Temperature of the Gulf Stream
NASA Technical Reports Server (NTRS)
2002-01-01
The Gulf Stream is one of the strong ocean currents that carries warm water from the sunny tropics to higher latitudes. The current stretches from the Gulf of Mexico up the East Coast of the United States, departs from North America south of the Chesapeake Bay, and heads across the Atlantic to the British Isles. The water within the Gulf Stream moves at the stately pace of 4 miles per hour. Even though the current cools as the water travels thousands of miles, it remains strong enough to moderate the Northern European climate. The image above was derived from the infrared measurements of the Moderate-resolution Imaging Spectroradiometer (MODIS) on a nearly cloud-free day over the east coast of the United States. The coldest waters are shown as purple, with blue, green, yellow, and red representing progressively warmer water. Temperatures range from about 7 to 22 degrees Celsius. The core of the Gulf Stream is very apparent as the warmest water, dark red. It departs from the coast at Cape Hatteras, North Carolina. The cool, shelf water from the north entrains the warmer outflows from the Chesapeake and Delaware Bays. The north wall of the Gulf Stream reveals very complex structure associated with frontal instabilities that lead to exchanges between the Gulf Stream and inshore waters. Several clockwise-rotating warm core eddies are evident north of the core of the Gulf Stream, which enhance the exchange of heat and water between the coastal and deep ocean. Cold core eddies, which rotate counter clockwise, are seen south of the Gulf Stream. The one closest to Cape Hatteras is entraining very warm Gulf Stream waters on its northwest circumference. Near the coast, shallower waters have warmed due to solar heating, while the deeper waters offshore are markedly cooler (dark blue). MODIS made this observation on May 8, 2000, at 11:45 a.m. EDT. For more information, see the MODIS-Ocean web page. The sea surface temperature image was created at the University of Miami using the 11- and 12-micron bands, by Bob Evans, Peter Minnett, and co-workers.
Subinertial response of the Gulf Stream System to Hurricane Fran of 1996
NASA Astrophysics Data System (ADS)
Xie, Lian; Pietrafesa, Leonard J.; Zhang, Chen
The evidence of subinertial-frequency (with periods from 2 days to 2 weeks) oceanic response to Hurricane Fran of 1996 is documented. Hurricane Fran traveled northward across the Gulf Stream and then over a cool-core trough, known as the Charleston Trough, due east of Charleston, SC and in the lee of the Charleston Bump during the period 4-5 September, 1996. During the passage of the storm, the trough closed into a gyre to form an intense cool-core cyclonic eddy. This cool-core eddy had an initial size of approximately 130 km by 170 km and drifted northeastward along the Gulf Stream front at a speed of 13 to 15 km/day as a subinertial baroclinic wave. Superimposed on this subinertial-frequency wave were near-inertial frequency, internal inertia-gravity waves formed in the stratified mixed-layer base after the passage of the storm. The results from a three-dimensional numerical ocean model confirm the existence of both near-inertial and subinertial-frequency waves in the Gulf Stream system during and after the passage of Hurricane Fran. Model results also showed that hurricane-forced oceanic response can modify Gulf Stream variability at both near-inertial and subinertial frequencies.
NASA Astrophysics Data System (ADS)
Rypina, I. I.; Pratt, L. J.; Lozier, M.
2011-12-01
Motivated by discrepancies between Eulerian transport estimates and the behavior of Lagrangian surface drifters, near-surface transport pathways and processes in the North Atlantic are studied using a combination of data, altimetric surface heights, statistical analysis of trajectories, and dynamical systems techniques. Particular attention is paid to the issue of the subtropical-to-subpolar intergyre fluid exchange. The velocity field used in this study is composed of a steady drifter-derived background flow, upon which a time-dependent altimeter-based perturbation is superimposed. This analysis suggests that most of the fluid entering the subpolar gyre from the subtropical gyre within two years comes from a narrow region lying inshore of the Gulf Stream core, whereas fluid on the offshore side of the Gulf Stream is largely prevented from doing so by the Gulf Stream core, which acts as a strong transport barrier, in agreement with past studies. The transport barrier near the Gulf Stream core is robust and persistent from 1992 until 2008. The qualitative behavior is found to be largely independent of the Ekman drift.
NASA Technical Reports Server (NTRS)
Yentsch, C. S.; Phinney, D. A.
1985-01-01
The term 'ring' is generally used in the case of a subdivision of ocean eddies. in the present investigation, it denotes mesoscale features which are spawned by the Gulf Stream. This investigation is concerned with the mechanism involved in the regulation of the growth of phytoplankton by the physical oceanographic features of rings. Gulf Stream rings were first observed by Parker (1971) and Fuglister (1972) as a result of extensive temperature measurements from ships in the Gulf Stream. Attention is given to changes in density boundaries associated with the rotation of rings, a synthetic model of a newly formed warm core ring, convection-stabilization, the role of light, the influence of convective overturn in adding nutrients to surface waters of warm core rings, and two major areas which require study.
Evidence of a Weakening Gulf Stream from In-situ Expendable Bathythermograph Data, 1996-2013
NASA Astrophysics Data System (ADS)
Roupe, L.; Baringer, M. O.
2014-12-01
A weakening of the Gulf Stream, the upper branch of the Atlantic Meridional Overturning Circulation system, has been hypothesized to accelerate sea level rise on the east coast of the United States, caused by changes in the Gulf Stream strength and, hence, sea level difference across the current. It still remains unclear if the Gulf Stream has in fact weakened or remains stable, along with the potential role of natural long-term variability. Tide gauges along the east coast show an accelerated sea level rise from Cape Hatteras to Cape Cod that is 3-4 times higher than global sea level rise. Satellite altimetry shows a weakening gradient in Gulf Stream sea surface height that is highly correlated (r=-0.85) with east coast sea level rise, however, direct velocity measurements showed no significant decrease in Gulf Stream strength over a similar time period. We introduce another in-situ dataset to examine the issues between these conflicting results. Expendable bathythermographs (XBTs) measure temperature at depth directly, and then depth and salinity can be inferred, along with geostrophic velocity and transport. XBT data has been used to measure transport in various current systems, however, the Gulf Stream transport has not been analyzed using the newest high-density XBT data made available since 1996. The trend in sea level difference is determined to be 3.3 +/- 3.2 mm/yr, resulting in an overall decrease of 5.2 cm in sea level from 1996-2013. This result agrees with satellite altimetry results that show a significant decrease in recent years. This data also shows a changing Gulf Stream core position, based on the 15°C isotherm at 200 m, of 0.03°N/yr that is negatively correlated with surface transport (r=-0.25). Issues remain in defining the core and width of the Gulf Stream and with eliminating the possibility of natural variability in the current system.
Hydrographic data from R/V endeavor cruise #90
NASA Technical Reports Server (NTRS)
Stalcup, M. D.; Joyce, T. M.; Barbour, R. L.; Dunworth, J. A.
1986-01-01
The final cruise of the NSF sponsored Warm Core Rings Program studied a Warm Core Ring (WCR) in the Fall of 1982 as it formed from a large northward meander of the Gulf Stream. This ring, known as 82-H or the eighth ring identified in 1982, formed over the New England Seamounts near 39.5 deg N, 65 deg W. Surveys using Expendable Bathythermographs, Conductivity-Temperature-Depth-Oxygen stations and Doppler Current Profiling provide a look at the genesis of a WCR. These measurements reveal that WCR 82-H separated from the Gulf Stream sometime between October 2-5. This ring was a typical WCR with a diameter of about 200 km and speeds in the high velocity core of the 175 cm/sec. Satellite imagery of 82-H following the cruise showed that it drifted WSW in the Slope Water region at almost 9 km/day, had at least one interaction with the Gulf Stream and was last observed on February 8, 1983 at 39 deg N, 72 deg W.
NASA Astrophysics Data System (ADS)
Meinen, Christopher S.; Luther, Douglas S.
2016-06-01
Data from three independent and extensive field programs in the Straits of Florida, the Mid-Atlantic Bight, and near the Southeast Newfoundland Ridge are reanalyzed and compared with results from other historical studies to highlight the downstream evolution of several characteristics of the Gulf Stream's mean flow and variability. The three locations represent distinct dynamical regimes: a tightly confined jet in a channel; a freely meandering jet; and a topographically controlled jet on a boundary. Despite these differing dynamical regimes, the Gulf Stream in these areas exhibits many similarities. There are also anticipated and important differences, such as the loss of the warm core of the current by 42°N and the decrease in the cross-frontal gradient of potential vorticity as the current flows northward. As the Gulf Stream evolves it undergoes major changes in transport, both in magnitude and structure. The rate of inflow up to 60°W and outflow thereafter are generally uniform, but do exhibit some remarkable short-scale variations. As the Gulf Stream flows northward the vertical coherence of the flow changes, with the Florida Current and North Atlantic Current segments of the Gulf Stream exhibiting distinct upper and deep flows that are incoherent, while in the Mid-Atlantic Bight the Gulf Stream exhibits flows in three layers each of which tends to be incoherent with the other layers at most periods. These coherence characteristics are exhibited in both Eulerian and stream coordinates. The observed lack of vertical coherence indicates that great caution must be exercised in interpreting proxies for Gulf Stream structure and flow from vertically-limited or remote observations.
NASA Astrophysics Data System (ADS)
Meinen, Christopher S.; Luther, Douglas S.
2016-05-01
Data from three independent and extensive field programs in the Straits of Florida, the Mid-Atlantic Bight, and near the Southeast Newfoundland Ridge are reanalyzed and compared with results from other historical studies to highlight the downstream evolution of several characteristics of the Gulf Stream's mean flow and variability. The three locations represent distinct dynamical regimes: a tightly confined jet in a channel; a freely meandering jet; and a topographically controlled jet on a boundary. Despite these differing dynamical regimes, the Gulf Stream in these areas exhibits many similarities. There are also anticipated and important differences, such as the loss of the warm core of the current by 42°N and the decrease in the cross-frontal gradient of potential vorticity as the current flows northward. As the Gulf Stream evolves it undergoes major changes in transport, both in magnitude and structure. The rate of inflow up to 60°W and outflow thereafter are generally uniform, but do exhibit some remarkable short-scale variations. As the Gulf Stream flows northward the vertical coherence of the flow changes, with the Florida Current and North Atlantic Current segments of the Gulf Stream exhibiting distinct upper and deep flows that are incoherent, while in the Mid-Atlantic Bight the Gulf Stream exhibits flows in three layers each of which tends to be incoherent with the other layers at most periods. These coherence characteristics are exhibited in both Eulerian and stream coordinates. The observed lack of vertical coherence indicates that great caution must be exercised in interpreting proxies for Gulf Stream structure and flow from vertically-limited or remote observations.
Predicting and explaining the movement of mesoscale oceanographic features using CLIPS
NASA Technical Reports Server (NTRS)
Bridges, Susan; Chen, Liang-Chun; Lybanon, Matthew
1994-01-01
The Naval Research Laboratory has developed an oceanographic expert system that describes the evolution of mesoscale features in the Gulf Stream region of the northwest Atlantic Ocean. These features include the Gulf Stream current and the warm and cold core eddies associated with the Gulf Stream. An explanation capability was added to the eddy prediction component of the expert system in order to allow the system to justify the reasoning process it uses to make predictions. The eddy prediction and explanation components of the system have recently been redesigned and translated from OPS83 to C and CLIPS and the new system is called WATE (Where Are Those Eddies). The new design has improved the system's readability, understandability and maintainability and will also allow the system to be incorporated into the Semi-Automated Mesoscale Analysis System which will eventually be embedded into the Navy's Tactical Environmental Support System, Third Generation, TESS(3).
NASA Astrophysics Data System (ADS)
Smith, F. G. W.; Charlier, R. H.
1981-10-01
It is noted that the relatively high-speed ocean currents flowing northward along the east coast of the U.S. may be able to supply a significant proportion of the future electric power requirements of urban areas. The Gulf Stream core lies only about 20 miles east of Miami; here its near-surface water reaches velocities of 4.3 miles per hour. Attention is called to the estimate that the energy available in the current of the Gulf Stream adjacent to Florida is approximately equivalent to that generated by 25 1,000-megawatt power plants. It is also contended that this power could be produced at competitive prices during the 1980s using large turbines moored below the ocean surface near the center of the Stream. Assuming an average ocean-current speed between 4 and 5 knots at the current core, the power density of a hydroturbine could reach 410 watts per square foot, about 100 times that of a wind-driven device of similar scale operating in an airflow of approximately 11 knots.
Multiplatform sampling (ship, aircraft, and satellite) of a Gulf Stream warm core ring
NASA Technical Reports Server (NTRS)
Smith, Raymond C.; Brown, Otis B.; Hoge, Frank E.; Baker, Karen S.; Evans, Robert H.
1987-01-01
The purpose of this paper is to demonstrate the ability to meet the need to measure distributions of physical and biological properties of the ocean over large areas synoptically and over long time periods by means of remote sensing utilizing contemporaneous buoy, ship, aircraft, and satellite (i.e., multiplatform) sampling strategies. A mapping of sea surface temperature and chlorophyll fields in a Gulf Stream warm core ring using the multiplatform approach is described. Sampling capabilities of each sensing system are discussed as background for the data collected by means of these three dissimilar methods. Commensurate space/time sample sets from each sensing system are compared, and their relative accuracies in space and time are determined. The three-dimensional composite maps derived from the data set provide a synoptic perspective unobtainable from single platforms alone.
Nonmigratory, 12-kHz, deep scattering layers of Sargasso Sea origin in warm-core rings
NASA Astrophysics Data System (ADS)
Conte, Maureen H.; Bishop, James B.; Backus, Richard H.
1986-11-01
Nonmigratory, 12-kHz, deep sound-scattering layers (NMDSLs) were entrained within Sargasso Sea-Gulf Stream waters during the formation of warm-core rings 82B and 82H. At night ring water was easily distinguished from Slope Water by the presence of these well-developed features between 200 and 550 m. The distribution of NMDSLs in 82H as a function of temperature and salinity matched Sargasso Sea distributions, indicating that Sargasso Sea water was present in the center of 82H at the time of its formation. However, the distribution of NMDSLs in the center of 82B a few weeks after its formation was more consistent with the distribution found in Gulf Stream-Sargasso Sea edge water. NMDSLs were a persistent feature of the lower thermostad and upper thermocline of 82B. Their distribution in the upper thermocline approximately paralleled the decrease in thickness of the thermostad and became shallower with increasing distance from ring center. The NMDSLs disappeared at the ring edge when the bottom of the thermostad became shallower than about 100 m. Their distribution within 30 km of ring center changed very little between April and June, whereas those found in the thermocline at greater distances from ring center showed greater dispersion with respect to temperature. Following several Gulf Stream interactions in July, the NMDSLs were significantly shallower, and lay in colder water. The continued presence of the deep NMDSLs in the thermocline, even though the latter was nearly 100 m shallower, indicates that the remaining thermocline had not been significantly exchanged with Gulf Stream or Slope Water during the interactions. The changes in the temperature of the water in which the NMDSLs were found in August suggest that core waters (30 km from ring center in June) were resorbed by the Gulf Stream and that only waters of 30 km radius remained to reform the ring. We found no evidence that the animals composing the NMDSLs adjusted their vertical distributions in response to changes in environmental properties; rather, the temporal changes we observed are best explained by the physical processes affecting ring structure. No qualitative decrease in NMDSL intensity was observed in 82B between April and August, suggesting that the sound scatterers can tolerate significant changes in depth, temperature and salinity. The gonostomatid fish Cyclothone braueri and the physonect siphonophores are possibly sources of the NMDSLs.
NASA Astrophysics Data System (ADS)
Todd, R. E.
2016-02-01
The Gulf Stream plays a major role in the climate system and is a significant forcing agent for the coastal circulation along the US East Coast, yet routine subsurface measurements of Gulf Stream structure are only collected in the Florida Straits and between New Jersey and Bermuda. A recent pilot program demonstrated the feasibility of using underwater gliders to repeatedly survey across the Gulf Stream and to provide subsurface Gulf Stream observations to the community in realtime. Spray gliders were deployed on three-month missions from Miami, Florida to the New England shelf south of Cape Cod, during which they zigzagged back and forth across the Gulf Stream. Three such deployments have been completed so far with a total of more than 20 cross-Gulf Stream transects occupied. These new observations detail the subsurface structure and variability of the Gulf Stream upstream and downstream of its separation from the continental margin, reveal large-amplitude internal waves within the boundary current, and capture numerous eddies along the flanks of the Gulf Stream. Future routine glider deployments in the Gulf Stream promise to provide critical observations for examining inherent Gulf Stream variability, investigating western boundary current influences on coastal circulation, and constraining numerical simulations.
NASA Astrophysics Data System (ADS)
Carnes, Michael R.; Mitchell, Jim L.; de Witt, P. Webb
1990-10-01
Synthetic temperature profiles are computed from altimeter-derived sea surface heights in the Gulf Stream region. The required relationships between surface height (dynamic height at the surface relative to 1000 dbar) and subsurface temperature are provided from regression relationships between dynamic height and amplitudes of empirical orthogonal functions (EOFs) of the vertical structure of temperature derived by de Witt (1987). Relationships were derived for each month of the year from historical temperature and salinity profiles from the region surrounding the Gulf Stream northeast of Cape Hatteras. Sea surface heights are derived using two different geoid estimates, the feature-modeled geoid and the air-dropped expendable bathythermograph (AXBT) geoid, both described by Carnes et al. (1990). The accuracy of the synthetic profiles is assessed by comparison to 21 AXBT profile sections which were taken during three surveys along 12 Geosat ERM ground tracks nearly contemporaneously with Geosat overflights. The primary error statistic considered is the root-mean-square (rms) difference between AXBT and synthetic isotherm depths. The two sources of error are the EOF relationship and the altimeter-derived surface heights. EOF-related and surface height-related errors in synthetic temperature isotherm depth are of comparable magnitude; each translates into about a 60-m rms isotherm depth error, or a combined 80 m to 90 m error for isotherms in the permanent thermocline. EOF-related errors are responsible for the absence of the near-surface warm core of the Gulf Stream and for the reduced volume of Eighteen Degree Water in the upper few hundred meters of (apparently older) cold-core rings in the synthetic profiles. The overall rms difference between surface heights derived from the altimeter and those computed from AXBT profiles is 0.15 dyn m when the feature-modeled geoid is used and 0.19 dyn m when the AXBT geoid is used; the portion attributable to altimeter-derived surface height errors alone is 0.03 dyn m less for each. In most cases, the deeper structure of the Gulf Stream and eddies is reproduced well by vertical sections of synthetic temperature, with largest errors typically in regions of high horizontal gradient such as across rings and the Gulf Stream front.
Modeling the Gulf Stream System: How Far from Reality?
NASA Technical Reports Server (NTRS)
Choa, Yi; Gangopadhyay, Avijit; Bryan, Frank O.; Holland, William R.
1996-01-01
Analyses of a primitive equation ocean model simulation of the Atlantic Ocean circulation at 1/6 deg horizontal resolution are presented with a focus on the Gulf Stream region. Among many successful features of this simulation, this letter describes the Gulf Stream separation from the coast of North America near Cape Hatteras, meandering of the Gulf Stream between Cape Hatteras and the Grand Banks, and the vertical structure of temperature and velocity associated with the Gulf Stream. These results demonstrate significant improvement in modeling the Gulf Stream system using basin- to global scale ocean general circulation models. Possible reasons responsible for the realistic Gulf Stream simulation are discussed, contrasting the major differences between the present model configuration and those of previous eddy resolving studies.
Entrainment and mixing of shelf/slope waters in the near-surface Gulf Stream
NASA Astrophysics Data System (ADS)
Lillibridge, J. L., III; Hitchcock, G.; Rossby, T.; Lessard, E.; Mork, M.; Golmen, L.
1990-08-01
An interdisciplinary study of the entrainment of shelf and slope waters in the Gulf Stream front was undertaken in October 1985 northeast of Cape Hatteras. Fifteen hydrographic transects of the Gulf Stream front and of the shelf water intrusion known as Ford water were completed in 2 1/2 days with a towed undulating profiler, the SeaSoar, equipped with a conductivity-temperature-depth probe and a fluorometer. Upstream sections within 50 km of the shelf break show entrainment of surface and subsurface waters along the northern edge of the high-velocity Gulf Stream. The low-salinity core, first observed at 70 m, is subducted to >100 m. The subsurface Ford water is also at a maximum in chlorophyll, fluorescence, and dissolved oxygen and contains a distinct diatom assemblage of nearshore species. Productivity rates in the Ford water may be equivalent to those in slope waters. Expendable current profilers yield an estimated transport for subsurface shelf waters of 1 to 5×105 m3 s-1 and indicate that vertical shear at the depth of maximum static stability is typically 2×10-2 s-1. A bulk Richardson number is estimated over vertical scales of several meters by combining SeaSoar density profiles with velocity shear from concurrent expendable current profiler deployments. The minimum values are generally >1, and only infrequently are they at or below the 0.25 threshold for shear instability. The presence of double-diffusive processes around the low-salinity core of Ford water is indicated by elevated conductivity Cox numbers. The stability parameter "Turner angle" shows that low-salinity Ford water and its associated T-S property front are sites of double-diffusive mixing, given general agreement between the distributions of Turner angle and Cox number. We conclude that double-diffusive processes are more important than shear flow instability in governing cross-isopycnal mixing. However, downstream transit times are so swift that no measurable change or decay occurs in the Ford water. This explains the occurrence of distinct shelf water phytoplankton species within the low-salinity waters downstream of Cape Hatteras.
NASA Technical Reports Server (NTRS)
Dietrich, David E.; Mehra, Avichal; Haney, Robert L.; Bowman, Malcolm J.; Tseng, Yu-Heng
2003-01-01
Gulf Stream (GS) separation near its observed Cape Hatteras (CH) separation location, and its ensuing path and dynamics, is a challenging ocean modeling problem. If a model GS separates much farther north than CH, then northward GS meanders, which pinch off warm core eddies (rings), are not possible or are strongly constrained by the Grand Banks shelfbreak. Cold core rings pinch off the southward GS meanders. The rings are often re-absorbed by the GS. The important warm core rings enhance heat exchange and, especially, affect the northern GS branch after GS bifurcation near the New England Seamount Chain. This northern branch gains heat by contact with the southern branch water upstream of bifurcation, and warms the Arctic Ocean and northern seas, thus playing a major role in ice dynamics, thermohaline circulation and possible global climate warming. These rings transport heat northward between the separated GS and shelf slope/Deep Western Boundary Current system (DWBC). This region has nearly level time mean isopycnals. The eddy heat transport convergence/divergence enhances the shelfbreak and GS front intensities and thus also increases watermass transformation. The fronts are maintained by warm advection by the Florida Current and cool advection by the DWBC. Thus, the GS interaction with the DWBC through the intermediate eddy field is climatologically important.
Local sensitivities of the gulf stream separation
Schoonover, Joseph; Dewar, William K.; Wienders, Nicolas; ...
2016-12-05
Robust and accurate Gulf Stream separation remains an unsolved problem in general circulation modeling whose resolution will positively impact the ocean and climate modeling communities. Oceanographic literature does not face a shortage of plausible hypotheses that attempt to explain the dynamics of the Gulf Stream separation, yet a single theory that the community agrees on is missing. We investigate the impact of the Deep Western Boundary Current, coastline curvature, and continental shelf steepening on the Gulf Stream separation within regional configurations of the MIT General Circulation Model. Artificial modifications to the regional bathymetry are introduced to investigate the sensitivity ofmore » the separation to each of these factors. Metrics for subsurface separation detection confirm the direct link between flow separation and the surface expression of the Gulf Stream in the Mid-Atlantic Bight. Conversely, the Gulf Stream separation exhibits minimal sensitivity to the presence of the DWBC and coastline curvature. The implications of these results to the development of a “separation recipe” for ocean modeling are discussed. Furthermore, we conclude adequate topographic resolution is a necessary, but not sufficient, condition for proper Gulf Stream separation.« less
On the size and distribution of rings and coherent vortices in the Sargasso Sea
NASA Astrophysics Data System (ADS)
Luce, David L.; Rossby, Tom
2008-05-01
The container motor vessel CMV Oleander, which operates between New Jersey and Bermuda, crosses the Gulf Stream and Sargasso Sea all year round on a semiweekly schedule. Using an acoustic Doppler current profiler, measurements of upper ocean currents have been made on a regular basis since the fall of 1992. In this paper we examine the database for evidence of axisymmetric coherent vortices including the distribution and intensity of cold core rings. To detect the existence of coherent vortices, the patterns of current vectors averaged between 40 and 80 m depth were fit to an axisymmetric Gaussian vortex model. The parameters of the model were axis location, maximum tangential, or swirl, speed, and radius at which the maximum swirl was measured. We were able to distinguish between the well-known cold core "rings" (CCRs) pinched from the Gulf Stream, and a population of cyclonic and anticyclonic "vortices" in the Sargasso Sea. Both the rings and the Sargasso Sea vortices showed radii of 64 ± 18 km, albeit with different swirl speeds. The rings, close to the Gulf Stream, exhibited a typical maximum swirl speed of 0.98 ± 0.40 m s-1 and a center relative vorticity of 0.64 ± 0.35 × 10-4 s-1, almost 80% of the planetary vorticity for the region. The more uniform population of Sargasso Sea vortices contained approximately equal numbers of cyclones and anticyclones, with mean speeds of +0.43 and -0.55 m s-1, and center relative vorticities of +0.24 × 10-4 s-1 and -0.29 × 10-4 s-1, respectively.
Calcareous nannofossil evidence for the existence of the Gulf Stream during the late Maastrichtian
Watkins, D.K.; ,
2005-01-01
Upper Maastrichtian calcareous nannofossil assemblages, from eight cores on the South Carolina Coastal Plain (onshore set) and three deep sea drilling sites from the continental slope and abyssal hills (offshore set), were analyzed by correlation and principal component analysis to examine the ancient surface water thermal structure. In addition, a temperature index derived from independently published paleobiogeographic information was applied to the sample data. All three methods indicate a strong separation of the samples into onshore and offshore sets, with the offshore data set exhibiting significantly warmer paleotemperatures. The great disparity between these two sample sets indicates that there was a strong thermal contrast between the onshore and offshore surface water masses that persisted throughout the late Maastrichtian despite evident shortterm changes in fertility, productivity, and community structure. This suggests the Gulf Stream was present as a major oceanographic feature during the late Maastrichtian. Copyright 2005 by the American Geophysical Union.
On th meridional surface profile of the Gulf Stream at 55 deg W
NASA Technical Reports Server (NTRS)
Hallock, Zachariah R.; Teague, William J.
1995-01-01
Nine-month records from nine inverted echo sounders (IESs) are analyzed to describe the mean baroclinic Gulf Stream at 55 deg W. IES acoustic travel times are converted to thermocline depth which is optimally interpolated. Kinematic and dynamic parameters (Gulf Stream meridional position, velocity, and vorticity) are calculated. Primary Gulf Stream variabiltiy is attributed to meandering and and changes in direction. A mean, stream-coordinate (relative to Gulf Stream instantaneous position and direction) meridional profile is derived and compared with results presented by other investigators. The mean velocity is estimated at 0.84 m/s directed 14 deg to the right eastward, and the thermocline (12 c) drops 657 m (north to south), corresponding to a baroclinic rise of the surface of 0.87 m. The effect of Gulf Stream curvature on temporal mean profiles is found to be unimportant and of minimal importance overall. The derived, downstream current profile is well represented by a Gaussian function and is about 190 km wide where it crosses zero. Surface baroclinic transport is estimated to be 8.5 x 10(exp 4) sq m/s, and maximum shear (flanking the maximum) is 1.2 x 10(exp -5). Results compare well with other in situ observational results from the same time period. On the other hand, analyses (by others) of concurrent satellite altimetry (Geosat) suggest a considerable narrower, more intense mean Gulf Stream.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoonover, Joseph; Dewar, William K.; Wienders, Nicolas
Robust and accurate Gulf Stream separation remains an unsolved problem in general circulation modeling whose resolution will positively impact the ocean and climate modeling communities. Oceanographic literature does not face a shortage of plausible hypotheses that attempt to explain the dynamics of the Gulf Stream separation, yet a single theory that the community agrees on is missing. We investigate the impact of the Deep Western Boundary Current, coastline curvature, and continental shelf steepening on the Gulf Stream separation within regional configurations of the MIT General Circulation Model. Artificial modifications to the regional bathymetry are introduced to investigate the sensitivity ofmore » the separation to each of these factors. Metrics for subsurface separation detection confirm the direct link between flow separation and the surface expression of the Gulf Stream in the Mid-Atlantic Bight. Conversely, the Gulf Stream separation exhibits minimal sensitivity to the presence of the DWBC and coastline curvature. The implications of these results to the development of a “separation recipe” for ocean modeling are discussed. Furthermore, we conclude adequate topographic resolution is a necessary, but not sufficient, condition for proper Gulf Stream separation.« less
On the recent destabilization of the Gulf Stream path downstream of Cape Hatteras
NASA Astrophysics Data System (ADS)
Andres, M.
2016-09-01
Mapped satellite altimetry reveals interannual variability in the position of initiation of Gulf Stream meanders downstream of Cape Hatteras. The longitude where the Gulf Stream begins meandering varies by 1500 km. There has been a general trend for the destabilization point to shift west, and 5 of the last 6 years had a Gulf Stream destabilization point upstream of the New England Seamounts. Independent in situ data suggest that this shift has increased both upper-ocean/deep-ocean interaction events at Line W and open-ocean/shelf interactions across the Middle Atlantic Bight (MAB) shelf break. Mooring data and along-track altimetry indicate a recent increase in the number of deep cyclones that stir Deep Western Boundary Current waters from the MAB slope into the deep interior. Temperature profiles from the Oleander Program suggest that recent enhanced warming of the MAB shelf may be related to shifts in the Gulf Stream's destabilization point.
The role of the Gulf Stream in European climate.
Palter, Jaime B
2015-01-01
The Gulf Stream carries the warm, poleward return flow of the wind-driven North Atlantic subtropical gyre and the Atlantic Meridional Overturning Circulation. This northward flow drives a significant meridional heat transport. Various lines of evidence suggest that Gulf Stream heat transport profoundly influences the climate of the entire Northern Hemisphere and, thus, Europe's climate on timescales of decades and longer. The Gulf Stream's influence is mediated through feedback processes between the ocean, atmosphere, and cryosphere. This review synthesizes paleoclimate archives, model simulations, and the instrumental record, which collectively suggest that decadal and longer-scale variability of the Gulf Stream's heat transport manifests in changes in European temperature, precipitation, and storminess. Given that anthropogenic climate change is projected to weaken the Atlantic Meridional Overturning Circulation, associated changes in European climate are expected. However, large uncertainty in the magnitude of the anticipated weakening undermines the predictability of the future climate in Europe.
Evidence for atmospheric carbon dioxide variability over the Gulf Stream
NASA Technical Reports Server (NTRS)
Bufton, J. L.
1984-01-01
Two airborne surveys of atmospheric carbon dioxide concentration have been conducted over the Gulf Stream off the east coast of Virginia and North Carolina on September 7-8, 1983. In situ CO2 data were acquired at an aircraft altitude of 300 m on trajectories that transcected the Gulf Stream near 36 deg N 73 deg W. Data show evidence of a CO2 concentration increase by 4 ppm to 15 ppm above the nominal atmospheric background value of 345 ppm. These enhanced values were associated with the physical location of the Gulf Stream prior to the passage of a weak cold front.
Atmospheric responses to sensible and latent heating fluxes over the Gulf Stream
NASA Astrophysics Data System (ADS)
Minobe, S.; Ida, T.; Takatama, K.
2016-12-01
Air-sea interaction over mid-latitude oceanic fronts such as the Gulf Stream attracted large attention in the last decade. Observational analyses and modelling studies revealed that atmospheric responses over the Gulf Stream including surface wind convergence, enhanced precipitation and updraft penetrating to middle-to-upper troposphere roughly on the Gulf Stream current axis or on the warmer flank of sea-surface temperature (SST) front of the Gulf Stream . For these atmospheric responses, oceanic information should be transmitted to the atmosphere via turbulent heat fluxes, and thus the mechanisms for atmospheric responses can be understood better by examining latent and sensible air-sea heat fluxes more closely. Thus, the roles of the sensible and latent heat fluxes are examined by conducting a series of numerical experiments using the IPRC Regional Atmospheric Model over the Gulf Stream by applying SST smoothing for latent and sensible heating separately. The results indicate that the sensible and latent heat fluxes affect the atmosphere differently. Sensible heat flux intensifies surface wind convergence to produce sea-level pressure (SLP) anomaly. Latent heat flux supplies moistures and maintains enhanced precipitation. The different heat flux components cause upward wind velocity at different levels.
Impact of Gulf Stream SST biases on the global atmospheric circulation
NASA Astrophysics Data System (ADS)
Lee, Robert W.; Woollings, Tim J.; Hoskins, Brian J.; Williams, Keith D.; O'Reilly, Christopher H.; Masato, Giacomo
2018-02-01
The UK Met Office Unified Model in the Global Coupled 2 (GC2) configuration has a warm bias of up to almost 7 K in the Gulf Stream SSTs in the winter season, which is associated with surface heat flux biases and potentially related to biases in the atmospheric circulation. The role of this SST bias is examined with a focus on the tropospheric response by performing three sensitivity experiments. The SST biases are imposed on the atmosphere-only configuration of the model over a small and medium section of the Gulf Stream, and also the wider North Atlantic. Here we show that the dynamical response to this anomalous Gulf Stream heating (and associated shifting and changing SST gradients) is to enhance vertical motion in the transient eddies over the Gulf Stream, rather than balance the heating with a linear dynamical meridional wind or meridional eddy heat transport. Together with the imposed Gulf Stream heating bias, the response affects the troposphere not only locally but also in remote regions of the Northern Hemisphere via a planetary Rossby wave response. The sensitivity experiments partially reproduce some of the differences in the coupled configuration of the model relative to the atmosphere-only configuration and to the ERA-Interim reanalysis. These biases may have implications for the ability of the model to respond correctly to variability or changes in the Gulf Stream. Better global prediction therefore requires particular focus on reducing any large western boundary current SST biases in these regions of high ocean-atmosphere interaction.
NASA Astrophysics Data System (ADS)
Gebreslase, A. K.; Abdul-Aziz, O. I.
2017-12-01
Dynamics of coastal stream water quality is influenced by a multitude of interacting environmental drivers. A systematic data analytics approach was employed to determine the relative linkages of stream dissolved oxygen (DO) with the hydroclimatic and biogeochemical variables across the Gulf Coast of U.S.A. Multivariate pattern recognition techniques of PCA and FA, alongside Pearson's correlation matrix, were utilized to examine the interrelation of variables at 36 water quality monitoring stations from USGS NWIS and EPA STORET databases. Power-law based partial least square regression models with a bootstrap Monte Carlo procedure (1000 iterations) were developed to estimate the relative linkages of dissolved oxygen with the hydroclimatic and biogeochemical variables by appropriately resolving multicollinearity (Nash-Sutcliffe efficiency = 0.58-0.94). Based on the dominant drivers, stations were divided into four environmental regimes. Water temperature was the dominant driver of DO in the majority of streams, representing most the northern part of Gulf Coast states. However, streams in the southern part of Texas and Florida showed a dominant pH control on stream DO. Further, streams representing the transition zone of the two environmental regimes showed notable controls of multiple drivers (i.e., water temperature, stream flow, and specific conductance) on the stream DO. The data analytics research provided profound insight to understand the dynamics of stream DO with the hydroclimatic and biogeochemical variables. The knowledge can help water quality managers in formulating plans for effective stream water quality and watershed management in the U.S. Gulf Coast. Keywords Data analytics, coastal streams, relative linkages, dissolved oxygen, environmental regimes, Gulf Coast, United States.
Gulf Stream Temperature, Salinity and Transport During the Last Millennium
2006-02-01
their relationship to 9 one another and to proxies of solar variability. Chapter 3 addresses the temperature and salinity components of the...Florida Current 618Oc varied coherently with proxies of atmospheric radiocarbon at low frequencies over 10 the last 5,000 years, suggesting a link...cooling that began around 1000 A.D. models and proxies used. This two-stage character of the LIA is not apparent in the Florida margin cores. 6.4
Interannual variability of ring formations in the Gulf Stream region
NASA Astrophysics Data System (ADS)
Sasaki, Y. N.
2016-02-01
An oceanic ring in the Gulf Stream (GS) region plays important roles in across-jet transport of heat, salt, momentum, and nutrients. This study examines interannual variability of rings shed from the GS jet and their properties using satellite altimeter observations from 1993 to 2013. An objective method is used to capture a ring shedding from the GS jet and track its movement. A spatial distribution of the ring formations in the GS region showed that both cyclonic (cold-core) and anticyclonic (warm-core) rings were most frequently formed around the New England Seamount chain between 62°-65°W, suggesting the importance of the bottom topography on the pinch-off process. These rings moved westward, although about two-third of these rings was reabsorbed by the GS jet. The number of ring formations, especially cyclonic ring formations, indicated prominent fluctuations on interannual to decadal timescales. The annual maximum number of the pinched-off rings is four times larger than the annual minimum number of the rings. These fluctuations of the ring formations were negatively correlated with the strength of the GS. This situation is similar that in the Kuroshio Extension region. The interannual variability of the number of ring formations is also negatively correlated with the North Atlantic Oscillation (NAO) index with one-year lag (NAO leads). Interannual variations of the propagation tendency and shape of rings are also discussed.
The Gulf Stream and Density of Fluids
ERIC Educational Resources Information Center
Landstrom, Erich
2006-01-01
A few kilometers from the shores of Palm Beach County, Florida, is the Gulf Stream current--a remarkable "river" within an ocean. The current's journey across the Atlantic Ocean connects southeast Florida and southwest Great Britain as it streams steadily north at speeds of 97 km a day; moving 100 times as much water as all the rivers on…
The Impact of Gulf Stream-Induced Diabatic Forcing on Coastal Mid-Atlantic Surface Cyclogenesis
NASA Astrophysics Data System (ADS)
Cione, Joseph Jerome
In this dissertation, numerical experiments were conducted using a mesoscale atmospheric model developed at North Carolina State University. Three sets of numerical experiments were conducted and were designed to: quantify the impact Gulf Stream frontal distance, initial surface air temperature and cold air outbreak timing each have on the subsequent development of the marine atmospheric boundary layer during periods of offshore cold advection; investigate critical processes associated with Gulf Stream -induced mesocyclogenesis and; elucidate the role SST gradients and surface fluxes of heat and moisture have on the intensification and track of propagating mesocyclonic systems within the highly baroclinic Gulf Stream region. A major finding from the offshore cold advection simulations is that the initial air-sea contrast is the dominant forcing mechanism linked to the offshore circulation development and marine boundary layer modification. Results from the mesocyclogenesis experiments indicate that surface cyclogenesis was simulated to occur along a Gulf Stream meander in a region where the gradients in sea surface temperature (SST) were maximized. Results from sensitivity experiments illustrate that changes in the Gulf Stream SST gradient pattern can act to alter the timing and degree of cyclonic development simulated, while the inclusion of surface fluxes and moist convective processes during the development phase act to strongly enhance the intensity and/or occurrence of simulated mesocyclogenesis. Both observational and numerical results from studies investigating the impact strong Gulf Stream SST gradients have on the development of pre-existing, propagating cyclonic systems show that the baroclinic nature of the low level environment near the circulation center (as well as the degree of simulated/observed surface cyclonic intensification) appear to be highly dependent upon the mesoscale storm track within the Gulf Stream frontal zone. Furthermore, the numerical storm track experiments conducted in this research illustrate that surfaces fluxes can act to significantly alter the storm track of the surface mesocyclone (in addition to impacting the overall intensification of the simulated cyclonic system). This work also presents the technique development and operational utilization of the recently devised Atlantic Surface Cyclone Intensification Index (ASCII). The index continues to be implemented by the National Weather Service at the Raleigh-Durham and surrounding coastal forecast offices, and to date, has been successfully utilized for 11 coastal winter storm events over the February 1994-January 1996 period.
Present and past Gulf Stream variability in a cold-water coral area off Cape Lookout, West Atlantic
NASA Astrophysics Data System (ADS)
Mienis, F.; Pedersen, A.; Duineveld, G.; Seidenkrantz, M.; Fischel, A.; Matos, L.; Bane, J. M.; Frank, N.; Hebbeln, D.; Ross, S.
2012-12-01
Cold-water coral mounds are common on the SE slope of the US from Florida to Cape Hatteras between depths of 400-600 m. All coral areas lie in the vicinity of the Gulf Stream, which is characterized by strong currents transporting relatively warm water northwards. Thus far little is known about the recent and past environmental conditions inside the cold-water coral habitats on the SE US slope and particularly the effect of changing patterns of the Gulf Stream. Near Cape Lookout, which is the northern most cold-water coral area on the SE US slope, cold-water corals have formed mounds up to 60 m high with a tear drop shape, which are oriented in a SSW-NNE direction. Past explorations of major reef sites of N Carolina using remote and manned submersibles have shown living Lophelia pertusa colonies on the current facing side of the mound structures and a high biodiversity of associated fauna, especially fish. Two autonomous benthic landers were deployed amidst Lophelia reefs off Cape Lookout (NC) for a period of 6 months to define oceanographic patterns that are relevant for the development and persistence of cold-water coral ecosystems. Furthermore, a 3.6 m long piston core was collected in 2010 during a cruise with the R.V. Pelagia. This pistoncore was used to determine the changes of current strength through time, using foraminiferal counts, stable oxygen and carbon isotopes on foraminifera, XRF and magnetic susceptibility measurements. Cold-water coral fragments were dated with U/Th and foraminifera from the same depth interval were dated with C14. Bottom landers have recorded a number of events that are characterized by of peaks in temperature and salinity, coinciding with increased flow and turbidity. The current during these events was directed to the NNE. During some of these events temperature rose up to 9 degrees in one day. The temporary replacement of the colder bottom water by warm (and saline) water in combination with the strong currents to the NNE point at Gulfstream water moving over the deployment site as was confirmed by satellite images. The instantaneous increases in of the turbidity at the onset of warm events when the current speed increases, likely represent local erosion of the seafloor and of the coral mounds. Based on the foraminifera data three zones could be observed in the piston core (13000-10000 years, 10000-7200 years and 7200-4700 years. All zones show the gradual onshore movement of the Gulf Stream, which can be related to a rapid rise in sea-level after the last deglaciation. This movement has gradually widened the band of the Gulfstream thereby compressing the surface and deeper water masses. Current speed in the area are generally strong but weakened during periods of fresh water outflow in the North Atlantic, which weakened the thermohaline circulation. This was especially clear in zone 2 around 8200 years, due to a melt water pulse of lake Agassiz and Ojibway. Data presented here show that the Gulf Stream influenced cold-water coral growth and mound formation at the SE Us margin at present as well as in the past.
NASA Astrophysics Data System (ADS)
Bauch, H. A.; Zhuravleva, A.
2017-12-01
Meridional gradients in sea surface temperature (SST) control ocean-atmosphere circulation patterns and, thus, regulate the global climate. Here we reconstruct variability of these gradients in the course of the Last Interglacial (MIS5e), by using sediment records from the low and high latitude North Atlantic which are linked via the Gulf Stream.In the Nordic Seas, i.e., at the northern end of the Gulf Stream extension, strong post-Saalian meltwater discharge reduced northward-directed transport of surface oceanic heat until the mid-MIS5e, resulting in a late and rather weak SST peak. To decipher the corresponding climatic changes in the area of the Gulf Stream origin, we employ stable isotopes data, planktic foraminifera assemblages as well as a new alkenone paleotemperature record from core drilled on the upper northern slope of the Little Bahama Bank. In addition, chemical composition of sediments (XRF data) was used to asses past sea level fluctuations and sedimentation regimes on this shallow-water carbonate bank. Significant variations in Sr/Ca ratios point to a two-fold structure of the Last Interglacial. Stabilized Sr/Ca values were reached only during the second phase of MIS5e, possibly representing the interval of maximum bank-top flooding after the northern hemisphere deglaciation terminated. Faunal-based proxies as well as oxygen isotopic gradients between surface and bottom-dwelling foraminifera corroborate existence of the two major climatic phases within the Last Interglacial, in agreement with the respective development in the polar region. This further suggests a strong climatic coupling between the subtropical and high-latitude North Atlantic with important implications for meridional SST gradients during the Last Interglacial.
Simulated atmospheric response to Gulf Stream variability
NASA Astrophysics Data System (ADS)
Hand, Ralf; Keenlyside, Noel; Omrani, Nour-Eddine; Latif, Mojib; Minobe, Shoshiro
2010-05-01
Though the ocean variability has a distinct low-frequent component on interannual to interdecadal timescales, a better understanding of the main features of air-sea interaction in the extratropical ocean might increase the predictive skill of climate models significantly. An insufficiently understood region in this context are the sharp SST-fronts connected to western boundary currents, which interact with the overlaying atmosphere by forcing low-level winds and evaporation. Recent studies show, that this response extends beyond the marine boundary layer and so might influence also the large-scale atmospheric circulation. In this work a 5 member ensemble of model runs from the AGCM ECHAM5 was analyzed focussing on the atmospheric response to the Gulf Stream. The analyzed experiment covered a time period of 138 years from 1870 to 2007 and was forced by observed SSTs and sea-ice concentration from the HadISST dataset. The experiment was performed at T106 horizontal resolution (~100km) and with 31 vertical levels up to 1 hPa. Simulated seasonal mean circulation indicate a convective response of the atmosphere in the Gulf Stream region similar to observations, with distinct low-level wind convergence, strong upward motion, and low-pressure over the warm SST flank of the Gulf Stream. An analysis of variance (ANOVA) suggests, that up to 25-30% of the variability of the summer precipitation in the Gulf Stream region are connected to the boundary conditions. The link between oceanic and atmospheric variability on seasonal to interannual timescales is investigated with composite and linear regression analysis. Results indicate that increased (decreased) precipitation is associated with stronger (weaker) low-level wind convergence, enhanced (reduced) upward motion, low (high) pressure, and warm (cold) SST anomalies in the region of the Gulf Stream. Currently sensitivity experiments with the same AGCM configuration are in progress.
Recent changes to the Gulf Stream causing widespread gas hydrate destabilization.
Phrampus, Benjamin J; Hornbach, Matthew J
2012-10-25
The Gulf Stream is an ocean current that modulates climate in the Northern Hemisphere by transporting warm waters from the Gulf of Mexico into the North Atlantic and Arctic oceans. A changing Gulf Stream has the potential to thaw and convert hundreds of gigatonnes of frozen methane hydrate trapped below the sea floor into methane gas, increasing the risk of slope failure and methane release. How the Gulf Stream changes with time and what effect these changes have on methane hydrate stability is unclear. Here, using seismic data combined with thermal models, we show that recent changes in intermediate-depth ocean temperature associated with the Gulf Stream are rapidly destabilizing methane hydrate along a broad swathe of the North American margin. The area of active hydrate destabilization covers at least 10,000 square kilometres of the United States eastern margin, and occurs in a region prone to kilometre-scale slope failures. Previous hypothetical studies postulated that an increase of five degrees Celsius in intermediate-depth ocean temperatures could release enough methane to explain extreme global warming events like the Palaeocene-Eocene thermal maximum (PETM) and trigger widespread ocean acidification. Our analysis suggests that changes in Gulf Stream flow or temperature within the past 5,000 years or so are warming the western North Atlantic margin by up to eight degrees Celsius and are now triggering the destabilization of 2.5 gigatonnes of methane hydrate (about 0.2 per cent of that required to cause the PETM). This destabilization extends along hundreds of kilometres of the margin and may continue for centuries. It is unlikely that the western North Atlantic margin is the only area experiencing changing ocean currents; our estimate of 2.5 gigatonnes of destabilizing methane hydrate may therefore represent only a fraction of the methane hydrate currently destabilizing globally. The transport from ocean to atmosphere of any methane released--and thus its impact on climate--remains uncertain.
High-frequency internal waves and thick bottom mixed layers observed by gliders in the Gulf Stream
NASA Astrophysics Data System (ADS)
Todd, Robert E.
2017-06-01
Autonomous underwater gliders are conducting high-resolution surveys within the Gulf Stream along the U.S. East Coast. Glider surveys reveal two mechanisms by which energy is extracted from the Gulf Stream as it flows over the Blake Plateau, a portion of the outer continental shelf between Florida and North Carolina where bottom depths are less than 1000 m. Internal waves with vertical velocities exceeding 0.1 m s-1 and frequencies just below the local buoyancy frequency are routinely found over the Blake Plateau, particularly near the Charleston Bump, a prominent topographic feature. These waves are likely internal lee waves generated by the subinertial Gulf Stream flow over the irregular bathymetry of the outer continental shelf. Bottom mixed layers with O(100) m thickness are also frequently encountered; these thick bottom mixed layers likely form in the lee of topography due to enhanced turbulence generated by O(1) m s-1 near-bottom flows.
Currents Global Ocean Model Sea Surface Temperatures Gulf Stream ASCII Data Gulf Stream Comparison Gridded ASCAT Scatterometer Winds Lightning Strike Density Satellite Imagery Ocean Global Ocean Model , 2017 19:10:57 UTC Disclaimer Information Quality Help Glossary Privacy Policy Freedom of Information
Impact of Data Assimilation And Resolution On Modeling The Gulf Stream Pathway
2011-11-18
currents could be generated by either the Deep Western Boundary Current (DWBC) associated with the Meridional Overturning Circulation (MOC) or by...abyssal gyre centered directly beneath the surface gyre. Figure 7. Meridional overturning circulation stream function for four 1/12° global HYCOM... circulation and have a weak overturning circulation . The Gulf Stream path is poorly simulated without the steering by the abyssal circulation . A
NASA Astrophysics Data System (ADS)
Seo, H.; Kwon, Y. O.; Joyce, T. M.; Ummenhofer, C.
2016-12-01
This study examines the North Atlantic atmospheric circulation response to the meridional shift of Gulf Stream path using a large-ensemble, high-resolution, and hemispheric-scale WRF simulations. The model is forced with wintertime SST anomalies derived from a wide range of Gulf Stream shift scenarios. The key result of the model experiments, supported in part by an independent analysis of a reanalysis data set, is that the large-scale, quasi-steady North Atlantic circulation response is unambiguously nonlinear about the sign and amplitude of chosen SST anomalies. This nonlinear response prevails over the weak linear response and resembles the negative North Atlantic Oscillation, the leading intrinsic mode of variability in the model and the observations. Further analysis of the associated dynamics reveals that the nonlinear responses are accompanied by the anomalous southward shift of the North Atlantic eddy-driven jet stream, which is reinforced nearly equally by the high-frequency transient eddy feedback and the low-frequency high-latitude wave breaking events. The result highlights the importance of the intrinsically nonlinear transient eddy dynamics and eddy-mean flow interactions in generating the nonlinear forced response to the meridional shift in the Gulf Stream.
The branching of the Gulf Stream southeast of the Grand Banks
NASA Astrophysics Data System (ADS)
Krauss, W.; KäSe, R. H.; Hinrichsen, H.-H.
1990-08-01
During March-April 1987, 101 hydrographic stations were occupied on three sections spanning a triangle between the Azores (Faial), the southern tip of the Grand Banks of Newfoundland, and Bermuda. Information on the near-surface processes in the interior of the triangle were obtained from 32 satellite-tracked buoys deployed during the cruise and a composite infrared image based on cloud-free NOAA 9 data during April 1987. The data were combined to analyze the eddy field and the branching of the Gulf Stream into the North Atlantic Current and the Azores Current. Calculations of mass transports through the legs of the triangle gave a total of 46 Sv supplied by the Gulf Stream, 31 Sv of which left the area as the North Atlantic Current and westwind drift north of the Azores. The remaining 14 Sv continued towards east-southeast as the Azores Current and southern recirculation. Additional conductivity-temperature-depth stations from a cruise in April 1986 into the same area allowed also study of the large-scale circulation within that triangle in deeper layers. The Azores Current appears as a baroclinic stream which reaches down to approximately 1000 m. Intensive mixing was observed at the continental slope of Newfoundland between water of the Labrador Current and the Gulf Stream (mixed water). Owing to cabbeling and consecutive convective mixing, this water penetrates down to 2000 m depth and creates horizontal density gradients to the surrounding Gulf Stream water, which intensifies the North Atlantic Current. This process is considered to be an important energy source for this current.
Byoungkoo Choi; Jeff A. Hatten; Janet C. Dewey; Kyoichi Otsuki; Dusong Cha
2013-01-01
Headwater streams are crucial parts of overall watershed dynamics because they comprise more than 50â80% of stream networks and watershed land areas. This study addressed the influence of headwater areas (ephemeral and intermittent) on stormflow characteristics following harvest within three firstâorder catchments in the Upper Gulf Coastal Plain of Mississippi. Four...
A vorticity budget for the Gulf Stream
NASA Astrophysics Data System (ADS)
Le Bras, Isabela; Toole, John
2017-04-01
We develop a depth-averaged vorticity budget framework to diagnose the dynamical balance of the Gulf Stream, and apply this framework to observations and the ECCO state estimate (Wunsch and Heimbach 2013) above the thermocline in the subtropical North Atlantic. Using the hydrographic and ADCP data along the WOCE/CLIVAR section A22 and a variety of wind stress data products, we find that the advective vorticity flux out of the western region is on the same order as the wind stress forcing over the eastern portion of the gyre. This is consistent with a large-scale balance between a negative source of vorticity from wind stress forcing and a positive source of vorticity in the western region. Additionally, the form of the vorticity flux indicates that the Gulf Stream has a significant inertial component. In the ECCO state estimate, we diagnose a seasonal cycle in advective vorticity flux across a meridional section associated with seasonal fluctuations in Gulf Stream transport. This vorticity flux is forced by wind stress over the eastern subtropical North Atlantic and balanced by lateral friction with the western boundary. The lateral friction in ECCO is a necessary parameterization of smaller scale processes that occur in the real ocean, and quantifying these remains an open and interesting question. This simplified framework provides a means to interpret large scale ocean dynamics. In our application, it points to wind stress forcing over the subtropical North Altantic as an important regulator of the Gulf Stream and hence the climate system.
A Gulf Stream-derived pycnocline intrusion on the Middle Atlantic Bight shelf
NASA Astrophysics Data System (ADS)
Gawarkiewicz, Glen; McCarthy, Robert K.; Barton, Kenneth; Masse, Ann K.; Church, Thomas M.
1990-12-01
Saline intrusions from the upper slope onto the outer shelf are frequently observed at the pycnocline along the shelfbreak front in the Middle Atlantic Bight during the summer. A brief cruise was conducted in July, 1986 between Baltimore and Washington Canyons to examine along-shelf variability of pycnocline salinity intrusions. A particularly saline intrusion of 35.8 Practical Salinity Units (PSU) was observed between 20 and 40 m in a water depth of 70 to 80 m. The along-shelf extent was at least 40 km. The cooler, sub-pycnocline outer shelf water was displaced 15 km shoreward of the shelfbreak. A Gulf Stream filament was present in the slope region prior to the hydrographic sampling, but was not visible in thermal imagery during the hydrographic sampling. Temperature-salinity characteristics of the intrusion suggest that it was a mixture of Gulf Stream water and slope water, possibly from the filament. The shoreward penetration of saline water was most pronounced at the pycnocline and penetrated the shelfbreak front, with salinities as high as 35.0 PSU reaching as far shoreward as the 35 m isobath. These pycnocline intrusions may be an important mechanism for the transport of Gulf Stream-derived water onto the shelf during the summer. The presence of filaments or other Gulf Stream-derived water on the upper slope may account for some of the along-front variability of the pycnocline salinity maximum that has previously been observed.
Lamb, Jennifer Y.; Waddle, J. Hardin; Qualls, Carl P.
2017-01-01
Large gaps exist in our knowledge of the ecology of stream-breeding plethodontid salamanders in the Gulf Coastal Plain. Data describing where these salamanders are likely to occur along environmental gradients, as well as their likelihood of detection, are important for the prevention and management of amphibian declines. We used presence/absence data from leaf litter bag surveys and a hierarchical Bayesian multispecies single-season occupancy model to estimate the occurrence of five species of plethodontids across reaches in headwater streams in the Gulf Coastal Plain. Average detection probabilities were high (range = 0.432–0.942) and unaffected by sampling covariates specific to the use of litter bags (i.e., bag submergence, sampling season, in-stream cover). Estimates of occurrence probabilities differed substantially between species (range = 0.092–0.703) and were influenced by the size of the upstream drainage area and by the maximum proportion of the reach that dried. The effects of these two factors were not equivalent across species. Our results demonstrate that hierarchical multispecies models successfully estimate occurrence parameters for both rare and common stream-breeding plethodontids. The resulting models clarify how species are distributed within stream networks, and they provide baseline values that will be useful in evaluating the conservation statuses of plethodontid species within lotic systems in the Gulf Coastal Plain.
NASA Technical Reports Server (NTRS)
Weissman, D. E.; Thompson, T. W.
1977-01-01
Radar cross section data shows that the Gulf Stream has a higher cross section per unit area (interpreted here as a greater roughness) than the water on the continental shelf. A steep gradient in cross section was often seen at the expected location of the western boundary. There were also longer-scale (10-20 km) gradual fluctuations within the stream of significant magnitude. These roughness variations are correlated with the surface shear stress that the local wind imposes on the sea. Using the available surface-truth information concerning the wind speed and direction, an assumed Gulf Stream velocity profile, and high-resolution ocean-surface temperature data obtained by the VHRR onboard a NOAA-NESS polar-orbiting satellite, the present study demonstrates that the computed surface stress variation bears a striking resemblance to the measured radar cross-section variations.
Transport driven by eddy momentum fluxes in the Gulf Stream Extension region
NASA Astrophysics Data System (ADS)
Greatbatch, R. J.; Zhai, X.; Claus, M.; Czeschel, L.; Rath, W.
2010-12-01
The importance of the Gulf Stream Extension region in climate and seasonal prediction research is being increasingly recognised. Here we use satellite-derived eddy momentum fluxes to drive a shallow water model for the North Atlantic Ocean that includes the realistic ocean bottom topography. The results show that the eddy momentum fluxes can drive significant transport, sufficient to explain the observed increase in transport of the Gulf Stream following its separation from the coast at Cape Hatteras, as well as the observed recirculation gyres. The model also captures recirculating gyres seen in the mean sea surface height field within the North Atlantic Current system east of the Grand Banks of Newfoundland, including a representation of the Mann Eddy.
Frontal Eddy Dynamics (FRED) experiment off North Carolina: Volume 1. Executive summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebbesmeyer, C.C.
1989-03-01
In preparation for oil and gas lease sales on the outer continental shelf offshore of North Carolina, the Minerals Management Service was requested to investigate the potential transport and impacts of oil spilled offshore. The Gulf Stream and associated eddies are an important aspect of the transport. Although the speed and location of the Gulf Stream are reasonably well known, knowledge of the meanders of the Gulf Stream is limited. How the circulatory structure and movement of associated frontal eddies and filaments affect the North Carolina coastal waters is not clear. This study investigates the interactions of these circulatory elementsmore » and follows the evolution of frontal eddies as they migrate along the North Carolina coast.« less
NASA Technical Reports Server (NTRS)
Singh, Sandipa; Kelly, Kathryn A.
1997-01-01
Monthly Maps of sea surface height are constructed for the North Atlantic Ocean using TOPEX/Poseidon altimeter data. Mean sea surface height is reconstructed using a weighted combination of historical, hydrographic data and a synthetic mean obtained by fitting a Gaussian model of the Gulf Stream jet to altimeter data. The resultant mean shows increased resolution over the hydrographic mean, and incorporates recirculation information that is absent in the synthetic mean. Monthly maps, obtained by adding the mean field to altimeter sea surface height residuals, are used to derive a set of zonal indices that describe the annual cycle of meandering as well as position and strength of the Gulf Stream.
NASA Technical Reports Server (NTRS)
Joyce, T. M.; Dunworth, J. A.; Schubert, D. M.; Stalcup, M. C.; Barbour, R. L.
1988-01-01
The degree to which Acoustic-Doppler Current Profiler (ADCP) and expendable bathythermograph (XBT) data can provide quantitative measurements of the velocity structure and transport of the Gulf Stream is addressed. An algorithm is used to generate salinity from temperature and depth using an historical Temperature/Salinity relation for the NW Atlantic. Results have been simulated using CTD data and comparing real and pseudo salinity files. Errors are typically less than 2 dynamic cm for the upper 800 m out of a total signal of 80 cm (across the Gulf Stream). When combined with ADCP data for a near-surface reference velocity, transport errors in isopycnal layers are less than about 1 Sv (10 to the 6th power cu m/s), as is the difference in total transport for the upper 800 m between real and pseudo data. The method is capable of measuring the real variability of the Gulf Stream, and when combined with altimeter data, can provide estimates of the geoid slope with oceanic errors of a few parts in 10 to the 8th power over horizontal scales of 500 km.
The Challenge of Simulating the Regional Climate over Florida
NASA Astrophysics Data System (ADS)
Misra, V.; Mishra, A. K.
2015-12-01
In this study we show that the unique geography of the peninsular Florida with close proximity to strong mesoscale surface ocean currents among other factors warrants the use of relatively high resolution climate models to project Florida's hydroclimate. In the absence of such high resolution climate models we highlight the deficiencies of two relatively coarse spatial resolution CMIP5 models with respect to the warm western boundary current of the Gulf Stream. As a consequence it affects the coastal SST and the land-ocean contrast, affecting the rainy summer seasonal precipitation accumulation over peninsular Florida. We also show this through two sensitivity studies conducted with a regional coupled ocean atmosphere model with different bathymetries that dislocate and modulate the strength of the Gulf Stream that locally affects the SST in the two simulations. These studies show that a stronger and more easterly displaced Gulf Stream produces warmer coastal SST's along the Atlantic coast of Florida that enhances the precipitation over peninsular Florida relative to the other regional climate model simulation. However the regional model simulations indicate that variability of wet season rainfall variability in peninsular Florida becomes less dependent on the land-ocean contrast with a stronger Gulf Stream current.
Impact Of Resolving Submesoscale Features On Modeling The Gulf Stream System
NASA Astrophysics Data System (ADS)
Chassignet, E.; Xu, X.
2016-02-01
Despite being one the best-known circulation pattern of the world ocean, the representation of the Gulf Stream, especially its energetic extension east of the New England Seamounts Chains in the western North Atlantic Ocean, has been a major challenge for ocean general circulation models even at eddy-rich resolutions. Here we show that, for the first time, a simulation of the North Atlantic circulation at 1/50° resolution realistically represents the narrow, energetic jet near 55°W when compared to observations, whereas similarly configured simulations at 1/25° and 1/12° resolution do not. This result highlights the importance of submesoscale features in driving the energetic Gulf Stream extension in the western North Atlantic. The results are discussed in terms of mesoscale and submesoscale energy power spectra.
The dynamics of oceanic fronts. I - The Gulf Stream
NASA Technical Reports Server (NTRS)
Kao, T. W.
1980-01-01
The establishment and maintenance of the mean hydrographic properties of large-scale density fronts in the upper ocean is considered. The dynamics is studied by posing an initial value problem starting with a near-surface discharge of buoyant water with a prescribed density deficit into an ambient stationary fluid of uniform density; full time dependent diffusion and Navier-Stokes equations are then used with constant eddy diffusion and viscosity coefficients, together with a constant Coriolis parameter. Scaling analysis reveals three independent scales of the problem including the radius of deformation of the inertial length, buoyancy length, and diffusive length scales. The governing equations are then suitably scaled and the resulting normalized equations are shown to depend on the Ekman number alone for problems of oceanic interest. It is concluded that the mean Gulf Stream dynamics can be interpreted in terms of a solution of the Navier-Stokes and diffusion equations, with the cross-stream circulation responsible for the maintenance of the front; this mechanism is suggested for the maintenance of the Gulf Stream dynamics.
Preliminary estimates of Gulf Stream characteristics from TOPEX data and a precise gravimetric geoid
NASA Technical Reports Server (NTRS)
Rapp, Richard H.; Smith, Dru A.
1994-01-01
TOPEX sea surface height data has been used, with a gravimetric geoid, to calculate sea surface topography across the Gulf Stream. This topography was initially computed for nine tracks on cycles 21 to 29. Due to inaccurate geoid undulations on one track, results for eight tracks are reported. The sea surface topography estimates were used to calculate parameters that describe Gulf Stream characteristics from two models of the Gulf Stream. One model was based on a Gaussian representation of the velocity while the other was a hyperbolic representation of velocity or the sea surface topography. The parameters of the Gaussian velocity model fit were a width parameter, a maximum velocity value, and the location of the maximum velocity. The parameters of the hyperbolic sea surface topography model were the width, the height jump, position, and sea surface topography at the center of the stream. Both models were used for the eight tracks and nine cycles studied. Comparisons were made between the width parameters, the maximum velocities, and the height jumps. Some of the parameter estimates were found to be highly (0.9) correlated when the hyperbolic sea surface topography fit was carried out, but such correlations were reduced for either the Gaussian velocity fits or the hyperbolic velocity model fit. A comparison of the parameters derived from 1-year TOPEX data showed good agreement with values derived by Kelly (1991) using 2.5 years of Geosat data near 38 deg N, 66 deg W longitude. Accuracy of the geoid undulations used in the calculations was of order of +/- 16 cm with the accuracy of a geoid undulation difference equal to +/- 15 cm over a 100-km line in areas with good terrestrial data coverage. This paper demonstrates that our knowledge or geoid undulations and undulation differences, in a portion of the Gulf Stream region, is sufficiently accurate to determine characteristics of the jet when used with TOPEX altimeter data. The method used here has not been shown to be more accurate than methods that average altimeter data to form a reference surface used in analysis to obtain the Gulf Stream characteristics. However, the results show the geoid approach may be used in areas where lack of current meandering reduces the accuracy of the average surface procedure.
Gulf stream velocity structure through combined inversion of hydrographic and acoustic Doppler data
NASA Technical Reports Server (NTRS)
Pierce, S. D.
