NASA Astrophysics Data System (ADS)
Moskvin, A. S.; Panov, Yu. D.; Rybakov, F. N.; Borisov, A. B.
2017-11-01
We have used high-performance parallel computations by NVIDIA graphics cards applying the method of nonlinear conjugate gradients and Monte Carlo method to observe directly the developing ground state configuration of a two-dimensional hard-core boson system with decrease in temperature, and its evolution with deviation from a half-filling. This has allowed us to explore unconventional features of a charge order—superfluidity phase transition, specifically, formation of an irregular domain structure, emergence of a filamentary superfluid structure that condenses within of the charge-ordered phase domain antiphase boundaries, and formation and evolution of various topological structures.
TRF2 and the evolution of the bilateria
Duttke, Sascha H.C.; Doolittle, Russell F.; Wang, Yuan-Liang
2014-01-01
The development of a complex body plan requires a diversity of regulatory networks. Here we consider the concept of TATA-box-binding protein (TBP) family proteins as “system factors” that each supports a distinct set of transcriptional programs. For instance, TBP activates TATA-box-dependent core promoters, whereas TBP-related factor 2 (TRF2) activates TATA-less core promoters that are dependent on a TCT or downstream core promoter element (DPE) motif. These findings led us to investigate the evolution of TRF2. TBP occurs in Archaea and eukaryotes, but TRF2 evolved prior to the emergence of the bilateria and subsequent to the evolutionary split between bilaterians and nonbilaterian animals. Unlike TBP, TRF2 does not bind to the TATA box and could thus function as a new system factor that is largely independent of TBP. We postulate that this TRF2-based system served as the foundation for new transcriptional programs, such as those involved in triploblasty and body plan development, that facilitated the evolution of bilateria. PMID:25274724
Tracing Primordial Protein Evolution through Structurally Guided Stepwise Segment Elongation*
Watanabe, Hideki; Yamasaki, Kazuhiko; Honda, Shinya
2014-01-01
The understanding of how primordial proteins emerged has been a fundamental and longstanding issue in biology and biochemistry. For a better understanding of primordial protein evolution, we synthesized an artificial protein on the basis of an evolutionary hypothesis, segment-based elongation starting from an autonomously foldable short peptide. A 10-residue protein, chignolin, the smallest foldable polypeptide ever reported, was used as a structural support to facilitate higher structural organization and gain-of-function in the development of an artificial protein. Repetitive cycles of segment elongation and subsequent phage display selection successfully produced a 25-residue protein, termed AF.2A1, with nanomolar affinity against the Fc region of immunoglobulin G. AF.2A1 shows exquisite molecular recognition ability such that it can distinguish conformational differences of the same molecule. The structure determined by NMR measurements demonstrated that AF.2A1 forms a globular protein-like conformation with the chignolin-derived β-hairpin and a tryptophan-mediated hydrophobic core. Using sequence analysis and a mutation study, we discovered that the structural organization and gain-of-function emerged from the vicinity of the chignolin segment, revealing that the structural support served as the core in both structural and functional development. Here, we propose an evolutionary model for primordial proteins in which a foldable segment serves as the evolving core to facilitate structural and functional evolution. This study provides insights into primordial protein evolution and also presents a novel methodology for designing small sized proteins useful for industrial and pharmaceutical applications. PMID:24356963
NASA Astrophysics Data System (ADS)
Panov, Yu. D.; Moskvin, A. S.; Rybakov, F. N.; Borisov, A. B.
2016-12-01
We made use of a special algorithm for compute unified device architecture for NVIDIA graphics cards, a nonlinear conjugate-gradient method to minimize energy functional, and Monte-Carlo technique to directly observe the forming of the ground state configuration for the 2D hard-core bosons by lowering the temperature and its evolution with deviation away from half-filling. The novel technique allowed us to examine earlier implications and uncover novel features of the phase transitions, in particular, look upon the nucleation of the odd domain structure, emergence of filamentary superfluidity nucleated at the antiphase domain walls of the charge-ordered phase, and nucleation and evolution of different topological structures.
Why language really is not a communication system: a cognitive view of language evolution
Reboul, Anne C.
2015-01-01
While most evolutionary scenarios for language see it as a communication system with consequences on the language-ready brain, there are major difficulties for such a view. First, language has a core combination of features—semanticity, discrete infinity, and decoupling—that makes it unique among communication systems and that raise deep problems for the view that it evolved for communication. Second, extant models of communication systems—the code model of communication (Millikan, 2005) and the ostensive model of communication (Scott-Phillips, 2015) cannot account for language evolution. I propose an alternative view, according to which language first evolved as a cognitive tool, following Fodor’s (1975, 2008) Language of Thought Hypothesis, and was then exapted (externalized) for communication. On this view, a language-ready brain is a brain profoundly reorganized in terms of connectivity, allowing the human conceptual system to emerge, triggering the emergence of syntax. Language as used in communication inherited its core combination of features from the Language of Thought. PMID:26441802
2013-01-01
In 2003, the International Patient Decision Aid Standards (IPDAS) Collaboration was established to enhance the quality and effectiveness of patient decision aids by establishing an evidence-informed framework for improving their content, development, implementation, and evaluation. Over this 10 year period, the Collaboration has established: a) the background document on 12 core dimensions to inform the original modified Delphi process to establish the IPDAS checklist (74 items); b) the valid and reliable IPDAS instrument (47 items); and c) the IPDAS qualifying (6 items), certifying (6 items + 4 items for screening), and quality criteria (28 items). The objective of this paper is to describe the evolution of the IPDAS Collaboration and discuss the standardized process used to update the background documents on the theoretical rationales, evidence and emerging issues underlying the 12 core dimensions for assessing the quality of patient decision aids. PMID:24624947
TRF2 and the evolution of the bilateria.
Duttke, Sascha H C; Doolittle, Russell F; Wang, Yuan-Liang; Kadonaga, James T
2014-10-01
The development of a complex body plan requires a diversity of regulatory networks. Here we consider the concept of TATA-box-binding protein (TBP) family proteins as "system factors" that each supports a distinct set of transcriptional programs. For instance, TBP activates TATA-box-dependent core promoters, whereas TBP-related factor 2 (TRF2) activates TATA-less core promoters that are dependent on a TCT or downstream core promoter element (DPE) motif. These findings led us to investigate the evolution of TRF2. TBP occurs in Archaea and eukaryotes, but TRF2 evolved prior to the emergence of the bilateria and subsequent to the evolutionary split between bilaterians and nonbilaterian animals. Unlike TBP, TRF2 does not bind to the TATA box and could thus function as a new system factor that is largely independent of TBP. We postulate that this TRF2-based system served as the foundation for new transcriptional programs, such as those involved in triploblasty and body plan development, that facilitated the evolution of bilateria. © 2014 Duttke et al.; Published by Cold Spring Harbor Laboratory Press.
Admission Policy Evolution in Emerging Professional Programs: A Case Study
ERIC Educational Resources Information Center
Holley, Paul W.
2006-01-01
Professional program admission at U.S. universities has become increasingly competitive in the last 20 years, due to enrollment caps, core class requirements, transfer course acceptance, industry draw, and the appeal of starting salaries. As the competition steadily increases, students often find methods to exploit traditional policy, resulting in…
Emergence Processes up to Consciousness Using the Multiplicity Principle and Quantum Physics
NASA Astrophysics Data System (ADS)
Ehresmann, Andrée C.; Vanbremeersch, Jean-Paul
2002-09-01
Evolution is marked by the emergence of new objects and interactions. Pursuing our preceding work on Memory Evolutive Systems (MES; cf. our Internet site), we propose a general mathematical model for this process, based on Category Theory. Its main characteristics is the Multiplicity Principle (MP) which asserts the existence of complex objects with several possible configurations. The MP entails the emergence of non-reducible more and more complex objects (emergentist reductionism). From the laws of Quantum Physics, it follows that the MP is valid for the category of particles and atoms, hence, by complexification, for any natural autonomous anticipatory complex system, such as biological systems up to neural systems, or social systems. Applying the model to the MES of neurons, we describe the emergence of higher and higher cognitive processes and of a semantic memory. Consciousness is characterized by the development of a permanent `personal' memory, the archetypal core, which allows the formation of extended landscapes with an integration of the temporal dimensions.
Cummins, Dustin R.; Martinez, Ulises; Sherehiy, Andriy; Kappera, Rajesh; Martinez-Garcia, Alejandro; Schulze, Roland K.; Jasinski, Jacek; Zhang, Jing; Gupta, Ram K.; Lou, Jun; Chhowalla, Manish; Sumanasekera, Gamini; Mohite, Aditya D.; Sunkara, Mahendra K.; Gupta, Gautam
2016-01-01
Hydrogen evolution reaction is catalysed efficiently with precious metals, such as platinum; however, transition metal dichalcogenides have recently emerged as a promising class of materials for electrocatalysis, but these materials still have low activity and durability when compared with precious metals. Here we report a simple one-step scalable approach, where MoOx/MoS2 core-shell nanowires and molybdenum disulfide sheets are exposed to dilute aqueous hydrazine at room temperature, which results in marked improvement in electrocatalytic performance. The nanowires exhibit ∼100 mV improvement in overpotential following exposure to dilute hydrazine, while also showing a 10-fold increase in current density and a significant change in Tafel slope. In situ electrical, gate-dependent measurements and spectroscopic investigations reveal that hydrazine acts as an electron dopant in molybdenum disulfide, increasing its conductivity, while also reducing the MoOx core in the core-shell nanowires, which leads to improved electrocatalytic performance. PMID:27282871
Cummins, Dustin R; Martinez, Ulises; Sherehiy, Andriy; Kappera, Rajesh; Martinez-Garcia, Alejandro; Schulze, Roland K; Jasinski, Jacek; Zhang, Jing; Gupta, Ram K; Lou, Jun; Chhowalla, Manish; Sumanasekera, Gamini; Mohite, Aditya D; Sunkara, Mahendra K; Gupta, Gautam
2016-06-10
Hydrogen evolution reaction is catalysed efficiently with precious metals, such as platinum; however, transition metal dichalcogenides have recently emerged as a promising class of materials for electrocatalysis, but these materials still have low activity and durability when compared with precious metals. Here we report a simple one-step scalable approach, where MoOx/MoS2 core-shell nanowires and molybdenum disulfide sheets are exposed to dilute aqueous hydrazine at room temperature, which results in marked improvement in electrocatalytic performance. The nanowires exhibit ∼100 mV improvement in overpotential following exposure to dilute hydrazine, while also showing a 10-fold increase in current density and a significant change in Tafel slope. In situ electrical, gate-dependent measurements and spectroscopic investigations reveal that hydrazine acts as an electron dopant in molybdenum disulfide, increasing its conductivity, while also reducing the MoOx core in the core-shell nanowires, which leads to improved electrocatalytic performance.
Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy
Kong, Xiangju; Hong, Aayoung; Koya, Richard C.; Moriceau, Gatien; Chodon, Thinle; Guo, Rongqing; Johnson, Douglas B.; Dahlman, Kimberly B.; Kelley, Mark C.; Kefford, Richard F.; Chmielowski, Bartosz; Glaspy, John A.; Sosman, Jeffrey A.; van Baren, Nicolas; Long, Georgina V.; Ribas, Antoni; Lo, Roger S.
2013-01-01
BRAF inhibitors elicit rapid anti-tumor responses in the majority of patients with V600BRAF mutant melanoma, but acquired drug resistance is almost universal. We sought to identify the core resistance pathways and the extent of tumor heterogeneity during disease progression. We show that MAPK reactivation mechanisms were detected among 70% of disease-progressive tissues, with RAS mutations, mutant BRAF amplification and alternative splicing being most common. We also detected PI3K-PTEN-AKT-upregulating genetic alterations among 22% of progressive melanomas. Distinct molecular lesions, in both core drug escape pathways, were commonly detected concurrently in the same tumor or among multiple tumors from the same patient. Beyond harboring extensively heterogeneous resistance mechanisms, melanoma re-growth emerging from BRAF inhibitor selection displayed branched evolution marked by altered mutational spectra/signatures and increased fitness. Thus, melanoma genomic heterogeneity contributes significantly to BRAF inhibitor treatment failure, implying upfront, co-targeting of two core pathways as an essential strategy for durable responses. PMID:24265155
Cummins, Dustin R.; Martinez, Ulises; Sherehiy, Andriy; ...
2016-06-10
In this study, hydrogen evolution reaction is catalyzed efficiently with precious metals, such as platinum; however, transition metal dichalcogenides have recently emerged as a promising class of materials for electrocatalysis, but these materials still have low activity and durability when compared with precious metals. Here we report a simple one-step scalable approach, where MoO x/MoS 2 core-shell nanowires and molybdenum disulfide sheets are exposed to dilute aqueous hydrazine at room temperature, which results in marked improvement in electrocatalytic performance. The nanowires exhibit ~100 mV improvement in over potential following exposure to dilute hydrazine, while also showing a 10-fold increase inmore » current density and a significant change in Tafel slope. In situ electrical, gate-dependent measurements and spectroscopic investigations reveal that hydrazine acts as an electron dopant in molybdenum disulfide, increasing its conductivity, while also reducing the MoO x core in the core-shell nanowires, which leads to improved electrocatalytic performance.« less
Compositional Variations of Paleogene and Neogene Tephra From the Northern Izu-Bonin-Mariana Arc
NASA Astrophysics Data System (ADS)
Tepley, F. J., III; Barth, A. P.; Brandl, P. A.; Hickey-Vargas, R.; Jiang, F.; Kanayama, K.; Kusano, Y.; Li, H.; Marsaglia, K. M.; McCarthy, A.; Meffre, S.; Savov, I. P.; Yogodzinski, G. M.
2014-12-01
A primary objective of IODP Expedition 351 was to evaluate arc initiation processes of the Izu-Bonin-Mariana (IBM) volcanic arc and its compositional evolution through time. To this end, a single thick section of sediment overlying oceanic crust was cored in the Amami Sankaku Basin where a complete sediment record of arc inception and evolution is preserved. This sediment record includes ash and pyroclasts, deposited in fore-arc, arc, and back-arc settings, likely associated with both the ~49-25 Ma emergent IBM volcanic arc and the evolving Ryukyu-Kyushu volcanic arc. Our goal was to assess the major element evolution of the nascent and evolving IBM system using the temporally constrained record of the early and developing system. In all, more than 100 ash and tuff layers, and pyroclastic fragments were selected from temporally resolved portions of the core, and from representative fractions of the overall core ("core catcher"). The samples were prepared to determine major and minor element compositions via electron microprobe analyses. This ash and pyroclast record will allow us to 1) resolve the Paleogene evolutionary history of the northern IBM arc in greater detail; 2) determine compositional variations of this portion of the IBM arc through time; 3) compare the acquired data to an extensive whole rock and tephra dataset from other segments of the IBM arc; 4) test hypotheses of northern IBM arc evolution and the involvement of different source reservoirs; and 5) mark important stratigraphic markers associated with the Neogene volcanic history of the adjacent evolving Ryukyu-Kyushu arc.
Division of labour and the evolution of multicellularity
Ispolatov, Iaroslav; Ackermann, Martin; Doebeli, Michael
2012-01-01
Understanding the emergence and evolution of multicellularity and cellular differentiation is a core problem in biology. We develop a quantitative model that shows that a multicellular form emerges from genetically identical unicellular ancestors when the compartmentalization of poorly compatible physiological processes into component cells of an aggregate produces a fitness advantage. This division of labour between the cells in the aggregate occurs spontaneously at the regulatory level owing to mechanisms present in unicellular ancestors and does not require any genetic predisposition for a particular role in the aggregate or any orchestrated cooperative behaviour of aggregate cells. Mathematically, aggregation implies an increase in the dimensionality of phenotype space that generates a fitness landscape with new fitness maxima, in which the unicellular states of optimized metabolism become fitness saddle points. Evolution of multicellularity is modelled as evolution of a hereditary parameter: the propensity of cells to stick together, which determines the fraction of time a cell spends in the aggregate form. Stickiness can increase evolutionarily owing to the fitness advantage generated by the division of labour between cells in an aggregate. PMID:22158952
NASA Astrophysics Data System (ADS)
Yang, Bo; Tong, Yuting
2017-04-01
With the rapid development of economy, the development of logistics enterprises in China is also facing a huge challenge, especially the logistics enterprises generally lack of core competitiveness, and service innovation awareness is not strong. Scholars in the process of studying the core competitiveness of logistics enterprises are mainly from the perspective of static stability, not from the perspective of dynamic evolution to explore. So the author analyzes the influencing factors and the evolution process of the core competence of logistics enterprises, using the method of system dynamics to study the cause and effect of the evolution of the core competence of logistics enterprises, construct a system dynamics model of evolution of core competence logistics enterprises, which can be simulated by vensim PLE. The analysis for the effectiveness and sensitivity of simulation model indicates the model can be used as the fitting of the evolution process of the core competence of logistics enterprises and reveal the process and mechanism of the evolution of the core competence of logistics enterprises, and provide management strategies for improving the core competence of logistics enterprises. The construction and operation of computer simulation model offers a kind of effective method for studying the evolution of logistics enterprise core competence.
A complex approach to the blue-loop problem
NASA Astrophysics Data System (ADS)
Ostrowski, Jakub; Daszynska-Daszkiewicz, Jadwiga
2015-08-01
The problem of the blue loops during the core helium burning, outstanding for almost fifty years, is one of the most difficult and poorly understood problems in stellar astrophysics. Most of the work focused on the blue loops done so far has been performed with old stellar evolution codes and with limited computational resources. In the end the obtained conclusions were based on a small sample of models and could not have taken into account more advanced effects and interactions between them.The emergence of the blue loops depends on many details of the evolution calculations, in particular on chemical composition, opacity, mixing processes etc. The non-linear interactions between these factors contribute to the statement that in most cases it is hard to predict without a precise stellar modeling whether a loop will emerge or not. The high sensitivity of the blue loops to even small changes of the internal structure of a star yields one more issue: a sensitivity to numerical problems, which are common in calculations of stellar models on advanced stages of the evolution.To tackle this problem we used a modern stellar evolution code MESA. We calculated a large grid of evolutionary tracks (about 8000 models) with masses in the range of 3.0 - 25.0 solar masses from the zero age main sequence to the depletion of helium in the core. In order to make a comparative analysis, we varied metallicity, helium abundance and different mixing parameters resulting from convective overshooting, rotation etc.The better understanding of the properties of the blue loops is crucial for our knowledge of the population of blue supergiants or pulsating variables such as Cepheids, α-Cygni or Slowly Pulsating B-type supergiants. In case of more massive models it is also of great importance for studies of the progenitors of supernovae.
Emergent properties of gene evolution: Species as attractors in phenotypic space
NASA Astrophysics Data System (ADS)
Reuveni, Eli; Giuliani, Alessandro
2012-02-01
The question how the observed discrete character of the phenotype emerges from a continuous genetic distance metrics is the core argument of two contrasted evolutionary theories: punctuated equilibrium (stable evolution scattered with saltations in the phenotype) and phyletic gradualism (smooth and linear evolution of the phenotype). Identifying phenotypic saltation on the molecular levels is critical to support the first model of evolution. We have used DNA sequences of ∼1300 genes from 6 isolated populations of the budding yeast Saccharomyces cerevisiae. We demonstrate that while the equivalent measure of the genetic distance show a continuum between lineage distance with no evidence of discrete states, the phenotypic space illustrates only two (discrete) possible states that can be associated with a saltation of the species phenotype. The fact that such saltation spans large fraction of the genome and follows by continuous genetic distance is a proof of the concept that the genotype-phenotype relation is not univocal and may have severe implication when looking for disease related genes and mutations. We used this finding with analogy to attractor-like dynamics and show that punctuated equilibrium could be explained in the framework of non-linear dynamics systems.
Large-scale and Long-duration Simulation of a Multi-stage Eruptive Solar Event
NASA Astrophysics Data System (ADS)
Jiang, chaowei; Hu, Qiang; Wu, S. T.
2015-04-01
We employ a data-driven 3D MHD active region evolution model by using the Conservation Element and Solution Element (CESE) numerical method. This newly developed model retains the full MHD effects, allowing time-dependent boundary conditions and time evolution studies. The time-dependent simulation is driven by measured vector magnetograms and the method of MHD characteristics on the bottom boundary. We have applied the model to investigate the coronal magnetic field evolution of AR11283 which was characterized by a pre-existing sigmoid structure in the core region and multiple eruptions, both in relatively small and large scales. We have succeeded in producing the core magnetic field structure and the subsequent eruptions of flux-rope structures (see https://dl.dropboxusercontent.com/u/96898685/large.mp4 for an animation) as the measured vector magnetograms on the bottom boundary evolve in time with constant flux emergence. The whole process, lasting for about an hour in real time, compares well with the corresponding SDO/AIA and coronagraph imaging observations. From these results, we show the capability of the model, largely data-driven, that is able to simulate complex, topological, and highly dynamic active region evolutions. (We acknowledge partial support of NSF grants AGS 1153323 and AGS 1062050, and data support from SDO/HMI and AIA teams).
Episodic accretion in binary protostars emerging from self-gravitating solar mass cores
NASA Astrophysics Data System (ADS)
Riaz, R.; Vanaverbeke, S.; Schleicher, D. R. G.
2018-06-01
Observations show a large spread in the luminosities of young protostars, which are frequently explained in the context of episodic accretion. We tested this scenario with numerical simulations that follow the collapse of a solar mass molecular cloud using the GRADSPH code, thereby varying the strength of the initial perturbations and temperature of the cores. A specific emphasis of this paper is to investigate the role of binaries and multiple systems in the context of episodic accretion and to compare their evolution to the evolution in isolated fragments. Our models form a variety of low-mass protostellar objects including single, binary, and triple systems in which binaries are more active in exhibiting episodic accretion than isolated protostars. We also find a general decreasing trend in the average mass accretion rate over time, suggesting that the majority of the protostellar mass is accreted within the first 105 years. This result can potentially help to explain the surprisingly low average luminosities in the majority of the protostellar population.
On the Evolution of the Cores of Radio Sources and Their Extended Radio Emission
NASA Astrophysics Data System (ADS)
Yuan, Zunli; Wang, Jiancheng
2012-01-01
The work in this paper aims at determining the evolution and possible co-evolution of radio-loud active galactic nuclei (AGNs) and their cores via their radio luminosity functions (i.e., total and core RLFs, respectively). Using a large combined sample of 1063 radio-loud AGNs selected at low radio frequency, we investigate the RLF at 408 MHz of steep-spectrum radio sources. Our results support a luminosity-dependent evolution. Using core flux density data of the complete sample 3CRR, we investigate the core RLF at 5.0 GHz. Based on the combined sample with incomplete core flux data, we also estimate the core RLF using a modified factor of completeness. Both results are consistent and show that the comoving number density of radio cores displays a persistent decline with redshift, implying a negative density evolution. We find that the core RLF is obviously different from the total RLF at the 408 MHz band which is mainly contributed by extended lobes, implying that the cores and extended lobes could not be co-evolving at radio emission.
Liu, Na; Acosta, Matias; Wang, Shuai; Xu, Bai-Xiang; Stark, Robert W; Dietz, Christian
2016-11-14
Lead-free relaxor ferroelectrics that feature a core-shell microstructure provide an excellent electromechanical response. They even have the potential to replace the environmentally hazardous lead-zirconia-titanate (PZT) in large strain actuation applications. Although the dielectric properties of core-shell ceramics have been extensively investigated, their piezoelectric properties are not yet well understood. To unravel the interfacial core-shell interaction, we studied the relaxation behaviour of field-induced ferroelectric domains in 0.75Bi 1/2 Na 1/2 TiO 3 -0.25SrTiO 3 (BNT-25ST), as a typical core-shell bulk material, using a piezoresponse force microscope. We found that after poling, lateral domains emerged at the core-shell interface and propagated to the shell region. Phase field simulations showed that the increased electrical potential beneath the core is responsible for the in-plane domain evolution. Our results imply that the field-induced domains act as pivotal points at the coherent heterophase core-shell interface, reinforcing the phase transition in the non-polar shell and thus promoting the giant strain.
The thermal evolution of Mercury's Fe-Si core
NASA Astrophysics Data System (ADS)
Knibbe, Jurriën Sebastiaan; van Westrenen, Wim
2018-01-01
We have studied the thermal and magnetic field evolution of planet Mercury with a core of Fe-Si alloy to assess whether an Fe-Si core matches its present-day partially molten state, Mercury's magnetic field strength, and the observed ancient crustal magnetization. The main advantages of an Fe-Si core, opposed to a previously assumed Fe-S core, are that a Si-bearing core is consistent with the highly reduced nature of Mercury and that no compositional convection is generated upon core solidification, in agreement with magnetic field indications of a stable layer at the top of Mercury's core. This study also present the first implementation of a conductive temperature profile in the core where heat fluxes are sub-adiabatic in a global thermal evolution model. We show that heat migrates from the deep core to the outer part of the core as soon as heat fluxes at the outer core become sub-adiabatic. As a result, the deep core cools throughout Mercury's evolution independent of the temperature evolution at the core-mantle boundary, causing an early start of inner core solidification and magnetic field generation. The conductive layer at the outer core suppresses the rate of core growth after temperature differences between the deep and shallow core are relaxed, such that a magnetic field can be generated until the present. Also, the outer core and mantle operate at higher temperatures than previously thought, which prolongs mantle melting and mantle convection. The results indicate that S is not a necessary ingredient of Mercury's core, bringing bulk compositional models of Mercury more in line with reduced meteorite analogues.
The nature, origin and evolution of embedded star clusters
NASA Technical Reports Server (NTRS)
Lada, Charles J.; Lada, Elizabeth A.
1991-01-01
The recent development of imaging infrared array cameras has enabled the first systematic studies of embedded protoclusters in the galaxy. Initial investigations suggest that rich embedded clusters are quite numerous and that a significant fraction of all stars formed in the galaxy may begin their lives in such stellar systems. These clusters contain extremely young stellar objects and are important laboratories for star formation research. However, observational and theoretical considerations suggest that most embedded clusters do not survive emergence from molecular clouds as bound clusters. Understanding the origin, nature, and evolution of embedded clusters requires understanding the intimate physical relation between embedded clusters and the dense molecular cloud cores from which they form.
de Been, Mark; van Schaik, Willem; Cheng, Lu; Corander, Jukka; Willems, Rob J.
2013-01-01
Reasons for the rising clinical impact of the bacterium Enterococcus faecium include the species’ rapid acquisition of adaptive genetic elements. Here, we focused on the impact of recombination on the evolution of E. faecium. We used the recently developed BratNextGen algorithm to detect recombinant regions in the core genome of 34 E. faecium strains, including three newly sequenced clinical strains. Recombination was found to have a significant impact on the E. faecium genome: of the original 1.2 million positions in the core genome, 0.5 million were predicted to have been affected by recombination in at least one strain. Importantly, strains in one of the two major E. faecium clades (clade B), which contains most of the E. faecium human gut commensals, formed the most important reservoir for donating foreign DNA to the second major E. faecium clade (clade A), which contains most of the clinical isolates. Also, several genomic regions were found to mainly recombine in specific hospital-associated E. faecium strains. One of these regions (the epa-like locus) likely encodes the biosynthesis of cell wall polysaccharides. These findings suggest a crucial role for recombination in the emergence of E. faecium as a successful hospital-associated pathogen. PMID:23882129
Sonnino, Roberta E; Reznik, Vivian; Thorndyke, Luanne A; Chatterjee, Archana; Ríos-Bedoya, Carlos F; Mylona, Elza; Nelson, Kathleen G; Weisman, Carol S; Morahan, Page S; Wadland, William C
2013-09-01
To determine how U.S. MD-granting medical schools manage, fund, and evaluate faculty affairs/development functions and to determine the evolution of these offices between 2000 and 2010. In December 2010, the authors invited faculty affairs designees at 131 U.S. MD-granting medical schools to complete a questionnaire developed by the Association of American Medical Colleges Group on Faculty Affairs, based on a 2000 survey. Schools were asked about core functions, budget, staffing, and performance metrics. The authors analyzed the data using descriptive statistics. A total of 111 schools (84.7%) responded. Fifty percent of the offices were established since 2000. Seventy-eight percent reported their top core function as administrative support for appointments, promotions, and tenure, as in 2000. Faculty policies, appointments, databases, governance support, grievance proceedings, management issues, and annual trend analyses continued as major functions. All 11 core functions identified in 2000 remain predominantly provided by central offices of faculty affairs, except support of major leadership searches. Web site communication emerged as a new core function. Similar to 2000, several other offices were responsible for some faculty development functions. Office size and budget correlated positively with size of the faculty and age of the office (P < .05 for all). Thirty-five schools (31.5%) reported formally evaluating their faculty affairs office. The number of faculty affairs offices and their responsibilities have substantially increased since 2000. Most major core functions have not changed. These offices are now an established part of the central administration of most medical schools.
NASA Astrophysics Data System (ADS)
Pechernikova, G. V.; Sergeev, V. N.
2017-05-01
Gravitational collapse of interstellar molecular cloud fragment has led to the formation of the Sun and its surrounding protoplanetary disk, consisting of 5 × 10^5 dust and gas. The collapse continued (1 years. Age of solar system (about 4.57×10^9 years) determine by age calcium-aluminum inclusions (CAI) which are present at samples of some meteorites (chondrites). Subsidence of dust to the central plane of a protoplanetary disk has led to formation of a dust subdisk which as a result of gravitational instability has broken up to condensations. In the process of collisional evolution they turned into dense planetesimals from which the planets formed. The accounting of a role of large bodies in evolution of a protoplanetary swarm in the field of terrestrial planets has allowed to define times of formation of the massive bodies permitting their early differentiation at the expense of short-lived isotopes heating and impacts to the melting temperature of the depths. The total time of Earth's growth is estimated about 10^8 years. Hf geochronometer showed that the core of the Earth has existed for Using W about 3×10^7 Hf geohronometer years since the formation of the CAI. Thus data W point to the formation of the Earth's core during its accretion. The paleomagnetic data indicate the existence of Earth's magnetic field past 3.5×10^9 years. But the age of the solid core, estimated by heat flow at the core-mantle boundary is 1.7×10^9 (0.5 years). Measurements of the thermal conductivity of liquid iron under the conditions that exist in the Earth's core, indicate the absence of the need for a solid core of existence to support the work geodynamo, although electrical resistivity measurements yield the opposite result.
Kleine Büning, Maximiliane; Meyer, Denise; Austermann-Busch, Sophia; Roman-Sosa, Gleyder; Rümenapf, Tillmann; Becher, Paul
2017-04-01
RNA recombination is a major driving force for the evolution of RNA viruses and is significantly implicated in the adaptation of viruses to new hosts, changes of virulence, as well as in the emergence of new viruses including drug-resistant and escape mutants. However, the molecular details of recombination in animal RNA viruses are only poorly understood. In order to determine whether viral RNA recombination depends on translation of viral proteins, a nonreplicative recombination system was established which is based on cotransfection of cells with synthetic bovine viral diarrhea virus (family Flaviviridae) RNA genome fragments either lacking the internal ribosome entry site required for cap-independent translation or lacking almost the complete polyprotein coding region. The emergence of a number of recombinant viruses demonstrated that IRES-mediated translation of viral proteins is dispensable for efficient recombination and suggests that RNA recombination can occur in the absence of viral proteins. Analyses of 58 independently emerged viruses led to the detection of recombinant genomes with duplications, deletions and insertions in the 5' terminal region of the open reading frame, leading to enlarged core fusion proteins detectable by Western blot analysis. This demonstrates a remarkable flexibility of the pestivirus core protein. Further experiments with capped and uncapped genome fragments containing a luciferase gene for monitoring the level of protein translation revealed that even a ∼1,000-fold enhancement of translation of viral proteins did not increase the frequency of RNA recombination. Taken together, this study highlights that nonreplicative RNA recombination does not require translation of viral proteins. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
NASA Astrophysics Data System (ADS)
Stout, Dietrich
2016-03-01
Twenty-five years ago, Pinker and Bloom [1] helped reinvigorate research on language evolution by arguing that language ;shows signs of complex design for the communication of propositional structures, and the only explanation for the origin of organs with complex design is the process of natural selection.; Since then, empirical research has tested the assertions of (cross-cultural) universality, (cross-species) uniqueness, and (cross-domain) specificity underpinning this argument from design. Appearances aside, points of consensus have emerged. The existence of a core computational and neural substrate unique to language and/or humans is still debated, but it is widely agreed that: 1) human language performance overlaps with behaviors in other domains and species, and 2) such general, pre-existing capacities provided the context for language-specific evolution (e.g. [2]).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaohan; Hu, Rongbin; Yin, Hengfu
Crassulacean acid metabolism (CAM) is a specialized photosynthetic adaptation to arid environments, found predominantly in diverse eudicotyledonous (eudicot) and monocotyledonous (monocot) lineages that diverged approximately 135 million years ago. To test whether convergent evolution underpins the independent emergences of CAM, we present de novo genome assembly and gene expression data for Kalanchoë fedtschenkoi, an obligate CAM species that was shown by multigene phylogenetic analysis to represent one of the earliest-diverging lineages of core eudicots. Our combined analysis of K. fedtschenkoi and two monocot CAM species (Ananas comosus and Phalaenopsis equestris) identified signatures of convergence in protein sequence and in themore » diel re-scheduling of genes involved in metabolism and signaling. Lastly, our results provide significant insight into CAM evolution, facilitating CAM-into-C 3 engineering for enhancing drought tolerance in crops.« less
Rab protein evolution and the history of the eukaryotic endomembrane system
Brighouse, Andrew; Dacks, Joel B.
2010-01-01
Spectacular increases in the quantity of sequence data genome have facilitated major advances in eukaryotic comparative genomics. By exploiting homology with classical model organisms, this makes possible predictions of pathways and cellular functions currently impossible to address in intractable organisms. Echoing realization that core metabolic processes were established very early following evolution of life on earth, it is now emerging that many eukaryotic cellular features, including the endomembrane system, are ancient and organized around near-universal principles. Rab proteins are key mediators of vesicle transport and specificity, and via the presence of multiple paralogues, alterations in interaction specificity and modification of pathways, contribute greatly to the evolution of complexity of membrane transport. Understanding system-level contributions of Rab proteins to evolutionary history provides insight into the multiple processes sculpting cellular transport pathways and the exciting challenges that we face in delving further into the origins of membrane trafficking specificity. PMID:20582450
Yang, Xiaohan; Hu, Rongbin; Yin, Hengfu; ...
2017-12-01
Crassulacean acid metabolism (CAM) is a specialized photosynthetic adaptation to arid environments, found predominantly in diverse eudicotyledonous (eudicot) and monocotyledonous (monocot) lineages that diverged approximately 135 million years ago. To test whether convergent evolution underpins the independent emergences of CAM, we present de novo genome assembly and gene expression data for Kalanchoë fedtschenkoi, an obligate CAM species that was shown by multigene phylogenetic analysis to represent one of the earliest-diverging lineages of core eudicots. Our combined analysis of K. fedtschenkoi and two monocot CAM species (Ananas comosus and Phalaenopsis equestris) identified signatures of convergence in protein sequence and in themore » diel re-scheduling of genes involved in metabolism and signaling. Lastly, our results provide significant insight into CAM evolution, facilitating CAM-into-C 3 engineering for enhancing drought tolerance in crops.« less
From public health genomics to precision public health: a 20-year journey.
Khoury, Muin J; Bowen, M Scott; Clyne, Mindy; Dotson, W David; Gwinn, Marta L; Green, Ridgely Fisk; Kolor, Katherine; Rodriguez, Juan L; Wulf, Anja; Yu, Wei
2018-06-01
In this paper, we review the evolution of the field of public health genomics in the United States in the past two decades. Public health genomics focuses on effective and responsible translation of genomic science into population health benefits. We discuss the relationship of the field to the core public health functions and essential services, review its evidentiary foundation, and provide examples of current US public health priorities and applications. We cite examples of publications to illustrate how Genetics in Medicine reflected the evolution of the field. We also reflect on how public-health genomics is contributing to the emergence of "precision public health" with near-term opportunities offered by the US Precision Medicine (AllofUs) Initiative.
Viral Evolution Core | FNLCR Staging
Brandon F. Keele, Ph.D. PI/Senior Principal Investigator, Retroviral Evolution Section Head, Viral Evolution Core Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research Frederick, MD 21702-1201 Tel: 301-846-173
Stellar structure and compact objects before 1940: Towards relativistic astrophysics
NASA Astrophysics Data System (ADS)
Bonolis, Luisa
2017-06-01
Since the mid-1920s, different strands of research used stars as "physics laboratories" for investigating the nature of matter under extreme densities and pressures, impossible to realize on Earth. To trace this process this paper is following the evolution of the concept of a dense core in stars, which was important both for an understanding of stellar evolution and as a testing ground for the fast-evolving field of nuclear physics. In spite of the divide between physicists and astrophysicists, some key actors working in the cross-fertilized soil of overlapping but different scientific cultures formulated models and tentative theories that gradually evolved into more realistic and structured astrophysical objects. These investigations culminated in the first contact with general relativity in 1939, when J. Robert Oppenheimer and his students George Volkoff and Hartland Snyder systematically applied the theory to the dense core of a collapsing neutron star. This pioneering application of Einstein's theory to an astrophysical compact object can be regarded as a milestone in the path eventually leading to the emergence of relativistic astrophysics in the early 1960s.
NASA Astrophysics Data System (ADS)
Werne, J. P.; Ferland, T.; Cohen, A. S.; Lowenstein, T. K.; Deocampo, D.; Renaut, R.; Bernhart, O. R.
2016-12-01
The Hominid Sites and Paleolakes Drilling Project (HSPDP) seeks to understand the paleoclimatic and paleoenvironmental context of human evolution and development by analysis of paleolacustrine cores taken near key hominin fossil and artifact localities in Kenya and Ethiopia. Here, we present biomarker and compound specific isotope data from a 200 m drill core from Lake Magadi, Kenya. Located 20 km from the Koora Plain in the southern Kenya Rift, and adjacent to the Olorgesailie basin, Lake Magadi is in one of the richest Early-Late Pleistocene archaeological localities in Africa, a region that has been key in debates about the relationship between climate and evolution. Preliminary biomarker work has shown promising abundances of leaf waxes, whose isotopic compositions of hydrogen and carbon are commonly used as proxies for paleoprecipitation and watershed vegetation composition, respectively. A complementary record of glycerol dialkyl glycerol tetraethers (GDGTs), which can serve as a proxy for temperature, soil input, and/or pH, will be presented alongside the leaf wax data to enhance the paleoenvironmental reconstruction of Lake Magadi. Present-day Lake Magadi is a saline pan, a descendant of a series of paleolakes that have occupied its drainage basin for approximately one million years. Hominid evolution milestones such as the mastering of fire as a tool, rapid encephalization, and the emergence of Homo sapiens all are thought to have occurred in the time frame encompassed by our record.
The Last Minutes of Oxygen Shell Burning in a Massive Star
NASA Astrophysics Data System (ADS)
Müller, Bernhard; Viallet, Maxime; Heger, Alexander; Janka, Hans-Thomas
2016-12-01
We present the first 4π-three-dimensional (3D) simulation of the last minutes of oxygen shell burning in an 18 M ⊙ supernova progenitor up to the onset of core collapse. A moving inner boundary is used to accurately model the contraction of the silicon and iron core according to a one-dimensional stellar evolution model with a self-consistent treatment of core deleptonization and nuclear quasi-equilibrium. The simulation covers the full solid angle to allow the emergence of large-scale convective modes. Due to core contraction and the concomitant acceleration of nuclear burning, the convective Mach number increases to ˜0.1 at collapse, and an ℓ = 2 mode emerges shortly before the end of the simulation. Aside from a growth of the oxygen shell from 0.51 M ⊙ to 0.56 M ⊙ due to entrainment from the carbon shell, the convective flow is reasonably well described by mixing-length theory, and the dominant scales are compatible with estimates from linear stability analysis. We deduce that artificial changes in the physics, such as accelerated core contraction, can have precarious consequences for the state of convection at collapse. We argue that scaling laws for the convective velocities and eddy sizes furnish good estimates for the state of shell convection at collapse and develop a simple analytic theory for the impact of convective seed perturbations on shock revival in the ensuing supernova. We predict a reduction of the critical luminosity for explosion by 12%-24% due to seed asphericities for our 3D progenitor model relative to the case without large seed perturbations.
77 FR 36014 - Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-15
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0134] Initial Test Program of Emergency Core Cooling... for public comment draft regulatory guide (DG), DG-1277, ``Initial Test Program of Emergency Core... acceptable to implement with regard to initial testing features of emergency core cooling systems (ECCSs) for...
78 FR 63516 - Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-24
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0134] Initial Test Program of Emergency Core Cooling....79.1, ``Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors.'' This... emergency core cooling systems (ECCSs) for boiling- water reactors (BWRs) whose licenses are issued after...
Organization patterns of the AGFG genes: an evolutionary study.
Panaro, Maria Antonietta; Acquafredda, Angela; Calvello, Rosa; Lisi, Sabrina; Dragone, Teresa; Cianciulli, Antonia
2011-03-01
A number of proteins which are needed for the building of new immunodeficiency virus type 1 virions can only be translated from unspliced virus-derived pre-mRNAs. These unspliced mRNAs are shuttled through the nuclear pores reaching the cytosol when bound to the viral protein Rev. However, as a cellular co-factor Rev requires a Rev-binding protein of the AGFG family (nucleoporin-related Arf-GAP domain and FG repeats-containing proteins). In this article we address the evolution of the AGFGs by analyzing the first section of the coding mRNAs. This contains a "core module" which can be traced from Drosophilae to fish, amphibia, birds, and mammals, including man. In the subfamily of AGFG1 molecules the estimated conservation from Drosophilae to primates is 67% (with limited gaps). In some Drosophilae the core module is preceded by a long stretch of more than 300 coding nucleotides, but this additional module is absent in other Drosophilae and in all AGFG1s of other species. The AGFG2 molecules emerged later in evolution, possibly deriving from a duplication of AGFG1s. AGFG2s, present in mammals only, exhibit an additional module of about 50 coding nucleotides ahead of the core module, which is significantly less conserved (54%, with more remarkable gaps). This additional module does not seem to have homologies with the additional module of Drosophilae nor with the precoding section of AGFG1s. Interestingly, in birds a highly re-edited form of the AGFG1 core module (Gallus gallus, Galliformes) coexists with a typical form of the AGFG1 core module (Taeniopygia guttata, Passeriformes).
The ignition of carbon detonations via converging shock waves in white dwarfs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Ken J.; Bildsten, Lars, E-mail: kenshen@astro.berkeley.edu, E-mail: bildsten@kitp.ucsb.edu
2014-04-10
The progenitor channel responsible for the majority of Type Ia supernovae is still uncertain. One emergent scenario involves the detonation of a He-rich layer surrounding a C/O white dwarf, which sends a shock wave into the core. The quasi-spherical shock wave converges and strengthens at an off-center location, forming a second, C-burning, detonation that disrupts the whole star. In this paper, we examine this second detonation of the double detonation scenario using a combination of analytic and numeric techniques. We perform a spatially resolved study of the imploding shock wave and outgoing detonation and calculate the critical imploding shock strengthsmore » needed to achieve a core C detonation. We find that He detonations in recent two-dimensional simulations yield converging shock waves that are strong enough to ignite C detonations in high-mass C/O cores, with the caveat that a truly robust answer requires multi-dimensional detonation initiation calculations. We also find that convergence-driven detonations in low-mass C/O cores and in O/Ne cores are harder to achieve and are perhaps unrealized in standard binary evolution.« less
The Impact of Progenitor Mass Loss on the Dynamical and Spectral Evolution of Supernova Remnants
NASA Astrophysics Data System (ADS)
Patnaude, Daniel J.; Lee, Shiu-Hang; Slane, Patrick O.; Badenes, Carles; Nagataki, Shigehiro; Ellison, Donald C.; Milisavljevic, Dan
2017-11-01
There is now substantial evidence that the progenitors of some core-collapse supernovae undergo enhanced or extreme mass loss prior to explosion. The imprint of this mass loss is observed in the spectra and dynamics of the expanding blast wave on timescales of days to years after core collapse, and the effects on the spectral and dynamical evolution may linger long after the supernova has evolved into the remnant stage. In this paper, we present, for the first time, largely self-consistent end-to-end simulations for the evolution of a massive star from the pre-main sequence, up to and through core collapse, and into the remnant phase. We present three models and compare and contrast how the progenitor mass-loss history impacts the dynamics and spectral evolution of the supernovae and supernova remnants. We study a model that only includes steady mass loss, a model with enhanced mass loss over a period of ˜5000 yr prior to core collapse, and a model with extreme mass loss over a period of ˜500 yr prior to core collapse. The models are not meant to address any particular supernova or supernova remnant, but rather to highlight the important role that the progenitor evolution plays in the observable qualities of supernovae and supernova remnants. Through comparisons of these three different progenitor evolution scenarios, we find that the mass loss in late stages (during and after core carbon burning) can have a profound impact on the dynamics and spectral evolution of the supernova remnant centuries after core collapse.
Supernova neutrino three-flavor evolution with dominant collective effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fogli, Gianluigi; Marrone, Antonio; Tamborra, Irene
2009-04-15
Neutrino and antineutrino fluxes from a core-collapse galactic supernova are studied, within a representative three-flavor scenario with inverted mass hierarchy and tiny 1-3 mixing. The initial flavor evolution is dominated by collective self-interaction effects, which are computed in a full three-family framework along an averaged radial trajectory. During the whole time span considered (t = 1-20 s), neutrino and antineutrino spectral splits emerge as dominant features in the energy domain for the final, observable fluxes. The main results can be useful for SN event rate simulations in specific detectors. Some minor or unobservable three-family features (e.g., related to the muonic-tauonicmore » flavor sector), as well as observable effects due to variations in the spectral input, are also discussed for completeness.« less
Principles of scientific research team formation and evolution.
Milojević, Staša
2014-03-18
Research teams are the fundamental social unit of science, and yet there is currently no model that describes their basic property: size. In most fields, teams have grown significantly in recent decades. We show that this is partly due to the change in the character of team size distribution. We explain these changes with a comprehensive yet straightforward model of how teams of different sizes emerge and grow. This model accurately reproduces the evolution of empirical team size distribution over the period of 50 y. The modeling reveals that there are two modes of knowledge production. The first and more fundamental mode employs relatively small, "core" teams. Core teams form by a Poisson process and produce a Poisson distribution of team sizes in which larger teams are exceedingly rare. The second mode employs "extended" teams, which started as core teams, but subsequently accumulated new members proportional to the past productivity of their members. Given time, this mode gives rise to a power-law tail of large teams (10-1,000 members), which features in many fields today. Based on this model, we construct an analytical functional form that allows the contribution of different modes of authorship to be determined directly from the data and is applicable to any field. The model also offers a solid foundation for studying other social aspects of science, such as productivity and collaboration.
φ-evo: A program to evolve phenotypic models of biological networks.
Henry, Adrien; Hemery, Mathieu; François, Paul
2018-06-01
Molecular networks are at the core of most cellular decisions, but are often difficult to comprehend. Reverse engineering of network architecture from their functions has proved fruitful to classify and predict the structure and function of molecular networks, suggesting new experimental tests and biological predictions. We present φ-evo, an open-source program to evolve in silico phenotypic networks performing a given biological function. We include implementations for evolution of biochemical adaptation, adaptive sorting for immune recognition, metazoan development (somitogenesis, hox patterning), as well as Pareto evolution. We detail the program architecture based on C, Python 3, and a Jupyter interface for project configuration and network analysis. We illustrate the predictive power of φ-evo by first recovering the asymmetrical structure of the lac operon regulation from an objective function with symmetrical constraints. Second, we use the problem of hox-like embryonic patterning to show how a single effective fitness can emerge from multi-objective (Pareto) evolution. φ-evo provides an efficient approach and user-friendly interface for the phenotypic prediction of networks and the numerical study of evolution itself.
The origin and evolution of the sexes: Novel insights from a distant eukaryotic linage.
Mignerot, Laure; Coelho, Susana M
2016-01-01
Sexual reproduction is an extraordinarily widespread phenomenon that assures the production of new genetic combinations in nearly all eukaryotic lineages. Although the core features of sexual reproduction (meiosis and syngamy) are highly conserved, the control mechanisms that determine whether an individual is male or female are remarkably labile across eukaryotes. In genetically controlled sexual systems, gender is determined by sex chromosomes, which have emerged independently and repeatedly during evolution. Sex chromosomes have been studied in only a handful of classical model organism, and empirical knowledge on the origin and evolution of the sexes is still surprisingly incomplete. With the advent of new generation sequencing, the taxonomic breadth of model systems has been rapidly expanding, bringing new ideas and fresh views on this fundamental aspect of biology. This mini-review provides a quick state of the art of how the remarkable richness of the sexual characteristics of the brown algae is helping to increase our knowledge about the evolution of sex determination. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Stimulated Raman scattering in AsSe2-As2S5 microstructured optical fiber
NASA Astrophysics Data System (ADS)
Gao, Weiqing; Ni, Chenquan; Xu, Qiang; Li, Xue; Chen, Xiangcai; Chen, Li; Wen, Zhenqiang; Cheng, Tonglei; Xue, Xiaojie; Suzuki, Takenobu; Ohishi, Yasutake
2017-02-01
We demonstrate the effects of stimulated Raman scattering (SRS) in the all-solid-core chalcogenide microstructured optical fibers (MOFs) with AsSe2 core and As2S5 cladding, which are fabricated by the rod-in-tube drawing technique. The core diameters of the MOFs are 6.3 (Fiber I), 3.0 (Fiber II), 2.6 (Fiber III) and 2.2 (Fiber IV) μm, respectively. The chromatic dispersion of the fundamental mode in Fibers I-IV is simulated by the full-vectorial mode solver technique. The first-order Stokes wave is investigated in the fibers with different core diameters pumped by the picosecond pulses at 1958 nm. In Fiber I, no obvious Raman peak is observed with the pump power increasing, because the effective nonlinearity is not high. In Fiber II, a Raman Stokes peak at 2065 nm begins to emerge at the pump power of 110 mW. The conversion efficiency is as weak as -36.6 dB at 150 mW pumping. In Fiber III, the first-order Raman peak at 2060 nm begins to emerge at 40 mW pumping. The conversion efficiency is -15.0 dB, which is 21.6 dB higher than that in Fiber II. In Fiber IV, the Stokes peak at 2070 nm begins to appear at 56 mW pumping. The maximum conversion efficiency of the first-order Stokes wave is obtained in the MOF with the core diameter of 2.6 μm. The evolution of the first-order Stokes wave with pump power and fiber length is investigated. This is the first demonstration of Raman effects in the AsSe2-As2S5 MOF, to the best of our knowledge.
THE LAST MINUTES OF OXYGEN SHELL BURNING IN A MASSIVE STAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Müller, Bernhard; Viallet, Maxime; Janka, Hans-Thomas
We present the first 4 π– three-dimensional (3D) simulation of the last minutes of oxygen shell burning in an 18 M {sub ⊙} supernova progenitor up to the onset of core collapse. A moving inner boundary is used to accurately model the contraction of the silicon and iron core according to a one-dimensional stellar evolution model with a self-consistent treatment of core deleptonization and nuclear quasi-equilibrium. The simulation covers the full solid angle to allow the emergence of large-scale convective modes. Due to core contraction and the concomitant acceleration of nuclear burning, the convective Mach number increases to ∼0.1 at collapse,more » and an ℓ = 2 mode emerges shortly before the end of the simulation. Aside from a growth of the oxygen shell from 0.51 M {sub ⊙} to 0.56 M {sub ⊙} due to entrainment from the carbon shell, the convective flow is reasonably well described by mixing-length theory, and the dominant scales are compatible with estimates from linear stability analysis. We deduce that artificial changes in the physics, such as accelerated core contraction, can have precarious consequences for the state of convection at collapse. We argue that scaling laws for the convective velocities and eddy sizes furnish good estimates for the state of shell convection at collapse and develop a simple analytic theory for the impact of convective seed perturbations on shock revival in the ensuing supernova. We predict a reduction of the critical luminosity for explosion by 12% – 24% due to seed asphericities for our 3D progenitor model relative to the case without large seed perturbations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Xudong; Hoeksema, J. Todd; Liu, Yang
We report the evolution of the magnetic field and its energy in NOAA active region 11158 over five days based on a vector magnetogram series from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory (SDO). Fast flux emergence and strong shearing motion led to a quadrupolar sunspot complex that produced several major eruptions, including the first X-class flare of Solar Cycle 24. Extrapolated nonlinear force-free coronal fields show substantial electric current and free energy increase during early flux emergence near a low-lying sigmoidal filament with a sheared kilogauss field in the filament channel. The computed magneticmore » free energy reaches a maximum of {approx}2.6 Multiplication-Sign 10{sup 32} erg, about 50% of which is stored below 6 Mm. It decreases by {approx}0.3 Multiplication-Sign 10{sup 32} erg within 1 hr of the X-class flare, which is likely an underestimation of the actual energy loss. During the flare, the photospheric field changed rapidly: the horizontal field was enhanced by 28% in the core region, becoming more inclined and more parallel to the polarity inversion line. Such change is consistent with the conjectured coronal field 'implosion' and is supported by the coronal loop retraction observed by the Atmospheric Imaging Assembly (AIA). The extrapolated field becomes more 'compact' after the flare, with shorter loops in the core region, probably because of reconnection. The coronal field becomes slightly more sheared in the lowest layer, relaxes faster with height, and is overall less energetic.« less
Zhang, Peili; Li, Lin; Nordlund, Dennis; Chen, Hong; Fan, Lizhou; Zhang, Biaobiao; Sheng, Xia; Daniel, Quentin; Sun, Licheng
2018-01-26
Electrochemical water splitting requires efficient water oxidation catalysts to accelerate the sluggish kinetics of water oxidation reaction. Here, we report a promisingly dendritic core-shell nickel-iron-copper metal/metal oxide electrode, prepared via dealloying with an electrodeposited nickel-iron-copper alloy as a precursor, as the catalyst for water oxidation. The as-prepared core-shell nickel-iron-copper electrode is characterized with porous oxide shells and metallic cores. This tri-metal-based core-shell nickel-iron-copper electrode exhibits a remarkable activity toward water oxidation in alkaline medium with an overpotential of only 180 mV at a current density of 10 mA cm -2 . The core-shell NiFeCu electrode exhibits pH-dependent oxygen evolution reaction activity on the reversible hydrogen electrode scale, suggesting that non-concerted proton-electron transfers participate in catalyzing the oxygen evolution reaction. To the best of our knowledge, the as-fabricated core-shell nickel-iron-copper is one of the most promising oxygen evolution catalysts.
FIP BIAS EVOLUTION IN A DECAYING ACTIVE REGION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, D.; Yardley, S. L.; Driel-Gesztelyi, L. van
Solar coronal plasma composition is typically characterized by first ionization potential (FIP) bias. Using spectra obtained by Hinode’s EUV Imaging Spectrometer instrument, we present a series of large-scale, spatially resolved composition maps of active region (AR)11389. The composition maps show how FIP bias evolves within the decaying AR during the period 2012 January 4–6. Globally, FIP bias decreases throughout the AR. We analyzed areas of significant plasma composition changes within the decaying AR and found that small-scale evolution in the photospheric magnetic field is closely linked to the FIP bias evolution observed in the corona. During the AR’s decay phase,more » small bipoles emerging within supergranular cells reconnect with the pre-existing AR field, creating a pathway along which photospheric and coronal plasmas can mix. The mixing timescales are shorter than those of plasma enrichment processes. Eruptive activity also results in shifting the FIP bias closer to photospheric in the affected areas. Finally, the FIP bias still remains dominantly coronal only in a part of the AR’s high-flux density core. We conclude that in the decay phase of an AR’s lifetime, the FIP bias is becoming increasingly modulated by episodes of small-scale flux emergence, i.e., decreasing the AR’s overall FIP bias. Our results show that magnetic field evolution plays an important role in compositional changes during AR development, revealing a more complex relationship than expected from previous well-known Skylab results showing that FIP bias increases almost linearly with age in young ARs.« less
Schipper, Desmond E; Zhao, Zhenhuan; Leitner, Andrew P; Xie, Lixin; Qin, Fan; Alam, Md Kamrul; Chen, Shuo; Wang, Dezhi; Ren, Zhifeng; Wang, Zhiming; Bao, Jiming; Whitmire, Kenton H
2017-04-25
A variety of catalysts have recently been developed for electrocatalytic oxygen evolution, but very few of them can be readily integrated with semiconducting light absorbers for photoelectrochemical or photocatalytic water splitting. Here, we demonstrate an efficient core/shell photoanode with a highly active oxygen evolution electrocatalyst shell (FeMnP) and semiconductor core (rutile TiO 2 ) for photoelectrochemical oxygen evolution reaction. Metal-organic chemical vapor deposition from a single-source precursor was used to ensure good contact between the FeMnP and the TiO 2 . The TiO 2 /FeMnP core/shell photoanode reaches the theoretical photocurrent density for rutile TiO 2 of 1.8 mA cm -2 at 1.23 V vs reversible hydrogen electrode under simulated 100 mW cm -2 (1 sun) irradiation. The dramatic enhancement is a result of the synergistic effects of the high oxygen evolution reaction activity of FeMnP (delivering an overpotential of 300 mV with a Tafel slope of 65 mV dec -1 in 1 M KOH) and the conductive interlayer between the surface active sites and semiconductor core which boosts the interfacial charge transfer and photocarrier collection. The facile fabrication of the TiO 2 /FeMnP core/shell nanorod array photoanode offers a compelling strategy for preparing highly efficient photoelectrochemical solar energy conversion devices.
2015-02-02
CHRISTOPHER CRUMBLY, MANAGER OF THE SPACECRAFT PAYLOAD INTEGRATION AND EVOLUTION OFFICE, GAVE VISITORS AN INSIDER'S PERSPECTIVE ON THE CORE STAGE SIMULATOR AT MARSHALL AND ITS IMPORTANCE TO DEVELOPMENT OF THE SPACE LAUNCH SYSTEM. CHRISTOPHER CRUMBLY, MANAGER OF THE SPACECRAFT PAYLOAD INTEGRATION AND EVOLUTION OFFICE, GAVE VISITORS AN INSIDER'S PERSPECTIVE ON THE CORE STAGE SIMULATOR AT MARSHALL AND ITS IMPORTANCE TO DEVELOPMENT OF THE SPACE LAUNCH SYSTEM.
Bomb fall-out 236U as a global oceanic tracer using an annually resolved coral core
Winkler, Stephan R.; Steier, Peter; Carilli, Jessica
2012-01-01
Anthropogenic 236U (t½=23.4 My) is an emerging isotopic ocean tracer with interesting oceanographic properties, but only with recent advances in accelerator mass spectrometry techniques is it now possible to detect the levels from global fall-out of nuclear weapons testing across the water column. To make full use of this tracer, an assessment of its input into the ocean over the past decades is required. We captured the bomb-pulse of 236U in an annually resolved coral core record from the Caribbean Sea. We thereby establish a concept which gives 236U great advantage – the presence of reliable, well-resolved chronological archives. This allows studies of not only the present distribution pattern, but gives access to the temporal evolution of 236U in ocean waters over the past decades. PMID:23564966
Neutrino Flavor Evolution in Turbulent Supernova Matter
NASA Astrophysics Data System (ADS)
Lund, Tina; Kneller, James P.
In order to decode the neutrino burst signal from a Galactic core-collapse supernova and reveal the complicated inner workings of the explosion, we need a thorough understanding of the neutrino flavor evolution from the proto-neutron-star outwards. The flavor content of the signal evolves due to both neutrino collective effects and matter effects which can lead to a highly interesting interplay and distinctive spectral features. In this paper we investigate the supernova neutrino flavor evolution by including collective flavor effects, the evolution of the Mikheyev, Smirnov & Wolfenstein (MSW) matter conversions due to the shock wave passing through the star, and the impact of turbulence. The density profiles utilized in our calculations represent a 10.8 MG progenitor and comes from a 1D numerical simulation by Fischer et al.[1]. We find that small amplitude turbulence, up to 10% of the average potential, leads to a minimal modification of the signal, and the emerging neutrino spectra retain both collective and MSW features. However, when larger amounts of turbulence are added, 30% and 50%, the features of collective and shock wave effects in the high density resonance channel are almost completely obscured at late times. At the same time we find the other mixing channels - the low density resonance channel and the non-resonant channels - begin to develop turbulence signatures. Large amplitude turbulent motions in the outer layers of massive, iron core-collapse supernovae may obscure the most obvious fingerprints of collective and shock wave effects in the neutrino signal but cannot remove them completely, and additionally bring about new features in the signal. We illustrate how the progression of the shock wave is reflected in the changing survival probabilities over time, and we show preliminary results on how some of these collective and shock wave induced signatures appear in a detector signal.
SETI in the light of cosmic convergent evolution
NASA Astrophysics Data System (ADS)
Flores Martinez, Claudio L.
2014-11-01
Theodosius Dobzhansky, one of the founding fathers of the modern evolutionary synthesis, once famously stated that ;nothing makes sense in biology except in the light of evolution;. Here it will be argued that nothing in astrobiology makes sense except in the light of ;Cosmic Convergent Evolution; (CCE). This view of life contends that natural selection is a universal force of nature that leads to the emergence of similarly adapted life forms in analogous planetary biospheres. Although SETI historically preceded the rise of astrobiology that we have witnessed in the recent decade, one of its main tenets from the beginning was the convergence of life on a cosmic scale toward intelligent behavior and subsequent communication via technological means. The question of cultural convergence in terms of symbolic exchange, language and scientific capabilities between advanced interstellar civilizations has been the subject of ongoing debate. However, at the core of the search for extraterrestrial intelligence lies in essence a biological problem since even post-biological extraterrestrial intelligences must have had an origin based on self-replicating biopolymers. Thus, SETI assumes a propensity of the Universe towards biogenesis in accordance with CCE, a new evolutionary concept which posits the multiple emergence of life across the Cosmos. Consequently, we have to wonder about the biophilic properties the Universe apparently exhibits, as well as to try to find an encompassing theory that is able to explain this ;fine-tuning; in naturalistic terms. The aims of this paper are as follows: 1) to emphasize the importance of convergent evolution in astrobiology and ongoing SETI research; 2) to introduce novel and biology-centered cosmological ideas such as the ;Selfish Biocosm Hypothesis; and the ;Evo Devo Universe; as valuable arguments in theorizing about the origin and nature of extraterrestrial intelligence and 3) to synthesize these findings within an emerging post-biological paradigm on which future SETI efforts may be founded.
NASA Astrophysics Data System (ADS)
Vespignani, Alessandro
From schools of fish and flocks of birds, to digital networks and self-organizing biopolymers, our understanding of spontaneously emergent phenomena, self-organization, and critical behavior is in large part due to complex systems science. The complex systems approach is indeed a very powerful conceptual framework to shed light on the link between the microscopic dynamical evolution of the basic elements of the system and the emergence of oscopic phenomena; often providing evidence for mathematical principles that go beyond the particulars of the individual system, thus hinting to general modeling principles. By killing the myth of the ant queen and shifting the focus on the dynamical interaction across the elements of the systems, complex systems science has ushered our way into the conceptual understanding of many phenomena at the core of major scientific and social challenges such as the emergence of consensus, social opinion dynamics, conflicts and cooperation, contagion phenomena. For many years though, these complex systems approaches to real-world problems were often suffering from being oversimplified and not grounded on actual data...
10 CFR Appendix A to Part 50 - General Design Criteria for Nuclear Power Plants
Code of Federal Regulations, 2012 CFR
2012-01-01
... Heat Removal 34 Emergency Core Cooling 35 Inspection of Emergency Core Cooling System 36 Testing of Emergency Core Cooling System 37 Containment Heat Removal 38 Inspection of Containment Heat Removal System 39 Testing of Containment Heat Removal System 40 Containment Atmosphere Cleanup 41 Inspection of...
10 CFR Appendix A to Part 50 - General Design Criteria for Nuclear Power Plants
Code of Federal Regulations, 2011 CFR
2011-01-01
... Heat Removal 34 Emergency Core Cooling 35 Inspection of Emergency Core Cooling System 36 Testing of Emergency Core Cooling System 37 Containment Heat Removal 38 Inspection of Containment Heat Removal System 39 Testing of Containment Heat Removal System 40 Containment Atmosphere Cleanup 41 Inspection of...
The ripples of "The Big (agricultural) Bang": the spread of early wheat cultivation.
Abbo, Shahal; Gopher, Avi; Peleg, Zvi; Saranga, Yehoshua; Fahima, Tzion; Salamini, Francesco; Lev-Yadun, Simcha
2006-08-01
Demographic expansion and (or) migrations leave their mark in the pattern of DNA polymorphisms of the respective populations. Likewise, the spread of cultural phenomena can be traced by dating archaeological finds and reconstructing their direction and pace. A similar course of events is likely to have taken place following the "Big Bang" of the agricultural spread in the Neolithic Near East from its core area in southeastern Turkey. Thus far, no attempts have been made to track the movement of the founder genetic stocks of the first crop plants from their core area based on the genetic structure of living plants. In this minireview, we re-interpret recent wheat DNA polymorphism data to detect the genetic ripples left by the early wave of advance of Neolithic wheat farming from its core area. This methodology may help to suggest a model charting the spread of the first farming phase prior to the emergence of truly domesticated wheat types (and other such crops), thereby increasing our resolution power in studying this revolutionary period of human cultural, demographic, and social evolution.
Basin-forming impacts on Mars and the coupled thermal evolution of the interior
NASA Astrophysics Data System (ADS)
Arkani-Hamed, J.; Roberts, J. H.
2015-12-01
The youngest of the Noachian giant impact basins on Mars, are either weakly magnetized or completely demagnetized, indicating that a global magnetic field was not present and that a core dynamo was not operating at the time those basins formed. Shock heating from this sequence of basin-forming impacts modified the pattern of mantle convection. The heating produced by the eight largest impacts (Acidalia, Amazonis, Ares, Chryse, Daedalia, Hellas, Scopolus, and Utopia) penetrates below the core-mantle boundary (CMB). Here, we extend previous workon coupled thermal evolution into 3D, in order to accurately model the spatial relationship between impact basins. At the time of each impact we introduce a temperature perturbation resulting from shock heating into the core and mantle. Stratification of the core occurs very quickly compared to mantle dynamics, and we horizontally average the temperature in the core.We model mantle convection using the 3D finite element code CitcomS, and the thermal evolution of the core using a 1D parameterization.Each impact alters the pattern of mantle dynamics and a significant amount of impact melt is produced in the near surface. However, only the outermost part of the core is affected; the inner core temperature is still adiabatic. Immediately following the impact, the inner core may remain convective. The top of the core will cool by conduction into the deeper core faster than across the CMB, deepening the zone of stable stratification. Further core cooling results in formation of a convecting zone at the top of the core that propagates downwards as the thermal gradient becomes adiabatic at greater depths. Our goal is to obtain a better estimate of the time scale for restoration of post-impact core dynamo activity. Because the disappearance of the magnetic field exposes the early atmosphere to solar wind activity, constraining the history of the dynamo is critical for understanding climate evolution and habitability of the surface.
Measurement of New Observables from the pi+pi- Electroproduction off the Proton
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trivedi, Arjun
Knowledge of the Universe as constructed by human beings, in order to tackle its complexity, can be thought to be organized at varying scales at which it is observed. Implicit in such an approach is the idea of a smooth evolution of knowledge between scales and, therefore, access to how Nature constructs the visible Universe beginning from its most fundamental constituents. New and, in a sense, fundamental phenomena may typically be emergent as the scale of observation changes. The study of the Strong Interaction, which is responsible for the construction of the bulk of the visible matter in the Universemore » (98% by mass), in this sense, is a labor of exploring evolutions and unifying aspects of its knowledge found at varying scales ranging from interaction of quarks and gluons as represented by the theory of Quantum Chromodynamics (QCD) at small space-time scale to emerging dressed quark and even meson-baryon degrees of freedom mostly described by effective models as the space-time scale increases. A direct effort to study the Strong Interaction over this scale forms the basis of an international collaborative effort often referred to as the N* program. The core work of this thesis is an experimental analysis prompted by the need to measure experimental observables that are of particular interest to the theory-experiment epistemological framework of this collaboration. While the core of this thesis, therefore, discusses the nature of the experimental analysis and presents its results which will serve as input to the N* program's epistemological framework, the particular nature of this framework in the context of not only the Strong Interaction, but also that of the physical science and human knowledge in general will be used to motivate and introduce the experimental analysis and its related observables.« less
Measurement of new observables from the pi+pi - electroproduction off the proton
NASA Astrophysics Data System (ADS)
Trivedi, Arjun
Knowledge of the Universe as constructed by human beings, in order to tackle its complexity, can be thought to be organized at varying scales at which it is observed. Implicit in such an approach is the idea of a smooth evolution of knowledge between scales and, therefore, access to how Nature constructs the visible Universe beginning from its most fundamental constituents. New and, in a sense, fundamental phenomena may typically be emergent as the scale of observation changes. The study of the Strong Interaction, which is responsible for the construction of the bulk of the visible matter in the Universe (98% by mass), in this sense, is a labor of exploring evolutions and unifying aspects of its knowledge found at varying scales ranging from interaction of quarks and gluons as represented by the theory of Quantum Chromodynamics (QCD) at small space-time scale to emerging dressed quark and even mesonbaryon degrees of freedom mostly described by effective models as the space-time scale increases. A direct effort to study the Strong Interaction over this scale forms the basis of an international collaborative effort often referred to as the N* program. The core work of this thesis is an experimental analysis prompted by the need to measure experimental observables that are of particular interest to the theory-experiment epistemological framework of this collaboration. While the core of this thesis, therefore, discusses the nature of the experimental analysis and presents its results which will serve as input to the N* program's epistemological framework, the particular nature of this framework in the context of not only the Strong Interaction, but also that of the physical science and human knowledge in general will be used to motivate and introduce the experimental analysis and its related observables.
NASA Astrophysics Data System (ADS)
De Gerónimo, F. C.; Althaus, L. G.; Córsico, A. H.; Romero, A. D.; Kepler, S. O.
2018-05-01
Context. The thermally pulsing phase on the asymptotic giant branch (TP-AGB) is the last nuclear burning phase experienced by most low- and intermediate-mass stars. During this phase, the outer chemical stratification above the C/O core of the emerging white dwarf (WD) is built up. The chemical structure resulting from progenitor evolution strongly impacts the whole pulsation spectrum exhibited by ZZ Ceti stars, which are pulsating C/O core white dwarfs located on a narrow instability strip at Teff 12 000 K. Several physical processes occurring during progenitor evolution strongly affect the chemical structure of these stars; those found during the TP-AGB phase are the most relevant for the pulsational properties of ZZ Ceti stars. Aims: We present a study of the impact of the chemical structure built up during the TP-AGB evolution on the stellar parameters inferred from asteroseismological fits of ZZ Ceti stars. Methods: Our analysis is based on a set of carbon-oxygen core white dwarf models with masses from 0.534 to 0.6463 M⊙ derived from full evolutionary computations from the ZAMS to the ZZ Ceti domain. We computed evolutionary sequences that experience different number of thermal pulses (TP). Results: We find that the occurrence or not of thermal pulses during AGB evolution implies an average deviation in the asteroseimological effective temperature of ZZ Ceti stars of at most 8% and on the order of ≲5% in the stellar mass. For the mass of the hydrogen envelope, however, we find deviations up to 2 orders of magnitude in the case of cool ZZ Ceti stars. Hot and intermediate temperature ZZ Ceti stars show no differences in the hydrogen envelope mass in most cases. Conclusions: Our results show that, in general, the impact of the occurrence or not of thermal pulses in the progenitor stars is not negligible and must be taken into account in asteroseismological studies of ZZ Ceti stars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Peili; Li, Lin; Nordlund, Dennis
Electrochemical water splitting requires efficient water oxidation catalysts to accelerate the sluggish kinetics of water oxidation reaction. Here in this paper, we report a promisingly dendritic core-shell nickel-iron-copper metal/metal oxide electrode, prepared via dealloying with an electrodeposited nickel-iron-copper alloy as a precursor, as the catalyst for water oxidation. The as-prepared core-shell nickel-iron-copper electrode is characterized with porous oxide shells and metallic cores. This tri-metal-based core-shell nickel-iron-copper electrode exhibits a remarkable activity toward water oxidation in alkaline medium with an overpotential of only 180 mV at a current density of 10 mA cm -2. The core-shell NiFeCu electrode exhibits pH-dependent oxygenmore » evolution reaction activity on the reversible hydrogen electrode scale, suggesting that non-concerted proton-electron transfers participate in catalyzing the oxygen evolution reaction. To the best of our knowledge, the as-fabricated core-shell nickel-iron-copper is one of the most promising oxygen evolution catalysts.« less
Zhang, Peili; Li, Lin; Nordlund, Dennis; ...
2018-01-26
Electrochemical water splitting requires efficient water oxidation catalysts to accelerate the sluggish kinetics of water oxidation reaction. Here in this paper, we report a promisingly dendritic core-shell nickel-iron-copper metal/metal oxide electrode, prepared via dealloying with an electrodeposited nickel-iron-copper alloy as a precursor, as the catalyst for water oxidation. The as-prepared core-shell nickel-iron-copper electrode is characterized with porous oxide shells and metallic cores. This tri-metal-based core-shell nickel-iron-copper electrode exhibits a remarkable activity toward water oxidation in alkaline medium with an overpotential of only 180 mV at a current density of 10 mA cm -2. The core-shell NiFeCu electrode exhibits pH-dependent oxygenmore » evolution reaction activity on the reversible hydrogen electrode scale, suggesting that non-concerted proton-electron transfers participate in catalyzing the oxygen evolution reaction. To the best of our knowledge, the as-fabricated core-shell nickel-iron-copper is one of the most promising oxygen evolution catalysts.« less
NASA Technical Reports Server (NTRS)
Sparks, W. M.; Endal, A. S.
1980-01-01
The evolution of a Population I star of 15 solar masses is described from the carbon shell burning stage to the formation and collapse of an iron core. An unusual aspect of the evolution is that neon ignition occurs off-center and neon burning propagates inward by a series of shell flashes. The extent of the core burning is generally smaller than the Chandrasekhar mass, so that most of the nuclear energy generation occurs in shell sources. Because of degeneracy and the influence of rapid convective mixing, these shell sources are unstable and the core goes through large excursions in temperature and density. The small core also causes the shell sources to converge into a narrow mass region slightly above the Chandrasekhar mass. Thus, the final nucleosynthesis yields are generally small, with silicon being most strongly enhanced with respect to solar system abundances.
