matrix of steel tubes. Two principal core configurations were established. The uniform core (Loadings 1-84) had a relatively uniform core composition. The high {sup 240}Pu core (Loadings 85-139) was a variant on the uniform core. The plutonium in the Pu-U-Mo fuel plates in the uniform core contains 11% {sup 240}Pu. In the high {sup 240}Pu core, all Pu-U-Mo plates in the inner core region (central 61 matrix locations per half of the split table machine) were replaced by Pu-U-Mo plates containing 27% {sup 240}Pu in the plutonium component to construct a central core zone with a composition closer to that in an LMFBR core with high burnup. The high {sup 240}Pu configuration was constructed for two reasons. First, the composition of the high {sup 240}Pu zone more closely matched the composition of LMFBR cores anticipated in design work in 1970. Second, comparison of measurements in the ZPR-6/7 uniform core with corresponding measurements in the high {sup 240}Pu zone provided an assessment of some of the effects of long-term {sup 240}Pu buildup in LMFBR cores. The uniform core version of ZPR-6/7 is evaluated in ZPR-LMFR-EXP-001. This document only addresses measurements in the high {sup 240}Pu core version of ZPR-6/7. Many types of measurements were performed as part of the ZPR-6/7 program. Measurements of criticality, sodium void worth, control rod worth and reaction rate distributions in the high {sup 240}Pu core configuration are evaluated here. For each category of measurements, the uncertainties are evaluated, and benchmark model data are provided.« less
Aero-acoustic performance comparison of core engine noise suppressors on NASA quiet engine 'C'
NASA Technical Reports Server (NTRS)
Bloomer, H. E.; Schaefer, J. W.
1977-01-01
The purpose of the experimental program reported herein was to evaluate and compare the relative aero-acoustic effectiveness of two core engine suppressors, a contractor-designed suppressor delivered with the Quiet Engine, and a NASA-designed suppressor, designed and built subsequently. The NASA suppressor was tested with and without a splitter making a total of three configurations being reported in addition to the baseline hardwall case. The aerodynamic results are presented in terms of tailpipe pressure loss, corrected net thrust, and corrected specific fuel consumption as functions of engine power setting. The acoustic results are divided into duct and far-field acoustic data. The NASA-designed core suppressor did the better job of suppressing aft end noise, but the splitter associated with it caused a significant engine performance penalty. The NASA core suppressor without the splitter suppressed most of the core noise without any engine performance penalty.
NASA Technical Reports Server (NTRS)
1976-01-01
The mechanical design of the boiler plate nacelle and core exhaust nozzle for the QCSEE under the wing engine is presented. The nacelle, which features interchangeable hard-wall and acoustic panels, is to be utilized in the initial engine testing to establish acoustic requirements for the subsequent composite nacelle as well as in the QCSEE over the wing engine configuration.
[Three-dimensional computer aided design for individualized post-and-core restoration].
Gu, Xiao-yu; Wang, Ya-ping; Wang, Yong; Lü, Pei-jun
2009-10-01
To develop a method of three-dimensional computer aided design (CAD) of post-and-core restoration. Two plaster casts with extracted natural teeth were used in this study. The extracted teeth were prepared and scanned using tomography method to obtain three-dimensional digitalized models. According to the basic rules of post-and-core design, posts, cores and cavity surfaces of the teeth were designed using the tools for processing point clouds, curves and surfaces on the forward engineering software of Tanglong prosthodontic system. Then three-dimensional figures of the final restorations were corrected according to the configurations of anterior teeth, premolars and molars respectively. Computer aided design of 14 post-and-core restorations were finished, and good fitness between the restoration and the three-dimensional digital models were obtained. Appropriate retention forms and enough spaces for the full crown restorations can be obtained through this method. The CAD of three-dimensional figures of the post-and-core restorations can fulfill clinical requirements. Therefore they can be used in computer-aided manufacture (CAM) of post-and-core restorations.
Neural networks within multi-core optic fibers
Cohen, Eyal; Malka, Dror; Shemer, Amir; Shahmoon, Asaf; Zalevsky, Zeev; London, Michael
2016-01-01
Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks. PMID:27383911
Neural networks within multi-core optic fibers.
Cohen, Eyal; Malka, Dror; Shemer, Amir; Shahmoon, Asaf; Zalevsky, Zeev; London, Michael
2016-07-07
Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks.
Analysis of C/E results of fission rate ratio measurements in several fast lead VENUS-F cores
NASA Astrophysics Data System (ADS)
Kochetkov, Anatoly; Krása, Antonín; Baeten, Peter; Vittiglio, Guido; Wagemans, Jan; Bécares, Vicente; Bianchini, Giancarlo; Fabrizio, Valentina; Carta, Mario; Firpo, Gabriele; Fridman, Emil; Sarotto, Massimo
2017-09-01
During the GUINEVERE FP6 European project (2006-2011), the zero-power VENUS water-moderated reactor was modified into VENUS-F, a mock-up of a lead cooled fast spectrum system with solid components that can be operated in both critical and subcritical mode. The Fast Reactor Experiments for hybrid Applications (FREYA) FP7 project was launched in 2011 to support the designs of the MYRRHA Accelerator Driven System (ADS) and the ALFRED Lead Fast Reactor (LFR). Three VENUS-F critical core configurations, simulating the complex MYRRHA core design and one configuration devoted to the LFR ALFRED core conditions were investigated in 2015. The MYRRHA related cores simulated step by step design peculiarities like the BeO reflector and in pile sections. For all of these cores the fuel assemblies were of a simple design consisting of 30% enriched metallic uranium, lead rodlets to simulate the coolant and Al2O3 rodlets to simulate the oxide fuel. Fission rate ratios of minor actinides such as Np-237, Am-241 as well as Pu-239, Pu-240, Pu-242 and U-238 to U-235 were measured in these VENUS-F critical assemblies with small fission chambers in specially designed locations, to determine the spectral indices in the different neutron spectrum conditions. The measurements have been analyzed using advanced computational tools including deterministic and stochastic codes and different nuclear data sets like JEFF-3.1, JEFF-3.2, ENDF/B7.1 and JENDL-4.0. The analysis of the C/E discrepancies will help to improve the nuclear data in the specific energy region of fast neutron reactor spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Percher, C. M.; Heinrichs, D. P.; Kim, S. K.
2016-07-18
This report documents the results of final design (CED-2) for IER 203, BERP Ball Composite Reflection, and focuses on critical configurations with a 4.5 kg α-phase plutonium sphere reflected by a combination of thin high-density polyethylene (HDPE) backed by a thick nickel reflector. The Lawrence Livermore National Laboratory’s (LLNL’s) Nuclear Criticality Safety Division, in support of fissile material operations, calculated surprisingly reactive configurations when a fissile core was surrounded by a thin, moderating reflector backed by a thick metal reflector. These composite reflector configurations were much more reactive than either of the single reflector materials separately. The calculated findings havemore » resulted in a stricter-than-anticipated criticality control set, impacting programmatic work. IER 203 was requested in response to these seemingly anomalous calculations to see if the composite reflection effect could be shown experimentally. This report focuses on the Beryllium Reflected Plutonium (BERP) ball as a fissile material core reflected by polyethylene and nickel. A total of four critical configurations were designed as part of CED-2. Fabrication costs are estimated to be $98,500, largely due to the cost of the large nickel reflectors. The IER 203 experiments could reasonably be expected to begin in early FY2017.« less
Aero-acoustic performance comparison of core engine noise suppressors on NASA quiet engine C
NASA Technical Reports Server (NTRS)
Bloomer, H. E.; Schaefer, J. W.
1977-01-01
The relative aero-acoustic effectiveness of two core engine suppressors, a contractor-designed suppressor delivered with the Quiet Engine, and a NASA-designed suppressor was evaluated. The NASA suppressor was tested with and without a splitter making a total of three configurations being reported in addition to the baseline hardwall case. The aerodynamic results are presented in terms of tailpipe pressure loss, corrected net thrust, and corrected specific fuel consumption as functions of engine power setting. The acoustic results are divided into duct and far-field acoustic data. The NASA-designed core suppressor did the better job of suppressing aft end noise, but the splitter associated with it caused a significant engine performance penality. The NASA core suppressor without the spltter suppressed most of the core noise without any engine performance penalty.
Benchmark Evaluation of the HTR-PROTEUS Absorber Rod Worths (Core 4)
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess; Leland M. Montierth
2014-06-01
PROTEUS was a zero-power research reactor at the Paul Scherrer Institute (PSI) in Switzerland. The critical assembly was constructed from a large graphite annulus surrounding a central cylindrical cavity. Various experimental programs were investigated in PROTEUS; during the years 1992 through 1996, it was configured as a pebble-bed reactor and designated HTR-PROTEUS. Various critical configurations were assembled with each accompanied by an assortment of reactor physics experiments including differential and integral absorber rod measurements, kinetics, reaction rate distributions, water ingress effects, and small sample reactivity effects [1]. Four benchmark reports were previously prepared and included in the March 2013 editionmore » of the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook) [2] evaluating eleven critical configurations. A summary of that effort was previously provided [3] and an analysis of absorber rod worth measurements for Cores 9 and 10 have been performed prior to this analysis and included in PROTEUS-GCR-EXP-004 [4]. In the current benchmark effort, absorber rod worths measured for Core Configuration 4, which was the only core with a randomly-packed pebble loading, have been evaluated for inclusion as a revision to the HTR-PROTEUS benchmark report PROTEUS-GCR-EXP-002.« less
NASA Technical Reports Server (NTRS)
Sullivan, T. J.; Parker, D. E.
1979-01-01
A design technology study was performed to identify a high speed, multistage, variable geometry fan configuration capable of achieving wide flow modulation with near optimum efficiency at the important operating condition. A parametric screening study of the front and rear block fans was conducted in which the influence of major fan design features on weight and efficiency was determined. Key design parameters were varied systematically to determine the fan configuration most suited for a double bypass, variable cycle engine. Two and three stage fans were considered for the front block. A single stage, core driven fan was studied for the rear block. Variable geometry concepts were evaluated to provide near optimum off design performance. A detailed aerodynamic design and a preliminary mechanical design were carried out for the selected fan configuration. Performance predictions were made for the front and rear block fans.
Design data for brazed Rene 41 honeycomb sandwich
NASA Technical Reports Server (NTRS)
Hepler, A. K.; Arnquist, J.; Koetje, E. L.; Esposito, J. J.; Lindsay, V. E. J.; Swegle, A. R.
1981-01-01
Strength data, creep data and residual strength data after cyclic thermal exposure were obtained at temperatures from 78 K to 1144 K (-320 F to 1600 F). The influences of face thickness, core depth, core gage, cell size and thermal/stress exposure conditions on the mechanical design properties were investigated. A braze alloy and process was developed that is adequate to fully develop the strength of the honeycomb core while simultaneously solution treating and aging the Rene 41 fact sheets. New test procedures and test specimen configurations were developed to avoid excessive thermal stresses during cyclic thermal exposure.
NASA Technical Reports Server (NTRS)
Swift, Gary M.; Allen, Gregory S.; Farmanesh, Farhad; George, Jeffrey; Petrick, David J.; Chayab, Fayez
2006-01-01
Shown in this presentation are recent results for the upset susceptibility of the various types of memory elements in the embedded PowerPC405 in the Xilinx V2P40 FPGA. For critical flight designs where configuration upsets are mitigated effectively through appropriate design triplication and configuration scrubbing, these upsets of processor elements can dominate the system error rate. Data from irradiations with both protons and heavy ions are given and compared using available models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess; Leland M. Montierth
2013-03-01
In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters.more » One benchmark experiment was evaluated in this report: Core 4. Core 4 represents the only configuration with random pebble packing in the HTR-PROTEUS series of experiments, and has a moderator-to-fuel pebble ratio of 1:1. Three random configurations were performed. The initial configuration, Core 4.1, was rejected because the method for pebble loading, separate delivery tubes for the moderator and fuel pebbles, may not have been completely random; this core loading was rejected by the experimenters. Cores 4.2 and 4.3 were loaded using a single delivery tube, eliminating the possibility for systematic ordering effects. The second and third cores differed slightly in the quantity of pebbles loaded (40 each of moderator and fuel pebbles), stacked height of the pebbles in the core cavity (0.02 m), withdrawn distance of the stainless steel control rods (20 mm), and withdrawn distance of the autorod (30 mm). The 34 coolant channels in the upper axial reflector and the 33 coolant channels in the lower axial reflector were open. Additionally, the axial graphite fillers used in all other HTR-PROTEUS configurations to create a 12-sided core cavity were not used in the randomly packed cores. Instead, graphite fillers were placed on the cavity floor, creating a funnel-like base, to discourage ordering effects during pebble loading. Core 4 was determined to be acceptable benchmark experiment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, John D.; Montierth, Leland M.; Sterbentz, James W.
2014-03-01
In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters.more » One benchmark experiment was evaluated in this report: Core 4. Core 4 represents the only configuration with random pebble packing in the HTR-PROTEUS series of experiments, and has a moderator-to-fuel pebble ratio of 1:1. Three random configurations were performed. The initial configuration, Core 4.1, was rejected because the method for pebble loading, separate delivery tubes for the moderator and fuel pebbles, may not have been completely random; this core loading was rejected by the experimenters. Cores 4.2 and 4.3 were loaded using a single delivery tube, eliminating the possibility for systematic ordering effects. The second and third cores differed slightly in the quantity of pebbles loaded (40 each of moderator and fuel pebbles), stacked height of the pebbles in the core cavity (0.02 m), withdrawn distance of the stainless steel control rods (20 mm), and withdrawn distance of the autorod (30 mm). The 34 coolant channels in the upper axial reflector and the 33 coolant channels in the lower axial reflector were open. Additionally, the axial graphite fillers used in all other HTR-PROTEUS configurations to create a 12-sided core cavity were not used in the randomly packed cores. Instead, graphite fillers were placed on the cavity floor, creating a funnel-like base, to discourage ordering effects during pebble loading. Core 4 was determined to be acceptable benchmark experiment.« less
The Effect of Core Configuration on Thermal Barrier Thermal Performance
NASA Technical Reports Server (NTRS)
DeMange, Jeffrey J.; Bott, Robert H.; Druesedow, Anne S.
2015-01-01
Thermal barriers and seals are integral components in the thermal protection systems (TPS) of nearly all aerospace vehicles. They are used to minimize heat transfer through interfaces and gaps and protect underlying temperature-sensitive components. The core insulation has a significant impact on both the thermal and mechanical properties of compliant thermal barriers. Proper selection of an appropriate core configuration to mitigate conductive, convective and radiative heat transfer through the thermal barrier is challenging. Additionally, optimization of the thermal barrier for thermal performance may have counteracting effects on mechanical performance. Experimental evaluations have been conducted to better understand the effect of insulation density on permeability and leakage performance, which can significantly impact the resistance to convective heat transfer. The effect of core density on mechanical performance was also previously investigated and will be reviewed. Simple thermal models were also developed to determine the impact of various core parameters on downstream temperatures. An extended understanding of these factors can improve the ability to design and implement these critical TPS components.
NASA Astrophysics Data System (ADS)
Cisneros, Anselmo Tomas, Jr.
The Fluoride salt cooled High temperature Reactor (FHR) is a class of advanced nuclear reactors that combine the robust coated particle fuel form from high temperature gas cooled reactors, direct reactor auxillary cooling system (DRACS) passive decay removal of liquid metal fast reactors, and the transparent, high volumetric heat capacitance liquid fluoride salt working fluids---flibe (33%7Li2F-67%BeF)---from molten salt reactors. This combination of fuel and coolant enables FHRs to operate in a high-temperature low-pressure design space that has beneficial safety and economic implications. In 2012, UC Berkeley was charged with developing a pre-conceptual design of a commercial prototype FHR---the Pebble Bed- Fluoride Salt Cooled High Temperature Reactor (PB-FHR)---as part of the Nuclear Energy University Programs' (NEUP) integrated research project. The Mark 1 design of the PB-FHR (Mk1 PB-FHR) is 236 MWt flibe cooled pebble bed nuclear heat source that drives an open-air Brayton combine-cycle power conversion system. The PB-FHR's pebble bed consists of a 19.8% enriched uranium fuel core surrounded by an inert graphite pebble reflector that shields the outer solid graphite reflector, core barrel and reactor vessel. The fuel reaches an average burnup of 178000 MWt-d/MT. The Mk1 PB-FHR exhibits strong negative temperature reactivity feedback from the fuel, graphite moderator and the flibe coolant but a small positive temperature reactivity feedback of the inner reflector and from the outer graphite pebble reflector. A novel neutronics and depletion methodology---the multiple burnup state methodology was developed for an accurate and efficient search for the equilibrium composition of an arbitrary continuously refueled pebble bed reactor core. The Burnup Equilibrium Analysis Utility (BEAU) computer program was developed to implement this methodology. BEAU was successfully benchmarked against published results generated with existing equilibrium depletion codes VSOP and PEBBED for a high temperature gas cooled pebble bed reactor. Three parametric studies were performed for exploring the design space of the PB-FHR---to select a fuel design for the PB-FHR] to select a core configuration; and to optimize the PB-FHR design. These parametric studies investigated trends in the dependence of important reactor performance parameters such as burnup, temperature reactivity feedback, radiation damage, etc on the reactor design variables and attempted to understand the underlying reactor physics responsible for these trends. A pebble fuel parametric study determined that pebble fuel should be designed with a carbon to heavy metal ratio (C/HM) less than 400 to maintain negative coolant temperature reactivity coefficients. Seed and thorium blanket-, seed and inert pebble reflector- and seed only core configurations were investigated for annular FHR PBRs---the C/HM of the blanket pebbles and discharge burnup of the thorium blanket pebbles were additional design variable for core configurations with thorium blankets. Either a thorium blanket or graphite pebble reflector is required to shield the outer graphite reflector enough to extend its service lifetime to 60 EFPY. The fuel fabrication costs and long cycle lengths of the thorium blanket fuel limit the potential economic advantages of using a thorium blanket. Therefore, the seed and pebble reflector core configuration was adopted as the baseline core configuration. Multi-objective optimization with respect to economics was performed for the PB-FHR accounting for safety and other physical design constraints derived from the high-level safety regulatory criteria. These physical constraints were applied along in a design tool, Nuclear Application Value Estimator, that evaluated a simplified cash flow economics model based on estimates of reactor performance parameters calculated using correlations based on the results of parametric design studies for a specific PB-FHR design and a set of economic assumptions about the electricity market to evaluate the economic implications of design decisions. The optimal PB-FHR design---Mark 1 PB-FHR---is described along with a detailed summary of its performance characteristics including: the burnup, the burnup evolution, temperature reactivity coefficients, the power distribution, radiation damage distributions, control element worths, decay heat curves and tritium production rates. The Mk1 PB-FHR satisfies the PB-FHR safety criteria. The fuel, moderator (pebble core, pebble shell, graphite matrix, TRISO layers) and coolant have global negative temperature reactivity coefficients and the fuel temperatures are well within their limits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hannan, N. A.; Matos, J. E.; Stillman, J. A.
At the request of the Czech Technical University (CTU) in Prague, ANL has performed independent verification calculations using the MCNP Monte Carlo code for three core configurations of the VR-1 reactor: a current core configuration B1 with HEU (36%) IRT-3M fuel assemblies and planned core configurations C1 and C2 with LEU (19.7%) IRT-4M fuel assemblies. Details of these configurations were provided to ANL by CTU. For core configuration B1, criticality calculations were performed for two sets of control rod positions provided to ANL by CTU. Fore core configurations C1 and C2, criticality calculations were done for cases with all controlmore » rods at the top positions, all control rods at the bottom positions, and two critical states of the reactor for different control rod positions. In addition, sensitivity studies for variation of the {sup 235}U mass in each fuel assembly and variation of the fuel meat and cladding thicknesses in each of the fuel tubes were doe for the C1 core configuration. The reactivity worth of the individual control rods was calculated for the B1, C1, and C2 core configurations. Finally, the reactivity feedback coefficients, the prompt neutron lifetime, and the total effective delay neutron fraction were calculated for each of the three cores.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanan, N. A.; Matos, J. E.
At The request of the Czech Technical University in Prague, ANL has performed independent verification calculations using the MCNP Monte Carlo code for three core configurations of the VR-1 reactor: a current core configuration B1 with HEU (36%) IRT-3M fuel assemblies and planned core configurations C1 and C2 with LEU (19.7%) IRT-4M fuel assemblies. Details of these configurations were provided to ANL by CTU. For core configuration B1, criticality calculations were performed for two sets of control rod positions provided to ANL by CTU. For core configurations C1 and C2, criticality calculations were done for cases with all control rodsmore » at the top positions, all control rods at the bottom positions, and two critical states of the reactor for different control rod positions. In addition, sensitivity studies for variation of the {sup 235}U mass in each fuel assembly and variation of the fuel meat and cladding thicknesses in each of the fuel tubes were done for the C1 core configuration. Finally the reactivity worth of the individual control rods was calculated for the B1, C1, and C2 core configurations.« less
Li, Nan; Li, Xu; Zhao, Hongkang; Zhao, Lina
2018-03-01
The atomic structures and the corresponding physicochemical properties of peptide coated Au nanoclusters determine their distinctive biological targeting applications. To learn the modulation of amino acid ligand on the atomic structure and electronic characteristics of coated Au core is the fundamental knowledge for peptide coated Au nanocluster design and construction. Based on our recent coated Au nanocluster configuration study (Nanoscale, 2016, 8, 11454), we built the typically simplified Au13(Cys-Au-Cys) system to more clearly learn the basic modulation information of amino acid ligand on Au core by the density functional theory (DFT) calculations. There are two isomers as ligand adjacent bonding (Iso1) and diagonal bonding (Iso2) to Au13 cores. The geometry optimizations indicate the adjacent bonding Iso1 is more stable than Iso2. More important, the Au13 core of Iso1 distorts much more significantly than that of Iso2 by Cys-Au-Cys bonding through the root-mean-square deviation (RMSD) analysis, which modulate their electronic characteristics in different ways. In addition, the frontier molecular orbital results of Au13(Cys-Au-Cys) isomers confirm that the Au cores mainly determine the blue shifts of Au13(Cys-Au-Cys) systems versus the original Au13 core in their UV-visible absorption spectrum studies. The configuration of Au13 core performs deformation under Cys-Au-Cys ligand modulation to reach new stability with distinct atomic structure and electronic properties, which could be the theory basis for peptide coated AuNCs design and construction.
CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis, John; Edwards, Jim; Evans, Kate J
2012-01-01
The Community Atmosphere Model (CAM) version 5 includes a spectral element dynamical core option from NCAR's High-Order Method Modeling Environment. It is a continuous Galerkin spectral finite element method designed for fully unstructured quadrilateral meshes. The current configurations in CAM are based on the cubed-sphere grid. The main motivation for including a spectral element dynamical core is to improve the scalability of CAM by allowing quasi-uniform grids for the sphere that do not require polar filters. In addition, the approach provides other state-of-the-art capabilities such as improved conservation properties. Spectral elements are used for the horizontal discretization, while most othermore » aspects of the dynamical core are a hybrid of well tested techniques from CAM's finite volume and global spectral dynamical core options. Here we first give a overview of the spectral element dynamical core as used in CAM. We then give scalability and performance results from CAM running with three different dynamical core options within the Community Earth System Model, using a pre-industrial time-slice configuration. We focus on high resolution simulations of 1/4 degree, 1/8 degree, and T340 spectral truncation.« less
Preliminary engineering design of sodium-cooled CANDLE core
NASA Astrophysics Data System (ADS)
Takaki, Naoyuki; Namekawa, Azuma; Yoda, Tomoyuki; Mizutani, Akihiko; Sekimoto, Hiroshi
2012-06-01
The CANDLE burning process is characterized by the autonomous shifting of burning region with constant reactivity and constant spacial power distribution. Evaluations of such critical burning process by using widely used neutron diffusion and burning codes under some realistic engineering constraints are valuable to confirm the technical feasibility of the CANDLE concept and to put the idea into concrete core design. In the first part of this paper, it is discussed that whether the sustainable and stable CANDLE burning process can be reproduced even by using conventional core analysis tools such as SLAROM and CITATION-FBR. As a result, it is certainly possible to demonstrate it if the proper core configuration and initial fuel composition required as CANDLE core are applied to the analysis. In the latter part, an example of a concrete image of sodium cooled, metal fuel, 2000MWt rating CANDLE core has been presented by assuming an emerging inevitable technology of recladding. The core satisfies engineering design criteria including cladding temperature, pressure drop, linear heat rate, and cumulative damage fraction (CDF) of cladding, fast neutron fluence and sodium void reactivity which are defined in the Japanese FBR design project. It can be concluded that it is feasible to design CADLE core by using conventional codes while satisfying some realistic engineering design constraints assuming that recladding at certain time interval is technically feasible.
Feasibility and electromagnetic analysis of a REBCO superconducting undulator
Kesgin, Ibrahim; Kasa, Matthew; Doose, Charles; ...
2016-03-17
Recent advances in second-generation (2G) high temperature superconducting (HTS) coated conductors (CCs) have made them very attractive for new applications such as undulators. In this study, we have, for the first time, experimentally evaluated a design to validate applicability of 2G-HTS tapes for next generation undulator magnetic structures. A two-period undulator magnetic core was fabricated and 2G-HTS CCs were successfully wound onto the undulator core. The performance of the undulator magnetic structure was investigated and the highest engineering current density, J e, in such configuration reported yet was obtained. A new U-slit tape configuration was used to reduce the numbermore » of resistive joints and it was shown that with this new technique affordable levels of resistance values can be achieved for short length undulators. The ferromagnetic core was designed such as to accommodate winding the U-slit tapes. Finally, test results indicated that the winding and the soldering procedures are successful and do not deteriorate the performance of the 2G-HTS tapes.« less
A Ballistic Limit Analysis Program for Shielding Against Micrometeoroids and Orbital Debris
NASA Technical Reports Server (NTRS)
Ryan, Shannon; Christiansen, Erie
2010-01-01
A software program has been developed that enables the user to quickly and simply perform ballistic limit calculations for common spacecraft structures that are subject to hypervelocity impact of micrometeoroid and orbital debris (MMOD) projectiles. This analysis program consists of two core modules: design, and; performance. The design module enables a user to calculate preliminary dimensions of a shield configuration (e.g., thicknesses/areal densities, spacing, etc.) for a ?design? particle (diameter, density, impact velocity, incidence). The performance module enables a more detailed shielding analysis, providing the performance of a user-defined shielding configuration over the range of relevant in-orbit impact conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walston, S; Rowland, M; Campbell, K
It is difficult to track to the location of a melted core in a GE BWR with Mark I containment during a beyond-design-basis accident. The Cooper Nuclear Station provided a baseline of normal material distributions and shielding configurations for the GE BWR with Mark I containment. Starting with source terms for a design-basis accident, methods and remote observation points were investigated to allow tracking of a melted core during a beyond-design-basis accident. The design of the GE BWR with Mark-I containment highlights an amazing poverty of expectations regarding a common mode failure of all reactor core cooling systems resulting inmore » a beyond-design-basis accident from the simple loss of electric power. This design is shown in Figure 1. The station blackout accident scenario has been consistently identified as the leading contributor to calculated probabilities for core damage. While NRC-approved models and calculations provide guidance for indirect methods to assess core damage during a beyond-design-basis loss-of-coolant accident (LOCA), there appears to be no established method to track the location of the core directly should the LOCA include a degree of fuel melt. We came to the conclusion that - starting with detailed calculations which estimate the release and movement of gaseous and soluble fission products from the fuel - selected dose readings in specific rooms of the reactor building should allow the location of the core to be verified.« less
NASA Technical Reports Server (NTRS)
Wisler, D. C.
1981-01-01
The core compressor exit stage study program develops rear stage blading designs that have lower losses in their endwall boundary layer regions. The test data and performance results for the best stage configuration consisting of Rotor-B running with Stator-B are described. The technical approach in this efficiency improvement program utilizes a low speed research compressor. Tests were conducted in two ways: (1) to use four identical stages of blading to obtain test data in a true multistage environment and (2) to use a single stage of blading to compare with the multistage test results. The effects of increased rotor tip clearances and circumferential groove casing treatment are evaluated.
Soft-core processor study for node-based architectures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Houten, Jonathan Roger; Jarosz, Jason P.; Welch, Benjamin James
2008-09-01
Node-based architecture (NBA) designs for future satellite projects hold the promise of decreasing system development time and costs, size, weight, and power and positioning the laboratory to address other emerging mission opportunities quickly. Reconfigurable Field Programmable Gate Array (FPGA) based modules will comprise the core of several of the NBA nodes. Microprocessing capabilities will be necessary with varying degrees of mission-specific performance requirements on these nodes. To enable the flexibility of these reconfigurable nodes, it is advantageous to incorporate the microprocessor into the FPGA itself, either as a hardcore processor built into the FPGA or as a soft-core processor builtmore » out of FPGA elements. This document describes the evaluation of three reconfigurable FPGA based processors for use in future NBA systems--two soft cores (MicroBlaze and non-fault-tolerant LEON) and one hard core (PowerPC 405). Two standard performance benchmark applications were developed for each processor. The first, Dhrystone, is a fixed-point operation metric. The second, Whetstone, is a floating-point operation metric. Several trials were run at varying code locations, loop counts, processor speeds, and cache configurations. FPGA resource utilization was recorded for each configuration. Cache configurations impacted the results greatly; for optimal processor efficiency it is necessary to enable caches on the processors. Processor caches carry a penalty; cache error mitigation is necessary when operating in a radiation environment.« less
Li, Jinghao; Hunt, John F; Gong, Shaoqin; Cai, Zhiyong
2017-01-01
This paper presents experimental results of both quasi-static compression and low-velocity impact behavior for tri-axial bio-composite structural panels using a spherical load head. Panels were made having different core and face configurations. The results showed that panels made having either carbon fiber fabric composite faces or a foam-filled core had significantly improved impact and compressive performance over panels without either. Different localized impact responses were observed based on the location of the compression or impact relative to the tri-axial structural core; the core with a smaller structural element had better impact performance. Furthermore, during the early contact phase for both quasi-static compression and low-velocity impact tests, the panels with the same configuration had similar load-displacement responses. The experimental results show basic compression data could be used for the future design and optimization of tri-axial bio-composite structural panels for potential impact applications. PMID:28772542
NASA Astrophysics Data System (ADS)
Clief Pattipawaej, Sandro; Su'ud, Zaki
2017-01-01
A preliminary design study of GFR with helium gas-cooled has been performed. In this study used natural uranium and plutonium results LWR waste as fuel. Fuel with a small percentage of plutonium are arranged on the inside of the core area, and the fuel with a greater percentage set on the outside of the core area. The configuration of such fuel is deliberately set to increase breeding in this part of the central core and reduce the leakage of neutrons on the outer side of the core, in order to get long-lived reactor with a small reactivity. Configuration of fuel as it is also useful to generate a peak power reactors with relatively low in both the direction of axial or radial. Optimization has been done to fuel fraction 45.0% was found that the reactor may be operating in more than 10 year time with excess reactivity less than 1%.
Blended-Wing-Body (BWB) Fuselage Structural Design for Weight Reduction
NASA Technical Reports Server (NTRS)
Mukhopadhyay, V.
2005-01-01
Structural analysis and design of efficient pressurized fuselage configurations for the advanced Blended-Wing-Body (BWB) flight vehicle is a challenging problem. Unlike a conventional cylindrical pressurized fuselage, stress level in a box type BWB fuselage is an order of magnitude higher, because internal pressure primarily results in bending stress instead of skin-membrane stress. In addition, resulting deformation of aerodynamic surface could significantly affect performance advantages provided by lifting body. The pressurized composite conformal multi-lobe tanks of X-33 type space vehicle also suffered from similar problem. In the earlier BWB design studies, Vaulted Ribbed Shell (VLRS), Flat Ribbed Shell (FRS); Vaulted shell Honeycomb Core (VLHC) and Flat sandwich shell Honeycomb Core (FLHC) concepts were studied. The flat and vaulted ribbed shell concepts were found most efficient. In a recent study, a set of composite sandwich panel and cross-ribbed panel were analyzed. Optimal values of rib and skin thickness, rib spacing, and panel depth were obtained for minimal weight under stress and buckling constraints. In addition, a set of efficient multi-bubble fuselage (MBF) configuration concept was developed. The special geometric configuration of this concept allows for balancing internal cabin pressure load efficiently, through membrane stress in inner-stiffened shell and inter-cabin walls, while the outer-ribbed shell prevents buckling due to external resultant compressive loads. The initial results from these approximate finite element analyses indicate progressively lower maximum stresses and deflections compared to the earlier study. However, a relative comparison of the FEM weight per unit floor area of the segment unit indicates that the unit weights are still relatively higher that the conventional B777 type cylindrical or A380 type elliptic fuselage design. Due to the manufacturing concern associated with multi-bubble fuselage, a Y braced box-type fuselage alternative with special resin-film injected (RFI) stitched carbon composite with foam-core was designed by Boeing under a NASA research contract for the 480 passenger version. It is shown that this configuration can be improved to a modified multi-bubble fuselage which has better stress distribution, for same material and dimension.
Yamamoto, Akito; Murata, Yoshinori; Mitsui, Chikahiko; Ishii, Hiroyuki; Yamagishi, Masakazu; Yano, Masafumi; Sato, Hiroyasu; Yamano, Akihito; Takeya, Jun; Okamoto, Toshihiro
2018-01-01
Printed and flexible electronics requires solution-processable organic semiconductors with a carrier mobility (μ) of ≈10 cm 2 V -1 s -1 as well as high chemical and thermal durability. In this study, chryseno[2,1- b :8,7- b ']dithiophene (ChDT) and its derivatives, which have a zigzag-elongated fused π-electronic core (π-core) and a peculiar highest occupied molecular orbital (HOMO) configuration, are reported as materials with conceptually new semiconducting π-cores. ChDT and its derivatives are prepared by a versatile synthetic procedure. A comprehensive investigation reveals that the ChDT π-core exhibits increasing structural stability in the bulk crystal phase, and that it is unaffected by a variation of the transfer integral, induced by the perpetual molecular motion of organic materials owing to the combination of its molecular shape and its particular HOMO configuration. Notably, ChDT derivatives exhibit excellent chemical and thermal stability, high charge-carrier mobility under ambient conditions (μ ≤ 10 cm 2 V -1 s -1 ), and a crystal phase that is highly stable, even at temperatures above 250 °C.
NASA Astrophysics Data System (ADS)
Karam, Gebran Nizar
1994-01-01
Thin walled cylindrical shell structures are widespread in nature: examples include plant stems, porcupine quills, and hedgehog spines. All have an outer shell of almost fully dense material supported by a low density, cellular core. In nature, all are loaded in combination of axial compression and bending: failure is typically by buckling. Natural structures are often optimized. Here we have analyzed the elastic buckling of a thin cylindrical shell supported by an elastic core to show that this structural configuration achieves significant weight saving over a hollow cylinder. The results of the analysis are compared with data from an extensive experimental program on uniaxial compression and four point bending tests on silicone rubber shells with and without compliant foam cores. The analysis describes the results of the mechanical tests well. Characterization of the microstructures of several natural tubular structures with foamlike cores (plant stems, quills, and spines) revealed them to be close to the optimal configurations predicted by the analytical model. Biomimicking of natural cylindrical shell structures and evolutionary design processes may offer the potential to increase the mechanical efficiency of engineering cylindrical shells.
Seven-core multicore fiber transmissions for passive optical network.
Zhu, B; Taunay, T F; Yan, M F; Fini, J M; Fishteyn, M; Monberg, E M; Dimarcello, F V
2010-05-24
We design and fabricate a novel multicore fiber (MCF), with seven cores arranged in a hexagonal array. The fiber properties of MCF including low crosstalk, attenuation and splice loss are described. A new tapered MCF connector (TMC), showing ultra-low crosstalk and losses, is also designed and fabricated for coupling the individual signals in-and-out of the MCF. We further propose a novel network configuration using parallel transmissions with the MCF and TMC for passive optical network (PON). To the best of our knowledge, we demonstrate the first bi-directional parallel transmissions of 1310 nm and 1490 nm signals over 11.3-km of seven-core MCF with 64-way splitter for PON.
Dock 'n roll: folding of a silk-inspired polypeptide into an amyloid-like beta solenoid.
Zhao, Binwu; Cohen Stuart, Martien A; Hall, Carol K
2016-04-20
Polypeptides containing the motif ((GA)mGX)n occur in silk and have a strong tendency to self-assemble. For example, polypeptides containing (GAGAGAGX)n, where X = G or H have been observed to form filaments; similar sequences but with X = Q have been used in the design of coat proteins (capsids) for artificial viruses. The structure of the (GAGAGAGX)m filaments has been proposed to be a stack of peptides in a β roll structure with the hydrophobic side chains pointing outwards (hydrophobic shell). Another possible configuration, a β roll or β solenoid structure which has its hydrophobic side chains buried inside (hydrophobic core) was, however, overlooked. We perform ground state analysis as well as atomic-level molecular dynamics simulations, both on single molecules and on two-molecule stacks of the silk-inspired sequence (GAGAGAGQ)10, to decide whether the hydrophobic core or the hydrophobic shell configuration is the most stable one. We find that a stack of two hydrophobic core molecules is energetically more favorable than a stack of two hydrophobic shell molecules. A shell molecule initially placed in a perfect β roll structure tends to rotate its strands, breaking in-plane hydrogen bonds and forming out-of-plane hydrogen bonds, while a core molecule stays in the β roll structure. The hydrophobic shell structure has type II' β turns whereas the core configuration has type II β turns; only the latter secondary structure agrees well with solid-state NMR experiments on a similar sequence (GA)15. We also observe that the core stack has a higher number of intra-molecular hydrogen bonds and a higher number of hydrogen bonds between stack and water than the shell stack. Hence, we conclude that the hydrophobic core configuration is the most likely structure. In the stacked state, each peptide has more intra-molecular hydrogen bonds than a single folded molecule, which suggests that stacking provides the extra stability needed for molecules to reach the folded state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lell, R.; Grimm, K.; McKnight, R.
The Zero Power Physics Reactor (ZPPR) fast critical facility was built at the Argonne National Laboratory-West (ANL-W) site in Idaho in 1969 to obtain neutron physics information necessary for the design of fast breeder reactors. The ZPPR-20D Benchmark Assembly was part of a series of cores built in Assembly 20 (References 1 through 3) of the ZPPR facility to provide data for developing a nuclear power source for space applications (SP-100). The assemblies were beryllium oxide reflected and had core fuel compositions containing enriched uranium fuel, niobium and rhenium. ZPPR-20 Phase C (HEU-MET-FAST-075) was built as the reference flight configuration.more » Two other configurations, Phases D and E, simulated accident scenarios. Phase D modeled the water immersion scenario during a launch accident, and Phase E (SUB-HEU-MET-FAST-001) modeled the earth burial scenario during a launch accident. Two configurations were recorded for the simulated water immersion accident scenario (Phase D); the critical configuration, documented here, and the subcritical configuration (SUB-HEU-MET-MIXED-001). Experiments in Assembly 20 Phases 20A through 20F were performed in 1988. The reference water immersion configuration for the ZPPR-20D assembly was obtained as reactor loading 129 on October 7, 1988 with a fissile mass of 167.477 kg and a reactivity of -4.626 {+-} 0.044{cents} (k {approx} 0.9997). The SP-100 core was to be constructed of highly enriched uranium nitride, niobium, rhenium and depleted lithium. The core design called for two enrichment zones with niobium-1% zirconium alloy fuel cladding and core structure. Rhenium was to be used as a fuel pin liner to provide shut down in the event of water immersion and flooding. The core coolant was to be depleted lithium metal ({sup 7}Li). The core was to be surrounded radially with a niobium reactor vessel and bypass which would carry the lithium coolant to the forward inlet plenum. Immediately inside the reactor vessel was a rhenium baffle which would act as a neutron curtain in the event of water immersion. A fission gas plenum and coolant inlet plenum were located axially forward of the core. Some material substitutions had to be made in mocking up the SP-100 design. The ZPPR-20 critical assemblies were fueled by 93% enriched uranium metal because uranium nitride, which was the SP-100 fuel type, was not available. ZPPR Assembly 20D was designed to simulate a water immersion accident. The water was simulated by polyethylene (CH{sub 2}), which contains a similar amount of hydrogen and has a similar density. A very accurate transformation to a simplified model is needed to make any of the ZPPR assemblies a practical criticality-safety benchmark. There is simply too much geometric detail in an exact model of a ZPPR assembly, particularly as complicated an assembly as ZPPR-20D. The transformation must reduce the detail to a practical level without masking any of the important features of the critical experiment. And it must do this without increasing the total uncertainty far beyond that of the original experiment. Such a transformation will be described in a later section. First, Assembly 20D was modeled in full detail--every plate, drawer, matrix tube, and air gap was modeled explicitly. Then the regionwise compositions and volumes from this model were converted to an RZ model. ZPPR Assembly 20D has been determined to be an acceptable criticality-safety benchmark experiment.« less
[Study for lung sound acquisition module based on ARM and Linux].
Lu, Qiang; Li, Wenfeng; Zhang, Xixue; Li, Junmin; Liu, Longqing
2011-07-01
A acquisition module with ARM and Linux as a core was developed. This paper presents the hardware configuration and the software design. It is shown that the module can extract human lung sound reliably and effectively.
Status of the Space Station environmental control and life support system design concept
NASA Technical Reports Server (NTRS)
Ray, C. D.; Humphries, W. R.
1986-01-01
The current status of the Space Station (SS) environmental control and life support system (ECLSS) design is outlined. The concept has been defined at the subsystem level. Data supporting these definitions are provided which identify general configuratioons for all modules. Requirements, guidelines and assumptions used in generating these configurations are detailed. The basic 2 US module 'core' Space Station is addressed along with system synergism issues and early man-tended and future growth considerations. Along with these basic studies, also addressed here are options related to variation in the 'core' module makeup and more austere Station concepts such as commonality, automation and design to cost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okwit, S.; Siegel, K.; Smith, J.G.
1962-09-01
Results of an investigation to determine the feasibility of incorporating superconducting magnet techniques in the design of traveling-wave maser systems are reported. Several different types of magnet configurations were investigated: isomagnets, Helmholtz coils, modified Helmholtz coils, air-core solenoids, and magnetic end-loaded air-core solenoids. The magnetic end-loaded air-core solenoid was found to be the best configuration for the S-band maser under consideration. This technique yielded relatively large regions of field homogeneity with relatively small aspect ratios (length of solenoid/diameter of solenoid). Several small-scale models of full-length superconducting magnets and foreshortened end-loaded superconducting magnets were constructed using un-annealed niobium wire. Measurements havemore » shown that these magnets were adequate for traveling-wave maser applications that require magnetic fields up to 2,200 G and marginal for magnetic fields up to 2,500 G.« less
Energy efficient engine component development and integration program
NASA Technical Reports Server (NTRS)
1980-01-01
The design of an energy efficient commercial turbofan engine is examined with emphasis on lower fuel consumption and operating costs. Propulsion system performance, emission standards, and noise reduction are also investigated. A detailed design analysis of the engine/aircraft configuration, engine components, and core engine is presented along with an evaluation of the technology and testing involved.
Definition study for variable cycle engine testbed engine and associated test program
NASA Technical Reports Server (NTRS)
Vdoviak, J. W.
1978-01-01
The product/study double bypass variable cycle engine (VCE) was updated to incorporate recent improvements. The effect of these improvements on mission range and noise levels was determined. This engine design was then compared with current existing high-technology core engines in order to define a subscale testbed configuration that simulated many of the critical technology features of the product/study VCE. Detailed preliminary program plans were then developed for the design, fabrication, and static test of the selected testbed engine configuration. These plans included estimated costs and schedules for the detail design, fabrication and test of the testbed engine and the definition of a test program, test plan, schedule, instrumentation, and test stand requirements.
Evaluation of atomic constants for optical radiation, volume 2
NASA Technical Reports Server (NTRS)
Kylstra, C. D.; Schneider, R. J.
1974-01-01
Various atomic constant for 23 elements from helium to mercury were computed and are presented in tables. The data given for each element start with the element name, its atomic number, its ionic state, and the designation and series limit for each parent configuration. This is followed by information on the energy level, parent configuration, and designation for each term available to the program. The matrix elements subtables are ordered by the sequence numbers, which represent the initial and final levels of the transitions. Each subtable gives the following: configuration of the core or parent, designation and energy level for the reference state, effective principal quantum number, energy of the series limit, value of the matrix element for the reference state interacting with itself, and sum of all of the dipole matrix elements listed in the subtable. Dipole and quadrupole interaction data are also given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Sparsh; Zhang, Zhao
With each CMOS technology generation, leakage energy consumption has been dramatically increasing and hence, managing leakage power consumption of large last-level caches (LLCs) has become a critical issue in modern processor design. In this paper, we present EnCache, a novel software-based technique which uses dynamic profiling-based cache reconfiguration for saving cache leakage energy. EnCache uses a simple hardware component called profiling cache, which dynamically predicts energy efficiency of an application for 32 possible cache configurations. Using these estimates, system software reconfigures the cache to the most energy efficient configuration. EnCache uses dynamic cache reconfiguration and hence, it does not requiremore » offline profiling or tuning the parameter for each application. Furthermore, EnCache optimizes directly for the overall memory subsystem (LLC and main memory) energy efficiency instead of the LLC energy efficiency alone. The experiments performed with an x86-64 simulator and workloads from SPEC2006 suite confirm that EnCache provides larger energy saving than a conventional energy saving scheme. For single core and dual-core system configurations, the average savings in memory subsystem energy over a shared baseline configuration are 30.0% and 27.3%, respectively.« less
Uranium droplet core nuclear rocket
NASA Technical Reports Server (NTRS)
Anghaie, Samim
1991-01-01
Uranium droplet nuclear rocket is conceptually designed to utilize the broad temperature range ofthe liquid phase of metallic uranium in droplet configuration which maximizes the energy transfer area per unit fuel volume. In a baseline system dissociated hydrogen at 100 bar is heated to 6000 K, providing 2000 second of Isp. Fission fragments and intense radian field enhance the dissociation of molecular hydrogen beyond the equilibrium thermodynamic level. Uranium droplets in the core are confined and separated by an axisymmetric vortex flow generated by high velocity tangential injection of hydrogen in the mid-core regions. Droplet uranium flow to the core is controlled and adjusted by a twin flow nozzle injection system.
NASA Astrophysics Data System (ADS)
1992-05-01
The function of the Space Station Furnace Facility (SSFF) is to support materials research into the crystal growth and solidification processes of electronic and photonic materials, metals and alloys, and glasses and ceramics. To support this broad base of research requirements, the SSFF will employ a variety of furnace modules which will be operated, regulated, and supported by a core of common subsystems. Furnace modules may be reconfigured or specifically developed to provide unique solidification conditions for each set of experiments. The SSFF modular approach permits the addition of new or scaled-up furnace modules to support the evolution of the facility as new science requirements are identified. The SSFF Core is of modular design to permit augmentation for enhanced capabilities. The fully integrated configuration of the SSFF will consist of three racks with the capability of supporting up to two furnace modules per rack. The initial configuration of the SSFF will consist of two of the three racks and one furnace module. This Experiment/Facility Requirements Document (E/FRD) describes the integrated facility requirements for the Space Station Freedom (SSF) Integrated Configuration-1 (IC1) mission. The IC1 SSFF will consist of two racks: the Core Rack, with the centralized subsystem equipment; and the Experiment Rack-1, with Furnace Module-1 and the distributed subsystem equipment to support the furnace. The SSFF support functions are provided by the following Core subsystems: power conditioning and distribution subsystem (SSFF PCDS); data management subsystem (SSFF DMS); thermal control Subsystem (SSFF TCS); gas distribution subsystem (SSFF GDS); and mechanical structures subsystem (SSFF MSS).
NASA Technical Reports Server (NTRS)
1992-01-01
The function of the Space Station Furnace Facility (SSFF) is to support materials research into the crystal growth and solidification processes of electronic and photonic materials, metals and alloys, and glasses and ceramics. To support this broad base of research requirements, the SSFF will employ a variety of furnace modules which will be operated, regulated, and supported by a core of common subsystems. Furnace modules may be reconfigured or specifically developed to provide unique solidification conditions for each set of experiments. The SSFF modular approach permits the addition of new or scaled-up furnace modules to support the evolution of the facility as new science requirements are identified. The SSFF Core is of modular design to permit augmentation for enhanced capabilities. The fully integrated configuration of the SSFF will consist of three racks with the capability of supporting up to two furnace modules per rack. The initial configuration of the SSFF will consist of two of the three racks and one furnace module. This Experiment/Facility Requirements Document (E/FRD) describes the integrated facility requirements for the Space Station Freedom (SSF) Integrated Configuration-1 (IC1) mission. The IC1 SSFF will consist of two racks: the Core Rack, with the centralized subsystem equipment; and the Experiment Rack-1, with Furnace Module-1 and the distributed subsystem equipment to support the furnace. The SSFF support functions are provided by the following Core subsystems: power conditioning and distribution subsystem (SSFF PCDS); data management subsystem (SSFF DMS); thermal control Subsystem (SSFF TCS); gas distribution subsystem (SSFF GDS); and mechanical structures subsystem (SSFF MSS).
NASA Technical Reports Server (NTRS)
Saiyed, Naseem H.; Mikkelsen, Kevin L.; Bridges, James E.
2000-01-01
The NASA Glenn Research Center recently completed an experimental study to reduce the jet noise from modern turbofan engines. The study concentrated on exhaust nozzle designs for high-bypass-ratio engines. These designs modified the core and fan nozzles individually and simultaneously. Several designs provided an ideal jet noise reduction of over 2.5 EPNdB for the effective perceived noise level (EPNL) metric. Noise data, after correcting for takeoff thrust losses, indicated over a 2.0-EPNdB reduction for nine designs. Individually modifying the fan nozzle did not provide attractive EPNL reductions. Designs in which only the core nozzle was modified provided greater EPNL reductions. Designs in which core and fan nozzles were modified simultaneously provided the greatest EPNL reduction. The best nozzle design had a 2.7-EPNdB reduction (corrected for takeoff thrust loss) with a 0.06-point cruise thrust loss. This design simultaneously employed chevrons on the core and fan nozzles. In comparison with chevrons, tabs appeared to be an inefficient method for reducing jet noise. Data trends indicate that the sum of the thrust losses from individually modifying core and fan nozzles did not generally equal the thrust loss from modifying them simultaneously. Flow blockage from tabs did not scale directly with cruise thrust loss and the interaction between fan flow and the core nozzle seemed to strongly affect noise and cruise performance. Finally, the nozzle configuration candidates for full-scale engine demonstrations are identified.
Yamamoto, Akito; Murata, Yoshinori; Mitsui, Chikahiko; Yamagishi, Masakazu; Yano, Masafumi; Sato, Hiroyasu; Yamano, Akihito; Takeya, Jun
2017-01-01
Abstract Printed and flexible electronics requires solution‐processable organic semiconductors with a carrier mobility (μ) of ≈10 cm2 V−1 s−1 as well as high chemical and thermal durability. In this study, chryseno[2,1‐b:8,7‐b′]dithiophene (ChDT) and its derivatives, which have a zigzag‐elongated fused π‐electronic core (π‐core) and a peculiar highest occupied molecular orbital (HOMO) configuration, are reported as materials with conceptually new semiconducting π‐cores. ChDT and its derivatives are prepared by a versatile synthetic procedure. A comprehensive investigation reveals that the ChDT π‐core exhibits increasing structural stability in the bulk crystal phase, and that it is unaffected by a variation of the transfer integral, induced by the perpetual molecular motion of organic materials owing to the combination of its molecular shape and its particular HOMO configuration. Notably, ChDT derivatives exhibit excellent chemical and thermal stability, high charge‐carrier mobility under ambient conditions (μ ≤ 10 cm2 V−1 s−1), and a crystal phase that is highly stable, even at temperatures above 250 °C. PMID:29375963
NASA Astrophysics Data System (ADS)
Rakvic, Ryan N.; Ives, Robert W.; Lira, Javier; Molina, Carlos
2011-01-01
General purpose computer designers have recently begun adding cores to their processors in order to increase performance. For example, Intel has adopted a homogeneous quad-core processor as a base for general purpose computing. PlayStation3 (PS3) game consoles contain a multicore heterogeneous processor known as the Cell, which is designed to perform complex image processing algorithms at a high level. Can modern image-processing algorithms utilize these additional cores? On the other hand, modern advancements in configurable hardware, most notably field-programmable gate arrays (FPGAs) have created an interesting question for general purpose computer designers. Is there a reason to combine FPGAs with multicore processors to create an FPGA multicore hybrid general purpose computer? Iris matching, a repeatedly executed portion of a modern iris-recognition algorithm, is parallelized on an Intel-based homogeneous multicore Xeon system, a heterogeneous multicore Cell system, and an FPGA multicore hybrid system. Surprisingly, the cheaper PS3 slightly outperforms the Intel-based multicore on a core-for-core basis. However, both multicore systems are beaten by the FPGA multicore hybrid system by >50%.
Stolyarov, Alexander M; Gumennik, Alexander; McDaniel, William; Shapira, Ofer; Schell, Brent; Sorin, Fabien; Kuriki, Ken; Benoit, Gilles; Rose, Aimee; Joannopoulos, John D; Fink, Yoel
2012-05-21
We demonstrate an in-fiber gas phase chemical detection architecture in which a chemiluminescent (CL) reaction is spatially and spectrally matched to the core modes of hollow photonic bandgap (PBG) fibers in order to enhance detection efficiency. A peroxide-sensitive CL material is annularly shaped and centered within the fiber's hollow core, thereby increasing the overlap between the emission intensity and the intensity distribution of the low-loss fiber modes. This configuration improves the sensitivity by 0.9 dB/cm compared to coating the material directly on the inner fiber surface, where coupling to both higher loss core modes and cladding modes is enhanced. By integrating the former configuration with a custom-built optofluidic system designed for concomitant controlled vapor delivery and emission measurement, we achieve a limit-of-detection of 100 parts per billion (ppb) for hydrogen peroxide vapor. The PBG fibers are produced by a new fabrication method whereby external gas pressure is used as a control knob to actively tune the transmission bandgaps through the entire visible range during the thermal drawing process.
Head-on collision of multistate ultralight BEC dark matter configurations
NASA Astrophysics Data System (ADS)
Guzmán, F. S.; Avilez, Ana A.
2018-06-01
Density profiles of ultralight Bose-condensate dark matter inferred from numerical simulations of structure formation, ruled by the Gross-Pitaevskii-Poisson (GPP) system of equations, have a core-tail structure. Multistate equilibrium configurations of the GPP system, on the other hand, have a similar core-tail density profile. We now submit these multistate configurations to highly dynamical scenarios and show their potential as providers of appropriate density profiles of structures. We present the simulation of head-on collisions between two equilibrium configurations of the GPP system of equations, including the collision of ground state with multistate configurations. We study the regimes of solitonic and merger behavior and show generic properties of the dynamics of the system, including the relaxation process and attractor density profiles. We show that the merger of multistate configurations has the potential to produce core-tail density profiles, with the core dominated by the ground state and the halo dominated by an additional state.
Advanced Design Methodology for Robust Aircraft Sizing and Synthesis
NASA Technical Reports Server (NTRS)
Mavris, Dimitri N.
1997-01-01
Contract efforts are focused on refining the Robust Design Methodology for Conceptual Aircraft Design. Robust Design Simulation (RDS) was developed earlier as a potential solution to the need to do rapid trade-offs while accounting for risk, conflict, and uncertainty. The core of the simulation revolved around Response Surface Equations as approximations of bounded design spaces. An ongoing investigation is concerned with the advantages of using Neural Networks in conceptual design. Thought was also given to the development of systematic way to choose or create a baseline configuration based on specific mission requirements. Expert system was developed, which selects aerodynamics, performance and weights model from several configurations based on the user's mission requirements for subsonic civil transport. The research has also resulted in a step-by-step illustration on how to use the AMV method for distribution generation and the search for robust design solutions to multivariate constrained problems.
Design of a Modular E-Core Flux Concentrating Axial Flux Machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Tausif; Sozer, Yilmaz; Husain, Iqbal
2015-09-02
In this paper a novel E-Core axial flux machine is proposed. The machine has a double stator-single rotor configuration with flux concentrating ferrite magnets, and pole windings across each leg of an E-Core stator. E-Core stators with the proposed flux-concentrating rotor arrangement result in better magnet utilization and higher torque density. The machine also has a modular structure facilitating simpler construction. This paper presents a single phase and a three-phase version of the E-Core machine. Case study for a 1.1 kW, 400 rpm machine for both the single phase and three-phase axial flux machine is presented. The results are verifiedmore » through 3D finite element analysis.« less
Host-Guest Complexes with Protein-Ligand-Like Affinities: Computational Analysis and Design
Moghaddam, Sarvin; Inoue, Yoshihisa
2009-01-01
It has recently been discovered that guests combining a nonpolar core with cationic substituents bind cucurbit[7]uril (CB[7]) in water with ultra-high affinities. The present study uses the Mining Minima algorithm to study the physics of these extraordinary associations and to computationally test a new series of CB[7] ligands designed to bind with similarly high affinity. The calculations reproduce key experimental observations regarding the affinities of ferrocene-based guests with CB[7] and β-cyclodextrin and provide a coherent view of the roles of electrostatics and configurational entropy as determinants of affinity in these systems. The newly designed series of compounds is based on a bicyclo[2.2.2]octane core, which is similar in size and polarity to the ferrocene core of the existing series. Mining Minima predicts that these new compounds will, like the ferrocenes, bind CB[7] with extremely high affinities. PMID:19133781
Dock ’n Roll: Folding of a Silk-Inspired Polypeptide into an Amyloid-like Beta Solenoid
Zhao, Binwu; Cohen Stuart, Martien A.; Hall, Carol K.
2016-01-01
Polypeptides containing the motif ((GA)mGX)n occur in silk (we refer to them as ‘silk-like’) and have a strong tendency to self-assemble. For example, polypeptides containing (GAGAGAGX)n, where X = G or H have been observed to form filaments; similar sequences but with X = Q have been used in the design of coat proteins (capsids) for artificial viruses. The structure of the (GAGAGAGX)m filaments has been proposed to be a stack of peptides in a β roll structure with the hydrophobic side chains pointing outwards (hydrophobic shell). Another possible configuration, a β roll or β solenoid structure which has its hydrophobic side chains buried inside (hydrophobic core) was, however, overlooked. We perform ground state analysis as well as atomic-level molecular dynamics simulations, both on single molecules and on two-molecule stacks of the silk-inspired sequence (GAGAGAGQ)10, to decide whether the hydrophobic core or the hydrophobic shell configuration is the most stable one. We find that a stack of two hydrophobic core molecules is energetically more favorable than a stack of two shell molecules. A shell molecule initially placed in a perfect β roll structure tends to rotate its strands, breaking in-plane hydrogen bonds and forming out-of-plane hydrogen bonds, while a core molecule stays in the β roll structure. The hydrophobic shell structure has type II’ β turns whereas the core configuration has type II β turns; only the latter secondary structure agrees well with solid-state NMR experiments on a similar sequence (GA)15. We also observe that the core stack has a higher number of intra-molecular hydrogen bonds and a higher number of hydrogen bonds between stack and water than the shell stack. Hence, we conclude that the hydrophobic core configuration is the most likely structure. In the stacked state, each peptide has more intra-molecular hydrogen bonds than a single folded molecule, which suggests that stacking provides the extra stability needed for molecules to reach the folded state. PMID:26947809
Optimization of burnable poison design for Pu incineration in fully fertile free PWR core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fridman, E.; Shwageraus, E.; Galperin, A.
2006-07-01
The design challenges of the fertile-free based fuel (FFF) can be addressed by careful and elaborate use of burnable poisons (BP). Practical fully FFF core design for PWR reactor has been reported in the past [1]. However, the burnable poison option used in the design resulted in significant end of cycle reactivity penalty due to incomplete BP depletion. Consequently, excessive Pu loading were required to maintain the target fuel cycle length, which in turn decreased the Pu burning efficiency. A systematic evaluation of commercially available BP materials in all configurations currently used in PWRs is the main objective of thismore » work. The BP materials considered are Boron, Gd, Er, and Hf. The BP geometries were based on Wet Annular Burnable Absorber (WABA), Integral Fuel Burnable Absorber (IFBA), and Homogeneous poison/fuel mixtures. Several most promising combinations of BP designs were selected for the full core 3D simulation. All major core performance parameters for the analyzed cases are very close to those of a standard PWR with conventional UO{sub 2} fuel including possibility of reactivity control, power peaking factors, and cycle length. The MTC of all FFF cores was found at the full power conditions at all times and very close to that of the UO{sub 2} core. The Doppler coefficient of the FFF cores is also negative but somewhat lower in magnitude compared to UO{sub 2} core. The soluble boron worth of the FFF cores was calculated to be lower than that of the UO{sub 2} core by about a factor of two, which still allows the core reactivity control with acceptable soluble boron concentrations. The main conclusion of this work is that judicial application of burnable poisons for fertile free fuel has a potential to produce a core design with performance characteristics close to those of the reference PWR core with conventional UO{sub 2} fuel. (authors)« less
Distributed gas detection system and method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Challener, William Albert; Palit, Sabarni; Karp, Jason Harris
A distributed gas detection system includes one or more hollow core fibers disposed in different locations, one or more solid core fibers optically coupled with the one or more hollow core fibers and configured to receive light of one or more wavelengths from a light source, and an interrogator device configured to receive at least some of the light propagating through the one or more solid core fibers and the one or more hollow core fibers. The interrogator device is configured to identify a location of a presence of a gas-of-interest by examining absorption of at least one of themore » wavelengths of the light at least one of the hollow core fibers.« less
Initial Comparison of Direct and Legacy Modeling Approaches for Radial Core Expansion Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shemon, Emily R.
2016-10-10
Radial core expansion in sodium-cooled fast reactors provides an important reactivity feedback effect. As the reactor power increases due to normal start up conditions or accident scenarios, the core and surrounding materials heat up, causing both grid plate expansion and bowing of the assembly ducts. When the core restraint system is designed correctly, the resulting structural deformations introduce negative reactivity which decreases the reactor power. Historically, an indirect procedure has been used to estimate the reactivity feedback due to structural deformation which relies upon perturbation theory and coupling legacy physics codes with limited geometry capabilities. With advancements in modeling andmore » simulation, radial core expansion phenomena can now be modeled directly, providing an assessment of the accuracy of the reactivity feedback coefficients generated by indirect legacy methods. Recently a new capability was added to the PROTEUS-SN unstructured geometry neutron transport solver to analyze deformed meshes quickly and directly. By supplying the deformed mesh in addition to the base configuration input files, PROTEUS-SN automatically processes material adjustments including calculation of region densities to conserve mass, calculation of isotopic densities according to material models (for example, sodium density as a function of temperature), and subsequent re-homogenization of materials. To verify the new capability of directly simulating deformed meshes, PROTEUS-SN was used to compute reactivity feedback for a series of contrived yet representative deformed configurations for the Advanced Burner Test Reactor design. The indirect legacy procedure was also performed to generate reactivity feedback coefficients for the same deformed configurations. Interestingly, the legacy procedure consistently overestimated reactivity feedbacks by 35% compared to direct simulations by PROTEUS-SN. This overestimation indicates that the legacy procedures are in fact not conservative and could be overestimating reactivity feedback effects that are closely tied to reactor safety. We conclude that there is indeed value in performing direct simulation of deformed meshes despite the increased computational expense. PROTEUS-SN is already part of the SHARP multi-physics toolkit where both thermal hydraulics and structural mechanical feedback modeling can be applied but this is the first comparison of direct simulation to legacy techniques for radial core expansion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, W.R.; Lee, J.C.; Larsen, E.W.
1991-11-01
An advanced converter reactor design utilizing mechanical spectral shift control rods in a conventional pressurized water reactor configuration is under investigation. The design is based on the principle that a harder spectrum during the early part of the fuel cycle will result in large neutron captures in fertile {sup 238}U, which can then be burned in situ in a softer spectrum later in the cycle. Preliminary design calculations performed during FY 89 showed that the slightly-enriched spectral shift reactor design offers the benefit of substantially increased fuel resource utilization with the proven safety characteristics of the pressurized water reactor technologymore » retained. Optimization of the fuel design and development of fuel management strategies were carried out in FY 90, along with effort to develop and validate neutronic methodology for tight-lattice configurations with hard spectra. During FY 91, the final year of the grant, the final Slightly-Enriched Spectral Shift Reactor (SESSR) design was determined, and reference design analyses were performed for the assemblies as well as the global core configuration, both at the beginning of cycle (BOC) and with depletion. The final SESSR design results in approximately a 20% increase in the utilization of uranium resources, based on equilibrium fuel cycle analyses. Acceptable pin power peaking is obtained with the final core design, with assembly peaking factors equal to less than 1.04 for spectral shift control rods both inserted and withdrawn, and global peaking factors at BOC predicted to be 1.4. In addition, a negative Moderation Temperature Coefficient (MTC) is maintained for BOC, which is difficult to achieve with conventional advanced converter designs based on a closed fuel cycle. The SESSR design avoids the need for burnable poison absorber, although they could be added if desired to increase the cycle length while maintaining a negative MTC.« less
The slightly-enriched spectral shift control reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, W.R.; Lee, J.C.; Larsen, E.W.