1986-01-01
Near-surface velocities from an acoustic Doppler instrument are used in conjunction with CTD/O2 data to produce estimates of the absolute flow field off Cape Hatteras. The data set consists of two transects across the Gulf Stream made by the R/V Endeavor cruise EN88 in August 1982. An inverse procedure is applied which makes use of both the acoustic Doppler data and property conservation constraints. Velocity sections at approximately 73 deg. W and 71 deg. W are presented with formal errors of 1-2 cm/s. The net Gulf Stream transports are estimated to be 116 + or - 2 Sv across the south leg and 161 + or - 4 Sv across the north. A Deep Western Boundary Current transport of 4 + or - 1 Sv is also estimated. While these values do not necessarily represent the mean, they are accurate estimates of the synoptic flow field in the region.
The likelihood of winter sprites over the Gulf Stream
NASA Astrophysics Data System (ADS)
Price, Colin; Burrows, William; King, Patrick
2002-11-01
With the recent introduction of the Canadian Lightning Detection Network (CLDN), it was revealed that during the winter months every year, the highest lightning activity within the network occurs over the Gulf Stream, southeast of Nova Scotia. These storms over the Gulf Stream, in addition to being of importance to trans-Atlantic shipping and aviation, have an unusually high fraction of positive polarity lightning, with unusually large peak currents. Such intense positive lightning flashes are known to generate transient luminous events (TLEs) such as sprites and elves in the upper atmosphere. It is found that many of these large positive discharges produce extremely low frequency (ELF) electromagnetic radiation detected at a field station in the Negev Desert, Israel, 8000 km away, in agreement with previously documented sprite observations. Since these winter storms occur in the same location every year, it provides a good opportunity for field experiments focused on studying winter sprites and oceanic thunderstorms.
Florida, Bahamas, Cuba and Gulf Stream, USA
1992-08-08
This unique photo offers a view of the Florida peninsula, western Bahamas, north central Cuba and the deep blue waters of the Gulf Stream, that hugs the east coast of Florida (27.0N, 82.0W). In addition to being an excellent photograph for showing the geographical relationships between the variety of landforms in this scene, the typical effect of the land-sea breeze is very much in evidence as few clouds over water, cumulus build up over landmass.
Sandals and Robes to Business Suits and Gulf Streams: Warfare in the 21st Century
2011-04-20
movements and the extremist environments in which these movements operate. However, much like a franchise business enterprise, AQ is expanding its...2011, Small Wars Foundation April 20, 2011 Sandals and Robes to Business Suits and Gulf Streams: Warfare in the 21st Century by MG Michael T...comfortable in sandals and robes as they are wearing business suits and flying around the world in gulfstream aircraft. As confident in their ability to
Rebich, Richard A; Houston, Natalie A; Mize, Scott V; Pearson, Daniel K; Ging, Patricia B; Evan Hornig, C
2011-01-01
Abstract SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were developed to estimate nutrient inputs [total nitrogen (TN) and total phosphorus (TP)] to the northwestern part of the Gulf of Mexico from streams in the South-Central United States (U.S.). This area included drainages of the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf hydrologic regions. The models were standardized to reflect nutrient sources and stream conditions during 2002. Model predictions of nutrient loads (mass per time) and yields (mass per area per time) generally were greatest in streams in the eastern part of the region and along reaches near the Texas and Louisiana shoreline. The Mississippi River and Atchafalaya River watersheds, which drain nearly two-thirds of the conterminous U.S., delivered the largest nutrient loads to the Gulf of Mexico, as expected. However, the three largest delivered TN yields were from the Trinity River/Galveston Bay, Calcasieu River, and Aransas River watersheds, while the three largest delivered TP yields were from the Calcasieu River, Mermentau River, and Trinity River/Galveston Bay watersheds. Model output indicated that the three largest sources of nitrogen from the region were atmospheric deposition (42%), commercial fertilizer (20%), and livestock manure (unconfined, 17%). The three largest sources of phosphorus were commercial fertilizer (28%), urban runoff (23%), and livestock manure (confined and unconfined, 23%). PMID:22457582
Gulf Coast Deep Water Port Facilities study. Appendix B. North Central Gulf Hydrobiological Zones.
1973-04-01
bottom and surface salinities , but their effect is more noticeable at the surface. Because of variation in these factors along the Gulf Coast... effects of discharge on salinity have been considered above. Numerous streams empty into the Gulf of Mexico along its north central portion but the...1967) investigated various aspects of osmoregulation in blue crabs in Mississippi Sound and adjacent waters and observed that salinity and temperature
NASA Astrophysics Data System (ADS)
Jolliff, J. K.; Gould, R. W.; deRada, S.; Teague, W. J.; Wijesekera, H. W.
2012-12-01
We provide an overview of the NASA-funded project, "High-Resolution Subsurface Physical and Optical Property Fields in the Gulf of Mexico: Establishing Baselines and Assessment Tools for Resource Managers." Data assimilative models, analysis fields, and multiple satellite data streams were used to construct temperature and photon flux climatologies for the Flower Garden Banks National Marine Sanctuary (FGBNMS) and similar habitats in the northwestern Gulf of Mexico where geologic features provide a platform for unique coral reef ecosystems. Comparison metrics of the products to in situ data collected during complimentary projects are also examined. Similarly, high-resolution satellite-data streams and advanced processing techniques were used to establish baseline suspended sediment load and turbidity conditions in selected northern Gulf of Mexico estuaries. The results demonstrate the feasibility of blending models and data into accessible web-based analysis products for resource managers, policy makers, and the public.
A Paleo Perspective on Arctic and Mid-latitude Linkages from a Southeast Alaska Ice Core
NASA Astrophysics Data System (ADS)
Porter, S. E.; Mosley-Thompson, E.; Thompson, L. G.; Bolzan, J. F.
2017-12-01
Recent extreme weather events in the Northern Hemisphere have been linked to anomalously amplified jet stream patterns, North Pacific marine heatwaves, retreating Arctic sea ice extent, and/or the combination thereof. The role of the Arctic in influencing mid-latitude weather and extreme events is a burgeoning topic of climate research that is limited primarily to the recent decades in which Arctic amplification and shrinking Arctic sea ice extent are occurring. Paleo-proxy data afford an opportunity to place the changing Arctic and its far-reaching climatic consequences in the longer context of Earth's climate history and allow identification of time periods with conditions analogous to the present. Ice core-derived annual net accumulation from the Bona-Churchill (BC) ice core, retrieved in 2002 from the Wrangell-St. Elias mountain range in southeast Alaska, is used to explore the historical characteristics of the regional North Pacific climate and the further afield teleconnections. Variability of accumulation on BC is driven primarily by shifts in the position of the Aleutian Low which influences the available moisture sources for the drill site. The accumulation record is also related to sea surface temperatures in the Gulf of Alaska, defined here by the North Pacific Mode and somewhat colloquially as the North Pacific "blob". Thus due to its connection with the Aleutian Low and North Pacific sea surface temperatures, this uniquely situated ice core record indirectly captures the phasing of troughs and ridges in the polar jet stream over North America, and thereby facilitates examination of the atmospheric wave structure prior to the instrumental record. The relationships among the ice core accumulation record and various North Pacific climate features are presented along with evidence identifying specific time periods possibly characterized by persistently amplified wave patterns.
2008-07-06
bathymetry, wind forcing, and a meridional overturning circulation (MOC), the latter specified via ports in the northern and southern boundaries. The...small values below the sill depth in all of the simulations. e The upper ocean northward flow of the meridional overturning circulation (MOC) is...plus the northward upper ocean flow (14 Sv) of the meridional overturning circulation (MOC). The mean Gulf Stream IR northwall pathway ±lrr from
Proceedings of the Gulf Stream Workshop Held at West Greenwich, Rhode Island on 23-26 April 1985,
1985-04-01
complex. We now realize that a correct dytiamical description must intrinsically couple the mass-, momentum -, energy-, and vorticity-fluxes of a strong mean...path and structure, and the mass- and momentum transport. 2. Meander dynamics "intrinsic" to the Gulf Stream, such as growth and propagation of...contribute to the dissipation of momentum through wave and form drag. A general study of the influence of the seamounts seems more appropriate for the
Electronic research and technology requirements for marine resources
NASA Technical Reports Server (NTRS)
Ewing, G. C.
1971-01-01
The Woods Hole air/space oceanographic program for 1969 is discussed. Studies included: (1) monitoring the sharp temperature boundary of the Gulf Stream by microwave and infrared observation, (2) spectrophotometry of the Gulf Stream and the adjacent continental slope and shelf water over Georges Bank, (3) interpretation of cloud and other meteorological data in terms of the effects of wind and sun on the upper ocean, (4) a sea state test plan, (5) systems research, and (6) ocean data recovery by aircraft and satellite.
Thunderstorm, Texas Gulf Coast, USA
1990-04-29
This thunderstorm along the Texas Gulf Coast (29.0N, 95.0W), USA is seen as the trailing edge of a large cloud mass formed along the leading edge of a spring frontal system stretching northwest to southeast across the Texas Gulf Coast. This system brought extensive severe weather and flooding to parts of Texas and surrounding states. Muddy water discharging from coastal streams can be seen in the shallow Gulf of Mexico as far south as Lavaca Bay.
Influence of ENSO on Gulf Stream cyclogenesis and the North Atlantic storm track
NASA Astrophysics Data System (ADS)
Li, C.; Schemm, S.; Ciasto, L.; Kvamsto, N. G.
2015-12-01
There is emerging evidence that climate in the North Atlantic-European sector is sensitive to vacillations of tropical Pacific sea surface temperatures, in particular, the central Pacific flavour of the El Nino Southern Oscillation (ENSO) and concomitant trends in atmospheric heating. The frequency of central Pacific ENSOs appears to have increased over the last decades and some studies suggest it may continue increasing in the future, but the precise mechanisms by which these events affect the North Atlantic synoptic scale circulation are poorly understood. Here, we show that central Pacific ENSOs influence where midlatitude cyclogenesis occurs over the Gulf Stream, producing more cyclogenesis in the jet exit region rather than in the climatologically preferred jet entrance region. The cyclones forming over the Gulf Stream in central Pacific ENSO seasons tend to veer north, penetrating deeper into the Arctic rather than into continental Europe. The shift in cyclogenesis is linked to changes in the large scale circulation, namely, the upper-level trough formed in the lee of the Rocky Mountains.
Rebich, R.A.; Houston, N.A.; Mize, S.V.; Pearson, D.K.; Ging, P.B.; Evan, Hornig C.
2011-01-01
SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were developed to estimate nutrient inputs [total nitrogen (TN) and total phosphorus (TP)] to the northwestern part of the Gulf of Mexico from streams in the South-Central United States (U.S.). This area included drainages of the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf hydrologic regions. The models were standardized to reflect nutrient sources and stream conditions during 2002. Model predictions of nutrient loads (mass per time) and yields (mass per area per time) generally were greatest in streams in the eastern part of the region and along reaches near the Texas and Louisiana shoreline. The Mississippi River and Atchafalaya River watersheds, which drain nearly two-thirds of the conterminous U.S., delivered the largest nutrient loads to the Gulf of Mexico, as expected. However, the three largest delivered TN yields were from the Trinity River/Galveston Bay, Calcasieu River, and Aransas River watersheds, while the three largest delivered TP yields were from the Calcasieu River, Mermentau River, and Trinity River/Galveston Bay watersheds. Model output indicated that the three largest sources of nitrogen from the region were atmospheric deposition (42%), commercial fertilizer (20%), and livestock manure (unconfined, 17%). The three largest sources of phosphorus were commercial fertilizer (28%), urban runoff (23%), and livestock manure (confined and unconfined, 23%). ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.
Temporal variation of meandering intensity and domain-wide lateral oscillations of the Gulf Stream
NASA Technical Reports Server (NTRS)
Lee, Tong; Cornillon, Peter
1995-01-01
The path of the Gulf Stream exhibits two modes of variability: wavelike spatial meanders associated with instability processes and large-sale lateral shifts of the path presumably due to atmospheric forcing. The objectives of this study are to examine the temporal variation of the intensity of spatial meandering in the stream, to characterize large-scale lateral oscillations in the stream's path, and to study the correlation betwen these two dynamically distinct modes of variability. The data used for this analysis are path displacemets ofthe Gulf Stream between 75 deg and 60 deg W obtained from AVHRR-derived (Advanced Very High Resolution Radiometer) infrared images for the period April 1982 through December 1989. Meandering intensity, measured by the spatial root-mean-sqaure displacement of the stream path, displays a 9-month dominant periodicity which is persistent through the study period. The 9-month fluctuation in meandering intensity may be related to the interaction of Rosseby waves with the stream. Interannual variation of meandering intensity is also found to be significant, with meandering being mich more intense during 1985 than it was in 1987. Annual variation, however,is weak and not well-defined.The spatially averaged position of the stream, which reflects nonmeandering large-scale lateral oscillations of the stream path, is dominated by an annual cycle. On average, the mean position is farthest north in November and farthest south in April. The first empirical orthogonal function mode of the space-time path displacements represents lateral oscillatins that are in-phase over the space-time domain. Interannual oscillations are also observed and are found to be weaker than the annual oscillation. The eigenvalue of the first mode indicates that about 21.5% of the total space-time variability of the stream path can be attibuted to domain-wide lateral oscillation. The correlation between meandering intensity and domain-wide lateral oscillations is very weak.
Publications - GMC 199 | Alaska Division of Geological & Geophysical
(2,770' and 6,520') and of core (8,242') from Gulf Oil Corporation Colville Delta State #1 well, and of of cuttings (2,770' and 6,520') and of core (8,242') from Gulf Oil Corporation Colville Delta State
Gulf Atlantic Coastal Plain Long Term Agroecosystem Research site, Tifton, GA
Timothy Strickland; David D. Bosch; Dinku M. Endale; Thomas L. Potter
2016-01-01
The Gulf-Atlantic Coastal Plain (GACP) physiographic region is an important agricultural production area within the southeastern U.S. that extends from Delaware in the Northeast to the Gulf Coast of Texas. The region consists mainly of low-elevation flat to rolling terrain with numerous streams, abundant rainfall, a complex coastline, and many wetlands. The GACP Long ...
A multigear protocol for sampling crayfish assemblages in Gulf of Mexico coastal streams
William R. Budnick; William E. Kelso; Susan B. Adams; Michael D. Kaller
2018-01-01
Identifying an effective protocol for sampling crayfish in streams that vary in habitat and physical/chemical characteristics has proven problematic. We evaluated an active, combined-gear (backpack electrofishing and dipnetting) sampling protocol in 20 Coastal Plain streams in Louisiana. Using generalized linear models and rarefaction curves, we evaluated environmental...
NASA Astrophysics Data System (ADS)
Chambault, Philippine; Roquet, Fabien; Benhamou, Simon; Baudena, Alberto; Pauthenet, Etienne; de Thoisy, Benoît; Bonola, Marc; Dos Reis, Virginie; Crasson, Rodrigue; Brucker, Mathieu; Le Maho, Yvon; Chevallier, Damien
2017-05-01
Although some associations between the leatherback turtle Dermochelys coriacea and the Gulf Stream current have been previously suggested, no study has to date demonstrated strong affinities between leatherback movements and this particular frontal system using thorough oceanographic data in both the horizontal and vertical dimensions. The importance of the Gulf Stream frontal system in the selection of high residence time (HRT) areas by the North Atlantic leatherback turtle is assessed here for the first time using state-of-the-art ocean reanalysis products. Ten adult females from the Eastern French Guianese rookery were satellite tracked during post-nesting migration to relate (1) their horizontal movements to physical gradients (Sea Surface Temperature (SST), Sea Surface Height (SSH) and filaments) and biological variables (micronekton and chlorophyll a), and (2) their diving behaviour to vertical structures within the water column (mixed layer, thermocline, halocline and nutricline). All the turtles migrated northward towards the Gulf Stream north wall. Although their HRT areas were geographically remote (spread between 80-30 °W and 28-45 °N), all the turtles targeted similar habitats in terms of physical structures, i.e. strong gradients of SST, SSH and a deep mixed layer. This close association with the Gulf Stream frontal system highlights the first substantial synchronization ever observed in this species, as the HRTs were observed in close match with the autumn phytoplankton bloom. Turtles remained within the enriched mixed layer at depths of 38.5±7.9 m when diving in HRT areas, likely to have an easier access to their prey and maximize therefore the energy gain. These depths were shallow in comparison to those attained within the thermocline (82.4±5.6 m) while crossing the nutrient-poor subtropical gyre, probably to reach cooler temperatures and save energy during the transit. In a context of climate change, anticipating the evolution of such frontal structure under the influence of global warming is crucial to ensure the conservation of this vulnerable species.
DOT National Transportation Integrated Search
2010-01-01
Prior to Automatic Dependent SurveillanceBroadcast (ADS-B), non-radar separation was necessary in the Gulf of Mexico due to limited surveillance and air-ground communication. Five nautical mile separation using ADS-B improves capacity and streamli...
NASA Astrophysics Data System (ADS)
Eyles, Nick; Putkinen, Niko
2014-03-01
Anticosti is a large elongate island (240 km long, 60 km wide) in eastern Canada within the northern part of a deep water trough (Gulf of St. Lawrence) that terminates at the Atlantic continental shelf edge. The island's Pleistocene glaciological significance is that its long axis lay transverse to ice from the Quebec and Labrador sectors of the Laurentide Ice Sheet moving south from the relatively high-standing Canadian Shield. Recent glaciological reconstructions place a fast-flowing ice stream along the axis of the Gulf of St. Lawrence but supporting geologic evidence in terms of recognizing its hard-bedded onset zone and downstream streamlined soft bed is limited. Anticosti Island consists of gently southward-dipping limestone plains composed of Ordovician and Silurian limestones (Vaureal, Becscie and Jupiter formations) with north-facing escarpments transverse to regional ice flow. Glacial deposits are largely absent and limestone plains in the higher central plateau of the island retain a relict apparently ‘preglacial’ drainage system consisting of deeply-incised dendritic bedrock valleys. In contrast, the bedrock geomorphology of the lower lying western and eastern limestone plains of the island is strikingly different having been extensively modified by glacial erosion. Escarpments are glacially megalineated with a distinct ‘zig-zag’ planform reflecting northward-projecting bullet-shaped ‘noses’ (identified as rock drumlins) up to 2 km wide at their base and 4 km in length with rare megagrooved upper surfaces. Drumlins are separated by southward-closing, funnel-shaped ‘through valleys’ where former dendritic valleys have been extensively altered by the streaming of basal ice through gaps in the escarpments. Glacially-megalineated bedrock terrain such as on the western and eastern flanks of Anticosti Island is elsewhere associated with the hard-bedded onset zones of fast flowing ice streams and provides important ground truth for the postulated Laurentian Channel Ice Stream (LCIS) within the Gulf of St. Lawrence sector of the Laurentide Ice Sheet.
Alexander, R.B.; Smith, R.A.; Schwarz, G.E.; Boyer, E.W.; Nolan, J.V.; Brakebill, J.W.
2008-01-01
Seasonal hypoxia in the northern Gulf of Mexico has been linked to increased nitrogen fluxes from the Mississippi and Atchafalaya River Basins, though recent evidence shows that phosphorus also influences productivity in the Gulf. We developed a spatially explicit and structurally detailed SPARROW water-quality model that reveals important differences in the sources and transport processes that control nitrogen (N) and phosphorus (P) delivery to the Gulf. Our model simulations indicate that agricultural sources in the watersheds contribute more than 70% of the delivered N and P. However, corn and soybean cultivation is the largest contributor of N (52%), followed by atmospheric deposition sources (16%); whereas P originates primarily from animal manure on pasture and rangelands (37%), followed by corn and soybeans (25%), other crops (18%), and urban sources (12%). The fraction of in-stream P and N load delivered to the Gulf increases with stream size, but reservoir trapping of P causes large local- and regional-scale differences in delivery. Our results indicate the diversity of management approaches required to achieve efficient control of nutrient loads to the Gulf. These include recognition of important differences in the agricultural sources of N and P, the role of atmospheric N, attention to P sources downstream from reservoirs, and better control of both N and P in close proximity to large rivers. ?? 2008 American Chemical Society.
Occurrence and amount of microplastic ingested by fishes in watersheds of the Gulf of Mexico.
Phillips, Melissa B; Bonner, Timothy H
2015-11-15
Ingestion of microplastics by fishes could be an emerging environmental crisis because of the proliferation of plastic pollution in aquatic environments. Microplastics in marine ecosystems are well documented, however only one study has reported percent occurrence of microplastics in freshwater fishes. The purpose of this study was to quantify the occurrences and types of microplastics ingested by fishes within several freshwater drainages of the Gulf of Mexico and an estuary of the Gulf of Mexico. Among 535 fishes examined in this study, 8% of the freshwater fishes and 10% of the marine fishes had microplastics in their gut tract. Percentage occurrence of microplastics ingested by fishes in non-urbanized streams (5%) was less than that of one of the urbanized streams (Neches River; 29%). Percent occurrence of microplastics by habitat (i.e., benthic, pelagic) and trophic guilds (herbivore/omnivore, invertivore, carnivore) were similar. Low but widespread occurrences among drainages, habitat guilds, and trophic guilds indicate proliferation of plastic pollution within watersheds of the Gulf of Mexico, but consequences to fish health are unknown at this time. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico
Alexander, R.B.; Smith, R.A.; Schwarz, G.E.
2000-01-01
An increase in the flux of nitrogen from the Mississippi river during the latter half of the twentieth century has caused eutrophication and chronic seasonal hypoxia in the shallow waters of the Louisiana shelf in the northern Gulf of Mexico. This has led to reductions in species diversity, mortality of benthic communities and stress in fishery resources. There is evidence for a predominantly anthropogenic origin of the increased nitrogen flux, but the location of the most significant sources in the Mississippi basin responsible for the delivery of nitrogen to the Gulf of Mexico have not been clearly identified, because the parameters influencing nitrogen-loss rates in rivers are not well known. Here we present an analysis of data from 374 US monitoring stations, including 123 along the six largest tributaries to the Mississippi, that shows a rapid decline in the average first-order rate of nitrogen loss with channel size-from 0.45 day-1 in small streams to 0.005 day-1 in the Mississippi river. Using stream depth as an explanatory variable, our estimates of nitrogen-loss rates agreed with values from earlier studies. We conclude that the proximity of sources to large streams and rivers is an important determinant of nitrogen delivery to the estuary in the Mississippi basin, and possibly also in other large river basins.
Dune-dammed lakes of the Nebraska Sand Hills: Geologic setting and paleoclimatic implications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loope, D.B.; Swinehart, J.B.
1992-01-01
Within the western half of this grass-stabilized dunefield, about 1,000 interdune lakes are grouped into two clusters here named the Blue and Birdwood lake basins. In the lake basins, those parts of the valley not filled by dune sand are occupied by modern lakes and Holocene lake sediments. The Blue Creek dam is mounded transverse to flow; spill-over of the lake basin takes place over bedrock on the east side of the dam when lake level is 2 m higher than present. The permeability of dune sand prevents massive overflow, and thereby contributes to the integrity and longevity of themore » dam. Preserved lake sediments in the basin indicate that Blue Creek was obstructed prior to 13,000 yr BP, probably during glacial maximum (18,000 yr BP). Extensive peats dated at 1,500-1,000 yr BP lie directly on fluvial sand and gravel along the Calamus River, a stream that presently discharges a nearly constant 350 cfs. These sediments indicate blockage of streams also took place when linear dunes were active in the eastern Sand Hills in Late Holocene time. With the onset of an arid episode, dunes forming an interfluves curtail the severity of runoff events. As the regional water table drops, drainages go dry and dunes move uncontested into blocking positions. Although drainages of the eastern Sand Hills appear to have repeatedly broken through sand-blocked channels, the Blue and Birdwood lake basins are still blocked by Late Pleistocene dune dams. The repeated episodes of stream blockage and interbedded lake sediments and dune sands behind the extant dams record several strong fluctuations in Holocene climate. Recently proposed climatic models indicate that the northward flow of warm, moist air from the Gulf of Mexico is enhanced when the Gulf's surface temperature is low and the Bermuda high is intensified and in a western position. When the Bermuda high moves eastward, the core of the North American continent becomes desiccated.« less
Physical oceanography of the US Atlantic and eastern Gulf of Mexico. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milliman, J.D.; Imamura, E.
The report provides a summary of the physical oceanography of the U.S. Atlantic and Eastern Gulf of Mexico and its implication to offshore oil and gas exploration and development. Topics covered in the report include: meteorology and air-sea interactions, circulation on the continental shelf, continental slope and rise circulation, Gulf Stream, Loop Current, deep-western boundary current, surface gravity-wave climatology, offshore engineering implications, implications for resource commercialization, and numerical models of pollutant dispersion.
Data file: the 1976 Atlantic Margin Coring (AMCOR) Project of the U.S. Geological Survey
Poppe, Lawrence J.; Poppe, Lawrence J.
1981-01-01
In 1976, the U.S. Geological Survey conducted the Atlantic Margin Coring Project (AMCOR) to obtain information on stratigraphy, hydrology and water chemistry, mineral resources other than petroleum hydrocarbons, and geotechnical engineering properties at sites widely distributed along the Continental Shelf and Slope of the Eastern United States (Hathaway and others, 1976, 1979). This program's primary purpose was to investigate a broad variety of sediment properties, many of which had not been previously studied in this region. Previous studies of sediments recovered by core drilling in this region were usually limited to one or two aspects of the sediment properties (Hathaway and others, 1979, table 2). The AMCOR program was limited by two factors: water depth and penetration depth. Because the ship selected for the program, the Glomar Conception, lacked dynamic positioning capability, its anchoring capacity determined the maximum water depth in which drilling could take place. Although it was equipped to anchor in water 450 m deep and did so successfully at one site, we attmepted no drilling in water depths greater than 300 m. Strong Gulf Stream currents at the one attempted deep (443 m) site frustrated attempts to "spud in" to begin the hole.
Armor systems including coated core materials
Chu, Henry S [Idaho Falls, ID; Lillo, Thomas M [Idaho Falls, ID; McHugh, Kevin M [Idaho Falls, ID
2012-07-31
An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.
Armor systems including coated core materials
Chu, Henry S; Lillo, Thomas M; McHugh, Kevin M
2013-10-08
An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.
Controls on the early Holocene collapse of the Bothnian Sea Ice Stream
NASA Astrophysics Data System (ADS)
Clason, Caroline C.; Greenwood, Sarah L.; Selmes, Nick; Lea, James M.; Jamieson, Stewart S. R.; Nick, Faezeh M.; Holmlund, Per
2016-12-01
New high-resolution multibeam data in the Gulf of Bothnia reveal for the first time the subglacial environment of a Bothnian Sea Ice Stream. The geomorphological record suggests that increased meltwater production may have been important in driving rapid retreat of Bothnian Sea Ice during deglaciation. Here we apply a well-established, one-dimensional flow line model to simulate ice flow through the Gulf of Bothnia and investigate controls on retreat of the ice stream during the post-Younger Dryas deglaciation of the Fennoscandian Ice Sheet. The relative influence of atmospheric and marine forcings are investigated, with the modeled ice stream exhibiting much greater sensitivity to surface melting, implemented through surface mass balance and hydrofracture-induced calving, than to submarine melting or relative sea level change. Such sensitivity is supported by the presence of extensive meltwater features in the geomorphological record. The modeled ice stream does not demonstrate significant sensitivity to changes in prescribed ice stream width or overall bed slope, but local variations in basal topography and ice stream width result in nonlinear retreat of the grounding line, notably demonstrating points of short-lived retreat slowdown on reverse bed slopes. Retreat of the ice stream was most likely governed by increased ice surface meltwater production, with the modeled retreat rate less sensitive to marine forcings despite the marine setting.
Streams of the agricultural Midwest export large quantities of nitrogen, which impairs downstream water quality, most notably in the Gulf of Mexico. The two-stage ditch is a novel restoration practice, in which floodplains are constructed alongside channelized ditches. During hi...
Pliocene shallow water paleoceanography of the North Atlantic ocean based on marine ostracodes
Cronin, T. M.
1991-01-01
Middle Pliocene marine ostracodes from coastal and shelf deposits of North and Central America and Iceland were studied to reconstruct paleotemperatures of shelf waters bordering portions of the Western Boundary Current System (including the Gulf Loop Current, Florida Current, Gulf Stream and North Atlantic Drift). Factor analytic transfer functions provided Pliocene August and February bottom-water temperatures of eight regions from the tropics to the subfrigid. The results indicate: (1) meridional temperature gradients in the western North Atlantic were less steep during the Pliocene than either today or during Late Pleistocene Isotope Stage 5e; (2) tropical and subtropical shelf waters during the Middle Pliocene were as warm as, or slightly cooler than today; (3) slightly cooler water was on the outer shelf off the southeastern and mid-Atlantic coast of the U.S., possibly due to summer upwelling of Gulf Stream water; (4) the shelf north of Cape Hatteras, North Carolina may have been influenced by warm water incursions from the western edge of the Gulf Stream, especially in summer; (5) the northeast branch of the North Atlantic Drift brought warm water to northern Iceland between 4 and 3 Ma; evidence from the Iceland record indicates that cold East Greenland Current water did not affect coastal Iceland between 4 and 3 Ma; (6) Middle Pliocene North Atlantic circulation may have been intensified, transporting more heat from the tropics to the Arctic than it does today. ?? 1991.
Impact of Azimuthally Controlled Fluidic Chevrons on Jet Noise
NASA Technical Reports Server (NTRS)
Henderson, Brenda S.; Norum, Thomas D.
2008-01-01
The impact of azimuthally controlled air injection on broadband shock noise and mixing noise for single and dual stream jets was investigated. The single stream experiments focused on noise reduction for low supersonic jet exhausts. Dual stream experiments included high subsonic core and fan conditions and supersonic fan conditions with transonic core conditions. For the dual stream experiments, air was injected into the core stream. Significant reductions in broadband shock noise were achieved in a single jet with an injection mass flow equal to 1.2% of the core mass flow. Injection near the pylon produced greater broadband shock noise reductions than injection at other locations around the nozzle periphery. Air injection into the core stream did not result in broadband shock noise reduction in dual stream jets. Fluidic injection resulted in some mixing noise reductions for both the single and dual stream jets. For subsonic fan and core conditions, the lowest noise levels were obtained when injecting on the side of the nozzle closest to the microphone axis.
Long-term monitoring reveals cold-water corals in extreme conditions off the southeast US coast
NASA Astrophysics Data System (ADS)
Mienis, F.; Duineveld, G.; Davies, A. J.; Ross, S. W.; Lavaleye, M.; Van Weering, T.
2011-12-01
Cold-water corals are common on the SE slope of the US (SEUS) from Florida to Cape Hatteras between depths of 400-600 m. Near Cape Hatteras cold-water corals have formed mound structures that are up to 60 m high, which are mainly covered by living colonies of the coral species Lophelia pertusa. Past explorations of major reef sites of N Carolina using remote and manned submersibles have shown living Lophelia pertusa colonies on the current facing side of the mound structures and a high biodiversity of associated fauna, especially fish. The coral areas lie in the vicinity of the Gulf Stream characterized by strong currents transporting relatively warm water northwards along the SEUS slope. Thus far little is known about the environmental conditions inside the SEUS coral communities and particularly the effects of the nearby Gulf Stream. In December 2009 two autonomous benthic landers were deployed amidst Lophelia reefs off Cape Lookout (NC) for a period of 6 months to define oceanographic patterns that are relevant for the development and persistence of cold-water coral ecosystems. Landers recorded temperature, fluorescence, turbidity, and current speed and direction. Furthermore, a sediment trap was mounted on the landers that collected material at a 16-days interval. A first analysis of the lander data shows that instability of the Gulf Stream causes rapid rises in temperature, current speed and turbidity lasting for days to more than a week. Peak temperature and turbidity levels are the highest measured in coral habitats studied so far. We did not see clear cut effects of Gulf Stream instabilities on the near bed flux of phytodetritus as opposed to reports of meanders inducing upwelling and enhanced production in the photic zone. Data analyzed so far suggest that cwc habitats of Cape Lookout experience extreme and adverse conditions for prolonged periods. The findings of this study are compared with methodologically similar studies that have been conducted in coral habitats in the Gulf of Mexico and in the eastern North Atlantic.
NASA Astrophysics Data System (ADS)
Perez-Cruz, L.; Urrutia-Fucugauchi, J.
2009-05-01
Initial results of a study on the distribution, thickness and stratigraphy of the sedimentary sequences in the Gulf of California are presented. The Gulf is an elongated narrow young oceanic basin bordered by the Baja California peninsula and mainland Mexico. The Gulf extends over 1200 km across the Tropic of Cancer from the tropical to the temperate zones, surrounded by arid and semi-arid regions, including the Sonora-Mojave Desert. Paleoceanographic conditions are dominated by water exchange at the Gulf mouth and water masses changes along the Gulf. Tectonic basins reach down in excess of 3000 m depths and get shallower to the north. Here we focus on the Holocene sediment sequences in the southern sector, which contains several marginal and central anoxic basins that constitute rich archives of paleoclimatic and paleoenvironmental evolution for the past 3.6 Ma. In the mouth area, main sources of sediments are silicic volcanic and intrusive rocks in the Baja peninsula and mainland, including Los Cabos and Puerto Vallarta batholiths. Fine-grained eolian dusts, pluvial and biogenic sediments are present in the sediment cores in the Gulf basins such as La Paz, Alfonso, Carmen, Pescadero and Guaymas basins. Turbiditic currents and tephra deposits also occur in the cores. Paleoclimatic records show the influences of regional processes, including the ENSO and PDO signals marked by drought and increased precipitation phases. Relative distribution and thickness of sediments at the mouth of the Gulf correlate with bathymetry and location with respect to spreading center, transform faults and margins of the peninsula and mainland Mexico. Rock magnetic core scans and mineralogy at few locations are available, which allow inferences on sediment sources, transport and deposition processes, diagenesis, paleoceanographic and paleoclimatic evolution for the Holocene.
Variations in Transport Derived from Satellite Altimeter Data over the Gulf Stream
NASA Technical Reports Server (NTRS)
Molinelli, Eugene; Lambert, Richard B., Jr.
1981-01-01
Variations in total change of sea surface height (delta h) across the Gulf Stream are observed using Seasat radar altimeter data. The sea surface height is related to transport within the stream by a two layer model. Variations in delta h are compared with previously observed changes in transport found to increase with distance downstream. No such increase is apparent since the satellite transports show no significant dependence on distance. Though most discrepancies are less than 50 percent, a few cases differ by about 100 percent and more. Several possible reasons for these discrepancies are advanced, including geoid error, but only two oceanographic contributions to the variability are examined, namely, limitations in the two layer model and meanders in the current. It is concluded that some of the discrepancies could be explained as changes in the density structure not accounted for by the two layer model.
A PIV Study of Slotted Air Injection for Jet Noise Reduction
NASA Technical Reports Server (NTRS)
Henderson, Brenda S.; Wernet, Mark P.
2012-01-01
Results from acoustic and Particle Image Velocimetry (PIV) measurements are presented for single and dual-stream jets with fluidic injection on the core stream. The fluidic injection nozzles delivered air to the jet through slots on the interior of the nozzle at the nozzle trailing edge. The investigations include subsonic and supersonic jet conditions. Reductions in broadband shock noise and low frequency mixing noise were obtained with the introduction of fluidic injection on single stream jets. Fluidic injection was found to eliminate shock cells, increase jet mixing, and reduce turbulent kinetic energy levels near the end of the potential core. For dual-stream subsonic jets, the introduction of fluidic injection reduced low frequency noise in the peak jet noise direction and enhanced jet mixing. For dual-stream jets with supersonic fan streams and subsonic core streams, the introduction of fluidic injection in the core stream impacted the jet shock cell structure but had little effect on mixing between the core and fan streams.
NASA Astrophysics Data System (ADS)
Perez-Cruz, L. L.; Valdez, M.; Roy, P. D.
2013-12-01
A sedimentary sequence (gravity core T-56, 256 cm length) from Pescadero Basin on the western side of the Gulf of California is analyzed as part of a multiproxy study. The core was collected within the Oxygen Minimum Zone (OMZ) at 597 m depth, aboard of the R/V "El Puma". Pescadero basin is located at mouth of the gulf; in a location sensitive to record the changes in the gulf and the Eastern Pacific Ocean. The sedimentary sequence is analyzed to contribute to understanding the climatic variability in the southern part of the gulf of California during the Holocene using geochemistry (major and trace elements and Corg), magnetic properties and benthic foraminifera assemblages as proxy of changes in paleoproductivity, paleoprecipitation and bottom water oxygenation. The core is characterized by silty-clay sediments, and exhibits a turbidite between 130 and 235 cm, distinguished by sandy sediments and reworking material. From 130 cm to the top it shows a visible laminated structure. Chronology is based on six AMS radiocarbon dates, and estimated sedimentation rates are 0.22, 0.18, 0.17 and 0.05 mm/yr. The core covers c. last 10,500 years. Variations in major and trace elements (Ti, K, Al, K, Zr) and magnetic susceptibility indicate fluctuations in terrigenous input related to changes in hydrological conditions, Benthic foraminifera assemblages and Corg along the sequence indicate that Pescadero basin is sensitive to paleoceanographic changes. Corg and benthic foraminiferal assemblages show downcore variations related to paleoproductivity changes. For the Early Holocene, low values of Corg and epifaunal benthic foraminifera suggest oxic conditions in bottom waters and strong stratification with low productivity. Organic carbon shows higher values towards the bottom of the core, for the last 1300 years.
Comparison data for Seasat altimetry in the western North Atlantic
NASA Technical Reports Server (NTRS)
Cheney, R. E.
1981-01-01
The radar altimeter flown on Seasat in 1978 collected approximately 1,000 orbits of high quality data (5-8 precision). In the western North Atlantic these data were combined with a detailed gravimetric geoid in an attempt to produce profiles of dynamic topography. In order to provide a basis for evaluation of these profiles, available oceanographic observations in the Gulf Stream/Sargasso Sea region have been compiled into a series of biweekly maps. The data include XBT's, satellite infrared imagery, and selected trajectories of surface drifters and sub-surface SOFAR floats. The maps document the known locations of the Gulf Stream, cyclonic and anticyclonic rings, and mid-ocean eddies during the period July to October 1978.
GEOS-3 ocean current investigation using radar altimeter profiling. [Gulf Stream surface topography
NASA Technical Reports Server (NTRS)
Leitao, C. D.; Huang, N. E.; Parra, C. G.
1978-01-01
Both quasi-stationary and dynamic departures from the marine geoid were successfully detected using altitude measurements from the GEOS-3 radar altimeter. The quasi-stationary departures are observed either as elevation changes in single pass profiles across the Gulf Stream or at the crowding of contour lines at the western and northern areas of topographic maps generated using altimeter data spanning one month or longer. Dynamic features such as current meandering and spawned eddies can be monitored by comparing monthly mean maps. Comparison of altimeter inferred eddies with IR detected thermal rings indicates agreement of the two techniques. Estimates of current velocity are made using derived slope estimates in conjunction with the geostrophic equation.
NASA Astrophysics Data System (ADS)
Daioglou, Konstantinos; Tsourou, Theodora; Drinia, Hara; Antonarakou, Assimina; Anastasakis, George
2017-04-01
The Saronikos Gulf is a semi-enclosed embayment situated in the west-central region of the Aegean Sea in the eastern Mediterranean, and covers a total surface area of 1,117 km2. It is a neotectonic basin, divided by a very shallow north-south-oriented platform into a western and an eastern part. The western basin has depths exceeding 400 m, the eastern basin depths around 100 and 200 m. Furthermore, Elefsis Bay, situated to the north, is separated from the gulf by two shallow sills. This complex bottom morphology greatly influences the regional water circulation pattern. The Saronikos Gulf draws the attention of marine science because it constitutes the natural marine gateway of the city of Athens and the Piraeus harbor and receives the treated wastes of ˜4 million people. A sedimentary record spanning more than 16935+50 calyr BP was recovered at N 37.52'23.38" E 23.15'40", water depth 140 m, in the western basin of the gulf. A total of 50 samples from a 260 cm core were quantitatively and qualitatively analyzed for micropalaeontological study in order to reconstruct palaeoenvironmental conditions. In the framework of this study, ostracod assemblages were used to trace changes in the depositional environment of the investigated core. Two main ostracod assemblages alternate along the core, indicating a gradual transition from a shallow marine infralittoral to an outer infralittoral-inner -circalittoral environment. A mesohaline shallow marine assemblage, mainly with Leptocythere lagunae, Leptocythere rara, and Callistocythere sp., is dominant for the largest part of the core (from 260 to about 50cm). At the upper part a deeper marine assemblage prevails, mainly with Callistocythere crispata, Acanthocythereis hystrix, Pterygocythereis jonesii and Bairdia sp. The pattern of the environmental change that took place in Saronikos Gulf during Late Quaternary is comparable with the one established by Tsourou et al. (2015) for Southern Evoikos Gulf, suggesting that similar regional forces affected the two gulfs during the studied period. Tsourou, Th., Drinia, H. & G. Anastasakis (2015). Ostracod assemblages from Holocene middle shelf deposits of southern Evoikos Gulf (central Aegean Sea, Greece) and their palaeoenvironmental implications. Micropaleontology, 61(1-2): 85-99.
Coated armor system and process for making the same
Chu, Henry S.; Lillo, Thomas M.; McHugh, Kevin M.
2010-11-23
An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.
NASA Astrophysics Data System (ADS)
Eriksen, C. C.
2016-12-01
Full water column temperature and salinity profiles and estimates of average current collected with Deepgliders were used to analyze vertical structure of mesoscale features in the western North Atlantic Ocean. Fortnightly repeat surveys over a 58 km by 58 km region centered at the Bermuda Atlantic Time Series (BATS) site southeast of Bermuda were carried out for 3 and 9 months in successive years. In addition, a section from Bermuda along Line W across the Gulf Stream to the New England Continental Slope and a pair of sections from Bermuda to the Bahamas were carried out. Absolute geostrophic current estimates constructed from these measurements and projected upon flat bottom resting ocean dynamic modes for the regions indicate nearly equal kinetic energy in the barotropic mode and first baroclinic mode. An empirical orthogonal mode decomposition of dynamic mode amplitudes demonstrates strong coupling of the barotropic and first baroclinic modes, a result resembling those reported for the Polymode experiment 3 decades ago. Higher baroclinic modes are largely independent of one another. Energy in baroclinic modes varies in inverse proportion to mode number cubed, a result predicted for an enstrophy inertial range cascade of geostrophic turbulence, believed newly detected by these observations. This (mode number)-3 dependence is found at BATS and across the Gulf Stream and Sargasso Sea. On two occasions, submesoscale anticyclones were detected at BATS whose vertical structure closely resembled the second baroclinic mode. Anomalously cold and fresh water within their cores (by as much as 3.5°C and 0.5 in salinity) suggests they were of subpolar (likely Labrador Sea) origin. These provided temporary perturbations to the vertical mode number energy spectrum.
Polarization and wavelength diversities of Gulf Stream fronts imaged by AIRSAR
NASA Technical Reports Server (NTRS)
Lee, J. S.; Jansen, R. W.; Marmorino, G. O.; Chubb, S. R.
1995-01-01
During the 1990 Gulf Stream Experiment, NASA/JPL AIRSAR imaged the north edge of the Gulf Stream near the coast of Virginia. Simultaneous in-situ measurements of currents, temperatures, salinities, etc. were made for several crossings of the north edge by the R/V Cape Henlopen. Measurements identified two fronts with shearing and converging flows. The polarimetric SAR images from the fronts showed two bright linear features. One of them corresponds to the temperature front, which separated the warm Gulf Stream water to the south from a cool, freshwater filament to the north. The other line, located about 8 km north of the temperature front, is believed to correspond to the velocity front between the filament and the slope water. At these fronts, wave-current interactions produced narrow bands of steep and breaking waves manifesting higher radar returns in polarimetric SAR images. In general, our AIRSAR imagery shows that the signal-to-clutter ratio of radar cross sections for the temperature front is higher than that of the velocity front. In this paper, we study the polarization and wavelength diversities of radar response of these two fronts using the P-, L-, and C-Band Polarimetric SAR data. The north-south flight path of the AIRSAR crossed the temperature front several times and provided valuable data for analysis. Three individual passes are investigated. We found that for the temperature front, the cross-pol (HV) responses are much higher than co-pol responses (VV and HH), and that P-Band HV has the highest signal to clutter ratio. For the velocity front, the ratio is the strongest in P-Band VV, and it is indistinguishable for all polarizations in C-Band. The radar cross sections for all three polarization (HH, HV, and VV) and for all three bands are modelled using an ocean wave model and a composite Bragg scattering model. In our initial investigations, the theoretical model agrees qualitatively with the AIRSAR observations.
NASA Astrophysics Data System (ADS)
Cione, Joseph; Pietrafes, Leonard J.
The lateral motion of the Gulf Stream off the eastern seaboard of the United States during the winter season can act to dramatically enhance the low-level baroclinicity within the coastal zone during periods of offshore cold advection. The ralative close proximity of the Gulf Stream current off the mid-Atlantic coast can result in the rapid and intense destabilization of the marine atmospheric boundary layer directly above and shoreward of the Gulf Stream within this region. This airmass modification period often precedes either wintertime coastal cyclogenesis or the cyclonic re-development of existing mid-latitude cyclones. A climatological study investigating the relationship between the severity of the pre-storm, cold advection period and subsequent cyclogenic intensification was undertaken by Cione et al. in 1993. Findings from this study illustrate that the thermal structure of the continental airmass as well as the position of the Gulf Stream front relative to land during the pre-storm period (i.e., 24-48 h prior to the initial cyclonic intensification) are linked to the observed rate of surface cyclonic deepening for storms that either advected into or initially developed within the Carolina-southeast Virginia offshore coastal zone. It is a major objective of this research to test the potential operational utility of this pre-storm low level baroclinic linkage to subsequent cyclogenesis in an actual National Weather Service (NWS) coastal winter storm forecast setting.The ability to produce coastal surface cyclone intensity forecasts recently became available to North Carolina State University researchers and NWS forecasters. This statistical forecast guidance utilizes regression relationships derived from a nine-season (January 1982-April 1990), 116-storm study conducted previously. During the period between February 1994 and February 1996, the Atlantic Surface Cyclone Intensification Index (ASCII) was successfully implemented in an operational setting by the NWS at the Raleigh-Durham (RAH) forecast office for 10 winter storms. Analysis of these ASCII forecasts will be presented.
Wave and Current Measurements From the Coastal Storms Program (CSP) Buoy 41012 off St. Augustine, FL
NASA Astrophysics Data System (ADS)
Crout, R. L.
2008-05-01
The Coastal Storms Program (CSP) is a NOAA program that involves several different branches within NOAA. Components of the National Ocean Service, the National Weather Service, the National Marine Fisheries Service, and the Office of Oceanic and Atmospheric Research participate in CSP, which is administered by the Coastal Services Center. CSP selects an area where an impact in support of the NOAA Societal Goals can be made. The first area selected was the northeast coast of Florida in 2002. In addition to coastal water level stations and modeling efforts, a 3-meter discuss buoy (WMO 41012) was deployed off the coast of St. Augustine, FL in approximately 38 meters of water. In addition to the normal complement of meteorological sensors, Buoy 41012 contained a sensor to measure directional waves at hourly intervals, a temperature-conductivity sensor to measure near-surface temperature and salinity, and a current profiler to obtain near-surface to near-bottom currents at hourly intervals. These data on the continental shelf provide a view of the oceanography on the inner margin of the Gulf Stream. The data are served over the National Data Buoy Center's web page and over the Global Telecommunications System. The waves and currents during the period from September 2005 through December 2007 are related to coastal storms, hurricanes, tides, and Gulf Stream intrusions. During several late fall and winter periods the waves exceeded 4.5 meters. The on-offshore component of the currents appears to be tidally driven, however, predominant on- and off-shore flows are observed in response to storms and Gulf Stream intrusions. The primary component of the flow is aligned alongshore and although the tidal influence is obvious, extended periods of northward and southward currents are observed. Currents approaching 2 knots are observed at various times during the period that the buoy has been active. The high currents appear to be in response to strong wind events (atmospheric frontal passages) and Gulf Stream intrusions.
The Oleander Program - 9 years of Gulf Stream Sampling and Still Going Strong!
NASA Astrophysics Data System (ADS)
Rossby, T.
2001-12-01
Starting in Fall 1992 we have been monitoring the currents between the mid-Atlantic Bight and the NW Sargasso Sea with an acoustic Doppler current profiler on the freighter CMV Oleander, which makes weekly roundtrips between Port Elizabeth, NJ and Bermuda. In addition, XBTs and surface salts have been taken on a monthly basis since 1979. These systematic observations of the upper ocean are giving us new insights into the structure of the Gulf Stream and adjacent waters. In this overview we will highlight some of the major findings of this ongoing program. One of the more striking observations is perhaps the structural stability of the Gulf Stream itself. Its shape can be characterized as a double-exponential which results from the mixing or homogenization of waters between the current and either side, but not across it. We show that 80 percent of the Eulerian eddy kinetic energy that is observed in the Gulf Stream can be described in terms of the meandering of a rigid double-exponential current. The remaining variability can be accounted for in terms of a few structural modes that are most likely associated with the meandering of the current. We have found that the transport of the current has been conspicuously stable, and will argue that past thoughts about large variations in transport may result from an inability to distinguish between the current itself and adjacent local recirculations of varying intensity. The distinction is made clear thanks to the repeat sampling. However, the Gulf Stream does exhibit significant variations in mean path on interannual time scales. These show a strong correlation with temperature-salinity anomalies in the Slope Sea. We suggest that both result from time-varying transports from the Labrador shelf, but there is presently considerable discussion as to whether the path shifting should be viewed as a thermohaline or a winddriven process. More generally, we use the above examples to argue that with more deliberate planning, the unparalleled and repeat access to in-situ sampling of the oceans provided by commercial shipping and cruise vessels could provide society with far more extensive and valuable information about the ocean and atmospheric conditions at sea. But for this to happen, the instrumentation needs to be optimized for completely automatic and unattended operation. This also means working with the merchant marine community to develop guidelines and procedures for future cooperative efforts.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-26
... South Atlantic Region (Snapper- Grouper FMP), as prepared and submitted by the Council. CE-BA 2 also... South Atlantic EEZ bounded by the Gulf Stream as EFH for pelagic Sargassum. Octocoral FMU CE-BA 2 would.... EFH and EFH-HAPCs CE-BA 2 would also amend the South Atlantic FMPs as needed to designate new or...
Methods of producing armor systems, and armor systems produced using such methods
Chu, Henry S; Lillo, Thomas M; McHugh, Kevin M
2013-02-19
An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.
Passive Microwave Measurements of Salinity: The Gulf Stream Experiment
NASA Technical Reports Server (NTRS)
LeVine, D. M.; Koblinsky, C.; Haken, M.; Howden, S.; Bingham, F.; Hildebrand, Peter H. (Technical Monitor)
2001-01-01
Passive microwave sensors at L-band (1.4 GHz) operating from aircraft have demonstrated that salinity can be measured with sufficient accuracy (I psu) to be scientifically meaningful in coastal waters. However, measuring salinity in the open ocean presents unresolved issues largely because of the much greater accuracy (approximately 0.2 psu) required of global maps to be scientifically viable. The development of a satellite microwave instrument to make global measurements of SSS (Sea Surface Salinity) is the focus of a joint JPL/GSFC/NASA ocean research program called Aquarius. In the summer of 1999 a series of measurements called, The Gulf Stream Experiment, were conducted as part of research at the Goddard Space Flight Center to test the potential for passive microwave remote sensing of salinity in the open ocean. The measurements consisted of airborne microwave instruments together with ships and drifters for surface truth. The study area was a 200 km by 100 km rectangle about 250 km east of Delaware Bay between the continental shelf waters and north wall of the Gulf Stream. The primary passive instruments were the ESTAR radiometer (L-band, H-pol) and the SLFMR radiometer (L-band, V-pol). In addition, the instruments on the aircraft included a C-band radiometer (ACMR), an ocean wave scatterometer (ROWS) and an infrared radiometer (for surface temperature). These instruments were mounted on the NASA P-3 Orion aircraft. Sea surface measurements consisted of thermosalinograph data provided by the R/V Cape Henlopen and the MN Oleander, and data from salinity and temperature sensors on three surface drifters deployed from the R/V Cape Henlopen. The primary experiment period was August 26-September 2, 1999. During this period the salinity field within the study area consisted of a gradient on the order of 2-3 psu in the vicinity of the shelf break and a warm core ring with a gradient of 1-2 psu. Detailed maps were made with the airborne sensors on August 28 and 29 and on September 2 flights were made over the surface drifters to look for effects due to a change in surface roughness resulting from the passage of Hurricane Dennis. Results show a good agreement between the microwave measurements and ship measurements of salinity. The features of the brightness temperature maps correspond well with the features of the salinity field measured by the ship and drifters and a preliminary retrieval of salinity compares well with the ship data.
Benthic study of the continental slope off Cape Hatteras, North Carolina. Volume 3. Appendices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, R.J.; Blake, J.A.; Lohse, D.P.
1993-03-01
The Point is an area that supports a most productive pelagic fishery, including tuna, swordfish, marlin, and more. The objective of the study is to analyze video tapes from near the Point, in order to provide data on epibenthic, megafaunal invertebrates including species composition, relative abundances, and large scale (1 km) distribution. The Point is not a defined spot on a chart. Although fishermen do use the steep shelf break for location, they generally look for the west wall of the Gulf Stream. The Point and the oil lease site coincidentally occur where the Gulf Stream parts the continental slope,more » just north of the eastern-most tip of Cape Hatteras.« less
Microwave responses of the western North Atlantic
NASA Technical Reports Server (NTRS)
Stacey, J. M.; Girard, M. A.
1985-01-01
Features and objects in the Western North Atlantic Ocean - the Eastern Seaboard of the United States - are observed from Earth orbit by passive microwaves. The intensities of their radiated flux signatures are measured and displayed in color as a microwave flux image. The features of flux emitting objects such as the course of the Gulf Stream and the occurrence of cold eddies near the Gulf Stream are identified by contoured patterns of relative flux intensities. The flux signatures of ships and their wakes are displayed and discussed. Metal data buoys and aircraft are detected. Signal to clutter ratios and probabilities of detection are computed from their measured irradiances. Theoretical models and the range equations that explain passive microwave detection using the irradiances of natural sources are summarized.
Stream carbon dynamics in low-gradient headwaters of a forested watershed
April Bryant-Mason; Y. Jun Xu; Johnny M. Grace
2013-01-01
Headwater streams drain more than 70 percent of the total watershed area in the United States. Understanding of carbon dynamics in the headwater systems is of particular relevance for developing best silvicultural practices to reduce carbon export. This study was conducted in a low-gradient, predominantly forested watershed located in the Gulf Coastal Plain region, to...
Contrasting responses of the extended Gulf Stream to severe winter forcing
NASA Astrophysics Data System (ADS)
Jacobs, Z.; Grist, J. P.; Marsh, R.; Josey, S. A.; Sinha, B.
2015-12-01
Changes in the path and strength of the extended Gulf Stream, downstream of Cape Hatteras, and the North Atlantic Current (GSNAC), are associated with strong wintertime air-sea interactions that can further influence the atmospheric storm track. The GSNAC response to anomalous air-sea heat fluxes in particular is dependent on the location of excess heat loss, in turn related to meteorological circumstances. Outbreaks of cold continental air may lead to excess cooling over the Sargasso Sea, as in 1976-77. Under these circumstances, the Gulf Stream may intensify through a steepening of cross-stream density gradients. An alternative scenario prevailed during the cold outbreak of 2013-14 where excess cooling occurred over the central subpolar gyre and may have influenced the extreme storminess experienced in western Europe. An objectively-analysed temperature and salinity product (EN4) is used to investigate the variability of the GSNAC. Temperature and salinity profiles are used to obtain geostrophic transport at selected GSNAC transects, confirming strong horizontal temperature gradients and a positive geostrophic velocity anomaly at 70oW in spring 1977, the strongest spring transport seen in the 1970s at this location. In addition to observations, an eddy-resolving model hindcast spanning 1970-2013, is used to further characterise GSNAC transport variability, allowing a fuller assessment of the relationship between the winter surface heat flux, end-of-winter mixed layer depth, subtropical mode water volume and GSNAC transports. Preliminary results reveal a significant negative correlation between the winter surface heat flux over the Sargasso Sea and the GSNAC transport in the following spring.
Diatom stratigraphy and long-term dissolved silica concentrations in the Baltic Sea
NASA Astrophysics Data System (ADS)
Olli, Kalle; Clarke, Annemarie; Danielsson, Åsa; Aigars, Juris; Conley, Daniel J.; Tamminen, Timo
2008-10-01
In many parts of the world coastal waters with anthropogenic eutrophication have experienced a gradual depletion of dissolved silica (DSi) stocks. This could put pressure on spring bloom diatom populations, e.g. by limiting the intensity of blooms or by causing shifts in species composition. In addition, eutrophication driven enhanced diatom growth is responsible for the redistribution of DSi from the water phase to the sediments, and changes in the growth conditions may be reflected in the sediment diatom stratigraphy. To test for changes in diatom communities we have analyzed four sediment cores from the Baltic Sea covering approximately the last 100 years. The sediment cores originate from the western Gulf of Finland, the Kattegat, the Baltic Proper and the Gulf of Riga. Three out of the four cores reveal only minor changes in composition of diatom assemblages, while the Gulf of Riga core contains major changes, occurring after the second World War. This area is set apart from the other Baltic Sea basins by a high frequency of low after spring bloom DSi concentrations (< 2 µmol L - 1 ) during a relatively well defined time period from 1991-1998. In 1991 to 1993 a rapid decline of DSi spring concentrations and winter stocks (down to 5 µmol L - 1 ) in the Gulf was preceded by exceptionally intense diatom spring blooms dominated by the heavily silicified species Thalassiosira baltica (1991-1992; up to 5.5 mg ww L - 1 ). T. baltica has been the principal spring bloom diatom in the Gulf of Riga since records began in 1975. DSi consumption and biomass yield experiments with cultured T. baltica suggest that intense blooms can potentially exhaust the DSi stock of the water column and exceed the annual Si dissolution in the Gulf of Riga. The phytoplankton time series reveals another exceptional T. baltica bloom period in 1981-1983 (up to 8 mg L - 1 ), which, however, took place before the regular DSi measurements. These periods may be reflected in the conspicuous accumulation of T. baltica frustules in the sediment core corresponding to ca. 1975-1985.
Hydrodynamical simulations of the stream-core interaction in the slow merger of massive stars
NASA Astrophysics Data System (ADS)
Ivanova, N.; Podsiadlowski, Ph.; Spruit, H.
2002-08-01
We present detailed simulations of the interaction of a stream emanating from a mass-losing secondary with the core of a massive supergiant in the slow merger of two stars inside a common envelope. The dynamics of the stream can be divided into a ballistic phase, starting at the L1 point, and a hydrodynamical phase, where the stream interacts strongly with the core. Considering the merger of a 1- and 5-Msolar star with a 20-Msolar evolved supergiant, we present two-dimensional hydrodynamical simulations using the PROMETHEUS code to demonstrate how the penetration depth and post-impact conditions depend on the initial properties of the stream material (e.g. entropy, angular momentum, stream width) and the properties of the core (e.g. density structure and rotation rate). Using these results, we present a fitting formula for the entropy generated in the stream-core interaction and a recipe for the determination of the penetration depth based on a modified Bernoulli integral.
Characterization of Three-Stream Jet Flow Fields
NASA Technical Reports Server (NTRS)
Henderson, Brenda S.; Wernet, Mark P.
2016-01-01
Flow-field measurements were conducted on single-, dual- and three-stream jets using two-component and stereo Particle Image Velocimetry (PIV). The flow-field measurements complimented previous acoustic measurements. The exhaust system consisted of externally-plugged, externally-mixed, convergent nozzles. The study used bypass-to-core area ratios equal to 1.0 and 2.5 and tertiary-to-core area ratios equal to 0.6 and 1.0. Axisymmetric and offset tertiary nozzles were investigated for heated and unheated high-subsonic conditions. Centerline velocity decay rates for the single-, dual- and three-stream axisymmetric jets compared well when axial distance was normalized by an equivalent diameter based on the nozzle system total exit area. The tertiary stream had a greater impact on the mean axial velocity for the small bypass-to-core area ratio nozzles than for large bypass-to-core area ratio nozzles. Normalized turbulence intensities were similar for the single-, dual-, and three-stream unheated jets due to the small difference (10 percent) in the core and bypass velocities for the dual-stream jets and the low tertiary velocity (50 percent of the core stream) for the three-stream jets. For heated jet conditions where the bypass velocity was 65 percent of the core velocity, additional regions of high turbulence intensity occurred near the plug tip which were not present for the unheated jets. Offsetting the tertiary stream moved the peak turbulence intensity levels upstream relative to those for all axisymmetric jets investigated.
Characterization of Three-Stream Jet Flow Fields
NASA Technical Reports Server (NTRS)
Henderson, Brenda S.; Wernet, Mark P.
2016-01-01
Flow-field measurements were conducted on single-, dual- and three-stream jets using two-component and stereo Particle Image Velocimetry (PIV). The flow-field measurements complimented previous acoustic measurements. The exhaust system consisted of externally-plugged, externally-mixed, convergent nozzles. The study used bypass-to-core area ratios equal to 1.0 and 2.5 and tertiary-to-core area ratios equal to 0.6 and 1.0. Axisymmetric and offset tertiary nozzles were investigated for heated and unheated high-subsonic conditions. Centerline velocity decay rates for the single-, dual- and three-stream axisymmetric jets compared well when axial distance was normalized by an equivalent diameter based on the nozzle system total exit area. The tertiary stream had a greater impact on the mean axial velocity for the small bypass-to-core area ratio nozzles than for large bypass-to-core area ratio nozzles. Normalized turbulence intensities were similar for the single-, dual-, and three-stream unheated jets due to the small difference (10%) in the core and bypass velocities for the dual-stream jets and the low tertiary velocity (50% of the core stream) for the three-stream jets. For heated jet conditions where the bypass velocity was 65% of the core velocity, additional regions of high turbulence intensity occurred near the plug tip which were not present for the unheated jets. Offsetting the tertiary stream moved the peak turbulence intensity levels upstream relative to those for all axisymmetric jets investigated.
The Science of Inaccurate Temperatures: Explaining How the Bahamas Did Not Form in a Jacuzzi
NASA Astrophysics Data System (ADS)
Murray, S.; Swart, P. K.; McNeill, D. F.
2016-12-01
The Bahamas archipelago is a carbonate platform that formed in the warm waters of the Gulf Stream current. Using clumped isotope paleothermometry, it has been shown that carbonates extending back through the Miocene taken from cores throughout the Bahamas have all precipitated from fluids at temperatures similar to what is found in the Bahamas in the present day (15 to 35°C). However, in a single core, (Clino), collected off the western edge of Great Bahama Bank, Δ47 values have been measured which suggest formation at significantly warmer temperatures (42 to 53°C). These values are present in spite of the fact that the sediments have never been deeply buried. In a parallel study, these same cores were measured for their carbonate associated sulfate (CAS). The only core that presented evidence of elevated CAS, indicative of bacterial sulfate reduction (BSR), was the Clino core. In this core the clumped isotope temperatures are correlated with changes in the δ34S of the CAS. This finding suggests that BSR can have a significant effect on the Δ47 value producing erroneous temperatures. This is further supported by examining a carbonate concretion with extreme negative δ13C values (-30‰) taken as evidence of BSR. The clumped isotope temperatures in this nodule are elevated relative to its burial history with an increase of 15 °C from the outer edge of the concretion to the center. The increase in temperature correlates well with the decreasing δ13C suggesting increasing fractionation associated with BSR is directly impacting the clumped isotope measurements.
High resolution paleoceanography of the central Gulf of California during the past 15,000 years
NASA Astrophysics Data System (ADS)
Barron, J. A.; Bukry, D.; Dean, W. E.
2004-12-01
A high resolution paleoceanographic history of the central Gulf of California during the past 15,000 years has been assembled using microfossil (diatom and silicoflagellate) and geochemical proxy data from a composite section of gravity core GGC55 and giant piston core JPC56 in the western Guaymas Basin (27.5 deg. N, 112.1 deg. W, water depth 818 m) and from DSDP Site 480 (27.9 deg. N, 111.7 deg. W, 655 m water depth) in the eastern Guaymas Basin. These data argue for abrupt, basin-wide changes during the Bolling-Allerod, Younger Dryas, and earliest part of the Holocene that mirror changes documented in cores from the Pacific margins of both Baja and Alta California. Between about 10 ka and 6 ka, these central Gulf of California records became more regionally distinctive, as surface and intermediate waters resembling those of the modern-day northern Gulf became dominant and virtually no calcium carbonate or tropical microfossils were preserved in the underlying sediments. Beginning at about 6 ka, tropical microfossils returned to the central Gulf, possibly signaling enhanced El Nino-like conditions. Proxy data suggest that late winter-early spring coastal upwelling was abruptly strengthened on the mainland (eastern) side at about 5.4 ka and again at about 3.0 ka, whereas sediments from the western side of the central Gulf became increasingly diatom poor and calcium carbonate rich. An intensification of northwest winds during the late winter to early spring likely occurred in the central Gulf at about 5.4 ka. Interestingly, this proposed wind shift in the Gulf of California coincides with an abrupt 5.4 ka change to drier conditions in the Cariaco Basin off Venezuela that has been proposed to reflect a southward shift in the mean position of the Intertropical Convergence Zone in response to increasing El Nino-like conditions.
Twichell, David C.; Cross, VeeAnn A.; Paskevich, Valerie F.; Hutchinson, Deborah R.; Winters, William J.; Hart, Patrick E.
2006-01-01
Since 1982 the U. S. Geological Survey (USGS) has collected a large amount of surficial and shallow subsurface geologic information in the deep-water parts of the US EEZ in the northern Gulf of Mexico. These data include digital sidescan sonar imagery, digital seismic-reflection data, and descriptions and analyses of piston and gravity cores. The data were collected during several different projects that addressed surficial and shallow subsurface geologic processes. Some of these datasets have already been published, but the growing interest in the occurrence and distribution of gas hydrates in the Gulf of Mexico warrants integrating these existing USGS datasets and associated interpretations into a Geographic Information System (GIS) to provide regional background information for ongoing and future gas hydrate research. This GIS is organized into five different components that contain (1) information needed to develop an assessment of gas hydrates, (2) background information for the Gulf of Mexico, (3) cores collected by the USGS, (4) seismic surveys conducted by the USGS, and (5) sidescan sonar surveys conducted by the USGS. A brief summary of the goals and findings of the USGS field programs in the Gulf of Mexico is given in the Geologic Findings section, and then the contents of each of the five data categories are described in greater detail in the GIS Data Catalog section.