NASA Astrophysics Data System (ADS)
Groh, Jose H.; Meynet, Georges; Ekström, Sylvia; Georgy, Cyril
2014-04-01
For the first time, the interior and spectroscopic evolution of a massive star is analyzed from the zero-age main sequence (ZAMS) to the pre-supernova (SN) stage. For this purpose, we combined stellar evolution models using the Geneva code and stellar atmospheric/wind models using CMFGEN. With our approach, we were able to produce observables, such as a synthetic high-resolution spectrum and photometry, thereby aiding the comparison between evolution models and observed data. Here we analyze the evolution of a non-rotating 60 M⊙ star and its spectrum throughout its lifetime. Interestingly, the star has a supergiant appearance (luminosity class I) even at the ZAMS. We find the following evolutionary sequence of spectral types: O3 I (at the ZAMS), O4 I (middle of the H-core burning phase), B supergiant (BSG), B hypergiant (BHG), hot luminous blue variable (LBV; end of H-core burning), cool LBV (H-shell burning through the beginning of the He-core burning phase), rapid evolution through late WN and early WN, early WC (middle of He-core burning), and WO (end of He-core burning until core collapse). We find the following spectroscopic phase lifetimes: 3.22 × 106 yr for the O-type, 0.34 × 105 yr (BSG), 0.79 × 105 yr (BHG), 2.35 × 105 yr (LBV), 1.05 × 105 yr (WN), 2.57 × 105 yr (WC), and 3.80 × 104 yr (WO). Compared to previous studies, we find a much longer (shorter) duration for the early WN (late WN) phase, as well as a long-lived LBV phase. We show that LBVs arise naturally in single-star evolution models at the end of the MS when the mass-loss rate increases as a consequence of crossing the bistability limit. We discuss the evolution of the spectra, magnitudes, colors, and ionizing flux across the star's lifetime, and the way they are related to the evolution of the interior. We find that the absolute magnitude of the star typically changes by ~6 mag in optical filters across the evolution, with the star becoming significantly fainter in optical filters at the end of the evolution, when it becomes a WO just a few 104 years before the SN explosion. We also discuss the origin of the different spectroscopic phases (i.e., O-type, LBV, WR) and how they are related to evolutionary phases (H-core burning, H-shell burning, He-core burning). Tables 1, 4 and 5 are available in electronic form at http://www.aanda.orgSynthetic spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/564/A30
Core Collapse: The Race Between Stellar Evolution and Binary Heating
NASA Astrophysics Data System (ADS)
Converse, Joseph M.; Chandar, R.
2012-01-01
The dynamical formation of binary stars can dramatically affect the evolution of their host star clusters. In relatively small clusters (M < 6000 Msun) the most massive stars rapidly form binaries, heating the cluster and preventing any significant contraction of the core. The situation in much larger globular clusters (M 105 Msun) is quite different, with many showing collapsed cores, implying that binary formation did not affect them as severely as lower mass clusters. More massive clusters, however, should take longer to form their binaries, allowing stellar evolution more time to prevent the heating by causing the larger stars to die off. Here, we simulate the evolution of clusters between those of open and globular clusters in order to find at what size a star cluster is able to experience true core collapse. Our simulations make use of a new GPU-based computing cluster recently purchased at the University of Toledo. We also present some benchmarks of this new computational resource.
Shape evolution of a core-shell spherical particle under hydrostatic pressure.
Colin, Jérôme
2012-03-01
The morphological evolution by surface diffusion of a core-shell spherical particle has been investigated theoretically under hydrostatic pressure when the shear modulii of the core and shell are different. A linear stability analysis has demonstrated that depending on the pressure, shear modulii, and radii of both phases, the free surface of the composite particle may be unstable with respect to a shape perturbation. A stability diagram finally emphasizes that the roughness development is favored in the case of a hard shell with a soft core.
NASA Astrophysics Data System (ADS)
Lasbleis, M.; Day, E. A.; Waszek, L.
2017-12-01
The complex nature of inner core structure has been well-established from seismic studies, with heterogeneities at various length scales, both radially and laterally. Despite this, no geodynamic model has successfully explained all of the observed seismic features. To facilitate comparisons between seismic observations and geodynamic models of inner core growth we have developed a new, open access Python tool - GrowYourIC - that allows users to compare models of inner core structure. The code allows users to simulate different evolution models of the inner core, with user-defined rates of inner core growth, translation and rotation. Once the user has "grown" an inner core with their preferred parameters they can then explore the effect of "their" inner core's evolution on the relative age and growth rate in different regions of the inner core. The code will convert these parameters into seismic properties using either built-in mineral physics models, or user-supplied ones that calculate these seismic properties with users' own preferred mineralogical models. The 3D model of isotropic inner core properties can then be used to calculate the predicted seismic travel time anomalies for a random, or user-specified, set of seismic ray paths through the inner core. A real dataset of inner core body-wave differential travel times is included for the purpose of comparing user-generated models of inner core growth to actual observed travel time anomalies in the top 100km of the inner core. Here, we explore some of the possibilities of our code. We investigate the effect of the limited illumination of the inner core by seismic waves on the robustness of kinematic model interpretation. We test the impact on seismic differential travel time observations of several kinematic models of inner core growth: fast lateral translation; slow differential growth; and inner core super-rotation. We find that a model of inner core evolution incorporating both differential growth and slow super-rotation is able to recreate some of the more intricate details of the seismic observations. Specifically we are able to "grow" an inner core that has an asymmetric shift in isotropic hemisphere boundaries with increasing depth in the inner core.
Mild Cognitive Impairment: Diagnosis, Longitudinal Course, and Emerging Treatments
Vega, Jennifer N.; Newhouse, Paul A.
2014-01-01
Mild cognitive impairment (MCI) is widely regarded as the intermediate stage of cognitive impairment between the changes seen in normal cognitive aging and those associated with dementia. Elderly patients with MCI constitute a high-risk population for developing dementia, in particular Alzheimer’s disease (AD). Although the core clinical criteria for MCI have remained largely unchanged, the operational definition of MCI has undergone several revisions over the course of the last decade and remains an evolving diagnosis. Prognostic implications of this diagnosis are becoming clearer with regard to the risk of progressive cognitive deterioration. Although patients with MCI may represent an optimal target population for pharmacological and non-pharmacological interventions, results from clinical trials have been mixed and a definitive effective treatment remains elusive. This article provides a brief overview of the evolution of the concept of MCI and reviews current diagnostic criteria, the longitudinal course of the disorder, and current and emerging treatments for MCI. PMID:25160795
How could language have evolved?
Bolhuis, Johan J; Tattersall, Ian; Chomsky, Noam; Berwick, Robert C
2014-08-01
The evolution of the faculty of language largely remains an enigma. In this essay, we ask why. Language's evolutionary analysis is complicated because it has no equivalent in any nonhuman species. There is also no consensus regarding the essential nature of the language "phenotype." According to the "Strong Minimalist Thesis," the key distinguishing feature of language (and what evolutionary theory must explain) is hierarchical syntactic structure. The faculty of language is likely to have emerged quite recently in evolutionary terms, some 70,000-100,000 years ago, and does not seem to have undergone modification since then, though individual languages do of course change over time, operating within this basic framework. The recent emergence of language and its stability are both consistent with the Strong Minimalist Thesis, which has at its core a single repeatable operation that takes exactly two syntactic elements a and b and assembles them to form the set {a, b}.
How Could Language Have Evolved?
Bolhuis, Johan J.; Tattersall, Ian; Chomsky, Noam; Berwick, Robert C.
2014-01-01
The evolution of the faculty of language largely remains an enigma. In this essay, we ask why. Language's evolutionary analysis is complicated because it has no equivalent in any nonhuman species. There is also no consensus regarding the essential nature of the language “phenotype.” According to the “Strong Minimalist Thesis,” the key distinguishing feature of language (and what evolutionary theory must explain) is hierarchical syntactic structure. The faculty of language is likely to have emerged quite recently in evolutionary terms, some 70,000–100,000 years ago, and does not seem to have undergone modification since then, though individual languages do of course change over time, operating within this basic framework. The recent emergence of language and its stability are both consistent with the Strong Minimalist Thesis, which has at its core a single repeatable operation that takes exactly two syntactic elements a and b and assembles them to form the set {a, b}. PMID:25157536
NASA Astrophysics Data System (ADS)
Shi, Chun-Hui; Lou, Yu-Qing
2018-04-01
We investigate and explore self-similar dynamic radial collapses of relativistic degenerate stellar cores (RDSCs) and radiation pressure dominated stellar interiors (RPDSIs) of spherical symmetry by invoking a conventional polytropic (CP) equation of state (EoS) with a constant polytropic index γ = 4 / 3 and by allowing free-fall non-zero RDSC or RPDSI surface mass density and pressure due to their sustained physical contact with the outer surrounding stellar envelopes also in contraction. Irrespective of the physical triggering mechanisms (including, e.g., photodissociation, electron-positron pair instability, general relativistic instability etc.) for initiating such a self-similar dynamically collapsing RDSC or RPDSI embedded within a massive star, a very massive star (VMS) or a supermassive star (SMS) in contraction and by comparing with the Schwarzschild radii associated with their corresponding RDSC/RPDSI masses, the emergence of central black holes in a wide mass range appears inevitable during such RDSC/RPDSI dynamic collapses inside massive stars, VMSs, and SMSs, respectively. Radial pulsations of progenitor cores or during a stellar core collapse may well leave imprints onto collapsing RDSCs/RPDSIs towards their self-similar dynamic evolution. Massive neutron stars may form during dynamic collapses of RDSC inside massive stars in contraction under proper conditions.
Direct Collapse to Supermassive Black Hole Seeds with Radiative Transfer: Isolated Halos
NASA Astrophysics Data System (ADS)
Luo, Yang; Ardaneh, Kazem; Shlosman, Isaac; Nagamine, Kentaro; Wise, John H.; Begelman, Mitchell C.
2018-05-01
Direct collapse within dark matter haloes is a promising path to form supermassive black hole seeds at high redshifts. The outer part of this collapse remains optically thin. However, the innermost region of the collapse is expected to become optically thick and requires to follow the radiation field in order to understand its evolution. So far, the adiabatic approximation has been used exclusively for this purpose. We apply radiative transfer in the flux-limited diffusion (FLD) approximation to solve the evolution of coupled gas and radiation for isolated haloes. We find that (1) the photosphere forms at 10-6 pc and rapidly expands outwards. (2) A central core forms, with a mass of 1 M⊙, supported by gas pressure gradients and rotation. (3) Growing gas and radiation pressure gradients dissolve it. (4) This process is associated with a strong anisotropic outflow; another core forms nearby and grows rapidly. (5) Typical radiation luminosity emerging from the photosphere is 5 × 1037-5 × 1038 erg s-1, of the order the Eddington luminosity. (6) Two variability time-scales are associated with this process: a long one, which is related to the accretion flow within the central 10-4-10-3 pc, and 0.1 yr, related to radiation diffusion. (7) Adiabatic models evolution differs profoundly from that of the FLD models, by forming a geometrically thick disc. Overall, an adiabatic equation of state is not a good approximation to the advanced stage of direct collapse, because the radiation is capable of escaping due to anisotropy in the optical depth and associated gradients.
Evolution and comparative genomics of pAQU-like conjugative plasmids in Vibrio species.
Li, Ruichao; Ye, Lianwei; Wong, Marcus Ho Yin; Zheng, Zhiwei; Chan, Edward Wai Chi; Chen, Sheng
2017-09-01
To investigate a set of MDR conjugative plasmids found in Vibrio species and characterize the underlying evolution process. pAQU-type plasmids from Vibrio species were sequenced using both Illumina and PacBio platforms. Bioinformatics tools were utilized to analyse the typical MDR regions and core genes in the plasmids. The nine pAQU-type plasmids ranged from ∼160 to 206 kb in size and were found to harbour as many as 111 core genes encoding conjugative, replication and maintenance functions. Eight plasmids were found to carry a typical MDR region, which contained various accessory and resistance genes, including ISCR1-blaPER-1-bearing complex class 1 integrons, ISCR2-floR, ISCR2-tet(D)-tetR-ISCR2, qnrVC6, a Tn10-like structure and others associated with mobile elements. Comparison between a plasmid without resistance genes and different MDR plasmids showed that integration of different mobile elements, such as IS26, ISCR1, ISCR2, IS10 and IS6100, into the plasmid backbone was the key mechanism by which foreign resistance genes were acquired during the evolution process. This study identified pAQU-type plasmids as emerging MDR conjugative plasmids among important pathogens from different origins in Asia. These findings suggest that aquatic bacteria constitute a major reservoir of resistance genes, which may be transmissible to other human pathogens during food production and processing. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Chemical evolution of the Earth: Equilibrium or disequilibrium process?
NASA Technical Reports Server (NTRS)
Sato, M.
1985-01-01
To explain the apparent chemical incompatibility of the Earth's core and mantle or the disequilibrium process, various core forming mechanisms have been proposed, i.e., rapid disequilibrium sinking of molten iron, an oxidized core or protocore materials, and meteorite contamination of the upper mantle after separation from the core. Adopting concepts used in steady state thermodynamics, a method is devised for evaluating how elements should distribute stable in the Earth's interior for the present gradients of temperature, pressure, and gravitational acceleration. Thermochemical modeling gives useful insights into the nature of chemical evolution of the Earth without overly speculative assumptions. Further work must be done to reconcile siderophile elements, rare gases, and possible light elements in the outer core.
Inferring the Limit Behavior of Some Elementary Cellular Automata
NASA Astrophysics Data System (ADS)
Ruivo, Eurico L. P.; de Oliveira, Pedro P. B.
Cellular automata locally define dynamical systems, discrete in space, time and in the state variables, capable of displaying arbitrarily complex global emergent behavior. One core question in the study of cellular automata refers to their limit behavior, that is, to the global dynamical features in an infinite time evolution. Previous works have shown that for finite time evolutions, the dynamics of one-dimensional cellular automata can be described by regular languages and, therefore, by finite automata. Such studies have shown the existence of growth patterns in the evolution of such finite automata for some elementary cellular automata rules and also inferred the limit behavior of such rules based upon the growth patterns; however, the results on the limit behavior were obtained manually, by direct inspection of the structures that arise during the time evolution. Here we present the formalization of an automatic method to compute such structures. Based on this, the rules of the elementary cellular automata space were classified according to the existence of a growth pattern in their finite automata. Also, we present a method to infer the limit graph of some elementary cellular automata rules, derived from the analysis of the regular expressions that describe their behavior in finite time. Finally, we analyze some attractors of two rules for which we could not compute the whole limit set.
Koonin, Eugene V
2007-01-01
Background Recent developments in cosmology radically change the conception of the universe as well as the very notions of "probable" and "possible". The model of eternal inflation implies that all macroscopic histories permitted by laws of physics are repeated an infinite number of times in the infinite multiverse. In contrast to the traditional cosmological models of a single, finite universe, this worldview provides for the origin of an infinite number of complex systems by chance, even as the probability of complexity emerging in any given region of the multiverse is extremely low. This change in perspective has profound implications for the history of any phenomenon, and life on earth cannot be an exception. Hypothesis Origin of life is a chicken and egg problem: for biological evolution that is governed, primarily, by natural selection, to take off, efficient systems for replication and translation are required, but even barebones cores of these systems appear to be products of extensive selection. The currently favored (partial) solution is an RNA world without proteins in which replication is catalyzed by ribozymes and which serves as the cradle for the translation system. However, the RNA world faces its own hard problems as ribozyme-catalyzed RNA replication remains a hypothesis and the selective pressures behind the origin of translation remain mysterious. Eternal inflation offers a viable alternative that is untenable in a finite universe, i.e., that a coupled system of translation and replication emerged by chance, and became the breakthrough stage from which biological evolution, centered around Darwinian selection, took off. A corollary of this hypothesis is that an RNA world, as a diverse population of replicating RNA molecules, might have never existed. In this model, the stage for Darwinian selection is set by anthropic selection of complex systems that rarely but inevitably emerge by chance in the infinite universe (multiverse). Conclusion The plausibility of different models for the origin of life on earth directly depends on the adopted cosmological scenario. In an infinite universe (multiverse), emergence of highly complex systems by chance is inevitable. Therefore, under this cosmology, an entity as complex as a coupled translation-replication system should be considered a viable breakthrough stage for the onset of biological evolution. Reviewers This article was reviewed by Eric Bapteste, David Krakauer, Sergei Maslov, and Itai Yanai. PMID:17540027
Koonin, Eugene V
2007-05-31
Recent developments in cosmology radically change the conception of the universe as well as the very notions of "probable" and "possible". The model of eternal inflation implies that all macroscopic histories permitted by laws of physics are repeated an infinite number of times in the infinite multiverse. In contrast to the traditional cosmological models of a single, finite universe, this worldview provides for the origin of an infinite number of complex systems by chance, even as the probability of complexity emerging in any given region of the multiverse is extremely low. This change in perspective has profound implications for the history of any phenomenon, and life on earth cannot be an exception. Origin of life is a chicken and egg problem: for biological evolution that is governed, primarily, by natural selection, to take off, efficient systems for replication and translation are required, but even barebones cores of these systems appear to be products of extensive selection. The currently favored (partial) solution is an RNA world without proteins in which replication is catalyzed by ribozymes and which serves as the cradle for the translation system. However, the RNA world faces its own hard problems as ribozyme-catalyzed RNA replication remains a hypothesis and the selective pressures behind the origin of translation remain mysterious. Eternal inflation offers a viable alternative that is untenable in a finite universe, i.e., that a coupled system of translation and replication emerged by chance, and became the breakthrough stage from which biological evolution, centered around Darwinian selection, took off. A corollary of this hypothesis is that an RNA world, as a diverse population of replicating RNA molecules, might have never existed. In this model, the stage for Darwinian selection is set by anthropic selection of complex systems that rarely but inevitably emerge by chance in the infinite universe (multiverse). The plausibility of different models for the origin of life on earth directly depends on the adopted cosmological scenario. In an infinite universe (multiverse), emergence of highly complex systems by chance is inevitable. Therefore, under this cosmology, an entity as complex as a coupled translation-replication system should be considered a viable breakthrough stage for the onset of biological evolution. This article was reviewed by Eric Bapteste, David Krakauer, Sergei Maslov, and Itai Yanai.
Sensitivity of geomagnetic reversal rate on core evolution from numerical dynamos
NASA Astrophysics Data System (ADS)
Driscoll, P. E.; Davies, C. J.
2017-12-01
The paleomagnetic record indicates the geodynamo has evolved from frequently reversing to non-reversing (superchron) magnetic states several times over the Phanerozoic. Previous theoretical studies demonstrated a positive correlation between magnetic reversal rate and core-mantle boundary heat flux. However, attempts to identify such a correlation between reversal rates and proxies for internal cooling rate, such as plume events, superchron cycles, and subduction rates, have been inconclusive. Here we revisit the magnetic reversal occurrence rate in numerical dynamos at low Ekman numbers (faster rotation) and high magnetic Prandtl numbers (ratio of viscous and magnetic diffusivities). We focus on how the correlation between reversal rate and convective power depends on the core evolution rate and on other factors, such as Ek, Pm, and thermal boundary conditions. We apply our results to the seafloor reversal record in an attempt to infer the energetic evolution of the lower mantle and core over that period.
Emergency deployable core catcher
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosewell, M.P.
An emergency melt down core catcher apparatus for a nuclear reactor having a retrofitable eutectic solute holding vessel connected to a core containment vessel with particle transferring fluid and particles or granules of solid eutectic solute materials contained therein and transferable by automatically operated valve means to transport and position the solid eutectic solute material in a position below the core to catch and react with any partial or complete melt down of the fuel core.
NASA Astrophysics Data System (ADS)
Arkani-Hamed, J.
2015-12-01
Growth of an inner core has conventionally been related to core cooling blow the liquidus of iron. It is however possible that the core of the proto-Earth solidifies upon pressure increase during accretion. The lithostatic pressure in the proto-Earth increases immediately after merging each impactor, and the pressure-dependent liquidus of iron may supersede the temperature near the center resulting in a solid inner core. Assuming that Earth is formed by accreting a few dozen Moon to Mars size planetary embryos, the thermal evolution of the proto-Earth's core is investigated during accretion. The collision of an embryo heats the Earth differentially and the rotating low-viscosity, differentially heated core stratifies, creating a spherically symmetric stable and radially increasing temperature distribution. Convection occurs in the outer core while heat transfers by conduction in deeper parts. It is assumed that the iron core of an embryo pools at the bottom of partially molten mantle and thermally equilibrates with surroundings. It then descends as an iron diapir in the solid silicate mantle, while releasing its gravitational energy. Depending on its temperature when arrives at the core mantle boundary, it may spread on the core creating a hot layer or plunge into the core and descend to a neutrally buoyant level while further releasing its gravitational energy. A few dozen thermal evolution models of the core are investigates to examine effects of major parameters such as: total number of impacting embryos; partitioning of the gravitational energy released during the descent of the diaper in the mantle (between the silicate mantle and the iron diaper), and in the core (between the proto-Earth's core and that of the embryo); and gravitational energy and latent heat released due to the core solidification. All of the models predict a large solid inner core, about 1500 to 2000 km in radius, at the end of accretion.
Weng, Jing-Ke; Noel, Joseph P.
2013-01-01
Early plants began colonizing the terrestrial earth approximately 450 million years ago. Their success on land has been partially attributed to the evolution of specialized metabolic systems from core metabolic pathways, the former yielding structurally and functionally diverse chemicals to cope with a myriad of biotic and abiotic ecological pressures. Over the past two decades, functional genomics, primarily focused on flowering plants, has begun cataloging the biosynthetic players underpinning assorted classes of plant specialized metabolites. However, the molecular mechanisms enriching specialized metabolic pathways during land plant evolution remain largely unexplored. Selaginella is an extant lycopodiophyte genus representative of an ancient lineage of tracheophytes. Notably, the lycopodiophytes diverged from euphyllophytes over 400 million years ago. The recent completion of the whole-genome sequence of an extant lycopodiophyte, S. moellendorffii, provides new genomic and biochemical resources for studying metabolic evolution in vascular plants. 400 million years of independent evolution of lycopodiophytes and euphyllophytes resulted in numerous metabolic traits confined to each lineage. Surprisingly, a cadre of specialized metabolites, generally accepted to be restricted to seed plants, have been identified in Selaginella. Initial work suggested that Selaginella lacks obvious catalytic homologs known to be involved in the biosynthesis of well-studied specialized metabolites in seed plants. Therefore, these initial functional analyses suggest that the same chemical phenotypes arose independently more commonly than anticipated from our conventional understanding of the evolution of metabolism. Notably, the emergence of analogous and homologous catalytic machineries through convergent and parallel evolution, respectively, seems to have occurred repeatedly in different plant lineages. PMID:23717312
NASA Astrophysics Data System (ADS)
González Manrique, S. J.; Bello González, N.; Denker, C.
2017-04-01
Context. Emerging flux regions mark the first stage in the accumulation of magnetic flux eventually leading to pores, sunspots, and (complex) active regions. These flux regions are highly dynamic, show a variety of fine structure, and in many cases live only for a short time (less than a day) before dissolving quickly into the ubiquitous quiet-Sun magnetic field. Aims: The purpose of this investigation is to characterize the temporal evolution of a minute emerging flux region, the associated photospheric and chromospheric flow fields, and the properties of the accompanying arch filament system. We aim to explore flux emergence and decay processes and investigate if they scale with structure size and magnetic flux contents. Methods: This study is based on imaging spectroscopy with the Göttingen Fabry-Pérot Interferometer at the Vacuum Tower Telescope, Observatorio del Teide, Tenerife, Spain on 2008 August 7. Photospheric horizontal proper motions were measured with Local correlation tracking using broadband images restored with multi-object multi-frame blind deconvolution. Cloud model (CM) inversions of line scans in the strong chromospheric absorption Hαλ656.28 nm line yielded CM parameters (Doppler velocity, Doppler width, optical thickness, and source function), which describe the cool plasma contained in the arch filament system. Results: The high-resolution observations cover the decay and convergence of two micro-pores with diameters of less than one arcsecond and provide decay rates for intensity and area. The photospheric horizontal flow speed is suppressed near the two micro-pores indicating that the magnetic field is already sufficiently strong to affect the convective energy transport. The micro-pores are accompanied by a small arch filament system as seen in Hα, where small-scale loops connect two regions with Hα line-core brightenings containing an emerging flux region with opposite polarities. The Doppler width, optical thickness, and source function reach the largest values near the Hα line-core brightenings. The chromospheric velocity of the cloud material is predominantly directed downwards near the footpoints of the loops with velocities of up to 12 km s-1, whereas loop tops show upward motions of about 3 km s-1. Some of the loops exhibit signs of twisting motions along the loop axis. Conclusions: Micro-pores are the smallest magnetic field concentrations leaving a photometric signature in the photosphere. In the observed case, they are accompanied by a miniature arch filament system indicative of newly emerging flux in the form of Ω-loops. Flux emergence and decay take place on a time-scale of about two days, whereas the photometric decay of the micro-pores is much more rapid (a few hours), which is consistent with the incipient submergence of Ω-loops. Considering lifetime and evolution timescales, impact on the surrounding photospheric proper motions, and flow speed of the chromospheric plasma at the loop tops and footpoints, the results are representative for the smallest emerging flux regions still recognizable as such.
Qajar, Jafar; Arns, Christoph H
2017-09-01
Percolation of reactive fluids in carbonate rocks affects the rock microstructure and hence changes the rock macroscopic properties. In Part 1 paper, we examined the voxel-wise evolution of microstructure of the rock in terms of mineral dissolution/detachment, mineral deposition, and unchanged regions. In the present work, we investigate the relationships between changes in two characteristic transport properties, i.e. permeability and electrical conductivity and two critical parameters of the pore phase, i.e. the fraction of the pore space connecting the inlet and outlet faces of the core sample and the critical pore-throat diameter. We calculate the aforementioned properties on the images of the sample, wherein a homogeneous modification of pore structure occurred in order to ensure the representativeness of the calculated transport properties at the core scale. From images, the evolution of pore connectivity and the potential role of micropores on the connectivity are quantified. It is found that the changing permeability and electrical conductivity distributions along the core length are generally in good agreement with the longitudinal evolution of macro-connected macroporosity and the critical pore-throat diameter. We incorporate microporosity into critical length and permeability calculations and show how microporosity locally plays a role in permeability. It is shown that the Katz-Thompson model reasonably predicts the post-alteration permeability in terms of pre-alteration simulated parameters. This suggests that the evolution of permeability and electrical conductivity of the studied complex carbonate core are controlled by the changes in the macro-connected macroporosity as well as the smallest pore-throats between the connected macropores. Copyright © 2017 Elsevier B.V. All rights reserved.
Principles of scientific research team formation and evolution
Milojević, Staša
2014-01-01
Research teams are the fundamental social unit of science, and yet there is currently no model that describes their basic property: size. In most fields, teams have grown significantly in recent decades. We show that this is partly due to the change in the character of team size distribution. We explain these changes with a comprehensive yet straightforward model of how teams of different sizes emerge and grow. This model accurately reproduces the evolution of empirical team size distribution over the period of 50 y. The modeling reveals that there are two modes of knowledge production. The first and more fundamental mode employs relatively small, “core” teams. Core teams form by a Poisson process and produce a Poisson distribution of team sizes in which larger teams are exceedingly rare. The second mode employs “extended” teams, which started as core teams, but subsequently accumulated new members proportional to the past productivity of their members. Given time, this mode gives rise to a power-law tail of large teams (10–1,000 members), which features in many fields today. Based on this model, we construct an analytical functional form that allows the contribution of different modes of authorship to be determined directly from the data and is applicable to any field. The model also offers a solid foundation for studying other social aspects of science, such as productivity and collaboration. PMID:24591626
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, M.D.; Lombardo, N.J.; Heard, F.J.
1988-04-01
Calculations were performed to determine core heatup, core damage, and subsequent hydrogen production of a hypothetical loss-of-cooling accident at the Department of Energy's N Reactor. The thermal transient response of the reactor core was solved using the TRUMP-BD computer program. Estimates of whole-core thermal damage and hydrogen production were made by weighting the results of multiple half-length pressure tube simulations at various power levels. The Baker-Just and Wilson parabolic rate equations for the metal-water chemical reactions modeled the key phenomena of chemical energy and hydrogen evolution. Unlimited steam was assumed available for continuous oxidation of exposed Zircaloy-2 surfaces and formore » uranium metal with fuel cladding beyond the failure temperature (1038 C). Intact fuel geometry was modeled. Maximum fuel temperatures (1181 C) in the cooled central regions of the core were predicted to occur one-half hour into the accident scenario. Maximum fuel temperatures of 1447 C occurred in the core GSCS-regions at the end of the 10-h transient. After 10-h 26% of the fuel inventory was predicted to have failed. Peak hydrogen evolution equaled 42 g/s, while 10-h integrated hydrogen evolution equaled 167 kg. 12 refs., 12 figs., 2 tabs.« less
NASA Astrophysics Data System (ADS)
Reznik, S. N.; Yarin, A. L.; Zussman, E.; Bercovici, L.
2006-06-01
The shape evolution of small compound droplets at the exit of a core-shell system in the presence of a sufficiently strong electric field is studied both experimentally and theoretically. It is shown that the jetting effect at the tip of the shell nozzle does not necessarily cause entrainment of the core fluid, in which case the co-electrospinning process fails to produce core-shell nanofibers. The remedy lies in extending the core nozzle outside its shell counterpart by about half the radius of the latter. The results also show that the free charges migrate very rapidly from both fluids and their interface to the free surface of the shell. This reflects the fact that most of the prejetting evolution of the droplet can be effectively described in terms of the perfect conductor model, even though the fluids can be characterized as leaky dielectrics. The stress level at the core-shell interface is of the order of 5×103g/(cms2), the relevant value in assessing the viability of viruses, bacteria, DNA molecules, drugs, enzymes, chromophores, and proteins to be encapsulated in nanofibers via co-electrospinning.
Wang, Shanshan; Liu, Guijian; Yuan, Zijiao; Da, Chunnian
2018-04-15
A total of 21 surface sediments from the Yellow River Estuary (YRE) and a sediment core from the abandoned Old Yellow River Estuary (OYRE) were analyzed for n-alkanes using gas chromatography-mass spectrometry (GC-MS). n-Alkanes in the range C 12 -C 33 and C 13 -C 34 were identified in the surface sediments and the core, respectively. The homologous series were mainly bimodal distribution pattern without odd/even predominance in the YRE and OYRE. The total n-alkanes concentrations in the surface sediments ranged from 0.356 to 0.572mg/kg, with a mean of 0.434mg/kg on dry wt. Evaluation of n-alkanes proxies indicated that the aliphatic hydrocarbons in the surface sediments were derived mainly from a petrogenic source with a relatively low contribution of submerged/floating macrophytes, terrestrial and emergent plants. The dated core covered the time period 1925-2012 and the mean sedimentation rate was ca. 0.5cm/yr. The total n-alkanes concentrations in the core ranged from 0.0394 to 0.941mg/kg, with a mean of 0.180mg/kg. The temporal evolution of n-alkanes reflected the historical input of aliphatic hydrocarbons and was consistent with local and regional anthropogenic activity. In general, the investigation on the sediment core revealed a trend of regional environmental change and the role of anthropogenic activity in environmental change. Copyright © 2017 Elsevier Inc. All rights reserved.
Colston, Timothy J; Jackson, Colin R
2016-08-01
Vertebrates harbour microbes both internally and externally, and collectively, these microorganisms (the 'microbiome') contain genes that outnumber the host's genetic information 10-fold. The majority of the microorganisms associated with vertebrates are found within the gut, where they influence host physiology, immunity and development. The development of next-generation sequencing has led to a surge in effort to characterize the microbiomes of various vertebrate hosts, a necessary first step to determine the functional role these communities play in host evolution or ecology. This shift away from a culture-based microbiological approach, limited in taxonomic breadth, has resulted in the emergence of patterns suggesting a core vertebrate microbiome dominated by members of the bacterial phyla Bacteroidetes, Proteobacteria and Firmicutes. Still, there is a substantial variation in the methodology used to characterize the microbiome, from differences in sample type to issues of sampling captive or wild hosts, and the majority (>90%) of studies have characterized the microbiome of mammals, which represent just 8% of described vertebrate species. Here, we review the state of microbiome studies of nonmammalian vertebrates and provide a synthesis of emerging patterns in the microbiome of those organisms. We highlight the importance of collection methods, and the need for greater taxonomic sampling of natural rather than captive hosts, a shift in approach that is needed to draw ecologically and evolutionarily relevant inferences. Finally, we recommend future directions for vertebrate microbiome research, so that attempts can be made to determine the role that microbial communities play in vertebrate biology and evolution. © 2016 John Wiley & Sons Ltd.
Kernick, David; Mitchell, Annie
2010-01-01
Involving lay researchers is an important part of Government policy in the United Kingdom within the context of the National Health Service. Here we draw upon insights from complexity theory to suggest a model that we call consensual qualitative research where lay researchers and professionals are co-producers of knowledge. The focus of attention is on understanding and facilitating the patterns that emerge from non-linear interaction at a local level. We describe some core principles that can facilitate the development of such a model and conclude that the resources in terms of time and effort that such an approach requires, should not be underestimated.
Moghe, Gaurav D; Leong, Bryan J; Hurney, Steven M; Daniel Jones, A
2017-01-01
The diversity of life on Earth is a result of continual innovations in molecular networks influencing morphology and physiology. Plant specialized metabolism produces hundreds of thousands of compounds, offering striking examples of these innovations. To understand how this novelty is generated, we investigated the evolution of the Solanaceae family-specific, trichome-localized acylsugar biosynthetic pathway using a combination of mass spectrometry, RNA-seq, enzyme assays, RNAi and phylogenomics in different non-model species. Our results reveal hundreds of acylsugars produced across the Solanaceae family and even within a single plant, built on simple sugar cores. The relatively short biosynthetic pathway experienced repeated cycles of innovation over the last 100 million years that include gene duplication and divergence, gene loss, evolution of substrate preference and promiscuity. This study provides mechanistic insights into the emergence of plant chemical novelty, and offers a template for investigating the ~300,000 non-model plant species that remain underexplored. PMID:28853706
Moghe, Gaurav D; Leong, Bryan J; Hurney, Steven M; Daniel Jones, A; Last, Robert L
2017-08-30
The diversity of life on Earth is a result of continual innovations in molecular networks influencing morphology and physiology. Plant specialized metabolism produces hundreds of thousands of compounds, offering striking examples of these innovations. To understand how this novelty is generated, we investigated the evolution of the Solanaceae family-specific, trichome-localized acylsugar biosynthetic pathway using a combination of mass spectrometry, RNA-seq, enzyme assays, RNAi and phylogenomics in different non-model species. Our results reveal hundreds of acylsugars produced across the Solanaceae family and even within a single plant, built on simple sugar cores. The relatively short biosynthetic pathway experienced repeated cycles of innovation over the last 100 million years that include gene duplication and divergence, gene loss, evolution of substrate preference and promiscuity. This study provides mechanistic insights into the emergence of plant chemical novelty, and offers a template for investigating the ~300,000 non-model plant species that remain underexplored.
Implications of the giant planets for the formation and evolution of planetary systems
NASA Technical Reports Server (NTRS)
Stevenson, David J.
1989-01-01
The giant planet region in the solar system appears to be bounded inside by the limit of water condensation, suggesting that the most abundant astrophysical condensate plays an important role in giant planet formation. Indeed, Jupiter and Saturn exhibit evidence for rock and/or ice cores or central concentrations that probably accumulated first, acting as nuclei for subsequent gas accumulation. This is a 'planetary' accumulation process, distinct from the stellar formation process, even though most of Jupiter has a similar composition to the primordial sun. Uranus and Neptune appear to exhibit evidence of an important role for giant impacts in their structure and evolution. No simple picture emerges for the temperature structure of the solar nebula from observations alone. However, it seems likely that Jupiter is the key to the planetary system, and a similar planet could be expected for other systems. The data and inferences from these data are summarized for the entire known solar system beyond the asteroid belt.
Evolution and Expression Patterns of TCP Genes in Asparagales
Madrigal, Yesenia; Alzate, Juan F.; Pabón-Mora, Natalia
2017-01-01
CYCLOIDEA-like genes are involved in the symmetry gene network, limiting cell proliferation in the dorsal regions of bilateral flowers in core eudicots. CYC-like and closely related TCP genes (acronym for TEOSINTE BRANCHED1, CYCLOIDEA, and PROLIFERATION CELL FACTOR) have been poorly studied in Asparagales, the largest order of monocots that includes both bilateral flowers in Orchidaceae (ca. 25.000 spp) and radially symmetrical flowers in Hypoxidaceae (ca. 200 spp). With the aim of assessing TCP gene evolution in the Asparagales, we isolated TCP-like genes from publicly available databases and our own transcriptomes of Cattleya trianae (Orchidaceae) and Hypoxis decumbens (Hypoxidaceae). Our matrix contains 452 sequences representing the three major clades of TCP genes. Besides the previously identified CYC specific core eudicot duplications, our ML phylogenetic analyses recovered an early CIN-like duplication predating all angiosperms, two CIN-like Asparagales-specific duplications and a duplication prior to the diversification of Orchidoideae and Epidendroideae. In addition, we provide evidence of at least three duplications of PCF-like genes in Asparagales. While CIN-like and PCF-like genes have multiplied in Asparagales, likely enhancing the genetic network for cell proliferation, CYC-like genes remain as single, shorter copies with low expression. Homogeneous expression of CYC-like genes in the labellum as well as the lateral petals suggests little contribution to the bilateral perianth in C. trianae. CIN-like and PCF-like gene expression suggests conserved roles in cell proliferation in leaves, sepals and petals, carpels, ovules and fruits in Asparagales by comparison with previously reported functions in core eudicots and monocots. This is the first large scale analysis of TCP-like genes in Asparagales that will serve as a platform for in-depth functional studies in emerging model monocots. PMID:28144250
Combining collective, MSW, and turbulence effects in supernova neutrino flavor evolution
Lund, Tina; Kneller, James P.
2013-07-16
In order to decode the neutrino burst signal from a Galactic core-collapse supernova and reveal the complicated inner workings of the explosion we need a thorough understanding of the neutrino flavor evolution from the proto-neutron star outwards. The flavor content of the signal evolves due to both neutrino collective effects and matter effects which can lead to a highly interesting interplay and distinctive spectral features. In this paper we investigate the supernova neutrino flavor evolution in three different progenitors and include collective flavor effects, the evolution of the Mikheyev, Smirnov & Wolfenstein conversion due to the shock wave passage throughmore » the star, and the impact of turbulence. In the Oxygen-Neon-Magnesium supernova we find that the impact of turbulence is both brief and slight during a window of 1-2 seconds post bounce. Thus the spectral features of collective and shock effects in the neutrino signals from ONeMg supernovae may be almost turbulence free making them the easiest to interpret. For the more massive progenitors we again find that small amplitude turbulence, up to 10%, leads to a minimal modification of the signal, and the emerging neutrino spectra retain both collective and MSW features. However, when larger amounts of turbulence is added, 30% and 50%, the features of collective and shock wave effects in the high density resonance channel are almost completely obscured at late times. Yet at the same time we find the other mixing channels - the low density resonance channel and the non-resonant channels - begin to develop turbulence signatures. Large amplitude turbulent motions in the outer layers of more massive, iron core-collapse supernovae may obscure the most obvious fingerprints of collective and shock wave effects in the neutrino signal but cannot remove them completely, and additionally bring about new features in the signal.« less
Kleine Büning, Maximiliane; Meyer, Denise; Austermann-Busch, Sophia; Roman-Sosa, Gleyder; Rümenapf, Tillmann
2017-01-01
RNA recombination is a major driving force for the evolution of RNA viruses and is significantly implicated in the adaptation of viruses to new hosts, changes of virulence, as well as in the emergence of new viruses including drug-resistant and escape mutants. However, the molecular details of recombination in animal RNA viruses are only poorly understood. In order to determine whether viral RNA recombination depends on translation of viral proteins, a nonreplicative recombination system was established which is based on cotransfection of cells with synthetic bovine viral diarrhea virus (family Flaviviridae) RNA genome fragments either lacking the internal ribosome entry site required for cap-independent translation or lacking almost the complete polyprotein coding region. The emergence of a number of recombinant viruses demonstrated that IRES-mediated translation of viral proteins is dispensable for efficient recombination and suggests that RNA recombination can occur in the absence of viral proteins. Analyses of 58 independently emerged viruses led to the detection of recombinant genomes with duplications, deletions and insertions in the 5′ terminal region of the open reading frame, leading to enlarged core fusion proteins detectable by Western blot analysis. This demonstrates a remarkable flexibility of the pestivirus core protein. Further experiments with capped and uncapped genome fragments containing a luciferase gene for monitoring the level of protein translation revealed that even a ∼1,000-fold enhancement of translation of viral proteins did not increase the frequency of RNA recombination. Taken together, this study highlights that nonreplicative RNA recombination does not require translation of viral proteins. PMID:28338950
Network evolution model for supply chain with manufactures as the core.
Fang, Haiyang; Jiang, Dali; Yang, Tinghong; Fang, Ling; Yang, Jian; Li, Wu; Zhao, Jing
2018-01-01
Building evolution model of supply chain networks could be helpful to understand its development law. However, specific characteristics and attributes of real supply chains are often neglected in existing evolution models. This work proposes a new evolution model of supply chain with manufactures as the core, based on external market demand and internal competition-cooperation. The evolution model assumes the external market environment is relatively stable, considers several factors, including specific topology of supply chain, external market demand, ecological growth and flow conservation. The simulation results suggest that the networks evolved by our model have similar structures as real supply chains. Meanwhile, the influences of external market demand and internal competition-cooperation to network evolution are analyzed. Additionally, 38 benchmark data sets are applied to validate the rationality of our evolution model, in which, nine manufacturing supply chains match the features of the networks constructed by our model.
Network evolution model for supply chain with manufactures as the core
Jiang, Dali; Fang, Ling; Yang, Jian; Li, Wu; Zhao, Jing
2018-01-01
Building evolution model of supply chain networks could be helpful to understand its development law. However, specific characteristics and attributes of real supply chains are often neglected in existing evolution models. This work proposes a new evolution model of supply chain with manufactures as the core, based on external market demand and internal competition-cooperation. The evolution model assumes the external market environment is relatively stable, considers several factors, including specific topology of supply chain, external market demand, ecological growth and flow conservation. The simulation results suggest that the networks evolved by our model have similar structures as real supply chains. Meanwhile, the influences of external market demand and internal competition-cooperation to network evolution are analyzed. Additionally, 38 benchmark data sets are applied to validate the rationality of our evolution model, in which, nine manufacturing supply chains match the features of the networks constructed by our model. PMID:29370201
Reddy, Puli Chandramouli; Ubhe, Suyog; Sirwani, Neha; Lohokare, Rasika; Galande, Sanjeev
2017-08-01
Histones are fundamental components of chromatin in all eukaryotes. Hydra, an emerging model system belonging to the basal metazoan phylum Cnidaria, provides an ideal platform to understand the evolution of core histone components at the base of eumetazoan phyla. Hydra exhibits peculiar properties such as tremendous regenerative capacity, lack of organismal senescence and rarity of malignancy. In light of the role of histone modifications and histone variants in these processes it is important to understand the nature of histones themselves and their variants in hydra. Here, we report identification of the complete repertoire of histone-coding genes in the Hydra magnipapillata genome. Hydra histones were classified based on their copy numbers, gene structure and other characteristic features. Genomic organization of canonical histone genes revealed the presence of H2A-H2B and H3-H4 paired clusters in high frequency and also a cluster with all core histones along with H1. Phylogenetic analysis of identified members of H2A and H2B histones suggested rapid expansion of these groups in Hydrozoa resulting in the appearance of unique subtypes. Amino acid sequence level comparisons of H2A and H2B forms with bilaterian counterparts suggest the possibility of a highly mobile nature of nucleosomes in hydra. Absolute quantitation of transcripts confirmed the high copy number of histones and supported the canonical nature of H2A. Furthermore, functional characterization of H2A.X.1 and a unique variant H2A.X.2 in the gastric region suggest their role in the maintenance of genome integrity and differentiation processes. These findings provide insights into the evolution of histones and their variants in hydra. Copyright © 2017 Elsevier GmbH. All rights reserved.
Longo, Liam M; Tenorio, Connie A; Kumru, Ozan S; Middaugh, C Russell; Blaber, Michael
2015-01-01
The halophile environment has a number of compelling aspects with regard to the origin of structured polypeptides (i.e., proteogenesis) and, instead of a curious niche that living systems adapted into, the halophile environment is emerging as a candidate “cradle” for proteogenesis. In this viewpoint, a subsequent halophile-to-mesophile transition was a key step in early evolution. Several lines of evidence indicate that aromatic amino acids were a late addition to the codon table and not part of the original “prebiotic” set comprising the earliest polypeptides. We test the hypothesis that the availability of aromatic amino acids could facilitate a halophile-to-mesophile transition by hydrophobic core-packing enhancement. The effects of aromatic amino acid substitutions were evaluated in the core of a “primitive” designed protein enriched for the 10 prebiotic amino acids (A,D,E,G,I,L,P,S,T,V)—having an exclusively prebiotic core and requiring halophilic conditions for folding. The results indicate that a single aromatic amino acid substitution is capable of eliminating the requirement of halophile conditions for folding of a “primitive” polypeptide. Thus, the availability of aromatic amino acids could have facilitated a critical halophile-to-mesophile protein folding adaptation—identifying a selective advantage for the incorporation of aromatic amino acids into the codon table. PMID:25297559
ERIC Educational Resources Information Center
Barnes, M. Elizabeth; Brownell, Sara E.
2016-01-01
Evolution is a core concept of biology, and yet many college biology students do not accept evolution because of their religious beliefs. However, we do not currently know how instructors perceive their role in helping students accept evolution or how they address the perceived conflict between religion and evolution when they teach evolution.…
Self-assembly of core-shell structure PtO2@Pt nanodots and their formation evolution
NASA Astrophysics Data System (ADS)
Yang, Weijia; Liu, Junjie; Liu, Mingquan; Zhao, Zhicheng; Song, Yapeng; Tang, Xiufeng; Luo, Jianyi; Zeng, Qingguang; He, Xin
2018-05-01
Core-shell structure PtO2@Pt nanodots have been self-assembly by vacuum sputtering and high temperature annealing. First, Pt thin films with a small amount of PtO2 are grown on the sapphire substrates by vacuum sputtering. And then high temperature annealing on the thin films is carried out at 800 °C for 2 min to form Pt nanodots. During the cooling process, the atmosphere is deployed to supplant the nitrogen. Finally, even distributed core-shell structure PtO2@Pt nanodots with a diameter from 100 to 300 nm are achieved. Furthermore, the formation evolution of core-shell structure PtO2@Pt nanodots is also proposed. This work open up a new approach for fabricating core-shell structure nanodots.
NASA Astrophysics Data System (ADS)
Deproost, Marie-Hélène; Rivoldini, Attilio; Van Hoolst, Tim
2016-10-01
Remote sensing data of Mercury's surface by MESSENGER indicate that Mercury formed under reducing conditions. As a consequence, silicon is likely the main light element in the core together with a possible small fraction of sulfur. Compared to sulfur, which does almost not partition into solid iron at Mercury's core conditions and strongly decreases the melting temperature, silicon partitions almost equally well between solid and liquid iron and is not very effective at reducing the melting temperature of iron. Silicon as the major light element constituent instead of sulfur therefore implies a significantly higher core liquidus temperature and a decrease in the vigor of compositional convection generated by the release of light elements upon inner core formation.Due to the immiscibility in liquid Fe-Si-S at low pressure (below 15 GPa), the core might also not be homogeneous and consist of an inner S-poor Fe-Si core below a thinner Si-poor Fe-S layer. Here, we study the consequences of a silicon-rich core and the effect of the blanketing Fe-S layer on the thermal evolution of Mercury's core and on the generation of a magnetic field.
Evolution of massive stars in very young clusters and associations
NASA Technical Reports Server (NTRS)
Stothers, R. B.
1985-01-01
Statistics concerning the stellar content of young galactic clusters and associations which show well defined main sequence turnups have been analyzed in order to derive information about stellar evolution in high-mass galaxies. The analytical approach is semiempirical and uses natural spectroscopic groups of stars on the H-R diagram together with the stars' apparent magnitudes. The new approach does not depend on absolute luminosities and requires only the most basic elements of stellar evolution theory. The following conclusions are offered on the basis of the statistical analysis: (1) O-tupe main-sequence stars evolve to a spectral type of B1 during core hydrogen burning; (2) most O-type blue stragglers are newly formed massive stars burning core hydrogen; (3) supergiants lying redward of the main-sequence turnup are burning core helium; and most Wolf-Rayet stars are burning core helium and originally had masses greater than 30-40 solar mass. The statistics of the natural spectroscopic stars in young galactic clusters and associations are given in a table.
Stuntz, Robert; Clontz, Robert
2016-05-01
Emergency physicians are using free open access medical education (FOAM) resources at an increasing rate. The extent to which FOAM resources cover the breadth of emergency medicine core content is unknown. We hypothesize that the content of FOAM resources does not provide comprehensive or balanced coverage of the scope of knowledge necessary for emergency medicine providers. Our objective is to quantify emergency medicine core content covered by FOAM resources and identify the predominant FOAM topics. This is an institutional review board-approved, retrospective review of all English-language FOAM posts between July 1, 2013, and June 30, 2014, as aggregated on http://FOAMem.com. The topics of FOAM posts were compared with those of the emergency medicine core content, as defined by the American Board of Emergency Medicine's Model of the Clinical Practice of Emergency Medicine (MCPEM). Each FOAM post could cover more than 1 topic. Repeated posts and summaries were excluded. Review of the MCPEM yielded 915 total emergency medicine topics grouped into 20 sections. Review of 6,424 FOAM posts yielded 7,279 total topics and 654 unique topics, representing 71.5% coverage of the 915 topics outlined by the MCPEM. The procedures section was covered most often, representing 2,285 (31.4%) FOAM topics. The 4 sections with the least coverage were cutaneous disorders, hematologic disorders, nontraumatic musculoskeletal disorders, and obstetric and gynecologic disorders, each representing 0.6% of FOAM topics. Airway techniques; ECG interpretation; research, evidence-based medicine, and interpretation of the literature; resuscitation; and ultrasonography were the most overrepresented subsections, equaling 1,674 (23.0%) FOAM topics when combined. The data suggest an imbalanced and incomplete coverage of emergency medicine core content in FOAM. The study is limited by its retrospective design and use of a single referral Web site to obtain available FOAM resources. More comprehensive and balanced coverage of emergency medicine core content is needed if FOAM is to serve as a primary educational resource. Copyright © 2016 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.
Thermal Evolution and Crystallisation Regimes of the Martian Core
NASA Astrophysics Data System (ADS)
Davies, C. J.; Pommier, A.
2015-12-01
Though it is accepted that Mars has a sulfur-rich metallic core, its chemical and physical state as well as its time-evolution are still unconstrained and debated. Several lines of evidence indicate that an internal magnetic field was once generated on Mars and that this field decayed around 3.7-4.0 Gyrs ago. The standard model assumes that this field was produced by a thermal (and perhaps chemical) dynamo operating in the Martian core. We use this information to construct parameterized models of the Martian dynamo in order to place constraints on the thermochemical evolution of the Martian core, with particular focus on its crystallization regime. Considered compositions are in the FeS system, with S content ranging from ~10 and 16 wt%. Core radius, density and CMB pressure are varied within the errors provided by recent internal structure models that satisfy the available geodetic constraints (planetary mass, moment of inertia and tidal Love number). We also vary the melting curve and adiabat, CMB heat flow and thermal conductivity. Successful models are those that match the dynamo cessation time and fall within the bounds on present-day CMB temperature. The resulting suite of over 500 models suggest three possible crystallization regimes: growth of a solid inner core starting at the center of the planet; freezing and precipitation of solid iron (Fe- snow) from the core-mantle boundary (CMB); and freezing that begins midway through the core. Our analysis focuses on the effects of core properties that are expected to be constrained during the forthcoming Insight mission.
Coevolution of cooperation and network structure under natural selection
NASA Astrophysics Data System (ADS)
Yang, D.-P.; Lin, H.; Shuai, J. W.
2011-02-01
A coevolution model by coupling mortality and fertility selection is introduced to investigate the evolution of cooperation and network structure in the prisoner's dilemma game. The cooperation level goes through a continuous phase transition vs. defection temptation b for low mortality selection intensity β and through a discontinuous one for infinite β. The cooperation level is enhanced most at β≈1 for any b. The local and global properties of the network structure, such as cluster and cooperating k-core, are investigated for the understanding of cooperation evolution. Cooperation is promoted by forming a tight cooperating k-core at moderate β, but too large β will destroy the cooperating k-core rapidly resulting in a rapid drop of the cooperation level. Importantly, the infinite β changes the normalized sucker's payoff S from 0 to 1-b and its dynamics of the cooperation level undergoes a very slow power-law decay, which leads the evolution into the regime of neutral evolution.
Foldability of a Natural De Novo Evolved Protein.
Bungard, Dixie; Copple, Jacob S; Yan, Jing; Chhun, Jimmy J; Kumirov, Vlad K; Foy, Scott G; Masel, Joanna; Wysocki, Vicki H; Cordes, Matthew H J
2017-11-07
The de novo evolution of protein-coding genes from noncoding DNA is emerging as a source of molecular innovation in biology. Studies of random sequence libraries, however, suggest that young de novo proteins will not fold into compact, specific structures typical of native globular proteins. Here we show that Bsc4, a functional, natural de novo protein encoded by a gene that evolved recently from noncoding DNA in the yeast S. cerevisiae, folds to a partially specific three-dimensional structure. Bsc4 forms soluble, compact oligomers with high β sheet content and a hydrophobic core, and undergoes cooperative, reversible denaturation. Bsc4 lacks a specific quaternary state, however, existing instead as a continuous distribution of oligomer sizes, and binds dyes indicative of amyloid oligomers or molten globules. The combination of native-like and non-native-like properties suggests a rudimentary fold that could potentially act as a functional intermediate in the emergence of new folded proteins de novo. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lassiter, J. C.
2006-10-01
The possibility that some mantle plumes may carry a geochemical signature of core/mantle interaction has rightly generated considerable interest and attention in recent years. Correlated 186Os- 187Os enrichments in some plume-derived lavas (Hawaii, Gorgona, Kostomuksha) have been interpreted as deriving from an outer core with elevated Pt/Os and Re/Os ratios due to the solidification of the Earth's inner core (c.f., [A.D. Brandon, R.J. Walker, The debate over core-mantle interaction, Earth Planet. Sci. Lett. 232 (2005) 211-225.] and references therein). Conclusive identification of a "core signal" in plume-derived lavas would profoundly influence our understanding of mantle convection and evolution. This paper reevaluates the Os-isotope evidence for core/mantle interaction by examining other geochemical constraints on core/mantle interaction, geophysical constraints on the thermal evolution of the outer core, and geochemical and cosmochemical constraints on the abundance of heat-producing elements in the core. Additional study of metal/silicate and sulfide/silicate partitioning of K, Pb, and other trace elements is needed to more tightly constrain the likely starting composition of the Earth's core. However, available data suggest that the observed 186Os enrichments in Hawaiian and other plume-derived lavas are unlikely to derive from core/mantle interaction. 1) Core/mantle interaction sufficient to produce the observed 186Os enrichments would likely have significant effects on other tracers such as Pb- and W-isotopes that are not observed. 2) Significant partitioning of K or other heat-producing elements into the core would produce a "core depletion" pattern in the Silicate Earth very different from that observed. 3) In the absence of heat-producing elements in the core, core/mantle heat flow of ˜ 6-15 TW estimated from several independent geophysical constraints suggests an inner core age (< ˜ 2.5 Ga) too young for the outer core to have developed a significant 186Os enrichment. Core/mantle thermal and chemical interaction remains an important problem that warrants future research. However, Os-isotopes may have only limited utility in this area due to the relatively young age of the Earth's inner core.
Pang, Rui; Teramura, Kentaro; Tatsumi, Hiroyuki; Asakura, Hiroyuki; Hosokawa, Saburo; Tanaka, Tsunehiro
2018-01-25
A core-shell structure of Ag-Cr dual cocatalyst loaded-Ga 2 O 3 was found to significantly enhance the formation rate of CO and selectivity toward CO evolution for the photocatalytic conversion of CO 2 where H 2 O is used as an electron donor.
Richards, Stephen; Liu, Yue; Bettencourt, Brian R.; Hradecky, Pavel; Letovsky, Stan; Nielsen, Rasmus; Thornton, Kevin; Hubisz, Melissa J.; Chen, Rui; Meisel, Richard P.; Couronne, Olivier; Hua, Sujun; Smith, Mark A.; Zhang, Peili; Liu, Jing; Bussemaker, Harmen J.; van Batenburg, Marinus F.; Howells, Sally L.; Scherer, Steven E.; Sodergren, Erica; Matthews, Beverly B.; Crosby, Madeline A.; Schroeder, Andrew J.; Ortiz-Barrientos, Daniel; Rives, Catharine M.; Metzker, Michael L.; Muzny, Donna M.; Scott, Graham; Steffen, David; Wheeler, David A.; Worley, Kim C.; Havlak, Paul; Durbin, K. James; Egan, Amy; Gill, Rachel; Hume, Jennifer; Morgan, Margaret B.; Miner, George; Hamilton, Cerissa; Huang, Yanmei; Waldron, Lenée; Verduzco, Daniel; Clerc-Blankenburg, Kerstin P.; Dubchak, Inna; Noor, Mohamed A.F.; Anderson, Wyatt; White, Kevin P.; Clark, Andrew G.; Schaeffer, Stephen W.; Gelbart, William; Weinstock, George M.; Gibbs, Richard A.
2005-01-01
We have sequenced the genome of a second Drosophila species, Drosophila pseudoobscura, and compared this to the genome sequence of Drosophila melanogaster, a primary model organism. Throughout evolution the vast majority of Drosophila genes have remained on the same chromosome arm, but within each arm gene order has been extensively reshuffled, leading to a minimum of 921 syntenic blocks shared between the species. A repetitive sequence is found in the D. pseudoobscura genome at many junctions between adjacent syntenic blocks. Analysis of this novel repetitive element family suggests that recombination between offset elements may have given rise to many paracentric inversions, thereby contributing to the shuffling of gene order in the D. pseudoobscura lineage. Based on sequence similarity and synteny, 10,516 putative orthologs have been identified as a core gene set conserved over 25–55 million years (Myr) since the pseudoobscura/melanogaster divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome-wide average, consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than random and nearby sequences between the species—but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a pattern of repeat-mediated chromosomal rearrangement, and high coadaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence between these species of Drosophila. PMID:15632085
NASA Astrophysics Data System (ADS)
Stoekl, Alexander; Dorfi, Ernst
2014-05-01
In the early, embedded phase of evolution of terrestrial planets, the planetary core accumulates gas from the circumstellar disk into a planetary envelope. This atmosphere is very significant for the further thermal evolution of the planet by forming an insulation around the rocky core. The disk-captured envelope is also the staring point for the atmospheric evolution where the atmosphere is modified by outgassing from the planetary core and atmospheric mass loss once the planet is exposed to the radiation field of the host star. The final amount of persistent atmosphere around the evolved planet very much characterizes the planet and is a key criterion for habitability. The established way to study disk accumulated atmospheres are hydrostatic models, even though in many cases the assumption of stationarity is unlikely to be fulfilled. We present, for the first time, time-dependent radiation hydrodynamics simulations of the accumulation process and the interaction between the disk-nebula gas and the planetary core. The calculations were performed with the TAPIR-Code (short for The adaptive, implicit RHD-Code) in spherical symmetry solving the equations of hydrodynamics, gray radiative transport, and convective energy transport. The models range from the surface of the solid core up to the Hill radius where the planetary envelope merges into the surrounding protoplanetary disk. Our results show that the time-scale of gas capturing and atmospheric growth strongly depends on the mass of the solid core. The amount of atmosphere accumulated during the lifetime of the protoplanetary disk (typically a few Myr) varies accordingly with the mass of the planet. Thus, a core with Mars-mass will end up with about 10 bar of atmosphere while for an Earth-mass core, the surface pressure reaches several 1000 bar. Even larger planets with several Earth masses quickly capture massive envelopes which in turn become gravitationally unstable leading to runaway accretion and the eventual formation of a gas planet.
Palaeomagnetic field intensity variations suggest Mesoproterozoic inner-core nucleation
NASA Astrophysics Data System (ADS)
Biggin, A. J.; Piispa, E. J.; Pesonen, L. J.; Holme, R.; Paterson, G. A.; Veikkolainen, T.; Tauxe, L.
2015-10-01
The Earth's inner core grows by the freezing of liquid iron at its surface. The point in history at which this process initiated marks a step-change in the thermal evolution of the planet. Recent computational and experimental studies have presented radically differing estimates of the thermal conductivity of the Earth's core, resulting in estimates of the timing of inner-core nucleation ranging from less than half a billion to nearly two billion years ago. Recent inner-core nucleation (high thermal conductivity) requires high outer-core temperatures in the early Earth that complicate models of thermal evolution. The nucleation of the core leads to a different convective regime and potentially different magnetic field structures that produce an observable signal in the palaeomagnetic record and allow the date of inner-core nucleation to be estimated directly. Previous studies searching for this signature have been hampered by the paucity of palaeomagnetic intensity measurements, by the lack of an effective means of assessing their reliability, and by shorter-timescale geomagnetic variations. Here we examine results from an expanded Precambrian database of palaeomagnetic intensity measurements selected using a new set of reliability criteria. Our analysis provides intensity-based support for the dominant dipolarity of the time-averaged Precambrian field, a crucial requirement for palaeomagnetic reconstructions of continents. We also present firm evidence for the existence of very long-term variations in geomagnetic strength. The most prominent and robust transition in the record is an increase in both average field strength and variability that is observed to occur between a billion and 1.5 billion years ago. This observation is most readily explained by the nucleation of the inner core occurring during this interval; the timing would tend to favour a modest value of core thermal conductivity and supports a simple thermal evolution model for the Earth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stökl, Alexander; Dorfi, Ernst A.; Johnstone, Colin P.
2016-07-10
In the early, disk-embedded phase of evolution of terrestrial planets, a protoplanetary core can accumulate gas from the circumstellar disk into a planetary envelope. In order to relate the accumulation and structure of this primordial atmosphere to the thermal evolution of the planetary core, we calculated atmosphere models characterized by the surface temperature of the core. We considered cores with masses between 0.1 and 5 M {sub ⊕} situated in the habitable zone around a solar-like star. The time-dependent simulations in 1D-spherical symmetry include the hydrodynamics equations, gray radiative transport, and convective energy transport. Using an implicit time integration scheme,more » we can use large time steps and and thus efficiently cover evolutionary timescales. Our results show that planetary atmospheres, when considered with reference to a fixed core temperature, are not necessarily stable, and multiple solutions may exist for one core temperature. As the structure and properties of nebula-embedded planetary atmospheres are an inherently time-dependent problem, we calculated estimates for the amount of primordial atmosphere by simulating the accretion process of disk gas onto planetary cores and the subsequent evolution of the embedded atmospheres. The temperature of the planetary core is thereby determined from the computation of the internal energy budget of the core. For cores more massive than about one Earth mass, we obtain that a comparatively short duration of the disk-embedded phase (∼10{sup 5} years) is sufficient for the accumulation of significant amounts of hydrogen atmosphere that are unlikely to be removed by later atmospheric escape processes.« less
Ultra-long Gamma-Ray Bursts from the Collapse of Blue Supergiant Stars: An End-to-end Simulation
NASA Astrophysics Data System (ADS)
Perna, Rosalba; Lazzati, Davide; Cantiello, Matteo
2018-05-01
Ultra-long gamma-ray bursts (ULGRBs) are a distinct class of GRBs characterized by durations of several thousands of seconds, about two orders of magnitude longer than those of standard long GRBs (LGRBs). The driving engine of these events has not yet been uncovered, and ideas range from magnetars, to tidal disruption events, to extended massive stars, such as blue super giants (BSG). BSGs, a possible endpoint of stellar evolution, are attractive for the relatively long freefall times of their envelopes, allowing accretion to power a long-lasting central engine. At the same time, their large radial extension poses a challenge to the emergence of a jet. Here, we perform an end-to-end simulation aimed at assessing the viability of BSGs as ULGRB progenitors. The evolution to the core-collapse of a BSG star model is calculated with the MESA code. We then compute the accretion rate for the fraction of envelope material with enough angular momentum to circularize and form an accretion disk, and input the corresponding power into a jet, which we evolve through the star envelope with the FLASH code. Our simulation shows that the jet can emerge, and the resulting light curves resemble those observed in ULGRBs, with durations T 90 ranging from ≈4000 s to ≈104 s, depending on the viewing angle.
Le Cunff, Y; Baudisch, A; Pakdaman, K
2014-08-01
A broad range of mortality patterns has been documented across species, some even including decreasing mortality over age. Whether there exist a common denominator to explain both similarities and differences in these mortality patterns remains an open question. The disposable soma theory, an evolutionary theory of aging, proposes that universal intracellular trade-offs between maintenance/lifespan and reproduction would drive aging across species. The disposable soma theory has provided numerous insights concerning aging processes in single individuals. Yet, which specific population mortality patterns it can lead to is still largely unexplored. In this article, we propose a model exploring the mortality patterns which emerge from an evolutionary process including only the disposable soma theory core principles. We adapt a well-known model of genomic evolution to show that mortality curves producing a kink or mid-life plateaus derive from a common minimal evolutionary framework. These mortality shapes qualitatively correspond to those of Drosophila melanogaster, Caenorhabditis elegans, medflies, yeasts and humans. Species evolved in silico especially differ in their population diversity of maintenance strategies, which itself emerges as an adaptation to the environment over generations. Based on this integrative framework, we also derive predictions and interpretations concerning the effects of diet changes and heat-shock treatments on mortality patterns. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Buckling condensation in constrained growth
NASA Astrophysics Data System (ADS)
Dervaux, Julien; Ben Amar, Martine
2011-03-01
The multiple complexities inherent to living objects have motivated the search for abiotic substitutes, able to mimic some of their relevant physical properties. Hydrogels provide a highly monitorable counterpart and have thus found many applications in medicine and bioengineering. Recently, it has been recognized that their ability to swell could be used to unravel some of the universal physical processes at work during biological growth. However, it is yet unknown how the microscopic distinctions between swelling and biological growth affect macroscopic changes (shape, stresses) induced by volume variations. To answer this question, we focus on a clinically motivated example of growth. Some solid tumors such as melanoma or glioblastoma undergo a shape transition during their evolution. This bifurcation appears when growth is confined at the periphery of the tumor and is concomitant with the transition from the avascular to the vascular stage of the tumor evolution. To model this phenomenon, we consider in this paper the deformation of an elastic ring enclosing a core of different stiffness. When the volume of the outer ring increases, the system develops a periodic instability. We consider two possible descriptions of the volume variation process: either by imposing a homogeneous volumetric strain (biological growth) or through migration of solvent molecules inside a solid network (swelling). For thin rings, both theories are in qualitative agreement. When the interior is soft, we predict the emergence of a large wavelength buckling. Upon increasing the stiffness of the inner disc, the wavelength of the instability decreases until a condensation of the buckles occurs at the free boundary. This short wavelength pattern is independent of the stiffness of the disc and is only limited by the presence of surface tension. For thicker rings, two scenarios emerge. When a volumetric strain is prescribed, compressive stresses accumulate in the vicinity of the core and the deformation localizes itself at the boundary between the disc and the ring. On the other hand, swelling being an instance of stress-modulated growth, elastic stretches near the core saturate and the instability occurs primarily at the free boundary. Besides its implications for the mechanical stability of avascular tumors, this work provides important results concerning layered tissues growth and the role of hydrogels as biological tissues substitutes.
Implications of Convection in the Moon and the Terrestrial Planets
NASA Technical Reports Server (NTRS)
Turcotte, D. L.
1985-01-01
The early evolution of the Moon and its implications for the early evolution of the Earth was studied. The study is divided into two parts: (1) studies of core formation. Cosmochemical studies strongly favor a near-homogeneous accretion of the Earth. It is shown that core segregation probably occurred within the first 10,000 years of Earth history. It is found that dissipative heating may be a viable mechanism for core segregation if sufficiently large bodies of liquid iron can form; (2) early thermal evolution of the Earth and Moon. The energy associated with the accretion of the Earth and the segregation of the core is more than sufficient to melt the entire Earth. The increase in the mantle liquidus with depth (pressure) is the dominant effect influencing heat transfer through the magma ocean. It is found that a magma ocean with a depth of 100 km would have existed as the Earth accreted. It is concluded that this magma ocean zone refined the earth resulting in the simultaneous formation of the core and the atmosphere during accretion. The resulting mantle was a well-mixed solid with a near pyrolite composition.
A VHDL Core for Intrinsic Evolution of Discrete Time Filters with Signal Feedback
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; Dutton, Kenneth
2005-01-01
The design of an Evolvable Machine VHDL Core is presented, representing a discrete-time processing structure capable of supporting control system applications. This VHDL Core is implemented in an FPGA and is interfaced with an evolutionary algorithm implemented in firmware on a Digital Signal Processor (DSP) to create an evolvable system platform. The salient features of this architecture are presented. The capability to implement IIR filter structures is presented along with the results of the intrinsic evolution of a filter. The robustness of the evolved filter design is tested and its unique characteristics are described.
McDonald, M.; Bulbul, E.; Haan, T. de; ...
2016-07-27
Here, we present the results of an X-ray spectral analysis of 153 galaxy clusters observed with the Chandra, XMM-Newton, and Suzaku space telescopes. These clusters, which span 0 < z < 1.5, were drawn from a larger, mass-selected sample of galaxy clusters discovered in the 2500 square degree South Pole Telescope Sunyaev Zel'dovich (SPT-SZ) survey. With a total combined exposure time of 9.1 Ms, these data yield the strongest constraints to date on the evolution of the metal content of the intracluster medium (ICM). We find no evidence for strong evolution in the global (r < R 500) ICM metallicity (dZ/dz = –0.06 ± 0.04 Z ⊙), with a mean value at z = 0.6 ofmore » $$\\langle Z\\rangle =0.23\\pm 0.01$$ Z ⊙ and a scatter of σ Z = 0.08 ± 0.01 Z ⊙. These results imply that the emission-weighted metallicity has not changed by more than 40% since z = 1 (at 95% confidence), consistent with the picture of an early (z > 1) enrichment. We find, in agreement with previous works, a significantly higher mean value for the metallicity in the centers of cool core clusters versus non-cool core clusters. We find weak evidence for evolution in the central metallicity of cool core clusters (dZ/dz = –0.21 ± 0.11 Z ⊙), which is sufficient to account for this enhanced central metallicity over the past ~10 Gyr. We find no evidence for metallicity evolution outside of the core (dZ/dz = –0.03 ± 0.06 Z ⊙), and no significant difference in the core-excised metallicity between cool core and non-cool core clusters. This suggests that strong radio-mode active galactic nucleus feedback does not significantly alter the distribution of metals at $$r\\gt 0.15{R}_{500}$$. Given the limitations of current-generation X-ray telescopes in constraining the ICM metallicity at z > 1, significant improvements on this work will likely require next-generation X-ray missions.« less
Xue, Hairong; Yu, Hongjie; Li, Yinghao; Deng, Kai; Xu, You; Li, Xiaonian; Wang, Hongjing; Wang, Liang
2018-07-13
Control of structures and components of the nanoarray catalysts is very important for electrochemical energy conversion. Herein, unique NiCo 2 O 4 @MnO 2 core-shell nanoarray with hollow NiCo 2 O 4 Cores and MnO 2 flake shells is in situ fabricated on carbon textile via a two-step hydrothermal treatment followed by a subsequent annealing. The as-made nanoarray is highly active and durable catalyst for oxygen evolution reaction in alkaline media attribute to the synergetic effect derived from spatially separated nanoarray with favorable NiCo 2 O 4 and MnO 2 compositions.
Why was resistance to shorter-acting pre-emergence herbicides slower to evolve?
Somerville, Gayle J; Powles, Stephen B; Walsh, Michael J; Renton, Michael
2017-05-01
Across several agricultural systems the evolution of herbicide resistance has occurred more rapidly to post-emergence than pre-emergence herbicides; however, the reasons for this are not clear. We used a new simulation model to investigate whether interactions between differences in order of application and weed cohorts affected could explain this historically observed difference between the herbicide groups. A 10 year delay in resistance evolution was predicted for a shorter-acting residual pre-emergence (cf. post-emergence), when all other parameters were identical. Differences in order of application between pre- and post-emergence herbicides had minimal effect on rates of resistance evolution when similar weed cohorts were affected. This modelling suggested that the historically observed lower levels of resistance to pre-emergence herbicides are most likely to be due to the smaller number of weed cohorts affected by many pre-emergence herbicides. The lower number of weed cohorts affected by pre-emergence herbicides necessitated the use of additional, effective control measures, thereby reducing resistance evolution. This study highlights the advantages of applying multiple control measures to each weed cohort. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
The Evolvable Advanced Multi-Mission Operations System (AMMOS): Making Systems Interoperable
NASA Technical Reports Server (NTRS)
Ko, Adans Y.; Maldague, Pierre F.; Bui, Tung; Lam, Doris T.; McKinney, John C.
2010-01-01
The Advanced Multi-Mission Operations System (AMMOS) provides a common Mission Operation System (MOS) infrastructure to NASA deep space missions. The evolution of AMMOS has been driven by two factors: increasingly challenging requirements from space missions, and the emergence of new IT technology. The work described in this paper focuses on three key tasks related to IT technology requirements: first, to eliminate duplicate functionality; second, to promote the use of loosely coupled application programming interfaces, text based file interfaces, web-based frameworks and integrated Graphical User Interfaces (GUI) to connect users, data, and core functionality; and third, to build, develop, and deploy AMMOS services that are reusable, agile, adaptive to project MOS configurations, and responsive to industrially endorsed information technology standards.
Schwartz, N B; Pirok, E W; Mensch, J R; Domowicz, M S
1999-01-01
Proteoglycans are complex macromolecules, consisting of a polypeptide backbone to which are covalently attached one or more glycosaminoglycan chains. Molecular cloning has allowed identification of the genes encoding the core proteins of various proteoglycans, leading to a better understanding of the diversity of proteoglycan structure and function, as well as to the evolution of a classification of proteoglycans on the basis of emerging gene families that encode the different core proteins. One such family includes several proteoglycans that have been grouped with aggrecan, the large aggregating chondroitin sulfate proteoglycan of cartilage, based on a high number of sequence similarities within the N- and C-terminal domains. Thus far these proteoglycans include versican, neurocan, and brevican. It is now apparent that these proteins, as a group, are truly a gene family with shared structural motifs on the protein and nucleotide (mRNA) levels, and with nearly identical genomic organizations. Clearly a common ancestral origin is indicated for the members of the aggrecan family of proteoglycans. However, differing patterns of amplification and divergence have also occurred within certain exons across species and family members, leading to the class-characteristic protein motifs in the central carbohydrate-rich region exclusively. Thus the overall domain organization strongly suggests that sequence conservation in the terminal globular domains underlies common functions, whereas differences in the central portions of the genes account for functional specialization among the members of this gene family.
Curtis, Tammy
2015-01-01
Preparation for responding to emergency events that does not warrant outside help beyond the local community resources or responding to disaster events that is beyond the capabilities of the local community both require first responders and healthcare professionals to have interdisciplinary skills needed to function as a team for saving lives. To date, there is no core emergency preparedness and disaster planning competencies that have been standardized at all levels across the various allied health curricula disciplines. To identify if emergency preparedness and disaster training content are currently being taught in allied health program courses, to identify possible gaps within allied health curricula, and to explore the perceptions of allied health college educators for implementing emergency preparedness and disaster training core competencies into their existing curricula, if not already included. A quantitative Internet-based survey was conducted in 2013. Convenient sample. Fifty-one allied health college educators completed the survey. Descriptive statistics indicated that the majority of allied health college instructors do not currently teach emergency preparedness and disaster training core competency content within their current allied health discipline; however, their perceived level of importance for inclusion of the competencies was high. The results of this study supported the need for developing and establishing a basic national set of standardized core emergency preparedness and disaster planning competencies at all levels across various allied health curricula disciplines to ensure victims receive the best patient care and have the best possible chance of survival.