1991-11-01
An advanced converter reactor design utilizing mechanical spectral shift control rods in a conventional pressurized water reactor configuration is under investigation. The design is based on the principle that a harder spectrum during the early part of the fuel cycle will result in large neutron captures in fertile {sup 238}U, which can then be burned in situ in a softer spectrum later in the cycle. Preliminary design calculations performed during FY 89 showed that the slightly-enriched spectral shift reactor design offers the benefit of substantially increased fuel resource utilization with the proven safety characteristics of the pressurized water reactor technologymore » retained. Optimization of the fuel design and development of fuel management strategies were carried out in FY 90, along with effort to develop and validate neutronic methodology for tight-lattice configurations with hard spectra. During FY 91, the final year of the grant, the final Slightly-Enriched Spectral Shift Reactor (SESSR) design was determined, and reference design analyses were performed for the assemblies as well as the global core configuration, both at the beginning of cycle (BOC) and with depletion. The final SESSR design results in approximately a 20% increase in the utilization of uranium resources, based on equilibrium fuel cycle analyses. Acceptable pin power peaking is obtained with the final core design, with assembly peaking factors equal to less than 1.04 for spectral shift control rods both inserted and withdrawn, and global peaking factors at BOC predicted to be 1.4. In addition, a negative Moderation Temperature Coefficient (MTC) is maintained for BOC, which is difficult to achieve with conventional advanced converter designs based on a closed fuel cycle. The SESSR design avoids the need for burnable poison absorber, although they could be added if desired to increase the cycle length while maintaining a negative MTC.« less
Aeroelastic Sizing for High-Speed Research (HSR) Longitudinal Control Alternatives Project (LCAP)
NASA Technical Reports Server (NTRS)
Walsh, Joanne L.; Dunn, H. J.; Stroud, W. Jefferson; Barthelemy, J.-F.; Weston, Robert P.; Martin, Carl J.; Bennett, Robert M.
2005-01-01
The Longitudinal Control Alternatives Project (LCAP) compared three high-speed civil transport configurations to determine potential advantages of the three associated longitudinal control concepts. The three aircraft configurations included a conventional configuration with a layout having a horizontal aft tail, a configuration with a forward canard in addition to a horizontal aft tail, and a configuration with only a forward canard. The three configurations were aeroelastically sized and were compared on the basis of operational empty weight (OEW) and longitudinal control characteristics. The sized structure consisted of composite honeycomb sandwich panels on both the wing and the fuselage. Design variables were the core depth of the sandwich and the thicknesses of the composite material which made up the face sheets of the sandwich. Each configuration was sized for minimum structural weight under linear and nonlinear aeroelastic loads subject to strain, buckling, ply-mixture, and subsonic and supersonic flutter constraints. This report describes the methods that were used and the results that were generated for the aeroelastic sizing of the three configurations.
Feasibility study of full-reactor gas core demonstration test
NASA Technical Reports Server (NTRS)
Kunze, J. F.; Lofthouse, J. H.; Shaffer, C. J.; Macbeth, P. J.
1973-01-01
Separate studies of nuclear criticality, flow patterns, and thermodynamics for the gas core reactor concept have all given positive indications of its feasibility. However, before serious design for a full scale gas core application can be made, feasibility must be shown for operation with full interaction of the nuclear, thermal, and hydraulic effects. A minimum sized, and hence minimum expense, test arrangement is considered for a full gas core configuration. It is shown that the hydrogen coolant scattering effects dominate the nuclear considerations at elevated temperatures. A cavity diameter of somewhat larger than 4 ft (122 cm) will be needed if temperatures high enough to vaporize uranium are to be achieved.
Reconfigurable Hardware Adapts to Changing Mission Demands
NASA Technical Reports Server (NTRS)
2003-01-01
A new class of computing architectures and processing systems, which use reconfigurable hardware, is creating a revolutionary approach to implementing future spacecraft systems. With the increasing complexity of electronic components, engineers must design next-generation spacecraft systems with new technologies in both hardware and software. Derivation Systems, Inc., of Carlsbad, California, has been working through NASA s Small Business Innovation Research (SBIR) program to develop key technologies in reconfigurable computing and Intellectual Property (IP) soft cores. Founded in 1993, Derivation Systems has received several SBIR contracts from NASA s Langley Research Center and the U.S. Department of Defense Air Force Research Laboratories in support of its mission to develop hardware and software for high-assurance systems. Through these contracts, Derivation Systems began developing leading-edge technology in formal verification, embedded Java, and reconfigurable computing for its PF3100, Derivational Reasoning System (DRS ), FormalCORE IP, FormalCORE PCI/32, FormalCORE DES, and LavaCORE Configurable Java Processor, which are designed for greater flexibility and security on all space missions.
National Launch System Space Transportation Main Engine
NASA Technical Reports Server (NTRS)
Hoodless, Ralph M., Jr.; Monk, Jan C.; Cikanek, Harry A., III
1991-01-01
The present liquid-oxygen/liquid-hydrogen engine is described as meeting the specific requirements of the National Launch System (NLS) Program including cost-effectiveness and robustness. An overview of the NLS and its objectives is given which indicates that the program aims to develop a flexible launch system to meet security, civil, and commercial needs. The Space Transportation Main Engine (STME) provides core and boost propulsion for the 1.5-stage vehicle and core propulsion for the solid booster vehicle. The design incorporates step-throttling, order-of-magnitude reductions in welds, and configuration targets designed to optimize robustness. The STME is designed to provide adaptable and dependable propulsion while minimizing recurring costs and is designed to meet the needs of NLS and other typical space-transportation programs currently being planned.
NASA Technical Reports Server (NTRS)
Taylor, M. F.; Whitmarsh, C. L., Jr.; Sirocky, P. J., Jr.; Iwanczyke, L. C.
1973-01-01
A preliminary design study of a conceptual 6000-megawatt open-cycle gas-core nuclear rocket engine system was made. The engine has a thrust of 196,600 newtons (44,200 lb) and a specific impulse of 4400 seconds. The nuclear fuel is uranium-235 and the propellant is hydrogen. Critical fuel mass was calculated for several reactor configurations. Major components of the reactor (reflector, pressure vessel, and waste heat rejection system) were considered conceptually and were sized.
Structural Performance of a Compressively Loaded Foam-Core Hat-Stiffened Textile Composite Panel
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.; Dexter, Benson H.
1996-01-01
A structurally efficient hat-stiffened panel concept that utilizes a structural foam as a stiffener core material has been designed and developed for aircraft primary structural applications. This stiffener concept is fabricated from textile composite material forms with a resin transfer molding process. This foam-filled hat-stiffener concept is structurally more efficient than most other prismatically stiffened panel configurations in a load range that is typical for both fuselage and wing structures. The panel design is based on woven/stitched and braided graphite-fiber textile preforms, an epoxy resin system, and Rohacell foam core. The structural response of this panel design was evaluated for its buckling and postbuckling behavior with and without low-speed impact damage. The results from single-stiffener and multi-stiffener specimen tests suggest that this structural concept responds to loading as anticipated and has excellent damage tolerance characteristics compared to a similar panel design made from preimpregnated graphite-epoxy tape material.
NASA Technical Reports Server (NTRS)
Bergan, Andrew C.
2017-01-01
Damage tolerant design approaches require determination of critical damage modes and flaw sizes in order to establish nondestructive evaluation detection requirements. A finite element model is developed to assess the effect of circular facesheet-core disbonds on the strength of sandwich specimens subjected to edgewise compressive loads for the purpose of predicting the critical flaw size for a variety of design parameters. Postbuckling analyses are conducted in which an initial imperfection is seeded using results from a linear buckling analysis. Both the virtual crack closure technique (VCCT) and cohesive elements are considered for modeling disbond growth. Predictions from analyses using the VCCT and analyses using cohesive elements are in good correlation. A series of parametric analyses are conducted to investigate the effect of core thickness and material, facesheet layup, facesheet-core interface properties, and curvature on the criticality of facesheet-core disbonds of various sizes. The results from these analyses provide a basis for determining the critical flaw size for facesheet-core disbonds subjected to edgewise compression loads and, therefore, nondestructive evaluation flaw detection requirements for this configuration.
Advanced Structural and Inflatable Hybrid Spacecraft Module
NASA Technical Reports Server (NTRS)
Schneider, William C. (Inventor); delaFuente, Horacio M. (Inventor); Edeen, Gregg A. (Inventor); Kennedy, Kriss J. (Inventor); Lester, James D. (Inventor); Gupta, Shalini (Inventor); Hess, Linda F. (Inventor); Lin, Chin H. (Inventor); Malecki, Richard H. (Inventor); Raboin, Jasen L. (Inventor)
2001-01-01
An inflatable module comprising a structural core and an inflatable shell, wherein the inflatable shell is sealingly attached to the structural core. In its launch configuration, the wall thickness of the inflatable shell is collapsed by vacuum. Also in this configuration, the inflatable shell is collapsed and efficiently folded around the structural core. Upon deployment, the wall thickness of the inflatable shell is inflated; whereby the inflatable shell itself, is thereby inflated around the structural core, defining therein a large enclosed volume. A plurality of removable shelves are arranged interior to the structural core in the launch configuration. The structural core also includes at least one longeron that, in conjunction with the shelves, primarily constitute the rigid, strong, and lightweight load-bearing structure of the module during launch. The removable shelves are detachable from their arrangement in the launch configuration so that, when the module is in its deployed configuration and launch loads no longer exist, the shelves can be rearranged to provide a module interior arrangement suitable for human habitation and work. In the preferred embodiment, to provide efficiency in structural load paths and attachments, the shape of the inflatable shell is a cylinder with semi-toroidal ends.
NASA Technical Reports Server (NTRS)
Raboin, Jasen L. (Inventor); Valle, Gerard D. (Inventor); Edeen, Gregg A. (Inventor); delaFuente, Horacio M. (Inventor); Schneider, William C. (Inventor); Spexarth, Gary R. (Inventor); Pandya, Shalini Gupta (Inventor); Johnson, Christopher J. (Inventor)
2003-01-01
An inflatable module comprising a structural core and an inflatable shell, wherein the inflatable shell is sealingly attached to the structural core. In its launch or pre-deployed configuration, the wall thickness of the inflatable shell is collapsed by vacuum. Also in this configuration, the inflatable shell is collapsed and efficiently folded around the structural core. Upon deployment, the wall thickness of the inflatable shell is inflated; whereby the inflatable shell itself, is thereby inflated around the structural core, defining therein a large enclosed volume. A plurality of removable shelves are arranged interior to the structural core in the launch configuration. The structural core also includes at least one longeron that, in conjunction with the shelves, primarily constitute the rigid, strong, and lightweight load-bearing structure of the module during launch. The removable shelves are detachable from their arrangement in the launch configuration so that, when the module is in its deployed configuration and launch loads no longer exist, the shelves can be rearranged to provide a module interior arrangement suitable for human habitation and work. In the preferred embodiment, to provide efficiency in structural load paths and attachments, the shape of the inflatable shell is a cylinder with semi-toroidal ends.
Development of lightweight graphite/polyimide sandwich panels.
NASA Technical Reports Server (NTRS)
Poesch, J. G.
1972-01-01
Lightweight graphite/polyimide composite honeycomb core and sandwich panels were fabricated and tested. Honeycomb cores of 1/4-in. and 3/8-in. cell sizes of hexagonal configuration were produced from thin plus or minus 45 deg cross plied sheets of prepreg producing core weights between 1.8 and 3.6 lb/cu ft. Thin gauge prepreg using Hercules graphite tow and Monsanto Skybond 710 polyimide resin were manufactured to produce cured ply thicknesses of 0.001 to 0.002 in. Graphite core properties measured at temperatures from -150 to 600 F are reported. Core properties which are superior to available materials were obtained. Sandwich panels weighing less than 0.5 lb/sq ft were designed and fabricated which meet the support structure loads for the shuttle orbiter thermal protection system.
Phase 1 Space Fission Propulsion System Testing and Development Progress
NASA Technical Reports Server (NTRS)
VanDyke, Melissa; Houts, Mike; Godfroy, Tom; Dickens, Ricky; Poston, David; Kapernick, Rick; Reid, Bob; Salvail, Pat; Ring, Peter; Schafer, Charles (Technical Monitor)
2001-01-01
Successful development of space fission systems requires an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. The Safe Affordable Fission Engine (SAFE) test series, whose ultimate goal is the demonstration of a 300 kW flight configuration system, has demonstrated that realistic testing can be performed using non-nuclear methods. This test series, carried out in collaboration with other NASA centers, other government agencies, industry, and universities, successfully completed a testing program with a 30 kWt core, Stirling engine, and ion engine configuration. Additionally, a 100 kWt core is in fabrication and appropriate test facilities are being reconfigured. This paper describes the current SAFE non-nuclear tests, which includes test article descriptions, test results and conclusions, and future test plans.
Computational Methods for Aerodynamic Design (Inverse) and Optimization
1990-01-01
rroducing lift. The upper surface is cylindrical in undisturbed flow or produces addi- tional lift by utllIzlnf, an also known Prandll-Meyer expansion...rotationally symmetric and the core jet is simulated by a cylindrical body. The total number of grid points is around 56000. Although characteristic...to determine if the design option could reproduce this geometry starting from an ogive- cylindrical body, figures 6 and 10. The two configurations
Initial conceptual design study of self-critical nuclear pumped laser systems
NASA Technical Reports Server (NTRS)
Rodgers, R. J.
1979-01-01
An analytical study of self-critical nuclear pumped laser system concepts was performed. Primary emphasis was placed on reactor concepts employing gaseous uranium hexafluoride (UF6) as the fissionable material. Relationships were developed between the key reactor design parameters including reactor power level, critical mass, neutron flux level, reactor size, operating pressure, and UF6 optical properties. The results were used to select a reference conceptual laser system configuration. In the reference configuration, the 3.2 m cubed lasing volume is surrounded by a graphite internal moderator and a region of heavy water. Results of neutronics calculations yield a critical mass of 4.9 U(235) in the form (235)UF6. The configuration appears capable of operating in a continuous steady-state mode. The average gas temperature in the core is 600 K and the UF6 partial pressure within the lasing volume is 0.34 atm.
NASA Astrophysics Data System (ADS)
Rumbaugh, Roy N.; Grealish, Kevin; Kacir, Tom; Arsenault, Barry; Murphy, Robert H.; Miller, Scott
2003-09-01
A new 4th generation MicroIR architecture is introduced as the latest in the highly successful Standard Camera Core (SCC) series by BAE SYSTEMS to offer an infrared imaging engine with greatly reduced size, weight, power, and cost. The advanced SCC500 architecture provides great flexibility in configuration to include multiple resolutions, an industry standard Real Time Operating System (RTOS) for customer specific software application plug-ins, and a highly modular construction for unique physical and interface options. These microbolometer based camera cores offer outstanding and reliable performance over an extended operating temperature range to meet the demanding requirements of real-world environments. A highly integrated lens and shutter is included in the new SCC500 product enabling easy, drop-in camera designs for quick time-to-market product introductions.
Magnetic suspension and balance system advanced study, phase 2
NASA Technical Reports Server (NTRS)
Boom, R. W.; Abdelsalam, M. K.; Eyssa, Y. M.; Mcintosh, G. E.
1990-01-01
The design improvements for the system encompass 14 or 18 external superconductive coils mounted on a 8 x 8 foot wind tunnel, a superconductive model core magnet on a holmium mandrel to fit an F-16 model, model wings of permanent magnet material Nd2Fe14B, and fiber glass epoxy structure. The Magnetic Suspension and Balance System (MSBS) advanced design is confirmed by the successful construction and test of a full size superconductive model core solenoid with holmium mandrel. The solenoid is 75 cm long and 12.6 cm in diameter and produces 6.1 tesla for a hold time of 47 minutes. An integrated coil system design of a new compact configuration without specific coils for roll or pitch shows promise of simplicity; magnet reductions of 30 percent compared to the most recent 1985 design are possible.
Modular container assembled from fiber reinforced thermoplastic sandwich panels
Donnelly, Mathew William; Kasoff, William Andrew; Mcculloch, Patrick Carl; Williams, Frederick Truman
2007-12-25
An improved, load bearing, modular design container structure assembled from thermoformed FRTP sandwich panels in which is utilized the unique core-skin edge configuration of the present invention in consideration of improved load bearing performance, improved useful load volume, reduced manufacturing costs, structural weight savings, impact and damage tolerance and repair and replace issues.
Design and Development of a Run-Time Monitor for Multi-Core Architectures in Cloud Computing
Kang, Mikyung; Kang, Dong-In; Crago, Stephen P.; Park, Gyung-Leen; Lee, Junghoon
2011-01-01
Cloud computing is a new information technology trend that moves computing and data away from desktops and portable PCs into large data centers. The basic principle of cloud computing is to deliver applications as services over the Internet as well as infrastructure. A cloud is a type of parallel and distributed system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources. The large-scale distributed applications on a cloud require adaptive service-based software, which has the capability of monitoring system status changes, analyzing the monitored information, and adapting its service configuration while considering tradeoffs among multiple QoS features simultaneously. In this paper, we design and develop a Run-Time Monitor (RTM) which is a system software to monitor the application behavior at run-time, analyze the collected information, and optimize cloud computing resources for multi-core architectures. RTM monitors application software through library instrumentation as well as underlying hardware through a performance counter optimizing its computing configuration based on the analyzed data. PMID:22163811
Design and development of a run-time monitor for multi-core architectures in cloud computing.
Kang, Mikyung; Kang, Dong-In; Crago, Stephen P; Park, Gyung-Leen; Lee, Junghoon
2011-01-01
Cloud computing is a new information technology trend that moves computing and data away from desktops and portable PCs into large data centers. The basic principle of cloud computing is to deliver applications as services over the Internet as well as infrastructure. A cloud is a type of parallel and distributed system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources. The large-scale distributed applications on a cloud require adaptive service-based software, which has the capability of monitoring system status changes, analyzing the monitored information, and adapting its service configuration while considering tradeoffs among multiple QoS features simultaneously. In this paper, we design and develop a Run-Time Monitor (RTM) which is a system software to monitor the application behavior at run-time, analyze the collected information, and optimize cloud computing resources for multi-core architectures. RTM monitors application software through library instrumentation as well as underlying hardware through a performance counter optimizing its computing configuration based on the analyzed data.
Spacewire router IP-core with priority adaptive routing
NASA Astrophysics Data System (ADS)
Shakhmatov, A. V.; Chekmarev, S. A.; Vergasov, M. Y.; Khanov, V. Kh
2015-10-01
Design of modern spacecraft focuses on using network principles of interaction on-board equipment, in particular in network SpaceWire. Routers are an integral part of most SpaceWire networks. The paper presents an adaptive routing algorithm with a prioritization, allowing more flexibility to manage the routing process. This algorithm is designed to transmit SpaceWire packets over a redundant network. Also a method is proposed for rapid restoration of working capacity after power by saving the routing table and the router configuration in an external non-volatile memory. The proposed solutions used to create IP-core router, and then tested in the FPGA device. The results illustrate the realizability and rationality of the proposed solutions.
NASA Astrophysics Data System (ADS)
Brischetto, Salvatore; Ferro, Carlo Giovanni; Torre, Roberto; Maggiore, Paolo
2018-04-01
Desktop 3D FDM (Fused Deposition Modelling) printers are usually employed for the production of nonstructural objects. In recent years, the present authors tried to use this technology also to produce structural elements employed in the construction of small UAVs (Unmanned Aerial Vehicles). Mechanical stresses are not excessive for small multirotor UAVs. Therefore, the FDM technique combined with polymers, such as the ABS (Acrylonitrile Butadiene Styrene) and the PLA(Poly Lactic Acid), can be successfully employed to produce structural components. The present new work is devoted to the production and preliminary structural analysis of sandwich configurations. These new lamination schemes could lead to an important weight reduction without significant decreases of mechanical properties. Therefore, it could be possible, for the designed application (e.g., a multifunctional small UAV produced via FDM), to have stiffener and lighter structures easy to be manufactured with a low-cost 3D printer. The new sandwich specimens here proposed are PLA sandwich specimens embedding a PLA honeycomb core produced by means of the same extruder, multilayered specimens with ABS external layers and an internal homogeneous PLA core using different extruders for the two materials, sandwich specimens with external ABS skins and an internal PLA honeycomb core using different extruders for the two materials, and sandwich specimens where two different extruders have been employed for PLA material used for skins and for the internal honeycomb core. For all the proposed configurations, a detailed description of the production activity is given.Moreover, several preliminary results about three-point bending tests, different mechanical behaviors and relative delamination problems for each sandwich configuration will be discussed in depth.
Dual Liquid Flyback Booster for the Space Shuttle
NASA Technical Reports Server (NTRS)
Blum, C.; Jones, P.; Meinders, B.
1998-01-01
Liquid Flyback Boosters provide an opportunity to improve shuttle safety, increase performance, and reduce operating costs. The objective of the LFBB study is to establish the viability of a LFBB configuration to integrate into the shuffle vehicle and meet the goals of the Space Shuttle upgrades program. The design of a technically viable LFBB must integrate into the shuffle vehicle with acceptable impacts to the vehicle elements, i.e. orbiter and external tank and the shuttle operations infrastructure. The LFBB must also be capable of autonomous return to the launch site. The smooth integration of the LFBB into the space shuttle vehicle and the ability of the LFBB to fly back to the launch site are not mutually compatible capabilities. LFBB wing configurations optimized for ascent must also provide flight quality during the powered return back to the launch site. This paper will focus on the core booster design and ascent performance. A companion paper 'Conceptual Design for a Space Shuttle Liquid Flyback Booster' will focus on the flyback system design and performance. The LFBB study developed design and aerodynamic data to demonstrate the viability of a dual booster configuration to meet the shuttle upgrade goals, i.e. enhanced safety, improved performance and reduced operations costs.
Dual Liquid Flyback Booster for the Space Shuttle
NASA Technical Reports Server (NTRS)
Blum, C.; Jones, Patti; Meinders, B.
1998-01-01
Liquid Flyback Boosters provide an opportunity to improve shuttle safety, increase performance, and reduce operating costs. The objective of the LFBB study is to establish the viability of a LFBB configuration to integrate into the shuttle vehicle and meet the goals of the Space Shuttle upgrades program. The design of a technically viable LFBB must integrate into the shuttle vehicle with acceptable impacts to the vehicle elements, i.e. orbiter and external tank and the shuttle operations infrastructure. The LFBB must also be capable of autonomous return to the launch site. The smooth integration of the LFBB into the space shuttle vehicle and the ability of the LFBB to fly back to the launch site are not mutually compatible capabilities. LFBB wing configurations optimized for ascent must also provide flight quality during the powered return back to the launch site. This paper will focus on the core booster design and ascent performance. A companion paper, "Conceptual Design for a Space Shuttle Liquid Flyback Booster" will focus on the flyback system design and performance. The LFBB study developed design and aerodynamic data to demonstrate the viability of a dual booster configuration to meet the shuttle upgrade goals, i.e. enhanced safety, improved performance and reduced operations costs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz
This paper presents the design considerations in cogging torque minimization in two types of transverse flux machines. The machines have a double stator-single rotor configuration with flux concentrating ferrite magnets. One of the machines has pole windings across each leg of an E-Core stator. Another machine has quasi-U-shaped stator cores and a ring winding. The flux in the stator back iron is transverse in both machines. Different methods of cogging torque minimization are investigated. Key methods of cogging torque minimization are identified and used as design variables for optimization using a design of experiments (DOE) based on the Taguchi method.more » A three-level DOE is performed to reach an optimum solution with minimum simulations. Finite element analysis is used to study the different effects. Two prototypes are being fabricated for experimental verification.« less
Design, fabrication and test of a trace contaminant control system
NASA Technical Reports Server (NTRS)
1975-01-01
A trace contaminant control system was designed, fabricated, and evaluated to determine suitability of the system concept to future manned spacecraft. Two different models were considered. The load model initially required by the contract was based on the Space Station Prototype (SSP) general specifications SVSK HS4655, reflecting a change from a 9 man crew to a 6 man crew of the model developed in previous phases of this effort. Trade studies and a system preliminary design were accomplished based on this contaminant load, including computer analyses to define the optimum system configuration in terms of component arrangements, flow rates and component sizing. At the completion of the preliminary design effort a revised contaminant load model was developed for the SSP. Additional analyses were then conducted to define the impact of this new contaminant load model on the system configuration. A full scale foam-core mock-up with the appropriate SSP system interfaces was also fabricated.
NASA Astrophysics Data System (ADS)
Turner, Andrew J.; Al Rifaie, Mohammed; Mian, Ahsan; Srinivasan, Raghavan
2018-05-01
Sandwich panel structures are widely used in aerospace, marine, and automotive applications because of their high flexural stiffness, strength-to-weight ratio, good vibration damping, and low through-thickness thermal conductivity. These structures consist of solid face sheets and low-density cellular core structures, which are traditionally based upon honeycomb folded-sheet topologies. The recent advances in additive manufacturing (AM) or 3D printing process allow lattice core configurations to be designed with improved mechanical properties. In this work, the sandwich core is comprised of lattice truss structures (LTS). Two different LTS designs are 3D-printed using acrylonitrile butadiene styrene (ABS) and are tested under low-velocity impact loads. The absorption energy and the failure mechanisms of lattice cells under such loads are investigated. The differences in energy-absorption capabilities are captured by integrating the load-displacement curve found from the impact response. It is observed that selective placement of vertical support struts in the unit-cell results in an increase in the absorption energy of the sandwich panels.
NASA Astrophysics Data System (ADS)
Turner, Andrew J.; Al Rifaie, Mohammed; Mian, Ahsan; Srinivasan, Raghavan
2018-04-01
Sandwich panel structures are widely used in aerospace, marine, and automotive applications because of their high flexural stiffness, strength-to-weight ratio, good vibration damping, and low through-thickness thermal conductivity. These structures consist of solid face sheets and low-density cellular core structures, which are traditionally based upon honeycomb folded-sheet topologies. The recent advances in additive manufacturing (AM) or 3D printing process allow lattice core configurations to be designed with improved mechanical properties. In this work, the sandwich core is comprised of lattice truss structures (LTS). Two different LTS designs are 3D-printed using acrylonitrile butadiene styrene (ABS) and are tested under low-velocity impact loads. The absorption energy and the failure mechanisms of lattice cells under such loads are investigated. The differences in energy-absorption capabilities are captured by integrating the load-displacement curve found from the impact response. It is observed that selective placement of vertical support struts in the unit-cell results in an increase in the absorption energy of the sandwich panels.
Computational analysis of aircraft pressure relief doors
NASA Astrophysics Data System (ADS)
Schott, Tyler
Modern trends in commercial aircraft design have sought to improve fuel efficiency while reducing emissions by operating at higher pressures and temperatures than ever before. Consequently, greater demands are placed on the auxiliary bleed air systems used for a multitude of aircraft operations. The increased role of bleed air systems poses significant challenges for the pressure relief system to ensure the safe and reliable operation of the aircraft. The core compartment pressure relief door (PRD) is an essential component of the pressure relief system which functions to relieve internal pressure in the core casing of a high-bypass turbofan engine during a burst duct over-pressurization event. The successful modeling and analysis of a burst duct event are imperative to the design and development of PRD's to ensure that they will meet the increased demands placed on the pressure relief system. Leveraging high-performance computing coupled with advances in computational analysis, this thesis focuses on a comprehensive computational fluid dynamics (CFD) study to characterize turbulent flow dynamics and quantify the performance of a core compartment PRD across a range of operating conditions and geometric configurations. The CFD analysis was based on a compressible, steady-state, three-dimensional, Reynolds-averaged Navier-Stokes approach. Simulations were analyzed, and results show that variations in freestream conditions, plenum environment, and geometric configurations have a non-linear impact on the discharge, moment, thrust, and surface temperature characteristics. The CFD study revealed that the underlying physics for this behavior is explained by the interaction of vortices, jets, and shockwaves. This thesis research is innovative and provides a comprehensive and detailed analysis of existing and novel PRD geometries over a range of realistic operating conditions representative of a burst duct over-pressurization event. Further, the study provides aircraft manufacturers with valuable insight into the impact that operating conditions and geometric configurations have on PRD performance and how the information can be used to assist future research and development of PRD design.
Advanced propulsion engine assessment based on a cermet reactor
NASA Technical Reports Server (NTRS)
Parsley, Randy C.
1993-01-01
A preferred Pratt & Whitney conceptual Nuclear Thermal Rocket Engine (NTRE) has been designed based on the fundamental NASA priorities of safety, reliability, cost, and performance. The basic philosophy underlying the design of the XNR2000 is the utilization of the most reliable form of ultrahigh temperature nuclear fuel and development of a core configuration which is optimized for uniform power distribution, operational flexibility, power maneuverability, weight, and robustness. The P&W NTRE system employs a fast spectrum, cermet fueled reactor configured in an expander cycle to ensure maximum operational safety. The cermet fuel form provides retention of fuel and fission products as well as high strength. A high level of confidence is provided by benchmark analysis and independent evaluations.
Study of the collector/heat pipe cooled externally configured thermionic diode
NASA Technical Reports Server (NTRS)
1973-01-01
A collector/heat pipe cooled, externally configured (heated) thermionic diode module was designed for use in a laboratory test to demonstrate the applicability of this concept as the fuel element/converter module of an in-core thermionic electric power source. During the course of the program, this module evolved from a simple experimental mock-up into an advanced unit which was more reactor prototypical. Detailed analysis of all diode components led to their engineering design, fabrication, and assembly, with the exception of the collector/heat pipe. While several designs of high power annular wicked heat pipes were fabricated and tested, each exhibited unexpected performance difficulties. It was concluded that the basic cause of these problems was the formation of crud which interfered with the liquid flow in the annular passage of the evaporator region.
NASA Astrophysics Data System (ADS)
Niwa, Yuta; Akiyama, Yuji; Naruta, Tomokazu
We carried out FEM simulations for modeling ultra-high-speed universal motors by using the state function method and analyzed the phenomenon of commutator sparking, the characteristics of the air gap surface, and the contact condition or contact resistance of the brushes and commutator bars. Thus, we could quantitatively analyze commutator sparking and investigate the configuration of the iron core. The results of FEM analysis were used to develop a model for predicting the configuration of the iron core and for estimating the electromotive force generated by the transformer, armature reaction field, spark voltage, contact resistance between the rotating brushes, and changes in the gap permeance. The results of our simulation were experimental results. This confirmed the validity of our analysis method. Thus, an ultra-high-speed, high-capacity of 1.5kw motor rotating at 30,000rpm can be designed for use in vacuum cleaners.
Plasma core reactor simulations using RF uranium seeded argon discharges
NASA Technical Reports Server (NTRS)
Roman, W. C.
1975-01-01
An experimental investigation was conducted using the United Technologies Research Center (UTRC) 80 kW and 1.2 MW RF induction heater systems to aid in developing the technology necessary for designing a self-critical fissioning uranium plasma core reactor (PCR). A nonfissioning, steady-state RF-heated argon plasma seeded with pure uranium hexafluoride (UF6) was used. An overall objective was to achieve maximum confinement of uranium vapor within the plasma while simultaneously minimizing the uranium compound wall deposition. Exploratory tests were conducted using the 80 kW RF induction heater with the test chamber at approximately atmospheric pressure and discharge power levels on the order of 10 kW. Four different test chamber flow configurations were tested to permit selection of the configuration offering the best confinement characteristics for subsequent tests at higher pressure and power in the 1.2 MW RF induction heater facility.
Four-terminal circuit element with photonic core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampayan, Stephen
A four-terminal circuit element is described that includes a photonic core inside of the circuit element that uses a wide bandgap semiconductor material that exhibits photoconductivity and allows current flow through the material in response to the light that is incident on the wide bandgap material. The four-terminal circuit element can be configured based on various hardware structures using a single piece or multiple pieces or layers of a wide bandgap semiconductor material to achieve various designed electrical properties such as high switching voltages by using the photoconductive feature beyond the breakdown voltages of semiconductor devices or circuits operated basedmore » on electrical bias or control designs. The photonic core aspect of the four-terminal circuit element provides unique features that enable versatile circuit applications to either replace the semiconductor transistor-based circuit elements or semiconductor diode-based circuit elements.« less
High-power CO(2) laser with a Gauss-core resonator for high-speed cutting of thin metal sheets.
Takenaka, Y; Nishimae, J; Tanaka, M; Motoki, Y
1997-01-01
A novel resonator, the Gauss-core resonator, based on a stable resonator configuration designed to yield a highly focusing beam operating in a large-volume TEM(00) mode, is presented. A 6.2 kW linearly polarized output beam with an M(2) factor of 1.7 is obtained experimentally for a high-power cw CO(2) laser. The capability of the Gauss-core resonator to process laser materials is also studied. We can cut 1-mm-thick mild (soft) steel with a maximum cutting speed of 58 m/min at 5.6 kW and 0.2-mm-thick steel 145 m/min at 2.8 kW.
NASA Technical Reports Server (NTRS)
Kephart, Nancy
1992-01-01
The function of the Space Station Furnace Facility (SSFF) is to support materials research into the crystal growth and solidification processes of electronic and photonic materials, metals and alloys, and glasses and ceramics. To support this broad base of research requirements, the SSFF will employ a variety of furnace modules operated, regulated, and supported by a core of common subsystems. Furnace modules may be reconfigured or specifically developed to provide unique solidifcation conditions for each set of experiments. The SSFF modular approach permits the addition of new or scaled-up furnace modules to support the evolution of the facility as new science requirements are identified. The SSFF Core is of modular design to permit augmentation for enhanced capabilities. The fully integrated configuration of the SSFF will consist of three racks with the capability of supporting up to two furnace modules per rack. The initial configuration of the SSFF will consist of two of the three racks and one furnace module. This Experiment/Facility Requirements Document (E/FRD) describes the integrated facility requirements for the Space Station Freedom (SSF) Integrated Configuration-1 (IC1) mission. The IC1 SSFF will consist of two racks: the Core Rack, with the centralized subsystem equipment, and the Experiment Rack-1, with Furnace Module-1 and the distributed subsystem equipment to support the furnace.
NASA Astrophysics Data System (ADS)
Falkowski, K. M.; Key, F. S.; Kuznetsov, S. B.
1993-01-01
This final report summarizes work completed in the investigation of the power, propulsion, and braking systems for five different electrodynamic (EDS) Maglev configurations. System requirements and recommendations, including a cost analysis, are determined for each configuration. The analysis considers variations in vehicle length, acceleration'/deceleration criteria, airgap clearance, and maximum propulsion thrust. Five different guideway configurations have been considered, each of which is based on air-core magnets made from low-temperature superconductors (LTSC) - (NbTi, Nb3Sn) or the newer high-T(sub c) ceramic superconductors (HTSCs). The material requirements and cost of the guideway electrical components were studied as a function of the energy conversion efficiency, the stator block length, armature current density, stator temperature rise, and other parameters. The propulsion design focused on a dual-parallel, linear synchronous motor (LSM) with thrust modulation achieved by applying a variable frequency and voltage along the guideway. Critical design parameters were estimated using a three-dimensional computer model for the inductances, magnetic fields, and electromagnetic forces. The study also addressed the conceptual design of the magnet, cryostat, and refrigeration subsystems. Magnetic fields, forces, AC losses, superconductor stability, heat loading, and refrigeration demands were analyzed; a specific design shows limits of passive shielding.
An improved heat transfer configuration for a solid-core nuclear thermal rocket engine
NASA Technical Reports Server (NTRS)
Clark, John S.; Walton, James T.; Mcguire, Melissa L.
1992-01-01
Interrupted flow, impingement cooling, and axial power distribution are employed to enhance the heat-transfer configuration of a solid-core nuclear thermal rocket engine. Impingement cooling is introduced to increase the local heat-transfer coefficients between the reactor material and the coolants. Increased fuel loading is used at the inlet end of the reactor to enhance heat-transfer capability where the temperature differences are the greatest. A thermal-hydraulics computer program for an unfueled NERVA reactor core is employed to analyze the proposed configuration with attention given to uniform fuel loading, number of channels through the impingement wafers, fuel-element length, mass-flow rate, and wafer gap. The impingement wafer concept (IWC) is shown to have heat-transfer characteristics that are better than those of the NERVA-derived reactor at 2500 K. The IWC concept is argued to be an effective heat-transfer configuration for solid-core nuclear thermal rocket engines.
Design, durability and low cost processing technology for composite fan exit guide vanes
NASA Technical Reports Server (NTRS)
Blecherman, S. S.
1979-01-01
A lightweight composite fan exit guide vane for high bypass ratio gas turbine engine application was investigated. Eight candidate material/design combinations were evaluated by NASTRAN finite element analyses. A total of four combinations were selected for further analytical evaluation, part fabrication by two ventors, and fatigue test in dry and wet condition. A core and shell vane design was chosen in which the unidirectional graphite core fiber was the same for all candidates. The shell material, fiber orientation, and ply configuration were varied. Material tests were performed on raw material and composite specimens to establish specification requirements. Pre-test and post-test microstructural examination and nondestructive analyses were conducted to determine the effect of material variations on fatigue durability and failure mode. Relevant data were acquired with respect to design analysis, materials properties, inspection standards, improved durability, weight benefits, and part price of the composite fan exit guide vane.
Optimization techniques applied to passive measures for in-orbit spacecraft survivability
NASA Technical Reports Server (NTRS)
Mog, Robert A.; Price, D. Marvin
1987-01-01
Optimization techniques applied to passive measures for in-orbit spacecraft survivability, is a six-month study, designed to evaluate the effectiveness of the geometric programming (GP) optimization technique in determining the optimal design of a meteoroid and space debris protection system for the Space Station Core Module configuration. Geometric Programming was found to be superior to other methods in that it provided maximum protection from impact problems at the lowest weight and cost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Sean; Dewan, Leslie; Massie, Mark
This report presents results from a collaboration between Transatomic Power Corporation (TAP) and Oak Ridge National Laboratory (ORNL) to provide neutronic and fuel cycle analysis of the TAP core design through the Department of Energy Gateway for Accelerated Innovation in Nuclear (GAIN) Nuclear Energy Voucher program. The TAP concept is a molten salt reactor using configurable zirconium hydride moderator rod assemblies to shift the neutron spectrum in the core from mostly epithermal at beginning of life to thermal at end of life. Additional developments in the ChemTriton modeling and simulation tool provide the critical moderator-to-fuel ratio searches and time-dependent parametersmore » necessary to simulate the continuously changing physics in this complex system. The implementation of continuous-energy Monte Carlo transport and depletion tools in ChemTriton provide for full-core three-dimensional modeling and simulation. Results from simulations with these tools show agreement with TAP-calculated performance metrics for core lifetime, discharge burnup, and salt volume fraction, verifying the viability of reducing actinide waste production with this concept. Additional analyses of mass feed rates and enrichments, isotopic removals, tritium generation, core power distribution, core vessel helium generation, moderator rod heat deposition, and reactivity coeffcients provide additional information to make informed design decisions. This work demonstrates capabilities of ORNL modeling and simulation tools for neutronic and fuel cycle analysis of molten salt reactor concepts.« less
Cogging Torque Minimization in Transverse Flux Machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz
2017-02-16
This paper presents the design considerations in cogging torque minimization in two types of transverse flux machines. The machines have a double stator-single rotor configuration with flux concentrating ferrite magnets. One of the machines has pole windings across each leg of an E-Core stator. Another machine has quasi-U-shaped stator cores and a ring winding. The flux in the stator back iron is transverse in both machines. Different methods of cogging torque minimization are investigated. Key methods of cogging torque minimization are identified and used as design variables for optimization using a design of experiments (DOE) based on the Taguchi method.more » A three-level DOE is performed to reach an optimum solution with minimum simulations. Finite element analysis is used to study the different effects. Two prototypes are being fabricated for experimental verification.« less
Creeden, Daniel; Johnson, Benjamin R; Rines, Glen A; Setzler, Scott D
2014-11-17
We have demonstrated ultra-high efficiency amplification in Tm-doped fiber with both core- and cladding-pumped configurations using a resonant tandem-pumping approach. These Tm-doped fiber amplifiers are pumped in-band with a 1908 nm Tm-doped fiber laser and operate at 1993 nm with >90% slope efficiency. In a core-pumped configuration, we have achieved 92.1% slope efficiency and 88.4% optical efficiency at 41 W output power. In a cladding-pumped configuration, we have achieved 123.1 W of output power with 90.4% optical efficiency and a 91.6% slope efficiency. We believe these are the highest optical efficiencies achieved in a Tm-doped fiber amplifier operating in the 2-micron spectral region.
REDUNDANT ARRAY CONFIGURATIONS FOR 21 cm COSMOLOGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dillon, Joshua S.; Parsons, Aaron R., E-mail: jsdillon@berkeley.edu
Realizing the potential of 21 cm tomography to statistically probe the intergalactic medium before and during the Epoch of Reionization requires large telescopes and precise control of systematics. Next-generation telescopes are now being designed and built to meet these challenges, drawing lessons from first-generation experiments that showed the benefits of densely packed, highly redundant arrays—in which the same mode on the sky is sampled by many antenna pairs—for achieving high sensitivity, precise calibration, and robust foreground mitigation. In this work, we focus on the Hydrogen Epoch of Reionization Array (HERA) as an interferometer with a dense, redundant core designed followingmore » these lessons to be optimized for 21 cm cosmology. We show how modestly supplementing or modifying a compact design like HERA’s can still deliver high sensitivity while enhancing strategies for calibration and foreground mitigation. In particular, we compare the imaging capability of several array configurations, both instantaneously (to address instrumental and ionospheric effects) and with rotation synthesis (for foreground removal). We also examine the effects that configuration has on calibratability using instantaneous redundancy. We find that improved imaging with sub-aperture sampling via “off-grid” antennas and increased angular resolution via far-flung “outrigger” antennas is possible with a redundantly calibratable array configuration.« less
Redundant Array Configurations for 21 cm Cosmology
NASA Astrophysics Data System (ADS)
Dillon, Joshua S.; Parsons, Aaron R.
2016-08-01
Realizing the potential of 21 cm tomography to statistically probe the intergalactic medium before and during the Epoch of Reionization requires large telescopes and precise control of systematics. Next-generation telescopes are now being designed and built to meet these challenges, drawing lessons from first-generation experiments that showed the benefits of densely packed, highly redundant arrays—in which the same mode on the sky is sampled by many antenna pairs—for achieving high sensitivity, precise calibration, and robust foreground mitigation. In this work, we focus on the Hydrogen Epoch of Reionization Array (HERA) as an interferometer with a dense, redundant core designed following these lessons to be optimized for 21 cm cosmology. We show how modestly supplementing or modifying a compact design like HERA’s can still deliver high sensitivity while enhancing strategies for calibration and foreground mitigation. In particular, we compare the imaging capability of several array configurations, both instantaneously (to address instrumental and ionospheric effects) and with rotation synthesis (for foreground removal). We also examine the effects that configuration has on calibratability using instantaneous redundancy. We find that improved imaging with sub-aperture sampling via “off-grid” antennas and increased angular resolution via far-flung “outrigger” antennas is possible with a redundantly calibratable array configuration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labrousse, M.; Lerouge, B.; Dupuy, G.
1978-04-01
THERMOS is a water reactor designed to provide hot water up to 120/sup 0/C for district heating or for desalination applications. It is a 100-MW reactor based on proven technology: oxide fuel plate elements, integrated primary circuit, and reactor vessel located in the bottom of a pool. As in swimming pool reactors, the pool is used for biological shielding, emergency core cooling, and fission product filtering (in case of an accident). Before economics, safety is the main characteristic of the concept: no fuel failure admitted, core under water in any accidental configuration, inspection of every ''nuclear'' component, and double-wall containment.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-14
... not listed on the Web site, but should note that the NRC's E-Filing system does not support unlisted... (COLR), to update the methodology reference list to support the core design with the new AREVA fuel... methodologies listed in Technical Specification 5.7.1.5 has no impact on any plant configuration or system...
Mission planning for large microwave radiometers
NASA Technical Reports Server (NTRS)
Schartel, W. A.
1984-01-01
Earth orbiting, remote sensing platforms that use microwave radiometers as sensors are susceptible to data interpretation difficulties. The capability of the large microwave radiometer (LMR) was augmented with the inclusion of auxillary sensors that expand and enhance the LMR capability. The final system configuration demonstrates a holistic approach in the design of future orbiting remote sensing platforms that use a LMR as the core instrument.
Analysis of fuel options for the breakeven core configuration of the Advanced Recycling Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stauff, N.E.; Klim, T.K.; Taiwo, T.A.
2013-07-01
A trade-off study is performed to determine the impacts of various fuel forms on the core design and core physics characteristics of the sodium-cooled Toshiba- Westinghouse Advanced Recycling Reactor (ARR). The fuel forms include oxide, nitride, and metallic forms of U and Th. The ARR core configuration is redesigned with driver and blanket regions in order to achieve breakeven fissile breeding performance with the various fuel types. State-of-the-art core physics tools are used for the analyses. In addition, a quasi-static reactivity balance approach is used for a preliminary comparison of the inherent safety performances of the various fuel options. Thorium-fueledmore » cores exhibit lower breeding ratios and require larger blankets compared to the U-fueled cores, which is detrimental to core compactness and increases reprocessing and manufacturing requirements. The Th cores also exhibit higher reactivity swings through each cycle, which penalizes reactivity control and increases the number of control rods required. On the other hand, using Th leads to drastic reductions in void and coolant expansion coefficients of reactivity, with the potential for enhancing inherent core safety. Among the U-fueled ARR cores, metallic and nitride fuels result in higher breeding ratios due to their higher heavy metal densities. On the other hand, oxide fuels provide a softer spectrum, which increases the Doppler effect and reduces the positive sodium void worth. A lower fuel temperature is obtained with the metallic and nitride fuels due to their higher thermal conductivities and compatibility with sodium bonds. This is especially beneficial from an inherent safety point of view since it facilitates the reactor cool-down during loss of power removal transients. The advantages in terms of inherent safety of nitride and metallic fuels are maintained when using Th fuel. However, there is a lower relative increase in heavy metal density and in breeding ratio going from oxide to metallic or nitride Th fuels relative to the U counterpart fuels. (authors)« less
NASA Technical Reports Server (NTRS)
Wisler, D. C.
1980-01-01
Rear stage blading designs that have lower losses in their endwall boundary layer regions were developed. Test data and performance results for rotor B, stator B, and stator C - blading designs that offer promise of reducing endwall losses relative to the baseline are given. A low speed research compressor was the principal investigative tool. The tests were conducted using four identical stages of blading so that the test data would be obtained in a true multistage environment.
Composite casting/bonding construction of an air-cooled, high temperature radial turbine wheel
NASA Technical Reports Server (NTRS)
Hammer, A. N.; Aigret, G.; Rodgers, C.; Metcalfe, A. G.
1983-01-01
A composite casting/bonding technique has been developed for the fabrication of a unique air-cooled, high temperature radial inflow turbine wheel design applicable to auxilliary power units with small rotor diameters and blade entry heights. The 'split blade' manufacturing procedure employed is an alternative to complex internal ceramic coring. Attention is given to both aerothermodynamic and structural design, of which the latter made advantageous use of the exploration of alternative cooling passage configurations through CAD/CAM system software modification.
He, Jiale; Li, Borui; Deng, Lei; Tang, Ming; Gan, Lin; Fu, Songnian; Shum, Perry Ping; Liu, Deming
2016-06-13
In this paper, the feasibility of space division multiplexing for optical wireless fronthaul systems is experimentally demonstrated by implementing high speed MIMO-OFDM/OQAM radio signals over 20km 7-core fiber and 0.4m wireless link. Moreover, the impact of optical inter-core crosstalk in multicore fibers on the proposed MIMO-OFDM/OQAM radio over fiber system is experimentally evaluated in both SISO and MIMO configurations for comparison. The experimental results show that the inter-core crosstalk tolerance of the proposed radio over fiber system can be relaxed to -10 dB by using the proposed MIMO-OFDM/OQAM processing. These results could guide high density multicore fiber design to support a large number of antenna modules and a higher density of radio-access points for potential applications in 5G cellular system.
A First Look at the DGEN380 Engine Acoustic Data from a Core-Noise Perspective
NASA Technical Reports Server (NTRS)
Hultgren, Lennart S.
2015-01-01
This work is a first look at acoustic data acquired in the NASA Glenn Research Center Aero-Acoustic Propulsion Laboratory using the Price Induction DGEN380 small turbofan engine, with particular emphasis on broadband combustor (core) noise. Combustor noise is detected by using a two-signal source separation technique employing one engine-internal sensor and one semi-far-field microphone. Combustor noise is an important core-noise component and is likely to become a more prominent contributor to overall airport community noise due to turbofan design trends, expected aircraft configuration changes, and advances in fan-noise-mitigation techniques. This work was carried out under the NASA Fundamental Aeronautics Program, Fixed Wing Project, Quiet Performance Subproject
Test Scheduling for Core-Based SOCs Using Genetic Algorithm Based Heuristic Approach
NASA Astrophysics Data System (ADS)
Giri, Chandan; Sarkar, Soumojit; Chattopadhyay, Santanu
This paper presents a Genetic algorithm (GA) based solution to co-optimize test scheduling and wrapper design for core based SOCs. Core testing solutions are generated as a set of wrapper configurations, represented as rectangles with width equal to the number of TAM (Test Access Mechanism) channels and height equal to the corresponding testing time. A locally optimal best-fit heuristic based bin packing algorithm has been used to determine placement of rectangles minimizing the overall test times, whereas, GA has been utilized to generate the sequence of rectangles to be considered for placement. Experimental result on ITC'02 benchmark SOCs shows that the proposed method provides better solutions compared to the recent works reported in the literature.
Scheduler for multiprocessor system switch with selective pairing
Gara, Alan; Gschwind, Michael Karl; Salapura, Valentina
2015-01-06
System, method and computer program product for scheduling threads in a multiprocessing system with selective pairing of processor cores for increased processing reliability. A selective pairing facility is provided that selectively connects, i.e., pairs, multiple microprocessor or processor cores to provide one highly reliable thread (or thread group). The method configures the selective pairing facility to use checking provide one highly reliable thread for high-reliability and allocate threads to corresponding processor cores indicating need for hardware checking. The method configures the selective pairing facility to provide multiple independent cores and allocate threads to corresponding processor cores indicating inherent resilience.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, John D.
2014-03-01
PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess
2013-03-01
PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess
2013-03-01
PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less
Overview and Current Status of Analyses of Potential LEU Design Concepts for TREAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connaway, H. M.; Kontogeorgakos, D. C.; Papadias, D. D.
2015-10-01
Neutronic and thermal-hydraulic analyses have been performed to evaluate the performance of different low-enriched uranium (LEU) fuel design concepts for the conversion of the Transient Reactor Test Facility (TREAT) from its current high-enriched uranium (HEU) fuel. TREAT is an experimental reactor developed to generate high neutron flux transients for the testing of nuclear fuels. The goal of this work was to identify an LEU design which can maintain the performance of the existing HEU core while continuing to operate safely. A wide variety of design options were considered, with a focus on minimizing peak fuel temperatures and optimizing the powermore » coupling between the TREAT core and test samples. Designs were also evaluated to ensure that they provide sufficient reactivity and shutdown margin for each control rod bank. Analyses were performed using the core loading and experiment configuration of historic M8 Power Calibration experiments (M8CAL). The Monte Carlo code MCNP was utilized for steady-state analyses, and transient calculations were performed with the point kinetics code TREKIN. Thermal analyses were performed with the COMSOL multi-physics code. Using the results of this study, a new LEU Baseline design concept is being established, which will be evaluated in detail in a future report.« less
Advanced Wireless Integrated Navy Network - AWINN
2005-09-30
progress report No. 3 on AWINN hardware and software configurations of smart , wideband, multi-function antennas, secure configurable platform, close-in...results to the host PC via a UART soft core. The UART core used is a proprietary Xilinx core which incorporates features described in National...current software uses wheel odometry and visual landmarks to create a map and estimate position on an internal x, y grid . The wheel odometry provides a
Propulsion system assessment for very high UAV under ERAST
NASA Technical Reports Server (NTRS)
Bettner, James L.; Blandford, Craig S.; Rezy, Bernie J.
1995-01-01
A series of propulsion systems were configured to power a sensor platform to very high altitudes under the Experimental Research Advanced Sensor Technology (ERAST) program. The unmanned aircraft was required to carry a 100 kg instrument package to 90,000 ft altitude, collect samples and make scientific measurements for 4 hr, and then return to base. A performance screening evaluation of 11 propulsion systems for this high altitude mission was conducted. Engine configurations ranged from turboprop, spark ignition, two- and four-stroke diesel, rotary, and fuel cell concepts. Turbo and non-turbo-compounded, recuperated and nonrecuperated arrangements, along with regular JP and hydrogen fuels were interrogated. Each configuration was carried through a preliminary design where all turbomachinery, heat exchangers, and engine core concepts were sized and weighed for near-optimum design point performance. Mission analysis, which sized the aircraft for each of the propulsion systems investigated, was conducted. From the array of configurations investigated, the propulsion system for each of three different technology levels (i.e., state of the art, near term, and far term) that was best suited for this very high altitude mission was identified and recommended for further study.
Investigations on the heat flux and impurity for the HL-2M divertor
NASA Astrophysics Data System (ADS)
Zheng, G. Y.; Cai, L. Z.; Duan, X. R.; Xu, X. Q.; Ryutov, D. D.; Cai, L. J.; Liu, X.; Li, J. X.; Pan, Y. D.
2016-12-01
The controllability of the heat load and impurity in the divertor is very important, which could be one of the critical problems to be solved in order to ensure the success for a steady state tokamak. HL-2M has the advantage of the poloidal field (PF) coils placed inside the demountable toroidal field (TF) coils and close to the main plasma. As a result, it is possible to make highly accurate configuration control of the advanced divertor for HL-2M. The divertor target geometry of HL-2M has been designed to be compatible with different divertor configurations to study the divertor physics and support the high performance plasma operations. In this paper, the heat loads and impurities with different divertor configurations, including the standard X-point divertor, the snowflake-minus divertor and two tripod divertor configurations for HL-2M, are investigated by numerical simulations with the SOLPS5.0 code under the current design of the HL-2M divertor geometry. The plasmas with different conditions, such as the low discharge parameters with {{I}\\text{p}} = 0.5 MA at the first stage of HL-2M and the high parameters with {{I}\\text{p}} = 2.0 MA during the normal operations, are simulated. The heat load profiles and the impurity distributions are obtained, and the control of the peak heat load and the effect of impurity on the core plasma are discussed. The compatibility of different divertor configurations for HL-2M is also evaluated. It is seen that the excellent compatibility of different divertor configurations with the current divertor geometry has been verified. The results show that the snowflake-minus divertor and the tripod divertor with {{d}x}=30 \\text{cm} present good performance in terms of the heat load profiles and the impurity distributions under different conditions, which may not have a big effect on the core plasma. In addition, it is possible to optimize the distance between the two X-points, {{d}x} , to achieve a better performance in terms of the parameters of discharges.
NASA Technical Reports Server (NTRS)
Doty, Michael J.; Henerson, Brenda S.; Kinzie, Kevin W.
2004-01-01
Particle Image Velocimetry (PIV) measurements for six separate flow bypass ratio five nozzle configurations have recently been obtained in the NASA Langley Jet Noise Laboratory. The six configurations include a baseline configuration with round core and fan nozzles, an eight-chevron core nozzle at two different clocking positions, and repeats of these configurations with a pylon included. One run condition representative of takeoff was investigated for all cases with the core nozzle pressure ratio set to 1.56 and the total temperature to 828 K. The fan nozzle pressure ratio was set to 1.75 with a total temperature of 350 K, and the freestream Mach number was M = 0.28. The unsteady flow field measurements provided by PIV complement recent computational, acoustic, and mean flow field studies performed at NASA Langley for the same nozzle configurations and run condition. The PIV baseline configuration measurements show good agreement with mean flow field data as well as existing PIV data acquired at NASA Glenn. Nonetheless, the baseline configuration turbulence profile indicates an asymmetric flow field, despite careful attention to concentricity. The presence of the pylon increases the upper shear layer turbulence levels while simultaneously decreasing the turbulence levels in the lower shear layer. In addition, a slightly shorter potential core length is observed with the addition of the pylon. Finally, comparisons of computational results with PIV measurements are favorable for mean flow, slightly over-predicted for Reynolds shear stress, and underpredicted for Reynolds normal stress components.
Dislocation core structures of tungsten with dilute solute hydrogen
NASA Astrophysics Data System (ADS)
Wang, Yinan; Li, Qiulin; Li, Chengliang; Shu, Guogang; Xu, Ben; Liu, Wei
2017-12-01
In this paper, a combination of quantum mechanical and interatomic potential-based atomistic calculations are used to predict the core structures of screw and edge dislocations in tungsten in the presence of a particular concentration of hydrogen atoms. These configurations of the core structures are the results of two competing energies: the interaction between the partial dislocations and the corresponding generalized stacking fault energy in between the two partial dislocations, which are presented in this work. With this, we can precisely predict the configurations of the hydrogen-doped dislocation core structures.
Design of Energy Storage Reactors for Dc-To-Dc Converters. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Chen, D. Y.
1975-01-01
Two methodical approaches to the design of energy-storage reactors for a group of widely used dc-to-dc converters are presented. One of these approaches is based on a steady-state time-domain analysis of piecewise-linearized circuit models of the converters, while the other approach is based on an analysis of the same circuit models, but from an energy point of view. The design procedure developed from the first approach includes a search through a stored data file of magnetic core characteristics and results in a list of usable reactor designs which meet a particular converter's requirements. Because of the complexity of this procedure, a digital computer usually is used to implement the design algorithm. The second approach, based on a study of the storage and transfer of energy in the magnetic reactors, leads to a straightforward design procedure which can be implemented with hand calculations. An equation to determine the lower-bound volume of workable cores for given converter design specifications is derived. Using this computer lower-bound volume, a comparative evaluation of various converter configurations is presented.
Analysis and seismic tests of composite shear walls with CFST columns and steel plate deep beams
NASA Astrophysics Data System (ADS)
Dong, Hongying; Cao, Wanlin; Wu, Haipeng; Zhang, Jianwei; Xu, Fangfang
2013-12-01
A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements — the CFST columns and SP deep beams — to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.
Mechanical design of a light water breeder reactor
Fauth, Jr., William L.; Jones, Daniel S.; Kolsun, George J.; Erbes, John G.; Brennan, John J.; Weissburg, James A.; Sharbaugh, John E.
1976-01-01
In a light water reactor system using the thorium-232 -- uranium-233 fuel system in a seed-blanket modular core configuration having the modules arranged in a symmetrical array surrounded by a reflector blanket region, the seed regions are disposed for a longitudinal movement between the fixed or stationary blanket region which surrounds each seed region. Control of the reactor is obtained by moving the inner seed region thus changing the geometry of the reactor, and thereby changing the leakage of neutrons from the relatively small seed region into the blanket region. The mechanical design of the Light Water Breeder Reactor (LWBR) core includes means for axially positioning of movable fuel assemblies to achieve the neutron economy required of a breeder reactor, a structure necessary to adequately support the fuel modules without imposing penalties on the breeding capability, a structure necessary to support fuel rods in a closely packed array and a structure necessary to direct and control the flow of coolant to regions in the core in accordance with the heat transfer requirements.
Inspection design using 2D phased array, TFM and cueMAP software
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGilp, Ailidh; Dziewierz, Jerzy; Lardner, Tim
2014-02-18
A simulation suite, cueMAP, has been developed to facilitate the design of inspection processes and sparse 2D array configurations. At the core of cueMAP is a Total Focusing Method (TFM) imaging algorithm that enables computer assisted design of ultrasonic inspection scenarios, including the design of bespoke array configurations to match the inspection criteria. This in-house developed TFM code allows for interactive evaluation of image quality indicators of ultrasonic imaging performance when utilizing a 2D phased array working in FMC/TFM mode. The cueMAP software uses a series of TFM images to build a map of resolution, contrast and sensitivity of imagingmore » performance of a simulated reflector, swept across the inspection volume. The software takes into account probe properties, wedge or water standoff, and effects of specimen curvature. In the validation process of this new software package, two 2D arrays have been evaluated on 304n stainless steel samples, typical of the primary circuit in nuclear plants. Thick section samples have been inspected using a 1MHz 2D matrix array. Due to the processing efficiency of the software, the data collected from these array configurations has been used to investigate the influence sub-aperture operation on inspection performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, Margaret A.; Bess, John D.
2015-02-01
The critical configuration of the small, compact critical assembly (SCCA) experiments performed at the Oak Ridge Critical Experiments Facility (ORCEF) in 1962-1965 have been evaluated as acceptable benchmark experiments for inclusion in the International Handbook of Evaluated Criticality Safety Benchmark Experiments. The initial intent of these experiments was to support the design of the Medium Power Reactor Experiment (MPRE) program, whose purpose was to study “power plants for the production of electrical power in space vehicles.” The third configuration in this series of experiments was a beryllium-reflected assembly of stainless-steel-clad, highly enriched uranium (HEU)-O 2 fuel mockup of a potassium-cooledmore » space power reactor. Reactivity measurements cadmium ratio spectral measurements and fission rate measurements were measured through the core and top reflector. Fuel effect worth measurements and neutron moderating and absorbing material worths were also measured in the assembly fuel region. The cadmium ratios, fission rate, and worth measurements were evaluated for inclusion in the International Handbook of Evaluated Criticality Safety Benchmark Experiments. The fuel tube effect and neutron moderating and absorbing material worth measurements are the focus of this paper. Additionally, a measurement of the worth of potassium filling the core region was performed but has not yet been evaluated Pellets of 93.15 wt.% enriched uranium dioxide (UO 2) were stacked in 30.48 cm tall stainless steel fuel tubes (0.3 cm tall end caps). Each fuel tube had 26 pellets with a total mass of 295.8 g UO 2 per tube. 253 tubes were arranged in 1.506-cm triangular lattice. An additional 7-tube cluster critical configuration was also measured but not used for any physics measurements. The core was surrounded on all side by a beryllium reflector. The fuel effect worths were measured by removing fuel tubes at various radius. An accident scenario was also simulated by moving outward twenty fuel rods from the periphery of the core so they were touching the core tank. The change in the system reactivity when the fuel tube(s) were removed/moved compared with the base configuration was the worth of the fuel tubes or accident scenario. The worth of neutron absorbing and moderating materials was measured by inserting material rods into the core at regular intervals or placing lids at the top of the core tank. Stainless steel 347, tungsten, niobium, polyethylene, graphite, boron carbide, aluminum and cadmium rods and/or lid worths were all measured. The change in the system reactivity when a material was inserted into the core is the worth of the material.« less
Advanced Passive Microwave Radiometer Technology for GPM Mission
NASA Technical Reports Server (NTRS)
Smith, Eric A.; Im, Eastwood; Kummerow, Christian; Principe, Caleb; Ruf, Christoper; Wilheit, Thomas; Starr, David (Technical Monitor)
2002-01-01
An interferometer-type passive microwave radiometer based on MMIC receiver technology and a thinned array antenna design is being developed under the Instrument Incubator Program (TIP) on a project entitled the Lightweight Rainfall Radiometer (LRR). The prototype single channel aircraft instrument will be ready for first testing in 2nd quarter 2003, for deployment on the NASA DC-8 aircraft and in a ground configuration manner; this version measures at 10.7 GHz in a crosstrack imaging mode. The design for a two (2) frequency preliminary space flight model at 19 and 35 GHz (also in crosstrack imaging mode) has also been completed, in which the design features would enable it to fly in a bore-sighted configuration with a new dual-frequency space radar (DPR) under development at the Communications Research Laboratory (CRL) in Tokyo, Japan. The DPR will be flown as one of two primary instruments on the Global Precipitation Measurement (GPM) mission's core satellite in the 2007 time frame. The dual frequency space flight design of the ERR matches the APR frequencies and will be proposed as an ancillary instrument on the GPM core satellite to advance space-based precipitation measurement by enabling better microphysical characterization and coincident volume data gathering for exercising combined algorithm techniques which make use of both radar backscatter and radiometer attenuation information to constrain rainrate solutions within a physical algorithm context. This talk will discuss the design features, performance capabilities, applications plans, and conical/polarametric imaging possibilities for the LRR, as well as a brief summary of the project status and schedule.