NASA Astrophysics Data System (ADS)
Filikci, Betül; Eriş, Kürşad Kadir; Çağatay, Namık; Sabuncu, Asen; Polonia, Alina
2017-10-01
Multi-proxy analyses of new piston core M13-08 together with seismic data from the Gulf of Gemlik provide a detailed record of paleoceanographic and paleoclimatic changes with special emphasis on the timing of the connections between the Sea of Marmara (SoM) and the Gulf of Gemlik during the late Pleistocene to Holocene. The deposition of a subaqueous delta sourced from the Armutlu River to the north is attributed to the lowstand lake level at -60 m in the gulf prior to 13.5 cal ka BP. On the basis of the seismic data, it is argued that the higher lake level (-60 m) in the gulf compared to the SoM level (-85 m) attests to its disconnection from the SoM during the late glacial period. Ponto-Caspian assemblages in the lacustrine sedimentary unit covering the time period between 13.5 and 12 cal ka BP represent a relict that was introduced into the gulf by a Black Sea outflow during the marine isotope stage 3 interstadial. Contrary to the findings of previous studies, the data suggest that such an outflow into the Gulf of Gemlik during the late glacial period could have occurred only if the SoM lake level (-85 m) was shallower than the sill depth (-55 m) of the gulf in the west. A robust age model of the core indicates the connection of the gulf with the marine SoM at 12 cal ka BP, consistent with the sill depth (-55 m) of the gulf on the global sea level curve. Strong evidence of a marine incursion into the gulf is well documented by the μ-XRF Sr/Ca data. The available profiles of elemental ratios in core M13-08, together with the age-depth model, imply that a warm and wet climate prevailed in the gulf during the early Holocene (12-10.1 cal ka BP), whereas the longest drought occurred during the middle Holocene (8.2-5.4 cal ka BP). The base of the main Holocene sapropel in the gulf is dated at 10.1 cal ka BP, i.e., 500 years younger than its equivalent in the SoM. The late Holocene is earmarked by warm and wet climate periods (5.0-4.2 and 4.2-2.7 cal ka BP) with some brief cold/dry periods (4.2 and 2.7-0.9 cal ka BP).
Impact of Fluidic Chevrons on Supersonic Jet Noise
NASA Technical Reports Server (NTRS)
Henderson, Brenda; Norum, Thomas
2007-01-01
The impact of fluidic chevrons on broadband shock noise and mixing noise for single stream and coannular jets was investigated. Air was injected into the core flow of a bypass ratio 5 nozzle system using a core fluidic chevron nozzle. For the single stream experiments, the fan stream was operated at the wind tunnel conditions and the core stream was operated at supersonic speeds. For the dual stream experiments, the fan stream was operated at supersonic speeds and the core stream was varied between subsonic and supersonic conditions. For the single stream jet at nozzle pressure ratio (NPR) below 2.0, increasing the injection pressure of the fluidic chevron increased high frequency noise at observation angles upstream of the nozzle exit and decreased mixing noise near the peak jet noise angle. When the NPR increased to a point where broadband shock noise dominated the acoustic spectra at upstream observation angles, the fluidic chevrons significantly decreased this noise. For dual stream jets, the fluidic chevrons reduced broadband shock noise levels when the fan NPR was below 2.3, but had little or no impact on shock noise with further increases in fan pressure. For all fan stream conditions investigated, the fluidic chevron became more effective at reducing mixing noise near the peak jet noise angle as the core pressure increased.
NASA Astrophysics Data System (ADS)
Valdez, M.; Perez-Cruz, L. L.; Roy, P.; Monreal, M.; Fenero, R.
2013-05-01
Gravity core T-56 (256 cm length) was collected in Pescadero Basin located on the western side of the Gulf of California within the oxygen minim zone (OMZ) at 597 cm depth, aboard of the R/V "El Puma". Pescadero basin is located at mouth of the gulf; because of its location is sensitive to record the changes in the gulf and in the Eastern Pacific Ocean. The sedimentary sequence is analyzed to contribute to the understanding the oceanographic variability in the southern part of the gulf of California during the Holocene using benthic foraminifera assemblages and organic carbon as proxies of organic matter flux and bottom water oxygenation. In general, the core is characterized by silty-clay sediments, and it exhibits a turbidite between 198 and 134 cm, distinguished by sandy sediments and reworking material. From 134 cm to the top shows a visible laminated structure. The initial chronology is based on three AMS radiocarbon dates, and estimated sedimentation rates are 0.22 and 0.19 mm/yr for the first 32 cm of the core. Six radiocarbon dates are in progress. Preliminary results of benthic foraminiferal assemblages showed that species of Bolivina are dominated, mainly megalospheric forms, from 134 cm to top of the core. They are small and thin-shelled forms (e.g., Bolivina subadvena, Bolivina minuta, Bolivina seminuda, Bolivina plicata), and also Buliminella, Cassidulina and Epistominella are abundant. In particular, species of Bolivina are environmental indicators and exhibit a typical reproductive dimorphism. The predominance of the genus Bolivina suggest organic flux variations, because of the productivity changes that might be related to changes in ocean circulation and in the environmental variability in the region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budnitz, R.J.; Davis, P.R.; Ravindra, M.K.
In 1989 the US Nuclear Regulatory Commission (NRC) initiated an extensive program to examine carefully the potential risks during low-power and shutdown operations. The program included two parallel projects, one at Sandia National Laboratories studying a boiling water reactor (Grand Gulf), and the other at Brookhaven National Laboratory studying a pressurized water reactor (Surry Unit 1). Both the Sandia and Brookhaven projects have examined only accidents initiated by internal plant faults---so-called ``internal initiators.`` This project, which has explored the likelihood of seismic-initiated core damage accidents during refueling outage conditions, is complementary to the internal-initiator analyses at Brookhaven and Sandia. Thismore » report covers the seismic analysis at Grand Gulf. All of the many systems modeling assumptions, component non-seismic failure rates, and human effort rates that were used in the internal-initiator study at Grand Gulf have been adopted here, so that the results of the study can be as comparable as possible. Both the Sandia study and this study examine only one shutdown plant operating state (POS) at Grand Gulf, namely POS 5 representing cold shutdown during a refueling outage. This analysis has been limited to work analogous to a level-1 seismic PRA, in which estimates have been developed for the core-damage frequency from seismic events during POS 5. The results of the analysis are that the core-damage frequency for earthquake-initiated accidents during refueling outages in POS 5 is found to be quite low in absolute terms, less than 10{sup {minus}7}/year.« less
Connection between encounter volume and diffusivity in geophysical flows
NASA Astrophysics Data System (ADS)
Rypina, Irina I.; Smith, Stefan G. Llewellyn; Pratt, Larry J.
2018-04-01
Trajectory encounter volume - the volume of fluid that passes close to a reference fluid parcel over some time interval - has been recently introduced as a measure of mixing potential of a flow. Diffusivity is the most commonly used characteristic of turbulent diffusion. We derive the analytical relationship between the encounter volume and diffusivity under the assumption of an isotropic random walk, i.e., diffusive motion, in one and two dimensions. We apply the derived formulas to produce maps of encounter volume and the corresponding diffusivity in the Gulf Stream region of the North Atlantic based on satellite altimetry, and discuss the mixing properties of Gulf Stream rings. Advantages offered by the derived formula for estimating diffusivity from oceanographic data are discussed, as well as applications to other disciplines.
Frontal Eddy Dynamics (FRED) experiment off North Carolina: Volume 2. Technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebbesmeyer, C.C.
1988-03-01
In preparation for oil and gas lease sales on the outer continental shelf offshore of North Carolina, the Minerals Management Service was requested to investigate the potential transport and impacts of oil spilled offshore. Of particular concern is estimating the movement of spilled oil, especially the probability of shoreward transport and/or beaching of the floatable fraction. Although the speed and location of the Gulf Stream are well known, knowledge of the meanders of the Gulf Stream is limited. How the circulatory structure and movement of associated frontal eddies and filaments affect the North Carolina coastal waters is not clear. Thismore » present study investigates the interactions of these circulatory elements and follows the evolution of frontal eddies as they migrate along the North Carolina coast.« less
Atmospheric Signature of the Agulhas Current
NASA Astrophysics Data System (ADS)
Nkwinkwa Njouodo, Arielle Stela; Koseki, Shunya; Keenlyside, Noel; Rouault, Mathieu
2018-05-01
Western boundary currents play an important role in the climate system by transporting heat poleward and releasing it to the atmosphere. While their influence on extratropical storms and oceanic rainfall is becoming appreciated, their coastal influence is less known. Using satellite and climate reanalysis data sets and a regional atmospheric model, we show that the Agulhas Current is a driver of the observed band of rainfall along the southeastern African coast and above the Agulhas Current. The Agulhas current's warm core is associated with sharp gradients in sea surface temperature and sea level pressure, a convergence of low-level winds, and a co-located band of precipitation. Correlations among wind convergence, sea level pressure, and sea surface temperature indicate that these features show high degree of similarity to those in the Gulf Stream region. Model experiments further indicate that the Agulhas Current mostly impacts convective rainfall.
NASA Technical Reports Server (NTRS)
Joyce, T. M.; Rintoul, S. R., Jr.; Barbour, R. L.
1982-01-01
The underway current profiling system which consists of a microprocessor controlled data logger that collects and formats data from a four beam Ametek-Straza 300 kHz acoustic Doppler current profiler, heading from the ship's gyrocompass, and navigation information from a Loran-C receiver and a satellite navigation unit is discussed. Data are recorded on magnetic tape and real time is calculated. Time averaging is required to remove effects of ship motion. An intercomparison is made with a moored vector measuring current meter (VMCM). The mean difference in hourly averaged APOC and VMCM currents over the four hour intercomparison is a few mm s minus including: two Gulf Stream crossings, a warm core ring survey, and shallow water in a frontal zone to the east of Nantucket Shoals.
The subsurface geology of the Florida-Hatteras shelf, slope, and inner Blake Plateau
Paull, Charles K.; Dillon, William P.
1979-01-01
The structure and stratigraphy of the Florida-Hatteras Slope and inner Blake Plateau was studied by means of 4,780 km of single-channel air gun seismic reflection profiles. Control for the seismic stratigraphy is provided by correlating reflecting units and paleontologically dated stratigraphic units identified in offshore wells and dredge hauls. Many Tertiary unconformities exist, and major regional unconformities at the end of the Oligocene and in the late Paleocene are mapped. Reflecting surfaces believed to represent the tops of the Cretaceous, Paleocene, and Oligocene extend throughout the region. Upper Cretaceous (pre-Maastrichtian) rocks on the southeastern side of the Carolina Platform form a large seaward-facing progradational wedge. The Upper Cretaceous rocks in the Southeast Georgia Embayment, are seismically transparent and on the inner Blake Plateau are cut by numerous small faults, perhaps due to compaction. Within the survey area relatively flat-lying Maastrichtian and Paleocene strata show no evidence that a feature similar to the present Florida-Hatteras Slope existed at the beginning of the Tertiary. Late Paleocene erosion, related to the initiation of the Gulf Stream flow, probably developed this regional unconformity. Eocene and Oligocene sediments landward of the present Gulf Stream form a thick sequence of seaward-dipping progradational beds. A seaward progradational wedge of Miocene to Holocene age covers a regionally traceable unconformity, which separates the Oligocene from the Miocene sediments. Under and seaward of the present Gulf Stream, the Eocene and younger sediment supply was much smaller and the buildup is comparatively insignificant. The difference in accumulation rates in the Eocene and younger sediments, landward and seaward of the Gulf Stream, is responsible for the Florida-Hatteras Slope. Tertiary isopach maps suggest that there is a well developed triangular depocenter under the shelf. The edges of the depocenter correspond with magnetic anomalies and it is suggested that the depocenter is related to differential subsidence during the Tertiary across older crustal structures. The Eocene and Oligocene units contain the aquifer onshore, and the aquifer probably remains in these units offshore. With this assumption the potential aquifer has been identified and traced under the shelf and slope.
Gelfenbaum, G.; Noble, M.
1993-01-01
Photographs of the seabed taken from an instrumented bottom tripod located approximately 100 km east of Charleston, South Carolina, reveal bed elevation changes of over 20 cm between July and November 1978. The tripod was in 85 m of water and was equipped with two current meters at 38.7 and 100 cm from the bed, a pressure sensor, a transmissometer, which fouled early during the deployment, a temperature sensor and a camera. The sediment under the tripod was composed of poorly sorted sand, some shell debris and numerous small biological tubes. Bed roughness varied throughout the deployment from biologically-produced mounds (2-5 cm high and 5-20 cm diameter) to streaks to a smooth bed, depending upon the frequency and magnitude of the sediment transporting events. Even though these events were common, especially during the later part of the deployment, the bed was rarely rippled, and there was no evidence of large bedforms such as dunes or sand waves migrating through the field of view of the camera. Photographs did clearly show, however, a gradual net deposition of the bed of nearly 20 cm, followed by erosion of approximately 5 cm. The flow field near the bed was dominated by sub-tidal period currents. Hourly-averaged currents at 100 cm from the bed typically varied between 10 and 30 cm s-1 and occasionally were as high as 60 cm s-1. The large flow events were predominantly toward the southwest along the shelf in the opposite direction of the northeast flowing Gulf Stream. The cross-shore component of the flow near the bed was predominantly directed offshore due to a local topographic steering effect. Current, temperature and satellite data suggest that the largest flow events were associated with the advection of Gulf Stream filaments past the tripod. Erosion events, as seen from the photographs, were highly correlated with the passage of these Gulf Stream filaments past the tripod. Gradual deposition of sediment, which occurred during the first half of the deployment, appears to have been associated with the convergence of the near-bed sediment flux near the shelf break. ?? 1993.
Stephen W. Golladay; Juliann M. Battle; Brian J. Palik
2007-01-01
In southeastern Coastal Plain streams, wood debris can be very abundant and is recruited from extensive forested floodplains. Despite importance of wood debris, there have been few opportunities to examine recruitment and redistribution of wood in an undisturbed setting, particularly in the southeastern Coastal Plain. Following extensive flooding in 1994, measurements...
Contaminant trends in reservoir sediment cores as records of influent stream quality
Van Metre, P.C.; Mahler, B.J.
2004-01-01
When reconstructing water-quality histories from lake and reservoir cores, it is sometimes assumed that the chemical signatures in the cores reflect historical water quality in the influent streams. To investigate this assumption, concentrations of metals, PAHs, and organochlorine compounds in sediment cores were compared to those associated with an influent-stream suspended sediment for three reservoirs in Fort Worth, TX, and two reservoirs in Boston, MA, U.S.A., and interpreted in light of land-use and regulation histories. In evaluating relations between suspended sediments and cores, three levels of preservation were indicated: (1) influent concentrations and historical trends are preserved in cores (metals at all sites; some organic contaminants at some sites); (2) some loss occurs during transport and initial deposition but relative historical trends are preserved in cores (some organic contaminants at some sites); and (3) neither stream concentrations nor relative historical trends are preserved (dieldrin and p,p???-DDT). The degree of preservation of influent concentration histories varied between lakes, particularly for PAHs. The results support the use of sediment cores to infer streamwater-quality histories for many contaminants but indicate that reservoir-bottom sediment samples might underestimate concentrations of organic contaminants in some streams.
Biological, Physical, And Chemical Data From Gulf of Mexico Core PE0305-GC1
Osterman, Lisa E.; Swarzenski, Peter W.; Hollander, David
2010-01-01
This paper presents benthic foraminiferal census data, and magnetic susceptibility, 210Pb , radiocarbon, and geochemical measurements from gravity core PE0305-GC1 (=GC1). Core GC1 was collected from the Louisiana continental shelf as part of an initiative to investigate the geographic and temporal extent of hypoxia, low-oxygen water, in the Gulf of Mexico. Hypoxia (<1.4 ml/l or <2 ppm oxygen concentration) in Gulf of Mexico waters can eventually lead to death of marine species. The development of hypoxia off the Mississippi delta has increased steadily since routine and systematic measurements were begun in 1985 and has been linked to the use of fertilizer in the Mississippi basin. Benthic foraminifers provide a proxy to track the development of hypoxia prior to 1985. Previous work determined that the relative occurrence of three low-oxygen-tolerant species is highest in the hypoxia zone. The cumulative percentage of these three species (% Pseudononion atlanticum + % Epistominella vitrea, + % Buliminella morgani = PEB index of hypoxia) was used to investigate fluctuation in paleohypoxia in four cores, including the upper 60 cm of GC1. In this report, we compile all available data from GC1 as the basis for further publications.
Making Real-Time Data "Real" for General Interest Users
NASA Astrophysics Data System (ADS)
Hotaling, L.
2003-04-01
Helping educators realize the benefits of integrating technology into curricula to effectively engage student learning and improve student achievement, particularly in science and mathematics, is the core mission of the Center for Improved Engineering and Science Education (CIESE). To achieve our mission, we focus on projects utilizing real-time data available from the Internet, and collaborative projects utilizing the Internet's potential to reach peers and experts around the world. As a member of the Mid-Atlantic Center for Ocean Sciences Education Excellence (COSEE), the Center for Improved Engineering and Science Education (CIESE), is committed to delivering relevant ocean science education to diverse audiences, including K-12 teachers, students, coastal managers, families and tourists. The highest priority of the Mid-Atlantic COSEE is to involve scientists and educators in the translation of data and information from the coastal observatories into instructional materials and products usable by educators and the public. A combination of three regional observing systems, the New Jersey Shelf Observing System (NJSOS), Chesapeake Bay Observing System (CBOS), and the York River observing system will provide the scientific backbone for an integrated program of science and education that improves user access to, and understanding of, modern ocean science and how it affects our daily lives. At present, the Mid-Atlantic COSEE offers three projects that enable users to apply and validate scientific concepts to real world situations. (1) The Gulf Stream Voyage is an online multidisciplinary project that utilizes both real-time data and primary source materials to help guide students to discover the science and history of the Gulf Stream current. (2) C.O.O.L. Classroom is an online project that utilizes concepts and real-time data collected through the NJSOS. The C.O.O.L. Classroom is based on the concept of the Rutgers-IMCS Coastal Ocean Observation Laboratory, a real place where ocean scientists from various disciplines study the coastal ocean collaboratively. (3) Oceans Connecting the Nation is an online collaborative project currently in development. The core activities will involve the study of Nonpoint Source Pollution (NPS). Students will conduct water quality (nutrient) testing and share that data, along with climate data and local characteristics with other participants. This will promote discussions about how NPS affects local communities as well as the oceans, and allow users to develop an understanding of how the oceans affect their daily lives.
Flow Field and Acoustic Predictions for Three-Stream Jets
NASA Technical Reports Server (NTRS)
Simmons, Shaun Patrick; Henderson, Brenda S.; Khavaran, Abbas
2014-01-01
Computational fluid dynamics was used to analyze a three-stream nozzle parametric design space. The study varied bypass-to-core area ratio, tertiary-to-core area ratio and jet operating conditions. The flowfield solutions from the Reynolds-Averaged Navier-Stokes (RANS) code Overflow 2.2e were used to pre-screen experimental models for a future test in the Aero-Acoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center (GRC). Flowfield solutions were considered in conjunction with the jet-noise-prediction code JeNo to screen the design concepts. A two-stream versus three-stream computation based on equal mass flow rates showed a reduction in peak turbulent kinetic energy (TKE) for the three-stream jet relative to that for the two-stream jet which resulted in reduced acoustic emission. Additional three-stream solutions were analyzed for salient flowfield features expected to impact farfield noise. As tertiary power settings were increased there was a corresponding near nozzle increase in shear rate that resulted in an increase in high frequency noise and a reduction in peak TKE. As tertiary-to-core area ratio was increased the tertiary potential core elongated and the peak TKE was reduced. The most noticeable change occurred as secondary-to-core area ratio was increased thickening the secondary potential core, elongating the primary potential core and reducing peak TKE. As forward flight Mach number was increased the jet plume region decreased and reduced peak TKE.
Elemental and Mineralogical Analysis of Silt Fraction from Site U1420, IODP Expedition 341
NASA Astrophysics Data System (ADS)
Salinas, J. K.; Jaeger, J. M.; Penkrot, M. L.
2016-12-01
In southeastern Alaska, the Chugach-St. Elias Mountains - the world's highest coastal mountain range - exhibit extreme topography due to the collision and subduction of the Yakutat microplate beneath the North American plate. The St. Elias orogen is younger than 30 Ma, with mountain building having occurred during a period of enhanced glacial erosion when erosive ice streams delivered sediment into the Gulf of Alaska. Integrated Ocean Drilling Program Expedition 341 set out to investigate the relationship between mountain building and glacial dynamics in the Gulf of Alaska. Sediment cores from site U1420 were collected, within the Bering trough, just offshore of the Bering Glacier. Analysis of Bering Trough seismic profiles demonstrates an evolution from tectonically-controlled to depositionally-controlled continental margin strata formation (Worthington et al., 2010). The goal of this study is to investigate the provenance of the silt-sized fraction (15-63 μm) of U1420 sediments across this transition in seismic facies using mineralogy and elemental geochemical analyses. XRD mineralogical analysis shows consistent downhole mineralogy with minor variations in relative peak intensities. Elemental ICP-MS geochemical analysis reveal concentrations of both major and trace elements to be very well constrained, with all major (Al, Ca, Fe, Mg, and Ti) and trace elemental data (Ce, Cr, Ga, La, Rb, Sc, Sr, Th, and Y) only varying downhole by few percent/ppm. Both the consistent downhole mineralogy and elemental data suggest that the provenance of the silt-sized sediment deposited offshore has not changed since initial deposition (<0.7 Ma). Comparison with onshore bedrock geochemistry and surface samples from the modern Gulf of Alaska indicate that U1420 silt is similar in composition to modern regional sediment sources and is a mixture of the different bedrock lithologies within the modern Bering Glacier drainage.
Southeast Georgia embayment high-resolution seismic-reflection survey
Edsall, Douglas W.
1979-01-01
A high-resolution seismic survey of the offshore part of the Southeast Georgia Embayment on about a 20 km spacing was completed in 1976. A stratigraphic analyses of the data shows that the largest controlling factor in the depositional history of the shelf has been the Gulf Stream. These currents have shifted back and forth across the shelf, at times incising into shelf sediments, and at all times blocking much of the accumulation of Cenozoic sediments seaward of the Florida-Hatteras Slope. In the southern region the Gulf Stream maintained its present position since Miocene time, blocking the accumulation of Pliocene and younger rocks on the Plateau. Northward, in the middle, region the currents turned slightly to the northeast. The inner portion of the Blake Plateau has been scoured of sediments since the Paleocene in this area, and scouring has also occurred on the shelf from time to time. In the northern part of the survey area a more easterly flow of the Gulf Stream has allowed Eocene and younger rocks to be deposited on the Plateau. Line drawings and a geologic map show the distribution of the various Cretaceous and Cenozoic units. A number of potential environmental hazards or constraints to petroleum development seen in the reflection data are identified. Besides current scour and erosion features, these include gravity faults on the slope, a slump, faulting on the inner Blake Plateau, the shelf edge reef, and deep water reefs on the Blake Plateau.
NASA Astrophysics Data System (ADS)
Wong, Sarah N. P.; Whitehead, Hal
2014-09-01
Sperm whales (Physeter macrocephalus) are widely distributed in all oceans, but they are clumped geographically, generally in areas associated with high primary and secondary productivity. The warm, clear waters of the Sargasso Sea are traditionally thought to be low in productivity, however recent surveys have found large numbers of sperm whales there. The New England Seamount Chain bisects the north-western portion of the Sargasso Sea, and might influence the mesoscale eddies associated with the Gulf Stream; creating areas of higher productivity within the Sargasso Sea. We investigated the seasonal occurrence of sperm whales over Kelvin Seamount (part of the New England Seamount Chain) and how it is influenced by oceanographic variables. An autonomous recording device was deployed over Kelvin Seamount from May to June 2006 and November 2006 to June 2007. A total of 6505 hourly two-minute recordings were examined for the presence of sperm whale echolocation clicks. Sperm whales were more prevalent around Kelvin in the spring (April to June: mean=51% of recordings contained clicks) compared to the winter (November to March: mean=16% of recordings contained clicks). Sperm whale prevalence at Kelvin was related to chlorophyll-a concentration four weeks previous, eddy kinetic energy and month. The mesoscale activity associated with the Gulf Stream and the Gulf Stream's interaction with the New England Seamount Chain likely play an important role in sperm whale occurrence in this area, by increasing productivity and perhaps concentration of cephalopod species.
First satellite tracks of the Endangered black-capped petrel
Jodice, Patrick G.R.; Ronconi, Robert A.; Rupp, Ernst; Wallace, George E.; Satgé, Yvan
2015-01-01
The black-capped petrel Pterodroma hasitata is an endangered seabird with fewer than 2000 breeding pairs restricted to a few breeding sites in Haiti and the Dominican Republic. To date, use areas at sea have been determined entirely from vessel-based surveys and opportunistic sightings and, as such, spatial and temporal gaps in our understanding of the species’ marine range are likely. To enhance our understanding of marine use areas, we deployed satellite tags on 3 black-capped petrels breeding on Hispaniola, representing the first tracking study for this species and one of the first published tracking studies for any breeding seabird in the Caribbean. During chick rearing, petrels primarily used marine habitats in the southern Caribbean Sea (ca. 18.0° to 11.5°N, 70.0° to 75.5°W) between the breeding site and the coasts of Venezuela and Colombia. Maximum distance from the breeding sites ranged from ca. 500 to 1500 km during the chick-rearing period. During the post-breeding period, each bird dispersed north and used waters west of the Gulf Stream offshore of the mid- and southern Atlantic coasts of the USA as well as Gulf Stream waters and deeper pelagic waters east of the Gulf Stream. Maximum distance from the breeding sites ranged from ca. 2000 to 2200 km among birds during the nonbreeding period. Petrels used waters located within 14 different exclusive economic zones, suggesting that international collaboration will benefit the development of management strategies for this species.
Celis-Hernandez, Omar; Rosales-Hoz, Leticia; Cundy, Andrew B; Carranza-Edwards, Arturo; Croudace, Ian W; Hernandez-Hernandez, Hector
2018-05-01
The Gulf of Mexico is considered one of the world's major marine ecosystems, supporting important fisheries and habitats such as barrier islands, mangrove forests, seagrass beds, coral reefs etc. It also hosts a range of complex offshore petroleum exploration, extraction, and refining industries, which may have chronic or acute impacts on ecosystem functioning. Previous work on the marine effects of this activity is geographically incomplete, and has tended to focus on direct hydrocarbon impacts, while impacts from other related contaminants (e.g. heavy metals, salt-rich drilling muds) which may be discharged from oil facilities have not been widely assessed. Here, we examine historical trace element accumulation in marine sediments collected from four sites in the Tamaulipas shelf, Gulf of Mexico, in the area of the Arenque oil field. Dated sediment cores were used to examine the sources, and historical and contemporary inputs, of trace metals (including those typically present in oil industry discharges) and their potential biological impact in the Tamaulipas aquatic environment over the last 100years. CaO (i.e. biogenic component) normalized data showed increasing V, Cr, Zn, Cu, Pb, Zr and Ba towards the sediment surface in three of the four cores, with Ba and V (based on an adverse effect index) possibly associated with adverse effects on organisms. Dated Ba/CaO profiles show an increase of 30-137% after opening of oil installations in the study area, and can be broadly correlated with increasing oil industry activities across the wider Gulf of Mexico. Data do not record however a clear enhancement of Ba concentration in sediment cores collected near to oil platforms over more distal cores, indicating that any Ba released from drilling platforms is incorporated quickly into the sediments around the drilling sites, and once this element has been deposited its rate of resuspension and mobility is low. Sediment core data from the Tamaulipas shelf show the influence of oil industry activities on selected trace element concentrations, with Ba/CaO broadly correlating with increasing oil industry activities across the wider Gulf of Mexico. Copyright © 2017 Elsevier B.V. All rights reserved.
Barron, J.A.; Bukry, D.; Dean, W.E.
2005-01-01
High-resolution records of calcium carbonate, biogenic opal, diatoms, and silicoflagellates from western Guaymas Basin gravity core GGC55 and piston core JPC56 and eastern Guaymas Basin DSDP Site 480 reveal a complex paleoceanographic history of the central Gulf of California during the past 15,000 years. Prior to ??? 6.2 ka, the eastern and western Guaymas Basin proxy records were remarkably similar. After conditions similar to those of today during the B??lling-Allerod, the Younger Dryas (YD) saw a major drop in diatom production, coincident with increased calcium carbonate and tropical microfossils suggestive of El Nin??o-like conditions. Biosiliceous productivity began increasing during the latter part of the YD, but it was only during the earliest Holocene (11.6 to 11.0 ka) that conditions similar to those of the B??lling-Allerod returned to the central Gulf. Between around 11.0 and 6.2 ka, tropical diatoms and silicoflagellates were virtually absent from the central Gulf, as relatively cooler and fresher surface waters resembling those of the modern northern Gulf were present in the central Gulf. Beginning at about 6.2 ka, tropical diatoms and silicoflagellates began increasing in the central Gulf, and coccoliths returned to western Gulf sediments. The onset of modern-day monsoon conditions in the American Southwest required the presence of warm SSTs in the northern Gulf, which probably did not occur until after about 5.4 ka, when tropical diatoms and silicoflagellates became relatively common in the central Gulf. Modern east-west contrasts, which arise from late winter-early spring coastal upwelling on the mainland side and lower diatom productivity on the western side of the Gulf, commenced between 6.2 and 5.4 ka, possibly due to a shift in the direction of late winter-early spring winds more towards the southeast, or down the axis of the Gulf. This proposed wind shift might have ultimately been due to a late Holocene strengthening of ENSO-like conditions in the eastern equatorial Pacific.
NOAA Ecosystem Data Assembly Center for the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Parsons, A. R.; Beard, R. H.; Arnone, R. A.; Cross, S. L.; Comar, P. G.; May, N.; Strange, T. P.
2006-12-01
Through research programs at the NOAA Northern Gulf of Mexico Cooperative Institute (CI), NOAA is establishing an Ecosystem Data Assembly Center (EDAC) for the Gulf of Mexico. The EDAC demonstrates the utility of integrating many heterogeneous data types and streams used to characterized and identify ecosystems for the purpose of determining the health of ecosystems and identifying applications of the data within coastal resource management activities. Data streams include meteorological, physical oceanographic, ocean color, benthic, biogeochemical surveys, fishery, as well as fresh water fluxes (rainfall and river flow). Additionally the EDAC will provide an interface to the ecosystem data through an ontology based on the Coastal/Marine Ecological Classification System (CMECS). Applications of the ontological approach within the EDAC will be applied to increase public knowledge on habitat and ecosystem awareness. The EDAC plans to leverage companion socioeconomic studies to identify the essential data needed for continued EDAC operations. All data-management architectures and practices within the EDAC ensure interoperability with the Integrated Ocean Observing System (IOOS) national backbone by incorporating the IOOS Data Management and Communications Plan. Proven data protocols, standards, formats, applications, practices and architectures developed by the EDAC will be transitioned to the NOAA National Data Centers.
NASA Astrophysics Data System (ADS)
Asimina Louvari, Markella; Tsourou, Theodora; Drinia, Hara; Anastasakis, George
2013-04-01
South Evoikos Gulf is an elongate, WNW - ESE trending basin, 60 km long and 15 km wide. Its floor slopes towards the south-east where the basin connects with the Aegean Sea across a 55 m deep sill. The hydrographic network of the area is characterized by Asopos river the small Lilas River and some other ephemeral streams. A sedimentary record spanning the last 13000 calyr BP was recovered at N 38°12'23.1228" E 24°8'14.2404", water depth 70 m, in this gulf. A total of 52 samples from the lower half of the core were quantitatively analyzed for micropalaeontological (benthic foraminifera and ostracods) study in order to reconstruct palaeoenvironmental conditions. This work contributes to the evaluation of the modern environmental problems in South Evoikos Gulf (hypoxia, ecosystem changes, subaquatic vegetation die-off, metal pollution) within the context of the palaeoenvironmental record. In the investigated core, the benthic microfaunal assemblages indicate a marine coastal environment with a gradual transition from a circalittoral to an infralittoral restricted environment. The basal part of the record is characterized by Haynesina depressula Assemblage, which is composed of Haynesina depressula, Textularia agglutinans and Bulimina aculeata.The abundance of Haynesina depressula could be associated with normal marine conditions, but always with periodic brackish water influence. The species composed this assemblage, which are almost all typically infaunal, characterize sediments with a high or medium-high muddy fraction, rich in organic matter available for the organisms that live within the sediment, and low salinity bottom water. Samples from the upper unit of the core indicate a nearshore, inner-shelf facies less than 50 m deep. Common inner-shelf species in these samples include Ammonia beccarii together with Bulimina marginata (Sgarrella & Moncharmont Zei, 1993). The highest abundance of A. beccarii is found between 15 and 20 m water-depth in samples with intermediate percentages of organic matter in which at least some sand fraction is present. A strict interpretation based on the known modern distribution of A. beccarii would confine the species to upper shoreface environments (Hayward et al. 2004). The relatively high frequency values of B. marginata indicate a correlation with organic matter enrichment, with seasonal low oxygen content. This hypothesis is testified also by the increase of the opportunistic species V. bradyana. The temporal presence of V. bradyana assemblage indicates a strong influence of Asopos River run-off, with interplay of increasing food availability and low oxygen concentration Three main ostracod assemblages were distinguished from the bottom to the top of the sediment core: At the lower part of the core ostracod assemblage consists mainly of Costa edwardsii, Cytheridea neapolitana, Callistocythere spp., Pterygocythereis jonesii and Leptocythere spp. At the middle part, Costa edwardsii is the dominant species with relative abundances up to 80% of the total ostracod fauna. At the upper part Costa edwardsii is the most abundant species (20-40% of the total fauna) accompanied mainly by Loxoconcha spp., Xestoleberis spp. and Cyprideis torosa. Ostracod abundance and diversity decrease towards the upper unit of the studied core. These data, and AMS radiocarbon ages determined for foraminifera and ostracods, provide evidence of a change from oceanic influence to estuarine influence. This event is also contemporaneous with the period which is generally characterized by increased evaporation rate (initially at the tropic seas), retreat of glaciers and increased rainfalls (Fairbanks, 1989). Fairbanks, R.G., 1989. A 17,000 year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep ocean circulation. Nature, 342, 637-642. Hayward, B.W., Sabaa, A.T., Grenfell, H.R., 2004. Benthic foraminifera and the Late Quaternary (last 150 ka) palaeoceanographic and sedimentary history of the Bounty Trough, east of New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology, 211(1-2), 59-93, doi:10.1016/j.palaeo.2004.04.007 Sgarrella, F. & Moncharmon-Zei, M. 1993. Benthic foraminifera in the Gulf of Naples (Italy): systematic and autoecology, Boll. Soc. Palaeont. Ital. 32, 145-264. This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: THALIS -UOA-70/3/11669.
Multi-year Current Observations on the Shelf Slope off Cape Hatteras, NC
NASA Astrophysics Data System (ADS)
Muglia, M.
2017-12-01
As part of an observing and modeling effort by the North Carolina Renewable Ocean Energy Program to determine if the Gulf Stream is a viable marine hydrokinetic energy resource for the state, upper continental slope current measurements were made over a period of nearly four years off of Cape Hatteras, NC. Velocity profiles were measured by a near-bottom, upward-looking, 150-kHz Acoustic Doppler Current Profiler deployed at a depth of 230-260 m. The mooring was sited at the location where water from the Gulf Stream, Middle Atlantic Bight, South Atlantic Bight, and Slope Sea all converge. Measured tidal amplitudes here are 2 m. These observations are used to consider the temporal variability and vertical structure of the currents at this location at tidal to interannual periods at this complex location. Concurrent near-bottom water mass properties are considered.
Silver hake tracks changes in Northwest Atlantic circulation.
Nye, Janet A; Joyce, Terrence M; Kwon, Young-Oh; Link, Jason S
2011-08-02
Recent studies documenting shifts in spatial distribution of many organisms in response to a warming climate highlight the need to understand the mechanisms underlying species distribution at large spatial scales. Here we present one noteworthy example of remote oceanographic processes governing the spatial distribution of adult silver hake, Merluccius bilinearis, a commercially important fish in the Northeast US shelf region. Changes in spatial distribution of silver hake over the last 40 years are highly correlated with the position of the Gulf Stream. These changes in distribution are in direct response to local changes in bottom temperature on the continental shelf that are responding to the same large scale circulation change affecting the Gulf Stream path, namely changes in the Atlantic meridional overturning circulation (AMOC). If the AMOC weakens, as is suggested by global climate models, silver hake distribution will remain in a poleward position, the extent to which could be forecast at both decadal and multidecadal scales.
NASA Astrophysics Data System (ADS)
Willebrand, J.; KäSe, R. H.; Stammer, D.; Hinrichsen, H.-H.; Krauss, W.
1990-03-01
Altimeter data from Geosat have been analyzed in the Gulf Stream extension area. Horizontal maps of the sea surface height anomaly relative to an annual mean for various 17-day intervals were constructed using an objective mapping procedure. The mean sea level was approximated by the dynamic topography from climatological hydrographic data. Geostrophic surface velocities derived from the composite maps (mean plus anomaly) are significantly correlated with surface drifter velocities observed during an oceanographie experiment in the spring of 1987. The drifter velocities contain much energy on scales less than 100 km which are not resolved in the altimetric maps. It is shown that the composite sea surface height also agrees well with ground verification from hydrographic data along sections in a triangle between the Azores, Newfoundland, and Bermuda, except in regions of high mean gradients.
Aerial Observations of Symmetric Instability at the North Wall of the Gulf Stream
NASA Astrophysics Data System (ADS)
Savelyev, I.; Thomas, L. N.; Smith, G. B.; Wang, Q.; Shearman, R. K.; Haack, T.; Christman, A. J.; Blomquist, B.; Sletten, M.; Miller, W. D.; Fernando, H. J. S.
2018-01-01
An unusual spatial pattern on the ocean surface was captured by thermal airborne swaths taken across a strong sea surface temperature front at the North Wall of the Gulf Stream. The thermal pattern on the cold side of the front resembles a staircase consisting of tens of steps, each up to ˜200 m wide and up to ˜0.3°C warm. The steps are well organized, clearly separated by sharp temperature gradients, mostly parallel and aligned with the primary front. The interpretation of the airborne imagery is aided by oceanographic measurements from two research vessels. Analysis of the in situ observations indicates that the front was unstable to symmetric instability, a type of overturning instability that can generate coherent structures with similar dimensions to the temperature steps seen in the airborne imagery. It is concluded that the images capture, for the first time, the surface temperature field of symmetric instability turbulence.
Remote sensing of Gulf Stream using GEOS-3 radar altimeter
NASA Technical Reports Server (NTRS)
Leitao, C. D.; Huang, N. E.; Parra, C. G.
1978-01-01
Radar altimeter measurements from the GEOS-3 satellite to the ocean surface indicated the presence of expected geostrophic height differences across the the Gulf Stream. Dynamic sea surface heights were found by both editing and filtering the raw sea surface heights and then referencing these processed data to a 5 minute x 5 minute geoid. Any trend between the processed data and the geoid was removed by subtracting out a linear fit to the residuals in the open ocean. The mean current velocity of 107 + or - 29 cm/sec calculated from the dynamic heights for all orbits corresponded with velocities obtained from hydrographic methods. Also, dynamic topographic maps were produced for August, September, and October 1975. Results pointed out limitations in the accuracy of the geoid, height anomaly deteriorations due to filtering, and lack of dense time and space distribution of measurements.
NASA Astrophysics Data System (ADS)
Rúa, Alex; Liebezeit, Gerd; Grajales, Heazel; Palacio, Jaime
2017-10-01
Carbon stable isotopes analysis serve reconstruction of the origin of organic matter (OM) deposited onto sediments. They also allow tracing vegetation change at different time scales. This study weighs the contribution of both marine and terrestrial sources to sedimentary organic carbon (OC) from a southwestern Caribbean Gulf partly surrounded by large Musa acuminata (banana) croplands. The δ13C values in three sediment cores from the gulf have slightly decreased over 1000 yrs BP, indicating enhanced terrestrial input of detrital carbon owing to river discharge. A two-end mixing model fed with these δ13C values showed that averaged terrestrial contribution of OC to sediment was 52.0% at prodelta, 76.4% at delta front, and 64.2% at Colombia Bay. This agrees well with sediment dynamics. The main source of sedimentary OC within the gulf was terrestrial instead of marine. In fact, a distorted trend in δ13C values for one of the coring sites could be the result of banana crop expansion through the 20th century.
NASA Astrophysics Data System (ADS)
Kourafalou, V.; Androulidakis, I.; Halliwell, G. R., Jr.; Kang, H.; Mehari, M. F.; Atlas, R. M.
2016-02-01
A prototype ocean Observing System Simulation Experiments (OSSE) system, first developed and data validated in the Gulf of Mexico, has been applied on the extended North Atlantic Ocean hurricane region. The main objectives of this study are: a) to contribute toward a fully relocatable ocean OSSE system by expanding the Gulf of Mexico OSSE to the North Atlantic Ocean; b) demonstrate and quantify improvements in hurricane forecasting when the ocean component of coupled hurricane models is advanced through targeted observations and assimilation. The system is based on the Hybrid Coordinate Ocean Model (HYCOM) and has been applied on a 1/250 Mercator mesh for the free-running Nature Run (NR) and on a 1/120 Mercator mesh for the data assimilative forecast model (FM). A "fraternal twin" system is employed, using two different realizations for NR and FM, each configured to produce substantially different physics and truncation errors. The NR has been evaluated using a variety of available observations, such as from AVISO, GDEM climatology and GHRSST observations, plus specific regional products (upper ocean profiles from air-borne instruments, surface velocity maps derived from the historical drifter data set and tropical cyclone heat potential maps derived from altimetry observations). The utility of the OSSE system to advance the knowledge of regional air-sea interaction processes related to hurricane activity is demonstrated in the Amazon region (salinity induced surface barrier layer) and the Gulf Stream region (hurricane impact on the Gulf Stream extension).
Mitra, Siddhartha; Lalicata, Joseph J; Allison, Mead A; Dellapenna, Timothy M
2009-06-01
To assess the extent to which Hurricanes Katrina and Rita affected polycyclic aromatic hydrocarbons (PAH) in the Gulf of Mexico (GOM), sediment cores were analyzed in late 2005 from: a shallow shelf, a deeper shelf, and a marsh station. Sediment geochronology, fabric, and geochemistry show that the 2005 storms deposited approximately 10cm of sediment to the surface of a core at 5-12A. Bulk carbon geochemistry and PAH isomers in this top layer suggest that the source of sediment to the top portion of core 5-12A was from a relatively more marine area. Particulate PAHs in the marsh core (04M) appeared unaffected by the storms while sediments in the core from Station 5-1B (deeper shelf) were affected minimally (some possible storm-derived deposition). Substantial amounts of PAH-laden particles may have been displaced from the seabed in shallow areas of the water column in the GOM by these 2005 storms.
Massive subtropical icebergs and freshwater forcing of climate
NASA Astrophysics Data System (ADS)
Condron, Alan; Hill, Jenna
2014-05-01
High resolution seafloor mapping shows incredible evidence that massive (>300m thick) icebergs drifted more than 5,000 km along the United States continental margin to southern Florida during the last deglaciation. Here we discuss how the discovery of icebergs in this location highlights a previously unknown ocean circulation pathway capable of transporting icebergs and meltwater from the Northern Hemisphere ice sheets directly to the subtropical North Atlantic. This pathway questions the classical idea that freshwater forcing from meltwater floods and icebergs occurred primarily over the subpolar North Atlantic (50N - 70N), with little penetration to subtropical latitudes, south of 40N. Using a sophisticated, high-resolution (1/6 deg.) ocean model, capable of resolving the circulation of the coastal ocean in detail, we show that icebergs off the coast of Florida likely calved from ice streams in the Gulf of St Lawrence and Hudson Bay. We find that icebergs can only drift south of Cape Hatteras, and overcome the northward flow of the Gulf Stream, when they are entrained in a narrow, southward-flowing, coastal meltwater flood originating from the Laurentide Ice Sheet. This cold meltwater increases iceberg survival in the warm subtropics and flows in the opposite direction to the Gulf Stream along the coast, allowing icebergs to drift to southern Florida in less than 4 months. We conclude that during the last deglaciation, icebergs drifted south in massive meltwater floods that delivered freshwater to the subtropical North Atlantic. Our findings have important implications for understanding how changes in freshwater forcing triggered past abrupt climate change.
Campana, Steven E.; Dorey, Anna; Fowler, Mark; Joyce, Warren; Wang, Zeliang; Yashayaev, Igor
2011-01-01
The blue shark Prionace glauca is the most abundant large pelagic shark in the Atlantic Ocean. Although recaptures of tagged sharks have shown that the species is highly migratory, migration pathways towards the overwintering grounds remain poorly understood. We used archival satellite pop-up tags to track 23 blue sharks over a mean period of 88 days as they departed the coastal waters of North America in the autumn. Within 1–2 days of entering the Gulf Stream (median date of 21 Oct), all sharks initiated a striking diel vertical migration, taking them from a mean nighttime depth of 74 m to a mean depth of 412 m during the day as they appeared to pursue vertically migrating squid and fish prey. Although functionally blind at depth, calculations suggest that there would be a ∼2.5-fold thermoregulatory advantage to swimming and feeding in the markedly cooler deep waters, even if there was any reduced foraging success associated with the extreme depth. Noting that the Gulf Stream current speeds are reduced at depth, we used a detailed circulation model of the North Atlantic to examine the influence of the diving behaviour on the advection experienced by the sharks. However, there was no indication that the shark diving resulted in a significant modification of their net migratory pathway. The relative abundance of deep-diving sharks, swordfish, and sperm whales in the Gulf Stream and adjacent waters suggests that it may serve as a key winter feeding ground for large pelagic predators in the North Atlantic. PMID:21373198
Assessment of gamma-emitting radionuclides in sediment cores from the Gulf of Aqaba, Red Sea.
Ababneh, Zaid Q; Al-Omari, Husam; Rasheed, Mohamad; Al-Najjar, Tariq; Ababneh, Anas M
2010-10-01
The Gulf of Aqaba is the only seaport in Jordan which currently has intense activities such as industrial development, phosphate ore exportation, oil importation, shipping, commercial and sport fishing. Most of these activities, especially the phosphate ore exportation, could cause serious radiological effects to the marine environment. Thus, it is essential to investigate the level of the radioactivity concentrations to establish a baseline database, which is not available yet in the Gulf of Aqaba. Radioactivity concentrations of gamma-emitting radionuclides in core and beach sediments of the Gulf of Aqaba were investigated. Core sediments were collected from five representative locations for three different water column depths (5, 15 and 35 m). The results showed that the activity concentrations of 238U, 235U and 226Ra for both seafloor and beach sediments from the phosphate loading berth (PLB) location to be higher than those from other investigated locations and more than twice as high as the worldwide average; the 238U activity concentration was found to vary from 57 to 677 Bq kg(-1). The results also showed that there is little variation of radioactivity concentrations within the core length of 15 cm. The calculated mean values of the radium equivalent activity Ra(eq), the external hazard index, H(ex), the absorbed dose rate and the annual effective dose for the beach sediment in PLB location were 626 Bq kg(-1), 1.69, 263 nGy h(-1) and 614 µSv y(-1), respectively. These values are much higher than the recommended limits that impose potential health risks to the workers in this location. As for other studied locations, the corresponding values were far below the maximum recommended limit and lies within the worldwide range.
Understanding shallow gas occurrences in the Gulf of Lions
Garcia-Garcia, Ana; Tesi, Tommaso; Orange, Daniel L.; Lorenson, T.; Miserocchi, Stefano; Langone, L.; Herbert, I.; Dougherty, J.
2007-01-01
New coring data have been acquired along the western Gulf of Lions showing anomalous concentrations of methane (up to 95,700 ppm) off the Rho??ne prodelta and the head of the southern canyons Lacaze-Duthiers and Cap de Creus. Sediment cores were acquired with box and kasten cores during 2004-2005 on several EuroSTRATAFORM cruises. Anomalous methane concentrations are discussed and integrated with organic carbon data. Sampled sites include locations where previous surveys identified acoustic anomalies in high-resolution seismic profiles, which may be related to the presence of gas. Interpretation of the collected data has enabled us to discuss the nature of shallow gas along the Gulf of Lions, and its association with recent sedimentary dynamics. The Rho??ne prodelta flood deposits deliver significant amounts of terrigenous organic matter that can be rapidly buried, effectively removing this organic matter from aerobic oxidation and biological uptake, and leading to the potential for methanogenesis with burial. Away from the flood-related sediments off the Rho??ne delta, the organic matter is being reworked and remineralized on its way along the western coast of the Gulf of Lions, with the result that the recent deposits in the canyon contain little reactive carbon. In the southernmost canyons, Lacaze-Duthiers and Cap de Creus, the gas analyses show relatively little shallow gas in the core samples. Samples with anomalous gas (up to 5,000 ppm methane) are limited to local areas where the samples also show higher amounts of organic matter. The anomalous samples at the head of the southern canyons may be related to methanogenesis of recent drape or of older sidewall canyon infills. ?? Springer-Verlag 2007.
On the dynamic forcing of short-term climate fluctuations by feedback mechanisms
NASA Technical Reports Server (NTRS)
Reiter, E. R.
1979-01-01
Various internal feedback mechanisms in the ocean atmosphere system were studied. A variability pattern of sea surface temperature with a quasibiennial oscillation (QBO) was detected off the coast of Senegal, in the Gulf of Guinea and even in the Gulf Stream as it leaves the North American continental shelf. Possible physical connections between some of these QBO's were pointed out by a hypothetical feedback model. Interaction of a QBO with the annual cycle may lead to beating frequencies resembling climatic trends of a duration of several years.
Intercomparison of the Gulf Stream in ocean reanalyses: 1993-2010
NASA Astrophysics Data System (ADS)
Chi, Lequan; Wolfe, Christopher L. P.; Hameed, Sultan
2018-05-01
In recent years, significant progress has been made in the development of high-resolution ocean reanalysis products. This paper compares aspects of the Gulf Stream (GS) from the Florida Straits to south of the Grand Banks-particularly Florida Strait transport, separation of the GS near Cape Hatteras, GS properties along the Oleander Line (from New Jersey to Bermuda), GS path, and the GS north wall positions-in 13 widely used global reanalysis products of various resolutions, including two unconstrained products. A large spread across reanalysis products is found. HYCOM and GLORYS2v4 stand out for their superior performance by most metrics. Some common biases are found in all discussed models; for example, the velocity structure of the GS near the Oleander Line is too symmetrical and the maximum velocity is too weak compared with observations. Less than half of the reanalysis products show significant correlations (at the 95% confidence level) with observations for the GS separation latitude at Cape Hatteras, the GS transport, and net transport across Oleander Line. The cross-stream velocity structure is further discussed by a theoretical model idealizing GS as a smoothed PV front.
NASA Astrophysics Data System (ADS)
Kinash, N.; Cook, A.; Sawyer, D.; Heber, R.
2017-12-01
In May 2017 the University of Texas led a drilling and pressure coring expedition in the northern Gulf of Mexico, UT-GOM2-01. The holes were located in Green Canyon Block 955, where the Gulf of Mexico Joint Industry Project Leg II identified an approximately 100m thick hydrate-filled course-grained levee unit in 2009. Two separate wells were drilled into this unit: Holes H002 and H005. In Hole H002, a cutting shoe drill bit was used to collect the pressure cores, and only 1 of the 8 cores collected was pressurized during recovery. The core recovery in Hole H002 was generally poor, about 34%, while the only pressurized core had 45% recovery. In Hole H005, a face bit was used during pressure coring where 13 cores were collected and 9 cores remained pressurized. Core recovery in Hole H005 was much higher, at about 75%. The type of bit was not the only difference between the holes, however. Drilling mud was used throughout the drilling and pressure coring of Hole H002, while only seawater was used during the first 80m of pressure cores collected in Hole H005. Herein we focus on lithologic analysis of Hole H002 with the goal of documenting and understanding core recovery in Hole H002 to compare with Hole H005. X-ray Computed Tomography (XCT) images were collected by Geotek on pressurized cores, mostly from Hole H005, and at Ohio State on unpressurized cores, mostly from Hole H002. The XCT images of unpressurized cores show minimal sedimentary structures and layering, unlike the XCT images acquired on the pressurized, hydrate-bearing cores. Only small sections of the unpressurized cores remained intact. The unpressurized cores appear to have two prominent facies: 1) silt that did not retain original sedimentary fabric and often was loose within the core barrel, and 2) dense mud sections with some sedimentary structures and layering present. On the XCT images, drilling mud appears to be concentrated on the sides of cores, but also appears in layers and fractures within intact core sections. On microscope images, the drilling mud also appears to saturate the pores in some silt intervals. Further analysis of the unpressurized cores is planned, including X-ray diffraction, grain size analysis and porosity measurements. These results will be compared to the pressurized cores to understand if further lithologic factors could have affected core recovery.
Ennouri, Rym; Zaaboub, Noureddine; Fertouna-Bellakhal, Mouna; Chouba, Lassad; Aleya, Lotfi
2016-03-01
Tunis Gulf (northern Tunisia, Mediterranean Sea) is of great economic importance due to its abundant fish resources. Rising urbanization and industrial development in the surrounding area have resulted in an increase in untreated effluents and domestic waste discharged into the gulf via its tributary streams. Metal (Cd, Pb, Hg, Cu, Zn, Fe, and Mn) and major element (Mg, Ca, Na, and K) concentrations were measured in the grain fine fraction <63 μm by atomic absorption spectrophotometry. Results showed varying spatial distribution patterns for metals, indicating complex origins and controlling factors such as anthropogenic activities. Sediment metal concentrations are ranked as follows: Fe > Mg > Zn > Mn > Pb > Cu > Cd > Hg. Metals tend to be concentrated in proximity to source points, suggesting that the mineral enrichment elements come from sewage of coastal towns and pollution from industrial dumps and located along local rivers, lagoons, and on the gulf shore itself. This study showed that trace metal and major element concentrations in surface sediments along the Tunis Gulf shores were lower than those found in other coastal areas of the Mediterranean Sea.
Deepwater Gulf of Mexico turbidites -- Compaction effects on porosity and permeability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostermeier, R.M.
1995-06-01
The deepwater Gulf of Mexico is now a major area of activity for the US oil industry. Compaction causes particular concern because most prospective deepwater reservoirs are highly geo-pressured and many have limited aquifer support; water injection may also be problematic. To address some of the issues associated with compaction, the authors initiated a special core-analysis program to study compaction effects on turbidite sand porosity and permeability specifically. This program also addressed a number of subsidiary but no less important issues, such as sample characterization and quality, sample preparation, and test procedures. These issues are particularly pertinent, because Gulf ofmore » Mexico turbidites are generally unconsolidated, loose sands, and are thus susceptible to a whole array of potentially serious core-disturbing processes. One key result of the special core analysis program is that turbidite compressibilities exhibit large variations in both magnitude and stress dependence. These variations correlate with creep response in the laboratory measurements. The effects of compaction on permeability are significant. To eliminate complicating effects caused by fines movement, the authors made oil flow measurements at initial water saturation. The measurements indicate compaction reduces permeability four to five times more than porosity on a relative basis.« less
NASA Astrophysics Data System (ADS)
Whittaker, Alex; Boulton, Sarah; Kent, Emiko; Zondervan, Jesse; Hann, Madeleine; Watkins, Stephen; Bell, Rebecca; Brooke, Sam
2017-04-01
Lithology and sediment supply influence the erosional dynamics of rivers crossing active faults and together these effects govern the style, timescale and means by which landscapes respond to their tectono-climatic boundary conditions. Here, for transient bedrock catchments in the Gediz Graben, Turkey, and the Gulf of Corinth, Greece, for which the timing and rate of active faulting is known, we quantify the relative importance of rock strength and sediment supply on models of fluvial incision. We determine rock type, strength and erodibility using a Schmidt hammer and structural measurements of joint density and size. We evaluate the downstream distribution of channel width and stream power and calculate the extent to which the latter scales with tectonic rates and rock strength. Sediment supply is constrained using estimates of bedrock exposure, transport capacities and erosional fluxes. For the Turkish examples, stream powers in the metamorphic rocks are four times greater than in the Neogene sediment units, indicating a four-fold difference in bedrock erodibility, K, for a two-fold variation in in Schmidt hammer hardness. In the Gulf of Corinth examples, we interpret differences in stream powers near the active faults to represent order of magnitude differences in bedrock erodibility between carbonate and sandstone/conglomerate units. We also observe that in both cases, significant along-strike variation in fault slip rate is not associated with an increase in stream power for the sedimentary rocks and we assess the extent to which this stream power deficit may also represent the effects of sediment-flux-dependent incision.
NASA Astrophysics Data System (ADS)
Suzuki, T.; Kawamura, K.; Ogawa, Y.; Flemings, P. B.; Behrmann, J. H.; John, C. M.; Hirano, N.; Abe, N.
2005-12-01
We collected three m-long piston cores of mud during the Kairei cruise (KR04-08 and KR05-10) of Japan Marine Science and Technology Center in 2004 and 2005 from the NW Pacific between Honshu and Shatsky Rise; aside the Fukahori Knoll and Yukawa Knoll. Another set of mud cores, 234.5 m long, was collected during the JOIDES Resolution cruise (IODP Exp308, site U1322) in 2005 from the Ursa Basin located at the eastern levee of the Mississippi Canyon, northeastern Gulf of Mexico of about 1000 m depth. Our study purpose is to know the flow direction by mud particle arrangement by thin section and scanning electron microscope (SEM) and anisotropy of magnetic susceptibility (AMS) data. The data from the NW Pacific indicate weak preferred orientation from SW to NE, suggesting weak bottom current. This is supported by erosional moat to NE direction around the Fukahori Knoll. In the Gulf of Mexico we can know the flow directions of river plumes, turbidity currents, etc., and we can know whether the flows come from the main entry point in the basin or they are derived from the others of the basin. The other basic features of the core sediments are lithology, sedimentary structures, and porosity, together with paleocurrent analysis.
Successive measurements of streaming potential and electroosmotic pressure with the same core-holder
NASA Astrophysics Data System (ADS)
Yin, Chenggang; Hu, Hengshan; Yu, Chunhao; Wang, Jun
2018-05-01
Successive measurements of the streaming potential and electroosmotic pressure of each core sample are important for understanding the mechanisms of electrokinetic effects. In previous studies, one plug of the core-holder needs to be replaced in these two experiments, which causes the change of the fluid parameters and the boundary conditions in the core. We design a new core-holder to permit successive experiments without plug replacement, which ensures the consistency of the measurement environment. A two-direction harmonic pressure-driving source is accordingly designed. Using this new equipment, electrokinetic experiments conducted ten core samples at 0.4 mol/L NaCl solution. The results show good agreement between the electrokinetically deduced permeability and premeasured gas permeability. For high salinity saturated samples, the permeability can be inverted from electroosmotic effect instead of the streaming potential.
1400 yr multiproxy record of climate variability from the northern Gulf of Mexico
Richey, J.N.; Poore, R.Z.; Flower, B.P.; Quinn, T.M.
2007-01-01
A continuous decadal-scale resolution record of climate variability over the past 1400 yr in the northern Gulf of Mexico was constructed from a box core recovered in the Pigmy Basin, northern Gulf of Mexico. Proxies include paired analyses of Mg/Ca and δ18O in the white variety of the planktic foraminifer Globigerinoides ruber and relative abundance variations of G. sacculifer in the foraminifer assemblages. Two multi-decadal intervals of sustained high Mg/Ca indicate that Gulf of Mexico sea surface temperatures (SSTs) were as warm or warmer than near-modern conditions between 1000 and 1400 yr B.P. Foraminiferal Mg/Ca during the coolest interval of the Little Ice Age (ca. 250 yr B.P.) indicate that SST was 2–2.5 °C below modern SST. Four minima in the Mg/Ca record between 900 and 250 yr B.P. correspond with the Maunder, Spörer, Wolf, and Oort sunspot minima, suggesting a link between changes in solar insolation and SST variability in the Gulf of Mexico. An abrupt shift recorded in both δ18Ocalcite and relative abundance of G. sacculifer occurred ca. 600 yr B.P. The shift in the Pigmy Basin record corresponds with a shift in the sea-salt-sodium (ssNa) record from the Greenland Ice Sheet Project 2 ice core, linking changes in high-latitude atmospheric circulation with the subtropical Atlantic Ocean.
A numerical investigation of surface-induced mesocyclogenesis near the Gulf Stream
NASA Astrophysics Data System (ADS)
Cione, Joseph J.; Raman, Sethu
1995-10-01
A series of numerical experiments designed to simulate the initial development stages of low-level coastal mesocyclogenesis near the Gulf Stream was recently conducted. Under initially quiescent conditions, surface cyclogenesis in the control simulation occurs along a Gulf Stream meander in a region where the gradients in sea surface temperature (SST) are maximized. A low-level mesovortex on the order of 140km forms approximately 12 h into the simulation and continues to intensify through 42h. During the 24 48 h time period, a mesoscale frontal feature develops in direct response to strong diabatic forcing associated with sustained surface latent and sensible heating near the Gulf Stream frontal zone south of the main circulation center. Due to the non-linear advection of the frontal feature during this time period, the previously quasi-stationary circulation center drifts eastward (and away) from the thermal forcing associated with the large SST gradients found to the west. This eastward frontal propagation acts to decrease the magnitude of the low level horizontal air temperature gradient near the center of circulation throughout the 24 42 h development period. During the 42 48-h period, the relatively quick moving frontal feature acts to severely shear the nearly stationary center of circulation in the east west direction. As a result, the mesoscale system begins to fill during the final 6 h of integration. In addition to the control simulation, additional sensitivity experiments were conducted. These experiments were specifically designed to: (1) investigate how the magnitude of the Gulf Stream SST gradients affect the timing and degree of cyclonic development; (2) address the impact surface moisture fluxes and moist convection each have on the simulated low level mesocyclogenesis; (3) isolate the role surface sensible heating plays in the overall development of the simulated mesocyclone. Results from the SST gradient experiment indicate that a moderate enhancement of the SST distribution significantly affects the timing of the initial cyclogenesis and the maximum intensity of the simulated frontal circulation. For the "no turbulent heat flux" experiment, it appears that the elimination of surface sensible heating does not radically alter the overall structure of the simulated mesocyclone. However, the rate of development during the early stage of cyclogenesis, the absolute peak intensity of the system as well as the vertical depth of the simulated mesoscale frontal feature were all noticeably reduced when compared with the control simulation. The initial development of a closed low level circulation was delayed by nearly 18 h in the absence surface latent heat fluxes. Once formed, the system intensified throughout the 48-h period of integration, but unlike the control experiment, a mesoscale frontal feature south of the main circulation center was not simulated. Results from the "no surface moisture flux/no moist convection" simulation illustrate that moist convective processes play a dominant role in the overall development of the mesoscale cyclone. For this particular case, a weak and extremely shallow circulation was simulated after 24h. This circulation quickly eroded however, and was virtually non-existent for integration times greater than 39h.
Li, Pingyang; Xue, Rui; Wang, Yinghui; Zhang, Ruijie; Zhang, Gan
2015-01-15
Fifteen polycyclic aromatic hydrocarbons (PAHs) in 41 surface sediment samples and a sediment core (50 cm) from the Beibu Gulf, a significant low-latitude developing gulf, were analyzed. PAHs concentrations were 3.01-388 ng g(-)(1) (mean 95.5 ng g(-)(1)) in the surface sediments and 10.5-87.1 ng g(-)(1) (average 41.1 ng g(-)(1)) in the sediment core. Source apportionment indicated that PAHs were generated from coke production and vehicular emissions (39.4%), coal and biomass combustion (35.8%), and petrogenic sources (24.8%). PAHs were mainly concentrated in the industrialized and urbanized regions and the harbor, and were transported by atmospheric deposition to the marine matrix. The mass inventory (1.57-2.62t) and probability risk showed sediments here served as an important reservoir but low PAH risk. Different from oil and natural gas in developed regions, coal combustion has always been a significant energy consumption pattern in this developing region for the past 30 years (56 ± 5%). Copyright © 2014 Elsevier Ltd. All rights reserved.
Natural gas geochemistry of sediments drilled on the 2005 Gulf of Mexico JIP cruise
Lorenson, T.D.; Claypool, G.E.; Dougherty, J.A.
2008-01-01
In April and May 2005, cores were acquired and sub-sampled for gases in lease blocks Atwater Valley 13 and 14 and Keathley Canyon 151 during deep subseafloor drilling conducted as part of the JIP study of gas hydrates in the northern Gulf of Mexico. Sample types included sediment headspace gas, free gas derived from sediment gas exsolution, and gas exsolution from controlled degassing of pressurized cores. The gases measured both onboard and in shore-based labs were nitrogen, oxygen, hydrogen sulfide, carbon dioxide, and the hydrocarbons methane through hexane. The presence of seafloor mounds, seismic anomalies, a shallow sulfate-methane interface, and similar gas compositions and isotopic compositions near the seafloor and at depth suggest an upward flux of methane at both sites. Sediment gases at the Atwater Valley sites, where seafloor mounds and adjacent sediments were cored, strongly suggest a microbial source of methane, with very little thermogenic gas input. Sediment gas from all cores contained from about 96 to 99.9% methane, with the balance composed primarily of carbon dioxide. Methane to ethane ratios were greater than 1000, and often over 10,000. Gases from cores at Keathley Canyon were similar to those at Atwater Valley, however, deeper cores from Keathley Canyon contained more ethane, propane, and butane suggesting mixing with minor concentrations thermogenic gas. The isotopic composition of methane, ethane, and carbon dioxide were measured, and ??13C values range from -84.3 to -71.5???, -65.2 to -46.8???, and -23.5 to -3.0???, respectively, all consistent with microbial gas sources, early diagenesis of organic matter and perhaps biodegradation of petroleum. The presence of deep microbial gas at these sites here and elsewhere highlights a potentially significant, predominantly microbial gas source in the northern Gulf of Mexico.