A suggested core content for education scholarship fellowships in emergency medicine.
Yarris, Lalena M; Coates, Wendy C; Lin, Michelle; Lind, Karen; Jordan, Jaime; Clarke, Sam; Guth, Todd A; Santen, Sally A; Hamstra, Stanley J
2012-12-01
A working group at the 2012 Academic Emergency Medicine consensus conference on education research in emergency medicine (EM) convened to develop a curriculum for dedicated postgraduate fellowships in EM education scholarship. This fellowship is intended to create future education scholars, equipped with the skills to thrive in academic careers. This proceedings article reports on the consensus of a breakout session subgroup tasked with defining a common core content for education scholarship fellowships. The authors propose that the core content of an EM education scholarship fellowship can be categorized in four distinct areas: career development, theories of learning and teaching methods, education research methods, and educational program administration. This core content can be incorporated into curricula for education scholarship fellowships in EM or other fields and can also be adapted for use in general medical education fellowships. © 2012 by the Society for Academic Emergency Medicine.
A large oxygen-dominated core from the seismic cartography of a pulsating white dwarf.
Giammichele, N; Charpinet, S; Fontaine, G; Brassard, P; Green, E M; Van Grootel, V; Bergeron, P; Zong, W; Dupret, M-A
2018-02-01
White-dwarf stars are the end product of stellar evolution for most stars in the Universe. Their interiors bear the imprint of fundamental mechanisms that occur during stellar evolution. Moreover, they are important chronometers for dating galactic stellar populations, and their mergers with other white dwarfs now appear to be responsible for producing the type Ia supernovae that are used as standard cosmological candles. However, the internal structure of white-dwarf stars-in particular their oxygen content and the stratification of their cores-is still poorly known, because of remaining uncertainties in the physics involved in stellar modelling codes. Here we report a measurement of the radial chemical stratification (of oxygen, carbon and helium) in the hydrogen-deficient white-dwarf star KIC08626021 (J192904.6+444708), independently of stellar-evolution calculations. We use archival data coupled with asteroseismic sounding techniques to determine the internal constitution of this star. We find that the oxygen content and extent of its core exceed the predictions of existing models of stellar evolution. The central homogeneous core has a mass of 0.45 solar masses, and is composed of about 86 per cent oxygen by mass. These values are respectively 40 per cent and 15 per cent greater than those expected from typical white-dwarf models. These findings challenge present theories of stellar evolution and their constitutive physics, and open up an avenue for calibrating white-dwarf cosmochronology.
Implications of the Homogeneous Nucleation Barrier for Top-Down Crystallization in Mercury's Core
NASA Astrophysics Data System (ADS)
Huguet, L.; Hauck, S. A.; Van Orman, J. A.; Jing, Z.
2018-05-01
Crystallization of solids in planetary cores depends both on ambient temperatures falling below the liquidus and on the ability to nucleate crystal growth. We discuss the implications of the nucleation barrier for thermal evolution of Mercury's core.
Compaction-Driven Evolution of Pluto's Rocky Core: Implications for Water-Rock Interactions
NASA Astrophysics Data System (ADS)
Gabasova, L. R.; Tobie, G.; Choblet, G.
2018-05-01
We model the compaction of Pluto's rocky core after accretion and explore the potential for hydrothermal circulation within the porous layer, as well as examine its effect on core cooling and the persistence of a liquid internal ocean.
THE ROLE OF THE MAGNETOROTATIONAL INSTABILITY IN MASSIVE STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, J. Craig; Kagan, Daniel; Chatzopoulos, Emmanouil, E-mail: wheel@astro.as.utexas.edu
2015-01-20
The magnetorotational instability (MRI) is key to physics in accretion disks and is widely considered to play some role in massive star core collapse. Models of rotating massive stars naturally develop very strong shear at composition boundaries, a necessary condition for MRI instability, and the MRI is subject to triply diffusive destabilizing effects in radiative regions. We have used the MESA stellar evolution code to compute magnetic effects due to the Spruit-Tayler (ST) mechanism and the MRI, separately and together, in a sample of massive star models. We find that the MRI can be active in the later stages ofmore » massive star evolution, leading to mixing effects that are not captured in models that neglect the MRI. The MRI and related magnetorotational effects can move models of given zero-age main sequence mass across ''boundaries'' from degenerate CO cores to degenerate O/Ne/Mg cores and from degenerate O/Ne/Mg cores to iron cores, thus affecting the final evolution and the physics of core collapse. The MRI acting alone can slow the rotation of the inner core in general agreement with the observed ''initial'' rotation rates of pulsars. The MRI analysis suggests that localized fields ∼10{sup 12} G may exist at the boundary of the iron core. With both the ST and MRI mechanisms active in the 20 M {sub ☉} model, we find that the helium shell mixes entirely out into the envelope. Enhanced mixing could yield a population of yellow or even blue supergiant supernova progenitors that would not be standard SN IIP.« less
Lefébure, Tristan; Stanhope, Michael J
2007-01-01
Background The genus Streptococcus is one of the most diverse and important human and agricultural pathogens. This study employs comparative evolutionary analyses of 26 Streptococcus genomes to yield an improved understanding of the relative roles of recombination and positive selection in pathogen adaptation to their hosts. Results Streptococcus genomes exhibit extreme levels of evolutionary plasticity, with high levels of gene gain and loss during species and strain evolution. S. agalactiae has a large pan-genome, with little recombination in its core-genome, while S. pyogenes has a smaller pan-genome and much more recombination of its core-genome, perhaps reflecting the greater habitat, and gene pool, diversity for S. agalactiae compared to S. pyogenes. Core-genome recombination was evident in all lineages (18% to 37% of the core-genome judged to be recombinant), while positive selection was mainly observed during species differentiation (from 11% to 34% of the core-genome). Positive selection pressure was unevenly distributed across lineages and biochemical main role categories. S. suis was the lineage with the greatest level of positive selection pressure, the largest number of unique loci selected, and the largest amount of gene gain and loss. Conclusion Recombination is an important evolutionary force in shaping Streptococcus genomes, not only in the acquisition of significant portions of the genome as lineage specific loci, but also in facilitating rapid evolution of the core-genome. Positive selection, although undoubtedly a slower process, has nonetheless played an important role in adaptation of the core-genome of different Streptococcus species to different hosts. PMID:17475002
Progenitors of Core-Collapse Supernovae
NASA Astrophysics Data System (ADS)
Hirschi, R.; Arnett, D.; Cristini, A.; Georgy, C.; Meakin, C.; Walkington, I.
2017-02-01
Massive stars have a strong impact on their surroundings, in particular when they produce a core-collapse supernova at the end of their evolution. In these proceedings, we review the general evolution of massive stars and their properties at collapse as well as the transition between massive and intermediate-mass stars. We also summarise the effects of metallicity and rotation. We then discuss some of the major uncertainties in the modelling of massive stars, with a particular emphasis on the treatment of convection in 1D stellar evolution codes. Finally, we present new 3D hydrodynamic simulations of convection in carbon burning and list key points to take from 3D hydrodynamic studies for the development of new prescriptions for convective boundary mixing in 1D stellar evolution codes.
Li, Hao; Kuman, Kathleen; Lotter, Matt G; Leader, George M; Gibbon, Ryan J
2017-06-01
Prepared core technology illustrates in-depth planning and the presence of a mental template during the core reduction process. This technology is, therefore, a significant indicator in studying the evolution of abstract thought and the cognitive abilities of hominids. Here, we report on Victoria West cores excavated from the Canteen Kopje site in central South Africa, with a preliminary age estimate of approximately 1 Ma (million years ago) for these cores. Technological analysis shows that the Victoria West cores bear similarities to the 'Volumetric Concept' as defined for the Levallois, a popular and widely distributed prepared core technology from at least 200 ka (thousand years ago). Although these similarities are present, several notable differences also occur that make the Victoria West a unique and distinctive prepared core technology; these are: elongated and convergent core shapes, consistent blow directions for flake removal, a predominance of large side-struck flakes, and the use of these flakes to make Acheulean large cutting tools. This innovative core reduction strategy at Canteen Kopje extends the roots of prepared core technology to the latter part of the Early Acheulean and clearly demonstrates an increase in the cognitive abilities and complexities of hominids in this time period.
Character evolution and missing (morphological) data across the core asterids (Gentianidae)
USDA-ARS?s Scientific Manuscript database
Character evolution and missing (morphological) data across Asteridae. Premise of the study: Our current understanding of flowering plant phylogeny provides an excellent framework for exploring various aspects of character evolution through comparative analyses. However, attempts to synthesize this ...
Whole planet coupling between climate, mantle, and core: Implications for rocky planet evolution
NASA Astrophysics Data System (ADS)
Foley, Bradford J.; Driscoll, Peter E.
2016-05-01
Earth's climate, mantle, and core interact over geologic time scales. Climate influences whether plate tectonics can take place on a planet, with cool climates being favorable for plate tectonics because they enhance stresses in the lithosphere, suppress plate boundary annealing, and promote hydration and weakening of the lithosphere. Plate tectonics plays a vital role in the long-term carbon cycle, which helps to maintain a temperate climate. Plate tectonics provides long-term cooling of the core, which is vital for generating a magnetic field, and the magnetic field is capable of shielding atmospheric volatiles from the solar wind. Coupling between climate, mantle, and core can potentially explain the divergent evolution of Earth and Venus. As Venus lies too close to the sun for liquid water to exist, there is no long-term carbon cycle and thus an extremely hot climate. Therefore, plate tectonics cannot operate and a long-lived core dynamo cannot be sustained due to insufficient core cooling. On planets within the habitable zone where liquid water is possible, a wide range of evolutionary scenarios can take place depending on initial atmospheric composition, bulk volatile content, or the timing of when plate tectonics initiates, among other factors. Many of these evolutionary trajectories would render the planet uninhabitable. However, there is still significant uncertainty over the nature of the coupling between climate, mantle, and core. Future work is needed to constrain potential evolutionary scenarios and the likelihood of an Earth-like evolution.
RONSE DE CRAENE, LOUIS P.
2004-01-01
• Background and Aims On the basis of molecular evidence Berberidopsidaceae have been linked with Aextoxicaceae in an order Berberidopsidales at the base of the core Eudicots. The floral development of Berberidopsis is central to the understanding of the evolution of floral configurations at the transition of the basal Eudicots to the core Eudicots. It lies at the transition of trimerous or dimerous, simplified apetalous forms into pentamerous, petaliferous flowers. • Methods The floral ontogeny of Berberidopsis was studied with a scanning electron microscope. • Key Results Flowers are grouped in terminal racemes with variable development. The relationship between the number of tepals, stamens and carpels is more or less fixed and floral initiation follows a strict 2/5 phyllotaxis. Two bracteoles, 12 tepals, eight stamens and three carpels are initiated in a regular sequence. The number of stamens can be increased by a doubling of stamen positions. • Conclusions The floral ontogeny of Berberidopsis provides support for the shift in floral bauplan from the basal Eudicots to the core Eudicots as a transition of a spiral flower with a 2/5 phyllotaxis to pentamerous flowers with two perianth whorls, two stamen whorls and a single carpel whorl. The differentiation of sepals and petals from bracteotepals is discussed and a comparison is made with other Eudicots with a similar configuration and development. Depending on the resolution of the relationships among the basalmost core Eudicots it is suggested that Berberidopsis either represents a critical stage in the evolution of pentamerous flowers of major clades of Eudicots, or has a floral prototype that may be at the base of evolution of flowers of other core Eudicots. The distribution of a floral Bauplan in other clades of Eudicots similar to Berberidopsidales is discussed. PMID:15451722
2014-08-20
of Cybersecurity Dynamics emerged. Intuitively, Cybersecurity Dynamics describes the evolution of cybersecurity state as caused by cyber attack...Dynamics emerged. Intuitively, Cybersecurity Dynamics describes the evolution of cybersecurity state as caused by cyber attack-defense interactions...evolution of cyberse- curity state as caused by cyber attack-defense interactions. By studying Cybersecurity Dynamics, we can characterize the
NASA Astrophysics Data System (ADS)
Parthiban, P.; Sakar, M.; Balakumar, S.
2013-02-01
We report the evolution of Ag/Au triangular nanoframes from nano core/shell of Ag/Au and their surface enhanced Raman scattering (SERS) properties. The Ag/Au prismatic core/shell nanostructures were synthesized using chemical reduction method. It was observed that, on the addition of excess gold chloride (HAuCl4) solution, the morphology of nano core/shell was changed to alloy like triangular nanoframes. Accordingly, a shift was found towards higher wavelengths in the UV-Visible absorption peaks of Ag/Au nanoframes compare to Ag/Au nano core/shell. Consequently, the SERS effect of these Ag/Au anisotropic nanostructures were studied on methylene blue. The Ag/Au alloy like prismatic nanoframes showed improved SERS effect than that of prismatic core/shell nanostructures. The experimental findings were revealed that the improved SERS effect could be resulted from the enhanced surface plasmon resonance (SPR) due to the alloy like construction of Ag/Au system.
Seismic imaging of extended crust with emphasis on the western United States
McCarthy, J.; Thompson, G.A.
1988-01-01
Understanding of the crust has improved dramatically following the application of seismic reflection and refraction techniques to studies of the deep crust. This is particularly true in areas where the last tectonic event was extensional, such as the Basin and Range province of the western United States and much of western Europe. In these regions, a characteristic reflective pattern has emerged, whereby the lower crust is highly reflective and the upper crust and upper mantle are either poorly reflective or strikingly nonreflective. In the metamorphic-core-complex belt in the western United States, where extension can be as much as an order of magnitude greater than in the more classic continental rift zones, the lower crustal reflectivity thickens and rises, yielding a picture of a crust that is reflective throughout. If metamorphic core complexes are representative of extended continental crust world-wide, then these results suggest that magmatism and ductile flow have also contributed to the evolution of the middle and lower crust in many other areas around the world. -from Authors
Update of the ERS international Adult Respiratory Medicine syllabus for postgraduate training.
Tabin, Nathalie; Mitchell, Sharon; O'Connell, Elaine; Stolz, Daiana; Rohde, Gernot
2018-03-01
First published in 2006, the first European core syllabus in Adult Respiratory Medicine was developed with the intention of harmonising education and training throughout Europe. Internationally recognised by the European Union of Medical Specialists and identified as the first document of its kind in respiratory medicine, it has provided a comprehensive guide for both local and national institutions in the development of adult respiratory training programmes. Like all fields in education, respiratory medicine is an ever-changing area and as such, respective syllabi, curricula and training programmes must adapt and diversify in line with the evolution of core medical concepts. Given the proven importance of the Adult Respiratory Medicine syllabus from both a national and international standpoint, it is of equal importance that said syllabus remains abreast of emerging trends so as to sustain the synchronisation of respiratory medicine in Europe. In order to develop an updated programme, a comprehensive review process of the current syllabus is a necessary endeavour and a step that the European Respiratory Society (ERS) has undertaken through the process of a needs assessment.
NASA Technical Reports Server (NTRS)
Hess, P. C.; Parmentier, E. M.
1993-01-01
We explore a model for the chemical evolution of the lunar interior that explains the origin and evolution of lunar magmatism and possibly the existence of a lunar core. A magma ocean formed during accretion differentiates into the anorthositic crust and chemically stratified cumulate mantle. The cumulative mantle is gravitationally unstable with dense ilmenite cumulate layers overlying olivine-orthopyroxene cumulates with Fe/Mg that decreases with depth. The dense ilmenite layer sinks to the center of the moon forming the core. The remainder of the gravitationally unstable cumulate pile also overturns. Any remaining primitive lunar mantle rises to its level of neutral buoyancy in the cumulate pile. Perhaps melting of primitive lunar mantle due to this decompression results in early lunar Mg-rich magmatism. Because of its high concentration of incompatible heat producing elements, the ilmenite core heats the overlying orthopyroxene-bearing cumulates. As a conductively thickening thermal boundary layer becomes unstable, the resulting mantle plumes rise, decompress, and partially melt to generate the mare basalts. This model explains both the timing and chemical characteristics of lunar magmatism.
Proton core-beam system in the expanding solar wind: Hybrid simulations
NASA Astrophysics Data System (ADS)
Hellinger, Petr; Trávníček, Pavel M.
2011-11-01
Results of a two-dimensional hybrid expanding box simulation of a proton beam-core system in the solar wind are presented. The expansion with a strictly radial magnetic field leads to a decrease of the ratio between the proton perpendicular and parallel temperatures as well as to an increase of the ratio between the beam-core differential velocity and the local Alfvén velocity creating a free energy for many different instabilities. The system is indeed most of the time marginally stable with respect to the parallel magnetosonic, oblique Alfvén, proton cyclotron and parallel fire hose instabilities which determine the system evolution counteracting some effects of the expansion and interacting with each other. Nonlinear evolution of these instabilities leads to large modifications of the proton velocity distribution function. The beam and core protons are slowed with respect to each other and heated, and at later stages of the evolution the two populations are not clearly distinguishable. On the macroscopic level the instabilities cause large departures from the double adiabatic prediction leading to an efficient isotropization of effective proton temperatures in agreement with Helios observations.
Kolodny, Oren; Feldman, Marcus W.
2017-01-01
Evidence for interactions between populations plays a prominent role in the reconstruction of historical and prehistoric human dynamics; these interactions are usually interpreted to reflect cultural practices or demographic processes. The sharp increase in long-distance transportation of lithic material between the Middle and Upper Palaeolithic, for example, is seen as a manifestation of the cultural revolution that defined the transition between these epochs. Here, we propose that population interaction is not only a reflection of cultural change but also a potential driver of it. We explore the possible effects of inter-population migration on cultural evolution when migrating individuals possess core technological knowledge from their original population. Using a computational framework of cultural evolution that incorporates realistic aspects of human innovation processes, we show that migration can lead to a range of outcomes, including punctuated but transient increases in cultural complexity, an increase of cultural complexity to an elevated steady state and the emergence of a positive feedback loop that drives ongoing acceleration in cultural accumulation. Our findings suggest that population contact may have played a crucial role in the evolution of hominin cultures and propose explanations for observations of Palaeolithic cultural change whose interpretations have been hotly debated. PMID:28468920
Single genome retrieval of context-dependent variability in mutation rates for human germline.
Sahakyan, Aleksandr B; Balasubramanian, Shankar
2017-01-13
Accurate knowledge of the core components of substitution rates is of vital importance to understand genome evolution and dynamics. By performing a single-genome and direct analysis of 39,894 retrotransposon remnants, we reveal sequence context-dependent germline nucleotide substitution rates for the human genome. The rates are characterised through rate constants in a time-domain, and are made available through a dedicated program (Trek) and a stand-alone database. Due to the nature of the method design and the imposed stringency criteria, we expect our rate constants to be good estimates for the rates of spontaneous mutations. Benefiting from such data, we study the short-range nucleotide (up to 7-mer) organisation and the germline basal substitution propensity (BSP) profile of the human genome; characterise novel, CpG-independent, substitution prone and resistant motifs; confirm a decreased tendency of moieties with low BSP to undergo somatic mutations in a number of cancer types; and, produce a Trek-based estimate of the overall mutation rate in human. The extended set of rate constants we report may enrich our resources and help advance our understanding of genome dynamics and evolution, with possible implications for the role of spontaneous mutations in the emergence of pathological genotypes and neutral evolution of proteomes.
A model for genesis of transcription systems.
Burton, Zachary F; Opron, Kristopher; Wei, Guowei; Geiger, James H
2016-01-01
Repeating sequences generated from RNA gene fusions/ligations dominate ancient life, indicating central importance of building structural complexity in evolving biological systems. A simple and coherent story of life on earth is told from tracking repeating motifs that generate α/β proteins, 2-double-Ψ-β-barrel (DPBB) type RNA polymerases (RNAPs), general transcription factors (GTFs), and promoters. A general rule that emerges is that biological complexity that arises through generation of repeats is often bounded by solubility and closure (i.e., to form a pseudo-dimer or a barrel). Because the first DNA genomes were replicated by DNA template-dependent RNA synthesis followed by RNA template-dependent DNA synthesis via reverse transcriptase, the first DNA replication origins were initially 2-DPBB type RNAP promoters. A simplifying model for evolution of promoters/replication origins via repetition of core promoter elements is proposed. The model can explain why Pribnow boxes in bacterial transcription (i.e., (-12)TATAATG(-6)) so closely resemble TATA boxes (i.e., (-31)TATAAAAG(-24)) in archaeal/eukaryotic transcription. The evolution of anchor DNA sequences in bacterial (i.e., (-35)TTGACA(-30)) and archaeal (BRE(up); BRE for TFB recognition element) promoters is potentially explained. The evolution of BRE(down) elements of archaeal promoters is potentially explained.
Helical vortices: Quasiequilibrium states and their time evolution
NASA Astrophysics Data System (ADS)
Selçuk, Can; Delbende, Ivan; Rossi, Maurice
2017-08-01
The time evolution of a viscous helical vortex is investigated by direct numerical simulations of the Navier-Stokes equations where helical symmetry is enforced. Using conservation laws in the framework of helical symmetry, we elaborate an initial condition consisting in a finite core vortex, the time evolution of which leads to a generic quasiequilibrium state independent of the initial core size. Numerical results at different helical pitch values provide an accurate characterization in time for such helical states, for which specific techniques have been introduced: helix radius, angular velocity, stream function-velocity-vorticity relationships, and core properties (size, self-similarity, and ellipticity). Viscosity is shown to be at the origin of a small helical velocity component, which we relate to the helical vorticity component. Finally, changes in time of the flow topology are studied using the helical stream function and three-dimensional Lagrangian orbits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helled, Ravit
We explore the change in Jupiter's normalized axial moment of inertia (NMOI) assuming that Jupiter undergoes core erosion. It is found that Jupiter's contraction combined with an erosion of 20 M{sub Circled-Plus} from a primordial core of 30 M{sub Circled-Plus} can significantly change Jupiter's NMOI over time. It is shown that Jupiter's NMOI could have changed from {approx}0.235 to {approx}0.264 throughout its evolution. We find that an NMOI value of {approx}0.235 as suggested by dynamical models could, in principle, be consistent with Jupiter's primordial internal structure. Low NMOI values, however, persist only for the first {approx}10{sup 6} years of Jupiter'smore » evolution. Re-evaluation of dynamical stability models as well as more sophisticated evolution models of Jupiter with core erosion seem to be required in order to provide more robust estimates for Jupiter's primordial NMOI.« less
Global Surveillance of Emerging Influenza Virus Genotypes by Mass Spectrometry
Sampath, Rangarajan; Russell, Kevin L.; Massire, Christian; Eshoo, Mark W.; Harpin, Vanessa; Blyn, Lawrence B.; Melton, Rachael; Ivy, Cristina; Pennella, Thuy; Li, Feng; Levene, Harold; Hall, Thomas A.; Libby, Brian; Fan, Nancy; Walcott, Demetrius J.; Ranken, Raymond; Pear, Michael; Schink, Amy; Gutierrez, Jose; Drader, Jared; Moore, David; Metzgar, David; Addington, Lynda; Rothman, Richard; Gaydos, Charlotte A.; Yang, Samuel; St. George, Kirsten; Fuschino, Meghan E.; Dean, Amy B.; Stallknecht, David E.; Goekjian, Ginger; Yingst, Samuel; Monteville, Marshall; Saad, Magdi D.; Whitehouse, Chris A.; Baldwin, Carson; Rudnick, Karl H.; Hofstadler, Steven A.; Lemon, Stanley M.; Ecker, David J.
2007-01-01
Background Effective influenza surveillance requires new methods capable of rapid and inexpensive genomic analysis of evolving viral species for pandemic preparedness, to understand the evolution of circulating viral species, and for vaccine strain selection. We have developed one such approach based on previously described broad-range reverse transcription PCR/electrospray ionization mass spectrometry (RT-PCR/ESI-MS) technology. Methods and Principal Findings Analysis of base compositions of RT-PCR amplicons from influenza core gene segments (PB1, PB2, PA, M, NS, NP) are used to provide sub-species identification and infer influenza virus H and N subtypes. Using this approach, we detected and correctly identified 92 mammalian and avian influenza isolates, representing 30 different H and N types, including 29 avian H5N1 isolates. Further, direct analysis of 656 human clinical respiratory specimens collected over a seven-year period (1999–2006) showed correct identification of the viral species and subtypes with >97% sensitivity and specificity. Base composition derived clusters inferred from this analysis showed 100% concordance to previously established clades. Ongoing surveillance of samples from the recent influenza virus seasons (2005–2006) showed evidence for emergence and establishment of new genotypes of circulating H3N2 strains worldwide. Mixed viral quasispecies were found in approximately 1% of these recent samples providing a view into viral evolution. Conclusion/Significance Thus, rapid RT-PCR/ESI-MS analysis can be used to simultaneously identify all species of influenza viruses with clade-level resolution, identify mixed viral populations and monitor global spread and emergence of novel viral genotypes. This high-throughput method promises to become an integral component of influenza surveillance. PMID:17534439
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-18
... Regulatory Guides (RG) RG 1.79, ````Preoperational Testing of Emergency Core Cooling Systems for Pressurized Water Reactors,'' Revision 2 and RG 1.79.1, ``Initial Test Program of Emergency Core Cooling Systems for...
NASA Technical Reports Server (NTRS)
Lada, Charles J.
2005-01-01
This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular cloud cores and investigate the physical conditions which give rise to star and planet formation. The goals of this program are to acquire, reduce and analyze deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds in order to internal structure of starless cloud cores and to quantitatively investigate the evolution of such structure through the star and planet formation process. During the second year of this grant, progress toward these goals is discussed.
NASA Technical Reports Server (NTRS)
Lada, Charles J.
2004-01-01
This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular cloud cores and investigate the physical conditions which give rise to star and planet formation. The goals of this program are to acquire, reduce and analyze deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds in order to determine the detailed initial conditions for star formation from quantitative measurements of the internal structure of starless cloud cores and to quantitatively investigate the evolution of such structure through the star and planet formation process.
The relationship between crustal tectonics and internal evolution in the moon and Mercury
NASA Technical Reports Server (NTRS)
Solomon, S. C.
1977-01-01
The relationship between crustal tectonics and thermal evolution is discussed in terms of the moon and Mercury. Finite strain theory and depth and temperature-dependent thermal expansion are used to evaluate previous conclusions about early lunar history. Factors bringing about core differentiation in the first 0.6 b.y. of Mercurian evolution are described. The influence of concentrating radioactive heat sources located in Mercury's crust on the predicted contraction is outlined. The predicted planetary volume change is explored with regard to quantitative limits on the extent of Mercurian core solidification. Lunar and Mercurian thermal stresses involved in thermal evolution are reviewed, noting the history of surface volcanism. It is concluded that surface faulting and volcanism are closely associated with the thermal evolution of the whole planetary volume. As the planet cools or is heated, several types of tectonic and volcanic effects may be produced by thermal stress occurring in the lithosphere.
Thermal evolution of a differentiated Ganymede and implications for surface features
NASA Technical Reports Server (NTRS)
Kirk, R. L.; Stevenson, D. J.
1987-01-01
Thermodynamic models are developed for the processes which controlled the evolution of the surface Ganymede, an icy Jovian satellite assumed to have a rock-rich core surrounded by a water-ice mantle. Account is taken of a heat pulse which would have arisen from a Rayleigh-Taylor instability at a deep-seated liquid-solid water interface, rapid fracturing from global stresses imposed by warm ice diapiric upwelling, impacts by large meteorites, and resurfacing by ice flows (rather than core formation). Comparisons are made with existing models for the evolution of Callisto, and the difficulties in defining a mechanism which produced the groove terrain of Ganymede are discussed.
Influence of Non-spherical Initial Stellar Structure on the Core-Collapse Supernova Mechanism
NASA Astrophysics Data System (ADS)
Couch, Sean M.
I review the state of investigation into the impact that nonspherical stellar progenitor structure has on the core-collapse supernova mechanism. Although modeling stellar evolution relies on 1D spherically symmetric calculations, massive stars are not truly spherical. In the stellar evolution codes, this fact is accounted for by "fixes" such as mixing length theory and attendant modifications. Of particular relevance to the supernova mechanism, the Si- and O-burning shells surrounding the iron core at the point of collapse can be violently convective, with convective speeds of hundreds of km s-1. It has recently been shown by a number of groups that the presence of nonspherical perturbations in the layers surrounding the collapsing iron core can have a favorable impact on the likelihood for shock revival and explosion via the neutrino heating mechanism. This is due in large part to the strengthening of turbulence behind the stalled shock due to the presence of finite amplitude seed perturbations to speed the growth of convection which drives the post-shock turbulence. Efforts are now underway to simulate the final minutes of stellar evolution to core-collapse in 3D with the aim to generate realistic multidimensional initial conditions for use in simulations of the supernova mechanism.
NASA Astrophysics Data System (ADS)
Pratolongo, Paula; Piovan, María Julia; Cuadrado, Diana G.; Gómez, Eduardo A.
2017-08-01
Sedimentary descriptions and radiocarbon ages from two cores obtained from coastal plains along the western margin of the Bahía Blanca Estuary (Argentina) were integrated with previous information on landscape patterns and plant associations to infer landscape evolution during the mid-to-late Holocene. The study area comprises at least two marine terraces of different elevations. The old marine plain (OMP), at an average elevation of 5 m above mean tidal level (MTL), is a nearly continuous flat surface. The Recent marine plain (RMP), 2 to 3 m above MTL, is a mosaic of topographic highs and elongated depressions that may correspond to former tidal channels. Mollusks at the base of the OMP core (site elevation 5.09 m above MTL), with ages between 5,660 ± 30 and 5,470 ± 30 years BP, indicate a subtidal setting near the inland limits of the marine ingression. The sandy bottom of the core is interpreted as the last stage of the transgressive phase, followed by a tight sequence of dark laminated muds topped by a thick layer of massive gray muds. The RMP core (site elevation 1.80 m above MTL) has a similar sedimentary sequence, but unconformities appear at lower elevations and the massive mud deposits are less developed. The thickness of the grayish mud layer is a major difference between the OMP and RMP cores, but deeper layers have similar ages, suggesting a common origin at the end of the transgressive phase. The overlying massive muds would correspond to rapid sedimentation during a high sea-level stillstand or slow regression. It is proposed that, after a rapid sea-level drop to about 3 m above MTL, a flat and continuous surface corresponding to the OMP emerged, and more recent coastal dynamics shaped the dissected landscape of the RMP. For the Bahía Blanca Estuary, smooth regressive trends have been proposed after the mid-Holocene highstand, but also stepped curves. A stillstand or slowly dropping sea level was described around 3,850 ± 100 years BP, as well as negative relative sea-level oscillations. In this study, the differentiation between the OMP and the RMP supports the occurrence of a stepped regressive trend that, at least locally, presented two different stages.
NASA Astrophysics Data System (ADS)
Cao, P.; Karpyn, Z.; Li, L.
2013-12-01
CO2-brine has the potential to alter wellbore cement in depleted oil and gas reservoirs under geological CO2 sequestration conditions. A better understanding of CO2-brine-cement-rock interaction is needed to evaluate the seal integrity of candidate sequestration formation in the long run. This work investigates possible alteration of wellbore cement when bonded by different host formation rock upon exposure to CO2-saturated brine. Composite cement-sandstone and cement-limestone core samples were created to perform reactive coreflood experiments. After an eight-day dynamic flow-through period, both cores had a similar extent of porosity increase, while the cement-limestone core experienced a ten-fold higher increase in permeability. With the aid of X-ray Micro-CT imaging and Scanning Electron Microscopy, it is observed that cement underwent greater degradation at the cement-sandstone interface. Degradation of cement-limestone core mainly took place on the host rock matrix. Worm holes were developed and a solution channel was formed in the limestone, creating a dominant flow path that altered both flow and reaction behavior. Limestone buffered the injected acidic brine preventing further deterioration of cement near the core outlet. Changes in fluid chemistry of limestone and sandstone coreflood effluents are compared. Results from this work are aimed at assisting the development and validation of robust reactive transport models through direct measurement of cemented rock core porosity and permeability evolution as well as the effluent aqueous chemistry change. This will subsequently improve predictive capabilities of reactive transport models associated with CO2 sequestration in geologic environments. Permeability Evolution of Cement-Rock Core Sample during Dynamic Flow of CO2-Brine
Theoretical Developments in Understanding Massive Star Formation
NASA Technical Reports Server (NTRS)
Yorke, Harold W.; Bodenheimer, Peter
2007-01-01
Except under special circumstances massive stars in galactic disks will form through accretion. The gravitational collapse of a molecular cloud core will initially produce one or more low mass quasi-hydrostatic objects of a few Jupiter masses. Through subsequent accretion the masses of these cores grow as they simultaneously evolve toward hydrogen burning central densities and temperatures. We review the evolution of accreting (proto-)stars, including new results calculated with a publicly available stellar evolution code written by the authors.
Chertkova, Aleksandra A; Schiffman, Joshua S; Nuzhdin, Sergey V; Kozlov, Konstantin N; Samsonova, Maria G; Gursky, Vitaly V
2017-02-07
Cis-regulatory sequences are often composed of many low-affinity transcription factor binding sites (TFBSs). Determining the evolutionary and functional importance of regulatory sequence composition is impeded without a detailed knowledge of the genotype-phenotype map. We simulate the evolution of regulatory sequences involved in Drosophila melanogaster embryo segmentation during early development. Natural selection evaluates gene expression dynamics produced by a computational model of the developmental network. We observe a dramatic decrease in the total number of transcription factor binding sites through the course of evolution. Despite a decrease in average sequence binding energies through time, the regulatory sequences tend towards organisations containing increased high affinity transcription factor binding sites. Additionally, the binding energies of separate sequence segments demonstrate ubiquitous mutual correlations through time. Fewer than 10% of initial TFBSs are maintained throughout the entire simulation, deemed 'core' sites. These sites have increased functional importance as assessed under wild-type conditions and their binding energy distributions are highly conserved. Furthermore, TFBSs within close proximity of core sites exhibit increased longevity, reflecting functional regulatory interactions with core sites. In response to elevated mutational pressure, evolution tends to sample regulatory sequence organisations with fewer, albeit on average, stronger functional transcription factor binding sites. These organisations are also shaped by the regulatory interactions among core binding sites with sites in their local vicinity.
Neutrino emission from nearby supernova progenitors
NASA Astrophysics Data System (ADS)
Yoshida, Takashi; Takahashi, Koh; Umeda, Hideyuki
2016-05-01
Neutrinos have an important role for energy loss process during advanced evolution of massive stars. Although the luminosity and average energy of neutrinos during the Si burning are much smaller than those of supernova neutrinos, these neutrinos are expected to be detected by the liquid scintillation neutrino detector KamLAND if a supernova explosion occurs at the distance of ~100 parsec. We investigate the neutrino emission from massive stars during advanced evolution. We calculate the evolution of the energy spectra of neutrinos produced through electron-positron pair-annihilation in the supernova progenitors with the initial mass of 12, 15, and 20 M ⊙ during the Si burning and core-collapse stages. The neutrino emission rate increases from ~ 1050 s-1 to ~ 1052 s-1. The average energy of electron-antineutrinos is about 1.25 MeV during the Si burning and gradually increases until the core-collapse. For one week before the supernova explosion, the KamLAND detector is expected to observe 12-24 and 6-13 v¯e events in the normal and inverted mass hierarchies, respectively, if a supernova explosion of a 12-20 M ⊙ star occurs at the distance of 200 parsec, corresponding to the distance to Betelgeuse. Observations of neutrinos from SN progenitors have a possibility to constrain the core structure and the evolution just before the core collapse of massive stars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Y.A.; Feltus, M.A.
1995-07-01
Reliability-centered maintenance (RCM) methods are applied to boiling water reactor plant-specific emergency core cooling system probabilistic risk assessment (PRA) fault trees. The RCM is a technique that is system function-based, for improving a preventive maintenance (PM) program, which is applied on a component basis. Many PM programs are based on time-directed maintenance tasks, while RCM methods focus on component condition-directed maintenance tasks. Stroke time test data for motor-operated valves (MOVs) are used to address three aspects concerning RCM: (a) to determine if MOV stroke time testing was useful as a condition-directed PM task; (b) to determine and compare the plant-specificmore » MOV failure data from a broad RCM philosophy time period compared with a PM period and, also, compared with generic industry MOV failure data; and (c) to determine the effects and impact of the plant-specific MOV failure data on core damage frequency (CDF) and system unavailabilities for these emergency systems. The MOV stroke time test data from four emergency core cooling systems [i.e., high-pressure coolant injection (HPCI), reactor core isolation cooling (RCIC), low-pressure core spray (LPCS), and residual heat removal/low-pressure coolant injection (RHR/LPCI)] were gathered from Philadelphia Electric Company`s Peach Bottom Atomic Power Station Units 2 and 3 between 1980 and 1992. The analyses showed that MOV stroke time testing was not a predictor for eminent failure and should be considered as a go/no-go test. The failure data from the broad RCM philosophy showed an improvement compared with the PM-period failure rates in the emergency core cooling system MOVs. Also, the plant-specific MOV failure rates for both maintenance philosophies were shown to be lower than the generic industry estimates.« less
Georgino, Madeline M; Kress, Terri; Alexander, Sheila; Beach, Michael
2015-01-01
The purpose of this project was to measure trauma nurse improvement in familiarity with emergency preparedness and disaster response core competencies as originally defined by the Emergency Preparedness Information Questionnaire after a focused educational program. An adapted version of the Emergency Preparedness Information Questionnaire was utilized to measure familiarity of nurses with core competencies pertinent to first responder capabilities. This project utilized a pre- and postsurvey descriptive design and integrated education sessions into the preexisting, mandatory "Trauma Nurse Course" at large, level I trauma center. A total of 63 nurses completed the intervention during May and September 2014 sessions. Overall, all 8 competencies demonstrated significant (P < .001; 98% confidence interval) improvements in familiarity. In conclusion, this pilot quality improvement project demonstrated a unique approach to educating nurses to be more ready and comfortable when treating victims of a disaster.
Model for texture evolution in cold rolling of 2.4 wt.-% Si non-oriented electrical steel
NASA Astrophysics Data System (ADS)
Wei, X.; Hojda, S.; Dierdorf, J.; Lohmar, J.; Hirt, G.
2017-10-01
Iron loss and limited magnetic flux density are constraints for NGO electrical steel used in highly efficient electrical machinery cores. The most important factors that affect these properties are the final microstructure and the texture of the NGO steel. Reviewing the whole process chain, cold rolling plays an important role because the recrystallization and grain growth during the final heat treatment can be strongly affected by the stored energy and microstructure of cold rolling, and some texture characteristics can be inherited as well. Therefore, texture evolution during cold rolling of NGO steel is worth a detailed investigation. In this paper, texture evolution in cold rolling of non-oriented (NGO) electrical steel is simulated with a crystal plasticity finite element method (CPFEM) model. In previous work, a CPFEM model has been implemented for simulating the texture evolution with periodic boundary conditions and a phenomenological constitutive law. In a first step the microstructure in the core of the workpiece was investigated and mapped to a representative volume element to predict the texture evolution. In this work an improved version of the CPFEM model is described that better reflects the texture evolution in cold rolling of NGO electrical steel containing 2.4 wt.-% Si. This is achieved by applying the deformation gradient and calibrating the flow curve within the CPFEM model. Moreover, the evolution of dislocation density is calculated and visualized in this model. An in depth comparison of the numerical and experimental results reveals, that the improved CPFEM model is able to represent the important characteristics of texture evolution in the core of the workpiece during cold rolling with high precision.
Gamma-ray burst jet dynamics and their interaction with the progenitor star.
Lazzati, Davide; Morsony, Brian J; Begelman, Mitchell C
2007-05-15
The association of at least some long gamma-ray bursts with type Ic supernova explosions has been established beyond reasonable doubt. Theoretically, the challenge is to explain the presence of a light hyper-relativistic flow propagating through a massive stellar core without losing those properties. We discuss the role of the jet-star interaction in shaping the properties of the outflow emerging on the surface of the star. We show that the nature of the inner engine is hidden from the observer for most of the evolution, well beyond the time of the jet breakout on the stellar surface. The discussion is based on analytical considerations as well as high resolution numerical simulations. Finally, the observational consequences of the scenario are addressed in light of the present capabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Akihiro; Maeda, Keiichi; Shigeyama, Toshikazu
A two-dimensional special relativistic radiation-hydrodynamics code is developed and applied to numerical simulations of supernova shock breakout in bipolar explosions of a blue supergiant. Our calculations successfully simulate the dynamical evolution of a blast wave in the star and its emergence from the surface. Results of the model with spherical energy deposition show a good agreement with previous simulations. Furthermore, we calculate several models with bipolar energy deposition and compare their results with the spherically symmetric model. The bolometric light curves of the shock breakout emission are calculated by a ray-tracing method. Our radiation-hydrodynamic models indicate that the early partmore » of the shock breakout emission can be used to probe the geometry of the blast wave produced as a result of the gravitational collapse of the iron core.« less
Gray, Michael W
2015-08-18
Comparative studies of the mitochondrial proteome have identified a conserved core of proteins descended from the α-proteobacterial endosymbiont that gave rise to the mitochondrion and was the source of the mitochondrial genome in contemporary eukaryotes. A surprising result of phylogenetic analyses is the relatively small proportion (10-20%) of the mitochondrial proteome displaying a clear α-proteobacterial ancestry. A large fraction of mitochondrial proteins typically has detectable homologs only in other eukaryotes and is presumed to represent proteins that emerged specifically within eukaryotes. A further significant fraction of the mitochondrial proteome consists of proteins with homologs in prokaryotes, but without a robust phylogenetic signal affiliating them with specific prokaryotic lineages. The presumptive evolutionary source of these proteins is quite different in contending models of mitochondrial origin.
Treatment of Evolution Inconsistent
ERIC Educational Resources Information Center
Cavanagh, Sean
2005-01-01
State standards for academic content vary enormously in how well they cover the topic of evolution, with many of those documents either ignoring or giving scant treatment to the core principles of that established scientific theory. This article presents the analysis of Education Week on state's standards treatment of evolution. Nearly all the…
NASA Astrophysics Data System (ADS)
Jerkstrand, A.; Ertl, T.; Janka, H.-T.; Müller, E.; Sukhbold, T.; Woosley, S. E.
2018-03-01
A large fraction of core-collapse supernovae (CCSNe), 30-50 per cent, are expected to originate from the low-mass end of progenitors with MZAMS = 8-12 M⊙. However, degeneracy effects make stellar evolution modelling of such stars challenging, and few predictions for their supernova light curves and spectra have been presented. Here, we calculate synthetic nebular spectra of a 9 M⊙ Fe CCSN model exploded with the neutrino mechanism. The model predicts emission lines with FWHM ˜ 1000 km s-1, including signatures from each deep layer in the metal core. We compare this model to the observations of the three subluminous IIP SNe with published nebular spectra; SN 1997D, SN 2005cs and SN 2008bk. The predictions of both line profiles and luminosities are in good agreement with SN 1997D and SN 2008bk. The close fit of a model with no tuning parameters provides strong evidence for an association of these objects with low-mass Fe CCSNe. For SN 2005cs, the interpretation is less clear, as the observational coverage ended before key diagnostic lines from the core had emerged. We perform a parametrized study of the amount of explosively made stable nickel, and find that none of these three SNe show the high 58Ni/56Ni ratio predicted by current models of electron capture SNe (ECSNe) and ECSN-like explosions. Combined with clear detection of lines from O and He shell material, these SNe rather originate from Fe core progenitors. We argue that the outcome of self-consistent explosion simulations of low-mass stars, which gives fits to many key observables, strongly suggests that the class of subluminous Type IIP SNe is the observational counterpart of the lowest mass CCSNe.
Chiarotto, Alessandro; Terwee, Caroline B; Deyo, Richard A; Boers, Maarten; Lin, Chung-Wei Christine; Buchbinder, Rachelle; Corbin, Terry P; Costa, Leonardo O P; Foster, Nadine E; Grotle, Margreth; Koes, Bart W; Kovacs, Francisco M; Maher, Chris G; Pearson, Adam M; Peul, Wilco C; Schoene, Mark L; Turk, Dennis C; van Tulder, Maurits W; Ostelo, Raymond W
2014-12-26
Low back pain (LBP) is one of the most disabling and costly disorders affecting modern society, and approximately 90% of patients are labelled as having non-specific LBP (NSLBP). Several interventions for patients with NSLBP have been assessed in clinical trials, but heterogeneous reporting of outcomes in these trials has hindered comparison of results and performance of meta-analyses. Moreover, there is a risk of selective outcome reporting bias. To address these issues, the development of a core outcome set (COS) that should be measured in all clinical trials for a specific health condition has been recommended. A standardized set of outcomes for LBP was proposed in 1998, however, with evolution in COS development methodology, new instruments, interventions, and understanding of measurement properties, it is appropriate to update that proposal. This protocol describes the methods used in the initial step in developing a COS for NSLBP, namely, establishing a core domain set that should be measured in all clinical trials. An International Steering Committee including researchers, clinicians, and patient representatives from four continents was formed to guide the development of this COS. The approach of initiatives like Core Outcome Measures in Effectiveness Trials (COMET) and Outcome Measures in Rheumatology (OMERACT) was followed. Participants were invited to participate in a Delphi study aimed at generating a consensus-based core domain set for NSLBP. A list of potential core domains was drafted and presented to the Delphi participants who were asked to judge which domains were core. Participant suggestions about overlap, aggregation, or addition of potential core domains were addressed during the study. The patients' responses were isolated to assess whether there was substantial disagreement with the rest of the Delphi panel. A priori thresholds for consensus were established before each Delphi round. All participants' responses were analysed from a quantitative and qualitative perspective to ascertain that no substantial discrepancies between the two approaches emerged. We present the initial step in developing a COS for NSLBP. The next step will be to determine which measurement instruments adequately cover the domains.
CHEMICAL AND PHYSICAL CHARACTERIZATION OF COLLAPSING LOW-MASS PRESTELLAR DENSE CORES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hincelin, U.; Commerçon, B.; Wakelam, V.
The first hydrostatic core, also called the first Larson core, is one of the first steps in low-mass star formation as predicted by theory. With recent and future high-performance telescopes, the details of these first phases are becoming accessible, and observations may confirm theory and even present new challenges for theoreticians. In this context, from a theoretical point of view, we study the chemical and physical evolution of the collapse of prestellar cores until the formation of the first Larson core, in order to better characterize this early phase in the star formation process. We couple a state-of-the-art hydrodynamical modelmore » with full gas-grain chemistry, using different assumptions for the magnetic field strength and orientation. We extract the different components of each collapsing core (i.e., the central core, the outflow, the disk, the pseudodisk, and the envelope) to highlight their specific physical and chemical characteristics. Each component often presents a specific physical history, as well as a specific chemical evolution. From some species, the components can clearly be differentiated. The different core models can also be chemically differentiated. Our simulation suggests that some chemical species act as tracers of the different components of a collapsing prestellar dense core, and as tracers of the magnetic field characteristics of the core. From this result, we pinpoint promising key chemical species to be observed.« less
Emergency heat removal system for a nuclear reactor
Dunckel, Thomas L.
1976-01-01
A heat removal system for nuclear reactors serving as a supplement to an Emergency Core Cooling System (ECCS) during a Loss of Coolant Accident (LOCA) comprises a plurality of heat pipes having one end in heat transfer relationship with either the reactor pressure vessel, the core support grid structure or other in-core components and the opposite end located in heat transfer relationship with a heat exchanger having heat transfer fluid therein. The heat exchanger is located external to the pressure vessel whereby excessive core heat is transferred from the above reactor components and dissipated within the heat exchanger fluid.
The evolution of the moon and the terrestrial planets
NASA Technical Reports Server (NTRS)
Toksoez, M. N.; Johnston, D. H.
1974-01-01
The thermal evolutions of the Moon, Mars, Venus and Mercury are calculated theoretically starting from cosmochemical condensation models. An assortment of geological, geochemical and geophysical data are used to constrain both the present day temperatures and the thermal histories of the planets' interiors. Such data imply that the planets were heated during or shortly after formation and that all the terrestrial planets started their differentiations early in their history. The moon, smallest in size, is characterized as a differentiated body with a crust, a thick solid mantle and an interior region which may be partially molten. Mars, intermediate in size, is assumed to have differentiated an Fe-FeS core. Venus is characterized as a planet not unlike the earth in many respects. Core formation has occurred probably during the first billion years after the formation. Mercury, which probably has a large core, may have a 500 km thick solid lithosphere and a partially molten core if it is assumed that some heat sources exist in the core.
Competency-Based Common-Core Curriculum for Emergency Medical Technician Education.
ERIC Educational Resources Information Center
Arizona State Board of Directors for Community Colleges, Phoenix.
This curriculum guide contains a listing of all common-core competencies that should be taught in Arizona community colleges in order to prepare students to meet the requirements of basic and refresher emergency medical technician training. Identified through a statewide project, the competencies cover the following topics: introduction to…
Holocene Evolution and Sediment Provenance of Horn Island, Mississippi, USA
NASA Astrophysics Data System (ADS)
Schulze, N.; Wallace, D. J.; Miner, M. D.
2017-12-01
As one of the most stable islands in the Mississippi-Alabama barrier island chain, Horn Island provides critical habitat, plays an important role in regulating estuarine conditions in the Mississippi Sound, and helps to attenuate wave energy and storm surge for the mainland. The provenance of sediments comprising Horn Island is largely unknown and has implications for mode of island genesis and evolution. The existing literature proposes that island chain formation was initiated by bar emergence from a subaqueous spit that grew laterally westward from Dauphin Island in the east. Decelerating sea level rise 4,000 to 5,000 years ago facilitated island formation. This proposed mode of formation is supported by a lone radiocarbon date from lagoonal sediments below Horn Island, suggesting the system formed after 4,615 ± 215 years BP. Rivers supplying suspended sediment include the Mississippi, Pascagoula, Mobile and Apalachicola, but the variable nature of their paths and sediment supply means that Horn Island has received differing amounts of sediment from these proximal rivers throughout the Holocene. To analyze the stratigraphy and sediment characteristics of Horn Island, we will utilize 24 vibracores (up to 6 meters in length) from offshore Horn Island that were obtained by the United States Geological Survey (USGS) and 9 onshore drill cores (up to 28 meters in length) from the Mississippi Department of Environmental Quality. High-resolution LiDAR data collected by the National Oceanic and Atmospheric Administration in 2010 will be used to describe modern geomorphic barrier environments. We will employ down-core x-ray diffraction and x-ray fluorescence analyses to identify mineralogical and chemical signatures that potentially correspond to unique signatures of the fluvial sources of proximal rivers. New radiocarbon ages will be used to constrain the timing of island formation and alterations in sediment supply. High-resolution shallow geophysical data will provide regional information on paleo-fluvial courses and their influence on island formation, sediment supply, and evolution.
Emergence of Habitable Environments in Icy World Interiors
NASA Astrophysics Data System (ADS)
Neveu, Marc
2016-07-01
Finding habitable worlds is a key driver of solar system exploration. Many solar system missions seek environments providing liquid water, energy, and nutrients, the three ingredients necessary to sustain life [1]. Such environments include hydrothermal systems, spatially confined systems where hot aqueous fluid circulates through rock by convection. Hydrothermal activity may be widespread in the solar system. Most solar system worlds larger than 200 km in radius are icy moons and dwarf planets, likely composed of an icy, cometary mantle surrounding a rocky, chondritic core [2]. By improving an icy world evolution code [3] to include the effects of core fracturing and hydrothermal circulation, I show that several icy moons and dwarf planets likely have undergone extensive water-rock interaction [4,5]. This supports observations of aqueous products on their surfaces [6,7]. I simulated the alteration of chondritic rock [8] by pure water or fluid of cometary composition [9] to show that aqueous alteration feeds back on geophysical evolution: it modifies the fluid antifreeze content, affecting its persistence over geological timescales; and the distribution of radionuclides, whose decay is a chief heat source on dwarf planets [10]. Hydrothermal circulation also efficiently transports heat from the core into the ocean, thereby increasing ocean persistence [4]. Thus, these coupled geophysical-geochemical models provide a comprehensive picture of icy world evolution and the emergence of liquid environments in chemical disequilibrium with underlying rock in their interiors. Habitable settings also require a suitable supply of bioessential elements; but what constitutes "suitable"? I sought to quantify the bulk elemental composition of hydrothermal microbial communities, collected in hot spring sediments and mats at Yellowstone National Park, USA. To do so, one must minimize the contribution of non-biological material to the samples analyzed. This was achieved using a separation method that takes advantage of the density contrast between cells and sediment and preserves cellular elemental contents [11]. Using this method, I showed that in spite of the tremendous physical, chemical, and taxonomic diversity of Yellowstone hot springs, the composition of microorganisms there is surprisingly ordinary [12]. This suggests the existence of a stoichiometric envelope common to all life as we know it. Thus, future planetary investigations could use elemental fingerprints to assess the astrobiological potential of hydrothermal settings beyond Earth. References: [1] US National Research Council (2011)Vision & Voyages in the Decade 2013-2022. [2] Hussmann et al. (2006) Icarus 185, 258-273. [3] Desch et al. (2009) Icarus 202, 694-714. [4] Neveu et al. (2015) JGR 120, 123-154. [5] Neveu & Rhoden, in prep. [6] De Sanctis et al. (2015) Nature 528, 241-244. [7] Hsu et al. (2015) Nature 519, 207-210. [8] Wasson & Kallemeyn (1988) Phil Trans R Soc London A 325, 535-544. [9] Mumma & Charnley (2011) Annu Rev Astron Astrophys 49, 471. [10] Neveu et al., in revision. [11] Neveu et al. (2014) Limn Oceanogr 12, 519-529. [12] Neveu et al. (2016) Geobiology 14, 33-53.
NASA Astrophysics Data System (ADS)
Guo, Juan; Zhou, Xun; Wang, Lidong; Zhang, Yuqi; Shen, Xiaowei; Zhou, Haiyan; Ye, Shen; Fang, Bin
2018-06-01
Natural springs have the potential to provide important information on hydrogeochemical processes within aquifers. This study used traditional and classic technical methods and procedures to determine the characteristics and evolution of springs to gain further knowledge on the differences between hot saline springs and cold fresh springs. In a short river segment near Wenquanzhen in the eastern Sichuan Basin, southwest China, several natural springs coexist with total dissolved solids (TDS) ranging from less than 1 to 15 g/L and temperatures from 15 to 40 °C. The springs emanate from the outcropping Lower and Middle Triassic carbonates in the river valley cutting the core of an anticline. The cold springs are of Cl·HCO3-Na·Ca and Cl·SO4-Na types, and the hot saline springs are mainly of Cl-Na type. The chemistry of the springs has undergone some changes with time. The stable hydrogen and oxygen isotopes indicate that the spring waters are of a meteoric origin. The salinity of the springs originates from dissolution of minerals, including halite, gypsum, calcite and dolomite. The evolution of the springs involves the following mechanisms: the groundwater receives recharge from infiltration of precipitation, then undergoes deep circulation in the core of the anticline (incongruent dissolution of the salt-bearing strata occurs), and emerges in the river valley in the form of hot springs with high TDS. Groundwater also undergoes shallow circulation in the northern and southern flanks of the anticline and appears in the river valley in the form of cold springs with low TDS.
NASA Astrophysics Data System (ADS)
Guo, Juan; Zhou, Xun; Wang, Lidong; Zhang, Yuqi; Shen, Xiaowei; Zhou, Haiyan; Ye, Shen; Fang, Bin
2017-12-01
Natural springs have the potential to provide important information on hydrogeochemical processes within aquifers. This study used traditional and classic technical methods and procedures to determine the characteristics and evolution of springs to gain further knowledge on the differences between hot saline springs and cold fresh springs. In a short river segment near Wenquanzhen in the eastern Sichuan Basin, southwest China, several natural springs coexist with total dissolved solids (TDS) ranging from less than 1 to 15 g/L and temperatures from 15 to 40 °C. The springs emanate from the outcropping Lower and Middle Triassic carbonates in the river valley cutting the core of an anticline. The cold springs are of Cl·HCO3-Na·Ca and Cl·SO4-Na types, and the hot saline springs are mainly of Cl-Na type. The chemistry of the springs has undergone some changes with time. The stable hydrogen and oxygen isotopes indicate that the spring waters are of a meteoric origin. The salinity of the springs originates from dissolution of minerals, including halite, gypsum, calcite and dolomite. The evolution of the springs involves the following mechanisms: the groundwater receives recharge from infiltration of precipitation, then undergoes deep circulation in the core of the anticline (incongruent dissolution of the salt-bearing strata occurs), and emerges in the river valley in the form of hot springs with high TDS. Groundwater also undergoes shallow circulation in the northern and southern flanks of the anticline and appears in the river valley in the form of cold springs with low TDS.
Inglin, Raffael C; Meile, Leo; Stevens, Marc J A
2018-04-24
Bacterial taxonomy aims to classify bacteria based on true evolutionary events and relies on a polyphasic approach that includes phenotypic, genotypic and chemotaxonomic analyses. Until now, complete genomes are largely ignored in taxonomy. The genus Lactobacillus consists of 173 species and many genomes are available to study taxonomy and evolutionary events. We analyzed and clustered 98 completely sequenced genomes of the genus Lactobacillus and 234 draft genomes of 5 different Lactobacillus species, i.e. L. reuteri, L. delbrueckii, L. plantarum, L. rhamnosus and L. helveticus. The core-genome of the genus Lactobacillus contains 266 genes and the pan-genome 20'800 genes. Clustering of the Lactobacillus pan- and core-genome resulted in two highly similar trees. This shows that evolutionary history is traceable in the core-genome and that clustering of the core-genome is sufficient to explore relationships. Clustering of core- and pan-genomes at species' level resulted in similar trees as well. Detailed analyses of the core-genomes showed that the functional class "genetic information processing" is conserved in the core-genome but that "signaling and cellular processes" is not. The latter class encodes functions that are involved in environmental interactions. Evolution of lactobacilli seems therefore directed by the environment. The type species L. delbrueckii was analyzed in detail and its pan-genome based tree contained two major clades whose members contained different genes yet identical functions. In addition, evidence for horizontal gene transfer between strains of L. delbrueckii, L. plantarum, and L. rhamnosus, and between species of the genus Lactobacillus is presented. Our data provide evidence for evolution of some lactobacilli according to a parapatric-like model for species differentiation. Core-genome trees are useful to detect evolutionary relationships in lactobacilli and might be useful in taxonomic analyses. Lactobacillus' evolution is directed by the environment and HGT.
NASA Astrophysics Data System (ADS)
Sutyrin, Georgi G.
2016-06-01
Wide compensated vortices are not able to remain circular in idealized two-layer models unless the ocean depth is assumed to be unrealistically large. Small perturbations on both cyclonic and anticyclonic eddies grow slower if a middle layer with uniform potential vorticity (PV) is added, owing to a weakening of the vertical coupling between the upper and lower layers and a reduction of the PV gradient in the deep layer. Numerical simulations show that the nonlinear development of the most unstable elliptical mode causes self-elongation of the upper vortex core and splitting of the deep PV anomaly into two corotating parts. The emerging tripolar flow pattern in the lower layer results in self-intensification of the fluid rotation in the water column around the vortex center. Further vortex evolution depends on the model parameters and initial conditions, which limits predictability owing to multiple equilibrium attractors existing in the dynamical system. The vortex core strips thin filaments, which roll up into submesoscale vortices to result in substantial mixing at the vortex periphery. Stirring and damping of vorticity by bottom friction are found to be essential for subsequent vortex stabilization. The development of sharp PV gradients leads to nearly solid-body rotation inside the vortex core and formation of transport barriers at the vortex periphery. These processes have important implications for understanding the longevity of real-ocean eddies.
Zanotto, Paolo Marinho de Andrade; Krakauer, David C.
2008-01-01
We consider the concerted evolution of viral genomes in four families of DNA viruses. Given the high rate of horizontal gene transfer among viruses and their hosts, it is an open question as to how representative particular genes are of the evolutionary history of the complete genome. To address the concerted evolution of viral genes, we compared genomic evolution across four distinct, extant viral families. For all four viral families we constructed DNA-dependent DNA polymerase-based (DdDp) phylogenies and in addition, whole genome sequence, as quantitative descriptions of inter-genome relationships. We found that the history of the polymerase gene was highly predictive of the history of the genome as a whole, which we explain in terms of repeated, co-divergence events of the core DdDp gene accompanied by a number of satellite, accessory genetic loci. We also found that the rate of gene gain in baculovirus and poxviruses proceeds significantly more quickly than the rate of gene loss and that there is convergent acquisition of satellite functions promoting contextual adaptation when distinct viral families infect related hosts. The congruence of the genome and polymerase trees suggests that a large set of viral genes, including polymerase, derive from a phylogenetically conserved core of genes of host origin, secondarily reinforced by gene acquisition from common hosts or co-infecting viruses within the host. A single viral genome can be thought of as a mutualistic network, with the core genes acting as an effective host and the satellite genes as effective symbionts. Larger virus genomes show a greater departure from linkage equilibrium between core and satellites functions. PMID:18941535
Gulyás, Balázs; Tóth, Miklós; Schain, Martin; Airaksinen, Anu; Vas, Adám; Kostulas, Konstantinos; Lindström, Per; Hillert, Jan; Halldin, Christer
2012-09-15
Although there is increasing evidence for microglial activation after an ischaemic stroke in the infarct core and the peri-infarct region, the "evolution" of the process in stroke patients is poorly known. Using PET and [((11))C]vinpocetine, we measured the regional changes of TSPO in the brain of nine ischaemic stroke patients up to 14weeks after the insult. Already a week after stroke there was an increased radioligand uptake, indicating the up-regulation of TSPO and the presence of activated microglia, in both the ischaemic core and the peri-infarct zone. This increased activation showed a steady decrease with post stroke time. The proportion between %SUV values in the peri-infarct zone and the ischaemic core increased with time. There were no time-dependent TSPO activity changes in other regions, not affected directly by the stroke. The present observations demonstrate that increased regional microglia activation, as a consequence of stroke, can be visualised with PET, using the TSPO molecular imaging biomarker [((11))C]vinpocetine. The evolution of this microglial activation shows a time dependent decrease the gradient of which is different between the peri-infarct zone and the ischaemic core. The findings indicate an increased microglial activation in the peri-stroke region for several weeks after the insult. Copyright © 2012 Elsevier B.V. All rights reserved.
Time-dependent simulations of disk-embedded planetary atmospheres
NASA Astrophysics Data System (ADS)
Stökl, A.; Dorfi, E. A.
2014-03-01
At the early stages of evolution of planetary systems, young Earth-like planets still embedded in the protoplanetary disk accumulate disk gas gravitationally into planetary atmospheres. The established way to study such atmospheres are hydrostatic models, even though in many cases the assumption of stationarity is unlikely to be fulfilled. Furthermore, such models rely on the specification of a planetary luminosity, attributed to a continuous, highly uncertain accretion of planetesimals onto the surface of the solid core. We present for the first time time-dependent, dynamic simulations of the accretion of nebula gas into an atmosphere around a proto-planet and the evolution of such embedded atmospheres while integrating the thermal energy budget of the solid core. The spherical symmetric models computed with the TAPIR-Code (short for The adaptive, implicit RHD-Code) range from the surface of the rocky core up to the Hill radius where the surrounding protoplanetary disk provides the boundary conditions. The TAPIR-Code includes the hydrodynamics equations, gray radiative transport and convective energy transport. The results indicate that diskembedded planetary atmospheres evolve along comparatively simple outlines and in particular settle, dependent on the mass of the solid core, at characteristic surface temperatures and planetary luminosities, quite independent on numerical parameters and initial conditions. For sufficiently massive cores, this evolution ultimately also leads to runaway accretion and the formation of a gas planet.
Luger, R; Barnes, R; Lopez, E; Fortney, J; Jackson, B; Meadows, V
2015-01-01
We show that photoevaporation of small gaseous exoplanets ("mini-Neptunes") in the habitable zones of M dwarfs can remove several Earth masses of hydrogen and helium from these planets and transform them into potentially habitable worlds. We couple X-ray/extreme ultraviolet (XUV)-driven escape, thermal evolution, tidal evolution, and orbital migration to explore the types of systems that may harbor such "habitable evaporated cores" (HECs). We find that HECs are most likely to form from planets with ∼1 M⊕ solid cores with up to about 50% H/He by mass, though whether or not a given mini-Neptune forms a HEC is highly dependent on the early XUV evolution of the host star. As terrestrial planet formation around M dwarfs by accumulation of local material is likely to form planets that are small and dry, evaporation of small migrating mini-Neptunes could be one of the dominant formation mechanisms for volatile-rich Earths around these stars.
Identifying Major Transitions in the Evolution of Lithic Cutting Edge Production Rates
Clarkson, Chris
2016-01-01
The notion that the evolution of core reduction strategies involved increasing efficiency in cutting edge production is prevalent in narratives of hominin technological evolution. Yet a number of studies comparing two different knapping technologies have found no significant differences in edge production. Using digital analysis methods we present an investigation of raw material efficiency in eight core technologies broadly representative of the long-term evolution of lithic technology. These are bipolar, multiplatform, discoidal, biface, Levallois, prismatic blade, punch blade and pressure blade production. Raw material efficiency is assessed by the ratio of cutting edge length to original core mass. We also examine which flake attributes contribute to maximising raw material efficiency, as well as compare the difference between expert and intermediate knappers in terms of cutting edge produced per gram of core. We identify a gradual increase in raw material efficiency over the broad sweep of lithic technological evolution. The results indicate that the most significant transition in efficiency likely took place with the introduction of small foliate biface, Levallois and prismatic blade knapping, all introduced in the Middle Stone Age / Middle Palaeolithic among early Homo sapiens and Neanderthals. This suggests that no difference in raw material efficiency existed between these species. With prismatic blade technology securely dated to the Middle Palaeolithic, by including the more recent punch and pressure blade technology our results dispel the notion that the transition to the Upper Palaeolithic was accompanied by an increase in efficiency. However, further increases in cutting edge efficiency are evident, with pressure blades possessing the highest efficiency in this study, indicating that late/epi-Palaeolithic and Neolithic blade technologies further increased efficiency. PMID:27936135
Identifying Major Transitions in the Evolution of Lithic Cutting Edge Production Rates.
Muller, Antoine; Clarkson, Chris
2016-01-01
The notion that the evolution of core reduction strategies involved increasing efficiency in cutting edge production is prevalent in narratives of hominin technological evolution. Yet a number of studies comparing two different knapping technologies have found no significant differences in edge production. Using digital analysis methods we present an investigation of raw material efficiency in eight core technologies broadly representative of the long-term evolution of lithic technology. These are bipolar, multiplatform, discoidal, biface, Levallois, prismatic blade, punch blade and pressure blade production. Raw material efficiency is assessed by the ratio of cutting edge length to original core mass. We also examine which flake attributes contribute to maximising raw material efficiency, as well as compare the difference between expert and intermediate knappers in terms of cutting edge produced per gram of core. We identify a gradual increase in raw material efficiency over the broad sweep of lithic technological evolution. The results indicate that the most significant transition in efficiency likely took place with the introduction of small foliate biface, Levallois and prismatic blade knapping, all introduced in the Middle Stone Age / Middle Palaeolithic among early Homo sapiens and Neanderthals. This suggests that no difference in raw material efficiency existed between these species. With prismatic blade technology securely dated to the Middle Palaeolithic, by including the more recent punch and pressure blade technology our results dispel the notion that the transition to the Upper Palaeolithic was accompanied by an increase in efficiency. However, further increases in cutting edge efficiency are evident, with pressure blades possessing the highest efficiency in this study, indicating that late/epi-Palaeolithic and Neolithic blade technologies further increased efficiency.
NASA Astrophysics Data System (ADS)
Zhang, Nan; Dygert, Nick; Liang, Yan; Parmentier, E. M.
2017-07-01
Lunar cumulate mantle overturn and the subsequent upwelling of overturned mantle cumulates provide a potential framework for understanding the first-order thermochemical evolution of the Moon. Upwelling of ilmenite-bearing cumulates (IBCs) after the overturn has a dominant influence on the dynamics and long-term thermal evolution of the lunar mantle. An important parameter determining the stability and convective behavior of the IBC is its viscosity, which was recently constrained through rock deformation experiments. To examine the effect of IBC viscosity on the upwelling of overturned lunar cumulate mantle, here we conduct three-dimensional mantle convection models with an evolving core superposed by an IBC-rich layer, which resulted from mantle overturn after magma ocean solidification. Our modeling shows that a reduction of mantle viscosity by 1 order of magnitude, due to the presence of ilmenite, can dramatically change convective planform and long-term lunar mantle evolution. Our model results suggest a relatively stable partially molten IBC layer that has surrounded the lunar core to the present day.
Effect of core cooling on the radius of sub-Neptune planets
NASA Astrophysics Data System (ADS)
Vazan, A.; Ormel, C. W.; Dominik, C.
2018-02-01
Sub-Neptune planets are very common in our Galaxy and show a large diversity in their mass-radius relation. In sub-Neptunes most of the planet mass is in the rocky part (hereafter, core), which is surrounded by a modest hydrogen-helium envelope. As a result, the total initial heat content of such a planet is dominated by that of the core. Nonetheless, most studies contend that the core cooling only has a minor effect on the radius evolution of the gaseous envelope because the cooling of the core is in sync with the envelope; that is most of the initial heat is released early on timescales of 10-100 Myr. In this Letter we examined the importance of the core cooling rate for the thermal evolution of the envelope. Thus, we relaxed the early core cooling assumption and present a model in which the core is characterized by two parameters: the initial temperature and the cooling time. We find that core cooling can significantly enhance the radius of the planet when it operates on a timescale similar to the observed age, i.e. Gyr. Consequently, the interpretation of the mass-radius observations of sub-Neptunes depends on the assumed core thermal properties and the uncertainty therein. The degeneracy of composition and core thermal properties can be reduced by obtaining better estimates of the planet ages (in addition to their radii and masses) as envisioned by future observations.
2013-10-31
Evidence from NASA Wide-field Infrared Survey Explorer and Galaxy Evolution Explorer missions provide support for the inside-out theory of galaxy evolution, which holds that star formation starts at the core of the galaxy and spreads outward.
De la Fuente, Ildefonso M.; Cortes, Jesus M.; Perez-Pinilla, Martin B.; Ruiz-Rodriguez, Vicente; Veguillas, Juan
2011-01-01
Background Experimental observations and numerical studies with dissipative metabolic networks have shown that cellular enzymatic activity self-organizes spontaneously leading to the emergence of a metabolic core formed by a set of enzymatic reactions which are always active under all environmental conditions, while the rest of catalytic processes are only intermittently active. The reactions of the metabolic core are essential for biomass formation and to assure optimal metabolic performance. The on-off catalytic reactions and the metabolic core are essential elements of a Systemic Metabolic Structure which seems to be a key feature common to all cellular organisms. Methodology/Principal Findings In order to investigate the functional importance of the metabolic core we have studied different catalytic patterns of a dissipative metabolic network under different external conditions. The emerging biochemical data have been analysed using information-based dynamic tools, such as Pearson's correlation and Transfer Entropy (which measures effective functionality). Our results show that a functional structure of effective connectivity emerges which is dynamical and characterized by significant variations of bio-molecular information flows. Conclusions/Significance We have quantified essential aspects of the metabolic core functionality. The always active enzymatic reactions form a hub –with a high degree of effective connectivity- exhibiting a wide range of functional information values being able to act either as a source or as a sink of bio-molecular causal interactions. Likewise, we have found that the metabolic core is an essential part of an emergent functional structure characterized by catalytic modules and metabolic switches which allow critical transitions in enzymatic activity. Both, the metabolic core and the catalytic switches in which also intermittently-active enzymes are involved seem to be fundamental elements in the self-regulation of the Systemic Metabolic Structure. PMID:22125607
Emergence of Clusters: Halos, Efimov States, and Experimental Signals
NASA Astrophysics Data System (ADS)
Hove, D.; Garrido, E.; Sarriguren, P.; Fedorov, D. V.; Fynbo, H. O. U.; Jensen, A. S.; Zinner, N. T.
2018-02-01
We investigate the emergence of halos and Efimov states in nuclei by use of a newly designed model that combines self-consistent mean-field and three-body descriptions. Recent interest in neutron heavy calcium isotopes makes
BioCore Guide: A Tool for Interpreting the Core Concepts of Vision and Change for Biology Majors
ERIC Educational Resources Information Center
Brownell, Sara E.; Freeman, Scott; Wenderoth, Mary Pat; Crowe, Alison J.
2014-01-01
"Vision and Change in Undergraduate Biology Education" outlined five core concepts intended to guide undergraduate biology education: 1) evolution; 2) structure and function; 3) information flow, exchange, and storage; 4) pathways and transformations of energy and matter; and 5) systems. We have taken these general recommendations and…
Organic matter evolution throughout a 100-cm ombrotrophic profile from an Italian floating mire
NASA Astrophysics Data System (ADS)
Zaccone, Claudio; D'Orazio, Valeria; Lobianco, Daniela; Miano, Teodoro M.
2015-04-01
The curious sight of an island floating and moving on a lake naturally, already described by Pliny the Elder in his Naturalis historia (AD 77-79), fascinated people from time immemorial. Floating mires are defined by the occurrence of emergent vegetation rooted in highly organic buoyant mats that rise and fall with changes in water level. Peat-forming floating mires could provide an exceptional tool for environmental studies, since much of their evolution, as well as the changes of the surrounding areas, is recorded in their peat deposits. A complete, 4-m deep peat core was collected in July 2012 from the floating island of Posta Fibreno, a relic mire in the Central Italy. This floating island has a diameter of ca. 30 m, a submerged thickness of about 3 m, and the vegetation is organized in concentric belts, from the Carex paniculata palisade to the Sphagnum centre. Here, some of the southernmost Italian populations of Sphagnum palustre occur. The 14C age dating of macrofossils removed from the sample at 360 cm of depth revealed that the island probably formed more than 500 yrs ago (435±20 yr BP). In the present work, we show preliminary results regarding the evolution of the organic matter along the first, ombrotrophic 100 cm of depth, hoping also to provide some insight into the possible mechanism of the evolution of this floating island. The 100 cm monolith was collected using a Wardenaar corer and cut frozen in 1-cm layers. It consists almost exclusively of Sphagnum mosses, often spaced out, in the top 20-30 cm, by leaves of Populus tremula that annually fell off. This section shows a very low bulk density, ranging from 0.017 and 0.059 g cm-3 (avg. value, 0.03±0.01 g cm-3), an average water content of 96.1±1.1%, and a gravimetric water content ranging between 14.3 and 41.5 gwater gdrypeat-1. The pH of porewaters was in the range 5-5.5. The C content along the profile ranged between 35 and 47% (avg., 41±1%), whereas the N between 0.3 and 0.9% (avg., 0.6±0.1%). Main atomic ratios seem to confirm what found during the visual inspection of the core, i.e., Sphagnum material so well preserved that it is hard to classify it as 'peat'. In fact, the F14C age dating suggests that the first 95 cm of Sphagnum material accumulate in less than 55 yrs, thus resulting in an average growing rate of ca. 1.7-1.8 cm yr-1. At the same time, C/N, H/C and O/C ratios show their lowest values between 20 and 55 cm of depth, corresponding to the section with highest bulk density (0.025-0.059 g cm-3). This seems to suggest a slightly more decomposed material. Consequently, the depth of 55-60 cm could represent the emerged (i.e., less anaerobic) section of this floating mire. Finally, the first 100 cm of the core show a great potential to be used as archive of environmental changes, especially considering their high resolution (1 cm = 0.5 yr ca.), although the short time-space covered could be a limiting factor. The Authors thank the Municipality of Posta Fibreno (FR), Managing Authority of the Regional Natural Reserve of Lake Posta Fibreno, for allowing peat cores sampling. C.Z. is indebted to the Staff of the Regional Natural Reserve for the help during samplings and for their continuous feedbacks.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-25
...The U.S. Nuclear Regulatory Commission (NRC) is issuing a revision to regulatory guide (RG), 1.79, ``Preoperational Testing of Emergency Core Cooling Systems for Pressurized-Water Reactors.'' This RG is being revised to incorporate guidance for preoperational testing of new pressurized water reactor (PWR) designs.