NASA Technical Reports Server (NTRS)
Harrington, Douglas E.
1998-01-01
The aerospace industry is currently investigating the effect of installing mixer/ejector nozzles on the core flow exhaust of high-bypass-ratio turbofan engines. This effort includes both full-scale engine tests at sea level conditions and subscale tests in static test facilities. Subscale model tests are to be conducted prior to full-scale testing. With this approach, model results can be analyzed and compared with analytical predications. Problem areas can then be identified and design changes made and verified in subscale prior to committing to any final design configurations for engine ground tests. One of the subscale model test programs for the integrated mixer/ejector development was a joint test conducted by the NASA Lewis Research Center and Pratt & Whitney Aircraft. This test was conducted to study various mixer/ejector nozzle configurations installed on the core flow exhaust of advanced, high-bypass-ratio turbofan engines for subsonic, commercial applications. The mixer/ejector concept involves the introduction of largescale, low-loss, streamwise vortices that entrain large amounts of secondary air and rapidly mix it with the primary stream. This results in increased ejector pumping relative to conventional ejectors and in more complete mixing within the ejector shroud. The latter improves thrust performance through the efficient energy exchange between the primary and secondary streams. This experimental program was completed in April 1997 in Lewis' CE-22 static test facility. Variables tested included the nozzle area ratio (A9/A8), which ranged from 1.6 to 3.0. This ratio was varied by increasing or decreasing the nozzle throat area, A8. Primary nozzles tested included both lobed mixers and conical primaries. These configurations were tested with and without an outer shroud, and the shroud position was varied by inserting spacers in it. In addition, data were acquired with and without secondary flow.
Bond strength of the porcelain repair system to all-ceramic copings and porcelain.
Lee, Sang J; Cheong, Chan Wook; Wright, Robert F; Chang, Brian M
2014-02-01
The purpose of this study was to investigate the shear bond strength of the porcelain repair system on alumina and zirconia core ceramics, comparing this strength with that of veneering porcelain. Veneering ceramic (n = 12), alumina core (n = 24), and zirconia core (n = 24) blocks measuring 10 × 5 × 5 mm(3) were fabricated. Veneering ceramic blocks were used as the control. Alumina and zirconia core blocks were divided into 2 groups (n = 12 each), and a slot (2 × 2 × 4 mm(3)) filled with veneering ceramics was prepared into one of the alumina and zirconia core groups (n = 12). Followed by surface treatments of micro-abrasion with 30 μm alumina particles, etching with 35% phosphoric acid and silane primer and bond, composite resin blocks (2 × 2 × 2 mm(3)) were built up and light polymerized onto the treated surfaces by 3 configurations: (a) composite blocks bonded onto veneering ceramic surface alone, (b) composite blocks bonded onto alumina core or zirconia core surfaces, (c) a 50% surface area of the composite blocks bonded to veneering ceramics and the other 50% surface area of the composite blocks to alumina core or zirconia core surfaces. The shear bond strength of the composite to each specimen was tested by a universal testing machine at a 0.5 mm/min crosshead speed. The shear bond strength was analyzed by unpaired t-tests for within the configuration groups and ANOVA for among the different configuration groups. When the mean shear bond strength was compared within groups of the same configuration, there were no statistically significant differences. Comparison of the shear bond strength among groups of different configurations revealed statistically significant differences. The mean shear bond strength of composite onto 100% veneering ceramic surface and composite onto 50% veneering 50% all-ceramic cores was statistically higher than that of composite onto 100% all-ceramic cores; however, the differences of the shear bond strength of composite bonded only onto the veneering ceramic surface were not statistically significant from those of 50% surface area of composite bonded onto all-ceramic cores. No statistically significant differences in the bond strength of a porcelain repair system to alumina and zirconia copings were observed. Increasing the surface of veneering ceramics to a porcelain repair system improved the repair material's bond strength. © 2013 by the American College of Prosthodontists.
Convergence studies of deterministic methods for LWR explicit reflector methodology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canepa, S.; Hursin, M.; Ferroukhi, H.
2013-07-01
The standard approach in modem 3-D core simulators, employed either for steady-state or transient simulations, is to use Albedo coefficients or explicit reflectors at the core axial and radial boundaries. In the latter approach, few-group homogenized nuclear data are a priori produced with lattice transport codes using 2-D reflector models. Recently, the explicit reflector methodology of the deterministic CASMO-4/SIMULATE-3 code system was identified to potentially constitute one of the main sources of errors for core analyses of the Swiss operating LWRs, which are all belonging to GII design. Considering that some of the new GIII designs will rely on verymore » different reflector concepts, a review and assessment of the reflector methodology for various LWR designs appeared as relevant. Therefore, the purpose of this paper is to first recall the concepts of the explicit reflector modelling approach as employed by CASMO/SIMULATE. Then, for selected reflector configurations representative of both GII and GUI designs, a benchmarking of the few-group nuclear data produced with the deterministic lattice code CASMO-4 and its successor CASMO-5, is conducted. On this basis, a convergence study with regards to geometrical requirements when using deterministic methods with 2-D homogenous models is conducted and the effect on the downstream 3-D core analysis accuracy is evaluated for a typical GII deflector design in order to assess the results against available plant measurements. (authors)« less
Detailed Investigation of Core-Shell Precipitates in a Cu-Containing High Entropy Alloy
NASA Astrophysics Data System (ADS)
Alam, T.; Gwalani, B.; Viswanathan, G.; Fraser, H.; Banerjee, R.
2018-05-01
Due to the competing influences of configurational entropy and enthalpy of mixing, in recent years, secondary (including intermetallic) phases have been reported in many high entropy alloy (HEA) systems. These secondary phases offer great potential in terms of strengthening the HEA beyond the solid solution strengthening effects, and as such are of great interest in regards to alloy design for engineering applications. The present research investigates novel nano-scale core-shell precipitates forming within the disordered bcc matrix phase of an Al2CrCuFeNi2 HEA, utilizing complementary high-resolution microscopy techniques of atom probe tomography (APT) and transmission electron microscopy (TEM). The size, morphology, and local chemistry of these core-shell precipitates was measured by APT, and the composition was further corroborated by high-resolution scanning transmission electron microscopy-energy dispersive spectroscopy in an aberration-corrected TEM. Furthermore, high-resolution TEM imaging of the core-shell structure indicates that the Cu-rich core exhibits a bcc crystal structure.
Neutronics calculation of RTP core
NASA Astrophysics Data System (ADS)
Rabir, Mohamad Hairie B.; Zin, Muhammad Rawi B. Mohamed; Karim, Julia Bt. Abdul; Bayar, Abi Muttaqin B. Jalal; Usang, Mark Dennis Anak; Mustafa, Muhammad Khairul Ariff B.; Hamzah, Na'im Syauqi B.; Said, Norfarizan Bt. Mohd; Jalil, Muhammad Husamuddin B.
2017-01-01
Reactor calculation and simulation are significantly important to ensure safety and better utilization of a research reactor. The Malaysian's PUSPATI TRIGA Reactor (RTP) achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. Since early 90s, neutronics modelling were used as part of its routine in-core fuel management activities. The are several computer codes have been used in RTP since then, based on 1D neutron diffusion, 2D neutron diffusion and 3D Monte Carlo neutron transport method. This paper describes current progress and overview on neutronics modelling development in RTP. Several important parameters were analysed such as keff, reactivity, neutron flux, power distribution and fission product build-up for the latest core configuration. The developed core neutronics model was validated by means of comparison with experimental and measurement data. Along with the RTP core model, the calculation procedure also developed to establish better prediction capability of RTP's behaviour.
Lightweight Long Life Heat Exchanger
NASA Technical Reports Server (NTRS)
Moore, E. K.
1976-01-01
A shuttle orbiter flight configuration aluminum heat exchanger was designed, fabricated, and tested. The heat exchanger utilized aluminum clad titanium composite parting sheets for protection against parting sheet pin hole corrosion. The heat exchanger, which is fully interchangeable with the shuttle condensing heat exchanger, includes slurpers (a means for removing condensed water from the downstream face of the heat exchanger), and both the core air passes and slurpers were hydrophilic coated to enhance wettability. The test program included performance tests which demonstrated the adequacy of the design and confirmed the predicted weight savings.
Conceptual Designing of a Reduced Moderation Pressurized Water Reactor by Use of MVP and MVP-BURN
NASA Astrophysics Data System (ADS)
Kugo, T.
A conceptual design of a seed-blanket assembly PWR core with a complicated geometry and a strong heterogeneity has been carried forward by use of the continuous-energy Monte Carlo method. Through parametric survey calculations by repeated use of MVP and a lattice burn-up calculation by MVP-BURN, a seed-blanket assembly configuration suitable for a concept of RMWR has been established, by evaluating precisely reactivity, a conversion ratio and a coolant void reactivity coefficient in a realistic computation time on a super computer.
Hunt, Sean T; Román-Leshkov, Yuriy
2018-05-15
Conspecuts Commercial and emerging renewable energy technologies are underpinned by precious metal catalysts, which enable the transformation of reactants into useful products. However, the noble metals (NMs) comprise the least abundant elements in the lithosphere, making them prohibitively scarce and expensive for future global-scale technologies. As such, intense research efforts have been devoted to eliminating or substantially reducing the loadings of NMs in various catalytic applications. These efforts have resulted in a plethora of heterogeneous NM catalyst morphologies beyond the traditional supported spherical nanoparticle. In many of these new architectures, such as shaped, high index, and bimetallic particles, less than 20% of the loaded NMs are available to perform catalytic turnovers. The majority of NM atoms are subsurface, providing only a secondary catalytic role through geometric and ligand effects with the active surface NM atoms. A handful of architectures can approach 100% NM utilization, but severe drawbacks limit general applicability. For example, in addition to problems with stability and leaching, single atom and ultrasmall cluster catalysts have extreme metal-support interactions, discretized d-bands, and a lack of adjacent NM surface sites. While monolayer thin films do not possess these features, they exhibit such low surface areas that they are not commercially relevant, serving predominantly as model catalysts. This Account champions core-shell nanoparticles (CS NPs) as a vehicle to design highly active, stable, and low-cost materials with high NM utilization for both thermo- and electrocatalysis. The unique benefits of the many emerging NM architectures could be preserved while their fundamental limitations could be overcome through reformulation via a core-shell morphology. However, the commercial realization of CS NPs remains challenging, requiring concerted advances in theory and manufacturing. We begin by formulating seven constraints governing proper core material design, which naturally point to early transition metal ceramics as suitable core candidates. Two constraints prove extremely challenging. The first relates to the core modifying the shell work function and d-band. To properly investigate materials that could satisfy this constraint, we discuss our development of a new heat, quench, and exfoliation (HQE) density functional theory (DFT) technique to model heterometallic interfaces. This technique is used to predict how transition metal carbides can favorably tune the catalytic properties of various NM monolayer shell configurations. The second challenging constraint relates to the scalable manufacturing of CS NP architectures with independent synthetic control of the thickness and composition of the shell and the size and composition of the core. We discuss our development of a synthetic method that enables high temperature self-assembly of tunable CS NP configurations. Finally, we discuss how these principles and methods were used to design catalysts for a variety of applications. These include the design of a thermally stable sub-monolayer CS catalyst, a highly active methanol electrooxidation catalyst, CO-tolerant Pt catalysts, and a hydrogen evolution catalyst that is less expensive than state-of-the-art NM-free catalysts. Such core-shell architectures offer the promise of ultralow precious metal loadings while ceramic cores hold the promise of thermodynamic stability and access to unique catalytic activity/tunability.
48 CFR 3452.239-73 - Federal desktop core configuration (FDCC) compatibility.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Configuration (FDCC) Compatibility (MAR 2011) (a) (1) The provider of information technology shall certify... alter the configuration settings from the approved FDCC configuration. The information technology should... DEPARTMENT OF EDUCATION ACQUISITION REGULATION CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES...
48 CFR 3452.239-73 - Federal desktop core configuration (FDCC) compatibility.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Configuration (FDCC) Compatibility (MAR 2011) (a) (1) The provider of information technology shall certify... alter the configuration settings from the approved FDCC configuration. The information technology should... DEPARTMENT OF EDUCATION ACQUISITION REGULATION CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES...
48 CFR 3452.239-73 - Federal desktop core configuration (FDCC) compatibility.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Configuration (FDCC) Compatibility (MAR 2011) (a) (1) The provider of information technology shall certify... alter the configuration settings from the approved FDCC configuration. The information technology should... DEPARTMENT OF EDUCATION ACQUISITION REGULATION CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES...
48 CFR 3452.239-73 - Federal desktop core configuration (FDCC) compatibility.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Configuration (FDCC) Compatibility (MAR 2011) (a) (1) The provider of information technology shall certify... alter the configuration settings from the approved FDCC configuration. The information technology should... DEPARTMENT OF EDUCATION ACQUISITION REGULATION CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES...
NASA Astrophysics Data System (ADS)
dos Santos Fradinho, Jorge Miguel
2014-05-01
Our understanding of enterprise systems (ES) is gradually evolving towards a sense of design which leverages multidisciplinary bodies of knowledge that may bolster hybrid research designs and together further the characterisation of ES operation and performance. This article aims to contribute towards ES design theory with its hospital enterprise systems design (HESD) framework, which reflects a rich multidisciplinary literature and two in-depth hospital empirical cases from the US and UK. In doing so it leverages systems thinking principles and traditionally disparate bodies of knowledge to bolster the theoretical evolution and foundation of ES. A total of seven core ES design elements are identified and characterised with 24 main categories and 53 subcategories. In addition, it builds on recent work which suggests that hospital enterprises are comprised of multiple internal ES configurations which may generate different levels of performance. Multiple sources of evidence were collected including electronic medical records, 54 recorded interviews, observation, and internal documents. Both in-depth cases compare and contrast higher and lower performing ES configurations. Following literal replication across in-depth cases, this article concludes that hospital performance can be improved through an enriched understanding of hospital ES design.
Numerical study of core formation of asymmetrically driven cone-guided targets
Sawada, Hiroshi; Sakagami, Hitoshi
2017-09-22
Compression of a directly driven fast ignition cone-sphere target with a finite number of laser beams is numerically studied using a three-dimensional hydrodynamics code IMPACT-3D. The formation of a dense plasma core is simulated for 12-, 9-, 6-, and 4-beam configurations of the GEKKO XII laser. The complex 3D shapes of the cores are analyzed by elucidating synthetic 2D x-ray radiographic images in two orthogonal directions. Finally, the simulated x-ray images show significant differences in the core shape between the two viewing directions and rotation of the stagnating core axis in the top view for the axisymmetric 9- and 6-beammore » configurations.« less
Numerical study of core formation of asymmetrically driven cone-guided targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawada, Hiroshi; Sakagami, Hitoshi
Compression of a directly driven fast ignition cone-sphere target with a finite number of laser beams is numerically studied using a three-dimensional hydrodynamics code IMPACT-3D. The formation of a dense plasma core is simulated for 12-, 9-, 6-, and 4-beam configurations of the GEKKO XII laser. The complex 3D shapes of the cores are analyzed by elucidating synthetic 2D x-ray radiographic images in two orthogonal directions. Finally, the simulated x-ray images show significant differences in the core shape between the two viewing directions and rotation of the stagnating core axis in the top view for the axisymmetric 9- and 6-beammore » configurations.« less
LIBS data analysis using a predictor-corrector based digital signal processor algorithm
NASA Astrophysics Data System (ADS)
Sanders, Alex; Griffin, Steven T.; Robinson, Aaron
2012-06-01
There are many accepted sensor technologies for generating spectra for material classification. Once the spectra are generated, communication bandwidth limitations favor local material classification with its attendant reduction in data transfer rates and power consumption. Transferring sensor technologies such as Cavity Ring-Down Spectroscopy (CRDS) and Laser Induced Breakdown Spectroscopy (LIBS) require effective material classifiers. A result of recent efforts has been emphasis on Partial Least Squares - Discriminant Analysis (PLS-DA) and Principle Component Analysis (PCA). Implementation of these via general purpose computers is difficult in small portable sensor configurations. This paper addresses the creation of a low mass, low power, robust hardware spectra classifier for a limited set of predetermined materials in an atmospheric matrix. Crucial to this is the incorporation of PCA or PLS-DA classifiers into a predictor-corrector style implementation. The system configuration guarantees rapid convergence. Software running on multi-core Digital Signal Processor (DSPs) simulates a stream-lined plasma physics model estimator, reducing Analog-to-Digital (ADC) power requirements. This paper presents the results of a predictorcorrector model implemented on a low power multi-core DSP to perform substance classification. This configuration emphasizes the hardware system and software design via a predictor corrector model that simultaneously decreases the sample rate while performing the classification.
NASA Astrophysics Data System (ADS)
Damahuri, Abdul Hannan Bin; Mohamed, Hassan; Aziz Mohamed, Abdul; Idris, Faridah
2018-01-01
The use of thorium as nuclear fuel has been an appealing prospect for many years and will be great significance to nuclear power generation. There is an increasing need for more research on thorium as Malaysian government is currently active in the national Thorium Flagship Project, which was launched in 2014. The thorium project, which is still in phase 1, focuses on the research and development of the thorium extraction from mineral processing ore. Thus, the aim of the study is to investigate other alternative TRIGA PUSPATI Reactor (RTP) core designs that can fully utilize thorium. Currently, the RTP reactor has an average neutron flux of 2.797 x 1012 cm-2/s-1 and an effective multiplication factor, k eff, of 1.001. The RTP core has a circular array core configuration with six circular rings. Each ring consists of 6, 12, 18, 24, 30 or 36 U-ZrH1.6 fuel rods. There are three main type of uranium weight, namely 8.5, 12 and 20 wt.%. For this research, uranium zirconium hydride (U-ZrH1.6) fuel rods in the RTP core were replaced by thorium (ThO2) fuel rods. Seven core configurations with different thorium fuel rods placements were modelled in a 2D structure and simulated using Monte Carlo n-particle (MCNPX) code. Results show that the highest initial criticality obtained is around 1.35101. Additionally there is a significant discrepancy between results from previous study and the work because of the large estimated leakage probability of approximately 21.7% and 2D model simplification.
Proof of Concept Study of Trade Space Configuration Tool for Spacecraft Design
NASA Technical Reports Server (NTRS)
Glidden, Geoffrey L.
2009-01-01
Spacecraft design is a very difficult and time consuming process because requirements and criteria are often changed or modified as the design is refined. Accounting for these adjustments in the design constraints plays a significant role in furthering the overall progress. There are numerous aspects and variables that hold significant influence on various characteristics of the design. This can be especially frustrating when attempting to conduct rapid trade space analysis on system configurations. Currently, the data and designs considered for trade space evaluations can only be displayed by using the traditional interfaces of Excel spreadsheets or CAD (Computer Aided Design) models. While helpful, these methods of analyzing the data from a systems engineering approach can be rather complicated and overwhelming. As a result, a proof of concept was conducted on a dynamic data visualization software called Thinkmap SDK (Software Developer Kit) to allow for better organization and understanding of the relationships between the various aspects that make up an entire design. The Orion Crew Module Aft Bay Subsystem was used as the test case for this study because the design and layout of many of the subsystem components will be significant in ensuring the overall center of gravity of the capsule is correct. A simplified model of this subsystem was created and programmed using Thinkmap SDK to create a preliminary prototype application of a Trade Space Configuration Tool. The completed application ensures that the core requirements for the Tool can be met. Further development is strongly suggested to produce a full prototype application to allow final evaluations and recommendations of the software capabilities.
NASA Technical Reports Server (NTRS)
Prahst, Patricia S.; Kulkarni, Sameer; Sohn, Ki H.
2015-01-01
NASA's Environmentally Responsible Aviation (ERA) Program calls for investigation of the technology barriers associated with improved fuel efficiency for large gas turbine engines. Under ERA, the highly loaded core compressor technology program attempts to realize the fuel burn reduction goal by increasing overall pressure ratio of the compressor to increase thermal efficiency of the engine. Study engines with overall pressure ratio of 60 to 70 are now being investigated. This means that the high pressure compressor would have to almost double in pressure ratio while keeping a high level of efficiency. NASA and GE teamed to address this challenge by testing the first two stages of an advanced GE compressor designed to meet the requirements of a very high pressure ratio core compressor. Previous test experience of a compressor which included these front two stages indicated a performance deficit relative to design intent. Therefore, the current rig was designed to run in 1-stage and 2-stage configurations in two separate tests to assess whether the bow shock of the second rotor interacting with the upstream stage contributed to the unpredicted performance deficit, or if the culprit was due to interaction of rotor 1 and stator 1. Thus, the goal was to fully understand the stage 1 performance under isolated and multi-stage conditions, and additionally to provide a detailed aerodynamic data set for CFD validation. Full use was made of steady and unsteady measurement methods to understand fluid dynamics loss source mechanisms due to rotor shock interaction and endwall losses. This paper will present the description of the compressor test article and its measured performance and operability, for both the single stage and two stage configurations. We focus the paper on measurements at 97% corrected speed with design intent vane setting angles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, John D.; Sterbentz, James W.; Snoj, Luka
PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less
Effect of superconducting solenoid model cores on spanwise iron magnet roll control
NASA Technical Reports Server (NTRS)
Britcher, C. P.
1985-01-01
Compared with conventional ferromagnetic fuselage cores, superconducting solenoid cores appear to offer significant reductions in the projected cost of a large wind tunnel magnetic suspension and balance system. The provision of sufficient magnetic roll torque capability has been a long-standing problem with all magnetic suspension and balance systems; and the spanwise iron magnet scheme appears to be the most powerful system available. This scheme utilizes iron cores which are installed in the wings of the model. It was anticipated that the magnetization of these cores, and hence the roll torque generated, would be affected by the powerful external magnetic field of the superconducting solenoid. A preliminary study has been made of the effect of the superconducting solenoid fuselage model core concept on the spanwise iron magnet roll torque generation schemes. Computed data for one representative configuration indicate that reductions in available roll torque occur over a range of applied magnetic field levels. These results indicate that a 30-percent increase in roll electromagnet capacity over that previously determined will be required for a representative 8-foot wind tunnel magnetic suspension and balance system design.
Design of a Modular E-Core Flux Concentrating Axial Flux Machine: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Tausif; Sozer, Yilmaz; Husain, Iqbal
2015-08-24
In this paper a novel E-Core axial flux machine is proposed. The machine has a double-stator, single-rotor configuration with flux-concentrating ferrite magnets and pole windings across each leg of an E-Core stator. E-Core stators with the proposed flux-concentrating rotor arrangement result in better magnet utilization and higher torque density. The machine also has a modular structure facilitating simpler construction. This paper presents a single-phase and a three-phase version of the E-Core machine. Case studies for a 1.1-kW, 400-rpm machine for both the single-phase and three-phase axial flux machines are presented. The results are verified through 3D finite element analysis. facilitatingmore » simpler construction. This paper presents a single-phase and a three-phase version of the E-Core machine. Case studies for a 1.1-kW, 400-rpm machine for both the single-phase and three-phase axial flux machines are presented. The results are verified through 3D finite element analysis.« less
Design and Evaluation of a Proxy-Based Monitoring System for OpenFlow Networks.
Taniguchi, Yoshiaki; Tsutsumi, Hiroaki; Iguchi, Nobukazu; Watanabe, Kenzi
2016-01-01
Software-Defined Networking (SDN) has attracted attention along with the popularization of cloud environment and server virtualization. In SDN, the control plane and the data plane are decoupled so that the logical topology and routing control can be configured dynamically depending on network conditions. To obtain network conditions precisely, a network monitoring mechanism is necessary. In this paper, we focus on OpenFlow which is a core technology to realize SDN. We propose, design, implement, and evaluate a network monitoring system for OpenFlow networks. Our proposed system acts as a proxy between an OpenFlow controller and OpenFlow switches. Through experimental evaluations, we confirm that our proposed system can capture packets and monitor traffic information depending on administrator's configuration. In addition, we show that our proposed system does not influence significant performance degradation to overall network performance.
Design and Evaluation of a Proxy-Based Monitoring System for OpenFlow Networks
Taniguchi, Yoshiaki; Tsutsumi, Hiroaki; Iguchi, Nobukazu; Watanabe, Kenzi
2016-01-01
Software-Defined Networking (SDN) has attracted attention along with the popularization of cloud environment and server virtualization. In SDN, the control plane and the data plane are decoupled so that the logical topology and routing control can be configured dynamically depending on network conditions. To obtain network conditions precisely, a network monitoring mechanism is necessary. In this paper, we focus on OpenFlow which is a core technology to realize SDN. We propose, design, implement, and evaluate a network monitoring system for OpenFlow networks. Our proposed system acts as a proxy between an OpenFlow controller and OpenFlow switches. Through experimental evaluations, we confirm that our proposed system can capture packets and monitor traffic information depending on administrator's configuration. In addition, we show that our proposed system does not influence significant performance degradation to overall network performance. PMID:27006977
Development of a Jet Noise Prediction Method for Installed Jet Configurations
NASA Technical Reports Server (NTRS)
Hunter, Craig A.; Thomas, Russell H.
2003-01-01
This paper describes development of the Jet3D noise prediction method and its application to heated jets with complex three-dimensional flow fields and installation effects. Noise predictions were made for four separate flow bypass ratio five nozzle configurations tested in the NASA Langley Jet Noise Laboratory. These configurations consist of a round core and fan nozzle with and without pylon, and an eight chevron core nozzle and round fan nozzle with and without pylon. Predicted SPL data were in good agreement with experimental noise measurements up to 121 inlet angle, beyond which Jet3D under predicted low frequency levels. This is due to inherent limitations in the formulation of Lighthill's Acoustic Analogy used in Jet3D, and will be corrected in ongoing development. Jet3D did an excellent job predicting full scale EPNL for nonchevron configurations, and captured the effect of the pylon, correctly predicting a reduction in EPNL. EPNL predictions for chevron configurations were not in good agreement with measured data, likely due to the lower mixing and longer potential cores in the CFD simulations of these cases.
Aluminum 2195 T8 Gore Development for Space Launch System Core and Upper Stage
NASA Technical Reports Server (NTRS)
Volz, Martin
2015-01-01
Gores are pie-shaped panels that are welded together to form the dome ends of rocket fuel tanks as shown in figure 1. Replacing aluminum alloy 2219 with aluminum (Al)-lithium (Li) alloy 2195 as the Space Launch System (SLS) cryogenic tank material would save enormous amounts of weight. In fact, it has been calculated that simply replacing Al 2219 gores with Al 2195 gores on the SLS core stage domes could save approximately 3,800 pound-mass. This is because the Al-Li 2195 alloy exhibits both higher mechanical properties and lower density than the SLS baseline Al 2219 alloy. Indeed, the known advantages of Al 2195 led to its use as a replacement for Al 2219 in the shuttle external tank program. The required thicknesses of Al 2195 gores for either SLS core stage tanks or upper stage tanks will depend on the specific design configurations. The required thicknesses or widths may exceed the current experience base in the manufacture of such gores by the stretch-forming process. Accordingly, the primary objective of this project was to enhance the formability of Al 2195 by optimizing the heat treatment and stretch-forming process for gore thicknesses up to 0.75 inches, which envelop the maximum expected gore thicknesses for SLS tank configurations.
NASA Technical Reports Server (NTRS)
Mclyman, W. T.
1977-01-01
Improved approach consists of cut and uncut cores nested in concentric configuration. Cores are made by winding steel ribbon on mandrel and impregnating with epoxy to bond layers together. Gap is made by cutting across wound and bonded core. Rough ends are ground or lapped.
48 CFR 352.239-70 - Standard for security configurations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... configure its computers that contain HHS data with the applicable Federal Desktop Core Configuration (FDCC) (see http://nvd.nist.gov/fdcc/index.cfm) and ensure that its computers have and maintain the latest... technology (IT) that is used to process information on behalf of HHS. The following security configuration...
48 CFR 352.239-70 - Standard for security configurations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... configure its computers that contain HHS data with the applicable Federal Desktop Core Configuration (FDCC) (see http://nvd.nist.gov/fdcc/index.cfm) and ensure that its computers have and maintain the latest... technology (IT) that is used to process information on behalf of HHS. The following security configuration...
48 CFR 352.239-70 - Standard for security configurations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... configure its computers that contain HHS data with the applicable Federal Desktop Core Configuration (FDCC) (see http://nvd.nist.gov/fdcc/index.cfm) and ensure that its computers have and maintain the latest... technology (IT) that is used to process information on behalf of HHS. The following security configuration...
48 CFR 352.239-70 - Standard for security configurations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... configure its computers that contain HHS data with the applicable Federal Desktop Core Configuration (FDCC) (see http://nvd.nist.gov/fdcc/index.cfm) and ensure that its computers have and maintain the latest... technology (IT) that is used to process information on behalf of HHS. The following security configuration...
48 CFR 352.239-70 - Standard for security configurations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... configure its computers that contain HHS data with the applicable Federal Desktop Core Configuration (FDCC) (see http://nvd.nist.gov/fdcc/index.cfm) and ensure that its computers have and maintain the latest... technology (IT) that is used to process information on behalf of HHS. The following security configuration...
GIS Application System Design Applied to Information Monitoring
NASA Astrophysics Data System (ADS)
Qun, Zhou; Yujin, Yuan; Yuena, Kang
Natural environment information management system involves on-line instrument monitoring, data communications, database establishment, information management software development and so on. Its core lies in collecting effective and reliable environmental information, increasing utilization rate and sharing degree of environment information by advanced information technology, and maximizingly providing timely and scientific foundation for environmental monitoring and management. This thesis adopts C# plug-in application development and uses a set of complete embedded GIS component libraries and tools libraries provided by GIS Engine to finish the core of plug-in GIS application framework, namely, the design and implementation of framework host program and each functional plug-in, as well as the design and implementation of plug-in GIS application framework platform. This thesis adopts the advantages of development technique of dynamic plug-in loading configuration, quickly establishes GIS application by visualized component collaborative modeling and realizes GIS application integration. The developed platform is applicable to any application integration related to GIS application (ESRI platform) and can be as basis development platform of GIS application development.
Optimal Configuration and Deployment of Software on Multi-Core Processing Architectures
2008-07-01
between the event generating threads and the collector thread is implemented through semaphores . The Perseus data logger is designed to minimize the...performance counters (through the PAPI API) and opens up access to the shared memory logger through a semaphore and Remote Procedure Call (RPC) buffer... synchronization events. Using this rich data, the TMAM is able to output all of the information necessary to identify precisely which pairs of thread
NASA Astrophysics Data System (ADS)
Benkrid, K.; Belkacemi, S.; Sukhsawas, S.
2005-06-01
This paper proposes an integrated framework for the high level design of high performance signal processing algorithms' implementations on FPGAs. The framework emerged from a constant need to rapidly implement increasingly complicated algorithms on FPGAs while maintaining the high performance needed in many real time digital signal processing applications. This is particularly important for application developers who often rely on iterative and interactive development methodologies. The central idea behind the proposed framework is to dynamically integrate high performance structural hardware description languages with higher level hardware languages in other to help satisfy the dual requirement of high level design and high performance implementation. The paper illustrates this by integrating two environments: Celoxica's Handel-C language, and HIDE, a structural hardware environment developed at the Queen's University of Belfast. On the one hand, Handel-C has been proven to be very useful in the rapid design and prototyping of FPGA circuits, especially control intensive ones. On the other hand, HIDE, has been used extensively, and successfully, in the generation of highly optimised parameterisable FPGA cores. In this paper, this is illustrated in the construction of a scalable and fully parameterisable core for image algebra's five core neighbourhood operations, where fully floorplanned efficient FPGA configurations, in the form of EDIF netlists, are generated automatically for instances of the core. In the proposed combined framework, highly optimised data paths are invoked dynamically from within Handel-C, and are synthesized using HIDE. Although the idea might seem simple prima facie, it could have serious implications on the design of future generations of hardware description languages.
Weather Research and Forecasting Model Wind Sensitivity Study at Edwards Air Force Base, CA
NASA Technical Reports Server (NTRS)
Watson, Leela R.; Bauman, William H., III; Hoeth, Brian
2009-01-01
This abstract describes work that will be done by the Applied Meteorology Unit (AMU) in assessing the success of different model configurations in predicting "wind cycling" cases at Edwards Air Force Base, CA (EAFB), in which the wind speeds and directions oscillate among towers near the EAFB runway. The Weather Research and Forecasting (WRF) model allows users to choose among two dynamical cores - the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM). There are also data assimilation analysis packages available for the initialization of the WRF model - the Local Analysis and Prediction System (LAPS) and the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS). Having a series of initialization options and WRF cores, as well as many options within each core, creates challenges for local forecasters, such as determining which configuration options are best to address specific forecast concerns. The goal of this project is to assess the different configurations available and determine which configuration will best predict surface wind speed and direction at EAFB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, William R.; Lee, John C.; baxter, Alan
Information and measured data from the intial Fort St. Vrain (FSV) high temperature gas reactor core is used to develop a benchmark configuration to validate computational methods for analysis of a full-core, commercial HTR configuration. Large uncertainties in the geometry and composition data for the FSV fuel and core are identified, including: (1) the relative numbers of fuel particles for the four particle types, (2) the distribution of fuel kernel diameters for the four particle types, (3) the Th:U ratio in the initial FSV core, (4) and the buffer thickness for the fissile and fertile particles. Sensitivity studies were performedmore » to assess each of these uncertainties. A number of methods were developed to assist in these studies, including: (1) the automation of MCNP5 input files for FSV using Python scripts, (2) a simple method to verify isotopic loadings in MCNP5 input files, (3) an automated procedure to conduct a coupled MCNP5-RELAP5 analysis for a full-core FSV configuration with thermal-hydraulic feedback, and (4) a methodology for sampling kernel diameters from arbitrary power law and Gaussian PDFs that preserved fuel loading and packing factor constraints. A reference FSV fuel configuration was developed based on having a single diameter kernel for each of the four particle types, preserving known uranium and thorium loadings and packing factor (58%). Three fuel models were developed, based on representing the fuel as a mixture of kernels with two diameters, four diameters, or a continuous range of diameters. The fuel particles were put into a fuel compact using either a lattice-bsed approach or a stochastic packing methodology from RPI, and simulated with MCNP5. The results of the sensitivity studies indicated that the uncertainties in the relative numbers and sizes of fissile and fertile kernels were not important nor were the distributions of kernel diameters within their diameter ranges. The uncertainty in the Th:U ratio in the intial FSV core was found to be important with a crude study. The uncertainty in the TRISO buffer thickness was estimated to be unimportant but the study was not conclusive. FSV fuel compacts and a regular FSV fuel element were analyzed with MCNP5 and compared with predictions using a modified version of HELIOS that is capable of analyzing TRISO fuel configurations. The HELIOS analyses were performed by SSP. The eigenvalue discrepancies between HELIOS and MCNP5 are currently on the order of 1% but these are still being evaluated. Full-core FSV configurations were developed for two initial critical configurations - a cold, clean critical loading and a critical configuration at 70% power. MCNP5 predictions are compared to experimental data and the results are mixed. Analyses were also done for the pulsed neutron experiments that were conducted by GA for the initial FSV core. MCNP5 was used to model these experiments and reasonable agreement with measured results has been observed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Lam Pham; Vinh Vinh Le; Ton Nghiem Huynh
2008-07-15
The fuel conversion of the Dalat Nuclear Research Reactor (DNRR) is being realized. The DNRR is a pool type research reactor which was reconstructed from the 250 kW TRIGA- MARK II reactor. The reconstructed reactor attained its nominal power of 500 kW in February 1984. According to the results of design and safety analyses performed by the joint study between RERTR Program at Argonne National Laboratory (ANL) and Vietnam Atomic Energy Commission (VAEC) the mixed core of irradiated HEU and new LEU WWR-M2 fuel assemblies will be created soon. This paper presents the results of preliminary study on new configurationmore » with only LEU fuel assemblies for the DNRR. The codes MCNP, REBUS and VARI3D are used to calculate neutron flux performance in irradiation positions and kinetics parameters. The idea of change of Beryllium rod reloading enables to get working configuration assured shutdown margin, thermal-hydraulic safety and increase in thermal neutron flux in neutron trap at the center of DNRR active core. (author)« less
Chimney for enhancing flow of coolant water in natural circulation boiling water reactor
Oosterkamp, Willem Jan; Marquino, Wayne
1999-01-05
A chimney which can be reconfigured or removed during refueling to allow vertical removal of the fuel assemblies. The chimney is designed to be collapsed or dismantled. Collapse or dismantlement of the chimney reduces the volume required for chimney storage during the refueling operation. Alternatively, the chimney has movable parts which allow reconfiguration of its structure. In a first configuration suitable for normal reactor operation, the chimney is radially constricted such that the chimney obstructs vertical removal of the fuel assemblies. In a second configuration suitable for refueling or maintenance of the fuel core, the parts of the chimney which obstruct access to the fuel assemblies are moved radially outward to positions whereat access to the fuel assemblies is not obstructed.
Applications of plasma core reactors to terrestrial energy systems
NASA Technical Reports Server (NTRS)
Latham, T. S.; Biancardi, F. R.; Rodgers, R. J.
1974-01-01
Plasma core reactors offer several new options for future energy needs in addition to space power and propulsion applications. Power extraction from plasma core reactors with gaseous nuclear fuel allows operation at temperatures higher than conventional reactors. Highly efficient thermodynamic cycles and applications employing direct coupling of radiant energy are possible. Conceptual configurations of plasma core reactors for terrestrial applications are described. Closed-cycle gas turbines, MHD systems, photo- and thermo-chemical hydrogen production processes, and laser systems using plasma core reactors as prime energy sources are considered. Cycle efficiencies in the range of 50 to 65 percent are calculated for closed-cycle gas turbine and MHD electrical generators. Reactor advantages include continuous fuel reprocessing which limits inventory of radioactive by-products and thorium-U-233 breeder configurations with about 5-year doubling times.-
Investigation on the Core Bypass Flow in a Very High Temperature Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassan, Yassin
2013-10-22
Uncertainties associated with the core bypass flow are some of the key issues that directly influence the coolant mass flow distribution and magnitude, and thus the operational core temperature profiles, in the very high-temperature reactor (VHTR). Designers will attempt to configure the core geometry so the core cooling flow rate magnitude and distribution conform to the design values. The objective of this project is to study the bypass flow both experimentally and computationally. Researchers will develop experimental data using state-of-the-art particle image velocimetry in a small test facility. The team will attempt to obtain full field temperature distribution using racksmore » of thermocouples. The experimental data are intended to benchmark computational fluid dynamics (CFD) codes by providing detailed information. These experimental data are urgently needed for validation of the CFD codes. The following are the project tasks: • Construct a small-scale bench-top experiment to resemble the bypass flow between the graphite blocks, varying parameters to address their impact on bypass flow. Wall roughness of the graphite block walls, spacing between the blocks, and temperature of the blocks are some of the parameters to be tested. • Perform CFD to evaluate pre- and post-test calculations and turbulence models, including sensitivity studies to achieve high accuracy. • Develop the state-of-the art large eddy simulation (LES) using appropriate subgrid modeling. • Develop models to be used in systems thermal hydraulics codes to account and estimate the bypass flows. These computer programs include, among others, RELAP3D, MELCOR, GAMMA, and GAS-NET. Actual core bypass flow rate may vary considerably from the design value. Although the uncertainty of the bypass flow rate is not known, some sources have stated that the bypass flow rates in the Fort St. Vrain reactor were between 8 and 25 percent of the total reactor mass flow rate. If bypass flow rates are on the high side, the quantity of cooling flow through the core may be considerably less than the nominal design value, causing some regions of the core to operate at temperatures in excess of the design values. These effects are postulated to lead to localized hot regions in the core that must be considered when evaluating the VHTR operational and accident scenarios.« less
NASA Technical Reports Server (NTRS)
Ratcliffe, James G.
2010-01-01
This paper details part of an effort focused on the development of a standardized facesheet/core peel debonding test procedure. The purpose of the test is to characterize facesheet/core peel in sandwich structure, accomplished through the measurement of the critical strain energy release rate associated with the debonding process. The specific test method selected for the standardized test procedure utilizes a single cantilever beam (SCB) specimen configuration. The objective of the current work is to develop a method for establishing SCB specimen dimensions. This is achieved by imposing specific limitations on specimen dimensions, with the objectives of promoting a linear elastic specimen response, and simplifying the data reduction method required for computing the critical strain energy release rate associated with debonding. The sizing method is also designed to be suitable for incorporation into a standardized test protocol. Preliminary application of the resulting sizing method yields practical specimen dimensions.
Freestanding three-dimensional core-shell nanoarrays for lithium-ion battery anodes.
Tan, Guoqiang; Wu, Feng; Yuan, Yifei; Chen, Renjie; Zhao, Teng; Yao, Ying; Qian, Ji; Liu, Jianrui; Ye, Yusheng; Shahbazian-Yassar, Reza; Lu, Jun; Amine, Khalil
2016-06-03
Structural degradation and low conductivity of transition-metal oxides lead to severe capacity fading in lithium-ion batteries. Recent efforts to solve this issue have mainly focused on using nanocomposites or hybrids by integrating nanosized metal oxides with conducting additives. Here we design specific hierarchical structures and demonstrate their use in flexible, large-area anode assemblies. Fabrication of these anodes is achieved via oxidative growth of copper oxide nanowires onto copper substrates followed by radio-frequency sputtering of carbon-nitride films, forming freestanding three-dimensional arrays with core-shell nano-architecture. Cable-like copper oxide/carbon-nitride core-shell nanostructures accommodate the volume change during lithiation-delithiation processes, the three-dimensional arrays provide abundant electroactive zones and electron/ion transport paths, and the monolithic sandwich-type configuration without additional binders or conductive agents improves energy/power densities of the whole electrode.
Full-spectrum volumetric solar thermal conversion via photonic nanofluids.
Liu, Xianglei; Xuan, Yimin
2017-10-12
Volumetric solar thermal conversion is an emerging technique for a plethora of applications such as solar thermal power generation, desalination, and solar water splitting. However, achieving broadband solar thermal absorption via dilute nanofluids is still a daunting challenge. In this work, full-spectrum volumetric solar thermal conversion is demonstrated over a thin layer of the proposed 'photonic nanofluids'. The underlying mechanism is found to be the photonic superposition of core resonances, shell plasmons, and core-shell resonances at different wavelengths, whose coexistence is enabled by the broken symmetry of specially designed composite nanoparticles, i.e., Janus nanoparticles. The solar thermal conversion efficiency can be improved by 10.8% compared with core-shell nanofluids. The extinction coefficient of Janus dimers with various configurations is also investigated to unveil the effects of particle couplings. This work provides the possibility to achieve full-spectrum volumetric solar thermal conversion, and may have potential applications in efficient solar energy harvesting and utilization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortensi, Javier; Baker, Benjamin Allen; Schunert, Sebastian
The INL is currently evolving the modeling and simulation (M&S) capability that will enable improved core operation as well as design and analysis of TREAT experiments. This M&S capability primarily uses MAMMOTH, a reactor physics application being developed under Multi-physics Object Oriented Simulation Environment (MOOSE) framework. MAMMOTH allows the coupling of a number of other MOOSE-based applications. This second year of work has been devoted to the generation of a deterministic reference solution for the full core, the preparation of anisotropic diffusion coefficients, the testing of the SPH equivalence method, and the improvement of the control rod modeling. In addition,more » this report includes the progress made in the modeling of the M8 core configuration and experiment vehicle since January of this year.« less
NASA Technical Reports Server (NTRS)
Prahst, Patricia S.; Kulkarni, Sameer; Sohn, Ki H.
2015-01-01
NASA's Environmentally Responsible Aviation (ERA) Program calls for investigation of the technology barriers associated with improved fuel efficiency of large gas turbine engines. Under ERA the task for a High Pressure Ratio Core Technology program calls for a higher overall pressure ratio of 60 to 70. This mean that the HPC would have to almost double in pressure ratio and keep its high level of efficiency. The challenge is how to match the corrected mass flow rate of the front two supersonic high reaction and high corrected tip speed stages with a total pressure ratio of 3.5. NASA and GE teamed to address this challenge by using the initial geometry of an advanced GE compressor design to meet the requirements of the first 2 stages of the very high pressure ratio core compressor. The rig was configured to run as a 2 stage machine, with Strut and IGV, Rotor 1 and Stator 1 run as independent tests which were then followed by adding the second stage. The goal is to fully understand the stage performances under isolated and multi-stage conditions and fully understand any differences and provide a detailed aerodynamic data set for CFD validation. Full use was made of steady and unsteady measurement methods to isolate fluid dynamics loss source mechanisms due to interaction and endwalls. The paper will present the description of the compressor test article, its predicted performance and operability, and the experimental results for both the single stage and two stage configurations. We focus the detailed measurements on 97 and 100 of design speed at 3 vane setting angles.
The CANopen Controller IP Core: Implementation, Synthesis and Test Results
NASA Astrophysics Data System (ADS)
Caramia, Maurizio; Bolognino, Luca; Montagna, Mario; Tosi, Pietro; Errico, Walter; Bigongiari, Franco; Furano, Gianluca
2011-08-01
This paper will describe the implementation and test results of the CANopen Controller IP Core (CCIPC) implemented by Thales Alenia Space and SITAEL Aerospace with the support of ESA in the frame of the EXOMARS Project. The CCIPC is a configurable VHDL implementation of the CANOPEN protocol [1]; it is foreseen to be used as CAN bus slave controller within the EXOMARS Entry Descending and Landing Demonstrato Module (EDM) and Rover Module. The CCIPC features, configuration capability, synthesis and test results will be described and the evidence of the state of maturity of this innovative IP core will be demonstrated.
Research on NC motion controller based on SOPC technology
NASA Astrophysics Data System (ADS)
Jiang, Tingbiao; Meng, Biao
2006-11-01
With the rapid development of the digitization and informationization, the application of numerical control technology in the manufacturing industry becomes more and more important. However, the conventional numerical control system usually has some shortcomings such as the poor in system openness, character of real-time, cutability and reconfiguration. In order to solve these problems, this paper investigates the development prospect and advantage of the application in numerical control area with system-on-a-Programmable-Chip (SOPC) technology, and puts forward to a research program approach to the NC controller based on SOPC technology. Utilizing the characteristic of SOPC technology, we integrate high density logic device FPGA, memory SRAM, and embedded processor ARM into a single programmable logic device. We also combine the 32-bit RISC processor with high computing capability of the complicated algorithm with the FPGA device with strong motivable reconfiguration logic control ability. With these steps, we can greatly resolve the defect described in above existing numerical control systems. For the concrete implementation method, we use FPGA chip embedded with ARM hard nuclear processor to construct the control core of the motion controller. We also design the peripheral circuit of the controller according to the requirements of actual control functions, transplant real-time operating system into ARM, design the driver of the peripheral assisted chip, develop the application program to control and configuration of FPGA, design IP core of logic algorithm for various NC motion control to configured it into FPGA. The whole control system uses the concept of modular and structured design to develop hardware and software system. Thus the NC motion controller with the advantage of easily tailoring, highly opening, reconfigurable, and expandable can be implemented.
Optical properties of core-shell and multi-shell nanorods
NASA Astrophysics Data System (ADS)
Mokkath, Junais Habeeb; Shehata, Nader
2018-05-01
We report a first-principles time dependent density functional theory study of the optical response modulations in bimetallic core-shell (Na@Al and Al@Na) and multi-shell (Al@Na@Al@Na and Na@Al@Na@Al: concentric shells of Al and Na alternate) nanorods. All of the core-shell and multi-shell configurations display highly enhanced absorption intensity with respect to the pure Al and Na nanorods, showing sensitivity to both composition and chemical ordering. Remarkably large spectral intensity enhancements were found in a couple of core-shell configurations, indicative that optical response averaging based on the individual components can not be considered as true as always in the case of bimetallic core-shell nanorods. We believe that our theoretical results would be useful in promising applications depending on Aluminum-based plasmonic materials such as solar cells and sensors.
Tests of a D vented thrust deflecting nozzle behind a simulated turbofan engine
NASA Technical Reports Server (NTRS)
Watson, T. L.
1982-01-01
A D vented thrust deflecting nozzle applicable to subsonic V/STOL aircraft was tested behind a simulated turbofan engine in the verticle thrust stand. Nozzle thrust, fan operating characteristics, nozzle entrance conditions, and static pressures were measured. Nozzle performance was measured for variations in exit area and thrust deflection angle. Six core nozzle configurations, the effect of core exit axial location, mismatched core and fan stream nozzle pressure ratios, and yaw vane presence were evaluated. Core nozzle configuration affected performance at normal and engine out operating conditions. Highest vectored nozzle performance resulted for a given exit area when core and fan stream pressure were equal. Its is concluded that high nozzle performance can be maintained at both normal and engine out conditions through control of the nozzle entrance Mach number with a variable exit area.
NASA Technical Reports Server (NTRS)
Mcardle, J. G.; Homyak, L.; Moore, A. S.
1979-01-01
The performance of a YF-102 turbofan engine was measured in an outdoor test stand with a bellmouth inlet and seven exhaust-system configurations. The configurations consisted of three separate-flow systems of various fan and core nozzle sizes and four confluent-flow systems of various nozzle sizes and shapes. A computer program provided good estimates of the engine performance and of thrust at maximum rating for each exhaust configuration. The internal performance of two different-shaped core nozzles for confluent-flow configurations was determined to be satisfactory. Pressure and temperature surveys were made with a traversing probe in the exhaust-nozzle flow for some confluent-flow configurations. The survey data at the mixing plane, plus the measured flow rates, were used to calculate the static-pressure variation along the exhaust nozzle length. The computed pressures compared well with experimental wall static-pressure data. External-flow surveys were made, for some confluent-flow configurations, with a large fixed rake at various locations in the exhaust plume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Sheng-Heng; Chang, Chi-Hao; Manthiram, Arumugam
Sulfur is an appealing cathode material for establishing advanced lithium batteries as it offers a high theoretical capacity of 1675 mA h g -1 at low material and operating costs. However, the lithium–sulfur (Li–S) electrochemical cells face several formidable challenges arising from both the materials chemistry (e.g., low electrochemical utilization of sulfur and severe polysulfide diffusion) and battery chemistry (e.g., dynamic and static instability and low sulfur loadings). Here in this study, we present the design of a core–shell cathode with a pure sulfur core shielded within a conductive shell-shaped electrode. The new electrode configuration allows Li–S cells to loadmore » with a high amount of sulfur (sulfur loadings of up to 30 mg cm -2 and sulfur content approaching 70 wt%). The core–shell cathodes demonstrate a superior dynamic and static electrochemical stability in Li–S cells. The high-loading cathodes exhibit (i) a high sulfur utilization of up to 97% at C/20–C/2 rates and (ii) a low self-discharge during long-term cell storage for a three-month rest period and at different cell-storage conditions. Finally, a polysulfide-trap cell configuration is designed to evidence the eliminations of polysulfide diffusion and to investigate the relationship between the electrode configuration and electrochemical characteristics. Finally, the comprehensive analytical results based on the high-loading cathodes suggest that (i) the core–shell cathode is a promising solution for designing highly reversible Li–S cells and (ii) the polysulfide-trap cell configuration is a viable approach to qualitatively evaluating the presence or absence of polysulfide diffusion.« less
Exposed-core chalcogenide microstructured optical fibers for chemical sensing
NASA Astrophysics Data System (ADS)
Troles, Johann; Toupin, Perrine; Brilland, Laurent; Boussard-Plédel, Catherine; Bureau, Bruno; Cui, Shuo; Mechin, David; Adam, Jean-Luc
2013-05-01
Chemical bonds of most of the molecules vibrate at a frequency corresponding to the near or mid infrared field. It is thus of a great interest to develop sensitive and portable devices for the detection of specific chemicals and biomolecules for various applications in health, the environment, national security and so on. Optical fibers define practical sensing tools. Chalcogenide glasses are known for their transparency in the infrared optical range and their ability to be drawn as fibers. They are consequently good candidates to be used in biological/chemical sensing. For that matter, in the past decade, chalcogenide glass fibers have been successfully implemented in evanescent wave spectroscopy experiments, for the detection of bio-chemical species in various fields of applications including microbiology and medicine, water pollution and CO2 detection. Different types of fiber can be used: single index fibers or microstructured fibers. Besides, in recent years a new configuration of microstructured fibers has been developed: microstructured exposed-core fibers. This design consists of an optical fiber with a suspended micron-scale core that is partially exposed to the external environment. This configuration has been chosen to elaborate, using the molding method, a chalcogenide fiber for chemical species detection. The sensitivity of this fiber to detect molecules such as propan-2-ol and acetone has been compared with those of single index fibers. Although evanescent wave absorption is inversely proportional to the fiber diameter, the result shows that an exposed-core fiber is much more sensitive than a single index fiber having a twice smaller external diameter.
EBR-II Reactor Physics Benchmark Evaluation Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, Chad L.; Lum, Edward S; Stewart, Ryan
This report provides a reactor physics benchmark evaluation with associated uncertainty quantification for the critical configuration of the April 1986 Experimental Breeder Reactor II Run 138B core configuration.
Thermal barriers for compartments
Kreutzer, Cory J.; Lustbader, Jason A.
2017-10-17
An aspect of the present disclosure is a thermal barrier that includes a core layer having a first surface, a second surface, and a first edge, and a first outer layer that includes a third surface and a second edge, where the third surface substantially contacts the first surface, the core layer is configured to minimize conductive heat transfer through the barrier, and the first outer layer is configured to maximize reflection of light away from the barrier.
Experimental Criticality Benchmarks for SNAP 10A/2 Reactor Cores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krass, A.W.
2005-12-19
This report describes computational benchmark models for nuclear criticality derived from descriptions of the Systems for Nuclear Auxiliary Power (SNAP) Critical Assembly (SCA)-4B experimental criticality program conducted by Atomics International during the early 1960's. The selected experimental configurations consist of fueled SNAP 10A/2-type reactor cores subject to varied conditions of water immersion and reflection under experimental control to measure neutron multiplication. SNAP 10A/2-type reactor cores are compact volumes fueled and moderated with the hydride of highly enriched uranium-zirconium alloy. Specifications for the materials and geometry needed to describe a given experimental configuration for a model using MCNP5 are provided. Themore » material and geometry specifications are adequate to permit user development of input for alternative nuclear safety codes, such as KENO. A total of 73 distinct experimental configurations are described.« less
Optical design of the PEPSI high-resolution spectrograph at LBT
NASA Astrophysics Data System (ADS)
Andersen, Michael I.; Spano, Paolo; Woche, Manfred; Strassmeier, Klaus G.; Beckert, Erik
2004-09-01
PEPSI is a high-resolution, fiber fed echelle spectrograph with polarimetric capabilities for the LBT. In order to reach a maximum resolution R=120.000 in polarimetric mode and 300.000 in integral light mode with high efficiency in the spectral range 390-1050~nm, we designed a white-pupil configuration with Maksutov collimators. Light is dispersed by an R4 31.6 lines/mm monolithic echelle grating mosaic and split into two arms through dichroics. The two arms, optimized for the spectral range 390-550~nm and 550-1050~nm, respectively, consist of Maksutov transfer collimators, VPH-grism cross dispersers, optimized dioptric cameras and 7.5K x 7.5K 8~μ CCDs. Fibers of different core sizes coupled to different image-slicers allow a high throughput, comparable to that of direct feed instruments. The optical configuration with only spherical and cylindrical surfaces, except for one aspherical surface in each camera, reduces costs and guarantees high optical quality. PEPSI is under construction at AIP with first light expected in 2006.
NASA Astrophysics Data System (ADS)
Reza, S. M. Mohsin
Design options have been evaluated for the Modular Helium Reactor (MHR) for higher temperature operation. An alternative configuration for the MHR coolant inlet flow path is developed to reduce the peak vessel temperature (PVT). The coolant inlet path is shifted from the annular path between reactor core barrel and vessel wall through the permanent side reflector (PSR). The number and dimensions of coolant holes are varied to optimize the pressure drop, the inlet velocity, and the percentage of graphite removed from the PSR to create this inlet path. With the removal of ˜10% of the graphite from PSR the PVT is reduced from 541°C to 421°C. A new design for the graphite block core has been evaluated and optimized to reduce the inlet coolant temperature with the aim of further reduction of PVT. The dimensions and number of fuel rods and coolant holes, and the triangular pitch have been changed and optimized. Different packing fractions for the new core design have been used to conserve the number of fuel particles. Thermal properties for the fuel elements are calculated and incorporated into these analyses. The inlet temperature, mass flow and bypass flow are optimized to limit the peak fuel temperature (PFT) within an acceptable range. Using both of these modifications together, the PVT is reduced to ˜350°C while keeping the outlet temperature at 950°C and maintaining the PFT within acceptable limits. The vessel and fuel temperatures during low pressure conduction cooldown and high pressure conduction cooldown transients are found to be well below the design limits. The reliability and availability studies for coupled nuclear hydrogen production processes based on the sulfur iodine thermochemical process and high temperature electrolysis process have been accomplished. The fault tree models for both these processes are developed. Using information obtained on system configuration, component failure probability, component repair time and system operating modes and conditions, the system reliability and availability are assessed. Required redundancies are made to improve system reliability and to optimize the plant design for economic performance. The failure rates and outage factors of both processes are found to be well below the maximum acceptable range.
Weather Research and Forecasting Model Sensitivity Comparisons for Warm Season Convective Initiation
NASA Technical Reports Server (NTRS)
Watson, Leela R.
2007-01-01
This report describes the work done by the Applied Meteorology Unit (AMU) in assessing the success of different model configurations in predicting warm season convection over East-Central Florida. The Weather Research and Forecasting Environmental Modeling System (WRF EMS) software allows users to choose among two dynamical cores - the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM). There are also data assimilation analysis packages available for the initialization of the WRF model - the Local Analysis and Prediction System (LAPS) and the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS). Besides model core and initialization options, the WRF model can be run with one- or two-way nesting. Having a series of initialization options and WRF cores, as well as many options within each core, creates challenges for local forecasters, such as determining which configuration options are best to address specific forecast concerns. This project assessed three different model intializations available to determine which configuration best predicts warm season convective initiation in East-Central Florida. The project also examined the use of one- and two-way nesting in predicting warm season convection.
48 CFR 3439.703 - Federal desktop core configuration (FDCC) compatibility.
Code of Federal Regulations, 2014 CFR
2014-10-01
... OF EDUCATION ACQUISITION REGULATION SPECIAL CATEGORIES OF CONTRACTING ACQUISITION OF INFORMATION TECHNOLOGY Department Requirements for Acquisition of Information Technology 3439.703 Federal desktop core...
48 CFR 3439.703 - Federal desktop core configuration (FDCC) compatibility.
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF EDUCATION ACQUISITION REGULATION SPECIAL CATEGORIES OF CONTRACTING ACQUISITION OF INFORMATION TECHNOLOGY Department Requirements for Acquisition of Information Technology 3439.703 Federal desktop core...
48 CFR 3439.703 - Federal desktop core configuration (FDCC) compatibility.
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF EDUCATION ACQUISITION REGULATION SPECIAL CATEGORIES OF CONTRACTING ACQUISITION OF INFORMATION TECHNOLOGY Department Requirements for Acquisition of Information Technology 3439.703 Federal desktop core...
48 CFR 3439.703 - Federal desktop core configuration (FDCC) compatibility.
Code of Federal Regulations, 2013 CFR
2013-10-01
... OF EDUCATION ACQUISITION REGULATION SPECIAL CATEGORIES OF CONTRACTING ACQUISITION OF INFORMATION TECHNOLOGY Department Requirements for Acquisition of Information Technology 3439.703 Federal desktop core...
Space station definition and preliminary design, WP-01. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Lenda, J. A.
1987-01-01
System activities are summarized and an overview of the system level engineering tasks performed are provided. Areas discussed include requirements, system test and verification, the advanced development plan, customer accommodations, software, growth, productivity, operations, product assurance and metrication. The hardware element study results are summarized. Overviews of recommended configurations are provided for the core module, the USL, the logistics elements, the propulsion subsystems, reboost, vehicle accommodations, and the smart front end. A brief overview is provided for costing activities.
PIV Logon Configuration Guidance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Glen Alan
This document details the configurations and enhancements implemented to support the usage of federal Personal Identity Verification (PIV) Card for logon on unclassified networks. The guidance is a reference implementation of the configurations and enhancements deployed at the Los Alamos National Laboratory (LANL) by Network and Infrastructure Engineering – Core Services (NIE-CS).
First-principles configurational thermodynamics of alloyed nanoparticles with adsorbates
NASA Astrophysics Data System (ADS)
Wang, Lin-Lin; Tan, Teck L.; Johnson, Duane D.
2014-03-01
Transition-metal, alloyed nanoparticles (NPs) are key components in current and emerging energy technologies because they are found to improve catalytic activity and selectivity for many energy-conversion processes. However, thermodynamic investigations of the compositional profile of alloyed nanoparticles, which determines their catalytic properties, have been limited mostly to NP core-shell preference without the presence of adsorbates. Here, by extending cluster expansion methods to treat both alloyed nanoparticles and adsorbates, we study the configurational thermodynamics of bimetallic NPs under chemically reactive conditions, using databases from density functional theory calculations. With a few examples, we show that such simulations can provide information needed for rational design of NP catalysts. DOE/BES under DE-FG02-03ER15476 (Catalysis) and DE-AC02-07CH11358 at the Ames Laboratory.
CMIF ECLS system test findings
NASA Technical Reports Server (NTRS)
Schunk, Richard G.; Carrasquillo, Robyn L.; Ogle, Kathyrn Y.; Wieland, Paul O.; Bagdigian, Robert M.
1989-01-01
During 1987 three Space Station integrated Environmental Control and Life Support System (ECLSS) tests were conducted at the Marshall Space Flight Center (MSFC) Core Module Integration Facility (CMIF) as part of the MSFC ECLSS Phase II test program. The three tests ranged in duration from 50 to 150 hours and were conducted inside of the CMIF module simulator. The Phase II partial integrated system test configuration consisted of four regenerative air revitalization subsystems and one regenerative water reclamation subsystem. This paper contains a discussion of results and lessons learned from the Phase II test program. The design of the Phase II test configuration and improvements made throughout the program are detailed. Future plans for the MSFC CMIF test program are provided, including an overview of planned improvements for the Phase III program.
Chimney for enhancing flow of coolant water in natural circulation boiling water reactor
Oosterkamp, W.J.; Marquino, W.
1999-01-05
A chimney which can be reconfigured or removed during refueling to allow vertical removal of the fuel assemblies is disclosed. The chimney is designed to be collapsed or dismantled. Collapse or dismantlement of the chimney reduces the volume required for chimney storage during the refueling operation. Alternatively, the chimney has movable parts which allow reconfiguration of its structure. In a first configuration suitable for normal reactor operation, the chimney is radially constricted such that the chimney obstructs vertical removal of the fuel assemblies. In a second configuration suitable for refueling or maintenance of the fuel core, the parts of the chimney which obstruct access to the fuel assemblies are moved radially outward to positions whereas access to the fuel assemblies is not obstructed. 11 figs.
NASA Technical Reports Server (NTRS)
Ohri, A. K.; Wilson, T. G.; Owen, H. A., Jr.
1977-01-01
A procedure is presented for designing air-gapped energy-storage reactors for nine different dc-to-dc converters resulting from combinations of three single-winding power stages for voltage stepup, current stepup and voltage stepup/current stepup and three controllers with control laws that impose constant-frequency, constant transistor on-time and constant transistor off-time operation. The analysis, based on the energy-transfer requirement of the reactor, leads to a simple relationship for the required minimum volume of the air gap. Determination of this minimum air gap volume then permits the selection of either an air gap or a cross-sectional core area. Having picked one parameter, the minimum value of the other immediately leads to selection of the physical magnetic structure. Other analytically derived equations are used to obtain values for the required turns, the inductance, and the maximum rms winding current. The design procedure is applicable to a wide range of magnetic material characteristics and physical configurations for the air-gapped magnetic structure.
Effects of Compression, Staging, and Braid Angle on Braided Rope Seal Performance
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Adams, Michael L.