Earth Observations taken by the STS-109 crew
2002-03-05
STS109-719-076 (1-12 March 2002) --- The astronauts on board the Space Shuttle Columbia took this 70mm picture featuring part of the eastern sea board. The oblique view looks northward from South Florida to the southern Appalachians. Most of the southeastern United States appears in crisp, clear air in the wake of a cold front that has pushed well off the mainland. Only a few jet stream and low-level clouds remain over South Florida and Gulf Stream.
NASA Astrophysics Data System (ADS)
Abdullah, Warith; Reddy, Remata
From October 22nd to 30th, 2012 Hurricane Sandy was a huge storm of many abnormalities causing an estimated 50 billion dollars in damage. Tropical storm development states systems’ energy as product of warm sea surface temperatures (SST’s) and tropical cyclone heat potential (TCHP). Advances in Earth Observing (EO) technology, remote sensing and proxy remote sensing have allowed for accurate measurements of SST and TCHP information. In this study, we investigated rapid intensification of Sandy through EO applications for precipitable water vapor (PWAT), SST’s and TCHP during the period of October 27th. These data were obtained from NASA and NOAA satellites and NOAA National Buoy data center (NDBC). The Sensible Heat (Qs) fluxes were computed to determine available energy resulting from ocean-atmosphere interface. Buoy 41010, 120 NM east of Cape Canaveral at 0850 UTC measured 22.3 °C atmospheric temperatures and 27 °C SST, an interface of 4.7 °C. Sensible heat equation computed fluxes of 43.7 W/m2 at 982.0 mb central pressure. Sandy formed as late-season storm and near-surface air temperatures averaged > 21 °C according to NOAA/ESRL NCEP/NCAR reanalysis at 1000 mb and GOES 13 (EAST) geostationary water vapor imagery shows approaching cold front during October 27th. Sandy encountered massive dry air intrusion to S, SE and E quadrants of storm while travelling up U.S east coast but experienced no weakening. Cool, dry air intrusion was considered for PWAT investigation from closest sounding station during Oct. 27th 0900 - 2100 UTC at Charleston, SC station 72208. Measured PWAT totaled 42.97 mm, indicating large energy potential supply to the storm. The Gulf Stream was observed using NASA Short-term Prediction Research and Transition Center (SPoRT) MODIS SST analysis. The results show 5 °C warmer above average than surrounding cooler water, with > 25 °C water extent approximately 400 NM east of Chesapeake Bay and eddies > 26 °C. Results from sensible heat computations for atmospheric interface suggests unusual warmth associated with Gulf Stream current, such that it provided Sandy with enough kinetic energy to intensify at high latitude. The study further suggests that energy gained from Caribbean TCHP and Gulf Stream SST’s were largely retained by Sandy upon losing tropical-cyclone characteristics and merging with strong cold front and polar jet stream. Storms of Sandy’s magnitude and unusual source of energy resulting from Gulf Stream may indicate a building average for tropical cyclone development and intensity for North Atlantic, particularly as the GOM waters continue to warm on seasonal averages.
Interactions of phytoplankton, zooplankton and microorganisms
NASA Astrophysics Data System (ADS)
Pomeroy, L. R.; Paffenhöfer, G.-A.; Yoder, J. A.
We present evidence that there are significant interactions between heterotrophic microorganisms, doliolids and Fritillaria within intrusions of nutrient-rich Gulf Stream water stranding on the continental shelf. During the summer of 1981 cold, nutrient-rich water from below the surface of the Gulf Stream was repeatedly intruded and stranded on the continental shelf off northeastern Florida. On August 6 old, stranded Gulf Stream water depleted of nitrate occupied the lower layer on the outer shelf. The upper water was continental shelf water, older but of undefined age. On August 6 free-living bacteria were >10 6ml -1 everywhere at all depths, an order of magnitude greater than normal bacterial numbers on the northeastern Florida continental shelf. Over 10 days the numbers of free bacteria doubled while bacteria attached to particles increased by a factor of four. The adenylate/chlorophyll ratio showed that phytoplankton dominated the lower layers of intruded water, while the surface water became increasingly dominated by heterotrophic microorganisms (bacteria and protozoa) over 10 days. There were significant, negative correlations between bacteria and doliolids and between bacteria and Fritillaria. Regions of maximum bacterial numbers did not coincide with locations of salp swarms. The increased numbers of bacteria at all depths in a highly stratified system in which most phytoplankton are in the lower layer suggests a diverse source of bacterial growth substrates, some of which involve zooplankton as intermediaries. Production of autotrophs is more than twice that of microheterotrophs on average, but because of their differential distribution, microheterotrophs are the dominant biomass in much of the surface water and may be significant in energy flux to metazoan consumers as well as competitors for mutually useable sources of nutrition.
Booth, James S.
1979-01-01
The purpose of this report is to present the results of geotechnical, textural, and chemical tests performed on samples from the upper Continental Slope, northern Gulf of Mexico.The samples were collected by a piston corer up to 12 m (40 ft.} in length with a head weight of 908 kg (one ton}. The inside diameter of the C. A. B. liner was 89 mm (3.5 inches}. Upon retrieval, the cores were cut in 1.5 m sections, examined for evidence of disturbance, then, if in acceptable condition, were sealed and placed in their in situ vertical position in a refrigerated van. Once ashore, the sections were opened, sealed with wax, recapped and stored as before.The cores were split lengthwise for analysis. One half of the core was X-rayed and the radiograph was carefully examined as a further check for disturbance. This half was then archived. The other half of the core was used for the laboratory work.
System for processing an encrypted instruction stream in hardware
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griswold, Richard L.; Nickless, William K.; Conrad, Ryan C.
A system and method of processing an encrypted instruction stream in hardware is disclosed. Main memory stores the encrypted instruction stream and unencrypted data. A central processing unit (CPU) is operatively coupled to the main memory. A decryptor is operatively coupled to the main memory and located within the CPU. The decryptor decrypts the encrypted instruction stream upon receipt of an instruction fetch signal from a CPU core. Unencrypted data is passed through to the CPU core without decryption upon receipt of a data fetch signal.
Experimental examination of vorticity stripping from a wing-tip vortex in free-stream turbulence
NASA Astrophysics Data System (ADS)
Ghimire, Hari C.; Bailey, Sean C. C.
2018-03-01
Time-resolved stereoscopic particle image velocimetry measurements were conducted of a wing-tip vortex decaying in free-stream turbulence. The objective of the research was to experimentally investigate the mechanism causing the increased rate of decay of the vortex in the presence of turbulence. It was observed that the circulation of the vortex core experienced periods of rapid loss and recovery when immersed in free-stream turbulence. These events were not observed when the vortex was in a laminar free stream. A connection was made between these events and distortion of the vortex, coinciding with stripping of core fluid from the vortex core. Specifically, vortex stripping events were connected to asymmetry in the vortex core, and this asymmetry was associated with instances of rapid circulation loss. The increased rate of decay of the vortex in turbulence coincided with the formation of secondary vortical structures which wrapped azimuthally around the primary vortex.
Environmental Guide to the Virginia Capes Operating Area
1973-03-01
invertebrates occupy the waters over the shelf. Among fishes found here are croakers, sea robins, sea bass, sharks, rays, bluefish , alewives, and...pelagic forms such as tuna, billfish, and bluefish migrate seasonally, occurring in greatest abun- dance along the Gulf Stream boundary in spring and
NASA Astrophysics Data System (ADS)
Vallelonga, P.; Christianson, K.; Alley, R. B.; Anandakrishnan, S.; Christian, J. E. M.; Dahl-Jensen, D.; Gkinis, V.; Holme, C.; Jacobel, R. W.; Karlsson, N. B.; Keisling, B. A.; Kipfstuhl, S.; Kjær, H. A.; Kristensen, M. E. L.; Muto, A.; Peters, L. E.; Popp, T.; Riverman, K. L.; Svensson, A. M.; Tibuleac, C.; Vinther, B. M.; Weng, Y.; Winstrup, M.
2014-07-01
The Northeast Greenland Ice Stream (NEGIS) is the sole interior Greenlandic ice stream. Fast flow initiates near the summit dome, and the ice stream terminates approximately 1000 km downstream in three large outlet glaciers that calve into the Greenland Sea. To better understand this important system, in the summer of 2012 we drilled a 67 m firn core and conducted ground-based radio-echo sounding (RES) and active-source seismic surveys at a site approximately 150 km downstream from the onset of streaming flow (NEGIS firn core, 75°37.61' N, 35°56.49' W). The site is representative of the upper part of the ice stream, while also being in a crevasse-free area for safe surface operations. Annual cycles were observed for insoluble dust, sodium and ammonium concentrations and for electrolytic conductivity, allowing a seasonally resolved chronology covering the past 400 yr. Annual layer thicknesses averaged 0.11 m ice equivalent (i.e.) for the period 1607-2011, although accumulation varied between 0.08 and 0.14 m i.e., likely due to flow-related changes in surface topography. Tracing of RES layers from the NGRIP (North Greenland Ice Core Project) ice core site shows that the ice at NEGIS preserves a climatic record of at least the past 51 kyr. We demonstrate that deep ice core drilling in this location can provide a reliable Holocene and late-glacial climate record, as well as helping to constrain the past dynamics and ice-lithosphere interactions of the Greenland Ice Sheet.
Ocean Current Power Generator. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Sullivan, G. A.
2002-07-26
The Ocean Power Generator is both technically and economically suitable for deployment in the Gulf Stream from the US Navy facility in Dania, Florida. Yet to be completed is the calibration test in the Chesapeake Bay with the prototype dual hydroturbine Underwater Electric Kite. For the production units a revised design includes two ballast tanks mounted as pontoons to provide buoyancy and depth control. The power rating of the Ocean Power Generator has been doubled to 200 kW ready for insertion into the utility grid. The projected cost for a 10 MW installation is $3.38 per watt, a cost thatmore » is consistent with wind power pricing when it was in its deployment infancy, and a cost that is far better than photovoltaics after 25 years of research and development. The Gulf Stream flows 24 hours per day, and water flow is both environmentally and ecologically perfect as a renewable energy source. No real estate purchases are necessary, and you cannot see, hear, smell, or touch an Ocean Power Generator.« less
Experiment evaluates ocean models and data assimiliation in the Gulf Stream
NASA Astrophysics Data System (ADS)
Willems, Robert C.; Glenn, S. M.; Crowley, M. F.; Malanotte-Rizzoli, P.; Young, R. E.; Ezer, T.; Mellor, G. L.; Arango, H. G.; Robinson, A. R.; Lai, C.-C. A.
Using data sets of known quality as the basis for comparison, a recent experiment explored the Gulf Stream Region at 27°-47°N and 80°-50°W to assess the nowcast/forecast capability of specific ocean models and the impact of data assimilation. Scientists from five universities and the Naval Research Laboratory/Stennis Space Center participated in the Data Assimilation and Model Evaluation Experiment (DAMEÉ-GSR).DAMEÉ-GSR was based on case studies, each successively more complex, and was divided into three phases using case studies (data) from 1987 and 1988. Phase I evaluated models' forecast capability using common initial conditions and comparing model forecast fields with observational data at forecast time over a 2-week period. Phase II added data assimilation and assessed its impact on forecast capability, using the same case studies as in phase I, and phase III added a 2-month case study overlapping some periods in Phases I and II.
NASA Technical Reports Server (NTRS)
Maul, G. A. (Principal Investigator); Gordon, H. R.; Baig, S. R.; Mccaslin, M.; Devivo, R. J.
1976-01-01
The author has identified the following significant results. An experiment to evaluate the Skylab earth resources package for observing ocean currents was performed in the Straits of Florida in January 1974. Data from the S190 photographic facility, S191 spectroradiometer and S192 multispectral scanner, were compared with surface observations. The anticyclonic edge of the Gulf Stream could be identified in the Skylab S190A and B photographs, but the cyclonic edge was obscured by clouds. The aircraft photographs were judged not useful for spectral analysis because vignetting caused the blue/green ratios to be dependent on the position in the photograph. The spectral measurement technique could not identify the anticyclonic front, but mass of Florida Bay water which was in the process of flowing into the Straits could be identified and classified. Monte Carlo simulations of the visible spectrum showed that the aerosol concentration could be estimated and a correction technique was devised.
NASA Astrophysics Data System (ADS)
Ruggieri, Nicoletta; Kaiser, Jérôme; Arz, Helge W.; Hefter, Jens; Siegel, Herbert; Mollenhauer, Gesine; Lamy, Frank
2014-05-01
A series of molecular organic markers were determined in surface sediments from the Gulf of Genoa (Ligurian Sea) in order to evaluate their potential for palaeo-environmental reconstructions. The interest for the Gulf of Genoa lies in its contrasting coastal and central areas in terms of terrestrial input, oligotrophy, primary production and surface temperature gradient. Moreover, the Gulf of Genoa contains a large potential for climate reconstruction as it is one of the four major Mediterranean centres for cyclogenesis and the ultra high sedimentation rates on the shelf make this area suitable for high resolution environmental reconstruction. Initial results from sediment cores in the coastal area indeed reveal the potential for Holocene environmental reconstruction on up to decadal timescales (see Poster "Reconstruction of late Holocene flooding events in the Gulf of Genoa, Ligurian Sea" by Lamy et al.). During R/V Poseidon cruise P413 (May 2011), ca. 60 sediment cores were taken along the Ligurian shelf, continental slope, and in the basin between off Livorno and the French border. Results based on surface sediments suggest that some biomarker-based proxies are well-suited to reconstruct sea surface temperature (SST), the input of terrestrial organic material (TOM), and marine primary productivity (PP). The estimated UK'37 SST reflects very closely the autumnal mean satellite-based SST distribution, while TEXH86 SSTs correspond to summer SST at offshore sites and to winter SST for the nearshore sites. Using both SST proxies together may thus allow reconstructing past seasonality changes. Proxies for TOM input (terrestrial n-alkane and n-alkanol concentrations, BIT index) have higher values close to the major river mouths and decrease offshore suggesting that these may be used as proxy for the variability in TOM input by runoff. Interestingly, high n-alkane average chain length in the most offshore sites may result from aeolian input from northern Africa. Finally, high concentrations of crenarchaeol and isoprenoid GDGTs in the open basin illustrate the preference of Thaumarchaeota for oligotrophic waters. This study represents a major prerequisite for the future application of lipid biomarkers on sediment cores from the Gulf of Genoa.
NASA Astrophysics Data System (ADS)
Wagner, A. J.; DeLong, K. L.; Kilbourne, H.; Slowey, N. C.
2016-12-01
The Gulf of Mexico (GOM) is sensitive to oceanic and atmospheric variability in both the Atlantic and Pacific Oceans (i.e., Atlantic Multidecadal Oscillation (AMO), El Niño Southern Oscillation (ENSO), Pacific North American pattern (PNA), and Pacific Decadal Oscillation (PDO)). The major GOM current, the Loop Current, feeds the Gulf Stream as it transports oceanic heat to the northern Atlantic Ocean. The northern GOM is the northernmost summer extent of the western hemisphere warm pool (WHWP) that drives oceanic moisture flux and precipitation into the Americas. Decadally-resolved foraminifera reconstructions from the northern GOM indicates SST was 2 to 4ºC colder on average than today during the Little Ice Age (LIA, 1850), whereas a subannually-resolved coral reconstruction from the southeastern GOM find 1.5 to 2ºC colder intervals and reduced areal extent of the WHWP on interannual time scales during some intervals of the LIA. However, records capable of resolving annual and subannual SST variability from the northern GOM, necessary for investigating WHWP northern extent, are still lacking. Here we present a new temperature reconstruction for the northern GOM derived from strontium-to-calcium (Sr/Ca) ratios of approximately monthly samples milled from a Siderastrea siderea coral core collected from the Flower Garden Banks National Marine Sanctuary (FGBNMS; 27° 52.5'N, 93° 49'W) growing at a water depth of 20 m. Coral Sr/Ca and δ18O is calibrated to reef temperature data from FGBNMS Hobotemp data loggers near the reef cap in 22 m water depth (1986-2004) and to NOAA OISST (1981-2004). Coral Sr/Ca co-varies with the reef temperature (r=0.95, p<0.05, n=146) and consistently captures winter values in reef temperature with slightly warmer summers (0.9ºC on average). Pseudocoral analysis is used to assess the relationships between SST and SSS in coral δ18O.
Generation and Maintenance of Recirculations by Gulf Stream Instabilities
1999-02-01
Francois Primeau for endless discus- sions of various scientific problems, Kirill Pankratov for useful advice on the numerical methods in fluid...recirculation. J. Phys. Oceanogr., 18, 662-682. [7] Davis C. A. and K. A. Emanuel, 1991 : Potential vorticity diagnostics of cyclo- genesis. Mon. Weather. Rev
NASA Astrophysics Data System (ADS)
Pershing, A. J.; Alexander, M. A.; Hernandez, C.; Kerr, L. A.; Le Bris, A.; Mills, K.; Nye, J. A.; Record, N.; Scannell, H. A.; Scott, J. D.; Sherwood, G. D.; Thomas, A. C.
2016-02-01
Climate change is altering conditions in all marine ecosystems, but the pace of change is not uniform. Rapid changes in environmental conditions pose a challenge for resource management, especially when available tools or policies assume the environment is stationary. Between 2004 and 2013, the Gulf of Maine and northwest Atlantic Shelf warmed at a rate that few large marine ecosystems have ever experienced. This warming was associated with a northward shift in the Gulf Stream and with Atlantic Multidecadal Oscillation and Pacific Decadal Oscillation. The unprecedented warming led to reduced recruitment and enhanced mortality of Atlantic cod. Fisheries management has built-in feedbacks designed to reduce quotas as populations decline, but the management process could not keep pace with the rapid temperature-related changes in the Gulf of Maine cod stock. Future recovery of this fishery now depends on both sound management and favorable temperatures. The experience in the Gulf of Maine highlights the need to incorporate environmental factors into resource management and to build resiliency in coupled social-ecological systems. It also highlights a need for scientific and policy guidance for managing species threatened by future warming.
Assimilation of TOPEX/POSEIDON altimeter data into a circulation model of the North Atlantic
NASA Astrophysics Data System (ADS)
Blayo, E.; Verron, J.; Molines, J. M.
1994-12-01
Assimilation experiments were conducted using the first 12 months of TOPEX/POSEIDON (T/P) altimeter measurements in a multilayered quasi-geostrophic model of the North Atlantic between 20°N and 60°N. These experiments demonstrate the feasibility of using T/P data to control a basin-scale circulation model by means of an assimilation procedure. Moreover, they allow us to recreate the four-dimensional behavior of the North Atlantic Ocean during the year October 1992-September 1993 and to improve our knowledge and understanding of such circulation patterns. For this study we used a four-layer quasigeostrophic model of high horizontal resolution (1/6° in latitude and longitude). The assimilation procedure used is an along-track, sequential, nudging technique. The evolution of the model general circulation is described and analyzed from a deterministic and statistical point of view, with special emphasis on the Gulf Stream area. The gross features of the North Atlantic circulation in terms of mean transport and circulation are reproduced, such as the path, penetration and recirculation of the Gulf Stream, and its meandering throughout the eastern basin. The North Atlantic Drift is, however, noticeably underestimated. A northern meander of the north wall of the Gulf Stream above the New England Seamount Chain is present for most of the year, while, just downstream, the southern part of the jet is subject to a 100-km southeastward deflection. The Azores current is shown to remain stable and to shift southward with time from the beginning of December 1992 to the end of April 1993, the amplitude of the shift being about 2°. The computation of the mean latitude of the Gulf Stream as a function of time shows an abrupt shift from a northern position to a southern position in January, and a reverse shift, from a southern position to a northern position, in July. Finally, some issues are addressed concerning the comparison of assimilation experiments using T/P data and Geosat data. The first results show that the T/P simulations are more energetic than the Geosat simulations, especially east of the Mid-Atlantic Ridge, for every wavelength from 50 km to 500 km. This property is also verified in the deep ocean. The predicted abyssal circulation is indeed more energetic in the T/P case, which is more in accordance with what we know of the real ocean. Moreover, the good T/P altimeter coverage near the coasts greatly improves the model eddy kinetic energy levels in these areas, especially east of 25°W.
Chivas, Allan R.; Garcı́a, Adriana; van der Kaars, Sander; Couapel, Martine; Holt, Sabine; Reeves, Jessica M.; Wheeler, David J.; Switzer, Adam D.; Murray-Wallace, Colin V.; Banerjee, Debabrata; Price, David M.; Wang, Sue X.; Pearson, Grant; Edgar, N. Terry; Beaufort, Luc; de Deckker, Patrick; Lawson, Ewan; Cecil, C. Blaine
2001-01-01
The Gulf of Carpentaria is an epicontinental sea (maximum depth 70 m) between Australia and New Guinea, bordered to the east by Torres Strait (currently 12 m deep) and to the west by the Arafura Sill (53 m below present sea level). Throughout the Quaternary, during times of low sea-level, the Gulf was separated from the open waters of the Indian and Pacific Oceans, forming Lake Carpentaria, an isolation basin, perched above contemporaneous sea-level with outlet channels to the Arafura Sea. A preliminary interpretation is presented of the palaeoenvironments recorded in six sediment cores collected by the IMAGES program in the Gulf of Carpentaria. The longest core (approx. 15 m) spans the past 130 ka and includes a record of sea-level/lake-level changes, with particular complexity between 80 and 40 ka when sea-level repeatedly breached and withdrew from Gulf/Lake Carpentaria. Evidence from biotic remains (foraminifers, ostracods, pollen), sedimentology and geochemistry clearly identifies a final marine transgression at about 9.7 ka (radiocarbon years). Before this transgression, Lake Carpentaria was surrounded by grassland, was near full, and may have had a surface area approaching 600 km×300 km and a depth of about 15 m. The earlier rise in sea-level which accompanied the Marine Isotopic Stage 6/5 transgression at about 130 ka is constrained by sedimentological and biotic evidence and dated by optical- and thermoluminescence and amino acid racemisation methods.
Adjustable shear stress erosion and transport flume
Roberts, Jesse D.; Jepsen, Richard A.
2002-01-01
A method and apparatus for measuring the total erosion rate and downstream transport of suspended and bedload sediments using an adjustable shear stress erosion and transport (ASSET) flume with a variable-depth sediment core sample. Water is forced past a variable-depth sediment core sample in a closed channel, eroding sediments, and introducing suspended and bedload sediments into the flow stream. The core sample is continuously pushed into the flow stream, while keeping the surface level with the bottom of the channel. Eroded bedload sediments are transported downstream and then gravitationally separated from the flow stream into one or more quiescent traps. The captured bedload sediments (particles and aggregates) are weighed and compared to the total mass of sediment eroded, and also to the concentration of sediments suspended in the flow stream.
JPRS Report, Science & Technology, USSR: Earth Sciences
1988-02-26
25 - d Phenomenological Description of Eddy Registered in Gulf Stream (V.A. Bubnov, N.P. Kuzmina , et al.; OKEANOLOGIYA, No 1, Jan-Feb 87) 26...Bubnov, N. P. Kuzmina and I. S. Podymov, Oceanology Insti- tute imeni P. P. Shirshov, USSR Academy of Sciences, Moscow] [Abstract] The 5th cruise of
Sensitivity Analysis of SWAT Nitrogen Simulations with and without In-Stream Processes
Nitrogen (N) losses to surface waters are of great concern on both national and regional scales. Scientists have concluded that large areas of hypoxia in the northern Gulf of Mexico are due to excessive nutrients derived primarily from agricultural runoff via the Mississippi Rive...
NASA Astrophysics Data System (ADS)
Aiello, I. W.; Ravelo, A. C.; Moraes, R.; Swarzenski, P. W.
2015-12-01
We report the results of preliminary sedimentologic analyses of a ~3.3m long piston core (P13) collected in the lower fan of the Rio Yaqui (Guaymas Basin, Gulf of California; depth, 1859m) by UNAM's (Universidad Nacional Autónoma de México) research ship El Puma in 2014. The core was collected to test the potential for high-resolution reconstructions of basin-scale paleoclimate in the Pacific and the Mesoamerican region. Shipboard and post-cruise analyses include magnetic susceptibility (MS), smear slide counts and laser diffraction particle size analysis. The core is being analyzed for X-Ray Fluorescence (XRF) and color reflectance, and a 210Pb age model is being constructed. Preliminary results show that Rio Yaqui lower fan sediment differs significantly from that in the Guaymas Basin, which is dominantly diatom ooze. The lower ~2m of core P13 show prominent alternations (~10-20cm) between very-fine-grained, clay intervals characterized by higher MS and mixed diatom and clay intervals, with coarser grain size and lower MS values. In contrast, the upper ~1m has distinctive high MS sand turbidites alternating with diatom-rich layers. Previous core studies from nearby ODP Leg 64 site show sedimentation rates of ~1.2 m/ka; as these sites are further away from the Yaqui delta the sedimentation rates for core P13 should be higher possibly recording only the last few hundred years of sedimentation. Clay/diatom cycles in the lower part of the core could record decadal- or ENSO-scale wet/aridity cycles in the Sonoran Mainland. Conversely, the coarser siliciclastic intervals and the diatom layers in the upper part of the core could reflect the last few decades of land usage in the watershed of the Rio Yaqui, the most important river in the state of Sonora, Mexico. These include large modifications to the river's hydrography (e.g. construction of dams and aqueducts), rapidly expanding mass agricultural practices in the region, and increased eutrophication in the Gulf.
NASA Technical Reports Server (NTRS)
2002-01-01
This Sea-viewing Wide Field-of-view Sensor (SeaWiFS) image of the Bay of Campeche, acquired January 17, 2001, shows a 300-kilometer long smoke plume streaming towards the northwest from around 19.4o North and 92o West, the location of the Akal oil field. In the lower right (southeast) corner of the image is the country of El Salvador, site of a magnitude 7.6 earthquake on January 13, 2001. On the Pacific side of Southern Mexico, the productive waters of the Gulf of Tehuantepec are visible. Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE
Tropical-Subpolar Linkages in the North Atlantic during the last Glacial Period
NASA Astrophysics Data System (ADS)
Vautravers, M. J.; Hodell, D. A.
2010-12-01
We studied millennial-scale changes in planktonic foraminifera assemblages from the last glacial period in a high-resolution core (KN166-14-JPC13) recovered from the southern part of the Gardar Drift in the subpolar North Atlantic. Similar to recent findings reported by Jonkers et al. (2010), we also found that the sub-polar North Atlantic Ocean experienced some seasonal warming during each of the Heinrich Events (HEs). In addition, increasing abundances of tropical species are found just prior to the IRD event marking the end of each Bond cycle, suggesting that summer warming may have been involved in triggering Heinrich events. We suggest that tropical-subtropical water transported via the Gulf Stream and North Atlantic Drift may have triggered the collapse of large NH ice-shelves. Sharp decreases in polar species are tied to abrupt warming following Heinrich Events as documented in Greenland Ice cores and other marine records in the North Atlantic. The record bears a strong resemblance to the tropical record of Cariaco basin (Peterson et al., 2000), suggesting strong tropical-subpolar linkages in the glacial North Atlantic. Enhanced spring productivity, possibly related to eddy activity along the Subpolar Front, is recorded by increased shell size, high δ13C in G. bulloides and other biological indices early during the transition from HE stadials to the following interstadial.
NASA Astrophysics Data System (ADS)
Vallelonga, P.; Christianson, K.; Alley, R. B.; Anandakrishnan, S.; Christian, J. E. M.; Dahl-Jensen, D.; Gkinis, V.; Holme, C.; Jacobel, R. W.; Karlsson, N.; Keisling, B. A.; Kipfstuhl, S.; Kjær, H. A.; Kristensen, M. E. L.; Muto, A.; Peters, L. E.; Popp, T.; Riverman, K. L.; Svensson, A. M.; Tibuleac, C.; Vinther, B. M.; Weng, Y.; Winstrup, M.
2014-01-01
The Northeast Greenland Ice Stream (NEGIS) is the sole interior Greenlandic ice stream. Fast flow initiates near the summit dome, and the ice stream terminates approximately 1000 km downstream in three large outlet glaciers that calve into the Greenland Sea. To better understand this important system, in the summer of 2012 we drilled a 67 m firn core and conducted ground-based radio-echo sounding (RES) and active-source seismic surveys at a site approximately 150 km downstream from the onset of streaming flow (NEGIS firn core, 75° 37.61' N, 35°56.49' W). The site is representative of the upper part of the ice stream, while also being in a crevasse-free area for safe surface operations. Annual cycles were observed for insoluble dust, sodium and ammonium concentrations and for electrolytic conductivity, allowing a seasonally resolved chronology covering the past 400 yr. Annual layer thicknesses averaged 0.11 m ice equivalent (i.e.) for the period 1607-2011, although accumulation varied between 0.08 and 0.14 m i.e., likely due to flow-related changes in surface topography. Tracing of RES layers from the NGRIP ice core site shows that the ice at NEGIS preserves a climatic record of at least the past 51 kyr. We demonstrate that a deep ice core drilling in this location can provide a reliable Holocene and late-glacial climate record, as well as helping to constrain the past dynamics and ice-lithosphere interactions of the Greenland Ice Sheet.
Phytoplankton bloom in Persian Gulf
NASA Technical Reports Server (NTRS)
2002-01-01
There is a large amount of sediment clearly visible in the true-color image of the Persian Gulf, acquired on November 1, 2001, by MODIS. Carried by the confluence of the Tigris and Euphrates Rivers (at center), the sediment-laden waters appear light brown where they enter the northern end of the Persian Gulf and then gradually dissipate into turquoise swirls as they drift southward. The nutrients these sediments carry are helping to support a phytoplankton bloom in the region, which adds some darker green hues in the rich kaleidoscope of colors on the surface (see the high resolution image). The confluence of the Tigris and Euphrates Rivers marks the southernmost boundary between Iran (upper right) and Iraq (upper left). South of Iraq are the countries of Kuwait and Saudi Arabia. The red dots indicate the probable locations of fires burning at oil refineries. Thin black plumes of smoke can be seen streaming away from several of these.
NASA Astrophysics Data System (ADS)
Fortiz, V.; Thirumalai, K.; Richey, J. N.; Quinn, T. M.
2014-12-01
We present a replicated record of paired foraminiferal δ18O and Mg/Ca variations in multi-cores collected from the Garrison Basin (26º43'N, 93º55'W) in the northern Gulf of Mexico (GOM). Using δ18O (sea surface temperature, SST; sea surface salinity, SSS proxy) and Mg/Ca (SST proxy) variations in non-encrusted planktic foraminifer Globorotalia truncatulinoides we produce time series spanning the last two millennia that is characterized by centennial-scale climate variability. We interpret geochemical variations in G. truncatulinoides to reflect winter climate variability because data from a sediment trap, located ~350 km east of the core site, reveal that annual flux of G. truncatulinoides is heavily weighted towards winter (peak production in January-February; Spear et al., 2011). Similar centennial-scale variability is also observed in the foraminiferal geochemistry of Globigerinoides ruber in the same multi-cores, which likely reflect mean annual climate variations. Our replicated results and comparisons to other SST reconstructions from the region lend confidence that the northern GOM surface ocean underwent large, centennial-scale variability, most likely dominated by changes in winter climate. This variability occurred in a time period where climate forcing is small and background conditions are similar to pre-industrial times. References: Spear, J.W.; Poore, R.Z., and Quinn, T.M., 2011, Globorotalia truncatulinoides (dextral) Mg/Ca as a proxy for Gulf of Mexico winter mixed-layer temperature: Evidence from a sediment trap in the northern Gulf of Mexico. Marine Micropaleontology, 80, 53-61.
Academic Self-Concepts in Ability Streams: Considering Domain Specificity and Same-Stream Peers
ERIC Educational Resources Information Center
Liem, Gregory Arief D.; McInerney, Dennis M.; Yeung, Alexander S.
2015-01-01
The study examined the relations between academic achievement and self-concepts in a sample of 1,067 seventh-grade students from 3 core ability streams in Singapore secondary education. Although between-stream differences in achievement were large, between-stream differences in academic self-concepts were negligible. Within each stream, levels of…
NASA Astrophysics Data System (ADS)
van Daele, M.; Audemard, F.; Beck, C.; de Batist, M.; van Welden, A.; Moernaut, J.; 2006 Shipboard Party, G.
2008-05-01
In January 2006, 76 high-resolution reflection seismic profiles were acquired in the Gulf of Cariaco, Northeast Venezuela. In the upper 100 m of sedimentary infill, 17 unconformity-bounded sequences were identified and mapped throughout the basin. Up to now, no core or borehole information is available to provide age constraints on these units. The sedimentary infill is cut by several faults, Riedel faults in the central part and the El Pilar fault (one of the main faults of the South American-Caribbean plate boundary) in the southern part of the gulf. The connection of the Gulf of Cariaco with the adjacent Cariaco Basin occurs at a present-day water depth of ~ 55 m. This implies that the gulf was disconnected from the world ocean and functioned as a lake during a large part of the last glacial. The main rivers entering the gulf drain the coastal mountain ranges and tend to form pronounced deltas at their inlet. During times when the gulf was a lake, periods with a dry climate resulted in dramatic lake-level lowstands and even complete desiccation/evaporation. The present-day depths of delta offlap breaks and the presence of lowstand/evaporite deposits can thus be used to estimate sea/lake level at the time of their formation. Detailed analysis of these stratigraphic sea/lake-level indicators allowed reconstructing the sea/lake-level history for the period encompassed by the 17 identified sequences. This sea/lake-level reconstruction also needed to be corrected for tectonic subsidence, affecting different parts of the gulf with different intensity. The reconstructed sea/lake-level curve of the Gulf of Cariaco was compared with the eustatic sea-level curve and with results of previous paleoclimate studies in Venezuela. The striking coherence between the eustatic curve and the amplitudes and absolute heights of successive reconstructed lowstands and highstands compelled us to tune our record to the eustatic curve in order to achieve a rough age estimate for our units. According to this age model, our seismic stratigraphy reaches back to MIS6, and the average sedimentation rate in the central parts of the gulf since MIS5e is 0.92 mm/y. Our data show that reconstructed lake levels in the Gulf of Cariaco, which represent a proxy for climate in NE- Venezuela, are very strongly coupled to the global stadials and interstadials of the last glacial period. Also the Younger Dryas is recognised in the sedimentary record of the Gulf of Cariaco as lowstand deposit resulting from an (almost) complete desiccation. Our data reveal that the stratigraphy of the Gulf of Cariaco holds a very accurate, complete and promising record of eustasy and climate change, at least since the penultimate glacial maximum. The quality of this record and the vicinity to the iconic Cariaco Basin make the Gulf of Cariaco an ideal target for future ocean drilling (or long coring).
Permeability and compressibility of resedimented Gulf of Mexico mudrock
NASA Astrophysics Data System (ADS)
Betts, W. S.; Flemings, P. B.; Schneider, J.
2011-12-01
We use a constant-rate-of strain consolidation test on resedimented Gulf of Mexico mudrock to determine the compression index (Cc) to be 0.618 and the expansion index (Ce) to be 0.083. We used crushed, homogenized Pliocene and Pleistocene mudrock extracted from cored wells in the Eugene Island block 330 oil field. This powdered material has a liquid limit (LL) of 87, a plastic limit (PL) of 24, and a plasticity index (PI) of 63. The particle size distribution from hydrometer analyses is approximately 65% clay-sized particles (<2 μm) with the remainder being less than 70 microns in diameter. Resedimented specimens have been used to characterize the geotechnical and geophysical behavior of soils and mudstones independent of the variability of natural samples and without the effects of sampling disturbance. Previous investigations of resedimented offshore Gulf of Mexico sediments (e.g. Mazzei, 2008) have been limited in scope. This is the first test of the homogenized Eugene Island core material. These results will be compared to in situ measurements to determine the controls on consolidation over large stress ranges.
Shih, Jhih-Shyang; Alexander, Richard B.; Smith, Richard A.; Boyer, Elizabeth W.; Shwarz, Grogory E.; Chung, Susie
2010-01-01
Watersheds play many important roles in the carbon cycle: (1) they are a site for both terrestrial and aquatic carbon dioxide (CO2) removal through photosynthesis; (2) they transport living and decomposing organic carbon in streams and groundwater; and (3) they store organic carbon for widely varying lengths of time as a function of many biogeochemical factors. Using the U.S. Geological Survey (USGS) Spatially Referenced Regression on Watershed Attributes (SPARROW) model, along with long-term monitoring data on total organic carbon (TOC), this research quantitatively estimates the sources, transport, and fate of the long-term mean annual load of TOC in streams of the conterminous United States. The model simulations use surrogate measures of the major terrestrial and aquatic sources of organic carbon to estimate the long-term mean annual load of TOC in streams. The estimated carbon sources in the model are associated with four land uses (urban, cultivated, forest, and wetlands) and autochthonous fixation of carbon (stream photosynthesis). Stream photosynthesis is determined by reach-level application of an empirical model of stream chlorophyll based on total phosphorus concentration, and a mechanistic model of photosynthetic rate based on chlorophyll, average daily solar irradiance, water column light attenuation, and reach dimensions. It was found that the estimate of in-stream photosynthesis is a major contributor to the mean annual TOC load per unit of drainage area (that is, yield) in large streams, with a median share of about 60 percent of the total mean annual carbon load in streams with mean flows above 500 cubic feet per second. The interquartile range of the model predictions of TOC from in-stream photosynthesis is from 0.1 to 0.4 grams (g) carbon (C) per square meter (m-2) per day (day-1) for the approximately 62,000 stream reaches in the continental United States, which compares favorably with the reported literature range for net carbon fixation by phytoplankton in lakes and streams. The largest contributors per unit of drainage area to the mean annual stream TOC load among the terrestrial sources are, in descending order: wetlands, urban lands, mixed forests, agricultural lands, evergreen forests, and deciduous forests . It was found that the SPARROW model estimates of TOC contributions to streams associated with these land uses are also consistent with literature estimates. SPARROW model calibration results are used to simulate the delivery of TOC loads to the coastal areas of seven major regional drainages. It was found that stream photosynthesis is the largest source of the TOC yields ( about 50 percent) delivered to the coastal waters in two of the seven regional drainages (the Pacific Northwest and Mississippi-Atchafalaya-Red River basins ), whereas terrestrial sources are dominant (greater than 60 percent) in all other regions (North Atlantic, South Atlantic-Gulf, California, Texas-Gulf, and Great Lakes).
NASA Astrophysics Data System (ADS)
Zhang, Jinting; Zhang, Rong
2015-07-01
It has been suggested previously that the Atlantic Meridional Overturning Circulation (AMOC) anomaly associated with changes in the North Atlantic Deep Water formation propagates southward with an advection speed north of 34°N. In this study, using Geophysical Fluid Dynamics Laboratory Coupled Model version 2.1 (GFDL CM2.1), we show that this slow southward propagation of the AMOC anomaly is crucial for the evolution and the enhanced decadal predictability of the AMOC fingerprint—the leading mode of upper ocean heat content (UOHC) in the extratropical North Atlantic. A positive AMOC anomaly in northern high latitudes leads to a convergence/divergence of the Atlantic meridional heat transport (MHT) anomaly in the subpolar/Gulf Stream region, thus warming in the subpolar gyre (SPG) and cooling in the Gulf Stream region after several years. Recent decadal prediction studies successfully predicted the observed warm shift in the SPG in the mid-1990s. Our results here provide the physical mechanism for the enhanced decadal prediction skills in the SPG UOHC.
Mobile Bay, Alabama area seen in Skylab 4 Earth Resources Experiment Package
NASA Technical Reports Server (NTRS)
1974-01-01
A near vertical view of the Mobile Bay, Alabama area seen in this Skylab 4 Earth Resources Experiment Package S190-B (five-inch earth terrain camera) photograph taken from the Skylab space station in earth orbit. North of Mobile the Tombigbee and Alabama Rivers join to form the Mobile River. Detailed configuration of the individual stream channels and boundaries can be defined as the Mobile River flows into Mobile Bay and into the Gulf of Mexico. The Mobile River Valley with its numerous stream channels is a distinct light shade in contrast to the dark green shade of the adjacent areas. The red coloration of Mobile Bay reflects the sediment load carried into the bay by the rivers. The westerly movement of the shore currents at the mouth of Mobile Bay is shown by the contrasting light blue of the sediment-laden current the the blue of the Gulf. Agricultural areas east and west of Mobile Bay are characterized by a rectangular pattern in green to white shades. Color variations may reflect
Collecting Currents with Water Turbines
NASA Astrophysics Data System (ADS)
Allen, J.; Allen, S.
2017-12-01
Our science poster is inspired by Florida Atlantic University's recent program to develop three types of renewable energy. They are using water turbines and the Gulf Stream Current to produce a renewable energy source. Wave, tidal and current driven energy. Our poster is called "Collecting Currents with Water Turbines". In our science poster, the purpose was to see which turbine design could produce the most power. We tested three different variables, the number of blades (four, six, and eight), the material of the blades and the shape of the blades. To test which number of blades produced the most power we cut slits into a cork. We used plastic from a soda bottle to make the blades and then we put the blades in the cork to make the turbines. We observed each blade and how much time it took for the water turbines to pull up 5 pennies. Currently water turbines are used in dams to make hydroelectric energy. But with FAU we could understand how to harness the Gulf Stream current off Florida's coast we could soon have new forms of renewable energy.
Variable mixer propulsion cycle
NASA Technical Reports Server (NTRS)
Rundell, D. J.; Mchugh, D. P.; Foster, T.; Brown, R. H. (Inventor)
1978-01-01
A design technique, method and apparatus are delineated for controlling the bypass gas stream pressure and varying the bypass ratio of a mixed flow gas turbine engine in order to achieve improved performance. The disclosed embodiments each include a mixing device for combining the core and bypass gas streams. The variable area mixing device permits the static pressures of the core and bypass streams to be balanced prior to mixing at widely varying bypass stream pressure levels. The mixed flow gas turbine engine therefore operates efficiently over a wide range of bypass ratios and the dynamic pressure of the bypass stream is maintained at a level which will keep the engine inlet airflow matched to an optimum design level throughout a wide range of engine thrust settings.
Winters, William J.; Lorenson, T.D.; Paull, Charles K.
2007-01-01
The northern Gulf of Mexico contains many documented gas hydrate deposits near the sea floor. Although gas hydrate often is present in shallow subbottom sediment, the extent of hydrate occurrence deeper than 10 meters below sea floor in basins away from vents and other surface expressions is unknown. We obtained giant piston cores, box cores, and gravity cores and performed heat-flow analyses to study these shallow gas hydrate deposits aboard the RV Marion Dufresne in July 2002. This report presents measurements and interpretations from that cruise. Our results confirm the presence of gas hydrate in vent-related sediments near the sea bed. The presence of gas hydrate near the vents is governed by the complex interaction of regional and local factors, including heat flow, fluid flow, faults, pore-water salinity, gas concentrations, and sediment properties. However, conditions appropriate for extensive gas hydrate formation were not found away from the vents.
Biological, Physical and Chemical Data From Gulf of Mexico Gravity and Box Core MRD05-04
Osterman, Lisa E.; Campbell, Pamela L.; Swarzenski, Peter W.; Ricardo, John P.
2010-01-01
This paper presents the benthic foraminiferal census data, magnetic susceptibility measurements, vanadium and organic geochemistry (carbon isotope, sterols, and total organic carbon) data from the MRD05-04 gravity and box cores. The MRD05-04 cores were obtained from the Louisiana continental shelf in an on-going initiative to examine the geographic and temporal extent of hypoxia, low-oxygen bottom-water content, and geochemical transport. The development of low-oxygen bottom water conditions in coastal waters is dependent upon a new source of bio-available nutrients introduced into a well-stratified water column. A number of studies have concluded that the development of the current seasonal hypoxia (dissolved oxygen < 2 mg L-1) in subsurface waters of the northern Gulf of Mexico is related to increased transport of nutrients (primarily nitrogen, but possibly also phosphorous) by the Mississippi River. However, the development of earlier episodes of seasonal low-oxygen subsurface water on the Louisiana shelf may be related to Mississippi River discharge.
NASA Technical Reports Server (NTRS)
Biggs, Douglas, C.; Mueller-Karger, Frank E.
1994-01-01
When anticyclonic eddies shed by the Loop Current of the Gulf of Mexico reach the western margin of the gulf, they influence the surface circulation over the continental slope and rise. Of particular interest is the generation of cyclone (cold-core)-anticyclone (warm-core) pairs when aging Loop Current eddies interact with the continental margin. In this paper we describe the physical and biological characteristics of these cyclone-anticyclone pairs. Our objective was to determine how eddy pairs affect the distribution of phytoplankton in the region and how satellite ocean color measurements are applicable to tracing of the eddies. We present shipboard data collected between 1980 and 1982 on the hydrography, chlorophyll stocks, and nutrient concentrations of eddy pairs in the western Gulf of Mexico and compare these data with coastal zone color scanner (CZCS) images collected during the time frame of the cruises. Surface pigment concentrations followed a seasonal cycle, with low concentrations (0.05-0.1 mg m(exp -3)) found within cyclones and anticyclones from April through early November and higher concentrations (greater than 0.1 mg(exp -3)) found in the winter. CZCS pigment concentrations were locally high in the flow confluence of cyclone-anticyclone pairs. The CZCS imagery shows that some cyclone-anticyclone geometries transport high-chlorophyll shelf water seaward at least 100-200 km off-shelf.
NASA Astrophysics Data System (ADS)
Kourafalou, Vassiliki H.; Androulidakis, Yannis S.; Halliwell, George R.; Kang, HeeSook; Mehari, Michael M.; Le Hénaff, Matthieu; Atlas, Robert; Lumpkin, Rick
2016-11-01
A high resolution, free-running model has been developed for the hurricane region of the North Atlantic Ocean. The model is evaluated with a variety of observations to ensure that it adequately represents both the ocean climatology and variability over this region, with a focus on processes relevant to hurricane-ocean interactions. As such, it can be used as the "Nature Run" (NR) model within the framework of Observing System Simulation Experiments (OSSEs), designed specifically to improve the ocean component of coupled ocean-atmosphere hurricane forecast models. The OSSE methodology provides quantitative assessment of the impact of specific observations on the skill of forecast models and enables the comprehensive design of future observational platforms and the optimization of existing ones. Ocean OSSEs require a state-of-the-art, high-resolution free-running model simulation that represents the true ocean (the NR). This study concentrates on the development and data based evaluation of the NR model component, which leads to a reliable model simulation that has a dual purpose: (a) to provide the basis for future hurricane related OSSEs; (b) to explore process oriented studies of hurricane-ocean interactions. A specific example is presented, where the impact of Hurricane Bill (2009) on the eastward extension and transport of the Gulf Stream is analyzed. The hurricane induced cold wake is shown in both NR simulation and observations. Interaction of storm-forced currents with the Gulf Stream produced a temporary large reduction in eastward transport downstream from Cape Hatteras and had a marked influence on frontal displacement in the upper ocean. The kinetic energy due to ageostrophic currents showed a significant increase as the storm passed, and then decreased to pre-storm levels within 8 days after the hurricane advanced further north. This is a unique result of direct hurricane impact on a western boundary current, with possible implications on the ocean feedback on hurricane evolution.
NASA Astrophysics Data System (ADS)
Thorne, L. H.; Foley, H.; Webster, D.; Baird, R.; Swaim, Z.; Read, A.
2016-02-01
Short-finned pilot whales (Globicephala macrorhynchus) are deep-diving predators that feed on squid and regularly exploit prey at depths of more than 500 m. Detailed information on the habitat use of pilot whales in the Northwest Atlantic is lacking, which complicates management of the species, particularly for efforts to mitigate bycatch and depredation in the pelagic longline fishery. To address this limitation, we tracked the horizontal and vertical movements of short-finned pilot whales with LIMPET satellite-linked transmitters off Cape Hatteras, North Carolina, in 2014. We deployed 14 satellite tags and 4 satellite-linked depth recording tags, with deployments of 2 to 194 days (mean=57 days). Using randomly-generated temporally-matched pseudo-absences with modeled distance constraints and mixed-effects generalized additive models (GAMMs), we evaluated pilot whale movement relative to environmental variables (distance to shelf break, sea surface temperature SST), location of Gulf Stream, bathymetric slope, and depth). Pilot whales showed two types of behavior, showing a strong affinity for either the shelf break or waters of the Gulf Stream. Slope, distance to shelf break, and SST were significant predictors of habitat use (p<<0.001 for all variables, R2=0.40). Pilot whales demonstrated a preference for waters close to the shelf break, with warmer SST values (peak preference 25°C) and medium to high bathymetric slopes (peak preference 40 percent rise). We observed seasonal patterns in pilot whale movements, with whales diving to deeper depths in late summer and fall months than in spring months (Wilcoxon test, p<<0.001). Diving behavior was also significantly influenced by SST; pilot whales took longer and deeper dives in warmer waters (Pearson's correlation coefficients >0.40, p<<0.001). We use these results to develop spatial maps of pilot whale habitat relative to seasonal and environmental factors in order to identify areas and times of high risk for interactions between pilot whales and longline gear.
The Glacial and Relative Sea Level History of Southern Banks Island, NT, Canada
NASA Astrophysics Data System (ADS)
Vaughan, Jessica Megan
The mapping and dating of surficial glacial landforms and sediments across southern Banks Island document glaciation by the northwest Laurentide Ice Sheet (LIS) during the last glacial maximum. Geomorphic landforms confirm the operation of an ice stream at least 1000 m thick in Amundsen Gulf that was coalescent with thin, cold-based ice crossing the island's interior, both advancing offshore onto the polar continental shelf. Raised marine shorelines across western and southern Banks Island are barren, recording early withdrawal of the Amundsen Gulf Ice Stream prior to the resubmergence of Bering Strait and the re-entry of Pacific molluscs ~13,750 cal yr BP. This withdrawal resulted in a loss of ~60,000 km2 of ice --triggering drawdown from the primary northwest LIS divide and instigating changes in subsequent ice flow. The Jesse moraine belt on eastern Banks Island records a lateglacial stillstand and/or readvance of Laurentide ice in Prince of Wales Strait (13,750 -- 12,750 cal yr BP). Fossiliferous raised marine sediments that onlap the Jesse moraine belt constrain final deglaciation to ~12,600 cal yr BP, a minimum age for the breakup of the Amundsen Gulf Ice Stream. The investigation of a 30 m thick and 6 km wide stratigraphic sequence at Worth Point, southwest Banks Island, identifies an advance of the ancestral LIS during the Mid-Pleistocene (sensu lato), substantially diversifying the glacial record on Banks Island. Glacial ice emplaced during this advance has persisted through at least two glacial-interglacial cycles, demonstrating the resilience of circumpolar permafrost. Pervasive deformation of the stratigraphic sequence also records a detailed history of glaciotectonism in proglacial and subglacial settings that can result from interactions between cold-based ice and permafrost terrain. This newly recognized history rejects the long-established paleoenvironmental model of Worth Point that assumed a simple 'layer-cake' stratigraphy.
The mean sea surface height and geoid along the Geosat subtrack from Bermuda to Cape Cod
NASA Astrophysics Data System (ADS)
Kelly, Kathryn A.; Joyce, Terrence M.; Schubert, David M.; Caruso, Michael J.
1991-07-01
Measurements of near-surface velocity and concurrent sea level along an ascending Geosat subtrack were used to estimate the mean sea surface height and the Earth's gravitational geoid. Velocity measurements were made on three traverses of a Geosat subtrack within 10 days, using an acoustic Doppler current profiler (ADCP). A small bias in the ADCP velocity was removed by considering a mass balance for two pairs of triangles for which expendable bathythermograph measurements were also made. Because of the large curvature of the Gulf Stream, the gradient wind balance was used to estimate the cross-track component of geostrophic velocity from the ADCP vectors; this component was then integrated to obtain the sea surface height profile. The mean sea surface height was estimated as the difference between the instantaneous sea surface height from ADCP and the Geosat residual sea level, with mesoscale errors reduced by low-pass filtering. The error estimates were divided into a bias, tilt, and mesoscale residual; the bias was ignored because profiles were only determined within a constant of integration. The calculated mean sea surface height estimate agreed with an independent estimate of the mean sea surface height from Geosat, obtained by modeling the Gulf Stream as a Gaussian jet, within the expected errors in the estimates: the tilt error was 0.10 m, and the mesoscale error was 0.044 m. To minimize mesoscale errors in the estimate, the alongtrack geoid estimate was computed as the difference between the mean sea level from the Geosat Exact Repeat Mission and an estimate of the mean sea surface height, rather than as the difference between instantaneous profiles of sea level and sea surface height. In the critical region near the Gulf Stream the estimated error reduction using this method was about 0.07 m. Differences between the geoid estimate and a gravimetric geoid were not within the expected errors: the rms mesoscale difference was 0.24 m rms.
Robertson, Dale M.; Schwarz, Gregory E.; Saad, David A.; Alexander, Richard B.
2009-01-01
Excessive loads of nutrients transported by tributary rivers have been linked to hypoxia in the Gulf of Mexico. Management efforts to reduce the hypoxic zone in the Gulf of Mexico and improve the water quality of rivers and streams could benefit from targeting nutrient reductions toward watersheds with the highest nutrient yields delivered to sensitive downstream waters. One challenge is that most conventional watershed modeling approaches (e.g., mechanistic models) used in these management decisions do not consider uncertainties in the predictions of nutrient yields and their downstream delivery. The increasing use of parameter estimation procedures to statistically estimate model coefficients, however, allows uncertainties in these predictions to be reliably estimated. Here, we use a robust bootstrapping procedure applied to the results of a previous application of the hybrid statistical/mechanistic watershed model SPARROW (Spatially Referenced Regression On Watershed attributes) to develop a statistically reliable method for identifying “high priority” areas for management, based on a probabilistic ranking of delivered nutrient yields from watersheds throughout a basin. The method is designed to be used by managers to prioritize watersheds where additional stream monitoring and evaluations of nutrient-reduction strategies could be undertaken. Our ranking procedure incorporates information on the confidence intervals of model predictions and the corresponding watershed rankings of the delivered nutrient yields. From this quantified uncertainty, we estimate the probability that individual watersheds are among a collection of watersheds that have the highest delivered nutrient yields. We illustrate the application of the procedure to 818 eight-digit Hydrologic Unit Code watersheds in the Mississippi/Atchafalaya River basin by identifying 150 watersheds having the highest delivered nutrient yields to the Gulf of Mexico. Highest delivered yields were from watersheds in the Central Mississippi, Ohio, and Lower Mississippi River basins. With 90% confidence, only a few watersheds can be reliably placed into the highest 150 category; however, many more watersheds can be removed from consideration as not belonging to the highest 150 category. Results from this ranking procedure provide robust information on watershed nutrient yields that can benefit management efforts to reduce nutrient loadings to downstream coastal waters, such as the Gulf of Mexico, or to local receiving streams and reservoirs.
NASA Astrophysics Data System (ADS)
Aguilar, Iliana; Beck, Christian; Audemard, Franck; Develle, Anne-Lise; Boussafir, Mohammed; Campos, Corina; Crouzet, Christian
2016-01-01
The Cariaco Basin and the Gulf of Cariaco in Venezuela are two major basins along the seismogenic El Pilar right lateral fault, among which the Cariaco Basin is a pull-apart. Both basins are sites of anoxia and organic-rich deposits. To examine whether the sediments in the Gulf of Cariaco have recorded traces of historical or prehistorical earthquakes, we extracted and analyzed twelve 1 m-long gravity cores, sampling the last millennium sedimentation. We focused on analyzing the sediment sources with different techniques (particle size analysis, XRF, loss on ignition tests, magnetic properties, Rock-Eval pyrolysis, 14C dating). The results confirm that major upwelling occurs at the western gulf entrance and makes deep water flowing from the Cariaco Basin into the Gulf of Cariaco. These flows carry an organic-rich suspended load. Furthermore, we found evidence of a particular, widespread fine-grained siliciclastic deposit (named SiCL3) within the gulf, whose age suggests that it likely formed during the large 1853 AD earthquake that stroke the Cumaná city. We suggest that the earthquake-induced large submarine landslides that modified the topography of the gulf's entrance, which in turn promoted upwelling and open marine water flows from the Cariaco Basin. The layer SiCL3 would be the sediment load remobilized during this chain of events.
NASA Astrophysics Data System (ADS)
Paczek, Urszula; Tudyka, Konrad; Bałdys, Piotr; Pazdur, Anna
2010-05-01
The Gulf of Gdańsk is a part of the southern Baltic Sea - an intra-continental, shallow arm of the Atlantic Ocean entirely located on continental crust. The gulf occupies the area of ca. 5000 km2. Its northern border is a conventional line between the Cape Rozewie (Poland) and the Cape Taran (Russia). The Gulf of Gdańsk is under impact of inflowing salty waters from the North Sea but also there is a great effect of the Vistula River marked. The river is one of two the most important sources of material in the gulf. Cliffs erosion is the second one. The interplay of marine and land waters is multiplied by impact of two different climates - continental and maritime. The subject of intended research is a core of muddy sediments collected within the framework of project carried by the Branch of Marine Geology of the Polish Geological Institute in Gdańsk. The core was 300 cm long and was taken using Kullenberg core sampler in 2006 from the depth of 32 m. Since 2009 the research has been led in cooperation with the Department of Radioisotopes, Institute of Physics, Silesian University of Technology. In our study we use δ18O and δ13C measured in organic mater of sediments with mass spectrometer. Radiocarbon concentration was measured using gas proportional counters using organic mater . 14C dates were corrected according to isotopic fractioning with measured δ13C. We found systematic inversions of dates that were probably caused by changing of ?R (regional difference from the modeled global surface ocean reservoir age) during Baltic evolution. The attention was also paid on recognition of sedimentation process that is a very good indicator of dynamics in sedimentary environment. The grain size analysis was carried out for 300 samples using method of laser diffraction. Results showed great variability in bulk sediment composition that indicates susceptibility to changes in climatic and hydrodynamic conditions of studied area. Excluding the top ca. 30 cm of the core two clear cycles in sedimentation process may be distinguished. They are characterized by the greater contribution of thicker sediment fractions. Additionally shorter variations are also observed in both main cycles. All the results are bounded with 14C age-depth model that represents last 7500 cal BP. It covers two stages of the Baltic Sea development. According to 14C depth model two main cycles in granulation correspond to 1500 yr each. Shorter variations correspond to 550 yr each. We also noticed rapid shift in sedimentation rate that we correlate with sudden change in granulation composition occurring on ca. 30 cm of the core.
NASA Astrophysics Data System (ADS)
Erez, Mattan; Dally, William J.
Stream processors, like other multi core architectures partition their functional units and storage into multiple processing elements. In contrast to typical architectures, which contain symmetric general-purpose cores and a cache hierarchy, stream processors have a significantly leaner design. Stream processors are specifically designed for the stream execution model, in which applications have large amounts of explicit parallel computation, structured and predictable control, and memory accesses that can be performed at a coarse granularity. Applications in the streaming model are expressed in a gather-compute-scatter form, yielding programs with explicit control over transferring data to and from on-chip memory. Relying on these characteristics, which are common to many media processing and scientific computing applications, stream architectures redefine the boundary between software and hardware responsibilities with software bearing much of the complexity required to manage concurrency, locality, and latency tolerance. Thus, stream processors have minimal control consisting of fetching medium- and coarse-grained instructions and executing them directly on the many ALUs. Moreover, the on-chip storage hierarchy of stream processors is under explicit software control, as is all communication, eliminating the need for complex reactive hardware mechanisms.
Evidence against a late Wisconsinan ice shelf in the Gulf of Maine
Oldale, R.N.; Williams, R.S.; Colman, Steven M.
1990-01-01
Proposals for the formation of a late Wisconsinan ice shelf in the Gulf of Maine during the retreat of the Laurentide Ice Sheet are considered to be inappropriate. An Antarctic-type ice shelf does not fit the field data that indicate temperate glacial, terrestrial, and marine climates for the region between 18 ka and 12 ka. A temperate ice shelf has no modern analogues and may be physically impossible. The preponderance of stratified drift in the Gulf of Maine region supports temperate climates during late Wisconsinan time. It also indicates that glacial meltwater, rather than ice in either an ice sheet or ice shelf, was the primary transport mechanism of glacial sediment and the source for the glaciomarine mud. For these reasons we have proposed glacial analogues for the deglaciation of the Gulf of Maine that consist of temperate or subpolar marine-based glaciers, characterized by depositional environments dominated by meltwater discharge directly to the sea or the sea by way of subaerial meltwater streams. These analogues include Alaskan fjord glaciers, glaciers on the Alaskan continental shelf that discharged meltwater directly into the sea in the not too distant past, and Austfonna (Nordaustandet, Svalbard, Norway) that is presently discharging meltwater in the sea along a grounded ice wall. This last example is the best modern-day analogue for the depositional environment for most of the glaciomarine mud in the Gulf of Maine and deglaciation of the Gulf.
Water Masses and Nutrient Sources to the Gulf of Maine
Townsend, David W.; Pettigrew, Neal R.; Thomas, Maura A.; Neary, Mark G.; McGillicuddy, Dennis J.; O’Donnell, James
2016-01-01
The Gulf of Maine, a semi-enclosed basin on the continental shelf of the northwest Atlantic Ocean, is fed by surface and deep water flows from outside the Gulf: Scotian Shelf Water from the Nova Scotian shelf that enters the Gulf at the surface, and Slope Water that enters at depth and along the bottom through the Northeast Channel. There are two types of Slope Water, Labrador Slope Water (LSW) and Warm Slope Water (WSW); it is these deep water masses that are the major source of dissolved inorganic nutrients to the Gulf. It has been known for some time that the volume inflow of Slope Waters of either type that enters the Gulf of Maine is variable, that it co-varies with the magnitude of inflowing Scotian Shelf Water, and that periods of greater inflows of Scotian Shelf Water have become more frequent in recent years, accompanied by reduced Slope Water inflows. We present here analyses of a ten-year record of data collected by moored sensors in Jordan Basin, in the interior Gulf of Maine, and in the Northeast Channel, along with recent and historical hydrographic and nutrient data, that help reveal the nature of Scotian Shelf Water and Slope Water inflows. Proportional inflows of nutrient-rich Slope Waters and nutrient-poor Scotian Shelf Waters alternate episodically with one another on time scales of months to several years, creating a variable nutrient field upon which the biological productivities of the Gulf of Maine and Georges Bank depend. Unlike decades past, the inflows of Slope Waters of either type do not appear to be correlated with the North Atlantic Oscillation, which had been shown earlier to influence the relative proportions of the two Slope Waters, WSW and LSW, that enter the Gulf. We suggest that of greater importance in recent years are more frequent, episodic influxes of colder, fresher, less dense, and low-nutrient Scotian Shelf Water into the Gulf of Maine, and concomitant reductions in the inflow of deep, nutrient-rich Slope Waters. We also discuss evidence of modified Gulf Stream ring water that penetrated to Jordan Basin in summer of 2013. PMID:27721519
Water Masses and Nutrient Sources to the Gulf of Maine.
Townsend, David W; Pettigrew, Neal R; Thomas, Maura A; Neary, Mark G; McGillicuddy, Dennis J; O'Donnell, James
2015-01-01
The Gulf of Maine, a semi-enclosed basin on the continental shelf of the northwest Atlantic Ocean, is fed by surface and deep water flows from outside the Gulf: Scotian Shelf Water from the Nova Scotian shelf that enters the Gulf at the surface, and Slope Water that enters at depth and along the bottom through the Northeast Channel. There are two types of Slope Water, Labrador Slope Water (LSW) and Warm Slope Water (WSW); it is these deep water masses that are the major source of dissolved inorganic nutrients to the Gulf. It has been known for some time that the volume inflow of Slope Waters of either type that enters the Gulf of Maine is variable, that it co-varies with the magnitude of inflowing Scotian Shelf Water, and that periods of greater inflows of Scotian Shelf Water have become more frequent in recent years, accompanied by reduced Slope Water inflows. We present here analyses of a ten-year record of data collected by moored sensors in Jordan Basin, in the interior Gulf of Maine, and in the Northeast Channel, along with recent and historical hydrographic and nutrient data, that help reveal the nature of Scotian Shelf Water and Slope Water inflows. Proportional inflows of nutrient-rich Slope Waters and nutrient-poor Scotian Shelf Waters alternate episodically with one another on time scales of months to several years, creating a variable nutrient field upon which the biological productivities of the Gulf of Maine and Georges Bank depend. Unlike decades past, the inflows of Slope Waters of either type do not appear to be correlated with the North Atlantic Oscillation, which had been shown earlier to influence the relative proportions of the two Slope Waters, WSW and LSW, that enter the Gulf. We suggest that of greater importance in recent years are more frequent, episodic influxes of colder, fresher, less dense, and low-nutrient Scotian Shelf Water into the Gulf of Maine, and concomitant reductions in the inflow of deep, nutrient-rich Slope Waters. We also discuss evidence of modified Gulf Stream ring water that penetrated to Jordan Basin in summer of 2013.
Late Glacial to Holocene evolution and sea-level history of Gulf of Gemlik, Sea of Marmara, Turkey
NASA Astrophysics Data System (ADS)
Sabuncu, Asen; Kadir Eriş, K.; Kaslilar, Ayse; Namık Çaǧatay, M.; Gasperini, Luca; Filikçi, Betül
2016-04-01
The Gulf of Gemlik is an E-W elongated trans-tensional basin with a maximum depth of 113 m, located on the middle strand of the North Anatolian Fault (NAF) in the south eastern part of the Sea of Marmara (SoM). While during the Holocene the sea level in the Gulf of Gemlik changed in tandem with the water level changes in the SoM, it may have been different in the late glacial when the Sea of Marmara was lacustrine. Beside the tectonic activity related to the NAFZ, eustatic sea level changes would have controlled the basin evolution and consequent sedimentary history during the different paleocanographic phases of the SoM. Considering the limited studies on the late glacial-Holocene stratigraph of the Gulf of Gemlik, this study aims to investigate the depositional units and their environments with respect to different allogenic and autogenic controls. For these purposes, we analyzed over 300 2 - 7 kHz bandwidth high-resolution gridded seismic sub-bottom CHIRP profiles together with 70 kHz high resolution multibeam bathymetry with backscatter data. Four seismic stratigraphic units were defined and correlated with chronstratigraphic units in five piston cores covering the last 15.8 ka BP according to radiocarbon ages (14C). The depth-scale accuracy of chronostratigraphic units in cores is of key importance for the precise calculation of sedimentation rates. Correlation between the seismic profiles and cores were made by matching Multi-Sensor Core-Logger (MSCL) data and seismic reflection coefficients and amplitudes for different stratigraphic units. The impedance data derived from the logger were used to generate a synthetic seismogram. We used an approach to display, estimate, and correct the depth-scale discrepancies due to oversampling affecting the upper part of sedimentary series during piston coring. The method is based on the resynchronization of synthetic seismograms computed from high-quality physical property logs to the corresponding CHIRP profiles. Each sequence boundary represented by different reflection coefficient and various amplitude values were mapped for the whole gulf area from the pseudo-3D seismic data. Isopach and isochron maps were generated using 2-D cubic B-spline interpolation method to reconstruct basin evolution models through late glacial to Holocene. Each map shows various depositional period with respect to water level changes that has been controlled by sea level fluctuations in the SoM. The seismic units labeled as Unit S1-S4 from top to bottom display different seismic facies and geometries. Unit S1 is a transgressive marine mud drape younger than 10.6 ka BP, which lacustrine sediments, Unit S2 is a parallel bedded mud drape in the basin and progradational clinoforms on the shelf edge. It is dated between 13.9-10.6 ka BP, Unit S3 is characterized by erosional gullies and a clinoform architecture indicating a deltaic system dated between 15.8-13.9 ka BP. Unit S4 represents mounded sediments that are truncated by erosional gullies and dated >15.8 ka BP. Key words: Gulf of Gemlik, Seismic Stratigraphy, Numerical Modelling, Late Pleistocene to Holocene
Ruppel, C.; Boswell, R.; Jones, E.