The core content of clinical ultrasonography fellowship training.
Lewiss, Resa E; Tayal, Vivek S; Hoffmann, Beatrice; Kendall, John; Liteplo, Andrew S; Moak, James H; Panebianco, Nova; Noble, Vicki E
2014-04-01
The purpose of developing a core content for subspecialty training in clinical ultrasonography (US) is to standardize the education and qualifications required to provide oversight of US training, clinical use, and administration to improve patient care. This core content would be mastered by a fellow as a separate and unique postgraduate training, beyond that obtained during an emergency medicine (EM) residency or during medical school. The core content defines the training parameters, resources, and knowledge of clinical US necessary to direct clinical US divisions within medical specialties. Additionally, it is intended to inform fellowship directors and candidates for certification of the full range of content that might appear in future examinations. This article describes the development of the core content and presents the core content in its entirety. © 2014 by the Society for Academic Emergency Medicine.
Chemical Evolution of Protostellar Matter
NASA Technical Reports Server (NTRS)
Langer, William D.; vanDishoeck, Ewine F.; Bergin, Edwin A.; Blake, Geoffrey A.; Tielens, Alexander G. G. M.; Velusamy, Thangasamy; Whittet, Douglas C. B.
2000-01-01
We review the chemical processes that are important in the evolution from a molecular cloud core to a protostellar disk. These cover both gas phase and gas grain interactions. The current observational and theoretical state of this field are discussed.
Core and Off-Core Processes in Systems Engineering
NASA Technical Reports Server (NTRS)
Breidenthal, Julian; Forsberg, Kevin
2010-01-01
An emerging methodology of organizing systems-engineering plans is based on a concept of core and off-core processes or activities. This concept has emerged as a result of recognition of a risk in the traditional representation of systems-engineering plans by a Vee model alone, according to which a large system is decomposed into levels of smaller subsystems, then integrated through levels of increasing scope until the full system is constructed. Actual systems-engineering activity is more complicated, raising the possibility that the staff will become confused in the absence of plans which explain the nature and ordering of work beyond the traditional Vee model.
Structural evolution and properties of small-size thiol-protected gold nanoclusters
NASA Astrophysics Data System (ADS)
Ma, Miaomiao; Liu, Liren; Zhu, Hengjiang; Lu, Junzhe; Tan, Guiping
2018-07-01
Ligand-protected gold clusters are widely used in biosensors and catalysis. Understanding the structural evolution of these kinds of nanoclusters is important for experimental synthesis. Herein, based on the particle swarm optimisation algorithm and density functional theory method, we use [Au1(SH)2]n, [Au2(SH)3]n, [Au3(SH)4]n (n = 1-3) as basic units to research the structural evolution relationships from building blocks to the final whole structures. Results show that there is a 'line-ring-core' structural evolution pattern in the growth process of the nanoclusters. The core structures of the ligand-protected gold clusters consist of Au3, Au4, Au6 and Au7 atoms. The electronics and optics analysis reflects that stability and optical properties gradually enhance with increase in size. These results can be used to understand the initial growth stage and design new ligand-protected nanoclusters.
Schultz, Carl H; Koenig, Kristi L; Whiteside, Mary; Murray, Rick
2012-03-01
The training of medical personnel to provide care for disaster victims is a priority for the physician community, the federal government, and society as a whole. Course development for such training guided by well-accepted standardized core competencies is lacking, however. This project identified a set of core competencies and performance objectives based on the knowledge, skills, and attitudes required by the specific target audience (emergency department nurses, emergency physicians, and out-of-hospital emergency medical services personnel) to ensure they can treat the injuries and illnesses experienced by victims of disasters regardless of cause. The core competencies provide a blueprint for the development or refinement of disaster training courses. This expert consensus project, supported by a grant from the Robert Wood Johnson Foundation, incorporated an all-hazard, comprehensive emergency management approach addressing every type of disaster to minimize the effect on the public's health. An instructional systems design process was used to guide the development of audience-appropriate competencies and performance objectives. Participants, representing multiple academic and provider organizations, used a modified Delphi approach to achieve consensus on recommendations. A framework of 19 content categories (domains), 19 core competencies, and more than 90 performance objectives was developed for acute medical care personnel to address the requirements of effective all-hazards disaster response. Creating disaster curricula and training based on the core competencies and performance objectives identified in this article will ensure that acute medical care personnel are prepared to treat patients and address associated ramifications/consequences during any catastrophic event. Copyright © 2012 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.
The extended evolutionary synthesis: its structure, assumptions and predictions
Laland, Kevin N.; Uller, Tobias; Feldman, Marcus W.; Sterelny, Kim; Müller, Gerd B.; Moczek, Armin; Jablonka, Eva; Odling-Smee, John
2015-01-01
Scientific activities take place within the structured sets of ideas and assumptions that define a field and its practices. The conceptual framework of evolutionary biology emerged with the Modern Synthesis in the early twentieth century and has since expanded into a highly successful research program to explore the processes of diversification and adaptation. Nonetheless, the ability of that framework satisfactorily to accommodate the rapid advances in developmental biology, genomics and ecology has been questioned. We review some of these arguments, focusing on literatures (evo-devo, developmental plasticity, inclusive inheritance and niche construction) whose implications for evolution can be interpreted in two ways—one that preserves the internal structure of contemporary evolutionary theory and one that points towards an alternative conceptual framework. The latter, which we label the ‘extended evolutionary synthesis' (EES), retains the fundaments of evolutionary theory, but differs in its emphasis on the role of constructive processes in development and evolution, and reciprocal portrayals of causation. In the EES, developmental processes, operating through developmental bias, inclusive inheritance and niche construction, share responsibility for the direction and rate of evolution, the origin of character variation and organism–environment complementarity. We spell out the structure, core assumptions and novel predictions of the EES, and show how it can be deployed to stimulate and advance research in those fields that study or use evolutionary biology. PMID:26246559
Culture extends the scope of evolutionary biology in the great apes.
Whiten, Andrew
2017-07-24
Discoveries about the cultures and cultural capacities of the great apes have played a leading role in the recognition emerging in recent decades that cultural inheritance can be a significant factor in the lives not only of humans but also of nonhuman animals. This prominence derives in part from these primates being those with whom we share the most recent common ancestry, thus offering clues to the origins of our own thoroughgoing reliance on cumulative cultural achievements. In addition, the intense research focus on these species has spawned an unprecedented diversity of complementary methodological approaches, the results of which suggest that cultural phenomena pervade the lives of these apes, with potentially major implications for their broader evolutionary biology. Here I review what this extremely broad array of observational and experimental methodologies has taught us about the cultural lives of chimpanzees, gorillas, and orangutans and consider the ways in which this knowledge extends our wider understanding of primate biology and the processes of adaptation and evolution that shape it. I address these issues first by evaluating the extent to which the results of cultural inheritance echo a suite of core principles that underlie organic Darwinian evolution but also extend them in new ways and then by assessing the principal causal interactions between the primary, genetically based organic processes of evolution and the secondary system of cultural inheritance that is based on social learning from others.
The evolution of antibiotic resistance in a structured host population.
Blanquart, François; Lehtinen, Sonja; Lipsitch, Marc; Fraser, Christophe
2018-06-01
The evolution of antibiotic resistance in opportunistic pathogens such as Streptococcus pneumoniae , Escherichia coli or Staphylococcus aureus is a major public health problem, as infection with resistant strains leads to prolonged hospital stay and increased risk of death. Here, we develop a new model of the evolution of antibiotic resistance in a commensal bacterial population adapting to a heterogeneous host population composed of untreated and treated hosts, and structured in different host classes with different antibiotic use. Examples of host classes include age groups and geographic locations. Explicitly modelling the antibiotic treatment reveals that the emergence of a resistant strain is favoured by more frequent but shorter antibiotic courses, and by higher transmission rates. In addition, in a structured host population, localized transmission in host classes promotes both local adaptation of the bacterial population and the global maintenance of coexistence between sensitive and resistant strains. When transmission rates are heterogeneous across host classes, resistant strains evolve more readily in core groups of transmission. These findings have implications for the better management of antibiotic resistance: reducing the rate at which individuals receive antibiotics is more effective to reduce resistance than reducing the duration of treatment. Reducing the rate of treatment in a targeted class of the host population allows greater reduction in resistance, but determining which class to target is difficult in practice. © 2018 The Authors.
Culture extends the scope of evolutionary biology in the great apes
2017-01-01
Discoveries about the cultures and cultural capacities of the great apes have played a leading role in the recognition emerging in recent decades that cultural inheritance can be a significant factor in the lives not only of humans but also of nonhuman animals. This prominence derives in part from these primates being those with whom we share the most recent common ancestry, thus offering clues to the origins of our own thoroughgoing reliance on cumulative cultural achievements. In addition, the intense research focus on these species has spawned an unprecedented diversity of complementary methodological approaches, the results of which suggest that cultural phenomena pervade the lives of these apes, with potentially major implications for their broader evolutionary biology. Here I review what this extremely broad array of observational and experimental methodologies has taught us about the cultural lives of chimpanzees, gorillas, and orangutans and consider the ways in which this knowledge extends our wider understanding of primate biology and the processes of adaptation and evolution that shape it. I address these issues first by evaluating the extent to which the results of cultural inheritance echo a suite of core principles that underlie organic Darwinian evolution but also extend them in new ways and then by assessing the principal causal interactions between the primary, genetically based organic processes of evolution and the secondary system of cultural inheritance that is based on social learning from others. PMID:28739927
Secular change of LOD caused by core evolution
NASA Astrophysics Data System (ADS)
Denis, C.; Rybicki, K. R.; Varga, P.
2003-04-01
Fossils and tidal deposits suggest that, on the average, the Earth's despinning rate had been five times less in the Proterozoic than in the Phanerozoic. This difference is probably due, for the major part, to the existence of a Proterozoic supercontinent. Nevertheless, core formation and core evolution should have compensated to some extent the effect of tidal friction, by diminishing the Earth's inertia moment. We have investigated quantitatively this contribution of the evolving core to the change of LOD. For the present epoch, we find that the solidification of the inner core causes a relative secular decrease of LOD of approximately 3 μs per century, whereas the macrodiffusion of iron oxides and sulfides from the D" into the outer core across the CMB (inasfar as Majewski's theory holds) leads to a relative secular decrease of LOD by about 15 μs per century. On the other hand, the theory of slow core formation developped by Runcorn in the early 1960s as a by-product of his theory of mantle-wide convection, leads to a relative secular decrease of LOD during most of the Proterozoic of about 0.25 ms per century. Although core formation is now widely assumed to have been a thermal run-away process that occurred shortly after the Earth itself had formed, Runcorn's theory of the growing core would nicely explain the observed palaeo-LOD curve. In any case, formation of the core implies, all in all, a relative decrease of LOD of typically 3 hours.
Thermodynamic Basis for the Emergence of Genomes during Prebiotic Evolution
2012-05-01
Thermodynamic Basis for the Emergence of Genomes during Prebiotic Evolution Hyung-June Woo, Ravi Vijaya Satya, Jaques Reifman* DoD Biotechnology High...polymerases are above, near, and below a critical point, respectively. The prebiotic evolution therefore must have crossed this critical region. Over...among many potential oligomers capable of templated replication, RNAs may have evolved to form prebiotic genomes due to the value of their nonenzymatic
A brief history of Sandia's National security missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drewien, Celeste A.; O'Canna, Myra Lynn; Stikar, John Anthony.
2014-09-01
To help members of the workforce understand what factors contribute to Sandia National Laboratories national security mission, the authors describe the evolution of Sandias core mission and its other mission components. The mission of Sandia first as a division of Los Alamos and later as Sandia Corporation underlies our core nuclear weapon mission of today. Sandias mission changed in 1963 and twice more in the 1970s. This report should help staff and management appreciate the need for mission evolution. A clear definition and communication of a consistent corporate mission statement is still needed.
SuperDCA for genome-wide epistasis analysis.
Puranen, Santeri; Pesonen, Maiju; Pensar, Johan; Xu, Ying Ying; Lees, John A; Bentley, Stephen D; Croucher, Nicholas J; Corander, Jukka
2018-05-29
The potential for genome-wide modelling of epistasis has recently surfaced given the possibility of sequencing densely sampled populations and the emerging families of statistical interaction models. Direct coupling analysis (DCA) has previously been shown to yield valuable predictions for single protein structures, and has recently been extended to genome-wide analysis of bacteria, identifying novel interactions in the co-evolution between resistance, virulence and core genome elements. However, earlier computational DCA methods have not been scalable to enable model fitting simultaneously to 10 4 -10 5 polymorphisms, representing the amount of core genomic variation observed in analyses of many bacterial species. Here, we introduce a novel inference method (SuperDCA) that employs a new scoring principle, efficient parallelization, optimization and filtering on phylogenetic information to achieve scalability for up to 10 5 polymorphisms. Using two large population samples of Streptococcus pneumoniae, we demonstrate the ability of SuperDCA to make additional significant biological findings about this major human pathogen. We also show that our method can uncover signals of selection that are not detectable by genome-wide association analysis, even though our analysis does not require phenotypic measurements. SuperDCA, thus, holds considerable potential in building understanding about numerous organisms at a systems biological level.
Charles Darwin and Evolution: Illustrating Human Aspects of Science
NASA Astrophysics Data System (ADS)
Kampourakis, Kostas; McComas, William F.
2010-06-01
Recently, the nature of science (NOS) has become recognized as an important element within the K-12 science curriculum. Despite differences in the ultimate lists of recommended aspects, a consensus is emerging on what specific NOS elements should be the focus of science instruction and inform textbook writers and curriculum developers. In this article, we suggest a contextualized, explicit approach addressing one core NOS aspect: the human aspects of science that include the domains of creativity, social influences and subjectivity. To illustrate these ideas, we have focused on Charles Darwin, a scientist whose life, work and thought processes were particularly well recorded at the time and analyzed by scholars in the succeeding years. Historical facts are discussed and linked to core NOS ideas. Creativity is illustrated through the analogies between the struggle for existence in human societies and in nature, between artificial and natural selection, and between the division of labor in human societies and in nature. Social influences are represented by Darwin’s aversion of criticism of various kinds and by his response to the methodological requirements of the science of that time. Finally, subjectivity is discussed through Darwin’s development of a unique but incorrect source for the origin of variations within species.
Sloan Great Wall as a complex of superclusters with collapsing cores
NASA Astrophysics Data System (ADS)
Einasto, Maret; Lietzen, Heidi; Gramann, Mirt; Tempel, Elmo; Saar, Enn; Liivamägi, Lauri Juhan; Heinämäki, Pekka; Nurmi, Pasi; Einasto, Jaan
2016-10-01
Context. The formation and evolution of the cosmic web is governed by the gravitational attraction of dark matter and antigravity of dark energy (cosmological constant). In the cosmic web, galaxy superclusters or their high-density cores are the largest objects that may collapse at present or during the future evolution. Aims: We study the dynamical state and possible future evolution of galaxy superclusters from the Sloan Great Wall (SGW), the richest galaxy system in the nearby Universe. Methods: We calculated supercluster masses using dynamical masses of galaxy groups and stellar masses of galaxies. We employed normal mixture modelling to study the structure of rich SGW superclusters and search for components (cores) in superclusters. We analysed the radial mass distribution in the high-density cores of superclusters centred approximately at rich clusters and used the spherical collapse model to study their dynamical state. Results: The lower limit of the total mass of the SGW is approximately M = 2.5 × 1016 h-1 M⊙. Different mass estimators of superclusters agree well, the main uncertainties in masses of superclusters come from missing groups and clusters. We detected three high-density cores in the richest SGW supercluster (SCl 027) and two in the second richest supercluster (SCl 019). They have masses of 1.2 - 5.9 × 1015 h-1 M⊙ and sizes of up to ≈60 h-1 Mpc. The high-density cores of superclusters are very elongated, flattened perpendicularly to the line of sight. The comparison of the radial mass distribution in the high-density cores with the predictions of spherical collapse model suggests that their central regions with radii smaller than 8 h-1 Mpc and masses of up to M = 2 × 1015 h-1 M⊙ may be collapsing. Conclusions: The rich SGW superclusters with their high-density cores represent dynamically evolving environments for studies of the properties of galaxies and galaxy systems.
Intensity of geomagnetic field in the Precambrian and evolution of the Earth's deep interior
NASA Astrophysics Data System (ADS)
Smirnov, A. V.
2017-09-01
Reliable data on the paleointensity of the geomagnetic field can become an important source of information both about the mechanisms of generation of the field at present and in the past, and about the internal structure of the Earth, especially the structure and evolution of its core. Unfortunately, the reliability of these data remains a serious problem of paleomagnetic research because of the limitations of experimental methods, and the complexity and diversity of rocks and their magnetic carriers. This is true even for relatively "young" Phanerozoic rocks, but investigation of Precambrian rocks is associated with many additional difficulties. As a consequence, our current knowledge of paleointensity, especially in the Precambrian period, is still very limited. The data limitations do not preclude attempts to use the currently available paleointensity results to analyze the evolution and characteristics of the Earth's internal structure, such as the age of the Earth's solid inner core or thermal conductivity in the liquid core. However, such attempts require considerable caution in handling data. In particular, it has now been reliably established that some results on the Precambrian paleointensity overestimate the true paleofield strength. When the paleointensity overestimates are excluded from consideration, the range of the field strength changes in the Precambrian does not exceed the range of its variation in the Phanerozoic. This result calls into question recent assertions that the Earth's inner core formed in the Mesoproterozoic, about 1.3 billion years ago, triggering a statistically significant increase in the long-term average field strength. Instead, our analysis has shown that the quantity and quality of the currently available data on the Precambrian paleointensity are insufficient to estimate the age of the solid inner core and, therefore, cannot be useful for solving the problem of the thermal conductivity of the Earth's core. The data are consistent with very young or very "old" inner core ages and, correspondingly, with high or low values of core thermal conductivity.
The evolution of cell types in animals: emerging principles from molecular studies.
Arendt, Detlev
2008-11-01
Cell types are fundamental units of multicellular life but their evolution is obscure. How did the first cell types emerge and become distinct in animal evolution? What were the sets of cell types that existed at important evolutionary nodes that represent eumetazoan or bilaterian ancestors? How did these ancient cell types diversify further during the evolution of organ systems in the descending evolutionary lines? The recent advent of cell type molecular fingerprinting has yielded initial insights into the evolutionary interrelationships of cell types between remote animal phyla and has allowed us to define some first principles of cell type diversification in animal evolution.
Mutational Pathway Determines Whether Drug Gradients Accelerate Evolution of Drug-Resistant Cells
NASA Astrophysics Data System (ADS)
Greulich, Philip; Waclaw, Bartłomiej; Allen, Rosalind J.
2012-08-01
Drug gradients are believed to play an important role in the evolution of bacteria resistant to antibiotics and tumors resistant to anticancer drugs. We use a statistical physics model to study the evolution of a population of malignant cells exposed to drug gradients, where drug resistance emerges via a mutational pathway involving multiple mutations. We show that a nonuniform drug distribution has the potential to accelerate the emergence of resistance when the mutational pathway involves a long sequence of mutants with increasing resistance, but if the pathway is short or crosses a fitness valley, the evolution of resistance may actually be slowed down by drug gradients. These predictions can be verified experimentally, and may help to improve strategies for combating the emergence of resistance.
Wild monkeys flake stone tools.
Proffitt, Tomos; Luncz, Lydia V; Falótico, Tiago; Ottoni, Eduardo B; de la Torre, Ignacio; Haslam, Michael
2016-11-03
Our understanding of the emergence of technology shapes how we view the origins of humanity. Sharp-edged stone flakes, struck from larger cores, are the primary evidence for the earliest stone technology. Here we show that wild bearded capuchin monkeys (Sapajus libidinosus) in Brazil deliberately break stones, unintentionally producing recurrent, conchoidally fractured, sharp-edged flakes and cores that have the characteristics and morphology of intentionally produced hominin tools. The production of archaeologically visible cores and flakes is therefore no longer unique to the human lineage, providing a comparative perspective on the emergence of lithic technology. This discovery adds an additional dimension to interpretations of the human Palaeolithic record, the possible function of early stone tools, and the cognitive requirements for the emergence of stone flaking.
NASA Astrophysics Data System (ADS)
Yoneda, Minoru; Abe-Ouchi, Ayako; Kawahata, Hodaka; Yokoyama, Yusuke; Oguchi, Takashi
2014-05-01
The impact of climate change on human evolution is important and debating topic for many years. Since 2010, we have involved in a general joint project entitled "Replacement of Neanderthal by Modern Humans: Testing Evolutional Models of Learning", which based on a theoretical prediction that the cognitive ability related to individual and social learning divide fates of ancient humans in very unstable Late Pleistocene climate. This model predicts that the human populations which experienced a series of environmental changes would have higher rate of individual learners, while detailed reconstructions of global climate change have reported fluent and drastic change based on ice cores and stalagmites. However, we want to understand the difference between anatomically modern human which survived and the other archaic extinct humans including European Neanderthals and Asian Denisovans. For this purpose the global synchronized change is not useful for understanding but the regional difference in the amplitude and impact of climate change is the information required. Hence, we invited a geophysicist busing Global Circulation Model to reconstruct the climatic distribution and temporal change in a continental scale. At the same time, some geochemists and geographers construct a database of local climate changes recorded in different proxies. At last, archaeologists and anthropologists tried to interpret the emergence and disappearance of human species in Europe and Asia on the reconstructed past climate maps using some tools, such as Eco-cultural niche model. Our project will show the regional difference in climate change and related archaeological events and its impact on the evolution of learning ability of modern humans.
Secular changes of LOD associated with a growth of the inner core
NASA Astrophysics Data System (ADS)
Denis, C.; Rybicki, K. R.; Varga, P.
2006-05-01
From recent estimates of the age of the inner core based on the theory of thermal evolution of the core, we estimate that nowadays the growth of the inner core may perhaps contribute to the observed overall secular increase of LOD caused mainly by tidal friction (i.e., 1.72 ms per century) by a relative decrease of 2 to 7 μs per century. Another, albeit much less plausible, hypothesis is that crystallization of the inner core does not produce any change of LOD, but makes the inner core rotate differentially with respect to the outer core and mantle.
Gravity drives the evolution of infrared dark hubs: JVLA observations of SDC13
NASA Astrophysics Data System (ADS)
Williams, G. M.; Peretto, N.; Avison, A.; Duarte-Cabral, A.; Fuller, G. A.
2018-05-01
Context. Converging networks of interstellar filaments, that is hubs, have been recently linked to the formation of stellar clusters and massive stars. Understanding the relationship between the evolution of these systems and the formation of cores and stars inside them is at the heart of current star formation research. Aims: The goal is to study the kinematic and density structure of the SDC13 prototypical hub at high angular resolution to determine what drives its evolution and fragmentation. Methods: We have mapped SDC13, a 1000 M⊙ infrared dark hub, in NH3(1,1) and NH3(2,2) emission lines, with both the Jansky Very Large Array and Green Bank Telescope. The high angular resolution achieved in the combined dataset allowed us to probe scales down to 0.07 pc. After fitting the ammonia lines, we computed the integrated intensities, centroid velocities and line widths, along with gas temperatures and H2 column densities. Results: The mass-per-unit-lengths of all four hub filaments are thermally super-critical, consistent with the presence of tens of gravitationally bound cores identified along them. These cores exhibit a regular separation of 0.37 ± 0.16 pc suggesting gravitational instabilities running along these super-critical filaments are responsible for their fragmentation. The observed local increase of the dense gas velocity dispersion towards starless cores is believed to be a consequence of such fragmentation process. Using energy conservation arguments, we estimate that the gravitational to kinetic energy conversion efficiency in the SDC13 cores is 35%. We see velocity gradient peaks towards 63% of cores as expected during the early stages of filament fragmentation. Another clear observational signature is the presence of the most massive cores at the filaments' junction, where the velocity dispersion is largest. We interpret this as the result of the hub morphology generating the largest acceleration gradients near the hub centre. Conclusions: We propose a scenario for the evolution of the SDC13 hub in which filaments first form as post-shock structures in a supersonic turbulent flow. As a result of the turbulent energy dissipation in the shock, the dense gas within the filaments is initially mostly sub-sonic. Then gravity takes over and starts shaping the evolution of the hub, both fragmenting filaments and pulling the gas towards the centre of the gravitational well. By doing so, gravitational energy is converted into kinetic energy in both local (cores) and global (hub centre) potential well minima. Furthermore, the generation of larger gravitational acceleration gradients at the filament junctions promotes the formation of more massive cores. The FITS files of the JVLA and GBT combined NH3(1,1) and NH3(2,2) data cubes are also available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/613/A11
NASA Astrophysics Data System (ADS)
Constantino, Thomas; Campbell, Simon W.; Lattanzio, John C.
2017-12-01
Theoretical predictions for the core helium burning phase of stellar evolution are highly sensitive to the uncertain treatment of mixing at convective boundaries. In the last few years, interest in constraining the uncertain structure of their deep interiors has been renewed by insights from asteroseismology. Recently, Spruit proposed a limit for the rate of growth of helium-burning convective cores based on the higher buoyancy of material ingested from outside the convective core. In this paper we test the implications of such a limit for stellar models with a range of initial mass and metallicity. We find that the constraint on mixing beyond the Schwarzschild boundary has a significant effect on the evolution late in core helium burning, when core breathing pulses occur and the ingestion rate of helium is fastest. Ordinarily, core breathing pulses prolong the core helium burning lifetime to such an extent that models are at odds with observations of globular cluster populations. Across a wide range of initial stellar masses (0.83 ≤ M/M⊙ ≤ 5), applying the Spruit constraint reduces the core helium burning lifetime because core breathing pulses are either avoided or their number and severity reduced. The constraint suggested by Spruit therefore helps to resolve significant discrepancies between observations and theoretical predictions. Specifically, we find improved agreement for R2 (the observed ratio of asymptotic giant branch to horizontal branch stars in globular clusters), the luminosity difference between these two groups, and in asteroseismology, the mixed-mode period spacing detected in red clump stars in the Kepler field.
Palaeointensity, core thermal conductivity and the unknown age of the inner core
NASA Astrophysics Data System (ADS)
Smirnov, Aleksey V.; Tarduno, John A.; Kulakov, Evgeniy V.; McEnroe, Suzanne A.; Bono, Richard K.
2016-05-01
Data on the evolution of Earth's magnetic field intensity are important for understanding the geodynamo and planetary evolution. However, the paleomagnetic record in rocks may be adversely affected by many physical processes, which must be taken into account when analysing the palaeointensity database. This is especially important in the light of an ongoing debate regarding core thermal conductivity values, and how these relate to the Precambrian geodynamo. Here, we demonstrate that several data sets in the Precambrian palaeointensity database overestimate the true paleofield strength due to the presence of non-ideal carriers of palaeointensity signals and/or viscous re-magnetizations. When the palaeointensity overestimates are removed, the Precambrian database does not indicate a robust change in geomagnetic field intensity during the Mesoproterozoic. These findings call into question the recent claim that the solid inner core formed in the Mesoproterozoic, hence constraining the thermal conductivity in the core to `moderate' values. Instead, our analyses indicate that the presently available palaeointensity data are insufficient in number and quality to constrain the timing of solid inner core formation, or the outstanding problem of core thermal conductivity. Very young or very old inner core ages (and attendant high or low core thermal conductivity values) are consistent with the presently known history of Earth's field strength. More promising available data sets that reflect long-term core structure are geomagnetic reversal rate and field morphology. The latter suggests changes that may reflect differences in Archean to Proterozoic core stratification, whereas the former suggest an interval of geodynamo hyperactivity at ca. 550 Ma.
Reactors as a Source of Antineutrinos: Effects of Fuel Loading and Burnup for Mixed-Oxide Fuels
NASA Astrophysics Data System (ADS)
Bernstein, Adam; Bowden, Nathaniel S.; Erickson, Anna S.
2018-01-01
In a conventional light-water reactor loaded with a range of uranium and plutonium-based fuel mixtures, the variation in antineutrino production over the cycle reflects both the initial core fissile inventory and its evolution. Under an assumption of constant thermal power, we calculate the rate at which antineutrinos are emitted from variously fueled cores, and the evolution of that rate as measured by a representative ton-scale antineutrino detector. We find that antineutrino flux decreases with burnup for low-enriched uranium cores, increases for full mixed-oxide (MOX) cores, and does not appreciably change for cores with a MOX fraction of approximately 75%. Accounting for uncertainties in the fission yields in the emitted antineutrino spectra and the detector response function, we show that the difference in corewide MOX fractions at least as small as 8% can be distinguished using a hypothesis test. The test compares the evolution of the antineutrino rate relative to an initial value over part or all of the cycle. The use of relative rates reduces the sensitivity of the test to an independent thermal power measurement, making the result more robust against possible countermeasures. This rate-only approach also offers the potential advantage of reducing the cost and complexity of the antineutrino detectors used to verify the diversion, compared to methods that depend on the use of the antineutrino spectrum. A possible application is the verification of the disposition of surplus plutonium in nuclear reactors.
A novel strategy for exploring the reassortment origins of newly emerging influenza virus.
Tian, Deqiao; Wang, Yumin; Zheng, Tao
2011-01-01
In early 2009, new swine-origin influenza A (H1N1) virus emerged in Mexico and the United States. The emerging influenza virus had made global influenza pandemic for nearly one year. To every emerging pathogen, exploring the origin sources is vital for viral control and clearance. Influenza virus is different from other virus in that it has 8 segments, making the segment reassortment a main drive in virus evolution. In exploring reassortment evolution origins of a newly emerging influenza virus, integrated comparing of the origin sources of all the segments is necessary. If some segments have high homologous with one parental strain, lower homologous with another parental strain, while other segments are reverse, can we proposed that this emerging influenza virus may re-assort from the two parental strains. Here we try to explore the multilevel reassortment evolution origins of 2009 H1N1 influenza virus using this method. By further validating the fidelity of this strategy, this method might be useful in judging the reassortment origins of newly emerging influenza virus.
PanCoreGen - Profiling, detecting, annotating protein-coding genes in microbial genomes.
Paul, Sandip; Bhardwaj, Archana; Bag, Sumit K; Sokurenko, Evgeni V; Chattopadhyay, Sujay
2015-12-01
A large amount of genomic data, especially from multiple isolates of a single species, has opened new vistas for microbial genomics analysis. Analyzing the pan-genome (i.e. the sum of genetic repertoire) of microbial species is crucial in understanding the dynamics of molecular evolution, where virulence evolution is of major interest. Here we present PanCoreGen - a standalone application for pan- and core-genomic profiling of microbial protein-coding genes. PanCoreGen overcomes key limitations of the existing pan-genomic analysis tools, and develops an integrated annotation-structure for a species-specific pan-genomic profile. It provides important new features for annotating draft genomes/contigs and detecting unidentified genes in annotated genomes. It also generates user-defined group-specific datasets within the pan-genome. Interestingly, analyzing an example-set of Salmonella genomes, we detect potential footprints of adaptive convergence of horizontally transferred genes in two human-restricted pathogenic serovars - Typhi and Paratyphi A. Overall, PanCoreGen represents a state-of-the-art tool for microbial phylogenomics and pathogenomics study. Copyright © 2015 Elsevier Inc. All rights reserved.
Stevenson, D J
1981-11-06
Combined inferences from seismology, high-pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to models of the earth's core with the following properties. Core formation was contemporaneous with earth accretion; the core is not in chemical equilibrium with the mantle; the outer core is a fluid iron alloy containing significant quantities of lighter elements and is probably almost adiabatic and compositionally uniform; the more iron-rich inner solid core is a consequence of partial freezing of the outer core, and the energy release from this process sustains the earth's magnetic field; and the thermodynamic properties of the core are well constrained by the application of liquid-state theory to seismic and laboratory data.
Thermal evolution of the earth
NASA Technical Reports Server (NTRS)
Spohn, T.
1984-01-01
The earth's heat budget and models of the earth's thermal evolution are discussed. Sources of the planetary heat are considered and modes of heat transport are addressed, including conduction, convection, and chemical convection. Thermal and convectional models of the earth are covered, and models of thermal evolution are discussed in detail, including changes in the core, the influence of layered mantle convection on the thermal evolution, and the effect of chemical differentiation on the continents.
Towards a Framework for Evolvable Network Design
NASA Astrophysics Data System (ADS)
Hassan, Hoda; Eltarras, Ramy; Eltoweissy, Mohamed
The layered Internet architecture that had long guided network design and protocol engineering was an “interconnection architecture” defining a framework for interconnecting networks rather than a model for generic network structuring and engineering. We claim that the approach of abstracting the network in terms of an internetwork hinders the thorough understanding of the network salient characteristics and emergent behavior resulting in impeding design evolution required to address extreme scale, heterogeneity, and complexity. This paper reports on our work in progress that aims to: 1) Investigate the problem space in terms of the factors and decisions that influenced the design and development of computer networks; 2) Sketch the core principles for designing complex computer networks; and 3) Propose a model and related framework for building evolvable, adaptable and self organizing networks We will adopt a bottom up strategy primarily focusing on the building unit of the network model, which we call the “network cell”. The model is inspired by natural complex systems. A network cell is intrinsically capable of specialization, adaptation and evolution. Subsequently, we propose CellNet; a framework for evolvable network design. We outline scenarios for using the CellNet framework to enhance legacy Internet protocol stack.
A potent synthetic inorganic antibiotic with activity against drug-resistant pathogens.
Hubick, Shelby; Jayaraman, Arumugam; McKeen, Alexander; Reid, Shelby; Alcorn, Jane; Stavrinides, John; Sterenberg, Brian T
2017-02-06
The acronymously named "ESKAPE" pathogens represent a group of bacteria that continue to pose a serious threat to human health, not only due to their propensity for repeated emergence, but also due to their ability to "eskape" antibiotic treatment. The evolution of multi-drug resistance in these pathogens alone has greatly outpaced the development of new therapeutics, necessitating an alternative strategy for antibiotic development that considers the evolutionary mechanisms driving antibiotic resistance. In this study, we synthesize a novel inorganic antibiotic, phosphopyricin, which has antibiotic activity against the Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE). We show that this potent antibiotic is bactericidal, and exhibits low toxicity in an acute dose assay in mice. As a synthetic compound that does not occur naturally, phosphopyricin would be evolutionarily foreign to microbes, thereby slowing the evolution of resistance. In addition, it loses antibiotic activity upon exposure to light, meaning that the active antibiotic will not accumulate in the general environment where strong selective pressures imposed by antibiotic residuals are known to accelerate resistance. Phosphopyricin represents an innovation in antimicrobials, having a synthetic core, and a photosensitive chemical architecture that would reduce accumulation in the environment.
A potent synthetic inorganic antibiotic with activity against drug-resistant pathogens
Hubick, Shelby; Jayaraman, Arumugam; McKeen, Alexander; Reid, Shelby; Alcorn, Jane; Stavrinides, John; Sterenberg, Brian T.
2017-01-01
The acronymously named “ESKAPE” pathogens represent a group of bacteria that continue to pose a serious threat to human health, not only due to their propensity for repeated emergence, but also due to their ability to “eskape” antibiotic treatment12. The evolution of multi-drug resistance in these pathogens alone has greatly outpaced the development of new therapeutics, necessitating an alternative strategy for antibiotic development that considers the evolutionary mechanisms driving antibiotic resistance. In this study, we synthesize a novel inorganic antibiotic, phosphopyricin, which has antibiotic activity against the Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE). We show that this potent antibiotic is bactericidal, and exhibits low toxicity in an acute dose assay in mice. As a synthetic compound that does not occur naturally, phosphopyricin would be evolutionarily foreign to microbes, thereby slowing the evolution of resistance. In addition, it loses antibiotic activity upon exposure to light, meaning that the active antibiotic will not accumulate in the general environment where strong selective pressures imposed by antibiotic residuals are known to accelerate resistance. Phosphopyricin represents an innovation in antimicrobials, having a synthetic core, and a photosensitive chemical architecture that would reduce accumulation in the environment. PMID:28165020
Liu, Bin; Sun, Yan; Dong, Qian; Zhang, Zongjiu; Zhang, Liang
2015-01-01
As an international legal instrument, the International Health Regulations (IHR) is internationally binding in 196 countries, especially in all the member states of the World Health Organization (WHO). The IHR aims to prevent, protect against, control, and respond to the international spread of disease and aims to cut out unnecessary interruptions to traffic and trade. To meet IHR requirements, countries need to improve capacity construction by developing, strengthening, and maintaining core response capacities for public health risk and Public Health Emergency of International Concern (PHEIC). In addition, all the related core capacity requirements should be met before June 15, 2012. If not, then the deadline can be extended until 2016 upon request by countries. China has promoted the implementation of the IHR comprehensively, continuingly strengthening the core public health capacity and advancing in core public health emergency capacity building, points of entry capacity building, as well as risk prevention and control of biological events (infectious diseases, zoonotic diseases, and food safety), radiological, nuclear, and chemical events, and other catastrophic events. With significant progress in core capacity building, China has dealt with many public health emergencies successfully, ensuring that its core public health capacity has met the IHR requirements, which was reported to WHO in June 2014. This article describes the steps, measures, and related experiences in the implementation of IHR in China. PMID:26029897
Szijártó, Valéria; Pal, Tibor; Nagy, Gabor; Nagy, Eszter; Ghazawi, Akela; al-Haj, Mohammed; El Kurdi, Sylvia; Sonnevend, Agnes
2012-07-01
The clone Escherichia coli O25 ST131, typically producing extended-spectrum beta-lactamases (ESBLs), has spread globally and became the dominant type among extraintestinal isolates at many parts of the world. However, the reasons behind the emergence and success of this clone are only partially understood. We compared the core type genes by PCR of ESBL-producing and ESBL-nonproducing strains isolated from urinary tract infections in the United Arab Emirates and found a surprisingly high frequency of the K-12 core type (44.6%) among members of the former group, while in the latter one, it was as low (3.7%), as reported earlier. The high figure was almost entirely attributable to the presence of members of the clone O25 ST131 among ESBL producers. Strains from the same clone isolated in Europe also carried the K-12 core type genes. Sequencing the entire core operon of an O25 ST131 isolate revealed a high level of similarity to known K-12 core gene sequences and an almost complete identity with a recently sequenced non-O25 ST131 fecal isolate. The exact chemical structure and whether and how this unusual core type contributed to the sudden emergence of ST131 require further investigations. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
A large oxygen-dominated core from the seismic cartography of a pulsating white dwarf
NASA Astrophysics Data System (ADS)
Giammichele, N.; Charpinet, S.; Fontaine, G.; Brassard, P.; Green, E. M.; Van Grootel, V.; Bergeron, P.; Zong, W.; Dupret, M.-A.
2018-02-01
White-dwarf stars are the end product of stellar evolution for most stars in the Universe. Their interiors bear the imprint of fundamental mechanisms that occur during stellar evolution. Moreover, they are important chronometers for dating galactic stellar populations, and their mergers with other white dwarfs now appear to be responsible for producing the type Ia supernovae that are used as standard cosmological candles. However, the internal structure of white-dwarf stars—in particular their oxygen content and the stratification of their cores—is still poorly known, because of remaining uncertainties in the physics involved in stellar modelling codes. Here we report a measurement of the radial chemical stratification (of oxygen, carbon and helium) in the hydrogen-deficient white-dwarf star KIC08626021 (J192904.6+444708), independently of stellar-evolution calculations. We use archival data coupled with asteroseismic sounding techniques to determine the internal constitution of this star. We find that the oxygen content and extent of its core exceed the predictions of existing models of stellar evolution. The central homogeneous core has a mass of 0.45 solar masses, and is composed of about 86 per cent oxygen by mass. These values are respectively 40 per cent and 15 per cent greater than those expected from typical white-dwarf models. These findings challenge present theories of stellar evolution and their constitutive physics, and open up an avenue for calibrating white-dwarf cosmochronology.
ERIC Educational Resources Information Center
Werth, Alexander J.
2009-01-01
An anonymous survey instrument was used for a ten year study to gauge college student attitudes toward evolution. Results indicate that students are most likely to accept evolution as a historical process for change in physical features of non-human organisms. They are less likely to accept evolution as an ongoing process that shapes all traits…
Role of nuclear reactions on stellar evolution of intermediate-mass stars
NASA Astrophysics Data System (ADS)
Möller, H.; Jones, S.; Fischer, T.; Martínez-Pinedo, G.
2018-01-01
The evolution of intermediate-mass stars (8 - 12 solar masses) represents one of the most challenging subjects in nuclear astrophysics. Their final fate is highly uncertain and strongly model dependent. They can become white dwarfs, they can undergo electron-capture or core-collapse supernovae or they might even proceed towards explosive oxygen burning and a subsequent thermonuclear explosion. We believe that an accurate description of nuclear reactions is crucial for the determination of the pre-supernova structure of these stars. We argue that due to the possible development of an oxygen-deflagration, a hydrodynamic description has to be used. We implement a nuclear reaction network with ∼200 nuclear species into the implicit hydrodynamic code AGILE. The reaction network considers all relevant nuclear electron captures and beta-decays. For selected relevant nuclear species, we include a set of updated reaction rates, for which we discuss the role for the evolution of the stellar core, at the example of selected stellar models. We find that the final fate of these intermediate-mass stars depends sensitively on the density threshold for weak processes that deleptonize the core.
Asteroseismic Constraints on the Models of Hot B Subdwarfs: Convective Helium-Burning Cores
NASA Astrophysics Data System (ADS)
Schindler, Jan-Torge; Green, Elizabeth M.; Arnett, W. David
2017-10-01
Asteroseismology of non-radial pulsations in Hot B Subdwarfs (sdB stars) offers a unique view into the interior of core-helium-burning stars. Ground-based and space-borne high precision light curves allow for the analysis of pressure and gravity mode pulsations to probe the structure of sdB stars deep into the convective core. As such asteroseismological analysis provides an excellent opportunity to test our understanding of stellar evolution. In light of the newest constraints from asteroseismology of sdB and red clump stars, standard approaches of convective mixing in 1D stellar evolution models are called into question. The problem lies in the current treatment of overshooting and the entrainment at the convective boundary. Unfortunately no consistent algorithm of convective mixing exists to solve the problem, introducing uncertainties to the estimates of stellar ages. Three dimensional simulations of stellar convection show the natural development of an overshooting region and a boundary layer. In search for a consistent prescription of convection in one dimensional stellar evolution models, guidance from three dimensional simulations and asteroseismological results is indispensable.
Liquidus Phases of the Richardson H5 Chondrite at High Pressures and Temperatures
NASA Technical Reports Server (NTRS)
Channon, M.; Garber, J.; Danielson, L. R.; Righter, K.
2007-01-01
Part of early mantle evolution may include a magma ocean, where core formation began before the proto-Earth reached half of its present radius. Temperatures were high and bombardment and accretion were still occurring, suggesting that the proto-Earth consisted of a core and an at least partially liquid mantle, the magma ocean. As the Earth accreted, pressure near the core increased and the magma ocean decreased in volume and became shallower as it began to cool and solidify. As crystals settled, or floated, the composition of the magma ocean could change significantly and begin to crystallize different minerals from the residual liquid. Therefore, the mantle may be stratified following the P-T phase diagram for the bulk silicate Earth. To understand mantle evolution, it is necessary to know liquidus phase relations at high pressures and temperatures. In order to model the evolution of the magma ocean, high pressure and temperature experiments have been conducted to simulate the crystallization process using a range of materials that most likely resemble the bulk composition of the early Earth.
NASA Astrophysics Data System (ADS)
Choudhury, R.; Schilke, P.; Stéphan, G.; Bergin, E.; Möller, T.; Schmiedeke, A.; Zernickel, A.
2015-03-01
Context. Hot molecular cores (HMCs) are intermediate stages of high-mass star formation and are also known for their rich chemical reservoirs and emission line spectra at (sub-)mm wavebands. Complex organic molecules (COMs) such as methanol (CH3OH), ethanol (C2H5OH), dimethyl ether (CH3OCH3), and methyl formate (HCOOCH3) produce most of these observed lines. The observed spectral feature of HMCs such as total number of emission lines and associated line intensities are also found to vary with evolutionary stages. Aims: We aim to investigate the spectral evolution of these COMs to explore the initial evolutionary stages of high-mass star formation including HMCs. Methods: We developed various 3D models for HMCs guided by the evolutionary scenarios proposed by recent empirical and modeling studies. We then investigated the spatio-temporal variation of temperature and molecular abundances in HMCs by consistently coupling gas-grain chemical evolution with radiative transfer calculations. We explored the effects of varying physical conditions on molecular abundances including density distribution and luminosity evolution of the central protostar(s) among other parameters. Finally, we simulated the synthetic spectra for these models at different evolutionary timescales to compare with observations. Results: Temperature has a profound effect on the formation of COMs through the depletion and diffusion on grain surface to desorption and further gas-phase processing. The time-dependent temperature structure of the hot core models provides a realistic framework for investigating the spatial variation of ice mantle evaporation as a function of evolutionary timescales. We find that a slightly higher value (15 K) than the canonical dark cloud temperature (10 K) provides a more productive environment for COM formation on grain surface. With increasing protostellar luminosity, the water ice evaporation font (~100 K) expands and the spatial distribution of gas phase abundances of these COMs also spreads out. We calculated the temporal variation of the radial profiles of these COMs for different hot core models. These profiles resemble the so-called jump profiles with relative abundances higher than 10-9 within the evaporation font will furthermore be useful to model the observed spectra of hot cores. We present the simulated spectra of these COMs for different hot core models at various evolutionary timescales. A qualitative comparison of the simulated and observed spectra suggests that these self-consistent hot core models can reproduce the notable trends in hot core spectral variation within the typical hot core timescales of 105 year. These models predict that the spatial distribution of various emission line maps will also expand with evolutionary time; this feature can be used to constrain the relative desorption energies of the molecules that mainly form on the grain surface and return to the gas phase via thermal desorption. The detailed modeling of the thermal structure of hot cores with similar masses along with the characterization of the desorption energies of different molecules can be used to constrain the luminosity evolution of the central protostars. The model predictions can be compared with high resolution observation that can probe scales of a few thousand AU in high-mass star forming regions such as from Atacama Large Millimeter/submillimeter Array (ALMA). We used a spectral fitting method to analyze the simulated spectra and find that it significantly underestimates some of the physical parameters such as temperature. The coupling of chemical evolution with radiative transfer models will be particularly useful to decipher the physical structure of hot cores and also to constrain the initial evolutionary stages of high-mass star formation. Appendices are available in electronic form at http://www.aanda.org
Agglutinates as recorders of regolith evolution - Application to the Apollo 17 drill core
NASA Technical Reports Server (NTRS)
Laul, J. C.; Smith, M. R.; Papike, J. J.; Simon, S. B.
1984-01-01
Chemical data are reported for agglutinates from 26 depth intervals of the Apollo 17 deep drill core, and the compositions of the agglutinates are compared with those of the soils in which they occur. The agglutinate sequence suggests a scenario in which several closely-spaced depositional events were involved in the formation of the drill core, rather than a continuous accumulation process.
Agglutinates as recorders of regolith evolution - Application to the Apollo 17 drill core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laul, J.C.; Smith, M.R.
1984-11-15
Chemical data are reported for agglutinates from 26 depth intervals of the Apollo 17 deep drill core, and the compositions of the agglutinates are compared with those of the soils in which they occur. The agglutinate sequence suggests a scenario in which several closely-spaced depositional events were involved in the formation of the drill core, rather than a continuous accumulation process.
NASA Astrophysics Data System (ADS)
Butler, S. L.; Peltier, W. R.; Costin, S. O.
2005-09-01
Recently there has been renewed interest in the evolution of the inner core and in the possibility that radioactive potassium might be found in significant quantities in the core. The arguments for core potassium come from considerations of the age of the inner core and the energy required to sustain the geodynamo [Nimmo, F., Price, G.D., Brodholt, J., Gubbins, D., 2004. The influence of potassium on core and geodynamo evolution. Geophys. J. Int. 156, 363-376; Labrosse, S., Poirier, J.-P., Le Mouël, J.-L., 2001. The age of the inner core. Earth Planet Sci. Lett. 190, 111-123; Labrosse, S., 2003. Thermal and magnetic evolution of the Earth's core. Phys. Earth Planet Int. 140, 127-143; Buffett, B.A., 2003. The thermal state of Earth's core. Science 299, 1675-1677] and from new high pressure physics analyses [Lee, K., Jeanloz, R., 2003. High-pressure alloying of potassium and iron: radioactivity in the Earth's core? Geophys. Res. Lett. 30 (23); Murthy, V.M., van Westrenen, W., Fei, Y.W., 2003. Experimental evidence that potassium is a substantial radioactive heat source in planetary cores. Nature 423, 163-165; Gessmann, C.K., Wood, B.J., 2002. Potassium in the Earth's core? Earth Planet Sci. Lett. 200, 63-78]. The Earth's core is also located at the lower boundary of the convecting mantle and the presence of radioactive heat sources in the core will affect the flux of heat between these two regions and will, as a result, have a significant impact on the Earth's thermal history. In this paper, we present Earth thermal history simulations in which we calculate fluid flow in a spherical shell representing the mantle, coupled with a core of a given heat capacity with varying degrees of internal heating in the form of K40 and varying initial core temperatures. The mantle model includes the effects of the temperature dependence of viscosity, decaying radioactive heat sources, and mantle phase transitions. The core model includes the thermal effects of inner core solidification and we present models for which the final size of the inner core is the same that for the present-day Earth. We compare the results of simulations with and without the effects of inner core solidification and we compare the results of the numerical model with those of a parameterized model. Models with concentrations of potassium in the core of roughly 600 ppm best satisfy the present-day surface heat flow constraint; however, the core temperatures in these models are somewhat high. In addition, we find that models with lesser degrees of heating in the core can also satisfy the surface heat flow constraint provided that the mantle is in a particularly active state. Our models predict a relatively young inner core with the greatest age being 1756 Ma. We demonstrate that models with high core temperatures in the latter part of simulations result in high CMB heat flows which lead to predictions of young inner cores. For fixed initial core temperatures, this leads to a slight decrease in the predicted age of the inner core with increasing concentration of radioactive elements in the core.
A wet, heterogeneous lunar interior: Lower mantle and core dynamo evolution
NASA Astrophysics Data System (ADS)
Evans, A. J.; Zuber, M. T.; Weiss, B. P.; Tikoo, S. M.
2014-05-01
While recent analyses of lunar samples indicate the Moon had a core dynamo from at least 4.2-3.56 Ga, mantle convection models of the Moon yield inadequate heat flux at the core-mantle boundary to sustain thermal core convection for such a long time. Past investigations of lunar dynamos have focused on a generally homogeneous, relatively dry Moon, while an initial compositionally stratified mantle is the expected consequence of a postaccretionary lunar magma ocean. Furthermore, recent re-examination of Apollo samples and geophysical data suggests that the Moon contains at least some regions with high water content. Using a finite element model, we investigate the possible consequences of a heterogeneously wet, compositionally stratified interior for the evolution of the Moon. We find that a postoverturn model of mantle cumulates could result in a core heat flux sufficiently high to sustain a dynamo through 2.5 Ga and a maximum surface, dipolar magnetic field strength of less than 1 μT for a 350-km core and near ˜2 μT for a 450-km core. We find that if water was transported or retained preferentially in the deep interior, it would have played a significant role in transporting heat out of the deep interior and reducing the lower mantle temperature. Thus, water, if enriched in the lower mantle, could have influenced core dynamo timing by over 1.0 Gyr and enhanced the vigor of a lunar core dynamo. Our results demonstrate the plausibility of a convective lunar core dynamo even beyond the period currently indicated by the Apollo samples.
Evolution of structural diversity of trichothecene mycotoxins
USDA-ARS?s Scientific Manuscript database
Fungal secondary metabolites (SMs) are diverse in structure and biological activity. Most can be divided into families of analogs that share a core structure but vary in patterns of functional groups (substituents) attached to the core. Typically, fungal genes responsible for synthesis of the same S...
NASA Technical Reports Server (NTRS)
Endal, A. S.
1975-01-01
The evolution of a star with mass 15 times that of the sun from the zero-age main sequence to neon ignition has been computed by the Henyey method. The hydrogen-rich envelope and all shell sources were explicitly included in the models. An algorithm has been developed for approximating the results of carbon burning, including the branching ratio for the C-12 + C-12 reaction and taking some secondary reactions into account. Penetration of the convective envelope into the core is found to be unimportant during the stages covered by the models. Energy transfer from the carbon-burning shell to the core by degenerate electron conduction becomes important after the core carbon-burning stage. Neon ignition will occur in a semidegenerate core and will lead to a mild 'flash.' Detailed numerical results are given in an appendix. Continuation of the calculations into later stages and variations with the total mass of the star will be discussed in later papers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kikuchi, Akihiro; Higuchi, Arika; Ida, Shigeru, E-mail: kikuchi.a@geo.titech.ac.jp, E-mail: higuchia@geo.titech.ac.jp, E-mail: ida@elsi.jp
Recently, gas giant planets in nearly circular orbits with large semimajor axes (a ∼ 30-1000 AU) have been detected by direct imaging. We have investigated orbital evolution in a formation scenario for such planets, based on a core accretion model. (1) Icy cores accrete from planetesimals at ≲ 30 AU, (2) they are scattered outward by an emerging nearby gas giant to acquire highly eccentric orbits, and (3) their orbits are circularized through the accretion of disk gas in outer regions, where they spend most of their time. We analytically derived equations to describe the orbital circularization through gas accretion.more » Numerical integrations of these equations show that the eccentricity decreases by a factor of more than 5 while the planetary mass increases by a factor of 10. Because runaway gas accretion increases planetary mass by ∼10-300, the orbits are sufficiently circularized. On the other hand, a is reduced at most only by a factor of two, leaving the planets in the outer regions. If the relative velocity damping by shock is considered, the circularization slows down, but is still efficient enough. Therefore, this scenario potentially accounts for the formation of observed distant jupiters in nearly circular orbits. If the apocenter distances of the scattered cores are larger than the disk sizes, their a shrink to a quarter of the disk sizes; the a-distribution of distant giants could reflect the outer edges of the disks in a similar way that those of hot jupiters may reflect inner edges.« less
NASA Technical Reports Server (NTRS)
Stevenson, D. J.
1981-01-01
Combined inferences from seismology, high-pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to models of the earth's core with five basic properties. These are that core formation was contemporaneous with earth accretion; the core is not in chemical equilibrium with the mantle; the outer core is a fluid iron alloy containing significant quantities of lighter elements and is probably almost adiabatic and compositionally uniform; the more iron-rich inner solid core is a consequence of partial freezing of the outer core, and the energy release from this process sustains the earth's magnetic field; and the thermodynamic properties of the core are well constrained by the application of liquid-state theory to seismic and labroatory data.
Evidence of Twisted Flux-Tube Emergence in Active Regions
NASA Astrophysics Data System (ADS)
Poisson, M.; Mandrini, C. H.; Démoulin, P.; López Fuentes, M.
2015-03-01
Elongated magnetic polarities are observed during the emergence phase of bipolar active regions (ARs). These extended features, called magnetic tongues, are interpreted as a consequence of the azimuthal component of the magnetic flux in the toroidal flux-tubes that form ARs. We develop a new systematic and user-independent method to identify AR tongues. Our method is based on determining and analyzing the evolution of the AR main polarity inversion line (PIL). The effect of the tongues is quantified by measuring the acute angle [ τ] between the orientation of the PIL and the direction orthogonal to the AR main bipolar axis. We apply a simple model to simulate the emergence of a bipolar AR. This model lets us interpret the effect of magnetic tongues on parameters that characterize ARs ( e.g. the PIL inclination and the tilt angles, and their evolution). In this idealized kinematic emergence model, τ is a monotonically increasing function of the twist and has the same sign as the magnetic helicity. We systematically apply our procedure to a set of bipolar ARs (41 ARs) that were observed emerging in line-of-sight magnetograms over eight years. For most of the cases studied, the tongues only have a small influence on the AR tilt angle since tongues have a much lower magnetic flux than the more concentrated main polarities. From the observed evolution of τ, corrected for the temporal evolution of the tilt angle and its final value when the AR is fully emerged, we estimate the average number of turns in the subphotospherically emerging flux-rope. These values for the 41 observed ARs are below unity, except for one. This indicates that subphotospheric flux-ropes typically have a low amount of twist, i.e. highly twisted flux-tubes are rare. Our results demonstrate that the evolution of the PIL is a robust indicator of the presence of tongues and constrains the amount of twist in emerging flux-tubes.
van Witteloostuijn, Arjen
2018-01-01
In this paper, we develop an ecological, multi-level model that can be used to study the evolution of emerging technology. More specifically, by defining technology as a system composed of a set of interacting components, we can build upon the argument of multi-level density dependence from organizational ecology to develop a distribution-independent model of technological evolution. This allows us to distinguish between different stages of component development, which provides more insight into the emergence of stable component configurations, or dominant designs. We validate our hypotheses in the biotechnology industry by using patent data from the USPTO from 1976 to 2003. PMID:29795575
Murphy, David J; Rubinson, Lewis; Blum, James; Isakov, Alexander; Bhagwanjee, Statish; Cairns, Charles B; Cobb, J Perren; Sevransky, Jonathan E
2015-11-01
In developed countries, public health systems have become adept at rapidly identifying the etiology and impact of public health emergencies. However, within the time course of clinical responses, shortfalls in readily analyzable patient-level data limit capabilities to understand clinical course, predict outcomes, ensure resource availability, and evaluate the effectiveness of diagnostic and therapeutic strategies for seriously ill and injured patients. To be useful in the timeline of a public health emergency, multi-institutional clinical investigation systems must be in place to rapidly collect, analyze, and disseminate detailed clinical information regarding patients across prehospital, emergency department, and acute care hospital settings, including ICUs. As an initial step to near real-time clinical learning during public health emergencies, we sought to develop an "all-hazards" core dataset to characterize serious illness and injuries and the resource requirements for acute medical response across the care continuum. A multidisciplinary panel of clinicians, public health professionals, and researchers with expertise in public health emergencies. Group consensus process. The consensus process included regularly scheduled conference calls, electronic communications, and an in-person meeting to generate candidate variables. Candidate variables were then reviewed by the group to meet the competing criteria of utility and feasibility resulting in the core dataset. The 40-member panel generated 215 candidate variables for potential dataset inclusion. The final dataset includes 140 patient-level variables in the domains of demographics and anthropometrics (7), prehospital (11), emergency department (13), diagnosis (8), severity of illness (54), medications and interventions (38), and outcomes (9). The resulting all-hazard core dataset for seriously ill and injured persons provides a foundation to facilitate rapid collection, analyses, and dissemination of information necessary for clinicians, public health officials, and policymakers to optimize public health emergency response. Further work is needed to validate the effectiveness of the dataset in a variety of emergency settings.
NASA Astrophysics Data System (ADS)
Fields, C. E.; Timmes, F. X.; Farmer, R.; Petermann, I.; Wolf, William M.; Couch, S. M.
2018-02-01
We explore properties of core-collapse supernova progenitors with respect to the composite uncertainties in the thermonuclear reaction rates by coupling the probability density functions of the reaction rates provided by the STARLIB reaction rate library with MESA stellar models. We evolve 1000 models of 15{M}ȯ from the pre-main sequence to core O-depletion at solar and subsolar metallicities for a total of 2000 Monte Carlo stellar models. For each stellar model, we independently and simultaneously sample 665 thermonuclear reaction rates and use them in a MESA in situ reaction network that follows 127 isotopes from 1H to 64Zn. With this framework we survey the core mass, burning lifetime, composition, and structural properties at five different evolutionary epochs. At each epoch we measure the probability distribution function of the variations of each property and calculate Spearman rank-order correlation coefficients for each sampled reaction rate to identify which reaction rate has the largest impact on the variations on each property. We find that uncertainties in the reaction rates of {}14{{N}}{({{p}},γ )}15{{O}}, triple-α, {}12{{C}}{(α ,γ )}16{{O}}, 12C(12C,p)23Na, 12C(16O, p)27Al, 16O(16O,n)31S, 16O(16O, p)31P, and 16O(16O,α)28Si dominate the variations of the properties surveyed. We find that variations induced by uncertainties in nuclear reaction rates grow with each passing phase of evolution, and at core H-, He-depletion they are of comparable magnitude to the variations induced by choices of mass resolution and network resolution. However, at core C-, Ne-, and O-depletion, the reaction rate uncertainties can dominate the variation, causing uncertainty in various properties of the stellar model in the evolution toward iron core-collapse.
NASA Astrophysics Data System (ADS)
Sier, Mark; Langereis, Cor; Dupont-Nivet, Guillaume; Feibel, Craig; Jordeens, Jose; van der Lubbe, Jeroen; Beck, Catherine; Olago, Daniel; Cohen, Andrew
2017-04-01
One of the major challenges in understanding the evolution of our own species is identifying the role climate change has played in the evolution of earlier hominin species. To clarify the influence of climate, we need long and continuous high-resolution paleoclimate records, preferably obtained from hominin-bearing sediments, that are well-dated by tephro- and magnetostratigraphy and other methods. This is hindered, however, by the fact that fossil-bearing sediments are often discontinuous, and subject to weathering, which may lead to oxidation and remagnetization. To obtain fresh, unweathered sediments, the Hominin Sites and Paleolakes Drilling Project (HSPDP) collected a 216- meter core (WTK13) in 2013 from deposits of Early Pleistocene paleolake Lorenyang in the western Turkana Basin (Kenya). Here, we present the magnetostratigraphy of the core. Rock magnetic analyses reveal the presence of iron sulphides carrying the remanent magnetizations. To recover polarity orientation from the near-equatorial WTK13 core drilled at 5°N, we developed and successfully applied two independent drill-core reorientation methods taking advantage of (1) the sedimentary fabric as expressed in the Anisotropy of Magnetic Susceptibility (AMS) and (2) the occurrence of a viscous component oriented in the present day field. The reoriented directions reveal a normal to reversed polarity reversal identified as the top of the Olduvai subchron. From this excellent record, we find no evidence for the 'Vrica subchron' previously reported in the area. We suggest that outcrop-based interpretations supporting the presence of the Vrica subchron have been affected by the oxidation of iron sulphides initially present in the sediments as evident in the core record, and by subsequent remagnetization. Based on our new high-resolution magnetostratigraphy and stratigraphic markers, we provide constraints for an initial age model of the WTK13 core. We discuss the implications of the observed geomagnetic record for human evolution studies.
Evolution of semilocal string networks. II. Velocity estimators
NASA Astrophysics Data System (ADS)
Lopez-Eiguren, A.; Urrestilla, J.; Achúcarro, A.; Avgoustidis, A.; Martins, C. J. A. P.
2017-07-01
We continue a comprehensive numerical study of semilocal string networks and their cosmological evolution. These can be thought of as hybrid networks comprised of (nontopological) string segments, whose core structure is similar to that of Abelian Higgs vortices, and whose ends have long-range interactions and behavior similar to that of global monopoles. Our study provides further evidence of a linear scaling regime, already reported in previous studies, for the typical length scale and velocity of the network. We introduce a new algorithm to identify the position of the segment cores. This allows us to determine the length and velocity of each individual segment and follow their evolution in time. We study the statistical distribution of segment lengths and velocities for radiation- and matter-dominated evolution in the regime where the strings are stable. Our segment detection algorithm gives higher length values than previous studies based on indirect detection methods. The statistical distribution shows no evidence of (anti)correlation between the speed and the length of the segments.
Dehant, V; Asael, D; Baland, R M; Baludikay, B K; Beghin, J; Belza, J; Beuthe, M; Breuer, D; Chernonozhkin, S; Claeys, Ph; Cornet, Y; Cornet, L; Coyette, A; Debaille, V; Delvigne, C; Deproost, M H; De WInter, N; Duchemin, C; El Atrassi, F; François, C; De Keyser, J; Gillmann, C; Gloesener, E; Goderis, S; Hidaka, Y; Höning, D; Huber, M; Hublet, G; Javaux, E J; Karatekin, Ö; Kodolanyi, J; Revilla, L Lobo; Maes, L; Maggiolo, R; Mattielli, N; Maurice, M; McKibbin, S; Morschhauser, A; Neumann, W; Noack, L; Pham, L B S; Pittarello, L; Plesa, A C; Rivoldini, A; Robert, S; Rosenblatt, P; Spohn, T; Storme, J -Y; Tosi, N; Trinh, A; Valdes, M; Vandaele, A C; Vanhaecke, F; Van Hoolst, T; Van Roosbroek, N; Wilquet, V; Yseboodt, M
2016-11-01
The Interuniversity Attraction Pole (IAP) 'PLANET TOPERS' (Planets: Tracing the Transfer, Origin, Preservation, and Evolution of their Reservoirs) addresses the fundamental understanding of the thermal and compositional evolution of the different reservoirs of planetary bodies (core, mantle, crust, atmosphere, hydrosphere, cryosphere, and space) considering interactions and feedback mechanisms. Here we present the first results after 2 years of project work.
Combining collective, MSW, and turbulence effects in supernova neutrino flavor evolution
NASA Astrophysics Data System (ADS)
Lund, Tina; Kneller, James P.
2013-07-01
In order to decode the neutrino burst signal from a Galactic core-collapse supernova (ccSN) and reveal the complicated inner workings of the explosion we need a thorough understanding of the neutrino flavor evolution from the proto-neutron star outwards. The flavor content of the signal evolves due to both neutrino collective effects and matter effects which can lead to a highly interesting interplay and distinctive spectral features. In this paper we investigate the supernova neutrino flavor evolution in three different progenitors and include collective flavor effects, the evolution of the Mikheyev, Smirnov & Wolfenstein (MSW) conversion due to the shock wave passage through the star, and the impact of turbulence. We consider both normal and inverted neutrino mass hierarchies and a value of θ13 close to the current experimental measurements. In the Oxygen-Neon-Magnesium (ONeMg) supernova we find that the impact of turbulence is both brief and slight during a window of 1-2 seconds post bounce. This is because the shock races through the star extremely quickly and the turbulence amplitude is expected to be small, less than 10%, since these stars do not require multidimensional physics to explode. Thus the spectral features of collective and shock effects in the neutrino signals from Oxygen-Neon-Magnesium supernovae may be almost turbulence free making them the easiest to interpret. For the more massive progenitors we again find that small amplitude turbulence, up to 10%, leads to a minimal modification of the signal, and the emerging neutrino spectra retain both collective and MSW features. However, when larger amounts of turbulence is added, 30% and 50%, which is justified by the requirement of multidimensional physics in order to make these stars explode, the features of collective and shock wave effects in the high (H) density resonance channel are almost completely obscured at late times. Yet at the same time we find the other mixing channels—the low (L) density resonance channel and the nonresonant channels—begin to develop turbulence signatures. Large amplitude turbulent motions in the outer layers of more massive, iron core-collapse supernovae may obscure the most obvious fingerprints of collective and shock wave effects in the neutrino signal but cannot remove them completely, and additionally bring about new features in the signal.
THE THREE-DIMENSIONAL EVOLUTION TO CORE COLLAPSE OF A MASSIVE STAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couch, Sean M.; Chatzopoulos, Emmanouil; Arnett, W. David
2015-07-20
We present the first three-dimensional (3D) simulation of the final minutes of iron core growth in a massive star, up to and including the point of core gravitational instability and collapse. We capture the development of strong convection driven by violent Si burning in the shell surrounding the iron core. This convective burning builds the iron core to its critical mass and collapse ensues, driven by electron capture and photodisintegration. The non-spherical structure and motion generated by 3D convection is substantial at the point of collapse, with convective speeds of several hundreds of km s{sup −1}. We examine the impactmore » of such physically realistic 3D initial conditions on the core-collapse supernova mechanism using 3D simulations including multispecies neutrino leakage and find that the enhanced post-shock turbulence resulting from 3D progenitor structure aids successful explosions. We conclude that non-spherical progenitor structure should not be ignored, and should have a significant and favorable impact on the likelihood for neutrino-driven explosions. In order to make simulating the 3D collapse of an iron core feasible, we were forced to make approximations to the nuclear network making this effort only a first step toward accurate, self-consistent 3D stellar evolution models of the end states of massive stars.« less
NASA Astrophysics Data System (ADS)
Li, Yuanchao; Nguyen, Trung Van
2018-04-01
Synthesis and characterization of high electrochemical active surface area (ECSA) core-shell RhxSy catalysts for hydrogen evolution oxidation (HER)/hydrogen oxidation reaction (HOR) in H2-Br2 fuel cell are discussed. Catalysts with RhxSy as shell and different percentages (5%, 10%, and 20%) of platinum on carbon as core materials are synthesized. Cyclic voltammetry is used to evaluate the Pt-equivalent mass specific ECSA and durability of these catalysts. Transmission electron microscopy (TEM), X-ray Photoelectron spectroscopy (XPS) and Energy-dispersive X-ray spectroscopy (EDX) techniques are utilized to characterize the bulk and surface compositions and to confirm the core-shell structure of the catalysts, respectively. Cycling test and polarization curve measurements in the H2-Br2 fuel cell are used to assess the catalyst stability and performance in a fuel cell. The results show that the catalysts with core-shell structure have higher mass specific ECSA (50 m2 gm-Rh-1) compared to a commercial catalyst (RhxSy/C catalyst from BASF, 6.9 m2 gm-Rh-1). It also shows better HOR/HER performance in the fuel cell. Compared to the platinum catalyst, the core-shell catalysts show more stable performance in the fuel cell cycling test.
Information systems in healthcare - state and steps towards sustainability.
Lenz, R
2009-01-01
To identify core challenges and first steps on the way to sustainable information systems in healthcare. Recent articles on healthcare information technology and related articles from Medical Informatics and Computer Science were reviewed and analyzed. Core challenges that couldn't be solved over the years are identified. The two core problem areas are process integration, meaning to effectively embed IT-systems into routine workflows, and systems integration, meaning to reduce the effort for interconnecting independently developed IT-components. Standards for systems integration have improved a lot, but their usefulness is limited where system evolution is needed. Sustainable Healthcare Information Systems should be based on system architectures that support system evolution and avoid costly system replacements every five to ten years. Some basic principles for the design of such systems are separation of concerns, loose coupling, deferred systems design, and service oriented architectures.
Interplay between solid Earth and biological evolution
NASA Astrophysics Data System (ADS)
Höning, Dennis; Spohn, Tilman
2017-04-01
Major shifts in Earth's evolution led to progressive adaptations of the biosphere. Particularly the emergence of continents permitted efficient use of solar energy. However, the widespread evolution of the biosphere fed back to the Earth system, often argued as a cause for the great oxidation event or as an important component in stabilizing Earth's climate. Furthermore, biologically enhanced weathering rates alter the flux of sediments in subduction zones, establishing a potential link to the deep interior. Stably bound water within subducting sediments not only enhances partial melting but further affects the mantle rheology. The mantle responds by enhancing its rates of convection, water outgassing, and subduction. How crucial is the emergence and evolution of life on Earth to these processes, and how would Earth have been evolved without the emergence of life? We here discuss concepts and present models addressing these questions and discuss the biosphere as a major component in evolving Earth system feedback cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumoto, Tomoaki; Machida, Masahiro N.; Inutsuka, Shu-ichiro, E-mail: matsu@hosei.ac.jp
2017-04-10
We investigate the formation of circumstellar disks and outflows subsequent to the collapse of molecular cloud cores with the magnetic field and turbulence. Numerical simulations are performed by using an adaptive mesh refinement to follow the evolution up to ∼1000 years after the formation of a protostar. In the simulations, circumstellar disks are formed around the protostars; those in magnetized models are considerably smaller than those in nonmagnetized models, but their size increases with time. The models with stronger magnetic fields tend to produce smaller disks. During evolution in the magnetized models, the mass ratios of a disk to amore » protostar is approximately constant at ∼1%–10%. The circumstellar disks are aligned according to their angular momentum, and the outflows accelerate along the magnetic field on the 10–100 au scale; this produces a disk that is misaligned with the outflow. The outflows are classified into two types: a magnetocentrifugal wind and a spiral flow. In the latter, because of the geometry, the axis of rotation is misaligned with the magnetic field. The magnetic field has an internal structure in the cloud cores, which also causes misalignment between the outflows and the magnetic field on the scale of the cloud core. The distribution of the angular momentum vectors in a core also has a non-monotonic internal structure. This should create a time-dependent accretion of angular momenta onto the circumstellar disk. Therefore, the circumstellar disks are expected to change their orientation as well as their sizes in the long-term evolutions.« less
History and evolution of surgical ethics: John Gregory to the twenty-first century.
Namm, Jukes P; Siegler, Mark; Brander, Caroline; Kim, Tae Yeon; Lowe, Christian; Angelos, Peter
2014-07-01
As surgery grew to become a respected medical profession in the eighteenth century, medical ethics emerged as a response to the growing need to protect patients and maintain the public's trust in physicians. The early influences of John Gregory and Thomas Percival were instrumental in the formulation of patient-centered medical ethics. In the late nineteenth century, the modern surgical advances of anesthesia and antisepsis created the need for a discipline of ethics specific to surgery in order to confront new and evolving ethical issues. One of the founding initiatives of the American College of Surgeons in 1913 was to eliminate unethical practices such as fee-splitting and itinerant surgery. As surgery continued to advance in the era of solid organ transplantation and minimally invasive surgery in the latter half of the twentieth century, surgical innovation and conflict of interest have emerged as important ethical issues moving forward into the twenty-first century. Surgical ethics has evolved into a distinct branch of medical ethics, and the core of surgical ethics is the surgeon-patient relationship and the surgeon's responsibility to advance and protect the well-being of the patient.
Architecture of a Species: Phylogenomics of Staphylococcus aureus.
Planet, Paul J; Narechania, Apurva; Chen, Liang; Mathema, Barun; Boundy, Sam; Archer, Gordon; Kreiswirth, Barry
2017-02-01
A deluge of whole-genome sequencing has begun to give insights into the patterns and processes of microbial evolution, but genome sequences have accrued in a haphazard manner, with biased sampling of natural variation that is driven largely by medical and epidemiological priorities. For instance, there is a strong bias for sequencing epidemic lineages of methicillin-resistant Staphylococcus aureus (MRSA) over sensitive isolates (methicillin-sensitive S. aureus: MSSA). As more diverse genomes are sequenced the emerging picture is of a highly subdivided species with a handful of relatively clonal groups (complexes) that, at any given moment, dominate in particular geographical regions. The establishment of hegemony of particular clones appears to be a dynamic process of successive waves of replacement of the previously dominant clone. Here we review the phylogenomic structure of a diverse range of S. aureus, including both MRSA and MSSA. We consider the utility of the concept of the 'core' genome and the impact of recombination and horizontal transfer. We argue that whole-genome surveillance of S. aureus populations could lead to better forecasting of antibiotic resistance and virulence of emerging clones, and a better understanding of the elusive biological factors that determine repeated strain replacement. Copyright © 2016. Published by Elsevier Ltd.