1997-01-01
Future turbine engines and industrial systems will be operating at increased temperatures to achieve more demanding efficiency and performance goals. In the highest temperature sections of the engine new material systems such as ceramics and intermetallics are being considered to withstand the harsh thermal environment. Components constructed of these low expansion-rate materials experience thermal strains and a resulting reduction of life when rigidly attached to high expansion-rate, superalloy support structures. Seals are being designed to both seal and to serve as compliant mounts allowing for relative thermal growths between high temperature but brittle primary structures and the surrounding support structures. Previous seal research yielded several braided rope seal designs which demonstrated the ability to both seal and serve as a compliant mount. The hybrid seal was constructed of an all-ceramic (alumina-silica) core overbraided with a superalloy wire sheath (cobalt based superalloy). The all ceramic seal was constructed of an all-ceramic (alumina-silica) core overbraided with multiple ceramic (alumina-silica) sheath layers. Program goals for braided rope seals are to improve flow resistance and/or seal resilience. To that end, the current report studies the test results of: baseline and modified hybrid seals; two stage hybrid and two stage all-ceramic seal configurations; and single stage hybrid and single stage all-ceramic seal configurations for a range of seal crush conditions. Hybrid seal modifications include increasing the sheath braid angle and core coverage. For the same percent seal cross-sectional crush, results show that increasing the hybrid seal braid angle increased seal stiffness and seal unit load, resulting in flows approximately one third of the baseline hybrid seal flows. For both hybrid and all-ceramic seals, two stage seal configurations significantly outperformed single stage configurations. Two stage seal flows were at least 30% less than the single stage seal flows for the same seal crush. Furthermore, test results of single stage seals indicate that for both all-ceramic and hybrid seals, a specific seal crush condition exists at which minimum flows are achieved (i.e. increasing seal crush beyond a certain point does not result in better flow performance). Flow results are presented for a range of pressures and temperatures from ambient to 1300 F, before and after scrubbing. Compression tests results show that for both all-ceramic and hybrid seals, seal preload and stiffness increase with seal crush, but residual seal interference remains constant.
Radiator debris removing apparatus and work machine using same
Martin, Kevin L [Washburn, IL; Elliott, Dwight E [Chillicothe, IL
2008-09-02
A radiator assembly includes a finned radiator core and a debris removing apparatus having a compressed air inlet and at least one compressed air outlet configured to direct compressed air through the radiator core. A work machine such as a wheel loader includes a radiator and a debris removing apparatus coupled with on-board compressed air and having at least one pressurized gas outlet configured to direct a gas toward the face of the radiator.
The Study of Spherical Cores with a Toroidal Magnetic Field Configuration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gholipour, Mahmoud
Observational studies of the magnetic fields in molecular clouds have significantly improved the theoretical models developed for the structure and evolution of dense clouds and for the star formation process as well. The recent observational analyses on some cores indicate that there is a power-law relationship between magnetic field and density in the molecular clouds. In this study, we consider the stability of spherical cores with a toroidal magnetic field configuration in the molecular clouds. For this purpose, we model a spherical core that is in magnetostatic equilibrium. Herein, we propose an equation of density structure, which is a modifiedmore » form of the isothermal Lane–Emden equation in the presence of the toroidal magnetic field. The proposed equation describes the effect of the toroidal magnetic field on the cloud structure and the mass cloud. Furthermore, we found an upper limit for this configuration of magnetic field in the molecular clouds. Then, the virial theorem is used to consider the cloud evolution leading to an equation in order to obtain the lower limit of the field strength in the molecular cloud. However, the results show that the field strength of the toroidal configuration has an important effect on the cloud structure, whose upper limit is related to the central density and field gradient. The obtained results address some regions of clouds where the cloud decomposition or star formation can be seen.« less
Adaptive packet switch with an optical core (demonstrator)
NASA Astrophysics Data System (ADS)
Abdo, Ahmad; Bishtein, Vadim; Clark, Stewart A.; Dicorato, Pino; Lu, David T.; Paredes, Sofia A.; Taebi, Sareh; Hall, Trevor J.
2004-11-01
A three-stage opto-electronic packet switch architecture is described consisting of a reconfigurable optical centre stage surrounded by two electronic buffering stages partitioned into sectors to ease memory contention. A Flexible Bandwidth Provision (FBP) algorithm, implemented on a soft-core processor, is used to change the configuration of the input sectors and optical centre stage to set up internal paths that will provide variable bandwidth to serve the traffic. The switch is modeled by a bipartite graph built from a service matrix, which is a function of the arriving traffic. The bipartite graph is decomposed by solving an edge-colouring problem and the resulting permutations are used to configure the switch. Simulation results show that this architecture exhibits a dramatic reduction of complexity and increased potential for scalability, at the price of only a modest spatial speed-up k, 1
Preliminary Analysis of the BASALA-H Experimental Programme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaise, Patrick; Fougeras, Philippe; Philibert, Herve
2002-07-01
This paper is focused on the preliminary analysis of results obtained on the first cores of the first phase of the BASALA (Boiling water reactor Advanced core physics Study Aimed at mox fuel Lattice) programme, aimed at studying the neutronic parameters in ABWR core in hot conditions, currently under investigation in the French EOLE critical facility, within the framework of a cooperation between NUPEC, CEA and Cogema. The first 'on-line' analysis of the results has been made, using a new preliminary design and safety scheme based on the French APOLLO-2 code in its 2.4 qualified version and associated CEA-93 V4more » (JEF-2.2) Library, that will enable the Experimental Physics Division (SPEx) to perform future core designs. It describes the scheme adopted and the results obtained in various cases, going to the critical size determination to the reactivity worth of the perturbed configurations (voided, over-moderated, and poisoned with Gd{sub 2}O{sub 3}-UO{sub 2} pins). A preliminary study on the experimental results on the MISTRAL-4 is resumed, and the comparison of APOLLO-2 versus MCNP-4C calculations on these cores is made. The results obtained show very good agreements between the two codes, and versus the experiment. This work opens the way to the future full analysis of the experimental results of the qualifying teams with completely validated schemes, based on the new 2.5 version of the APOLLO-2 code. (authors)« less
NASA Technical Reports Server (NTRS)
Schulze, Norman R.; Carpenter, Scott A.; Deveny, Marc E.; Oconnell, T.
1993-01-01
The performance characteristics of several propulsion technologies applied to piloted Mars missions are compared. The characteristics that are compared are Initial Mass in Low Earth Orbit (IMLEO), mission flexibility, and flight times. The propulsion systems being compared are both demonstrated and envisioned: Chemical (or Cryogenic), Nuclear Thermal Rocket (NTR) solid core, NTR gas core, Nuclear Electric Propulsion (NEP), and a mirror fusion space propulsion system. The proposed magnetic mirror fusion reactor, known as the Mirror Fusion Propulsion System (MFPS), is described. The description is an overview of a design study that was conducted to convert a mirror reactor experiment at Lawrence Livermore National Lab (LLNL) into a viable space propulsion system. Design principles geared towards minimizing mass and maximizing power available for thrust are identified and applied to the LLNL reactor design, resulting in the MFPS. The MFPS' design evolution, reactor and fuel choices, and system configuration are described. Results of the performance comparison shows that the MFPS minimizes flight time to 60 to 90 days for flights to Mars while allowing continuous return-home capability while at Mars. Total MFPS IMLEO including propellant and payloads is kept to about 1,000 metric tons.
NASA Technical Reports Server (NTRS)
Deveny, M.; Carpenter, S.; O'Connell, T.; Schulze, N.
1993-01-01
The performance characteristics of several propulsion technologies applied to piloted Mars missions are compared. The characteristics that are compared are Initial Mass in Low Earth Orbit (IMLEO), mission flexibility, and flight times. The propulsion systems being compared are both demonstrated and envisioned: Chemical (or Cryogenic), Nuclear Thermal Rocket (NTR) solid core, NTR gas core, Nuclear Electric Propulsion (NEP), and a mirror fusion space propulsion system. The proposed magnetic mirror fusion reactor, known as the Mirror Fusion Propulsion System (MFPS), is described. The description is an overview of a design study that was conducted to convert a mirror reactor experiment at Lawrence Livermore National Lab (LLNL) into a viable space propulsion system. Design principles geared towards minimizing mass and maximizing power available for thrust are identified and applied to the LLNL reactor design, resulting in the MFPS. The MFPS' design evolution, reactor and fuel choices, and system configuration are described. Results of the performance comparison shows that the MFPS minimizes flight time to 60 to 90 days for flights to Mars while allowing continuous return-home capability while at Mars. Total MFPS IMLEO including propellant and payloads is kept to about 1,000 metric tons.
Correlates of Identity Configurations: Three Studies with Adolescent and Emerging Adult Cohorts
ERIC Educational Resources Information Center
Crocetti, Elisabetta; Scrignaro, Marta; Sica, Luigia Simona; Magrin, Maria Elena
2012-01-01
Adolescence and emerging adulthood are two core developmental periods in which individuals can develop a meaningful identity across domains. However, there is a lack of studies exploring correlates of different identity configurations. The purpose of this article was to fill this gap in examining correlates of configurations characterized by…
Mode I Toughness Measurements of Core/Facesheet Bonds in Honeycomb Sandwich Structures
NASA Technical Reports Server (NTRS)
Nettles, Alan T.; Ratcliffe, James G.
2006-01-01
Composite sandwich structures will be used in many future applications in aerospace, marine and offshore industries due to the fact that the strength and stiffness to mass ratios surpass any other structural type. Sandwich structure also offers advantages over traditional stiffened panels such as ease of manufacturing and repair. During the last three decades, sandwich structure has been used extensively for secondary structure in aircraft (fuselage floors, rudders and radome structure). Sandwich structure is also used as primary structure in rotorcraft, the most common example being the trailing edge of rotor blades. As with other types of composite construction, sandwich structure exhibits several types of failure mode such as facesheet wrinkling, core crushing and sandwich buckling. Facesheet/core debonding has also been observed in the marine and aerospace industry. During this failure mode, peel stresses applied to an existing facesheet/core debond or an interface low in toughness, results in the facesheet being peeled from the core material, possibly leading to a significant loss in structural integrity of the sandwich panel. In an incident during a test on a liquid hydrogen fuel tank of the X-33 prototype vehicle, the outer graphite/epoxy facesheet and honeycomb core became debonded from the inner facesheet along significant areas, leading to failure of the tank. As a consequence of the accident; significant efforts were made to characterize the toughness of the facesheet/core bond. Currently, the only standardized method available for assessing the quality of the facesheet/core interface is the climbing drum peel test (ASTM D1781). During this test a sandwich beam is removed from a panel and the lip of one of the facesheets is attached to a drum, as shown in Fig. 1. The drum is then rotated along the sandwich beam, causing the facesheet to peel from the core. This method has two major drawbacks. First, it is not possible to obtain quantitative fracture data from the test and so the results can only be used in a qualitative manner. Second, only sandwich structure with thin facesheets can be tested (to facilitate wrapping of the facesheet around the climbing drum). In recognition of the need for a more quantitative facesheet/core fracture test, several workers have devised experimental techniques for characterizing the toughness of the facesheet/core interface. In all of these cases, the tests are designed to yield a mode I-dominated fracture toughness of the facesheet/core interface in a manner similar to that used to determine mode I fracture toughness of composite laminates. In the current work, a modified double cantilever beam is used to measure the mode I-dominated fracture toughness of the interface in a sandwich consisting of glass/phenolic honeycomb core reinforced with graphite epoxy facesheets. Two specimen configurations were tested as shown in Fig 2. The first configuration consisted of reinforcing the facesheets with aluminum blocks (Fig. 2a). In the second configuration unreinforced specimens were tested (Fig. 2b). Climbing drum peel tests were also conducted to compare the fracture behavior observed between this test and the modified double cantilever beam. This paper outlines the test procedures and data reduction strategies used to compute fracture toughness values from the tests. The effect of specimen reinforcement on fracture toughness of the facesheet/core interface is discussed.
Comparison of secondary flows and boundary-layer accumulations in several turbine nozzles
NASA Technical Reports Server (NTRS)
Kofskey, Milton G; Allen, Hubert W; Herzig, Howard Z
1953-01-01
An investigation was made of losses and secondary flows in three different turbine nozzle configurations in annular cascade. Appreciable outer shroud loss cores (passage vortices) were found to exist at the discharge of blades which had thickened suction surface boundary layers near the outer shroud. Blade designs having thinner boundary layers did not show such outer shroud loss cores, but indicated greater inward radial flow of low momentum air, in the wake loss is to this extent an indication of the presence or absence of radial flow. The blade wake was a combination of profile loss and low momentum air from the outer shroud, and the magnitude of the wake loss is to this extent an indication of the presence or absence of radial flow. At a high Mach number, shock-boundary-layer thickening on the blade suction surfaces provided an additional radial flow path for low momentum air, which resulted in large inner shroud loss regions accompanied by large deviations from design values of discharge angle. (author)
An out-of-core thermionic-converter system for nuclear space power
NASA Technical Reports Server (NTRS)
Breitwieser, R.
1972-01-01
Design of the nuclear thermionic space power system, 40 50 70 Kw(e) power range, are given. The design configuration (1) meets the constraints of readily available launch vehicles; (2) allows for off-design operation including startup, shutdown, and possible emergency conditions; (3) provides tolerance of failure by extensive use of modular, redundant elements; (4) incorporates and uses heat pipes in a fashion that reduces the need for extensive in-pile testing of system components; and (5) uses thermionic converters, nuclear fuel elements, and heat transfer devices in a geometrical form adapted from existing incore thermionic system designs. Designs and in some cases performance data for elements and groups of the elements of the system are included. Benefits of the highly modular system approach to reliability, safety, economy of development, and flexibility are discussed.
Buckling Analysis of a Honeycomb-Core Composite Cylinder with Initial Geometric Imperfections
NASA Technical Reports Server (NTRS)
Cha, Gene; Schultz, Marc R.
2013-01-01
Thin-walled cylindrical shell structures often have buckling as the critical failure mode, and the buckling of such structures can be very sensitive to small geometric imperfections. The buckling analyses of an 8-ft-diameter, 10-ft-long honeycomb-core composite cylinder loaded in pure axial compression is discussed in this document. Two loading configurations are considered configuration 1 uses simple end conditions, and configuration 2 includes additional structure that may more closely approximate experimental loading conditions. Linear eigenvalue buckling analyses and nonlinear analyses with and without initial geometric imperfections were performed on both configurations. The initial imperfections were introduced in the shell by applying a radial load at the midlength of the cylinder to form a single inward dimple. The critical bifurcation buckling loads are predicted to be 924,190 lb and 924,020 lb for configurations 1 and 2, respectively. Nonlinear critical buckling loads of 918,750 lb and 954,900 lb were predicted for geometrically perfect configurations 1 and 2, respectively. Lower-bound critical buckling loads for configurations 1 and 2 with radial perturbations were found to be 33% and 36% lower, respectively, than the unperturbed critical loads. The inclusion of the load introduction cylinders in configuration 2 increased the maximum bending-boundary-layer rotation up to 11%.
Artificial immune system algorithm in VLSI circuit configuration
NASA Astrophysics Data System (ADS)
Mansor, Mohd. Asyraf; Sathasivam, Saratha; Kasihmuddin, Mohd Shareduwan Mohd
2017-08-01
In artificial intelligence, the artificial immune system is a robust bio-inspired heuristic method, extensively used in solving many constraint optimization problems, anomaly detection, and pattern recognition. This paper discusses the implementation and performance of artificial immune system (AIS) algorithm integrated with Hopfield neural networks for VLSI circuit configuration based on 3-Satisfiability problems. Specifically, we emphasized on the clonal selection technique in our binary artificial immune system algorithm. We restrict our logic construction to 3-Satisfiability (3-SAT) clauses in order to outfit with the transistor configuration in VLSI circuit. The core impetus of this research is to find an ideal hybrid model to assist in the VLSI circuit configuration. In this paper, we compared the artificial immune system (AIS) algorithm (HNN-3SATAIS) with the brute force algorithm incorporated with Hopfield neural network (HNN-3SATBF). Microsoft Visual C++ 2013 was used as a platform for training, simulating and validating the performances of the proposed network. The results depict that the HNN-3SATAIS outperformed HNN-3SATBF in terms of circuit accuracy and CPU time. Thus, HNN-3SATAIS can be used to detect an early error in the VLSI circuit design.
Research on Shock Responses of Three Types of Honeycomb Cores
NASA Astrophysics Data System (ADS)
Peng, Fei; Yang, Zhiguang; Jiang, Liangliang; Ren, Yanting
2018-03-01
The shock responses of three kinds of honeycomb cores have been investigated and analyzed based on explicit dynamics analysis. According to the real geometric configuration and the current main manufacturing methods of aluminum alloy honeycomb cores, the finite element models of honeycomb cores with three different cellular configurations (conventional hexagon honeycomb core, rectangle honeycomb core and auxetic honeycomb core with negative Poisson’s ratio) have been established through FEM parametric modeling method based on Python and Abaqus. In order to highlight the impact response characteristics of the above three honeycomb cores, a 5 mm thick panel with the same mass and material was taken as contrast. The analysis results showed that the peak values of longitudinal acceleration history curves of the three honeycomb cores were lower than those of the aluminum alloy panel in all three reference points under the loading of a longitudinal pulse pressure load with the peak value of 1 MPa and the pulse width of 1 μs. It could be concluded that due to the complex reflection and diffraction of stress wave induced by shock in honeycomb structures, the impact energy was redistributed which led to a decrease in the peak values of the longitudinal acceleration at the measuring points of honeycomb cores relative to the panel.
A core–shell electrode for dynamically and statically stable Li–S battery chemistry
Chung, Sheng-Heng; Chang, Chi-Hao; Manthiram, Arumugam
2016-08-17
Sulfur is an appealing cathode material for establishing advanced lithium batteries as it offers a high theoretical capacity of 1675 mA h g -1 at low material and operating costs. However, the lithium–sulfur (Li–S) electrochemical cells face several formidable challenges arising from both the materials chemistry (e.g., low electrochemical utilization of sulfur and severe polysulfide diffusion) and battery chemistry (e.g., dynamic and static instability and low sulfur loadings). Here in this study, we present the design of a core–shell cathode with a pure sulfur core shielded within a conductive shell-shaped electrode. The new electrode configuration allows Li–S cells to loadmore » with a high amount of sulfur (sulfur loadings of up to 30 mg cm -2 and sulfur content approaching 70 wt%). The core–shell cathodes demonstrate a superior dynamic and static electrochemical stability in Li–S cells. The high-loading cathodes exhibit (i) a high sulfur utilization of up to 97% at C/20–C/2 rates and (ii) a low self-discharge during long-term cell storage for a three-month rest period and at different cell-storage conditions. Finally, a polysulfide-trap cell configuration is designed to evidence the eliminations of polysulfide diffusion and to investigate the relationship between the electrode configuration and electrochemical characteristics. Finally, the comprehensive analytical results based on the high-loading cathodes suggest that (i) the core–shell cathode is a promising solution for designing highly reversible Li–S cells and (ii) the polysulfide-trap cell configuration is a viable approach to qualitatively evaluating the presence or absence of polysulfide diffusion.« less
Unified transform architecture for AVC, AVS, VC-1 and HEVC high-performance codecs
NASA Astrophysics Data System (ADS)
Dias, Tiago; Roma, Nuno; Sousa, Leonel
2014-12-01
A unified architecture for fast and efficient computation of the set of two-dimensional (2-D) transforms adopted by the most recent state-of-the-art digital video standards is presented in this paper. Contrasting to other designs with similar functionality, the presented architecture is supported on a scalable, modular and completely configurable processing structure. This flexible structure not only allows to easily reconfigure the architecture to support different transform kernels, but it also permits its resizing to efficiently support transforms of different orders (e.g. order-4, order-8, order-16 and order-32). Consequently, not only is it highly suitable to realize high-performance multi-standard transform cores, but it also offers highly efficient implementations of specialized processing structures addressing only a reduced subset of transforms that are used by a specific video standard. The experimental results that were obtained by prototyping several configurations of this processing structure in a Xilinx Virtex-7 FPGA show the superior performance and hardware efficiency levels provided by the proposed unified architecture for the implementation of transform cores for the Advanced Video Coding (AVC), Audio Video coding Standard (AVS), VC-1 and High Efficiency Video Coding (HEVC) standards. In addition, such results also demonstrate the ability of this processing structure to realize multi-standard transform cores supporting all the standards mentioned above and that are capable of processing the 8k Ultra High Definition Television (UHDTV) video format (7,680 × 4,320 at 30 fps) in real time.
MCNP-model for the OAEP Thai Research Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallmeier, F.X.; Tang, J.S.; Primm, R.T. III
An MCNP input was prepared for the Thai Research Reactor, making extensive use of the MCNP geometry`s lattice feature that allows a flexible and easy rearrangement of the core components and the adjustment of the control elements. The geometry was checked for overdefined or undefined zones by two-dimensional plots of cuts through the core configuration with the MCNP geometry plotting capabilities, and by a three-dimensional view of the core configuration with the SABRINA code. Cross sections were defined for a hypothetical core of 67 standard fuel elements and 38 low-enriched uranium fuel elements--all filled with fresh fuel. Three test calculationsmore » were performed with the MCNP4B-code to obtain the multiplication factor for the cases with control elements fully inserted, fully withdrawn, and at a working position.« less
High speed internal permanent magnet machine and method of manufacturing the same
Alexander, James Pellegrino [Ballston Lake, NY; EL-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Lokhandwalla, Murtuza [Clifton Park, NY; Shah, Manoj Ramprasad [Latham, NY; VanDam, Jeremy Daniel [West Coxsackie, NY
2011-09-13
An internal permanent magnet (IPM) machine is provided. The IPM machine includes a stator assembly and a stator core. The stator core also includes multiple stator teeth. The stator assembly is further configured with stator windings to generate a magnetic field when excited with alternating currents and extends along a longitudinal axis with an inner surface defining a cavity. The IPM machine also includes a rotor assembly and a rotor core. The rotor core is disposed inside the cavity and configured to rotate about the longitudinal axis. The rotor assembly further includes a shaft. The shaft further includes multiple protrusions alternately arranged relative to multiple bottom structures provided on the shaft. The rotor assembly also includes multiple stacks of laminations disposed on the protrusions and dovetailed circumferentially around the shaft. The rotor assembly further includes multiple permanent magnets for generating a magnetic field, which interacts with the stator magnetic field to produce torque. The permanent magnets are disposed between the stacks. The rotor assembly also includes multiple bottom wedges disposed on the bottom structures of the shaft and configured to hold the multiple stacks and the multiple permanent magnets.
CONFIG: Qualitative simulation tool for analyzing behavior of engineering devices
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Basham, Bryan D.; Harris, Richard A.
1987-01-01
To design failure management expert systems, engineers mentally analyze the effects of failures and procedures as they propagate through device configurations. CONFIG is a generic device modeling tool for use in discrete event simulation, to support such analyses. CONFIG permits graphical modeling of device configurations and qualitative specification of local operating modes of device components. Computation requirements are reduced by focussing the level of component description on operating modes and failure modes, and specifying qualitative ranges of variables relative to mode transition boundaries. Simulation processing occurs only when modes change or variables cross qualitative boundaries. Device models are built graphically, using components from libraries. Components are connected at ports by graphical relations that define data flow. The core of a component model is its state transition diagram, which specifies modes of operation and transitions among them.
Crew Member Interface with Space Station Furnace Facility
NASA Technical Reports Server (NTRS)
Cash, Martha B.
1997-01-01
The Space Station Furnace Facility (SSFF) is a facility located in the International Space Station United States Laboratory (ISS US Lab) for materials research in the microgravity environment. The SSFF will accommodate basic research, commercial applications, and studies of phenomena of metals and alloys, electronic and photonic materials, and glasses and ceramics. To support this broad base of research requirements, the SSFF will operate, regulate, and support a variety of Experiment Modules (EMs). To meet station requirements concerning the microgravity level needed for experiments, station is providing an active vibration isolation system, and SSFF provides the interface. SSFF physically consists of a Core Rack and two instrument racks (IRs) that occupy three adjacent ISS US Lab rack locations within the International Space Station (ISS). All SSFF racks are modified International Standard Payload Racks (ISPR). SSFF racks will have a 50% larger pass through area on the lower sides than ISPRs to accommodate the many rack to rack interconnections. The Instrument Racks are further modified with lowered floors and an additional removable panel (15" x 22") on top of the rack for access if needed. The Core Rack shall contain all centralized Core subsystems and ISS subsystem equipment. The two Instrument Racks shall contain the distributed Core subsystem equipment, ISS subsystem equipment, and the EMs. The Core System, which includes the Core Rack, the IR structures, and subsystem components located in the IRs serves as the central control and management for the IRs and the EMs. The Core System receives the resources provided by the International Space Station (ISS) and modifies, allocates, and distributes these resources to meet the operational requirements of the furnace. The Core System is able to support a total of four EMs and can control, support, and activate/deactivate the operations of two EMs, simultaneously. The IRs can be configured to house two small EMs or one tall vertical EM, and serve as the interface between the Core and the respective EM. The Core Rack and an adjacent Instrument Rack (containing one or more furnaces) will be delivered to the ISS in one launch. This is Integrated Configuration One (ICI). The Core Rack and IRI will be passive during transport in the Mini Pressurized Logistics Module (MPLM): Any subsequent EMs to operate within IRI are installed on-orbit. The second IR (containing one or more furnaces) is delivered to ISS on a subsequent launch which will establish Integrated Configuration Two (IC2). Additional integrated configurations will be established with the replacement of EMs or Instrument Racks.
A resilient and secure software platform and architecture for distributed spacecraft
NASA Astrophysics Data System (ADS)
Otte, William R.; Dubey, Abhishek; Karsai, Gabor
2014-06-01
A distributed spacecraft is a cluster of independent satellite modules flying in formation that communicate via ad-hoc wireless networks. This system in space is a cloud platform that facilitates sharing sensors and other computing and communication resources across multiple applications, potentially developed and maintained by different organizations. Effectively, such architecture can realize the functions of monolithic satellites at a reduced cost and with improved adaptivity and robustness. Openness of these architectures pose special challenges because the distributed software platform has to support applications from different security domains and organizations, and where information flows have to be carefully managed and compartmentalized. If the platform is used as a robust shared resource its management, configuration, and resilience becomes a challenge in itself. We have designed and prototyped a distributed software platform for such architectures. The core element of the platform is a new operating system whose services were designed to restrict access to the network and the file system, and to enforce resource management constraints for all non-privileged processes Mixed-criticality applications operating at different security labels are deployed and controlled by a privileged management process that is also pre-configuring all information flows. This paper describes the design and objective of this layer.
Optimized Non-Obstructive Particle Damping (NOPD) Treatment for Composite Honeycomb Structures
NASA Technical Reports Server (NTRS)
Panossian, H.
2008-01-01
Non-Obstructive Particle Damping (NOPD) technology is a passive vibration damping approach whereby metallic or non-metallic particles in spherical or irregular shapes, of heavy or light consistency, and even liquid particles are placed inside cavities or attached to structures by an appropriate means at strategic locations, to absorb vibration energy. The objective of the work described herein is the development of a design optimization procedure and discussion of test results for such a NOPD treatment on honeycomb (HC) composite structures, based on finite element modeling (FEM) analyses, optimization and tests. Modeling and predictions were performed and tests were carried out to correlate the test data with the FEM. The optimization procedure consisted of defining a global objective function, using finite difference methods, to determine the optimal values of the design variables through quadratic linear programming. The optimization process was carried out by targeting the highest dynamic displacements of several vibration modes of the structure and finding an optimal treatment configuration that will minimize them. An optimal design was thus derived and laboratory tests were conducted to evaluate its performance under different vibration environments. Three honeycomb composite beams, with Nomex core and aluminum face sheets, empty (untreated), uniformly treated with NOPD, and optimally treated with NOPD, according to the analytically predicted optimal design configuration, were tested in the laboratory. It is shown that the beam with optimal treatment has the lowest response amplitude. Described below are results of modal vibration tests and FEM analyses from predictions of the modal characteristics of honeycomb beams under zero, 50% uniform treatment and an optimal NOPD treatment design configuration and verification with test data.
Benchmark Evaluation of HTR-PROTEUS Pebble Bed Experimental Program
Bess, John D.; Montierth, Leland; Köberl, Oliver; ...
2014-10-09
Benchmark models were developed to evaluate 11 critical core configurations of the HTR-PROTEUS pebble bed experimental program. Various additional reactor physics measurements were performed as part of this program; currently only a total of 37 absorber rod worth measurements have been evaluated as acceptable benchmark experiments for Cores 4, 9, and 10. Dominant uncertainties in the experimental keff for all core configurations come from uncertainties in the ²³⁵U enrichment of the fuel, impurities in the moderator pebbles, and the density and impurity content of the radial reflector. Calculations of k eff with MCNP5 and ENDF/B-VII.0 neutron nuclear data aremore » greater than the benchmark values but within 1% and also within the 3σ uncertainty, except for Core 4, which is the only randomly packed pebble configuration. Repeated calculations of k eff with MCNP6.1 and ENDF/B-VII.1 are lower than the benchmark values and within 1% (~3σ) except for Cores 5 and 9, which calculate lower than the benchmark eigenvalues within 4σ. The primary difference between the two nuclear data libraries is the adjustment of the absorption cross section of graphite. Simulations of the absorber rod worth measurements are within 3σ of the benchmark experiment values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments.« less
Efficiency and flexibility using implicit methods within atmosphere dycores
NASA Astrophysics Data System (ADS)
Evans, K. J.; Archibald, R.; Norman, M. R.; Gardner, D. J.; Woodward, C. S.; Worley, P.; Taylor, M.
2016-12-01
A suite of explicit and implicit methods are evaluated for a range of configurations of the shallow water dynamical core within the spectral-element Community Atmosphere Model (CAM-SE) to explore their relative computational performance. The configurations are designed to explore the attributes of each method under different but relevant model usage scenarios including varied spectral order within an element, static regional refinement, and scaling to large problem sizes. The limitations and benefits of using explicit versus implicit, with different discretizations and parameters, are discussed in light of trade-offs such as MPI communication, memory, and inherent efficiency bottlenecks. For the regionally refined shallow water configurations, the implicit BDF2 method is about the same efficiency as an explicit Runge-Kutta method, without including a preconditioner. Performance of the implicit methods with the residual function executed on a GPU is also presented; there is speed up for the residual relative to a CPU, but overwhelming transfer costs motivate moving more of the solver to the device. Given the performance behavior of implicit methods within the shallow water dynamical core, the recommendation for future work using implicit solvers is conditional based on scale separation and the stiffness of the problem. The strong growth of linear iterations with increasing resolution or time step size is the main bottleneck to computational efficiency. Within the hydrostatic dynamical core, of CAM-SE, we present results utilizing approximate block factorization preconditioners implemented using the Trilinos library of solvers. They reduce the cost of linear system solves and improve parallel scalability. We provide a summary of the remaining efficiency considerations within the preconditioner and utilization of the GPU, as well as a discussion about the benefits of a time stepping method that provides converged and stable solutions for a much wider range of time step sizes. As more complex model components, for example new physics and aerosols, are connected in the model, having flexibility in the time stepping will enable more options for combining and resolving multiple scales of behavior.
NASA Technical Reports Server (NTRS)
Wisler, D. C.
1980-01-01
The objective of the program is to develop rear stage blading designs that have lower losses in their endwall boundary layer regions. The overall technical approach in this efficiency improvement program utilized General Electric's Low Speed Research Compressor as the principal investigative tool. Tests were conducted in two ways: using four identical stages of blading so that test data would be obtained in a true multistage environment and using a single stage of blading so that comparison with the multistage test results could be made.
NASA Technical Reports Server (NTRS)
Gentz, Steve; Wood, Bill; Nettles, Mindy
2015-01-01
The interaction between shock waves and the wake shed from the forward booster/core attach hardware results in unsteady pressure fluctuations, which can lead to large buffeting loads on the vehicle. This task investigates whether computational tools can adequately predict these flows, and whether alternative booster nose shapes can reduce these loads. Results from wind tunnel tests will be used to validate the computations and provide design information for future Space Launch System (SLS) configurations. The current work combines numerical simulations with wind tunnel testing to predict buffeting loads caused by the boosters. Variations in nosecone shape, similar to the Ariane 5 design (fig. 1), are being evaluated with regard to lowering the buffet loads. The task will provide design information for the mitigation of buffet loads for SLS, along with validated simulation tools to be used to assess future SLS designs.
A One Chip Hardened Solution for High Speed SpaceWire System Implementations. Session: Components
NASA Technical Reports Server (NTRS)
Marshall, Joseph R.; Berger, Richard W.; Rakow, Glenn P.
2007-01-01
An Application Specific Integrated Circuit (ASIC) that implements the SpaceWire protocol has been developed in a radiation hardened 0.25 micron CMOS technology. This effort began in March 2003 as a joint development between the NASA Goddard Space Flight Center (GSFC) and BAE Systems. The BAE Systems SpaceWire ASIC is comprised entirely of reusable core elements, many of which are already flight-proven. It incorporates a router with 4 SpaceWire ports and two local ports, dual PC1 bus interfaces, a microcontroller, 32KB of internal memory, and a memory controller for additional external memory use. The SpaceWire cores are also reused in other ASICs under development. The SpaceWire ASIC is planned for use on the Geostationary Operational Environmental Satellites (GOES)-R, the Lunar Reconnaissance Orbiter (LRO) and other missions. Engineering and flight parts have been delivered to programs and users. This paper reviews the SpaceWire protocol and those elements of it that have been built into the current and next SpaceWire reusable cores and features within the core that go beyond the current standard and can be enabled or disabled by the user. The adaptation of SpaceWire to BAE Systems' On Chip Bus (OCB) for compatibility with the other reusable cores will be reviewed and highlighted. Optional configurations within user systems and test boards will be shown. The physical implementation of the design will be described and test results from the hardware will be discussed. Application of this ASIC and other ASICs containing the SpaceWire cores and embedded microcontroller to Plug and Play and reconfigurable implementations will be described. Finally, the BAE Systems roadmap for SpaceWire developments will be updated, including some products already in design as well as longer term plans.
Accelerator driven sub-critical core
McIntyre, Peter M; Sattarov, Akhdiyor
2015-03-17
Systems and methods for operating an accelerator driven sub-critical core. In one embodiment, a fission power generator includes a sub-critical core and a plurality of proton beam generators. Each of the proton beam generators is configured to concurrently provide a proton beam into a different area of the sub-critical core. Each proton beam scatters neutrons within the sub-critical core. The plurality of proton beam generators provides aggregate power to the sub-critical core, via the proton beams, to scatter neutrons sufficient to initiate fission in the sub-critical core.
Challenges and Progress in Aerodynamic Design of Hybrid Wingbody Aircraft with Embedded Engines
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Kim, Hyoungjin; Liou, May-Fun
2016-01-01
We summarize the contributions to high-fidelity capabilities for analysis and design of hybrid wingbody (HWB) configurations considered by NASA. Specifically, we focus on the embedded propulsion concepts of the N2-B and N3-X configurations, some of the future concepts seriously investigated by the NASA Fixed Wing Project. The objective is to develop the capability to compute the integrated propulsion and airframe system realistically in geometry and accurately in flow physics. In particular, the propulsion system (including the entire engine core-compressor, combustor, and turbine stages) is vastly more difficult and costly to simulate with the same level of fidelity as the external aerodynamics. Hence, we develop an accurate modeling approach that retains important physical parameters relevant to aerodynamic and propulsion analyses for evaluating the HWB concepts. Having the analytical capabilities at our disposal, concerns and issues that were considered to be critical for the HWB concepts can now be assessed reliably and systematically; assumptions invoked by previous studies were found to have serious consequences in our study. During this task, we establish firmly that aerodynamic analysis of a HWB concept without including installation of the propulsion system is far from realistic and can be misleading. Challenges in delivering the often-cited advantages that belong to the HWB are the focus of our study and are emphasized in this report. We have attempted to address these challenges and have had successes, which are summarized here. Some can have broad implications, such as the concept of flow conditioning for reducing flow distortion and the modeling of fan stages. The design optimization capability developed for improving the aerodynamic characteristics of the baseline HWB configurations is general and can be employed for other applications. Further improvement of the N3-X configuration can be expected by expanding the design space. Finally, the support of the System Analysis and Integration Element under the NASA Fixed Wing Project has enabled the development and helped deployment of the capabilities shown in this report.
Square lattice honeycomb reactor for space power and propulsion
NASA Astrophysics Data System (ADS)
Gouw, Reza; Anghaie, Samim
2000-01-01
The most recent nuclear design study at the Innovative Nuclear Space Power and Propulsion Institute (INSPI) is the Moderated Square-Lattice Honeycomb (M-SLHC) reactor design utilizing the solid solution of ternary carbide fuels. The reactor is fueled with solid solution of 93% enriched (U,Zr,Nb)C. The square-lattice honeycomb design provides high strength and is amenable to the processing complexities of these ultrahigh temperature fuels. The optimum core configuration requires a balance between high specific impulse and thrust level performance, and maintaining the temperature and strength limits of the fuel. The M-SLHC design is based on a cylindrical core that has critical radius and length of 37 cm and 50 cm, respectively. This design utilized zirconium hydrate to act as moderator. The fuel sub-assemblies are designed as cylindrical tubes with 12 cm in diameter and 10 cm in length. Five fuel subassemblies are stacked up axially to form one complete fuel assembly. These fuel assemblies are then arranged in the circular arrangement to form two fuel regions. The first fuel region consists of six fuel assemblies, and 18 fuel assemblies for the second fuel region. A 10-cm radial beryllium reflector in addition to 10-cm top axial beryllium reflector is used to reduce neutron leakage from the system. To perform nuclear design analysis of the M-SLHC design, a series of neutron transport and diffusion codes are used. To optimize the system design, five axial regions are specified. In each axial region, temperature and fuel density are varied. The axial and radial power distributions for the system are calculated, as well as the axial and radial flux distributions. Temperature coefficients of the system are also calculated. A water submersion accident scenario is also analyzed for these systems. Results of the nuclear design analysis indicate that a compact core can be designed based on ternary uranium carbide square-lattice honeycomb fuel, which provides a relatively high thrust to weight ratio. .
APRON: A Cellular Processor Array Simulation and Hardware Design Tool
NASA Astrophysics Data System (ADS)
Barr, David R. W.; Dudek, Piotr
2009-12-01
We present a software environment for the efficient simulation of cellular processor arrays (CPAs). This software (APRON) is used to explore algorithms that are designed for massively parallel fine-grained processor arrays, topographic multilayer neural networks, vision chips with SIMD processor arrays, and related architectures. The software uses a highly optimised core combined with a flexible compiler to provide the user with tools for the design of new processor array hardware architectures and the emulation of existing devices. We present performance benchmarks for the software processor array implemented on standard commodity microprocessors. APRON can be configured to use additional processing hardware if necessary and can be used as a complete graphical user interface and development environment for new or existing CPA systems, allowing more users to develop algorithms for CPA systems.
VCE testbed program planning and definition study
NASA Technical Reports Server (NTRS)
Westmoreland, J. S.; Godston, J.
1978-01-01
The flight definition of the Variable Stream Control Engine (VSCE) was updated to reflect design improvements in the two key components: (1) the low emissions duct burner, and (2) the coannular exhaust nozzle. The testbed design was defined and plans for the overall program were formulated. The effect of these improvements was evaluated for performance, emissions, noise, weight, and length. For experimental large scale testing of the duct burner and coannular nozzle, a design definition of the VCE testbed configuration was made. This included selecting the core engine, determining instrumentation requirements, and selecting the test facilities, in addition to defining control system and assembly requirements. Plans for a comprehensive test program to demonstrate the duct burner and nozzle technologies were formulated. The plans include both aeroacoustic and emissions testing.
System and method for smoothing a salient rotor in electrical machines
Raminosoa, Tsarafidy; Alexander, James Pellegrino; El-Refaie, Ayman Mohamed Fawzi; Torrey, David A.
2016-12-13
An electrical machine exhibiting reduced friction and windage losses is disclosed. The electrical machine includes a stator and a rotor assembly configured to rotate relative to the stator, wherein the rotor assembly comprises a rotor core including a plurality of salient rotor poles that are spaced apart from one another around an inner hub such that an interpolar gap is formed between each adjacent pair of salient rotor poles, with an opening being defined by the rotor core in each interpolar gap. Electrically non-conductive and non-magnetic inserts are positioned in the gaps formed between the salient rotor poles, with each of the inserts including a mating feature formed an axially inner edge thereof that is configured to mate with a respective opening being defined by the rotor core, so as to secure the insert to the rotor core against centrifugal force experienced during rotation of the rotor assembly.
Statistical error propagation in ab initio no-core full configuration calculations of light nuclei
Navarro Pérez, R.; Amaro, J. E.; Ruiz Arriola, E.; ...
2015-12-28
We propagate the statistical uncertainty of experimental N N scattering data into the binding energy of 3H and 4He. Here, we also study the sensitivity of the magnetic moment and proton radius of the 3 H to changes in the N N interaction. The calculations are made with the no-core full configuration method in a sufficiently large harmonic oscillator basis. For those light nuclei we obtain Δ E stat (3H) = 0.015 MeV and Δ E stat ( 4He) = 0.055 MeV .
A compact lightweight Earth horizon sensor using an uncooled infrared bolometer
NASA Astrophysics Data System (ADS)
Marchese, Linda E.; Thomas, Paul; Pope, Timothy D.; Asselin, Daniel; Jerominek, Hubert
2007-06-01
A compact, lightweight Earth horizon sensor has been designed based on uncooled infrared microbolometer array technology developed at INO. The design has been optimized for use on small satellites in Low Earth Orbits. The sensor may be used either as an attitude sensor or as an atmospheric limb detector. Various configurations may be implemented for both spinning and 3-axis stabilized satellites. The core of the sensor is the microbolometer focal plane array equipped with 256 x 1 VO x thermistor pixels with a pitch of 52 μm. The optics consists of a single Zinc Selenide lens with a focal length of 39.7 mm. The system's F-number is 3.8 and the detector limited Noise Equivalent Temperature Difference is estimated to be 0.75 K at 300 K for the 14 - 16 μm wavelength range. A single-sensor configuration will have a mass of less than 300g, a volume of 125 cm 3 and a power consumption of 600 mW, making it well-suited for small satellite missions.
Aeroacoustic Codes For Rotor Harmonic and BVI Noise--CAMRAD.Mod1/HIRES
NASA Technical Reports Server (NTRS)
Brooks, Thomas F.; Boyd, D. Douglas, Jr.; Burley, Casey L.; Jolly, J. Ralph, Jr.
1996-01-01
This paper presents a status of non-CFD aeroacoustic codes at NASA Langley Research Center for the prediction of helicopter harmonic and Blade-Vortex Interaction (BVI) noise. The prediction approach incorporates three primary components: CAMRAD.Mod1 - a substantially modified version of the performance/trim/wake code CAMRAD; HIRES - a high resolution blade loads post-processor; and WOPWOP - an acoustic code. The functional capabilities and physical modeling in CAMRAD.Mod1/HIRES will be summarized and illustrated. A new multi-core roll-up wake modeling approach is introduced and validated. Predictions of rotor wake and radiated noise are compared with to the results of the HART program, a model BO-105 windtunnel test at the DNW in Europe. Additional comparisons are made to results from a DNW test of a contemporary design four-bladed rotor, as well as from a Langley test of a single proprotor (tiltrotor) three-bladed model configuration. Because the method is shown to help eliminate the necessity of guesswork in setting code parameters between different rotor configurations, it should prove useful as a rotor noise design tool.
Aerodynamics of the advanced launch system (ALS) propulsion and avionics (P/A) module
NASA Technical Reports Server (NTRS)
Ferguson, Stan; Savage, Dick
1992-01-01
This paper discusses the design and testing of candidate Advanced Launch System (ALS) Propulsion and Avionics (P/A) Module configurations. The P/A Module is a key element of future launch systems because it is essential to the recovery and reuse of high-value propulsion and avionics hardware. The ALS approach involves landing of first stage (booster) and/or second stage (core) P/A modules near the launch site to minimize logistics and refurbishment cost. The key issue addressed herein is the aerodynamic design of the P/A module, including the stability characteristics and the lift-to-drag (L/D) performance required to achieve the necessary landing guidance accuracy. The reference P/A module configuration was found to be statically stable for the desired flight regime, to provide adequate L/D for targeting, and to have effective modulation of the L/D performance using a body flap. The hypersonic aerodynamic trends for nose corner radius, boattail angle and body flap deflections were consistent with pretest predictions. However, the levels for the L/D and axial force for hypersonic Mach numbers were overpredicted by impact theories.
Tang, Shuo; Jung, Woonggyu; McCormick, Daniel; Xie, Tuqiang; Su, Jiangping; Ahn, Yeh-Chan; Tromberg, Bruce J.; Chen, Zhongping
2010-01-01
A multiphoton endoscopy system has been developed using a two-axis microelectromechanical systems (MEMS) mirror and double-cladding photonic crystal fiber (DCPCF). The MEMS mirror has a 2-mm-diam, 20-deg optical scanning angle, and 1.26-kHz and 780-Hz resonance frequencies on the x and y axes. The maximum number of resolvable focal spots of the MEMS scanner is 720×720 on the x and y axes, which indicates that the MEMS scanner can potentially support high-resolution multiphoton imaging. The DCPCF is compared with standard single-mode fiber and hollow-core photonic bandgap fiber on the basis of dispersion, attenuation, and coupling efficiency properties. The DCPCF has high collection efficiency, and its dispersion can be compensated by grating pairs. Three configurations of probe design are investigated, and their imaging quality and field of view are compared. A two-lens configuration with a collimation and a focusing lens provides the optimum imaging performance and packaging flexibility. The endoscope is applied to image fluorescent microspheres and bovine knee joint cartilage. PMID:19566298
NASA Technical Reports Server (NTRS)
Ralph, E. L.; Linder, E. B.
1996-01-01
Solar panel designs that utilize new high-efficiency solar cells and lightweight rigid panel technologies are described. The resulting designs increase the specific power (W/kg) achievable in the near-term and are well suited to meet the demands of higher performance small satellites (smallsats). Advanced solar panel designs have been developed and demonstrated on two NASA SBIR contracts at Applied Solar. The first used 19% efficient, large area (5.5 cm x 6.5 cm) GaAs/Ge solar cells with a lightweight rigid graphite epoxy isogrid substrate configuration. A 1,445 cm(exp 2) coupon was fabricated and tested to demonstrate 60 W/kg with a high potential of achieving 80 W/kg. The second panel design used new 22% efficiency, dual junction GaInP2/GaAs/Ge solar cells combined with a lightweight aluminum core/graphite fiber mesh facesheet substrate. A 1,445 cm(exp 2) coupon was fabricated and tested to demonstrate 105 W/kg with the potential of achieving 115 W/kg. This paper will address the construction details for the GaAs/isogrid and dual-junction GaAs/carbon mesh panel configurations. These are ultimately sized to provide 75 Watts and 119 Watts respectively for smallsats or may be used as modular building blocks for larger systems. GaAs/isogrid and dual-junction GaAs/carbon mesh coupons have been fabricated and tested to successfully demonstrate critical performance parameters and results are also provided here.
Design, fabrication and characterization of a micro-fluxgate intended for parallel robot application
NASA Astrophysics Data System (ADS)
Kirchhoff, M. R.; Bogdanski, G.; Büttgenbach, S.
2009-05-01
This paper presents a micro-magnetometer based on the fluxgate principle. Fluxgates detect the magnitude and direction of DC and low-frequency AC magnetic fields. The detectable flux density typically ranges from several 10 nT to about 1 mT. The introduced fluxgate sensor is fabricated using MEMS-technologies, basically UV depth lithography and electroplating for manufacturing high aspect ratio structures. It consists of helical copper coils around a soft magnetic nickel-iron (NiFe) core. The core is designed in so-called racetrack geometry, whereby the directional sensitivity of the sensor is considerably higher compared to common ring-core fluxgates. The electrical operation is based on analyzing the 2nd harmonic of the AC output signal. Configuration, manufacturing and selected characteristics of the fluxgate magnetometer are discussed in this work. The fluxgate builds the basis of an innovative angular sensor system for a parallel robot with HEXA-structure. Integrated into the passive joints of the parallel robot, the fluxgates are combined with permanent magnets rotating on the joint shafts. The magnet transmits the angular information via its magnetic orientation. In this way, the angles between the kinematic elements are measured, which allows self-calibration of the robot and the fast analytical solution of direct kinematics for an advanced workspace monitoring.
Core-core and core-valence correlation
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
1988-01-01
The effect of 1s core correlation on properties and energy separations are analyzed using full configuration-interaction (FCI) calculations. The Be1S - 1P, the C 3P - 5S,m and CH(+) 1Sigma(+) - 1Pi separations, and CH(+) spectroscopic constants, dipole moment, and 1Sigma(+) - 1Pi transition dipole moment have been studied. The results of the FCI calculations are compared to those obtained using approximate methods.
Ouyang, Ann; Cerchiari, Alec E; Tang, Xinyan; Liebenberg, Ellen; Alliston, Tamara; Gartner, Zev J; Lotz, Jeffrey C
2017-01-01
Tissue engineering constructs to treat intervertebral disc degeneration must adapt to the hypoxic and inflammatory degenerative disc microenvironment. The objective of this study was to determine the effects of two key design factors, cell type and cell configuration, on the regenerative potential of nucleus pulposus cell (NPC) and mesenchymal stem cell (MSC) constructs. Anabolic and catabolic activity was quantified in constructs of varying cell type (NPCs, MSCs, and a 50:50 co-culture) and varying configuration (individual cells and micropellets). Anabolic and catabolic outcomes were both dependent on cell type. Gene expression of Agg and Col2A1, glycosaminoglycan (GAG) content, and aggrecan immunohistochemistry (IHC), were significantly higher in NPC-only and co-culture groups than in MSC-only groups, with NPC-only groups exhibiting the highest anabolic gene expression levels. However, NPC-only constructs also responded to inflammation and hypoxia with significant upregulation of catabolic genes (MMP-1, MMP-9, MMP-13, and ADAMTS-5). MSC-only groups were unaffected by degenerative media conditions, and co-culture with MSCs modulated catabolic induction of the NPCs. Culturing cells in a micropellet configuration dramatically reduced catabolic induction in co-culture and NPC-only groups. Co-culture micropellets, which take advantage of both cell type and configuration effects, had the most immunomodulatory response, with a significant decrease in MMP-13 and ADAMTS-5 expression in hypoxic and inflammatory media conditions. Co-culture micropellets were also found to self-organize into bilaminar formations with an MSC core and NPC outer layer. Further understanding of these cell type and configuration effects can improve tissue engineering designs. © 2016 The Authors. Journal of Orthopaedic Research published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res 35:61-73, 2017. © 2016 The Authors. Journal of Orthopaedic Research published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society.
Karpov, D; Liu, Z; Rolo, T Dos Santos; Harder, R; Balachandran, P V; Xue, D; Lookman, T; Fohtung, E
2017-08-17
Topological defects of spontaneous polarization are extensively studied as templates for unique physical phenomena and in the design of reconfigurable electronic devices. Experimental investigations of the complex topologies of polarization have been limited to surface phenomena, which has restricted the probing of the dynamic volumetric domain morphology in operando. Here, we utilize Bragg coherent diffractive imaging of a single BaTiO 3 nanoparticle in a composite polymer/ferroelectric capacitor to study the behavior of a three-dimensional vortex formed due to competing interactions involving ferroelectric domains. Our investigation of the structural phase transitions under the influence of an external electric field shows a mobile vortex core exhibiting a reversible hysteretic transformation path. We also study the toroidal moment of the vortex under the action of the field. Our results open avenues for the study of the structure and evolution of polar vortices and other topological structures in operando in functional materials under cross field configurations.Imaging of topological states of matter such as vortex configurations has generally been limited to 2D surface effects. Here Karpov et al. study the volumetric structure and dynamics of a vortex core mediated by electric-field induced structural phase transition in a ferroelectric BaTiO 3 nanoparticle.
Chaimanonart, Nattapon; Young, Darrin J
2009-01-01
A wireless, batteryless, and implantable EKG and core body temperature sensing microsystem with adaptive RF powering for untethered genetically engineered mice real-time monitoring is designed, implemented, and in vivo characterized. A packaged microsystem, exhibiting a total size of 9 mm x 7 mm x 3 mm with a weight of 400 mg including a pair of stainless-steel EKG electrodes, is implanted in a mouse abdomen for real-time monitoring. A low power 2 mm x 2 mm ASIC, consisting of an EKG amplifier, a proportional-to-absolute-temperature (PTAT)-based temperature sensor, an RF power sensing circuit, an RF-DC power converter, an 8-bit ADC, digital control circuitry, and a 433 MHz FSK transmitter, is powered by an adaptively controlled external RF energy source at 4 MHz to ensure a stable 2V supply with 156microA current driving capability for the overall microsystem. An electrical model for analyzing 60 Hz interference based on 2-electrode and 3-electrode configurations is proposed and compared with in vivo evaluation results. Due to the small laboratory animal chest area, a 60 Hz suppression technique by employing input termination resistors is chosen for two-EKG-electrode implant configuration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hans D. Gougar
The Idaho National Laboratory’s deterministic neutronics analysis codes and methods were applied to the computation of the core multiplication factor of the HTR-Proteus pebble bed reactor critical facility. A combination of unit cell calculations (COMBINE-PEBDAN), 1-D discrete ordinates transport (SCAMP), and nodal diffusion calculations (PEBBED) were employed to yield keff and flux profiles. Preliminary results indicate that these tools, as currently configured and used, do not yield satisfactory estimates of keff. If control rods are not modeled, these methods can deliver much better agreement with experimental core eigenvalues which suggests that development efforts should focus on modeling control rod andmore » other absorber regions. Under some assumptions and in 1D subcore analyses, diffusion theory agrees well with transport. This suggests that developments in specific areas can produce a viable core simulation approach. Some corrections have been identified and can be further developed, specifically: treatment of the upper void region, treatment of inter-pebble streaming, and explicit (multiscale) transport modeling of TRISO fuel particles as a first step in cross section generation. Until corrections are made that yield better agreement with experiment, conclusions from core design and burnup analyses should be regarded as qualitative and not benchmark quality.« less
Modelling the Centers of Galaxies
NASA Technical Reports Server (NTRS)
Smith, B. F.; Miller, R. H.; Young, Richard E. (Technical Monitor)
1997-01-01
The key to studying central regions by means of nobody numerical experiments is to concentrate on the central few parsecs of a galaxy, replacing the remainder of the galaxy by a suitable boundary condition, rather after the manner in which stellar interiors can be studied without a detailed stellar atmosphere by replacing the atmosphere with a boundary condition. Replacements must be carefully designed because the long range gravitational force means that the core region is sensitive to mass outside that region and because particles can exchange between the outer galaxy and the core region. We use periodic boundary conditions, coupled with an iterative procedure to generate initial particle loads in isothermal equilibrium. Angular momentum conservation is ensured for problems including systematic rotation by a circular reflecting boundary and by integrating in a frame that rotates with the mean flow. Mass beyond the boundary contributes to the gravitational potential, but does not participate in the dynamics. A symplectic integration scheme has been developed for rotating coordinate systems. This combination works well, leading to robust configurations. Some preliminary results with this combination show that: (1) Rotating systems are extremely sensitive to non-axisymmetric external potentials, and (2) that a second core, orbiting near the main core (like the M31 second core system), shows extremely rapid orbital decay. The experimental setups will be discussed, along with preliminary results.
Morphology of the core fibrous layer of the cetacean tail fluke.
Gough, William T; Fish, Frank E; Wainwright, Dylan K; Bart-Smith, Hilary
2018-06-01
The cetacean tail fluke blades are not supported by any vertebral elements. Instead, the majority of the blades are composed of a densely packed collagenous fiber matrix known as the core layer. Fluke blades from six species of odontocete cetaceans were examined to compare the morphology and orientation of fibers at different locations along the spanwise and chordwise fluke blade axes. The general fiber morphology was consistent with a three-dimensional structure comprised of two-dimensional sheets of fibers aligned tightly in a laminated configuration along the spanwise axis. The laminated configuration of the fluke blades helps to maintain spanwise rigidity while allowing partial flexibility during swimming. When viewing the chordwise sectional face at the leading edge and mid-chord regions, fibers displayed a crossing pattern. This configuration relates to bending and structural support of the fluke blade. The trailing edge core was found to have parallel fibers arranged more dorso-ventrally. The fiber morphology of the fluke blades was dorso-ventrally symmetrical and similar in all species except the pygmy sperm whale (Kogia breviceps), which was found to have additional core layer fiber bundles running along the span of the fluke blade. These additional fibers may increase stiffness of the structure by resisting tension along their long spanwise axis. © 2018 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Ryan, Shannon; Hedman, Troy; Christiansen, Eric L.
2009-01-01
The presence of a honeycomb core in a multi-wall shielding configuration for protection against micrometeoroid and orbital debris (MMOD) particle impacts at hypervelocity is generally considered to be detrimental as the cell walls act to restrict fragment cloud expansion, creating a more concentrated load on the shield rear wall. However, mission requirements often prevent the inclusion of a dedicated MMOD shield, and as such, structural honeycomb sandwich panels are amongst the most prevalent shield types. Open cell metallic foams are a relatively new material with novel mechanical and thermal properties that have shown promising results in preliminary hypervelocity impact shielding evaluations. In this study, an ISS-representative MMOD shielding configuration has been modified to evaluate the potential performance enhancement gained through the substitution of honeycomb for open cell foam. The baseline shielding configuration consists of a double mesh outer layer, two honeycomb sandwich panels, and an aluminum rear wall. In the modified configuration the two honeycomb cores are replaced by open-cell foam. To compensate for the heavier core material, facesheets have been removed from the second sandwich panel in the modified configuration. A total of 19 tests on the double layer honeycomb and double layer foam configurations are reported. For comparable mechanical and thermal performance, the foam modifications were shown to provide a 15% improvement in critical projectile diameter at low velocities (i.e. 3 km/s) and a 3% increase at high velocities (i.e. 7 km/s) for normal impact. With increasing obliquity, the performance enhancement was predicted to increase, up to a 29% improvement at 60 (low velocity). Ballistic limit equations have been developed for the new configuration, and consider the mass of each individual shield component in order to maintain validity in the event of minor configuration modifications. Previously identified weaknesses of open cell foams for hypervelocity impact shielding such as large projectile diameters, low velocities, and high degrees of impact obliquity have all been investigated, and found to be negligible for the double-layer configuration.
A Protection And Detection Surface (PADS) for damage tolerance
NASA Technical Reports Server (NTRS)
Shuart, M. J.; Prasad, C. B.; Biggers, S. B.
1990-01-01
A protection and detection surface (PADS) concept was studied for application to composite primary aircraft structures. A Kevlar-epoxy woven face sheet with a Rohacell foam core was found to be the most effective PADS configuration among the configurations evaluated. The weight of the PADS configuration was estimated to be approximately 17 percent of the structural weight. The PADS configuration was bonded to graphite-epoxy base laminates, and up to a 70 percent improvement in compression-after-impact failure strains was observed.
A Protection And Detection Surface (PADS) for damage tolerance
NASA Technical Reports Server (NTRS)
Shuart, Mark J.; Prasad, Chunchu B.; Biggers, Sherrill B.
1990-01-01
A protection and detection surface (PADS) concept was studied for application to composite primary aircraft structures. A Kevlar-epoxy woven face sheet with a Rohacell foam core was found to be the most effective PADS configuration among the configurations evaluated. The weight of the PADS configuration was estimated to be approximately 17 pct of the structural weight. The PADS configuration was bonded to graphite-epoxy base laminates, and up to a 70 pct improvement in compression-after-impact failure strains was observed.
NASA Technical Reports Server (NTRS)
1992-01-01
The Space Station Furnace Facility (SSFF) is a modular facility for materials research in the microgravity environment of the Space Station Freedom (SSF). The SSFF is designed for crystal growth and solidification research in the fields of electronic and photonic materials, metals and alloys, and glasses and ceramics and will allow for experimental determination of the role of gravitational forces in the solidification process. The facility will provide a capability for basic scientific research and will evaluate the commercial viability of low-gravity processing of selected technologically important materials. The facility is designed to support a complement of furnace modules as outlined in the Science Capabilities Requirements Document (SCRD). The SSFF is a three rack facility that provides the functions, interfaces, and equipment necessary for the processing of the furnaces and consists of two main parts: the SSFF Core Rack and the two Experiment Racks. The facility is designed to accommodate two experimenter-provided furnace modules housed within the two experiment racks, and is designed to operate these two furnace modules simultaneously. The SCRD specifies a wide range of furnace requirements and serves as the basis for the SSFF conceptual design. SSFF will support automated processing during the man-tended operations and is also designed for crew interface during the permanently manned configuration. The facility is modular in design and facilitates changes as required, so the SSFF is adept to modifications, maintenance, reconfiguration, and technology evolution.
Analysis of possible designs of processing units with radial plasma flows
NASA Astrophysics Data System (ADS)
Kolesnik, V. V.; Zaitsev, S. V.; Vashilin, V. S.; Limarenko, M. V.; Prochorenkov, D. S.
2018-03-01
Analysis of plasma-ion methods of obtaining thin-film coatings shows that their development goes along the path of the increasing use of sputter deposition processes, which allow one to obtain multicomponent coatings with varying percentage of particular components. One of the methods that allow one to form multicomponent coatings with virtually any composition of elementary components is the method of coating deposition using quasi-magnetron sputtering systems [1]. This requires the creation of an axial magnetic field of a defined configuration with the flux density within the range of 0.01-0.1 T [2]. In order to compare and analyze various configurations of processing unit magnetic systems, it is necessary to obtain the following dependencies: the dependency of magnetic core section on the input power to inductors, the distribution of magnetic induction within the equatorial plane in the corresponding sections, the distribution of the magnetic induction value in the area of cathode target location.
Cost Modeling and Design of Field-Reversed Configuration Fusion Power Plants
NASA Astrophysics Data System (ADS)
Kirtley, David; Slough, John; Helion Team
2017-10-01
The Inductively Driven Liner (IDL) fusion concept uses the magnetically driven implosion of thin (0.5-1 mm) Aluminum hoops to magnetically compress a merged Field-Reversed Configuration (FRC) plasma to fusion conditions. Both the driver and the target have been studied experimentally and theoretically by researchers at Helion Energy, MSNW, and the University of Washington, demonstrating compression fields greater than 100 T and suitable fusion targets. In the presented study, a notional power plant facility using this approach will be described. In addition, a full cost study based on the LLNL Z-IFE and HYLIFE-II studies, the ARIES Tokamak concept, and RAND power plant studies will be described. Finally, the expected capital costs, development requirements, and LCOE for 50 and 500 MW power plants will be given. This analysis includes core FRC plant scaling, metallic liner recycling, radiation shielding, operations, and facilities capital requirements.
A Self-Assessment Stereo Capture Model Applicable to the Internet of Things
Lin, Yancong; Yang, Jiachen; Lv, Zhihan; Wei, Wei; Song, Houbing
2015-01-01
The realization of the Internet of Things greatly depends on the information communication among physical terminal devices and informationalized platforms, such as smart sensors, embedded systems and intelligent networks. Playing an important role in information acquisition, sensors for stereo capture have gained extensive attention in various fields. In this paper, we concentrate on promoting such sensors in an intelligent system with self-assessment capability to deal with the distortion and impairment in long-distance shooting applications. The core design is the establishment of the objective evaluation criteria that can reliably predict shooting quality with different camera configurations. Two types of stereo capture systems—toed-in camera configuration and parallel camera configuration—are taken into consideration respectively. The experimental results show that the proposed evaluation criteria can effectively predict the visual perception of stereo capture quality for long-distance shooting. PMID:26308004
EMIR: a configurable hierarchical system for event monitoring and incident response
NASA Astrophysics Data System (ADS)
Deich, William T. S.
2014-07-01
The Event Monitor and Incident Response system (emir) is a flexible, general-purpose system for monitoring and responding to all aspects of instrument, telescope, and general facility operations, and has been in use at the Automated Planet Finder telescope for two years. Responses to problems can include both passive actions (e.g. generating alerts) and active actions (e.g. modifying system settings). Emir includes a monitor-and-response daemon, plus graphical user interfaces and text-based clients that automatically configure themselves from data supplied at runtime by the daemon. The daemon is driven by a configuration file that describes each condition to be monitored, the actions to take when the condition is triggered, and how the conditions are aggregated into hierarchical groups of conditions. Emir has been implemented for the Keck Task Library (KTL) keyword-based systems used at Keck and Lick Observatories, but can be readily adapted to many event-driven architectures. This paper discusses the design and implementation of Emir , and the challenges in balancing the competing demands for simplicity, flexibility, power, and extensibility. Emir 's design lends itself well to multiple purposes, and in addition to its core monitor and response functions, it provides an effective framework for computing running statistics, aggregate values, and summary state values from the primitive state data generated by other subsystems, and even for creating quick-and-dirty control loops for simple systems.