2008-01-01
The Gulf of Mexico Gas Hydrates Joint Industry Project (JIP) is a consortium of production and service companies and some government agencies formed to address the challenges that gas hydrates pose for deepwater exploration and production. In partnership with the U.S. Department of Energy and with scientific assistance from the U.S. Geological Survey and academic partners, the JIP has focused on studies to assess hazards associated with drilling the fine-grained, hydrate-bearing sediments that dominate much of the shallow subseafloor in the deepwater (>500 m) Gulf of Mexico. In preparation for an initial drilling, logging, and coring program, the JIP sponsored a multi-year research effort that included: (a) the development of borehole stability models for hydrate-bearing sediments; (b) exhaustive laboratory measurements of the physical properties of hydrate-bearing sediments; (c) refinement of new techniques for processing industry-standard 3-D seismic data to constrain gas hydrate saturations; and (d) construction of instrumentation to measure the physical properties of sediment cores that had never been removed from in situ hydrostatic pressure conditions. Following review of potential drilling sites, the JIP launched a 35-day expedition in Spring 2005 to acquire well logs and sediment cores at sites in Atwater Valley lease blocks 13/14 and Keathley Canyon lease block 151 in the northern Gulf of Mexico minibasin province. The Keathley Canyon site has a bottom simulating reflection at ???392 m below the seafloor, while the Atwater Valley location is characterized by seafloor mounds with an underlying upwarped seismic reflection consistent with upward fluid migration and possible shoaling of the base of the gas hydrate stability (BGHS). No gas hydrate was recovered at the drill sites, but logging data, and to some extent cores, suggest the occurrence of gas hydrate in inferred coarser-grained beds and fractures, particularly between 220 and 330 m below the seafloor at the Keathley Canyon site. This paper provides an overview of the results of the initial phases of the JIP work and introduces the 15 papers that make up this special volume on the scientific results related to the 2005 logging and drilling expedition.
NASA Astrophysics Data System (ADS)
Ünal Yumun, Zeki; Kam, Erol; Kurt, Dilek
2017-04-01
Heavy metal and radionuclide analysis studies are crucial in explaining biotic and abiotic interactions in ecosystems. This type of analysis is highly needed in environments such as coastal areas, gulfs or lakes where human activities are generally concentrated. Sediments are one of the best biological indicators for the environment since the pollution accumulates in the sediments by descent to the sea floor. In this study, sediments were collected from the Gulf of Izmir (Eastern Aegean Sea, Turkey) considering the accumulated points of domestic and industrial wastes to make an anthropogenic pollution analysis. The core sediments had different depths of 0.00-30.00 m at four different locations where Karsiyaka, Bayrakli, Incialti and Cesmealti in the Gulf of Izmir. The purpose of the study was determining Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn concentrations in the drilling samples to assess their levels and spatial distribution in crucial areas of the Aegean Sea by inductively coupled plasma-optical emission spectrometry (ICP-OES) with microwave digestion techniques. The heavy metal concentrations found in sediments varied for Cd:
Late Holocene Hurricane Activity in the Gulf of Mexico from a Bayou Sediment Archive
NASA Astrophysics Data System (ADS)
Rodysill, J. R.; Donnelly, J. P.; Toomey, M.; Sullivan, R.; MacDonald, D.; Evans, R. L.; Ashton, A. D.
2012-12-01
Hurricanes pose a considerable threat to coastal communities along the Atlantic seaboard and in the Gulf of Mexico. The complex role of ocean and atmospheric dynamics in controlling storm frequency and intensity, and how these relationships could be affected by climate change, remains uncertain. To better predict how storms will impact coastal communities, it is vital to constrain their past behavior, in particular how storm frequency and intensity and the pattern of storm tracks have been influenced by past climate conditions. In an effort to characterize past storm behavior, our work contributes to the growing network of storm records along the Atlantic and Gulf coasts by reconstructing storm-induced deposits in the northern Gulf of Mexico during the Late Holocene. Previous work on the northern Gulf coast has shown considerable centennial-scale variability in the occurrence of intense hurricanes, much like the northern Atlantic coast and in the Caribbean Sea. The timing of active and quiet intervals during the last 1000 years amongst the Gulf Coast records appears to be anti-phased with stormy intervals along the North American east coast. The sparse spatial coverage of the existing intense hurricane reconstructions provides a limited view of the natural variability of intense hurricanes. A new, high resolution reconstruction of storms along the northern Gulf Coast would be beneficial in assembling the picture of the patterns of storminess during the Late Holocene. Our study site, Basin Bayou, is situated on the north side of Choctawhatchee Bay in northwest Florida. From 1851 to 2011, 68 storms have struck the coast within 75 miles of Basin Bayou, of which 10 were Category 3 or greater, making it a prime location to reconstruct intense hurricanes. Basin Bayou openly exchanges water with Choctawhatchee Bay through a narrow channel, which acts as a conduit for propagating storm surges, and potentially coarse-grained bay sediments, into the bayou. Our record is constructed from grain size analyses and core density measurements on multiple cores from Basin Bayou. The upper sediments were dated with 210Pb and 137Cs techniques and compared with the historical record of storms. We observe substantial centennial-scale variability in the occurrence of storm-induced deposits in Basin Bayou over the last 1500 years that aligns considerably well with the temporal distribution of intense storms from preexisting Gulf Coast reconstructions.
Barron, John A.; Bukry, David; Dean, Walter E.; Addison, Jason A.; Finney, Bruce
2009-01-01
High-resolution records of diatoms, silicoflagellates, and geochemistry covering the past 15,000 years were studied in three cores from the Gulf of Alaska (GOA). Core EW0408-85JC in an oceanic setting on the Kayak Slope displays a paleoceanographic record similar to that at several locations on the California margin during deglaciation. Biologic productivity as reconstructed using geochemical and microfossil proxies increased abruptly during the Bølling–Alleröd (Bø–Al) warm interval (14.7–12.9 cal ka), declined during the Younger Dryas (YD) cold interval (12.9 to 11.7 cal kyr BP), and rose again during the earliest Holocene. At this site, the record after ~ 11 cal kyr BP is dominated by oceanic diatoms and silicoflagellates, with geochemical proxies displaying more subtle variation. Cores EW0408-66JC in the Yakobi Sea Valley near Cross Sound and EW0408-11JC in the Gulf of Esquibel contain an expanded, composite record along the southeast Alaskan margin. Core 66JC contains a detailed record of the Bø–Al and YD. Diatoms and silicoflagellates indicate that coastal upwelling and biosiliceous productivity were strong during the Bø–Al but declined during the YD. Sea ice-related diatoms increased in abundance during the YD, indicating cooler, but less productive waters. The glacial to biogenic marine sediment transition in core 11JC occurs at 1280 cmbsf (centimeters below sea floor), probably representing rising sea level and deglaciation early in the Bø–Al. Freshwater and sea-ice related diatoms are common in the lower part of the core (Bø–Al and YD), but upwelling-related diatoms and silicoflagellates quickly increased in relative abundance up-core, dominating the record of the past 11,000 years. Low oxygen conditions in the bottom water as reconstructed using geochemical proxies (U and Mo concentration) were most intense between ~ 6.5 and 2.8 cal kyr BP, the beginning of which is coincident with increases in abundance of upwelling-related diatoms. The records from these three cores jointly thus made it possible to reconstruct paleoclimatic and paleoceanographic conditions at high northern Pacific latitudes during the last 15 kyr.
David M. Merritt; Mary E. Manning; Nate Hough-Snee
2017-01-01
Riparian areas are hotspots of biological diversity that may serve as high quality habitat for fish and wildlife. The National Riparian Core Protocol (NRCP) provides tools and methods to assist natural resource professionals in sampling riparian vegetation and physical characteristics along wadeable streams. Guidance is provided for collecting basic information on...
The Low-Level Flow Along the Gulf of California During the North American Monsoon.
NASA Astrophysics Data System (ADS)
Bordoni, S.; Stevens, B.
2007-05-01
Six-years (1999-2004) of QuikSCAT near-surface ocean winds are used to study the flow over the northeast Pacific and the Gulf of California (GoC) during the North American Monsoon season. The wind data show that the onset of the summer season is accompanied by a reversal of the flow along the GoC, with the establishment of a mean southerly wind throughout the gulf. This reversal occurs in late spring and precedes the onset of the monsoonal rains. In the heart of the monsoon season, the time-mean flow is found to be composed of periods of enhanced southerly winds associated with gulf surges. The role that gulf surges play in modulating the GoC mean southerly flow is further explored by performing an EOF analysis of the summertime daily wind anomalies. A gulf surge mode emerges from this analysis as the leading EOF, with the corresponding principal component time series interpretable as an objective index for gulf surge occurrence. This index is used as a reference time series for regression analysis, to explore the relationship between gulf surges and precipitation over the core and marginal regions of the monsoon, as well as the manifestation of these transient events in the large-scale circulation. It is found that, although seemingly mesoscale features confined over the GoC, gulf surges are intimately linked to patterns of large-scale variability of the eastern Pacific ITCZ and greatly contribute to the definition of the northward extent of the monsoonal rains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Highly, A.B.; Donoghue, J.F.; Garrett, C.
1994-03-01
The St. Marks river of northwest Florida drains parts of the central panhandle of northwestern Florida, and a small area in southwestern Georgia. It traverses nearly 56.3 kilometers through a watershed of 1,711 square kilometers. The slow-moving river carries little sediment and terminates in Apalachee Bay, a low-energy embayment in the northeasternmost Gulf of Mexico. The coastal region is characterized by mudflats, seagrass beds, and an absence of sandy beaches and barrier islands. Clastic sediments of the coast and shelf rest on a shallow-dipping carbonate platform. The upper surface of the platform is locally karstic. As a result, like othermore » rivers in this region of northwest Florida, the St. Marks watershed is marked by sinkholes and disappearing streams. The fact that the river travels underground through part of its lower watershed serves to trap or sieve some of its clastic load. In the estuary, the undulating karst topography causes the estuarine sediments to vary in thickness from 0 to 4+ meters. The concave shape of the coastline and its orientation with respect to prevailing winds result in low average wave energy. Sedimentation is therefore controlled by riverine and tidal forces. The relatively low energy conditions result in good preservation of the sedimentary record in the St. Marks estuary. A suite of sediment cores has been collected in the lower river, estuary and adjacent Gulf of Mexico. Lead-210 dating results indicate a slow average sedimentation rate ([approximately] 1mm/yr). Investigation of sedimentation rates and sediment characteristics over time in the St. Marks estuary indicate that sedimentologic conditions in this low-energy environment have been relatively stable during the recent geologic history of the estuary.« less
Temperature Calibration of a Northern Gulf of Mexico Siderastrea siderea Coral
NASA Astrophysics Data System (ADS)
Wagner, A. J.; DeLong, K. L.; Kilbourne, K. H.; Richey, J. N.; Jelinek, K.; Hickerson, E.; Slowey, N. C.
2015-12-01
The Gulf of Mexico (GOM) is sensitive to oceanic and atmospheric variability in both the Atlantic and Pacific Oceans (i.e., Atlantic Multidecadal Oscillation (AMO), El Niño Southern Oscillation (ENSO), Pacific North American Pattern (PNA), and Pacific Decadal Oscillation (PDO)). The major GOM current, the Loop Current, feeds the Gulf Stream as it transports oceanic heat to the northern Atlantic Ocean. The northern GOM is the northernmost summer extent of the western hemisphere warm pool (WHWP) that drives oceanic moisture flux and precipitation into the Americas. Decadally-resolved foraminifera reconstructions from the northern GOM indicates SST was 2 to 4ºC colder on average than today during the Little Ice Age (LIA, ~1850), whereas a subannually-resolved coral reconstruction from the southeastern GOM find 1.5 to 2ºC colder intervals and reduced areal extent of the WHWP on interannual time scales during some intervals of the LIA. However, records capable of resolving annual and subannual SST variability from the northern GOM, necessary for investigating WHWP northern extent, are still lacking. Here we present a new temperature reconstruction for the northern GOM derived from strontium-to-calcium (Sr/Ca) ratios of approximately monthly samples milled from a Siderastrea siderea coral core collected from the Flower Garden Banks National Marine Sanctuary (FGBNMS; 27° 52.5'N, 93° 49'W) growing at a water depth of 20 m. Coral Sr/Ca is calibrated to reef temperature data from FGBNMS Hobotemp data loggers near the reef cap in ~22 m water depth (1986-2004) and to NOAA OISST (1981-2004), which co-varies with the reef temperature (r=0.95, p<0.05, n=146) and consistently captures winter values in reef temperature with slightly warmer summers (0.9ºC on average). The Sr/Ca-SST calibration slope (-0.043, r=-0.89, n=136, p<0.01 for reef temperature; -0.039, r=-0.94, n=275, p<0.01 for OISST) agrees well with published coral Sr/Ca-SST calibrations for S. siderea in the southeastern GOM from shallower water depths.
NASA Astrophysics Data System (ADS)
Lajeunesse, Patrick; St-Onge, Guillaume
2013-04-01
A series of ice-contact submarine fans and morainal banks along the Québec North-Shore of the Estuary and Gulf of St. Lawrence (Eastern Canada), between the Manicouagan River delta and the Mingan Islands, have been revealed with great detail by recent multibeam echosounder and high-resolution subbottom profiler surveys. These grounding-line landforms are observed between 65 and 190 m water depths and were constructed as the marine-based margin of the Laurentide Ice Sheet (LIS) stabilized or readvanced. Radiocarbon ages obtained from shells sampled in sediment cores collected in glaciomarine deposits 6 km south of a grounding line in the Sept-Iles area indicate a stabilisation that took place around 11 000 14C yr BP (12.5 ka cal BP with a ΔR=120 ± 40 yr). In the Mingan Islands area, organic matter collected in distal deposits of an ice-contact fan is dated at 10 800 14C yr BP (11.6 ka cal BP). The position of the Sept-Iles and Mingan deposits, 20 km south of the ~9.7-9.5 14C kyr BP North-Shore Moraine, suggests that these ice marginal landforms were constructed during the Younger Dryas (YD) cold episode and that they might be the eastward submarine extent of the early YD St. Narcisse morainic system. Superimposed till sheets and morainal banks observed within grounding line deposits indicate that this stability phase was interrupted by local readvances that were marked in some cases by ice streaming. Segments of this morainic system are also visible along the shoreline in some sectors, where they have been generally washed out of fine fragments by waves. Another series of ice-contact deposits and landforms of similar nature observed farther offshore and at greater depths (100-190 m) were formed during a previous phase of stabilisation of the LIS margin. This older morainic system was probably deposited immediately after the opening of the Estuary and Gulf of the St. Lawrence.
NASA Astrophysics Data System (ADS)
Moore, K.; Holdsworth, G.
2006-12-01
In late May 2005, 3 climbers were immobilized at 5400 m on Mount Logan, Canada`s highest mountain, by the high impact weather associated with an extratropical cyclone over the Gulf of Alaska. Rescue operations were hindered by the high winds, cold temperatures, and heavy snowfall associated with the storm. Ultimately, the climbers were rescued after the weather cleared. Just prior to the storm, two automated weather stations had been deployed on the mountain as part of a research program aimed at interpreting the climate signal contained in summit ice cores. These data provide a unique and hitherto unobtainable record of the high elevation meteorological conditions associated with a severe extratropical cyclone. In this talk, data from these weather stations along with surface and sounding data from the nearby town of Yakutat Alaska, satellite imagery and the NCEP reanalysis are used to characterize the synoptic-scale conditions associated with this storm. Particular emphasis is placed on the water vapor transport associated with this storm. The authors show that during this event, subtropical moisture was transported northwards towards the Mount Logan region. The magnitude of this transport into the Gulf of Alaska was exceeded only 1% of the time during the months of May and June over the period 1948-2005. As a result, the magnitude of the precipitable water field in the Gulf of Alaska region attained values usually found in the tropics. An atmospheric moisture budget analysis indicates that most of the moisture advected into the Mount Logan region was pre-existing water vapor already in the subtropical atmosphere and was not water vapor evaporated from the surface during the evolution of the storm. Implications of this moisture source for our understanding of the water isotopic climate signal in the Mount Logan ice cores will be discussed.
NASA Astrophysics Data System (ADS)
Clary, W. A.; Worthington, L. L.; Daigle, H.; Slagle, A. L.; Gulick, S. P. S.
2016-12-01
Sediments offshore Southern Alaska offer a natural laboratory to study glacial erosion, sediment deposition, and orogenesis. A major goal of Integrated Ocean Drilling Program (IODP) Expedition 341 was investigation of interrelationships among tectonic processes, paleoclimate, and glacial activity. Here, we focus on core-log-seismic integration of IODP Sites U1420 and U1421 on the shallow shelf and slope near the Bering Trough, a glacially derived shelf-crossing landform. These sites sample glacial and marine sediments that record a history of sedimentation following the onset of glacial intensification near the mid-Pleistocene transition (1.2 Ma) and Yakutat microplate convergence with North America. Ocean drilling provides important stratigraphic, physical properties, and age data in depth which support development of a stratigraphic model that can be extended across the shelf if carefully calibrated to local and regional seismic surveys. We use high resolution multichannel seismic, core, and logging data to develop a time-depth relationship (TDR) and update the developing chronostratigraphic model based on correlation of seismic sequence boundaries and drilling-related data, including biostratigraphic and paleomagnetic age controls. We calibrate, combine, and interpolate core and logging data at each site to minimize gaps in physical property information and generate synthetic seismic traces. At Site U1421, vertical seismic profiling further constrains the TDR, and provides input for the initial velocity model during the tie. Finally, we match reflectors in the synthetic trace with events in nearby seismic reflection data to establish a TDR at each site. We can use this relationship to better interpret the development of the Bering Trough, a recurring and favored path for ice streams and glacial advance. Initial results suggest late Pleistocene sedimentation rates of at least 1 km/m.y. on average, and variable sedimentation rates which are possibly correlated with paleoenvironmental indicators such as sea ice related species of diatoms.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-30
... for ABC is the projected yield stream with a 70 percent probability of rebuilding success. The Council... to have an 81 percent chance of rebuilding in 10 years, greater than the 70 percent probability... AM applications. Should this ACT be used in the future to trigger AMs, then it may be expected to...
US Navy Operational Global Ocean and Arctic Ice Prediction Systems
2014-09-01
meridional overturning circulation (Figure 29 in Hurlburt et al., 2011), when comparing a non-assimilative simulation with a data assimilative...boundary current regions of the Gulf Stream ( Atlantic ), the Kuroshio (Pacific), and the Agulhas and Somali Currents (both Indian). Consequently...Oceanic and Atmospheric Administration at the National Centers for Environmental Prediction (NCEP), initially for the North Atlantic (Mehra and
Life on the edge: carbon fluxes from wetland to ocean along Alaska's coastal temperate rain forest
Rhonda Mazza; Richard Edwards; David D' Amore
2010-01-01
Acre for acre, streams of the coastal temperate rain forest along the Gulf of Alaska export 36 times as much dissolved organic carbon as the world average. Rain and snow are the great connectors, tightly linking aquatic and terrestrial systems of this region. The freshwater that flushes over and through the forest floor leaches carbon...
2015-09-30
Number: N000141310686 http://superpod.ml.duke.edu/ LONG-TERM GOALS Fisheries acoustics are routinely used for biomass and abundance surveys and...will be required every 10-12 months), allowing us to address the seasonality and the inter-annual variability in prey biomass and density in
Migrant Education. Third Annual Regional Workshop (Virginia Beach, Va., March 5-9, 1972).
ERIC Educational Resources Information Center
Nachman, Cynthia P., Comp.
The Third Annual Regional Workshop on Migrant Education was held on March 5-9, 1972 in Virginia Beach, Virginia. This conference was for migrant educators from the Eastern Stream states extending from the Gulf of Mexico north to New England. Over 480 participants met, coordinating their ideas and experiences to create a better world for the…
NASA Astrophysics Data System (ADS)
Lekien, F.; Coulliette, C.
In this talk we will briefly describe the dynamical systems framework for Lagrangian transport. In particular, we will show how dynamical systems theory can now be uti- lized in the context of "real" problems, such as those derived from remote sensing observations or the input of a large scale numerical model. We will illustrate these ideas by two examples. Study of fluid transport near the Atlantic coast of Florida us- ing a velocity field observed experimentally from high frequency radar measurements reveals that dynamical systems theory can be used to reduce contaminant density in coastal areas. We also study intergyre transport in a quasigeostrophic model of the North Atlantic. We investigate the structure of eddies detaching from the Gulf Stream and prove that in a double gyre structure cyclonic rings cannot contain fluid from the other gyre. Only anticyclonic rings can contain "foreign" fluid coming from another gyre. This explains many phenomenons, such as why counter-clockwise rings South of the Gulf Stream contain colder fluid advected directly from the northern gyre, which has been illustrated in many observational studies.
Observed decline of the Atlantic Meridional Overturning circulation 2004 to 2012
NASA Astrophysics Data System (ADS)
Cunningham, Stuart; Smeed, David; Johns, William; Meinen, Chris; Rayner, Darren; Moat, Ben; Duchez, Aurelie; Bryden, Harry; Baringer Molly, O.; McCarthy, Gerard
2014-05-01
The Atlantic Meridional Overturning Circulation (AMOC) has been observed continuously at 26° N since April 2004. The AMOC and its component parts are monitored by combining a transatlantic array of moored instruments with submarine-cable based measurements of the Gulf Stream and satellite derived Ekman transport. The time series has recently been extended to October 2012 and the results show a downward trend since 2004. From April~2008 to March 2012 the AMOC was an average of 2.7 Sv weaker than in the first four years of observation (95% confidence that the reduction is 0.3 Sv or more). Ekman transport reduced by about 0.2 Sv and the Gulf Stream by 0.5 Sv but most of the change (2.0 Sv) is due to the mid-ocean geostrophic flow. The change of the mid-ocean geostrophic flow represents a strengthening of the subtropical gyre above the thermocline. The increased southward flow of warm waters is balanced by a decrease in the southward flow of Lower North Atlantic Deep Water below 3000 m. The transport of Lower North Atlantic Deep Water slowed by 7% per year (95% confidence that the rate of slowing is greater than 2.5% per year).
Observed fingerprint of a weakening Atlantic Ocean overturning circulation.
Caesar, L; Rahmstorf, S; Robinson, A; Feulner, G; Saba, V
2018-04-01
The Atlantic meridional overturning circulation (AMOC)-a system of ocean currents in the North Atlantic-has a major impact on climate, yet its evolution during the industrial era is poorly known owing to a lack of direct current measurements. Here we provide evidence for a weakening of the AMOC by about 3 ± 1 sverdrups (around 15 per cent) since the mid-twentieth century. This weakening is revealed by a characteristic spatial and seasonal sea-surface temperature 'fingerprint'-consisting of a pattern of cooling in the subpolar Atlantic Ocean and warming in the Gulf Stream region-and is calibrated through an ensemble of model simulations from the CMIP5 project. We find this fingerprint both in a high-resolution climate model in response to increasing atmospheric carbon dioxide concentrations, and in the temperature trends observed since the late nineteenth century. The pattern can be explained by a slowdown in the AMOC and reduced northward heat transport, as well as an associated northward shift of the Gulf Stream. Comparisons with recent direct measurements from the RAPID project and several other studies provide a consistent depiction of record-low AMOC values in recent years.
NASA Technical Reports Server (NTRS)
Fukumori, Ichiro; Malanotte-Rizzoli, Paola
1995-01-01
A practical method of data assimilation for use with large, nonlinear, ocean general circulation models is explored. A Kalman filter based on approximation of the state error covariance matrix is presented, employing a reduction of the effective model dimension, the error's asymptotic steady state limit, and a time-invariant linearization of the dynamic model for the error integration. The approximations lead to dramatic computational savings in applying estimation theory to large complex systems. We examine the utility of the approximate filter in assimilating different measurement types using a twin experiment of an idealized Gulf Stream. A nonlinear primitive equation model of an unstable east-west jet is studied with a state dimension exceeding 170,000 elements. Assimilation of various pseudomeasurements are examined, including velocity, density, and volume transport at localized arrays and realistic distributions of satellite altimetry and acoustic tomography observations. Results are compared in terms of their effects on the accuracies of the estimation. The approximate filter is shown to outperform an empirical nudging scheme used in a previous study. The examples demonstrate that useful approximate estimation errors can be computed in a practical manner for general circulation models.
AIRSAR observations of the Gulf Stream with interpretation from sea truth and modeling
NASA Technical Reports Server (NTRS)
Valenzuela, G. R.; Chubb, S. R.; Marmorino, G. O.; Trump, C. L.; Lee, J. S.; Cooper, A. L.; Askari, F.; Keller, W. C.; Kaiser, J. A. C.; Mied, R. P.
1991-01-01
On 20 Jul., JPL/DC-8 synthetic aperture radar (SAR) participated in the 17-21 Jul. 1990 NRL Gulf Stream (GS) experiment in preparation for SIR-C missions in 1993, 1994, and 1996 for calibration purposes and to check modes and techniques for operation at our experimental site off the east coast of the US. During this experiment, coordinated and near simultaneous measurements were performed from ship (R/V Cape Henlopen) and other aircraft (NADC/P-3 and NRL/P-3) to address scientific questions relating to the origin of 'slick-like' features observed by Scully-Power, the refraction and modulation of waves by variable currents, the effect of current and thermal fronts on radar imagery signatures and the modification of Kelvin ship wakes by fronts. The JPL/DC-8 and NADC/P-3 SAR's are fully polarimetric systems. Their composite frequency range varies between P- and X-band. We describe in detail the Airborne SAR (AIRSAR) participation in the Jul. 1990 GS experiment and present preliminary results of the ongoing analysis and interpretation of the radar imagery in the context of ground truth, other remote measurements, and modeling efforts.
NASA Astrophysics Data System (ADS)
Fukumori, Ichiro; Malanotte-Rizzoli, Paola
1995-04-01
A practical method of data assimilation for use with large, nonlinear, ocean general circulation models is explored. A Kaiman filter based on approximations of the state error covariance matrix is presented, employing a reduction of the effective model dimension, the error's asymptotic steady state limit, and a time-invariant linearization of the dynamic model for the error integration. The approximations lead to dramatic computational savings in applying estimation theory to large complex systems. We examine the utility of the approximate filter in assimilating different measurement types using a twin experiment of an idealized Gulf Stream. A nonlinear primitive equation model of an unstable east-west jet is studied with a state dimension exceeding 170,000 elements. Assimilation of various pseudomeasurements are examined, including velocity, density, and volume transport at localized arrays and realistic distributions of satellite altimetry and acoustic tomography observations. Results are compared in terms of their effects on the accuracies of the estimation. The approximate filter is shown to outperform an empirical nudging scheme used in a previous study. The examples demonstrate that useful approximate estimation errors can be computed in a practical manner for general circulation models.
The Gulf Stream in Ocean Reanalyses: 1993-2010
NASA Astrophysics Data System (ADS)
Chi, L.; Wolfe, C.; Hameed, S.
2017-12-01
In recent years, significant progress has been made in the development of high-resolution ocean reanalysis products. However, errors are likely to remain because of inadequate coverage of observations, model resolutions, physical parameterizations, etc. We compare the representation of the Gulf Stream (GS) in several widely used global reanalysis products with resolutions ranging from 1° to 1/12°. This intercomparison focuses on the Florida Current transport, the separation of GS near Cape Hatteras, GS properties along the Oleander Line (from New Jersey to Bermuda), GS path and the GS north wall positions between 73°W and 55°W. A large spread exists across the reanalysis products. HYCOM and GLORYS2v4 stand out for their top performance in most metrics. Some common biases are found in all discussed products; for example, the velocity structure of the GS near the Oleander Line is too symmetric and the maximum velocity is weaker than in observations. In addition, the annual mean values of GS separation latitude near Cape Hatteras, the GS transport, and net transport across Oleander Line (which runs from New Jersey to Bermuda), less than half of the reanalysis products are correlated to the observations at 95% confidence level.
NASA Astrophysics Data System (ADS)
Albut, Gülüm; Namık Cagatay, M.; Gungor, Nurdan; Gungor, Emin; Acar, Dursun; Balkıs, Nuray
2014-05-01
Marginal marine basins are particularly prone to anthropogenic pollution because of restricted water circulation and commonly high population density in their drainage basin. Gemlik Gulf is such a semi-enclosed inlet with maximum depth of 113 m in the eastern part of the Sea of Marmara, which is separated from the rest of the Marmara shelf by a -50 m deep sill. It is under anthropogenic risk from different industrial and municipal pollution sources in its drainage basin. Moreover, Gemlik Gulf, located on the middle branch of the North Anatolian fault (NAF), is under a future earthquake risk with a high possibility of pollution from disruption to industrial plants and municipal infrastucture, similar to the the one that occurred in the İzmit Gulf during the 1999 Mw 7.4 İzmit earthquake. In this study, we investigated the extent and temporal evolution of the heavy metal and organic pollution using a wide range of analyses of a 84 cm sediment/water interface long core from the central part of the basin, involving μ-XRF Core Scanner, Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), Total Organic (TOC) and Inorganic Carbon (TIC), and mass spectrometric stable C and N isotopic and C and N elemental analyses. The chronology of the core was determined using radionuclide (210Pb and 137Cs) and AMS radiocarbon analysis. The core covers about last 800 years. The upper part of the core, representing the last 155 years, is gray mud grading into very dark grey mud in the top 84 cm. The 5-8 cm interval below sea floor (bsf) (AD 1985-1995) includes 3 white laminae consisting of coccolithophore Emiliania huxleyi and another carbonate rich layer deposited during AD 1855-1950. TOC values are commonly between 1.5 and 2.5 % below 12.5 cmbsf (AD 1965), but increases up to 4.25 % towards the core top. The core includes a mass flow unit, which is most probably triggered by the AD 1855 earthquake, and is characterized by high contents of Fe, Zr, low contents of Ca, Nb, La U, Th, Zn and Pb, Cu. Enrichment factor (EF) of Mo, obtained with respect to the average metal values of uncontaminated substratum in the core and normalisation to Al, increase sharply upwards starting from 15 cmbsf (AD 1955) to a maximum EF of 23. Such a dramatic Mo increase, together with a Mn depletion, indicates the establishment of bottom water anoxia in the Gulf at least since AD 1970. At around the same time increases started to be observed in concentrations of most metals and semi-metals such as Cd, Zn, Cu, Pb, U, S, Sb, with a maximum EF of 5.7, 2.1, 1.6, 1.6, 1.3, 3.2, 2.2, respectively. C/N ratio and δ13C reveals the cylicity in origin of organic matter changing from bottom to top of the core respectively as: terrestrial, a mixture of marine and terrestrial, terrestrial in the mass flow unit, mixed, marine and terrestrial in most recent sediments of last about 15 years. The organic matter of terrestrial origin as well as pollutants were transported by Kocadere and Karsak Creeks and Kocasu river. δ15N values range between 4 and 4.5 o during AD 1230-1540 and 2.5 and 3.1 o during AD 1540-1740 and between 3.7 and 5.6 o since AD 1855 to present. Assessment of δ15N data together with the TOC and TIC data suggest that denitrification process has been effective especially during the last 150 years, and least effective during AD 1540-1740 which includes the Late Maunder Minimum cold period.
Transition to turbulence and noise radiation in heated coaxial jet flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gloor, Michael, E-mail: gloor@ifd.mavt.ethz.ch; Bühler, Stefan; Kleiser, Leonhard
2016-04-15
Laminar-turbulent transition and noise radiation of a parametrized set of subsonic coaxial jet flows with a hot primary (core) stream are investigated numerically by Large-Eddy Simulation (LES) and direct noise computation. This study extends our previous research on local linear stability of heated coaxial jet flows by analyzing the nonlinear evolution of initially laminar flows disturbed by a superposition of small-amplitude unstable eigenmodes. First, a baseline configuration is studied to shed light on the flow dynamics of coaxial jet flows. Subsequently, LESs are performed for a range of Mach and Reynolds numbers to systematically analyze the influences of the temperaturemore » and the velocity ratios between the primary and the secondary (bypass) stream. The results provide a basis for a detailed analysis of fundamental flow-acoustic phenomena in the considered heated coaxial jet flows. Increasing the primary-jet temperature leads to an increase of fluctuation levels and to an amplification of far-field noise, especially at low frequencies. Strong mixing between the cold bypass stream and the hot primary stream as well as the intermittent character of the flow field at the end of the potential core lead to a pronounced noise radiation at an aft angle of approximately 35{sup ∘}. The velocity ratio strongly affects the shear-layer development and therefore also the noise generation mechanisms. Increasing the secondary-stream velocity amplifies the dominance of outer shear-layer perturbations while the disturbance growth rates in the inner shear layer decrease. Already for r{sub mic} > 40R{sub 1}, where r{sub mic} is the distance from the end of the potential core and R{sub 1} is the core-jet radius, a perfect 1/r{sub mic} decay of the sound pressure amplitudes is observed. The potential-core length increases for higher secondary-stream velocities which leads to a shift of the center of the dominant acoustic radiation in the downstream direction.« less
Mineralogy, geochemistry, and radiocarbon ages of deep sea sediments from the Gulf of Mexico, Mexico
NASA Astrophysics Data System (ADS)
Armstrong-Altrin, John S.; Machain-Castillo, María Luisa
2016-11-01
The mineralogy, geochemistry, and radiocarbon ages of two sediment cores (GMX1 and GMX2) collected from the deep sea area of the Southwestern Gulf of Mexico (∼876-1752 m water depth) were studied to infer the sedimentation rate, provenance, heavy metal contamination, and depositional environment. The sediments are dominated by silt and clay fractions. The mineralogy determined by X-Ray diffractometry for the sediment cores reveals that montmorillonite and muscovite are the dominant clay minerals. The sections between 100 and 210 cm of the sediment cores GMX1 and GMX2, respectively, are characterized by the G. menardii group and G. Inflata planktonic foraminiferal species, which represent the Holocene and Pleistocene, respectively. The radiocarbon-age measurements of mixed planktonic foraminifera varied from ∼268 to 45,738 cal. years B.P and ∼104 to 25,705 cal. years B.P, for the sediment cores GMX1 and GMX2, respectively. The variation in age between the two sediment cores is due to a change in sediment accumulation rate, which was lowest at the location GMX1 (0.006 cm/yr) and highest at the location GMX2 (0.017 cm/yr). The chemical index of alteration (CIA), chemical index of weathering (CIW), and index of chemical maturity (ICV) values indicated a moderate intensity of weathering in the source area. The total rare earth element concentrations (∑REE) in the cores GMX1 and GMX2 vary from ∼94 to 171 and ∼78 to 151, respectively. The North American Shale Composite (NASC) normalized REE patterns showed flat low REE (LREE), heavy REE (HREE) depletion with low negative to positive Eu anomalies, which suggested that the sediments were likely derived from intermediate source rocks. The enrichment factor of heavy metals indicated that the Cd and Zn concentrations in the sediment cores were impacted by an anthropogenic source. The redox-proxy trace element ratios such as V/Cr, Ni/Co, Cu/Zn, (Cu + Mo)/Zn, and Ce/Ce* indicated that the sediments were deposited under an oxic depositional environment. The similarity in major element concentrations, REE content, and the NASC normalised REE patterns between the cores GMX1 and GMX2 revealed that the provenance of sediments remained relatively uniform or constant during deposition for ∼4.5 Ma. The major and trace element based multidimensional discrimination diagrams showed a rift setting for the core sediments, which is consistent with the geology of the Gulf of Mexico.
Broshears, R.E.; Clark, G.M.; Jobson, H.E.
2001-01-01
Stream discharge and the transport of nitrate, atrazine, and metolachlor in the Mississippi River Basin were simulated using the DAFLOW/BLTM hydrologic model. The simulated domain for stream discharge included river reaches downstream from the following stations in the National Stream Quality Accounting Network: Mississippi River at Clinton, IA; Missouri River at Hermann, MO: Ohio River at Grand Chain, IL: And Arkansas River at Little Rock, AR. Coefficients of hydraulic geometry were calibrated using data from water year 1996; the model was validated by favourable simulation of observed discharges in water years 1992-1994. The transport of nitrate, atrazine, and metolachlor was simulated downstream from the Mississippi River at Thebes, IL, and the Ohio River at Grand Chain. Simulated concentrations compared favourably with observed concentrations at Baton Rouge, LA. Development of this model is a preliminary step in gaining a more quantitative understanding of the sources and fate of nutrients and pesticides delivered from the Mississippi River Basin to the Gulf of Mexico.
Measurements and Predictions of the Noise from Three-Stream Jets
NASA Technical Reports Server (NTRS)
Henderson, Brenda S.; Leib, Stewart J.; Wernet, Mark P.
2015-01-01
An experimental and numerical investigation of the noise produced by high-subsonic and supersonic three-stream jets was conducted. The exhaust system consisted of externally-mixed-convergent nozzles and an external plug. Bypass- and tertiary-to-core area ratios between 1.0 and 2.5, and 0.4 and 1.0, respectively, were studied. Axisymmetric and offset tertiary nozzles were investigated for heated and unheated conditions. For axisymmetric configurations, the addition of the third stream was found to reduce peak- and high-frequency acoustic levels in the peak-jet-noise direction, with greater reductions at the lower bypass-to-core area ratios. For the offset configurations, an offset duct was found to decrease acoustic levels on the thick side of the tertiary nozzle relative to those produced by the simulated two-stream jet with up to 8 dB mid-frequency noise reduction at large angles to the jet inlet axis. Noise reduction in the peak-jet-noise direction was greater for supersonic core speeds than for subsonic core speeds. The addition of a tertiary nozzle insert used to divert the third-stream jet to one side of the nozzle system provided no noise reduction. Noise predictions are presented for selected cases using a method based on an acoustic analogy with mean flow interaction effects accounted for using a Green's function, computed in terms of its coupled azimuthal modes for the offset cases, and a source model previously used for round and rectangular jets. Comparisons of the prediction results with data show that the noise model predicts the observed increase in low-frequency noise with the introduction of a third, axisymmetric stream, but not the high-frequency reduction. For an offset third stream, the model predicts the observed trend of decreased sound levels on the thick side of the jet compared with the thin side, but the predicted azimuthal variations are much less than those seen in the data. Also, the shift of the spectral peak to lower frequencies with increasing polar angle is over-predicted. For an offset third stream with a heated core, it is shown that including the enthalpy-flux source terms in the acoustic analogy model improves predictions compared with those obtained using only the momentum flux.
Measurements and Predictions of the Noise from Three-Stream Jets
NASA Technical Reports Server (NTRS)
Henderson, Brenda S.; Leib, Stewart J.; Wernet, Mark P.
2015-01-01
An experimental and numerical investigation of the noise produced by high-subsonic and supersonic three-stream jets was conducted. The exhaust system consisted of externally-mixed-convergent nozzles and an external plug. Bypass- and tertiary- to-core area ratios between 1.0 and 2.5, and 0.4 and 1.0, respectively, were studied. Axisymmetric and offset tertiary nozzles were investigated for heated and unheated conditions. For axisymmetric configurations, the addition of the third stream was found to reduce peak- and high-frequency acoustic levels in the peak-jet-noise direction, with greater reductions at the lower bypass-to-core area ratios. For the offset configurations, an offset duct was found to decrease acoustic levels on the thick side of the tertiary nozzle relative to those produced by the simulated two-stream jet with up to 8 dB mid-frequency noise reduction at large angles to the jet inlet axis. Noise reduction in the peak-jet-noise direction was greater for supersonic core speeds than for subsonic core speeds. The addition of a tertiary nozzle insert used to divert the third-stream jet to one side of the nozzle system provided no noise reduction. Noise predictions are presented for selected cases using a method based on an acoustic analogy with mean flow interaction effects accounted for using a Green's function, computed in terms of its coupled azimuthal modes for the offset cases, and a source model previously used for round and rectangular jets. Comparisons of the prediction results with data show that the noise model predicts the observed increase in low-frequency noise with the introduction of a third, axisymmetric stream, but not the high-frequency reduction. For an offset third stream, the model predicts the observed trend of decreased sound levels on the thick side of the jet compared with the thin side, but the predicted azimuthal variations are much less than those seen in the data. Also, the shift of the spectral peak to lower frequencies with increasing polar angle is over-predicted. For an offset third stream with a heated core, it is shown that including the enthalpy-flux source terms in the acoustic analogy model improves predictions compared with those obtained using only the momentum- flux.
Recreating the chemical evolution of the Sagittarius dwarf spheroidal from its tidal debris
NASA Astrophysics Data System (ADS)
Carlin, Jeffrey L.; Sheffield, Allyson; Cunha, Katia M. L.; Smith, Verne V.
2018-06-01
We present a detailed chemical analysis of the Sagittarius (Sgr) tidal stream based on high-resolution Gemini+GRACES spectra of 42 members of the highest surface brightness portions of both the trailing and leading arms of the Sgr stream. We select Sgr tidal stream candidates using a 2MASS+WISE color-color selection, combined with LAMOST radial velocities, allowing us to efficiently select Sgr stream members with little contamination from field stars. Sgr is a recently infallen, currently disrupting dwarf spheroidal galaxy, with roughly 70% of the luminosity of the Sgr system residing in the tidal streams. With this study, we provide a link between the (known) chemical properties in the intact Sgr core and the significant portion of the Sgr system's luminosity that is estimated to currently reside in the streams. In this talk, we focus on abundances of alpha-elements, but we will also analyze neutron-capture (both r- and s-process) and iron-peak species. We compare our chemical abundances to the few existing measurements in the stream as well as the numerous results in the Sgr core.
NASA Astrophysics Data System (ADS)
Olsen, Daniel W.; Matkin, Craig O.; Andrews, Russel D.; Atkinson, Shannon
2018-01-01
The resident killer whale is a genetically and behaviorally distinct ecotype of killer whale (Orcinus orca) found in the North Pacific that feeds primarily on Pacific salmon (Oncorhynchus spp .). Details regarding core use areas have been inferred by boat surveys, but are subject to effort bias and weather limitations. To investigate core use areas, 37 satellite tags were deployed from 2006 to 2014 on resident killer whales representing 12 pods in the Northern Gulf of Alaska, and transmissions were received during the months of June to January. Core use areas were identified through utilization distributions using a biased Brownian Bridge movement model. Distinct differences in these core use areas were revealed, and were highly specific to season and pod. In June, July, and August, the waters of Hinchinbrook Entrance and west of Kayak Island were primary areas used, mainly by 3 separate pods. These same pods shifted their focus to Montague Strait in August, September, and October. Port Gravina was a focal area for 2 other pods in June, July, and August, but this was not the case in later months. These pods were responsible for seven of eight documented trips into the deeper fjords of Prince William Sound, yet these fjords were not a focus for most groups of killer whales. The seasonal differences in core use may be a response to the seasonal returns of salmon, though details on specific migration routes and timing for the salmon are limited. We found strong seasonal and pod-specific shifts in patterns between core use areas. Future research should investigate pod differences in diet composition and relationships between core area use and bathymetry.
NASA Astrophysics Data System (ADS)
Malanotte-Rizzoli, Paola; Young, Roberta E.
1995-12-01
The primary objective of this paper is to assess the relative effectiveness of data sets with different space coverage and time resolution when they are assimilated into an ocean circulation model. We focus on obtaining realistic numerical simulations of the Gulf Stream system typically of the order of 3-month duration by constructing a "synthetic" ocean simultaneously consistent with the model dynamics and the observations. The model used is the Semispectral Primitive Equation Model. The data sets are the "global" Optimal Thermal Interpolation Scheme (OTIS) 3 of the Fleet Numerical Oceanography Center providing temperature and salinity fields with global coverage and with bi-weekly frequency, and the localized measurements, mostly of current velocities, from the central and eastern array moorings of the Synoptic Ocean Prediction (SYNOP) program, with daily frequency but with a very small spatial coverage. We use a suboptimal assimilation technique ("nudging"). Even though this technique has already been used in idealized data assimilation studies, to our knowledge this is the first study in which the effectiveness of nudging is tested by assimilating real observations of the interior temperature and salinity fields. This is also the first work in which a systematic assimilation is carried out of the localized, high-quality SYNOP data sets in numerical experiments longer than 1-2 weeks, that is, not aimed to forecasting. We assimilate (1) the global OTIS 3 alone, (2) the local SYNOP observations alone, and (3) both OTIS 3 and SYNOP observations. We assess the success of the assimilations with quantitative measures of performance, both on the global and local scale. The results can be summarized as follows. The intermittent assimilation of the global OTIS 3 is necessary to keep the model "on track" over 3-month simulations on the global scale. As OTIS 3 is assimilated at every model grid point, a "gentle" weight must be prescribed to it so as not to overconstrain the model. However, in these assimilations the predicted velocity fields over the SYNOP arrays are greatly in error. The continuous assimilation of the localized SYNOP data sets with a strong weight is necessary to obtain local realistic evolutions. Then assimilation of velocity measurements alone recovers the density structure over the array area. However, the spatial coverage of the SYNOP measurements is too small to constrain the model on the global scale. Thus the blending of both types of datasets is necessary in the assimilation as they constrain different time and space scales. Our choice of "gentle" nudging weight for the global OTIS 3 and "strong" weight for the local SYNOP data provides for realistic simulations of the Gulf Stream system, both globally and locally, on the 3- to 4-month-long timescale, the one governed by the Gulf Stream jet internal dynamics.
Overton, E B; Ashton, B M; Miles, M S
2004-10-01
The distribution of selected hydrocarbons within ten dated sediment cores taken from the Mississippi River Bight off coastal Louisiana suggests a chronic contaminant loading from several sources including the river itself, oil and gas exploration in the central Gulf of Mexico (GOM) shelf area, and natural geologic hydrocarbon seeps. Data were grouped as either total polycyclic aromatic hydrocarbons (PAH's), which were indicative of pyrogenic PAH's; or estimated total hopanes (indicative of petrogenic hydrocarbons). The total PAH concentrations and estimated total hopanes begin increasing above background levels (approximately 200 ng g(-1)) after the 1950s. The distribution of these hydrocarbons and hopanes within the dated sediment cores suggests that the Mississippi River is a regional source of pyrogenic PAH's, and that the hopanes are from natural geologic hydrocarbon seeps, oil and gas exploration in the GOM, or both.
Schwing, P T; O'Malley, B J; Romero, I C; Martínez-Colón, M; Hastings, D W; Glabach, M A; Hladky, E M; Greco, A; Hollander, D J
2017-01-01
Following the Deepwater Horizon (DWH) event in 2010 subsurface hydrocarbon intrusions (1000-1300 m) and an order of magnitude increase in flocculent hydrocarbon deposition caused increased concentrations of hydrocarbons in continental slope sediments. This study sought to characterize the variability [density, Fisher's alpha (S), equitability (E), Shannon (H)] of benthic foraminifera following the DWH event. A series of sediment cores were collected at two sites in the northeastern Gulf of Mexico from 2010 to 2012. At each site, three cores were utilized for benthic faunal analysis, organic geochemistry, and redox metal chemistry, respectively. The surface intervals (∼0-10 mm) of the sedimentary records collected in December 2010 at DSH08 and February 2011 at PCB06 were characterized by significant decreases in foraminiferal density, S, E, and H, relative to the down-core intervals as well as previous surveys. Non-metric multidimensional scaling (nMDS) analysis suggested that a 3-fold increase in polycyclic aromatic hydrocarbon (PAH) concentration in the surface interval, relative to the down-core interval, was the environmental driver of benthic foraminiferal variability. These records suggested that the benthic foraminiferal recovery time, following an event such as the DWH, was on the order of 1-2 years.
NASA Astrophysics Data System (ADS)
Ciobanu, M.-C.; Rabineau, M.; Droz, L.; Révillon, S.; Ghiglione, J.-F.; Dennielou, B.; Jorry, S.-J.; Kallmeyer, J.; Etoubleau, J.; Pignet, P.; Crassous, P.; Vandenabeele-Trambouze, O.; Laugier, J.; Guégan, M.; Godfroy, A.; Alain, K.
2012-09-01
An interdisciplinary study was conducted to evaluate the relationship between geological and paleoenvironmental parameters and the bacterial and archaeal community structure of two contrasting subseafloor sites in the Western Mediterranean Sea (Ligurian Sea and Gulf of Lion). Both depositional environments in this area are well-documented from paleoclimatic and paleooceanographic point of views. Available data sets allowed us to calibrate the investigated cores with reference and dated cores previously collected in the same area, and notably correlated to Quaternary climate variations. DNA-based fingerprints showed that the archaeal diversity was composed by one group, Miscellaneous Crenarchaeotic Group (MCG), within the Gulf of Lion sediments and of nine different lineages (dominated by MCG, South African Gold Mine Euryarchaeotal Group (SAGMEG) and Halobacteria) within the Ligurian Sea sediments. Bacterial molecular diversity at both sites revealed mostly the presence of the classes Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria within Proteobacteria phylum, and also members of Bacteroidetes phylum. The second most abundant lineages were Actinobacteria and Firmicutes at the Gulf of Lion site and Chloroflexi at the Ligurian Sea site. Various substrates and cultivation conditions allowed us to isolate 75 strains belonging to four lineages: Alpha-, Gammaproteobacteria, Firmicutes and Actinobacteria. In molecular surveys, the Betaproteobacteria group was consistently detected in the Ligurian Sea sediments, characterized by a heterolithic facies with numerous turbidites from a deep-sea levee. Analysis of relative betaproteobacterial abundances and turbidite frequency suggested that the microbial diversity was a result of main climatic changes occurring during the last 20 ka. Statistical direct multivariate canonical correspondence analyses (CCA) showed that the availability of electron acceptors and the quality of electron donors (indicated by age) strongly influenced the community structure. In contrast, within the Gulf of Lion core, characterized by a homogeneous lithological structure of upper-slope environment, most detected groups were Bacteroidetes and, to a lesser extent, Betaproteobacteria. At both site, the detection of Betaproteobacteria coincided with increased terrestrial inputs, as confirmed by the geochemical measurements (Si, Sr, Ti and Ca). In the Gulf of Lion, geochemical parameters were also found to drive microbial community composition. Taken together, our data suggest that the palaeoenvironmental history of erosion and deposition recorded in the Western Mediterranean Sea sediments has left its imprint on the sedimentological context for microbial habitability, and then indirectly on structure and composition of the microbial communities during the late Quaternary.
Streaming simplification of tetrahedral meshes.
Vo, Huy T; Callahan, Steven P; Lindstrom, Peter; Pascucci, Valerio; Silva, Cláudio T
2007-01-01
Unstructured tetrahedral meshes are commonly used in scientific computing to represent scalar, vector, and tensor fields in three dimensions. Visualization of these meshes can be difficult to perform interactively due to their size and complexity. By reducing the size of the data, we can accomplish real-time visualization necessary for scientific analysis. We propose a two-step approach for streaming simplification of large tetrahedral meshes. Our algorithm arranges the data on disk in a streaming, I/O-efficient format that allows coherent access to the tetrahedral cells. A quadric-based simplification is sequentially performed on small portions of the mesh in-core. Our output is a coherent streaming mesh which facilitates future processing. Our technique is fast, produces high quality approximations, and operates out-of-core to process meshes too large for main memory.
U. S. GODAE: Global Ocean Prediction with the HYbrid Coordinate Ocean Model
2009-01-01
2008). There are three major contributors to the strength of the Gulf Stream, (1) the wind forcing, (2) the Atlantic meridional overturning ...Smith, 2007. Resolution convergence and sensitivity studies with North Atlantic circulation models. Part I. The western boundary current system...σ-z coordinates, and (3) a baroclinic version of ADvanced CIRCulation (ADCIRC), the latter an unstructured grid model for baroclinic coastal
Validation Test Report for the Automated Optical Processing System (AOPS) Version 4.12
2015-09-03
NPP) with the VIIRS sensor package as well as data from the Geostationary Ocean Color Imager (GOCI) sensor, aboard the Communication Ocean and...capability • Prepare the NRT Geostationary Ocean Color Imager (GOCI) data stream for integration into operations. • Improvements in sensor...Navy (DON) Environmental Data Records (EDRs) Expeditionary Warfare (EXW) Geostationary Ocean Color Imager (GOCI) Gulf of Mexico (GOM) Hierarchical
Secular Change and Inter-annual Variability of the Gulf Stream Position, 1993-2013, 70°-55°W
NASA Astrophysics Data System (ADS)
Bisagni, J. J.; Gangopadhyay, A.
2016-12-01
The Gulf Stream (GS) is the northeastward-flowing surface limb of the Atlantic Ocean meridional overturning circulation (AMOC) "conveyer belt" that flows towards Europe and the Nordic Seas. Changes in the GS position after its separation from the coast at Cape Hatteras, i.e., from 75°W to 50°W, may be key to understanding the AMOC, sea level variability and ecosystem behavior along the east coast of North America. In this study we compare secular change and inter-annual variability (IAV) of annual mean Gulf Stream North Wall (GSNW) position with equator-ward Labrador Current (LC) transport along the southwestern Grand Banks near 52° W using 21 years (1993-2013) of satellite altimeter data. Results at 70°, 65°, 60° and 55° W show a southward secular trend for the GSNW, decreasing to the west. IAV of de-trended GSNW position residuals also decreases to the west. The long-term secular trend of annual mean upper layer LC transport increases near 52° W. Furthermore, IAV of LC transport residuals near 52° W is significantly correlated with GSNW position residuals at 55° W at a lag of +1-year. Spectral analysis reveals inter-annual peaks at 5-7 years and 2-3 years for the North Atlantic Oscillation (NAO), GSNW (65°-55°W) and LC transport for 1993-2013. A volume calculation using the LC rms residual of +1.04 Sv near 52° W results in an estimated GSNW residual of 79 km, or 63% of the observed 125.6 km (1.13°) rms value at 55° W. A similar volume calculation using the positive long-term, upper-layer LC transport trend accounts for 68% of the observed southward shift of the GSNW over the 1993-2013 period. Our work provides observational evidence of direct interaction between the upper layers of the sub-polar and sub-tropical gyres within the North Atlantic over secular and inter-annual time scales as suggested by previous workers.
NASA Astrophysics Data System (ADS)
Andres, M.; Toole, J. M.; Torres, D. J.; Smethie, W. M., Jr.; Joyce, T. M.; Curry, R. G.
2016-02-01
Shipboard velocity and property data from 18 transects across the North Atlantic Deep Western Boundary Current (DWBC) near 40˚N are analyzed to study the evolution of the Denmark Strait Overflow Water (DSOW) component of the DWBC and its mixing with the interior. The transects were made between 1994 and 2014 and lie along Line W, which reaches from the continental shelf south of New England to Bermuda. Measurements comprise velocity from lowered acoustic Doppler current profilers (LADCPs), CTD profiles, and trace gas chlorofluorocarbon (CFC) concentrations from bottle samples at discrete depths at 26 regular stations or a subset of these stations. In each transect, DSOW exhibits a distinct CFC concentration maximum in the abyssal ocean (> 3000 m depth) along the sloped western boundary. Sea surface height (SSH) maps from satellite altimetry indicate that quasi-stationary meander troughs of the Gulf Stream path in the upper ocean were present at Line W during 5 of the 18 sections. For these 5 sections, the LADCP velocity sections suggest the upper ocean trough is accompanied by a large cyclone in the deep ocean in the DSOW density layer. The occurrence of deep cyclones in conjunction with Gulf Stream troughs as inferred from the LADCP sections along Line W is consistent with previous observations (from 1988 to 1990) in the region from a moored array in the Synoptic Ocean Prediction (SYNOP) experiment. The SYNOP array suggested deep cyclones are present here about 35% of the time. The composite velocity section produced from the 5 Line W transects sampling through a Gulf Stream trough suggests that a typical cyclone reaches swirl speeds of greater than 30 cm/s at 3400 m depth and has a radius (distance between the center and the maximum velocity) of 75 km. The tracer data suggest that these cyclones affect not only the deep velocity structure along Line W, but also provide a mechanism for water exchange between the DWBC and the interior.
Ku-band ocean radar backscatter observations during SWADE
NASA Technical Reports Server (NTRS)
Nghiem, S. V.; Li, F. K.; Lou, S. H.; Neumann, G.
1993-01-01
We present results obtained by an airborne Ku-band scatterometer during the Surface Wave Dynamics Experiment (SWADE). The specific objective of this study is to improve our understanding of the relationship between ocean radar backscatter and near surface winds. The airborne scatterometer, NUSCAT, was flown on the NASA Ames C-130 over an instrumented oceanic area near 37 deg N and 74 deg W. A total of 10 flights from 27 Feb. to 9 Mar. 1991 were conducted. Radar backscatter at incidence angles of 0 to 60 deg were obtained. For each incidence angle, the NUSCAT antenna was azimuthally scanned in multiple complete circles to measure the azimuthal backscatter modulations. Both horizontal and vertical polarization backscatter measurements were made. In some of the flights, the cross-polarization backscatter was measured as well. Internal calibrations were carried out throughout each of the flights. Preliminary results indicate that the radar was stable to +/-0.3 dB for each flight. In this paper, we present studies of the backscatter measurements over several crossings of the Gulf Stream. In these crossings, large air-sea temperature differences were encountered and substantial changes in the radar cross section were observed. We summarize the observations and compare them to the changes of several wind variables across the Gulf Stream boundary. In one of the flights, the apparent wind near the cold side of the Gulf Stream was very low (less than 3 m/s). The behavior of the radar cross sections at such low wind speeds and a comparison with models are presented. A case study of the effects of swell on the absolute cross section and the azimuthal modulation pattern is presented. Significant wave heights larger than m were observed during SWADE. The experimentally observed effects of the swell on the radar backscatter are discussed. The effects are used to assess the uncertainties in wind retrieval due to underlying waves. A summary of azimuthal modulation from our ten-flight of NUSCAT data is given. Wind velocities, air and sea surface temperature, ocean spectrum, and other variables measured from aircraft and buoys are also shown.
NASA Astrophysics Data System (ADS)
Wiem, F.; Bassinot, F. C.; Lézine, A. M.
2016-12-01
Core MD92-1002 retrieved from the Gulf of Aden provides a unique paleoenvironmental and paleoclimatic record to study the evolution of continental and marine environments since 20 ka. Palynological analyses (pollen grains, spores, dinoflagellate cysts) were performed and data were combined with geochemical (δ18O, X-Ray Fluorescence) and sedimentological parameters (sedimentation rates, Total Organic Carbon (TOC)). Pollen grains reveal regional hyper-arid conditions during the glacial period, characterized by sparse vegetation cover of Saharo-Sindian origin. The abundance of steppic taxa associated with charcoal fragments suggests strong wind activity. Humidity tracers increased from 14.9 ka and reached their maximum between 9 and 7.5 ka. This maximum is characterized by the development of the tropical mangrove Rhizophora in the Gulf of Aden, reflecting tropical conditions with summer monsoon rains. The timing of events deduced from palynological records and continental data such as lacustrine and palustrine deposits and speleothems from Socotra and Oman, reveals a northward and westward shift of the Inter-Tropical Convergence Zone (ITCZ) summer position at the onset of the Holocene Humid Period (HHP). Dinoflagellate cyst assemblages suggest that the glacial period was characterized by weakened upwellings and well-ventilated bottom water. Primary productivity in the Gulf of Aden increased from 14.5 ka and reached its maximum during the glacial/interglacial transition between 12.6 and 10.8 ka. It took place about 3 ka earlier than the peak intensity of upwellings off the Oman margin, which is associated with the maximum of SW monsoonal winds. This singularity could be explained by the landlocked position of the gulf, at the junction between two orthogonal wind regimes during the boreal summer season (SW monsoon winds prevailing to the East of the Gulf, while NW winds blow along the main axis of the Red Sea to the West). TOC analysis reveals a Glacial-Interglacial variability that is largely decoupled from our reconstruction of surface productivity, suggesting that organic content is mainly controlled by preservation at the sea floor.
Evidence for seasonal low salinity surface waters in the Gulf of Mexico over the last 16,000 years
NASA Astrophysics Data System (ADS)
Spero, Howard J.; Williams, Douglas F.
1990-12-01
Oxygen isotopic analyses of individual Orbulina universa from Orca Basin core EN32-PC6 document the presence of low salinity surface waters in the northern Gulf of Mexico over the past 16 kyr. Isotopic data from an interval immediately following the Younger Dryas Event indicate the rapid decrease in δ18O values at the conclusion of the Younger Dryas was due to a year-round return of meltwater to the Gulf of Mexico. Data indicate periodic or seasonal low-salinity waters existed over the region of the Orca Basin prior to the initiation of the meltwater spike. Estimates suggest O. universa grew its shell in salinities at least 4.5 ‰ below ambient. Since O. universa may have calcified deep in the mixed layer during periods of low salinity, surface salinities could have been even lower. Comparison of the average of individual O. universa oxygen isotopic values with data from multiple shell samples of white Gs. ruber from the same core samples demonstrates that the two species record similar values during the late Holocene. In contrast, O. universa records lower oxygen isotopic values during the late glacial/deglacial intervals, possibly due to differences in seasonal distribution or shell ontogeny between the two species.
NASA Astrophysics Data System (ADS)
Hamaekers, Helen; Foubert, Anneleen; Wienberg, Claudia; Hebbeln, Dierk; Swennen, Rudy
2010-05-01
Cold-water coral carbonate mounds occur in patches along the continental margin of the North Atlantic Ocean, from northern Norway down to Mauretania. Recent research has been focused on carbonate mounds in the Gulf of Cadiz, especially along the Moroccan margin. The Pen Duick, the Renard and the Vernadsky carbonate mound provinces in the Gulf of Cádiz are only some of the mound provinces which have been the subject of several recent research projects (Foubert et al., 2008; Wienberg et al., 2009). No living scleractinians could be found on top of those carbonate mounds. During cruise 64PE284 of RV Pelagia, gravity cores have been taken through carbonate mounds in the Carbonate Mound Provinces (CMP) SE of Yuma mud volcano and N of Meknes mud volcano. These cores have been analysed by several methods such as Magnetic Susceptibility (MS), X-Ray Fluorescence (XRF), Inductive Coupled Plasma Optical Emission Spectroscopy (ICP-OES) and X-Ray Diffraction (XRD) to determine the geochemical characteristics of carbonate mounds, which can be used to quantify the effects of early diagenetic processes which may have altered the palaeo-environmental characteristics of the carbonate mounds. Dating has been done with 14C and U/Th methods pointing to mound growth phases being restricted to glacial periods. XRF and ICP-OES measurements give both qualitative and quantitative data of the chemical composition of the core. The main elements that have been analysed are Ca, Si, Fe, Sr, Al, K, Mg, Ti. According to the trend they follow, they can be devided in two groups, representative for the two encountered fraction types. These two fraction types (biogenic carbonate-rich fraction and terrigenous silicate-rich fraction) can be coupled to interglacial/glacial palaeo-environmental conditions. XRD measurements give an overview of the mineralogical composition of the cores. Thin sections, analysed by cathodeluminescence and classical optical petrography, and micro-CT scans are used to investigate the influence of early diagenesis. Along with the dating that has been performed, the obtained geochemical data give an overview of the extent to which palaeo-environmental conditions and diagenesis have influenced the carbonate mound sediments in the Gulf of Cádiz. References Foubert, A., Depreiter, D., Beck, T., Maignien, L., Pannemans, B., Frank, N., Blamart, D., Henriet, J.P., 2008. Carbonate mounds in a mud volcano province off north-west Morocco: Key to processes and controls. Marine Geology, 248, 74-96. Wienberg, C., Hebbeln, D., Fink, H.G., Mienis, F., Dorschel, B., Vertino, A., López Correa, M., Freiwald, A., 2009. Scleractinian cold-water corals in the Gulf of Cádiz - First clues about their spatial and temporal distribution, Deep-Sea Research I, 56, 1873-1893.
Variable Cycle Intake for Reverse Core Engine
NASA Technical Reports Server (NTRS)
Chandler, Jesse M (Inventor); Staubach, Joseph B (Inventor); Suciu, Gabriel L (Inventor)
2016-01-01
A gas generator for a reverse core engine propulsion system has a variable cycle intake for the gas generator, which variable cycle intake includes a duct system. The duct system is configured for being selectively disposed in a first position and a second position, wherein free stream air is fed to the gas generator when in the first position, and fan stream air is fed to the gas generator when in the second position.
Tests of a D vented thrust deflecting nozzle behind a simulated turbofan engine
NASA Technical Reports Server (NTRS)
Watson, T. L.
1982-01-01
A D vented thrust deflecting nozzle applicable to subsonic V/STOL aircraft was tested behind a simulated turbofan engine in the verticle thrust stand. Nozzle thrust, fan operating characteristics, nozzle entrance conditions, and static pressures were measured. Nozzle performance was measured for variations in exit area and thrust deflection angle. Six core nozzle configurations, the effect of core exit axial location, mismatched core and fan stream nozzle pressure ratios, and yaw vane presence were evaluated. Core nozzle configuration affected performance at normal and engine out operating conditions. Highest vectored nozzle performance resulted for a given exit area when core and fan stream pressure were equal. Its is concluded that high nozzle performance can be maintained at both normal and engine out conditions through control of the nozzle entrance Mach number with a variable exit area.