Universality of clone dynamics during tissue development
NASA Astrophysics Data System (ADS)
Rulands, Steffen; Lescroart, Fabienne; Chabab, Samira; Hindley, Christopher J.; Prior, Nicole; Sznurkowska, Magdalena K.; Huch, Meritxell; Philpott, Anna; Blanpain, Cedric; Simons, Benjamin D.
2018-05-01
The emergence of complex organs is driven by the coordinated proliferation, migration and differentiation of precursor cells. The fate behaviour of these cells is reflected in the time evolution of their progeny, termed clones, which serve as a key experimental observable. In adult tissues, where cell dynamics is constrained by the condition of homeostasis, clonal tracing studies based on transgenic animal models have advanced our understanding of cell fate behaviour and its dysregulation in disease1,2. But what can be learnt from clonal dynamics in development, where the spatial cohesiveness of clones is impaired by tissue deformations during tissue growth? Drawing on the results of clonal tracing studies, we show that, despite the complexity of organ development, clonal dynamics may converge to a critical state characterized by universal scaling behaviour of clone sizes. By mapping clonal dynamics onto a generalization of the classical theory of aerosols, we elucidate the origin and range of scaling behaviours and show how the identification of universal scaling dependences may allow lineage-specific information to be distilled from experiments. Our study shows the emergence of core concepts of statistical physics in an unexpected context, identifying cellular systems as a laboratory to study non-equilibrium statistical physics.
MRI-Guided Selection of Patients for Acute Ischemic Stroke Treatment
Leigh, Richard; Krakauer, John W.
2014-01-01
Purpose of review To summarize what is known about the use of MRI in acute stroke treatments (predominantly thrombolysis), to examine the assumptions and theories behind the interpretation of MR images of acute stroke and how they are used to select patients for therapies, and to suggest directions for future research. Recent findings Recent studies have been contradictory about the usefulness of MRI in selecting patients for treatment. New MRI models for selecting patients have emerged that focus not only on the ischemic penumbra but also the core infarct. Fixed time-window selection parameters are being replaced by individualized MRI features. New ways to interpret traditional MRI sequences are emerging. Summary Although the efficacy of acute stroke treatment is time dependent, the use of fixed time-windows does not account for individual differences in infarct evolution, which could be detected with MRI. While MRI shows promise for identifying patients who should be treated, as well as exclude patients who should not be treated, definitive evidence is still lacking. Future research should focus on validating the use of MRI to select patients for IV therapies in extended time windows. PMID:24978637
Chen, Zhao-Yang; Duan, Long-Fa; Sheng, Tian; Lin, Xiao; Chen, Ya-Feng; Chu, You-Qun; Sun, Shi-Gang; Lin, Wen-Feng
2017-06-21
Core-shell composites with strong phase-phase contact could provide an incentive for catalytic activity. A simple, yet efficient, H 2 O-mediated method has been developed to synthesize a mesoscopic core-shell W@WC architecture with a dodecahedral microstructure, via a one-pot reaction. The H 2 O plays an important role in the resistance of carbon diffusion, resulting in the formation of the W core and W-terminated WC shell. Density functional theory (DFT) calculations reveal that adding W as core reduced the oxygen adsorption energy and provided the W-terminated WC surface. The W@WC exhibits significant electrocatalytic activities toward hydrogen evolution and nitrobenzene electroreduction reactions, which are comparable to those found for commercial Pt/C, and substantially higher than those found for meso- and nano-WC materials. The experimental results were explained by DFT calculations based on the energy profiles in the hydrogen evolution reactions over WC, W@WC, and Pt model surfaces. The W@WC also shows a high thermal stability and thus may serve as a promising more economical alternative to Pt catalysts in these important energy conversion and environmental protection applications. The current approach can also be extended or adapted to various metals and carbides, allowing for the design and fabrication of a wide range of catalytic and other multifunctional composites.
Core psychopathology in anorexia nervosa and bulimia nervosa: A network analysis.
Forrest, Lauren N; Jones, Payton J; Ortiz, Shelby N; Smith, April R
2018-04-25
The cognitive-behavioral theory of eating disorders (EDs) proposes that shape and weight overvaluation are the core ED psychopathology. Core symptoms can be statistically identified using network analysis. Existing ED network studies support that shape and weight overvaluation are the core ED psychopathology, yet no studies have estimated AN core psychopathology and concerns exist about the replicability of network analysis findings. The current study estimated ED symptom networks among people with anorexia nervosa (AN) and bulimia nervosa (BN) and among a combined group of people with AN and BN. Participants were girls and women with AN (n = 604) and BN (n = 477) seeking residential ED treatment. ED symptoms were assessed with the Eating Disorder Examination-Questionnaire (EDE-Q); 27 of the EDE-Q items were included as nodes in symptom networks. Core symptoms were determined by expected influence and strength values. In all networks, desiring weight loss, restraint, shape and weight preoccupation, and shape overvaluation emerged as the most important symptoms. In addition, in the AN and combined networks, fearing weight gain emerged as an important symptom. In the BN network, weight overvaluation emerged as another important symptom. Findings support the cognitive-behavioral premise that shape and weight overvaluation are at the core of AN psychopathology. Our BN and combined network findings provide a high degree of replication of previous findings. Clinically, findings highlight the importance of considering shape and weight overvaluation as a severity specifier and primary treatment target for people with EDs. © 2018 Wiley Periodicals, Inc.
Liu, Bin; Sun, Yan; Dong, Qian; Zhang, Zongjiu; Zhang, Liang
2015-04-17
As an international legal instrument, the International Health Regulations (IHR) is internationally binding in 196 countries, especially in all the member states of the World Health Organization (WHO). The IHR aims to prevent, protect against, control, and respond to the international spread of disease and aims to cut out unnecessary interruptions to traffic and trade. To meet IHR requirements, countries need to improve capacity construction by developing, strengthening, and maintaining core response capacities for public health risk and Public Health Emergency of International Concern (PHEIC). In addition, all the related core capacity requirements should be met before June 15, 2012. If not, then the deadline can be extended until 2016 upon request by countries. China has promoted the implementation of the IHR comprehensively, continuingly strengthening the core public health capacity and advancing in core public health emergency capacity building, points of entry capacity building, as well as risk prevention and control of biological events (infectious diseases, zoonotic diseases, and food safety), radiological, nuclear, and chemical events, and other catastrophic events. With significant progress in core capacity building, China has dealt with many public health emergencies successfully, ensuring that its core public health capacity has met the IHR requirements, which was reported to WHO in June 2014. This article describes the steps, measures, and related experiences in the implementation of IHR in China. © 2015 by Kerman University of Medical Sciences.
Hunt, Sean T; Román-Leshkov, Yuriy
2018-05-15
Conspecuts Commercial and emerging renewable energy technologies are underpinned by precious metal catalysts, which enable the transformation of reactants into useful products. However, the noble metals (NMs) comprise the least abundant elements in the lithosphere, making them prohibitively scarce and expensive for future global-scale technologies. As such, intense research efforts have been devoted to eliminating or substantially reducing the loadings of NMs in various catalytic applications. These efforts have resulted in a plethora of heterogeneous NM catalyst morphologies beyond the traditional supported spherical nanoparticle. In many of these new architectures, such as shaped, high index, and bimetallic particles, less than 20% of the loaded NMs are available to perform catalytic turnovers. The majority of NM atoms are subsurface, providing only a secondary catalytic role through geometric and ligand effects with the active surface NM atoms. A handful of architectures can approach 100% NM utilization, but severe drawbacks limit general applicability. For example, in addition to problems with stability and leaching, single atom and ultrasmall cluster catalysts have extreme metal-support interactions, discretized d-bands, and a lack of adjacent NM surface sites. While monolayer thin films do not possess these features, they exhibit such low surface areas that they are not commercially relevant, serving predominantly as model catalysts. This Account champions core-shell nanoparticles (CS NPs) as a vehicle to design highly active, stable, and low-cost materials with high NM utilization for both thermo- and electrocatalysis. The unique benefits of the many emerging NM architectures could be preserved while their fundamental limitations could be overcome through reformulation via a core-shell morphology. However, the commercial realization of CS NPs remains challenging, requiring concerted advances in theory and manufacturing. We begin by formulating seven constraints governing proper core material design, which naturally point to early transition metal ceramics as suitable core candidates. Two constraints prove extremely challenging. The first relates to the core modifying the shell work function and d-band. To properly investigate materials that could satisfy this constraint, we discuss our development of a new heat, quench, and exfoliation (HQE) density functional theory (DFT) technique to model heterometallic interfaces. This technique is used to predict how transition metal carbides can favorably tune the catalytic properties of various NM monolayer shell configurations. The second challenging constraint relates to the scalable manufacturing of CS NP architectures with independent synthetic control of the thickness and composition of the shell and the size and composition of the core. We discuss our development of a synthetic method that enables high temperature self-assembly of tunable CS NP configurations. Finally, we discuss how these principles and methods were used to design catalysts for a variety of applications. These include the design of a thermally stable sub-monolayer CS catalyst, a highly active methanol electrooxidation catalyst, CO-tolerant Pt catalysts, and a hydrogen evolution catalyst that is less expensive than state-of-the-art NM-free catalysts. Such core-shell architectures offer the promise of ultralow precious metal loadings while ceramic cores hold the promise of thermodynamic stability and access to unique catalytic activity/tunability.
Sunden, Fanny; AlSadhan, Ishraq; Lyubimov, Artem; ...
2017-10-25
Members of enzyme superfamilies specialize in different reactions but often exhibit catalytic promiscuity for one another's reactions, consistent with catalytic promiscuity as an important driver in the evolution of new enzymes. Wanting to understand how catalytic promiscuity and other factors may influence evolution across a superfamily, we turned to the well-studied alkaline phosphatase (AP) superfamily, comparing three of its members, two evolutionarily distinct phosphatases and a phosphodiesterase. Here, we mutated distinguishing active-site residues to generate enzymes that had a common Zn 2+ bimetallo core but little sequence similarity and different auxiliary domains. We then tested the catalytic capabilities of thesemore » pruned enzymes with a series of substrates. A substantial rate enhancement of ~1011-fold for both phosphate mono- and diester hydrolysis by each enzyme indicated that the Zn 2+ bimetallo core is an effective mono/di-esterase generalist and that the bimetallo cores were not evolutionarily tuned to prefer their cognate reactions. In contrast, our pruned enzymes were ineffective sulfatases, and this limited promiscuity may have provided a driving force for founding the distinct one-metal-ion branch that contains all known AP superfamily sulfatases. Finally, our pruned enzymes exhibited 10 7–10 8-fold phosphotriesterase rate enhancements, despite absence of such enzymes within the AP superfamily. We speculate that the superfamily active-site architecture involved in nucleophile positioning prevents accommodation of the additional triester substituent. Overall, we suggest that catalytic promiscuity, and the ease or difficulty of remodeling and building onto existing protein scaffolds, have greatly influenced the course of enzyme evolution. Uncovering principles and properties of enzyme function, promiscuity, and repurposing provides lessons for engineering new enzymes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunden, Fanny; AlSadhan, Ishraq; Lyubimov, Artem
Members of enzyme superfamilies specialize in different reactions but often exhibit catalytic promiscuity for one another's reactions, consistent with catalytic promiscuity as an important driver in the evolution of new enzymes. Wanting to understand how catalytic promiscuity and other factors may influence evolution across a superfamily, we turned to the well-studied alkaline phosphatase (AP) superfamily, comparing three of its members, two evolutionarily distinct phosphatases and a phosphodiesterase. Here, we mutated distinguishing active-site residues to generate enzymes that had a common Zn 2+ bimetallo core but little sequence similarity and different auxiliary domains. We then tested the catalytic capabilities of thesemore » pruned enzymes with a series of substrates. A substantial rate enhancement of ~1011-fold for both phosphate mono- and diester hydrolysis by each enzyme indicated that the Zn 2+ bimetallo core is an effective mono/di-esterase generalist and that the bimetallo cores were not evolutionarily tuned to prefer their cognate reactions. In contrast, our pruned enzymes were ineffective sulfatases, and this limited promiscuity may have provided a driving force for founding the distinct one-metal-ion branch that contains all known AP superfamily sulfatases. Finally, our pruned enzymes exhibited 10 7–10 8-fold phosphotriesterase rate enhancements, despite absence of such enzymes within the AP superfamily. We speculate that the superfamily active-site architecture involved in nucleophile positioning prevents accommodation of the additional triester substituent. Overall, we suggest that catalytic promiscuity, and the ease or difficulty of remodeling and building onto existing protein scaffolds, have greatly influenced the course of enzyme evolution. Uncovering principles and properties of enzyme function, promiscuity, and repurposing provides lessons for engineering new enzymes.« less
Effective Assessment: Probing Students' Understanding of Natural Selection
ERIC Educational Resources Information Center
Stern, Luli
2004-01-01
Evolution by natural selection provides the conceptual framework upon which much of modern biology is based: therefore understanding core ideas about biological evolution is an essential part of scientific literacy. Nonetheless, research repeatedly shows that high school and college students have difficulties understanding the notion of natural…
Evolution of engine cycles for STOVL propulsion concepts
NASA Technical Reports Server (NTRS)
Bucknell, R. L.; Frazier, R. H.; Giulianetti, D. J.
1990-01-01
Short Take-off, Vertical Landing (STOVL) demonstrator concepts using a common ATF engine core are discussed. These concepts include a separate fan and core flow engine cycle, mixed flow STOVL cycles, separate flow cycles convertible to mixed flow, and reaction control system engine air bleed. STOVL propulsion controls are discussed.
The Learning Management System Evolution. CDS Spotlight Report. Research Bulletin
ERIC Educational Resources Information Center
Lang, Leah; Pirani, Judith A.
2014-01-01
This Spotlight focuses on data from the 2013 Core Data Service (CDS) to better understand how higher education institutions approach learning management systems (LMSs). Information provided for this Spotlight was derived from Module 8 of the Core Data Service, which contains several questions regarding information systems and applications.…
Les programmes de base: des principes a la realite (Core Programs: From Principles to Reality).
ERIC Educational Resources Information Center
Calve, Pierre
1985-01-01
The recent evolution of second language teaching theory regarding language, learning, communication, and teaching is summarized, and factors contributing to resistance to core second language programs are examined. They include tradition, school programs, time of instruction, language of instruction, teacher training, attitudes, and…
Dynamic microbiome evolution in social bees
Kwong, Waldan K.; Medina, Luis A.; Koch, Hauke; Sing, Kong-Wah; Soh, Eunice Jia Yu; Ascher, John S.; Jaffé, Rodolfo; Moran, Nancy A.
2017-01-01
The highly social (eusocial) corbiculate bees, comprising the honey bees, bumble bees, and stingless bees, are ubiquitous insect pollinators that fulfill critical roles in ecosystem services and human agriculture. Here, we conduct wide sampling across the phylogeny of these corbiculate bees and reveal a dynamic evolutionary history behind their microbiota, marked by multiple gains and losses of gut associates, the presence of generalist as well as host-specific strains, and patterns of diversification driven, in part, by host ecology (for example, colony size). Across four continents, we found that different host species have distinct gut communities, largely independent of geography or sympatry. Nonetheless, their microbiota has a shared heritage: The emergence of the eusocial corbiculate bees from solitary ancestors appears to coincide with the acquisition of five core gut bacterial lineages, supporting the hypothesis that host sociality facilitates the development and maintenance of specialized microbiomes. PMID:28435856
The structure and emerging trends of construction safety management research: a bibliometric review.
Liang, Huakang; Zhang, Shoujian; Su, Yikun
2018-03-29
Recently, construction safety management (CSM) practices and systems have become important topics for stakeholders to take care of human resources. However, few studies have attempted to map the global research on CSM. A comprehensive bibliometric review was conducted in this study based on multiple methods. In total, 1172 CSM-related papers from the Web of Science Core Collection database were examined. The analyses focused on publication year, country-institute, publication source, author and research topics. The results indicated that the USA, China, Australia and the UK took leading positions in CSM research. Two branches of journals were identified, namely the branch of engineering science and that of safety science and social science. Additionally, seven themes together with 28 specific topics were detected to allow researchers to track the main structure and temporal evolution of CSM research. Finally, the main research trends and potential research directions were discussed to guide the future research.
Two-dimensional models of early-type fast rotating stars: the ESTER project
NASA Astrophysics Data System (ADS)
Rieutord, Michel
In this talk I present the latest results of the ESTER project that has taken up the challenge of building two dimensional (axisymmetric) models of stars rotating at any rotation rate. In particular, I focus on main sequence massive and intermediate mass stars. I show what should be expected in such stars as far as the differential rotation and the associated meridional circulation are concerned, notably the emergence of a Stewartson layer along the tangent cylinder of the core. I also indicate what may be inferred about the evolution of an intermediate-mass star at constant angular momentum and how Be stars may form. I finally give some comparisons between models and observations of the gravity darkening on some nearby fast rotators as it has been derived from interferometric observations. In passing, I also discuss how 2D models can help to recover the fundamental parameters of a star.
A prevalence of dynamo-generated magnetic fields in the cores of intermediate-mass stars.
Stello, Dennis; Cantiello, Matteo; Fuller, Jim; Huber, Daniel; García, Rafael A; Bedding, Timothy R; Bildsten, Lars; Aguirre, Victor Silva
2016-01-21
Magnetic fields play a part in almost all stages of stellar evolution. Most low-mass stars, including the Sun, show surface fields that are generated by dynamo processes in their convective envelopes. Intermediate-mass stars do not have deep convective envelopes, although 10 per cent exhibit strong surface fields that are presumed to be residuals from the star formation process. These stars do have convective cores that might produce internal magnetic fields, and these fields might survive into later stages of stellar evolution, but information has been limited by our inability to measure the fields below the stellar surface. Here we report the strength of dipolar oscillation modes for a sample of 3,600 red giant stars. About 20 per cent of our sample show mode suppression, by strong magnetic fields in the cores, but this fraction is a strong function of mass. Strong core fields occur only in red giants heavier than 1.1 solar masses, and the occurrence rate is at least 50 per cent for intermediate-mass stars (1.6-2.0 solar masses), indicating that powerful dynamos were very common in the previously convective cores of these stars.
Stripped Red Giants - Helium Core White Dwarf Progenitors and their sdB Siblings
NASA Astrophysics Data System (ADS)
Heber, U.
2017-03-01
Some gaps in the mosaic of binary star evolution have recently been filled by the discoveries of helium-core white dwarf progenitors (often called extremely low mass (ELM) white dwarfs) as stripped cores of first-giant branch objects. Two varieties can be distinguished. One class is made up by SB1 binaries, companions being white dwarfs as well. Another class, the so-called EL CVn stars, are composite spectrum binaries, with A-Type companions. Pulsating stars are found among both classes. A riddle is posed by the apparently single objects. There is a one-to-one correspondence of the phenomena found for these new classes of star to those observed for sdB stars. In fact, standard evolutionary scenarios explain the origin of sdB stars as red giants that have been stripped close to the tip of first red giant branch. A subgroup of subluminous B stars can also be identified as stripped helium-cores of red giants. They form an extension of the ELM sequence to higher temperatures. Hence low mass white dwarfs of helium cores and sdB stars in binaries are close relatives in terms of stellar evolution.
Protomagnetar and black hole formation in high-mass stars
NASA Astrophysics Data System (ADS)
Obergaulinger, M.; Aloy, M. Á.
2017-07-01
Using axisymmetric simulations coupling special relativistic magnetohydrodynamics (MHD), an approximate post-Newtonian gravitational potential and two-moment neutrino transport, we show different paths for the formation of either protomagnetars or stellar mass black holes. The fraction of prototypical stellar cores which should result in collapsars depends on a combination of several factors, among which the structure of the progenitor star and the profile of specific angular momentum are probably the foremost. Along with the implosion of the stellar core, we also obtain supernova-like explosions driven by neutrino heating and hydrodynamic instabilities or by magneto-rotational effects in cores of high-mass stars. In the latter case, highly collimated, mildly relativistic outflows are generated. We find that after a rather long post-collapse phase (lasting ≳1 s) black holes may form in cases both of successful and failed supernova-like explosions. A basic trend is that cores with a specific angular momentum smaller than that obtained by standard, one-dimensional stellar evolution calculations form black holes (and eventually collapsars). Complementary, protomagnetars result from stellar cores with the standard distribution of specific angular momentum obtained from prototypical stellar evolution calculations including magnetic torques and moderate to large mass-loss rates.
Schenewerk, William E.; Glasgow, Lyle E.
1983-01-01
A liquid metal cooled fast breeder reactor provided with an emergency core cooling system includes a reactor vessel which contains a reactor core comprising an array of fuel assemblies and a plurality of blanket assemblies. The reactor core is immersed in a pool of liquid metal coolant. The reactor also includes a primary coolant system comprising a pump and conduits for circulating liquid metal coolant to the reactor core and through the fuel and blanket assemblies of the core. A converging-diverging venturi nozzle with an intermediate throat section is provided in between the assemblies and the pump. The intermediate throat section of the nozzle is provided with at least one opening which is in fluid communication with the pool of liquid sodium. In normal operation, coolant flows from the pump through the nozzle to the assemblies with very little fluid flowing through the opening in the throat. However, when the pump is not running, residual heat in the core causes fluid from the pool to flow through the opening in the throat of the nozzle and outwardly through the nozzle to the assemblies, thus providing a means of removing decay heat.
High Female Survival Promotes Evolution of Protogyny and Sexual Conflict
Degen, Tobias; Hovestadt, Thomas; Mitesser, Oliver; Hölker, Franz
2015-01-01
Existing models explaining the evolution of sexual dimorphism in the timing of emergence (SDT) in Lepidoptera assume equal mortality rates for males and females. The limiting assumption of equal mortality rates has the consequence that these models are only able to explain the evolution of emergence of males before females, i.e. protandry—the more common temporal sequence of emergence in Lepidoptera. The models fail, however, in providing adaptive explanations for the evolution of protogyny, where females emerge before males, but protogyny is not rare in insects. The assumption of equal mortality rates seems too restrictive for many insects, such as butterflies. To investigate the influence of unequal mortality rates on the evolution of SDT, we present a generalised version of a previously published model where we relax this assumption. We find that longer life-expectancy of females compared to males can indeed favour the evolution of protogyny as a fitness enhancing strategy. Moreover, the encounter rate between females and males and the sex-ratio are two important factors that also influence the evolution of optimal SDT. If considered independently for females and males the predicted strategies can be shown to be evolutionarily stable (ESS). Under the assumption of equal mortality rates the difference between the females’ and males’ ESS remains typically very small. However, female and male ESS may be quite dissimilar if mortality rates are different. This creates the potential for an ‘evolutionary conflict’ between females and males. Bagworm moths (Lepidoptera: Psychidae) provide an exemplary case where life-history attributes are such that protogyny should indeed be the optimal emergence strategy from the males’ and females’ perspectives: (i) Female longevity is considerably larger than that of males, (ii) encounter rates between females and males are presumably low, and (iii) females mate only once. Protogyny is indeed the general mating strategy found in the bagworm family. PMID:25775473
NASA Astrophysics Data System (ADS)
Morozov, A. V.; Pityk, A. V.; Ragulin, S. V.; Sahipgareev, A. R.; Soshkina, A. S.; Shlepkin, A. S.
2017-09-01
In this paper the processes of boric acid mass transfer in a WWER-TOI nuclear reactor in case of the accidents with main coolant circuit rupture and operation of passive safety systems (the hydro accumulators systems of the first, second and third stages, as well as the passive heat removal system) are considered. The results of the calculation of changes in the boric acid solution concentration in the core for the WWER emergency mode are presented. According to the results of the calculation a significant excess of the ultimate concentration of boric acid in accidents with main coolant circuit rupture after 43 hours of emergency mode is observed. The positive influence of the boric acid droplet entrainment on the processes of its crystallization and accumulation in the core is shown. The mass of boric acid deposits on the internals is determined. The received results allow concluding that the accumulation and crystallization of boric acid in the core may lead to blocking the flow cross section and to deterioration of heat removal from fuel rods. The necessity of an experimental studies of the processes of boric acid drop entrainment under conditions specific to the WWER emergency modes is shown.
NASA Astrophysics Data System (ADS)
Bravo, Paulina; Cofré, Hernán
2016-11-01
This work explores how pedagogical content knowledge (PCK) on evolution was modified by two biology teachers who participated in a professional development programme (PDP) that included a subsequent follow-up in the classroom. The PDP spanned a semester and included activities such as content updates, collaborative lesson planning, and the presentation of planned lessons. In the follow-up part, the lessons were videotaped and analysed, identifying strategies, activities, and conditions based on student learning about the theory of evolution. Data were collected in the first round with an interview before the training process, identifying these teachers' initial content representation (CoRe) for evolution. Then, a group interview was conducted after the lessons, and, finally, an interview of stimulated recall with each teacher was conducted regarding the subject taught to allow teachers to reflect on their practice (final CoRe). This information was analysed by the teachers and the researchers, reflecting on the components of the PCK, possible changes, and the rationale behind their actions. The results show that teachers changed their beliefs and knowledge about the best methods and strategies to teach evolution, and about students' learning obstacles and misconceptions on evolution. They realised how a review of their own practices promotes this transformation.
Mathematical Modeling of the Origins of Life
NASA Technical Reports Server (NTRS)
Pohorille, Andrew
2006-01-01
The emergence of early metabolism - a network of catalyzed chemical reactions that supported self-maintenance, growth, reproduction and evolution of the ancestors of contemporary cells (protocells) was a critical, but still very poorly understood step on the path from inanimate to animate matter. Here, it is proposed and tested through mathematical modeling of biochemically plausible systems that the emergence of metabolism and its initial evolution towards higher complexity preceded the emergence of a genome. Even though the formation of protocellular metabolism was driven by non-genomic, highly stochastic processes the outcome was largely deterministic, strongly constrained by laws of chemistry. It is shown that such concepts as speciation and fitness to the environment, developed in the context of genomic evolution, also held in the absence of a genome.
Hoyte, Ashley C; Jamin, Augusta V; Koneru, Pratibha C; Kobe, Matthew J; Larue, Ross C; Fuchs, James R; Engelman, Alan N; Kvaratskhelia, Mamuka
2017-12-01
The pyridine-based multimerization selective HIV-1 integrase (IN) inhibitors (MINIs) are a distinct subclass of allosteric IN inhibitors. MINIs potently inhibit HIV-1 replication during virion maturation by inducing hyper- or aberrant IN multimerization but are largely ineffective during the early steps of viral replication. Here, we investigated the mechanism for the evolution of a triple IN substitution (T124N/V165I/T174I) that emerges in cell culture with a representative MINI, KF116. We show that HIV-1 NL4-3(IN T124N/V165I/T174I) confers marked (>2000-fold) resistance to KF116. Two IN substitutions (T124N/T174I) directly weaken inhibitor binding at the dimer interface of the catalytic core domain but at the same time markedly impair HIV-1 replication capacity. Unexpectedly, T124N/T174I IN substitutions inhibited proteolytic processing of HIV-1 polyproteins Gag and Gag-Pol, resulting in immature virions. Strikingly, the addition of the third IN substitution (V165I) restored polyprotein processing, virus particle maturation, and significant levels of replication capacity. These results reveal an unanticipated role of IN for polyprotein proteolytic processing during virion morphogenesis. The complex evolutionary pathway for the emergence of resistant viruses, which includes the need for the compensatory V165I IN substitution, highlights a relatively high genetic barrier exerted by MINI KF116. Additionally, we have solved the X-ray structure of the drug-resistant catalytic core domain protein, which provides means for rational development of second-generation MINIs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
New observations from Surtsey, the definitive surtseyan volcano
NASA Astrophysics Data System (ADS)
White, J. D.; Jakobsson, S. P.
2013-12-01
The eruption that formed Surtsey lasted from 1963 into 1967, and provides the name used for emergent eruptions from the seafloor, and sometimes even more generally for any eruption involving explosive interaction of magma with water. New work on Surtsey's eruption is allowing us to extend our understanding of many aspects of its evolution and the processes that took place both prior to emergence and after, when it was so well observed by Sigurdur Thorarinsson and others. In 1979, drilling through Surtsey was accomplished, and a core acquired that extends almost to the pre-eruption seafloor. Near the base of the hole, unlithified pyroclastic deposits were encountered, and sampled as drill cuttings. These are highly vesicular, and many show large populations of small, spherical to sub-spherical vesicles. Examination of the core and dozens of thin sections reveals strong palagonite rims on pyroclasts at many intervals in the core, developed particularly well on highly vesicular and originally glassy pyroclasts. In the uppermost several meters armoured lapilli are present, along with "vesiculated tuff". We see no evidence for deep subsidence of surficial deposits at the site cored, and our working hypothesis is that an eruption stratigraphy can be established from the drillsite. On the emergent cone, a notable feature not previously emphasized is an abundance of blocks from the pre-eruption seafloor. These blocks have been identified as lithified volcaniclastic material deposited as turbidites largely from the Vestmann Islands. It will be important to quantify the abundance of this seafloor sedimentary rock as clasts in Surtsey's deposits, because these lithic clasts imply excavation, perhaps substantial, of the pre-eruption seafloor. No fragments of pillow lava have been identified in Surtsey's ejecta, but there are abundant fragments of dikes characterized by parallel bands of vesicles and, on some fragments, paired chilled margins. Many of these exhibit strong cracking and a cauliflower-like appearance on one side, but they are not true cauliflower bombs. Juvenile bombs are also abundant, and display ubiquitous composite textures. Typical juvenile bombs have glassy weakly fractured surfaces and a contorted internal structure in which pyroclasts are entwined with stretched and bubbled coherent basalt. These textures are interpreted to have developed through strong 'recycling' processes that allowed capture of older pyroclasts within new ones through in-vent welding and agglutination, or in some cases by capture of particles within magma that was subsequently disrupted. Taken as a whole, these new observations challenge existing models for Surtsey's eruption. A new assessment of eruptive processes will take into account evidence for both ubiquitous hot-state particle recycling, and excavation and ejection of subvolcanic sedimentary strata at times in the eruption, including during the last explosive phase.
Prebiotic organic matter - Possible pathways for synthesis in a geological context
NASA Technical Reports Server (NTRS)
Chang, S.
1982-01-01
Models for the accretion of the earth, core formation, differentiation of the planet into core, mantle, crust, and atmosphere, and prebiotic synthesis of organic materials are reviewed. The development of the Haldane-Oparin and Urey models is traced, and the effect of accretion time on the outgassing process and the composition of the consequent atmosphere is examined. Model prebiotic atmospheres are calculated, the extent of equilibration of the primitive atmosphere is studied and the evolution of the atmosphere prior to organic chemical evolution is reviewed. Finally, experimental progress in synthesis of biological monomers and polymers under presumed early earth conditions is covered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Bangquan; Wang, Hailong; Xing, Guozhong
We report on the structural evolution and atomic inter-diffusion characteristics of the bimetallic Ni-Au nanocrystals (NCs) by molecular dynamics simulations studies. Our results reveal that the thermal stability dynamics of Ni-Au NCs strongly depends on the atomic configurations. By engineering the structural construction with Ni:Au = 1:1 atomic composition, compared with core-shell Au@Ni and alloy NCs, the melting point of core-shell Ni@Au NCs is significantly enhanced up to 1215 K. Unexpectedly, with atomic ratio of Au:Ni= 1:9, the melting process initiates from the atoms in the shell of Ni@Au and alloy NCs, while starts from the core of Au@Ni NCs.more » The corresponding features and evolution process of structural motifs, mixing and segregation are illustrated via a series of dynamic simulations videos. Moreover, our results revealed that the face centered cubic phase Au{sub 0.75}Ni{sub 0.25} favorably stabilizes in NCs form but does not exist in the bulk counterpart, which elucidates the anomalies of previously reported experimental results on such bimetallic NCs.« less
The bridge of iconicity: from a world of experience to the experience of language.
Perniss, Pamela; Vigliocco, Gabriella
2014-09-19
Iconicity, a resemblance between properties of linguistic form (both in spoken and signed languages) and meaning, has traditionally been considered to be a marginal, irrelevant phenomenon for our understanding of language processing, development and evolution. Rather, the arbitrary and symbolic nature of language has long been taken as a design feature of the human linguistic system. In this paper, we propose an alternative framework in which iconicity in face-to-face communication (spoken and signed) is a powerful vehicle for bridging between language and human sensori-motor experience, and, as such, iconicity provides a key to understanding language evolution, development and processing. In language evolution, iconicity might have played a key role in establishing displacement (the ability of language to refer beyond what is immediately present), which is core to what language does; in ontogenesis, iconicity might play a critical role in supporting referentiality (learning to map linguistic labels to objects, events, etc., in the world), which is core to vocabulary development. Finally, in language processing, iconicity could provide a mechanism to account for how language comes to be embodied (grounded in our sensory and motor systems), which is core to meaningful communication.
The bridge of iconicity: from a world of experience to the experience of language
Perniss, Pamela; Vigliocco, Gabriella
2014-01-01
Iconicity, a resemblance between properties of linguistic form (both in spoken and signed languages) and meaning, has traditionally been considered to be a marginal, irrelevant phenomenon for our understanding of language processing, development and evolution. Rather, the arbitrary and symbolic nature of language has long been taken as a design feature of the human linguistic system. In this paper, we propose an alternative framework in which iconicity in face-to-face communication (spoken and signed) is a powerful vehicle for bridging between language and human sensori-motor experience, and, as such, iconicity provides a key to understanding language evolution, development and processing. In language evolution, iconicity might have played a key role in establishing displacement (the ability of language to refer beyond what is immediately present), which is core to what language does; in ontogenesis, iconicity might play a critical role in supporting referentiality (learning to map linguistic labels to objects, events, etc., in the world), which is core to vocabulary development. Finally, in language processing, iconicity could provide a mechanism to account for how language comes to be embodied (grounded in our sensory and motor systems), which is core to meaningful communication. PMID:25092668
Future Directions for Research on Core Competencies
ERIC Educational Resources Information Center
Bradshaw, Catherine P.; Guerra, Nancy G.
2008-01-01
This concluding commentary highlights common themes that emerged across the chapters in this volume. We identify strengths and limitations of the core competencies framework and discuss the importance of context, culture, and development for understanding the role of the core competencies in preventing risk behavior in adolescence. We also outline…
The shape of the human language-ready brain
Boeckx, Cedric; Benítez-Burraco, Antonio
2014-01-01
Our core hypothesis is that the emergence of our species-specific language-ready brain ought to be understood in light of the developmental changes expressed at the levels of brain morphology and neural connectivity that occurred in our species after the split from Neanderthals–Denisovans and that gave us a more globular braincase configuration. In addition to changes at the cortical level, we hypothesize that the anatomical shift that led to globularity also entailed significant changes at the subcortical level. We claim that the functional consequences of such changes must also be taken into account to gain a fuller understanding of our linguistic capacity. Here we focus on the thalamus, which we argue is central to language and human cognition, as it modulates fronto-parietal activity. With this new neurobiological perspective in place, we examine its possible molecular basis. We construct a candidate gene set whose members are involved in the development and connectivity of the thalamus, in the evolution of the human head, and are known to give rise to language-associated cognitive disorders. We submit that the new gene candidate set opens up new windows into our understanding of the genetic basis of our linguistic capacity. Thus, our hypothesis aims at generating new testing grounds concerning core aspects of language ontogeny and phylogeny. PMID:24772099
Lang, Leiming; Shi, Yi; Wang, Jiong; Wang, Feng-Bin; Xia, Xing-Hua
2015-05-06
Pt-free electrocatalysts with high activity and low cost are highly pursued for hydrogen production by electrochemically splitting water. Ni-based alloy catalysts are potential candidates for the hydrogen evolution reaction (HER) and have been studied extensively. Here, we synthesized novel hollow core-shell structure Ni-Sn@C nanoparticles (NPs) by sol-gel, chemical vapor deposition, and etching processes. The prepared electrocatalysts with porous hollow carbon layers have a high conductivity and large active area, which exhibit good electrocatalytic activity toward HER. The Tafel slope of ∼35 millivolts per decade measured in acidic solution for Ni-Sn@C NPs is the smallest one to date for the Ni-Sn alloy catalysts, and exceeds those of the most non-noble metal catalysts, indicating a possible Volmer-Heyrovsky reaction mechanism. The synthetic method can be extended to prepare other hollow core-shell structure electrocatalysts for low-temperature fuel cells.
NASA Astrophysics Data System (ADS)
Gao, Cheng; Zeng, Jiaolong; Yuan, Jianmin
2016-05-01
Single core-hole (SCH) and double core-hole (DCH) spectroscopy is investigated systematically for neon gas in the interaction with ultraintense x-ray pulses with photon energy from 937 eV to 2000 eV. A time-dependent rate equation, implemented in the detailed level accounting approximation, is utilized to study the dynamical evolution of the level population and emission properties of the laser-produced highly transient plasmas. The plasma density effects on level populations are demonstrated with an x-ray photon energy of 2000 eV. For laser photon energy in the range of 937 - 1360 eV, resonant absorptions (RA) of 1s-np (n> = 2) transitions play important roles in time evolution of the population and DCH emission spectroscopy. For x-ray photon energy larger than 1360 eV, no RA exist and transient plasmas show different features in the DCH spectroscopy.
Cao, Zhenming; Li, Huiqi; Zhan, Chenyang; Zhang, Jiawei; Wang, Wei; Xu, Binbin; Lu, Fa; Jiang, Yaqi; Xie, Zhaoxiong; Zheng, Lansun
2018-03-15
Single crystalline noble metal nanocages are the most promising candidates for heterogeneous catalysis due to their large specific surface area, well-defined structure and enhanced structural stability. Herein, based on the observation of an unexpected phenomenon that the alloying of Pt and transition metals by co-reduction is more preferential than the formation of pure Pt NCs, we propose a feasible one-pot strategy to synthesize a uniformly epitaxial core-shell Pt-Ni structure with a Ni-rich alloy as the core and a Pt-rich alloy as the shell. The as-prepared Pt-Ni core-shell structures are subsequently etched into monocrystalline Pt-Ni branched nanocages with the wall thickness being 2.8 nm. This unique structure exhibits excellent catalytic performance and stability for the hydrogen evolution reaction (HER) in alkaline solution which is of great significance for the energy-intensive water-alkali and chlor-alkali industry.
Solvation and Evolution Dynamics of an Excess Electron in Supercritical CO2
NASA Astrophysics Data System (ADS)
Wang, Zhiping; Liu, Jinxiang; Zhang, Meng; Cukier, Robert I.; Bu, Yuxiang
2012-05-01
We present an ab initio molecular dynamics simulation of the dynamics of an excess electron solvated in supercritical CO2. The excess electron can exist in three types of states: CO2-core localized, dual-core localized, and diffuse states. All these states undergo continuous state conversions via a combination of long lasting breathing oscillations and core switching, as also characterized by highly cooperative oscillations of the excess electron volume and vertical detachment energy. All of these oscillations exhibit a strong correlation with the electron-impacted bending vibration of the core CO2, and the core-switching is controlled by thermal fluctuations.
NASA Astrophysics Data System (ADS)
Day, E. A.; Ward, J. A.; Bastow, I. D.; Irving, J. C. E.
2016-12-01
The Earth's inner core is a surprisingly complex region of our planet. Simple models of inner core solidification and evolution would lead us to expect a layered structure, which has "frozen in" in information about the state of the core at the time of solidification. However, seismic observations of Earth's inner core are not dominated by a radial "tree-ring" like pattern, but instead have revealed a hemispherical dichotomy in addition to depth dependent variations. There is a degree-one structure in isotropic and anisotropic velocities and in attenuation between the so-called eastern and western hemispheres of the inner core, with different depth distributions proposed for these varying phenomena. A range of mechanisms have been proposed to explain the hemispherical differences. These include models that require differences between the two hemispheres at the time of formation, post-solidification texturing, convection in the inner core, or hybrid mechanisms. Regional observations of the inner core suggest that a simple division between East and West may not be able to fully capture the structure present in the inner core. More detailed seismic observations will help us to understand the puzzle of the inner core's evolution. In this study we focus on updating observations of the seismic phase P'P', an inner core sensitive body wave with a more complex path than those typically used to study the inner core. By making new measurements of P'P' we illuminate new regions of the core with a high frequency phase that is sensitive to small scale structures. We examine the differential travel times of the different branches of P'P' (PKIKPPKIKP and PKPPKP), comparing the arrival time of inner core turning branch, P'P'df, with the arrival times of branches that turn in the outer core. P'P' is a relatively small amplitude phase, so we use both linear and non-linear stacking methods to make observations of the P'P' signals. These measurements are sensitive to the broad scale hemispherical pattern of anisotropy in the inner core as well as smaller scale variations.
SecureCore Security Architecture: Authority Mode and Emergency Management
2007-10-16
can shield first responders from social vultures (e.g., “ambulance chasers”) or malicious parties who could intentionally interfere with emergency...hierarchical design Communications Management: network communication Process Management...and Emergency Management 1 I. Introduction During many crises, first- responder access to sensitive, restricted emergency information is
Iguchi, Atsushi; Nagaya, Yutaka; Pradel, Elizabeth; Ooka, Tadasuke; Ogura, Yoshitoshi; Katsura, Keisuke; Kurokawa, Ken; Oshima, Kenshiro; Hattori, Masahira; Parkhill, Julian; Sebaihia, Mohamed; Coulthurst, Sarah J; Gotoh, Naomasa; Thomson, Nicholas R; Ewbank, Jonathan J; Hayashi, Tetsuya
2014-08-01
Serratia marcescens is an important nosocomial pathogen that can cause an array of infections, most notably of the urinary tract and bloodstream. Naturally, it is found in many environmental niches, and is capable of infecting plants and animals. The emergence and spread of multidrug-resistant strains producing extended-spectrum or metallo beta-lactamases now pose a threat to public health worldwide. Here we report the complete genome sequences of two carefully selected S. marcescens strains, a multidrug-resistant clinical isolate (strain SM39) and an insect isolate (strain Db11). Our comparative analyses reveal the core genome of S. marcescens and define the potential metabolic capacity, virulence, and multidrug resistance of this species. We show a remarkable intraspecies genetic diversity, both at the sequence level and with regards genome flexibility, which may reflect the diversity of niches inhabited by members of this species. A broader analysis with other Serratia species identifies a set of approximately 3,000 genes that characterize the genus. Within this apparent genetic diversity, we identified many genes implicated in the high virulence potential and antibiotic resistance of SM39, including the metallo beta-lactamase and multiple other drug resistance determinants carried on plasmid pSMC1. We further show that pSMC1 is most closely related to plasmids circulating in Pseudomonas species. Our data will provide a valuable basis for future studies on S. marcescens and new insights into the genetic mechanisms that underlie the emergence of pathogens highly resistant to multiple antimicrobial agents. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Emergency Nursing Review Questions: July 2017.
Shaw, Tracy
2017-07-01
The review questions that are featured in each of issue of JEN are based on the Emergency Nursing Core Curriculum and other pertinent resources to emergency nursing practice, pediatric and adult. These questions offer emergency nurses an opportunity to test their knowledge about their practice. Copyright © 2017 Emergency Nurses Association. Published by Elsevier Inc. All rights reserved.
Rao, Carol Y; Goryoka, Grace W; Henao, Olga L; Clarke, Kevin R; Salyer, Stephanie J; Montgomery, Joel M
2017-11-01
The Centers for Disease Control and Prevention has established 10 Global Disease Detection (GDD) Program regional centers around the world that serve as centers of excellence for public health research on emerging and reemerging infectious diseases. The core activities of the GDD Program focus on applied public health research, surveillance, laboratory, public health informatics, and technical capacity building. During 2015-2016, program staff conducted 205 discrete projects on a range of topics, including acute respiratory illnesses, health systems strengthening, infectious diseases at the human-animal interface, and emerging infectious diseases. Projects incorporated multiple core activities, with technical capacity building being most prevalent. Collaborating with host countries to implement such projects promotes public health diplomacy. The GDD Program continues to work with countries to strengthen core capacities so that emerging diseases can be detected and stopped faster and closer to the source, thereby enhancing global health security.
Primordial black holes in globular clusters
NASA Technical Reports Server (NTRS)
Sigurdsson, Steinn; Hernquist, Lars
1993-01-01
It has recently been recognized that significant numbers of medium-mass back holes (of order 10 solar masses) should form in globular clusters during the early stages of their evolution. Here we explore the dynamical and observational consequences of the presence of such a primordial black-hole population in a globular cluster. The holes initially segregate to the cluster cores, where they form binary and multiple black-hole systems. The subsequent dynamical evolution of the black-hole population ejects most of the holes on a relatively short timescale: a typical cluster will retain between zero and four black holes in its core, and possibly a few black holes in its halo. The presence of binary, triple, and quadruple black-hole systems in cluster cores will disrupt main-sequence and giant stellar binaries; this may account for the observed anomalies in the distribution of binaries in globular clusters. Furthermore, tidal interactions between a multiple black-hole system and a red giant star can remove much of the red giant's stellar envelope, which may explain the puzzling absence of larger red giants in the cores of some very dense clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cunha, M. S.; Avelino, P. P.; Stello, D.
2015-06-01
With recent advances in asteroseismology it is now possible to peer into the cores of red giants, potentially providing a way to study processes such as nuclear burning and mixing through their imprint as sharp structural variations—glitches—in the stellar cores. Here we show how such core glitches can affect the oscillations we observe in red giants. We derive an analytical expression describing the expected frequency pattern in the presence of a glitch. This formulation also accounts for the coupling between acoustic and gravity waves. From an extensive set of canonical stellar models we find glitch-induced variation in the period spacingmore » and inertia of non-radial modes during several phases of red giant evolution. Significant changes are seen in the appearance of mode amplitude and frequency patterns in asteroseismic diagrams such as the power spectrum and the échelle diagram. Interestingly, along the red giant branch glitch-induced variation occurs only at the luminosity bump, potentially providing a direct seismic indicator of stars in that particular evolution stage. Similarly, we find the variation at only certain post-helium-ignition evolution stages, namely, in the early phases of helium core burning and at the beginning of helium shell burning, signifying the asymptotic giant branch bump. Based on our results, we note that assuming stars to be glitch-free, while they are not, can result in an incorrect estimate of the period spacing. We further note that including diffusion and mixing beyond classical Schwarzschild could affect the characteristics of the glitches, potentially providing a way to study these physical processes.« less
NASA Technical Reports Server (NTRS)
Terman, James L.; Taam, Ronald E.; Hernquist, Lars
1994-01-01
The evolution of the common envelope phase of a binary system consisting of a 4.67 solar mass red giant and a 0.94 solar mass dwarf is studied using smoothed particle hydrodynamics. We demonstrate that the three-dimensional effects associated with the gravitational tidal torques lead to a rapid decay of the orbit on timescales approximately less than 1 yr. The relative orbit of the two cores in the common envelope is initally eccentric and tends to circularize as the orbital separation of the two cores decreases. The angular momentum lost from the orbital motion is distributed throughout the common envelope, and the double core does not evolve to a state of co-rotation for the evolutionary time followed. The energy dissipated from the relative orbit and deposited in the common envelope results in the ejection of approximately 13% of the mass of the envelope. The mass is ejected in all directions, but there is a preference for mass ejection in the orbital plane of the binary system. For example, approximately 80% of the ejected mass lies within 30 deg of the binary orbital plane. Because gravitational forces are long range, most of the energy and angular momentum is imparted to a small fraction of the common envelope resulting in an efficiency of the mass ejection process of approximately 15%. The core of the red giant executes significant displacement with respect to the center of mass of the system and contributes nearly equally to the total energy dissipation rate during the latter phases of the evolution. The degree of departure from synchronism of the initial binary system can be an important property of the system which can affect the outcome of the common envelope phase.
Education and Poverty in the Global Development Agenda: Emergence, Evolution and Consolidation
ERIC Educational Resources Information Center
Tarabini, Aina
2010-01-01
The objective of this paper is to analyse the role of education and poverty in the current global development agenda. It intends to analyse the emergence, evolution and consolidation of a global agenda, which attributes a key role to education in the fight against poverty. With this objective, the paper addresses four main issues: first, it…
Pathogen evolution and disease emergence in carnivores.
McCarthy, Alex J; Shaw, Marie-Anne; Goodman, Simon J
2007-12-22
Emerging infectious diseases constitute some of the most pressing problems for both human and domestic animal health, and biodiversity conservation. Currently it is not clear whether the removal of past constraints on geographical distribution and transmission possibilities for pathogens alone are sufficient to give rise to novel host-pathogen combinations, or whether pathogen evolution is also generally required for establishment in novel hosts. Canine distemper virus (CDV) is a morbillivirus that is prevalent in the world dog population and poses an important conservation threat to a diverse range of carnivores. We performed an extensive phylogenetic and molecular evolution analysis on complete sequences of all CDV genes to assess the role of selection and recombination in shaping viral genetic diversity and driving the emergence of CDV in non-dog hosts. We tested the specific hypothesis that molecular adaptation at known receptor-binding sites of the haemagglutinin gene is associated with independent instances of the spread of CDV to novel non-dog hosts in the wild. This hypothesis was upheld, providing compelling evidence that repeated evolution at known functional sites (in this case residues 530 and 549 of the haemagglutinin molecule) is associated with multiple independent occurrences of disease emergence in a range of novel host species.
Core surface magnetic field evolution 2000-2010
NASA Astrophysics Data System (ADS)
Finlay, C. C.; Jackson, A.; Gillet, N.; Olsen, N.
2012-05-01
We present new dedicated core surface field models spanning the decade from 2000.0 to 2010.0. These models, called gufm-sat, are based on CHAMP, Ørsted and SAC-C satellite observations along with annual differences of processed observatory monthly means. A spatial parametrization of spherical harmonics up to degree and order 24 and a temporal parametrization of sixth-order B-splines with 0.25 yr knot spacing is employed. Models were constructed by minimizing an absolute deviation measure of misfit along with measures of spatial and temporal complexity at the core surface. We investigate traditional quadratic or maximum entropy regularization in space, and second or third time derivative regularization in time. Entropy regularization allows the construction of models with approximately constant spectral slope at the core surface, avoiding both the divergence characteristic of the crustal field and the unrealistic rapid decay typical of quadratic regularization at degrees above 12. We describe in detail aspects of the models that are relevant to core dynamics. Secular variation and secular acceleration are found to be of lower amplitude under the Pacific hemisphere where the core field is weaker. Rapid field evolution is observed under the eastern Indian Ocean associated with the growth and drift of an intense low latitude flux patch. We also find that the present axial dipole decay arises from a combination of subtle changes in the southern hemisphere field morphology.
Development of the RFBB “Bargouzine” concept for Ariane-5 evolution
NASA Astrophysics Data System (ADS)
Sumin, Yuriy; Kostromin, Sergey F.; Panichkin, Nikolai; Prel, Yves; Osin, Mikhail; Iranzo-Greus, David; Prampolini, Marco
2009-10-01
This paper presents the study of a concept of Ariane-5 evolution by means of replacement of two solid-propellant boosters EAP with two liquid-propellant reusable fly-back boosters (RFBBs) called "Bargouzine". The main design feature of the reference RFBB is LOX/LH2 propellant, the canard aerodynamic configuration with delta wings and rocket engines derived from Vulcain-2 identical to that of the central core except for the nozzle length. After separation RFBBs return back by use of air breathing engines mounted in the aft part and then landing on a runway. The aim of the study is a more detailed investigation of critical technology issues concerning reliability, re-usability and maintenance requirements. The study was performed in three main phases: system trade-off, technical consolidation, and programmatic synthesis. The system trade-off includes comparative analysis of two systems with three and four engines on each RFBB and determination of the necessary thrust level taking into account thrust reservation for emergency situations. Besides, this phase contains trade-off on booster aerodynamic configurations and abort scenario analysis. The second phase includes studying of controllability during the ascent phase and separation, thermo-mechanical design, development of ground interfaces and attachment means, and turbojets engine analysis taking into account reusability.
THE BLUE HOOK POPULATIONS OF MASSIVE GLOBULAR CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Thomas M.; Smith, Ed; Sweigart, Allen V.
2010-08-01
We present new Hubble Space Telescope ultraviolet color-magnitude diagrams of five massive Galactic globular clusters: NGC 2419, NGC 6273, NGC 6715, NGC 6388, and NGC 6441. These observations were obtained to investigate the 'blue hook' (BH) phenomenon previously observed in UV images of the globular clusters {omega} Cen and NGC 2808. Blue hook stars are a class of hot (approximately 35,000 K) subluminous horizontal branch stars that occupy a region of the HR diagram that is unexplained by canonical stellar evolution theory. By coupling new stellar evolution models to appropriate non-LTE synthetic spectra, we investigate various theoretical explanations for thesemore » stars. Specifically, we compare our photometry to canonical models at standard cluster abundances, canonical models with enhanced helium (consistent with cluster self-enrichment at early times), and flash-mixed models formed via a late helium-core flash on the white dwarf cooling curve. We find that flash-mixed models are required to explain the faint luminosity of the BH stars, although neither the canonical models nor the flash-mixed models can explain the range of color observed in such stars, especially those in the most metal-rich clusters. Aside from the variation in the color range, no clear trends emerge in the morphology of the BH population with respect to metallicity.« less
O'Neill, Christopher J; Swain, David L; Kadarmideen, Haja N
2010-01-01
The evolutionary processes that have enabled Bos taurus cattle to establish around the globe are at the core to the future success of livestock production. Our study focuses on the history of cattle domestication including the last 60 years of B. taurus breeding programmes in both favourable and unfavourable environments and its consequences on evolution and fitness of cattle. We discuss the emergence of ‘production diseases’ in temperate production systems and consider the evolutionary genetics of tropical adaptation in cattle and conclude that the Senepol, N'Dama, Adaptaur and Criollo breeds, among others with similar evolutionary trajectories, would possess genes capable of improving the productivity of cattle in challenging environments. Using our own experimental evidence from northern Australia, we review the evolution of the Adaptaur cattle breed which has become resistant to cattle tick. We emphasize that the knowledge of interactions between genotype, environment and management in the livestock systems will be required to generate genotypes for efficient livestock production that are both economically and environmentally sustainable. Livestock producers in the 21st century will have less reliance on infrastructure and veterinary products to alleviate environmental stress and more on the animal's ability to achieve fitness in a given production environment. PMID:25567936
O'Neill, Christopher J; Swain, David L; Kadarmideen, Haja N
2010-09-01
The evolutionary processes that have enabled Bos taurus cattle to establish around the globe are at the core to the future success of livestock production. Our study focuses on the history of cattle domestication including the last 60 years of B. taurus breeding programmes in both favourable and unfavourable environments and its consequences on evolution and fitness of cattle. We discuss the emergence of 'production diseases' in temperate production systems and consider the evolutionary genetics of tropical adaptation in cattle and conclude that the Senepol, N'Dama, Adaptaur and Criollo breeds, among others with similar evolutionary trajectories, would possess genes capable of improving the productivity of cattle in challenging environments. Using our own experimental evidence from northern Australia, we review the evolution of the Adaptaur cattle breed which has become resistant to cattle tick. We emphasize that the knowledge of interactions between genotype, environment and management in the livestock systems will be required to generate genotypes for efficient livestock production that are both economically and environmentally sustainable. Livestock producers in the 21st century will have less reliance on infrastructure and veterinary products to alleviate environmental stress and more on the animal's ability to achieve fitness in a given production environment.
Casella, Gianni; Zagnoni, Silvia; Fradella, Giuseppe; Scorcu, Giampaolo; Chinaglia, Alessandra; Pavesi, Pier Camillo; Di Pasquale, Giuseppe; Oltrona Visconti, Luigi
2017-01-01
Coronary care units, initially developed to treat acute myocardial infarction, have moved to the care of a broader population of acute cardiac patients and are currently defined as Intensive Cardiac Care Units (ICCUs). However, very limited data are available on such evolution. Since 2008, in Italy, several surveys have been designed to assess ICCUs' activities. The largest and most comprehensive of these, the BLITZ-3 Registry, observed that patients admitted are mainly elderly males and suffer from several comorbidities. Direct admission to ICCUs through the Emergency Medical System was rather rare. Acute coronary syndromes (ACS) account for more than half of the discharge diagnoses. However, numbers of acute heart failure (AHF) admissions are substantial. Interestingly, age, resources availability, and networking have a strong influence on ICCUs' epidemiology and activities. In fact, while patients with ACS concentrate in ICCUs with interventional capabilities, older patients with AHF or non-ACS, non-AHF cardiac diseases prevail in peripheral ICCUs. In conclusion, although ACS is still the core business of ICCUs, aging, comorbidities, increasing numbers of non-ACS, technological improvements, and resources availability have had substantial effects on epidemiology and activities of ICCUs. The Italian surveys confirm these changes and call for a substantial update of ICCUs' organization and competences.
NASA Astrophysics Data System (ADS)
Volkmann, T. H. M.; Sengupta, A.; Pangle, L.; Abramson, N.; Barron-Gafford, G.; Breshears, D. D.; Bugaj, A.; Chorover, J.; Dontsova, K.; Durcik, M.; Ferre, T. P. A.; Harman, C. J.; Hunt, E.; Huxman, T. E.; Kim, M.; Maier, R. M.; Matos, K.; Alves Meira Neto, A.; Meredith, L. K.; Monson, R. K.; Niu, G. Y.; Pelletier, J. D.; Rasmussen, C.; Ruiz, J.; Saleska, S. R.; Schaap, M. G.; Sibayan, M.; Tuller, M.; Van Haren, J. L. M.; Wang, Y.; Zeng, X.; Troch, P. A.
2017-12-01
Understanding the process interactions and feedbacks among water, microbes, plants, and porous geological media is crucial for improving predictions of the response of Earth's critical zone to future climatic conditions. However, the integrated co-evolution of landscapes under change is notoriously difficult to investigate. Laboratory studies are typically limited in spatial and temporal scale, while field studies lack observational density and control. To bridge the gap between controlled lab and uncontrolled field studies, the University of Arizona - Biosphere 2 built a macrocosm experiment of unprecedented scale: the Landscape Evolution Observatory (LEO). LEO consists of three replicated, 330-m2 hillslope landscapes inside a 5000-m2 environmentally controlled facility. The engineered landscapes contain 1-m depth of basaltic tephra ground to homogenous loamy sand that will undergo physical, chemical, and mineralogical changes over many years. Each landscape contains a dense sensor network capable of resolving water, carbon, and energy cycling processes at sub-meter to whole-landscape scale. Embedded sampling devices allow for quantification of biogeochemical processes, and facilitate the use of chemical tracers applied with the artificial rainfall. LEO is now fully operational and intensive forcing experiments have been launched. While operating the massive infrastructure poses significant challenges, LEO has demonstrated the capacity of tracking multi-scale matter and energy fluxes at a level of detail impossible in field experiments. Initial sensor, sampler, and restricted soil coring data are already providing insights into the tight linkages between water flow, weathering, and (micro-) biological community development during incipient landscape evolution. Over the years to come, these interacting processes are anticipated to drive the model systems to increasingly complex states, potentially perturbed by changes in climatic forcing. By intensively monitoring the evolutionary trajectory, integrating data with models, and fostering community-wide collaborations, we envision that emergent landscape structures and functions can be linked and significant progress can be made toward predicting the coupled hydro-biogeochemical and ecological responses to global change.
Origin and evolution of the atmospheres of early Venus, Earth and Mars
NASA Astrophysics Data System (ADS)
Lammer, Helmut; Zerkle, Aubrey L.; Gebauer, Stefanie; Tosi, Nicola; Noack, Lena; Scherf, Manuel; Pilat-Lohinger, Elke; Güdel, Manuel; Grenfell, John Lee; Godolt, Mareike; Nikolaou, Athanasia
2018-05-01
We review the origin and evolution of the atmospheres of Earth, Venus and Mars from the time when their accreting bodies were released from the protoplanetary disk a few million years after the origin of the Sun. If the accreting planetary cores reached masses ≥ 0.5 M_Earth before the gas in the disk disappeared, primordial atmospheres consisting mainly of H_2 form around the young planetary body, contrary to late-stage planet formation, where terrestrial planets accrete material after the nebula phase of the disk. The differences between these two scenarios are explored by investigating non-radiogenic atmospheric noble gas isotope anomalies observed on the three terrestrial planets. The role of the young Sun's more efficient EUV radiation and of the plasma environment into the escape of early atmospheres is also addressed. We discuss the catastrophic outgassing of volatiles and the formation and cooling of steam atmospheres after the solidification of magma oceans and we describe the geochemical evidence for additional delivery of volatile-rich chondritic materials during the main stages of terrestrial planet formation. The evolution scenario of early Earth is then compared with the atmospheric evolution of planets where no active plate tectonics emerged like on Venus and Mars. We look at the diversity between early Earth, Venus and Mars, which is found to be related to their differing geochemical, geodynamical and geophysical conditions, including plate tectonics, crust and mantle oxidation processes and their involvement in degassing processes of secondary N_2 atmospheres. The buildup of atmospheric N_2, O_2, and the role of greenhouse gases such as CO_2 and CH_4 to counter the Faint Young Sun Paradox (FYSP), when the earliest life forms on Earth originated until the Great Oxidation Event ≈ 2.3 Gyr ago, are addressed. This review concludes with a discussion on the implications of understanding Earth's geophysical and related atmospheric evolution in relation to the discovery of potential habitable terrestrial exoplanets.
El Karkouri, Khalid; Kowalczewska, Malgorzata; Armstrong, Nicholas; Azza, Said; Fournier, Pierre-Edouard; Raoult, Didier
2017-01-01
Arthropod-borne Rickettsia species are obligate intracellular bacteria which are pathogenic for humans. Within this genus, Rickettsia slovaca and Rickettsia conorii cause frequent and potentially severe infections, whereas Rickettsia raoultii and Rickettsia massiliae cause rare and milder infections. All four species belong to spotted fever group (SFG) rickettsiae. However, R. slovaca and R. raoultii cause scalp eschar and neck lymphadenopathy (SENLAT) and are mainly associated with Dermacentor ticks, whereas the other two species cause Mediterranean spotted fever (MSF) and are mainly transmitted by Rhipicephalus ticks. To identify the potential genes and protein profiles and to understand the evolutionary processes that could, comprehensively, relate to the differences in virulence and pathogenicity observed between these four species, we compared their genomes and proteomes. The virulent and milder agents displayed divergent phylogenomic evolution in two major clades, whereas either SENLAT or MSF disease suggests a discrete convergent evolution of one virulent and one milder agent, despite their distant genetic relatedness. Moreover, the two virulent species underwent strong reductive genomic evolution and protein structural variations, as well as a probable loss of plasmid(s), compared to the two milder species. However, an abundance of mobilome genes was observed only in the less pathogenic species. After infecting Xenopus laevis cells, the virulent agents displayed less up-regulated than down-regulated proteins, as well as less number of identified core proteins. Furthermore, their similar and distinct protein profiles did not contain some genes (e.g., omp A/B and rick A) known to be related to rickettsial adhesion, motility and/or virulence, but may include other putative virulence-, antivirulence-, and/or disease-related proteins. The identified evolutionary forces herein may have a strong impact on intracellular expressions and strategies in these rickettsiae, and that may contribute to the emergence of distinct virulence and diseases in humans. Thus, the current multi-omics data provide new insights into the evolution and fitness of SFG virulence and pathogenicity, and intracellular pathogenic bacteria.
Radiation transfer of models of massive star formation. III. The evolutionary sequence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yichen; Tan, Jonathan C.; Hosokawa, Takashi, E-mail: yichen.zhang@yale.edu, E-mail: jt@astro.ufl.edu, E-mail: takashi.hosokawa@phys.s.u-tokyo.ac.jp
2014-06-20
We present radiation transfer simulations of evolutionary sequences of massive protostars forming from massive dense cores in environments of high mass surface densities, based on the Turbulent Core Model. The protostellar evolution is calculated with a multi-zone numerical model, with the accretion rate regulated by feedback from an evolving disk wind outflow cavity. The disk evolution is calculated assuming a fixed ratio of disk to protostellar mass, while the core envelope evolution assumes an inside-out collapse of the core with a fixed outer radius. In this framework, an evolutionary track is determined by three environmental initial conditions: the core massmore » M{sub c} , the mass surface density of the ambient clump Σ{sub cl}, and the ratio of the core's initial rotational to gravitational energy β {sub c}. Evolutionary sequences with various M{sub c} , Σ{sub cl}, and β {sub c} are constructed. We find that in a fiducial model with M{sub c} = 60 M {sub ☉}, Σ{sub cl} = 1 g cm{sup –2}, and β {sub c} = 0.02, the final mass of the protostar reaches at least ∼26 M {sub ☉}, making the final star formation efficiency ≳ 0.43. For each of the evolutionary tracks, radiation transfer simulations are performed at selected stages, with temperature profiles, spectral energy distributions (SEDs), and multiwavelength images produced. At a given stage, the envelope temperature depends strongly on Σ{sub cl}, with higher temperatures in a higher Σ{sub cl} core, but only weakly on M{sub c} . The SED and MIR images depend sensitively on the evolving outflow cavity, which gradually widens as the protostar grows. The fluxes at ≲ 100 μm increase dramatically, and the far-IR peaks move to shorter wavelengths. The influence of Σ{sub cl} and β {sub c} (which determines disk size) are discussed. We find that, despite scatter caused by different M{sub c} , Σ{sub cl}, β {sub c}, and inclinations, sources at a given evolutionary stage appear in similar regions of color-color diagrams, especially when using colors with fluxes at ≳ 70 μm, where scatter due to inclination is minimized, implying that such diagrams can be useful diagnostic tools for identifying the evolutionary stages of massive protostars. We discuss how intensity profiles along or perpendicular to the outflow axis are affected by environmental conditions and source evolution and can thus act as additional diagnostics of the massive star formation process.« less
A High-resolution Study of Presupernova Core Structure
NASA Astrophysics Data System (ADS)
Sukhbold, Tuguldur; Woosley, S. E.; Heger, Alexander
2018-06-01
The density structure surrounding the iron core of a massive star when it dies is known to have a major effect on whether or not the star explodes. Here we repeat previous surveys of presupernova evolution with some important corrections to code physics and four to 10 times better mass resolution in each star. The number of presupernova masses considered is also much larger. Over 4000 models are calculated in the range from 12 to 60 M ⊙ with varying mass loss rates. The core structure is not greatly affected by the increased spatial resolution. The qualitative patterns of compactness measures and their extrema are the same, but with the increased number of models, the scatter seen in previous studies is replaced by several localized branches. More physics-based analyses by Ertl et al. and Müller et al. show these branches with less scatter than the single-parameter characterization of O’Connor & Ott. These branches are particularly apparent for stars in the mass ranges 14–19 and 22–24 M ⊙. The multivalued solutions are a consequence of interference between several carbon- and oxygen-burning shells during the late stages of evolution. For a relevant range of masses, whether a star explodes or not may reflect the small, almost random differences in its late evolution more than its initial mass. The large number of models allows statistically meaningful statements about the radius, luminosity, and effective temperatures of presupernova stars, their core structures, and their remnant mass distributions.
Effects of basin-forming impacts on the thermal evolution and magnetic field of Mars
NASA Astrophysics Data System (ADS)
Roberts, J. H.; Arkani-Hamed, J.
2017-11-01
The youngest of the giant impact basins on Mars are either weakly magnetized or completely demagnetized, indicating that a global magnetic field was not present at the time those basins formed. Eight basins are sufficiently large that the impact heating associated with their formation could have penetrated below the core-mantle boundary (CMB). Here we investigate the thermal evolution of the martian interior and the fate of the global magnetic field using 3D mantle convection models coupled to a parameterized 1D core thermal evolution model. We find that the survival of the impact-induced temperature anomalies in the upper mantle is strongly controlled by the mantle viscosity. Impact heating from subsequent impacts can accumulate in stiffer mantles faster than it can be advected away, resulting in a thermal blanket that insulates an entire hemisphere. The impact heating in the core will halt dynamo activity, at least temporarily. If the mantle is initially cold, and the core initially superheated, dynamo activity may resume as quickly as a few Myr after each impact. However unless the lower mantle has either a low viscosity or a high thermal conductivity, this restored dynamo will last for only a few hundred Myr after the end of the sequence of impacts. Thus, we find that the longevity of the magnetic field is more strongly controlled by the lower mantle properties and relatively insensitive to the impact-induced temperature anomalies in the upper mantle.
Bull, L; Holland, O; Blackmore, S
2000-01-01
In this article we examine the effects of the emergence of a new replicator, memes, on the evolution of a pre-existing replicator, genes. Using a version of the NKCS model we examine the effects of increasing the rate of meme evolution in relation to the rate of gene evolution, for various degrees of interdependence between the two replicators. That is, the effects of memes' (suggested) more rapid rate of evolution in comparison to that of genes is investigated using a tunable model of coevolution. It is found that, for almost any degree of interdependence between the two replicators, as the rate of meme evolution increases, a phase transition-like dynamic occurs under which memes have a significantly detrimental effect on the evolution of genes, quickly resulting in the cessation of effective gene evolution. Conversely, the memes experience a sharp increase in benefit from increasing their rate of evolution. We then examine the effects of enabling genes to reduce the percentage of gene-detrimental evolutionary steps taken by memes. Here a critical region emerges as the comparative rate of meme evolution increases, such that if genes cannot effectively select memes a high percentage of the time, they suffer from meme evolution as if they had almost no selective capability.
Martins, Jean M F; Majdalani, Samer; Vitorge, Elsa; Desaunay, Aurélien; Navel, Aline; Guiné, Véronique; Daïan, Jean François; Vince, Erwann; Denis, Hervé; Gaudet, Jean Paul
2013-02-01
The objective of this work was to evaluate the transport of Escherichia coli cells in undisturbed cores of a brown leached soil collected at La Côte St André (France). Two undisturbed soil cores subjected to repeated injections of bacterial cells and/or bromide tracer were used to investigate the effect of soil hydrodynamics and ionic strength on cell mobility. Under the tested experimental conditions, E. coli cells were shown to be transported at the water velocity (retardation factor close to 1) and their retention appeared almost insensitive to water flow and ionic strength variations, both factors being known to control bacterial transport in model saturated porous media. In contrast, E. coli breakthrough curves evolved significantly along with the repetition of the cell injections in each soil core, with a progressive acceleration of their transport. The evolution of E. coli cells BTCs was shown to be due to the evolution of the structure of soil hydraulic pathways caused by the repeated water infiltrations and drainage as may occur in the field. This evolution was demonstrated through mercury intrusion porosimetry (MIP) performed on soil aggregates before and after the repeated infiltrations of bacteria. MIP revealed a progressive and important reduction of the soil aggregate porosity, n, that decreased from approximately 0.5 to 0.3, along with a decrease of the soil percolating step from 27 to 2 μm. From this result a clear compaction of soil aggregates was evidenced that concerned preferentially the pores larger than 2 μm equivalent diameter, i.e. those allowing bacterial cell passage. Since no significant reduction of the global soil volume was observed at the core scale, this aggregate compaction was accompanied by macropore formation that became progressively the preferential hydraulic pathway in the soil cores, leading to transiently bi-modal bacterial BTCs. The evolution of the soil pore structure induced a modification of the main hydrodynamic processes, evolving from a matrix-dominant transfer of water and bacteria to a macropore-dominant transfer. This work points out the importance of using undisturbed natural soils to evaluate the mobility of bacteria in the field, since the evolving hydrodynamic properties of soils appeared to dominate most physicochemical factors.
Magnetic Flux Transport at the Solar Surface
NASA Astrophysics Data System (ADS)
Jiang, J.; Hathaway, D. H.; Cameron, R. H.; Solanki, S. K.; Gizon, L.; Upton, L.
2014-12-01
After emerging to the solar surface, the Sun's magnetic field displays a complex and intricate evolution. The evolution of the surface field is important for several reasons. One is that the surface field, and its dynamics, sets the boundary condition for the coronal and heliospheric magnetic fields. Another is that the surface evolution gives us insight into the dynamo process. In particular, it plays an essential role in the Babcock-Leighton model of the solar dynamo. Describing this evolution is the aim of the surface flux transport model. The model starts from the emergence of magnetic bipoles. Thereafter, the model is based on the induction equation and the fact that after emergence the magnetic field is observed to evolve as if it were purely radial. The induction equation then describes how the surface flows—differential rotation, meridional circulation, granular, supergranular flows, and active region inflows—determine the evolution of the field (now taken to be purely radial). In this paper, we review the modeling of the various processes that determine the evolution of the surface field. We restrict our attention to their role in the surface flux transport model. We also discuss the success of the model and some of the results that have been obtained using this model.
Loss and Re-emergence of Legs in Snakes by Modular Evolution of Sonic hedgehog and HOXD Enhancers.
Leal, Francisca; Cohn, Martin J
2016-11-07
Limb reduction and loss are hallmarks of snake evolution. Although advanced snakes are completely limbless, basal and intermediate snakes retain pelvic girdles and small rudiments of the femur. Moreover, legs may have re-emerged in extinct snake lineages [1-5], suggesting that the mechanisms of limb development were not completely lost in snakes. Here we report that hindlimb development arrests in python embryos as a result of mutations that abolish essential transcription factor binding sites in the limb-specific enhancer of Sonic hedgehog (SHH). Consequently, SHH transcription is weak and transient in python hindlimb buds, leading to early termination of a genetic circuit that drives limb outgrowth. Our results suggest that degenerate evolution of the SHH limb enhancer played a role in reduction of hindlimbs during snake evolution. By contrast, HOXD digit enhancers are conserved in pythons, and HOXD gene expression in the hindlimb buds progresses to the distal phase, forming an autopodial (digit) domain. Python hindlimb buds then develop transitory pre-chondrogenic condensations of the tibia, fibula, and footplate, raising the possibility that re-emergence of hindlimbs during snake evolution did not require de novo re-evolution of lost structures but instead could have resulted from persistence of embryonic legs. VIDEO ABSTRACT. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chemical evolution of molecular clouds
NASA Technical Reports Server (NTRS)
Prasad, Sheo S.; Tarafdar, Sankar P.; Villere, Karen R.; Huntress, Wesley T., Jr.
1987-01-01
The principles behind the coupled chemical-dynamical evolution of molecular clouds are described. Particular attention is given to current problems involving the simplest species (i.e., C. CO, O2, and H2) in quiescent clouds. The results of a comparison made between the molecular abundances in the Orion ridge and the hot core (Blake, 1986) are presented.
NASA Astrophysics Data System (ADS)
Sanders, J. S.; Fabian, A. C.; Russell, H. R.; Walker, S. A.