BAE Systems Radiation Hardened SpaceWire ASIC and Roadmap
NASA Technical Reports Server (NTRS)
Berger, Richard; Milliser, Myrna; Kapcio, Paul; Stanley, Dan; Moser, David; Koehler, Jennifer; Rakow, Glenn; Schnurr, Richard
2006-01-01
An Application Specific Integrated Circuit (ASIC) that implements the SpaceWire protocol has been developed in a radiation hardened 0.25 micron CMOS, technology. This effort began in March 2003 as a joint development between the NASA Goddard Space Flight Center (GSFC) and BAE Systems. The BAE Systems SpaceWire ASlC is comprised entirely of reusable core elements, many of which are already flight-proven. It incorporates a 4-port SpaceWire router with two local ports, dual PC1 bus interfaces, a microcontroller, 32KB of internal memory, -and a memory controller for additional external memory use. The SpaceWire ASlC is planned for use on both the Geostationary Operational Environmental Satellites (GOES)-R and the Lunar Reconnaissance Orbiter (LRO). Engineering parts have already been delivered to both programs. This paper discusses the SpaceWire protocol and those elements of it that have been built into the current SpaceWire reusable core. There are features within the core that go beyond the current standard that can be enabled or disabled by the user and these will be described. The adaptation of SpaceWire to BAE Systems' On Chip Bus (OCB) for compatibility with the other reusable cores will be discussed. Optional configurations within user systems will be shown. The physical imp!ementation of the design will be described and test results from the hardware will be discussed. Finally, the BAE Systems roadmap for SpaceWire developments will be discussed, including some products already in design as well as longer term plans.
Core cooling under accident conditions at the high flux beam reactor (HFBR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, P.; Cheng, L.; Fauske, H.
In certain accident scenarios, e.g. loss of coolant accidents (LOCA) all forced flow cooling is lost. Decay heating causes a temperature increase in the core coolant and the resulting thermal buoyancy causes a reversal of the flow direction to a natural circulation mode. Although there was experimental evidence during the reactor design period (1958--1963) that the heat removal capacity in the fully developed natural circulation cooling mode was relatively high, it was not possible to make a confident prediction of the heat removal capacity during the transition from downflow to natural circulation. In a LOCA scenario where even limited fuelmore » damage occurs and natural circulation is established, fission product gases could be carried from the damaged fuel by steam into areas where operator access is required to maintain the core in a coolable configuration. This would force evacuation of the building and lead to extensive core damage. As a result the HFBR was shut down by the Department of Energy (DOE) and an extensive review of the HFBR was initiated. In an effort to address this issue BNL developed a model designed to predict the heat removal limit during flow reversal that was found to be in good agreement with the test results. Currently a thermal-hydraulic test program is being developed to provide a more realistic and defensible estimate of the flow reversal heat removal limit so that the reactor power level can be increased.« less
Kocaturk, Ozgur; Saikus, Christina E; Guttman, Michael A; Faranesh, Anthony Z; Ratnayaka, Kanishka; Ozturk, Cengizhan; McVeigh, Elliot R; Lederman, Robert J
2009-08-12
Catheter visualization and tracking remains a challenge in interventional MR.Active guidewires can be made conspicuous in "profile" along their whole shaft exploiting metallic core wire and hypotube components that are intrinsic to their mechanical performance. Polymer-based catheters, on the other hand, offer no conductive medium to carry radio frequency waves. We developed a new "active" catheter design for interventional MR with mechanical performance resembling braided X-ray devices. Our 75 cm long hybrid catheter shaft incorporates a wire lattice in a polymer matrix, and contains three distal loop coils in a flexible and torquable 7Fr device. We explored the impact of braid material designs on radiofrequency and mechanical performance. The incorporation of copper wire into in a superelastic nitinol braided loopless antenna allowed good visualization of the whole shaft (70 cm) in vitro and in vivo in swine during real-time MR with 1.5 T scanner. Additional distal tip coils enhanced tip visibility. Increasing the copper:nitinol ratio in braiding configurations improved flexibility at the expense of torquability. We found a 16-wire braid of 1:1 copper:nitinol to have the optimum balance of mechanical (trackability, flexibility, torquability) and antenna (signal attenuation) properties. With this configuration, the temperature increase remained less than 2 degrees C during real-time MR within 10 cm horizontal from the isocenter. The design was conspicuous in vitro and in vivo. We have engineered a new loopless antenna configuration that imparts interventional MR catheters with satisfactory mechanical and imaging characteristics. This compact loopless antenna design can be generalized to visualize the whole shaft of any general-purpose polymer catheter to perform safe interventional procedures.
Kocaturk, Ozgur; Saikus, Christina E; Guttman, Michael A; Faranesh, Anthony Z; Ratnayaka, Kanishka; Ozturk, Cengizhan; McVeigh, Elliot R; Lederman, Robert J
2009-01-01
Background Catheter visualization and tracking remains a challenge in interventional MR. Active guidewires can be made conspicuous in "profile" along their whole shaft exploiting metallic core wire and hypotube components that are intrinsic to their mechanical performance. Polymer-based catheters, on the other hand, offer no conductive medium to carry radio frequency waves. We developed a new "active" catheter design for interventional MR with mechanical performance resembling braided X-ray devices. Our 75 cm long hybrid catheter shaft incorporates a wire lattice in a polymer matrix, and contains three distal loop coils in a flexible and torquable 7Fr device. We explored the impact of braid material designs on radiofrequency and mechanical performance. Results The incorporation of copper wire into in a superelastic nitinol braided loopless antenna allowed good visualization of the whole shaft (70 cm) in vitro and in vivo in swine during real-time MR with 1.5 T scanner. Additional distal tip coils enhanced tip visibility. Increasing the copper:nitinol ratio in braiding configurations improved flexibility at the expense of torquability. We found a 16-wire braid of 1:1 copper:nitinol to have the optimum balance of mechanical (trackability, flexibility, torquability) and antenna (signal attenuation) properties. With this configuration, the temperature increase remained less than 2°C during real-time MR within 10 cm horizontal from the isocenter. The design was conspicuous in vitro and in vivo. Conclusion We have engineered a new loopless antenna configuration that imparts interventional MR catheters with satisfactory mechanical and imaging characteristics. This compact loopless antenna design can be generalized to visualize the whole shaft of any general-purpose polymer catheter to perform safe interventional procedures. PMID:19674464
Benchmarking of Neutron Flux Parameters at the USGS TRIGA Reactor in Lakewood, Colorado
NASA Astrophysics Data System (ADS)
Alzaabi, Osama E.
The USGS TRIGA Reactor (GSTR) located at the Denver Federal Center in Lakewood Colorado provides opportunities to Colorado School of Mines students to do experimental research in the field of neutron activation analysis. The scope of this thesis is to obtain precise knowledge of neutron flux parameters at the GSTR. The Colorado School of Mines Nuclear Physics group intends to develop several research projects at the GSTR, which requires the precise knowledge of neutron fluxes and energy distributions in several irradiation locations. The fuel burn-up of the new GSTR fuel configuration and the thermal neutron flux of the core were recalculated since the GSTR core configuration had been changed with the addition of two new fuel elements. Therefore, a MCNP software package was used to incorporate the burn up of reactor fuel and to determine the neutron flux at different irradiation locations and at flux monitoring bores. These simulation results were compared with neutron activation analysis results using activated diluted gold wires. A well calibrated and stable germanium detector setup as well as fourteen samplers were designed and built to achieve accuracy in the measurement of the neutron flux. Furthermore, the flux monitoring bores of the GSTR core were used for the first time to measure neutron flux experimentally and to compare to MCNP simulation. In addition, International Atomic Energy Agency (IAEA) standard materials were used along with USGS national standard materials in a previously well calibrated irradiation location to benchmark simulation, germanium detector calibration and sample measurements to international standards.
Evaluation of Ceramic Honeycomb Core Compression Behavior at Room Temperature
NASA Technical Reports Server (NTRS)
Bird, Richard K.; Lapointe, Thomas S.
2013-01-01
Room temperature flatwise compression tests were conducted on two varieties of ceramic honeycomb core specimens that have potential for high-temperature structural applications. One set of specimens was fabricated using strips of a commercially-available thin-gage "ceramic paper" sheet molded into a hexagonal core configuration. The other set was fabricated by machining honeycomb core directly from a commercially available rigid insulation tile material. This paper summarizes the results from these tests.
Proton-hole and core-excited states in the semi-magic nucleus 131In82
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taprogge, J.; Jungclaus, A.; Grawe, H.
2016-11-01
The decay of the N = 83 nucleus Cd-131 has been studied at the RIBF facility at the RIKEN Nishina Center. The main purpose of the study was to identify the position of the and proton-hole states and the energies of core-excited configurations in the semi-magic nucleus In-131. From the radiation emitted following the decay, a level scheme of In-131 was established and the feeding to each excited state determined. Similarities between the single-particle transitions observed in the decays of the N = 83 isotones In-132 and Cd-131 are discussed. Finally the excitation energies of several core-excited configurations in In-131more » are compared to QRPA and shell-model calculations.« less
Core excitation effects on oscillator strengths for transitions in four electron atomic systems
NASA Astrophysics Data System (ADS)
Chang, T. N.; Luo, Yuxiang
2007-06-01
By including explicitly the electronic configurations with two and three simultaneously excited electronic orbital, we have extended the BSCI (B-spline based configuration interaction) method [1] to estimate directly the effect of inner shell core excitation to oscillator strengths for transitions in four-electron atomic systems. We will present explicitly the change in oscillator strengths due to core excitations, especially for transitions involving doubly excited states and those with very small oscillator strengths. The length and velocity results are typically in agreement better than 1% or less. [1] Tu-nan Chang, in Many-body Theory of Atomic Structure and Photoionization, edited by T. N. Chang (World Scientific, Singapore, 1993), p. 213-47; and T. N. Chang and T. K. Fang, Elsevier Radiation Physics and Chemistry 70, 173-190 (2004).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daily, Charles R.
2015-10-01
An assessment of the impact on the High Flux Isotope Reactor (HFIR) reactor vessel (RV) displacements-per-atom (dpa) rates due to operations with the proposed low enriched uranium (LEU) core described by Ilas and Primm has been performed and is presented herein. The analyses documented herein support the conclusion that conversion of HFIR to low-enriched uranium (LEU) core operations using the LEU core design of Ilas and Primm will have no negative impact on HFIR RV dpa rates. Since its inception, HFIR has been operated with highly enriched uranium (HEU) cores. As part of an effort sponsored by the National Nuclearmore » Security Administration (NNSA), conversion to LEU cores is being considered for future HFIR operations. The HFIR LEU configurations analyzed are consistent with the LEU core models used by Ilas and Primm and the HEU balance-of-plant models used by Risner and Blakeman in the latest analyses performed to support the HFIR materials surveillance program. The Risner and Blakeman analyses, as well as the studies documented herein, are the first to apply the hybrid transport methods available in the Automated Variance reduction Generator (ADVANTG) code to HFIR RV dpa rate calculations. These calculations have been performed on the Oak Ridge National Laboratory (ORNL) Institutional Cluster (OIC) with version 1.60 of the Monte Carlo N-Particle 5 (MCNP5) computer code.« less
Gating of the designed trimeric/tetrameric voltage-gated H+ channel
Fujiwara, Yuichiro; Kurokawa, Tatsuki; Takeshita, Kohei; Nakagawa, Atsushi; Larsson, H Peter; Okamura, Yasushi
2013-01-01
The voltage-gated H+ channel functions as a dimer, a configuration that is different from standard tetrameric voltage-gated channels. Each channel protomer has its own permeation pathway. The C-terminal coiled-coil domain has been shown to be necessary for both dimerization and cooperative gating in the two channel protomers. Here we report the gating cooperativity in trimeric and tetrameric Hv channels engineered by altering the hydrophobic core sequence of the coiled-coil assembly domain. Trimeric and tetrameric channels exhibited more rapid and less sigmoidal kinetics of activation of H+ permeation than dimeric channels, suggesting that some channel protomers in trimers and tetramers failed to produce gating cooperativity observed in wild-type dimers. Multimerization of trimer and tetramer channels were confirmed by the biochemical analysis of proteins, including crystallography. These findings indicate that the voltage-gated H+ channel is optimally designed as a dimeric channel on a solid foundation of the sequence pattern of the coiled-coil core, with efficient cooperative gating that ensures sustained and steep voltage-dependent H+ conductance in blood cells. PMID:23165764
Zhu, Shiyang; Lo, G Q; Kwong, D L
2011-08-15
An ultracompact integrated silicide Schottky barrier detector (SBD) is designed and theoretically investigated to electrically detect the surface plasmon polariton (SPP) propagating along horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides at the telecommunication wavelength of 1550 nm. An ultrathin silicide layer inserted between the silicon core and the insulator, which can be fabricated precisely using the well-developed self-aligned silicide process, absorbs the SPP power effectively if a suitable silicide is chosen. Moreover, the Schottky barrier height in the silicide-silicon-silicide configuration can be tuned substantially by the external voltage through the Schottky effect owing to the very narrow silicon core. For a TaSi(2) detector with optimized dimensions, numerical simulation predicts responsivity of ~0.07 A/W, speed of ~60 GHz, dark current of ~66 nA at room temperature, and minimum detectable power of ~-29 dBm. The design also suggests that the device's size can be reduced and the overall performances will be further improved if a silicide with smaller permittivity is used. © 2011 Optical Society of America
Energy efficient engine: Fan test hardware detailed design report
NASA Technical Reports Server (NTRS)
Sullivan, T. J.
1980-01-01
A single stage fan and quarter stage booster were designed for the energy efficient engine. The fan has an inlet radius ratio of 0.342 and a specific flow rate of 208.9 Kg/S sq m (42.8 lbm/sec sq ft). The fan rotor has 32 medium aspect ratio (2.597) titanium blades with a partspan shroud at 55% blade height. The design corrected fan tip speed is 411.5 M/S (1350 ft/sec). The quarter stage island splits the total fan flow with approximately 22% of the flow being supercharged by the quarter stage rotor. The fan bypass ratio is 6.8. The core flow total pressure ratio is 1.67 and the fan bypass pressure ratio is 1.65. The design details of the fan and booster blading, and the fan frame and static structure for the fan configuration are presented.
The Southwest Configuration for the Next Generation Very Large Array
NASA Astrophysics Data System (ADS)
Irwin Kellermann, Kenneth; Carilli, Chris; Condon, James; Cotton, William; Murphy, Eric Joseph; Nyland, Kristina
2018-01-01
We discuss the planned array configuration for the Next Generation Very Large Array (ngVLA). The configuration, termed the "Southwest Array," consists of 214 antennas each 18 m in diameter, distributed over the Southwest United States and Northern Mexico. The antenna locations have been set applying rough real-world constraints, such as road, fiber, and power access. The antenna locations will be fixed, with roughly 50% of the antennas in a "core" of 2 km diameter, located at the site of the JVLA. Another 30% of the antennas will be distributed over the Plains of San Augustin to a diameter of 30 km, possibly along, or near, the current JVLA arms. The remaining 20% of the antennas will be distributed in a rough two-arm spiral pattern to the South and East, out to a maximum distance of 500 km, into Texas, Arizona, and Chihuahua. Years of experience with the VLA up to 50 GHz, plus intensive antenna testing up to 250 GHz for the ALMA prototype antennas, verify the VLA site as having very good observing conditions (opacity, phase stability), up to 115 GHz (ngVLA Memo No. 1). Using a suite of tools implemented in CASA, we have made extensive imaging simulations with this configuration. We find that good imaging performance can be obtained through appropriate weighting of the visibilities, for resolutions ranging from that of the core of the array (1" at 30 GHz), out to the longest baselines (10 mas at 30 GHz), with a loss of roughly a factor of two in sensitivity relative to natural weighting (ngVLA Memo No. 16). The off-set core, located on the northern edge of the long baseline configuration, provides excellent sensitivity even on the longest baselines. We are considering, in addition, a compact configuration of 16 close-packed 6 m antennas to obtain uv-coverage down to baselines ~ 10 m for imaging large scale structure, as well as a configuration including 9 stations distributed to continental scales.
Ballistic Resistance of Honeycomb Sandwich Panels under In-Plane High-Velocity Impact
Yang, Shu; Wang, Dong; Yang, Li-Jun
2013-01-01
The dynamic responses of honeycomb sandwich panels (HSPs) subjected to in-plane projectile impact were studied by means of explicit nonlinear finite element simulations using LS-DYNA. The HSPs consisted of two identical aluminum alloy face-sheets and an aluminum honeycomb core featuring three types of unit cell configurations (regular, rectangular-shaped, and reentrant hexagons). The ballistic resistances of HSPs with the three core configurations were first analyzed. It was found that the HSP with the reentrant auxetic honeycomb core has the best ballistic resistance, due to the negative Poisson's ratio effect of the core. Parametric studies were then carried out to clarify the influences of both macroscopic (face-sheet and core thicknesses, core relative density) and mesoscopic (unit cell angle and size) parameters on the ballistic responses of the auxetic HSPs. Numerical results show that the perforation resistant capabilities of the auxetic HSPs increase as the values of the macroscopic parameters increase. However, the mesoscopic parameters show nonmonotonic effects on the panels' ballistic capacities. The empirical equations for projectile residual velocities were formulated in terms of impact velocity and the structural parameters. It was also found that the blunter projectiles result in higher ballistic limits of the auxetic HSPs. PMID:24187526
Ballistic resistance of honeycomb sandwich panels under in-plane high-velocity impact.
Qi, Chang; Yang, Shu; Wang, Dong; Yang, Li-Jun
2013-01-01
The dynamic responses of honeycomb sandwich panels (HSPs) subjected to in-plane projectile impact were studied by means of explicit nonlinear finite element simulations using LS-DYNA. The HSPs consisted of two identical aluminum alloy face-sheets and an aluminum honeycomb core featuring three types of unit cell configurations (regular, rectangular-shaped, and reentrant hexagons). The ballistic resistances of HSPs with the three core configurations were first analyzed. It was found that the HSP with the reentrant auxetic honeycomb core has the best ballistic resistance, due to the negative Poisson's ratio effect of the core. Parametric studies were then carried out to clarify the influences of both macroscopic (face-sheet and core thicknesses, core relative density) and mesoscopic (unit cell angle and size) parameters on the ballistic responses of the auxetic HSPs. Numerical results show that the perforation resistant capabilities of the auxetic HSPs increase as the values of the macroscopic parameters increase. However, the mesoscopic parameters show nonmonotonic effects on the panels' ballistic capacities. The empirical equations for projectile residual velocities were formulated in terms of impact velocity and the structural parameters. It was also found that the blunter projectiles result in higher ballistic limits of the auxetic HSPs.
NASA Technical Reports Server (NTRS)
Clayton, Joseph P.; Tinker, Michael L.
1991-01-01
This paper describes experimental and analytical characterization of a new flexible thermal protection material known as Tailorable Advanced Blanket Insulation (TABI). This material utilizes a three-dimensional ceramic fabric core structure and an insulation filler. TABI is the leading candidate for use in deployable aeroassisted vehicle designs. Such designs require extensive structural modeling, and the most significant in-plane material properties necessary for model development are measured and analytically verified in this study. Unique test methods are developed for damping measurements. Mathematical models are developed for verification of the experimental modulus and damping data, and finally, transverse properties are described in terms of the inplane properties through use of a 12-dof finite difference model of a simple TABI configuration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, Kyle; Cardoni, Jeffrey N.; Wilson, Chisom Shawn
2015-12-01
Efforts are being pursued to develop and qualify a system-level model of a reactor core isolation (RCIC) steam-turbine-driven pump. The model is being developed with the intent of employing it to inform the design of experimental configurations for full-scale RCIC testing. The model is expected to be especially valuable in sizing equipment needed in the testing. An additional intent is to use the model in understanding more fully how RCIC apparently managed to operate far removed from its design envelope in the Fukushima Daiichi Unit 2 accident. RCIC modeling is proceeding along two avenues that are expected to complement eachmore » other well. The first avenue is the continued development of the system-level RCIC model that will serve in simulating a full reactor system or full experimental configuration of which a RCIC system is part. The model reasonably represents a RCIC system today, especially given design operating conditions, but lacks specifics that are likely important in representing the off-design conditions a RCIC system might experience in an emergency situation such as a loss of all electrical power. A known specific lacking in the system model, for example, is the efficiency at which a flashing slug of water (as opposed to a concentrated jet of steam) could propel the rotating drive wheel of a RCIC turbine. To address this specific, the second avenue is being pursued wherein computational fluid dynamics (CFD) analyses of such a jet are being carried out. The results of the CFD analyses will thus complement and inform the system modeling. The system modeling will, in turn, complement the CFD analysis by providing the system information needed to impose appropriate boundary conditions on the CFD simulations. The system model will be used to inform the selection of configurations and equipment best suitable of supporting planned RCIC experimental testing. Preliminary investigations with the RCIC model indicate that liquid water ingestion by the turbine decreases the developed turbine torque; the RCIC speed then slows, and thus the pump flow rate to the RPV decreases. Subsequently, RPV water level decreases due to continued boiling and the liquid fraction flowing to the RCIC decreases, thereby accelerating the RCIC and refilling the RPV. The feedback cycle then repeats itself and/or reaches a quasi-steady equilibrium condition. In other words, the water carry-over is limited by cyclic RCIC performance degradation, and hence the system becomes self-regulating. The indications achieved to date with the system model are more qualitative than quantitative. The avenues being pursued to increase the fidelity of the model are expected to add quantitative realism. The end product will be generic in the sense that the RCIC model will be incorporable within the larger reactor coolant system model of any nuclear power plant or experimental configuration.« less
Characterization of Metalorganic Chemical Vapor Deposition
NASA Technical Reports Server (NTRS)
Jesser, W. A.
1998-01-01
A series of experimental and numerical investigations to develop a more complete understanding of the reactive fluid dynamics of chemical vapor deposition were conducted. In the experimental phases of the effort, a horizontal CVD reactor configuration was used for the growth of InP at UVA and for laser velocimetry measurements of the flow fields in the reactor at LaRC. This horizontal reactor configuration was developed for the growth of III-V semiconductors and has been used by our research group in the past to study the deposition of both GaAs and InP. While the ultimate resolution of many of the heat and mass transport issues will require access to a reduced-gravity environment, the series of groundbased research makes direct contributions to this area while attempting to answer the design questions for future experiments of how low must gravity be reduced and for how long must this gravity level be maintained to make the necessary measurements. It is hoped that the terrestrial experiments will be useful for the design of future microgravity experiments which likely will be designed to employ a core set of measurements for applications in the microgravity environment such as HOLOC, the Fluid Physics/Dynamics Facility, or the Schlieren photography, the Laser Imaging Velocimetry and the Laser Doppler Velocimetry instruments under development for the Advanced Fluids Experiment Module.
Dynamic Response and Optimal Design of Curved Metallic Sandwich Panels under Blast Loading
Yang, Shu; Han, Shou-Hong; Lu, Zhen-Hua
2014-01-01
It is important to understand the effect of curvature on the blast response of curved structures so as to seek the optimal configurations of such structures with improved blast resistance. In this study, the dynamic response and protective performance of a type of curved metallic sandwich panel subjected to air blast loading were examined using LS-DYNA. The numerical methods were validated using experimental data in the literature. The curved panel consisted of an aluminum alloy outer face and a rolled homogeneous armour (RHA) steel inner face in addition to a closed-cell aluminum foam core. The results showed that the configuration of a “soft” outer face and a “hard” inner face worked well for the curved sandwich panel against air blast loading in terms of maximum deflection (MaxD) and energy absorption. The panel curvature was found to have a monotonic effect on the specific energy absorption (SEA) and a nonmonotonic effect on the MaxD of the panel. Based on artificial neural network (ANN) metamodels, multiobjective optimization designs of the panel were carried out. The optimization results revealed the trade-off relationships between the blast-resistant and the lightweight objectives and showed the great use of Pareto front in such design circumstances. PMID:25126606
Dynamic response and optimal design of curved metallic sandwich panels under blast loading.
Qi, Chang; Yang, Shu; Yang, Li-Jun; Han, Shou-Hong; Lu, Zhen-Hua
2014-01-01
It is important to understand the effect of curvature on the blast response of curved structures so as to seek the optimal configurations of such structures with improved blast resistance. In this study, the dynamic response and protective performance of a type of curved metallic sandwich panel subjected to air blast loading were examined using LS-DYNA. The numerical methods were validated using experimental data in the literature. The curved panel consisted of an aluminum alloy outer face and a rolled homogeneous armour (RHA) steel inner face in addition to a closed-cell aluminum foam core. The results showed that the configuration of a "soft" outer face and a "hard" inner face worked well for the curved sandwich panel against air blast loading in terms of maximum deflection (MaxD) and energy absorption. The panel curvature was found to have a monotonic effect on the specific energy absorption (SEA) and a nonmonotonic effect on the MaxD of the panel. Based on artificial neural network (ANN) metamodels, multiobjective optimization designs of the panel were carried out. The optimization results revealed the trade-off relationships between the blast-resistant and the lightweight objectives and showed the great use of Pareto front in such design circumstances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Bruyn, D.; Engelen, J.; Ortega, A.
MYRRHA (Multi-purpose hybrid Research Reactor for High-tech Applications) is the flexible experimental accelerator-driven system (ADS) in development at SCK-CEN in replacement of its material testing reactor BR2. SCK-CEN in association with 17 European partners from industry, research centres and academia, responded to the FP7 (Seventh Framework Programme) call from the European Commission to establish a Central Design Team (CDT) for the design of a Fast Spectrum Transmutation Experimental Facility (FASTEF) able to demonstrate efficient transmutation and associated technology through a system working in subcritical and/or critical mode. The project has started on April 01, 2009 for a period of threemore » years. In this paper, we present the latest concept of the reactor building and the plant layout. The FASTEF facility has evolved quite a lot since the intermediate reporting done at the ICAPP'10 and ICAPP'11 conferences 1,2. Many iterations have been performed to take into account the safety requirements. The present configuration enables an easy operation and maintenance of the facility, including the possibility to change large components of the reactor. In a companion paper 3, we present the latest configuration of the reactor core and primary system. (authors)« less
Design and testing of a uniformly solar energy TIR-R concentration lenses for HCPV systems.
Shen, S C; Chang, S J; Yeh, C Y; Teng, P C
2013-11-04
In this paper, total internal reflection-refraction (TIR-R) concentration (U-TIR-R-C) lens module were designed for uniformity using the energy configuration method to eliminate hot spots on the surface of solar cell and increase conversion efficiency. The design of most current solar concentrators emphasizes the high-power concentration of solar energy, however neglects the conversion inefficiency resulting from hot spots generated by uneven distributions of solar energy concentrated on solar cells. The energy configuration method proposed in this study employs the concept of ray tracing to uniformly distribute solar energy to solar cells through a U-TIR-R-C lens module. The U-TIR-R-C lens module adopted in this study possessed a 76-mm diameter, a 41-mm thickness, concentration ratio of 1134 Suns, 82.6% optical efficiency, and 94.7% uniformity. The experiments demonstrated that the U-TIR-R-C lens module reduced the core temperature of the solar cell from 108 °C to 69 °C and the overall temperature difference from 45 °C to 10 °C, and effectively relative increased the conversion efficiency by approximately 3.8%. Therefore, the U-TIR-R-C lens module designed can effectively concentrate a large area of sunlight onto a small solar cell, and the concentrated solar energy can be evenly distributed in the solar cell to achieve uniform irradiance and effectively eliminate hot spots.
Space Station Furnace Facility Preliminary Project Implementation Plan (PIP). Volume 2, Appendix 2
NASA Technical Reports Server (NTRS)
Perkey, John K.
1992-01-01
The Space Station Furnace Facility (SSFF) is an advanced facility for materials research in the microgravity environment of the Space Station Freedom and will consist of Core equipment and various sets of Furnace Module (FM) equipment in a three-rack configuration. This Project Implementation Plan (PIP) document was developed to satisfy the requirements of Data Requirement Number 4 for the SSFF study (Phase B). This PIP shall address the planning of the activities required to perform the detailed design and development of the SSFF for the Phase C/D portion of this contract.
The Athena X-ray Integral Field Unit (X-IFU)
NASA Astrophysics Data System (ADS)
Pajot, F.; Barret, D.; Lam-Trong, T.; den Herder, J.-W.; Piro, L.; Cappi, M.; Huovelin, J.; Kelley, R.; Mas-Hesse, J. M.; Mitsuda, K.; Paltani, S.; Rauw, G.; Rozanska, A.; Wilms, J.; Barbera, M.; Douchin, F.; Geoffray, H.; den Hartog, R.; Kilbourne, C.; Le Du, M.; Macculi, C.; Mesnager, J.-M.; Peille, P.
2018-04-01
The X-ray Integral Field Unit (X-IFU) of the Advanced Telescope for High-ENergy Astrophysics (Athena) large-scale mission of ESA will provide spatially resolved high-resolution X-ray spectroscopy from 0.2 to 12 keV, with 5^' ' } pixels over a field of view of 5 arc minute equivalent diameter and a spectral resolution of 2.5 eV (FWHM) up to 7 keV. The core scientific objectives of Athena drive the main performance parameters of the X-IFU. We present the current reference configuration of the X-IFU, and the key issues driving the design of the instrument.
Building Aerodynamic Databases for the SLS Design Process
NASA Technical Reports Server (NTRS)
Rogers, Stuart; Dalle, Derek J.; Lee, Henry; Meeroff, Jamie; Onufer, Jeffrey; Chan, William; Pulliam, Thomas
2017-01-01
NASA's new Space Launch System (SLS) will be the first rocket since the Saturn V (1967-1973) to carry astronauts beyond low earth orbit-and will carry 10% more payload than Saturn V and three times the payload of the space shuttle. The SLS configuration consists of a center core and two solid rocket boosters that separate from the core as their fuel is exhausted two minutes after lift-off. During these first two minutes of flight, the vehicle powers its way through strong shock waves as it accelerates past the speed of sound, then pushes beyond strong aerodynamic loads at the maximum dynamic pressure, and is ultimately enveloped by gaseous plumes from the booster-separation motors. The SLS program relies on computational fluid dynamic (CFD) simulations to provide much of the data needed to build aerodynamic databases describing the structural load distribution, surface pressures, and aerodynamic forces on the vehicle.
NASA Technical Reports Server (NTRS)
Tanzer, H. J.
1982-01-01
The feasibility of fabricating and processing liquid metal heat pipes in a low mass honeycomb sandwich panel configuration for application on the NASA Langley airframe-integrated Scramjet engine was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts was evaluated within constraints dictated by existing manufacturing technology and equipment. The chosen design consists of an all-stainless steel structure, sintered screen facesheets, and two types of core-ribbon; a diffusion bonded wire mesh and a foil-screen composite. Cleaning, fluid charging, processing, and process port sealing techniques were established. The liquid metals potassium, sodium and cesium were used as working fluids. Eleven honeycomb panels 15.24 cm X 15.24 cm X 2.94 cm were delivered to NASA Langley for extensive performance testing and evaluation; nine panels were processed as heat pipes, and two panels were left unprocessed.
Testing of the Multi-Fluid Evaporator Engineering Development Unit
NASA Technical Reports Server (NTRS)
Quinn, Gregory; O'Connor, Ed; Riga, Ken; Anderson, Molly; Westheimer, David
2007-01-01
Hamilton Sundstrand is under contract with the NASA Johnson Space Center to develop a scalable, evaporative heat rejection system called the Multi-Fluid Evaporator (MFE). It is being designed to support the Orion Crew Module and to support future Constellation missions. The MFE would be used from Earth sea level conditions to the vacuum of space. The current Shuttle configuration utilizes an ammonia boiler and flash evaporator system to achieve cooling at all altitudes. The MFE system combines both functions into a single compact package with significant weight reduction and improved freeze-up protection. The heat exchanger core is designed so that radial flow of the evaporant provides increasing surface area to keep the back pressure low. The multiple layer construction of the core allows for efficient scale up to the desired heat rejection rate. The full scale MFE prototype will be constructed with four core sections that, combined with a novel control scheme, manage the risk of freezing the heat exchanger cores. A sub-scale MFE engineering development unit (EDU) has been built, and is identical to one of the four sections of a full scale prototype. The EDU has completed testing at Hamilton Sundstrand. The overall test objective was to determine the thermal performance of the EDU. The first set of tests simulated how each of the four sections of the prototype would perform by varying the chamber pressure, evaporant flow rate, coolant flow rate and coolant temperature. A second set of tests was conducted with an outlet steam header in place to verify that the outlet steam orifices prevent freeze-up in the core while also allowing the desired thermal turn-down ratio. This paper discusses the EDU tests and results.
NASA Technical Reports Server (NTRS)
Kemp, N. H.; Root, R. G.; Wu., P. K. S.; Caledonia, G. E.; Pirri, A. N.
1976-01-01
CW laser heated rocket propulsion was investigated in both the flowing core and stationary core configurations. The laser radiation considered was 10.6 micrometers, and the working gas was unseeded hydrogen. The areas investigated included initiation of a hydrogen plasma capable of absorbing laser radiation, the radiation emission properties of hot, ionized hydrogen, the flow of hot hydrogen while absorbing and radiating, the heat losses from the gas and the rocket performance. The stationary core configuration was investigated qualitatively and semi-quantitatively. It was found that the flowing core rockets can have specific impulses between 1,500 and 3,300 sec. They are small devices, whose heating zone is only a millimeter to a few centimeters long, and millimeters to centimeters in radius, for laser power levels varying from 10 to 5,000 kW, and pressure levels of 3 to 10 atm. Heat protection of the walls is a vital necessity, though the fraction of laser power lost to the walls can be as low as 10% for larger powers, making the rockets thermally efficient.
Star cell type core configuration for structural sandwich materials
Christensen, Richard M.
1995-01-01
A new pattern for cellular core material used in sandwich type structural materials. The new pattern involves star shaped cells intermixed with hexagonal shaped cells. The new patterned cellular core material includes star shaped cells interconnected at points thereof and having hexagonal shape cells positioned adjacent the star points. The new pattern allows more flexibility and can conform more easily to curved shapes.
Effect of core polarizability on photoionization cross-section calculations.
NASA Technical Reports Server (NTRS)
Kirkpatrick, R. C.
1972-01-01
Demonstration of the importance of core polarizability in a case where cancellation is only moderate, with suggestion of an improvement to the scaled Thomas-Fermi (STF) wave functions of Stewart and Rotenberg (1965). The inclusion of dipole polarizability of the core for argon is shown to substantially improve the agreement between the theoretical and experimental photoionization cross sections for the ground-state configuration.
NASA's Space Launch Transitions: From Design to Production
NASA Technical Reports Server (NTRS)
Askins, Bruce; Robinson, Kimberly
2016-01-01
NASA's Space Launch System (SLS) successfully completed its Critical Design Review (CDR) in 2015, a major milestone on the journey to an unprecedented era of exploration for humanity. CDR formally marked the program's transition from design to production phase just four years after the program's inception and the first such milestone for a human launch vehicle in 40 years. While challenges typical of a complex development program lie ahead, CDR evaluators concluded that the design is technically and programmatically sound and ready to press forward to Design Certification Review (DCR) and readiness for launch of Exploration Mission 1 (EM-1) in the 2018 timeframe. SLS is prudently based on existing propulsion systems, infrastructure and knowledge with a clear, evolutionary path as required by mission needs. In its initial configuration, designated Block I, SLS will a minimum of 70 metric tons (t) of payload to low Earth orbit (LEO). It can evolve to a 130 t payload capacity by upgrading its engines, boosters, and upper stage, dramatically increasing the mass and volume of human and robotic exploration while decreasing mission risk, increasing safety, and simplifying ground and mission operations. CDR was the central programmatic accomplishment among many technical accomplishments that will be described in this paper. The government/industry SLS team successfully test fired a flight-like five-segment solid rocket motor, as well as seven hotfire development tests of the RS-25 core stage engine. The majority of the major test article and flight barrels, rings, and domes for the core stage liquid oxygen, liquid hydrogen, engine section, intertank, and forward skirt were manufactured at NASA's Michoud Assembly Facility. Renovations to the B-2 test stand for stage green run testing were completed at NASA Stennis Space Center. Core stage test stands are rising at NASA Marshall Space Flight Center. The modified Pegasus barge for core stage transportation from manufacturing to testing and launch sites was delivered. The Interim Cryogenic Propulsion System test article was also completed. This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before the first flight of this new capability.
Nuclear reactor internals alignment configuration
Gilmore, Charles B [Greensburg, PA; Singleton, Norman R [Murrysville, PA
2009-11-10
An alignment system that employs jacking block assemblies and alignment posts around the periphery of the top plate of a nuclear reactor lower internals core shroud to align an upper core plate with the lower internals and the core shroud with the core barrel. The distal ends of the alignment posts are chamfered and are closely received within notches machined in the upper core plate at spaced locations around the outer circumference of the upper core plate. The jacking block assemblies are used to center the core shroud in the core barrel and the alignment posts assure the proper orientation of the upper core plate. The alignment posts may alternately be formed in the upper core plate and the notches may be formed in top plate.
FFTF Passive Safety Test Data for Benchmarks for New LMR Designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wootan, David W.; Casella, Andrew M.
Liquid Metal Reactors (LMRs) continue to be considered as an attractive concept for advanced reactor design. Software packages such as SASSYS are being used to im-prove new LMR designs and operating characteristics. Significant cost and safety im-provements can be realized in advanced liquid metal reactor designs by emphasizing inherent or passive safety through crediting the beneficial reactivity feedbacks associ-ated with core and structural movement. This passive safety approach was adopted for the Fast Flux Test Facility (FFTF), and an experimental program was conducted to characterize the structural reactivity feedback. The FFTF passive safety testing pro-gram was developed to examine howmore » specific design elements influenced dynamic re-activity feedback in response to a reactivity input and to demonstrate the scalability of reactivity feedback results to reactors of current interest. The U.S. Department of En-ergy, Office of Nuclear Energy Advanced Reactor Technology program is in the pro-cess of preserving, protecting, securing, and placing in electronic format information and data from the FFTF, including the core configurations and data collected during the passive safety tests. Benchmarks based on empirical data gathered during operation of the Fast Flux Test Facility (FFTF) as well as design documents and post-irradiation examination will aid in the validation of these software packages and the models and calculations they produce. Evaluation of these actual test data could provide insight to improve analytical methods which may be used to support future licensing applications for LMRs« less
Development of a core sheath process for production of oxide fibers
NASA Technical Reports Server (NTRS)
Freske, S.
1972-01-01
Improvements were sought in an oxide fiber of a core sheath configuration intended for structural applications at 2000 F (1093 C). Discontinuities in the core were eliminated by using core materials other than pure alumina, and continuous core sheath fibers were produced. In the case of some core materials, the continuous sections were sufficiently long for applications in short fiber composites. Creep at 2000 F (1093 C) was found to be due, in most cases, to breaks in the core, allowing the glass sheath to creep. Evidence was obtained indicating that a closer match between the thermal expansion coefficient of the sheath and the core would greatly improve the strength.
Qualification of APOLLO2 BWR calculation scheme on the BASALA mock-up
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaglio-Gaudard, C.; Santamarina, A.; Sargeni, A.
2006-07-01
A new neutronic APOLLO2/MOC/SHEM/CEA2005 calculation scheme for BWR applications has been developed by the French 'Commissariat a l'Energie Atomique'. This scheme is based on the latest calculation methodology (accurate mutual and self-shielding formalism, MOC treatment of the transport equation) and the recent JEFF3.1 nuclear data library. This paper presents the experimental validation of this new calculation scheme on the BASALA BWR mock-up The BASALA programme is devoted to the measurements of the physical parameters of high moderation 100% MOX BWR cores, in hot and cold conditions. The experimental validation of the calculation scheme deals with core reactivity, fission rate maps,more » reactivity worth of void and absorbers (cruciform control blades and Gd pins), as well as temperature coefficient. Results of the analysis using APOLLO2/MOC/SHEM/CEA2005 show an overestimation of the core reactivity by 600 pcm for BASALA-Hot and 750 pcm for BASALA-Cold. Reactivity worth of gadolinium poison pins and hafnium or B{sub 4}C control blades are predicted by APOLLO2 calculation within 2% accuracy. Furthermore, the radial power map is well predicted for every core configuration, including Void configuration and Hf / B{sub 4}C configurations: fission rates in the central assembly are calculated within the {+-}2% experimental uncertainty for the reference cores. The C/E bias on the isothermal Moderator Temperature Coefficient, using the CEA2005 library based on JEFF3.1 file, amounts to -1.7{+-}03 pcm/ deg. C on the range 10 deg. C-80 deg. C. (authors)« less
Design and fabrication of memory devices based on nanoscale polyoxometalate clusters
NASA Astrophysics Data System (ADS)
Busche, Christoph; Vilà-Nadal, Laia; Yan, Jun; Miras, Haralampos N.; Long, De-Liang; Georgiev, Vihar P.; Asenov, Asen; Pedersen, Rasmus H.; Gadegaard, Nikolaj; Mirza, Muhammad M.; Paul, Douglas J.; Poblet, Josep M.; Cronin, Leroy
2014-11-01
Flash memory devices--that is, non-volatile computer storage media that can be electrically erased and reprogrammed--are vital for portable electronics, but the scaling down of metal-oxide-semiconductor (MOS) flash memory to sizes of below ten nanometres per data cell presents challenges. Molecules have been proposed to replace MOS flash memory, but they suffer from low electrical conductivity, high resistance, low device yield, and finite thermal stability, limiting their integration into current MOS technologies. Although great advances have been made in the pursuit of molecule-based flash memory, there are a number of significant barriers to the realization of devices using conventional MOS technologies. Here we show that core-shell polyoxometalate (POM) molecules can act as candidate storage nodes for MOS flash memory. Realistic, industry-standard device simulations validate our approach at the nanometre scale, where the device performance is determined mainly by the number of molecules in the storage media and not by their position. To exploit the nature of the core-shell POM clusters, we show, at both the molecular and device level, that embedding [(Se(IV)O3)2]4- as an oxidizable dopant in the cluster core allows the oxidation of the molecule to a [Se(V)2O6]2- moiety containing a {Se(V)-Se(V)} bond (where curly brackets indicate a moiety, not a molecule) and reveals a new 5+ oxidation state for selenium. This new oxidation state can be observed at the device level, resulting in a new type of memory, which we call `write-once-erase'. Taken together, these results show that POMs have the potential to be used as a realistic nanoscale flash memory. Also, the configuration of the doped POM core may lead to new types of electrical behaviour. This work suggests a route to the practical integration of configurable molecules in MOS technologies as the lithographic scales approach the molecular limit.
The MVAD pump: motor stator core loss characterization.
Mesa, Kelly J; Ferreira, Antonio; Castillo, Samir; Reyes, Carlos; Wolman, Justin; Casas, Fernando
2015-01-01
Investigation of the miniature ventricular assist device (MVAD) pump motor stator core loss behavior was conducted. During operation, the ferromagnetic core in the pump's motor is magnetized by alternating magnetic fields, which, in turn, create intrinsic energy losses in the core material; these losses are known as core losses. A core loss fixture and a method to characterize the magnetic behavior of the MVAD pump stator over a range of frequencies were developed. The MVAD pump motor design features a three phase brushless DC stator with ferromagnetic laminations and copper wire windings arranged in a six slot configuration. The stator's magnetic behavior is important because its core magnetic losses impact pump system efficiency. A system to measure the core loss of MVAD pump stators was developed using a custom core loss fixture consisting of 16 copper wire turns wound in a closed loop geometry bundle; the stator under test was then placed within this bundle. The instrumentation consisted of a signal generator, a power amplifier, and a power analyzer. Power analyzer parameters of current, voltage, and power were collected for several runs with a sinusoidal frequency sweep of 0 to 50 kHz; data were collected for the fixture with and without stators. The magnetic losses inherent to the fixture were characterized independently as a baseline presenting a flat frequency response. The core loss power measurements of individual stators yielded a characteristic bandpass frequency response morphology with a peak core loss found around 2.3 to 2.5 kHz. In conclusion, this method could be used to describe the transfer function of the stator's core magnetic behavior. It also has the potential to be used for future motor evaluation and for investigation of core loss performance variability between different stators during manufacturing operations. Investigational device. Limited by United States law to investigational use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. Fiorina; N. E. Stauff; F. Franceschini
2013-12-01
The present paper compares the reactor physics and transmutation performance of sodium-cooled Fast Reactors (FRs) for TRansUranic (TRU) burning with thorium (Th) or uranium (U) as fertile materials. The 1000 MWt Toshiba-Westinghouse Advanced Recycling Reactor (ARR) conceptual core has been used as benchmark for the comparison. Both burner and breakeven configurations sustained or started with a TRU supply, and assuming full actinide homogeneous recycle strategy, have been developed. State-of-the-art core physics tools have been employed to establish fuel inventory and reactor physics performances for equilibrium and transition cycles. Results show that Th fosters large improvements in the reactivity coefficients associatedmore » with coolant expansion and voiding, which enhances safety margins and, for a burner design, can be traded for maximizing the TRU burning rate. A trade-off of Th compared to U is the significantly larger fuel inventory required to achieve a breakeven design, which entails additional blankets at the detriment of core compactness as well as fuel manufacturing and separation requirements. The gamma field generated by the progeny of U-232 in the U bred from Th challenges fuel handling and manufacturing, but in case of full recycle, the high contents of Am and Cm in the transmutation fuel impose remote fuel operations regardless of the presence of U-232.« less
NASA Technical Reports Server (NTRS)
Janardan, B. A.; Hoff, G. E.; Barter, J. W.; Martens, S.; Gliebe, P. R.; Mengle, V.; Dalton, W. N.; Saiyed, Naseem (Technical Monitor)
2000-01-01
This report describes the work performed by General Electric Aircraft Engines (GEAE) and Allison Engine Company (AEC) on NASA Contract NAS3-27720 AoI 14.3. The objective of this contract was to generate quality jet noise acoustic data for separate-flow nozzle models and to design and verify new jet-noise-reduction concepts over a range of simulated engine cycles and flight conditions. Five baseline axisymmetric separate-flow nozzle models having bypass ratios of five and eight with internal and external plugs and 11 different mixing-enhancer model nozzles (including chevrons, vortex-generator doublets, and a tongue mixer) were designed and tested in model scale. Using available core and fan nozzle hardware in various combinations, 28 GEAE/AEC separate-flow nozzle/mixing-enhancer configurations were acoustically evaluated in the NASA Glenn Research Center Aeroacoustic and Propulsion Laboratory. This report describes model nozzle features, facility and data acquisition/reduction procedures, the test matrix, and measured acoustic data analyses. A number of tested core and fan mixing enhancer devices and combinations of devices gave significant jet noise reduction relative to separate-flow baseline nozzles. Inward-flip and alternating-flip core chevrons combined with a straight-chevron fan nozzle exceeded the NASA stretch goal of 3 EPNdB jet noise reduction at typical sideline certification conditions.
Photonic crystal fiber heat sensors
NASA Astrophysics Data System (ADS)
Twigg, S.; Coompson, J.; Colalillo, A.; Wynne, R.
2011-04-01
A sensing configuration based on commercially available triple-core photonic crystal fiber (PCF) for the image-based collection of thermal information is presented. Detection of thermal phenomena on the micro and nano scale is important for monitoring thermodynamic processes including cooling mechanisms for industry and basic research in both civil and mechanical systems. The thermal characteristics of the PCF combined with coupled-mode theory principles are used to construct a three core PCF with a 1-D core arrangement to simultaneously measure heat flux and temperature. The PCF sensor demonstrated high detection sensitivity (<1°C) and fast response times (<30μs), which is a significant improvement to current commercial standards. PCFs are specialty optical fibers that contain carefully spaced micronsized cavities that provide extraordinary waveguide characteristics not demonstrated by standard optical fiber. The three core PCF has a core diameter of 3.9μm, outer diameter of 132.5μm and varied inter core spacing. A single mode fiber is fusion spliced with the multi-core PCF such that the optical field is confined and launched into the PCF core. The output end of the fiber is inspected and imaged with a CCD camera. A 25mm section of the PCF is surrounded by a guarded hotplate configuration to control the thermal conditions for sensor characterization. Evanescent wave coupling occurs whereby power is transferred from the central core to a neighboring core. Minimum detection sensitivities of 0.2 °C were recorded. Theoretical sensitivities on the order of 10-2 °C are possible. Experimental results were in agreement with coupled-mode theoretical results.
Layout finishing of a 28nm, 3 billions transistors, multi-core processor
NASA Astrophysics Data System (ADS)
Morey-Chaisemartin, Philippe; Beisser, Eric
2013-06-01
Designing a fully new 256 cores processor is a great challenge for a fabless startup. In addition to all architecture, functionalities and timing issues, the layout by itself is a bottleneck due to all the process constraints of a 28nm technology. As developers of advanced layout finishing solutions, we were involved in the design flow of this huge chip with its 3 billions transistors. We had to face the issue of dummy patterns instantiation with respect to design constraints. All the design rules to generate the "dummies" are clearly defined in the Design Rule Manual, and some automatic procedures are provided by the foundry itself, but these routines don't take care of the designer requests. Such a chip, embeds both digital parts and analog modules for clock and power management. These two different type of designs have each their own set of constraints. In both cases, the insertion of dummies should not introduce unexpected variations leading to malfunctions. For example, on digital parts were signal race conditions are critical on long wires or bus, introduction of uncontrolled parasitic along these nets are highly critical. For analog devices such as high frequency and high sensitivity comparators, the exact symmetry of the two parts of a current mirror generator should be guaranteed. Thanks to the easily customizable features of our dummies insertion tool, we were able to configure it in order to meet all the designer requirements as well as the process constraints. This paper will present all these advanced key features as well as the layout tricks used to fulfill all requirements.
NASA Technical Reports Server (NTRS)
Cliff, Susan E.; Baker, Timothy J.; Hicks, Raymond M.; Reuther, James J.
1999-01-01
Two supersonic transport configurations designed by use of non-linear aerodynamic optimization methods are compared with a linearly designed baseline configuration. One optimized configuration, designated Ames 7-04, was designed at NASA Ames Research Center using an Euler flow solver, and the other, designated Boeing W27, was designed at Boeing using a full-potential method. The two optimized configurations and the baseline were tested in the NASA Langley Unitary Plan Supersonic Wind Tunnel to evaluate the non-linear design optimization methodologies. In addition, the experimental results are compared with computational predictions for each of the three configurations from the Enter flow solver, AIRPLANE. The computational and experimental results both indicate moderate to substantial performance gains for the optimized configurations over the baseline configuration. The computed performance changes with and without diverters and nacelles were in excellent agreement with experiment for all three models. Comparisons of the computational and experimental cruise drag increments for the optimized configurations relative to the baseline show excellent agreement for the model designed by the Euler method, but poorer comparisons were found for the configuration designed by the full-potential code.
NASA Technical Reports Server (NTRS)
Giffin, R. G.; Mcfalls, R. A.; Beacher, B. F.
1977-01-01
The fan aerodynamic and aeromechanical performance tests of the quiet clean short haul experimental engine under the wing fan and inlet with a simulated core flow are described. Overall forward mode fan performance is presented at each rotor pitch angle setting with conventional flow pressure ratio efficiency fan maps, distinguishing the performance characteristics of the fan bypass and fan core regions. Effects of off design bypass ratio, hybrid inlet geometry, and tip radial inlet distortion on fan performance are determined. The nonaxisymmetric bypass OGV and pylon configuration is assessed relative to both total pressure loss and induced circumferential flow distortion. Reverse mode performance, obtained by resetting the rotor blades through both the stall pitch and flat pitch directions, is discussed in terms of the conventional flow pressure ratio relationship and its implications upon achievable reverse thrust. Core performance in reverse mode operation is presented in terms of overall recovery levels and radial profiles existing at the simulated core inlet plane. Observations of the starting phenomena associated with the initiation of stable rotor flow during acceleration in the reverse mode are briefly discussed. Aeromechanical response characteristics of the fan blades are presented as a separate appendix, along with a description of the vehicle instrumentation and method of data reduction.
Auto-Gopher: A Wire-Line Rotary-Hammer Ultrasonic Drill
NASA Technical Reports Server (NTRS)
Badescu, Mircea; Sherrit, Stewart; Bao, Xiaogi; Bar-Cohen, Yoseph; Chen, Beck
2011-01-01
Developing technologies that would enable NASA to sample rock, soil, and ice by coring, drilling or abrading at a significant depth is of great importance for a large number of in-situ exploration missions as well as for earth applications. Proven techniques to sample Mars subsurface will be critical for future NASA astrobiology missions that will search for records of past and present life on the planet, as well as, the search for water and other resources. A deep corer, called Auto-Gopher, is currently being developed as a joint effort of the JPL's NDEAA laboratory and Honeybee Robotics Corp. The Auto-Gopher is a wire-line rotary-hammer drill that combines rock breaking by hammering using an ultrasonic actuator and cuttings removal by rotating a fluted bit. The hammering mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) that has been developed as an adaptable tool for many of drilling and coring applications. The USDC uses an intermediate free-flying mass to transform the high frequency vibrations of the horn tip into a sonic hammering of a drill bit. The USDC concept was used in a previous task to develop an Ultrasonic/Sonic Ice Gopher. The lessons learned from testing the ice gopher were implemented into the design of the Auto-Gopher by inducing a rotary motion onto the fluted coring bit. A wire-line version of such a system would allow penetration of significant depth without a large increase in mass. A laboratory version of the corer was developed in the NDEAA lab to determine the design and drive parameters of the integrated system. The design configuration lab version of the design and fabrication and preliminary testing results are presented in this paper
NASA Technical Reports Server (NTRS)
Groom, Nelson J.; Britcher, Colin P.
1992-01-01
The open-loop characteristics of a Large-Gap Magnetic Suspension System (LGMSS) were studied and numerical results are presented. The LGMSS considered provides five-degree-of-freedom control. The suspended element is a cylinder that contains a core composed of permanent magnet material. The magnetic actuators are air core electromagnets mounted in a planar array. Configurations utilizing five, six, seven, and eight electromagnets were investigated and all configurations were found to be controllable from coil currents and observable from suspended element positions. Results indicate that increasing the number of coils has an insignificant effect on mode shapes and frequencies.
Loss-of-Flow and Loss-of-Pressure Simulations of the BR2 Research Reactor with HEU and LEU Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Licht, J.; Bergeron, A.; Dionne, B.
2016-01-01
Belgian Reactor 2 (BR2) is a research and test reactor located in Mol, Belgium and is primarily used for radioisotope production and materials testing. The Materials Management and Minimization (M3) Reactor Conversion Program of the National Nuclear Security Administration (NNSA) is supporting the conversion of the BR2 reactor from Highly Enriched Uranium (HEU) fuel to Low Enriched Uranium (LEU) fuel. The reactor core of BR2 is located inside a pressure vessel that contains 79 channels in a hyperboloid configuration. The core configuration is highly variable as each channel can contain a fuel assembly, a control or regulating rod, an experimentalmore » device, or a beryllium or aluminum plug. Because of this variability, a representative core configuration, based on current reactor use, has been defined for the fuel conversion analyses. The code RELAP5/Mod 3.3 was used to perform the transient thermal-hydraulic safety analyses of the BR2 reactor to support reactor conversion. The input model has been modernized relative to that historically used at BR2 taking into account the best modeling practices developed by Argonne National Laboratory (ANL) and BR2 engineers.« less
SAD-Based Stereo Vision Machine on a System-on-Programmable-Chip (SoPC)
Zhang, Xiang; Chen, Zhangwei
2013-01-01
This paper, proposes a novel solution for a stereo vision machine based on the System-on-Programmable-Chip (SoPC) architecture. The SOPC technology provides great convenience for accessing many hardware devices such as DDRII, SSRAM, Flash, etc., by IP reuse. The system hardware is implemented in a single FPGA chip involving a 32-bit Nios II microprocessor, which is a configurable soft IP core in charge of managing the image buffer and users' configuration data. The Sum of Absolute Differences (SAD) algorithm is used for dense disparity map computation. The circuits of the algorithmic module are modeled by the Matlab-based DSP Builder. With a set of configuration interfaces, the machine can process many different sizes of stereo pair images. The maximum image size is up to 512 K pixels. This machine is designed to focus on real time stereo vision applications. The stereo vision machine offers good performance and high efficiency in real time. Considering a hardware FPGA clock of 90 MHz, 23 frames of 640 × 480 disparity maps can be obtained in one second with 5 × 5 matching window and maximum 64 disparity pixels. PMID:23459385
High-efficiency, 154 W CW, diode-pumped Raman fiber laser with brightness enhancement.
Glick, Yaakov; Fromzel, Viktor; Zhang, Jun; Ter-Gabrielyan, Nikolay; Dubinskii, Mark
2017-01-20
We demonstrate a high-power, high-efficiency Raman fiber laser pumped directly by laser diode modules at 978 nm. 154 W of CW power were obtained at a wavelength of 1023 nm with an optical to optical efficiency of 65%. A commercial graded-index (GRIN) core fiber acts as the Raman fiber in a power oscillator configuration, which includes spectral selection to prevent generation of the second Stokes. In addition, brightness enhancement of the pump beam by a factor of 8.4 is attained due to the Raman gain distribution profile in the GRIN fiber. To the best of our knowledge this is the highest power and highest efficiency Raman fiber laser demonstrated in any configuration allowing brightness enhancement (i.e., in either cladding-pumped configuration or with GRIN fibers, excluding step-index core pumped), regardless of pumping scheme (i.e., either diode pumped or fiber laser pumped).
Torque ripple reduction in electric machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, Patel Bhageerath; Huh, Kum-Kang; El-Refaie, Ayman Mohamed Fawzi
An electric machine, such as an Internal Permanent magnet or Synchronous Reluctance machine, having X phases, that includes a stator assembly, having M slots, with a stator core and stator teeth, that is further configured with stator windings to generate a stator magnetic field when excited with alternating currents and extends along a longitudinal axis with an inner surface that defines a cavity; and a rotor assembly, having N poles, disposed within the cavity which is configured to rotate about the longitudinal axis, wherein the rotor assembly includes a shaft, a rotor core located circumferentially around the shaft. The machinemore » is configured such that a value k=M/(X*N) wherein k is a non-integer greater than about 1.3. The electric machine may alternatively, or additionally, include a non-uniformed gap between the exterior surface of the rotor spokes and the interior stator surface of the stator.« less
Mission Reliability Estimation for Repairable Robot Teams
NASA Technical Reports Server (NTRS)
Trebi-Ollennu, Ashitey; Dolan, John; Stancliff, Stephen
2010-01-01
A mission reliability estimation method has been designed to translate mission requirements into choices of robot modules in order to configure a multi-robot team to have high reliability at minimal cost. In order to build cost-effective robot teams for long-term missions, one must be able to compare alternative design paradigms in a principled way by comparing the reliability of different robot models and robot team configurations. Core modules have been created including: a probabilistic module with reliability-cost characteristics, a method for combining the characteristics of multiple modules to determine an overall reliability-cost characteristic, and a method for the generation of legitimate module combinations based on mission specifications and the selection of the best of the resulting combinations from a cost-reliability standpoint. The developed methodology can be used to predict the probability of a mission being completed, given information about the components used to build the robots, as well as information about the mission tasks. In the research for this innovation, sample robot missions were examined and compared to the performance of robot teams with different numbers of robots and different numbers of spare components. Data that a mission designer would need was factored in, such as whether it would be better to have a spare robot versus an equivalent number of spare parts, or if mission cost can be reduced while maintaining reliability using spares. This analytical model was applied to an example robot mission, examining the cost-reliability tradeoffs among different team configurations. Particularly scrutinized were teams using either redundancy (spare robots) or repairability (spare components). Using conservative estimates of the cost-reliability relationship, results show that it is possible to significantly reduce the cost of a robotic mission by using cheaper, lower-reliability components and providing spares. This suggests that the current design paradigm of building a minimal number of highly robust robots may not be the best way to design robots for extended missions.
NASA Technical Reports Server (NTRS)
Case, Jonathan; Blottman, Pete; Hoeth, Brian; Oram, Timothy
2006-01-01
The Weather Research and Forecasting (WRF) model is the next generation community mesoscale model designed to enhance collaboration between the research and operational sectors. The NM'S as a whole has begun a transition toward WRF as the mesoscale model of choice to use as a tool in making local forecasts. Currently, both the National Weather Service in Melbourne, FL (NWS MLB) and the Spaceflight Meteorology Group (SMG) are running the Advanced Regional Prediction System (AIRPS) Data Analysis System (ADAS) every 15 minutes over the Florida peninsula to produce high-resolution diagnostics supporting their daily operations. In addition, the NWS MLB and SMG have used ADAS to provide initial conditions for short-range forecasts from the ARPS numerical weather prediction (NWP) model. Both NM'S MLB and SMG have derived great benefit from the maturity of ADAS, and would like to use ADAS for providing initial conditions to WRF. In order to assist in this WRF transition effort, the Applied Meteorology Unit (AMU) was tasked to configure and implement an operational version of WRF that uses output from ADAS for the model initial conditions. Both agencies asked the AMU to develop a framework that allows the ADAS initial conditions to be incorporated into the WRF Environmental Modeling System (EMS) software. Developed by the NM'S Science Operations Officer (S00) Science and Training Resource Center (STRC), the EMS is a complete, full physics, NWP package that incorporates dynamical cores from both the National Center for Atmospheric Research's Advanced Research WRF (ARW) and the National Centers for Environmental Prediction's Non-Hydrostatic Mesoscale Model (NMM) into a single end-to-end forecasting system. The EMS performs nearly all pre- and postprocessing and can be run automatically to obtain external grid data for WRF boundary conditions, run the model, and convert the data into a format that can be readily viewed within the Advanced Weather Interactive Processing System. The EMS has also incorporated the WRF Standard Initialization (SI) graphical user interface (GUT), which allows the user to set up the domain, dynamical core, resolution, etc., with ease. In addition to the SI GUT, the EMS contains a number of configuration files with extensive documentation to help the user select the appropriate input parameters for model physics schemes, integration timesteps, etc. Therefore, because of its streamlined capability, it is quite advantageous to configure ADAS to provide initial condition data to the EMS software. One of the biggest potential benefits of configuring ADAS for ingest into the EMS is that the analyses could be used to initialize either the ARW or NMM. Currently, the ARPS/ADAS software has a conversion routine only for the ARW dynamical core. However, since the NIvIM runs about 2.5 times faster than the ARW, it is quite advantageous to be able to run an ADAS/NMM configuration operationally due to the increased efficiency.
Preliminary base heating environments for a generalized ALS LO2/LH2 launch vehicle, appendix 1 and 2
NASA Technical Reports Server (NTRS)
Bender, Robert L.; Reardon, John E.
1989-01-01
A secondary objective of contract NAS8-39141 is to provide base heating assessments, as required, to support Advanced Launch System (ALS) preliminary launch vehicle and propulsion system design studies. The ALS propulsion systems integration working group meeting (No. 3) recently completed in San Diego, California, focused attention on the need for base heating environment determination to provide preliminary requirements for LO2/LH2 propulsion systems currently being considered for ALS. We were requested to provide these environments for a range of possible propellant mixture and nozzle area ratios. Base heating environments can only be determined as a function of altitude when the engine operating conditions and vehicle base region geometry (engine arrangement) are known. If time dependent environments are needed to assess thermal loads, a trajectory must also be provided. These parameters are not fixed at this time since the ALS configurations and propulsion operating conditions are varied and continue to be studied by Phase B contractors. Therefore, for this study, a generalized LO2/LH2 system was selected along with a vehicle configuration consisting of a seven-engine booster and a three-engine core. MSFC provided guidance for the selection. We also selected a limited number of body points on the booster and core vehicles and engines for the environment estimates. Environments at these locations are representative of maximum heating conditions in the base region and are provided as a function of altitude only. Guidelines and assumptions for this assessment, methodology for determining the environments, and preliminary results are provided in this technical note. Refinements in the environments will be provided as the ALS design matures.
NASA Astrophysics Data System (ADS)
Malleville, Marie-Alicia; Benoît, Aurélien; Dauliat, Romain; Leconte, Baptiste; Darwich, Dia; du Jeu, Rémi; Jamier, Raphaël.; Schwuchow, Anka; Schuster, Kay; Roy, Philippe
2018-02-01
Over the last decade, significant work has been carried out in order to increase the energy/peak power provided by fiber lasers. Indeed, new microstructured fibers with large (or very large) mode area cores (LMA) such as Distributed Mode Filtering (DMF) fibers and Large-Pitch Fibers (LPF) have been developed to address this concern. These technologies have allowed diffraction-limited emission with core diameters higher than 80 μm, and have state-of-the-art performances in terms of pulse energy or peak power while keeping an excellent spatial beam quality. Although these fibers were designed to reach high power levels while maintaining a single transverse mode propagation, power scaling becomes quickly limited by the onset of transverse modal instabilities (TMI). This effect suddenly arises when a certain average power threshold is exceeded, drastically degrading the emitted beam quality. In this work, we investigate the influence of the core dimensions and the refractive index mismatch between the active core and the background cladding material, on the TMI power threshold in rod-type Fully-Aperiodic-LPF. This fiber structure was specifically designed to enhance the higher-order modes (HOMs) delocalization out of the gain region and thus push further the onset of modal instabilities. Using a 400W pump diode at 976 nm, the power scaling, as well as the spatial beam quality and its temporal behavior were investigated in laser configuration, which theoretically provides a lower TMI power threshold than the amplifier one due to the lack of selective excitation of the fundamental mode.