On the use of the earth resources technology satellite /LANDSAT-1/ in optical oceanography
NASA Technical Reports Server (NTRS)
Maul, G. A.; Gordon, H. R.
1975-01-01
Observations of the Gulf Stream System in the Gulf of Mexico were obtained in synchronization with LANDSAT-1. Computer enhanced images, which are necessary to extract useful oceanic information, show that the current can be observed by color (diffuse radiance) or sea state (specular radiance) effects associated with the cyclonic boundary even in the absence of a surface thermal signature. The color effect relates to the spectral variations in the optical properties of the water and its suspended particles, and is studied by radiative transfer theory. Significant oceanic parameters identified are: the probability of forward scattering, and the ratio of scattering to total attenuation. Several spectra of upwelling diffuse light are computed as a function of the concentration of particles and yellow substance.
Quantitative degassing of gas hydrate-bearing pressure cores from Green Canyon 955, Gulf of Mexico
NASA Astrophysics Data System (ADS)
Phillips, S. C.; Holland, M. E.; Flemings, P. B.; Schultheiss, P. J.; Waite, W. F.; Petrou, E. G.; Jang, J.; Polito, P. J.; O'Connell, J.; Dong, T.; Meazell, K.
2017-12-01
We present results from 20 quantitative degassing experiments of pressure-core sections collected during Expedition UT-GOM2-1 from Green Canyon 955 in the northern Gulf of Mexico. These experiments highlight an average pore-space methane hydrate saturation, Sh, of 59% (min: 12%; max 87%) in sediments between 413 and 440 mbsf in 2032 m water depth. There is a strong lithofacies control of hydrate saturation within the reservoir, with a high saturation sandy silt facies (Sh of 65 to 87%) interbedded with a low saturation clayey silt facies (Sh of 12 to 30%). Bedding occurs on the scale of tens of centimeters. Outside of the main hydrate reservoir, methane hydrate occurs in low saturations (Sh of 0.8 to 3%). Hydrate saturations exhibit a strong correlation (R2=0.89) with the average P-wave velocity measured through the degassed sections. These preliminary hydrate saturations were calculated assuming a porosity of 40% with core filling the full internal diameter of the core liner. Gas recovered during these experiments is composed of almost entirely methane, with an average of 94 ppm ethane and detectable, but not quantifiable, propane. Degassed pressure cores were depressurized through a manifold by the stepwise release of fluid, and the volumes of produced gas and water were monitored. The core's hydrostatic pressure was measured and recorded continuously at the manifold. Pressure and temperature were also measured by data storage tags within the sample chambers. Two slow, multi-day degassing experiments were performed to estimate the in situ salinity within core sections. Based on temperature and pressure observations at the point of the initial pressure rebound due to hydrate dissociation, we estimate the salinity within these samples to be between 33 and 42 g kg-1.
Bacterial Liasons: Bacteria Associated With Marine Benthic Meiofauna in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Diaz, K. S.; Sevigny, J.; Leasi, F.; Thomas, W. K.
2017-12-01
All macroorganisms are colonized by and harbor microbial associates that form their microbiome. Some microbial associates establish predictable symbioses across a host species. Other microbial assemblages, such as the human gut microbiome, exhibit semi-predictable patterns dependent on various factors such as host habitat and diet. Host species typically share core microbiota that remain temporally and spatially stable, but turnover of accessory microbiota due to to environmental change often confers adaptive advantage to the host would not receive from its own genome or core microbiome. Benthic meiofauna, microscopic eukaryotes that live in marine sediments, harbor bacterial associates that may confer functional advantages in the face of environmental perturbation that allow the host to persist and adapt during an environmental disturbance such as an oil spill. However, benthic meiofauna and their microbiota represent relatively unknown components of marine environments. In 2010, the Deepwater Horizon oil spill poured over 0.5 million metric tons of crude oil into the Gulf of Mexico. Now, much of the oil has dispersed, but some still lingers in environments such as marine sediments. Benthic meiofauna remain affected by these lingering hydrocarbons. Their inability to simply leave their habitat makes them ideal sentinels of environmental change that can factor into understanding oil spill impacts and inform response and mitigation of similar future events. Binning bacterial sequences from host whole shotgun genomes allows for analysis of microbiome gene coding and functional potentials that may assist the host through environmental disturbances, such as genes involved in hydrocarbon degradation pathways. 16S rRNA gene surveys reveal of microbiome composition of diverse meiofaunal taxa collected throughout the Gulf of Mexico. This work will examine structure and distribution of benthic meiofauna microbiomes in the Gulf of Mexico. Thus far, 16S surveys display differences between host microbiome composition and environmental microbiota. Microbiomes cluster based on host taxonomy and sampling location around the gulf.
Provenance of whitefish in the Gulf of Bothnia determined by elemental analysis of otolith cores
NASA Astrophysics Data System (ADS)
Lill, J.-O.; Finnäs, V.; Slotte, J. M. K.; Jokikokko, E.; Heimbrand, Y.; Hägerstrand, H.
2018-02-01
The strontium concentration in the core of otoliths was used to determine the provenance of whitefish found in the Gulf of Bothnia, Baltic Sea. To that end, a database of strontium concentration in fish otoliths representing different habitats (sea, river and fresh water) had to be built. Otoliths from juvenile whitefish were therefore collected from freshwater ponds at 5 hatcheries, from adult whitefish from 6 spawning sites at sea along the Finnish west coast, and from adult whitefish ascending to spawn in the Torne River, in total 67 otoliths. PIXE was applied to determine the elemental concentrations in these otoliths. While otoliths from the juveniles raised in the freshwater ponds showed low but varying strontium concentrations (194-1664 μg/g,), otoliths from sea-spawning fish showed high uniform strontium levels (3720-4333 μg/g). The otolith core analysis of whitefish from Torne River showed large variations in the strontium concentrations (1525-3650 μg/g). These otolith data form a database to be used for provenance studies of wild adult whitefish caught at sea. The applicability of the database was evaluated by analyzing the core of polished otoliths from 11 whitefish from a test site at sea in the Larsmo archipelago. Our results show that by analyzing strontium in the otolith core, we can differentiate between hatchery-origin and wild-origin whitefish, but not always between river and sea spawning whitefish.
Analysis of archaeal communities in Gulf of Mexico dead zone sediments.
Sediments may contribute significantly to Louisiana continental shelf “dead zone” hypoxia but limited information hinders comparison of sediment biogeochemistry between norm-oxic and hypoxic seasons. Dead zone sediment cores collected during hypoxia (September 2006) had higher l...
Dennen, Kristin O.; Warwick, Peter D.; McDade, Elizabeth Chinn
2010-01-01
The U.S. Geological Survey is currently assessing the oil and natural gas resources of the U.S. Gulf of Mexico region using a total petroleum system approach. An essential part of this geologically based method is evaluating the effectiveness of potential source rocks in the petroleum system. The purpose of this report is to make available to the public RockEval and vitrinite reflectance data from more than 1,900 samples of Mesozoic and Tertiary rock core and coal samples in the Gulf of Mexico area in a format that facilitates inclusion into a geographic information system. These data provide parameters by which the thermal maturity, type, and richness of potential sources of oil and gas in this region can be evaluated.
June and August median streamflows estimated for ungaged streams in southern Maine
Lombard, Pamela J.
2010-01-01
Methods for estimating June and August median streamflows were developed for ungaged, unregulated streams in southern Maine. The methods apply to streams with drainage areas ranging in size from 0.4 to 74 square miles, with percentage of basin underlain by a sand and gravel aquifer ranging from 0 to 84 percent, and with distance from the centroid of the basin to a Gulf of Maine line paralleling the coast ranging from 14 to 94 miles. Equations were developed with data from 4 long-term continuous-record streamgage stations and 27 partial-record streamgage stations. Estimates of median streamflows at the continuous-record and partial-record stations are presented. A mathematical technique for estimating standard low-flow statistics, such as June and August median streamflows, at partial-record streamgage stations was applied by relating base-flow measurements at these stations to concurrent daily streamflows at nearby long-term (at least 10 years of record) continuous-record streamgage stations (index stations). Weighted least-squares regression analysis (WLS) was used to relate estimates of June and August median streamflows at streamgage stations to basin characteristics at these same stations to develop equations that can be used to estimate June and August median streamflows on ungaged streams. WLS accounts for different periods of record at the gaging stations. Three basin characteristics-drainage area, percentage of basin underlain by a sand and gravel aquifer, and distance from the centroid of the basin to a Gulf of Maine line paralleling the coast-are used in the final regression equation to estimate June and August median streamflows for ungaged streams. The three-variable equation to estimate June median streamflow has an average standard error of prediction from -35 to 54 percent. The three-variable equation to estimate August median streamflow has an average standard error of prediction from -45 to 83 percent. Simpler one-variable equations that use only drainage area to estimate June and August median streamflows were developed for use when less accuracy is acceptable. These equations have average standard errors of prediction from -46 to 87 percent and from -57 to 133 percent, respectively.
Global Positioning System En Route/Terminal Exploratory Tests.
1982-12-01
the set in a Grumman G-159 Gulf stream during June and July 1981. •»-*r P "» _^„. ~kjfe. 11 H. "»> ’•! This report contains the test...i . ».....•. :. • i i r iia^ri 1 I.-—„., nlMllltt—’ PLOT STAAT TIME 21 42 20 PLOT ENO TIME 23 1» 20 DATE RECOnOFO- TIOtlM TIME OPS
1982-04-01
Fear. Deep Sea Res., 16, 225-231. Salby, M. L., 1981: Rossby normal modes in nonuniform background configurations. Part I: Simple fields. Part II...CUJRRENT METER 1363 m~ 1/4" WIRE So - 1I? GLASS FLOATS IGO I CHAIN 720 m ANCHOR lAIR W1145141 3300 I- Fig. 2. Florida Current test mooring 325
,
1909-01-01
This volume contains results of flow measurements made on certain streams in the United States. The work was performed by the water-resources branch of the United States Geological Survey, either independently or in cooperation with organizations mentioned herein. These investigations are authorized by the organic law of the Geological Survey (Stat. L., vol. 20, p. 394)...
U.S. GODAE: Global Ocean Prediction with the HYbrid Coordinate Ocean Model
2008-09-30
major contributors to the strength of the Gulf Stream, (1) the wind forcing, (2) the Atlantic meridional overturning circulation (AMOC), and (3) a...convergence and sensitivity studies with North Atlantic circulation models. Part I. The western boundary current system. Ocean Model., 16, 141-159...a baroclinic version of ADvanced CIRCulation (ADCIRC), the latter an unstructured grid model for baroclinic coastal/estuarian applications. NCOM is
Chemical and isotopic evidence of nitrogen transformation in the Mississippi River, 1997-98
Battaglin, William A.; Kendall, Carol; Chang, Cecily C.Y.; Silva, Steven R.; Campbell, D.H.
2001-01-01
Nitrate (NO3) and other nutrients discharged by the Mississippi River are suspected of causing a zone of depleted dissolved oxygen (hypoxic zone) in the Gulf of Mexico each summer. The hypoxic zone may have an adverse affect on aquatic life and commercial fisheries. The amount of NO3 delivered by the Mississippi River to the Gulf of Mexico is well documented, but the relative contributions of different sources of NO3, and the magnitude of subsequent in-stream transformations of NO3, are not well understood. Forty-two water samples collected in 1997 and 1998 at eight stations located either on the Mississippi River or its major tributaries were analysed for NO3, total nitrogen (N), atrazine, chloride concentrations and NO3 stable isotopes (δ15N and δ18O). These data are used to assess the magnitude and nature of in-stream N transformation and to determine if the δ15N and δ18O of NO3 provide information about NO3 sources and transformation processes in a large river system (drainage area 2 900 000 km2) that would otherwise be unavailable using concentration and discharge data alone. Results from 42 samples indicate that the δ15N and δ18O ratios between sites on the Mississippi River and its tributaries are somewhat distinctive, and vary with season and discharge rate. Of particular interest are two nearly Lagrangian sample sets, in which samples from the Mississippi River at St Francisville, LA, are compared with samples collected from the Ohio River at Grand Chain, II, and the Mississippi River at Thebes, IL. In both Lagrangian sets, mass-balance calculations indicate only a small amount of in-stream N loss. The stable isotope data from the samples suggest that in-stream N assimilation and not denitrification accounts for most of the N loss in the lower Mississippi River during the spring and early summer months.
Oceanic heterotrophic dinoflagellates: distribution, abundance, and role as microzooplankton
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lessard, E.J.
1984-01-01
The primary objectives of this thesis were to determine the distribution and abundance of heterotrophic dinoflagellates across the Gulf Stream system off Cape Hatteras and to assess the potential grazing impact of these microheterotrophs in plankton communities. A list of species encountered in this study and their trophic status based on epifluorescence is presented, as well as observations on the presence of external or internal symbionts. The abundance of heterotrophic dinoflagellates across the Gulf Stream region off Cape Hatteras was determined from bimonthly net tow samples over a year and from whole water samples in March. Their average abundance wasmore » twice that of net ciliates in the net plankton and ten times that of ciliates in the nanoplankton. An isotope technique was developed to measure grazing rates of individual dinoflaggellates and other microzooplankton which cannot be separated in natural populations on the basis of size. /sup 3/H-thymidine and /sup 14/C-bicarbonate were used to label natural heterotrophic (bacteria and bacterivores) and autotrophic (phytoplankton and herbivores) food, respectively. Estimates of the grazing impact of heterotrophic kinoflagellates relative to other groups of heterotrophs on phytoplankton and bacteria were made by combining abundance data and clearance rates. Such calculations suggested that heterotrophic dinoflagellates may be an important group of grazers in oceanic waters.« less
Observed decline of the Atlantic meridional overturning circulation 2004-2012
NASA Astrophysics Data System (ADS)
Smeed, D. A.; McCarthy, G. D.; Cunningham, S. A.; Frajka-Williams, E.; Rayner, D.; Johns, W. E.; Meinen, C. S.; Baringer, M. O.; Moat, B. I.; Duchez, A.; Bryden, H. L.
2014-02-01
The Atlantic meridional overturning circulation (AMOC) has been observed continuously at 26° N since April 2004. The AMOC and its component parts are monitored by combining a transatlantic array of moored instruments with submarine-cable-based measurements of the Gulf Stream and satellite derived Ekman transport. The time series has recently been extended to October 2012 and the results show a downward trend since 2004. From April 2008 to March 2012, the AMOC was an average of 2.7 Sv (1 Sv = 106 m3 s-1) weaker than in the first four years of observation (95% confidence that the reduction is 0.3 Sv or more). Ekman transport reduced by about 0.2 Sv and the Gulf Stream by 0.5 Sv but most of the change (2.0 Sv) is due to the mid-ocean geostrophic flow. The change of the mid-ocean geostrophic flow represents a strengthening of the southward flow above the thermocline. The increased southward flow of warm waters is balanced by a decrease in the southward flow of lower North Atlantic deep water below 3000 m. The transport of lower North Atlantic deep water slowed by 7% per year (95% confidence that the rate of slowing is greater than 2.5% per year).
Slowing of the Atlantic meridional overturning circulation at 25 degrees N.
Bryden, Harry L; Longworth, Hannah R; Cunningham, Stuart A
2005-12-01
The Atlantic meridional overturning circulation carries warm upper waters into far-northern latitudes and returns cold deep waters southward across the Equator. Its heat transport makes a substantial contribution to the moderate climate of maritime and continental Europe, and any slowdown in the overturning circulation would have profound implications for climate change. A transatlantic section along latitude 25 degrees N has been used as a baseline for estimating the overturning circulation and associated heat transport. Here we analyse a new 25 degrees N transatlantic section and compare it with four previous sections taken over the past five decades. The comparison suggests that the Atlantic meridional overturning circulation has slowed by about 30 per cent between 1957 and 2004. Whereas the northward transport in the Gulf Stream across 25 degrees N has remained nearly constant, the slowing is evident both in a 50 per cent larger southward-moving mid-ocean recirculation of thermocline waters, and also in a 50 per cent decrease in the southward transport of lower North Atlantic Deep Water between 3,000 and 5,000 m in depth. In 2004, more of the northward Gulf Stream flow was recirculating back southward in the thermocline within the subtropical gyre, and less was returning southward at depth.
Impacts of Mesoscale Eddies on the Vertical Nitrate Flux in the Gulf Stream Region
NASA Astrophysics Data System (ADS)
Zhang, Shuwen; Curchitser, Enrique N.; Kang, Dujuan; Stock, Charles A.; Dussin, Raphael
2018-01-01
The Gulf Stream (GS) region has intense mesoscale variability that can affect the supply of nutrients to the euphotic zone (Zeu). In this study, a recently developed high-resolution coupled physical-biological model is used to conduct a 25-year simulation in the Northwest Atlantic. The Reynolds decomposition method is applied to quantify the nitrate budget and shows that the mesoscale variability is important to the vertical nitrate supply over the GS region. The decomposition, however, cannot isolate eddy effects from those arising from other mesoscale phenomena. This limitation is addressed by analyzing a large sample of eddies detected and tracked from the 25-year simulation. The eddy composite structures indicate that positive nitrate anomalies within Zeu exist in both cyclonic eddies (CEs) and anticyclonic eddies (ACEs) over the GS region, and are even more pronounced in the ACEs. Our analysis further indicates that positive nitrate anomalies mostly originate from enhanced vertical advective flux rather than vertical turbulent diffusion. The eddy-wind interaction-induced Ekman pumping is very likely the mechanism driving the enhanced vertical motions and vertical nitrate transport within ACEs. This study suggests that the ACEs in GS region may play an important role in modulating the oceanic biogeochemical properties by fueling local biomass production through the persistent supply of nitrate.
NASA Astrophysics Data System (ADS)
Das, S.
2012-12-01
It is well known that the southerly shift of the Gulf Stream is associated with major storms, heavy rains and mudslide in the adjoining northern part of the globe. Phytoplanktons particularly their silicon utilizing members like diatoms were found to play a major part in this phenomenon. A decrease in silicon utilizing phytoplanktons and chlorophyll-a , which sometimes occurs even more than 10 fold was found associated with a parallel significant decrease of zooplanktons as reflected in the CPR survey, leads to fall of sea temperature causing a shift of the Gulf Stream. This sea temperature changes is also associated with cooling of the adjoining atmosphere in a remarkable way which leads to weather changes. The association of silicon utilizing diatoms and the ocean currents guides the future trends in the climatic swing known as NAO, one of the great fluctuations that occur in the global climate, the largest of which is the ENSO phenomenon in the Pacific Ocean, which cause destruction all around the tropics. When total density and biovolume of phytoplanktons were studied it was found that the changes of pennate diatoms was unique and occurred in an opposite way in comparison to green algae, blue green algae, chrysophyte, cryptophytes, dinoflagellates and green flagellates.
Small-scale shear measurements during the Fine and Microstructure Experiment (Fame)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gargett, A.E.; Osborn, T.R.
1981-03-20
The turbulent kinetic energy dissipation rate e is estimated from measurements of small-scale shear taken with a vertical profiler during the Fine and Microstructure Experiment (Fame). Typical profiles of e are presented for the different oceanographic regions sampled, the Gulf Stream, a mid-Sargasso site, and locations withoutin and with the 100 fathom (approx.2000 m) contour about the island of Bermuda. Heavily averaged values of e are presented as a funtion of mean Vaeisaela frequency N-bar, a fundamental scaling parameter for the oceanic internal wave field. A dependence of e-barproportionalN-bar is found for an ensemble of stations near Bermuda: functional dependencemore » for an ensemble of stations at the mid-Sargasso site is less clear, with results exhibiting an undersirable sensitivity to infrequent large events. Dissipation is found to increase as the island of Bermuda is approached from any direction: the density of measurements is insufficient to determine any azimuthal variation resulting from the anisotropic mean flow field about the island at the time. A set of three profiles across the Gulf Stream suggests that this is not a region of abnormally high dissipation, a conclusion supported by previous and concurrent measurements of temperature finestructure and microstructure.« less
NASA Astrophysics Data System (ADS)
Davis, Cabell S.; Wiebe, Peter H.
1985-01-01
Macrozooplankton size structure and taxonomic composition in warm-core ring 82B was examined from a time series (March, April, June) of ring center MOCNESS (1 m) samples. Size distributions of 15 major taxonomic groups were determined from length measurements digitized from silhouette photographs of the samples. Silhouette digitization allows rapid quantification of Zooplankton size structure and taxonomic composition. Length/weight regressions, determined for each taxon, were used to partition the biomass (displacement volumes) of each sample among the major taxonomic groups. Zooplankton taxonomic composition and size structure varied with depth and appeared to coincide with the hydrographic structure of the ring. In March and April, within the thermostad region of the ring, smaller herbivorous/omnivorous Zooplankton, including copepods, crustacean larvae, and euphausiids, were dominant, whereas below this region, larger carnivores, such as medusae, ctenophores, fish, and decapods, dominated. Copepods were generally dominant in most samples above 500 m. Total macrozooplankton abundance and biomass increased between March and April, primarily because of increases in herbivorous taxa, including copepods, crustacean larvae, and larvaceans. A marked increase in total macrozooplankton abundance and biomass between April and June was characterized by an equally dramatic shift from smaller herbivores (1.0-3.0 mm) in April to large herbivores (5.0-6.0 mm) and carnivores (>15 mm) in June. Species identifications made directly from the samples suggest that changes in trophic structure resulted from seeding type immigration and subsequent in situ population growth of Slope Water zooplankton species.
2013-09-01
sequence dataset. All procedures were performed by personnel in the IIMT UT Southwestern Genomics and Microarray Core using standard protocols. More... sequencing run, samples were demultiplexed using standard algorithms in the Genomics and Microarray Core and processed into individual sample Illumina single... Sequencing (RNA-Seq), using Illumina’s multiplexing mRNA-Seq to generate full sequence libraries from the poly-A tailed RNA to a read depth of 30
Pope, Larry M.; Milligan, Chad R.; Mau, David Phillip
2002-01-01
An examination of soil cores collected from 43 nonagricultural coring sites in the Cheney Reservoir watershed of south-central Kansas was conducted by the U.S. Geological Survey in September 1999. The cores were collected as part of an ongoing cooperative study with the city of Wichita, Kansas. The 43 sites (mostly cemeteries) were thought to have total phosphorus concentrations in the soil that are representative of natural conditions (unaffected by human activity). The purpose of this report is to present the analysis and evaluation of these soil cores, to quantify the phosphorus contributions to Cheney Reservoir from natural and agricultural sources, and to provide estimates of stream-water-quality response to natural concentrations of total phosphorus in the soil. Analysis of soil cores from the 43 sites produced natural concentrations of total phosphorus that ranged from 74 to 539 milligrams per kilogram with a median concentration of 245 milligrams per kilogram in 2-inch soil cores and from 50 to 409 milligrams per kilogram with a median concentration of 166 milligrams per kilogram in 8-inch soil cores. Natural concentrations of total phosphorus in soil were statistically larger in samples from coring sites in the eastern half of the watershed than in samples from coring sites in the western half of the watershed. This result partly explains a previously determined west-to-east increase in total phosphorus yields in streams of the Cheney Reservoir watershed. A comparison of total phosphorus concentrations in soil under natural conditions to the historical mean total phosphorus concentration in agriculturally enriched bottom sediment in Cheney Reservoir indicated that agricultural activities within the watershed have increased total phosphorus concentrations in watershed soil that is transported in streams to about 2.9 times natural concentrations. Retention efficiencies for phosphorus and sediment historically transported to Cheney Reservoir were calculated at 92 and 99 percent, respectively. Most of the phosphorus was retained in bottom sediment. Sediment accumulation in Cheney Reservoir was less than reservoir design-life specifications on the basis of the age of the reservoir. Estimates of mean total phosphorus concentrations for selected streams in the Cheney Reservoir watershed under natural concentrations of total phosphorus in soil and a historic set of watershed conditions indicate that water from two of the five streamflow sampling sites would not meet the total phosphorus water-quality goal of 0.10 milligram per liter established by the Cheney Reservoir Watershed Task Force Committee. These results imply that the water-quality goal for total phosphorus in some streams of the watershed may not be met simply by reducing the amount of phosphorus applied. Instead, meeting the goal could involve a combination of approaches-for example, reducing the agricultural distribution of phosphorus and implementing changes in watershed activities to mitigate phosphorus movement to surface water.
NASA Astrophysics Data System (ADS)
Broshears, Robert E.; Clark, Gregory M.; Jobson, Harvey E.
2001-05-01
Stream discharge and the transport of nitrate, atrazine, and metolachlor in the Mississippi River Basin were simulated using the DAFLOW/BLTM hydrologic model. The simulated domain for stream discharge included river reaches downstream from the following stations in the National Stream Quality Accounting Network: Mississippi River at Clinton, IA; Missouri River at Hermann, MO; Ohio River at Grand Chain, IL; and Arkansas River at Little Rock, AR. Coefficients of hydraulic geometry were calibrated using data from water year 1996; the model was validated by favourable simulation of observed discharges in water years 1992-1994. The transport of nitrate, atrazine, and metolachlor was simulated downstream from the Mississippi River at Thebes, IL, and the Ohio River at Grand Chain. Simulated concentrations compared favourably with observed concentrations at Baton Rouge, LA. Development of this model is a preliminary step in gaining a more quantitative understanding of the sources and fate of nutrients and pesticides delivered from the Mississippi River Basin to the Gulf of Mexico. Published in 2001 by John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Marca-Castillo, M. E.; Armstrong-Altrin, J.
2017-12-01
The textural analysis, mineralogy and geochemistry of two sediment cores recovered from the deep water zone of the southwestern part of the Gulf of Mexico ( 1666 and 1672 m water depth) were studied to infer the provenance and depositional behavior. The textural analysis revealed that both cores are dominated by silt, which occupy more than 50% in both samples and the clay occupy 40%. The petrographic analysis revealed remains of biogenic origin sediments and lithic fragments with an angular shape and low sphericity, indicating a low energy environment and therefore a low level of weathering in the sediment, which suggests that the sediments were not affected by transport and derived from a nearby source rock. In both cores quartz fragments were identified; also volcanic lithic and pyroxenes fragments, which are rocks of intermediate composition and are generally associated with the volcanic activity of the continental margins. SEM-EDS studies showed that the analysed samples have concentrations of minerals such as barite, gibbsite, kaolinite, grossular, magnetite, plagioclase and chlorite, which are probably derived from the mainland to the deep sea zone. In the trace element analysis it was observed a low Sc content, while Co, Ni, V and Cu are slightly enriched with respect to the upper continental crust; this enrichment is related to sediments from intermediate sources. The sediments are classified as shale in the log (SiO2 / Al2O3) - log (Fe2O / K2O) diagram. The fine particles of the shale indicate that a deposit occurred as a result of the gradual sedimentation due to relatively non-turbulent currents, which is consistent with the petrographic analysis. The geochemical features of major and trace elements suggest sediments were derived largely from the natural andesite erosion of coastal regions along the Gulf of Mexico. High values of Fe2O3 and MnO are observed in the upper intervals, reflecting the influence of volcanic sediments. The major element discriminant function diagrams indicate the provenance of sediments from a passive margin, which is consistent with the geology of the Gulf of Mexico.
Geological and geochemical implications of gas hydrates in the Gulf of Mexico. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooks, J.M.; Bryant, W.R.
1985-09-01
This document presents the results of a study of the geological and geochemical implications of gas hydrates in the Gulf of Mexico. The report is based primarily on data obtained from available seismic surveys of the Green Canyon, Garden Banks, Mississippi Canyon, and Orca Basins areas of the northern continental margin of the Gulf of Mexico. The study also includes the data and analysis obtained from several gas hydrate cores recovered in these areas. The report provides new data relevant to gas hydrate research for more in-depth research of the Gulf of Mexico gas hydrates and provides significant information whichmore » advances the knowledge and understanding of gas hydrate formations in the natural environment. The report contains several high resolution seismic surveys. In the four hydrate sites studied in detail, the seismic ''wipeout'' zones were all associated with collapsed structures, fault scarps, and/or salt piercement structures. These features provide conduits for the upward migration of either biogenic or thermogenic gas from depth. 35 refs., 47 figs., 9 tabs.« less
Poore, Richard Z.; Spear, Jessica W.; Tedesco, Kathy A.
2013-01-01
Sediment-trap samples from the northern Gulf of Mexico reveal that Globorotalia truncatulinoides, Neogloboquadrina dutertrei, Pulleniatina spp. (includes P. obliquiloculata and P. finalis), and the Globorotalia menardii group (includes Gt. menardii, Gt. tumida, and Gt. ungulata) generally occur in cold months. Globigerinoides ruber (white and pink varieties) and Globigennoides sacculifer occur throughout the year. The seasonal occurrence of individual taxa of planktic foraminifers in the Gulf of Mexico have important differences with the seasonal occurrence of the same taxa observed in a 6-year sediment-trap dataset from the western Sargasso Sea. Thus information on the ecologic preferences of individual taxa determined in one region cannot necessarily be applied directly to another area. In the northern Gulf of Mexico 90% of the total flux of Globorotalia truncatulinoides tests to sediments occurs in January and February. Mg/Ca and d18Ο measurements indicate that nonencrusted forms of Gt. truncatulinoides calcify in the upper-surface-mixed zone. Thus, analyses of nonencrusted Gt. truncatulinoides in sediments of the northern Gulf of Mexico have potential for monitoring past conditions in the winter-surface-mixed layer. The relatively low overall abundance of Globigerinoides ruber (white) in sediment-trap samples is anomalous because Gs. ruber (white) is one of the most abundant foraminifers in>150 µm census data from northern Gulf of Mexico Holocene sediment core samples. Globigerinoides ruber (pink) is a relatively persistent and common component of the sediment-trap samples. Thus Gs. ruber (pink) has potential as a proxy for mean annual sea-surface temperature in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Vidović, Jelena; Nawrot, Rafał; Gallmetzer, Ivo; Haselmair, Alexandra; Tomašových, Adam; Stachowitsch, Michael; Ćosović, Vlasta; Zuschin, Martin
2016-11-01
Shallow and sheltered marine embayments in urbanized areas are prone to the accumulation of pollutants, but little is known about the historical baselines of such marine ecosystems. Here we study foraminiferal assemblages, geochemical proxies and sedimentological data from 1.6 m long sediment cores to uncover ˜ 500 years of anthropogenic pressure from mining, port and industrial activities in the Gulf of Trieste, Italy. From 1600 to 1900 AD, normalized element concentrations and foraminiferal assemblages point to negligible effects of agricultural activities. The only significant anthropogenic activity during this period was mercury mining in the hinterlands of the gulf, releasing high amounts of mercury into the bay and significantly exceeding the standards on the effects of trace elements on benthic organisms. Nonetheless, the fluctuations in the concentrations of mercury do not correlate with changes in the composition and diversity of foraminiferal assemblages due to its non-bioavailability. Intensified agricultural and maricultural activities in the first half of the 20th century caused slight nutrient enrichment and a minor increase in foraminiferal diversity. Intensified port and industrial activities in the second half of 20th century increased the normalized trace element concentrations and persistent organic pollutants (PAH, PCB) in the topmost part of the core. This increase caused only minor changes in the foraminiferal community because foraminifera in Panzano Bay have a long history of adaptation to elevated trace element concentrations. Our study underlines the importance of using an integrated, multidisciplinary approach in reconstructing the history of environmental and anthropogenic changes in marine systems. Given the prolonged human impacts in coastal areas like the Gulf of Trieste, such long-term baseline data are crucial for interpreting the present state of marine ecosystems.
Tuning magnetofluidic spreading in microchannels
NASA Astrophysics Data System (ADS)
Wang, Zhaomeng; Varma, V. B.; Wang, Z. P.; Ramanujan, R. V.
2015-12-01
Magnetofluidic spreading (MFS) is a phenomenon in which a uniform magnetic field is used to induce spreading of a ferrofluid core cladded by diamagnetic fluidic streams in a three-stream channel. Applications of MFS include micromixing, cell sorting and novel microfluidic lab-on-a-chip design. However, the relative importance of the parameters which govern MFS is still unclear, leading to non-optimal control of MFS. Hence, in this work, the effect of various key parameters on MFS was experimentally and numerically studied. Our multi-physics model, which combines magnetic and fluidic analysis, showed excellent agreement between theory and experiment. It was found that spreading was mainly due to cross-sectional convection induced by magnetic forces, and can be enhanced by tuning various parameters. Smaller flow rate ratio, higher magnetic field, higher core stream or lower cladding stream dynamic viscosity, and larger magnetic particle size can increase MFS. These results can be used to tune magnetofluidic spreading in microchannels.
NASA Astrophysics Data System (ADS)
Scherer, R. P.; Powell, R. D.; Coenen, J. J.; Hodson, T. O.; Puttkammer, R.; Tulaczyk, S. M.
2015-12-01
The WISSARD project recovered sediment cores and other geological materials from beneath the Whillans Ice Stream in West Antarctica during two drilling seasons; Subglacial Lake Whillans (SLW) in 2013 and 100km downstream at the ice stream grounding-zone (WGZ) in 2015. SLW is characterized by 2 m of freshwater with a high suspended-sediment load, whereas WGZ has a 10 m column of clear, fully marine water with an active community of marine organisms. Three coring devices were deployed as part of WISSARD, including (1) a multicorer, which recovers 3 unaltered sediment-water interface cores, up to 0.5m, (2) a piston corer, also deployed as a gravity corer, with a 3m core barrel, and (3) a percussion coring system with a 5m core barrel. Sediments recovered from SLW are muddy diamicton with minimal stratification. The sediments are characteristic of active till, not water-column deposition. The till is weak and effective stresses very low, thus till flux from deformation must also be low. Water through flow is sufficient to carry suspended clays and silts, but not transfer large volumes of sediment in the current glaciological regime. Microfossils and geochemical tracers (e.g., biomarkers, 10Be and 14C) in SLW sediments indicate Pleistocene input from open water conditions, plus input and mixing of components derived from older Cenozoic strata. Diatoms and other sedimentary characteristics of SLW are entirely consistent with material previously recovered from upstream sites on the Whillans Ice Stream (UpB), but show evidence of further cumulative subglacial shear strain, suggesting downstream translation as deforming till. Sedimentary components from WGZ indicate significant input from sources other than from the Whillans Ice Stream. Sediment cores include distinct stratigraphic variability, with differing geochemical and sedimentary components indicative of input from changing source beds. Components indicate a mixture of Quaternary and older components. The lower ca. 10m of ice at WGZ contained abundant sedimentary debris, and active melting and rainout of basal debris was observed. We attribute much of the stratigraphy of the upper sedimentary layers at WGZ, which include soft mud and rock clasts, to ongoing basal melting. This may represent recent grounding line retreat.
Heat flow and continental breakup: The Gulf of Elat (Aqaba)
NASA Technical Reports Server (NTRS)
Ben-Avraham, Z.; Vonherzen, R. P.
1985-01-01
Heat flow measurements were made in the major basins of the Gulf of Elat (Aqaba), northern Red Sea. The gulf is located at the southern portion of the Dead Sea rift which is a transform plate boundary. Gradient measurements at each site were made with a probe which allows multiple penetration of the bottom during a single deployment of the instrument. Thermal conductivity was determined by needle probe measurements on sedimentary cores. The mean heat flux, about 80 mWm(-2), is significantly above the continental mean, and probably also above that from the adjacent Sinai and Arabian continental blocks. The heat flow appears to increase from north to south. Such an increase may be related to the more advanced rifting stage of the Red Sea immediately to the south, which presently includes creation of an oceanic crust. This trend also corresponds to the general trend of the deep crustal structure in the gulf. Evidence from various geophysical fields suggest a gradual thinning of the crust towards the direction of the Red Sea where a normal oceanic crust exists. The heat flow data, together with other geophysical data, indicate a propagation of mature rifting activity from the Red Sea into the Gulf of Elat. This process is acting simultaneously with the transform motion along the Dead Sea rift.
30 CFR 817.72 - Disposal of excess spoil: Valley fill/head-of-hollow fills.
Code of Federal Regulations, 2012 CFR
2012-07-01
... precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a head-of-hollow... not located in an area containing intermittent or perennial streams. A rock-core chimney drain may be... is diverted around the fill. The alternative rock-core chimney drain system shall be incorporated...
30 CFR 817.72 - Disposal of excess spoil: Valley fill/head-of-hollow fills.
Code of Federal Regulations, 2013 CFR
2013-07-01
... precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a head-of-hollow... not located in an area containing intermittent or perennial streams. A rock-core chimney drain may be... is diverted around the fill. The alternative rock-core chimney drain system shall be incorporated...
30 CFR 817.72 - Disposal of excess spoil: Valley fill/head-of-hollow fills.
Code of Federal Regulations, 2011 CFR
2011-07-01
... precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a head-of-hollow... not located in an area containing intermittent or perennial streams. A rock-core chimney drain may be... is diverted around the fill. The alternative rock-core chimney drain system shall be incorporated...
30 CFR 816.72 - Disposal of excess spoil: Valley fills/head-of-hollow fills.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., 6-hour precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a... as the fill is not located in an area containing intermittent or perennial streams. A rock-core... upstream drainage is diverted around the fill. The alternative rock-core chimney drain system shall be...
30 CFR 817.72 - Disposal of excess spoil: Valley fill/head-of-hollow fills.
Code of Federal Regulations, 2014 CFR
2014-07-01
... precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a head-of-hollow... not located in an area containing intermittent or perennial streams. A rock-core chimney drain may be... is diverted around the fill. The alternative rock-core chimney drain system shall be incorporated...
30 CFR 816.72 - Disposal of excess spoil: Valley fills/head-of-hollow fills.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., 6-hour precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a... as the fill is not located in an area containing intermittent or perennial streams. A rock-core... upstream drainage is diverted around the fill. The alternative rock-core chimney drain system shall be...
30 CFR 816.72 - Disposal of excess spoil: Valley fills/head-of-hollow fills.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., 6-hour precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a... as the fill is not located in an area containing intermittent or perennial streams. A rock-core... upstream drainage is diverted around the fill. The alternative rock-core chimney drain system shall be...
30 CFR 816.72 - Disposal of excess spoil: Valley fills/head-of-hollow fills.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., 6-hour precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a... as the fill is not located in an area containing intermittent or perennial streams. A rock-core... upstream drainage is diverted around the fill. The alternative rock-core chimney drain system shall be...
30 CFR 816.72 - Disposal of excess spoil: Valley fills/head-of-hollow fills.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., 6-hour precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a... as the fill is not located in an area containing intermittent or perennial streams. A rock-core... upstream drainage is diverted around the fill. The alternative rock-core chimney drain system shall be...
30 CFR 817.72 - Disposal of excess spoil: Valley fill/head-of-hollow fills.
Code of Federal Regulations, 2010 CFR
2010-07-01
... precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a head-of-hollow... not located in an area containing intermittent or perennial streams. A rock-core chimney drain may be... is diverted around the fill. The alternative rock-core chimney drain system shall be incorporated...
Barron, John A.; Bukry, David
2007-01-01
Cores BAM80 E-17 (27.9° N) and NH01-26 (24.3° N) contain longer-duration cycles of diatoms and silicoflagellates. The early part of Medieval Climate Anomaly (∼ A.D. 900 to 1200) is characterized by two periods of reduced productivity (warmer SST) with an intervening high productivity (cool) interval centered at ∼ A.D. 1050. Reduced productivity and higher SST also characterize the record of the last ∼ 100 to 200 yr in these cores. Solar variability appears to be driving productivity cycles, as intervals of increased radiocarbon production (sunspot minima) correlate with intervals of enhanced productivity. It is proposed that increased winter cooling of the atmosphere above southwest U.S. during sunspot minima causes intensification of the northwest winds that blow down the Gulf during the late fall to early spring, leading to intensified overturn of surface waters and enhanced productivity.
Denitrification in nitrate-rich streams: Application of N2:Ar and 15N-tracer methods in intact cores
Smith, Lesley K.; Voytek, M.A.; Böhlke, J.K.; Harvey, J.W.
2006-01-01
Rates of benthic denitrification were measured using two techniques, membrane inlet mass spectrometry (MIMS) and isotope ratio mass spectrometry (IRMS), applied to sediment cores from two NO3--rich streams draining agricultural land in the upper Mississippi River Basin. Denitrification was estimated simultaneously from measurements of N 2:Ar (MIMS) and 15N[N2] (IRMS) after the addition of low-level 15NO3- tracer ( 15N:N = 0.03-0.08) in stream water overlying intact sediment cores. Denitrification rates ranged from about 0 to 4400 lmol N??m -2??h-1 in Sugar Creek and from 0 to 1300 ??mol N??m-2??h-1 in Iroquois River, the latter of which possesses greater streamflow discharge and a more homogeneous streambed and water column. Within the uncertainties of the two techniques, there is good agreement between the MIMS and IRMS results, which indicates that the production of N2 by the coupled process of nitrification/denitrification was relatively unimportant and surface-water NO3- was the dominant source of NO3- for benthic denitrification in these streams. Variation in stream NO3- concentration (from about 20 ??mol/L during low discharge to 1000 ??mol/L during high discharge) was a significant control of benthic denitrification rates, judging from the more abundant MIMS data. The interpretation that NO3- concentration directly affects denitrification rate was corroborated by increased rates of denitrification in cores amended with NO 3-. Denitrification in Sugar Creek removed ???11% per day of the instream NO3- in late spring and removed roughly 15-20% in late summer. The fraction of NO3- removed in Iroquois River was less than that of Sugar Creek. Although benthic denitrification rates were relatively high during periods of high stream flow, when NO3 concentrations were also high, the increase in benthic denitrification could not compensate for the much larger increase in stream NO3- fluxes during high flow. Consequently, fractional NO3- losses were relatively low during high flow. ?? 2006 by the Ecological Society of America.
A simulation of the global ocean circulation with resolved eddies
NASA Astrophysics Data System (ADS)
Semtner, Albert J.; Chervin, Robert M.
1988-12-01
A multilevel primitive-equation model has been constructed for the purpose of simulating ocean circulation on modern supercomputing architectures. The model is designed to take advantage of faster clock speeds, increased numbers of processors, and enlarged memories of machines expected to be available over the next decade. The model allows global eddy-resolving simulations to be conducted in support of the World Ocean Circulation Experiment. Furthermore, global ocean modeling is essential for proper representation of the full range of oceanic and climatic phenomena. The first such global eddy-resolving ocean calculation is reported here. A 20-year integration of a global ocean model with ½° grid spacing and 20 vertical levels has been carried out with realistic geometry and annual mean wind forcing. The temperature and salinity are constrained to Levitus gridded data above 25-m depth and below 710-m depth (on time scales of 1 month and 3 years, respectively), but the values in the main thermocline are unconstrained for the last decade of the calculation. The final years of the simulation allow the spontaneous formation of waves and eddies through the use of scale-selective viscosity and diffusion. A quasi-equilibrium state shows many realistic features of ocean circulation, including unstable separating western boundary currents, the known anomalous northward heat transport in the South Atlantic, and a global compensation for the abyssal spread of North Atlantic Deep Water via a long chain of thermocline mass transport from the tropical Pacific, through the Indonesian archipelago, across the Indian Ocean, and around the southern tip of Africa. This chain of thermocline transport is perhaps the most striking result from the model, and eddies and waves are evident along the entire 20,000-km path of the flow. The modeled Gulf Stream separates somewhat north of Cape Hatteras, produces warm- and cold-core rings, and maintains its integrity as a meadering thermal front as far east as the Mid-Atlantic Ridge. The Florida Current near the Yucatan peninsula sheds warm-core rings into the Gulf of Mexico. The East Australia Current produces warm rings which travel southward where the main current turns eastward. The Kuroshio and Oyashio currents are modeled as separate and distinct, each capable of producing warm and cold rings, but neither of them being distinguishable more than 1500 km offshore. A number of frontal regions in the Antarctic Circumpolar Current also exhibit spontaneous variability. Some specific areas of vigorous eddy activity have been identified in the South Atlantic by examining regional enlargements of the southwest Atlantic and of the southeast Atlantic over a simulated span of 225 days, using color raster animations of the volume transport stream function and of the temperature at 160-m depth. The Agulhas Current spawns mainly warm-core rings which enter the large-scale gyre circulation of the South Atlantic after rounding the tip of Africa and moving to the northwest. The Drake Passage has two thermal fronts, the northern of which is strongly unstable and generates ring pairs at about a 140-day period, whose net effect is to transport heat poleward. The confluence of the Brazil Current and the Malvinas (Falkland) Current forces each to turn abruptly eastward and exhibit ring formation near the continental shelf break, with unstable meandering farther downstream. It appears that each separated jet has a distinct core for generating unstable waves with periods of roughly 60 days. More quantitative results on global dynamics will be forthcoming as seasonally forced simulations, including ones with ⅓° × ⅖° grid spacing, are obtained and as the simulated variability and eddy transports are analyzed in a systematic fashion.
NASA Astrophysics Data System (ADS)
Armstrong-Altrin, John S.; Machain-Castillo, María Luisa; Rosales-Hoz, Leticia; Carranza-Edwards, Arturo; Sanchez-Cabeza, Joan-Albert; Ruíz-Fernández, Ana Carolina
2015-03-01
The aim of this work is to constrain the provenance and depositional history of continental slope sediments in the Southwestern Gulf of Mexico (~1089-1785 m water depth). To achieve this, 10 piston sediment cores (~5-5.5 m long) were studied for mineralogy, major, trace and rare earth element geochemistry. Samples were analyzed at three core sections, i.e. upper (0-1 cm), middle (30-31 cm) and lower (~300-391 cm). The textural study reveals that the core sediments are characterized by silt and clay fractions. Radiocarbon dating of sediments for the cores at different levels indicated a maximum of ~28,000 year BP. Sediments were classified as shale. The chemical index of alteration (CIA) values for the upper, middle, and lower sections revealed moderate weathering in the source region. The index of chemical maturity (ICV) and SiO2/Al2O3 ratio indicated low compositional maturity for the core sediments. A statistically significant correlation observed between total rare earth elements (∑REE) versus Al2O3 and Zr indicated that REE are mainly housed in detrital minerals. The North American Shale Composite (NASC) normalized REE patterns, trace element concentrations such as Cr, Ni and V, and the comparison of REE concentrations in sediments and source rocks indicated that the study area received sediments from rocks intermediate between felsic and mafic composition. The enrichment factor (EF) results indicated that the Cd and Zn contents of the upper section sediments were influenced by an anthropogenic source. The trace element ratios and authigenic U content of the core sediments indicated the existence of an oxic depositional environment.
NASA Astrophysics Data System (ADS)
Stein, Mordechai; Almogi-Labin, Ahuva; Goldstein, Steven L.; Hemleben, Christoph; Starinsky, Abraham
2007-09-01
Strontium isotope ratios of the HCL-insoluble residue ("ISR") and foraminifera of cores from the Red Sea and Gulf of Aden are used to monitor effects of hydrothermal, fluvial and desert dust transport to these regions during the past ˜ 0.5 Ma. While the Gulf of Aden was open-ocean, during low glacial sea levels the Red Sea was a semi-isolated basin, allowing the possibility to study the effects regional versus global inputs during glacial-interglacial cycles. The ISR from the Gulf of Aden and the Red Sea display different ranges of 87Sr/ 86Sr ratios of 0.7085-0.7107 and 0.7062-0.7085, respectively. These reflect mixtures between three components: granitic, hydrothermal and loess strontium with representative 87Sr/ 86Sr of ˜ 0.711; ˜ 0.706 and ˜ 0.7085, respectively. Gulf of Aden ISR represent mixtures of the loess and "granitic" sources, while Red Sea ISR are mixtures of the loess and sea floor "hydrothermal" sources. In the Gulf of Aden, loess sources dominate during glacials, indicating intensification of the NE moonsonal wind regime, and granitic sources dominate during interglacials, reflecting wetter conditions related to an enhanced regional SW monsoon. Red Sea ISR show no clear glacial-interglacial distinction, but display a general temporal increase in 87Sr/ 86Sr ratios over the past 380 ka toward loess-like values, indicating increasing loess contributions toward the present day. The ranges of ISR 87Sr/ 86Sr ratios in the Red Sea and the Gulf of Aden were distinct prior to the last glacial period (< 60 ka), when they converge at loess values. The increasing loess signal may be due to increasing aridity in the dust source regions, or increasing accumulation and availability of loess with progressive glacial cycles. Superimposed on the Red Sea general trend are shifts to higher 87Sr/ 86Sr ratios following major climate transitions (at ˜ 10, ˜ 80, ˜ 130, ˜ 190, ˜ 240 and ˜ 330 ka BP) that coincide with sapropel episodes in the Eastern Mediterranean, which originated from the African monsoonal system and indicate enhanced wetness in the desert belt. 87Sr/ 86Sr ratios of foraminifera show a very narrow range from 0.70912 to 0.70917 over 530 ka, and in most samples are consistent with the contemporaneous global ocean. In the Red Sea, foraminifera and pteropods show slightly more variability than the Gulf of Aden. A few Red Sea samples fall slightly above the seawater trend (in Marine Isotope Stages 5 and 9) and below (during the last deglaciation), suggesting local effects that occurred when the flow of surface ocean water from the Gulf of Aden to the Red Sea was limited and the Red Sea behaved like an "amplifier basin".
NASA Astrophysics Data System (ADS)
Bodkin, James L.; Coletti, Heather A.; Ballachey, Brenda E.; Monson, Daniel H.; Esler, Daniel; Dean, Thomas A.
2018-01-01
Mussels are conspicuous and ecologically important components of nearshore marine communities around the globe. Pacific blue mussels (Mytilus trossulus) are common residents of intertidal habitats in protected waters of the North Pacific, serving as a conduit of primary production to a wide range of nearshore consumers including predatory invertebrates, sea ducks, shorebirds, sea otters, humans, and other terrestrial mammals. We monitored seven metrics of intertidal Pacific blue mussel abundance at five sites in each of three regions across the northern Gulf of Alaska: Katmai National Park and Preserve (Katmai) (2006-2015), Kenai Fjords National Park (Kenai Fjords) (2008-2015) and western Prince William Sound (WPWS) (2007-2015). Metrics included estimates of: % cover at two tide heights in randomly selected rocky intertidal habitat; and in selected mussel beds estimates of: the density of large mussels (≥ 20 mm); density of all mussels > 2 mm estimated from cores extracted from those mussel beds; bed size; and total abundance of large and all mussels, i.e. the product of density and bed size. We evaluated whether these measures of mussel abundance differed among sites or regions, whether mussel abundance varied over time, and whether temporal patterns in abundance were site specific, or synchronous at regional or Gulf-wide spatial scales. We found that, for all metrics, mussel abundance varied on a site-by-site basis. After accounting for site differences, we found similar temporal patterns in several measures of abundance (both % cover metrics, large mussel density, large mussel abundance, and mussel abundance estimated from cores), in which abundance was initially high, declined significantly over several years, and subsequently recovered. Averaged across all sites, we documented declines of 84% in large mussel abundance through 2013 with recovery to 41% of initial abundance by 2015. These findings suggest that factors operating across the northern Gulf of Alaska were affecting mussel survival and subsequently abundance. In contrast, density of primarily small mussels obtained from cores (as an index of recruitment), varied markedly by site, but did not show meaningful temporal trends. We interpret this to indicate that settlement was driven by site-specific features rather than Gulf wide factors. By extension, we hypothesize that temporal changes in mussel abundance observed was not a result of temporal variation in larval supply leading to variation in recruitment, but rather suggestive of mortality as a primary demographic factor driving mussel abundance. Our results highlight the need to better understand underlying mechanisms of change in mussels, as well as implications of that change to nearshore consumers.
Bodkin, James L.; Coletti, Heather A.; Ballachey, Brenda E.; Monson, Daniel; Esler, Daniel N.; Dean, Thomas A.
2017-01-01
Mussels are conspicuous and ecologically important components of nearshore marine communities around the globe. Pacific blue mussels (Mytilus trossulus) are common residents of intertidal habitats in protected waters of the North Pacific, serving as a conduit of primary production to a wide range of nearshore consumers including predatory invertebrates, sea ducks, shorebirds, sea otters, humans, and other terrestrial mammals. We monitored seven metrics of intertidal Pacific blue mussel abundance at five sites in each of three regions across the northern Gulf of Alaska: Katmai National Park and Preserve (Katmai) (2006–2015), Kenai Fjords National Park (Kenai Fjords) (2008–2015) and western Prince William Sound (WPWS) (2007–2015). Metrics included estimates of: % cover at two tide heights in randomly selected rocky intertidal habitat; and in selected mussel beds estimates of: the density of large mussels (≥ 20 mm); density of all mussels > 2 mm estimated from cores extracted from those mussel beds; bed size; and total abundance of large and all mussels, i.e. the product of density and bed size. We evaluated whether these measures of mussel abundance differed among sites or regions, whether mussel abundance varied over time, and whether temporal patterns in abundance were site specific, or synchronous at regional or Gulf-wide spatial scales. We found that, for all metrics, mussel abundance varied on a site-by-site basis. After accounting for site differences, we found similar temporal patterns in several measures of abundance (both % cover metrics, large mussel density, large mussel abundance, and mussel abundance estimated from cores), in which abundance was initially high, declined significantly over several years, and subsequently recovered. Averaged across all sites, we documented declines of 84% in large mussel abundance through 2013 with recovery to 41% of initial abundance by 2015. These findings suggest that factors operating across the northern Gulf of Alaska were affecting mussel survival and subsequently abundance. In contrast, density of primarily small mussels obtained from cores (as an index of recruitment), varied markedly by site, but did not show meaningful temporal trends. We interpret this to indicate that settlement was driven by site-specific features rather than Gulf wide factors. By extension, we hypothesize that temporal changes in mussel abundance observed was not a result of temporal variation in larval supply leading to variation in recruitment, but rather suggestive of mortality as a primary demographic factor driving mussel abundance. Our results highlight the need to better understand underlying mechanisms of change in mussels, as well as implications of that change to nearshore consumers.
Dynamical Evaluation of Ocean Models using the Gulf Stream as an Example
2010-01-01
transport for the Atlantic meridional overturning circulation (AMOC) as the 3 nonlinear solutions discussed in Section 2. The model boundary is...Hellerman and Rosenstein (1983) wind stress climatology and the northward upper ocean flow (14 Sv) of the Atlantic meridional overturning circulation ... overturning circulation (AMOC) streamfunction with a 5 Sv contour interval from (a) 1/12° Atlantic MICOM, (b) 1/12° Atlantic HYCOM, and (c) 1/12
Dynamical Evaluation of Ocean Models Using the Gulf Stream as an Example
2012-02-10
Hellerman and Rosenstein (1983) wind stress climatology and the northward upper ocean flow (14 Sv) of the Atlantic meridional overturning circulation ...30 35 55N 65N Fig. 21.14 Atlantic meridional overturning circulation (AMOC) streamfunction from the same four simulations as Fig. 21.11. An AMOC...typically develops a northern or southern bias. A shallow bias in the southward abyssal flow of the Atlan- tic Meridional Overturning Circulation (AMOC
Acoustic Investigation of Jet Mixing Noise in Dual Stream Nozzles
NASA Technical Reports Server (NTRS)
Khavaran, Abbas; Dahl, Milo D.
2012-01-01
In an earlier study, a prediction model for jet noise in dual stream jets was proposed that is founded on velocity scaling laws in single stream jets and similarity features of the mean velocity and turbulent kinetic energy in dual stream flows. The model forms a composite spectrum from four component single-stream jets each believed to represent noise-generation from a distinct region in the actual flow. While the methodology worked effectively at conditions considered earlier, recent examination of acoustic data at some unconventional conditions indicate that further improvements are necessary in order to expand the range of applicability of the model. The present work demonstrates how these predictions compare with experimental data gathered by NASA and industry for the purpose of examining the aerodynamic and acoustic performance of such nozzles for a wide range of core and fan stream conditions. Of particular interest are jets with inverted velocity and temperature profiles and the appearance of a second spectral peak at small aft angles to the jet under such conditions. It is shown that a four-component spectrum succeeds in modeling the second peak when the aft angle refraction effects are properly incorporated into the model. A tradeoff of noise emission takes place between two turbulent regions identified as transition and fully mixed regions as the fan stream velocity exceeds that of the core stream. The effect of nozzle discharge coefficients will also be discussed.
A Digital Hydrologic Network Supporting NAWQA MRB SPARROW Modeling--MRB_E2RF1WS
Brakebill, J.W.; Terziotti, S.E.
2011-01-01
A digital hydrologic network was developed to support SPAtially Referenced Regression on Watershed attributes (SPARROW) models within selected regions of the United States. These regions correspond with the U.S. Geological Survey's National Water Quality Assessment (NAWQA) Program Major River Basin (MRB) study units 2, 3, 4, 5, and 7 (Preston and others, 2009). MRB2, covers the South Atlantic-Gulf and Tennessee River basins. MRB3, covers the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins. MRB4, covers the Missouri River basins. MRB5, covers the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins. MRB7, covers the Pacific Northwest River basins. The digital hydrologic network described here represents surface-water pathways (MRB_E2RF1) and associated catchments (MRB_E2RF1WS). It serves as the fundamental framework to spatially reference and summarize explanatory information supporting nutrient SPARROW models (Brakebill and others, 2011; Wieczorek and LaMotte, 2011). The principal geospatial dataset used to support this regional effort was based on an enhanced version of a 1:500,000 scale digital stream-reach network (ERF1_2) (Nolan et al., 2002). Enhancements included associating over 3,500 water-quality monitoring sites to the reach network, improving physical locations of stream reaches at or near monitoring locations, and generating drainage catchments based on 100m elevation data. A unique number (MRB_ID) identifies each reach as a single unit. This unique number is also shared by the catchment area drained by the reach, thus spatially linking the hydrologically connected streams and the respective drainage area characteristics. In addition, other relevant physical, environmental, and monitoring information can be associated to the common network and accessed using the unique identification number.
A Digital Hydrologic Network Supporting NAWQA MRB SPARROW Modeling--MRB_E2RF1
Brakebill, J.W.; Terziotti, S.E.
2011-01-01
A digital hydrologic network was developed to support SPAtially Referenced Regression on Watershed attributes (SPARROW) models within selected regions of the United States. These regions correspond with the U.S. Geological Survey's National Water Quality Assessment (NAWQA) Program Major River Basin (MRB) study units 2, 3, 4, 5, and 7 (Preston and others, 2009). MRB2, covers the South Atlantic-Gulf and Tennessee River basins. MRB3, covers the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins. MRB4, covers the Missouri River basins. MRB5, covers the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins. MRB7, covers the Pacific Northwest River basins. The digital hydrologic network described here represents surface-water pathways (MRB_E2RF1) and associated catchments (MRB_E2RF1WS). It serves as the fundamental framework to spatially reference and summarize explanatory information supporting nutrient SPARROW models (Brakebill and others, 2011; Wieczorek and LaMotte, 2011). The principal geospatial dataset used to support this regional effort was based on an enhanced version of a 1:500,000 scale digital stream-reach network (ERF1_2) (Nolan et al., 2002). Enhancements included associating over 3,500 water-quality monitoring sites to the reach network, improving physical locations of stream reaches at or near monitoring locations, and generating drainage catchments based on 100m elevation data. A unique number (MRB_ID) identifies each reach as a single unit. This unique number is also shared by the catchment area drained by the reach, thus spatially linking the hydrologically connected streams and the respective drainage area characteristics. In addition, other relevant physical, environmental, and monitoring information can be associated to the common network and accessed using the unique identification number.
Larsen, Andrea M; Bullard, Stephen A; Womble, Matthew; Arias, Covadonga R
2015-08-01
Mucus of fish skin harbors complex bacterial communities that likely contribute to fish homeostasis. When the equilibrium between the host and its external bacterial symbionts is disrupted, bacterial diversity decreases while opportunistic pathogen prevalence increases, making the onset of pathogenic bacterial infection more likely. Because of that relationship, documenting temporal and spatial microbial community changes may be predictive of fish health status. The 2010 Deepwater Horizon oil spill was a potential stressor to the Gulf of Mexico's coastal ecosystem. Ribosomal intergenic spacer analysis (RISA) and pyrosequencing were used to analyze the bacterial communities (microbiome) associated with the skin and mucus of Gulf killifish (Fundulus grandis) that were collected from oiled and non-oiled salt marsh sites in Barataria Bay, LA. Water samples and fin clips were collected to examine microbiome structure. The microbiome of Gulf killifish was significantly different from that of the surrounding water, mainly attributable to shifts in abundances of Cyanobacteria and Proteobacteria. The Gulf killifish's microbiome was dominated by Gammaproteobacteria, specifically members of Pseudomonas. No significant difference was found between microbiomes of fish collected from oiled and non-oiled sites suggesting little impact of oil contamination on fish bacterial assemblages. Conversely, seasonality significantly influenced microbiome structure. Overall, the high similarity observed between the microbiomes of individual fish observed during this study posits that skin and mucus of Gulf killifish have a resilient core microbiome.
NASA Astrophysics Data System (ADS)
Mix, A. C.; Walczak, M.; Asahi, H.; Belanger, C. L.; Cowan, E. A.; Du, J.; Fallon, S.; Fifield, L. K.; Hobern, T.; Jaeger, J. M.; Jensen, B. J. L.; McKay, J. L.; Padman, J.; Ross, A.; Sharon, S.; Stoner, J. S.; Zellers, S.
2017-12-01
Development of precise chronologies extending older than late glacial time in the subpolar North Pacific has been notoriously difficult due to limited record length in sediment cores, poor carbonate preservation, and (in many cases) relatively low resolution records. This is a key gap in our understanding of Northern Hemisphere and global paleoclimate change, now addressed with results from IODP Expedition 341 in the Gulf of Alaska. Here we utilize marine core and drill sites (U1417, U1418, U1419, U1421 and co-located site-survey cores) some of which provide exceptionally high sustained sedimentation rates (up to 2 cm per year in extended glacial intervals). This facilitates a multifaceted approach to chronology development over the past 50,000 years including radiocarbon, foraminiferal stable isotopes and other geochemical proxies, sediment physical properties, sedimentology, and tephrochronology. Given high sedimentation rates and the superb preservation this provides, we have developed marine time series that rival the resolution of the polar ice core records, which allows us to compare radiocarbon-based chronologies with several strategies involving signal tuning. Such a multifaceted approach mitigates weaknesses in any of the individual methods and allows a rigorous analysis of uncertainties in ages and sediment accumulation rates. The resulting record reveals dynamic changes in the Cordilleran Ice Sheet and North Pacific Ocean and most importantly facilitates placing these records into the context of global climate changes. (We acknowledge the contributions of J. Addison and S. Praetorius, who were not listed as co-authors due to USGS submission rules).
NASA Astrophysics Data System (ADS)
Becker, L. W. M.; Sejrup, H. P.; Hjelstuen, B. O. B.; Haflidason, H.
2016-12-01
The extent of the NW European ice sheet during the Last Glacial Maximum is fairly well constrained to, at least in periods, the shelf edge. However, the exact timing and varying activity of the largest ice stream, the Norwegian Channel Ice Stream (NCIS), remains uncertain. We here present three sediment records, recovered proximal and distal to the upper NW European continental slope. All age models for the cores are constructed in the same way and based solely on 14C dating of planktonic foraminifera. The sand-sized sediments in the discussed cores is believed to be primarily transported by ice rafting. All records suggest ice streaming activity between 25.8 and 18.5 ka BP. However, the core proximal to the mouth of the Norwegian Channel (NC) shows distinct periods of activity and periods of very little coarse sediment input. Out of this there appear to be at least three well-defined periods of ice streaming activity which lasted each for 1.5 to 2 ka, with "pauses" of several hundred years in between. The same core shows a conspicuous variation in several proxies and sediment colour within the first peak of ice stream activity, compared to the second and third peak. The light grey colour of the sediment was earlier attributed to Triassic chalk grains, yet all "chalk" grains are in fact mollusc fragments. The low magnetic susceptibility values, the high Ca, high Sr and low Fe content compared to the other peaks suggests a different provenance for the material of the first peak. We suggest therefore, that the origin of this material is rather the British Irish Ice Sheet (BIIS) and not the Fennoscandian Ice Sheet (FIS). Earlier studies have shown an extent of the BIIS at least to the NC, whereas ice from the FIS likely stayed within the boundaries of the NC. A possible scenario for the different provenance could therefore be the build-up of the BIIS into the NC until it merged with the FIS. At this point the BIIS calved off the shelf edge southwest of the mouth of the NC, delivering material with BIIS origin to the proximal cores. The NCIS became as such possibly only active from the second `push' of material ( 23.0 to 18.5 ka BP). This is in agreement with the relatively low accumulation rates during the first peak and the input of coarse sediments in a southern, slightly more distal core, only during the first peak.
2007-04-02
The F ring dissolves into a fuzzy stream of particles -- rather different from its usual appearance of a narrow, bright core flanked by dimmer ringlets. Also notable here is the bright clump of material that flanks the ring core
Three-Dimensional Structure of the Circulation Induced by a Shoaling Topographic Wave
NASA Astrophysics Data System (ADS)
Mizuta, G.; Hogg, N. G.
2003-12-01
Rectification of Rossby wave energy has been proposed as a mechanism for the maintenance of the recirculation cell of the Gulf Stream (Hogg 1988; Rizzoli et al. 1995). We investigated the three-dimensional structure of potential-vorticity flux and a mean flow induced by a topographic wave incident over a bottom slope analytically and numerically, focusing on the limit that bottom friction is the dominant dissipation process. In this limit it is shown that the topographic wave cannot be a steady source of the potential vorticity outside the bottom Ekman layer. Instead, the distribution of potential vorticity is determined from the initial transient of the topographic wave. This potential vorticity and the heat flux by the topographic wave at the bottom determine the mean flow, and give a relation between the horizontal and vertical scales of the mean flow. When the horizontal scale of the mean flow is larger than the internal deformation radius, the mean flow is almost constant with depth independent of whether or not the topographic wave is trapped near the bottom. Then the mean flow at the bottom is proportional to the divergence of vertically integrated Reynolds stress ∫ -D0 /line{u'v'} dz. This divergence, which is caused by bottom friction, is large when the group velocity, cg and the vertical scale, μ -1 of the wave motion are small. Thus the mean flow tends to be large where cg and μ -1 become small, and decreases as the topographic wave is dissipated by bottom friction. Since bottom friction also dissipates the mean flow, the mean flow asymptotes to a constant value as the friction becomes zero. These features of the potential-vorticity flux and the mean flow are reproduced in numerical experiments. It is also shown from the numerical experiment that the distribution of the mean flow depends on the amplitude of the wave because of the Doppler shift of the wave by the mean flow. These feature of the mean flow are preserved when we used stratification and bottom topography resembling to those over the continental slope near the Gulf Stream. The transport of the mean flow is about 20 Sv when the wave amplitude is about 2 cm/s. These numbers are similiar to those observed in the Gulf Stream region.