2018-02-01
We analyse Chandra X-ray Observatory observations of a set of galaxy clusters selected by the South Pole Telescope using a new publicly available forward-modelling projection code, MBPROJ2, assuming hydrostatic equilibrium. By fitting a power law plus constant entropy model we find no evidence for a central entropy floor in the lowest entropy systems. A model of the underlying central entropy distribution shows a narrow peak close to zero entropy which accounts for 60 per cent of the systems, and a second broader peak around 130 keV cm2. We look for evolution over the 0.28-1.2 redshift range of the sample in density, pressure, entropy and cooling time at 0.015R500 and at 10 kpc radius. By modelling the evolution of the central quantities with a simple model, we find no evidence for a non-zero slope with redshift. In addition, a non-parametric sliding median shows no significant change. The fraction of cool-core clusters with central cooling times below 2 Gyr is consistent above and below z = 0.6 (˜30-40 per cent). Both by comparing the median thermodynamic profiles, centrally biased towards cool cores, in two redshift bins, and by modelling the evolution of the unbiased average profile as a function of redshift, we find no significant evolution beyond self-similar scaling in any of our examined quantities. Our average modelled radial density, entropy and cooling-time profiles appear as power laws with breaks around 0.2R500. The dispersion in these quantities rises inwards of this radius to around 0.4 dex, although some of this scatter can be fitted by a bimodal model.
Galactic cannibalism. III. The morphological evolution of galaxies and clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hausman, M.A.; Ostriker, J.P.
1978-09-01
We present a numerical simulation for the evolution of massive cluster galaxies due to the accretion of other galaxies, finding that after several accretions a bright ''normal'' galaxy begins to resemble a cD giant, with a bright core and large core radius. Observable quantities such as color, scale size, and logarithmic intensity gradient ..cap alpha.. are calculated and are consistent with observations. The multiple nuclei sometimes found in cD galaxies may be understood as the undigested remnants of cannibalized companions. A cluster's bright galaxies are selectively depleted, an effect which can transform the cluster's luminosity function from a power lawmore » to the observed form with a steep high-luminosity falloff and which pushes the turnover point to lower luminosities with time. We suggest that these effects may account for apparent nonstatistical features observed in the luminosity distribution of bright cluster galaxies, and that the sequence of cluster types discovered by Bautz and Morgan and Oemler is essentially one of increasing dynamical evolution, the rate of evolution depending inversely on the cluster's central relaxation time.« less
Presupernova Evolution of Differentially Rotating Massive Stars Including Magnetic Fields
NASA Astrophysics Data System (ADS)
Heger, A.; Woosley, S. E.; Spruit, H. C.
2005-06-01
As a massive star evolves through multiple stages of nuclear burning on its way to becoming a supernova, a complex, differentially rotating structure is set up. Angular momentum is transported by a variety of classic instabilities and also by magnetic torques from fields generated by the differential rotation. We present the first stellar evolution calculations to follow the evolution of rotating massive stars including, at least approximately, all these effects, magnetic and nonmagnetic, from the zero-age main sequence until the onset of iron-core collapse. The evolution and action of the magnetic fields is as described by Spruit in 2002, and a range of uncertain parameters is explored. In general, we find that magnetic torques decrease the final rotation rate of the collapsing iron core by about a factor of 30-50 when compared with the nonmagnetic counterparts. Angular momentum in that part of the presupernova star destined to become a neutron star is an increasing function of main-sequence mass. That is, pulsars derived from more massive stars rotate faster and rotation plays a more important role in the star's explosion. The final angular momentum of the core has been determined-to within a factor of 2-by the time the star ignites carbon burning. For the lighter stars studied, around 15 Msolar, we predict pulsar periods at birth near 15 ms, though a factor of 2 range is easily tolerated by the uncertainties. Several mechanisms for additional braking in a young neutron star, especially by fallback, are explored.
The early thermal evolution of Mars
NASA Astrophysics Data System (ADS)
Bhatia, G. K.; Sahijpal, S.
2016-01-01
Hf-W isotopic systematics of Martian meteorites have provided evidence for the early accretion and rapid core formation of Mars. We present the results of numerical simulations performed to study the early thermal evolution and planetary scale differentiation of Mars. The simulations are confined to the initial 50 Myr (Ma) of the formation of solar system. The accretion energy produced during the growth of Mars and the decay energy due to the short-lived radio-nuclides 26Al, 60Fe, and the long-lived nuclides, 40K, 235U, 238U, and 232Th are incorporated as the heat sources for the thermal evolution of Mars. During the core-mantle differentiation of Mars, the molten metallic blobs were numerically moved using Stoke's law toward the center with descent velocity that depends on the local acceleration due to gravity. Apart from the accretion and the radioactive heat energies, the gravitational energy produced during the differentiation of Mars and the associated heat transfer is also parametrically incorporated in the present work to make an assessment of its contribution to the early thermal evolution of Mars. We conclude that the accretion energy alone cannot produce widespread melting and differentiation of Mars even with an efficient consumption of the accretion energy. This makes 26Al the prime source for the heating and planetary scale differentiation of Mars. We demonstrate a rapid accretion and core-mantle differentiation of Mars within the initial ~1.5 Myr. This is consistent with the chronological records of Martian meteorites.
The Biological Big Bang model for the major transitions in evolution.
Koonin, Eugene V
2007-08-20
Major transitions in biological evolution show the same pattern of sudden emergence of diverse forms at a new level of complexity. The relationships between major groups within an emergent new class of biological entities are hard to decipher and do not seem to fit the tree pattern that, following Darwin's original proposal, remains the dominant description of biological evolution. The cases in point include the origin of complex RNA molecules and protein folds; major groups of viruses; archaea and bacteria, and the principal lineages within each of these prokaryotic domains; eukaryotic supergroups; and animal phyla. In each of these pivotal nexuses in life's history, the principal "types" seem to appear rapidly and fully equipped with the signature features of the respective new level of biological organization. No intermediate "grades" or intermediate forms between different types are detectable. Usually, this pattern is attributed to cladogenesis compressed in time, combined with the inevitable erosion of the phylogenetic signal. I propose that most or all major evolutionary transitions that show the "explosive" pattern of emergence of new types of biological entities correspond to a boundary between two qualitatively distinct evolutionary phases. The first, inflationary phase is characterized by extremely rapid evolution driven by various processes of genetic information exchange, such as horizontal gene transfer, recombination, fusion, fission, and spread of mobile elements. These processes give rise to a vast diversity of forms from which the main classes of entities at the new level of complexity emerge independently, through a sampling process. In the second phase, evolution dramatically slows down, the respective process of genetic information exchange tapers off, and multiple lineages of the new type of entities emerge, each of them evolving in a tree-like fashion from that point on. This biphasic model of evolution incorporates the previously developed concepts of the emergence of protein folds by recombination of small structural units and origin of viruses and cells from a pre-cellular compartmentalized pool of recombining genetic elements. The model is extended to encompass other major transitions. It is proposed that bacterial and archaeal phyla emerged independently from two distinct populations of primordial cells that, originally, possessed leaky membranes, which made the cells prone to rampant gene exchange; and that the eukaryotic supergroups emerged through distinct, secondary endosymbiotic events (as opposed to the primary, mitochondrial endosymbiosis). This biphasic model of evolution is substantially analogous to the scenario of the origin of universes in the eternal inflation version of modern cosmology. Under this model, universes like ours emerge in the infinite multiverse when the eternal process of exponential expansion, known as inflation, ceases in a particular region as a result of false vacuum decay, a first order phase transition process. The result is the nucleation of a new universe, which is traditionally denoted Big Bang, although this scenario is radically different from the Big Bang of the traditional model of an expanding universe. Hence I denote the phase transitions at the end of each inflationary epoch in the history of life Biological Big Bangs (BBB). A Biological Big Bang (BBB) model is proposed for the major transitions in life's evolution. According to this model, each transition is a BBB such that new classes of biological entities emerge at the end of a rapid phase of evolution (inflation) that is characterized by extensive exchange of genetic information which takes distinct forms for different BBBs. The major types of new forms emerge independently, via a sampling process, from the pool of recombining entities of the preceding generation. This process is envisaged as being qualitatively different from tree-pattern cladogenesis.
The Biological Big Bang model for the major transitions in evolution
Koonin, Eugene V
2007-01-01
Background Major transitions in biological evolution show the same pattern of sudden emergence of diverse forms at a new level of complexity. The relationships between major groups within an emergent new class of biological entities are hard to decipher and do not seem to fit the tree pattern that, following Darwin's original proposal, remains the dominant description of biological evolution. The cases in point include the origin of complex RNA molecules and protein folds; major groups of viruses; archaea and bacteria, and the principal lineages within each of these prokaryotic domains; eukaryotic supergroups; and animal phyla. In each of these pivotal nexuses in life's history, the principal "types" seem to appear rapidly and fully equipped with the signature features of the respective new level of biological organization. No intermediate "grades" or intermediate forms between different types are detectable. Usually, this pattern is attributed to cladogenesis compressed in time, combined with the inevitable erosion of the phylogenetic signal. Hypothesis I propose that most or all major evolutionary transitions that show the "explosive" pattern of emergence of new types of biological entities correspond to a boundary between two qualitatively distinct evolutionary phases. The first, inflationary phase is characterized by extremely rapid evolution driven by various processes of genetic information exchange, such as horizontal gene transfer, recombination, fusion, fission, and spread of mobile elements. These processes give rise to a vast diversity of forms from which the main classes of entities at the new level of complexity emerge independently, through a sampling process. In the second phase, evolution dramatically slows down, the respective process of genetic information exchange tapers off, and multiple lineages of the new type of entities emerge, each of them evolving in a tree-like fashion from that point on. This biphasic model of evolution incorporates the previously developed concepts of the emergence of protein folds by recombination of small structural units and origin of viruses and cells from a pre-cellular compartmentalized pool of recombining genetic elements. The model is extended to encompass other major transitions. It is proposed that bacterial and archaeal phyla emerged independently from two distinct populations of primordial cells that, originally, possessed leaky membranes, which made the cells prone to rampant gene exchange; and that the eukaryotic supergroups emerged through distinct, secondary endosymbiotic events (as opposed to the primary, mitochondrial endosymbiosis). This biphasic model of evolution is substantially analogous to the scenario of the origin of universes in the eternal inflation version of modern cosmology. Under this model, universes like ours emerge in the infinite multiverse when the eternal process of exponential expansion, known as inflation, ceases in a particular region as a result of false vacuum decay, a first order phase transition process. The result is the nucleation of a new universe, which is traditionally denoted Big Bang, although this scenario is radically different from the Big Bang of the traditional model of an expanding universe. Hence I denote the phase transitions at the end of each inflationary epoch in the history of life Biological Big Bangs (BBB). Conclusion A Biological Big Bang (BBB) model is proposed for the major transitions in life's evolution. According to this model, each transition is a BBB such that new classes of biological entities emerge at the end of a rapid phase of evolution (inflation) that is characterized by extensive exchange of genetic information which takes distinct forms for different BBBs. The major types of new forms emerge independently, via a sampling process, from the pool of recombining entities of the preceding generation. This process is envisaged as being qualitatively different from tree-pattern cladogenesis. Reviewers This article was reviewed by William Martin, Sergei Maslov, and Leonid Mirny. PMID:17708768
Neighborhood organization activities: evacuation drills, clusters, and fire safety awareness
Dick White
1995-01-01
Emergency preparedness activities of one Berkeley-Oakland Hills neighborhood at the wildland/urban interface include establishing clusters that reduce fire hazards and fuel loads, setting aside emergency supplies, and identifying evacuation routes; taking emergency preparedness courses from the Offices of Emergency Services of Berkeley and Oakland (the CERT and CORE...
The Extent of Genome Flux and Its Role in the Differentiation of Bacterial Lineages
Nowell, Reuben W.; Green, Sarah; Laue, Bridget E.; Sharp, Paul M.
2014-01-01
Horizontal gene transfer (HGT) and gene loss are key processes in bacterial evolution. However, the role of gene gain and loss in the emergence and maintenance of ecologically differentiated bacterial populations remains an open question. Here, we use whole-genome sequence data to quantify gene gain and loss for 27 lineages of the plant-associated bacterium Pseudomonas syringae. We apply an extensive error-control procedure that accounts for errors in draft genome data and greatly improves the accuracy of patterns of gene occurrence among these genomes. We demonstrate a history of extensive genome fluctuation for this species and show that individual lineages could have acquired thousands of genes in the same period in which a 1% amino acid divergence accrues in the core genome. Elucidating the dynamics of genome fluctuation reveals the rapid turnover of gained genes, such that the majority of recently gained genes are quickly lost. Despite high observed rates of fluctuation, a phylogeny inferred from patterns of gene occurrence is similar to a phylogeny based on amino acid replacements within the core genome. Furthermore, the core genome phylogeny suggests that P. syringae should be considered a number of distinct species, with levels of divergence at least equivalent to those between recognized bacterial species. Gained genes are transferred from a variety of sources, reflecting the depth and diversity of the potential gene pool available via HGT. Overall, our results provide further insights into the evolutionary dynamics of genome fluctuation and implicate HGT as a major factor contributing to the diversification of P. syringae lineages. PMID:24923323
Alcaro, Antonio; Carta, Stefano; Panksepp, Jaak
2017-01-01
Psychologists usually considered the "Self" as an object of experience appearing when the individual perceives its existence within the conscious field. In accordance with such a view, the self-representing capacity of the human mind has been related to corticolimbic learning processes taking place within individual development. On the other hand, Carl Gustav Jung considered the Self as the core of our personality, in its conscious and unconscious aspects, as well as in its actual and potential forms. According to Jung, the Self originates from an inborn dynamic structure integrating the essential drives of our "brain-mind," and leading both to instinctual behavioral actions and to archetypal psychological experiences. Interestingly, recent neuroethological studies indicate that our subjective identity rests on ancient neuropsychic processes that humans share with other animals as part of their inborn constitutional repertoire. Indeed, brain activity within subcortical midline structures (SCMSs) is intrinsically related to the emergence of prototypical affective states, that not only influence our behavior in a flexible way, but alter our conscious field, giving rise to specific feelings or moods, which constitute the first form of self-orientation in the world. Moreover, such affective dynamics play a central role in the organization of individual personality and in the evolution of all other (more sophisticated) psychological functions. Therefore, on the base of the convergence between contemporary cutting-edge scientific research and some psychological intuitions of Jung, we intend here to explore the first neuroevolutional layer of human mind, that we call the affective core of the Self.
Alcaro, Antonio; Carta, Stefano; Panksepp, Jaak
2017-01-01
Psychologists usually considered the “Self” as an object of experience appearing when the individual perceives its existence within the conscious field. In accordance with such a view, the self-representing capacity of the human mind has been related to corticolimbic learning processes taking place within individual development. On the other hand, Carl Gustav Jung considered the Self as the core of our personality, in its conscious and unconscious aspects, as well as in its actual and potential forms. According to Jung, the Self originates from an inborn dynamic structure integrating the essential drives of our “brain–mind,” and leading both to instinctual behavioral actions and to archetypal psychological experiences. Interestingly, recent neuroethological studies indicate that our subjective identity rests on ancient neuropsychic processes that humans share with other animals as part of their inborn constitutional repertoire. Indeed, brain activity within subcortical midline structures (SCMSs) is intrinsically related to the emergence of prototypical affective states, that not only influence our behavior in a flexible way, but alter our conscious field, giving rise to specific feelings or moods, which constitute the first form of self-orientation in the world. Moreover, such affective dynamics play a central role in the organization of individual personality and in the evolution of all other (more sophisticated) psychological functions. Therefore, on the base of the convergence between contemporary cutting-edge scientific research and some psychological intuitions of Jung, we intend here to explore the first neuroevolutional layer of human mind, that we call the affective core of the Self. PMID:28919868
Self-Organized Mantle Layering After the Magma-Ocean Period
NASA Astrophysics Data System (ADS)
Hansen, U.; Dude, S.
2017-12-01
The thermal history of the Earth, it's chemical differentiation and also the reaction of the interior with the atmosphere is largely determined by convective processes within the Earth's mantle. A simple physical model, resembling the situation, shortly after core formation, consists of a compositionally stable stratified mantle, as resulting from fractional crystallization of the magma ocean. The early mantle is subject to heating from below by the Earth's core and cooling from the top through the atmosphere. Additionally internal heat sources will serve to power the mantle dynamics. Under such circumstances double diffusive convection will eventually lead to self -organized layer formation, even without the preexisting jumps is material properties. We have conducted 2D and 3D numerical experiments in Cartesian and spherical geometry, taking into account mantle realistic values, especially a strong temperature dependent viscosity and a pressure dependent thermal expansivity . The experiments show that in a wide parameter range. distinct convective layers evolve in this scenario. The layering strongly controls the heat loss from the core and decouples the dynamics in the lower mantle from the upper part. With time, individual layers grow on the expense of others and merging of layers does occur. We observe several events of intermittent breakdown of individual layers. Altogether an evolution emerges, characterized by continuous but also spontaneous changes in the mantle structure, ranging from multiple to single layer flow. Such an evolutionary path of mantle convection allows to interpret phenomena ranging from stagnation of slabs at various depth to variations in the chemical signature of mantle upwellings in a new framework.
Observed Evolution of the Upper-level Thermal Structure in Tropical Cyclones
NASA Astrophysics Data System (ADS)
Rivoire, L.; Birner, T.; Knaff, J. A.
2016-12-01
Tropical cyclones (TCs) are associated with tropopause-level cooling above the well-known tropospheric warm core. While the investigation of tropopause-level structures started as early as 1951, there is no clear consensus on the mechanisms involved. In addition, the large-scale average vertical and radial structure of the tropopause-level cooling is yet to be examined. Tropopause-level cooling destabilizes the upper atmosphere to convection, which potentially allows existing convection to reach higher altitudes. This is of particular importance during the early stages of tropical cyclogenesis. Other important characteristics of the tropopause-level cooling include its amplitude, its position relative to that of the warm core, its radial extent, and its evolution during the lifetime of TCs. These potentially influence TC structure, surface pressure gradients and maximum winds, intensity evolution, and outflow entropy. We use the 322 hurricane-strength TCs from the best-track archive in 2007-2014, along with high vertical resolution temperature measurements from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC). These measurements are composited about the Lifetime Maximum Intensity (LMI) to examine the evolution of the fine-scale upper-level thermal structure inside TCs. We find that the tropopause-cooling has an amplitude similar to that of the warm core. Relative to the far-field structure (the area average between 1300-1500 km radii), tropopause-level cooling is found to occur several days before the warm core is established. Cold anomalies extend up to 1000 km away from the storm center, and may take part in a large-scale poleward transport of cold, dry air in the UTLS. Lastly, cold air masses move away from the storm center (and warm core) after LMI, and their remains lie around the 400-700 km radius -essentially inward of the radius of maximum tangential anticyclonic winds in the outflow layer. We discuss these results in the light of the previously cited TC characteristics, and highlight the importance of an improved description of the upper-level thermal structure in TCs. We also discuss the likely mechanisms involved in TC-induced tropopause-level cooling.
Rise in central west Greenland surface melt unprecedented over the last three centuries
NASA Astrophysics Data System (ADS)
Trusel, Luke; Das, Sarah; Osman, Matthew; Evans, Matthew; Smith, Ben; McConnell, Joe; Noël, Brice; van den Broeke, Michiel
2017-04-01
Greenland Ice Sheet surface melting has intensified and expanded over the last several decades and is now a leading component of ice sheet mass loss. Here, we constrain the multi-century temporal evolution of surface melt across central west Greenland by quantifying layers of refrozen melt within well-dated firn and ice cores collected in 2014 and 2015, as well as from a core collected in 2004. We find significant agreement among ice core, satellite, and regional climate model melt datasets over recent decades, confirming the fidelity of the ice core melt stratigraphy as a reliable record of past variability in the magnitude of surface melt. We also find a significant correlation between the melt records derived from our new 100-m GC-2015 core (2436 m.a.s.l.) and the older (2004) 150-m D5 core (2472 m.a.s.l.) located 50 km to the southeast. This agreement demonstrates the robustness of the ice core-derived melt histories and the potential for reconstructing regional melt evolution from a single site, despite local variability in melt percolation and refreeze processes. Our array of upper percolation zone cores reveals that although the overall frequency of melt at these sites has not increased, the intensification of melt over the last three decades is unprecedented within at least the last 365 years. Utilizing the regional climate model RACMO 2.3, we show that this melt intensification is a nonlinear response to warming summer air temperatures, thus underscoring the heightened sensitivity of this sector of Greenland to further climate warming. Finally, we examine spatial correlations between the ice core melt records and modeled melt fields across the ice sheet to assess the broader representation of each ice core record. This analysis reveals wide-ranging significant correlations, including to modeled meltwater runoff. As such, our ice core melt records may furthermore offer unique, observationally-constrained insights into past variability in ice sheet mass loss.
Connecting traces of galaxy evolution: the missing core mass-morphological fine structure relation
NASA Astrophysics Data System (ADS)
Bonfini, P.; Bitsakis, T.; Zezas, A.; Duc, P.-A.; Iodice, E.; González-Martín, O.; Bruzual, G.; González Sanoja, A. J.
2018-01-01
Deep exposure imaging of early-type galaxies (ETGs) are revealing the second-order complexity of these objects, which have been long considered uniform, dispersion-supported spheroidals. `Fine structure' features (e.g. ripples, plumes, tidal tails, rings) as well as depleted stellar cores (i.e. central light deficits) characterize a number of massive ETG galaxies, and can be interpreted as the result of galaxy-galaxy interactions. We discuss how the time-scale for the evolution of cores and fine structures are comparable, and hence it is expected that they develop in parallel after the major interaction event which shaped the ETG. Using archival data, we compare the `depleted stellar mass' (i.e. the mass missing from the depleted stellar core) against the prominence of the fine structure features, and observe that they correlate inversely. This result confirms our expectation that, while the supermassive black hole (SMBH) binary (constituted by the SMBHs of the merger progenitors) excavates the core via three-body interactions, the gravitational potential of the newborn galaxy relaxes, and the fine structures fade below detection levels. We expect the inverse correlation to hold at least within the first Gyr from the merger which created the SMBH binary; after then, the fine structure evolves independently.
Models of a partially hydrated Titan interior with a clathrate crust
NASA Astrophysics Data System (ADS)
Lunine, J. I.; Castillo-Rogez, J. C.; Choukroun, M.; Sotin, C.
2012-04-01
We present a model of the interior evolution of Titan over time, assuming the silicate core was hydrated early in Titan’s history and is dehydrating over time. The original model presented in Castillo-Rogez and Lunine (2010) was motivated by a Cassini-derived moment of inertia (Iess et al., 2010) for Titan too large to be accommodated by classical fully differentiated models in which an anhydrous silicate core was overlain by a water ice (with possible perched ocean) mantle. Our model consists of a silicate core still in the process of dehydrating today, a situation made possible by the leaching of radiogenic potassium from the silicates into the perched liquid water ocean. The most recent version of our model accounts for the likely presence of large amounts of methane in the upper crust invoked to explain methane’s persistence at present and through geologic time (Tobie et al. 2006). The methane-rich crust turns out to have essentially no bearing on the temperature of the silicate core and hence the timing of dehydration, but it profoundly affects the thickness of the high-pressure ice layer beneath the ocean. Indeed, the insulating effect of the methane clathrate crust could have delayed the formation of the high-pressure layer, resulting in the interaction of liquid water with the silicate core for extended periods of time. Although a high-pressure ice layer is likely in place today, it is thin enough that plumes of hot water from the dehydrating core probably breach that layer. The implications of such a deep hydrothermal system for the later stages of the evolution of Titan’s interior and surface will be discussed. Part of this work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. Government sponsorship acknowledged. References: Castillo-Rogez, J., Lunine, J.: “Evolution of Titan’s rocky core constrained by Cassini observations”. GRL, Vol. 37, L20205, 2010. Iess, L., et al.: “Gravity field, shape, and moment of inertia of Titan”. Science, Vol. 327, 1367-1369. Tobie, G., et al.: “Episodic outgassing as the origin of atmospheric methane on Titan”. Nature 440: 61-64, 2006.
Galactic cold cores. VII. Filament formation and evolution: Methods and observational constraints
NASA Astrophysics Data System (ADS)
Rivera-Ingraham, A.; Ristorcelli, I.; Juvela, M.; Montillaud, J.; Men'shchikov, A.; Malinen, J.; Pelkonen, V.-M.; Marston, A.; Martin, P. G.; Pagani, L.; Paladini, R.; Paradis, D.; Ysard, N.; Ward-Thompson, D.; Bernard, J.-P.; Marshall, D. J.; Montier, L.; Tóth, L. V.
2016-06-01
Context. The association of filaments with protostellar objects has made these structures a priority target in star formation studies. However, little is known about the link between filament properties and their local environment. Aims: The datasets from the Herschel Galactic Cold cores key programme allow for a statistical study of filaments with a wide range of intrinsic and environmental characteristics. Characterisation of this sample can therefore be used to identify key physical parameters and quantify the role of the environment in the formation of supercritical filaments. These results are necessary to constrain theoretical models of filament formation and evolution. Methods: Filaments were extracted from fields at distance D< 500 pc with the getfilaments algorithm and characterised according to their column density profiles and intrinsic properties. Each profile was fitted with a beam-convolved Plummer-like function, and the filament structure was quantified based on the relative contributions from the filament "core", represented by a Gaussian, and "wing" component, dominated by the power-law behaviour of the Plummer-like function. These filament parameters were examined for populations associated with different background levels. Results: Filaments increase their core (Mline,core) and wing (Mline,wing) contributions while increasing their total linear mass density (Mline,tot). Both components appear to be linked to the local environment, with filaments in higher backgrounds having systematically more massive Mline,core and Mline,wing. This dependence on the environment supports an accretion-based model of filament evolution in the local neighbourhood (D ≤ 500 pc). Structures located in the highest backgrounds develop the highest central AV, Mline,core, and Mline,wing as Mline,tot increases with time, favoured by the local availability of material and the enhanced gravitational potential. Our results indicate that filaments acquiring a significantly massive central region with Mline,core≳Mcrit/2 may become supercritical and form stars. This translates into a need for filaments to become at least moderately self-gravitating to undergo localised star formation or become star-forming filaments. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Strasser, Peter
2016-11-15
Nanomaterial science and electrocatalytic science have entered a successful "nanoelectrochemical" symbiosis, in which novel nanomaterials offer new frontiers for studies on electrocatalytic charge transfer, while electrocatalytic processes give meaning and often practical importance to novel nanomaterial concepts. Examples of this fruitful symbiosis are dealloyed core-shell nanoparticle electrocatalysts, which often exhibit enhanced kinetic charge transfer rates at greatly improved atom-efficiency. As such, they represent ideal electrocatalyst architectures for the acidic oxygen reduction reaction to water (ORR) and the acidic oxygen evolution reaction from water (OER) that require scarce Pt- and Ir-based catalysts. Together, these two reactions constitute the "O-cycle", a key elemental process loop in the field of electrochemical energy interconversion between electricity (free electrons) and molecular bonds (H 2 O/O 2 ), realized in the combination of water electrolyzers and hydrogen/oxygen fuel cells. In this Account, we describe our recent efforts to design, synthesize, understand, and test noble metal-poor dealloyed Pt and Ir core-shell nanoparticles for deployment in acidic polymer electrolyte membrane (PEM) electrolyzers and PEM fuel cells. Spherical dealloyed Pt core-shell particles, derived from PtNi 3 precursor alloys, showed favorable ORR activity. More detailed size-activity correlation studies further revealed that the 6-8 nm diameter range is a most desirable initial particle size range in order to maximize the particle Ni content after ORR testing and to preserve performance stability. Similarly, dealloyed and oxidized IrO x core-shell particles derived from Ni-rich Ir-Ni precursor particles proved highly efficient oxygen evolution reaction (OER) catalysts in acidic conditions. In addition to the noble metal savings in the particle cores, the Pt core-shell particles are believed to benefit in terms of their mass-based electrochemical kinetics from surface lattice strain effects that tune the adsorption energies and barriers of elementary steps. The molecular mechanism of the kinetic benefit of the dealloyed IrO x particle needs more attention, but there is mounting evidence for ligand hole effects in defect-rich IrO x shells that generate preactive oxygen centers.
NASA Astrophysics Data System (ADS)
Cortinovis, Silvia; Balsamo, Fabrizio; Storti, Fabrizio
2017-04-01
The study of the microstructural and petrophysical evolution of cataclasites and gouges has a fundamental impact on both hydraulic and frictional properties of fault zones. In the last decades, growing attention has been payed to the characterization of carbonate fault core rocks due to the nucleation and propagation of coseismic ruptures in carbonate successions (e.g., Umbria-Marche 1997, L'Aquila 2009, Amatrice 2016 earthquakes in Central Apennines, Italy). Among several physical parameters, grain size and shape in fault core rocks are expected to control the way of sliding along the slip surfaces in active fault zones, thus influencing the propagation of coseismic ruptures during earthquakes. Nevertheless, the role of grain size and shape distribution evolution in controlling the weakening or strengthening behavior in seismogenic fault zones is still not fully understood also because a comprehensive database from natural fault cores is still missing. In this contribution, we present a preliminary study of seismogenic extensional fault zones in Central Apennines by combining detailed filed mapping with grain size and microstructural analysis of fault core rocks. Field mapping was aimed to describe the structural architecture of fault systems and the along-strike fault rock distribution and fracturing variations. In the laboratory we used a Malvern Mastersizer 3000 granulometer to obtain a precise grain size characterization of loose fault rocks combined with sieving for coarser size classes. In addition, we employed image analysis on thin sections to quantify the grain shape and size in cemented fault core rocks. The studied fault zones consist of an up to 5-10 m-thick fault core where most of slip is accommodated, surrounded by a tens-of-meters wide fractured damage zone. Fault core rocks consist of (1) loose to partially cemented breccias characterized by different grain size (from several cm up to mm) and variable grain shape (from very angular to sub-rounded), and (2) very fine-grained gouges (< 1 mm) localized along major and minor mirror-like slip surfaces. Damage zones mostly consist of fractured rocks and, locally, pulverized rocks. Collectively, field observations and laboratory analyses indicate that within the fault cores of the studied fault zones, grain size progressively decreases approaching the master slip surfaces. Furthermore, grain shape changes from very angular to sub-rounded clasts moving toward the master slip surfaces. These features suggest that the progressive evolution of grain size and shape distributions within fault cores may have determined the development of strain localization by the softening and cushioning effects of smaller particles in loose fault rocks.
Hawke, Basil C.
1986-01-01
A control rod drive uses gravitational forces to insert one or more control rods upwardly into a reactor core from beneath the reactor core under emergency conditions. The preferred control rod drive includes a vertically movable weight and a mechanism operatively associating the weight with the control rod so that downward movement of the weight is translated into upward movement of the control rod. The preferred control rod drive further includes an electric motor for driving the control rods under normal conditions, an electrically actuated clutch which automatically disengages the motor during a power failure and a decelerator for bringing the control rod to a controlled stop when it is inserted under emergency conditions into a reactor core.
A theoretical framework for negotiating the path of emergency management multi-agency coordination.
Curnin, Steven; Owen, Christine; Paton, Douglas; Brooks, Benjamin
2015-03-01
Multi-agency coordination represents a significant challenge in emergency management. The need for liaison officers working in strategic level emergency operations centres to play organizational boundary spanning roles within multi-agency coordination arrangements that are enacted in complex and dynamic emergency response scenarios creates significant research and practical challenges. The aim of the paper is to address a gap in the literature regarding the concept of multi-agency coordination from a human-environment interaction perspective. We present a theoretical framework for facilitating multi-agency coordination in emergency management that is grounded in human factors and ergonomics using the methodology of core-task analysis. As a result we believe the framework will enable liaison officers to cope more efficiently within the work domain. In addition, we provide suggestions for extending the theory of core-task analysis to an alternate high reliability environment. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Cryptic genetic variation, evolution's hidden substrate
Paaby, Annalise B.; Rockman, Matthew V.
2016-01-01
Cryptic genetic variation is invisible under normal conditions but fuel for evolution when circumstances change. In theory, CGV can represent a massive cache of adaptive potential or a pool of deleterious alleles in need of constant suppression. CGV emerges from both neutral and selective processes and it may inform how human populations respond to change. In experimental settings, CGV facilitates adaptation, but does it play an important role in the real world? We review the empirical support for widespread CGV in natural populations, including its potential role in emerging human diseases and the growing evidence of its contribution to evolution. PMID:24614309
The evolution of dorsal-ventral patterning mechanisms in insects.
Lynch, Jeremy A; Roth, Siegfried
2011-01-15
The gene regulatory network (GRN) underpinning dorsal-ventral (DV) patterning of the Drosophila embryo is among the most thoroughly understood GRNs, making it an ideal system for comparative studies seeking to understand the evolution of development. With the emergence of widely applicable techniques for testing gene function, species with sequenced genomes, and multiple tractable species with diverse developmental modes, a phylogenetically broad and molecularly deep understanding of the evolution of DV axis formation in insects is feasible. Here, we review recent progress made in this field, compare our emerging molecular understanding to classical embryological experiments, and suggest future directions of inquiry.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-22
... Building Under the Transformation Initiative (OneCPD and Core Curricula) AGENCY: Office of the Chief... Transformation Initiative (OneCPD and Core Curricula). Description of Information Collection: The Narratives...
Origin and evolution of SINEs in eukaryotic genomes.
Kramerov, D A; Vassetzky, N S
2011-12-01
Short interspersed elements (SINEs) are one of the two most prolific mobile genomic elements in most of the higher eukaryotes. Although their biology is still not thoroughly understood, unusual life cycle of these simple elements amplified as genomic parasites makes their evolution unique in many ways. In contrast to most genetic elements including other transposons, SINEs emerged de novo many times in evolution from available molecules (for example, tRNA). The involvement of reverse transcription in their amplification cycle, huge number of genomic copies and modular structure allow variation mechanisms in SINEs uncommon or rare in other genetic elements (module exchange between SINE families, dimerization, and so on.). Overall, SINE evolution includes their emergence, progressive optimization and counteraction to the cell's defense against mobile genetic elements.
Shrestha, Sourya; Knight, Gwenan M.; Cohen, Ted; White, Richard G.; Cobelens, Frank
2016-01-01
ABSTRACT Several infectious diseases of global importance—e.g., HIV infection and tuberculosis (TB)—require prolonged treatment with combination antimicrobial regimens typically involving high-potency core agents coupled with additional companion drugs that protect against the de novo emergence of mutations conferring resistance to the core agents. Often, the most effective (or least toxic) companion agents are reused in sequential (first-line, second-line, etc.) regimens. We used a multistrain model of Mycobacterium tuberculosis transmission in Southeast Asia to investigate how this practice might facilitate the emergence of extensive drug resistance, i.e., resistance to multiple core agents. We calibrated this model to regional TB and drug resistance data using an approximate Bayesian computational approach. We report the proportion of data-consistent simulations in which the prevalence of pre-extensively drug-resistant (pre-XDR) TB—defined as resistance to both first-line and second-line core agents (rifampin and fluoroquinolones)—exceeds predefined acceptability thresholds (1 to 2 cases per 100,000 population by 2035). The use of pyrazinamide (the most effective companion agent) in both first-line and second-line regimens increased the proportion of simulations in which the prevalence exceeded the pre-XDR acceptability threshold by 7-fold compared to a scenario in which patients with pyrazinamide-resistant TB received an alternative drug. Model parameters related to the emergence and transmission of pyrazinamide-resistant TB and resistance amplification were among those that were the most strongly correlated with the projected pre-XDR prevalence, indicating that pyrazinamide resistance acquired during first-line treatment subsequently promotes amplification to pre-XDR TB under pyrazinamide-containing second-line treatment. These findings suggest that the appropriate use of companion drugs may be critical to preventing the emergence of strains resistant to multiple core agents. PMID:27956422
Development of new core competencies for Taiwanese Emergency Medical Technicians.
Chang, Yu-Tung; Tsai, Kuang-Chau; Williams, Brett
2018-01-01
Core competencies are considered the foundation for establishing Emergency Medical Technician (EMT) and paramedic curricula, and for ensuring performance standards in the delivery of prehospital care. This study surveyed EMT instructors and medical directors to identify the most desirable core competencies for all levels of EMTs in Taiwan. A principal components analysis with Varimax rotation was conducted. An online questionnaire was distributed to obtain perspectives of EMT instructors and medical directors on the most desirable core competencies for EMTs. The target population was EMT training-course instructors and medical directors of fire departments in Taiwan. The questionnaire comprised 61 competency items, and multiple-choice and open-ended questions were used to obtain respondents' perspectives of the Taiwanese EMT training and education system. The results identified three factors at EMT-1 and EMT-2 levels and five factors at the EMT-Paramedic level. The factors for EMT-1 and EMT-2 were similar, and those for EMT-Paramedics identified further comprehensive competence perspectives. The key factors that appear to influence the development of the Taiwanese Emergency Medical Services (EMS) education system are the attitude of authorities, the licensure system, and legislation. The findings present new core competencies for the Taiwanese EMT system and provide capacity to redesign curricula and reconsider roles for EMT-1 and EMT-2 technicians. At the EMT-Paramedic level, the findings demonstrate the importance of incorporating competency standards in the current skills-based curriculum. Moreover, the core-competencies gap that exists between Taiwanese EMT-1s, EMT-2s, and EMT-Paramedics and internationally recognized core competencies needs to be addressed. By identifying the key factors that potentially impact the development of the EMS education system, such as the attitude of authorities, the licensure system, and legislation, these findings will inform future curricula design in Taiwan.
Gandhi, Ashish C; Li, Tai-Yue; Chan, Ting Shan; Wu, Sheng Yun
2018-05-09
With the evolution of synthesis and the critical characterization of core-shell nanostructures, short-range magnetic correlation is of prime interest in employing their properties to develop novel devices and widespread applications. In this regard, a novel approach of the magnetic core-shell saturated magnetization (CSSM) cylinder model solely based on the contribution of saturated magnetization in one-dimensional CrO₂/Cr₂O₃ core-shell nanorods (NRs) has been developed and applied for the determination of core-diameter and shell-thickness. The nanosized effect leads to a short-range magnetic correlation of ferromagnetic core-CrO₂ extracted from CSSM, which can be explained using finite size scaling method. The outcome of this study is important in terms of utilizing magnetic properties for the critical characterization of core-shell nanomagnetic materials.
Complicated Politics to the Core
ERIC Educational Resources Information Center
McGuinn, Patrick
2015-01-01
People dislike the Common Core for several different reasons, and so it is important to disaggregate the sources of opposition and to assess and then to dispel some of the myths that have built up around it. It also is important to understand the unusual political alliances that have emerged in opposition to Common Core implementation and how they…
Mass-loss evolution of close-in exoplanets: Evaporation of hot Jupiters and the effect on population
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurokawa, H.; Nakamoto, T., E-mail: kurokawa@nagoya-u.jp
2014-03-01
During their evolution, short-period exoplanets may lose envelope mass through atmospheric escape owing to intense X-ray and extreme ultraviolet (XUV) radiation from their host stars. Roche-lobe overflow induced by orbital evolution or intense atmospheric escape can also contribute to mass loss. To study the effects of mass loss on inner planet populations, we calculate the evolution of hot Jupiters considering mass loss of their envelopes and thermal contraction. Mass loss is assumed to occur through XUV-driven atmospheric escape and the following Roche-lobe overflow. The runaway effect of mass loss results in a dichotomy of populations: hot Jupiters that retain theirmore » envelopes and super Earths whose envelopes are completely lost. Evolution primarily depends on the core masses of planets and only slightly on migration history. In hot Jupiters with small cores (≅ 10 Earth masses), runaway atmospheric escape followed by Roche-lobe overflow may create sub-Jupiter deserts, as observed in both mass and radius distributions of planetary populations. Comparing our results with formation scenarios and observed exoplanets populations, we propose that populations of closely orbiting exoplanets are formed by capturing planets at/inside the inner edges of protoplanetary disks and subsequent evaporation of sub-Jupiters.« less
Kirby, Patrick J; Greaves, Ian K; Koina, Edda; Waters, Paul D; Marshall Graves, Jennifer A
2007-01-01
The genomes of the egg-laying platypus and echidna are of particular interest because monotremes are the most basal mammal group. The chromosomal distribution of an ancient family of short interspersed repeats (SINEs), the core-SINEs, was investigated to better understand monotreme genome organization and evolution. Previous studies have identified the core-SINE as the predominant SINE in the platypus genome, and in this study we quantified, characterized and localized subfamilies. Dot blot analysis suggested that a very large fraction (32% of the platypus and 16% of the echidna genome) is composed of Mon core-SINEs. Core-SINE-specific primers were used to amplify PCR products from platypus and echidna genomic DNA. Sequence analysis suggests a common consensus sequence Mon 1-B, shared by platypus and echidna, as well as platypus-specific Mon 1-C and echidna specific Mon 1-D consensus sequences. FISH mapping of the Mon core-SINE products to platypus metaphase spreads demonstrates that the Mon-1C subfamily is responsible for the striking Mon core-SINE accumulation in the distal regions of the six large autosomal pairs and the largest X chromosome. This unusual distribution highlights the dichotomy between the seven large chromosome pairs and the 19 smaller pairs in the monotreme karyotype, which has some similarity to the macro- and micro-chromosomes of birds and reptiles, and suggests that accumulation of repetitive sequences may have enlarged small chromosomes in an ancestral vertebrate. In the forthcoming sequence of the platypus genome there are still large gaps, and the extensive Mon core-SINE accumulation on the distal regions of the six large autosomal pairs may provide one explanation for this missing sequence.
Mapping the literature of emergency nursing
Alpi, Kristine M.
2006-01-01
Purpose: Emergency nursing covers a broad spectrum of health care from trauma surgery support to preventive health care. The purpose of this study is to identify the core literature of emergency nursing and to determine which databases provide the most thorough indexing access to the literature cited in emergency nursing journals. This study is part of the Medical Library Association's Nursing and Allied Health Resources Section's project to map the nursing literature. Methods: Four key emergency nursing journals were selected and subjected to citation analysis based on Bradford's Law of Scattering. Results: A group of 12 journals made up 33.3% of the 7,119 citations, another 33.3% of the citations appeared in 92 journals, with the remaining 33.3% scattered across 822 journals. Three of the core 12 journals were emergency medicine titles, and 2 were emergency nursing titles from the selected source journals. Government publications constituted 7.5% of the literature cited. Conclusions: PubMed/MEDLINE provided the best overall indexing coverage for the journals, followed by CINAHL. However, CINAHL provided the most complete coverage for the source journals and the majority of the nursing and emergency medical technology publications and should be consulted by librarians and nurses seeking emergency nursing literature. PMID:16710456
Evolution of marginal populations of an invasive vine increases the likelihood of future spread
Francis F. Kilkenny; Laura F. Galloway
2015-01-01
The prediction of invasion patterns may require an understanding of intraspecific differentiation in invasive species and its interaction with climate change. We compare Japanese honeysuckle (Lonicera japonica) plants from the core (100-150 yr old) and northern margin (< 65 yr old) of their North American invaded range to determine whether evolution...
The Genome Sequence of Taurine Cattle: A Window to Ruminant Biology and Evolution
USDA-ARS?s Scientific Manuscript database
As a major step toward understanding the biology and evolution of ruminants, the cattle genome was sequenced to ~7x coverage using a combined whole genome shotgun and BAC skim approach. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs found in seven mammalian...
Developing a Learning Progression for Three-Dimensional Learning of the Patterns of Evolution
ERIC Educational Resources Information Center
Wyner, Yael; Doherty, Jennifer H.
2017-01-01
This paper examines how students make progress toward three-dimensional (3D) understanding of the patterns of evolution. Specifically, it proposes a learning progression that explains how scientific practices, crosscutting concepts, and disciplinary core ideas come together in naming and grouping, length of change over time, and the role of common…
NASA Astrophysics Data System (ADS)
Natta, A.
Contents 1 Introduction 2 Collapse of molecular cores 2.1 Giant molecular clouds and cores 2.2 Conditions for collapse 2.3 Free-fall collapse 2.4 Collapse of an isothermal sphere of gas 2.5 Collapse of a slowly rotating core 3 Observable properties of protostars 3.1 Evidence of infall from molecular line profiles 3.2 SEDs of protostars 3.3 The line spectrumof a protostar 4 Protostellar and pre-main-sequence evolution 4.1 The protostellar phase 4.2 Pre-main-sequence evolution 4.3 The birthline 5 Circumstellar disks 5.1 Accretion disks 5.2 Properties of steady accretion disks 5.3 Reprocessing disks 5.4 Disk-star interaction 6 SEDs of disks 6.1 Power-law disks 6.2 Long-wavelength flux and disk mass 6.3 Comparison with TTS observations: Heating mechanism 7 Disk properties from observations 7.1 Mass accretion rate 7.2 Inner radius 7.3 Masses 7.4 Sizes 8 Disk lifetimes 8.1 Ground-based near and mid-infrared surveys 8.2 Mid-infrared ISOCAMsurveys 8.3 ISOPHOT 60 microm survey 8.4 Surveys at millimeter wavelengths 9 Disk evolution 9.1 Can we observe the early planet formation phase? 9.2 Evidence for grain growth 9.3 Evidence of planetesimals 9.4 Where is the diskmass? 10 Secondary or debris disks 11 Summary
ERIC Educational Resources Information Center
Lagoze, Carl; Neylon, Eamonn; Mooney, Stephen; Warnick, Walter L.; Scott, R. L.; Spence, Karen J.; Johnson, Lorrie A.; Allen, Valerie S.; Lederman, Abe
2001-01-01
Includes four articles that discuss Dublin Core metadata, digital rights management and electronic books, including interoperability; and directed query engines, a type of search engine designed to access resources on the deep Web that is being used at the Department of Energy. (LRW)
NASA Astrophysics Data System (ADS)
Plewa, Tomasz; Handy, Timothy; Odrzywolek, Andrzej
2014-09-01
We compute and discuss the process of nucleosynthesis in a series of core-collapse explosion models of a 15 solar mass, blue supergiant progenitor. We obtain nucleosynthetic yields and study the evolution of the chemical element distribution from the moment of core bounce until young supernova remnant phase. Our models show how the process of energy deposition due to radioactive decay modifies the dynamics and the core ejecta structure on small and intermediate scales. The results are compared against observations of young supernova remnants including Cas A and the recent data obtained for SN 1987A. We compute and discuss the process of nucleosynthesis in a series of core-collapse explosion models of a 15 solar mass, blue supergiant progenitor. We obtain nucleosynthetic yields and study the evolution of the chemical element distribution from the moment of core bounce until young supernova remnant phase. Our models show how the process of energy deposition due to radioactive decay modifies the dynamics and the core ejecta structure on small and intermediate scales. The results are compared against observations of young supernova remnants including Cas A and the recent data obtained for SN 1987A. The work has been supported by the NSF grant AST-1109113 and DOE grant DE-FG52-09NA29548. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the U.S. DoE under Contract No. DE-AC02-05CH11231.
Tidal constraints on the interior of Venus
NASA Astrophysics Data System (ADS)
Dumoulin, Caroline; Tobie, Gabriel; Verhoeven, Olivier; Rosenblatt, Pascal; Rambaux, Nicolas
2017-04-01
As a prospective study for a future exploration of Venus, we compute the tidal response of Venus' interior assuming various mantle compositions and temperature profiles representative of different scenarios of Venus' formation and evolution. The mantle density and seismic velocities are modeled from thermodynamical equilibria of mantle minerals and used to predict the moment of inertia, Love numbers and tidal lag characterizing the signature of the internal structure in the gravity field. The viscoelasticity of the mantle is parameterized using an Andrade rheology. From the models considered here, the moment of inertia lies in the range of 0.327 to 0.342, corresponding to a core radius of 2900 to 3450 km. The potential Love number, k2, varies from 0.25 to 0.36. Viscoelasticity of the mantle strongly increases the Love number relative to previous elastic models : depending on mantle viscosity, k2 is increased by up to 25% using a liquid core. Moreover, once a viscoelastic rheology is assumed for the core, our calculations show that the estimation of k2 from tracking of Magellan and Pioneer Venus Orbiter does not rule out the possibility of a completely solid core. Except if the solid core has a high viscosity (≥ 1018 Pa.s), solutions with both liquid and solid cores are consistent with the present-day estimation of k2. More accurate estimation of the Love number together with estimation of tidal lag by future exploration mission are required to determine the state of Venus' core and to constrain the thermo-compositional evolution of the mantle.
NASA Astrophysics Data System (ADS)
Mirizzi, Alessandro
2013-10-01
The flavor evolution of neutrinos emitted by a supernova (SN) core is strongly affected by the refractive effects associated with the neutrino-neutrino interactions in the deepest stellar regions. Till now, all numerical studies have assumed the axial symmetry for the “multi-angle effects” associated with the neutrino-neutrino interactions. Recently, it has been pointed out in Raffelt, Sarikas, and Seixas [Phys. Rev. Lett. 111, 091101 (2013)] that if this assumption is removed, a new multi-azimuthal-angle (MAA) instability emerges in the flavor evolution of the dense SN neutrino gas, in addition to the one caused by multi-zenith-angle effects. Inspired by this result, for the first time we numerically solve the nonlinear neutrino propagation equations in SN, introducing the azimuthal angle as an angular variable in addition to the usual zenith angle. We consider simple energy spectra with an excess of νe over ν¯e. We find that even starting with a complete axial symmetric neutrino emission, the MAA effects would lead to significant flavor conversions in normal mass hierarchy, in cases otherwise stable under the only multi-zenith-angle effects. The final outcome of the flavor conversions, triggered by the MAA instability, depends on the initial asymmetry between νe and ν¯e spectra. If it is sufficiently large, final spectra would show an ordered behavior with spectral swaps and splits. Conversely, for small flavor asymmetries flavor decoherence among angular modes develops, also affecting the flavor evolution in the inverted mass hierarchy.
The evolution of medical informatics in China: A retrospective study and lessons learned.
Lei, Jianbo; Meng, Qun; Li, Yuefeng; Liang, Minghui; Zheng, Kai
2016-08-01
In contrast to China's giant health information technology (HIT) market and tremendous investments in hospital information systems the contributions of Chinese scholars in medical informatics to the global community are very limited. China would like to have a more important position in the global medical informatics community. A better understanding of the differences between medical informatics research and education in China and the discipline that emerged abroad will better inform Chinese scholars to develop right strategies to advance the field in China and help identify an appropriate means to collaborate more closely with medical informatics scholars globally. For the first time, this paper divides the evolution of medical informatics in China into four stages based on changes in the core content of research, the educational orientation and other developmental characteristics. The four stages are infancy, incubation, primary establishment and formal establishment. This paper summarizes and reviews major supporting journals and publications, as well as major organizations. Finally, we analyze the main problems that exist in the current disciplinary development in China related to medical informatics research and education and offer suggestions for future improvement. The evolution of medical informatics shows a strong and traditional concentration on medical library/bibliographic information rather than medical (hospital information or patient information) information. Misdirected-concentration, a lack of formal medical informatics trained teaching staff and mistakenly positioning medical informatics as an undergraduate discipline are some of the problems inhibiting the development of medical informatics in China. These lessons should be shared and learned for the global community. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Orthopoxvirus Genome Evolution: The Role of Gene Loss
Hendrickson, Robert Curtis; Wang, Chunlin; Hatcher, Eneida L.; Lefkowitz, Elliot J.
2010-01-01
Poxviruses are highly successful pathogens, known to infect a variety of hosts. The family Poxviridae includes Variola virus, the causative agent of smallpox, which has been eradicated as a public health threat but could potentially reemerge as a bioterrorist threat. The risk scenario includes other animal poxviruses and genetically engineered manipulations of poxviruses. Studies of orthologous gene sets have established the evolutionary relationships of members within the Poxviridae family. It is not clear, however, how variations between family members arose in the past, an important issue in understanding how these viruses may vary and possibly produce future threats. Using a newly developed poxvirus-specific tool, we predicted accurate gene sets for viruses with completely sequenced genomes in the genus Orthopoxvirus. Employing sensitive sequence comparison techniques together with comparison of syntenic gene maps, we established the relationships between all viral gene sets. These techniques allowed us to unambiguously identify the gene loss/gain events that have occurred over the course of orthopoxvirus evolution. It is clear that for all existing Orthopoxvirus species, no individual species has acquired protein-coding genes unique to that species. All existing species contain genes that are all present in members of the species Cowpox virus and that cowpox virus strains contain every gene present in any other orthopoxvirus strain. These results support a theory of reductive evolution in which the reduction in size of the core gene set of a putative ancestral virus played a critical role in speciation and confining any newly emerging virus species to a particular environmental (host or tissue) niche. PMID:21994715
N-body simulations of collective effects in spiral and barred galaxies
NASA Astrophysics Data System (ADS)
Zhang, X.
2016-10-01
We present gravitational N-body simulations of the secular morphological evolution of disk galaxies induced by density wave modes. In particular, we address the demands collective effects place on the choice of simulation parameters, and show that the common practice of the use of a large gravity softening parameter was responsible for the failure of past simulations to correctly model the secular evolution process in galaxies, even for those simulations where the choice of basic state allows an unstable mode to emerge, a prerequisite for obtaining the coordinated radial mass flow pattern needed for secular evolution of galaxies along the Hubble sequence. We also demonstrate that the secular evolution rates measured in our improved simulations agree to an impressive degree with the corresponding rates predicted by the recently-advanced theories of dynamically-driven secular evolution of galaxies. The results of the current work, besides having direct implications on the cosmological evolution of galaxies, also shed light on the general question of how irreversibility emerges from a nominally reversible physical system.
Biktashev, Vadim N
2014-04-01
We consider a simple mathematical model of gradual Darwinian evolution in continuous time and continuous trait space, due to intraspecific competition for common resource in an asexually reproducing population in constant environment, while far from evolutionary stable equilibrium. The model admits exact analytical solution. In particular, Gaussian distribution of the trait emerges from generic initial conditions.
Cancer in light of experimental evolution.
Sprouffske, Kathleen; Merlo, Lauren M F; Gerrish, Philip J; Maley, Carlo C; Sniegowski, Paul D
2012-09-11
Cancer initiation, progression, and the emergence of therapeutic resistance are evolutionary phenomena of clonal somatic cell populations. Studies in microbial experimental evolution and the theoretical work inspired by such studies are yielding deep insights into the evolutionary dynamics of clonal populations, yet there has been little explicit consideration of the relevance of this rapidly growing field to cancer biology. Here, we examine how the understanding of mutation, selection, and spatial structure in clonal populations that is emerging from experimental evolution may be applicable to cancer. Along the way, we discuss some significant ways in which cancer differs from the model systems used in experimental evolution. Despite these differences, we argue that enhanced prediction and control of cancer may be possible using ideas developed in the context of experimental evolution, and we point out some prospects for future research at the interface between these traditionally separate areas. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cancer in Light of Experimental Evolution
Sprouffske, Kathleen; Merlo, Lauren M.F.; Gerrish, Philip J.; Maley, Carlo C.; Sniegowski, Paul D.
2012-01-01
Cancer initiation, progression, and the emergence of therapeutic resistance are evolutionary phenomena of clonal somatic cell populations. Studies in microbial experimental evolution and the theoretical work inspired by such studies are yielding deep insights into the evolutionary dynamics of clonal populations, yet there has been little explicit consideration of the relevance of this rapidly growing field to cancer biology. Here, we examine how the understanding of mutation, selection, and spatial structure in clonal populations that is emerging from experimental evolution may be applicable to cancer. Along the way, we discuss some significant ways in which cancer differs from the model systems used in experimental evolution. Despite these differences, we argue that enhanced prediction and control of cancer may be possible using ideas developed in the context of experimental evolution, and we point out some prospects for future research at the interface between these traditionally separate areas. PMID:22975007
NASA Astrophysics Data System (ADS)
Kondratyev, B. P.
2018-03-01
The structure, dynamical equilibrium, and evolution of Saturn's moon Iapetus are studied. It has been shown that, in the current epoch, the oblateness of the satellite ɛ2 ≈ 0.046 does not correspond to its angular velocity of rotation, which causes the secular spherization behavior of the ice shell of Iapetus. To study this evolution, we apply a spheroidal model, containing a rock core and an ice shell with an external surface ɛ2, to Iapetus. The model is based on the equilibrium finite-difference equation of the Clairaut theory, while the model parameters are taken from observations. The mean radius of the rock core and the oblateness of its level surface, ɛ1 ≈ 0.028, were determined. It was found that Iapetus is covered with a thick ice shell, which is 56.6% of the mean radius of the figure. We analyze a role of the core in the evolution of the shape of a gravitating figure. It was determined that the rock core plays a key part in the settling of the ice masses of the equatorial bulge, which finally results in the formation of a large circular equatorial ridge on the surface of the satellite. From the known mean altitude of this ice ridge, it was found that, in the epoch of its formation, the rotation period of Iapetus was 166 times shorter than that at present, as little as T ≈ 11h27m. This is consistent with the fact that a driving force of the evolution of the satellite in our model was its substantial despinning. The model also predicts that the ice ridge should be formed more intensively in the leading (dark and, consequently, warmer) hemisphere of the satellite, where the ice is softer. This inference agrees with the observations: in the leading hemisphere of Iapetus, the ridge is actually high and continuous everywhere, while it degenerates into individual ice peaks in the opposite colder hemisphere.
Chow, Grant V; Hayashi, Jennifer; Hirsch, Glenn A; Christmas, Colleen
2011-04-01
Weather emergencies present a multifaceted challenge to residents and residency programs. Both the individual trainee and program may be pushed to the limits of physical and mental strain, potentially jeopardizing core competencies of patient care and professionalism. Although daunting, the task of preparing for these events should be a methodical process integrated into every residency training program. The core elements of emergency preparation with regard to inpatient services include identifying and staffing critical positions, motivating residents to consider the needs of the group over those of the individual, providing for basic needs, and planning activities in order to preserve team morale and facilitate recovery. The authors outline a four-step process in preparing a residency program for an anticipated short-term weather emergency. An example worksheet for emergency planning is included. With adequate preparation, residency training programs can maintain the highest levels of patient care, professionalism, and esprit de corps during weather emergencies. When managed effectively, emergencies may present an opportunity for professional growth and a sense of unity for those involved.
CoCoNuT: General relativistic hydrodynamics code with dynamical space-time evolution
NASA Astrophysics Data System (ADS)
Dimmelmeier, Harald; Novak, Jérôme; Cerdá-Durán, Pablo
2012-02-01
CoCoNuT is a general relativistic hydrodynamics code with dynamical space-time evolution. The main aim of this numerical code is the study of several astrophysical scenarios in which general relativity can play an important role, namely the collapse of rapidly rotating stellar cores and the evolution of isolated neutron stars. The code has two flavors: CoCoA, the axisymmetric (2D) magnetized version, and CoCoNuT, the 3D non-magnetized version.
Barnes, M. Elizabeth; Brownell, Sara E.
2016-01-01
Evolution is a core concept of biology, and yet many college biology students do not accept evolution because of their religious beliefs. However, we do not currently know how instructors perceive their role in helping students accept evolution or how they address the perceived conflict between religion and evolution when they teach evolution. This study explores instructor practices and beliefs related to mitigating students’ perceived conflict between religion and evolution. Interviews with 32 instructors revealed that many instructors do not believe it is their goal to help students accept evolution and that most instructors do not address the perceived conflict between religion and evolution. Instructors cited many barriers to discussing religion in the context of evolution in their classes, most notably the instructors’ own personal beliefs that religion and evolution may be incompatible. These data are exploratory and are intended to stimulate a series of questions about how we as college biology instructors teach evolution. PMID:27193289
NASA Astrophysics Data System (ADS)
Shu, Feng; Liu, Xingwen; Li, Min
2018-05-01
Memory is an important factor on the evolution of cooperation in spatial structure. For evolutionary biologists, the problem is often how cooperation acts can emerge in an evolving system. In the case of snowdrift game, it is found that memory can boost cooperation level for large cost-to-benefit ratio r, while inhibit cooperation for small r. Thus, how to enlarge the range of r for the purpose of enhancing cooperation becomes a hot issue recently. This paper addresses a new memory-based approach and its core lies in: Each agent applies the given rule to compare its own historical payoffs in a certain memory size, and take the obtained maximal one as virtual payoff. In order to get the optimal strategy, each agent randomly selects one of its neighbours to compare their virtual payoffs, which can lead to the optimal strategy. Both constant-size memory and size-varying memory are investigated by means of a scenario of asynchronous updating algorithm on regular lattices with different sizes. Simulation results show that this approach effectively enhances cooperation level in spatial structure and makes the high cooperation level simultaneously emerge for both small and large r. Moreover, it is discovered that population sizes have a significant influence on the effects of cooperation.
Evolutionary institutionalism.
Fürstenberg, Dr Kai
Institutions are hard to define and hard to study. Long prominent in political science have been two theories: Rational Choice Institutionalism (RCI) and Historical Institutionalism (HI). Arising from the life sciences is now a third: Evolutionary Institutionalism (EI). Comparative strengths and weaknesses of these three theories warrant review, and the value-to-be-added by expanding the third beyond Darwinian evolutionary theory deserves consideration. Should evolutionary institutionalism expand to accommodate new understanding in ecology, such as might apply to the emergence of stability, and in genetics, such as might apply to political behavior? Core arguments are reviewed for each theory with more detailed exposition of the third, EI. Particular attention is paid to EI's gene-institution analogy; to variation, selection, and retention of institutional traits; to endogeneity and exogeneity; to agency and structure; and to ecosystem effects, institutional stability, and empirical limitations in behavioral genetics. RCI, HI, and EI are distinct but complementary. Institutional change, while amenable to rational-choice analysis and, retrospectively, to criticaljuncture and path-dependency analysis, is also, and importantly, ecological. Stability, like change, is an emergent property of institutions, which tend to stabilize after change in a manner analogous to allopatric speciation. EI is more than metaphorically biological in that institutional behaviors are driven by human behaviors whose evolution long preceded the appearance of institutions themselves.
He, Ke; Zhang, Junbiao; Wang, Xueting; Zeng, Yangmei; Zhang, Lu
2018-05-08
Agricultural ecological compensation has drawn an increasingly broad range of interest since early 1990s. In recent years, the volume of the literature grows rapidly. As a result, a systematic review of the diverse research field and its current trends becomes essential. This paper surveys the literature of agricultural ecological compensation between 1990 and 2016. Specifically, by employing CiteSpace information visualization software, we firstly identified the research hotspots and evolution path and then illustrated the frontier and developing trend of the domain in core and broader perspectives. It is found that the focus of the academic community has always been researches on the theoretical policy and application of the payment for agro-ecosystem services, agricultural ecological compensation based on contingent valuation method, and ecological compensation of farmland landscape and organic food production as well as willingness to accept/pay for land use and ecological protection. Meanwhile, we also found that, in recent years, qualitative research has received more and more attention in the field of agricultural ecological compensation, since global warming, agricultural carbon emissions, and other emerging environmental issues have aroused widespread concern of the people around the world. Moreover, we believed that more and more scholars will employ case study methodology to analyze agricultural ecological compensation in specific systems, regions, or circumstances in the future.
Evolution and complexity: the double-edged sword.
Miconi, Thomas
2008-01-01
We attempt to provide a comprehensive answer to the question of whether, and when, an arrow of complexity emerges in Darwinian evolution. We note that this expression can be interpreted in different ways, including a passive, incidental growth, or a pervasive bias towards complexification. We argue at length that an arrow of complexity does indeed occur in evolution, which can be most reasonably interpreted as the result of a passive trend rather than a driven one. What, then, is the role of evolution in the creation of this trend, and under which conditions will it emerge? In the later sections of this article we point out that when certain proper conditions (which we attempt to formulate in a concise form) are met, Darwinian evolution predictably creates a sustained trend of increase in maximum complexity (that is, an arrow of complexity) that would not be possible without it; but if they are not, evolution will not only fail to produce an arrow of complexity, but may actually prevent any increase in complexity altogether. We conclude that, with regard to the growth of complexity, evolution is very much a double-edged sword.
The origin and evolution of the neural crest
Donoghue, Philip C. J.; Graham, Anthony; Kelsh, Robert N.
2009-01-01
Summary Many of the features that distinguish the vertebrates from other chordates are derived from the neural crest, and it has long been argued that the emergence of this multipotent embryonic population was a key innovation underpinning vertebrate evolution. More recently, however, a number of studies have suggested that the evolution of the neural crest was less sudden than previously believed. This has exposed the fact that neural crest, as evidenced by its repertoire of derivative cell types, has evolved through vertebrate evolution. In this light, attempts to derive a typological definition of neural crest, in terms of molecular signatures or networks, are unfounded. We propose a less restrictive, embryological definition of this cell type that facilitates, rather than precludes, investigating the evolution of neural crest. While the evolutionary origin of neural crest has attracted much attention, its subsequent evolution has received almost no attention and yet it is more readily open to experimental investigation and has greater relevance to understanding vertebrate evolution. Finally, we provide a brief outline of how the evolutionary emergence of neural crest potentiality may have proceeded, and how it may be investigated. PMID:18478530
The cultural evolution of emergent group-level traits.
Smaldino, Paul E
2014-06-01
Many of the most important properties of human groups - including properties that may give one group an evolutionary advantage over another - are properly defined only at the level of group organization. Yet at present, most work on the evolution of culture has focused solely on the transmission of individual-level traits. I propose a conceptual extension of the theory of cultural evolution, particularly related to the evolutionary competition between cultural groups. The key concept in this extension is the emergent group-level trait. This type of trait is characterized by the structured organization of differentiated individuals and constitutes a unit of selection that is qualitatively different from selection on groups as defined by traditional multilevel selection (MLS) theory. As a corollary, I argue that the traditional focus on cooperation as the defining feature of human societies has missed an essential feature of cooperative groups. Traditional models of cooperation assume that interacting with one cooperator is equivalent to interacting with any other. However, human groups involve differential roles, meaning that receiving aid from one individual is often preferred to receiving aid from another. In this target article, I discuss the emergence and evolution of group-level traits and the implications for the theory of cultural evolution, including ramifications for the evolution of human cooperation, technology, and cultural institutions, and for the equivalency of multilevel selection and inclusive fitness approaches.
NASA Astrophysics Data System (ADS)
Cohen, A.; Campisano, C.; Arrowsmith, R.; Asrat, A.; Behrensmeyer, A. K.; Deino, A.; Feibel, C.; Hill, A.; Johnson, R.; Kingston, J.; Lamb, H.; Lowenstein, T.; Noren, A.; Olago, D.; Owen, R. B.; Potts, R.; Reed, K.; Renaut, R.; Schäbitz, F.; Tiercelin, J.-J.; Trauth, M. H.; Wynn, J.; Ivory, S.; Brady, K.; O'Grady, R.; Rodysill, J.; Githiri, J.; Russell, J.; Foerster, V.; Dommain, R.; Rucina, S.; Deocampo, D.; Russell, J.; Billingsley, A.; Beck, C.; Dorenbeck, G.; Dullo, L.; Feary, D.; Garello, D.; Gromig, R.; Johnson, T.; Junginger, A.; Karanja, M.; Kimburi, E.; Mbuthia, A.; McCartney, T.; McNulty, E.; Muiruri, V.; Nambiro, E.; Negash, E. W.; Njagi, D.; Wilson, J. N.; Rabideaux, N.; Raub, T.; Sier, M. J.; Smith, P.; Urban, J.; Warren, M.; Yadeta, M.; Yost, C.; Zinaye, B.
2016-02-01
The role that climate and environmental history may have played in influencing human evolution has been the focus of considerable interest and controversy among paleoanthropologists for decades. Prior attempts to understand the environmental history side of this equation have centered around the study of outcrop sediments and fossils adjacent to where fossil hominins (ancestors or close relatives of modern humans) are found, or from the study of deep sea drill cores. However, outcrop sediments are often highly weathered and thus are unsuitable for some types of paleoclimatic records, and deep sea core records come from long distances away from the actual fossil and stone tool remains. The Hominin Sites and Paleolakes Drilling Project (HSPDP) was developed to address these issues. The project has focused its efforts on the eastern African Rift Valley, where much of the evidence for early hominins has been recovered. We have collected about 2 km of sediment drill core from six basins in Kenya and Ethiopia, in lake deposits immediately adjacent to important fossil hominin and archaeological sites. Collectively these cores cover in time many of the key transitions and critical intervals in human evolutionary history over the last 4 Ma, such as the earliest stone tools, the origin of our own genus Homo, and the earliest anatomically modern Homo sapiens. Here we document the initial field, physical property, and core description results of the 2012-2014 HSPDP coring campaign.
A long-time limit for world subway networks.
Roth, Camille; Kang, Soong Moon; Batty, Michael; Barthelemy, Marc
2012-10-07
We study the temporal evolution of the structure of the world's largest subway networks in an exploratory manner. We show that, remarkably, all these networks converge to a shape that shares similar generic features despite their geographical and economic differences. This limiting shape is made of a core with branches radiating from it. For most of these networks, the average degree of a node (station) within the core has a value of order 2.5 and the proportion of k = 2 nodes in the core is larger than 60 per cent. The number of branches scales roughly as the square root of the number of stations, the current proportion of branches represents about half of the total number of stations, and the average diameter of branches is about twice the average radial extension of the core. Spatial measures such as the number of stations at a given distance to the barycentre display a first regime which grows as r(2) followed by another regime with different exponents, and eventually saturates. These results--difficult to interpret in the framework of fractal geometry--confirm and yield a natural explanation in the geometric picture of this core and their branches: the first regime corresponds to a uniform core, while the second regime is controlled by the interstation spacing on branches. The apparent convergence towards a unique network shape in the temporal limit suggests the existence of dominant, universal mechanisms governing the evolution of these structures.
A long-time limit for world subway networks
Roth, Camille; Kang, Soong Moon; Batty, Michael; Barthelemy, Marc
2012-01-01
We study the temporal evolution of the structure of the world's largest subway networks in an exploratory manner. We show that, remarkably, all these networks converge to a shape that shares similar generic features despite their geographical and economic differences. This limiting shape is made of a core with branches radiating from it. For most of these networks, the average degree of a node (station) within the core has a value of order 2.5 and the proportion of k = 2 nodes in the core is larger than 60 per cent. The number of branches scales roughly as the square root of the number of stations, the current proportion of branches represents about half of the total number of stations, and the average diameter of branches is about twice the average radial extension of the core. Spatial measures such as the number of stations at a given distance to the barycentre display a first regime which grows as r2 followed by another regime with different exponents, and eventually saturates. These results—difficult to interpret in the framework of fractal geometry—confirm and yield a natural explanation in the geometric picture of this core and their branches: the first regime corresponds to a uniform core, while the second regime is controlled by the interstation spacing on branches. The apparent convergence towards a unique network shape in the temporal limit suggests the existence of dominant, universal mechanisms governing the evolution of these structures. PMID:22593096
Investigation of the particle-core structure of odd-mass nuclei in the NpNn scheme
NASA Astrophysics Data System (ADS)
Bucurescu, D.; Cata, G.; Cutoiu, D.; Dragulescu, E.; Ivasu, M.; Zamfir, N. V.; Gizon, A.; Gizon, J.
1989-10-01
The NpNn scheme is applied to data related to collective band structures determined by the unique parity shell model orbitals in odd-A nuclei from the mass regions A≌80-100 and A≌130. Simple systematics are obtained which give a synthetic picture of the evolution of the particle-core coupling in these nuclear regions.
Some remarks on the early evolution of Enceladus
NASA Astrophysics Data System (ADS)
Czechowski, Leszek
2014-12-01
Thermal history of Enceladus is investigated from the beginning of accretion to formation of its core (~400 My). We consider model with solid state convection (in a solid layer) as well as liquid state convection (in molten parts of the satellite). The numerical model of convection uses full conservative finite difference method. The roles of two modes of convection are considered using the parameterized theory of convection. The following heat sources are included: short lived and long lived radioactive isotopes, accretion, serpentinization, and phase changes. Heat transfer processes are: conduction, solid state convection, and liquid state convection. It is found that core formation was completed only when liquid state convection had slowed down. Eventually, the porous core with pores filled with water was formed. Recent data concerning gravity field of Enceladus confirm low density of the core. We investigated also thermal history for different values of the following parameters: time of beginning of accretion tini, duration of accretion tacr, viscosity of ice close to the melting point ηm, activation energy in formula for viscosity E, thermal conductivity of silicate component ksil, ammonia content XNH3, and energy of serpentinization cserp. All these parameters are important for evolution, but not dramatic differences are found for realistic values. Moreover, the hypothesis of proto-Enceladus (stating that initially Enceladus was substantially larger) is considered and thermal history of such body is calculated. The last subject is the Mimas-Enceladus paradox. Comparison of thermal models of Mimas and Enceladus indicates that period favorable for 'excited path of evolution' was significantly shorter for Mimas than for Enceladus.
How do binary separations depend on cloud initial conditions?
NASA Astrophysics Data System (ADS)
Sterzik, M. F.; Durisen, R. H.; Zinnecker, H.
2003-11-01
We explore the consequences of a star formation scenario in which the isothermal collapse of a rotating, star-forming core is followed by prompt fragmentation into a cluster containing a small number (N <~ 10) of protostars and/or substellar objects. The subsequent evolution of the cluster is assumed to be dominated by dynamical interactions among cluster members, and this establishes the final properties of the binary and multiple systems. The characteristic scale of the fragmenting core is determined by the cloud initial conditions (such as temperature, angular momentum and mass), and we are able to relate the separation distributions of the final binary population to the properties of the star-forming core. Because the fragmentation scale immediately after the isothermal collapse is typically a factor of 3-10 too large, we conjecture that fragmentation into small clusters followed by dynamical evolution is required to account for the observed binary separation distributions. Differences in the environmental properties of the cores are expected to imprint differences on the characteristic dimensions of the binary systems they form. Recent observations of hierarchical systems, differences in binary characteristics among star forming regions and systematic variations in binary properties with primary mass can be interpreted in the context of this scenario.
NASA Technical Reports Server (NTRS)
Voorhies, Coerte V.
1993-01-01
The problem of estimating a steady fluid velocity field near the top of Earth's core which induces the secular variation (SV) indicated by models of the observed geomagnetic field is examined in the source-free mantle/frozen-flux core (SFI/VFFC) approximation. This inverse problem is non-linear because solutions of the forward problem are deterministically chaotic. The SFM/FFC approximation is inexact, and neither the models nor the observations they represent are either complete or perfect. A method is developed for solving the non-linear inverse motional induction problem posed by the hypothesis of (piecewise, statistically) steady core surface flow and the supposition of a complete initial geomagnetic condition. The method features iterative solution of the weighted, linearized least-squares problem and admits optional biases favoring surficially geostrophic flow and/or spatially simple flow. Two types of weights are advanced radial field weights for fitting the evolution of the broad-scale portion of the radial field component near Earth's surface implied by the models, and generalized weights for fitting the evolution of the broad-scale portion of the scalar potential specified by the models.