NASA Technical Reports Server (NTRS)
Ralph, E. L.; Linder, E. B.
1995-01-01
Solar panel designs that utilize new high-efficiency solar cells and lightweight rigid panel technologies are described. The resulting designs increase the specific power (W/kg) achievable in the near-term and are well suited to meet the demands of higher performance small satellites (smallsats). Advanced solar panel designs have been developed and demonstrated on two NASA SBIR contracts at Applied Solar. The first used 19% efficient, large area (5.5 cm x 6.5 cm) GaAs/Ge solar cells with a lightweight rigid graphite epoxy isogrid substrate configuration. A 1,445 sq cm coupon was fabricated and tested to demonstrate 60 W/kg with a high potential of achieving 80 W/kg. The second panel design used new 22% efficiency, dual-junction GaInP2/GaAs/Ge solar cells combined with a lightweight aluminum core/graphite fiber mesh facesheet substrate. A 1,445 sq cm coupon was fabricated and tested to demonstrate 105 W/kg with the potential of achieving 115 W/kg.
Advanced Thermal Simulator Testing: Thermal Analysis and Test Results
NASA Technical Reports Server (NTRS)
Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe
2008-01-01
Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a SNAP derivative reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.
Influence of magnetic field configuration on magnetohydrodynamic waves in Earth's core
NASA Astrophysics Data System (ADS)
Knezek, Nicholas; Buffett, Bruce
2018-04-01
We develop a numerical model to study magnetohydrodynamic waves in a thin layer of stratified fluid near the surface of Earth's core. Past studies have been limited to using simple background magnetic field configurations. However, the choice of field distribution can dramatically affect the structure and frequency of the waves. To permit a more general treatment of background magnetic field and layer stratification, we combine finite volume and Fourier methods to describe the wave motions. We validate our model by comparisons to previous studies and examine the influence of background magnetic field configuration on two types of magnetohydrodynamic waves. We show that the structure of zonal Magnetic-Archimedes-Coriolis (MAC) waves for a dipole background field is unstable to small perturbations of the field strength in the equatorial region. Modifications to the wave structures are computed for a range of field configurations. In addition, we show that non-zonal MAC waves are trapped near the equator for realistic magnetic field distributions, and that their latitudinal extent depends upon the distribution of magnetic field strength at the CMB.
NASA Astrophysics Data System (ADS)
Matsumoto, K.; Hanano, T.; Ito, K.; Ishihara, M.; Higashi, T.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.
2011-10-01
The current drive by Multi-pulsing Coaxial Helicity Injection (M-CHI) has been performed on HIST in a wide range of configurations from high-q ST to low-q ST and spheromak generated by the utilization of the toroidal field. It is a key issue to investigate the dynamo mechanism required to maintain each configuration. To identify the detail mechanisms regarding a helicity transport from the edge to the core region, we have investigated the characteristics of magnetic field fluctuations observed in M- CHI experiments. We have fitted internal magnetic field data to a ST configuration calculated by the equilibrium code with a hollow pressure profile in order to find the sustained configurations. Fluctuation frequency is identified as about 80 kHz and it has been found to propagate from the open flux column region toward the core region. The toroidal mode n=0 is dominant in the high TF coil current operation. Alfven wave generation has been identified by evaluating its velocity as a function of plasma density or magnetic field strength. We will discuss the relationship between the Alfven wave and helicity propagation.
Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai
2015-01-01
This paper presented construction and strain distributions for light-weight wood-fiber-based structural panels with tri-grid core made from phenolic impregnated laminated paper composites under bending. A new fastening configuration of slots in the faces and tabs on the core was applied to the face/core interfaces of the sandwich panel in addition to epoxy resin. Both...
Star cell type core configuration for structural sandwich materials
Christensen, R.M.
1995-08-01
A new pattern for cellular core material used in sandwich type structural materials is disclosed. The new pattern involves star shaped cells intermixed with hexagonal shaped cells. The new patterned cellular core material includes star shaped cells interconnected at points thereof and having hexagonal shape cells positioned adjacent the star points. The new pattern allows more flexibility and can conform more easily to curved shapes. 3 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Z.; Klann, R. T.; Nuclear Engineering Division
2007-08-03
An initial series of calculations of the reactivity-worth of the OSMOSE samples in the MINERVE reactor with the R2-UO2 and MORGANE/R core configuration were completed. The calculation model was generated using the lattice physics code DRAGON. In addition, an initial comparison of calculated values to experimental measurements was performed based on preliminary results for the R1-MOX configuration.
Range-Specific High-resolution Mesoscale Model Setup
NASA Technical Reports Server (NTRS)
Watson, Leela R.
2013-01-01
This report summarizes the findings from an AMU task to determine the best model configuration for operational use at the ER and WFF to best predict winds, precipitation, and temperature. The AMU ran test cases in the warm and cool seasons at the ER and for the spring and fall seasons at WFF. For both the ER and WFF, the ARW core outperformed the NMM core. Results for the ER indicate that the Lin microphysical scheme and the YSU PBL scheme is the optimal model configuration for the ER. It consistently produced the best surface and upper air forecasts, while performing fairly well for the precipitation forecasts. Both the Ferrier and Lin microphysical schemes in combination with the YSU PBL scheme performed well for WFF in the spring and fall seasons. The AMU has been tasked with a follow-on modeling effort to recommended local DA and numerical forecast model design optimized for both the ER and WFF to support space launch activities. The AMU will determine the best software and type of assimilation to use, as well as determine the best grid resolution for the initialization based on spatial and temporal availability of data and the wall clock run-time of the initialization. The AMU will transition from the WRF EMS to NU-WRF, a NASA-specific version of the WRF that takes advantage of unique NASA software and datasets. 37
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daling, P.M.; Marler, J.E.; Vo, T.V.
This study evaluates the values (benefits) and impacts (costs) associated with potential resolutions to Generic Issue 143, ``Availability of HVAC and Chilled Water Systems.`` The study identifies vulnerabilities related to failures of HVAC, chilled water, and room cooling systems; develops estimates of room heatup rates and safety-related equipment vulnerabilities following losses of HVAC/room cooler systems; develops estimates of the core damage frequencies and public risks associated with failures of these systems; develops three proposed resolution strategies to this generic issue; and performs a value/impact analysis of the proposed resolutions. Existing probabilistic risk assessments for four representative plants, including one plantmore » from each vendor, form the basis for the core damage frequency and public risk calculations. Both internal and external events were considered. It was concluded that all three proposed resolution strategies exceed the $1,000/person-rem cost-effectiveness ratio. Additional evaluations were performed to develop ``generic`` insights on potential design-related and configuration-related vulnerabilities and potential high-frequency ({approximately}1E-04/RY) accident sequences that involve failures of HVAC/room cooling functions. It was concluded that, although high-frequency accident sequences may exist at some plants, these high-frequency sequences are plant-specific in nature or have been resolved through hardware and/or operational changes. The plant-specific Individual Plant Examinations are an effective vehicle for identification and resolution of these plant-specific anomalies and hardware configurations.« less
Bess, John D.; Fujimoto, Nozomu
2014-10-09
Benchmark models were developed to evaluate six cold-critical and two warm-critical, zero-power measurements of the HTTR. Additional measurements of a fully-loaded subcritical configuration, core excess reactivity, shutdown margins, six isothermal temperature coefficients, and axial reaction-rate distributions were also evaluated as acceptable benchmark experiments. Insufficient information is publicly available to develop finely-detailed models of the HTTR as much of the design information is still proprietary. However, the uncertainties in the benchmark models are judged to be of sufficient magnitude to encompass any biases and bias uncertainties incurred through the simplification process used to develop the benchmark models. Dominant uncertainties in themore » experimental keff for all core configurations come from uncertainties in the impurity content of the various graphite blocks that comprise the HTTR. Monte Carlo calculations of keff are between approximately 0.9 % and 2.7 % greater than the benchmark values. Reevaluation of the HTTR models as additional information becomes available could improve the quality of this benchmark and possibly reduce the computational biases. High-quality characterization of graphite impurities would significantly improve the quality of the HTTR benchmark assessment. Simulation of the other reactor physics measurements are in good agreement with the benchmark experiment values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments.« less
Photonic jet with ultralong working distance by hemispheric shell.
Hengyu, Zhu; Zaichun, Chen; Chong, Chong Tow; Minghui, Hong
2015-03-09
Micro-particle assisted nano-imaging has proven its success in the past few years since it can magnify the nano-objects, especially the metallic objects, into an image then collected by a conventional microscope. Micro-shell, which is a novel design of micro-particle in the configuration of a hemisphere with a hollow core region, is proposed and optimized in this paper in order to obtain a long photonic jet far away from its flat surface, thus increasing its working distance. Its dependence on the configuration and refractive index is investigated numerically. A micro-shell with the outer and inner radii of 5 and 2.5 µm and the refractive index of 1.5 can focus the incident light of 400 nm wavelength 2.7 µm away from the micro-shell flat surface, although the photonic jet intensity decreases to 25.8% compared to the solid hemisphere. Meanwhile, the photonic jet length of the micro-shell under the incident light of 400 nm and 1000 nm wavelengths are 1.7 µm and 4.3 µm, respectively, because its hollow core region tends to reduce the angle variation of the Poynting vectors in the photonic jet. With the long working distance and long photonic jet, the micro-shell could be used to scan over a sample to obtain a large area image when coupled with a conventional microscope, which is especially useful for the samples with the rough surfaces.
Core to Atmosphere Exploration of Ice Giants: A Uranus Mission Concept Study
NASA Astrophysics Data System (ADS)
Jensema, R. J.; Arias-Young, T. M.; Wilkins, A. N.; Ermakov, A.; Bennett, C.; Dietrich, A.; Hemingway, D.; Klein, V.; Mane, P.; Marr, K. D.; Masterson, J.; Siegel, V.; Stober, K. J.; Talpe, M.; Vines, S. K.; Wetteland, C. J.
2014-12-01
Ice giants remain largely unexplored, as their large distance from the Sun limits both Earth-based observations and spacecraft visits. The significant occurrence of ice giant-sized planets among detected exoplanets presents an impetus to study Uranus to understand planetary formation, dynamics, and evolution. In addition, Uranus is also uniquely interesting, given the large inclination of its rotation axis and magnetospheric configuration. In this work, we design a mission concept that aims to maximize scientific return by measuring Uranus' chemical composition, internal structure, and magnetosphere, the first two being primary indicators of ice giant formation mechanisms. For this study, we analyze the trade space for a Uranus mission constrained by a cost cap of $1B. We discuss the decision making processes behind our choices of the science priorities, instrument suite and orbital configuration. Trade space decisions include a strong onboard instrument suite in lieu of a descent probe, an orbiter instead of a flyby mission, and design constraints on the power and propulsion systems. The mission, CAELUS (Core and Atmospheric Evolution Laboratory for Uranus Science), is designed for an August 2023 launch. Following a 14-year cruise with multiple planetary gravity assists, the spacecraft would begin its science mission, which consists of a series of ten 30-day near-polar orbits around Uranus. The instrument suite would consist of a microwave radiometer, Doppler seismometer, magnetometer, and UV spectrometer. These four instruments, along with a high-gain antenna capable of gravity science, would provide a comprehensive science return that meets the bulk of the scientific objectives of the 2013 NRC Planetary Science Decadal Survey for ice giants, most notably those regarding the chemical composition, interior structure, and dynamo of Uranus. This mission concept was created as part of an educational exercise for the 2014 Planetary Science Summer School at the Jet Propulsion Laboratory.
NASA Astrophysics Data System (ADS)
Lyan, Oleg; Jankunas, Valdas; Guseinoviene, Eleonora; Pašilis, Aleksas; Senulis, Audrius; Knolis, Audrius; Kurt, Erol
2018-02-01
In this study, a permanent magnet synchronous generator (PMSG) topology with compensated reactance windings in parallel rod configuration is proposed to reduce the armature reactance X L and to achieve higher efficiency of PMSG. The PMSG was designed using iron-cored bifilar coil topology to overcome problems of market-dominant rotary type generators. Often the problem is a comparatively high armature reactance X L, which is usually bigger than armature resistance R a. Therefore, the topology is proposed to partially compensate or negligibly reduce the PMSG reactance. The study was performed by using finite element method (FEM) analysis and experimental investigation. FEM analysis was used to investigate magnetic field flux distribution and density in PMSG. The PMSG experimental analyses of no-load losses and electromotive force versus frequency (i.e., speed) was performed. Also terminal voltage, power output and efficiency relation with load current at different frequencies have been evaluated. The reactance of PMSG has low value and a linear relation with operating frequency. The low reactance gives a small variation of efficiency (from 90% to 95%) in a wide range of load (from 3 A to 10 A) and operation frequency (from 44 Hz to 114 Hz). The comparison of PMSG characteristics with parallel and series winding connection showed insignificant power variation. The research results showed that compensated reactance winding in parallel rod configuration in PMSG design provides lower reactance and therefore, higher efficiency under wider load and frequency variation.
Heuristic rules embedded genetic algorithm for in-core fuel management optimization
NASA Astrophysics Data System (ADS)
Alim, Fatih
The objective of this study was to develop a unique methodology and a practical tool for designing loading pattern (LP) and burnable poison (BP) pattern for a given Pressurized Water Reactor (PWR) core. Because of the large number of possible combinations for the fuel assembly (FA) loading in the core, the design of the core configuration is a complex optimization problem. It requires finding an optimal FA arrangement and BP placement in order to achieve maximum cycle length while satisfying the safety constraints. Genetic Algorithms (GA) have been already used to solve this problem for LP optimization for both PWR and Boiling Water Reactor (BWR). The GA, which is a stochastic method works with a group of solutions and uses random variables to make decisions. Based on the theories of evaluation, the GA involves natural selection and reproduction of the individuals in the population for the next generation. The GA works by creating an initial population, evaluating it, and then improving the population by using the evaluation operators. To solve this optimization problem, a LP optimization package, GARCO (Genetic Algorithm Reactor Code Optimization) code is developed in the framework of this thesis. This code is applicable for all types of PWR cores having different geometries and structures with an unlimited number of FA types in the inventory. To reach this goal, an innovative GA is developed by modifying the classical representation of the genotype. To obtain the best result in a shorter time, not only the representation is changed but also the algorithm is changed to use in-core fuel management heuristics rules. The improved GA code was tested to demonstrate and verify the advantages of the new enhancements. The developed methodology is explained in this thesis and preliminary results are shown for the VVER-1000 reactor hexagonal geometry core and the TMI-1 PWR. The improved GA code was tested to verify the advantages of new enhancements. The core physics code used for VVER in this research is Moby-Dick, which was developed to analyze the VVER by SKODA Inc. The SIMULATE-3 code, which is an advanced two-group nodal code, is used to analyze the TMI-1.
NASA Astrophysics Data System (ADS)
Kshad, Mohamed Ali E.; D'Hondt, Clement; Naguib, Hani E.
2017-10-01
Core panels used for compression or impact damping are designed to dissipate energy and to reduce the transferred force and energy. They are designed to have high strain and deformation with low density. The geometrical configuration of such cores plays a significant role in redistributing the applied forces to dampen the compression and impact energy. Origami structures are renowned for affording large macroscopic deformation which can be employed for force redistribution and energy damping. The material selection for the fabrication of origami structures affects the core capacity to withstand compression and impact loads. Polymers are characterized by their high compression and impact resistance; the drawback of polymers is the low stiffness and elastic moduli compared with metallic materials. This work is focused on the study of the effect of Carbon Nano Fibers (CNF) on the global mechanical properties of the origami panel cores made of polymeric blends. The base matrix materials used were Polylactic Acid (PLA) and Thermoplastic Polyurethane (TPU) blends, and the percentages of the PLA/TPU were 100/0, 20/80, 65/35, 50/50, 20/80, and 0/100 as a percentage of weight. The weight percentages of CNF added to the polymeric blends were 1%, 3%, and 5%. This paper deals with the fabrication process of the polymeric reinforced blends and the origami cores, in order to predict the best fabrication conditions. The dynamic scanning calorimetry and the dynamic mechanical analyzer were used to test the reinforced blended base material for thermomechanical and viscoelastic properties. The origami core samples were fabricated using per-molded geometrical features and then tested for compression and impact properties. The results of the study were compared with previous published results which showed that there is considerable enhancement in the mechanical properties of the origami cores compared with the pure blended polymeric origami cores. The active properties of the origami unit cell made of composite polymers containing a low percentage of CNF were also investigated in this study, in which the shape memory effect test conducted on the origami unit cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syarifah, Ratna Dewi, E-mail: syarifah.physics@gmail.com; Suud, Zaki, E-mail: szaki@fi.itb.ac.id
Design study of small Pressurized Water Reactors (PWRs) core loaded with uranium nitride fuel (UN) and mixed nitride fuel (UN-PuN), Pa-231 as burnable poison, and Americium has been performed. Pa-231 known as actinide material, have large capture cross section and can be converted into fissile material that can be utilized to reduce excess reactivity. Americium is one of minor actinides with long half life. The objective of adding americium is to decrease nuclear spent fuel in the world. The neutronic analysis results show that mixed nitride fuel have k-inf greater than uranium nitride fuel. It is caused by the additionmore » of Pu-239 in mixed nitride fuel. In fuel fraction analysis, for uranium nitride fuel, the optimum volume fractions are 45% fuel fraction, 10% cladding and 45% moderator. In case of UN-PuN fuel, the optimum volume fractions are 30% fuel fraction, 10% cladding and 60% coolant/ moderator. The addition of Pa-231 as burnable poison for UN fuel, enrichment U-235 5%, with Pa-231 1.6% has k-inf more than one and excess reactivity of 14.45%. And for mixed nitride fuel, the lowest value of reactivity swing is when enrichment (U-235+Pu) 8% with Pa-231 0.4%, the excess reactivity value 13,76%. The fuel pin analyze for the addition of Americium, the excess reactivity value is lower than before, because Americium absorb the neutron. For UN fuel, enrichment U-235 8%, Pa-231 1.6% and Am 0.5%, the excess reactivity is 4.86%. And for mixed nitride fuel, when enrichment (U-235+Pu) 13%, Pa-231 0.4% and Am 0.1%, the excess reactivity is 11.94%. For core configuration, it is better to use heterogeneous than homogeneous core configuration, because the radial power distribution is better.« less
Robust design of configurations and parameters of adaptable products
NASA Astrophysics Data System (ADS)
Zhang, Jian; Chen, Yongliang; Xue, Deyi; Gu, Peihua
2014-03-01
An adaptable product can satisfy different customer requirements by changing its configuration and parameter values during the operation stage. Design of adaptable products aims at reducing the environment impact through replacement of multiple different products with single adaptable ones. Due to the complex architecture, multiple functional requirements, and changes of product configurations and parameter values in operation, impact of uncertainties to the functional performance measures needs to be considered in design of adaptable products. In this paper, a robust design approach is introduced to identify the optimal design configuration and parameters of an adaptable product whose functional performance measures are the least sensitive to uncertainties. An adaptable product in this paper is modeled by both configurations and parameters. At the configuration level, methods to model different product configuration candidates in design and different product configuration states in operation to satisfy design requirements are introduced. At the parameter level, four types of product/operating parameters and relations among these parameters are discussed. A two-level optimization approach is developed to identify the optimal design configuration and its parameter values of the adaptable product. A case study is implemented to illustrate the effectiveness of the newly developed robust adaptable design method.
Feasibility Study of Graphite Epoxy Antenna for a Microwave Limb Sounder Radiometer (MLSR)
NASA Technical Reports Server (NTRS)
1979-01-01
Results are presented of a feasibility study to design graphite epoxy antenna reflectors for a jet propulsion laboratory microwave limb sounder instrument (MLSR). Two general configurations of the offset elliptic parabolic reflectors are presented that will meet the requirements on geometry and reflector accuracy. The designs consist of sandwich construction for the primary reflectors, secondary reflector support structure and cross-tie members between reflector pairs. Graphite epoxy materials of 3 and 6 plies are used in the facesheets of the sandwich. An aluminum honeycomb is used for the core. A built-in adjustment system is proposed to reduce surface distortions during assembly. The manufacturing and environmental effects are expected to result in surface distortions less than .0015 inch and pointing errors less than .002 degree.
Dikshit, Vishwesh; Nagalingam, Arun Prasanth; Yap, Yee Ling; Sing, Swee Leong; Yeong, Wai Yee; Wei, Jun
2017-01-01
The objective of this investigation was to determine the quasi-static indentation response and failure mode in three-dimensional (3D) printed trapezoidal core structures, and to characterize the energy absorbed by the structures. In this work, the trapezoidal sandwich structure was designed in the following two ways. Firstly, the trapezoidal core along with its facesheet was 3D printed as a single element comprising a single material for both core and facesheet (type A); Secondly, the trapezoidal core along with facesheet was 3D printed, but with variation in facesheet materials (type B). Quasi-static indentation was carried out using three different indenters, namely standard hemispherical, conical, and flat indenters. Acoustic emission (AE) technique was used to capture brittle cracking in the specimens during indentation. The major failure modes were found to be brittle failure and quasi-brittle fractures. The measured indentation energy was at a maximum when using a conical indenter at 9.40 J and 9.66 J and was at a minimum when using a hemispherical indenter at 6.87 J and 8.82 J for type A and type B series specimens respectively. The observed maximum indenter displacements at failure were the effect of material variations and composite configurations in the facesheet. PMID:28772649
Dikshit, Vishwesh; Nagalingam, Arun Prasanth; Yap, Yee Ling; Sing, Swee Leong; Yeong, Wai Yee; Wei, Jun
2017-03-14
The objective of this investigation was to determine the quasi-static indentation response and failure mode in three-dimensional (3D) printed trapezoidal core structures, and to characterize the energy absorbed by the structures. In this work, the trapezoidal sandwich structure was designed in the following two ways. Firstly, the trapezoidal core along with its facesheet was 3D printed as a single element comprising a single material for both core and facesheet (type A); Secondly, the trapezoidal core along with facesheet was 3D printed, but with variation in facesheet materials (type B). Quasi-static indentation was carried out using three different indenters, namely standard hemispherical, conical, and flat indenters. Acoustic emission (AE) technique was used to capture brittle cracking in the specimens during indentation. The major failure modes were found to be brittle failure and quasi-brittle fractures. The measured indentation energy was at a maximum when using a conical indenter at 9.40 J and 9.66 J and was at a minimum when using a hemispherical indenter at 6.87 J and 8.82 J for type A and type B series specimens respectively. The observed maximum indenter displacements at failure were the effect of material variations and composite configurations in the facesheet.
Development of a high permeability cored transintegumental power transformer.
Helmicki, A J; Melvin, D M; Henderson, H T; Nebrigic, D; Venkat, R; Glos, D L
1996-01-01
Circulatory support devices require 10-20 W. Currently, several devices are under development for the transmission of this power via transcutaneous transformers, with the secondary implanted subcutaneously and the primary worn externally. Because these devices are air cored, they have relatively large, bulky external appliances, poor coil to coil coupling, and result in significant stray fields passing through adjacent tissues. This article reports on the engineering design of a novel, high permeability cored transformer implanted in a transenteric configuration using an isolated intestinal pouch. Such an approach offers greater energy transmission efficiency, less heat dissipation, less stray electromagnetic energy, and greatly reduced device size. Two competing designs using this concept have been developed and tested. Each consists of the transformer, together with power interface electronics, forming a direct current (DC)/DC resonant converter. Operating frequencies are 90.2 and 14.7 kHz, respectively, with primary/secondary turns ratios of 10/10 and 11/14, respectively. In addition, data interface electronics allows communication across the transformer of up to four signals at a per channel sample rate of 10 Hz. Both designs are able to continuously transmit 25 W at an output level of 12 Vdc into a 5.8 omega load. Calorimetry tests indicate DC to DC efficiencies greater than 75% and coil to coil efficiencies greater than 96%. Total package size for the implantable portion of each device (including sensor internal interface electronics) is less than 40 ml, with a weight weight of less than 100 g. The results of short-term implantation studies have been favorable. Long-term implantation studies currently are under way.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Sameer; Mamidala, Amith R.; Ratterman, Joseph D.
A system and method for enhancing barrier collective synchronization on a computer system comprises a computer system including a data storage device. The computer system includes a program stored in the data storage device and steps of the program being executed by a processor. The system includes providing a plurality of communicators for storing state information for a bather algorithm. Each communicator designates a master core in a multi-processor environment of the computer system. The system allocates or designates one counter for each of a plurality of threads. The system configures a table with a number of entries equal tomore » the maximum number of threads. The system sets a table entry with an ID associated with a communicator when a process thread initiates a collective. The system determines an allocated or designated counter by searching entries in the table.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blocksome, Michael; Kumar, Sameer; Mamidala, Amith R.
A system and method for enhancing barrier collective synchronization on a computer system comprises a computer system including a data storage device. The computer system includes a program stored in the data storage device and steps of the program being executed by a processor. The system includes providing a plurality of communicators for storing state information for a barrier algorithm. Each communicator designates a master core in a multi-processor environment of the computer system. The system allocates or designates one counter for each of a plurality of threads. The system configures a table with a number of entries equal tomore » the maximum number of threads. The system sets a table entry with an ID associated with a communicator when a process thread initiates a collective. The system determines an allocated or designated counter by searching entries in the table.« less
Kumar, Sameer; Mamidala, Amith R.; Ratterman, Joseph D.; Blocksome, Michael; Miller, Douglas
2013-09-03
A system and method for enhancing barrier collective synchronization on a computer system comprises a computer system including a data storage device. The computer system includes a program stored in the data storage device and steps of the program being executed by a processor. The system includes providing a plurality of communicators for storing state information for a bather algorithm. Each communicator designates a master core in a multi-processor environment of the computer system. The system allocates or designates one counter for each of a plurality of threads. The system configures a table with a number of entries equal to the maximum number of threads. The system sets a table entry with an ID associated with a communicator when a process thread initiates a collective. The system determines an allocated or designated counter by searching entries in the table.
Rapidly Re-Configurable Flight Simulator Tools for Crew Vehicle Integration Research and Design
NASA Technical Reports Server (NTRS)
Schutte, Paul C.; Trujillo, Anna; Pritchett, Amy R.
2000-01-01
While simulation is a valuable research and design tool, the time and difficulty required to create new simulations (or re-use existing simulations) often limits their application. This report describes the design of the software architecture for the Reconfigurable Flight Simulator (RFS), which provides a robust simulation framework that allows the simulator to fulfill multiple research and development goals. The core of the architecture provides the interface standards for simulation components, registers and initializes components, and handles the communication between simulation components. The simulation components are each a pre-compiled library 'plug-in' module. This modularity allows independent development and sharing of individual simulation components. Additional interfaces can be provided through the use of Object Data/Method Extensions (OD/ME). RFS provides a programmable run-time environment for real-time access and manipulation, and has networking capabilities using the High Level Architecture (HLA).
Rapidly Re-Configurable Flight Simulator Tools for Crew Vehicle Integration Research and Design
NASA Technical Reports Server (NTRS)
Pritchett, Amy R.
2002-01-01
While simulation is a valuable research and design tool, the time and difficulty required to create new simulations (or re-use existing simulations) often limits their application. This report describes the design of the software architecture for the Reconfigurable Flight Simulator (RFS), which provides a robust simulation framework that allows the simulator to fulfill multiple research and development goals. The core of the architecture provides the interface standards for simulation components, registers and initializes components, and handles the communication between simulation components. The simulation components are each a pre-compiled library 'plugin' module. This modularity allows independent development and sharing of individual simulation components. Additional interfaces can be provided through the use of Object Data/Method Extensions (OD/ME). RFS provides a programmable run-time environment for real-time access and manipulation, and has networking capabilities using the High Level Architecture (HLA).
A human performance evaluation of graphic symbol-design features.
Samet, M G; Geiselman, R E; Landee, B M
1982-06-01
16 subjects learned each of two tactical display symbol sets (conventional symbols and iconic symbols) in turn and were then shown a series of graphic displays containing various symbol configurations. For each display, the subject was asked questions corresponding to different behavioral processes relating to symbol use (identification, search, comparison, pattern recognition). The results indicated that: (a) conventional symbols yielded faster pattern-recognition performance than iconic symbols, and iconic symbols did not yield faster identification than conventional symbols, and (b) the portrayal of additional feature information (through the use of perimeter density or vector projection coding) slowed processing of the core symbol information in four tasks, but certain symbol-design features created less perceptual interference and had greater correspondence with the portrayal of specific tactical concepts than others. The results were discussed in terms of the complexities involved in the selection of symbol design features for use in graphic tactical displays.
Convective overshooting in the evolution of very massive stars
NASA Technical Reports Server (NTRS)
Stothers, R.; Chin, C.-W.
1981-01-01
Possible convective overshooting in stars of 30-120 solar masses are considered, including a merger between the convective core and the intermediate zone, and penetration by the outer convection zone into the hydrogen-shell region when the star is a supergiant. Convective mixing between the core and inner envelopes is found to lead to a brief renewal of hydrogen burning in the core, and a moderate widening of the main sequence bond in the H-R diagram. Deep penetration by the outer convection zone is found to force the star out of the red supergiant configuration and into a configuration near the main sequence. This would account for the apparent spread of the uppermost part of the main sequence and the concentration of luminous supergiants towards earlier spectral types. In addition, heavy mass loss need not be assumed to achieve the points of agreement, and are tentatively considered unimportant from an evolutionary point of view.
Tokamak reactor for treating fertile material or waste nuclear by-products
Kotschenreuther, Michael T.; Mahajan, Swadesh M.; Valanju, Prashant M.
2012-10-02
Disclosed is a tokamak reactor. The reactor includes a first toroidal chamber, current carrying conductors, at least one divertor plate within the first toroidal chamber and a second chamber adjacent to the first toroidal chamber surrounded by a section that insulates the reactor from neutrons. The current carrying conductors are configured to confine a core plasma within enclosed walls of the first toroidal chamber such that the core plasma has an elongation of 1.5 to 4 and produce within the first toroidal chamber at least one stagnation point at a perpendicular distance from an equatorial plane through the core plasma that is greater than the plasma minor radius. The at least one divertor plate and current carrying conductors are configured relative to one another such that the current carrying conductors expand the open magnetic field lines at the divertor plate.
Quantum interferometer based on GaAs/InAs core/shell nanowires connected to superconducting contacts
NASA Astrophysics Data System (ADS)
Haas, F.; Dickheuer, S.; Zellekens, P.; Rieger, T.; Lepsa, M. I.; Lüth, H.; Grützmacher, D.; Schäpers, Th
2018-06-01
An interferometer structure was realized based on a GaAs/InAs core/shell nanowire and Nb superconducting electrodes. Two pairs of Nb contacts are attached to the side facets of the nanowire allowing for carrier transport in three different orientations. Owing to the core/shell geometry, the current flows in the tubular conductive InAs shell. In transport measurements with superconducting electrodes directly facing each other, indications of a Josephson supercurrent are found. In contrast for junctions in diagonal and longitudinal configuration a deficiency current is observed, owing to the weaker coupling on longer distances. By applying a magnetic field along the nanowires axis pronounced h/2e flux-periodic oscillations are measured in all three contact configurations. The appearance of these oscillations is explained in terms of interference effects in the Josephson supercurrent and long-range phase-coherent Andreev reflection.
Bent-core fiber structure: Experimental and theoretical studies of fiber stability
NASA Astrophysics Data System (ADS)
Bailey, C.; Gartland, E.; Jakli, A.
2007-03-01
Recent studies have shown that bent core liquid crystals in the B7 and B2 phases can form stable freestanding fibers with a so called ``jelly-roll'' layer configuration, which means that the smectic layers would be arranged in concentric cylindrical shells. This configuration shows layer curvature is necessary for fiber stability. Classically this effect would destabilize the fiber configuration because of the energy cost of layer distortions and surface tension. We propose a model that can predict fiber stability in the experimentally observed range of a few micrometers, by assuming that layer curvature can be stabilized by including a term dealing with the linear divergence of the polarization direction if the polarization is allowed to have a component normal to the smectic layers. We show that this term can stabilize the fiber configuration if its strength is larger than the surface tension. We also propose an entropic model to explain the strength of this term by considering steric effects. Finally we will take results from this model and apply them to better understand experimental findings of bent-core fibers. Financial support by NSF FRG under contract DMS-0456221. Prof. Daniel Phillips, Particia Bauman and Jie Shen at Purdue Univ., Prof. Maria Carme Calderer at Univ. of Minnesota, and Prof. Jonathan Selinger at Kent State Univ. Liou Qiu and Dr. O.D. Lavrentovich, Characterization Facilities, Liquid Crystal Institute, Kent State Univ. Julie Kim and Dr. Quan Li, Chemical Synthesis Facilities, Liquid Crystal Institute, Kent State Univ.
Istif, Emin; Kagkoura, Antonia; Hernandez-Ferrer, Javier; Stergiou, Anastasios; Skaltsas, Theodosis; Arenal, Raul; Benito, Ana M; Maser, Wolfgang K; Tagmatarchis, Nikos
2017-12-27
The self-assembly of novel core-shell nanoensembles consisting of regioregular poly(3-hexylthiophene) nanoparticles (P3HT NPs ) of 100 nm as core and semiconducting CdTe quantum dots (CdTe QDs ) as shell with a thickness of a few tens of nanometers was accomplished by employing a reprecipitation approach. The structure, morphology, and composition of CdTe QDs /P3HT NPs nanoensembles were confirmed by high-resolution scanning transmission microscopy and dynamic light-scattering studies. Intimate interface contact between the CdTe QDs shell and the P3HT NPs core leads to the stabilization of the CdTe QDs /P3HT NPs nanoensemble as probed by the steady-state absorption spectroscopy. Effective quenching of the characteristic photoluminescence of CdTe QDs at 555 nm, accompanied by simultaneous increase in emission of P3HT NPs at 660 and 720 nm, reveals photoinduced charge-transfer processes. Probing the redox properties of films of CdTe QDs /P3HT NPs further proves the formation of a stabilized core-shell system in the solid state. Photoelectrochemical assays on CdTe QDs /P3HT NPs films show a reversible on-off photoresponse at a bias voltage of +0.8 V with a 3 times increased photocurrent compared to CdTe QDs . The improved charge separation is directly related to the unique core-shell configuration, in which the outer CdTe QDs shell forces the P3HT NPs core to effectively act as electron acceptor. The creation of novel donor-acceptor core-shell hybrid materials via self-assembly is transferable to other types of conjugated polymers and semiconducting nanoparticles. This work, therefore, opens new pathways for the design of improved optoelectronic devices.
A new approach to configurable primary data collection.
Stanek, J; Babkin, E; Zubov, M
2016-09-01
The formats, semantics and operational rules of data processing tasks in genomics (and health in general) are highly divergent and can rapidly change. In such an environment, the problem of consistent transformation and loading of heterogeneous input data to various target repositories becomes a critical success factor. The objective of the project was to design a new conceptual approach to configurable data transformation, de-identification, and submission of health and genomic data sets. Main motivation was to facilitate automated or human-driven data uploading, as well as consolidation of heterogeneous sources in large genomic or health projects. Modern methods of on-demand specialization of generic software components were applied. For specification of input-output data and required data collection activities, we propose a simple data model of flat tables as well as a domain-oriented graphical interface and portable representation of transformations in XML. Using such methods, the prototype of the Configurable Data Collection System (CDCS) was implemented in Java programming language with Swing graphical interfaces. The core logic of transformations was implemented as a library of reusable plugins. The solution is implemented as a software prototype for a configurable service-oriented system for semi-automatic data collection, transformation, sanitization and safe uploading to heterogeneous data repositories-CDCS. To address the dynamic nature of data schemas and data collection processes, the CDCS prototype facilitates interactive, user-driven configuration of the data collection process and extends basic functionality with a wide range of third-party plugins. Notably, our solution also allows for the reduction of manual data entry for data originally missing in the output data sets. First experiments and feedback from domain experts confirm the prototype is flexible, configurable and extensible; runs well on data owner's systems; and is not dependent on vendor's standards. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Atomic configurations at InAs partial dislocation cores associated with Z-shape faulted dipoles.
Li, Luying; Gan, Zhaofeng; McCartney, Martha R; Liang, Hanshuang; Yu, Hongbin; Gao, Yihua; Wang, Jianbo; Smith, David J
2013-11-15
The atomic arrangements of two types of InAs dislocation cores associated by a Z-shape faulted dipole are observed directly by aberration-corrected high-angle annular-dark-field imaging. Single unpaired columns of different atoms in a matrix of dumbbells are clearly resolved, with observable variations of bonding lengths due to excess Coulomb force from bare ions at the dislocation core. The corresponding geometric phase analysis provides confirmation that the dislocation cores serve as origins of strain field inversion while stacking faults maintain the existing strain status.
Software for Project-Based Learning of Robot Motion Planning
ERIC Educational Resources Information Center
Moll, Mark; Bordeaux, Janice; Kavraki, Lydia E.
2013-01-01
Motion planning is a core problem in robotics concerned with finding feasible paths for a given robot. Motion planning algorithms perform a search in the high-dimensional continuous space of robot configurations and exemplify many of the core algorithmic concepts of search algorithms and associated data structures. Motion planning algorithms can…
Rethinking the Core: Teaching Theater and English in the High-Stakes Testing Climate
ERIC Educational Resources Information Center
Perry, Tonya, Ed.
2007-01-01
In this article, the author discusses how to consolidate schools where enrollment have dropped significantly. In addition to financial concerns, effective and developmentally appropriate curriculum choices are important. The author states that the "core" academic courses must be offered no matter the configuration of the schools, but…
Dovetail spoke internal permanent magnet machine
Alexander, James Pellegrino [Ballston Lake, NY; EL-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Lokhandwalla, Murtuza [Clifton Park, NY; Shah, Manoj Ramprasad [Latham, NY; VanDam, Jeremy Daniel [West Coxsackie, NY
2011-08-23
An internal permanent magnet (IPM) machine is provided. The IPM machine includes a stator assembly and a stator core. The stator core also includes multiple stator teeth. The stator assembly is further configured with stator windings to generate a stator magnetic field when excited with alternating currents and extends along a longitudinal axis with an inner surface defining a cavity. The IPM machine also includes a rotor assembly and a rotor core. The rotor core is disposed inside the cavity and configured to rotate about the longitudinal axis. The rotor assembly further includes a shaft. The shaft further includes multiple protrusions alternately arranged relative to multiple bottom structures provided on the shaft. The rotor assembly also includes multiple stacks of laminations disposed on the protrusions and dovetailed circumferentially around the shaft. The rotor assembly further includes multiple pair of permanent magnets for generating a magnetic field, which magnetic field interacts with the stator magnetic field to produce a torque. The multiple pair of permanent magnets are disposed between the stacks. The rotor assembly also includes multiple middle wedges mounted between each pair of the multiple permanent magnets.
Data security issues arising from integration of wireless access into healthcare networks.
Frenzel, John C
2003-04-01
The versatility of having Ethernet speed connectivity without wires is rapidly driving adoption of wireless data networking by end users across all types of industry. Designed to be easy to configure and work among diverse platforms, wireless brings online data to mobile users. This functionality is particularly useful in modern clinical medicine. Wireless presents operators of networks containing or transmitting sensitive and confidential data with several new types of security vulnerabilities, and potentially opens previously protected core network resources to outside attack. Herein, we review the types of vulnerabilities, the tools necessary to exploit them, and strategies to thwart a successful attack.
Description of a 2.3 kW power transformer for space applications
NASA Technical Reports Server (NTRS)
Hansen, I.
1979-01-01
The principle features and special testing of a high voltage high power transformer designed and developed for space application are described. The transformer is operated in a series resonant inverter supplying beam power to a 30 cm mercury ion thruster. Electrical requirements include operation of 2.3 kW continuous power output, primary currents to 35 amps rms, and frequencies up to 20 kHz. High efficiency was obtained through detailed considerations of the tradeoffs available in core materials, wire selection, coil configurations and thermal control. A number of novel heat removal techniques are discussed which control the winding temperature using only the available conductive cooling.
NASA Astrophysics Data System (ADS)
Ding, Quanxin; Guo, Chunjie; Cai, Meng; Liu, Hua
2007-12-01
Adaptive Optics Expand System is a kind of new concept spatial equipment, which concerns system, cybernetics and informatics deeply, and is key way to improve advanced sensors ability. Traditional Zernike Phase Contrast Method is developed, and Accelerated High-level Phase Contrast Theory is established. Integration theory and mathematical simulation is achieved. Such Equipment, which is based on some crucial components, such as, core optical system, multi mode wavefront sensor and so on, is established for AOES advantageous configuration and global design. Studies on Complicated Spatial Multisensor System Integratation and measurement Analysis including error analysis are carried out.
A Design of Experiments Investigation of Offset Streams for Supersonic Jet Noise Reduction
NASA Technical Reports Server (NTRS)
Henderson, Brenda; Papamoschou, Dimitri
2014-01-01
An experimental investigation into the noise characteristics of a dual-stream jet with four airfoils inserted in the fan nozzle was conducted. The intent of the airfoils was to deflect the fan stream relative to the core stream and, therefore, impact the development of the secondary potential core and noise radiated in the peak jet-noise direction. The experiments used a full-factorial Design of Experiments (DoE) approach to identify parameters and parameter interactions impacting noise radiation at two azimuthal microphone array locations, one of which represented a sideline viewing angle. The parameters studied included airfoil angle-of-attack, airfoil azimuthal location within the fan nozzle, and airfoil axial location relative to the fan-nozzle trailing edge. Jet conditions included subsonic and supersonic fan-stream Mach numbers. Heated jets conditions were simulated with a mixture of helium and air to replicate the exhaust velocity and density of the hot jets. The introduction of the airfoils was shown to impact noise radiated at polar angles in peak-jet noise direction and to have no impact on noise radiated at small and broadside polar angles and to have no impact on broadband-shock-associated noise. The DoE analysis showed the main effects impacting noise radiation at sideline-azimuthal-viewing angles included airfoil azimuthal angle for the airfoils on the lower side of the jet near the sideline array and airfoil trailing edge distance (with airfoils located at the nozzle trailing edge produced the lowest sound pressure levels). For an array located directly beneath the jet (and on the side of the jet from which the fan stream was deflected), the main effects impacting noise radiation included airfoil angle-of-attack and airfoil azimuthal angle for the airfoils located on the observation side of the jet as well and trailing edge distance. Interaction terms between multiple configuration parameters were shown to have significant impact on the radiated noise. The models were shown to adequately describe the sound-pressure levels obtained for a configuration in the center of the design space indicating the models can be used to navigate the design space.
NASA's Space Launch System: Development and Progress
NASA Technical Reports Server (NTRS)
Honeycutt, John; Lyles, Garry
2016-01-01
NASA is embarked on a new era of space exploration that will lead to new capabilities, new destinations, and new discoveries by both human and robotic explorers. Today, the International Space Station (ISS), supported by NASA's commercial partners, and robotic probes, are yielding knowledge that will help make this exploration possible. NASA is developing both the Orion crew vehicle and the Space Launch System (SLS) that will carry out a series of increasingly challenging missions that will eventually lead to human exploration of Mars. This paper will discuss the development and progress on the SLS. The SLS architecture was designed to be safe, affordable, and sustainable. The current configuration is the result of literally thousands of trade studies involving cost, performance, mission requirements, and other metrics. The initial configuration of SLS, designated Block 1, will launch a minimum of 70 metric tons (t) into low Earth orbit - significantly greater capability than any current launch vehicle. It is designed to evolve to a capability of 130 t through the use of upgraded main engines, advanced boosters, and a new upper stage. With more payload mass and volume capability than any rocket in history, SLS offers mission planners larger payloads, faster trip times, simpler design, shorter design cycles, and greater opportunity for mission success. Since the program was officially created in fall 2011, it has made significant progress toward first launch readiness of the Block 1 vehicle in 2018. Every major element of SLS continued to make significant progress in 2015. The Boosters element fired Qualification Motor 1 (QM-1) in March 2015, to test the 5-segment motor, including new insulation, joint, and propellant grain designs. The Stages element marked the completion of more than 70 major components of test article and flight core stage tanks. The Liquid Engines element conducted seven test firings of an RS-25 engine under SLS conditions. The Spacecraft/Payload Integration and Evolution element marked completion of the upper stage test article. Major work continues in 2016 as the program continues both flight and development RS-25 engine testing, begins welding test article and flight core stage tanks, completes stage adapter manufacturing, and test fires the second booster qualification motor. This paper will discuss the program's key accomplishments to date and the challenging work ahead for what will be the world's most capable launch vehicle.
NASA's SPACE LAUNCH SYSTEM: Development and Progress
NASA Technical Reports Server (NTRS)
Honeycutt, John; Lyles, Garry
2016-01-01
NASA is embarked on a new era of space exploration that will lead to new capabilities, new destinations, and new discoveries by both human and robotic explorers. Today, the International Space Station (ISS) and robotic probes are yielding knowledge that will help make this exploration possible. NASA is developing both the Orion crew vehicle and the Space Launch System (SLS) (Figure 1), that will carry out a series of increasingly challenging missions leading to human exploration of Mars. This paper will discuss the development and progress on the SLS. The SLS architecture was designed to be safe, affordable, and sustainable. The current configuration is the result of literally thousands of trade studies involving cost, performance, mission requirements, and other metrics. The initial configuration of SLS, designated Block 1, will launch a minimum of 70 metric tons (mT) (154,324 pounds) into low Earth orbit - significantly greater capability than any current launch vehicle. It is designed to evolve to a capability of 130 mT (286,601 pounds) through the use of upgraded main engines, advanced boosters, and a new upper stage. With more payload mass and volume capability than any existing rocket, SLS offers mission planners larger payloads, faster trip times, simpler design, shorter design cycles, and greater opportunity for mission success. Since the program was officially created in fall 2011, it has made significant progress toward launch readiness in 2018. Every major element of SLS continued to make significant progress in 2015. Engineers fired Qualification Motor 1 (QM-1) in March 2015 to test the 5-segment motor, including new insulation, joint, and propellant grain designs. More than 70 major components of test article and flight hardware for the Core Stage have been manufactured. Seven test firings have been completed with an RS-25 engine under SLS operating conditions. The test article for the Interim Cryogenic Propulsion Stage (ICPS) has also been completed. Major work continues in 2016 as the program continues both flight and development RS-25 engine testing, begins welding test article and flight core stage tanks, completes stage adapter manufacturing, and test fires the second booster qualification motor. This paper will discuss the program's key accomplishments to date and the challenging work ahead for what will be the world's most capable launch vehicle.
Global Cost and Weight Evaluation of Fuselage Side Panel Design Concepts
NASA Technical Reports Server (NTRS)
Polland, D. R.; Finn, S. R.; Griess, K. H.; Hafenrichter, J. L.; Hanson, C. T.; Ilcewicz, L. B.; Metschan, S. L.; Scholz, D. B.; Smith, P. J.
1997-01-01
This report documents preliminary design trades conducted under NASA contracts NAS1 18889 (Advanced Technology Composite Aircraft Structures, ATCAS) and NAS1-19349 (Task 3, Pathfinder Shell Design) for a subsonic wide body commercial aircraft fuselage side panel section utilizing composite materials. Included in this effort were (1) development of two complete design concepts, (2) generation of cost and weight estimates, (3) identification of technical issues and potential design enhancements, and (4) selection of a single design to be further developed. The first design concept featured an open-section stringer stiffened skin configuration while the second was based on honeycomb core sandwich construction. The trade study cost and weight results were generated from comprehensive assessment of each structural component comprising the fuselage side panel section from detail fabrication through airplane final assembly. Results were obtained in three phases: (1) for the baseline designs, (2) after global optimization of the designs, and (3) the results anticipated after detailed design optimization. A critical assessment of both designs was performed to determine the risk associated with each concept, that is the relative probability of achieving the cost and weight projections. Seven critical technical issues were identified as the first step towards side panel detailed design optimization.
Magnetic moments, E3 transitions and the structure of high-spin core excited states in 211Rn
NASA Astrophysics Data System (ADS)
Poletti, A. R.; Dracoulis, G. D.; Byrne, A. P.; Stuchbery, A. E.; Poletti, S. J.; Gerl, J.; Lewis, P. M.
1985-05-01
The results of g-factor measurements of high-spin states in 211Rn are: Ex = 8856 + Δ' keV (Jπ = 63/2-), g = 0.626(7); 6101 + Δ' KeV (49/2+), 0.766(8); 5347 + Δ' KeV (43/2-), 0.74(2); 3927 + Δ KeV (35/2+), 1.017(12); 1578 + Δ KeV (17/2-), 0.912(9). These results together with measured E3 transition strengths and shell model calculations are used to assign configurations to the core excited states in 211Rn. Mixed configurations are required to explain the g-factors and enhanced E3 strengths simultaneously.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Rhett
The SDN Project completed on time and on budget and successfully accomplished 100% of the scope of work outlined in the original Statement of Project Objective (SOPO). The SDN Project formed an alliance between Ameren Corporation, University of Illinois Urbana- Champaign (UIUC), Pacific Northwest National Laboratories (PNNL), and Schweitzer Engineering Laboratories, Inc. (SEL). The objective of the SDN Project is to address Topic Area of Interest 2: Sustain critical energy delivery functions while responding to a cyber-intrusion under Funding Opportunity Announcement DE-FOA-0000797. The goal of the project is to design and commercially release technology that provides a method to sustainmore » critical energy delivery functions during a cyber intrusion and to do this control system operators need the ability to quickly identify and isolate the affected network areas, and re-route critical information and control flows around. The objective of the SDN Project is to develop a Flow Controller that monitors, configures, and maintains the safe, reliable network traffic flows of all the local area networks (LANs) on a control system in the Energy sector. The SDN team identified the core attributes of a control system and produced an SDN flow controller that has the same core attributes enabling networks to be designed, configured and deployed that maximize the whitelisted, deny-bydefault and purpose built networks. This project researched, developed and commercially released technology that: Enables all field networks be to configured and monitored as if they are a single asset to be protected; Enables greatly improved and even precalculated response actions to reliability and cyber events; Supports pre-configured localized response actions tailored to provide resilience against failures and centralized response to cyber-attacks that improve network reliability and availability; Architecturally enables the right subject matter experts, who are usually the information technology and operational technology engineers, to be the ones centrally administering the technology and responding to events; Simplifies network configuration, improving deterministic Ethernet transport times, and providing instant visualization on where the communication circuits are and how all circuits are impacted when changes (e.g., configuration changes, failures or intrusions) happen, allowing operators to minimize downtime; and Improves the ability to identify deviations in network behavior resulting in detection and analysis of potential cyber intrusions and faster response times Results: This project has forever changed the way critical infrastructure networks are designed, secured, deployed and maintained. The cybersecurity and performance advantages achieved are significant, simply put traditional networking has been obsoleted while the team maintained Ethernet interoperability avoiding any legacy concerns. The team commercially released technology that accomplished all the cybersecurity goals outlined in the SOPO and completed it by executing the project management plan approved in the initial contract. The resulting Energy sector SDN flow controller model number is SEL-5056 and can be freely downloaded from the www.SELinc.com website. This technology not only improves the cybersecurity of control systems but has measured results that it improves the performance and reliability of the control system as well. This means the system owners can confidently apply it to their systems knowing that it will, “first do no harm” but actually improve the system as well. Success of the project is best measured by the sales and deployment of the technology. System owners in industrial, electric, defense, and oil and gas only months after commercial release have approved plans for deployment.« less
Multiple core computer processor with globally-accessible local memories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shalf, John; Donofrio, David; Oliker, Leonid
A multi-core computer processor including a plurality of processor cores interconnected in a Network-on-Chip (NoC) architecture, a plurality of caches, each of the plurality of caches being associated with one and only one of the plurality of processor cores, and a plurality of memories, each of the plurality of memories being associated with a different set of at least one of the plurality of processor cores and each of the plurality of memories being configured to be visible in a global memory address space such that the plurality of memories are visible to two or more of the plurality ofmore » processor cores.« less
Magnetic nuclear core restraint and control
Cooper, Martin H.
1979-01-01
A lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction.
Magnetic nuclear core restraint and control
Cooper, Martin H.
1978-01-01
A lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction.
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Foote, John; Litchford, Ron
2006-01-01
The objective of this effort is to perform design analyses for a non-nuclear hot-hydrogen materials tester, as a first step towards developing efficient and accurate multiphysics, thermo-fluid computational methodology to predict environments for hypothetical solid-core, nuclear thermal engine thrust chamber design and analysis. The computational methodology is based on a multidimensional, finite-volume, turbulent, chemically reacting, thermally radiating, unstructured-grid, and pressure-based formulation. The multiphysics invoked in this study include hydrogen dissociation kinetics and thermodynamics, turbulent flow, convective, and thermal radiative heat transfers. The goals of the design analyses are to maintain maximum hot-hydrogen jet impingement energy and to minimize chamber wall heating. The results of analyses on three test fixture configurations and the rationale for final selection are presented. The interrogation of physics revealed that reactions of hydrogen dissociation and recombination are highly correlated with local temperature and are necessary for accurate prediction of the hot-hydrogen jet temperature.
Core-core and core-valence correlation
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
1988-01-01
The effect of (1s) core correlation on properties and energy separations was analyzed using full configuration-interaction (FCI) calculations. The Be 1 S - 1 P, the C 3 P - 5 S and CH+ 1 Sigma + or - 1 Pi separations, and CH+ spectroscopic constants, dipole moment and 1 Sigma + - 1 Pi transition dipole moment were studied. The results of the FCI calculations are compared to those obtained using approximate methods. In addition, the generation of atomic natural orbital (ANO) basis sets, as a method for contracting a primitive basis set for both valence and core correlation, is discussed. When both core-core and core-valence correlation are included in the calculation, no suitable truncated CI approach consistently reproduces the FCI, and contraction of the basis set is very difficult. If the (nearly constant) core-core correlation is eliminated, and only the core-valence correlation is included, CASSCF/MRCI approached reproduce the FCI results and basis set contraction is significantly easier.
Modular reconfigurable matched spectral filter spectrometer
NASA Astrophysics Data System (ADS)
Schundler, Elizabeth; Engel, James R.; Gruber, Thomas; Vaillancourt, Robert; Benedict-Gill, Ryan; Mansur, David J.; Dixon, John; Potter, Kevin; Newbry, Scott
2015-06-01
OPTRA is currently developing a modular, reconfigurable matched spectral filter (RMSF) spectrometer for the monitoring of greenhouse gases. The heart of this spectrometer will be the RMSF core, which is a dispersive spectrometer that images the sample spectrum from 2000 - 3333 cm-1 onto a digital micro-mirror device (DMD) such that different columns correspond to different wavebands. By applying masks to this DMD, a matched spectral filter can be applied in hardware. The core can then be paired with different fore-optics or detector modules to achieve active in situ or passive remote detection of the chemicals of interest. This results in a highly flexible system that can address a wide variety of chemicals by updating the DMD masks and a wide variety of applications by swapping out fore-optic and detector modules. In either configuration, the signal on the detector is effectively a dot-product between the applied mask and the sample spectrum that can be used to make detection and quantification determinations. Using this approach significantly reduces the required data bandwidth of the sensor without reducing the information content, therefore making it ideal for remote, unattended systems. This paper will focus on the design of the RMSF core.
Kröckel, Lars; Frosch, Torsten; Schmidt, Markus A
2015-05-22
In conventional absorption spectrometers, the range of accessible concentrations of analytes in aqueous solution is significantly limited by the dynamic range of the measurement system. Here we introduce the concept of multiscale spectroscopy allowing extending that range by orders of magnitude within one single device. The concept relies on using multiple light-sample interaction lengths, boosting the accessible concentration range by a particular extension factor. We experimentally implement our concept by a liquid core waveguide having multiple fiber ports side-wise attached to the waveguide, thus probing the light propagating inside the core at predefined distances from the input. This configuration provides three orders of magnitude of interaction length in one device. To verify the concept we exemplarily determine the concentrations of nitrate and of Rhodamine 6G in water, showing one hundred times improved measurement capabilities. The multiscale spectrometer uses the entire sample volume and allows the simultaneous measurement of fluorescence and attenuance. Due to its integrated design and the extended measurements capabilities, we anticipate application of our device in many application-relevant areas such as water quality analysis or environmental science. Copyright © 2015 Elsevier B.V. All rights reserved.
Surge Pressure Mitigation in the Global Precipitation Measurement Mission Core Propulsion System
NASA Technical Reports Server (NTRS)
Scroggins, Ashley R.; Fiebig, Mark D.
2014-01-01
The Global Precipitation Measurement (GPM) mission is an international partnership between NASA and JAXA whose Core spacecraft performs cutting-edge measurements of rainfall and snowfall worldwide and unifies data gathered by a network of precipitation measurement satellites. The Core spacecraft's propulsion system is a blowdown monopropellant system with an initial hydrazine load of 545 kg in a single composite overwrapped propellant tank. At launch, the propulsion system contained propellant in the tank and manifold tubes upstream of the latch valves, with low-pressure helium gas in the manifold tubes downstream of the latch valves. The system had a relatively high beginning-of- life pressure and long downstream manifold lines; these factors created conditions that were conducive to high surge pressures. This paper discusses the GPM project's approach to surge mitigation in the propulsion system design. The paper describes the surge testing program and results, with discussions of specific difficulties encountered. Based on the results of surge testing and pressure drop analyses, a unique configuration of cavitating venturis was chosen to mitigate surge while minimizing pressure losses during thruster maneuvers. This paper concludes with a discussion of overall lessons learned with surge pressure testing for NASA Goddard spacecraft programs.
Experimental Evaluation of the Thermal Performance of a Water Shield for a Surface Power Reactor
NASA Technical Reports Server (NTRS)
Pearson, J. Boise; Stewart, Eric T.; Reid, Robert S.
2007-01-01
A water based shielding system is being investigated for use on initial lunar surface power systems. The use of water may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a representative lunar surface reactor shield design is evaluated at various power levels in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to anchor a CFD model. Performance of a water shield on the lunar surface is then predicted by CFD models anchored to test data. The accompanying viewgraph presentation includes the following topics: 1) Testbed Configuration; 2) Core Heater Placement and Instrumentation; 3) Thermocouple Placement; 4) Core Thermocouple Placement; 5) Outer Tank Thermocouple Placement; 6) Integrated Testbed; 7) Methodology; 8) Experimental Results: Core Temperatures; 9) Experimental Results; Outer Tank Temperatures; 10) CFD Modeling; 11) CFD Model: Anchored to Experimental Results (1-g); 12) CFD MOdel: Prediction for 1/6-g; and 13) CFD Model: Comparison of 1-g to 1/6-g.
Design and Evaluation of Glass/epoxy Composite Blade and Composite Tower Applied to Wind Turbine
NASA Astrophysics Data System (ADS)
Park, Hyunbum
2018-02-01
In the study, the analysis and manufacturing of small class wind turbine blade was performed. In the structural design, firstly the loading conditions are defined through the load case analysis. The proposed structural configuration of blade has a sandwich type composite structure with the E-glass/Epoxy face sheets and the Urethane foam core for lightness, structural stability, low manufacturing cost and easy manufacturing process. And also, this work proposes a design procedure and results of tower for the small scale wind turbine systems. Structural analysis of blade including load cases, stress, deformation, buckling, vibration and fatigue life was performed using the finite element method, the load spectrum analysis and the Miner rule. Moreover, investigation on structural safety of tower was verified through structural analysis by FEM. The manufacturing of blade and tower was performed based on structural design. In order to investigate the designed structure, the structural tests were conducted and its results were compared with the calculated results. It is confirmed that the final proposed blade and tower meet the design requirements.
Inverse design of multicomponent assemblies
NASA Astrophysics Data System (ADS)
Piñeros, William D.; Lindquist, Beth A.; Jadrich, Ryan B.; Truskett, Thomas M.
2018-03-01
Inverse design can be a useful strategy for discovering interactions that drive particles to spontaneously self-assemble into a desired structure. Here, we extend an inverse design methodology—relative entropy optimization—to determine isotropic interactions that promote assembly of targeted multicomponent phases, and we apply this extension to design interactions for a variety of binary crystals ranging from compact triangular and square architectures to highly open structures with dodecagonal and octadecagonal motifs. We compare the resulting optimized (self- and cross) interactions for the binary assemblies to those obtained from optimization of analogous single-component systems. This comparison reveals that self-interactions act as a "primer" to position particles at approximately correct coordination shell distances, while cross interactions act as the "binder" that refines and locks the system into the desired configuration. For simpler binary targets, it is possible to successfully design self-assembling systems while restricting one of these interaction types to be a hard-core-like potential. However, optimization of both self- and cross interaction types appears necessary to design for assembly of more complex or open structures.
Determining Coolant Flow Rate Distribution In The Fuel-Modified TRIGA Plate Reactor
NASA Astrophysics Data System (ADS)
Puji Hastuti, Endiah; Widodo, Surip; Darwis Isnaini, M.; Geni Rina, S.; Syaiful, B.
2018-02-01
TRIGA 2000 reactor in Bandung is planned to have the fuel element replaced, from cylindrical uranium and zirconium-hydride (U-ZrH) alloy to U3Si2-Al plate type of low enriched uranium of 19.75% with uranium density of 2.96 gU/cm3, while the reactor power is maintained at 2 MW. This change is planned to anticipate the discontinuity of TRIGA fuel element production. The selection of this plate-type fuel element is supported by the fact that such fuel type has been produced in Indonesia and used in MPR-30 safely since 2000. The core configuration of plate-type-fuelled TRIGA reactor requires coolant flow rate through each fuel element channel in order to meet its safety function. This paper is aimed to describe the results of coolant flow rate distribution in the TRIGA core that meets the safety function at normal operation condition, physical test, shutdown, and at initial event of loss of coolant flow due power supply interruption. The design analysis to determine coolant flow rate in this paper employs CAUDVAP and COOLODN computation code. The designed coolant flow rate that meets the safety criteria of departure from nucleate boiling ratio (DNBR), onset of flow instability ratio (OFIR), and ΔΤ onset of nucleate boiling (ONB), indicates that the minimum flow rate required to cool the plate-type fuelled TRIGA core at 2 MW is 80 kg/s. Therefore, it can be concluded that the operating limitation condition (OLC) for the minimum flow rate is 80 kg/s; the 72 kg/s is to cool the active core; while the minimum flow rate for coolant flow rate drop is limited to 68 kg/s with the coolant inlet temperature 35°C. This thermohydraulic design also provides cooling for 4 positions irradiation position (IP) utilization and 1 central irradiation position (CIP) with end fitting inner diameter (ID) of 10 mm and 20 mm, respectively.
Radial electric field and ion parallel flow in the quasi-symmetric and Mirror configurations of HSX
NASA Astrophysics Data System (ADS)
Kumar, S. T. A.; Dobbins, T. J.; Talmadge, J. N.; Wilcox, R. S.; Anderson, D. T.
2018-05-01
The radial electric field and the ion mean parallel flow are obtained in the helically symmetric experiment stellarator from toroidal flow measurements of C+6 ion at two locations on a flux surface, using the Pfirsch–Schlüter effect. Results from the standard quasi-helically symmetric magnetic configuration are compared with those from the Mirror configuration where the quasi-symmetry is deliberately degraded using auxiliary coils. For similar injected power, the quasi-symmetric configuration is observed to have significantly lower flows while the experimental observations from the Mirror geometry are in better agreement with neoclassical calculations. Indications are that the radial electric field near the core of the quasi-symmetric configuration may be governed by non-neoclassical processes.
Core Flight System (cFS) a Low Cost Solution for SmallSats
NASA Technical Reports Server (NTRS)
McComas, David; Strege, Susanne; Wilmot, Jonathan
2015-01-01
The cFS is a FSW product line that uses a layered architecture and compile-time configuration parameters which make it portable and scalable for a wide range of platforms. The software layers that defined the application run-time environment are now under a NASA-wide configuration control board with the goal of sustaining an open-source application ecosystem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rotondo, M.; Rueda, Jorge A.; Xue, S.-S.