Modeling the drift of massive icebergs to the subtropical North Atlantic
NASA Astrophysics Data System (ADS)
Condron, A.; Hill, J. C.
2013-12-01
New evidence from high-resolution seafloor bathymetry data indicates that massive (>300m thick) icebergs from the Laurentide Ice Sheet (LIS) drifted south to the tip of Florida during the last deglaciation. This finding is particularly exciting as it contradicts evidence from marine sediments that icebergs were mainly confined to the subpolar North Atlantic (50 - 70N) at this time. Indeed, the freshwater released from icebergs melting in the subpolar gyre is repeatedly cited as a main trigger for a slow-down of the Atlantic MOC in the past, and the possible cause of any climate cooling related to the melting of the Greenland Ice Sheet in the future. Using a sophisticated iceberg model (MITberg), coupled to a high (18-km; 1/6 deg.) resolution ocean model (MITgcm), we investigate the ocean circulation dynamics required to allow icebergs to drift to the southern tip of Florida. We find that icebergs only reach this location if they turn right at the Grand Banks of Newfoundland, and stay inshore of the Gulf Stream all the way to Florida. Modern-day circulation dynamics do not readily allow this to happen as cold, southward flowing, Labrador Current Water (important for iceberg survival) has little penetration south of Cape Hatteras. However, when a liquid meltwater flood is released from Hudson Bay at the same time, icebergs are rapidly transported (inshore of the Gulf Stream) in a narrow, buoyant, coastal current all the way to southern Florida. The meltwater and icebergs result in a significant freshening of the subtropical North Atlantic and weaken the strength of the Gulf Stream, suggesting such an event would have a large cooling effect on climate. We are only able to simulate the flow of meltwater and icebergs to the subtropics by modeling ocean circulation at a resolution that is 5 - 10 times higher than the majority of existing paleoclimate models; at lower resolutions the narrow, coastal boundary currents important for iceberg transport to the subtropics are no longer resolved. Our results show convincing evidence that a large component of iceberg laden freshwater from the LIS had more of a subtropical impact than previously believed, suggesting the ';subpolar-freshening' hypothesis repeatedly cited in the literature as a trigger for abrupt climate change needs rethinking.
NASA Astrophysics Data System (ADS)
Stegmann, P. M.; Yoder, J. A.
1996-06-01
We examined full-resolution (1 × 1 km) satellite images of sea-surface temperature (SST) over five consecutive years (1981-1986) covering the Atlantic menhaden ( Brevoortia tyrannus) recruitment period (November-April) in the SABRE (South Atlantic Bight recruitment experiment) study site. The results of our image time series indicated two processes which could be possible mechanisms for the onshore transport of fish larvae into coastal regions. One is the influx of warm Gulf Stream water that oscillates in and out of the Carolina Bays. These oscillations occurred throughout the study period over distances of 20-40 km and on time-scales as short as two days. The other is a tongue of relatively cold water located adjacent to the Virginia coast that moved southward and penetrated into Onslow Bay between January and March. Previous studies showed that Atlantic menhaden preferentially spawn in 18-22°C waters on the outer shelf. On the assumption that the 18°C isotherm (18DI) indicates where high larval abundance may occur, we used AVHRR-SST imagery to track the onshore-offshore movement of the 18DI along a transect extending onshore-offshore in Onslow Bay. Owing to seasonal warming and cooling, this isotherm was always found closest to the coast in early November, reached maximum offshore displacement by January/March, and then moved onshore again in April/May. Our results also showed that the position of this isotherm can move offshore or onshore in a matter of a few days. An important influence and possibly the major cause of the higher frequency displacements of the 18DI are Gulf Stream meanders or filaments moving through Onslow Bay. Our estimates of onshore isotherm speeds as determined from satellite SST ranged from 2 to 25 cm s -1 and are within the same order as those calculated by physical models or larval age determinations. If the onshore pulses of warm Gulf Stream water are indeed a mode by which menhaden larvae are transported cross-shelf, then the use of satellite-based observations to determine their frequency and onshore extent, as done in the present study, is a useful tool to study variations in fish recruitment.
OSTM/Jason-2 and Jason-1 Tandem Mission View of the Gulf Stream
2009-04-27
Created with altimeter data from NASA's Ocean Surface Topography Mission (OSTM)/Jason-2 satellite and the Jason-1 satellite, this image shows a portion of the Gulf Stream off the east coast of the United States. It demonstrates how much more detail is visible in the ocean surface when measured by two satellites than by one alone. The image on the left was created with data from OSTM/Jason-2. The image on the right is the same region but made with combined data from OSTM/Jason-2 and Jason-1.It shows the Gulf Stream's eddies and rings much more clearly. This image is a product of the new interleaved tandem mission of the Jason-1 and Ocean Surface Topography Mission (OSTM)/Jason-2 satellites. (The first global map from this tandem mission is available at PIA11859.) In January 2009, Jason-1 was maneuvered into orbit on the opposite side of Earth from its successor, OSTM/Jason-2 satellite. It takes 10 days for the satellites to cover the globe and return to any one place over the ocean. So, in this new tandem configuration, Jason-1 flies over the same region of the ocean that OSTM/Jason-2 flew over five days earlier. Its ground tracks fall mid-way between those of Jason-2, which are about 315 kilometers (195 miles) apart at the equator. Working together, the two spacecraft measure the surface topography of the ocean twice as often as would be possible with one satellite, and over a 10-day period, they return twice the amount of detailed measurements. Combining data from the two satellites makes it possible to map smaller, more rapidly changing features than one satellite could alone. These images show sea-level anomaly data from the first 14 days of the interleaved orbit of Jason-1 and OSTM/Jason-2, the period beginning on Feb. 20, 2009. An anomaly is a departure from a value averaged over a long period of time. Red and yellow are regions where sea levels are higher than normal. Purple and dark blue show where sea levels are lower. A higher-than-normal sea surface is usually a sign of warm waters below, while lower sea levels indicate cooler than normal temperatures. http://photojournal.jpl.nasa.gov/catalog/PIA11997
Cosmic-Ray Feedback Heating of the Intracluster Medium
NASA Astrophysics Data System (ADS)
Ruszkowski, Mateusz; Yang, H.-Y. Karen; Reynolds, Christopher S.
2017-07-01
Active galactic nuclei (AGNs) play a central role in solving the decades-old cooling-flow problem. Although there is consensus that AGNs provide the energy to prevent catastrophically large star formation, one major problem remains: How is the AGN energy thermalized in the intracluster medium (ICM)? We perform a suite of three-dimensional magnetohydrodynamical adaptive mesh refinement simulations of AGN feedback in a cool core cluster including cosmic rays (CRs). CRs are supplied to the ICM via collimated AGN jets and subsequently disperse in the magnetized ICM via streaming, and interact with the ICM via hadronic, Coulomb, and streaming instability heating. We find that CR transport is an essential model ingredient at least within the context of the physical model considered here. When streaming is included, (I) CRs come into contact with the ambient ICM and efficiently heat it, (II) streaming instability heating dominates over Coulomb and hadronic heating, (III) the AGN is variable and the atmosphere goes through low-/high-velocity dispersion cycles, and, importantly, (IV) CR pressure support in the cool core is very low and does not demonstrably violate observational constraints. However, when streaming is ignored, CR energy is not efficiently spent on the ICM heating and CR pressure builds up to a significant level, creating tension with the observations. Overall, we demonstrate that CR heating is a viable channel for the AGN energy thermalization in clusters and likely also in ellipticals, and that CRs play an important role in determining AGN intermittency and the dynamical state of cool cores.
Vaporizing particle velocimeter
NASA Technical Reports Server (NTRS)
Weinstein, Leonard M. (Inventor)
1992-01-01
A velocimeter measures flow characteristics of a flow traveling through a chamber in a given direction. Tracer particles are entrained in the flow and a source of radiant energy produces an output stream directed transversely to the chamber, having a sufficient intensity to vaporize the particles as they pass through the output stream. Each of the vaporized particles explodes to produce a shock wave and a hot core, and a flow visualization system tracks the motion of the hot cores and shock waves to measure the velocity of each tracer particle and the temperature of the flow around the tracer.
An analysis of the flow field near the fuel injection location in a gas core reactor.
NASA Technical Reports Server (NTRS)
Weinstein, H.; Murty, B. G. K.; Porter, R. W.
1971-01-01
An analytical study is presented which shows the effects of large energy release and the concurrent high acceleration of inner stream fluid on the coaxial flow field in a gas core reactor. The governing equations include the assumptions of only radial radiative transport of energy represented as an energy diffusion term in the Euler equations. The method of integral relations is used to obtain the numerical solution. Results show that the rapidly accelerating, heat generating inner stream actually shrinks in radius as it expands axially.
Terrestrial Palynology of Paleocene and Eocene Sediments Above the Chicxulub Impact Crater
NASA Astrophysics Data System (ADS)
Smith, V.; Warny, S.; Bralower, T. J.; Jones, H.; Lowery, C. M.; Smit, J.; Vajda, V.; Vellekoop, J.; 364 Scientists, E.
2017-12-01
International Ocean Discovery Program (IODP) Expedition 364, with support from the International Continental Scientific Drilling Program, cored through Paleocene and Eocene sediments and into the impact structure of the Chicxulub impact crater. Three palynological studies of the post-impact section are currently underway. The two other studies are investigating the dinoflagellate palynology and terrestrial palynology of the K/Pg boundary section, while this study focuses on the early Eocene terrestrial palynology of the IODP 364 core, which has yielded a diverse and well preserved pollen assemblage. A few samples from the Early Paleocene have also been examined but organic microfossil preservation is quite poor. Samples from this core are the oldest palynological record from the Yucatan peninsula. Sample preparation and detailed abundance counts of sixty samples throughout the post-impact section are in progress, with a particular focus on the Paleocene-Eocene Thermal Maximum (PETM) and the Early Eocene Climatic Optimum (EECO). Terrestrial palynomorph assemblages will be used to reconstruct paleoclimatological conditions throughout this time period. Floral response to hyperthermal events in the IODP 364 core will be compared with records from other Gulf of Mexico and Caribbean sections. In addition to the biological and paleoclimatological implications of this research, age control from foraminiferal and nannofossil biostratigraphy, paleomagnetism, and radiometric dating will provide a chronological framework for the terrestrial pollen biostratigraphy, with applications to hydrocarbon exploration in the Wilcox Formation and age equivalent sections in the Gulf of Mexico.
2007-12-03
KENNEDY SPACE CENTER, FLA. -- STS-122 Pilot Alan Poindexter seems satisfied with the landing practice session he has just completed aboard a shuttle training aircraft, or STA, at Kennedy Space Center's Shuttle Landing Facility. Poindexter and Commander Steve Frick are preparing for the Dec. 6 launch on space shuttle Atlantis. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter's cockpit, motion and visual cues, and handling qualities. Photo credit: NASA/Kim Shiflett
2007-12-03
KENNEDY SPACE CENTER, FLA. -- STS-122 Commander Steve Frick seems satisfied with the landing practice session he has just completed aboard a shuttle training aircraft, or STA, at Kennedy Space Center's Shuttle Landing Facility. Frick and Pilot Alan Poindexter are preparing for the Dec. 6 launch on space shuttle Atlantis. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter's cockpit, motion and visual cues, and handling qualities. Photo credit: NASA/Kim Shiflett
Data requirements in support of the marine weather service program
NASA Technical Reports Server (NTRS)
Travers, J.; Mccaslin, R. W.; Mull, M.
1972-01-01
Data support activities for the Marine Weather Service Program are outlined. Forecasts, cover anomolous water levels, including sea and swell, surface and breakers, and storm surge. Advisories are also provided for sea ice on the Great Lake and Cook inlet in winter, and in the Bering, Chukchi, and Beaufort Seas in summer. Attempts were made to deal with ocean currents in the Gulf Stream, areas of upwelling, and thermal structure at least down through the mixed layer.
Into the Second Century: Memphis Engineer District, 1976-1981
1983-01-01
stream out of Lake Itasca in central Minnesota, the river begins a 2,340-mile journey to the Gulf of Mexico. In making the long journey, the river...McKellar Lake in honor of the senior Senator from Tennessee, Kenneth D. McKellar. Part of Tennessee Chute was dredged and then used as a slack...Missouri; and the Reelfoot -Obion areas in west Tennessee to monitor flood control structures. Under Phase I operations the Memphis District provided
2013-09-30
bottom form stress (pressure force) and bottom boundary layers – all the aspects associated with turbulent flows over steep topography in the presence of...filaments, and eddies; topographic current separation, form stress , and submesoscale vortex generation; Our work on isoneutral diffusion for tracers...Bump region, are due to the contribution of the bottom stress curl. Fig. 4 shows how the Gulf Stream path is directly linked to the Bottom Pressure
Deep-Sea Submarine 'Ben Franklin'
NASA Technical Reports Server (NTRS)
1969-01-01
The deep-sea submarine 'Ben Franklin' is being docked in the harbor. Named for American patriot and inventor Ben Franklin, who discovered the Gulf Steam, the 50-foot Ben Franklin was built between 1966 and 1968 in Switzerland for deep-ocean explorer Jacques Piccard and the Grumman Aircraft Engineering Corporation. The submersible made a famous 30-day drift dive off the East Coast of the United States and Canada in 1969 mapping the Gulf Stream's currents and sea life. It also made space exploration history by studying the behavior of aquanauts in a sealed, self-contained, self-sufficient capsule for NASA. On July 14, 1969, the Ben Franklin was towed to the high-velocity center of the Stream off the coast of Palm Beach, Florida. With a NASA observer on board, the sub descended to 1,000 feet off of Riviera Beach, Florida and drifted 1,400 miles north with the current for more than four weeks, reemerging near Maine. During the course of the dive, NASA conducted exhaustive analyses of virtually every aspect of onboard life. They measured sleep quality and patterns, sense of humor and behavioral shifts, physical reflexes, and the effect of a long-term routine on the crew. The submarine's record-shattering dive influenced the design of Apollo and Skylab missions and continued to guide NASA scientists as they devised future marned space-flight missions.
Interior View of the Deep-Sea Research Submarine 'Ben Franklin'
NASA Technical Reports Server (NTRS)
1969-01-01
This is an interior view of the living quarters of the deep-sea research submarine 'Ben Franklin.' Named for American patriot and inventor Ben Franklin, who discovered the Gulf Steam, the 50-foot Ben Franklin was built between 1966 and 1968 in Switzerland for deep- ocean explorer Jacques Piccard and the Grumman Aircraft Engineering Corporation. The submersible made a famous 30-day drift dive off the East Coast of the United States and Canada in 1969 mapping the Gulf Stream's currents and sea life, and also made space exploration history by studying the behavior of aquanauts in a sealed, self-contained, self-sufficient capsule for NASA. On July 14, 1969, the Ben Franklin was towed to the high-velocity center of the Stream off the coast of Palm Beach, Florida. With a NASA observer on board, the sub descended to 1,000 feet off of Riviera Beach, Florida and drifted 1,400 miles north with the current for more than four weeks, reemerging near Maine. During the course of the dive, NASA conducted exhaustive analyses of virtually every aspect of onboard life. They measured sleep quality and patterns, sense of humor and behavioral shifts, physical reflexes, and the effect of a long-term routine on the crew. The submarine's record-shattering dive influenced the design of Apollo and Skylab missions and continued to guide NASA scientists as they devised future marned space-flight missions.
Deep-Sea Research Submarine 'Ben Franklin'
NASA Technical Reports Server (NTRS)
1969-01-01
This is an aerial view of the deep-sea research submarine 'Ben Franklin' at dock. Named for American patriot and inventor Ben Franklin, who discovered the Gulf Steam, the 50-foot Ben Franklin was built between 1966 and 1968 in Switzerland for deep-ocean explorer Jacques Piccard and the Grumman Aircraft Engineering Corporation. The submersible made a famous 30-day drift dive off the East Coast of the United States and Canada in 1969 mapping the Gulf Stream's currents and sea life, and also made space exploration history by studying the behavior of aquanauts in a sealed, self-contained, self-sufficient capsule for NASA. On July 14, 1969, the Ben Franklin was towed to the high-velocity center of the Stream off the coast of Palm Beach, Florida. With a NASA observer on board, the sub descended to 1,000 feet off of Riviera Beach, Florida and drifted 1,400 miles north with the current for more than four weeks, reemerging near Maine. During the course of the dive, NASA conducted exhaustive analyses of virtually every aspect of onboard life. They measured sleep quality and patterns, sense of humor and behavioral shifts, physical reflexes, and the effects of a long-term routine on the crew. The submarine's record-shattering dive influenced the design of Apollo and Skylab missions and continued to guide NASA scientists as they devised future marned space-flight missions.
1969-07-01
This is an aerial view of the deep-sea research submarine "Ben Franklin" at dock. Named for American patriot and inventor Ben Franklin, who discovered the Gulf Steam, the 50-foot Ben Franklin was built between 1966 and 1968 in Switzerland for deep-ocean explorer Jacques Piccard and the Grumman Aircraft Engineering Corporation. The submersible made a famous 30-day drift dive off the East Coast of the United States and Canada in 1969 mapping the Gulf Stream's currents and sea life, and also made space exploration history by studying the behavior of aquanauts in a sealed, self-contained, self-sufficient capsule for NASA. On July 14, 1969, the Ben Franklin was towed to the high-velocity center of the Stream off the coast of Palm Beach, Florida. With a NASA observer on board, the sub descended to 1,000 feet off of Riviera Beach, Florida and drifted 1,400 miles north with the current for more than four weeks, reemerging near Maine. During the course of the dive, NASA conducted exhaustive analyses of virtually every aspect of onboard life. They measured sleep quality and patterns, sense of humor and behavioral shifts, physical reflexes, and the effects of a long-term routine on the crew. The submarine's record-shattering dive influenced the design of Apollo and Skylab missions and continued to guide NASA scientists as they devised future marned space-flight missions.
1969-07-01
In this photograph, the deep-sea Research Submarine "Ben Franklin" drifts off the East Coast of the United States (U.S.) prior to submerging into the ocean. Named for American patriot and inventor Ben Franklin, who discovered the Gulf Steam, the 50-foot Ben Franklin was built between 1966 and 1968 in Switzerland for deep-ocean explorer Jacques Piccard and the Grumman Aircraft Engineering Corporation. The submersible made a famous 30-day drift dive off the East Coast of the United States and Canada in 1969 mapping the Gulf Stream's currents and sea life, and also made space exploration history by studying the behavior of aquanauts in a sealed, self-contained, self-sufficient capsule for NASA. On July 14, 1969, the Ben Franklin was towed to the high-velocity center of the Stream off the coast of Palm Beach, Florida. With a NASA observer on board, the sub descended to 1,000 feet off of Riviera Beach, Florida and drifted 1,400 miles north with the current for more than four weeks, reemerging near Maine. During the course of the dive, NASA conducted exhaustive analyses of virtually every aspect of onboard life. They measured sleep quality and patterns, sense of humor and behavioral shifts, physical reflexes, and the effects of a long-term routine on the crew. The submarine's record-shattering dive influenced the design of Apollo and Skylab missions and continued to guide NASA scientists as they devised future marned space-flight missions.
1969-07-01
This is an interior view of the living quarters of the deep-sea research submarine "Ben Franklin." Named for American patriot and inventor Ben Franklin, who discovered the Gulf Steam, the 50-foot Ben Franklin was built between 1966 and 1968 in Switzerland for deep- ocean explorer Jacques Piccard and the Grumman Aircraft Engineering Corporation. The submersible made a famous 30-day drift dive off the East Coast of the United States and Canada in 1969 mapping the Gulf Stream's currents and sea life, and also made space exploration history by studying the behavior of aquanauts in a sealed, self-contained, self-sufficient capsule for NASA. On July 14, 1969, the Ben Franklin was towed to the high-velocity center of the Stream off the coast of Palm Beach, Florida. With a NASA observer on board, the sub descended to 1,000 feet off of Riviera Beach, Florida and drifted 1,400 miles north with the current for more than four weeks, reemerging near Maine. During the course of the dive, NASA conducted exhaustive analyses of virtually every aspect of onboard life. They measured sleep quality and patterns, sense of humor and behavioral shifts, physical reflexes, and the effect of a long-term routine on the crew. The submarine's record-shattering dive influenced the design of Apollo and Skylab missions and continued to guide NASA scientists as they devised future marned space-flight missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliver, J.D.; Van Den Avyle, M.J.; Bozeman, E.L. Jr.
1989-04-01
Species profiles are literature summaries of the life history, distribution, and environmental requirements of coastal fishes and invertebrates. Profiles are prepared to assist with environmental impact assessment. The bluefish (Pomatomus saltatrix) is a valuable recreational and commercial fish on the Atlantic coast. In the South Atlantic Region the recreational catch exceeds the commercial catch. The bluefish is a migratory pelagic fish that generally travels northward in spring and summer and southward in fall and winter along the Atlantic seaboard. In the South Atlantic Region, spawning occurs primarily during spring waters just shoreward of the Gulf Stream form southern North Carolinamore » to Florida. Most larvae are carried northward by the Gulf Stream and are dispersed over the continental slope of the Middle Atlantic Region. Adult bluefish inhabit nearshore areas in the South Atlantic Region during their southerly migration in fall and winter. Larval bluefish eat mostly copepods, cladocerans, and invertebrate eggs; juveniles eat larger invertebrates and fishes. Adult bluefish eat fishes and seem to prefer schooling coastal species. Bluefish have been reported to avoid areas of low dissolved oxygen. Water turbidity may affect feeding because bluefish rely on vision to locate prey. Environmental disturbances which affect the dissolved oxygen concentration or turbidity of estuarine and nearshore waters may, therefore, affect bluefish distribution and feeding. 40 refs., 4 figs., 2 tabs.« less
Ocean backscatter across the Gulf Stream sea surface temperature front
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nghiem, S.V.; Li, F.K.
1997-06-01
Ocean backscatter was measured by the Jet Propulsion Laboratory, with the airborne NUSCAT K{sub u}-band scatterometer, across the Gulf Stream sea surface temperature front during the Surface Wave Dynamics Experiment off the coast of Virginia and Maryland in the winter of 1991. Backscatter across the front between the National Oceanic and Atmospheric Administration experimental coastal buoy A (44024) on the cold side and Discus C buoy (44023) on the warm side shows a difference of more than 5 dB for vertical polarization in many cases. This large frontal backscatter change is observed in all upwind, downwind, and crosswind directions. Themore » sea surface temperature difference measured by the buoys was about 9{degrees}C. The corresponding difference in wind speed cannot account for the large backscatter change in view of geophysical model functions depending only on neutral wind velocity such as SASS. The measured backscatter also has larger upwind-downwind and upwind-crosswind ratios compared to the model results. Furthermore, NUSCAT data reveal that upwind backscatter on the cold side was smaller than or close to crosswind backscatter on the warm side for incidence angles between 30{degrees} to 50{degrees}. This suggests that the temperature front can be detected by the scatterometer at these incidence angles for different wind directions in the cold and warm sides.« less
NASA Technical Reports Server (NTRS)
Hoge, Frank E.; Swift, Robert N.; Yungel, James K.; Vodacek, Anthony
1993-01-01
Profiles of airborne-laser-induced fluorescence emission from dissolved organic matter in the upper ocean have been produced and compared for the Southern California Bight (SCB) and the Mid-Atlantic Bight (MAB). Findings were as follows. (1) The fluorescent components of dissolved organic matter (FDOM) are present in easily measurable quantities from near shore to well over 300 km offshore in the SCB and are likewise easily measurable in the coastal, shelf, slope, and Gulf Stream waters of the MAB. (2) The reange of FDOM in the MAB is considerably greater than that in the SCB. (3) The lowest FDOM levels observed in the SCB were higher than those found in the Gulf Stream. (4) The onshore-to-offshore spatial gradient of the FDOM was found to be considerably lower in the SCB than in the MAB, with the highest levels of FDOM being found immediately adjacent to the coast in the MAB. This suggests that the water adjacent to the SCB shoreline is not as strongly influenced by terrestrial and estuarine sources of FDOM as the MAB is. (5) The spatial distribution of the FDOM within both the SCB and the MAB is frequently coherent with the spatial distribution of chlorophyll determined form the concurrent airborne- laser- induced phytoplankton pigment fluorescence measurements. However, distinct noncoherency is sometimes observed, especially at water mass boundaries.
Impact of the Extreme Warming of 2012 on Shelfbreak Frontal Structure North of Cape Hatteras
NASA Astrophysics Data System (ADS)
Gawarkiewickz, G.
2014-12-01
Continental shelf circulation north of Cape Hatteras is complex, with southward flowing Middle Atlantic Bight shelf water intersecting the Gulf Stream and subducting offshore into the Gulf Stream. In May, 2012, a cruise was conducted in order to study the shelf circulation and acoustic propagation through fish schools in the area. An important aspect of the study was to use Autonomous Underwater Vehicles to map fish schools with a sidescan sonar. High-resolution hydrographic surveys to map the continental shelf water masses and shelfbreak frontal structure were sampled to relate oceanographic conditions to the fish school distributions. The cold pool water mass over the continental shelf in May 2012 was extremely warm, with temperature anomalies of up to 5 Degrees C relative to observations from the same area in May, 1996. The normal cross-shelf temperature gradients within the shelfbreak front were not present because of the warming. As a result, the shelf density field was much more buoyant than usual, which led to an accelerated shelfbreak jet. Moored velocity measurements at the 60 m isobath recorded alongshelf flow of as much as 0.6 m/s. The anticipated fish species were not observed over the continental shelf. Some comments on the forcing leading to the large scale warming will be presented, along with a brief discussion of the impact of the warming on the marine ecosystem in the northeast U.S.
"Submesoscale Soup" Vorticity and Tracer Statistics During the Lateral Mixing Experiment
NASA Astrophysics Data System (ADS)
Shcherbina, A.; D'Asaro, E. A.; Lee, C. M.; Molemaker, J.; McWilliams, J. C.
2012-12-01
A detailed view of upper-ocean velocity, vorticity, and tracer statistics was obtained by a unique synchronized two-vessel survey in the North Atlantic in winter 2012. In winter, North Atlantic Mode water region south of the Gulf Stream is filled with an energetic, homogeneous, and well-developed submesoscale turbulence field - the "submesoscale soup". Turbulence in the soup is produced by frontogenesis and the surface layer instability of mesoscale eddy flows in the vicinity of the Gulf Stream. This region is a convenient representation of the inertial range of the geophysical turbulence forward cascade spanning scales of o(1-100km). During the Lateral Mixing Experiment in February-March 2012, R/Vs Atlantis and Knorr were run on parallel tracks 1 km apart for 500 km in the submesoscale soup region. Synchronous ADCP sampling provided the first in-situ estimates of full 3-D vorticity and divergence without the usual mix of spatial and temporal aliasing. Tracer distributions were also simultaneously sampled by both vessels using the underway and towed instrumentation. Observed vorticity distribution in the mixed layer was markedly asymmetric, with sparse strands of strong anticyclonic vorticity embedded in a weak, predominantly cyclonic background. While the mean vorticity was close to zero, distribution skewness exceeded 2. These observations confirm theoretical and numerical model predictions for an active submesoscale turbulence field. Submesoscale vorticity spectra also agreed well with the model prediction.
NASA Astrophysics Data System (ADS)
Rykova, Tatiana; Oke, Peter R.; Griffin, David A.
2017-06-01
Using output from a near-global eddy-resolving ocean model, we analyse the properties and characteristics of quasi-isotropic eddies in five Western Boundary Current (WBC) regions, including the extensions of the Agulhas, East Australian Current (EAC), Brazil-Malvinas Confluence (BMC), Kuroshio and Gulf Stream regions. We assess the model eddies by comparing to satellite and in situ observations, and show that most aspects of the model's representation of eddies are realistic. We find that the mean eddies differ dramatically between these WBC regions - all with some unique and noteworthy characteristics. We find that the vertical displacement of isopycnals of Agulhas eddies is the greatest, averaging 350-450 m at depths of over 800-900 m. EAC (BMC) eddies are the least (most) barotropic, with only 50% (85-90%) of the velocity associated with the barotropic mode. Kuroshio eddies are the most stratified, resulting in small isopycnal displacement, even for strong eddies; and Gulf Stream eddies carry the most heat. Despite their differences, we explicitly show that the source waters for anticyclonic eddies are a mix of the WBC water (from the boundary current itself) and water that originates equatorward of the WBC eddy-field; and cyclonic eddies are a mix of WBC water and water that originates poleward of the WBC eddy-field.
1969-07-01
This photograph depicts Dr. von Braun (at right, showing his back) and other NASA officials surveying the deep-sea research submarine "Ben Franklin." Named for American patriot and inventor Ben Franklin, who discovered the Gulf Steam, the 50-foot Ben Franklin was built between 1966 and 1968 in Switzerland for deep-ocean explorer Jacques Piccard and the Grumman Aircraft Engineering Corporation. The submersible made a famous 30-day drift dive off the East Coast of the United States and Canada in 1969 mapping the Gulf Stream's currents and sea life, and also made space exploration history by studying the behavior of aquanauts in a sealed, self-contained, self-sufficient capsule for NASA. On July 14, 1969, the Ben Franklin was towed to the high-velocity center of the Stream off the coast of Palm Beach, Florida. With a NASA observer on board, the sub descended to 1,000 feet off of Riviera Beach, Florida and drifted 1,400 miles north with the current for more than four weeks, reemerging near Maine. During the course of the dive, NASA conducted exhaustive analyses of virtually every aspect of onboard life. They measured sleep quality and patterns, sense of humor and behavioral shifts, physical reflexes, and the effects of a long-term routine on the crew. The submarine's record-shattering dive influenced the design of Apollo and Skylab missions and continued to guide NASA scientists as they devised future marned space-flight missions.
1969-07-01
This photograph depicts Dr. von Braun (fourth from far right) and other NASA officials surveying the deep-sea research submarine "Ben Franklin." Named for American patriot and inventor Ben Franklin, who discovered the Gulf Steam, the 50-foot Ben Franklin was built between 1966 and 1968 in Switzerland for deep-ocean explorer Jacques Piccard and the Grumman Aircraft Engineering Corporation. The submersible made a famous 30-day drift dive off the East Coast of the United States and Canada in 1969 mapping the Gulf Stream's currents and sea life, and also made space exploration history by studying the behavior of aquanauts in a sealed, self-contained, self-sufficient capsule for NASA. On July 14, 1969, the Ben Franklin was towed to the high-velocity center of the Stream off the coast of Palm Beach, Florida. With a NASA observer on board, the sub descended to 1,000 feet off of Riviera Beach, Florida and drifted 1,400 miles north with the current for more than four weeks, reemerging near Maine. During the course of the dive, NASA conducted exhaustive analyses of virtually every aspect of onboard life. They measured sleep quality and patterns, sense of humor and behavioral shifts, physical reflexes, and the effects of a long-term routine on the crew. The submarine's record-shattering dive influenced the design of Apollo and Skylab missions and continued to guide NASA scientists as they devised future marned space-flight missions.
Data assimilation and model evaluation experiment datasets
NASA Technical Reports Server (NTRS)
Lai, Chung-Cheng A.; Qian, Wen; Glenn, Scott M.
1994-01-01
The Institute for Naval Oceanography, in cooperation with Naval Research Laboratories and universities, executed the Data Assimilation and Model Evaluation Experiment (DAMEE) for the Gulf Stream region during fiscal years 1991-1993. Enormous effort has gone into the preparation of several high-quality and consistent datasets for model initialization and verification. This paper describes the preparation process, the temporal and spatial scopes, the contents, the structure, etc., of these datasets. The goal of DAMEE and the need of data for the four phases of experiment are briefly stated. The preparation of DAMEE datasets consisted of a series of processes: (1) collection of observational data; (2) analysis and interpretation; (3) interpolation using the Optimum Thermal Interpolation System package; (4) quality control and re-analysis; and (5) data archiving and software documentation. The data products from these processes included a time series of 3D fields of temperature and salinity, 2D fields of surface dynamic height and mixed-layer depth, analysis of the Gulf Stream and rings system, and bathythermograph profiles. To date, these are the most detailed and high-quality data for mesoscale ocean modeling, data assimilation, and forecasting research. Feedback from ocean modeling groups who tested this data was incorporated into its refinement. Suggestions for DAMEE data usages include (1) ocean modeling and data assimilation studies, (2) diagnosis and theoretical studies, and (3) comparisons with locally detailed observations.
Occurrence and load of selected herbicides and metabolites in the lower Mississippi River
Clark, G.M.; Goolsby, D.A.
2000-01-01
Analyses of water samples collected from the Mississippi River at Baton Rouge, Louisiana, during 1991-1997 indicate that hundreds of metric tons of herbicides and herbicide metabolites are being discharged annually to the Gulf of Mexico. Atrazine, metolachlor, and the ethane-sulfonic acid metabolite of alachlor (alachlor ESA) were the most frequently detected herbicides and, in general, were present in the largest concentrations. Almost 80% of the annual herbicide load to the Gulf of Mexico occurred during the growing season from May to August. The concentrations and loads of alachlor in the Mississippi River decreased dramatically after 1993 in response to decreased use in the basin. In contrast, the concentrations and loads of acetochlor increased after 1994, reflecting its role as a replacement for alachlor. The peak annual herbicide load occurred in 1993, when approximately 640 metric tons (t) of atrazine, 320 t of cyanazine, 215 t of metolachlor, 53 t of simazine, and 50 t of alachlor were discharged to the Gulf of Mexico. The annual loads of atrazine and cyanazine were generally 1-2% of the amount annually applied in the Mississippi River drainage basin; the annual loads of acetochlor, alachlor, and metolachlor were generally less than 1%. Despite a reduction in atrazine use, historical data do not indicate a long-term downward trend in the atrazine load to the Gulf of Mexico. Although a relation (r2=0.62) exists between the atrazine load and stream discharge during May to August, variations in herbicide use and rainfall patterns within subbasins can have a large effect on herbicide loads in the Mississippi River Basin and probably explain a large part of the annual variation in atrazine load to the Gulf of Mexico. Copyright (C) 2000 Elsevier Science B.V.
Occurrence and load of selected herbicides and metabolites in the lower Mississippi River
Clark, Gregory M.; Goolsby, Donald A.
2000-01-01
Analyses of water samples collected from the Mississippi River at Baton Rouge, Louisiana, during 1991–1997 indicate that hundreds of metric tons of herbicides and herbicide metabolites are being discharged annually to the Gulf of Mexico. Atrazine, metolachlor, and the ethane-sulfonic acid metabolite of alachlor (alachlor ESA) were the most frequently detected herbicides and, in general, were present in the largest concentrations. Almost 80% of the annual herbicide load to the Gulf of Mexico occurred during the growing season from May to August. The concentrations and loads of alachlor in the Mississippi River decreased dramatically after 1993 in response to decreased use in the basin. In contrast, the concentrations and loads of acetochlor increased after 1994, reflecting its role as a replacement for alachlor. The peak annual herbicide load occurred in 1993, when approximately 640 metric tons (t) of atrazine, 320 t of cyanazine, 215 t of metolachlor, 53 t of simazine, and 50 t of alachlor were discharged to the Gulf of Mexico. The annual loads of atrazine and cyanazine were generally 1–2% of the amount annually applied in the Mississippi River drainage basin; the annual loads of acetochlor, alachlor, and metolachlor were generally less than 1%. Despite a reduction in atrazine use, historical data do not indicate a long-term downward trend in the atrazine load to the Gulf of Mexico. Although a relation (r2=0.62) exists between the atrazine load and stream discharge during May to August, variations in herbicide use and rainfall patterns within subbasins can have a large effect on herbicide loads in the Mississippi River Basin and probably explain a large part of the annual variation in atrazine load to the Gulf of Mexico.
Status and reproduction of Gulf coast strain walleye in a Tombigbee River tributary
Schramm, H.L.; Hart, J.; Hanson, L.A.
2004-01-01
Walleye (Sander vitreus [Mitchill]) are native to rivers and streams in the Mobile River basin in Mississippi and Alabama. These populations comprise a genetically unique strain (Gulf coast walleye, GCW) and represent the southernmost distribution of walleye in the United States. Luxapallila Creek was considered an important spawning site for GCW prior to and shortly after impoundment of the Tombigbee River in 1980. Extensive sampling in Luxapallila Creek in 2001 and 2002 collected only one larval walleye. Microsatellite DNA analysis suggested 14 of 16 adult walleye from Luxapallila Creek were hatchery-produced fish or their progeny. Controlled angling catch rates of adult walleye have declined since 1997. The scarcity of wild-spawned walleye and the similarity of wild-caught and hatchery broodstock walleye indicates that the GCW population in, or spawning in, Luxapallila Creek is sustained by stocking and recruitment from these stocked fish may be diminishing.
NASA Astrophysics Data System (ADS)
Zimmerman, Robert Allen
Zooplankton and micronekton which cause a density discontinuity with the surrounding seawater reflect acoustic energy. This acoustic backscatter intensity (ABI) was measured using a vessel mounted 153 kHz acoustic Doppler current profiler. The ABI was used to describe vertical migration and distribution of sound scatterers in several mesoscale hydrographic features commonly found in the Gulf of Mexico: cold-core rings (CCRs), warm-core Loop Current eddies (LCEs) and the Loop Current (LC). The present paradigm contends that cold- core (cyclonic) features are mesoscale areas of enhanced production due to an influx of new nitrogen to surface waters as a result of divergent flow. The null hypothesis which was tested in this study was that the acoustic signatures of these features were not significantly different from one another. Clear diel differences in all of the features and a robust, positive correlation between ABI and plankton and micronekton wet displacement volume collected in MOCNESS tows in the upper 100 m of the water column were observed. During the day, ABI in CCRs was significantly greater than in LCEs and in the LC with regards to the upper 200 m. However, ABI in the LCEs and LC were not significantly different from each other. During the night, the ABI in the upper 50 m of the CCRs was significantly greater than that in the LCEs and the LC. However, there were no differences between features when ABI at night was summed for the entire upper 200 m, due to substantial vertical migrations of organisms into the upper 200 m of the water column at night. Two LCEs were revisited at an age of 8-9 months after their initial acoustic transects. The null hypothesis that there would be no significant difference in integrated ABI when the LCEs were resampled was rejected: both LCEs showed a reduction in integrated ABI over the upper 200 m. Further investigations into the faunal changes of these features are warranted, but the ADCP should continue to be a useful tool in the examination of the distribution of sound scatterers in mesoscale features in the Gulf of Mexico.
NASA Astrophysics Data System (ADS)
DeLong, K. L.; Flannery, J. A.; Quinn, T. M.; Maupin, C. R.; Lin, K.; Shen, C.
2013-12-01
Sea surface temperature (SST) variability in the Gulf of Mexico impacts climate in Central and North America because the Gulf is a major source of moisture and is a source region for the Gulf Stream, which transports ocean heat northward. Here we use skeletal variations in coral Sr/Ca from three Siderastrea siderea coral colonies within the Dry Tortugas National Park in the southeastern Gulf of Mexico (24°42'N, 82°48'W) to develop 274 years of monthly-resolved SST variations. The cross-dated chronology, determined by counting annual density bands and correlating Sr/Ca variations, is verified by four replicated high precision 230Th dates (×1.7-37 years, 2σ). Calibration and verification of our replicated coral Sr/Ca-SST reconstruction with Dry Tortugas SST (r = 0.98 and 0.55 for monthly and 36-month smoothed, respectively; 1992-2008 CE) and Key West, Florida surface air temperature (1895-2008 CE) measurements reveals similar covariance (r = 0.96 and 0.56 for monthly and 36-month smoothed, respectively). The absolute coral SST reconstruction is consistent with SST recorded at the Dry Tortugas lighthouse from 1879-1907 CE indicating that this coral Sr/Ca-SST relationship is stable on centennial time scales. The Sr/Ca-SST reconstruction reveals ~2.0°C interannual variability, ~1.5°C decadal fluctuations, and a 0.7°C warming trend for the past 274 years. Secular variability in our reconstruction is similar to approximately decadally resolved planktic foraminifer Mg/Ca records from the northern Gulf of Mexico. The coral Sr/Ca-SST reconstruction reveals colder decades (~1.5°C) suggesting a reduction in moisture and ocean heat flux from the Gulf of Mexico. We find winter extremes are more variable than summer extremes (×2.2°C vs. ×1.6°C, 2σ) with a stronger warming trend (1°C) in the summers suggesting continued warming may increase coral bleaching.
Assessment of Energy Production Potential from Ocean Currents along the United States Coastline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haas, Kevin
Increasing energy consumption and depleting reserves of fossil fuels have resulted in growing interest in alternative renewable energy from the ocean. Ocean currents are an alternative source of clean energy due to their inherent reliability, persistence and sustainability. General ocean circulations exist in the form of large rotating ocean gyres, and feature extremely rapid current flow in the western boundaries due to the Coriolis Effect. The Gulf Stream system is formed by the western boundary current of the North Atlantic Ocean that flows along the east coastline of the United States, and therefore is of particular interest as a potentialmore » energy resource for the United States. This project created a national database of ocean current energy resources to help advance awareness and market penetration in ocean current energy resource assessment. The database, consisting of joint velocity magnitude and direction probability histograms, was created from data created by seven years of numerical model simulations. The accuracy of the database was evaluated by ORNL?s independent validation effort documented in a separate report. Estimates of the total theoretical power resource contained in the ocean currents were calculated utilizing two separate approaches. Firstly, the theoretical energy balance in the Gulf Stream system was examined using the two-dimensional ocean circulation equations based on the assumptions of the Stommel model for subtropical gyres with the quasi-geostrophic balance between pressure gradient, Coriolis force, wind stress and friction driving the circulation. Parameters including water depth, natural dissipation rate and wind stress are calibrated in the model so that the model can reproduce reasonable flow properties including volume flux and energy flux. To represent flow dissipation due to turbines additional turbine drag coefficient is formulated and included in the model. Secondly, to determine the reasonableness of the total power estimates from the Stommel model and to help determine the size and capacity of arrays necessary to extract the maximum theoretical power, further estimates of the available power based on the distribution of the kinetic power density in the undisturbed flow was completed. This used estimates of the device spacing and scaling to sum up the total power that the devices would produce. The analysis has shown that considering extraction over a region comprised of the Florida Current portion of the Gulf Stream system, the average power dissipated ranges between 4-6 GW with a mean around 5.1 GW. This corresponds to an average of approximately 45 TWh/yr. However, if the extraction area comprises the entire portion of the Gulf Stream within 200 miles of the US coastline from Florida to North Carolina, the average power dissipated becomes 18.6 GW or 163 TWh/yr. A web based GIS interface, http://www.oceancurrentpower.gatech.edu/, was developed for dissemination of the data. The website includes GIS layers of monthly and yearly mean ocean current velocity and power density for ocean currents along the entire coastline of the United States, as well as joint and marginal probability histograms for current velocities at a horizontal resolution of 4-7 km with 10-25 bins over depth. Various tools are provided for viewing, identifying, filtering and downloading the data.« less
NASA Astrophysics Data System (ADS)
Attia, Ibrahem; Helal, Iman; El Dakhakhny, Alaa; Aly, Said A.
2017-12-01
West Esh El Mallaha area is located west of the Hurghada shoreline. It pertains to the southwestern province of the Gulf of Suez. Nubia (A) sandstone is one of the prolific reservoirs in the western side along the Gulf of Suez area. To enhance further oil production and to develop this reservoir, it is important to gain a clear understanding of the reservoir in terms of its depositional origin. In west Esh El Mallaha area, the understanding of the depositional setting of Nubia (A) is relatively hard due to the limited number of cores. A comprehensive workflow which integrates all geological datasets (electrical logs pattern, the high resolution biostratigraphic analysis, and previous studies) which has been performed for the Nubia (A), enables to recognize different patterns of electrical logs, which are used to define the sequence stratigraphy and systems tracts for Nubia (A). The Lower Nubia (A) is characterized by fining-upward profile and well-developed coarsening-straight profile interpreted as a braided - fluvial facies (lowstand system tract). On the other hand, the upper Nubia (A) is characterized by fining-upward, coarsening-upward, and bell profile interpreted as meandering fluvial to fluvio-dominated delta (transgressive system tract). This study is an approach to build a reliable geological model, and give wide view to evaluate and develop the reservoir in the drilled areas and predict sand distribution in the undrilled areas despite the limited number of cores.
Qualification and Development Needs for Technical Education.
ERIC Educational Resources Information Center
El Tell, Khalaf; Al-Maaitah, Ayman
Vast and rapid changes in global technologies have made development of a sound and efficient system of technical education (TE) critical for Oman and the other Arab Gulf countries. Producing TE graduates with the skills needed for success in today's global economy requires TE teachers with the following qualifications: mastery of the core skills…
Leal-Acosta, María Luisa; Shumilin, Evgueni; Mirlean, Nicolai; Baturina, Elena Lounejeva; Sánchez-Rodríguez, Ignacio; Delgadillo-Hinojosa, Francisco; Borges-Souza, José
2018-03-01
We investigated the influence of the intertidal geothermal hot spring (GHS) on the biogeochemistry of trace elements in Santispac Bight, Bahía Concepción (Gulf of California). The geothermal fluids were enriched in As and Hg mainly in ionic form. The suspended particulate matter of the GHS had elevated enrichment factor (EF) >1 of As, Bi, Cd, Co, Cu, Mn, Mo, Sb, Sn, Sr, Ti, U and Zn. The sediment core from GHS1 had high concentration of As, Hg, C org , S, V, Mo, and U and the extremely high EF of these elements at 8cm of the core. The maximum bioaccumulation of As and Hg was in seaweeds Sargassum sinicola collected near the GHS2. The results confirm the input of trace elements to the coastal zone in Bahía Concepción from geothermal fluids and the evident modification of the chemical composition of the adjacent marine environment. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Vetter, L.; LeGrande, A. N.; Ullman, D. J.; Carlson, A. E.
2017-12-01
Sediment cores from the Gulf of Mexico show evidence of meltwater derived from the Laurentide Ice Sheet during the last deglaciation. Recent studies using geochemical measurements of individual foraminifera suggest changes in the oxygen isotopic composition of the meltwater as deglaciation proceeded. Here we use the water isotope enabled climate model simulations (NASA GISS ModelE-R) to investigate potential sources of meltwater within the ice sheet. We find that initial melting of the ice sheet from the southern margin contributed an oxygen isotope value reflecting a low-elevation, local precipitation source. As deglacial melting proceeded, meltwater delivered to the Gulf of Mexico had a more negative oxygen isotopic value, which the climate model simulates as being sourced from the high-elevation, high-latitude interior of the ice sheet. This study demonstrates the utility of combining stable isotope analyses with climate model simulations to investigate past changes in the hydrologic cycle.
Chemical Abundances of Hydrostatic and Explosive Alpha-elements in Sagittarius Stream Stars
NASA Astrophysics Data System (ADS)
Carlin, Jeffrey L.; Sheffield, Allyson A.; Cunha, Katia; Smith, Verne V.
2018-05-01
We analyze chemical abundances of stars in the Sagittarius (Sgr) tidal stream using high-resolution Gemini+GRACES spectra of 42 members of the highest surface-brightness portions of both the trailing and leading arms. Targets were chosen using a 2MASS+WISE color–color selection, combined with the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) radial velocities. In this Letter, we analyze [Fe/H] and α-elements produced by both hydrostatic (O, Mg) and explosive (Si, Ca, Ti) nucleosynthetic processes. The average [Fe/H] for our Sgr stream stars is lower than that for stars in the Sgr core, and stars in the trailing and leading arms show systematic differences in [Fe/H]. Both hydrostatic and explosive elements are depleted relative to Milky Way (MW) disk and halo stars, with a larger gap between the MW trend and Sgr stars for the hydrostatic elements. Chemical abundances of Sgr stream stars show similar patterns to those measured in the core of the Sgr dSph. We explore the ratio of hydrostatic to explosive α-elements [α h/ex] (which we refer to as the “HEx ratio”). Our observed HEx ratio trends for Sgr debris are deficient relative to MW stars. Via simple chemical evolution modeling, we show that these HEx ratio patterns are consistent with a Sgr IMF that lacks the most massive stars. This study provides a link between the chemical properties in the intact Sgr core and the significant portion of the Sgr system’s luminosity that is estimated to currently reside in the streams.
Cosmic-Ray Feedback Heating of the Intracluster Medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruszkowski, Mateusz; Yang, H.-Y. Karen; Reynolds, Christopher S., E-mail: mateuszr@umich.edu, E-mail: hsyang@astro.umd.edu, E-mail: chris@astro.umd.edu
2017-07-20
Active galactic nuclei (AGNs) play a central role in solving the decades-old cooling-flow problem. Although there is consensus that AGNs provide the energy to prevent catastrophically large star formation, one major problem remains: How is the AGN energy thermalized in the intracluster medium (ICM)? We perform a suite of three-dimensional magnetohydrodynamical adaptive mesh refinement simulations of AGN feedback in a cool core cluster including cosmic rays (CRs). CRs are supplied to the ICM via collimated AGN jets and subsequently disperse in the magnetized ICM via streaming, and interact with the ICM via hadronic, Coulomb, and streaming instability heating. We findmore » that CR transport is an essential model ingredient at least within the context of the physical model considered here. When streaming is included, (i) CRs come into contact with the ambient ICM and efficiently heat it, (ii) streaming instability heating dominates over Coulomb and hadronic heating, (iii) the AGN is variable and the atmosphere goes through low-/high-velocity dispersion cycles, and, importantly, (iv) CR pressure support in the cool core is very low and does not demonstrably violate observational constraints. However, when streaming is ignored, CR energy is not efficiently spent on the ICM heating and CR pressure builds up to a significant level, creating tension with the observations. Overall, we demonstrate that CR heating is a viable channel for the AGN energy thermalization in clusters and likely also in ellipticals, and that CRs play an important role in determining AGN intermittency and the dynamical state of cool cores.« less
European Science Notes Information Bulletin. Reports on Current European and Middle Eastern Science
1993-04-01
beamwidth of 2 degrees . Hie had interesting data wideband backscatter in the 2-50 kHz band and on profiles, including hydrothermal plumes ob- forward...civil aviation. Academician P. Naza- gravity in casting Al-Pb alloys. This process renko is rector of the institut’. and Professor N . produces a...pro- east -west sections across 36’ N from Gibraltar to grams such as WOCE (World Ocean Circulation Bermuda and northwest across the Gulf Stream
1983-01-01
hazel alder (Alnus serrulata), and lead plant (Amerpha fruticasa) often gain dominance on low stream banks. A great variety of woody vines groww in...Early Archaic ecosystems for the Midwest may be highly signifi- cant. From 8000 to about 5000 B.P. in southwest Alabama mobile groups apparently...n-48) of the Gulf Formational or Early Woodland sites within the BWT project area. Middle to Late Woodi -nd Site Locations The summary locational
SEASAT views oceans and sea ice with synthetic aperture radar
NASA Technical Reports Server (NTRS)
Fu, L. L.; Holt, B.
1982-01-01
Fifty-one SEASAT synthetic aperture radar (SAR) images of the oceans and sea ice are presented. Surface and internal waves, the Gulf Stream system and its rings and eddies, the eastern North Pacific, coastal phenomena, bathymetric features, atmospheric phenomena, and ship wakes are represented. Images of arctic pack and shore-fast ice are presented. The characteristics of the SEASAT SAR system and its image are described. Maps showing the area covered, and tables of key orbital information, and listing digitally processed images are provided.
Aloupi, Maria; Angelidis, Michael O; Gavriil, Apostolos M; Koulousaris, Michael; Varnavas, Soterios P
2009-04-01
The occurrence of As was studied in groundwater used for human consumption and irrigation, in stream water and sediments and in water from thermal springs in the drainage basin of Kalloni Gulf, island of Lesvos, Greece, in order to investigate the potential influence of the geothermal field of Polichnitos-Lisvori on the ground and surface water systems of the area. Total dissolved As varied in the range <0.7-88.3 microg L(-1) in groundwater, 41.1-90.7 microg L(-1) in thermal spring water and 0.4-13.2 microg L(-1) in stream water, whereas As concentrations in stream sediments varied between 2.0-21.9 mg kg(-1). Four out of 31 groundwater samples exceeded the EC standard of 10 microg L(-1). The survey revealed an enrichment in both surface and groundwater hydrological systems in the northern part of the area (average concentrations of As in groundwater, stream water and stream sediment: 8.0 microg L(-1), 8.8 microg L(-1) and 15.0 mg kg(-1) respectively), in association with the volcanic bedrocks, while lower As concentrations were found in the eastern part (average concentrations in groundwater, stream water and stream sediment: 2.9 microg L(-1), 1.7 microg L(-1) and 5.9 mg kg(-1) respectively), which is dominated by ophiolitic ultramafic formations. The variation of As levels between the different parts of the study area suggests that local geology exerts a determinant influence on As geochemical behaviour. On the other hand, the geothermal activity manifested in the area of Polichnitos-Lisvori does not affect the presence of As in groundwater and streams.
Lee, M.W.; Collett, T.S.
2008-01-01
Accurately detecting and quantifying gas hydrate or free gas in sediments from seismic data require downhole well-log data to calibrate the physical properties of the gas hydrate-/free gas-bearing sediments. As part of the Gulf of Mexico Joint Industry Program, a series of wells were either cored or drilled in the Gulf of Mexico to characterize the physical properties of gas hydrate-bearing sediments, to calibrate geophysical estimates, and to evaluate source and transport mechanisms for gas within the gas hydrates. Downhole acoustic logs were used sparingly in this study because of degraded log quality due to adverse wellbore conditions. However, reliable logging while drilling (LWD) electrical resistivity and porosity logs were obtained. To tie the well-log information to the available 3-D seismic data in this area, a velocity log was calculated from the available resistivity log at the Keathley Canyon 151-2 well, because the acoustic log or vertical seismic data acquired at the nearby Keathley Canyon 151-3 well were either of poor quality or had limited depth coverage. Based on the gas hydrate saturations estimated from the LWD resistivity log, the modified Biot-Gassmann theory was used to generate synthetic acoustic log and a synthetic seismogram was generated with a fairly good agreement with a seismic profile crossing the well site. Based on the well-log information, a faintly defined bottom-simulating reflection (BSR) in this area is interpreted as a reflection representing gas hydrate-bearing sediments with about 15% saturation overlying partially gas-saturated sediments with 3% saturation. Gas hydrate saturations over 30-40% are estimated from the resistivity log in two distinct intervals at 220-230 and 264-300 m below the sea floor, but gas hydrate was not physically recovered in cores. It is speculated that the poor recovery of cores and gas hydrate morphology are responsible for the lack of physical gas hydrate recovery.
Dean, W.; Pride, C.; Thunell, R.
2004-01-01
Sediments deposited on the slopes of the Guaymas and Carmen Basins in the central Gulf of California were recovered in two box cores. Q-mode factor analyses identified detrital-clastic, carbonate, and redox associations in the elemental composition of these sediments. The detrital-clastic fraction appears to contain two source components, a more mafic component presumably derived from the Sierra Madre Occidental along the west coast of Mexico, and a more felsic component most likely derived from sedimentary rocks (mostly sandstones) of the Colorado Plateau and delivered by the Colorado River. The sediments also contain significant siliceous biogenic components and minor calcareous biogenic components, but those components were not quantified in this study. Redox associations were identified in both cores based on relatively high concentrations of molybdenum, which is indicative of deposition under conditions of sulfate reduction. Decreases in concentrations of molybdenum in younger sediments suggest that the bottom waters of the Gulf have became more oxygenated over the last 100 years. Many geochemical components in both box cores exhibit distinct cyclicity with periodicities of 10-20 years. The most striking are 20-year cycles in the more mafic components (e.g., titanium), particularly in sediments deposited during the 19th century. In that century, the titanium cycles are in very good agreement with warm phases of the Pacific Decadal Oscillation, implying that at times of greater influx of titanium-rich volcanic debris, there were more El Nin??os and higher winter precipitation. The cycles are interpreted as due to greater and lesser riverine influx of volcanic rock debris from the Sierra Madre. There is also spectral evidence for periodicities of 4-8 and 8-16 years, suggesting that the delivery of detrital-clastic material is responding to some multiannual (ENSO?) forcing.
NASA Astrophysics Data System (ADS)
Walker, N. D.; Pilley, C.; Li, C.; Liu, B.; Leben, R. R.; Raghunthan, V.; Ko, D.; Teague, W. J.
2012-12-01
Beginning in 1995, Atlantic hurricane activity increased significantly relative to the 1970s and 1980s. In 2005, records were broken when two hurricanes intensified rapidly to Category 5 for a period of time within the Gulf of Mexico, later landed, and flooded vast expanses of Louisiana's coastal regions within the span of 30 days. In this study, we investigate major hurricane events (including 2005) to elucidate air-sea interactions pertinent to hurricane intensity changes, shelf circulation, coastal flooding, and coastal land losses. We employ satellite measurements from passive sensors (temperature, true color, pigments) and active sensors (scatterometers, altimeters) in tandem with in-situ measurements from WAVCIS, NDBC, USGS, and NRL, as well as dedicated field campaigns along the coast. A selection of hurricane events during the 1998 to 2008 time period are used in this investigation. Research has shown that the Loop Current and its warm-core anticyclonic eddies (with high heat content) can intensify hurricanes transiting the Gulf; whereas, the cold-core cyclonic eddies (which are upwelling regions) can weaken hurricanes. Hurricane winds can intensify cold-core cyclonic eddies, which in some cases can impact outer shelf currents, mixing, and thermal structure throughout the water column. The exceptionally strong winds and waves in the northeast quadrant of these cyclonic atmospheric storms drive strong and long-lived westward currents. Storm surges and/or set-up of 2-6 m commonly occur along the Louisiana coastline, sometimes as a result of hurricanes traveling across the central Gulf of Mexico, at great distances from the coastal region experiencing the flooding (e.g. Hurricanes Rita and Gustav). The eastern shelf, north of the Mississippi River Birdfoot Delta, is particularly vulnerable to water level set-up and storm surge intensification due to the coastal orientation that causes the trapping of water. This area experienced land loss of 169 km2, or ~20%, due to extreme winds, waves and a storm surge of at least 6 m during Hurricane Katrina.
NASA Astrophysics Data System (ADS)
Rodriguez, L. E.; Abbott, D. H.; Breger, D.
2011-12-01
Analysis using light microscopy, analytical scanning electron microscopy, and measurements of the magnetic susceptibility of five sediment cores (MD 28-MD 32) from the Gulf of Carpentaria have revealed that each has had an impact layer less than a centimeter (10s to 100s of micrometers) thick prior to bioturbation. The present stratigraphic thickness of the impact layer (result of bioturbation) within every core was determined based on whether or not we had observed at least one of the following impact ejecta: FeNiCrCl (a recent discovery), metallic spherules (some of which consisted of Fe and Ni), or chlorinated hydrocarbon; the highest peak of magnetic susceptibility correlated with the highest concentration of impact ejecta. We used modeling of the magnetic susceptibility of a hematite-calcium carbonate mixture to constrain the minimum thickness of the impact ejecta layer (prior to bioturbation). Until recently we had been unaware that the red, glassy, semi-spherules we found within the impact layer were in fact FeNiCrCl. Nickel is not abundant within the Earth's crust, thus it is highly likely that these fragments are cometary debris from an impact event within the Gulf of Carpentaria. Furthermore, SEM analysis has confirmed that the chlorinated hydrocarbon was not PVC contamination from the coring process; with such high levels of chlorine the results strongly suggest that the material was a by product of a marine water impact event. In addition, by using impact modeling we deduced that the observed impact ejecta layer could not have been transported via an impact generated tsunami. The model also predicts that the layer could have been produced by a cometary impact event (average velocity 51 km/s) that would have produced the 12 km crater at the site of the Tabban crater candidate.
Reconstructing Late Holocene Relative Sea-level Changes on the Gulf Coast of Florida
NASA Astrophysics Data System (ADS)
Gerlach, M. J.; Engelhart, S. E.; Kemp, A.; Moyer, R. P.; Smoak, J. M.; Bernhardt, C. E.
2015-12-01
Little is known about late Holocene relative sea-level (RSL) along the Gulf Coast of Florida. A RSL reconstruction from this region is needed to fill a spatial gap in sea-level records which can be used to support coastal management, contribute geologic data for Earth-Ice models estimating late Holocene land-level change and serve as the basis for which future projections of sea-level rise must be superimposed. Further, this dataset is crucial to understanding the presence/absence and non-synchronous timing of small sea-level oscillations (e.g. rise at ~ 1000 A.D.; fall at ~ 1400 A.D.) during the past 2000 years on the Atlantic and Gulf Coasts of the United States that may be linked to climate anomalies. We present the results of a high-resolution RSL reconstruction based on the sediment record of two salt marshes on the eastern margin of the Gulf of Mexico. Two ~1.3m cores primarily composed of Juncus roemeranius peat reveal RSL changes over the past ~2000 years in the southern end of Tampa Bay and in Charlotte Harbor, Florida. Two study sites were used to isolate localized factors affecting RSL at either location. Lithostratigraphic analysis at both sites identifies a transition from sandy-silt layers into salt-marsh peat at the bottom of each core. The two records show continuous accumulation of salt-marsh peat with Juncus roemeranius macrofossils and intermittent sand horizons likely reflecting inundation events. We used vertically zoned assemblages of modern foraminifera to assign the indicative meaning. The high marsh is dominated by Ammoastuta inepta, Haplophragmoides wilberti, and Arenoparella mexicana, with low marsh and tidal flats identified by Ammobaculites spp. and Miliammina fusca. Chronologies for these study sites were established using AMS radiocarbon dating of in-situ plant macrofossils, Cs137, Pb210 and pollen and pollution chronohorizons. Our regional RSL curve will add additional data for constraining the mechanisms causing RSL change.
Zhang, Tianyu; Xu, Jielin; Deng, Siyuan; Zhou, Fengqi; Li, Jin; Zhang, Liwei; Li, Lang; Wang, Qi-En; Li, Fuhai
2018-01-01
Tumor recurrence occurs in more than 70% of ovarian cancer patients, and the majority eventually becomes refractory to treatments. Ovarian Cancer Stem Cells (OCSCs) are believed to be responsible for the tumor relapse and drug resistance. Therefore, eliminating ovarian CSCs is important to improve the prognosis of ovarian cancer patients. However, there is a lack of effective drugs to eliminate OCSCs because the core signaling pathways regulating OCSCs remain unclear. Also it is often hard for biologists to identify a few testable targets and infer driver signaling pathways regulating CSCs from a large number of differentially expression genes in an unbiased manner. In this study, we propose a straightforward and integrative analysis to identify potential core signaling pathways of OCSCs by integrating transcriptome data of OCSCs isolated based on two distinctive markers, ALDH and side population, with regulatory network (Transcription Factor (TF) and Target Interactome) and signaling pathways. We first identify the common activated TFs in two OCSC populations integrating the gene expression and TF-target Interactome; and then uncover up-stream signaling cascades regulating the activated TFs. In specific, 22 activated TFs are identified. Through literature search validation, 15 of them have been reported in association with cancer stem cells. Additionally, 10 TFs are found in the KEGG signaling pathways, and their up-stream signaling cascades are extracted, which also provide potential treatment targets. Moreover, 40 FDA approved drugs are identified to target on the up-stream signaling cascades, and 15 of them have been reported in literatures in cancer stem cell treatment. In conclusion, the proposed approach can uncover the activated up-stream signaling, activated TFs and up-regulated target genes that constitute the potential core signaling pathways of ovarian CSC. Also drugs and drug combinations targeting on the core signaling pathways might be able to eliminate OCSCs. The proposed approach can also be applied for identifying potential activated signaling pathways of other types of cancers.
NASA Astrophysics Data System (ADS)
Gilhooly, W. P.; Macko, S. A.; Flemings, P. B.
2005-12-01
Pleistocene and Recent sediments within the Brazos-Trinity and Ursa Basins (northwestern Gulf of Mexico) were largely deposited by turbidity currents and have been deformed by a number of mass transport events. The geochemical composition of interstitial waters was determined in order to assess fluid flow within these sediments. Typical porewater sampling resolution, using advanced piston coring and the traditional Manheim squeezer technique, is approximately one sample every other core (20m) with the highest working resolution at one sample every 1.5m. In this study, Rhizon soil moisture samplers were used to attain high-resolution porewater profiles within sea floor surface sediments and for permeable sediments at depth. The small dimensions (2mm x 30mm) and pore-size (1μm) of the devices enable high-frequency placement within a core, specific targeting of the sequence of interest, and do not require sediment removal from the core, or filtering of extracted porewaters. Initial shipboard analyses derived from sediments at the Ursa Basin (Site 1322) indicate a linear decrease in salinity with depth at U1322 where the overpressure gradient is thought to be greatest. The less saline waters with depth lends evidence for potential mixing between deep-seated fluids and low salinity ones derived from the Blue Unit and seawater. Isotopic composition and concentrations of sulfur species (SO4 and H2S) dissolved in porewaters, as well as, ionic compositions (Cl, Na, K, Ca, Mg) and chemical composition of associated sediments (%C, %N, 13C, and 15N) are compared with chemical results obtained with squeezers.