Galaxy Evolution Explorer Spies Band of Stars
2007-06-20
Globular star cluster NGC 362, in a false-color image from NASA's Galaxy Evolution Explorer. Image credit: NASA/JPL-Caltech/Univ. of Virginia The Galaxy Evolution Explorer's ultraviolet eyes have captured a globular star cluster, called NGC 362, in our own Milky Way galaxy. In this new image, the cluster appears next to stars from a more distant neighboring galaxy, known as the Small Magellanic Cloud. "This image is so interesting because it allows a study of the final stages of evolution of low-mass stars in NGC 362, as well as the history of star formation in the Small Magellanic Cloud," said Ricardo Schiavon of the University of Virginia, Charlottesville, Va. Globular clusters are densely packed bunches of old stars scattered in galaxies throughout the universe. NGC 362, located 30,000 light-years away, can be spotted as the dense collection of mostly yellow-tinted stars surrounding a large white-yellow spot toward the top-right of this image. The white spot is actually the core of the cluster, which is made up of stars so closely packed together that the Galaxy Evolution Explorer cannot see them individually. The light blue dots surrounding the cluster core are called extreme horizontal branch stars. These stars used to be very similar to our sun and are nearing the end of their lives. They are very hot, with temperatures reaching up to about four times that of the surface of our sun (25,000 Kelvin or 45,500 degrees Fahrenheit). A star like our sun spends most of its life fusing hydrogen atoms in its core into helium. When the star runs out of hydrogen in its core, its outer envelope will expand. The star then becomes a red giant, which burns hydrogen in a shell surrounding its inner core. Throughout its life as a red giant, the star loses a lot of mass, then begins to burn helium at its core. Some stars will have lost so much mass at the end of this process, up to 85 percent of their envelopes, that most of the envelope is gone. What is left is a very hot ultraviolet-bright core, or extreme horizontal branch star. Blue dots scattered throughout the image are hot, young stars in the Small Magellanic Cloud, a satellite galaxy of the Milky Way located approximately 200,000 light-years away. The stars in this galaxy are much brighter intrinsically than extreme horizontal branch stars, but they appear just as bright because they are farther away. The blue stars in the Small Magellanic Cloud are only about a few tens of millions of years old, much younger than the approximately 10-million-year-old stars in NGC 362. Because NGC 362 sits on the northern edge of the Small Magellanic Cloud galaxy, the blue stars are denser toward the south, or bottom, of the image. Some of the yellow spots in this image are stars in the Milky Way galaxy that are along this line of sight. Astronomers believe that some of the other spots, particularly those closer to NGC 362, might actually be a relatively ultraviolet-dim family of stars called "blue stragglers." These stars are formed from collisions or close encounters between two closely orbiting stars in a globular cluster. "This observation could only be done with the Galaxy Evolution Explorer because it is the only ultraviolet imager available to the astronomical community with such a large field of view," said Schiavon. This image is a false-color composite, where light detected by the Galaxy Evolution Explorer's far-ultraviolet detector is colored blue, and light from the telescope's near-ultraviolet detector is red. Written by Linda Vu, Spitzer Science Center Media contact: Whitney Clavin/JPL (818) 354-4673
Chen, Chunxia; Cui, Xiaoying; Yu, Jun; Xiao, Jingfa; Kan, Biao
2012-01-01
Salmonella Paratyphi A (S. Paratyphi A) is a highly adapted, human-specific pathogen that causes paratyphoid fever. Cases of paratyphoid fever have recently been increasing, and the disease is becoming a major public health concern, especially in Eastern and Southern Asia. To investigate the genomic variation and evolution of S. Paratyphi A, a pan-genomic analysis was performed on five newly sequenced S. Paratyphi A strains and two other reference strains. A whole genome comparison revealed that the seven genomes are collinear and that their organization is highly conserved. The high rate of substitutions in part of the core genome indicates that there are frequent homologous recombination events. Based on the changes in the pan-genome size and cluster number (both in the core functional genes and core pseudogenes), it can be inferred that the sharply increasing number of pseudogene clusters may have strong correlation with the inactivation of functional genes, and indicates that the S. Paratyphi A genome is being degraded. PMID:23028950
REACTOR CONTROL ROD OPERATING SYSTEM
Miller, G.
1961-12-12
A nuclear reactor control rod mechanism is designed which mechanically moves the control rods into and out of the core under normal conditions but rapidly forces the control rods into the core by catapultic action in the event of an emergency. (AEC)
Origin and evolution of SINEs in eukaryotic genomes
Kramerov, D A; Vassetzky, N S
2011-01-01
Short interspersed elements (SINEs) are one of the two most prolific mobile genomic elements in most of the higher eukaryotes. Although their biology is still not thoroughly understood, unusual life cycle of these simple elements amplified as genomic parasites makes their evolution unique in many ways. In contrast to most genetic elements including other transposons, SINEs emerged de novo many times in evolution from available molecules (for example, tRNA). The involvement of reverse transcription in their amplification cycle, huge number of genomic copies and modular structure allow variation mechanisms in SINEs uncommon or rare in other genetic elements (module exchange between SINE families, dimerization, and so on.). Overall, SINE evolution includes their emergence, progressive optimization and counteraction to the cell's defense against mobile genetic elements. PMID:21673742
Therry, L; Nilsson-Örtman, V; Bonte, D; Stoks, R
2014-01-01
Although a growing number of studies have documented the evolution of adult dispersal-related traits at the range edge of poleward-expanding species, we know little about evolutionary changes in immune function or traits expressed by nondispersing larvae. We investigated differentiation in larval (growth and development) and adult traits (immune function and flight-related traits) between replicated core and edge populations of the poleward-moving damselfly Coenagrion scitulum. These traits were measured on individuals reared in a common garden experiment at two different food levels, as allocation trade-offs may be easier to detect under energy shortage. Edge individuals had a faster larval life history (growth and development rates), a higher adult immune function and a nearly significant higher relative flight muscle mass. Most of the differentiation between core and edge populations remained and edge populations had a higher relative flight muscle mass when corrected for latitude-specific thermal regimes, and hence could likely be attributed to the range expansion process per se. We here for the first time document a higher immune function in individuals at the expansion front of a poleward-expanding species and documented the rarely investigated evolution of faster life histories during range expansion. The rapid multivariate evolution in these ecological relevant traits between edge and core populations is expected to translate into changed ecological interactions and therefore has the potential to generate novel eco-evolutionary dynamics at the expansion front. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, Eric D.; Fortney, Jonathan J.
2013-10-10
We use models of coupled thermal evolution and photo-evaporative mass loss to understand the formation and evolution of the Kepler-36 system. We show that the large contrast in mean planetary density observed by Carter et al. can be explained as a natural consequence of photo-evaporation from planets that formed with similar initial compositions. However, rather than being due to differences in XUV irradiation between the planets, we find that this contrast is due to the difference in the masses of the planets' rock/iron cores and the impact that this has on mass-loss evolution. We explore in detail how our coupledmore » models depend on irradiation, mass, age, composition, and the efficiency of mass loss. Based on fits to large numbers of coupled evolution and mass-loss runs, we provide analytic fits to understand threshold XUV fluxes for significant atmospheric loss, as a function of core mass and mass-loss efficiency. Finally we discuss these results in the context of recent studies of the radius distribution of Kepler candidates. Using our parameter study, we make testable predictions for the frequency of sub-Neptune-sized planets. We show that 1.8-4.0 R{sub ⊕} planets should become significantly less common on orbits within 10 days and discuss the possibility of a narrow 'occurrence valley' in the radius-flux distribution. Moreover, we describe how photo-evaporation provides a natural explanation for the recent observations of Ciardi et al. that inner planets are preferentially smaller within the systems.« less
Iron snow in the Martian Core?
NASA Astrophysics Data System (ADS)
Davies, C. J.; Pommier, A.
2017-12-01
The decline of Mars' global magnetic field some 3.8-4.1 billion years ago is thought to reflect the demise of the dynamo that operated in its liquid core. The termination of the dynamo is intimately tied to the thermochemical evolution of the core-mantle system and therefore to the present-day physical state of the Martian core. The standard model predicts that the Martian dynamo failed because thermal convection stopped and the core remained entirely liquid until the present. Here we consider an alternative hypothesis that the Martian core crystallized from the top down in the so-called iron snow regime. We derive energy-entropy equations describing the long-timescale thermal and magnetic evolution of the core that incorporate the self-consistent formation of a snow layer that freezes out pure iron and is assumed to be on the liquidus; the iron sinks and remelts in the deeper core, acting as a possible source for magnetic field generation. Compositions are in the FeS system, with a sulfur content up to 16 wt%. The values of the different parameters (core radius, density and CMB pressure) are varied within bounds set by recent internal structure models that satisfy existing geodetic constraints (planetary mass, moment of inertia and tidal Love number). The melting curve and adiabat, CMB heat flow and thermal conductivity were also varied, based on previous experimental and numerical works. We observe that the formation of snow zones occurs for a wide range of interior and thermal structure properties and depends critically on the initial sulfur concentration. Gravitational energy release and latent heat effects arising during growth of the snow zone do not generate sufficient entropy to restart the dynamo unless the snow zone occupies a significant fraction of the core. Our results suggest that snow zones can be 1.5-2 Gyrs old, though thermal stratification of the uppermost core, not included in our model, likely delays onset. Models that match the available magnetic and geodetic constraints have an initial S concentration of about 10wt.% and snow zones that occupy approximately the top 100 km of the present-day Martian core.
Cryptic genetic variation: evolution's hidden substrate.
Paaby, Annalise B; Rockman, Matthew V
2014-04-01
Cryptic genetic variation (CGV) is invisible under normal conditions, but it can fuel evolution when circumstances change. In theory, CGV can represent a massive cache of adaptive potential or a pool of deleterious alleles that are in need of constant suppression. CGV emerges from both neutral and selective processes, and it may inform about how human populations respond to change. CGV facilitates adaptation in experimental settings, but does it have an important role in the real world? Here, we review the empirical support for widespread CGV in natural populations, including its potential role in emerging human diseases and the growing evidence of its contribution to evolution.
Theory for the Origin and Evolution of Stars and Planets, Including Earth
NASA Astrophysics Data System (ADS)
Cimorelli, S. A.; Samuels, C.
2001-05-01
In this paper we present a novel hypothesis for the formation and evolution of galaxies, stars (including black holes (BHs), giant, mid-size, dwarf, dying and dead stars), planets (including earth), and moons. Present day phenomenon will be used to substantiate the validity of this hypothesis. Every `body' is a multiple type of star, generated from pieces called particle proliferators, of a dislodged/expanded BH which explodes due to a collision with another expanded BH. This includes the sun, and the planet earth, which is a type of dead star. Such that, if we remove layers of the earth, starting with the crust, we will find evidence of each preceding star formation, such as a brown star, a red star, a white star, a blue star, and the remains of the particle proliferator as the innermost core is reached. We intend to show that the hypothesis is consistent with both the available astronomical data regarding stellar evolution and planetary formation; as well as the evolution of the earth itself, by considerations of the available geophysical data. Where data is not available, reasonably simple experiments will be suggested to demonstrate further the consistency and viability of the hypothesis. Theories are presented to help define and explain phenomenon such as how two (or more) BHs expand and collide to form a small `big bang' (it is postulated that there was a small big bang to form each galaxy). This in turn afforded the material/matter to form all the galactic bodies, including the dark matter. The start and development of the planet earth, initially as an emergent piece from the colliding BHs, is given special attention to explain the continuing expansion/growth that takes place in all stars and planets. Also, to explain the formation of the land, the growing/expanding earth (proportional to the ocean bed growth), the division of the continents, and the formation of the ocean beds (possibly long before the oceans existed). Attempts will be made to explain the source of the supply of water on earth. Theories are presented to help explain phenomenon such as how/why the earth is growing/expanding (not based on current plate tectonic theory)causing it to retard its rotation. Also, why the oceans are different sizes (the Pacific is about twice the Atlantic); why the masses at the poles are shifting into the Atlantic Ocean (may provide an alternative explanation for the ice ages); why various types of earthquakes occur (a new source is presented), and why volcanoes occur (two types are discussed), possibly lead to improved prediction methods for earthquakes and volcanic eruptions. We present a new cross section of the earth (as a dead star). Although the dimensions of the inner core, outer core, and the mantle (inner and outer) are about the same as presently known, new insight is given to their formation, evolution and composition. We will show that our hypothesis leads to a consistent theory and a better understanding for: - The making/forming of the mountains from bending and compression buckling, and shear failures of the outer surfaces of the earth's brittle outer skin of the 1st crust (and also from eruptions) due to reduction in curvature - Crevice/fault failures from tension at the inner surface of the 1st crust, some form inland-sea beds and lake beds - How the oceans formed over the 2nd crust due to water forming (and condensing).
Spin evolution of Earth-sized exoplanets, including atmospheric tides and core-mantle friction
NASA Astrophysics Data System (ADS)
Cunha, Diana; Correia, Alexandre C. M.; Laskar, Jacques
2015-04-01
Planets with masses between 0.1 and 10 M ⊕ are believed to host dense atmospheres. These atmospheres can play an important role on the planet's spin evolution, since thermal atmospheric tides, driven by the host star, may counterbalance gravitational tides. In this work, we study the long-term spin evolution of Earth-sized exoplanets. We generalize previous works by including the effect of eccentric orbits and obliquity. We show that under the effect of tides and core-mantle friction, the obliquity of the planets evolves either to 0° or 180°. The rotation of these planets is also expected to evolve into a very restricted number of equilibrium configurations. In general, none of these equilibria is synchronous with the orbital mean motion. The role of thermal atmospheric tides becomes more important for Earth-sized planets in the habitable zones of their systems; so they cannot be neglected when we search for their potential habitability.
NASA Astrophysics Data System (ADS)
Xue, Hairong; Yu, Hongjie; Li, Yinghao; Deng, Kai; Xu, You; Li, Xiaonian; Wang, Hongjing; Wang, Liang
2018-07-01
Control of structures and components of the nanoarray catalysts is very important for electrochemical energy conversion. Herein, unique NiCo2O4@MnO2 core–shell nanoarray with hollow NiCo2O4 Cores and MnO2 flake shells is in situ fabricated on carbon textile via a two-step hydrothermal treatment followed by a subsequent annealing. The as-made nanoarray is highly active and durable catalyst for oxygen evolution reaction in alkaline media attribute to the synergetic effect derived from spatially separated nanoarray with favorable NiCo2O4 and MnO2 compositions.
Magnetic fields in the formation of massive stars.
Girart, Josep M; Beltrán, Maria T; Zhang, Qizhou; Rao, Ramprasad; Estalella, Robert
2009-06-12
Massive stars play a crucial role in the production of heavy elements and in the evolution of the interstellar medium, yet how they form is still a matter of debate. We report high-angular-resolution submillimeter observations toward the massive hot molecular core (HMC) in the high-mass star-forming region G31.41+0.31. We find that the evolution of the gravitational collapse of the HMC is controlled by the magnetic field. The HMC is simultaneously contracting and rotating, and the magnetic field lines threading the HMC are deformed along its major axis, acquiring an hourglass shape. The magnetic energy dominates over the centrifugal and turbulence energies, and there is evidence of magnetic braking in the contracting core.
Recycled grains in lunar soils as an additional, necessary, regolith evolution parameter
NASA Technical Reports Server (NTRS)
Basu, A.
1990-01-01
Recycled lunar soil grains are defined as those soil grains that have been a part of either regolith breccias or agglutinates; thus, mineral grains, rock fragments, older agglutinates, and volcanic glass spherules, if dislodged from an agglutinate or a regolith breccia, would all qualify as recycled grains. This paper shows that it is possible to estimate the proportion of recycled material in lunar soils. Optical data from 12 soils in the Apollo 16 core 64001/2 were collected to estimate the proportion (W) of recycled crystalline grains in each of these soils. The W values show a correspondence with other independently derived parameters and the history of the core soils, indicating that W can be used as a valid soil-evolution parameter.
Survival of the Friendliest: Homo sapiens Evolved via Selection for Prosociality.
Hare, Brian
2017-01-03
The challenge of studying human cognitive evolution is identifying unique features of our intelligence while explaining the processes by which they arose. Comparisons with nonhuman apes point to our early-emerging cooperative-communicative abilities as crucial to the evolution of all forms of human cultural cognition, including language. The human self-domestication hypothesis proposes that these early-emerging social skills evolved when natural selection favored increased in-group prosociality over aggression in late human evolution. As a by-product of this selection, humans are predicted to show traits of the domestication syndrome observed in other domestic animals. In reviewing comparative, developmental, neurobiological, and paleoanthropological research, compelling evidence emerges for the predicted relationship between unique human mentalizing abilities, tolerance, and the domestication syndrome in humans. This synthesis includes a review of the first a priori test of the self-domestication hypothesis as well as predictions for future tests.
ERIC Educational Resources Information Center
Tibell, Lena A. E.; Harms, Ute
2017-01-01
Modern evolutionary theory is both a central theory and an integrative framework of the life sciences. This is reflected in the common references to evolution in modern science education curricula and contexts. In fact, evolution is a core idea that is supposed to support biology learning by facilitating the organization of relevant knowledge. In…
Avoiding Mixed Metaphor: The Pedagogy of the Debate over Evolution and Intelligent Design
ERIC Educational Resources Information Center
Carter, Kenneth L.; Welsh, Jeni
2010-01-01
For more than a century, the debate over evolution and creationism has affected academia at nearly every level. Although it distracts from core issues in many academic contexts, the debate can sometimes be pedagogically useful. It can be used pedagogically to examine how scientific predictions are made, how evidence is applied, and how it is…
Kinematic fingerprint of core-collapsed globular clusters
NASA Astrophysics Data System (ADS)
Bianchini, P.; Webb, J. J.; Sills, A.; Vesperini, E.
2018-03-01
Dynamical evolution drives globular clusters towards core collapse, which strongly shapes their internal properties. Diagnostics of core collapse have so far been based on photometry only, namely on the study of the concentration of the density profiles. Here, we present a new method to robustly identify core-collapsed clusters based on the study of their stellar kinematics. We introduce the kinematic concentration parameter, ck, the ratio between the global and local degree of energy equipartition reached by a cluster, and show through extensive direct N-body simulations that clusters approaching core collapse and in the post-core collapse phase are strictly characterized by ck > 1. The kinematic concentration provides a suitable diagnostic to identify core-collapsed clusters, independent from any other previous methods based on photometry. We also explore the effects of incomplete radial and stellar mass coverage on the calculation of ck and find that our method can be applied to state-of-art kinematic data sets.
NASA Technical Reports Server (NTRS)
Coward, Adrian V.; Papageorgiou, Demetrios T.; Smyrlis, Yiorgos S.
1994-01-01
In this paper the nonlinear stability of two-phase core-annular flow in a pipe is examined when the acting pressure gradient is modulated by time harmonic oscillations and viscosity stratification and interfacial tension is present. An exact solution of the Navier-Stokes equations is used as the background state to develop an asymptotic theory valid for thin annular layers, which leads to a novel nonlinear evolution describing the spatio-temporal evolution of the interface. The evolution equation is an extension of the equation found for constant pressure gradients and generalizes the Kuramoto-Sivashinsky equation with dispersive effects found by Papageorgiou, Maldarelli & Rumschitzki, Phys. Fluids A 2(3), 1990, pp. 340-352, to a similar system with time periodic coefficients. The distinct regimes of slow and moderate flow are considered and the corresponding evolution is derived. Certain solutions are described analytically in the neighborhood of the first bifurcation point by use of multiple scales asymptotics. Extensive numerical experiments, using dynamical systems ideas, are carried out in order to evaluate the effect of the oscillatory pressure gradient on the solutions in the presence of a constant pressure gradient.
Evolution of natural agents: preservation, advance, and emergence of functional information.
Sharov, Alexei A
2016-04-01
Biological evolution is often viewed narrowly as a change of morphology or allele frequency in a sequence of generations. Here I pursue an alternative informational concept of evolution, as preservation, advance, and emergence of functional information in natural agents. Functional information is a network of signs (e.g., memory, transient messengers, and external signs) that are used by agents to preserve and regulate their functions. Functional information is preserved in evolution via complex interplay of copying and construction processes: the digital components are copied, whereas interpreting subagents together with scaffolds, tools, and resources, are constructed. Some of these processes are simple and invariant, whereas others are complex and contextual. Advance of functional information includes improvement and modification of already existing functions. Although the genome information may change passively and randomly, the interpretation is active and guided by the logic of agent behavior and embryonic development. Emergence of new functions is based on the reinterpretation of already existing information, when old tools, resources, and control algorithms are adopted for novel functions. Evolution of functional information progressed from protosemiosis, where signs correspond directly to actions, to eusemiosis, where agents associate signs with objects. Language is the most advanced form of eusemiosis, where the knowledge of objects and models is communicated between agents.
Evolution of natural agents: preservation, advance, and emergence of functional information
Sharov, Alexei A.
2016-01-01
Biological evolution is often viewed narrowly as a change of morphology or allele frequency in a sequence of generations. Here I pursue an alternative informational concept of evolution, as preservation, advance, and emergence of functional information in natural agents. Functional information is a network of signs (e.g., memory, transient messengers, and external signs) that are used by agents to preserve and regulate their functions. Functional information is preserved in evolution via complex interplay of copying and construction processes: the digital components are copied, whereas interpreting subagents together with scaffolds, tools, and resources, are constructed. Some of these processes are simple and invariant, whereas others are complex and contextual. Advance of functional information includes improvement and modification of already existing functions. Although the genome information may change passively and randomly, the interpretation is active and guided by the logic of agent behavior and embryonic development. Emergence of new functions is based on the reinterpretation of already existing information, when old tools, resources, and control algorithms are adopted for novel functions. Evolution of functional information progressed from protosemiosis, where signs correspond directly to actions, to eusemiosis, where agents associate signs with objects. Language is the most advanced form of eusemiosis, where the knowledge of objects and models is communicated between agents. PMID:27525048
Deuterium fractionation and H2D+ evolution in turbulent and magnetized cloud cores
NASA Astrophysics Data System (ADS)
Körtgen, Bastian; Bovino, Stefano; Schleicher, Dominik R. G.; Giannetti, Andrea; Banerjee, Robi
2017-08-01
High-mass stars are expected to form from dense prestellar cores. Their precise formation conditions are widely discussed, including their virial condition, which results in slow collapse for supervirial cores with strong support by turbulence or magnetic fields, or fast collapse for subvirial sources. To disentangle their formation processes, measurements of the deuterium fractions are frequently employed to approximately estimate the ages of these cores and to obtain constraints on their dynamical evolution. We here present 3D magnetohydrodynamical simulations including for the first time an accurate non-equilibrium chemical network with 21 gas-phase species plus dust grains and 213 reactions. With this network we model the deuteration process in fully depleted prestellar cores in great detail and determine its response to variations in the initial conditions. We explore the dependence on the initial gas column density, the turbulent Mach number, the mass-to-magnetic flux ratio and the distribution of the magnetic field, as well as the initial ortho-to-para ratio (OPR) of H2. We find qualitatively good agreement with recent observations of deuterium fractions in quiescent sources. Our results show that deuteration is rather efficient, even when assuming a conservative OPR of 3 and highly subvirial initial conditions, leading to large deuterium fractions already within roughly a free-fall time. We discuss the implications of our results and give an outlook to relevant future investigations.
Information Operations as a Core Competency
2005-01-01
the emerging American way of war means fighting first for information dominance . Nothing better exemplifies this bold push for transformation and... information dominance than the DoD commitment to make information operations (IO) a core military competency. On October 30, 2003, Secretary Rumsfeld
The Millimeter-Radio Emission of BL Lacertae During Two γ-ray Outbursts
NASA Astrophysics Data System (ADS)
Kim, Dae-Won; Trippe, Sascha; Lee, Sang-Sung; Park, Jong-Ho; Kim, Jae-Young; Algaba, Juan-Carlos; Hodgson, Jeffrey A.; Kino, Motoki; Zhao, Guang-Yao; Wajima, Kiyoaki; Kang, Sincheol; Oh, Junghwan; Lee, Taeseok; Byun, Do-Young; Kim, Soon-Wook; Kim, Jeong-Sook
2017-12-01
We present a study of the inexplicit connection between radio jet activity and γ-ray emission of BL Lacertae (BL Lac; 2200+420). We analyze the long-term millimeter activity of BL Lac via interferometric observations with the Korean VLBI Network (KVN) obtained at 22, 43, 86, and 129 GHz simultaneously over three years (from January 2013 to March 2016); during this time, two γ-ray outbursts (in November 2013 and March 2015) can be seen in γ-ray light curves obtained from Fermi observations. The KVN radio core is optically thick at least up to 86 GHz; there is indication that it might be optically thin at higher frequencies. To first order, the radio light curves decay exponentially over the time span covered by our observations, with decay timescales of 411±85 days, 352±79 days, 310±57 days, and 283±55 days at 22, 43, 86, and 129 GHz, respectively. Assuming synchrotron cooling, a cooling time of around one year is consistent with magnetic field strengths B=2 μT and electron Lorentz factors γ=10,000. Taking into account that our formal measurement errors include intrinsic variability and thus over-estimate the statistical uncertainties, we find that the decay timescale τ scales with frequency ν like τ∝ν^{-0.2}. This relation is much shallower than the one expected from opacity effects (core shift), but in agreement with the (sub-)mm radio core being a standing recollimation shock. We do not find convincing radio flux counterparts to the γ-ray outbursts. The spectral evolution is consistent with the 'generalized shock model' of Valtaoja et al. (1992). A temporary increase in the core opacity and the emergence of a knot around the time of the second γ-ray event indicate that this γ-ray outburst might be an 'orphan' flare powered by the 'ring of fire' mechanism.
Evolutionary versatility of eukaryotic protein domains revealed by their bigram networks
2011-01-01
Background Protein domains are globular structures of independently folded polypeptides that exert catalytic or binding activities. Their sequences are recognized as evolutionary units that, through genome recombination, constitute protein repertoires of linkage patterns. Via mutations, domains acquire modified functions that contribute to the fitness of cells and organisms. Recent studies have addressed the evolutionary selection that may have shaped the functions of individual domains and the emergence of particular domain combinations, which led to new cellular functions in multi-cellular animals. This study focuses on modeling domain linkage globally and investigates evolutionary implications that may be revealed by novel computational analysis. Results A survey of 77 completely sequenced eukaryotic genomes implies a potential hierarchical and modular organization of biological functions in most living organisms. Domains in a genome or multiple genomes are modeled as a network of hetero-duplex covalent linkages, termed bigrams. A novel computational technique is introduced to decompose such networks, whereby the notion of domain "networking versatility" is derived and measured. The most and least "versatile" domains (termed "core domains" and "peripheral domains" respectively) are examined both computationally via sequence conservation measures and experimentally using selected domains. Our study suggests that such a versatility measure extracted from the bigram networks correlates with the adaptivity of domains during evolution, where the network core domains are highly adaptive, significantly contrasting the network peripheral domains. Conclusions Domain recombination has played a major part in the evolution of eukaryotes attributing to genome complexity. From a system point of view, as the results of selection and constant refinement, networks of domain linkage are structured in a hierarchical modular fashion. Domains with high degree of networking versatility appear to be evolutionary adaptive, potentially through functional innovations. Domain bigram networks are informative as a model of biological functions. The networking versatility indices extracted from such networks for individual domains reflect the strength of evolutionary selection that the domains have experienced. PMID:21849086
Evolutionary versatility of eukaryotic protein domains revealed by their bigram networks.
Xie, Xueying; Jin, Jing; Mao, Yongyi
2011-08-18
Protein domains are globular structures of independently folded polypeptides that exert catalytic or binding activities. Their sequences are recognized as evolutionary units that, through genome recombination, constitute protein repertoires of linkage patterns. Via mutations, domains acquire modified functions that contribute to the fitness of cells and organisms. Recent studies have addressed the evolutionary selection that may have shaped the functions of individual domains and the emergence of particular domain combinations, which led to new cellular functions in multi-cellular animals. This study focuses on modeling domain linkage globally and investigates evolutionary implications that may be revealed by novel computational analysis. A survey of 77 completely sequenced eukaryotic genomes implies a potential hierarchical and modular organization of biological functions in most living organisms. Domains in a genome or multiple genomes are modeled as a network of hetero-duplex covalent linkages, termed bigrams. A novel computational technique is introduced to decompose such networks, whereby the notion of domain "networking versatility" is derived and measured. The most and least "versatile" domains (termed "core domains" and "peripheral domains" respectively) are examined both computationally via sequence conservation measures and experimentally using selected domains. Our study suggests that such a versatility measure extracted from the bigram networks correlates with the adaptivity of domains during evolution, where the network core domains are highly adaptive, significantly contrasting the network peripheral domains. Domain recombination has played a major part in the evolution of eukaryotes attributing to genome complexity. From a system point of view, as the results of selection and constant refinement, networks of domain linkage are structured in a hierarchical modular fashion. Domains with high degree of networking versatility appear to be evolutionary adaptive, potentially through functional innovations. Domain bigram networks are informative as a model of biological functions. The networking versatility indices extracted from such networks for individual domains reflect the strength of evolutionary selection that the domains have experienced.
NASA Astrophysics Data System (ADS)
Iwakami, Wakana; Nagakura, Hiroki; Yamada, Shoichi
2014-05-01
In this study, we conduct three-dimensional hydrodynamic simulations systematically to investigate the flow patterns behind the accretion shock waves that are commonly formed in the post-bounce phase of core-collapse supernovae. Adding small perturbations to spherically symmetric, steady, shocked accretion flows, we compute the subsequent evolutions to find what flow pattern emerges as a consequence of hydrodynamical instabilities such as convection and standing accretion shock instability for different neutrino luminosities and mass accretion rates. Depending on these two controlling parameters, various flow patterns are indeed realized. We classify them into three basic patterns and two intermediate ones; the former includes sloshing motion (SL), spiral motion (SP), and multiple buoyant bubble formation (BB); the latter consists of spiral motion with buoyant-bubble formation (SPB) and spiral motion with pulsationally changing rotational velocities (SPP). Although the post-shock flow is highly chaotic, there is a clear trend in the pattern realization. The sloshing and spiral motions tend to be dominant for high accretion rates and low neutrino luminosities, and multiple buoyant bubbles prevail for low accretion rates and high neutrino luminosities. It is interesting that the dominant pattern is not always identical between the semi-nonlinear and nonlinear phases near the critical luminosity; the intermediate cases are realized in the latter case. Running several simulations with different random perturbations, we confirm that the realization of flow pattern is robust in most cases.
Spatial distribution of radionuclides in 3D models of SN 1987A and Cas A
NASA Astrophysics Data System (ADS)
Janka, Hans-Thomas; Gabler, Michael; Wongwathanarat, Annop
2017-02-01
Fostered by the possibilities of multi-dimensional computational modeling, in particular the advent of three-dimensional (3D) simulations, our understanding of the neutrino-driven explosion mechanism of core-collapse supernovae (SNe) has experienced remarkable progress over the past decade. First self-consistent, first-principle models have shown successful explosions in 3D, and even failed cases may be cured by moderate changes of the microphysics inside the neutron star (NS), better grid resolution, or more detailed progenitor conditions at the onset of core collapse, in particular large-scale perturbations in the convective Si and O burning shells. 3D simulations have also achieved to follow neutrino-driven explosions continuously from the initiation of the blast wave, through the shock breakout from the progenitor surface, into the radioactively powered evolution of the SN, and towards the free expansion phase of the emerging remnant. Here we present results from such simulations, which form the basis for direct comparisons with observations of SNe and SN remnants in order to derive constraints on the still disputed explosion mechanism. It is shown that predictions based on hydrodynamic instabilities and mixing processes associated with neutrino-driven explosions yield good agreement with measured NS kicks, light-curve properties of SN 1987A and asymmetries of iron and 44Ti distributions observed in SN 1987A and Cassiopeia A.
Acceptance and Commitment Therapy: Western adoption of Buddhist tenets?
Fung, Kenneth
2015-08-01
Acceptance and Commitment Therapy (ACT) is a psychological intervention that has wide clinical applications with emerging empirical support. It is based on Functional Contextualism and is derived as a clinical application of the Relational Frame Theory, a behavioral account of the development of human thought and cognition. The six core ACT therapeutic processes include: Acceptance, Defusion, Present Moment, Self-as-Context, Values, and Committed Action. In addition to its explicit use of the concept of mindfulness, the therapeutic techniques of ACT implicitly incorporate other aspects of Buddhism. This article describes the basic principles and processes of ACT, explores the similarities and differences between ACT processes and some of the common tenets in Buddhism such as the Four Noble Truths and No-Self, and reports on the experience of running a pilot intervention ACT group for the Cambodian community in Toronto in partnership with the community's Buddhist Holy Monk. Based on this preliminary exploration in theory and the reflections of the group experience, ACT appears to be consistent with some of the core tenets of Buddhism in the approach towards alleviating suffering, with notable differences in scope reflecting their different aims and objectives. Further development of integrative therapies that can incorporate psychological and spiritual as well as diverse cultural perspectives may help the continued advancement and evolution of more effective psychotherapies that can benefit diverse populations. © The Author(s) 2014.
POET: Planetary Orbital Evolution due to Tides
NASA Astrophysics Data System (ADS)
Penev, Kaloyan
2014-08-01
POET (Planetary Orbital Evolution due to Tides) calculates the orbital evolution of a system consisting of a single star with a single planet in orbit under the influence of tides. The following effects are The evolutions of the semimajor axis of the orbit due to the tidal dissipation in the star and the angular momentum of the stellar convective envelope by the tidal coupling are taken into account. In addition, the evolution includes the transfer of angular momentum between the stellar convective and radiative zones, effect of the stellar evolution on the tidal dissipation efficiency, and stellar core and envelope spins and loss of stellar convective zone angular momentum to a magnetically launched wind. POET can be used out of the box, and can also be extended and modified.
A Longitudinal Emergency Medical Services Track in Emergency Medicine Residency.
Adams, Daniel; Bischof, Jason; Larrimore, Ashley; Krebs, William; King, Andrew
2017-03-30
Emergency medicine residency programs offer Emergency Medical Services (EMS) curricula to address Accreditation Council for Graduate Medical Education (ACGME) milestones. While some programs offer advanced clinical tracks in EMS, no standard curriculum exists. We sought to establish a well-defined EMS curriculum to allow interested residents to develop advanced clinical skills and scholarship within this subspecialty. Core EMS fellowship trained faculty were recruited to help develop the curriculum. Building on ACGME graduation requirements and milestones, important elements of EMS fellowship training were incorporated into the curriculum to develop the final document. The final curriculum focuses on scholarly activities relating to the four core areas of EMS identified by The American Board of Emergency Medicine and serves as an intermediary between ACGME graduation requirements for education in EMS and fellowship level training. Standardization of the EMS scholarly track can provide residents with the potential to obtain competency beyond ACGME requirements and prepare them for success in fellowship training and/or leadership within EMS on graduation.
A Longitudinal Emergency Medical Services Track in Emergency Medicine Residency
Bischof, Jason; Larrimore, Ashley; Krebs, William; King, Andrew
2017-01-01
Emergency medicine residency programs offer Emergency Medical Services (EMS) curricula to address Accreditation Council for Graduate Medical Education (ACGME) milestones. While some programs offer advanced clinical tracks in EMS, no standard curriculum exists. We sought to establish a well-defined EMS curriculum to allow interested residents to develop advanced clinical skills and scholarship within this subspecialty. Core EMS fellowship trained faculty were recruited to help develop the curriculum. Building on ACGME graduation requirements and milestones, important elements of EMS fellowship training were incorporated into the curriculum to develop the final document. The final curriculum focuses on scholarly activities relating to the four core areas of EMS identified by The American Board of Emergency Medicine and serves as an intermediary between ACGME graduation requirements for education in EMS and fellowship level training. Standardization of the EMS scholarly track can provide residents with the potential to obtain competency beyond ACGME requirements and prepare them for success in fellowship training and/or leadership within EMS on graduation. PMID:28465874
Phase ordering dynamics of reconstituting particles
NASA Astrophysics Data System (ADS)
Albarracín, F. A. Gómez; Rosales, H. D.; Grynberg, M. D.
2017-06-01
We consider the large-time dynamics of one-dimensional processes involving adsorption and desorption of extended hard-core particles (dimers, trimers, ..., k -mers), while interacting through their constituent monomers. Desorption can occur whether or not these latter adsorbed together, which leads to reconstitution of k -mers and the appearance of sectors of motion with nonlocal conservation laws for k ≥3 . Dynamic exponents of the sector including the empty chain are evaluated by finite-size scaling analyses of the relaxation times embodied in the spectral gaps of evolution operators. For attractive interactions it is found that in the low-temperature limit such time scales converge to those of the Glauber dynamics, thus suggesting a diffusive universality class for k ≥2 . This is also tested by simulated quenches down to T =0 , where a common scaling function emerges. By contrast, under repulsive interactions the low-temperature dynamics is characterized by metastable states which decay subdiffusively to a highly degenerate and partially jammed phase.
Schimel, Jeff; Hayes, Joseph; Williams, Todd; Jahrig, Jesse
2007-05-01
According to terror management theory, if the cultural worldview protects people from thoughts about death, then weakening this structure should increase death-thought accessibility (DTA). Five studies tested this DTA hypothesis. Study 1 showed that threatening Canadian participants' cultural values (vs. those of another culture) increased DTA on a word-fragment completion task. Study 2 showed that when participants could dismiss the threat, DTA remained low. Study 3 replicated the results of Study 1, but DTA was measured using a lexical decision task. Response latencies to death, negative, and neutral content were measured. Worldview threat increased DTA relative to accessibility for negative and neutral content. Study 4 showed that the DTA effect emerged independently of the arousal of anger or anxiety. Finally, Study 5 demonstrated that participants with a pro-creation (vs. pro-evolution) worldview had higher DTA after reading an anti-creation article. Discussion focused on theoretical implications and directions for further research. ((c) 2007 APA, all rights reserved).
The significance and scope of evolutionary developmental biology: a vision for the 21st century.
Moczek, Armin P; Sears, Karen E; Stollewerk, Angelika; Wittkopp, Patricia J; Diggle, Pamela; Dworkin, Ian; Ledon-Rettig, Cristina; Matus, David Q; Roth, Siegfried; Abouheif, Ehab; Brown, Federico D; Chiu, Chi-Hua; Cohen, C Sarah; Tomaso, Anthony W De; Gilbert, Scott F; Hall, Brian; Love, Alan C; Lyons, Deirdre C; Sanger, Thomas J; Smith, Joel; Specht, Chelsea; Vallejo-Marin, Mario; Extavour, Cassandra G
2015-01-01
Evolutionary developmental biology (evo-devo) has undergone dramatic transformations since its emergence as a distinct discipline. This paper aims to highlight the scope, power, and future promise of evo-devo to transform and unify diverse aspects of biology. We articulate key questions at the core of eleven biological disciplines-from Evolution, Development, Paleontology, and Neurobiology to Cellular and Molecular Biology, Quantitative Genetics, Human Diseases, Ecology, Agriculture and Science Education, and lastly, Evolutionary Developmental Biology itself-and discuss why evo-devo is uniquely situated to substantially improve our ability to find meaningful answers to these fundamental questions. We posit that the tools, concepts, and ways of thinking developed by evo-devo have profound potential to advance, integrate, and unify biological sciences as well as inform policy decisions and illuminate science education. We look to the next generation of evolutionary developmental biologists to help shape this process as we confront the scientific challenges of the 21st century. © 2015 Wiley Periodicals, Inc.
Recent evolutions in flexor tendon repairs and rehabilitation.
Tang, Jin Bo
2018-06-01
This article reviews some recent advancements in repair and rehabilitation of the flexor tendons. These include placing sparse or no peripheral suture when the core suture is strong and sufficiently tensioned, allowing the repair site to be slightly bulky, aggressively releasing the pulleys (including the entire A2 pulley or both the A3 and A4 pulleys when necessary), placing a shorter splint with less restricted wrist positioning, and allowing out-of-splint active motion. The reported outcomes have been favourable with few or no repair ruptures and no function-disturbing tendon bowstringing. These changes favour easier surgeries. The recent reports have cause to re-evaluate long-held guidelines of a non-bulky repair site and the necessity of a standard peripheral suture. Emerging understanding posits that minor clinically noticeable tendon bowstringing does not affect hand function, and that free wrist positioning and out-of-splint motion are safe when strong surgical repairs are used and the pulleys are properly released.
Tacchella, S; Carollo, C M; Renzini, A; Förster Schreiber, N M; Lang, P; Wuyts, S; Cresci, G; Dekel, A; Genzel, R; Lilly, S J; Mancini, C; Newman, S; Onodera, M; Shapley, A; Tacconi, L; Woo, J; Zamorani, G
2015-04-17
Most present-day galaxies with stellar masses ≥10(11) solar masses show no ongoing star formation and are dense spheroids. Ten billion years ago, similarly massive galaxies were typically forming stars at rates of hundreds solar masses per year. It is debated how star formation ceased, on which time scales, and how this "quenching" relates to the emergence of dense spheroids. We measured stellar mass and star-formation rate surface density distributions in star-forming galaxies at redshift 2.2 with ~1-kiloparsec resolution. We find that, in the most massive galaxies, star formation is quenched from the inside out, on time scales less than 1 billion years in the inner regions, up to a few billion years in the outer disks. These galaxies sustain high star-formation activity at large radii, while hosting fully grown and already quenched bulges in their cores. Copyright © 2015, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Peng, Jie; Yang, XiaoQiang; Qiang, XiaoKe; Liu, YeBo; Zhou, QiXian
2017-04-01
The sedimentary history and characteristics of the Yangtze delta help us understand the tectonic evolution and geological formation process in the Eastern coastal area of China since the Cenozoic Era. Previous chronology of sediments in this area are not detailed or precise. Furthermore, when the delta area reached the maximum is still debatable. Palaeomagnetic polarity reversal and excursions, AMS14C dating, optically stimulated luminescence (OSL) dating, and the hard clay marker layer analysis were integrated to establish the chronostratigraphic framework of five drilling cores from the south Yangtze delta. Results from the bottom part of core CSB6 suggested Gauss normal polarity chron, an age of more than about 2600 ka. The other four cores showed initial deposition time between 200-60 ka B.P., significantly later than CSB6. We infer the reason is that CSB6 locating in the Changxin-Fenghua Fracture. Combined with data from referenced magnetostratigraphic cores in the Yangtze River Delta, we suggest that tectonic movement resulted in a much longer depositional age in some parts of the Yangtze River Delta and influenced the sedimentary characteristics of thick (North) to thin (South) and thick (East) to thin (West). In conclusion, a relatively wide range of deposition in the Yangtze River Delta occurred since about 200 ka B.P. The deposition of fine particles (clay-silt), which was controlled by slow tectonic subsidence and sea-level changes, expanded to the whole delta region after about 60 ka B.P. We propose that this time scale maybe used for further study on the evolution of the Yangtze delta's paleoclimate and paleoenvironment. References [1]Peng J,Yang X Q,Qiang X K,et al.Magnetostratigraphy characteristics of several cores around the Qiantang River mouth and its significance.Chinese J.Geophys.(in Chinese),2016,59(8):2949-2964. [2]Li C X, Chen Q Q, Zhang J Q,et al. Stratigraphy and paleoenvironmental changes in the Yangtze Delta during the Late Quaternary[J].Journal of Asian Earth Sciences, 2000, 18(2000):453-469. [3]Brad S.Singer. A Quaternary geomagnetic instability time scale[J]. Quaternary Geochronology, 2014,21:29-54.
NASA Astrophysics Data System (ADS)
Potts, R.
2016-12-01
Drill cores reaching the local basement of the East African Rift were obtained in 2012 south of the Olorgesailie Basin, Kenya, 20 km from excavations that document key benchmarks in the origin of Homo sapiens. Sediments totaling 216 m were obtained from two drilling locations representing the past 1 million years. The cores were acquired to build a detailed environmental record spatially associated with the transition from Acheulean to Middle Stone Age technology and extensive turnover in mammalian species. The project seeks precise tests of how climate dynamics and tectonic events were linked with these transitions. Core lithology (A.K. Behrensmeyer), geochronology (A. Deino), diatoms (R.B. Owen), phytoliths (R. Kinyanjui), geochemistry (N. Rabideaux, D. Deocampo), among other indicators, show evidence of strong environmental variability in agreement with predicted high-eccentricity modulation of climate during the evolutionary transitions. Increase in hominin mobility, elaboration of symbolic behavior, and concurrent turnover in mammalian species indicating heightened adaptability to unpredictable ecosystems, point to a direct link between the evolutionary transitions and the landscape dynamics reflected in the Olorgesailie drill cores. For paleoanthropologists and Earth scientists, any link between evolutionary transitions and environmental dynamics requires robust evolutionary datasets pertinent to how selection, extinction, population divergence, and other evolutionary processes were impacted by the dynamics uncovered in drill core studies. Fossil and archeological data offer a rich source of data and of robust environment-evolution explanations that must be integrated into efforts by Earth scientists who seek to examine high-resolution climate records of human evolution. Paleoanthropological examples will illustrate the opportunities that exist for connecting evolutionary benchmarks to the data obtained from drilled African muds. Project members: R. Potts, A.K. Behrensmeyer, E. Beverly, K. Brady, J. Bright, E. Brown, J. Clark, A. Cohen, A. Deino, P. deMenocal, D. Deocampo, R. Dommain, J.T. Faith, J. King, R. Kinyanjui, N. Levin, J. Moerman, V. Muiruri, A. Noren, R.B. Owen, N. Rabideaux, R. Renaut, S. Rucina, J. Russell, J. Scott, M. Stockhecke, K. Uno
NASA Technical Reports Server (NTRS)
Hess, Paul C.; Parmentier, E. M.
1995-01-01
Crystallization of the lunar magma ocean creates a chemically stratified Moon consisting of an anorthositic crust and magma ocean cumulates overlying the primitive lunar interior. Within the magma ocean cumulates the last liquids to crystallize form dense, ilmenite-rich cumulates that contain high concentrations of incompatible radioactive elements. The underlying olivine-orthopyroxene cumulates are also stratified with later crystallized, denser, more Fe-rich compositions at the top. This paper explores the chemical and thermal consequences of an internal evolution model accounting for the possible role of these sources of chemical buoyancy. Rayleigh-Taylor instability causes the dense ilmenite-rich cumulate layer and underlying Fe-rich cumulates to sink toward the center of the Moon, forming a dense lunar core. After this overturn, radioactive heating within the ilmenite-rich cumulate core heats the overlying mantle, causing it to melt. In this model, the source region for high-TiO2 mare basalts is a convectively mixed layer above the core-mantle boundary which would contain small and variable amounts of admixed ilmenite and KREEP. This deep high-pressure melting, as required for mare basalts, occurs after a reasonable time interval to explain the onset of mare basalt volcanism if the content of radioactive elements in the core and the chemical density gradients above the core are sufficiently high but within a range of values that might have been present in the Moon. Regardless of details implied by particular model parameters, gravitational overturn driven by the high density of magma ocean Fe-rich cumulates should concentrate high-TiO2 mare basalt sources, and probably a significant fraction of radioactive heating, toward the center of the Moon. This will have important implications for both the thermal evolution of the Moon and for mare basalt genesis.
Alibardi, Lorenzo; Dalla Valle, Luisa; Nardi, Alessia; Toni, Mattia
2009-04-01
Hard skin appendages in amniotes comprise scales, feathers and hairs. The cell organization of these appendages probably derived from the localization of specialized areas of dermal-epidermal interaction in the integument. The horny scales and the other derivatives were formed from large areas of dermal-epidermal interaction. The evolution of these skin appendages was characterized by the production of specific coiled-coil keratins and associated proteins in the inter-filament matrix. Unlike mammalian keratin-associated proteins, those of sauropsids contain a double beta-folded sequence of about 20 amino acids, known as the core-box. The core-box shows 60%-95% sequence identity with known reptilian and avian proteins. The core-box determines the polymerization of these proteins into filaments indicated as beta-keratin filaments. The nucleotide and derived amino acid sequences for these sauropsid keratin-associated proteins are presented in conjunction with a hypothesis about their evolution in reptiles-birds compared to mammalian keratin-associated proteins. It is suggested that genes coding for ancestral glycine-serine-rich sequences of alpha-keratins produced a new class of small matrix proteins. In sauropsids, matrix proteins may have originated after mutation and enrichment in proline, probably in a central region of the ancestral protein. This mutation gave rise to the core-box, and other regions of the original protein evolved differently in the various reptilians orders. In lepidosaurians, two main groups, the high glycine proline and the high cysteine proline proteins, were formed. In archosaurians and chelonians two main groups later diversified into the high glycine proline tyrosine, non-feather proteins, and into the glycine-tyrosine-poor group of feather proteins, which evolved in birds. The latter proteins were particularly suited for making the elongated barb/barbule cells of feathers. In therapsids-mammals, mutations of the ancestral proteins formed the high glycine-tyrosine or the high cysteine proteins but no core-box was produced in the matrix proteins of the hard corneous material of mammalian derivatives.
NASA Astrophysics Data System (ADS)
Hao, Y.; Smith, M. M.; Mason, H. E.; Carroll, S.
2015-12-01
It has long been appreciated that chemical interactions have a major effect on rock porosity and permeability evolution and may alter the behavior or performance of both natural and engineered reservoir systems. Such reaction-induced permeability evolution is of particular importance for geological CO2 sequestration and storage associated with enhanced oil recovery. In this study we used a three-dimensional Darcy scale reactive transport model to simulate CO2 core flood experiments in which the CO2-equilibrated brine was injected into dolostone cores collected from the Arbuckle carbonate reservoir, Wellington, Kansas. Heterogeneous distributions of macro pores, fractures, and mineral phases inside the cores were obtained from X-ray computed microtomography (XCMT) characterization data, and then used to construct initial model macroscopic properties including porosity, permeability, and mineral compositions. The reactive transport simulations were performed by using the Nonisothermal Unsaturated Flow and Transport (NUFT) code, and their results were compared with experimental data. It was observed both experimentally and numerically that the dissolution fronts became unstable in highly heterogeneous and less permeable formations, leading to the development of highly porous flow paths or wormholes. Our model results indicate that the continuum-scale reactive transport models are able to adequately capture the evolution of distinct dissolution fronts as observed in carbonate rocks at a core scale. The impacts of rock heterogeneity, chemical kinetics and porosity-permeability relationships were also examined in this study. The numerical model developed in this study will not only help improve understanding of coupled physical and chemical processes controlling carbonate dissolution, but also provide a useful basis for upscaling transport and reaction properties from core scale to field scale. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Stellar nucleosynthesis and chemical evolution of the solar neighborhood
NASA Technical Reports Server (NTRS)
Clayton, Donald D.
1988-01-01
Current theoretical models of nucleosynthesis (N) in stars are reviewed, with an emphasis on their implications for Galactic chemical evolution. Topics addressed include the Galactic population II red giants and early N; N in the big bang; star formation, stellar evolution, and the ejection of thermonuclearly evolved debris; the chemical evolution of an idealized disk galaxy; analytical solutions for a closed-box model with continuous infall; and nuclear burning processes and yields. Consideration is given to shell N in massive stars, N related to degenerate cores, and the types of observational data used to constrain N models. Extensive diagrams, graphs, and tables of numerical data are provided.
Origin and thermal evolution of Mars
NASA Technical Reports Server (NTRS)
Schubert, G.; Solomon, Sean C.; Turcotte, D. L.; Drake, M. J.; Sleep, N. H.
1993-01-01
The thermal evolution of Mars is governed by subsolidus mantle convection beneath a thick lithosphere. Models of the interior evolution are developed by parameterizing mantle convective heat transport in terms of mantle viscosity, the superadiabatic temperature rise across the mantle and mantle heat production. Geological, geophysical, and geochemical observations of the composition and structure of the interior and of the timing of major events in Martian evolution, such as global differentiation, atmospheric outgassing and the formation of the hemispherical dichotomy and Tharsis, are used to constrain the model computations. Isotope systematics of SNC meteorites suggest core formation essentially contemporaneously with the completion of accretion. Other aspects of this investigation are discussed.
Using a Delphi process to establish consensus on emergency medicine clerkship competencies.
Penciner, Rick; Langhan, Trevor; Lee, Richard; McEwen, Jill; Woods, Robert A; Bandiera, Glen
2011-01-01
Currently, there is no consensus on the core competencies required for emergency medicine (EM) clerkships in Canada. Existing EM curricula have been developed through informal consensus or local efforts. The Delphi process has been used extensively as a means for establishing consensus. The purpose of this project was to define core competencies for EM clerkships in Canada, to validate a Delphi process in the context of national curriculum development, and to demonstrate the adoption of the CanMEDS physician competency paradigm in the undergraduate medical education realm. Using a modified Delphi process, we developed a consensus amongst a panel of expert emergency physicians from across Canada utilizing the CanMEDS 2005 Physician Competency Framework. Thirty experts from nine different medical schools across Canada participated on the panel. The initial list consisted of 152 competencies organized in the seven domains of the CanMEDS 2005 Physician Competency Framework. After the second round of the Delphi process, the list of competencies was reduced to 62 (59% reduction). This study demonstrated that a modified Delphi process can result in a strong consensus around a realistic number of core competencies for EM clerkships. We propose that such a method could be used by other medical specialties and health professions to develop rotation-specific core competencies.
NASA Astrophysics Data System (ADS)
Jing, Z.; Wang, Y.; Kono, Y.; Yu, T.; Sakamaki, T.; Park, C.; Rivers, M. L.; Sutton, S. R.; Shen, G.
2013-12-01
Geophysical observations based on lunar seismology and laser ranging strongly suggest that the Moon's iron core is partially molten. Similar to Earth and other terrestrial planets, light elements, such as sulfur, silicon, carbon, and oxygen, are likely present in the lunar core. Determining the light element concentration in the outer core is of vital importance to the understanding of the structure, dynamics, and chemical evolution of the Moon, as well as the enigmatic history of the lunar dynamo. Among the candidate elements, sulfur is the preferred major light element in the lunar outer due to its high abundance in the parent bodies of iron meteorites, its high solubility in liquid Fe at the lunar core pressure (~5 GPa), and its strong effects on reducing the density, velocity, and freezing temperature of the core. In this study, we conducted in-situ sound velocity measurements on liquid samples of four different compositions, including pure Fe, Fe-10wt%S, Fe-20wt%S, and Fe-27wt%S, at pressure and temperature conditions up to 8 GPa and 1973 K (encompassing the entire lunar depth range), using the Kawai-type multi-anvil device at the GSECARS beamline 13-ID-D and the Paris-Edinburgh cell at HPCAT beamline 16-BM-B. Our results show that the velocity of Fe-rich liquids increases upon compression, decreases with increasing sulfur content, and is nearly independent of temperature. Compared to the seismic velocity of the outer core, our velocity data constrain the sulfur content at 4×2 wt%, indicating a significantly denser (6.4×0.4 g/cm3) and hotter (1860×60 K) outer core than previously estimated. A new lunar structure model incorporating available geophysical observations points to a smaller core radius. Our model also suggests a top-down solidification scenario for the evolution of the lunar core. Such an 'iron snow' process may have been an important mechanism for the growth of the inner core.
Russell, Anthony G; Watanabe, Yoh-ichi; Charette, J Michael; Gray, Michael W
2005-01-01
Box C/D ribonucleoprotein (RNP) particles mediate O2'-methylation of rRNA and other cellular RNA species. In higher eukaryotic taxa, these RNPs are more complex than their archaeal counterparts, containing four core protein components (Snu13p, Nop56p, Nop58p and fibrillarin) compared with three in Archaea. This increase in complexity raises questions about the evolutionary emergence of the eukaryote-specific proteins and structural conservation in these RNPs throughout the eukaryotic domain. In protists, the primarily unicellular organisms comprising the bulk of eukaryotic diversity, the protein composition of box C/D RNPs has not yet been extensively explored. This study describes the complete gene, cDNA and protein sequences of the fibrillarin homolog from the protozoon Euglena gracilis, the first such information to be obtained for a nucleolus-localized protein in this organism. The E.gracilis fibrillarin gene contains a mixture of intron types exhibiting markedly different sizes. In contrast to most other E.gracilis mRNAs characterized to date, the fibrillarin mRNA lacks a spliced leader (SL) sequence. The predicted fibrillarin protein sequence itself is unusual in that it contains a glycine-lysine (GK)-rich domain at its N-terminus rather than the glycine-arginine-rich (GAR) domain found in most other eukaryotic fibrillarins. In an evolutionarily diverse collection of protists that includes E.gracilis, we have also identified putative homologs of the other core protein components of box C/D RNPs, thereby providing evidence that the protein composition seen in the higher eukaryotic complexes was established very early in eukaryotic cell evolution.
Southern Ocean dust-climate coupling over the past four million years.
Martínez-Garcia, Alfredo; Rosell-Melé, Antoni; Jaccard, Samuel L; Geibert, Walter; Sigman, Daniel M; Haug, Gerald H
2011-08-03
Dust has the potential to modify global climate by influencing the radiative balance of the atmosphere and by supplying iron and other essential limiting micronutrients to the ocean. Indeed, dust supply to the Southern Ocean increases during ice ages, and 'iron fertilization' of the subantarctic zone may have contributed up to 40 parts per million by volume (p.p.m.v.) of the decrease (80-100 p.p.m.v.) in atmospheric carbon dioxide observed during late Pleistocene glacial cycles. So far, however, the magnitude of Southern Ocean dust deposition in earlier times and its role in the development and evolution of Pleistocene glacial cycles have remained unclear. Here we report a high-resolution record of dust and iron supply to the Southern Ocean over the past four million years, derived from the analysis of marine sediments from ODP Site 1090, located in the Atlantic sector of the subantarctic zone. The close correspondence of our dust and iron deposition records with Antarctic ice core reconstructions of dust flux covering the past 800,000 years (refs 8, 9) indicates that both of these archives record large-scale deposition changes that should apply to most of the Southern Ocean, validating previous interpretations of the ice core data. The extension of the record beyond the interval covered by the Antarctic ice cores reveals that, in contrast to the relatively gradual intensification of glacial cycles over the past three million years, Southern Ocean dust and iron flux rose sharply at the Mid-Pleistocene climatic transition around 1.25 million years ago. This finding complements previous observations over late Pleistocene glacial cycles, providing new evidence of a tight connection between high dust input to the Southern Ocean and the emergence of the deep glaciations that characterize the past one million years of Earth history.
Sensoy, Ozge; Moreira, Irina S; Morra, Giulia
2016-09-21
Proteins in the arrestin family exhibit a conserved structural fold that nevertheless allows for significant differences in their selectivity for G-protein coupled receptors (GPCRs) and their phosphorylation states. To reveal the mechanism of activation that prepares arrestin for selective interaction with GPCRs, and to understand the basis for these differences, we used unbiased molecular dynamics simulations to compare the structural and dynamic properties of wild type Arr1 (Arr1-WT), Arr3 (Arr3-WT), and a constitutively active Arr1 mutant, Arr1-R175E, characterized by a perturbation of the phosphate recognition region called "polar core". We find that in our simulations the mutant evolves toward a conformation that resembles the known preactivated structures of an Arr1 splice-variant, and the structurally similar phosphopeptide-bound Arr2-WT, while this does not happen for Arr1-WT. Hence, we propose an activation allosteric mechanism connecting the perturbation of the polar core to a global conformational change, including the relative reorientation of N- and C-domains, and the emergence of electrostatic properties of putative binding surfaces. The underlying local structural changes are interpreted as markers of the evolution of an arrestin structure toward an active-like conformation. Similar activation related changes occur in Arr3-WT in the absence of any perturbation of the polar core, suggesting that this system could spontaneously visit preactivated states in solution. This hypothesis is proposed to explain the lower selectivity of Arr3 toward nonphosphorylated receptors. Moreover, by elucidating the allosteric mechanism underlying activation, we identify functionally critical regions on arrestin structure that can be targeted with drugs or chemical tools for functional modulation.
What Does "the RNA World" Mean to "the Origin of Life"?
Ma, Wentao
2017-11-29
Corresponding to life's two distinct aspects: Darwinian evolution and self-sustainment, the origin of life should also split into two issues: the origin of Darwinian evolution and the arising of self-sustainment. Because the "self-sustainment" we concern about life should be the self-sustainment of a relevant system that is "defined" by its genetic information, the self-sustainment could not have arisen before the origin of Darwinian evolution, which was just marked by the emergence of genetic information. The logic behind the idea of the RNA world is not as tenable as it has been believed. That is, genetic molecules and functional molecules, even though not being the same material, could have emerged together in the beginning and launched the evolution-provided that the genetic molecules can "simply" code the functional molecules. However, due to these or those reasons, alternative scenarios are generally much less convincing than the RNA world. In particular, when considering the accumulating experimental evidence that is supporting a de novo origin of the RNA world, it seems now quite reasonable to believe that such a world may have just stood at the very beginning of life on the Earth. Therewith, we acquire a concrete scenario for our attempts to appreciate those fundamental issues that are involved in the origin of life. In the light of those possible scenes included in this scenario, Darwinian evolution may have originated at the molecular level, realized upon a functional RNA. When two or more functional RNAs emerged, for their efficient cooperation, there should have been a selective pressure for the emergence of protocells. But it was not until the appearance of the "unitary-protocell", which had all of its RNA genes linked into a chromosome, that Darwinian evolution made its full step towards the cellular level-no longer severely constrained by the low-grade evolution at the molecular level. Self-sustainment did not make sense before protocells emerged. The selection pressure that was favoring the exploration of more and more fundamental raw materials resulted in an evolutionary tendency of life to become more and more self-sustained. New functions for the entities to adapt to environments, including those that are involved in the self-sustainment per se, would bring new burdens to the self-sustainment-the advantage of these functions must overweigh the corresponding disadvantage.
Koonin, Eugene V
2006-01-01
Background Ever since the discovery of 'genes in pieces' and mRNA splicing in eukaryotes, origin and evolution of spliceosomal introns have been considered within the conceptual framework of the 'introns early' versus 'introns late' debate. The 'introns early' hypothesis, which is closely linked to the so-called exon theory of gene evolution, posits that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. Under this scenario, the absence of spliceosomal introns in prokaryotes is considered to be a result of "genome streamlining". The 'introns late' hypothesis counters that spliceosomal introns emerged only in eukaryotes, and moreover, have been inserted into protein-coding genes continuously throughout the evolution of eukaryotes. Beyond the formal dilemma, the more substantial side of this debate has to do with possible roles of introns in the evolution of eukaryotes. Results I argue that several lines of evidence now suggest a coherent solution to the introns-early versus introns-late debate, and the emerging picture of intron evolution integrates aspects of both views although, formally, there seems to be no support for the original version of introns-early. Firstly, there is growing evidence that spliceosomal introns evolved from group II self-splicing introns which are present, usually, in small numbers, in many bacteria, and probably, moved into the evolving eukaryotic genome from the α-proteobacterial progenitor of the mitochondria. Secondly, the concept of a primordial pool of 'virus-like' genetic elements implies that self-splicing introns are among the most ancient genetic entities. Thirdly, reconstructions of the ancestral state of eukaryotic genes suggest that the last common ancestor of extant eukaryotes had an intron-rich genome. Thus, it appears that ancestors of spliceosomal introns, indeed, have existed since the earliest stages of life's evolution, in a formal agreement with the introns-early scenario. However, there is no evidence that these ancient introns ever became widespread before the emergence of eukaryotes, hence, the central tenet of introns-early, the role of introns in early evolution of proteins, has no support. However, the demonstration that numerous introns invaded eukaryotic genes at the outset of eukaryotic evolution and that subsequent intron gain has been limited in many eukaryotic lineages implicates introns as an ancestral feature of eukaryotic genomes and refutes radical versions of introns-late. Perhaps, most importantly, I argue that the intron invasion triggered other pivotal events of eukaryogenesis, including the emergence of the spliceosome, the nucleus, the linear chromosomes, the telomerase, and the ubiquitin signaling system. This concept of eukaryogenesis, in a sense, revives some tenets of the exon hypothesis, by assigning to introns crucial roles in eukaryotic evolutionary innovation. Conclusion The scenario of the origin and evolution of introns that is best compatible with the results of comparative genomics and theoretical considerations goes as follows: self-splicing introns since the earliest stages of life's evolution – numerous spliceosomal introns invading genes of the emerging eukaryote during eukaryogenesis – subsequent lineage-specific loss and gain of introns. The intron invasion, probably, spawned by the mitochondrial endosymbiont, might have critically contributed to the emergence of the principal features of the eukaryotic cell. This scenario combines aspects of the introns-early and introns-late views. Reviewers this article was reviewed by W. Ford Doolittle, James Darnell (nominated by W. Ford Doolittle), William Martin, and Anthony Poole. PMID:16907971
NASA Astrophysics Data System (ADS)
Ferraro, F. R.; Lanzoni, B.; Raso, S.; Nardiello, D.; Dalessandro, E.; Vesperini, E.; Piotto, G.; Pallanca, C.; Beccari, G.; Bellini, A.; Libralato, M.; Anderson, J.; Aparicio, A.; Bedin, L. R.; Cassisi, S.; Milone, A. P.; Ortolani, S.; Renzini, A.; Salaris, M.; van der Marel, R. P.
2018-06-01
The parameter A +, defined as the area enclosed between the cumulative radial distribution of blue straggler stars (BSSs) and that of a reference population, is a powerful indicator of the level of BSS central segregation. As part of the Hubble Space Telescope UV Legacy Survey of Galactic globular clusters (GCs), here we present the BSS population and the determination of A + in 27 GCs observed out to about one half-mass radius. In combination with 21 additional clusters discussed in a previous paper, this provides us with a global sample of 48 systems (corresponding to ∼32% of the Milky Way GC population), for which we find a strong correlation between A + and the ratio of cluster age to the current central relaxation time. Tight relations have also been found with the core radius and the central luminosity density, which are expected to change with the long-term cluster dynamical evolution. An interesting relation is emerging between A + and the ratio of the BSS velocity dispersion relative to that of main sequence turn-off stars, which measures the degree of energy equipartition experienced by BSSs in the cluster. These results provide further confirmation that BSSs are invaluable probes of GC internal dynamics and that A + is a powerful dynamical clock.
Genome Dynamics and Evolution of the Mla (Powdery Mildew) Resistance Locus in BarleyW⃞
Wei, Fusheng; Wing, Rod A.; Wise, Roger P.
2002-01-01
Genes that confer defense against pathogens often are clustered in the genome and evolve via diverse mechanisms. To evaluate the organization and content of a major defense gene complex in cereals, we determined the complete sequence of a 261-kb BAC contig from barley cv Morex that spans the Mla (powdery mildew) resistance locus. Among the 32 predicted genes on this contig, 15 are associated with plant defense responses; 6 of these are associated with defense responses to powdery mildew disease but function in different signaling pathways. The Mla region is organized as three gene-rich islands separated by two nested complexes of transposable elements and a 45-kb gene-poor region. A heterochromatic-like region is positioned directly proximal to Mla and is composed of a gene-poor core with 17 families of diverse tandem repeats that overlap a hypermethylated, but transcriptionally active, gene-dense island. Paleontology analysis of long terminal repeat retrotransposons indicates that the present Mla region evolved over a period of >7 million years through a variety of duplication, inversion, and transposon-insertion events. Sequence-based recombination estimates indicate that R genes positioned adjacent to nested long terminal repeat retrotransposons, such as Mla, do not favor recombination as a means of diversification. We present a model for the evolution of the Mla region that encompasses several emerging features of large cereal genomes. PMID:12172030
NASA Technical Reports Server (NTRS)
Righter, K.; Pando, K.; Danielson, L.
2014-01-01
Numerous geophysical and geochemical studies have suggested the existence of a small metallic lunar core, but the composition of that core is not known. Knowledge of the composition can have a large impact on the thermal evolution of the core, its possible early dynamo creation, and its overall size and fraction of solid and liquid. Thermal models predict that the current temperature at the core-mantle boundary of the Moon is near 1650 K. Re-evaluation of Apollo seismic data has highlighted the need for new data in a broader range of bulk core compositions in the PT range of the lunar core. Geochemical measurements have suggested a more volatile-rich Moon than previously thought. And GRAIL mission data may allow much better constraints on the physical nature of the lunar core. All of these factors have led us to determine new phase equilibria experimental studies in the Fe-Ni-S-C-Si system in the relevant PT range of the lunar core that will help constrain the composition of Moon's core.
Swat, Maciej H; Thomas, Gilberto L; Shirinifard, Abbas; Clendenon, Sherry G; Glazier, James A
2015-01-01
Tumor cells and structure both evolve due to heritable variation of cell behaviors and selection over periods of weeks to years (somatic evolution). Micro-environmental factors exert selection pressures on tumor-cell behaviors, which influence both the rate and direction of evolution of specific behaviors, especially the development of tumor-cell aggression and resistance to chemotherapies. In this paper, we present, step-by-step, the development of a multi-cell, virtual-tissue model of tumor somatic evolution, simulated using the open-source CompuCell3D modeling environment. Our model includes essential cell behaviors, microenvironmental components and their interactions. Our model provides a platform for exploring selection pressures leading to the evolution of tumor-cell aggression, showing that emergent stratification into regions with different cell survival rates drives the evolution of less cohesive cells with lower levels of cadherins and higher levels of integrins. Such reduced cohesivity is a key hallmark in the progression of many types of solid tumors.
Swat, Maciej H.; Thomas, Gilberto L.; Shirinifard, Abbas; Clendenon, Sherry G.; Glazier, James A.
2015-01-01
Tumor cells and structure both evolve due to heritable variation of cell behaviors and selection over periods of weeks to years (somatic evolution). Micro-environmental factors exert selection pressures on tumor-cell behaviors, which influence both the rate and direction of evolution of specific behaviors, especially the development of tumor-cell aggression and resistance to chemotherapies. In this paper, we present, step-by-step, the development of a multi-cell, virtual-tissue model of tumor somatic evolution, simulated using the open-source CompuCell3D modeling environment. Our model includes essential cell behaviors, microenvironmental components and their interactions. Our model provides a platform for exploring selection pressures leading to the evolution of tumor-cell aggression, showing that emergent stratification into regions with different cell survival rates drives the evolution of less cohesive cells with lower levels of cadherins and higher levels of integrins. Such reduced cohesivity is a key hallmark in the progression of many types of solid tumors. PMID:26083246
NASA Astrophysics Data System (ADS)
Lipson, Andrei; Castano, Carlos; Miley, George; Lipson, Andrei; Lyakhov, Boris; Mitin, Alexander
2006-02-01
Transport and magnetic properties of hydrogen cycled PdHx and Pd/PdO:Hx (x ~ (4/6) × 10-4) nano-composite consisting of a Pd matrix with hydrogen trapped inside dislocation cores have been studied. The results suggest emergence of a high-temperature superconductivity state of a condensed hydrogen phase confined inside deep dislocation cores in the Pd matrix. The possible role of hydrogen/deuterium filled dislocation nano-tubes is discussed. These dislocation cores could be considered as active centers of LENR triggering due to (i) short D-D separation distance (~Bohr radius); (ii) high-local D-loading in the Pd and the corresponding effective lattice compression; (iii) a large optic phonon energy resulting in a most effective lattice-nuclei energy transfer.
Manoharan, Ganesh; Walton, Antony S; Brecker, Stephen J; Pasupati, Sanjeevan; Blackman, Daniel J; Qiao, Hongyan; Meredith, Ian T
2015-08-24
The purpose of this study was to prospectively evaluate the safety and clinical performance of the CoreValve Evolut R transcatheter aortic valve replacement (TAVR) system (Medtronic, Inc., Minneapolis, Minnesota) in a single-arm, multicenter pivotal study in high- or extreme-risk patients with symptomatic aortic valve stenosis. Although outcomes following TAVR are improving, challenges still exist. The repositionable 14-F equivalent CoreValve Evolut R TAVR system was developed to mitigate some of these challenges. Suitable patients (n = 60) underwent TAVR with a 26- or 29-mm Evolut R valve. Primary safety endpoints were mortality and stroke at 30 days. Primary clinical performance endpoints were device success per the VARC-2 (Valve Academic Research Consortium-2) and the percent of patients with mild or less aortic regurgitation 24 h to 7 days post-procedure. Patients (66.7% female; mean age 82.8 ± 6.1 years; Society of Thoracic Surgeons Score 7.0 ± 3.7%) underwent TAVR via the transfemoral route in 98.3%, using a 29-mm valve in 68.3% of patients. All attempts at repositioning were successful. No death or stroke was observed up to 30 days. The VARC-2 overall device success rate was 78.6%. Paravalvular regurgitation post TAVR was mild or less in 96.6%, moderate in 3.4%, and severe in 0% at 30 days. Major vascular complications occurred in 8.3%, and permanent pacemaker implantation was required in 11.7% of patients. The repositionable 14-F equivalent Evolut R TAVR system is safe and effective at treating high-risk symptomatic aortic stenosis patients. Repositioning was successful when required in all patients, with low rates of moderate or severe paravalvular aortic regurgitation and low permanent pacemaker implantation. (The Medtronic CoreValve™ Evolut R™ CE Mark Clinical Study; NCT01876420). Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Mars Geological Province Designations for the Interpretation of GRS Data
NASA Technical Reports Server (NTRS)
Dohm, J. M.; Kerry, K.; Baker, V. R.; Boynton, W.; Maruyama, Shige; Anderson, R. C.
2005-01-01
Introduction: An overarching geologic theory, GEOMARS, coherently explains many otherwise anomalous aspects of the geological history of Mars. Premises for a theory of martian geologic evolution include: (1) Mars is a water-rich terrestrial planet, (2) terrestrial planets should evolve through progressive stages of dynamical history (accretion, differentiation, tectonism) and mantle convection (magma ocean, plate tectonism, stagnant lid), and (3) the early history of Earth affords an analogue to the evolution of Mars. The theory describes the following major stages of evolution for Mars (from oldest to youngest): Stage 1 - shortly after accretion, Mars differentiates to a liquid metallic core, a mantle boundary (MBL) of high-pressure silicate mineral phases, upper mantle, magma ocean, thin komatiic crust, and convecting steam atmosphere; Stage 2- Mars cools to condense its steam atmosphere and transform its mode of mantle convection to plate tectonism; subduction of waterrich oceanic crust initiates arc volcanism and transfers water, carbonates and sulfates to the mantle; Stage 3 - the core dynamo initiates, and the associated magnetosphere leads to conditions conducive to the development of near-surface life and photosynthetic production of oxygen; Stage 4 - accretion of thickened, continental crust and subduction of hydrated oceanic crust to the mantle boundary layer and lower mantle of Mars occurs; Stage 5 - the core dynamo stops during Noachian heavy bombardment while plate tectonism continues; Stage 6 - initiation of the Tharsis superplume (approx. between 4.0 and 3.8Ga) occurs, and Stage 7 - the superlume phase (stagnant-lid regime) of martian planetary evolution with episodic phases of volcanism and water outflows continues into the present. The GEOMARS Theory is testable through a multidisciplinary approach, including utilizing GRS-based information. Based on a synthesis of published geologic, paleohydrologic, topographic, geophysical, spectral, and elemental information, we have defined geologic provinces that represent significant windows into the geological evolution of Mars, unfolding the GEOMARS Theory and forming the basis for interpreting GRS data.
Planetary Origin Evolution and Structure
NASA Technical Reports Server (NTRS)
Stevenson, David J.
2005-01-01
This wide-ranging grant supported theoretical modeling on many aspects of the formation, evolution and structure of planets and satellites. Many topics were studied during this grant period, including the evolution of icy bodies; the origin of magnetic fields in Ganymede; the thermal histories of terrestrial planets; the nature of flow inside giant planets (especially the coupling to the magnetic field) and the dynamics of silicate/iron mixing during giant impacts and terrestrial planet core formation. Many of these activities are ongoing and have not reached completion. This is the nature of this kind of research.
Tectonomagmatic evolution of the Earth and Moon
NASA Astrophysics Data System (ADS)
Sharkov, E. V.; Bogatikov, O. A.