The Feynman-Metropolis-Teller treatment of compressed atoms is extended to the relativistic regimes. Each atomic configuration is confined by a Wigner-Seitz cell and is characterized by a positive electron Fermi energy. The nonrelativistic treatment assumes a pointlike nucleus and infinite values of the electron Fermi energy can be attained. In the relativistic treatment there exists a limiting configuration, reached when the Wigner-Seitz cell radius equals the radius of the nucleus, with a maximum value of the electron Fermi energy (E{sub e}{sup F}){sub max}, here expressed analytically in the ultrarelativistic approximation. The corrections given by the relativistic Thomas-Fermi-Dirac exchange term are alsomore » evaluated and shown to be generally small and negligible in the relativistic high-density regime. The dependence of the relativistic electron Fermi energies by compression for selected nuclei are compared and contrasted to the nonrelativistic ones and to the ones obtained in the uniform approximation. The relativistic Feynman-Metropolis-Teller approach here presented overcomes some difficulties in the Salpeter approximation generally adopted for compressed matter in physics and astrophysics. The treatment is then extrapolated to compressed nuclear matter cores of stellar dimensions with A{approx_equal}(m{sub Planck}/m{sub n}){sup 3}{approx}10{sup 57} or M{sub core}{approx}M{sub {circle_dot}}. A new family of equilibrium configurations exists for selected values of the electron Fermi energy varying in the range 0
Scoring Dawg Core Breakoff and Retention Mechanism
NASA Technical Reports Server (NTRS)
Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Backes, Paul G.
2011-01-01
This novel core break-off and retention mechanism consists of a scoring dawg controlled by a set of two tubes (a drill tube and an inner tube). The drill tube and the inner tube have longitudinal concentric holes. The solution can be implemented in an eccentric tube configuration as well where the tubes have eccentric longitudinal holes. The inner tube presents at the bottom two control surfaces for controlling the orientation of the scoring dawg. The drill tube presents a sunk-in profile on the inside of the wall for housing the scoring dawg. The inner tube rotation relative to the drill tube actively controls the orientation of the scoring dawg and hence its penetration and retrieval from the core. The scoring dawg presents a shaft, two axially spaced arms, and a tooth. The two arms slide on the control surfaces of the inner tube. The tooth, when rotated, can penetrate or be extracted from the core. During drilling, the two tubes move together maintaining the scoring dawg completely outside the core. After the desired drilling depth has been reached the inner tube is rotated relative to the drill tube such that the tooth of the scoring dawg moves toward the central axis. By rotating the drill tube, the scoring dawg can score the core and so reduce its cross sectional area. The scoring dawg can also act as a stress concentrator for breaking the core in torsion or tension. After breaking the core, the scoring dawg can act as a core retention mechanism. For scoring, it requires the core to be attached to the rock. If the core is broken, the dawg can be used as a retention mechanism. The scoring dawg requires a hard-tip insert like tungsten carbide for scoring hard rocks. The relative rotation of the two tubes can be controlled manually or by an additional actuator. In the implemented design solution the bit rotation for scoring was in the same direction as the drilling. The device was tested for limestone cores and basalt cores. The torque required for breaking the 10-mm diameter limestone cores was 5 to 5.8 lb-in. (0.56 to 0.66 N-m).
High Strength Wood-based Sandwich Panels reinforced with fiberglass and foam
Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai
2014-01-01
Mechanical analysis is presented for new high-strengthsandwich panels made from wood-based phenolic impregnated laminated paper assembled with an interlocking tri-axial ribbed core. Four different panel configurations were tested, including panels with fiberglass fabric bonded to both outside faces with self-expanding urethane foam used to fill the ribbed core. The...
Parametric study of a canard-configured transport using conceptual design optimization
NASA Technical Reports Server (NTRS)
Arbuckle, P. D.; Sliwa, S. M.
1985-01-01
Constrained-parameter optimization is used to perform optimal conceptual design of both canard and conventional configurations of a medium-range transport. A number of design constants and design constraints are systematically varied to compare the sensitivities of canard and conventional configurations to a variety of technology assumptions. Main-landing-gear location and canard surface high-lift performance are identified as critical design parameters for a statically stable, subsonic, canard-configured transport.
Westinghouse Small Modular Reactor nuclear steam supply system design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Memmott, M. J.; Harkness, A. W.; Van Wyk, J.
2012-07-01
The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the first in a series of four papers which describe the design and functionality of the Westinghouse SMR. Also described in this series are the key drivers influencing the design of the Westinghouse SMR and the unique passive safety features of the Westinghouse SMR. Several critical motivators contributed to the development andmore » integration of the Westinghouse SMR design. These design driving motivators dictated the final configuration of the Westinghouse SMR to varying degrees, depending on the specific features under consideration. These design drivers include safety, economics, AP1000{sup R} reactor expertise and experience, research and development requirements, functionality of systems and components, size of the systems and vessels, simplicity of design, and licensing requirements. The Westinghouse SMR NSSS consists of an integral reactor vessel within a compact containment vessel. The core is located in the bottom of the reactor vessel and is composed of 89 modified Westinghouse 17x17 Robust Fuel Assemblies (RFA). These modified fuel assemblies have an active core length of only 2.4 m (8 ft) long, and the entirety of the core is encompassed by a radial reflector. The Westinghouse SMR core operates on a 24 month fuel cycle. The reactor vessel is approximately 24.4 m (80 ft) long and 3.7 m (12 ft) in diameter in order to facilitate standard rail shipping to the site. The reactor vessel houses hot and cold leg channels to facilitate coolant flow, control rod drive mechanisms (CRDM), instrumentation and cabling, an intermediate flange to separate flow and instrumentation and facilitate simpler refueling, a pressurizer, a straight tube, recirculating steam generator, and eight reactor coolant pumps (RCP). The containment vessel is 27.1 m (89 ft) long and 9.8 m (32 ft) in diameter, and is designed to withstand pressures up to 1.7 MPa (250 psi). It is completely submerged in a pool of water serving as a heat sink and radiation shield. Housed within the containment are four combined core makeup tanks (CMT)/passive residual heat removal (PRHR) heat exchangers, two in-containment pools (ICP), two ICP tanks and four valves which function as the automatic depressurization system (ADS). The PRHR heat exchangers are thermally connected to two different ultimate heat sink (UHS) tanks which provide transient cooling capabilities. (authors)« less
Viscous Design of TCA Configuration
NASA Technical Reports Server (NTRS)
Krist, Steven E.; Bauer, Steven X. S.; Campbell, Richard L.
1999-01-01
The goal in this effort is to redesign the baseline TCA configuration for improved performance at both supersonic and transonic cruise. Viscous analyses are conducted with OVERFLOW, a Navier-Stokes code for overset grids, using PEGSUS to compute the interpolations between overset grids. Viscous designs are conducted with OVERDISC, a script which couples OVERFLOW with the Constrained Direct Iterative Surface Curvature (CDISC) inverse design method. The successful execution of any computational fluid dynamics (CFD) based aerodynamic design method for complex configurations requires an efficient method for regenerating the computational grids to account for modifications to the configuration shape. The first section of this presentation deals with the automated regridding procedure used to generate overset grids for the fuselage/wing/diverter/nacelle configurations analysed in this effort. The second section outlines the procedures utilized to conduct OVERDISC inverse designs. The third section briefly covers the work conducted by Dick Campbell, in which a dual-point design at Mach 2.4 and 0.9 was attempted using OVERDISC; the initial configuration from which this design effort was started is an early version of the optimized shape for the TCA configuration developed by the Boeing Commercial Airplane Group (BCAG), which eventually evolved into the NCV design. The final section presents results from application of the Natural Flow Wing design philosophy to the TCA configuration.
High performance railgun barrels for laboratory use
NASA Astrophysics Data System (ADS)
Bauer, David P.; Newman, Duane C.
1993-01-01
High performance low-cost, laboratory railgun barrels are now available, comprised of an inherently stiff containment structure which surrounds the bore components machined from 'off the-shelf' materials. The shape of the containment structure was selected to make the barrel inherently stiff. The structure consists of stainless steel laminations which do not compromise the electrical efficiency of the railgun. The modular design enhances the utility of the barrel, as it is easy to service between shots, and can be 're-cored' to produce different configurations and sizes using the same structure. We have produced barrels ranging from 15 mm to 90 mm square bore, a 30 mm round bore, and in lengths varying from 0.25 meters to 10 meters long. Successful tests with both plasma and solid metal armatures have demonstrated the versatility and performance of this design.
NASA Astrophysics Data System (ADS)
Schmitz, L.; Ruskov, E.; Deng, B. H.; Binderbauer, M.; Tajima, T.; Gota, H.; Tuszewski, M.
2016-03-01
Control of radial particle and thermal transport is instrumental for achieving and sustaining well-confined high-β plasma in a Field-Reversed Configuration (FRC). Radial profiles of low frequency ion gyro-scale density fluctuations (0.5≤kρs≤40), consistent with drift- or drift-interchange modes, have been measured in the scrape-off layer (SOL) and core of the C-2 Field-Reversed Configuration (FRC), together with the toroidal E×B velocity. It is shown here that axial electrostatic SOL biasing controls and reduces gyro-scale density fluctuations, resulting in very low FRC core fluctuation levels. When the radial E×B flow shearing rate decreases below the turbulence decorrelation rate, fluctuation levels increase substantially, concomitantly with onset of the n=2 instability and rapid loss of diamagnetism. Low turbulence levels, improved energy/particle confinement and substantially increased FRC life times are achieved when E×B shear near the separatrix is maintained via axial SOL biasing using an annular washer gun.
What controls the mass transport by mode-2 internal solitary-like waves?
NASA Astrophysics Data System (ADS)
Deepwell, David; Stastna, Marek
2016-04-01
Horizontally propagating internal waves are a regular occurrence in the coastal ocean. Their most commonly observed vertical structure is mode-1 in which isopycnals rise and fall in concert at all depths. Second mode waves, where isopycnals expand from and contract toward the pycnocline centre, have been found in recent observations to occur more frequently than previously thought. For the more common convex configuration, these waves mix the pycnocline, and under certain conditions form recirculating cores which efficiently transport material. In the laboratory, mode-2 waves are easily formed by releasing a mixed region into an ambient stratification. Using high resolution, three dimensional, direct numerical simulations of a laboratory configuration we describe the mass transport efficiency of mode-2 waves under a variety of different parameter regimes and initializations. We identify pycnocline configurations for which transport is especially efficient, and explore the structure of recirculating cores during their formation, propagation and disintegration and its implications on mass transport.
Pole-phase modulated toroidal winding for an induction machine
Miller, John Michael; Ostovic, Vlado
1999-11-02
A stator (10) for an induction machine for a vehicle has a cylindrical core (12) with inner and outer slots (26, 28) extending longitudinally along the inner and outer peripheries between the end faces (22, 24). Each outer slot is associated with several adjacent inner slots. A plurality of toroidal coils (14) are wound about the core and laid in the inner and outer slots. Each coil occupies a single inner slot and is laid in the associated outer slot thereby minimizing the distance the coil extends from the end faces and minimizing the length of the induction machine. The toroidal coils are configured for an arbitrary pole phase modulation wherein the coils are configured with variable numbers of phases and poles for providing maximum torque for cranking and switchable to a another phase and pole configuration for alternator operation. An adaptor ring (36) circumferentially positioned about the stator improves mechanical strength, and provides a coolant channel manifold (34) for removing heat produced in stator windings during operation.
Qiang, Zexuan; Geng, Jihong; Luo, Tao; Zhang, Jun; Jiang, Shibin
2014-02-01
A highly efficient ytterbium-free erbium-doped silicate glass fiber has been developed for high-power fiber laser applications at an eye-safe wavelength near 1.55 μm. Our preliminary experiments show that high laser efficiency can be obtained from a relatively short length of the gain fiber when resonantly pumped at 1535 nm in both core- and cladding-pumping configurations. With a core-pumping configuration as high as 75%, optical-to-optical efficiency and 4 W output power were obtained at 1560 nm from a 1 m long gain fiber. When using a cladding-pumping configuration, approximately 13 W output power with 67.7% slope efficiency was demonstrated from a piece of 2 m long fiber. The lengths of silicate-based gain fiber are much shorter than their silica-based counterparts used in other experiments, which is significantly important for high-power narrow-band and/or pulsed laser applications.
Interlayer-coupled spin vortex pairs and their response to external magnetic fields
NASA Astrophysics Data System (ADS)
Wintz, Sebastian; Bunce, Christopher; Banholzer, Anja; Körner, Michael; Strache, Thomas; Mattheis, Roland; McCord, Jeffrey; Raabe, Jörg; Quitmann, Christoph; Erbe, Artur; Fassbender, Jürgen
2012-06-01
We report on the response of multilayer spin textures to static magnetic fields. Coupled magnetic vortex pairs in trilayer elements (ferromagnetic/nonmagnetic/ferromagnetic) are imaged directly by means of layer-selective magnetic x-ray microscopy. We observe two different circulation configurations with parallel and opposing senses of magnetization rotation at remanence. Upon application of a field, all of the vortex pairs investigated react with a displacement of their cores. For purely dipolar coupled pairs, the individual core displacements are similar to those of an isolated single-layer vortex, but also a noticeable effect of the mutual stray fields is detected. Vortex pairs that are linked by an additional interlayer exchange coupling (IEC), which is either ferromagnetic or antiferromagnetic, mainly exhibit a layer-congruent response. We find that, apart from a possible decoupling at higher fields, these strict IEC vortex pairs can be described by a single-layer model with effective material parameters. This result implies the possibility to design multilayer spin structures with arbitrary effective magnetization.
NASA Astrophysics Data System (ADS)
Khetani, Altaf; Tiwari, Vidhu S.; Harb, Alaa; Anis, Hanan
2011-08-01
The feasibility of using hollow core photonic crystal fiber (HC-PCF) in conjunction with Raman spectroscopy has been explored for real time monitoring of heparin concentration in serum. Heparin is an important blood anti-coagulant whose precise monitoring and controlling in patients undergoing cardiac surgery and dialysis is of utmost importance. Our method of heparin monitoring offers a novel alternative to existing clinical procedures in terms of accuracy, response time and sample volume. The optical design configuration simply involves a 785-nm laser diode whose light is coupled into HC-PCF filled with heparin-serum mixtures. By non-selectively filling HC-PCF, a strong modal field overlap is obtained. Consequently, an enhanced Raman signal (>90 times) is obtained from various heparin-serum mixtures filled HC-PCFs compared to its bulk counterpart (cuvette). The present scheme has the potential to serve as a `generic biosensing tool' for diagnosing a wide range of biological samples.
NASA Astrophysics Data System (ADS)
Alken, P.; Olsen, N.; Finlay, C. C.; Chulliat, A.
2017-12-01
In order to investigate the spatial structure and development of rapid (sub-decadal) changes in the geomagnetic core field, including its secular variation and acceleration, global magnetic measurements from space play a crucial role. With the end of the CHAMP mission in September 2010, there has been a gap in high-quality satellite magnetic field measurements until the Swarm mission was launched in November 2013. Geomagnetic main field models during this period have relied on the global ground observatory network which, due to its sparse spatial configuration, has difficulty in resolving secular variation and acceleration at higher spherical harmonic degrees. In this presentation we will show new results in building main field models during this "gap period", based on vector magnetic measurements from four Defense Meteorological Satellite Program (DMSP) satellites. While the fluxgate instruments onboard DMSP were not designed for high-quality core field modeling, we find that the DMSP dataset can provide valuable information on secular variation and acceleration during the gap period.
NASA's Space Launch System Transitions From Design To Production
NASA Technical Reports Server (NTRS)
Askins, Bruce R.; Robinson, Kimberly F.
2016-01-01
NASA's Space Launch System (SLS) successfully completed its Critical Design Review (CDR) in 2015, a major milestone on the journey to an unprecedented era of exploration for humanity. CDR formally marked the program's transition from design to production phase just four years after the program's inception and the first such milestone for a human launch vehicle in 40 years. While challenges typical of a complex development program lie ahead, CDR evaluators concluded that the design is technically and programmatically sound and ready to press forward to Design Certification Review (DCR) and readiness for launch of Exploration Mission 1 (EM-1) in the 2018 timeframe. SLS is prudently based on existing propulsion systems, infrastructure and knowledge with a clear, evolutionary path as required by mission needs. In its initial configuration, designated Block 1, SLS will a minimum of 70 metric tons (t) (154,324 pounds) of payload to low Earth orbit (LEO). It will evolve to a 130 t (286,601 pound) payload capacity by upgrading its engines, boosters, and upper stage, dramatically increasing the mass and volume of human and robotic exploration while decreasing mission risk, increasing safety, and simplifying ground and mission operations. CDR was the central programmatic accomplishment among many technical accomplishments that will be described in this paper. The government/industry SLS team successfully test-fired a flight-like five-segment solid rocket motor, as well as seven hotfire development tests of the RS-25 core stage engine. The majority of the major test article and flight barrels, rings, and domes for the core stage liquid oxygen, liquid hydrogen, engine section, intertank, and forward skirt were manufactured at NASA's Michoud Assembly Facility in New Orleans, Louisiana. Renovations to the B-2 test stand for stage green run testing were completed at NASA's Stennis Space Center (SSC), near Bay St. Louis, Mississippi. Core stage test stands are reaching completion at NASA's Marshall Space Flight Center in Huntsville, Alabama. The modified Pegasus barge for core stage transportation from manufacturing to testing and launch sites was delivered to SSC. The Interim Cryogenic Propulsion System test article was also completed. This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before the first flight of this new capability.
NASA Technical Reports Server (NTRS)
Krist, Steven E.; Bauer, Steven X. S.
1999-01-01
The design process for developing the natural flow wing design on the HSR arrow wing configuration utilized several design tools and analysis methods. Initial fuselage/wing designs were generated with inviscid analysis and optimization methods in conjunction with the natural flow wing design philosophy. A number of designs were generated, satisfying different system constraints. Of the three natural flow wing designs developed, the NFWAc2 configuration is the design which satisfies the constraints utilized by McDonnell Douglas Aerospace (MDA) in developing a series of optimized configurations; a wind tunnel model of the MDA designed OPT5 configuration was constructed and tested. The present paper is concerned with the viscous analysis and inverse design of the arrow wing configurations, including the effects of the installed diverters/nacelles. Analyses were conducted with OVERFLOW, a Navier-Stokes flow solver for overset grids. Inverse designs were conducted with OVERDISC, which couples OVERFLOW with the CDISC inverse design method. An initial system of overset grids was generated for the OPT5 configuration with installed diverters/nacelles. An automated regridding process was then developed to use the OPT5 component grids to create grids for the natural flow wing designs. The inverse design process was initiated using the NFWAc2 configuration as a starting point, eventually culminating in the NFWAc4 design-for which a wind tunnel model was constructed. Due to the time constraints on the design effort, initial analyses and designs were conducted with a fairly coarse grid; subsequent analyses have been conducted on a refined system of grids. Comparisons of the computational results to experiment are provided at the end of this paper.
NASA Technical Reports Server (NTRS)
Triner, J. E.
1979-01-01
The basic magnetic properties under various operating conditions encountered in the state-of-the-art DC-AC/DC converters are examined. Using a novel core excitation circuit, the basic B-H and loss characteristics of various core materials may be observed as a function of circuit configuration, frequency of operation, input voltage, and pulse-width modulation conditions. From this empirical data, a mathematical loss characteristics equation is developed to analytically predict the specific core loss of several magnetic materials under various waveform excitation conditions.
Toward a more efficient and scalable checkpoint/restart mechanism in the Community Atmosphere Model
NASA Astrophysics Data System (ADS)
Anantharaj, Valentine
2015-04-01
The number of cores (both CPU as well as accelerator) in large-scale systems has been increasing rapidly over the past several years. In 2008, there were only 5 systems in the Top500 list that had over 100,000 total cores (including accelerator cores) whereas the number of system with such capability has jumped to 31 in Nov 2014. This growth however has also increased the risk of hardware failure rates, necessitating the implementation of fault tolerance mechanism in applications. The checkpoint and restart (C/R) approach is commonly used to save the state of the application and restart at a later time either after failure or to continue execution of experiments. The implementation of an efficient C/R mechanism will make it more affordable to output the necessary C/R files more frequently. The availability of larger systems (more nodes, memory and cores) has also facilitated the scaling of applications. Nowadays, it is more common to conduct coupled global climate simulation experiments at 1 deg horizontal resolution (atmosphere), often requiring about 103 cores. At the same time, a few climate modeling teams that have access to a dedicated cluster and/or large scale systems are involved in modeling experiments at 0.25 deg horizontal resolution (atmosphere) and 0.1 deg resolution for the ocean. These ultrascale configurations require the order of 104 to 105 cores. It is not only necessary for the numerical algorithms to scale efficiently but the input/output (IO) mechanism must also scale accordingly. An ongoing series of ultrascale climate simulations, using the Titan supercomputer at the Oak Ridge Leadership Computing Facility (ORNL), is based on the spectral element dynamical core of the Community Atmosphere Model (CAM-SE), which is a component of the Community Earth System Model and the DOE Accelerated Climate Model for Energy (ACME). The CAM-SE dynamical core for a 0.25 deg configuration has been shown to scale efficiently across 100,000 cpu cores. At this scale, there is an increased risk that the simulation could be terminated due to hardware failures, resulting in a loss that could be as high as 105 - 106 titan core hours. Increasing the frequency of the output of C/R files could mitigate this loss but at the cost of additional C/R overhead. We are testing a more efficient C/R mechanism in CAM-SE. Our early implementation has demonstrated a nearly 3X performance improvement for a 1 deg CAM-SE (with CAM5 physics and MOZART chemistry) configuration using nearly 103 cores. We are in the process of scaling our implementation to 105 cores. This would allow us to run ultra scale simulations with more sophisticated physics and chemistry options while making better utilization of resources.
NASA Collaborative Design Processes
NASA Technical Reports Server (NTRS)
Jones, Davey
2017-01-01
This is Block 1, the first evolution of the world's most powerful and versatile rocket, the Space Launch System, built to return humans to the area around the moon. Eventually, larger and even more powerful and capable configurations will take astronauts and cargo to Mars. On the sides of the rocket are the twin solid rocket boosters that provide more than 75 percent during liftoff and burn for about two minutes, after which they are jettisoned, lightening the load for the rest of the space flight. Four RS-25 main engines provide thrust for the first stage of the rocket. These are the world's most reliable rocket engines. The core stage is the main body of the rocket and houses the fuel for the RS-25 engines, liquid hydrogen and liquid oxygen, and the avionics, or "brain" of the rocket. The core stage is all new and being manufactured at NASA's "rocket factory," Michoud Assembly Facility near New Orleans. The Launch Vehicle Stage Adapter, or LVSA, connects the core stage to the Interim Cryogenic Propulsion Stage. The Interim Cryogenic Propulsion Stage, or ICPS, uses one RL-10 rocket engine and will propel the Orion spacecraft on its deep-space journey after first-stage separation. Finally, the Orion human-rated spacecraft sits atop the massive Saturn V-sized launch vehicle. Managed out of Johnson Space Center in Houston, Orion is the first spacecraft in history capable of taking humans to multiple destinations within deep space. 2) Each element of the SLS utilizes collaborative design processes to achieve the incredible goal of sending human into deep space. Early phases are focused on feasibility and requirements development. Later phases are focused on detailed design, testing, and operations. There are 4 basic phases typically found in each phase of development.
Improved Optical Fiber Chemical Sensors
NASA Technical Reports Server (NTRS)
Egalon, Claudio O.; Rogowski, Robert S.
1994-01-01
Calculations, based on exact theory of optical fiber, have shown how to increase optical efficiency sensitivity of active-core, step-index-profile optical-fiber fluorosensor. Calculations result of efforts to improve efficiency of optical-fiber chemical sensor of previous concept described in "Making Optical-Fiber Chemical Sensors More Sensitive" (LAR-14525). Optical fiber chemical detector of enhanced sensitivity made in several configurations. Portion of fluorescence or chemiluminescence generated in core, and launched directly into bound electromagnetic modes that propagate along core to photodetector.
OpenROCS: a software tool to control robotic observatories
NASA Astrophysics Data System (ADS)
Colomé, Josep; Sanz, Josep; Vilardell, Francesc; Ribas, Ignasi; Gil, Pere
2012-09-01
We present the Open Robotic Observatory Control System (OpenROCS), an open source software platform developed for the robotic control of telescopes. It acts as a software infrastructure that executes all the necessary processes to implement responses to the system events that appear in the routine and non-routine operations associated to data-flow and housekeeping control. The OpenROCS software design and implementation provides a high flexibility to be adapted to different observatory configurations and event-action specifications. It is based on an abstract model that is independent of the specific hardware or software and is highly configurable. Interfaces to the system components are defined in a simple manner to achieve this goal. We give a detailed description of the version 2.0 of this software, based on a modular architecture developed in PHP and XML configuration files, and using standard communication protocols to interface with applications for hardware monitoring and control, environment monitoring, scheduling of tasks, image processing and data quality control. We provide two examples of how it is used as the core element of the control system in two robotic observatories: the Joan Oró Telescope at the Montsec Astronomical Observatory (Catalonia, Spain) and the SuperWASP Qatar Telescope at the Roque de los Muchachos Observatory (Canary Islands, Spain).
NASA Astrophysics Data System (ADS)
Kishi, Ryohei; Minami, Takuya; Fukui, Hitoshi; Takahashi, Hideaki; Nakano, Masayoshi
2008-06-01
The core molecule dependence of energy (exciton) migration in phenylacetylene nanostar dendrimers is investigated using the ab initio molecular orbital (MO)-configuration interaction based quantum master equation approach. We examine three kinds of core molecular species, i.e., benzene, anthracene, and pentacene, with different highest occupied MO-lowest unoccupied MO (HOMO-LUMO) gaps, which lead to different orbital interactions between the dendron parts and the core molecule. The nanostars bearing anthracene and pentacene cores are characterized by multistep exciton states with spatially well-segmented distributions: The exciton distributions of high-lying exciton states are spatially localized well in the periphery region, whereas those of low-lying exciton states are done in the core region. On the other hand, for the nanostar bearing benzene core, which also has multistep exciton states, the spatial exciton distributions of low-lying exciton states are delocalized over the dendron and the core regions. It is found that the former nanostars exhibit nearly complete exciton migration from the periphery to the core molecule in contrast to the latter one, in which significant exciton distribution remains in the dendron parts attached to the core after the exciton relaxation, although all these dendrimers exhibit fast exciton relaxation from the initially populated states. It is predicted from the analysis based on the MO correlation diagrams and the relative relaxation factor that the complete exciton migration to the core occurs not only when the HOMO-LUMO gap of the core molecule is nearly equal to that of the dendron parts attached to the core (anthracene case) but also when fairly smaller than that (pentacene case), whereas the complete migration is not achieved when the HOMO-LUMO gap of the core is larger than that of the dendron parts (benzene case). These results suggest that the fast and complete exciton migration of real dendrimers could be realized by adjusting the HOMO-LUMO gap of the core molecule to be smaller than that of dendron parts, although there exist more complicated relaxation processes as compared to simple dendritic aggregate models studied so far.
Development of the RFBB “Bargouzine” concept for Ariane-5 evolution
NASA Astrophysics Data System (ADS)
Sumin, Yuriy; Kostromin, Sergey F.; Panichkin, Nikolai; Prel, Yves; Osin, Mikhail; Iranzo-Greus, David; Prampolini, Marco
2009-10-01
This paper presents the study of a concept of Ariane-5 evolution by means of replacement of two solid-propellant boosters EAP with two liquid-propellant reusable fly-back boosters (RFBBs) called "Bargouzine". The main design feature of the reference RFBB is LOX/LH2 propellant, the canard aerodynamic configuration with delta wings and rocket engines derived from Vulcain-2 identical to that of the central core except for the nozzle length. After separation RFBBs return back by use of air breathing engines mounted in the aft part and then landing on a runway. The aim of the study is a more detailed investigation of critical technology issues concerning reliability, re-usability and maintenance requirements. The study was performed in three main phases: system trade-off, technical consolidation, and programmatic synthesis. The system trade-off includes comparative analysis of two systems with three and four engines on each RFBB and determination of the necessary thrust level taking into account thrust reservation for emergency situations. Besides, this phase contains trade-off on booster aerodynamic configurations and abort scenario analysis. The second phase includes studying of controllability during the ascent phase and separation, thermo-mechanical design, development of ground interfaces and attachment means, and turbojets engine analysis taking into account reusability.
Progress in the hyperspectral payload for PRISMA programme
NASA Astrophysics Data System (ADS)
Meini, Marco; Battazza, Fabrizio; Formaro, Roberto; Bini, Alessandro
2013-10-01
The PRISMA (PRecursore IperSpettrale della Missione Applicativa) Programme is an ASI (Agenzia Spaziale Italiana) hyperspectral mission for Earth observation based on a mono-payload single satellite: an Italian Consortium is in charge to realize the mission; Selex ES has the full responsibility of the hyperspectral payload composed by a high spectral resolution spectrometer optically integrated with a medium resolution panchromatic camera. The optical design permits to cover the wavelength range from 400 to 2500 nm and it is based on high transmittance optical assemblies, including a reflective common telescope in Three-Mirror Anastigmat (TMA) configuration, a single slit aperture, a panchromatic camera (700-900 nm) and a spectrometer having two channels (VNIR and SWIR), each one using an suitable prism configuration and spectrally separated by a beam splitter, conceived to minimize the number of optical elements. High performance MCT-based detectors represent the core of the instrument. To provide the required data quality for the entire mission lifetime (5 years), an accurate and stable calibration unit (radiometric and spectral) is integrated, for the in-flight instrument calibration. The thermal design has been based on a passive cooling system: a double stage radiator, suitable oriented and protected from unwanted heat fluxes, high performance heat pipes and an operational heaters network represent the solution adopted to achieve the required thermal stability.
Dynamical Stability and Long-term Evolution of Rotating Stellar Systems
NASA Astrophysics Data System (ADS)
Varri, Anna L.; Vesperini, E.; McMillan, S. L. W.; Bertin, G.
2011-05-01
We present the first results of an extensive survey of N-body simulations designed to investigate the dynamical stability and the long-term evolution of two new families of self-consistent stellar dynamical models, characterized by the presence of internal rotation. The first family extends the well-known King models to the case of axisymmetric systems flattened by solid-body rotation while the second family is characterized by differential rotation. The equilibrium configurations thus obtained can be described in terms of two dimensionless parameters, which measure the concentration and the amount of rotation, respectively. Slowly rotating configurations are found to be dynamically stable and we followed their long-term evolution, in order to evaluate the interplay between collisional relaxation and angular momentum transport. We also studied the stability of rapidly rotating models, which are characterized by the presence of a toroidal core embedded in an otherwise quasi-spherical configuration. In both cases, a description in terms of the radial and global properties, such as the ratio between the ordered kinetic energy and the gravitational energy of the system, is provided. Because the role of angular momentum in the process of cluster formation is only partly understood, we also undertook a preliminary investigation of the violent relaxation of simple systems initially characterized by approximate solid-body rotation. The properties of the final equilibrium configurations thus obtained are compared with those of the above-described family of differentially rotating models.
Programing techniques for CDC equipment
NASA Technical Reports Server (NTRS)
Newsom, J. R.; Tiffany, S. H.
1979-01-01
Five techniques reduce core requirements for fast batch turnaround time and interactive-terminal capability. Same techniques increase program versatility, decrease problem-configuration dependence, and facilitate interprogram communication.
NASA Astrophysics Data System (ADS)
Chambers, Andrew T.
Airborne noise with a low dominant frequency content (< 500 Hz) has detrimental effects in many applications, but is as yet beyond the scope of conventional acoustic noise mitigation techniques using liners, foams or claddings owing to mass and volume considerations. Its low evanescence contributes significantly to environmental noise pollution, and unwanted structural vibrations causing diminished efficiency, comfort, payload integrity and mission capabilities. An alternative approach using liner configurations with realistic mass and volume constraints having innovative 'folded' core geometries is investigated to ascertain its low-frequency noise absorption characteristics. In contrast to mass-driven approaches, the folded core approach relies on tailoring interactions between acoustic resonances to tune the liner's impedance to suit the dominant low-frequency content of the source. This allows to keep non-structural mass-addition to a minimum, while retaining an overall thickness comparable to conventional liners for these low-frequency liner designs. The relative acoustic performance of various candidate folded core designs is evaluated by means of a new composite metric termed the Low-Frequency Performance (LFP) factor, which is educed from the absorption coefficient spectrum obtained using Zwikker-Kosten Transmission Line (ZKTL) theory-based numerical studies. An LFP-based software tool is developed to determine optimal 3D cavity packing for a prescribed liner volume and target frequency range. ZKTL-based parametric studies on core dimensions and face sheet porosity are utilized for detailed design of test articles. Experimental verification of absorption coefficient spectra conducted using 3D printed test articles in a normal incidence acoustic impedance tube yield good correlation with simulations. More than 100 Hz of continuous bandwidth with an absorption coefficient greater than 0.6 is shown to be possible in the 300 to 400 Hz range with a 38.1-mm (1.5-inch) thick liner. Further, the influence of face sheet type, Mach number, and sound pressure level on the attenuation across folded core liners is evaluated using grazing flow impedance tube tests. Up to 20 dB of attenuation is observed in the targeted frequency range in these tests indicating potential for performance retention in an operational scenario. With current additive and hybrid manufacturing techniques attaining critical commercial maturity, lightweight and compact acoustic liners employing folded cores could provide a promising practical solution to mitigate low-frequency airborne noise, especially in aerospace applications.
NASA Technical Reports Server (NTRS)
Majjigi, R. K.; Brausch, J. F.; Janardan, B. A.; Balsa, T. F.; Knott, P. R.; Pickup, N.
1984-01-01
A technology base for the thermal acoustic shield concept as a noise suppression device for single stream exhaust nozzles was developed. Acoustic data for 314 test points for 9 scale model nozzle configurations were obtained. Five of these configurations employed an unsuppressed annular plug core jet and the remaining four nozzles employed a 32 chute suppressor core nozzle. Influence of simulated flight and selected geometric and aerodynamic flow variables on the acoustic behavior of the thermal acoustic shield was determined. Laser velocimeter and aerodynamic measurements were employed to yield valuable diagnostic information regarding the flow field characteristics of these nozzles. An existing theoretical aeroacoustic prediction method was modified to predict the acoustic characteristics of partial thermal acoustic shields.
Gyrokinetic particle simulation of a field reversed configuration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulton, D. P., E-mail: dfulton@uci.edu; Lau, C. K.; Holod, I.
2016-01-15
Gyrokinetic particle simulation of the field-reversed configuration (FRC) has been developed using the gyrokinetic toroidal code (GTC). The magnetohydrodynamic equilibrium is mapped from cylindrical coordinates to Boozer coordinates for the FRC core and scrape-off layer (SOL), respectively. A field-aligned mesh is constructed for solving self-consistent electric fields using a semi-spectral solver in a partial torus FRC geometry. This new simulation capability has been successfully verified and driftwave instability in the FRC has been studied using the gyrokinetic simulation for the first time. Initial GTC simulations find that in the FRC core, the ion-scale driftwave is stabilized by the large ionmore » gyroradius. In the SOL, the driftwave is unstable on both ion and electron scales.« less
NASA Astrophysics Data System (ADS)
Wang, Yaochuan; Jiang, Yihua; Liu, Dajun; Wang, Yizhuo; Wang, Guiqiu; Hua, Jianli
2018-06-01
To study the effect of the conjugated structural configuration on the two-photon absorption (TPA) properties of V-shaped compounds, two 1,3,5-triazine-based compounds with the same electron donor (D) and acceptor (A) connected in a reverse-conjugated structural configuration ( T02: D-π-A-π-D; R02: A-π-D-π-A) were systematically investigated using steady-state and transient absorption spectroscopy, open-aperture Z-scan measurements, and two-photon fluorescence measurements. The TPA cross-section of compound R02 connected in a A-π-D-π-A-conjugated structural configuration with triphenylamine as the central core was 203 GM, which showed a 2.3-fold enhancement compared with compound T02 connected in a reverse D-π-A-π-D-conjugated structural configuration (90 GM, with 1,3,5-triazine as the central core). This result indicates that the conjugated structural configuration plays an important role in the TPA properties. A two-color pump-probe experiment was used to investigate the effect of the conjugated structural configuration on the excited state and intra-molecular charge transfer (ICT) properties of these V-shaped compounds. The formation and relaxation lifetimes of the ICT state were determined. The results indicate that the electron-donating/accepting strength of the central group, which serves as a communal group for two D-π-A subunits, was confirmed to be a key role to the overall effect of the ICT for V-shaped compounds. These ultrafast dynamic results are in agreement with the TPA properties.
NASA Technical Reports Server (NTRS)
Lux, James P.; Taylor, Gregory H.; Lang, Minh; Stern, Ryan A.
2011-01-01
An FPGA module leverages the previous work from Goddard Space Flight Center (GSFC) relating to NASA s Space Telecommunications Radio System (STRS) project. The STRS SpaceWire FPGA Module is written in the Verilog Register Transfer Level (RTL) language, and it encapsulates an unmodified GSFC core (which is written in VHDL). The module has the necessary inputs/outputs (I/Os) and parameters to integrate seamlessly with the SPARC I/O FPGA Interface module (also developed for the STRS operating environment, OE). Software running on the SPARC processor can access the configuration and status registers within the SpaceWire module. This allows software to control and monitor the SpaceWire functions, but it is also used to give software direct access to what is transmitted and received through the link. SpaceWire data characters can be sent/received through the software interface, as well as through the dedicated interface on the GSFC core. Similarly, SpaceWire time codes can be sent/received through the software interface or through a dedicated interface on the core. This innovation is designed for plug-and-play integration in the STRS OE. The SpaceWire module simplifies the interfaces to the GSFC core, and synchronizes all I/O to a single clock. An interrupt output (with optional masking) identifies time-sensitive events within the module. Test modes were added to allow internal loopback of the SpaceWire link and internal loopback of the client-side data interface.
Simulation of drift wave instability in field-reversed configurations using global magnetic geometry
NASA Astrophysics Data System (ADS)
Fulton, D. P.; Lau, C. K.; Lin, Z.; Tajima, T.; Holod, I.; the TAE Team
2016-10-01
Minimizing transport in the field-reversed configuration (FRC) is essential to enable FRC-based fusion reactors. Recently, significant progress on advanced beam-driven FRCs in C-2 and C-2U (at Tri Alpha Energy) provides opportunities to study transport properties using Doppler backscattering (DBS) measurements of turbulent fluctuations and kinetic particle-in-cell simulations of driftwaves in realistic equilibria via the Gyrokinetic Toroidal Code (GTC). Both measurements and simulations indicate relatively small fluctuations in the scrape-off layer (SOL). In the FRC core, local, single flux surface simulations reveal strong stabilization, while experiments indicate quiescent but finite fluctuations. One possible explanation is that turbulence may originate in the SOL and propagate at very low levels across the separatrix into the core. To test this hypothesis, a significant effort has been made to develop A New Code (ANC) based on GTC physics formulations, but using cylindrical coordinates which span the magnetic separatrix, including both core and SOL. Here, we present first results from global ANC simulations.
NASA Astrophysics Data System (ADS)
Mutter, Kussay N.; Jafri, Zubir M.; Tan, Kok Chooi
2016-04-01
In this paper, the simulation and design of a waveguide for water turbidity sensing are presented. The structure of the proposed sensor uses a 2x2 array of multimode interference (MMI) coupler based on micro graphene waveguide for high sensitivity. The beam propagation method (BPM) are used to efficiently design the sensor structure. The structure is consist of an array of two by two elements of sensors. Each element has three sections of single mode for field input tapered to MMI as the main core sensor without cladding which is graphene based material, and then a single mode fiber as an output. In this configuration MMI responses to any change in the environment. We validate and present the results by implementing the design on a set of sucrose solution and showing how these samples lead to a sensitivity change in the sensor based on the MMI structures. Overall results, the 3D design has a feasible and effective sensing by drawing topographical distribution of suspended particles in the water.
NASA Astrophysics Data System (ADS)
Kumar, Shailesh; Rao, Shrisha
This paper studies a phenomenon called failover, and shows that this phenomenon (in particular, stateless failover) can be modeled by Game of Life cellular automata. This is the first time that this sophisticated real-life system behavior has been modeled in abstract terms. A cellular automata (CA) configuration is constructed that exhibits emergent failover. The configuration is based on standard Game of Life rules. Gliders and glider-guns form the core messaging structure in the configuration. The blinker is represented as the basic computational unit, and it is shown how it can be recreated in case of a failure. Stateless failover using the primary-backup mechanism is demonstrated. The details of the CA components used in the configuration and its working are described, and a simulation of the complete configuration is also presented.
Aerodynamic Design Study of Advanced Multistage Axial Compressor
NASA Technical Reports Server (NTRS)
Larosiliere, Louis M.; Wood, Jerry R.; Hathaway, Michael D.; Medd, Adam J.; Dang, Thong Q.
2002-01-01
As a direct response to the need for further performance gains from current multistage axial compressors, an investigation of advanced aerodynamic design concepts that will lead to compact, high-efficiency, and wide-operability configurations is being pursued. Part I of this report describes the projected level of technical advancement relative to the state of the art and quantifies it in terms of basic aerodynamic technology elements of current design systems. A rational enhancement of these elements is shown to lead to a substantial expansion of the design and operability space. Aerodynamic design considerations for a four-stage core compressor intended to serve as a vehicle to develop, integrate, and demonstrate aerotechnology advancements are discussed. This design is biased toward high efficiency at high loading. Three-dimensional blading and spanwise tailoring of vector diagrams guided by computational fluid dynamics (CFD) are used to manage the aerodynamics of the high-loaded endwall regions. Certain deleterious flow features, such as leakage-vortex-dominated endwall flow and strong shock-boundary-layer interactions, were identified and targeted for improvement. However, the preliminary results were encouraging and the front two stages were extracted for further aerodynamic trimming using a three-dimensional inverse design method described in part II of this report. The benefits of the inverse design method are illustrated by developing an appropriate pressure-loading strategy for transonic blading and applying it to reblade the rotors in the front two stages of the four-stage configuration. Multistage CFD simulations based on the average passage formulation indicated an overall efficiency potential far exceeding current practice for the front two stages. Results of the CFD simulation at the aerodynamic design point are interrogated to identify areas requiring additional development. In spite of the significantly higher aerodynamic loadings, advanced CFD-based tools were able to effectively guide the design of a very efficient axial compressor under state-of-the-art aeromechanical constraints.
NASA Technical Reports Server (NTRS)
Martin, G. L.; Walkley, K. B.
1980-01-01
The aerodynamic design and analysis of three blended wing-fuselage supersonic cruise configurations providing four, five, and six abreast seating was conducted using a previously designed supersonic cruise configuration as the baseline. The five abreast configuration was optimized for wave drag at a Mach number of 2.7. The four and six abreast configurations were also optimized at Mach 2.7, but with the added constraint that the majority of their structure be common with the five abreast configuration. Analysis of the three configurations indicated an improvement of 6.0, 7.5, and 7.7 percent in cruise lift-to-drag ratio over the baseline configuration for the four, five, and six abreast configurations, respectively.
TREAT Transient Analysis Benchmarking for the HEU Core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kontogeorgakos, D. C.; Connaway, H. M.; Wright, A. E.
2014-05-01
This work was performed to support the feasibility study on the potential conversion of the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory from the use of high enriched uranium (HEU) fuel to the use of low enriched uranium (LEU) fuel. The analyses were performed by the GTRI Reactor Conversion staff at the Argonne National Laboratory (ANL). The objective of this study was to benchmark the transient calculations against temperature-limited transients performed in the final operating HEU TREAT core configuration. The MCNP code was used to evaluate steady-state neutronics behavior, and the point kinetics code TREKIN was used tomore » determine core power and energy during transients. The first part of the benchmarking process was to calculate with MCNP all the neutronic parameters required by TREKIN to simulate the transients: the transient rod-bank worth, the prompt neutron generation lifetime, the temperature reactivity feedback as a function of total core energy, and the core-average temperature and peak temperature as a functions of total core energy. The results of these calculations were compared against measurements or against reported values as documented in the available TREAT reports. The heating of the fuel was simulated as an adiabatic process. The reported values were extracted from ANL reports, intra-laboratory memos and experiment logsheets and in some cases it was not clear if the values were based on measurements, on calculations or a combination of both. Therefore, it was decided to use the term “reported” values when referring to such data. The methods and results from the HEU core transient analyses will be used for the potential LEU core configurations to predict the converted (LEU) core’s performance.« less
Impact-damaged graphite-thermoplastic trapezoidal-corrugation sandwich and semi-sandwich panels
NASA Technical Reports Server (NTRS)
Jegley, D.
1993-01-01
The results of a study of the effects of impact damage on compression-loaded trapezoidal-corrugation sandwich and semi-sandwich graphite-thermoplastic panels are presented. Sandwich panels with two identical face sheets and a trapezoidal corrugated core between them, and semi-sandwich panels with a corrugation attached to a single skin are considered in this study. Panels were designed, fabricated and tested. The panels were made using the manufacturing process of thermoforming, a less-commonly used technique for fabricating composite parts. Experimental results for unimpacted control panels and panels subjected to impact damage prior to loading are presented. Little work can be found in the literature about these configurations of thermoformed panels.
Advanced design concepts in nuclear electric propulsion. [and spacecraft configurations
NASA Technical Reports Server (NTRS)
Peelgren, M. L.; Mondt, J. F.
1974-01-01
Conceptual designs of the nuclear propulsion programs are reported. Major areas of investigation were (1) design efforts on spacecraft configuration and heat rejection subsystem, (2) high-voltage thermionic reactor concepts, and (3) dual-mode spacecraft configuration study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2011-07-15
1) Configured servers: In coordination with the INSIGHT team, a hardware configuration was selected. Two nodes were purchased, configured, and shipped with compatible OS and database installation. The servers have been stress tested for reliability as they use leading edge technologies. Each node has two CPUs and 12 cores per CPU with maximum onboard memory for high performance. 2) LIM and Experimental module: The original BioSig system was developed for cancer research. Accordingly, the LIM system its corresponding web pages are being modified to facilitate (i) pathogene-donor interactions, (ii) media composition, (iii) chemical and siRNA plate configurations. The LIM systemmore » has been redesigned. The revised system allows design of new media and tracking it from lot-to-lot so that variations in the phenotypic responses can be tracked to a specific media and lot number. Similar associations are also possible with other experimental factors (e.g., donor-pathoge, siRNA, and chemical). Furthermore, the design of the experimental variables has also been revised to (i) interact with the newly developed LIM system, (ii) simplify experimental specifications, and (iii) test for potential operator's error during the data entry. Part of the complication has been due to the handshake between multiple teams that provide the small molecule plates and the team that creates assay plates. Our efforts have focused to harmonize these interactions (e.g., various data formats) so that each assay plate can be mapped to its source so that a correct set of experimental variables can be associated with each image. For example, depending upon the source of the chemical plates, they may have different formats. We have developed a canonical representation that registers SMILES code, for each chemical compound, along with its physiochemical properties. The schema for LIM conjunction with customized Web pages. 3) Import of Images and computed descriptors module: In coordination with the INSIGHT team, policies were designed to route images and computed representation into BioSig. This module (i) examines for completion of image analysis, and imports images, computed masks, and descriptors into BioSig. A database API for efficient retrieval of selection of descriptors (among thousands) was designed and implemented. 4) Computed segmentation masks from external software were imported, boundaries computed, and overlaid on images for quality control.« less
CD-ROM Hardware Configurations: Selection and Design.
ERIC Educational Resources Information Center
Jaffe, Lee David; Watkins, Steven G.
1992-01-01
Presents selection and design considerations to help libraries make informed decisions about hardware configurations of CD-ROM systems. Highlights include CD-ROM configurations, including single drive workstations, daisychains, and jukeboxes; network configurations, including remote access; microcomputer features; CD-ROM drive selection; and…
NASA Astrophysics Data System (ADS)
Nijssen, B.; Hamman, J.; Bohn, T. J.
2015-12-01
The Variable Infiltration Capacity (VIC) model is a macro-scale semi-distributed hydrologic model. VIC development began in the early 1990s and it has been used extensively, applied from basin to global scales. VIC has been applied in a many use cases, including the construction of hydrologic data sets, trend analysis, data evaluation and assimilation, forecasting, coupled climate modeling, and climate change impact analysis. Ongoing applications of the VIC model include the University of Washington's drought monitor and forecast systems, and NASA's land data assimilation systems. The development of VIC version 5.0 focused on reconfiguring the legacy VIC source code to support a wider range of modern modeling applications. The VIC source code has been moved to a public Github repository to encourage participation by the model development community-at-large. The reconfiguration has separated the physical core of the model from the driver, which is responsible for memory allocation, pre- and post-processing and I/O. VIC 5.0 includes four drivers that use the same physical model core: classic, image, CESM, and Python. The classic driver supports legacy VIC configurations and runs in the traditional time-before-space configuration. The image driver includes a space-before-time configuration, netCDF I/O, and uses MPI for parallel processing. This configuration facilitates the direct coupling of streamflow routing, reservoir, and irrigation processes within VIC. The image driver is the foundation of the CESM driver; which couples VIC to CESM's CPL7 and a prognostic atmosphere. Finally, we have added a Python driver that provides access to the functions and datatypes of VIC's physical core from a Python interface. This presentation demonstrates how reconfiguring legacy source code extends the life and applicability of a research model.
NASA Technical Reports Server (NTRS)
Bair, E. K.
1986-01-01
The System Trades Study and Design Methodology Plan is used to conduct trade studies to define the combination of Space Shuttle Main Engine features that will optimize candidate engine configurations. This is accomplished by using vehicle sensitivities and engine parametric data to establish engine chamber pressure and area ratio design points for candidate engine configurations. Engineering analyses are to be conducted to refine and optimize the candidate configurations at their design points. The optimized engine data and characteristics are then evaluated and compared against other candidates being considered. The Evaluation Criteria Plan is then used to compare and rank the optimized engine configurations on the basis of cost.
Active cells for redundant and configurable articulated structures
NASA Astrophysics Data System (ADS)
Swensen, John P.; Nawroj, Ahsan I.; Pounds, Paul E. I.; Dollar, Aaron M.
2014-10-01
The proposed research effort explores the development of active cells—simple contractile electro-mechanical units that can be used as the material basis for larger articulable structures. Each cell, which might be considered a ‘muscle unit,’ consists of a contractile Nitinol Shape Memory Alloy (SMA) core with conductive terminals. Large numbers of these cells might be combined and externally powered to change phase, contracting to either articulate with a large strain or increase the stiffness of the ensemble, depending on the cell design. Unlike traditional work in modular robotics, the approach presented here focuses on cells that have a simplistic design and function, are inexpensive to fabricate, and are eventually scalable to sub-millimeter sizes, working toward our vision of articulated and robotic structures that can be custom-fabricated from large numbers of general cell units, similar to biological structures. In this paper, we present the design of the active cells and demonstrate their usage with three articulated structures built with them.
Design and optimization of the CFRP mirror components
NASA Astrophysics Data System (ADS)
Wei, Lei; Zhang, Lei; Gong, Xiaoxue
2017-09-01
As carbon fiber reinforced polymer (CFRP) material has been developed and demonstrated as an effective material in lightweight telescope reflector manufacturing recently, the authors of this article have extended to apply this material on the lightweight space camera mirror design and fabrication. By CFRP composite laminate design and optimization using finite element method (FEM) analysis, a spherical mirror with φ316 mm diameter whose core cell reinforcement is an isogrid configuration is fabricated. Compared with traditional ways of applying ultra-low-expansion glass (ULE) on the CFRP mirror surface, the method of nickel electroplating on the surface effectively reduces the processing cost and difficulty of the CFRP mirror. Through the FEM analysis, the first order resonance frequency of the CFRP mirror components reaches up to 652.3 Hz. Under gravity affection coupling with +5°C temperature rising, the mirror surface shape root-mean-square values (RMS) at the optical axis horizontal state is 5.74 nm, which meets mechanical and optical requirements of the mirror components on space camera.
Structured Cable for High-Current Coils of Tokamaks
NASA Astrophysics Data System (ADS)
Benson, Christopher; McIntyre, Peter; Sattarov, Akhdiyor; Mann, Thomas
2011-10-01
The 45 kA superconducting cable for the ITER central solenoid coil has yielded questionable results in two recent tests. In both cases the cable Tc increased after cycling only a fraction of the design life, indicating degradation due to fatigue and fracture among the superconducting strands. The Accelerator Research Lab at Texas A&M University is developing a design for a Nb3Sn structured cable suitable for such tokamak coils. The superconductor is configured in 6 sub-cables, and each subcable is supported within a channel of a central support structure within a high-strength armor sheath. The structured cable addresses two issues that are thought to compromise opposition at high current. The strands are supported without cross-overs (which produce stress concentration); and armor sheath and core structure bypass stress through the coil and among subcables so that the stress within each subcable is only what is produced directly upon it. Details of the design and plans for development will be presented.
Building configuration and seismic design: The architecture of earthquake resistance
NASA Astrophysics Data System (ADS)
Arnold, C.; Reitherman, R.; Whitaker, D.
1981-05-01
The architecture of a building in relation to its ability to withstand earthquakes was determined. Aspects of round motion which are significant to building behavior are discussed. Results of a survey of configuration decisions that affect the performance of buildings with a focus on the architectural aspects of configuration design are provided. Configuration derivation, building type as it relates to seismic design, and seismic design, and seismic issues in the design process are examined. Case studies of the Veterans' Administration Hospital in Loma Linda, California, and the Imperial Hotel in Tokyo, Japan, are presented. The seismic design process is described paying special attention to the configuration issues. The need is stressed for guidelines, codes, and regulations to ensure design solutions that respect and balance the full range of architectural, engineering, and material influences on seismic hazards.
Optical bandwidth in coupling: the multicore photonic switch.
Attard, Alfred E
2003-05-20
In the present study, the bandwidth of a photonic switch described previously [Appl. Opt. 37,2296 (1998); 38, 3239 (1999)] is evaluated. First the optical bandwidth is evaluated for coupling between two fiber-core waveguides, in which the cores are embedded within the same cladding. Then the coupling bandwidth is determined for a fiber-core-to-slab-core waveguide, in which the cores are embedded within the same cladding. These bandwidths are then compared and contrasted with the bandwidths of the photonic switch, which consists of two fiber cores and a control waveguide. Two configurations of the photonic switch are considered: one in which the control waveguide is a fiber core and one in which the control waveguide is a slab core. For the photonic switch, the bandwidth characteristics are more complicated than for the coupled pairs, and these characteristics are discussed in detail.
Tidal disruption of fuzzy dark matter subhalo cores
NASA Astrophysics Data System (ADS)
Du, Xiaolong; Schwabe, Bodo; Niemeyer, Jens C.; Bürger, David
2018-03-01
We study tidal stripping of fuzzy dark matter (FDM) subhalo cores using simulations of the Schrödinger-Poisson equations and analyze the dynamics of tidal disruption, highlighting the differences with standard cold dark matter. Mass loss outside of the tidal radius forces the core to relax into a less compact configuration, lowering the tidal radius. As the characteristic radius of a solitonic core scales inversely with its mass, tidal stripping results in a runaway effect and rapid tidal disruption of the core once its central density drops below 4.5 times the average density of the host within the orbital radius. Additionally, we find that the core is deformed into a tidally locked ellipsoid with increasing eccentricities until it is completely disrupted. Using the core mass loss rate, we compute the minimum mass of cores that can survive several orbits for different FDM particle masses and compare it with observed masses of satellite galaxies in the Milky Way.
Improving spatial and spectral resolution of TCV Thomson scattering
NASA Astrophysics Data System (ADS)
Hawke, J.; Andrebe, Y.; Bertizzolo, R.; Blanchard, P.; Chavan, R.; Decker, J.; Duval, B.; Lavanchy, P.; Llobet, X.; Marlétaz, B.; Marmillod, P.; Pochon, G.; Toussaint, M.
2017-12-01
The recently completed MST2 upgrade to the Thomson scattering (TS) system on TCV (Tokamak à Configuration Variable) at the Swiss Plasma Center aims to provide an enhanced spatial and spectral resolution while maintaining the high level of diagnostic flexibility for the study of TCV plasmas. The MST2 (Medium Sized Tokamak) is a work program within the Eurofusion ITER physics department, aimed at exploiting Europe's medium sized tokamak programs for a better understanding of ITER physics. This upgrade to the TCV Thomson scattering system involved the installation of 40 new compact 5-channel spectrometers and modifications to the diagnostics fiber optic design. The complete redesign of the fiber optic backplane incorporates fewer larger diameter fibers, allowing for a higher resolution in both the core and edge of TCV plasmas along the laser line, with a slight decrease in the signal to noise ratio of Thomson measurements. The 40 new spectrometers added to the system are designed to cover the full range of temperatures expected in TCV, able to measure electron temperatures (Te) with high precision between (6 eV and 20 keV) . The design of these compact spectrometers stems originally from the design utilized in the MAST (Mega Amp Spherical Tokamak) TS system located in Oxfordshire, United Kingdom. This design was implemented on TCV with an overall layout of optical fibers and spectrometers to achieve an overall increase in the spatial resolution, specifically a resolution of approximately 1% of the minor radius within the plasma pedestal region. These spectrometers also enhance the diagnostic spectral resolution, especially within the plasma edge, due to the low Te measurement capabilities. These additional spectrometers allow for a much greater diagnostic flexibility, allowing for quality full Thomson profiles in 75% of TCV plasma configurations.
Enrichment Zoning Options for the Small Nuclear Rocket Engine (SNRE)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruce G. Schnitzler; Stanley K. Borowski
2010-07-01
Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. In NASA’s recent Mars Design Reference Architecture (DRA) 5.0 study (NASA-SP-2009-566, July 2009), nuclear thermal propulsion (NTP) was again selected over chemical propulsion as the preferred in-space transportation system option because of its high thrust and high specific impulse (-900 s) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit. An extensive nuclear thermal rocket technology development effortmore » was conducted from 1955-1973 under the Rover/NERVA Program. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art design incorporating lessons learned from the very successful technology development program. Past activities at the NASA Glenn Research Center have included development of highly detailed MCNP Monte Carlo transport models of the SNRE and other small engine designs. Preliminary core configurations typically employ fuel elements with fixed fuel composition and fissile material enrichment. Uniform fuel loadings result in undesirable radial power and temperature profiles in the engines. Engine performance can be improved by some combination of propellant flow control at the fuel element level and by varying the fuel composition. Enrichment zoning at the fuel element level with lower enrichments in the higher power elements at the core center and on the core periphery is particularly effective. Power flattening by enrichment zoning typically results in more uniform propellant exit temperatures and improved engine performance. For the SNRE, element enrichment zoning provided very flat radial power profiles with 551 of the 564 fuel elements within 1% of the average element power. Results for this and alternate enrichment zoning options for the SNRE are compared.« less
Optical design of optical synthetic aperture telescope
NASA Astrophysics Data System (ADS)
Zhou, Chenghao; Wang, Zhile
2018-03-01
Optical synthetic aperture (OSA) is a promising solution for very high-resolution imaging while reducing its volume and mass. In this paper, first, the configuration of OSA systems are analyzed and the design methods of two types (Fizeau and Michelson) of OSA systems are summarized and researched. Second, Fizeau and Michelson OSA prototype systems are designed in detail. In the Michelson configuration, the instrument is made of sub-telescopes distributed in entrance pupil and combined by a common telescope via phase delay line. The design of Michelson configuration is more difficult than that of Fizeau configuration. In the design of Fizeau configuration, according to the third aberration theory tworeflective system is designed. Then the primary mirror of the two mirror system is replaced by the synthetic aperture. The whole system was simulated by Zemax software to obtain the Modulation transform function (MTF). In the design of Michelson configuration, the system is first divided into three parts: the afocal interferometric telescopes, beam combiner system and phase delay line. The three parts are designed respectively and then combined in Zemax software to obtain the MTF.
A Combinatorial Grassmannian Representation of the Magic Three-Qubit Veldkamp Line
NASA Astrophysics Data System (ADS)
Saniga, Metod
2017-10-01
It is demonstrated that the magic three-qubit Veldkamp line occurs naturally within the Veldkamp space of combinatorial Grassmannian of type $G_2(7)$, $\\mathcal{V}(G_2(7))$. The lines of the ambient symplectic polar space are those lines of $\\mathcal{V}(G_2(7))$ whose cores feature an odd number of points of $G_2(7)$. After introducing basic properties of three different types of points and six distinct types of lines of $\\mathcal{V}(G_2(7))$, we explicitly show the combinatorial Grassmannian composition of the magic Veldkamp line; we first give representatives of points and lines of its core generalized quadrangle GQ$(2,2)$, and then additional points and lines of a specific elliptic quadric $\\mathcal{Q}^{-}$(5,2), a hyperbolic quadric $\\mathcal{Q}^{+}$(5,2) and a quadratic cone $\\widehat{\\mathcal{Q}}$(4,2) that are centered on the GQ$(2,2)$. In particular, each point of $\\mathcal{Q}^{+}$(5,2) is represented by a Pasch configuration and its complementary line, the (Schl\\"afli) double-six of points in $\\mathcal{Q}^{-}$(5,2) comprise six Cayley-Salmon configurations and six Desargues configurations with their complementary points, and the remaining Cayley-Salmon configuration stands for the vertex of $\\widehat{\\mathcal{Q}}$(4,2).
Sex networking of young men who have sex with men in densely connected saunas in Hong Kong.
Poon, Chin Man; Lee, Shui Shan
2013-12-01
Some men who have sex with men (MSM) meet and have sex with male partners at gay saunas, the connections between which are little explored for designing HIV prevention measures. This study aims to describe the network configuration of gay saunas and explore its relationship with risk behavior of MSM in the respective sauna communities, in the city of Hong Kong. Using venue-based sampling, 205 MSM were recruited in 8 saunas in July 2011 for a cross-sectional anonymous questionnaire survey. A network of saunas was constructed based on the proportion of clients shared between them. Core saunas with higher intensity of linkages were delineated from core-periphery analysis. Men who have sex with men in core saunas were compared with those in peripheral ones in terms of their demographics and risk behavioral profiles. Eight core saunas were differentiated from a highly connected sauna network, consisting of 13 saunas with a diameter of 2. Men who have sex with men visiting core saunas were more likely to be younger and users of the Internet for sex networking (odds ratio, 5.43; 95% confidence interval, 1.84-16.01). On average, they visited 1.7 saunas and had 2.6 sauna partners over a 1-month period, which were both significantly higher than those for MSM in peripheral saunas. However, there was no association between having unprotected anal sex and visiting core saunas. Sauna affiliation patterns were age dependent and geographically related. Saunas were not homogeneously connected with each other. Prioritization may be considered so that public health interventions can be targeted at saunas in denser networks. An assortative mixing in age among MSM in sauna community informs planning for client-specific venue-based prevention programs.
Tethered Satellite System (TSS) core equipment
NASA Technical Reports Server (NTRS)
Bonifazi, C.
1986-01-01
To date, three Tethered Satellite System (TSS) missions of the Italian provided scientific satellite orbiting in the ionosphere connected to U.S. Space Shuttle is foreseen. The first mission will use an electrically conductive tether of 20 km deployed upward from the orbiter flying at 300 km altitude. This mission will allow investigation of the TSS electrodynamic interaction with the ionosphere due to the high voltage induced across the two terminators of the system during its motion throughout the geomagnetic field. The second mission will use a dielectric tether of 100 km deployed downward from the Orbiter flying at 230 km altitude. Tethered-vehicle access to altitude as low as 120 to 150 km from the Orbiter would permit direct long term observation of phenomena in the lower thermosphere and determination of other dynamical physical processes. The third mission would use the same configuration of the first electrodynamic mission with the complete Core Equipment. Study of power generation by tethered systems would be possible by operating the Core Equipment in the inverted current mode. This mode of operation would allow ion current collection upon the TSS satellite by controlling its potential with respect to the ambient ionospheric plasma. The main requirements of the Core Equipment configuration to date foreseen for the first TSS electrodynamic mission is described. Besides the Core Equipment purposes, its hardware and operational sub-modes of operation are described.
Reference Avionics Architecture for Lunar Surface Systems
NASA Technical Reports Server (NTRS)
Somervill, Kevin M.; Lapin, Jonathan C.; Schmidt, Oron L.
2010-01-01
Developing and delivering infrastructure capable of supporting long-term manned operations to the lunar surface has been a primary objective of the Constellation Program in the Exploration Systems Mission Directorate. Several concepts have been developed related to development and deployment lunar exploration vehicles and assets that provide critical functionality such as transportation, habitation, and communication, to name a few. Together, these systems perform complex safety-critical functions, largely dependent on avionics for control and behavior of system functions. These functions are implemented using interchangeable, modular avionics designed for lunar transit and lunar surface deployment. Systems are optimized towards reuse and commonality of form and interface and can be configured via software or component integration for special purpose applications. There are two core concepts in the reference avionics architecture described in this report. The first concept uses distributed, smart systems to manage complexity, simplify integration, and facilitate commonality. The second core concept is to employ extensive commonality between elements and subsystems. These two concepts are used in the context of developing reference designs for many lunar surface exploration vehicles and elements. These concepts are repeated constantly as architectural patterns in a conceptual architectural framework. This report describes the use of these architectural patterns in a reference avionics architecture for Lunar surface systems elements.