2010-03-01
The Earth and Moon evolved following a similar scenario. The formation of their protocrusts started with upward crystallization of global magmatic oceans. As a result of this process, easily fusible components accumulated in the course of fractional crystallization of melt migrating toward the surface. The protocrusts (granitic in the Earth and anorthositic in the Moon) are retained in ancient continents. The tectonomagmatic activity at the early stage of planet evolution was related to the ascent of mantle plume of the first generation composed of mantle material depleted due to the formation of protocrusts. The regions of extension, rise, and denudation were formed in the Earth above the diffluent heads of such superplumes (Archean granite-greenstone domains and Paleoproterozoic cratons), whereas granulite belts as regions of compression, subsidence, and sedimentation arose above descending mantle flows. The situation may be described in terms of plume tectonics. Gentle uplifts and basins ( thalassoids) in lunar continents are probable analogues of these structural elements in the Moon. The period of 2.3-2.0 Ga ago was a turning point in the tectonomagmatic evolution of the Earth, when geochemically enriched Fe-Ti picrites and basalts typical of Phanerozoic within-plate magmatism became widespread. The environmental setting on the Earth’s surface changed at that time, as well. Plate tectonics, currently operating on a global scale, started to develop about ˜2 Ga ago. This turn was related to the origination of thermochemical mantle plumes of the second generation at the interface of the liquid Fe-Ni core and silicate mantle. A similar turning point in the lunar evolution probably occurred 4.2-3.9 Ga ago and completed with the formation of large depressions ( seas) with thinned crust and vigorous basaltic magmatism. Such a sequence of events suggests that qualitatively new material previously retained in the planets’ cores was involved in tectonomagmatic processes at the middle stage of planetary evolution. This implies that the considered bodies initially were heterogeneous and were then heated from above to the bottom by propagation of a thermal wave accompanied by cooling of outer shells. Going through the depleted mantle, this wave generated thermal superplumes of the first generation. Cores close to the Fe + FeS eutectics in composition were affected by this wave in the last turn. The melting of the cores resulted in the appearance of thermochemical superplumes and corresponding irreversible rearrangement of geotectonic processes.
Molecular evolution of emerging Banna virus.
Liu, Hong; Gao, Xiao-Yan; Fu, Shi-Hong; Li, Ming-Hua; Zhai, You-Gang; Meng, Wei-Shan; Sun, Xiao-Hong; Lv, Zhi; Wang, Huan-Yu; Shen, Xin-Xin; Cao, Yu-Xi; He, Ying; Liang, Guo-Dong
2016-11-01
Banna virus (BAV) is an emerging pathogen that causes human viral encephalitis and has been isolated from types of blood-sucking insects and mammals in Asia. However, there are no reported systematic studies that describe the origin and evolution of BAV. Here, a phylogenetic analysis of BAVs isolated from a variety of potential vectors and vertebrate hosts worldwide revealed that BAVs emerged in the beginning of the 20th century and do not exhibit a species barrier. The mean substitution rate of BAVs was 2.467×10 -2 substitution/site/year (95% HPD, 1.093×10 -3 to 5.628×10 -2 ). The lineage is mainly composed of BAVs from high-latitude regions, which are the most recently emerged viruses with significantly higher substitution rates compared with the lineage comprised of the isolates from middle or low-latitude regions. The genetic differences between BAV strains are positively correlated with the geographic distribution. Strains from the same latitude regions are almost 100% identical, whereas the differences between strains from long distance regions with different latitudes could be >60%. Our results demonstrate that BAV is an emerging virus at a stage that involves rapid evolution and has great potential for introduction into non-endemic areas. Thus, enhanced surveillance of BAV is highly recommended worldwide. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA's Earth Science Data Systems
NASA Technical Reports Server (NTRS)
Ramapriyan, H. K.
2015-01-01
NASA's Earth Science Data Systems (ESDS) Program has evolved over the last two decades, and currently has several core and community components. Core components provide the basic operational capabilities to process, archive, manage and distribute data from NASA missions. Community components provide a path for peer-reviewed research in Earth Science Informatics to feed into the evolution of the core components. The Earth Observing System Data and Information System (EOSDIS) is a core component consisting of twelve Distributed Active Archive Centers (DAACs) and eight Science Investigator-led Processing Systems spread across the U.S. The presentation covers how the ESDS Program continues to evolve and benefits from as well as contributes to advances in Earth Science Informatics.
Discussion of examination of a cored hydraulic fracture in a deep gas well
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nolte, K.G.
Warpinski et al. document information found from a core through a formation after a hydraulic fracture treatment. As they indicate, the core provides the first detailed evaluation of an actual propped hydraulic fracture away from the well and at a significant depth, and this evaluation leads to findings that deviate substantially from the assumptions incorporated into current fracturing models. In this discussion, a defense of current fracture design assumptions is developed. The affirmation of current assumptions, for general industry applications, is based on an assessment of the global impact of the local complexity found in the core. The assessment leadsmore » to recommendations for the evolution of fracture design practice.« less
Key characteristics of the Fe-snow regime in Ganymede's core
NASA Astrophysics Data System (ADS)
Rückriemen, Tina; Breuer, Doris; Spohn, Tilman
2014-05-01
Ganymede shows signs of an internally produced dipolar magnetic field (|Bdip|≡719 nT) [1]. For small planetary bodies such as Ganymede the Fe-snow regime, i.e. the top-down solidification of iron, has been suggested to play an important role in the core cooling history [2,3]. In that regime, iron crystals form first at the core-mantle boundary (CMB) due to shallow or negative slopes of the melting temperature [2,3]. The solid iron particles are heavier than the surrounding Fe-FeS fluid, i.e. a snow zone forms, settle to deeper core regions, where the core temperature is higher than the melting temperature, and remelt again. As a consequence, a stable chemical gradient in the Fe-FeS fluid arises within the snow zone. We speculate this style of convection via sedimentation to be small scale, therefore it lacks an important criterion necessary for dynamo action [4]. Below this zone, whose thickness increases with time, the process of remelting of iron creates a gravitationally unstable situation. We propose that this could be the driving mechanism for a potential dynamo. However, dynamo action would be restricted to the time period the snow zone needs to grow across the core. With a 1D thermo-chemical evolution model, we investigate key characteristics of the Fe-snow regime within Ganymede's core: the compositional density gradient of the fluid Fe-FeS within the snow zone and the time period necessary to grow the snow zone across the core. Additionally, we determine the dipolar magnetic field strength associated with a dynamo in Ganymede's deeper fluid core. We vary important input paramters such as the initial sulfur concentration (7-19 wt.%), the core heat flux (2-6 mW/m2) and the thermal conductivity (20-60 W/mK) with the nominal model being: xs=10 wt.%, qcmb=4 mW/m2, kc=32 W/mK. We find, that heat fluxes higher than 6 or 22 mW/m2 are required for double-diffusive or overturning convection to overcome the compositional density gradient within the snow zone, respectively. Since Ganymede's core heat flux does not exceed values of 4 mW/m2 [2], we consider the snow zone to be stable against thermal convection. The time necessary to grow the snow zone across the core is between 230-1900 Myr. For representative models we calculate the temporal evolution of the surface dipolar magnetic field strength according to [5]. All models show surface dipolar magnetic field strengths during the evolution of the snow zone that match the observed value of |Bdip|≡719 nT. In conclusion, we find that the Fe-snow regime produces a stably-stratified liquid layer in the snow zone below which a magnetic field of observed strength can be generated. Such a chemical dynamo is restricted in time and stops as soon as an inner solid core starts to grow suggesting the absence of such an inner core in Ganymede. The present model further suggests a core with high initial sulfur concentration, because this leads to a late start and a long duration of the dynamo necessary to explain the present magnetic field. References [1] Kivelson, M et al. (1996), Nature, 384(6609), [2] Hauck II, S. et al. (2006), JGR, 111(E9), [3] Williams, Q. (2009), EPSL, 284(3), [4] Christensen, U. and J. Wicht (2007), Treatise of Geophysics, Elsevier, [5] Christensen, U., and J. Aubert (2006), GJI, 166(1)
Early animal evolution: emerging views from comparative biology and geology
NASA Technical Reports Server (NTRS)
Knoll, A. H.; Carroll, S. B.
1999-01-01
The Cambrian appearance of fossils representing diverse phyla has long inspired hypotheses about possible genetic or environmental catalysts of early animal evolution. Only recently, however, have data begun to emerge that can resolve the sequence of genetic and morphological innovations, environmental events, and ecological interactions that collectively shaped Cambrian evolution. Assembly of the modern genetic tool kit for development and the initial divergence of major animal clades occurred during the Proterozoic Eon. Crown group morphologies diversified in the Cambrian through changes in the genetic regulatory networks that organize animal ontogeny. Cambrian radiation may have been triggered by environmental perturbation near the Proterozoic-Cambrian boundary and subsequently amplified by ecological interactions within reorganized ecosystems.
Germ layers, the neural crest and emergent organization in development and evolution.
Hall, Brian K
2018-04-10
Discovered in chick embryos by Wilhelm His in 1868 and named the neural crest by Arthur Milnes Marshall in 1879, the neural crest cells that arise from the neural folds have since been shown to differentiate into almost two dozen vertebrate cell types and to have played major roles in the evolution of such vertebrate features as bone, jaws, teeth, visceral (pharyngeal) arches, and sense organs. I discuss the discovery that ectodermal neural crest gave rise to mesenchyme and the controversy generated by that finding; the germ layer theory maintained that only mesoderm could give rise to mesenchyme. A second topic of discussion is germ layers (including the neural crest) as emergent levels of organization in animal development and evolution that facilitated major developmental and evolutionary change. The third topic is gene networks, gene co-option, and the evolution of gene-signaling pathways as key to developmental and evolutionary transitions associated with the origin and evolution of the neural crest and neural crest cells. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Jin, Sheng; Mordasini, Christoph
2018-02-01
We use an end-to-end model of planet formation, thermodynamic evolution, and atmospheric escape to investigate how the statistical imprints of evaporation depend on the bulk composition of planetary cores (rocky versus icy). We find that the population-wide imprints like the location of the “evaporation valley” in the distance–radius plane and the corresponding bimodal radius distribution clearly differ depending on the bulk composition of the cores. Comparison with the observed position of the valley suggests that close-in low-mass Kepler planets have a predominantly Earth-like rocky composition. Combined with the excess of period ratios outside of MMR, this suggests that low-mass Kepler planets formed inside of the water iceline but were still undergoing orbital migration. The core radius becomes visible for planets losing all primordial H/He. For planets in this “triangle of evaporation” in the distance–radius plane, the degeneracy in composition is reduced. In the observed planetary mass–mean density diagram, we identify a trend to more volatile-rich compositions with an increasing radius (R/R ⊕ ≲ 1.6 rocky; 1.6–3.0 ices, and/or H/He ≳3: H/He). The mass–density diagram contains important information about formation and evolution. Its characteristic broken V-shape reveals the transitions from solid planets to low-mass core-dominated planets with H/He and finally to gas-dominated giants. Evaporation causes the density and orbital distance to be anticorrelated for low-mass planets in contrast to giants, where closer-in planets are less dense, likely due to inflation. The temporal evolution of the statistical properties reported here will be of interest for the PLATO 2.0 mission, which will observe the temporal dimension.
NASA Astrophysics Data System (ADS)
Faure, Guilhem; Koonin, Eugene V.
2015-05-01
Robustness to destabilizing effects of mutations is thought of as a key factor of protein evolution. The connections between two measures of robustness, the relative core size and the computationally estimated effect of mutations on protein stability (ΔΔG), protein abundance and the selection pressure on protein-coding genes (dN/dS) were analyzed for the organisms with a large number of available protein structures including four eukaryotes, two bacteria and one archaeon. The distribution of the effects of mutations in the core on protein stability is universal and indistinguishable in eukaryotes and bacteria, centered at slightly destabilizing amino acid replacements, and with a heavy tail of more strongly destabilizing replacements. The distribution of mutational effects in the hyperthermophilic archaeon Thermococcus gammatolerans is significantly shifted toward strongly destabilizing replacements which is indicative of stronger constraints that are imposed on proteins in hyperthermophiles. The median effect of mutations is strongly, positively correlated with the relative core size, in evidence of the congruence between the two measures of protein robustness. However, both measures show only limited correlations to the expression level and selection pressure on protein-coding genes. Thus, the degree of robustness reflected in the universal distribution of mutational effects appears to be a fundamental, ancient feature of globular protein folds whereas the observed variations are largely neutral and uncoupled from short term protein evolution. A weak anticorrelation between protein core size and selection pressure is observed only for surface residues in prokaryotes but a stronger anticorrelation is observed for all residues in eukaryotic proteins. This substantial difference between proteins of prokaryotes and eukaryotes is likely to stem from the demonstrable higher compactness of prokaryotic proteins.
The Planck Catalogue of Galactic Cold Clumps : Looking at the early stages of star-formation
NASA Astrophysics Data System (ADS)
Montier, Ludovic
2015-08-01
The Planck satellite has provided an unprecedented view of the submm sky, allowing us to search for the dust emission of Galactic cold sources. Combining Planck-HFI all-sky maps in the high frequency channels with the IRAS map at 100um, we built the Planck catalogue of Galactic Cold Clumps (PGCC, Planck 2015 results XXVIII 2015), counting 13188 sources distributed over the whole sky, and following mainly the Galactic structures at low and intermediate latitudes. This is the first all-sky catalogue of Galactic cold sources obtained with a single instrument at this resolution and sensitivity, which opens a new window on star-formation processes in our Galaxy.I will briefly describe the colour detection method used to extract the Galactic cold sources, i.e., the Cold Core Colour Detection Tool (CoCoCoDeT, Montier et al. 2010), and its application to the Planck data. I will discuss the statistical distribution of the properties of the PGCC sources (in terms of dust temperature, distance, mass, density and luminosity), which illustrates that the PGCC catalogue spans a large variety of environments and objects, from molecular clouds to cold cores, and covers various stages of evolution. The Planck catalogue is a very powerful tool to study the formation and the evolution of prestellar objects and star-forming regions.I will finally present an overview of the Herschel Key Program Galactic Cold Cores (PI. M.Juvela), which allowed us to follow-up about 350 Planck Galactic Cold Clumps, in various stages of evolution and environments. With this program, the nature and the composition of the 5' Planck sources have been revealed at a sub-arcmin resolution, showing very different configurations, such as starless cold cores or multiple Young Stellar objects still embedded in their cold envelope.
Fernandez-Duque, Eduardo
2017-01-01
Using published and new data from a population of monogamous owl monkeys in the Argentinean Chaco, I examine the hypothesis that social monogamy is a default social system imposed upon males because the spatial and/or temporal distribution of resources and females makes it difficult for a single male to defend access to more than one mate. First, I examine a set of predictions on ranging patterns, use of space, and population density. This first section is followed by a second one considering predictions related to the abundance and distribution of food. Finally, I conclude with a section attempting to link the ranging and ecological data to demographic and life-history parameters as proxies for reproductive success. In support of the hypothesis, owl monkey species do live at densities (7 to 64 ind/km2) that are predicted for monogamous species, but groups occupy home ranges and core areas that vary substantially in size, with pronounced overlap of home ranges, but not of core areas. There are strong indications that the availability of food sources in the core areas during the dry season may be of substantial importance for regulating social monogamy in owl monkeys. Finally, none of the proxies for the success of groups were strongly related to the size of the home range or core area. The results I present do not support conclusively any single explanation for the evolution of social monogamy in owl monkeys, but they help us to better understand how it may function. Moreover, the absence of conclusive answers linking ranging, ecology, and reproductive success with the evolution of social monogamy in primates, offer renewed motivation for continuing to explore the evolution of monogamy in owl monkeys. PMID:25931263
Fernandez-Duque, Eduardo
2016-03-01
Using published and new data from a population of monogamous owl monkeys in the Argentinean Chaco, I examine the hypothesis that social monogamy is a default social system imposed upon males because the spatial and/or temporal distribution of resources and females makes it difficult for a single male to defend access to more than one mate. First, I examine a set of predictions on ranging patterns, use of space, and population density. This first section is followed by a second one considering predictions related to the abundance and distribution of food. Finally, I conclude with a section attempting to link the ranging and ecological data to demographic and life-history parameters as proxies for reproductive success. In support of the hypothesis, owl monkey species do live at densities (7-64 ind/km(2) ) that are predicted for monogamous species, but groups occupy home ranges and core areas that vary substantially in size, with pronounced overlap of home ranges, but not of core areas. There are strong indications that the availability of food sources in the core areas during the dry season may be of substantial importance for regulating social monogamy in owl monkeys. Finally, none of the proxies for the success of groups were strongly related to the size of the home range or core area. The results I present do not support conclusively any single explanation for the evolution of social monogamy in owl monkeys, but they help us to better understand how it may function. Moreover, the absence of conclusive answers linking ranging, ecology, and reproductive success with the evolution of social monogamy in primates, offer renewed motivation for continuing to explore the evolution of monogamy in owl monkeys. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hongbin; Szilard, Ronaldo; Epiney, Aaron
Under the auspices of the DOE LWRS Program RISMC Industry Application ECCS/LOCA, INL has engaged staff from both South Texas Project (STP) and the Texas A&M University (TAMU) to produce a generic pressurized water reactor (PWR) model including reactor core, clad/fuel design and systems thermal hydraulics based on the South Texas Project (STP) nuclear power plant, a 4-Loop Westinghouse PWR. A RISMC toolkit, named LOCA Toolkit for the U.S. (LOTUS), has been developed for use in this generic PWR plant model to assess safety margins for the proposed NRC 10 CFR 50.46c rule, Emergency Core Cooling System (ECCS) performance duringmore » LOCA. This demonstration includes coupled analysis of core design, fuel design, thermalhydraulics and systems analysis, using advanced risk analysis tools and methods to investigate a wide range of results. Within this context, a multi-physics best estimate plus uncertainty (MPBEPU) methodology framework is proposed.« less
The thermal evolution and dynamo generation of Mercury with an Fe-Si core
NASA Astrophysics Data System (ADS)
Knibbe, Jurrien
2017-04-01
The present day partially liquid (as opposed to fully solidified) Fe-rich core of Mercury is traditionally explained by assuming a substantial amount of S to be present in the core (e.g. Grott et al., 2011), because S lowers the core's melting temperature. However, this assumption has problematic implications: Mercury's large Fe-rich core and measured low FeO surface content are indicative of an oxygen poor bulk composition, which is consistent with the volatile-poor material that is expected to have condensed from the solar nebula close to the Sun. In contrast, S is a moderately volatile element. Combined with the high S content of Mercury's crust and (likely) mantle, as indicated by the measured high S/Si surface fraction, the resulting high planetary S abundance is difficult to reconcile with a volatile poor origin of the planet. Additionally, the observed low magnetic field strength is most easily explained if compositional buoyancy fluxes are absent [Manglik et al., 2010], yet such fluxes are produced upon solidifying a pure Fe inner core from Fe-S liquid. Alternatively, both Mercury's high S/Si and Mg/Si surface ratios (Nittler et al., 2011) may indicate that a siderophile fractionation of Si and lithophile fractionation of S took place during Mercury's core-mantle differentiation. This fractionation behaviour of these elements is supported by metal/silicate partitioning experiments that have been performed at the low oxygen conditions inferred for Mercury [e.g. Chabot et al., 2014]. Mercury's bulk composition, in terms of S/Si and Fe/Si ratios, would also approach that of meteorites that are considered as potential building blocks of the planet if the core is Si-rich and S-poor. Here we simulate the thermal evolution of Mercury with an Fe-Si core. Results show that an Fe-Si core can remain largely molten until present, without the need for S. An Fe-Si core also has interesting implications for Mercury's core-convection regime and magnetic field generation. The non-preferential Si fractionation between solid and liquid metal does not produce a compositional gradient, such that compositional buoyancy fluxes are negligible. Additionally, thermally driven core convection is more efficient as a result of a high latent heat release upon solidifying Si-rich metal. Implications of this scenario for Mercury's magnetic field strength and geometry need to be further examined.
Jacquet, Gabrielle A; Vu, Alexander; Ewen, William B; Hansoti, Bhakti; Andescavage, Steven; Price, David; Suter, Robert E; Bayram, Jamil D
2014-01-01
Experts have proposed core curriculum components for international emergency medicine (IEM) fellowships. This study examined perceptions of program directors (PDs) and fellows on whether IEM fellowships cover these components, whether their perspectives differ and the barriers preventing fellowships from covering them. From 1 November 2011 to 30 November 2011, a survey was administered to PDs, current fellows and recent graduates of the 34 US IEM fellowships. Respondents quantified their fellowship experience in six proposed core curriculum areas: emergency medicine (EM) systems development, EM education, humanitarian assistance, public health, emergency medical services and disaster medicine. Analysis was performed regarding what per cent of programmes fulfil the six curriculum areas. A paired t test determined the difference between PDs' and fellows' responses. Agreement between PDs and fellows within the same programme was determined using a κ statistic. Only 1/18 (6%) (according to fellows) to 2/24 (8%) (according to PDs) of programmes expose fellows to all six components. PDs consistently reported higher exposure than fellows. The difference in mean score between PDs and fellows was statistically significant (p<0.05) in three of the 6 (50%) core curriculum elements: humanitarian aid, public health and disaster medicine. Per cent agreement between PDs and fellows within each programmes ranged from poor to fair. While IEM fellowships have varying structure, this study highlights the importance of further discussion between PDs and fellows regarding delineation and objectives of core curriculum components. Transparent curricula and open communication between PDs and fellows may reduce differences in reported experiences.
Defining Tobacco Regulatory Science Competencies.
Wipfli, Heather L; Berman, Micah; Hanson, Kacey; Kelder, Steven; Solis, Amy; Villanti, Andrea C; Ribeiro, Carla M P; Meissner, Helen I; Anderson, Roger
2017-02-01
In 2013, the National Institutes of Health and the Food and Drug Administration funded a network of 14 Tobacco Centers of Regulatory Science (TCORS) with a mission that included research and training. A cross-TCORS Panel was established to define tobacco regulatory science (TRS) competencies to help harmonize and guide their emerging educational programs. The purpose of this paper is to describe the Panel's work to develop core TRS domains and competencies. The Panel developed the list of domains and competencies using a semistructured Delphi method divided into four phases occurring between November 2013 and August 2015. The final proposed list included a total of 51 competencies across six core domains and 28 competencies across five specialized domains. There is a need for continued discussion to establish the utility of the proposed set of competencies for emerging TRS curricula and to identify the best strategies for incorporating these competencies into TRS training programs. Given the field's broad multidisciplinary nature, further experience is needed to refine the core domains that should be covered in TRS training programs versus knowledge obtained in more specialized programs. Regulatory science to inform the regulation of tobacco products is an emerging field. The paper provides an initial list of core and specialized domains and competencies to be used in developing curricula for new and emerging training programs aimed at preparing a new cohort of scientists to conduct critical TRS research. © The Author 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Lappin, Fiona M; Shaw, Rebecca L; Macqueen, Daniel J
2016-12-01
High-throughput sequencing has revolutionised comparative and evolutionary genome biology. It has now become relatively commonplace to generate multiple genomes and/or transcriptomes to characterize the evolution of large taxonomic groups of interest. Nevertheless, such efforts may be unsuited to some research questions or remain beyond the scope of some research groups. Here we show that targeted high-throughput sequencing offers a viable alternative to study genome evolution across a vertebrate family of great scientific interest. Specifically, we exploited sequence capture and Illumina sequencing to characterize the evolution of key components from the insulin-like growth (IGF) signalling axis of salmonid fish at unprecedented phylogenetic resolution. The IGF axis represents a central governor of vertebrate growth and its core components were expanded by whole genome duplication in the salmonid ancestor ~95Ma. Using RNA baits synthesised to genes encoding the complete family of IGF binding proteins (IGFBP) and an IGF hormone (IGF2), we captured, sequenced and assembled orthologous and paralogous exons from species representing all ten salmonid genera. This approach generated 299 novel sequences, most as complete or near-complete protein-coding sequences. Phylogenetic analyses confirmed congruent evolutionary histories for all nineteen recognized salmonid IGFBP family members and identified novel salmonid-specific IGF2 paralogues. Moreover, we reconstructed the evolution of duplicated IGF axis paralogues across a replete salmonid phylogeny, revealing complex historic selection regimes - both ancestral to salmonids and lineage-restricted - that frequently involved asymmetric paralogue divergence under positive and/or relaxed purifying selection. Our findings add to an emerging literature highlighting diverse applications for targeted sequencing in comparative-evolutionary genomics. We also set out a viable approach to obtain large sets of nuclear genes for any member of the salmonid family, which should enable insights into the evolutionary role of whole genome duplication before additional nuclear genome sequences become available. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Effects of Dynamical Evolution on Globular Clusters’ Internal Kinematics
NASA Astrophysics Data System (ADS)
Tiongco, Maria; Vesperini, Enrico; Varri, Anna Lisa
2018-01-01
The synergy between recent photometric, spectroscopic, and astrometric studies is revealing that globular clusters deviate from the traditional picture of dynamically simple and single stellar population systems. Complex kinematical features such as velocity anisotropy and rotation, and the existence of multiple stellar populations are some of the key observational findings. My thesis work has aimed to build a theoretical framework to interpret these new observational results and to understand their link with a globular cluster’s dynamical history.I have focused on the study of the evolution of globular clusters' internal kinematics, as driven by two-body relaxation, and the interplay between internal angular momentum and the external Galactic tidal field. With a specifically-designed, large survey of direct N-body simulations, I have explored the three-dimensional structure of the velocity space of tidally-perturbed clusters, by characterizing their degree of anisotropy and their rotational properties. These studies have proved that a cluster's kinematical properties contain a distinct imprints of the cluster’s initial structural properties, dynamical history, and tidal environment. By relaxing a number of simplifying assumptions that are traditionally imposed, I have also showed how the interplay between a cluster's internal evolution and the interaction with the host galaxy can produce complex morphological and kinematical properties, such as a counter-rotating core and a twisting of the projected isodensity contours.Building on this fundamental understanding, I have then studied the dynamics of multiple stellar populations in globular clusters, with attention to the largely unexplored role of angular momentum. I have analyzed the evolution of clusters with stellar populations characterized by different initial structural and kinematical properties to determine how long these differences are preserved, and in what cases they could still be observable in present-day systems.This body of results provides essential guidance for a meaningful interpretation of the emerging dynamical complexity of globular clusters in the era of Gaia and other upcoming large spectroscopic surveys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tackett, Brian M.; Sheng, Wenchao; Kattel, Shyam
Here, the oxygen evolution reaction (OER) has broad applications in electrochemical devices, but it often requires expensive and scarce Ir-based catalysts in acid electrolyte. Presented here is a framework to reduce Ir loading by combining core–shell iridium/metal nitride morphologies using in situ experiments and density functional theory (DFT) calculations. Several group VIII transition metal (Fe, Co, and Ni) nitrides are studied as core materials, with Ir/Fe 4N core–shell particles showing enhancement in both OER activity and stability. In situ X-ray absorption fine structure measurements are used to determine the structure and stability of the core–shell catalysts under OER conditions. DFTmore » calculations are used to demonstrate adsorbate binding energies as descriptors of the observed activity trends.« less
Tackett, Brian M.; Sheng, Wenchao; Kattel, Shyam; ...
2018-02-16
Here, the oxygen evolution reaction (OER) has broad applications in electrochemical devices, but it often requires expensive and scarce Ir-based catalysts in acid electrolyte. Presented here is a framework to reduce Ir loading by combining core–shell iridium/metal nitride morphologies using in situ experiments and density functional theory (DFT) calculations. Several group VIII transition metal (Fe, Co, and Ni) nitrides are studied as core materials, with Ir/Fe 4N core–shell particles showing enhancement in both OER activity and stability. In situ X-ray absorption fine structure measurements are used to determine the structure and stability of the core–shell catalysts under OER conditions. DFTmore » calculations are used to demonstrate adsorbate binding energies as descriptors of the observed activity trends.« less
NASA Astrophysics Data System (ADS)
Sigalotti, Leonardo Di G.; Klapp, Jaime
2000-03-01
Fragmentation has long been advocated as the primary mechanism for explaining the observed binary frequency among pre-main-sequence stars and, more recently, for explaining the emerging evidence for binary and multiple protostellar systems. The role of magnetic fields and ambipolar diffusion is essential to understand how dense cloud cores begin dynamic collapse and eventually fragment into protostars. Here we consider new numerical models of the gravitational collapse and fragmentation of slowly rotating molecular cloud cores, including the effects of magnetic support and ambipolar diffusion. The starting point of the evolution is provided by a magnetically stable (subcritical) condensation that results from adding a magnetic field pressure, B2/8π [with the field strength given by the scaling relation B=B0(ρ/ρ0)1/2], to a reference state consisting of a thermally supercritical (α~0.36), slowly rotating (β~0.037), Gaussian cloud core of prolate shape and central density ρ0. The effects of ambipolar diffusion are approximated by allowing the reference field strength B0 to gradually decrease over a timescale of 10 free-fall times. The models also include the effects of tidal interaction due to a gravitational encounter with another protostar, and so they may apply to low-mass star formation within a cluster-forming environment. The results indicate that the magnetic forces delay the onset of dynamic collapse, and hence of fragmentation, by an amount of time that depends on the initial central mass-to-flux ratio. Compared with previous magnetic collapse calculations of rapidly rotating (β=0.12) clouds, lower initial rotation (β~0.037) is seen to result in much shorter delay periods, thus anticipating binary fragmentation. In general, the results show that the models are still susceptible to fragment into binary systems. Intermediate magnetic support (η~0.285) and low tidal forces (τ<~0.201) may lead to final triple or quadruple protostellar systems, while increasing the size of η and τ always results in final binary protostellar cores. The formed binary systems have separations of ~200-350 AU, suggesting that the recently observed peaks around ~90 AU and 215 AU for T Tauri stars may be explained by the collapse and fragmentation of initially slowly rotating magnetic cloud cores with β<~0.04.
Development of new core competencies for Taiwanese Emergency Medical Technicians
Chang, Yu-Tung; Tsai, Kuang-Chau; Williams, Brett
2018-01-01
Objectives Core competencies are considered the foundation for establishing Emergency Medical Technician (EMT) and paramedic curricula, and for ensuring performance standards in the delivery of prehospital care. This study surveyed EMT instructors and medical directors to identify the most desirable core competencies for all levels of EMTs in Taiwan. Methods A principal components analysis with Varimax rotation was conducted. An online questionnaire was distributed to obtain perspectives of EMT instructors and medical directors on the most desirable core competencies for EMTs. The target population was EMT training-course instructors and medical directors of fire departments in Taiwan. The questionnaire comprised 61 competency items, and multiple-choice and open-ended questions were used to obtain respondents’ perspectives of the Taiwanese EMT training and education system. Results The results identified three factors at EMT-1 and EMT-2 levels and five factors at the EMT-Paramedic level. The factors for EMT-1 and EMT-2 were similar, and those for EMT-Paramedics identified further comprehensive competence perspectives. The key factors that appear to influence the development of the Taiwanese Emergency Medical Services (EMS) education system are the attitude of authorities, the licensure system, and legislation. Conclusion The findings present new core competencies for the Taiwanese EMT system and provide capacity to redesign curricula and reconsider roles for EMT-1 and EMT-2 technicians. At the EMT-Paramedic level, the findings demonstrate the importance of incorporating competency standards in the current skills-based curriculum. Moreover, the core-competencies gap that exists between Taiwanese EMT-1s, EMT-2s, and EMT-Paramedics and internationally recognized core competencies needs to be addressed. By identifying the key factors that potentially impact the development of the EMS education system, such as the attitude of authorities, the licensure system, and legislation, these findings will inform future curricula design in Taiwan. PMID:29563847
Molecular evolution and emergence of avian gammacoronaviruses.
Jackwood, Mark W; Hall, David; Handel, Andreas
2012-08-01
Coronaviruses, which are single stranded, positive sense RNA viruses, are responsible for a wide variety of existing and emerging diseases in humans and other animals. The gammacoronaviruses primarily infect avian hosts. Within this genus of coronaviruses, the avian coronavirus infectious bronchitis virus (IBV) causes a highly infectious upper-respiratory tract disease in commercial poultry. IBV shows rapid evolution in chickens, frequently producing new antigenic types, which adds to the multiple serotypes of the virus that do not cross protect. Rapid evolution in IBV is facilitated by strong selection, large population sizes and high genetic diversity within hosts, and transmission bottlenecks between hosts. Genetic diversity within a host arises primarily by mutation, which includes substitutions, insertions and deletions. Mutations are caused both by the high error rate, and limited proof reading capability, of the viral RNA-dependent RNA-polymerase, and by recombination. Recombination also generates new haplotype diversity by recombining existing variants. Rapid evolution of avian coronavirus IBV makes this virus extremely difficult to diagnose and control, but also makes it an excellent model system to study viral genetic diversity and the mechanisms behind the emergence of coronaviruses in their natural host. Copyright © 2012 Elsevier B.V. All rights reserved.
Magnetism and thermal evolution of the terrestrial planets
NASA Technical Reports Server (NTRS)
Stevenson, D. J.; Spohn, T.; Schubert, G.
1983-01-01
The absence in the cases of Venus and Mars of the substantial intrinsic magnetic fields of the earth and Mercury is considered, in light of thermal history calculations which suggest that, while the cores of Mercury and the earth are continuing to freeze, the cores of Venus and Mars may still be completely liquid. It is noted that completely fluid cores, lacking intrinsic heat sources, are not likely to sustain thermal convection for the age of the solar system, but cool to a subadiabatic, conductive state that cannot maintain a dynamo because of the gravitational energy release and the chemically driven convection that accompany inner core growth. The models presented include realistic pressure- and composition-dependent freezing curves for the core, and material parameters are chosen so that correct present-day values of heat outflow, upper mantle temperature and viscosity, and inner core radius, are obtained for the earth.
In situ X-ray micro-CT characterization of chemo-mechanical relaxations during Sn lithiation
NASA Astrophysics Data System (ADS)
Gonzalez, Joseph F.; Antartis, Dimitrios A.; Chasiotis, Ioannis; Dillon, Shen J.; Lambros, John
2018-03-01
Sn has been proposed for use as a high capacity anode material. Because of its ductile metallic nature, Sn may exhibit unique stress evolution during lithiation. Here, 2D radiography and 3D tomography are employed to visualize the evolution of geometry, internal structure, alloying, and damage during lithiation, delithiation, and rest of Sn wires with micron scale diameters. Lithiation proceeds isotropically, resulting in geometric and dimensional changes after 25% of total lithiation when the tensile stresses are sufficiently high to exceed the flow stress of the unlithiated Sn core and cause elongation and diameter increase. Damage occurs at later stages in the form of cracks terminating at the wire surface and voids forming in the unlithiated core. Notably, significant fragmentation occurs during delithiation which, due to void formation that accommodates the resulting stresses, does not measurably alter the wire cross-section and length. The distinguishing feature of the chemo-mechanics of Sn compared to Si or Ge is the pronounced creep rate at applied strain rates as high as 10-6 s-1, which promotes large strains in the core, eventually leading to void nucleation in the unlithiated core during lithiation, and more importantly, continues driving the deformation of the anode while at rest.
Robson, Nicole D.; Telesnitsky, Alice
2000-01-01
Retrovirus plus-strand synthesis is primed by a cleavage remnant of the polypurine tract (PPT) region of viral RNA. In this study, we tested replication properties for Moloney murine leukemia viruses with targeted mutations in the PPT and in conserved sequences upstream, as well as for pools of mutants with randomized sequences in these regions. The importance of maintaining some purine residues within the PPT was indicated both by examining the evolution of random PPT pools and from the replication properties of targeted mutants. Although many different PPT sequences could support efficient replication and one mutant that contained two differences in the core PPT was found to replicate as well as the wild type, some sequences in the core PPT clearly conferred advantages over others. Contributions of sequences upstream of the core PPT were examined with deletion mutants. A conserved T-stretch within the upstream sequence was examined in detail and found to be unimportant to helper functions. Evolution of virus pools containing randomized T-stretch sequences demonstrated marked preference for the wild-type sequence in six of its eight positions. These findings demonstrate that maintenance of the T-rich element is more important to viral replication than is maintenance of the core PPT. PMID:11044073
Kozlowski, Steve W J; Chao, Georgia T
2018-01-01
Psychologists have studied small-group and team effectiveness for decades, and although there has been considerable progress, there remain significant challenges. Meta-analyses and systematic research have provided solid evidence for core team cognitive, motivational, affective, and behavioral processes that contribute to team effectiveness and empirical support for interventions that enhance team processes (e.g., team design, composition, training, and leadership); there has been substantial evidence for a science of team effectiveness. Nonetheless, there have also been concerns that team processes, which are inherently dynamic, have primarily been assessed as static constructs. Team-level processes and outcomes are multilevel phenomena that emerge, bottom-up from the interactions among team members over time, under the shifting demands of a work context. Thus, theoretical development that appropriately conceptualizes the multiple levels, process dynamics, and emergence of team phenomena over time are essential to advance understanding. Moreover, these conceptual advances necessitate innovative research methodologies to better capture team process dynamics. We explicate this foundation and then describe 2 promising streams of scientific inquiry-team interaction sensors and computational modeling-that are advancing new, unobtrusive measurement techniques and process-oriented research methods focused on understanding the dynamics of cohesion and cognition in teamwork. These are distinct lines of research, each endeavoring to advance the science, but doing so through the development of very different methodologies. We close by discussing the near-term research challenges and the potential long-term evolution of these innovative methods, with an eye toward the future for process-oriented theory and research on team effectiveness. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Emergency cooling analysis for the loss of coolant malfunction
NASA Technical Reports Server (NTRS)
Peoples, J. A.
1972-01-01
This report examines the dynamic response of a conceptual space power fast-spectrum lithium cooled reactor to the loss of coolant malfunction and several emergency cooling concepts. The results show that, following the loss of primary coolant, the peak temperatures of the center most 73 fuel elements can range from 2556 K to the region of the fuel melting point of 3122 K within 3600 seconds after the start of the accident. Two types of emergency aftercooling concepts were examined: (1) full core open loop cooling and (2) partial core closed loop cooling. The full core open loop concept is a one pass method of supplying lithium to the 247 fuel pins. This method can maintain fuel temperature below the 1611 K transient damage limit but requires a sizable 22,680-kilogram auxiliary lithium supply. The second concept utilizes a redundant internal closed loop to supply lithium to only the central area of each hexagonal fuel array. By using this method and supplying lithium to only the triflute region, fuel temperatures can be held well below the transient damage limit.
ERIC Educational Resources Information Center
Noor, Farukh; Hanafi, Zahyah
2017-01-01
Purpose: Academic achievement of students can be fostered and improved if they learn to apply emotional intelligence in their emerging adulthood. The core objective of this research is to test the relationship between emerging adulthood and academic achievement by taking emotional intelligence as a mediator. Methodology: The sample comprises 90…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Favaro, Marco; Yang, Jinhui; Nappini, Silvia
Photoelectrochemical water splitting is a promising approach for renewable production of hydrogen from solar energy and requires interfacing advanced water-splitting catalysts with semiconductors. Understanding the mechanism of function of such electrocatalysts at the atomic scale and under realistic working conditions is a challenging, yet important, task for advancing efficient and stable function. This is particularly true for the case of oxygen evolution catalysts and, here, we study a highly active Co 3O 4/Co(OH) 2 biphasic electrocatalyst on Si by means of operando ambient-pressure X-ray photoelectron spectroscopy performed at the solid/liquid electrified interface. Spectral simulation and multiplet fitting reveal that themore » catalyst undergoes chemical-structural transformations as a function of the applied anodic potential, with complete conversion of the Co(OH) 2 and partial conversion of the spinel Co 3O 4 phases to CoO(OH) under precatalytic electrochemical conditions. Furthermore, we observe new spectral features in both Co 2p and O 1s core-level regions to emerge under oxygen evolution reaction conditions on CoO(OH). The operando photoelectron spectra support assignment of these newly observed features to highly active Co 4+ centers under catalytic conditions. Comparison of these results to those from a pure phase spinel Co 3O 4 catalyst supports this interpretation and reveals that the presence of Co(OH) 2 enhances catalytic activity by promoting transformations to CoO(OH). The direct investigation of electrified interfaces presented in this work can be extended to different materials under realistic catalytic conditions, thereby providing a powerful tool for mechanism discovery and an enabling capability for catalyst design.« less
Favaro, Marco; Yang, Jinhui; Nappini, Silvia; ...
2017-06-09
Photoelectrochemical water splitting is a promising approach for renewable production of hydrogen from solar energy and requires interfacing advanced water-splitting catalysts with semiconductors. Understanding the mechanism of function of such electrocatalysts at the atomic scale and under realistic working conditions is a challenging, yet important, task for advancing efficient and stable function. This is particularly true for the case of oxygen evolution catalysts and, here, we study a highly active Co 3O 4/Co(OH) 2 biphasic electrocatalyst on Si by means of operando ambient-pressure X-ray photoelectron spectroscopy performed at the solid/liquid electrified interface. Spectral simulation and multiplet fitting reveal that themore » catalyst undergoes chemical-structural transformations as a function of the applied anodic potential, with complete conversion of the Co(OH) 2 and partial conversion of the spinel Co 3O 4 phases to CoO(OH) under precatalytic electrochemical conditions. Furthermore, we observe new spectral features in both Co 2p and O 1s core-level regions to emerge under oxygen evolution reaction conditions on CoO(OH). The operando photoelectron spectra support assignment of these newly observed features to highly active Co 4+ centers under catalytic conditions. Comparison of these results to those from a pure phase spinel Co 3O 4 catalyst supports this interpretation and reveals that the presence of Co(OH) 2 enhances catalytic activity by promoting transformations to CoO(OH). The direct investigation of electrified interfaces presented in this work can be extended to different materials under realistic catalytic conditions, thereby providing a powerful tool for mechanism discovery and an enabling capability for catalyst design.« less
Daughton, Christian G
2016-08-15
The evolution and impact of the published literature surrounding the transdisciplinary, multifaceted topic of pharmaceuticals as contaminants in the environment is examined for the first time in an historical context. The preponderance of literature cited in this examination represents the earlier works. As an historical chronology, the focus is on the emergence of key, specific aspects of the overall topic (often termed PiE) in the published literature and on the most highly cited works. This examination is not a conventional, technical review of the literature; as such, little attention was devoted to the more recent literature. The many dimensions involved with PiE span over 70years of published literature. Some articles began to appear in published works in the 1940s and earlier, while others only began to receive attention in the 1990s and later. Decades of early research on what at the time seemed to be disconnected topics eventually coalesced in the mid-to-late 1990s around a number of interconnected concerns and issues that now comprise PiE. Major objectives are to provide a new perspective to the topic, to facilitate more efficient and effective review of the literature by others, and to recognize the more significant, seminal contributions to the advancement of PiE as a field of research. Some of the most highly cited articles in all of environmental science now involve PiE. As of April 2015, a core group of 385 PiE articles had each received at least 200 citations; one had received 5424 citations. But hundreds of additional articles also played important roles in the evolution and advancement of the field. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Shvarts, Dov
2017-10-01
Hydrodynamic instabilities, and the mixing that they cause, are of crucial importance in describing many phenomena, from very large scales such as stellar explosions (supernovae) to very small scales, such as inertial confinement fusion (ICF) implosions. Such mixing causes the ejection of stellar core material in supernovae, and impedes attempts at ICF ignition. The Rayleigh-Taylor instability (RTI) occurs at an accelerated interface between two fluids with the lower density accelerating the higher density fluid. The Richtmyer-Meshkov (RM) instability occurs when a shock wave passes an interface between the two fluids of different density. In the RTI, buoyancy causes ``bubbles'' of the light fluid to rise through (penetrate) the denser fluid, while ``spikes'' of the heavy fluid sink through (penetrate) the lighter fluid. With realistic multi-mode initial conditions, in the deep nonlinear regime, the mixing zone width, H, and its internal structure, progress through an inverse cascade of spatial scales, reaching an asymptotic self-similar evolution: hRT =αRT Agt2 for RT and hRM =αRM tθ for RM. While this characteristic behavior has been known for years, the self-similar parameters αRT and θRM and their dependence on dimensionality and density ratio have continued to be intensively studied and a relatively wide distribution of those values have emerged. This talk will describe recent theoretical advances in the description of this turbulent mixing evolution that sheds light on the spread in αRT and θRM. Results of new and specially designed experiments, done by scientists from several laboratories, were performed recently using NIF, the only facility that is powerful enough to reach the self-similar regime, for quantitative testing of this theoretical advance, will be presented.
The Verrucomicrobia LexA-Binding Motif: Insights into the Evolutionary Dynamics of the SOS Response.
Erill, Ivan; Campoy, Susana; Kılıç, Sefa; Barbé, Jordi
2016-01-01
The SOS response is the primary bacterial mechanism to address DNA damage, coordinating multiple cellular processes that include DNA repair, cell division, and translesion synthesis. In contrast to other regulatory systems, the composition of the SOS genetic network and the binding motif of its transcriptional repressor, LexA, have been shown to vary greatly across bacterial clades, making it an ideal system to study the co-evolution of transcription factors and their regulons. Leveraging comparative genomics approaches and prior knowledge on the core SOS regulon, here we define the binding motif of the Verrucomicrobia, a recently described phylum of emerging interest due to its association with eukaryotic hosts. Site directed mutagenesis of the Verrucomicrobium spinosum recA promoter confirms that LexA binds a 14 bp palindromic motif with consensus sequence TGTTC-N4-GAACA. Computational analyses suggest that recognition of this novel motif is determined primarily by changes in base-contacting residues of the third alpha helix of the LexA helix-turn-helix DNA binding motif. In conjunction with comparative genomics analysis of the LexA regulon in the Verrucomicrobia phylum, electrophoretic shift assays reveal that LexA binds to operators in the promoter region of DNA repair genes and a mutagenesis cassette in this organism, and identify previously unreported components of the SOS response. The identification of tandem LexA-binding sites generating instances of other LexA-binding motifs in the lexA gene promoter of Verrucomicrobia species leads us to postulate a novel mechanism for LexA-binding motif evolution. This model, based on gene duplication, successfully addresses outstanding questions in the intricate co-evolution of the LexA protein, its binding motif and the regulatory network it controls.
Sandie, Reatha; Aris-Brosou, Stéphane
2014-01-01
Vaccine design for rapidly changing viruses is based on empirical surveillance of strains circulating in a given season to assess those that will most likely spread during the next season. The choice of which strains to include in the vaccine is critical, as an erroneous decision can lead to a nonimmunized human population that will then be at risk in the face of an epidemic or, worse, a pandemic. Here, we present the first steps toward a very general phylogenetic approach to predict the emergence of novel viruses. Our genomic model builds upon natural features of viral evolution such as selection and recombination / reassortment, and incorporates episodic bursts of evolution and or of recombination. As a proof-of-concept, we assess the performance of this model in a retrospective study, focusing: (i) on the emergence of an unexpected H3N2 influenza strain in 2007, and (ii) on a longitudinal design. Based on the analysis of hemagglutinin (HA) and neuraminidase (NA) genes, our results show a lack of predictive power in both experimental designs, but shed light on the mode of evolution of these two antigens: (i) supporting the lack of significance of recombination in the evolution of this influenza virus, and (ii) showing that HA evolves episodically while NA changes gradually.
Connecting Core Percolation and Controllability of Complex Networks
Jia, Tao; Pósfai, Márton
2014-01-01
Core percolation is a fundamental structural transition in complex networks related to a wide range of important problems. Recent advances have provided us an analytical framework of core percolation in uncorrelated random networks with arbitrary degree distributions. Here we apply the tools in analysis of network controllability. We confirm analytically that the emergence of the bifurcation in control coincides with the formation of the core and the structure of the core determines the control mode of the network. We also derive the analytical expression related to the controllability robustness by extending the deduction in core percolation. These findings help us better understand the interesting interplay between the structural and dynamical properties of complex networks. PMID:24946797
Core Competencies for Training Effective School Consultants
ERIC Educational Resources Information Center
Burkhouse, Katie Lynn Sutton
2012-01-01
The purpose of this research was to develop and validate a set of core competencies of effective school-based consultants for preservice school psychology consultation training. With recent changes in service delivery models, psychologists are challenged to engage in more indirect, preventative practices (Reschly, 2008). Consultation emerges as…
Meléndez-Hevia, E; Waddell, T G; Cascante, M
1996-09-01
The evolutionary origin of the Krebs citric acid cycle has been for a long time a model case in the understanding of the origin and evolution of metabolic pathways: How can the emergence of such a complex pathway be explained? A number of speculative studies have been carried out that have reached the conclusion that the Krebs cycle evolved from pathways for amino acid biosynthesis, but many important questions remain open: Why and how did the full pathway emerge from there? Are other alternative routes for the same purpose possible? Are they better or worse? Have they had any opportunity to be developed in cellular metabolism evolution? We have analyzed the Krebs cycle as a problem of chemical design to oxidize acetate yielding reduction equivalents to the respiratory chain to make ATP. Our analysis demonstrates that although there are several different chemical solutions to this problem, the design of this metabolic pathway as it occurs in living cells is the best chemical solution: It has the least possible number of steps and it also has the greatest ATP yielding. Study of the evolutionary possibilities of each one-taking the available material to build new pathways-demonstrates that the emergence of the Krebs cycle has been a typical case of opportunism in molecular evolution. Our analysis proves, therefore, that the role of opportunism in evolution has converted a problem of several possible chemical solutions into a single-solution problem, with the actual Krebs cycle demonstrated to be the best possible chemical design. Our results also allow us to derive the rules under which metabolic pathways emerged during the origin of life.
Bopp, Selina E. R.; Manary, Micah J.; Bright, A. Taylor; Johnston, Geoffrey L.; Dharia, Neekesh V.; Luna, Fabio L.; McCormack, Susan; Plouffe, David; McNamara, Case W.; Walker, John R.; Fidock, David A.; Denchi, Eros Lazzerini; Winzeler, Elizabeth A.
2013-01-01
Malaria parasites elude eradication attempts both within the human host and across nations. At the individual level, parasites evade the host immune responses through antigenic variation. At the global level, parasites escape drug pressure through single nucleotide variants and gene copy amplification events conferring drug resistance. Despite their importance to global health, the rates at which these genomic alterations emerge have not been determined. We studied the complete genomes of different Plasmodium falciparum clones that had been propagated asexually over one year in the presence and absence of drug pressure. A combination of whole-genome microarray analysis and next-generation deep resequencing (totaling 14 terabases) revealed a stable core genome with only 38 novel single nucleotide variants appearing in seventeen evolved clones (avg. 5.4 per clone). In clones exposed to atovaquone, we found cytochrome b mutations as well as an amplification event encompassing the P. falciparum multidrug resistance associated protein (mrp1) on chromosome 1. We observed 18 large-scale (>1 kb on average) deletions of telomere-proximal regions encoding multigene families, involved in immune evasion (9.5×10−6 structural variants per base pair per generation). Six of these deletions were associated with chromosomal crossovers generated during mitosis. We found only minor differences in rates between genetically distinct strains and between parasites cultured in the presence or absence of drug. Using these derived mutation rates for P. falciparum (1.0–9.7×10−9 mutations per base pair per generation), we can now model the frequency at which drug or immune resistance alleles will emerge under a well-defined set of assumptions. Further, the detection of mitotic recombination events in var gene families illustrates how multigene families can arise and change over time in P. falciparum. These results will help improve our understanding of how P. falciparum evolves to evade control efforts within both the individual hosts and large populations. PMID:23408914
Rotation and magnetism in intermediate-mass stars
NASA Astrophysics Data System (ADS)
Quentin, Léo G.; Tout, Christopher A.
2018-06-01
Rotation and magnetism are increasingly recognized as important phenomena in stellar evolution. Surface magnetic fields from a few to 20 000 G have been observed and models have suggested that magnetohydrodynamic transport of angular momentum and chemical composition could explain the peculiar composition of some stars. Stellar remnants such as white dwarfs have been observed with fields from a few to more than 109 G. We investigate the origin of and the evolution, on thermal and nuclear rather than dynamical time-scales, of an averaged large-scale magnetic field throughout a star's life and its coupling to stellar rotation. Large-scale magnetic fields sustained until late stages of stellar evolution with conservation of magnetic flux could explain the very high fields observed in white dwarfs. We include these effects in the Cambridge stellar evolution code using three time-dependant advection-diffusion equations coupled to the structural and composition equations of stars to model the evolution of angular momentum and the two components of the magnetic field. We present the evolution in various cases for a 3 M_{⊙} star from the beginning to the late stages of its life. Our particular model assumes that turbulent motions, including convection, favour small-scale field at the expense of large-scale field. As a result, the large-scale field concentrates in radiative zones of the star and so is exchanged between the core and the envelope of the star as it evolves. The field is sustained until the end of the asymptotic giant branch, when it concentrates in the degenerate core.
Evolution of an experiential learning partnership in emergency management higher education.
Knox, Claire Connolly; Harris, Alan S
2016-01-01
Experiential learning allows students to step outside the classroom and into a community setting to integrate theory with practice, while allowing the community partner to reach goals or address needs within their organization. Emergency Management and Homeland Security scholars recognize the importance, and support the increased implementation, of this pedagogical method in the higher education curriculum. Yet challenges to successful implementation exist including limited resources and time. This longitudinal study extends the literature by detailing the evolution of a partnership between a university and office of emergency management in which a functional exercise is strategically integrated into an undergraduate course. The manuscript concludes with a discussion of lessons learned from throughout the multiyear process.
The Transition to a Many-core World
NASA Astrophysics Data System (ADS)
Mattson, T. G.
2012-12-01
The need to increase performance within a fixed energy budget has pushed the computer industry to many core processors. This is grounded in the physics of computing and is not a trend that will just go away. It is hard to overestimate the profound impact of many-core processors on software developers. Virtually every facet of the software development process will need to change to adapt to these new processors. In this talk, we will look at many-core hardware and consider its evolution from a perspective grounded in the CPU. We will show that the number of cores will inevitably increase, but in addition, a quest to maximize performance per watt will push these cores to be heterogeneous. We will show that the inevitable result of these changes is a computing landscape where the distinction between the CPU and the GPU is blurred. We will then consider the much more pressing problem of software in a many core world. Writing software for heterogeneous many core processors is well beyond the ability of current programmers. One solution is to support a software development process where programmer teams are split into two distinct groups: a large group of domain-expert productivity programmers and much smaller team of computer-scientist efficiency programmers. The productivity programmers work in terms of high level frameworks to express the concurrency in their problems while avoiding any details for how that concurrency is exploited. The second group, the efficiency programmers, map applications expressed in terms of these frameworks onto the target many-core system. In other words, we can solve the many-core software problem by creating a software infrastructure that only requires a small subset of programmers to become master parallel programmers. This is different from the discredited dream of automatic parallelism. Note that productivity programmers still need to define the architecture of their software in a way that exposes the concurrency inherent in their problem. We submit that domain-expert programmers understand "what is concurrent". The parallel programming problem emerges from the complexity of "how that concurrency is utilized" on real hardware. The research described in this talk was carried out in collaboration with the ParLab at UC Berkeley. We use a design pattern language to define the high level frameworks exposed to domain-expert, productivity programmers. We then use tools from the SEJITS project (Selective embedded Just In time Specializers) to build the software transformation tool chains thst turn these framework-oriented designs into highly efficient code. The final ingredient is a software platform to serve as a target for these tools. One such platform is the OpenCL industry standard for programming heterogeneous systems. We will briefly describe OpenCL and show how it provides a vendor-neutral software target for current and future many core systems; both CPU-based, GPU-based, and heterogeneous combinations of the two.
A conceptual framework for the evolutionary origins of multicellularity
NASA Astrophysics Data System (ADS)
Libby, Eric; Rainey, Paul B.
2013-06-01
The evolution of multicellular organisms from unicellular counterparts involved a transition in Darwinian individuality from single cells to groups. A particular challenge is to understand the nature of the earliest groups, the causes of their evolution, and the opportunities for emergence of Darwinian properties. Here we outline a conceptual framework based on a logical set of possible pathways for evolution of the simplest self-replicating groups. Central to these pathways is the recognition of a finite number of routes by which genetic information can be transmitted between individual cells and groups. We describe the form and organization of each primordial group state and consider factors affecting persistence and evolution of the nascent multicellular forms. Implications arising from our conceptual framework become apparent when attempting to partition fitness effects at individual and group levels. These are discussed with reference to the evolutionary emergence of individuality and its manifestation in extant multicellular life—including those of marginal Darwinian status.
Culture and biology in the origins of linguistic structure.
Kirby, Simon
2017-02-01
Language is systematically structured at all levels of description, arguably setting it apart from all other instances of communication in nature. In this article, I survey work over the last 20 years that emphasises the contributions of individual learning, cultural transmission, and biological evolution to explaining the structural design features of language. These 3 complex adaptive systems exist in a network of interactions: individual learning biases shape the dynamics of cultural evolution; universal features of linguistic structure arise from this cultural process and form the ultimate linguistic phenotype; the nature of this phenotype affects the fitness landscape for the biological evolution of the language faculty; and in turn this determines individuals' learning bias. Using a combination of computational simulation, laboratory experiments, and comparison with real-world cases of language emergence, I show that linguistic structure emerges as a natural outcome of cultural evolution once certain minimal biological requirements are in place.
Parallel independent evolution of pathogenicity within the genus Yersinia
Reuter, Sandra; Connor, Thomas R.; Barquist, Lars; Walker, Danielle; Feltwell, Theresa; Harris, Simon R.; Fookes, Maria; Hall, Miquette E.; Petty, Nicola K.; Fuchs, Thilo M.; Corander, Jukka; Dufour, Muriel; Ringwood, Tamara; Savin, Cyril; Bouchier, Christiane; Martin, Liliane; Miettinen, Minna; Shubin, Mikhail; Riehm, Julia M.; Laukkanen-Ninios, Riikka; Sihvonen, Leila M.; Siitonen, Anja; Skurnik, Mikael; Falcão, Juliana Pfrimer; Fukushima, Hiroshi; Scholz, Holger C.; Prentice, Michael B.; Wren, Brendan W.; Parkhill, Julian; Carniel, Elisabeth; Achtman, Mark; McNally, Alan; Thomson, Nicholas R.
2014-01-01
The genus Yersinia has been used as a model system to study pathogen evolution. Using whole-genome sequencing of all Yersinia species, we delineate the gene complement of the whole genus and define patterns of virulence evolution. Multiple distinct ecological specializations appear to have split pathogenic strains from environmental, nonpathogenic lineages. This split demonstrates that contrary to hypotheses that all pathogenic Yersinia species share a recent common pathogenic ancestor, they have evolved independently but followed parallel evolutionary paths in acquiring the same virulence determinants as well as becoming progressively more limited metabolically. Shared virulence determinants are limited to the virulence plasmid pYV and the attachment invasion locus ail. These acquisitions, together with genomic variations in metabolic pathways, have resulted in the parallel emergence of related pathogens displaying an increasingly specialized lifestyle with a spectrum of virulence potential, an emerging theme in the evolution of other important human pathogens. PMID:24753568
NASA Astrophysics Data System (ADS)
Zhang, Chuan-Peng; Liu, Tie; Yuan, Jinghua; Sanhueza, Patricio; Traficante, Alessio; Li, Guang-Xing; Li, Di; Tatematsu, Ken’ichi; Wang, Ke; Lee, Chang Won; Samal, Manash R.; Eden, David; Marston, Anthony; Liu, Xiao-Lan; Zhou, Jian-Jun; Li, Pak Shing; Koch, Patrick M.; Xu, Jin-Long; Wu, Yuefang; Juvela, Mika; Zhang, Tianwei; Alina, Dana; Goldsmith, Paul F.; Tóth, L. V.; Wang, Jun-Jie; Kim, Kee-Tae
2018-06-01
In order to understand the initial conditions and early evolution of star formation in a wide range of Galactic environments, we carried out an investigation of 64 Planck Galactic cold clumps (PGCCs) in the second quadrant of the Milky Way. Using the 13CO and C18O J = 1–0 lines and 850 μm continuum observations, we investigated cloud fragmentation and evolution associated with star formation. We extracted 468 clumps and 117 cores from the 13CO line and 850 μm continuum maps, respectively. We made use of the Bayesian distance calculator and derived the distances of all 64 PGCCs. We found that in general, the mass–size plane follows a relation of m ∼ r 1.67. At a given scale, the masses of our objects are around 1/10 of that of typical Galactic massive star-forming regions. Analysis of the clump and core masses, virial parameters, densities, and mass–size relation suggests that the PGCCs in our sample have a low core formation efficiency (∼3.0%), and most PGCCs are likely low-mass star-forming candidates. Statistical study indicates that the 850 μm cores are more turbulent, more optically thick, and denser than the 13CO clumps for star formation candidates, suggesting that the 850 μm cores are likely more appropriate future star formation candidates than the 13CO clumps.
Electron Capture Supernovae from Close Binary Systems
NASA Astrophysics Data System (ADS)
Poelarends, Arend J. T.; Wurtz, Scott; Tarka, James; Cole Adams, L.; Hills, Spencer T.
2017-12-01
We present the first detailed study of the Electron Capture Supernova Channel (ECSN Channel) for a primary star in a close binary star system. Progenitors of ECSN occupy the lower end of the mass spectrum of supernova progenitors and are thought to form the transition between white dwarf progenitors and core-collapse progenitors. The mass range for ECSN from close binary systems is thought to be wider than the range for single stars, because of the effects of mass transfer on the helium core. Using the MESA stellar evolution code, we explored the parameter space of initial primary masses between 8 and 17 {M}⊙ , using a large grid of models. We find that the initial primary mass and the mass transfer evolution are important factors in the final fate of stars in this mass range. Mass transfer due to Roche lobe overflow during and after carbon burning causes the core to cool down so that it avoids neon ignition, even in helium-free cores with masses up to 1.52 {M}⊙ , which in single stars would ignite neon. If the core is able to contract to high enough densities for electron captures to commence, we find that, for the adopted Ledoux convection criterion, the initial mass range for the primary to evolve into an ECSN is between 13.5 and 17.6 {M}⊙ . The mass ratio, initial period, and mass-loss efficiency only marginally affect the predicted ranges.
NASA Astrophysics Data System (ADS)
Ott, Christian D.; Roberts, Luke F.; da Silva Schneider, André; Fedrow, Joseph M.; Haas, Roland; Schnetter, Erik
2018-03-01
We present a first study of the progenitor star dependence of the three-dimensional (3D) neutrino mechanism of core-collapse supernovae. We employ full 3D general-relativistic multi-group neutrino radiation-hydrodynamics and simulate the postbounce evolutions of progenitors with zero-age main sequence masses of 12, 15, 20, 27, and 40 M ⊙. All progenitors, with the exception of the 12 M ⊙ star, experience shock runaway by the end of their simulations. In most cases, a strongly asymmetric explosion will result. We find three qualitatively distinct evolutions that suggest a complex dependence of explosion dynamics on progenitor density structure, neutrino heating, and 3D flow. (1) Progenitors with massive cores, shallow density profiles, and high post-core-bounce accretion rates experience very strong neutrino heating and neutrino-driven turbulent convection, leading to early shock runaway. Accretion continues at a high rate, likely leading to black hole formation. (2) Intermediate progenitors experience neutrino-driven, turbulence-aided explosions triggered by the arrival of density discontinuities at the shock. These occur typically at the silicon/silicon–oxygen shell boundary. (3) Progenitors with small cores and density profiles without strong discontinuities experience shock recession and develop the 3D standing-accretion shock instability (SASI). Shock runaway ensues late, once declining accretion rate, SASI, and neutrino-driven convection create favorable conditions. These differences in explosion times and dynamics result in a non-monotonic relationship between progenitor and compact remnant mass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Offner, Stella S. R.; Arce, Héctor G., E-mail: stella.offner@yale.edu
2014-03-20
We investigate protostellar outflow evolution, gas entrainment, and star formation efficiency using radiation-hydrodynamic simulations of isolated, turbulent low-mass cores. We adopt an X-wind launching model, in which the outflow rate is coupled to the instantaneous protostellar accretion rate and evolution. We vary the outflow collimation angle from θ = 0.01-0.1 and find that even well-collimated outflows effectively sweep up and entrain significant core mass. The Stage 0 lifetime ranges from 0.14-0.19 Myr, which is similar to the observed Class 0 lifetime. The star formation efficiency of the cores spans 0.41-0.51. In all cases, the outflows drive strong turbulence in themore » surrounding material. Although the initial core turbulence is purely solenoidal by construction, the simulations converge to approximate equipartition between solenoidal and compressive motions due to a combination of outflow driving and collapse. When compared to simulation of a cluster of protostars, which is not gravitationally centrally condensed, we find that the outflows drive motions that are mainly solenoidal. The final turbulent velocity dispersion is about twice the initial value of the cores, indicating that an individual outflow is easily able to replenish turbulent motions on sub-parsec scales. We post-process the simulations to produce synthetic molecular line emission maps of {sup 12}CO, {sup 13}CO, and C{sup 18}O and evaluate how well these tracers reproduce the underlying mass and velocity structure.« less
El Karkouri, Khalid; Kowalczewska, Malgorzata; Armstrong, Nicholas; Azza, Said; Fournier, Pierre-Edouard; Raoult, Didier
2017-01-01
Arthropod-borne Rickettsia species are obligate intracellular bacteria which are pathogenic for humans. Within this genus, Rickettsia slovaca and Rickettsia conorii cause frequent and potentially severe infections, whereas Rickettsia raoultii and Rickettsia massiliae cause rare and milder infections. All four species belong to spotted fever group (SFG) rickettsiae. However, R. slovaca and R. raoultii cause scalp eschar and neck lymphadenopathy (SENLAT) and are mainly associated with Dermacentor ticks, whereas the other two species cause Mediterranean spotted fever (MSF) and are mainly transmitted by Rhipicephalus ticks. To identify the potential genes and protein profiles and to understand the evolutionary processes that could, comprehensively, relate to the differences in virulence and pathogenicity observed between these four species, we compared their genomes and proteomes. The virulent and milder agents displayed divergent phylogenomic evolution in two major clades, whereas either SENLAT or MSF disease suggests a discrete convergent evolution of one virulent and one milder agent, despite their distant genetic relatedness. Moreover, the two virulent species underwent strong reductive genomic evolution and protein structural variations, as well as a probable loss of plasmid(s), compared to the two milder species. However, an abundance of mobilome genes was observed only in the less pathogenic species. After infecting Xenopus laevis cells, the virulent agents displayed less up-regulated than down-regulated proteins, as well as less number of identified core proteins. Furthermore, their similar and distinct protein profiles did not contain some genes (e.g., ompA/B and rickA) known to be related to rickettsial adhesion, motility and/or virulence, but may include other putative virulence-, antivirulence-, and/or disease-related proteins. The identified evolutionary forces herein may have a strong impact on intracellular expressions and strategies in these rickettsiae, and that may contribute to the emergence of distinct virulence and diseases in humans. Thus, the current multi-omics data provide new insights into the evolution and fitness of SFG virulence and pathogenicity, and intracellular pathogenic bacteria. PMID:28775717
Roles of nuclear weak rates on the evolution of degenerate cores in stars
NASA Astrophysics Data System (ADS)
Suzuki, Toshio; Tsunodaa, Naofumi; Tsunoda, Yuhsuke; Shimizu, Noritaka; Otsuka, Takaharu
2018-01-01
Electron-capture and β-decay rates in stellar environments are evaluated with the use of new shell-model Hamiltonians for sd-shell and pf-shell nuclei as well as for nuclei belonging to the island of inversion. Important role of the nuclear weak rates on the final evolution of stellar degenerate cores is presented. The weak interaction rates for sd-shell nuclei are calculated to study nuclear Urca processes in O-Ne-Mg cores of stars with 8-10 M⊙ (solar mass) and their effects on the final fate of the stars. Nucleosynthesis of iron-group elements in Type Ia supernova explosions are studied with the weak rates for pf-shell nuclei. The problem of the neutron-rich iron-group isotope over-production compared to the solar abundances is shown to be nearly solved with the use of the new rates and explosion model of slow defraglation with delayed detonation. Evaluation of the weak rates is extended to the island of inversion and the region of neutron-rich nuclei near 78Ni, where two major shells contribute to their configurations.
NASA Astrophysics Data System (ADS)
Jouzel, Jean
2003-06-01
Studies of past climate have, over the last 15 years, provided a wealth of information directly relevant to its evolution in the future. These results include, in particular, the discovery of a link between greenhouse gases and climate in the past and the characterization of rapid climate changes. They are, for example, based on the analysis of deep ice cores such as the one drilled at the Vostok site, which allows us to describe the evolution of the Antarctic climate and of the atmospheric composition over more than 400 thousands years (kyr). This period is also now better and better documented from the analysis of oceanic and continental records. Through examples based on recent studies, in which French teams are deeply involved, we will illustrate the most important results obtained from the analysis of polar ice cores, deep-sea cores and continental archives. To cite this article: J. Jouzel, C. R. Geoscience 335 (2003).
Lotfi, Shahram; Becker, Michael; Moza, Ajay; Autschbach, Rüdiger; Marx, Nikolaus; Schröder, Jörg
2017-09-10
Transcatheter aortic valve implantation has become an accepted treatment modality for inoperable or high-risk surgical patients with symptomatic severe aortic stenosis. We report the case of a 70-year-old white man who was treated for severe symptomatic aortic regurgitation using transcatheter aortic valve implantation from the apical approach. Because of recurrent cardiac decompensation 4 weeks after implantation he underwent the implantation of a left ventricular assist device system. A year later echocardiography showed a severe transvalvular central insufficiency. Our heart team decided to choose a valve-in-valve approach while reducing the flow rate of left ventricular assist device to minimum and pacing with a frequency of 140 beats/minute. There was an excellent result and our patient is doing well with no relevant insufficiency of the aortic valve at 12-month follow-up. This is the first report about a successful treatment of a stenotic JenaValve using a CoreValve Evolut R; the use of a CoreValve Evolut R prosthesis may be an optimal option for valve-in-valve procedures.
Twenty Years of Active Bacterial Core Surveillance
Schaffner, William; Farley, Monica M.; Lynfield, Ruth; Bennett, Nancy M.; Reingold, Arthur; Thomas, Ann; Harrison, Lee H.; Nichols, Megin; Petit, Susan; Miller, Lisa; Moore, Matthew R.; Schrag, Stephanie J.; Lessa, Fernanda C.; Skoff, Tami H.; MacNeil, Jessica R.; Briere, Elizabeth C.; Weston, Emily J.; Van Beneden, Chris
2015-01-01
Active Bacterial Core surveillance (ABCs) was established in 1995 as part of the Centers for Disease Control and Prevention Emerging Infections Program (EIP) network to assess the extent of invasive bacterial infections of public health importance. ABCs is distinctive among surveillance systems because of its large, population-based, geographically diverse catchment area; active laboratory-based identification of cases to ensure complete case capture; detailed collection of epidemiologic information paired with laboratory isolates; infrastructure that allows for more in-depth investigations; and sustained commitment of public health, academic, and clinical partners to maintain the system. ABCs has directly affected public health policies and practices through the development and evaluation of vaccines and other prevention strategies, the monitoring of antimicrobial drug resistance, and the response to public health emergencies and other emerging infections. PMID:26292067
Evolution: Tracing the origins of centrioles, cilia, and flagella.
Carvalho-Santos, Zita; Azimzadeh, Juliette; Pereira-Leal, José B; Bettencourt-Dias, Mónica
2011-07-25
Centrioles/basal bodies (CBBs) are microtubule-based cylindrical organelles that nucleate the formation of centrosomes, cilia, and flagella. CBBs, cilia, and flagella are ancestral structures; they are present in all major eukaryotic groups. Despite the conservation of their core structure, there is variability in their architecture, function, and biogenesis. Recent genomic and functional studies have provided insight into the evolution of the structure and function of these organelles.
NASA Technical Reports Server (NTRS)
Thorne, K. S.; Zytkow, A. N.
1976-01-01
The general relativistic equations of stellar structure and evolution are reformulated in a notation which makes easy contact with Newtonian theory. Also, a general relativistic version of the mixing-length formalism for convection is presented. Finally, it is argued that in previous work on spherical systems general relativity theorists have identified the wrong quantity as "total mass-energy inside radius r."
Insights into the origin and evolution of the plant hormone signaling machinery.
Wang, Chunyang; Liu, Yang; Li, Si-Shen; Han, Guan-Zhu
2015-03-01
Plant hormones modulate plant growth, development, and defense. However, many aspects of the origin and evolution of plant hormone signaling pathways remain obscure. Here, we use a comparative genomic and phylogenetic approach to investigate the origin and evolution of nine major plant hormone (abscisic acid, auxin, brassinosteroid, cytokinin, ethylene, gibberellin, jasmonate, salicylic acid, and strigolactone) signaling pathways. Our multispecies genome-wide analysis reveals that: (1) auxin, cytokinin, and strigolactone signaling pathways originated in charophyte lineages; (2) abscisic acid, jasmonate, and salicylic acid signaling pathways arose in the last common ancestor of land plants; (3) gibberellin signaling evolved after the divergence of bryophytes from land plants; (4) the canonical brassinosteroid signaling originated before the emergence of angiosperms but likely after the split of gymnosperms and angiosperms; and (5) the origin of the canonical ethylene signaling pathway postdates shortly the emergence of angiosperms. Our findings might have important implications in understanding the molecular mechanisms underlying the emergence of land plants. © 2015 American Society of Plant Biologists. All Rights Reserved.
Posid, Joseph M; Bruce, Sherrie M; Guarnizo, Julie T; O'Connor, Ralph C; Papagiotas, Stephen S; Taylor, Melissa L
2013-12-01
Responding to outbreaks is one of the most routine yet most important functions of a public health agency. However, some outbreaks are bigger, more visible, or more complex than others, prompting discussion about when an "outbreak" becomes a "public health emergency." When a public health emergency is identified, resources (eg, funding, staff, space) may need to be redirected from core public health programs to contribute to the public health emergency response. The need to sustain critical public health functions while preparing for public health emergency responses raises a series of operational and resource management questions, including when a public health emergency begins and ends, why additional resources are needed, how long an organization should expect staff to be redirected, and how many staff (or what proportion of the agency's staff ) an organization should anticipate will be needed to conduct a public health emergency response. This article addresses these questions from a national perspective by reviewing events for which the Centers for Disease Control and Prevention redirected staff from core public health functions to respond to a series of public health emergencies. We defined "public health emergency" in both operational and public health terms and found that on average each emergency response lasted approximately 4 months and used approximately 9.5% of our workforce. We also provide reasons why public health agencies should consider the impact of redirecting resources when preparing for public health emergencies.
Competency Assessment in Senior Emergency Medicine Residents for Core Ultrasound Skills.
Schmidt, Jessica N; Kendall, John; Smalley, Courtney
2015-11-01
Quality resident education in point-of-care ultrasound (POC US) is becoming increasingly important in emergency medicine (EM); however, the best methods to evaluate competency in graduating residents has not been established. We sought to design and implement a rigorous assessment of image acquisition and interpretation in POC US in a cohort of graduating residents at our institution. We evaluated nine senior residents in both image acquisition and image interpretation for five core US skills (focused assessment with sonography for trauma (FAST), aorta, echocardiogram (ECHO), pelvic, central line placement). Image acquisition, using an observed clinical skills exam (OSCE) directed assessment with a standardized patient model. Image interpretation was measured with a multiple-choice exam including normal and pathologic images. Residents performed well on image acquisition for core skills with an average score of 85.7% for core skills and 74% including advanced skills (ovaries, advanced ECHO, advanced aorta). Residents scored well but slightly lower on image interpretation with an average score of 76%. Senior residents performed well on core POC US skills as evaluated with a rigorous assessment tool. This tool may be developed further for other EM programs to use for graduating resident evaluation.