Parallelized Kalman-Filter-Based Reconstruction of Particle Tracks on Many-Core Architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerati, Giuseppe; Elmer, Peter; Krutelyov, Slava
Faced with physical and energy density limitations on clock speed, contemporary microprocessor designers have increasingly turned to on-chip parallelism for performance gains. Examples include the Intel Xeon Phi, GPGPUs, and similar technologies. Algorithms should accordingly be designed with ample amounts of fine-grained parallelism if they are to realize the full performance of the hardware. This requirement can be challenging for algorithms that are naturally expressed as a sequence of small-matrix operations, such as the Kalman filter methods widely in use in high-energy physics experiments. In the High-Luminosity Large Hadron Collider (HL-LHC), for example, one of the dominant computational problems ismore » expected to be finding and fitting charged-particle tracks during event reconstruction; today, the most common track-finding methods are those based on the Kalman filter. Experience at the LHC, both in the trigger and offline, has shown that these methods are robust and provide high physics performance. Previously we reported the significant parallel speedups that resulted from our efforts to adapt Kalman-filter-based tracking to many-core architectures such as Intel Xeon Phi. Here we report on how effectively those techniques can be applied to more realistic detector configurations and event complexity.« less
Granovsky, Alexander A
2015-12-21
We present a new, very efficient semi-numerical approach for the computation of state-specific nuclear gradients of a generic state-averaged multi-configuration self consistent field wavefunction. Our approach eliminates the costly coupled-perturbed multi-configuration Hartree-Fock step as well as the associated integral transformation stage. The details of the implementation within the Firefly quantum chemistry package are discussed and several sample applications are given. The new approach is routinely applicable to geometry optimization of molecular systems with 1000+ basis functions using a standalone multi-core workstation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granovsky, Alexander A., E-mail: alex.granovsky@gmail.com
We present a new, very efficient semi-numerical approach for the computation of state-specific nuclear gradients of a generic state-averaged multi-configuration self consistent field wavefunction. Our approach eliminates the costly coupled-perturbed multi-configuration Hartree-Fock step as well as the associated integral transformation stage. The details of the implementation within the Firefly quantum chemistry package are discussed and several sample applications are given. The new approach is routinely applicable to geometry optimization of molecular systems with 1000+ basis functions using a standalone multi-core workstation.
Parametric analyses of planned flowing uranium hexafluoride critical experiments
NASA Technical Reports Server (NTRS)
Rodgers, R. J.; Latham, T. S.
1976-01-01
Analytical investigations were conducted to determine preliminary design and operating characteristics of flowing uranium hexafluoride (UF6) gaseous nuclear reactor experiments in which a hybrid core configuration comprised of UF6 gas and a region of solid fuel will be employed. The investigations are part of a planned program to perform a series of experiments of increasing performance, culminating in an approximately 5 MW fissioning uranium plasma experiment. A preliminary design is described for an argon buffer gas confined, UF6 flow loop system for future use in flowing critical experiments. Initial calculations to estimate the operating characteristics of the gaseous fissioning UF6 in a confined flow test at a pressure of 4 atm, indicate temperature increases of approximately 100 and 1000 K in the UF6 may be obtained for total test power levels of 100 kW and 1 MW for test times of 320 and 32 sec, respectively.
NASA Technical Reports Server (NTRS)
Janz, Scott J.; Hilsenrath, Ernest; Mount, George; Heath, Donald
2000-01-01
CHYMERA is an Instrument Incubator concept to design, build, and test an instrument that will reduce size, mass, and cost and increase science potential and flexibility for future atmospheric remote sensing missions within the focus of NASA's Earth Science Enterprise (ESE). The primary effort of the development plan will be on high spatial resolution ozone, N02, S02, aerosol, and cloud measurements, but it is hoped that the techniques developed will prove useful for other measurements as well. The core design will involve a high performance, wide field-of-view (FOV) front end telescope which will illuminate a filter/focal plane array (FFPA) package. The use of a non-dispersive optical configuration will reduce size, mass and complexity. The wide FOV optics will permit short duration global coverage (1-2 days) without the need for a scanner.
Numerical Study of Sound Emission by 2D Regular and Chaotic Vortex Configurations
NASA Astrophysics Data System (ADS)
Knio, Omar M.; Collorec, Luc; Juvé, Daniel
1995-02-01
The far-field noise generated by a system of three Gaussian vortices lying over a flat boundary is numerically investigated using a two-dimensional vortex element method. The method is based on the discretization of the vorticity field into a finite number of smoothed vortex elements of spherical overlapping cores. The elements are convected in a Lagrangian reference along particle trajectories using the local velocity vector, given in terms of a desingularized Biot-Savart law. The initial structure of the vortex system is triangular; a one-dimensional family of initial configurations is constructed by keeping one side of the triangle fixed and vertical, and varying the abscissa of the centroid of the remaining vortex. The inviscid dynamics of this vortex configuration are first investigated using non-deformable vortices. Depending on the aspect ratio of the initial system, regular or chaotic motion occurs. Due to wall-related symmetries, the far-field sound always exhibits a time-independent quadrupolar directivity with maxima parallel end perpendicular to the wall. When regular motion prevails, the noise spectrum is dominated by discrete frequencies which correspond to the fundamental system frequency and its superharmonics. For chaotic motion, a broadband spectrum is obtained; computed soundlevels are substantially higher than in non-chaotic systems. A more sophisticated analysis is then performed which accounts for vortex core dynamics. Results show that the vortex cores are susceptible to inviscid instability which leads to violent vorticity reorganization within the core. This phenomenon has little effect on the large-scale features of the motion of the system or on low frequency sound emission. However, it leads to the generation of a high-frequency noise band in the acoustic pressure spectrum. The latter is observed in both regular and chaotic system simulations.
Space Shuttle 2 advanced space transportation system, volume 2
NASA Technical Reports Server (NTRS)
Adinaro, James N.; Benefield, Philip A.; Johnson, Shelby D.; Knight, Lisa K.
1989-01-01
To determine the best configuration from all candidate configurations, it was necessary first to calculate minimum system weights and performance. To optimize the design, it is necessary to vary configuration-specific variables such as total system weight, thrust-to-weight ratios, burn durations, total thrust available, and mass fraction for the system. Optimizing each of these variables at the same time is technically unfeasible and not necessarily mathematically possible. However, discrete sets of data can be generated which will eliminate many candidate configurations. From the most promising remaining designs, a final configuration can be selected. Included are the three most important designs considered: one which closely approximates the design criteria set forth in a Marshall Space Flight Center study of the Shuttle 2; the configuration used in the initial proposal; and the final configuration. A listing by cell of the formulas used to generate the aforementioned data is included for reference.
Development of a Low Inductance Linear Alternator for Stirling Power Convertors
NASA Technical Reports Server (NTRS)
Geng, Steven M.; Schifer, Nicholas A.
2017-01-01
The free-piston Stirling power convertor is a promising technology for high efficiency heat-to-electricity power conversion in space. Stirling power convertors typically utilize linear alternators for converting mechanical motion into electricity. The linear alternator is one of the heaviest components of modern Stirling power convertors. In addition, state-of-art Stirling linear alternators usually require the use of tuning capacitors or active power factor correction controllers to maximize convertor output power. The linear alternator to be discussed in this paper, eliminates the need for tuning capacitors and delivers electrical power output in which current is inherently in phase with voltage. No power factor correction is needed. In addition, the linear alternator concept requires very little iron, so core loss has been virtually eliminated. This concept is a unique moving coil design where the magnetic flux path is defined by the magnets themselves. This paper presents computational predictions for two different low inductance alternator configurations, and compares the predictions with experimental data for one of the configurations that has been built and is currently being tested.
Development of a Low-Inductance Linear Alternator for Stirling Power Convertors
NASA Technical Reports Server (NTRS)
Geng, Steven M.; Schifer, Nicholas A.
2017-01-01
The free-piston Stirling power convertor is a promising technology for high-efficiency heat-to-electricity power conversion in space. Stirling power convertors typically utilize linear alternators for converting mechanical motion into electricity. The linear alternator is one of the heaviest components of modern Stirling power convertors. In addition, state-of-the-art Stirling linear alternators usually require the use of tuning capacitors or active power factor correction controllers to maximize convertor output power. The linear alternator to be discussed in this paper eliminates the need for tuning capacitors and delivers electrical power output in which current is inherently in phase with voltage. No power factor correction is needed. In addition, the linear alternator concept requires very little iron, so core loss has been virtually eliminated. This concept is a unique moving coil design where the magnetic flux path is defined by the magnets themselves. This paper presents computational predictions for two different low inductance alternator configurations. Additionally, one of the configurations was built and tested at GRC, and the experimental data is compared with the predictions.
NASA Technical Reports Server (NTRS)
Barry, R. K.; Danchi, W. C.; Deming, L. D.; Richardson, L. J.; Kuchner, M. J.; Seager, S.; Frey, B. J.; Martino, A. J.; Lee, K. A.; Zuray, M.;
2006-01-01
The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for a spacecraft-borne nulling interferometer for high-resolution astronomy and the direct detection of exoplanets and assay of their environments and atmospheres. FKSI is a high angular resolution system operating in the near to midinfrared spectral region and is a scientific and technological pathfinder to the Darwin and Terrestrial Planet Finder (TPF) missions. The instrument is configured with an optical system consisting, depending on configuration, of two 0.5 - 1.0 m telescopes on a 12.5 - 20 m boom feeding a symmetric, dual Mach- Zehnder beam combiner. We report on progress on our nulling testbed including the design of an optical pathlength null-tracking control system and development of a testing regime for hollow-core fiber waveguides proposed for use in wavefront cleanup. We also report results of integrated simulation studies of the planet detection performance of FKSI and results from an in-depth control system and residual optical pathlength jitter analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swain, Adam
2013-07-01
As the areas of application for diverse filter types increases, the mechanics and material sciences associated with the hardware and its relationship with more and more arduous process environments becomes critical to the successful and reliable operation of the filtration equipment. Where the filter is the last safe barrier between the process and the life environment, structural integrity and reliability is paramount in both the validation and the ethical acceptability of the designed equipment. Core collapse is a key factor influencing filter element selection, and is an extremely complex issue with a number of variables and failure mechanisms. It ismore » becoming clear that the theory behind core collapse calculations is not always supported with real tested data. In exploring this issue we have found that the calculation method is not always reflective of the true as tested collapse value, with the calculated values being typically in excess or even an order of magnitude higher than the tested values. The above claim is supported by a case study performed by the author, which disproves most of what was previously understood to be true. This paper also aims to explore the various failure mechanisms of different configurations of filter core, comparing calculated collapse values against real tested values, with a view to understanding a method of calculating their true collapse value. As the technology is advancing, and filter elements are being used in higher temperature, higher pressure, more radioactive and more chemically aggressive environments, confidence in core collapse values and data is crucial. (authors)« less
Radial electric field and ion parallel flow in the quasi-symmetric and Mirror configurations of HSX
Kumar, S. T. A.; Dobbins, T. J.; Talmadge, J. N.; ...
2018-03-07
In this paper, the radial electric field and the ion mean parallel flow are obtained in the helically symmetric experiment stellarator from toroidal flow measurements of C +6 ion at two locations on a flux surface, using the Pfirsch–Schlüter effect. Results from the standard quasi-helically symmetric magnetic configuration are compared with those from the Mirror configuration where the quasi-symmetry is deliberately degraded using auxiliary coils. For similar injected power, the quasi-symmetric configuration is observed to have significantly lower flows while the experimental observations from the Mirror geometry are in better agreement with neoclassical calculations. Finally, indications are that the radialmore » electric field near the core of the quasi-symmetric configuration may be governed by non-neoclassical processes.« less
Radial electric field and ion parallel flow in the quasi-symmetric and Mirror configurations of HSX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, S. T. A.; Dobbins, T. J.; Talmadge, J. N.
In this paper, the radial electric field and the ion mean parallel flow are obtained in the helically symmetric experiment stellarator from toroidal flow measurements of C +6 ion at two locations on a flux surface, using the Pfirsch–Schlüter effect. Results from the standard quasi-helically symmetric magnetic configuration are compared with those from the Mirror configuration where the quasi-symmetry is deliberately degraded using auxiliary coils. For similar injected power, the quasi-symmetric configuration is observed to have significantly lower flows while the experimental observations from the Mirror geometry are in better agreement with neoclassical calculations. Finally, indications are that the radialmore » electric field near the core of the quasi-symmetric configuration may be governed by non-neoclassical processes.« less
GPM Avionics Module Heat Pipes Design and Performance Test Results
NASA Technical Reports Server (NTRS)
Ottenstein, Laura; DeChristopher, Mike
2011-01-01
The Global Precipitation Measurement (GPM) mission is an international network of satellites that provide the next-generation global observations of rain and snow. The GPM core satellite carries an advanced radar / radiometer system to measure precipitation from space and serve as a reference standard to unify precipitation measurements from a constellation of research and operational satellites. Through improved measurements of precipitation globally, the GPM mission will help to advance our understanding of Earth's water and energy cycle, improve forecasting of extreme events that cause natural hazards and disasters, and extend current capabilities in using accurate and timely information of precipitation to directly benefit society. The avionics module on the core satellite contains a number of electronics boxes which are cooled by a network of aluminum/ammonia heat pipes and a honeycomb radiator which contains thirteen embedded aluminum/ammonia heat pipes. All heat pipes were individually tested by the vendor (Advanced Cooling Technologies, Inc.) prior to delivery. Following delivery to NASA, the flight avionics radiator and the flight spare transport heat pipes were mounted to flight-like test structure and a system level thermal vacuum test was performed. This test, which used simulators in place of all electronics boxes, was done to verify the operation of the thermal control system as a whole. This presentation will discuss the design of the avionics module heat pipes, and then discuss performance tests results for the individual heat pipes prior to delivery and for the system level thermal vacuum test. All heat pipes met their performance requirements. However, it was found that the power was too low in some instances to start all of the smaller radiator spreader heat pipes when they were tested in a reflux configuration (which is the nominal test configuration). Although this lowered the efficiency of the radiator somewhat, it did not impact the operating temperatures of the electronics boxes.
The prospect of uranium nitride (UN) and mixed nitride fuel (UN-PuN) for pressurized water reactor
NASA Astrophysics Data System (ADS)
Syarifah, Ratna Dewi; Suud, Zaki
2015-09-01
Design study of small Pressurized Water Reactors (PWRs) core loaded with uranium nitride fuel (UN) and mixed nitride fuel (UN-PuN), Pa-231 as burnable poison, and Americium has been performed. Pa-231 known as actinide material, have large capture cross section and can be converted into fissile material that can be utilized to reduce excess reactivity. Americium is one of minor actinides with long half life. The objective of adding americium is to decrease nuclear spent fuel in the world. The neutronic analysis results show that mixed nitride fuel have k-inf greater than uranium nitride fuel. It is caused by the addition of Pu-239 in mixed nitride fuel. In fuel fraction analysis, for uranium nitride fuel, the optimum volume fractions are 45% fuel fraction, 10% cladding and 45% moderator. In case of UN-PuN fuel, the optimum volume fractions are 30% fuel fraction, 10% cladding and 60% coolant/ moderator. The addition of Pa-231 as burnable poison for UN fuel, enrichment U-235 5%, with Pa-231 1.6% has k-inf more than one and excess reactivity of 14.45%. And for mixed nitride fuel, the lowest value of reactivity swing is when enrichment (U-235+Pu) 8% with Pa-231 0.4%, the excess reactivity value 13,76%. The fuel pin analyze for the addition of Americium, the excess reactivity value is lower than before, because Americium absorb the neutron. For UN fuel, enrichment U-235 8%, Pa-231 1.6% and Am 0.5%, the excess reactivity is 4.86%. And for mixed nitride fuel, when enrichment (U-235+Pu) 13%, Pa-231 0.4% and Am 0.1%, the excess reactivity is 11.94%. For core configuration, it is better to use heterogeneous than homogeneous core configuration, because the radial power distribution is better.
NASA Astrophysics Data System (ADS)
Knappe-Grueneberg, Silvia; Schnabel, Allard; Wuebbeler, Gerd; Burghoff, Martin
2008-04-01
The Berlin magnetically shielded room 2 (BMSR-2) features a magnetic residual field below 500pT and a field gradient level less than 0.5pT/mm, which are needed for very sensitive human biomagnetic recordings or low field NMR. Nevertheless, below 15Hz, signals are compromised by an additional noise contribution due to vibration forced sensor movements in the field gradient. Due to extreme shielding, the residual field and its homogeneity are determined mainly by the demagnetization results of the mumetal shells. Eight different demagnetization coil configurations can be realized, each results in a characteristic field pattern. The spatial dc flux density inside BMSR-2 is measured with a movable superconducting quantum interference device system with an accuracy better than 50pT. Residual field and field distribution of the current-driven coils fit well to an air-core coil model, if the high permeable core and the return lines outside of the shells are neglected. Finally, we homogenize the residual field by selecting a proper coil configuration.
Development of fire resistant electronic configurations for use in oxygen enriched environments
NASA Technical Reports Server (NTRS)
Smith, F. J.
1975-01-01
Design concepts for electronic black boxes and modules were tested in oxygen enriched atmospheres, and it was found that various types of sealed configurations would generally eliminate any flammability hazard. The type of configuration and its construction was found to be of more importance in the elimination of flammability hazards in electronic configurations than the types of materials utilized in them. The design concepts developed for fire hazard free electronic configurations for use in manned space programs are applicable for the design of electronic hardware for any use or environment.
1976-01-01
This image illustrates the solid rocket motor (SRM)/solid rocket booster (SRB) configuration. The Shuttle's two SRB's are the largest solids ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the SRM's were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. At burnout, the boosters separate from the external tank and drop by parachute to the ocean for recovery and subsequent refurbishment. The boosters are designed to survive water impact at almost 60 miles per hour, maintain flotation with minimal damage, and preclude corrosion of the hardware exposed to the harsh seawater environment. Under the project management of the Marshall Space Flight Center, the SRB's are assembled and refurbished by the United Space Boosters. The SRM's are provided by the Morton Thiokol Corporation.
NASA Astrophysics Data System (ADS)
Shepard, N. F.
1980-03-01
The Block 4 shingle type module makes it possible to apply a photovoltaic array to the sloping roof of a residential building by simply nailing the overlapping hexagon shaped shingles to the plywood roof sheathing. This third-generation shingle module design consists of nineteen series connected 100 mm diameter solar cells which are arranged in a closely packed hexagon configuration to provide in excess of 75 watts/sq m of exposed module area under standard operating conditions. The solar cells are individually bonded to the embossed underside of a 4.4 mm thick thermally tempered piece of glass. An experimental silicone pottant was used as the transparent bonding adhesive between the cells and glass. The semi-flexible portion of each shingle module is a composite laminate construction consisting of an outer layer of FLEXSEAL bonded to an inner core of closed cell polyethylene foam. Silaprene is used as the substrate laminating adhesive. The module design has satisfactorily survived qualification testing program which includes 50 thermal cycles between -40 and +90 C, a seven day temperature-humidity exposure test, and a wind resistance test.
Goldenzweig, Adi; Goldsmith, Moshe; Hill, Shannon E; Gertman, Or; Laurino, Paola; Ashani, Yacov; Dym, Orly; Unger, Tamar; Albeck, Shira; Prilusky, Jaime; Lieberman, Raquel L; Aharoni, Amir; Silman, Israel; Sussman, Joel L; Tawfik, Dan S; Fleishman, Sarel J
2016-07-21
Upon heterologous overexpression, many proteins misfold or aggregate, thus resulting in low functional yields. Human acetylcholinesterase (hAChE), an enzyme mediating synaptic transmission, is a typical case of a human protein that necessitates mammalian systems to obtain functional expression. We developed a computational strategy and designed an AChE variant bearing 51 mutations that improved core packing, surface polarity, and backbone rigidity. This variant expressed at ∼2,000-fold higher levels in E. coli compared to wild-type hAChE and exhibited 20°C higher thermostability with no change in enzymatic properties or in the active-site configuration as determined by crystallography. To demonstrate broad utility, we similarly designed four other human and bacterial proteins. Testing at most three designs per protein, we obtained enhanced stability and/or higher yields of soluble and active protein in E. coli. Our algorithm requires only a 3D structure and several dozen sequences of naturally occurring homologs, and is available at http://pross.weizmann.ac.il. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Low-voltage analog front-end processor design for ISFET-based sensor and H+ sensing applications
NASA Astrophysics Data System (ADS)
Chung, Wen-Yaw; Yang, Chung-Huang; Peng, Kang-Chu; Yeh, M. H.
2003-04-01
This paper presents a modular-based low-voltage analog-front-end processor design in a 0.5mm double-poly double-metal CMOS technology for Ion Sensitive Field Effect Transistor (ISFET)-based sensor and H+ sensing applications. To meet the potentiometric response of the ISFET that is proportional to various H+ concentrations, the constant-voltage and constant current (CVCS) testing configuration has been used. Low-voltage design skills such as bulk-driven input pair, folded-cascode amplifier, bootstrap switch control circuits have been designed and integrated for 1.5V supply and nearly rail-to-rail analog to digital signal processing. Core modules consist of an 8-bit two-step analog-digital converter and bulk-driven pre-amplifiers have been developed in this research. The experimental results show that the proposed circuitry has an acceptable linearity to 0.1 pH-H+ sensing conversions with the buffer solution in the range of pH2 to pH12. The processor has a potential usage in battery-operated and portable healthcare devices and environmental monitoring applications.
NASA Technical Reports Server (NTRS)
Shepard, N. F.
1980-01-01
The Block 4 shingle type module makes it possible to apply a photovoltaic array to the sloping roof of a residential building by simply nailing the overlapping hexagon shaped shingles to the plywood roof sheathing. This third-generation shingle module design consists of nineteen series connected 100 mm diameter solar cells which are arranged in a closely packed hexagon configuration to provide in excess of 75 watts/sq m of exposed module area under standard operating conditions. The solar cells are individually bonded to the embossed underside of a 4.4 mm thick thermally tempered piece of glass. An experimental silicone pottant was used as the transparent bonding adhesive between the cells and glass. The semi-flexible portion of each shingle module is a composite laminate construction consisting of an outer layer of FLEXSEAL bonded to an inner core of closed cell polyethylene foam. Silaprene is used as the substrate laminating adhesive. The module design has satisfactorily survived qualification testing program which includes 50 thermal cycles between -40 and +90 C, a seven day temperature-humidity exposure test, and a wind resistance test.
Core compressor exit stage study, volume 6
NASA Technical Reports Server (NTRS)
Wisler, D. C.
1981-01-01
Rear stage blading designs that have lower losses in their endwall boundary layer regions were studied. A baseline Stage A was designed as a low-speed model of stage 7 of a 10-stage compressor. Candidate rotors and stators were designed which have the potential of reducing endwall losses relative to the baseline. Rotor B uses a type of meanline in the tip region that unloads the leading edge and loads the trailing edge relative to the baseline rotor A designs. Rotor C incorporates a more skewed (hub strong) radial distribution of total pressure and smoother distribution of static pressure on the rotor tip than those of rotor B. Candidate stator B embodies twist gradients in the endwall region. Stator C embodies airfoil sections near the endwalls that have reduced trailing edge loading relative to stator A. The baseline and candidate bladings were tested using four identical stages to produce a true multistage environment. Single-stage tests were also conducted. The test data were analyzed and performances were compared. Several of the candidate configurations showed a performance improvement relative to the baseline.
Kotb, N A; Solieman, Ahmed H M; El-Zakla, T; Amer, T Z; Elmeniawi, S; Comsan, M N H
2018-05-01
A neutron irradiation facility consisting of six 241 Am-Be neutron sources of 30 Ci total activity and 6.6 × 10 7 n/s total neutron yield is designed. The sources are embedded in a cubic paraffin wax, which plays a dual role as both moderator and reflector. The sample passage and irradiation channel are represented by a cylindrical path of 5 cm diameter passing through the facility core. The proposed design yields a high degree of space symmetry and thermal neutron homogeneity within 98% of flux distribution throughout the irradiated spherical sample of 5 cm diameter. The obtained thermal neutron flux is 8.0 × 10 4 n/cm 2 .s over the sample volume, with thermal-to-fast and thermal-to-epithermal ratios of 1.20 and 3.35, respectively. The design is optimized for maximizing the thermal neutron flux at sample position using the MCNP-5 code. The irradiation facility is supposed to be employed principally for neutron activation analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Design of the Core Stage Inter-Tank Umbilical {CSITU) Compliance Mechanism
NASA Technical Reports Server (NTRS)
Smith, Kurt R.
2013-01-01
Project Goals: a) Design the compliance mechanism for the CSITU system to a 30% level -3D models completed in Pro/Engineer -Relevant design analysis b) Must meet all system requirements and establish basis for proceeding with detailed design. Tasks to be completed: A design that meets requirements for the 30% design review, 01/16/2013. Umbilical arms provide commodities to the launch vehicle prior to T-0. Commodities can range anywhere from hydraulics, pneumatics, cryogenic, electrical, ECS, etc ... Umbilicals commonly employ truss structures to deliver commodities to vehicle. Common configurations include: -Tilt-up -Swing Arm -Hose Drape -Drop Arm Umbilical arms will be mounted to Mobile Launch Platform. SLS currently has 9 T-0 umbilical arms. The compliance refers to the ability of the umbilical to adjust to minor changes in vehicle location. The compliance mechanism refers to the mechanism on the ground support equipment {GSE) that compensates for these changes. For the CSITU, these minor changes, or vehicle excursions, can be up to +4 in. Excursions refer to movements of the vehicle caused by wind loads and thermal expansion. It is ideal to have significant vertical compliance so a passive secondary release mechanism may be implemented.
The NOvA software testing framework
NASA Astrophysics Data System (ADS)
Tamsett, M.; C Group
2015-12-01
The NOvA experiment at Fermilab is a long-baseline neutrino experiment designed to study vε appearance in a vμ beam. NOvA has already produced more than one million Monte Carlo and detector generated files amounting to more than 1 PB in size. This data is divided between a number of parallel streams such as far and near detector beam spills, cosmic ray backgrounds, a number of data-driven triggers and over 20 different Monte Carlo configurations. Each of these data streams must be processed through the appropriate steps of the rapidly evolving, multi-tiered, interdependent NOvA software framework. In total there are greater than 12 individual software tiers, each of which performs a different function and can be configured differently depending on the input stream. In order to regularly test and validate that all of these software stages are working correctly NOvA has designed a powerful, modular testing framework that enables detailed validation and benchmarking to be performed in a fast, efficient and accessible way with minimal expert knowledge. The core of this system is a novel series of python modules which wrap, monitor and handle the underlying C++ software framework and then report the results to a slick front-end web-based interface. This interface utilises modern, cross-platform, visualisation libraries to render the test results in a meaningful way. They are fast and flexible, allowing for the easy addition of new tests and datasets. In total upwards of 14 individual streams are regularly tested amounting to over 70 individual software processes, producing over 25 GB of output files. The rigour enforced through this flexible testing framework enables NOvA to rapidly verify configurations, results and software and thus ensure that data is available for physics analysis in a timely and robust manner.
Use of Field Programmable Gate Array Technology in Future Space Avionics
NASA Technical Reports Server (NTRS)
Ferguson, Roscoe C.; Tate, Robert
2005-01-01
Fulfilling NASA's new vision for space exploration requires the development of sustainable, flexible and fault tolerant spacecraft control systems. The traditional development paradigm consists of the purchase or fabrication of hardware boards with fixed processor and/or Digital Signal Processing (DSP) components interconnected via a standardized bus system. This is followed by the purchase and/or development of software. This paradigm has several disadvantages for the development of systems to support NASA's new vision. Building a system to be fault tolerant increases the complexity and decreases the performance of included software. Standard bus design and conventional implementation produces natural bottlenecks. Configuring hardware components in systems containing common processors and DSPs is difficult initially and expensive or impossible to change later. The existence of Hardware Description Languages (HDLs), the recent increase in performance, density and radiation tolerance of Field Programmable Gate Arrays (FPGAs), and Intellectual Property (IP) Cores provides the technology for reprogrammable Systems on a Chip (SOC). This technology supports a paradigm better suited for NASA's vision. Hardware and software production are melded for more effective development; they can both evolve together over time. Designers incorporating this technology into future avionics can benefit from its flexibility. Systems can be designed with improved fault isolation and tolerance using hardware instead of software. Also, these designs can be protected from obsolescence problems where maintenance is compromised via component and vendor availability.To investigate the flexibility of this technology, the core of the Central Processing Unit and Input/Output Processor of the Space Shuttle AP101S Computer were prototyped in Verilog HDL and synthesized into an Altera Stratix FPGA.
Nuclear reactor alignment plate configuration
Altman, David A; Forsyth, David R; Smith, Richard E; Singleton, Norman R
2014-01-28
An alignment plate that is attached to a core barrel of a pressurized water reactor and fits within slots within a top plate of a lower core shroud and upper core plate to maintain lateral alignment of the reactor internals. The alignment plate is connected to the core barrel through two vertically-spaced dowel pins that extend from the outside surface of the core barrel through a reinforcement pad and into corresponding holes in the alignment plate. Additionally, threaded fasteners are inserted around the perimeter of the reinforcement pad and into the alignment plate to further secure the alignment plate to the core barrel. A fillet weld also is deposited around the perimeter of the reinforcement pad. To accomodate thermal growth between the alignment plate and the core barrel, a gap is left above, below and at both sides of one of the dowel pins in the alignment plate holes through with the dowel pins pass.
Euler solutions for an unbladed jet engine configuration
NASA Technical Reports Server (NTRS)
Stewart, Mark E. M.
1991-01-01
A Euler solution for an axisymmetric jet engine configuration without blade effects is presented. The Euler equations are solved on a multiblock grid which covers a domain including the inlet, bypass duct, core passage, nozzle, and the far field surrounding the engine. The simulation is verified by considering five theoretical properties of the solution. The solution demonstrates both multiblock grid generation techniques and a foundation for a full jet engine throughflow calculation.
Space Launch System Development Status
NASA Technical Reports Server (NTRS)
Lyles, Garry
2014-01-01
Development of NASA's Space Launch System (SLS) heavy lift rocket is shifting from the formulation phase into the implementation phase in 2014, a little more than three years after formal program approval. Current development is focused on delivering a vehicle capable of launching 70 metric tons (t) into low Earth orbit. This "Block 1" configuration will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017, followed by its first crewed flight in 2021. SLS can evolve to a130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Benefits associated with its unprecedented mass and volume include reduced trip times and simplified payload design. Every SLS element achieved significant, tangible progress over the past year. Among the Program's many accomplishments are: manufacture of Core Stage test panels; testing of Solid Rocket Booster development hardware including thrust vector controls and avionics; planning for testing the RS-25 Core Stage engine; and more than 4,000 wind tunnel runs to refine vehicle configuration, trajectory, and guidance. The Program shipped its first flight hardware - the Multi-Purpose Crew Vehicle Stage Adapter (MSA) - to the United Launch Alliance for integration with the Delta IV heavy rocket that will launch an Orion test article in 2014 from NASA's Kennedy Space Center. Objectives of this Earth-orbit flight include validating the performance of Orion's heat shield and the MSA design, which will be manufactured again for SLS missions to deep space. The Program successfully completed Preliminary Design Review in 2013 and Key Decision Point C in early 2014. NASA has authorized the Program to move forward to Critical Design Review, scheduled for 2015 and a December 2017 first launch. The Program's success to date is due to prudent use of proven technology, infrastructure, and workforce from the Saturn and Space Shuttle programs, a streamlined management approach, and judicious use of new technologies. The result is a safe, affordable, sustainable, and evolutionary path to development of an unprecedented capability for future missions across the solar system. In an environment of economic challenges, the nationwide SLS team continues to meet ambitious budget and schedule targets. This paper will discuss SLS program and technical accomplishments over the past year and provide a look at the milestones and challenges ahead.
NASA Technical Reports Server (NTRS)
Moore, Ronald L.; Falconer, D. A.; Porter, Jason G.; Suess, Steven T.
1999-01-01
We build a case for the persistent strong coronal heating in active regions and the pervasive quasi-steady heating of the corona in quiet regions and coronal holes being driven in basically the same way as the intense transient heating in solar flares: by explosions of sheared magnetic fields in the cores of initially closed bipoles. We begin by summarizing the observational case for exploding sheared core fields being the drivers of a wide variety of flare events, with and without coronal mass ejections. We conclude that the arrangement of an event's flare heating, whether there is a coronal mass ejection, and the time and place of the ejection relative to the flare heating are all largely determined by four elements of the form and action of the magnetic field: (1) the arrangement of the impacted, interacting bipoles participating in the event, (2) which of these bipoles are active (have sheared core fields that explode) and which are passive (are heated by injection from impacted active bipoles), (3) which core field explodes first, and (4) which core-field explosions are confined within the closed field of their bipoles and which ejectively open their bipoles. We then apply this magnetic-configuration framework for flare heating to the strong coronal heating observed by the Yohkoh Soft X-ray Telescope in an active region with strongly sheared core fields observed by the MSFC vector magnetograph. All of the strong coronal heating is in continually microflaring sheared core fields or in extended loops rooted against the active core fields. Thus, the strong heating occurs in field configurations consistent with the heating being driven by frequent core-field explosions that are smaller but similar to those in confined flares and flaring arches. From analysis of the thermal and magnetic energetics of two selected core-field microflares and a bright extended loop, we find that (1) it is energetically feasible for the sheared core fields to drive all of the coronal heating in the active region via a staccato of magnetic microexplosions, (2) the microflares at the feet of the extended loop behave as the flares at the feet of flaring arches in that more coronal heating is driven within the active bipole than in the extended loop, (3) the filling factor of the X-ray plasma in the core field microflares and in the extended loop is approximately 0.1, and (4) to release enough magnetic energy for a typical microflare (10^27 - 10^28 erg), a microflaring strand of sheared core field need expand and/or untwist by only a few percent at most. Finally, we point out that (1) the field configurations for strong coronal heating in our example active region (i.e., neutral-line core fields, many embedded in the feet of extended loops) are present in abundance in the magnetic network in quiet regions and coronal holes, and (2) it is known that many network bipoles do microflare and that many produce detectable coronal heating. We therefore propose that exploding sheared core fields are the drivers of most of the heating and dynamics of the solar atmosphere, ranging from the largest and most powerful coronal mass ejections and flares, to the vigorous microflaring and coronal heating in active regions, to the multitude of fine-scale explosive events in the magnetic network. The low-lysing exploding core fields in the network drive microflares, spicules, global coronal heating, and ,consequently, the solar wind.
NASA Astrophysics Data System (ADS)
Qiu, Lemiao; Liu, Xiaojian; Zhang, Shuyou; Sun, Liangfeng
2014-05-01
The current research of configurable product disassemblability focuses on disassemblability evaluation and disassembly sequence planning. Little work has been done on quantitative analysis of configurable product disassemblability. The disassemblability modeling technology for configurable product based on disassembly constraint relation weighted design structure matrix (DSM) is proposed. Major factors affecting the disassemblability of configurable product are analyzed, and the disassembling degrees between components in configurable product are obtained by calculating disassembly entropies such as joint type, joint quantity, disassembly path, disassembly accessibility and material compatibility. The disassembly constraint relation weighted DSM of configurable product is constructed and configuration modules are formed by matrix decomposition and tearing operations. The disassembly constraint relation in configuration modules is strong coupling, and the disassembly constraint relation between modules is weak coupling, and the disassemblability configuration model is constructed based on configuration module. Finally, taking a hydraulic forging press as an example, the decomposed weak coupling components are used as configuration modules alone, components with a strong coupling are aggregated into configuration modules, and the disassembly sequence of components inside configuration modules is optimized by tearing operation. A disassemblability configuration model of the hydraulic forging press is constructed. By researching the disassemblability modeling technology of product configuration design based on disassembly constraint relation weighted DSM, the disassembly property in maintenance, recycling and reuse of configurable product are optimized.
Extensional, bending and twisting stiffness of Titanium Multiwall Thermal Protection System (TPS)
NASA Technical Reports Server (NTRS)
Meaney, J. E.
1982-01-01
A test program which determines the extensional, bending and torsional stiffness of various titanium multiwall sandwich configurations is described. It is shown that unlike honeycomb core, the dimpled core is a significant contributor to the stiffness and strength of the sandwich. the extensional stiffness test shows irregularities which are attributed to foil thickness variations and to the difficulty to determine linear values from nonlinear tests.
Virtex-II Pro PowerPC SEE Characterization Test Methods and Results
NASA Technical Reports Server (NTRS)
Petrick, David; Powell, Wesley; LaBel, Ken; Howard, James
2005-01-01
The Xilinx Vix-11 Pro is a platform FPGA that embeds multiple microprocessors within the fabric of an SRAM-based reprogrammable FPGA. The variety and quantity of resources provided by this family of devices make them very attractive for spaceflight applications. However,these devices will be susceptible to single event effects (SEE), which must be mitigated. Observations from prior testing of the Xilinx Virtex-II Pro suggest that the PowerPC core has significant vulnerability to SEES. However, these initial tests were not designed to exclusively target the functionality of the PowerPC, therefore making it difficult to distinguish processor upsets from fabric upsets. The main focus of this paper involves detailed SEE testing of the embedded PowerPC core. Due to the complexity of the PowerPC, various custom test applications, both static and dynamic, will be designed to isolate each Unit of the processor. Collective analysis of the test results will provide insight into the exact upset mechanism of the PowerPC. With this information, mitigations schemes can be developed and tested that address the specific susceptibilities of these devices. The test bed will be the Xilinx SEE Consortium Virtex-II Pro test board, which allows for configuration scrubbing, design triplication, and ease of data collection. Testing will be performed at the Indiana University Cyclotron Facility using protons of varying energy levels and fluencies. This paper will present the detailed test approach along with the results.
Space Launch System Base Heating Test: Environments and Base Flow Physics
NASA Technical Reports Server (NTRS)
Mehta, Manish; Knox, Kyle S.; Seaford, C. Mark; Dufrene, Aaron T.
2016-01-01
The NASA Space Launch System (SLS) vehicle is composed of four RS-25 liquid oxygen-hydrogen rocket engines in the core-stage and two 5-segment solid rocket boosters and as a result six hot supersonic plumes interact within the aft section of the vehicle during flight. Due to the complex nature of rocket plume-induced flows within the launch vehicle base during ascent and a new vehicle configuration, sub-scale wind tunnel testing is required to reduce SLS base convective environment uncertainty and design risk levels. This hot-fire test program was conducted at the CUBRC Large Energy National Shock (LENS) II short-duration test facility to simulate flight from altitudes of 50 kft to 210 kft. The test program is a challenging and innovative effort that has not been attempted in 40+ years for a NASA vehicle. This paper discusses the various trends of base convective heat flux and pressure as a function of altitude at various locations within the core-stage and booster base regions of the two-percent SLS wind tunnel model. In-depth understanding of the base flow physics is presented using the test data, infrared high-speed imaging and theory. The normalized test design environments are compared to various NASA semi-empirical numerical models to determine exceedance and conservatism of the flight scaled test-derived base design environments. Brief discussion of thermal impact to the launch vehicle base components is also presented.
Adaptive sampling strategies with high-throughput molecular dynamics
NASA Astrophysics Data System (ADS)
Clementi, Cecilia
Despite recent significant hardware and software developments, the complete thermodynamic and kinetic characterization of large macromolecular complexes by molecular simulations still presents significant challenges. The high dimensionality of these systems and the complexity of the associated potential energy surfaces (creating multiple metastable regions connected by high free energy barriers) does not usually allow to adequately sample the relevant regions of their configurational space by means of a single, long Molecular Dynamics (MD) trajectory. Several different approaches have been proposed to tackle this sampling problem. We focus on the development of ensemble simulation strategies, where data from a large number of weakly coupled simulations are integrated to explore the configurational landscape of a complex system more efficiently. Ensemble methods are of increasing interest as the hardware roadmap is now mostly based on increasing core counts, rather than clock speeds. The main challenge in the development of an ensemble approach for efficient sampling is in the design of strategies to adaptively distribute the trajectories over the relevant regions of the systems' configurational space, without using any a priori information on the system global properties. We will discuss the definition of smart adaptive sampling approaches that can redirect computational resources towards unexplored yet relevant regions. Our approaches are based on new developments in dimensionality reduction for high dimensional dynamical systems, and optimal redistribution of resources. NSF CHE-1152344, NSF CHE-1265929, Welch Foundation C-1570.
Kim, Seong-Ku; Liu, Wei; Pei, Qibing; Dalton, Larry R; Fetterman, Harold R
2011-04-11
A linearized dual parallel Mach-Zehnder modulator (DPMZM) based on electro-optic (EO) polymer was both fabricated, and experimentally used to suppress the third-order intermodulation distortion (IMD3) in a coherent analog fiber optic link. This optical transmitter design was based on a new EO chromophore called B10, which was synthesized for applications dealing with the fiber-optic communication systems. The chromophore was mixed with amorphous polycarbonate (APC) to form the waveguide's core material. The DPMZM was configured with two MZMs, of different lengths in parallel, with unbalanced input and output couplers and a phase shifter in one arm. In this configuration each of the MZMs carried a different optical power, and imposed a different depth of optical modulation. When the two optical beams from the MZMs were combined to generate the transmitted signal it was possible to set the IMD3 produced by each modulator to be equal in amplitude but 180° out of phase from the other. Therefore, the resulting IMD3 of the DPMZM transmitter was effectively canceled out during two-tone experiments. A reduction of the IMD3 below the noise floor was observed while leaving fifth-order distortion (IMD5) as the dominant IMD product. This configuration has the capability of broadband operation and shot-noise limited operation simultaneously. © 2011 Optical Society of America
NASA Technical Reports Server (NTRS)
Klann, P. G.; Lantz, E.
1973-01-01
A zero-power critical assembly was designed, constructed, and operated for the prupose of conducting a series of benchmark experiments dealing with the physics characteristics of a UN-fueled, Li-7-cooled, Mo-reflected, drum-controlled compact fast reactor for use with a space-power conversion system. The critical assembly was modified to simulate a fast spectrum advanced thermionics reactor by: (1) using BeO as a reflector in place of some of the existing molybdenum, (2) substituting Nb-1Zr tubing for some of the existing Ta tubing, and (3) inserting four full-scale mockups of thermionic type fuel elements near the core and BeO reflector boundary. These mockups were surrounded with a buffer zone having the equivalent thermionic core composition. In addition to measuring the critical mass of this thermionic configuration, a detailed power distribution in one of the thermionic element stages in the mixed spectrum region was measured. A power peak to average ratio of two was observed for this fuel stage at the midplane of the core and adjacent to the reflector. Also, the power on the outer surface adjacent to the BeO was slightly more than a factor of two larger than the power on the inside surface of a 5.08 cm (2.0 in.) high annular fuel segment with a 2.52 cm (0.993 in. ) o.d. and a 1.86 cm (0.731 in.) i.d.
A hybrid algorithm for parallel molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Mangiardi, Chris M.; Meyer, R.
2017-10-01
This article describes algorithms for the hybrid parallelization and SIMD vectorization of molecular dynamics simulations with short-range forces. The parallelization method combines domain decomposition with a thread-based parallelization approach. The goal of the work is to enable efficient simulations of very large (tens of millions of atoms) and inhomogeneous systems on many-core processors with hundreds or thousands of cores and SIMD units with large vector sizes. In order to test the efficiency of the method, simulations of a variety of configurations with up to 74 million atoms have been performed. Results are shown that were obtained on multi-core systems with Sandy Bridge and Haswell processors as well as systems with Xeon Phi many-core processors.
Apparatus for establishing flow of a fluid mass having a known velocity
NASA Technical Reports Server (NTRS)
Price, P.; Veikins, O.; Bate, E. R., Jr.; Jones, R. H. (Inventor)
1974-01-01
An apparatus for establishing a flow of fluid mass, such as gas, having a known velocity is introduced. The apparatus is characterized by an hermetically sealed chamber conforming to a closed-loop configuration and including a throat and a plurality of axially displaceable pistons for sweeping through the throat a stream of gas including a core and an unsheared boundary layer. Within the throat there is a cylindrical coring body concentrically related to the throat for receiving the core, and a chamber surrounding the cylindrical body for drawing off the boundary layer, whereby the velocity of the core is liberated from the effects of the velocity of the boundary layer.
Polished Downhole Transducer Having Improved Signal Coupling
Hall, David R.; Fox, Joe
2006-03-28
Apparatus and methods to improve signal coupling in downhole inductive transmission elements to reduce the dispersion of magnetic energy at the tool joints and to provide consistent impedance and contact between transmission elements located along the drill string. A transmission element for transmitting information between downhole tools is disclosed in one embodiment of the invention as including an annular core constructed of a magnetically conductive material. The annular core forms an open channel around its circumference and is configured to form a closed channel by mating with a corresponding annular core along an annular mating surface. The mating surface is polished to provide improved magnetic coupling with the corresponding annular core. An annular conductor is disposed within the open channel.
NASA Astrophysics Data System (ADS)
Patel, Harinkumar Rajendrabhai
One of the main area of research currently in air-breathing propulsion is increasing the fuel efficiency of engines. Increasing fuel efficiency of an air-breathing engine will be advantageous for civil transport as well as military aircraft. This objective can be achieved in several ways. Present design models are developed based on their uses: commercial transport, high range rescue aircraft, military aircraft. One of the main property of military aircraft is possessing high thrust but increasing fuel efficiency will also be advantageous resulting in more time in combat. Today's engine design operates best at their design point and has reduced thrust and high fuel consumption values in off-design. The adaptive cycle engine concept was introduced to overcome this problem. The adaptive cycle engine is a variable cycle engine concept equipped with an extra bypass (3rd bypass) stream. This engine varies the bypass ratio and the fan pressure ratio, the two main parameters affecting thrust and fuel consumption values of the engine. In cruise, more flow will flow through the third stream resulting in the high bypass engine giving lower fuel consumption. on the other hand, the engine will act as a low bypass engine producing more thrust by allowing more air to flow through core while in combat. The simulation of this engine was carried out using the Numerical Propulsion System Simulation (NPSS) software. The effect of the bypass ratio and the fan pressure ratio along with Mach number were studied. After the parametric variation study, the mixture configuration was also studied. Once the effect of the parameters were understood, the best design operating point configuration was selected and then the engine performance for off-design was calculated. Optimum values of bypass ratio and fan pressure ratio were also obtained for each altitude selected for off-design performance.
NASA Astrophysics Data System (ADS)
Zhang, M.; Zheng, G. Z.; Zheng, W.; Chen, Z.; Yuan, T.; Yang, C.
2016-04-01
The magnetic confinement nuclear fusion experiments require various real-time control applications like plasma control. ITER has designed the Fast Plant System Controller (FPSC) for this job. ITER provided hardware and software standards and guidelines for building a FPSC. In order to develop various real-time FPSC applications efficiently, a flexible real-time software framework called J-TEXT real-time framework (JRTF) is developed by J-TEXT tokamak team. JRTF allowed developers to implement different functions as independent and reusable modules called Application Blocks (AB). The AB developers only need to focus on implementing the control tasks or the algorithms. The timing, scheduling, data sharing and eventing are handled by the JRTF pipelines. JRTF provides great flexibility on developing ABs. Unit test against ABs can be developed easily and ABs can even be used in non-JRTF applications. JRTF also provides interfaces allowing JRTF applications to be configured and monitored at runtime. JRTF is compatible with ITER standard FPSC hardware and ITER (Control, Data Access and Communication) CODAC Core software. It can be configured and monitored using (Experimental Physics and Industrial Control System) EPICS. Moreover the JRTF can be ported to different platforms and be integrated with supervisory control software other than EPICS. The paper presents the design and implementation of JRTF as well as brief test results.
Cryogenic performance of a cryocooler-cooled superconducting undulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuerst, J. D.; Doose, C.; Hasse, Q.
2014-01-29
A cryocooler-cooled superconducting undulator has been installed and operated with beam at the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The device consists of a dual-core 42-pole magnet structure that is cooled to 4.2 K with a system of four cryocoolers operating in a zero-boil-off configuration. This effort represents the culmination of a development program to establish concept feasibility and evaluate cryostat design and cryocooler-based refrigeration. Cryostat performance is described including cool-down/warm-up, steady-state operation, cooling margin, and the impact of beam during operation in the APS storage ring. Plans for future devices with longer magnets, which will incorporatemore » lessons learned from the development program, are also discussed.« less
Concept Study on a Flexible Standard Bus for Small Scientific Satellites
NASA Astrophysics Data System (ADS)
Fukuda, Seisuke; Sawai, Shujiro; Sakai, Shin-Ichiro; Saito, Hirobumi; Tohma, Takayuki; Takahashi, Junko; Toriumi, Tsuyoshi; Kitade, Kenji
In this paper, a new standard bus system for a series of small scientific satellites in the Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA) is described. Since each mission proposed for the series has a wide variety of requirements, a lot of efforts are needed to enhance flexibility of the standard bus. Some concepts from different viewpoints are proposed. First, standardization layers concerning satellite configuration, instruments, interfaces, and design methods are defined respectively. Methods of product platform engineering, which classify specifications of the bus system into a core platform, alternative variants, and selectable variants, are also investigated in order to realize a semi-custom-made bus. Furthermore, a tradeoff between integration and modularization architecture is fully considered.
Noise Prediction Module for Offset Stream Nozzles
NASA Technical Reports Server (NTRS)
Henderson, Brenda S.
2011-01-01
A Modern Design of Experiments (MDOE) analysis of data acquired for an offset stream technology was presented. The data acquisition and concept development were funded under a Supersonics NRA NNX07AC62A awarded to Dimitri Papamoschou at University of California, Irvine. The technology involved the introduction of airfoils in the fan stream of a bypass ratio (BPR) two nozzle system operated at transonic exhaust speeds. The vanes deflected the fan stream relative to the core stream and resulted in reduced sideline noise for polar angles in the peak jet noise direction. Noise prediction models were developed for a range of vane configurations. The models interface with an existing ANOPP module and can be used or future system level studies.
SAMI Automated Plug Plate Configuration
NASA Astrophysics Data System (ADS)
Lorente, N. P. F.; Farrell, T.; Goodwin, M.
2013-10-01
The Sydney-AAO Multi-object Integral field spectrograph (SAMI) is a prototype wide-field system at the Anglo-Australian Telescope (AAT) which uses a plug-plate to mount its 13×61-core imaging fibre bundles (hexabundles) in the optical path at the telescope's prime focus. In this paper we describe the process of determining the positions of the plug-plate holes, where plates contain three or more stacked observation configurations. The process, which up until now has involved several separate processes and has required significant manual configuration and checking, is now being automated to increase efficiency and reduce error. This is carried out by means of a thin Java controller layer which drives the configuration cycle. This layer controls the user interface and the C++ algorithm layer where the plate configuration and optimisation is carried out. Additionally, through the Aladin display package, it provides visualisation and facilitates user verification of the resulting plates.
High pressure compressor component performance report
NASA Technical Reports Server (NTRS)
Cline, S. J.; Fesler, W.; Liu, H. S.; Lovell, R. C.; Shaffer, S. J.
1983-01-01
A compressor optimization study defined a 10 stage configuration with a 22.6:1 pressure ratio, an adiabatic efficiency goal of 86.1%, and a polytropic efficiency of 90.6%; the corrected airflow is 53.5 kg/s. Subsequent component testing included three full scale tests: a six stage rig test, a 10 stage rig test, and another 10 stage rig test completed in the second quarter of 1982. Information from these tests is used to select the configuration for a core engine test and an integrated core/low spool test. The test results will also provide data base for the flight propulsion system. The results of the test series with both aerodynamic and mechanical performance of each compressor build are presented. The second 10 stage compressor adiabatic efficiency was 0.848 at a cruise operating point versus a test goal of 0.846.
A New Capability for Nuclear Thermal Propulsion Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amiri, Benjamin W.; Nuclear and Radiological Engineering Department, University of Florida, Gainesville, FL 32611; Kapernick, Richard J.
2007-01-30
This paper describes a new capability for Nuclear Thermal Propulsion (NTP) design that has been developed, and presents the results of some analyses performed with this design tool. The purpose of the tool is to design to specified mission and material limits, while maximizing system thrust to weight. The head end of the design tool utilizes the ROCket Engine Transient Simulation (ROCETS) code to generate a system design and system design requirements as inputs to the core analysis. ROCETS is a modular system level code which has been used extensively in the liquid rocket engine industry for many years. Themore » core design tool performs high-fidelity reactor core nuclear and thermal-hydraulic design analysis. At the heart of this process are two codes TMSS-NTP and NTPgen, which together greatly automate the analysis, providing the capability to rapidly produce designs that meet all specified requirements while minimizing mass. A PERL based command script, called CORE DESIGNER controls the execution of these two codes, and checks for convergence throughout the process. TMSS-NTP is executed first, to produce a suite of core designs that meet the specified reactor core mechanical, thermal-hydraulic and structural requirements. The suite of designs consists of a set of core layouts and, for each core layout specific designs that span a range of core fuel volumes. NTPgen generates MCNPX models for each of the core designs from TMSS-NTP. Iterative analyses are performed in NTPgen until a reactor design (fuel volume) is identified for each core layout that meets cold and hot operation reactivity requirements and that is zoned to meet a radial core power distribution requirement.« less
Parallel family trees for transfer matrices in the Potts model
NASA Astrophysics Data System (ADS)
Navarro, Cristobal A.; Canfora, Fabrizio; Hitschfeld, Nancy; Navarro, Gonzalo
2015-02-01
The computational cost of transfer matrix methods for the Potts model is related to the question in how many ways can two layers of a lattice be connected? Answering the question leads to the generation of a combinatorial set of lattice configurations. This set defines the configuration space of the problem, and the smaller it is, the faster the transfer matrix can be computed. The configuration space of generic (q , v) transfer matrix methods for strips is in the order of the Catalan numbers, which grows asymptotically as O(4m) where m is the width of the strip. Other transfer matrix methods with a smaller configuration space indeed exist but they make assumptions on the temperature, number of spin states, or restrict the structure of the lattice. In this paper we propose a parallel algorithm that uses a sub-Catalan configuration space of O(3m) to build the generic (q , v) transfer matrix in a compressed form. The improvement is achieved by grouping the original set of Catalan configurations into a forest of family trees, in such a way that the solution to the problem is now computed by solving the root node of each family. As a result, the algorithm becomes exponentially faster than the Catalan approach while still highly parallel. The resulting matrix is stored in a compressed form using O(3m ×4m) of space, making numerical evaluation and decompression to be faster than evaluating the matrix in its O(4m ×4m) uncompressed form. Experimental results for different sizes of strip lattices show that the parallel family trees (PFT) strategy indeed runs exponentially faster than the Catalan Parallel Method (CPM), especially when dealing with dense transfer matrices. In terms of parallel performance, we report strong-scaling speedups of up to 5.7 × when running on an 8-core shared memory machine and 28 × for a 32-core cluster. The best balance of speedup and efficiency for the multi-core machine was achieved when using p = 4 processors, while for the cluster scenario it was in the range p ∈ [ 8 , 10 ] . Because of the parallel capabilities of the algorithm, a large-scale execution of the parallel family trees strategy in a supercomputer could contribute to the study of wider strip lattices.
Systems and methods for rapid processing and storage of data
Stalzer, Mark A.
2017-01-24
Systems and methods of building massively parallel computing systems using low power computing complexes in accordance with embodiments of the invention are disclosed. A massively parallel computing system in accordance with one embodiment of the invention includes at least one Solid State Blade configured to communicate via a high performance network fabric. In addition, each Solid State Blade includes a processor configured to communicate with a plurality of low power computing complexes interconnected by a router, and each low power computing complex includes at least one general processing core, an accelerator, an I/O interface, and cache memory and is configured to communicate with non-volatile solid state memory.
Understanding the I/O Performance Gap Between Cori KNL and Haswell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jialin; Koziol, Quincey; Tang, Houjun
2017-05-01
The Cori system at NERSC has two compute partitions with different CPU architectures: a 2,004 node Haswell partition and a 9,688 node KNL partition, which ranked as the 5th most powerful and fastest supercomputer on the November 2016 Top 500 list. The compute partitions share a common storage configuration, and understanding the IO performance gap between them is important, impacting not only to NERSC/LBNL users and other national labs, but also to the relevant hardware vendors and software developers. In this paper, we have analyzed performance of single core and single node IO comprehensively on the Haswell and KNL partitions,more » and have discovered the major bottlenecks, which include CPU frequencies and memory copy performance. We have also extended our performance tests to multi-node IO and revealed the IO cost difference caused by network latency, buffer size, and communication cost. Overall, we have developed a strong understanding of the IO gap between Haswell and KNL nodes and the lessons learned from this exploration will guide us in designing optimal IO solutions in many-core era.« less
Physics-based multiscale coupling for full core nuclear reactor simulation
Gaston, Derek R.; Permann, Cody J.; Peterson, John W.; ...
2015-10-01
Numerical simulation of nuclear reactors is a key technology in the quest for improvements in efficiency, safety, and reliability of both existing and future reactor designs. Historically, simulation of an entire reactor was accomplished by linking together multiple existing codes that each simulated a subset of the relevant multiphysics phenomena. Recent advances in the MOOSE (Multiphysics Object Oriented Simulation Environment) framework have enabled a new approach: multiple domain-specific applications, all built on the same software framework, are efficiently linked to create a cohesive application. This is accomplished with a flexible coupling capability that allows for a variety of different datamore » exchanges to occur simultaneously on high performance parallel computational hardware. Examples based on the KAIST-3A benchmark core, as well as a simplified Westinghouse AP-1000 configuration, demonstrate the power of this new framework for tackling—in a coupled, multiscale manner—crucial reactor phenomena such as CRUD-induced power shift and fuel shuffle. 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA license« less
Nuclear reactor system study for NASA/JPL
NASA Technical Reports Server (NTRS)
Palmer, R. G.; Lundberg, L. B.; Keddy, E. S.; Koenig, D. R.
1982-01-01
Reactor shielding, safety studies, and heat pipe development work are described. Monte Carlo calculations of gamma and neutron shield configurations show that substantial weight penalties are incurred if exposure at 25 m to neutrons and gammas must be limited to 10 to the 12th power nvt and 10 to the 6th power rad, instead of the 10 to the 13th power nvt and 10 to the 7th power rad values used earlier. For a 1.6 MW sub t reactor, the required shield weight increases from 400 to 815 kg. Water immersion critically calculations were extended to study the effect of water in fuel void spaces as well as in the core heat pipes. These show that the insertion into the core of eight blades of B4C with a mass totaling 2.5 kg will guarantee subcriticality. The design, fabrication procedure, and testing of a 4m long molybdenum/lithium heat pipe are described. It appears that an excess of oxygen in the wick prevented the attainment of expected performance capability.
Status of NASA's Space Launch System
NASA Technical Reports Server (NTRS)
Honeycutt, John; Lyles, Garry
2016-01-01
NASA's Space Launch System (SLS) continued to make significant progress in 2015 and 2016, completing hardware and testing that brings NASA closer to a new era of deep space exploration. Programmatically, SLS completed Critical Design Review (CDR) in 2015. A team of independent reviewers concluded that the vehicle design is technically and programmatically ready to move to Design Certification Review (DCR) and launch readiness in 2018. Just five years after program start, every major element has amassed development and flight hardware and completed key tests that will lead to an accelerated pace of manufacturing and testing in 2016 and 2017. Key to SLS' rapid progress has been the use of existing technologies adapted to the new launch vehicle. The existing fleet of RS-25 engines is undergoing adaptation tests to prove it can meet SLS requirements and environments with minimal change. The four-segment shuttle-era booster has been modified and updated with a fifth propellant segment, new insulation, and new avionics. The Interim Cryogenic Upper Stage is a modified version of an existing upper stage. The first Block I SLS configuration will launch a minimum of 70 metric tons (t) of payload to low Earth orbit (LEO). The vehicle architecture has a clear evolutionary path to more than 100t and, ultimately, to 130t. Among the program's major 2015-2016 accomplishments were two booster qualification hotfire tests, a series of RS-25 adaptation hotfire tests, manufacturing of most of the major components for both core stage test articles and first flight tank, delivery of the Pegasus core stage barge, and the upper stage simulator. Renovations to the B-2 test stand for stage green run testing was completed at NASA Stennis Space Center. This year will see the completion of welding for all qualification and flight EM-1 core stage components and testing of flight avionics, completion of core stage structural test stands, casting of the EM-1 solid rocket motors, additional testing of RS-25 engines and flight engine controllers This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before the first flight of this new capability.
Magnetization processes in core/shell exchange-spring structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, J. S.
2015-03-27
The magnetization reversal processes in cylindrical and spherical soft core/hard shell exchange-spring structures are investigated via the analytical nucleation theory, and are verified with numerical micromagnetic simulations. At small core sizes, the nucleation of magnetic reversal proceeds via the modified bulging mode, where the transverse component of the magnetization is only semi-coherent in direction and the nucleation field contains a contribution from self-demagnetization. For large core sizes, the modified curling mode, where the magnetization configuration is vortex-like, is favored at nucleation. The preference for the modified curling mode is beneficial in that the fluxclosure allows cylindrical and spherical core/shell exchange-springmore » elements to be densely packed into bulk permanent magnets without affecting the nucleation field, thereby offering the potential for high energy product.« less
The Radio Frequency Health Node Wireless Sensor System
NASA Technical Reports Server (NTRS)
Valencia, J. Emilio; Stanley, Priscilla C.; Mackey, Paul J.
2009-01-01
The Radio Frequency Health Node (RFHN) wireless sensor system differs from other wireless sensor systems in ways originally intended to enhance utility as an instrumentation system for a spacecraft. The RFHN can also be adapted to use in terrestrial applications in which there are requirements for operational flexibility and integrability into higher-level instrumentation and data acquisition systems. As shown in the figure, the heart of the system is the RFHN, which is a unit that passes commands and data between (1) one or more commercially available wireless sensor units (optionally, also including wired sensor units) and (2) command and data interfaces with a local control computer that may be part of the spacecraft or other engineering system in which the wireless sensor system is installed. In turn, the local control computer can be in radio or wire communication with a remote control computer that may be part of a higher-level system. The remote control computer, acting via the local control computer and the RFHN, cannot only monitor readout data from the sensor units but can also remotely configure (program or reprogram) the RFHN and the sensor units during operation. In a spacecraft application, the RFHN and the sensor units can also be configured more nearly directly, prior to launch, via a serial interface that includes an umbilical cable between the spacecraft and ground support equipment. In either case, the RFHN wireless sensor system has the flexibility to be configured, as required, with different numbers and types of sensors for different applications. The RFHN can be used to effect realtime transfer of data from, and commands to, the wireless sensor units. It can also store data for later retrieval by an external computer. The RFHN communicates with the wireless sensor units via a radio transceiver module. The modular design of the RFHN makes it possible to add radio transceiver modules as needed to accommodate additional sets of wireless sensor units. The RFHN includes a core module that performs generic computer functions, including management of power and input, output, processing, and storage of data. In a typical application, the processing capabilities in the RFHN are utilized to perform preprocessing, trending, and fusion of sensor data. The core module also serves as the unit through which the remote control computer configures the sensor units and the rest of the RFHN.
A Study of the X(sup 2) Sigma(sup +) and A(sup 2) Pi States of MgAr(sup +) and MgKr(sup +)
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
The ground (sup 2)Sigma(sup +) and lowest excited (sup 2)Pi states of MgAr(sup +) and MgKr(sup +) are studied using the singles and doubles configuration interaction (SDCI) approach, in conjunction with large basis sets. The effect of Mg core correlation and core polarization are accounted for using the core-polarization potential (CPP) approach. Franck-Condon factors, oscillator strengths, radiative lifetimes, dissociation energies, bond lengths, and excitation energies are reported. The computed results are in good agreement with the available experimental data.
Egorova, O N; Semjonov, S L; Medvedkov, O I; Astapovich, M S; Okhrimchuk, A G; Galagan, B I; Denker, B I; Sverchkov, S E; Dianov, E M
2015-08-15
We have fabricated and tested a composite fiber with an Yb(3+)-doped phosphate glass core and silica cladding. Oscillation with a slope efficiency of 74% was achieved using core pumping at 976 nm with fiber lengths of 48-90 mm in a simple laser configuration, where the cavity was formed by a high-reflectivity Bragg grating and the cleaved fiber end. The measured M(2) factors were as low as 1.05-1.22 even though the fiber was multimode at the lasing wavelength.