NASA Astrophysics Data System (ADS)
Bowles, Marshall; Hunter, Kimberley S.; Samarkin, Vladimir; Joye, Samantha
2016-07-01
We collected 69 sediment cores from distinct ecological and geological settings along the deep slope in the Northern Gulf of Mexico to evaluate whether specific geochemical- or habitat-related factors correlated with rates of microbial processes and geochemical signatures. By collecting replicate cores from distinct habitats across multiple sites, we illustrate and quantify the heterogeneity of cold seep geochemistry and microbial activity. These data also document the factors driving unique aspects of the geochemistry of deep slope gas, oil and brine seeps. Surprisingly little variation was observed between replicate (n=2-5) cores within sites for most analytes (except methane), implying that the common practice of collecting one core for geochemical analysis can capture the signature of a habitat in most cases. Depth-integrated concentrations of methane, dissolved inorganic carbon (DIC), and calcium were the predominant geochemical factors that correlated with a site's ecological or geological settings. Pore fluid methane concentration was related to the phosphate and DIC concentration, as well as to rates of sulfate reduction. While distinctions between seep habitats were identified from geochemical signatures, habitat specific geochemistry varied little across sites. The relative concentration of dissolved inorganic nitrogen versus phosphorus suggests that phosphorus availability limits biomass production at cold seeps. Correlations between calcium, chloride, and phosphate concentrations were indicative of brine-associated phosphate transport, suggesting that in addition to the co-migration of methane, dissolved organic carbon, and ammonium with brine, phosphate delivery is also associated with brine advection.
Geochemical characteristics of Heavy metals of river sediment from the main rivers at Texas, USA.
NASA Astrophysics Data System (ADS)
Matsumoto, I.; Hoffman, D.; MacAlister, J.; Ishiga, H.
2008-12-01
Trinity River is one of the biggest rivers which flows through Dallas and Fort Worth two big cities of USA and are highly populated. Trinity river drains into the Gulf of Mexico. Sediment samples collected from various points along the upper and lower streams were subjected to content analysis and elution analysis (using liquate (flow) out test) on the heavy metals like Cd, CN, Pb, Cr, As, Hg, Ni, Zn and Cu from the river sediment for the purpose of environment assessment. A total of 22 sample points were identified from upper stream to lower stream and samples were collected such that almost the whole stream length of Trinity River is covered. Results show that heavy metal content through out the river stream is below the recommended limits posing no immediate environmental threat. However, the experimental results show clear impact of human population in bigger cities on heavy metal concentrations in the river sediments as compared to smaller cities with low human population. It could be seen from the analysis that all the heavy metals show relatively high content and high elution value in Dallas and Fort Worth. As we move away from the big cities, the value of content and elution of sediment decreased by natural dilution effect by the river. And we also present the data of the Colorado and San Antonio rivers.
Birdwell, Justin E.; Boehlke, Adam; Paxton, Stanley T.; Whidden, Katherine J.; Pearson, Ofori N.
2017-01-01
The Eagle Ford shale is a major continuous oil and gas resource play in southcentral Texas and a source for other oil accumulations in the East Texas Basin. As part of the U.S. Geological Survey’s (USGS) petroleum system assessment and research efforts, a coring program to obtain several immature, shallow cores from near the outcrop belt in central Texas has been undertaken. The first of these cores, USGS Gulf Coast #1 West Woodway, was collected near Waco, Texas, in September 2015 and has undergone extensive geochemical and mineralogical characterization using routine methods to ascertain variations in the lithologies and chemofacies present in the Eagle Ford at this locale. Approximately 270 ft of core was examined for this study, focusing on the Eagle Ford Group interval between the overlying Austin Chalk and underlying Buda Limestone (~20 ft of each). Based on previous work to identify the stratigraphy of the Eagle Ford Group in the Waco area and elsewhere (Liro et al., 1994; Robison, 1997; Ratcliffe et al., 2012; Boling and Dworkin, 2015; Fairbanks et al., 2016, and references therein), several lithological units were expected to be present, including the Pepper Shale (or Woodbine), the Lake Waco Formation (or Lower Eagle Ford, including the Bluebonnet, Cloice, and Bouldin or Flaggy Cloice members), and the South Bosque Member (Upper Eagle Ford). The results presented here indicate that there are three major chemofacies present in the cored interval, which are generally consistent with previous descriptions of the Eagle Ford Group in this area. The relatively high-resolution sampling (every two ft above the Buda, 432.8 ft depth, and below the Austin Chalk, 163.5 ft depth) provides great detail in terms of geochemical and mineralogical properties supplementing previous work on immature Eagle Ford Shale near the outcrop belt.
NASA Astrophysics Data System (ADS)
Rojas, V.; Bouilloux, A.; Meynadier, L.; Valet, J.-P.; Joron, J.-L.
2012-04-01
Over the past 20,000 years earth climate has undergone important changes that include the transition from the last glaciation to the Holocene with the retreat of glaciers, the modification of atmospheric circulation systems and hydrologic regimes. The production and transport of matter into the ocean was influenced by these variations in climatic conditions. In this study we considered the Red Sea and the Gulf of Aden as basins that offer a particular geographic and geological setting and that could be of interest in understanding climate variations and their effects in local erosion. The study of two cores in each side of the Bab-el-Mandeb strait (MD 92-1002 in the Gulf of Aden and MD 92-1008 in the Red Sea) allows the comparison between the open ocean and a more isolated basin. Additionally, this is an intertropical region influenced by African and Asian monsoons whose intensities can vary depending on climate and wind patterns. Erosion and matter transfer from the continents to these basins in response to climate changes can be studied using different approaches including rock magnetism, sedimentology and radiogenic isotopes. Neodymium isotope ratios (expressed here in ɛNd) are a useful tracer of oceanic sediments sources and type of transport and can be used as a signature of specific water masses. The main sources of Nd in oceans are fluvial and eolian inputs originated from the erosion of the continental crust. We measured ɛNd values in both cores of the silicate and carbonate phases, which correspond respectively to detrital and dissolved Nd. We observe differences between the isotopic records of the two basins. In the Gulf of Aden detrital and dissolved ɛNd values show large changes linked to the Glacial-Interglacial transition, in agreement with other studies in the equatorial Indian Ocean. Both signals decreased by 1.5 ɛNd units between the LGM and the Holocene. By comparing these results with those from the Red Sea, we observe a less clear decrease in ɛNd values (0.5 ɛNd units for the detrital fraction), reflecting the greater communication of the Gulf of Aden basin with the open ocean. Variations in the detrital ɛNd values suggest a change of the eolian particles source from the Sahara region during glacial periods, to the Arabian-Nubian shield during interglacial periods. An increase of the dissolved ɛNd values in both basins between 15 and 10 kyr indicates an intensification of precipitation in this region and, as a consequence, a preferential alteration of the basaltic terrain. The ɛNd data are compared with magnetic susceptibility and magnetic mineralogy data in order to discriminate between influences of continental erosion and weathering, and redox conditions in the basins during the considered period of time. We found an overall covariation of magnetic parameters with the detrital ɛNd and sea water ɛNd of both cores except for the H1 event in the Gulf of Aden. Strontium isotope measurements of the detrital fractions are in progress to constrain the origin of the sources.
Optimal boundary conditions for ORCA-2 model
NASA Astrophysics Data System (ADS)
Kazantsev, Eugene
2013-08-01
A 4D-Var data assimilation technique is applied to ORCA-2 configuration of the NEMO in order to identify the optimal parametrization of boundary conditions on the lateral boundaries as well as on the bottom and on the surface of the ocean. The influence of boundary conditions on the solution is analyzed both within and beyond the assimilation window. It is shown that the optimal bottom and surface boundary conditions allow us to better represent the jet streams, such as Gulf Stream and Kuroshio. Analyzing the reasons of the jets reinforcement, we notice that data assimilation has a major impact on parametrization of the bottom boundary conditions for u and v. Automatic generation of the tangent and adjoint codes is also discussed. Tapenade software is shown to be able to produce the adjoint code that can be used after a memory usage optimization.
NASA Astrophysics Data System (ADS)
Kerr, P. C.; Donahue, A. S.; Westerink, J. J.; Luettich, R. A.; Zheng, L. Y.; Weisberg, R. H.; Huang, Y.; Wang, H. V.; Teng, Y.; Forrest, D. R.; Roland, A.; Haase, A. T.; Kramer, A. W.; Taylor, A. A.; Rhome, J. R.; Feyen, J. C.; Signell, R. P.; Hanson, J. L.; Hope, M. E.; Estes, R. M.; Dominguez, R. A.; Dunbar, R. P.; Semeraro, L. N.; Westerink, H. J.; Kennedy, A. B.; Smith, J. M.; Powell, M. D.; Cardone, V. J.; Cox, A. T.
2013-10-01
A Gulf of Mexico performance evaluation and comparison of coastal circulation and wave models was executed through harmonic analyses of tidal simulations, hindcasts of Hurricane Ike (2008) and Rita (2005), and a benchmarking study. Three unstructured coastal circulation models (ADCIRC, FVCOM, and SELFE) validated with similar skill on a new common Gulf scale mesh (ULLR) with identical frictional parameterization and forcing for the tidal validation and hurricane hindcasts. Coupled circulation and wave models, SWAN+ADCIRC and WWMII+SELFE, along with FVCOM loosely coupled with SWAN, also validated with similar skill. NOAA's official operational forecast storm surge model (SLOSH) was implemented on local and Gulf scale meshes with the same wind stress and pressure forcing used by the unstructured models for hindcasts of Ike and Rita. SLOSH's local meshes failed to capture regional processes such as Ike's forerunner and the results from the Gulf scale mesh further suggest shortcomings may be due to a combination of poor mesh resolution, missing internal physics such as tides and nonlinear advection, and SLOSH's internal frictional parameterization. In addition, these models were benchmarked to assess and compare execution speed and scalability for a prototypical operational simulation. It was apparent that a higher number of computational cores are needed for the unstructured models to meet similar operational implementation requirements to SLOSH, and that some of them could benefit from improved parallelization and faster execution speed.
Reservoir assessment of the Nubian sandstone reservoir in South Central Gulf of Suez, Egypt
NASA Astrophysics Data System (ADS)
El-Gendy, Nader; Barakat, Moataz; Abdallah, Hamed
2017-05-01
The Gulf of Suez is considered as one of the most important petroleum provinces in Egypt and contains the Saqqara and Edfu oil fields located in the South Central portion of the Gulf of Suez. The Nubian sandstone reservoir in the Gulf of Suez basin is well known for its great capability to store and produce large volumes of hydrocarbons. The Nubian sandstone overlies basement rocks throughout most of the Gulf of Suez region. It consists of a sequence of sandstones and shales of Paleozoic to Cretaceous age. The Nubian sandstone intersected in most wells has excellent reservoir characteristics. Its porosity is controlled by sedimentation style and diagenesis. The cementation materials are mainly kaolinite and quartz overgrowths. The permeability of the Nubian sandstone is mainly controlled by grain size, sorting, porosity and clay content especially kaolinite and decreases with increase of kaolinite. The permeability of the Nubian Sandstone is evaluated using the Nuclear Magnetic Resonance (NMR technology) and formation pressure data in addition to the conventional logs and the results were calibrated using core data. In this work, the Nubian sandstone was investigated and evaluated using complete suites of conventional and advanced logging techniques to understand its reservoir characteristics which have impact on economics of oil recovery. The Nubian reservoir has a complicated wettability nature which affects the petrophysical evaluation and reservoir productivity. So, understanding the reservoir wettability is very important for managing well performance, productivity and oil recovery.
Hanebuth, Till J J; King, Mary Lee; Mendes, Isabel; Lebreiro, Susana; Lobo, Francisco J; Oberle, Ferdinand K; Antón, Laura; Ferreira, Paulo Alves; Reguera, Maria Isabel
2018-05-10
Natural and human-induced seabed sediment disturbances affect wide areas of the global coastal ocean. These recurrent to chronic disturbances mobilize significant amounts of material, including substances that have the potential to significantly harm the environment once re-released. This very challenging issue is difficult to deal with if sub-surface contaminant concentrations are unknown. Based on the analysis of 11 new, up to 5-m long sediment cores taken offshore in the Gulf of Cadiz, the contamination history (using the trace elements lead and zinc) is well documented over major parts of the gulf. Ore mining and metal processing industries on the southwestern Iberian Peninsula started five thousand years ago and experienced a first peak during the Roman Period, which can be detected over the entire gulf. The Industrial Era added a massive, shelf-wide heavy metal excursion of unprecedented dimension. This metal contamination to the coastal ocean decreased in the 1990s and appears to be today limited to larger areas off the Tinto/Odiel and Guadiana River mouths. The unforeseen, significant finding of this study is that the gulf-wide, peak heavy metal concentration, stemming from the Industrial Era, is widely overlain by a modern sediment veneer just thick enough to cover the contaminant horizon, but thin enough to have this layer within the reach of natural or human-induced sediment mobilization events. Published by Elsevier B.V.
Mineralogy of Gas Hydrate Bearing Sediment in Green Canyon Block 955 Northern Gulf of Mexico
NASA Astrophysics Data System (ADS)
Heber, R.; Kinash, N.; Cook, A.; Sawyer, D.; Sheets, J.; Johnson, J. E.
2017-12-01
Natural gas hydrates are of interest as a future hydrocarbon source, however, the formation and physical properties of such systems are not fully understood. In May 2017, the University of Texas drilled two holes in Green Canyon Block 955, northern Gulf of Mexico to collect pressurized core from a thick, 100 m accumulation of gas hydrate in a silt dominated submarine canyon levee system. The expedition, known as UT-GOM2-01, collected 21, 10-m pressure cores from Holes H002 and H005. Approximately half of the cores successfully pressurized and were fully recovered. Unsuccessful cores that did not pressurize generally had low core recovery. By analyzing the sediment composition in known gas hydrate reservoirs, we can construct a more detailed picture of how and why gas hydrates accumulate, as mineralogy can affect physical properties such as porosity and permeability as well as geophysical measurements such as resistivity. Using X-ray diffraction (XRD) on bulk sediment powders, we determined the bulk mineralogy of the samples. Moreover, we investigated drilling mud contamination using XRD and light optical analysis. In some cores, contamination was easily recognized visually as dense sludge between the core barrel and the recovered sediment core, however drilling mud is best observed both along the liner and interbedded within the sediment on X-ray computed tomography scans. To fully identify the presence and influence of drilling mud, we use XRD to analyze samples on cores collected both while drilling mud was used in hole and when only seawater was used in hole and consider the density anomalies observed on the XCT scans. The preliminary XRD light optical microscopy results show that the silt-dominated reservoir is primarily composed of quartz, with minor alkali feldspar, amphibole, muscovite, dolomite, and calcite. Samples from intervals with suspected drilling mud contamination show a similar composition, but with the addition of barite, a common component in drilling mud. Understanding why contamination occurs will improve the coring process and ensure maximum recovery in the future. The XRD data also show the presence of 7-angstrom clay minerals, most likely chlorite and serpentine, but more analysis is required in order to verify the identification and to establish relative abundances of each mineral.
Freeman, Mary C.; Pringle, C.M.; Jackson, C.R.
2007-01-01
Cumulatively, headwater streams contribute to maintaining hydrologic connectivity and ecosystem integrity at regional scales. Hydrologic connectivity is the water-mediated transport of matter, energy and organisms within or between elements of the hydrologic cycle. Headwater streams compose over two-thirds of total stream length in a typical river drainage and directly connect the upland and riparian landscape to the rest of the stream ecosystem. Altering headwater streams, e.g., by channelization, diversion through pipes, impoundment and burial, modifies fluxes between uplands and downstream river segments and eliminates distinctive habitats. The large-scale ecological effects of altering headwaters are amplified by land uses that alter runoff and nutrient loads to streams, and by widespread dam construction on larger rivers (which frequently leaves free-flowing upstream portions of river systems essential to sustaining aquatic biodiversity). We discuss three examples of large-scale consequences of cumulative headwater alteration. Downstream eutrophication and coastal hypoxia result, in part, from agricultural practices that alter headwaters and wetlands while increasing nutrient runoff. Extensive headwater alteration is also expected to lower secondary productivity of river systems by reducing stream-system length and trophic subsidies to downstream river segments, affecting aquatic communities and terrestrial wildlife that utilize aquatic resources. Reduced viability of freshwater biota may occur with cumulative headwater alteration, including for species that occupy a range of stream sizes but for which headwater streams diversify the network of interconnected populations or enhance survival for particular life stages. Developing a more predictive understanding of ecological patterns that may emerge on regional scales as a result of headwater alterations will require studies focused on components and pathways that connect headwaters to river, coastal and terrestrial ecosystems. Linkages between headwaters and downstream ecosystems cannot be discounted when addressing large-scale issues such as hypoxia in the Gulf of Mexico and global losses of biodiversity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphrey, Gary
The objective of this project (and report) is to produce a guide to developing scientific, operational, and logistical plans for a future methane hydrate-focused offshore pressure coring program. This report focuses primarily on a potential coring program in the Walker Ridge 313 and Green Canyon 955 blocks where previous investigations were undertaken as part of the 2009 Department of Energy JIP Leg II expedition, however, the approach to designing a pressure coring program that was utilized for this project may also serve as a useful model for planning pressure coring programs for hydrates in other areas. The initial portion ofmore » the report provides a brief overview of prior investigations related to gas hydrates in general and at the Walker Ridge 313 and Green Canyon 955 blocks in particular. The main content of the report provides guidance for various criteria that will come into play when designing a pressure coring program.« less
Mechanism for the recent ocean warming events on the Scotian Shelf of eastern Canada
NASA Astrophysics Data System (ADS)
Brickman, D.; Hebert, D.; Wang, Z.
2018-03-01
In 2012, 2014, and 2015 anomalous warm events were observed in the subsurface waters in the Scotian Shelf region of eastern Canada. Monthly output from a high resolution numerical ocean model simulation of the North Atlantic ocean for the period 1990-2015 is used to investigate this phenomenon. It is found that the model shows skill in simulating the anomaly fields derived from various sources of data, and the observed warming trend over the last decade. From analysis of the model run it is found that the anomalies originate from the interaction between the Gulf Stream and the Labrador Current at the tail of the Grand Banks (south of Newfoundland). This interaction results in the creation of anomalous warm/salty (or cold/fresh) eddies that travel east-to-west along the shelfbreak. These anomalies penetrate into the Gulf of St. Lawrence, onto the Scotian Shelf, and into the Gulf of Maine via deep channels along the shelfbreak. The observed warming trend can be attributed to an increase in the frequency of creation of warm anomalies during the last decade. Strong anomalous events are commonly observed in the data and model, and thus should be considered as part of the natural variability of the coupled atmosphere-ocean system.
Enhancing Image Processing Performance for PCID in a Heterogeneous Network of Multi-core Processors
2009-09-01
TFLOPS of Playstation 3 (PS3) nodes with IBM Cell Broadband Engine multi-cores and 15 dual-quad Xeon head nodes. The interconnect fabric includes... 4 3. INFORMATION MANAGEMENT FOR PARALLELIZATION AND...STREAMING............................................................. 7 4 . RESULTS
Freeze core sampling to validate time-lapse resistivity monitoring of the hyporheic zone.
Toran, Laura; Hughes, Brian; Nyquist, Jonathan; Ryan, Robert
2013-01-01
A freeze core sampler was used to characterize hyporheic zone storage during a stream tracer test. The pore water from the frozen core showed tracer lingered in the hyporheic zone after the tracer had returned to background concentration in collocated well samples. These results confirmed evidence of lingering subsurface tracer seen in time-lapse electrical resistivity tomographs. The pore water exhibited brine exclusion (ion concentrations in ice lower than source water) in a sediment matrix, despite the fast freezing time. Although freeze core sampling provided qualitative evidence of lingering tracer, it proved difficult to quantify tracer concentration because the amount of brine exclusion during freezing could not be accurately determined. Nonetheless, the additional evidence for lingering tracer supports using time-lapse resistivity to detect regions of low fluid mobility within the hyporheic zone that can act as chemically reactive zones of importance in stream health. © 2012, The Author(s). GroundWater © 2012, National Ground Water Association.
USDA-ARS?s Scientific Manuscript database
Enrichment of surface waters with excess nutrients is associated with increased algal blooms, euthrophication and hypoxic zones, as reported in the northern Gulf of Mexico. A source of nutrients to surface waters results from fertilizer runoff. Management strategies used to maintain turf on golf cou...
Measurements and modeling of flow structure in the wake of a low profile wishbone vortex generator
NASA Technical Reports Server (NTRS)
Wendt, B. J.; Hingst, W. R.
1994-01-01
The results of an experimental examination of the vortex structures shed from a low profile 'wishbone' generator are presented. The vortex generator height relative to the turbulent boundary layer was varied by testing two differently sized models. Measurements of the mean three-dimensional velocity field were conducted in cross-stream planes downstream of the vortex generators. In all cases, a counter-rotating vortex pair was observed. Individual vortices were characterized by three descriptors derived from the velocity data; circulation, peak vorticity, and cross-stream location of peak vorticity. Measurements in the cross plane at two axial locations behind the smaller wishbone characterize the downstream development of the vortex pairs. A single region of stream wise velocity deficit is shared by both vortex cores. This is in contrast to conventional generators, where each core coincides with a region of velocity deficit. The measured cross-stream velocities for each case are compared to an Oseen model with matching descriptors. The best comparison occurs with the data from the larger wishbone.
Dr. von Braun on top of the Deep-Sea Research Submarine 'Ben Franklin'
NASA Technical Reports Server (NTRS)
1969-01-01
This photograph depicts Dr. von Braun (at right, showing his back) and other NASA officials surveying the deep-sea research submarine 'Ben Franklin.' Named for American patriot and inventor Ben Franklin, who discovered the Gulf Steam, the 50-foot Ben Franklin was built between 1966 and 1968 in Switzerland for deep-ocean explorer Jacques Piccard and the Grumman Aircraft Engineering Corporation. The submersible made a famous 30-day drift dive off the East Coast of the United States and Canada in 1969 mapping the Gulf Stream's currents and sea life, and also made space exploration history by studying the behavior of aquanauts in a sealed, self-contained, self-sufficient capsule for NASA. On July 14, 1969, the Ben Franklin was towed to the high-velocity center of the Stream off the coast of Palm Beach, Florida. With a NASA observer on board, the sub descended to 1,000 feet off of Riviera Beach, Florida and drifted 1,400 miles north with the current for more than four weeks, reemerging near Maine. During the course of the dive, NASA conducted exhaustive analyses of virtually every aspect of onboard life. They measured sleep quality and patterns, sense of humor and behavioral shifts, physical reflexes, and the effects of a long-term routine on the crew. The submarine's record-shattering dive influenced the design of Apollo and Skylab missions and continued to guide NASA scientists as they devised future marned space-flight missions.
Dr. von Braun on Top of the Deep-Sea Research Submarine 'Ben Franklin'
NASA Technical Reports Server (NTRS)
1969-01-01
This photograph depicts Dr. von Braun (fourth from far right) and other NASA officials surveying the deep-sea research submarine 'Ben Franklin.' Named for American patriot and inventor Ben Franklin, who discovered the Gulf Steam, the 50-foot Ben Franklin was built between 1966 and 1968 in Switzerland for deep-ocean explorer Jacques Piccard and the Grumman Aircraft Engineering Corporation. The submersible made a famous 30-day drift dive off the East Coast of the United States and Canada in 1969 mapping the Gulf Stream's currents and sea life, and also made space exploration history by studying the behavior of aquanauts in a sealed, self-contained, self-sufficient capsule for NASA. On July 14, 1969, the Ben Franklin was towed to the high-velocity center of the Stream off the coast of Palm Beach, Florida. With a NASA observer on board, the sub descended to 1,000 feet off of Riviera Beach, Florida and drifted 1,400 miles north with the current for more than four weeks, reemerging near Maine. During the course of the dive, NASA conducted exhaustive analyses of virtually every aspect of onboard life. They measured sleep quality and patterns, sense of humor and behavioral shifts, physical reflexes, and the effects of a long-term routine on the crew. The submarine's record-shattering dive influenced the design of Apollo and Skylab missions and continued to guide NASA scientists as they devised future marned space-flight missions.
Deep-Sea Research Submarine 'Ben Franklin' at the East Coast of the United States
NASA Technical Reports Server (NTRS)
1969-01-01
In this photograph, the deep-sea Research Submarine 'Ben Franklin' drifts off the East Coast of the United States (U.S.) prior to submerging into the ocean. Named for American patriot and inventor Ben Franklin, who discovered the Gulf Steam, the 50-foot Ben Franklin was built between 1966 and 1968 in Switzerland for deep-ocean explorer Jacques Piccard and the Grumman Aircraft Engineering Corporation. The submersible made a famous 30-day drift dive off the East Coast of the United States and Canada in 1969 mapping the Gulf Stream's currents and sea life, and also made space exploration history by studying the behavior of aquanauts in a sealed, self-contained, self-sufficient capsule for NASA. On July 14, 1969, the Ben Franklin was towed to the high-velocity center of the Stream off the coast of Palm Beach, Florida. With a NASA observer on board, the sub descended to 1,000 feet off of Riviera Beach, Florida and drifted 1,400 miles north with the current for more than four weeks, reemerging near Maine. During the course of the dive, NASA conducted exhaustive analyses of virtually every aspect of onboard life. They measured sleep quality and patterns, sense of humor and behavioral shifts, physical reflexes, and the effects of a long-term routine on the crew. The submarine's record-shattering dive influenced the design of Apollo and Skylab missions and continued to guide NASA scientists as they devised future marned space-flight missions.
NASA Astrophysics Data System (ADS)
Sancho, G.; Edman, R.; Frazier, B.; Bubley, W.
2016-02-01
Understanding the trophic dynamics and habitat utilization of apex predators is central to inferring their influence on different marine landscapes and to help design effective management plans for these animals. Tiger sharks (Galeocerdo cuvier) are abundant in shelf and offshore Gulf Stream waters of the western North Atlantic Ocean, and based on movements from individuals captured in Florida and Bahamas, seem to avoid coastal and shelf waters off South Carolina and Georgia. This contradicts reports of tiger sharks regularly being caught nearshore by anglers in these states, indicating that separate sub-populations may exist in the western North Atlantic. In the present study we captured Tiger Sharks in coastal waters off South Carolina in 2014 and 2015 in order to describe their movement patterns through acoustic and satellite tagging, and trophic dynamics through stable isotope analyses. Movement data show that these tiger sharks repeatedly visit particular inshore areas and mainly travel over the continental shelf, but rarely venture offshore beyond the continental shelf edge. Ongoing C and N stable isotope analyses of muscle, blood and skin tissues from adult and juvenile tiger sharks, as well as from potential prey species and primary producers, will help determine if their diets are based on inshore, shelf or offshore based food webs. Tiger sharks exploiting nearshore environments and shelf waters have much higher probabilities of interacting with humans than individuals occupying far offshore Gulf Stream habitats.
NASA Astrophysics Data System (ADS)
Dhanak, M. R.
2001-12-01
A 12-hour survey of the coastal waters off the east coast of Florida at the South Florida Ocean Measurement Center (SFOMC) coastal ocean observatory, during summer 1999, is described to illustrate the observatory's capabilities for ocean observation. The facility is located close to the Gulf Stream, the continental shelf break being only 3 miles from shore and is therefore influenced by the Gulf Stream meanders and the instability of the horizontal shear layer at its edge. As a result, both cross-shelf and along-shelf components of currents in the littoral zone can undergo dramatic +/- 0.5 m/s oscillations. Observations of surface currents from an OSCR, and of subsurface structure from an autonomous underwater vehicle (AUV) platform, a bottom-mounted ADCP and CT-chain arrays during the survey will be described and compared. The AUV on-board sensors included upward and downward looking 1200kHz ADCP, a CTD package and a small-scale turbulence package, consisting of two shear probes and a fast-response thermistor. Prevailing atmospheric conditions were recorded at an on-site buoy. The combined observations depict flows over a range of scales. Acknowledgements: The observations from the OSCR are due to Nick Shay and Tom Cook (University of Miami), and from the bottom-mounted ADCP, CT chain arrays and the surface buoy are due to Alex Soloviev (Nova Southeastern University) and Mark Luther and Bob Weisberg (University of South Florida).
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This tabular data set represents basin characteristics for the year 2002 compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). These characteristics are reach catchment shape index, stream density, sinuosity, mean elevation, mean slope and number of road-stream crossings. The source data sets are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) RF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011) and the U.S. Census Bureau's TIGER/Line Files (U.S. Census Bureau,2006). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).
Heat and salt budgets over the Gulf Stream North Wall during LatMix survey in winter 2012.
NASA Astrophysics Data System (ADS)
Sanchez-Rios, A.; Shearman, R. K.; D'Asaro, E. A.; Lee, C.; Gula, J.; Klymak, J. M.
2016-02-01
As part of the ONR-sponsored LatMix Experiment, ship-based and glider-based observations following a Lagrangian float are used to examine the evolution of temperature, salinity and density along the Gulf Stream north wall in wintertime. Satellite observations during the survey and the in-situ measurements showed the presence of submesoscale (<10 km) features along the front. Models have successfully reproduced similar features, but observations are lacking, particularly at the small scales needed to understand their role in the transport of heat and salt across the front and out of the mixed layer. Calculating the trend in time at each depth and cross-front location we found an increase of heat and salinity in regions where the strongest cross-front gradients of velocity were observed at the mixed layer and around 150m depth, these changes are density compensated and suggest isopycnal mixing and a connection between the mixed layer and subsurface layers. The large Rossby number (Ro>1) calculated for this regions corroborates the possibility of submesoscale dynamics. Using a heat and salinity budget, we show that surface forcing, entrainment from below and advection by the mean flow velocities are not sufficient to explain the observed rate of change of heat and salinity in the mixed layer. Although confidence estimates prevent an accurate flux divergence calculation, Reynold flux estimates are consistent with a cross-frontal exchange that can reproduce the observed temporal trends.
Impact of Air Injection on Jet Noise
NASA Technical Reports Server (NTRS)
Henderson, Brenda; Norum, Tom
2007-01-01
The objective of this viewgraph presentation is to review the program to determine impact of core fluidic chevrons on noise produced by dual stream jets (i.e., broadband shock noise - supersonic, and mixing noise - subsonic and supersonic). The presentation reviews the sources of jet noise. It shows designs of Generation II Fluidic Chevrons. The injection impacts shock structure and stream disturbances through enhanced mixing. This may impact constructive interference between acoustic sources. The high fan pressures may inhibit mixing produced by core injectors. A fan stream injection may be required for better noise reduction. In future the modification of Gen II nozzles to allow for some azimuthal control: will allow for higher mass flow rates and will allow for shallower injection angles A Flow field study is scheduled for spring, 2008 The conclusions are that injection can reduce well-defined shock noise and injection reduces mixing noise near peak jet noise angle
NASA Technical Reports Server (NTRS)
Calleja, John; Tamagno, Jose
1993-01-01
A series of air calibration tests were performed in GASL's HYPULSE facility in order to more accurately determine test section flow conditions for flows simulating total enthalpies in the Mach 13 to 17 range. Present calibration data supplements previous data and includes direct measurement of test section pitot and static pressure, acceleration tube wall pressure and heat transfer, and primary and secondary incident shock velocities. Useful test core diameters along with the corresponding free-stream conditions and usable testing times were determined. For the M13.5 condition, in-stream static pressure surveys showed the temporal and spacial uniformity of this quantity across the useful test core. In addition, finite fringe interferograms taken of the free-stream flow at the test section did not indicate the presence of any 'strong' wave system for any of the conditions investigated.
Tracking contaminants down the Mississippi
Swarzenski, P.; Campbell, P.
2004-01-01
The Mississippi River and its last major downstream distributary, the Atchafalaya River, provide approximately 90 percent of the freshwater input to the Gulf of Mexico. Analyses of sediment cores using organic and inorganic tracers as well as bethic foraminifera appear to provide a reliable record of the historic variability of hypoxia in the northern Gulf of Mexico over the past few centuries. Natural variability in hypoxic events may be driven largely by flooding cycles of El Nin??o/La Nin??a prior to recent increases in nutrient loading. Specifically, large floods in 1979, 1983, 1993 and 1998, compounded with the widespread use of fertilizers, also appear at least partially responsible for the recent (post-1980) dramatic increase of hypoxic events in the Mississippi Bight.
Richardson, David E; Marancik, Katrin E; Guyon, Jeffrey R; Lutcavage, Molly E; Galuardi, Benjamin; Lam, Chi Hin; Walsh, Harvey J; Wildes, Sharon; Yates, Douglas A; Hare, Jonathan A
2016-03-22
Atlantic bluefin tuna are a symbol of both the conflict between preservationist and utilitarian views of top ocean predators, and the struggle to reach international consensus on the management of migratory species. Currently, Atlantic bluefin tuna are managed as an early-maturing eastern stock, which spawns in the Mediterranean Sea, and a late-maturing western stock, which spawns in the Gulf of Mexico. However, electronic tagging studies show that many bluefin tuna, assumed to be of a mature size, do not visit either spawning ground during the spawning season. Whether these fish are spawning in an alternate location, skip-spawning, or not spawning until an older age affects how vulnerable this species is to anthropogenic stressors including exploitation. We use larval collections to demonstrate a bluefin tuna spawning ground in the Slope Sea, between the Gulf Stream and northeast United States continental shelf. We contend that western Atlantic bluefin tuna have a differential spawning migration, with larger individuals spawning in the Gulf of Mexico, and smaller individuals spawning in the Slope Sea. The current life history model, which assumes only Gulf of Mexico spawning, overestimates age at maturity for the western stock. Furthermore, individual tuna occupy both the Slope Sea and Mediterranean Sea in separate years, contrary to the prevailing view that individuals exhibit complete spawning-site fidelity. Overall, this complexity of spawning migrations questions whether there is complete independence in the dynamics of eastern and western Atlantic bluefin tuna and leads to lower estimates of the vulnerability of this species to exploitation and other anthropogenic stressors.
Richardson, David E.; Marancik, Katrin E.; Guyon, Jeffrey R.; Lutcavage, Molly E.; Galuardi, Benjamin; Lam, Chi Hin; Walsh, Harvey J.; Wildes, Sharon; Yates, Douglas A.; Hare, Jonathan A.
2016-01-01
Atlantic bluefin tuna are a symbol of both the conflict between preservationist and utilitarian views of top ocean predators, and the struggle to reach international consensus on the management of migratory species. Currently, Atlantic bluefin tuna are managed as an early-maturing eastern stock, which spawns in the Mediterranean Sea, and a late-maturing western stock, which spawns in the Gulf of Mexico. However, electronic tagging studies show that many bluefin tuna, assumed to be of a mature size, do not visit either spawning ground during the spawning season. Whether these fish are spawning in an alternate location, skip-spawning, or not spawning until an older age affects how vulnerable this species is to anthropogenic stressors including exploitation. We use larval collections to demonstrate a bluefin tuna spawning ground in the Slope Sea, between the Gulf Stream and northeast United States continental shelf. We contend that western Atlantic bluefin tuna have a differential spawning migration, with larger individuals spawning in the Gulf of Mexico, and smaller individuals spawning in the Slope Sea. The current life history model, which assumes only Gulf of Mexico spawning, overestimates age at maturity for the western stock. Furthermore, individual tuna occupy both the Slope Sea and Mediterranean Sea in separate years, contrary to the prevailing view that individuals exhibit complete spawning-site fidelity. Overall, this complexity of spawning migrations questions whether there is complete independence in the dynamics of eastern and western Atlantic bluefin tuna and leads to lower estimates of the vulnerability of this species to exploitation and other anthropogenic stressors. PMID:26951668
Canfield, Caitlin; Angove, Rebekah; Boselovic, Joseph; Brown, Lisanne F.; Gauthe, Sharon; Bui, Tap; Gauthe, David; Bogen, Donald; Denham, Stacey; Nguyen, Tuan; Lichtveld, Maureen Y.
2017-01-01
Background The Transdisciplinary Research Consortium for Gulf Resilience on Women’s Health (GROWH) addresses reproductive health disparities in the Gulf Coast by linking communities and scientists through community-engaged research. Funded by the National Institutes of Environmental Health Sciences, GROWH’s Community Outreach and Dissemination Core (CODC) seeks to utilize community-based participatory research (CBPR) and other community-centered outreach strategies to strengthen resilience in vulnerable Gulf Coast populations. The CODC is an academic-community partnership comprised of Tulane University, Mary Queen of Vietnam Community Development Corporation, Bayou Interfaith Shared Community Organizing, and the Louisiana Public Health Institute (LPHI). Methods Alongside its CODC partners, LPHI collaboratively developed, piloted and evaluated an innovative CBPR curriculum. In addition to helping with curriculum design, the CODC’s community and academic partners participated in the pilot. The curriculum was designed to impart applied, practical knowledge to community-based organizations and academic researchers on the successful formulation, execution and sustaining of CBPR projects and partnerships within the context of environmental health research. Results The curriculum resulted in increased knowledge about CBPR methods among both community and academic partners as well as improved relationships within the GROWH CODC partnership. Conclusion The efforts of the GROWH partnership and curriculum were successful. This curriculum may serve as an anchor for future GROWH efforts including: competency development, translation of the curriculum into education and training products, community development of a CBPR curriculum for academic partners, community practice of CBPR, and future environmental health work. PMID:28890934
Formation of Mass Transport Deposits on the Submarine Bank of Portimão (Gulf of Cadiz, SW Iberia)
NASA Astrophysics Data System (ADS)
Silva, Pedro; Roque, Cristina; Drago, Teresa; Lopes, Ana; Alonso, Belen; Vázquéz, Juan; Casas, David; Lopéz, Nieves; Ercilla, Gemma; Neres, Marta
2017-04-01
The development of submarine mass transport deposits (MTDs) plays an important geo-hazards role along continental margins. Accordingly, their identification and characterization is crucial to understand their sources, dynamics, frequency and spatial distribution. In this work a piston core located at the slope (2876 m water depth) of the southern flank of Portimao Bank (Portugal, Gulf of Cadiz, SW Iberia) underwent detailed magnetic (fabric and rock magnetism) and sedimentological (grain-size, carbonates, organic matter) analyses complemented by AMS 14C dating. Such multidisciplinary study identified about one meter of sediments that is unconformable with the ages obtained above and below this layer. Its magnetic fabric, as determined by anisotropy of magnetic susceptibility, indicates sharply changes from oblate to neutral shape, decrease of the anisotropy and preferred orientation of the magnetic susceptibility ellipsoid. Such layer is also individualized by sedimentary parameters, especially in its upper part by a lighter colour and decrease of the mean grain size than the rest of the core. Based on these results it is possible to conclude that the sedimentary column analyzed here shows evidence of an on-going development of a slide, which is well individualized and characterized by magnetic fabric studies. The authors wish to acknowledge MONTERA (CTM2009-14157-C02) project for its major contribution without which this work wouldn't be possible. Publication supported by project FCT UID/GEO/50019/2013 - Instituto Dom Luiz. Keywords: Submarine mass transport deposits, magnetic fabrics, Portimão bank, Gulf of Cadiz.
NASA Astrophysics Data System (ADS)
Popescu, Florin; Ayache, Stephane; Escalera, Sergio; Baró Solé, Xavier; Capponi, Cecile; Panciatici, Patrick; Guyon, Isabelle
2016-04-01
The big data transformation currently revolutionizing science and industry forges novel possibilities in multi-modal analysis scarcely imaginable only a decade ago. One of the important economic and industrial problems that stand to benefit from the recent expansion of data availability and computational prowess is the prediction of electricity demand and renewable energy generation. Both are correlates of human activity: spatiotemporal energy consumption patterns in society are a factor of both demand (weather dependent) and supply, which determine cost - a relation expected to strengthen along with increasing renewable energy dependence. One of the main drivers of European weather patterns is the activity of the Atlantic Ocean and in particular its dominant Northern Hemisphere current: the Gulf Stream. We choose this particular current as a test case in part due to larger amount of relevant data and scientific literature available for refinement of analysis techniques. This data richness is due not only to its economic importance but also to its size being clearly visible in radar and infrared satellite imagery, which makes it easier to detect using Computer Vision (CV). The power of CV techniques makes basic analysis thus developed scalable to other smaller and less known, but still influential, currents, which are not just curves on a map, but complex, evolving, moving branching trees in 3D projected onto a 2D image. We investigate means of extracting, from several image modalities (including recently available Copernicus radar and earlier Infrared satellites), a parameterized representation of the state of the Gulf Stream and its environment that is useful as feature space representation in a machine learning context, in this case with the EC's H2020-sponsored 'See.4C' project, in the context of which data scientists may find novel predictors of spatiotemporal energy flow. Although automated extractors of Gulf Stream position exist, they differ in methodology and result. We shall attempt to extract more complex feature representation including branching points, eddies and parameterized changes in transport and velocity. Other related predictive features will be similarly developed, such as inference of deep water flux long the current path and wider spatial scale features such as Hough transform, surface turbulence indicators and temperature gradient indexes along with multi-time scale analysis of ocean height and temperature dynamics. The geospatial imaging and ML community may therefore benefit from a baseline of open-source techniques useful and expandable to other related prediction and/or scientific analysis tasks.
Unruh, Daniel M.; Fey, David L.; Church, Stan E.
2000-01-01
IntroductionAs a part of the U.S. Geological Survey Abandoned Mine Lands Initiative, metal-mining related wastes in the Boulder River study area in northern Jefferson County, Montana, have been evaluated for their environmental effects. The study area includes a 24-km segment of the Boulder River in and around Basin, Montana and three principal tributaries to the Boulder River: Basin Creek, Cataract Creek, and High Ore Creek. Mine and prospect waste dumps and mill wastes are located throughout the drainage basins of these tributaries and in the Boulder River. Mine-waste material has been transported into and down streams, where it has mixed with and become incorporated into the streambed sediments. In some localities, mine waste material was placed directly in stream channels and was transported downstream forming fluvial tailings deposits along the stream banks. Water quality and aquatic habitat have been affected by trace-element-contaminated sediment that moves from mine wastes into and down streams during snowmelt and storm runoff events within the Boulder River watershed.Present-day trace element concentrations in the streambed sediments and fluvial tailings have been extensively studied. However, in order to accurately evaluate the impact of mining on the stream environments, it is also necessary to evaluate the pre-mining trace-element concentrations in the streambed sediments. Three types of samples have been collected for estimation of pre-mining concentrations: 1) streambed sediment samples from the Boulder River and its tributaries located upstream from historical mining activity, 2) stream terrace deposits located both upstream and downstream of the major tributaries along the Boulder River, and 3) cores through sediment in overbank deposits, in abandoned stream channels, or beneath fluvial tailings deposits. In this report, we present geochemical data for six stream-terrace samples and twelve sediment-core samples and lead isotopic data for six terrace and thirteen core samples. Sample localities are in table 1 and figures 1 and 2, and site and sample descriptions are in table 2.Geochemical data have been presented for cores through fluvial tailings on High Ore Creek, on upper Basin Creek, and on Jack Creek and Uncle Sam Gulch. Geochemical and lead isotopic data for modern streambed-sediment samples have been presented by Fey and others.Lead isotopic determinations in bed sediments have been shown to be an effective tool for evaluating the contributions from various sources to the metals in bed sediments. However, in order to make these calculations, the lead isotopic compositions of the contaminant sources must also be known. Consequently, we have determined the lead isotopic compositions of five streambed-sediment samples heavily contaminated with fluvial mine waste immediately downstream from large mines in the Boulder River watershed in order to determine the lead isotopic signatures of the contaminants. Summary geochemical data for the contaminants are presented here and geochemical data for the streambed-sediment samples are given by Fey and others.Downstream from the Katie mill site and Jib tailings, fluvial deposits of mill tailings are present on a 10-m by 50-m bar in the Boulder River below the confluence with Basin Creek. The source of these tailings is not known, but fluvial tailings are also present immediately downstream from the Katie mill site, which is immediately upstream from the confluence with Basin Creek. Nine cores of fluvial tailings from this bar were analyzed.Dendrochronology samples were taken at several stream terrace localities to provide age control on the stream terrace deposits. Trees growing on the surfaces of stream terraces provide a minimum age for the terrace deposits, although floods subsequent to the trees' growth could have deposited post-mining overbank deposits around the trees. Historical data were also used to provide estimates of minimum ages of cultural features and to bracket the age of events.
NASA Astrophysics Data System (ADS)
St-Onge, G.; Duboc, Q.; Boyer-Villemaire, U.; Lajeunesse, P.; Bernatchez, P.
2015-12-01
Sediment cores were sampled in the estuary of the Nelson and Churchill Rivers in western Hudson Bay, as well as in the estuary of the Moisie and Sainte-Marguerite Rivers in Gulf of St. Lawrence in order to evaluate the impact of hydroelectric dams on the sedimentary regime of these estuaries. The gravity cores at the mouth of the Nelson River recorded several cm-thick rapidly deposited layers with a reverse to normal grading sequence, indicating the occurrence of hyperpycnal flows generated by major floods during the last few centuries. These hyperpycnal flows were probably caused by ice-jam formation, which can increase both the flow and the sediment concentration following the breaching of such natural dams. Following the construction of hydroelectric dams since the 1960s, the regulation of river discharge prevented the formation of hyperpycnal flows, and hence the deposition of hyperpycnites in the upper part of the cores. In the core sampled in the estuary of the Churchill River, only one hyperpycnite was recorded. This lower frequency may be due to the enclosed estuary of the Churchill River, its weaker discharge and the more distal location of the coring site.In the Gulf of St. Lawrence, grain size measurements allowed the identification of a major flood around AD 1844±4 years in box cores from both the Sainte-Marguerite and Moisie Rivers, whereas a drastic decrease in variations in the median grain size occurred around AD ~1900 in the estuary of the Sainte-Marguerite River, highlighting the offshore impact of the SM1 dam construction in the early 1900s. Furthermore, sedimentological variations in the box cores from both estuaries have been investigated by wavelet analysis and the sharp disappearance of high frequencies around AD 1900 in the estuary of the dammed river (Sainte-Marguerite River), but not in the estuary of the natural river (Moisie River), also provides evidence of the influence of dams on the sedimentary regime of estuaries.
NASA Astrophysics Data System (ADS)
Flemings, P. B.; Phillips, S. C.
2017-12-01
In May 2017, a science team led by the University of Texas-Austin conducted drilling and coring operations from the Helix Q4000 targeting gas hydrates in sand-rich reservoirs in the Green Canyon 955 block in the northern Gulf of Mexico. The UT-GOM2-1 expedition goals were to 1) test two configurations of pressure coring devices to assess relative performance with respect to recovery and quality of samples and 2) gather sufficient samples to allow laboratories throughout the US to investigate a range of outstanding science questions related to the origin and nature of gas hydrate-bearing sands. In the first well (UT-GOM2-1-H002), 1 of the 8 cores were recovered under pressure with 34% recovery. In the second well (UT-GOM2-1-H005), 12 of 13 cores were recovered under pressure with 77% recovery. The pressure cores were imaged and logged under pressure. Samples were degassed both shipboard and dockside to interpret hydrate concentration and gas composition. Samples for microbiological and porewater analysis were taken from the depressurized samples. 21 3 ft pressure cores were returned to the University of Texas for storage, distribution, and further analysis. Preliminary analyses document that the hydrate-bearing interval is composed of two interbedded (cm to m thickness) facies. Lithofacies II is composed of sandy silt and has trough cross bedding whereas Lithofacies III is composed of clayey silt and no bedforms are observed. Lithofacies II has low density (1.7 to 1.9 g/cc) and high velocity (3000-3250 m/s) beds whereas Lithofacies 3 has high density ( 1.9-2.1g/cc) and low velocity ( 1700 m/s). Quantitative degassing was used to determine that Lithofacies II contains high hydrate saturation (66-87%) and Lithofacies III contains moderate saturation ( 18-30%). Gas samples were analyzed periodically in each experiment and were composed of primarily methane with an average of 94 ppm ethane and detectable, but not quantifiable, propane. The core data will provide a foundation for scientific exploration by the greater hydrate research community.
Combined impacts of tidal energy extraction and sea level rise in the Gulf of Maine
NASA Astrophysics Data System (ADS)
Hashemi, M. R.; Kresning, B.
2016-12-01
The objective of this study was to assess the combined effects of SLR and tidal energy extraction on the dynamics of tides in the Gulf of Maine in both US and Canadian waters. The dynamics of tides in the Gulf of Maine is dominated by tidal resonance, which generates one of the largest tidal ranges in the world. Further, sea level rise (SLR) is affecting tidal circulations globally, and in the Gulf of Maine. A large tidal energy resource is available in the Gulf of Maine, particularly in the Bay of Fundy, and is expected to be harvested in the future. Currently, more than 6 projects are operational or under development in this region (in both US and Canadian waters). Understanding the far-field impacts of tidal-stream arrays is important for future development of tidal energy extraction. The impacts include possible changes in water elevation, which can potentially increase flooding in coastal areas. Further, SLR can affect tidal energy resources and the impacts of tidal energy extraction during the project lifetime - which is usually more than 25 years. A tidal model of the Gulf of Maine was developed using Regional Ocean Model System (ROMS) at one arcminute scale. An array of turbines were simulated in the model. After validation of the model at NOAA tidal gauge stations and NERACOOS buoys, several scenarios; including SLR scenario, and tidal extraction scenario, were examined. In particular, the results of a recent research was used to assess the impacts of SLR on the boundary of the model domain, which was neglected in previous studies. The results of the impacts of the tidal energy extraction with and without the SLR were presented, and compared with those from literature. This includes the decrease of tidal range and M2 amplitude in Minas Basin due to the 2.5 GW extraction scenario, and possible changes in Massachusetts coastal area. The impacts were compared with the level of uncertainty in the model. It was shown that the impact of SLR on the dynamics of tides is more than those from energy extraction assuming 2.5 GW extraction in Minas Passage.
Evolution of two periodic meteoroid streams: The Perseids and Leonids
NASA Astrophysics Data System (ADS)
Brown, Peter Gordon
Observations and modelling of the Perseid and Leonid meteoroid streams are presented and discussed. The Perseid stream is found to consist of three components: a weak background component, a core component and an outburst component. The particle distribution is identical for the outburst and core populations. Original visual accounts of the Leonid stream from 1832-1997 are analyzed to determine the time and magnitude of the peak for 32 Leonid returns in this interval. Leonid storms are shown to follow a gaussian flux profile, to occur after the perihelion passage of 55P/Tempel-Tuttle and to have a width/particle density relationship consistent with IRAS cometary trail results. Variations in the width of the 1966 Leonid storm as a function of meteoroid mass are as expected based on the Whipple ejection velocity formalism. Four major models of cometary meteoroid ejection are developed and used to simulate plausible starting conditions for the formation of the Perseid and Leonid streams. Initial ejection velocities strongly influence Perseid stream development for the first five revolutions after ejection, at which point planetary perturbations and radiation effects become important for further development. The minimum distance between the osculating orbit of 109P/Swift-Tuttle and the Earth was found to be the principle determinant of any subsequent delivery of meteoroids to Earth. Systematic shifts in the location of the outburst component of the Perseids were shown to be due to the changing age of the primary meteoroid population making up the outbursts. The outburst component is due to distant, direct planetary perturbations from Jupiter and Saturn shifting nodal points inward relative to the comet. The age of the core population of the stream is found to be (25 +/- 10) × 10 3 years while the total age of the stream is in excess of 10 5 years. The primary sinks for the stream are hyperbolic ejection and attainment of sungrazing states due to perturbations from Jupiter and Saturn. Ejection velocities are found to be tens to of order a hundred m/s. Modelling of the Leonid stream has demonstrated that storms from the shower are from meteoroids less than a century in age and are due to trails from Tempel-Tuttle coming within (8 +/- 6) × 10 -4 A.U of the Earth's orbit on average. Trails are perturbed to Earth-intersection through distant, direct perturbations, primarily from Jupiter. The stream decreases in flux by two to three orders of magnitude in the first hundred years of development. Ejection velocities are found to be <20 m/s and average ~ 5 m/s for storm meteoroids. Jupiter controls evolution of the stream after a century; radiation pressure and initial ejection velocities are significant factors only on shorter time- scales. The age of the annual component of the stream is ~ 1000 years.
Vermilyea, Andrew W; Nagorski, Sonia A; Lamborg, Carl H; Hood, Eran W; Scott, Durelle; Swarr, Gretchen J
2017-12-01
In this study, a stream from a glacially dominated watershed and one from a wetland, temperate forest dominated watershed in southeast Alaska were continuously monitored for turbidity and fluorescence from dissolved organic matter (FDOM) while grab samples for unfiltered (UTHg), particulate (PTHg), and filtered mercury (FTHg) where taken over three 4-day periods (May snowmelt, July glacial melt, and September rainy season) during 2010. Strong correlations were found between FDOM and UTHg concentrations in the wetland, temperate forest watershed (r 2 =0.81), while turbidity and UTHg were highly correlated in the glacially dominated watershed (r 2 =0.82). Both of these parameters (FDOM and turbidity) showed stronger correlations than concentration-discharge relationships for UTHg (r 2 =0.55 for glacial stream, r 2 =0.38 for wetland/forest stream), thus allowing for a more precise determination of temporal variability in UTHg concentrations and fluxes. The association of mercury with particles and dissolved organic matter (DOM) appears to depend on the watershed characteristics, such as physical weathering and biogeochemical processes regulating mercury transport. Thus employing watershed-specific proxies for UTHg (such as FDOM and turbidity) can be effective for quantifying mercury export from watersheds with variable landcover. The UTHg concentration in the forest/wetland stream was consistently higher than in the glacial stream, in which most of the mercury was associated with particles; however, due to the high specific discharge from the glacial stream during the melt season, the watershed area normalized flux of mercury from the glacial stream was 3-6 times greater than the wetland/forest stream for the three sampling campaigns. The annual specific flux for the glacial watershed was 19.9gUTHgkm -2 y -1 , which is higher than any non-mining impacted stream measured to date. This finding indicates that glacial watersheds of southeast Alaska may be important conduits of total mercury to the Gulf of Alaska. Copyright © 2017 Elsevier B.V. All rights reserved.
Sediment from the Tigris and Euphrates
NASA Technical Reports Server (NTRS)
2002-01-01
There is a large amount of sediment clearly visible in the true-color image of the Persian Gulf, acquired on November 1, 2001, by the Moderate-resolution Imaging Spectroradiometer (MODIS). Carried by the confluence of the Tigris and Euphrates Rivers (at center), the sediment-laden waters appear light brown where they enter the northern end of the Persian Gulf and then gradually dissipate into turquoise swirls as they drift southward. The nutrients these sediments carry are helping to support a phytoplankton bloom in the region, which adds some darker green hues in the rich kaleidoscope of colors on the surface (see the high resolution image). The confluence of the Tigris and Euphrates Rivers marks the southernmost boundary between Iran (upper right) and Iraq (upper left). South of Iraq are the countries of Kuwait and Saudi Arabia. The red dots indicate the probable locations of fires burning at oil refineries. Thin black plumes of smoke can be seen streaming away from several of these. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC
NASA Astrophysics Data System (ADS)
van der Schee, Marlies; Gutjahr, Marcus; Sierro, Francisco Javier; Flecker, Rachel; Jiménez Espejo, Francisco; Hodell, David; Abel Flores, Jose
2014-05-01
Marine gateways play a major role in ocean circulation and therefore climate. Currently, it is thought that there was no significant Mediterranean Overflow Water (MOW) in the Gulf of Cadiz during the Messinian Salinity Crisis (MSC) in the Late Miocene. However, a connection has supplied the Mediterranean with enough salt to precipitate the extensive evaporates preserved across the basin. After the MSC, the Mediterranean overflow was re-established through the Straits of Gibraltar. Today, MOW follows the continental slope of the Iberian Peninsula at a depth of 500-800 m in the Gulf of Cadiz northwards. In this study, lead and neodymium isotopes are used as water mass tracers for Mio-Pliocene MOW and NE Atlantic water in the Gulf of Cadiz. Complementary biostratigraphic data, carbon and oxygen isotopes and trace elements are presented alongside to corroborate our findings. Here we present a detailed authigenic Fe-Mn oxyhydroxide-derived Pb and Nd isotope records extracted from ~5.85 - 4.0 million year old bulk sediments recovered in IODP Core U1387C in the Gulf of Cadiz (current water depth 559 m). MOW and NE Atlantic waters have different Nd and Pb isotopic characteristics allowing for the identification of bottom water mass provenance changes and mixing proportions at the core site. The properties of the water bodies during the given time period are defined by Fe-Mn crust and marine sediment signatures. We also examine the natural variability within a single precession cycle. In order to confirm that the bulk sediment data indeed reliably reflects the primary composition of the bottom water masses, several bulk sediment samples are compared to foraminifera-derived Nd isotopic compositions. Results from the Messinian show a trend from isotope compositions that are more typical for MOW towards compositions more typical for the NE Atlantic. Subsequently, this trend reverses. After this, around 5.6 Ma an abrupt shift from MOW to more NE Atlantic characteristics is visible. The last abrupt switch is mainly visible in the lead isotopic record. The first trend may bear evidence for the presence of Mediterranean water in the Gulf of Cadiz at the same time of the deposition of the Lower Evaporites precipitation in the Mediterranean basin. The abrupt change to more Atlantic values around 5.6 Ma, during the deposition of the Upper Evaporites in the Mediterranean, could reflect a change from a two-layer flow gateway system with a MOW to a one layer inflow of Atlantic water in the Mediterranean. Mediterranean-Atlantic exchange through the Straits of Gibraltar, is thought to have been established after the MSC. No geochemical record of MOW is known immediately after the opening of the Straits. The radiogenic records may reveal the timing of Pliocene MOW and a strengthening at ~4.2-4.5 Ma at the same time of the onset of the contourite depositional system in the Gulf of Cadiz.
Horowitz, Arthur J.; Stephens, Verlin C.; Elrick, Kent A.; Smith, James J.
2012-01-01
Coastal rivers represent a significant pathway for the delivery of natural and anthropogenic sediment-associated chemical constituents to the Atlantic, Pacific and Gulf of Mexico coasts of the conterminous USA. This study entails an accounting segment using published average annual suspended sediment fluxes with published sediment-associated chemical constituent concentrations for (1) baseline, (2) land-use distributions, (3) population density, and (4) worldwide means to estimate concentrations/annual fluxes for trace/major elements and total phosphorus, total organic and inorganic carbon, total nitrogen, and sulphur, for 131 coastal river basins. In addition, it entails a sampling and subsequent chemical analysis segment that provides a level of ‘ground truth’ for the calculated values, as well as generating baselines for sediment-associated concentrations/fluxes against which future changes can be evaluated. Currently, between 260 and 270 Mt of suspended sediment are discharged annually from the conterminous USA; about 69% is discharged from Gulf rivers (n = 36), about 24% from Pacific rivers (n = 42), and about 7% from Atlantic rivers (n = 54). Elevated sediment-associated chemical concentrations relative to baseline levels occur in the reverse order of sediment discharges:Atlantic rivers (49%)>Pacific rivers (40%)>Gulf rivers (23%). Elevated trace element concentrations (e.g. Cu, Hg, Pb, Zn) frequently occur in association with present/former industrial areas and/or urban centres, particularly along the northeast Atlantic coast. Elevated carbon and nutrient concentrations occur along both the Atlantic and Gulf coasts but are dominated by rivers in the urban northeast and by southeastern and Gulf coast (Florida) ‘blackwater’ streams. Elevated Ca, Mg, K, and Na distributions tend to reflect local petrology, whereas elevated Ti, S, Fe, and Al concentrations are ubiquitous, possibly because they have substantial natural as well as anthropogenic sources. Almost all the elevated sediment-associated chemical concentrations found in conterminous US coastal rivers are lower than worldwide averages.
2017-12-08
This image shows ocean surface currents around the world during the period from June 2005 through Decmeber 2007. Go here to view a video of this data: www.flickr.com/photos/gsfc/7009056027/ NASA/Goddard Space Flight Center Scientific Visualization Studio NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
Mairs, R. L.
1971-01-01
Apollo 9 photographs, color band separations, and oceanographic and meteorological data are used in the study of the origin, movement, and dissipation of masses of discolored water near the shores of North and South Carolina. A model has been developed incorporating jet theory, climatology, currents, surface temperatures, color separations, and other oceanographic data to explain the processes involved in the life cycle of the discolored water masses. Special treatment is afforded the Gulf Stream boundary definition and the Cape Hatteras oceanographic barrier.
Satellite altitude determination uncertainties
NASA Technical Reports Server (NTRS)
Siry, J. W.
1972-01-01
Satellite altitude determination uncertainties will be discussed from the standpoint of the GEOS-C satellite, from the longer range viewpoint afforded by the Geopause concept. Data are focused on methods for short-arc tracking which are essentially geometric in nature. One uses combinations of lasers and collocated cameras. The other method relies only on lasers, using three or more to obtain the position fix. Two typical locales are looked at, the Caribbean area, and a region associated with tracking sites at Goddard, Bermuda and Canada which encompasses a portion of the Gulf Stream in which meanders develop.
Operations summary for the convection and moisture experiment (CAMEX)
NASA Technical Reports Server (NTRS)
Griffin, V. L.; Guillory, A. R.; Susko, M.; Arnold, J. E.
1994-01-01
During the fall of 1993, NASA sponsored a field program called the Convection and Moisture Experiment (CAMEX) at Wallops Island, Virginia. CAMEX was a multidisciplinary experiment design to measure the three dimensional moisture fields over Wallops Island and to characterize the multifrequency radiometric signature of tropical convection over the Gulf Stream and southeastern Atlantic Ocean. This document summarizes the daily CAMEX activities, including ground and aircraft (NASA ER-2) operations, and includes 'quick-look' summaries of data acquisition along with data examples provided by the various CAMEX PI's.
Horizontal and Vertical Structure of Velocity, Potential Vorticity and Energy in the Gulf Stream.
1985-02-01
before. Finally, the equation for heat conservation, using standard . - notation, is: T u + w 3 RHS (2-15) at ax ay + where the RHS may include source and...may be rewritten: a o f 0 2 ah 30i .. .iaT + -R2 -+ w2! = RHS . at goz az Under an assumption of negligible mixing (i.e., RHS is small), vertical...Hk( + v.) Kk - 2i + 2 2 --k (k + N - P available potential energy EKE eddy kinetic energy MKE - mean kinetic energy RHS - right hand side LHS -left
Helical vortices: Quasiequilibrium states and their time evolution
NASA Astrophysics Data System (ADS)
Selçuk, Can; Delbende, Ivan; Rossi, Maurice
2017-08-01
The time evolution of a viscous helical vortex is investigated by direct numerical simulations of the Navier-Stokes equations where helical symmetry is enforced. Using conservation laws in the framework of helical symmetry, we elaborate an initial condition consisting in a finite core vortex, the time evolution of which leads to a generic quasiequilibrium state independent of the initial core size. Numerical results at different helical pitch values provide an accurate characterization in time for such helical states, for which specific techniques have been introduced: helix radius, angular velocity, stream function-velocity-vorticity relationships, and core properties (size, self-similarity, and ellipticity). Viscosity is shown to be at the origin of a small helical velocity component, which we relate to the helical vorticity component. Finally, changes in time of the flow topology are studied using the helical stream function and three-dimensional Lagrangian orbits.
Greenland ice cores tell tales on past sea level changes
NASA Astrophysics Data System (ADS)
Dahl-Jensen, D.
2017-12-01
All the deep ice cores drilled to the base of the Greenland ice sheet contain ice from the previous warm climate period, the Eemian 130-115 thousand years before present. This demonstrates the resilience of the Greenland ice sheet to a warming of 5 oC. Studies of basal material further reveal the presence of boreal forest over Greenland before ice covered Greenland. Conditions for Boreal forest implies temperatures at this time has been more than 10 oC warmer than the present. To compare the paleo-behavior of the Greenland ice sheet to the present in relation to sea level rise knowledge gabs include the reaction of ice streams to climate changes. To address this the international EGRIP-project is drilling an ice core in the center of the North East Greenland Ice Stream (NEGIS). The first results will be presented.
Cuellar-Martinez, Tomasa; Alonso-Rodríguez, Rosalba; Ruiz-Fernández, Ana Carolina; de Vernal, Anne; Morquecho, Lourdes; Limoges, Audrey; Henry, Maryse; Sanchez-Cabeza, Joan-Albert
2018-04-15
To evaluate the relationship of changes in organic-walled dinoflagellate cyst (dinocyst) fluxes to sediments with environmental variables (air and sea surface temperatures, El Niño conditions, rainfall, and terrigenous index), cyst assemblages were analyzed in a 210 Pb-dated sediment core (~100years) from the pristine San José Lagoon (San José Island, SW Gulf of California). The dinocyst abundance ranged from 3784 to 25,108cystsg -1 and fluxes were of the order of 10 3 -10 4 cystscm -2 yr -1 . Lingulodinium machaerophorum, Polysphaeridium zoharyi and Spiniferites taxa accounted for 96% of the total dinocyst assemblages, and the abundances of these species increased towards the core surface. P. zoharyi fluxes increased from about 1965 onwards. Redundancy analyses, showed that mean minimum air temperature and terrigenous index were the key factors governing dinocyst fluxes. In this study, dinocyst fluxes of dominant taxa had responded to changes in climate-dependent environmental variables during the past ~20years; this may also be the case in other subtropical coastal lagoons. Copyright © 2017 Elsevier B.V. All rights reserved.
Falandysz, Jerzy; Rostkowski, Paweł; Jarzyńska, Grażyna; Falandysz, Jaromir J; Taniyasu, Sachi; Yamashita, Nobuyoshi
2012-01-01
Perfluorinated alkylated substances (PFAS) have been determined in surface sediments and sediment core from Gulf of Gdańsk, Baltic Sea. Perfluorooctanesulphonate (PFOS), perfluorohexanesulphonate (PFHxS), perfluorodecanoate (PFDA), perfluoronanoate (PFNA), perfluorooctanoate (PFOA), perfluoroheptanoate (PFHpA), perfluoroundecanote (PFUnDA), perfluorododecanoate (PFDoDA) and perfluorohexanoate (PFHxA) were quantified after isotopic dilution ((13)C(4) PFOS and (13)C(4) PFOA), liquid-liquid extractions by methanol and acetonitrile, cleanup by Envi-Carb, OasisWAX and Envi-Carb and final measurement by HPLC-MS/MS. PFOS, PFHxS, PFUnDA, PFDA, PFNA and PFOA were found in Baltic Sea sediments in concentrations exceeding the method limit of quantification (LOQ) of 2 pg/g. PFOS was detected in concentration up to 0.896 ng/g dry weight and PFHxS up to 0.326 ng/g dw, which shows on a weak pollution. PFOS (48-74%) or PFHxS (45-56%) dominated in PFAS composition of sediments surveyed. Supplemental materials are available for this article. Go to the publisher's online edition of the Journal of Environmental Science and Health, Part A to view the free supplemental file.
Noise Prediction Module for Offset Stream Nozzles
NASA Technical Reports Server (NTRS)
Henderson, Brenda S.
2011-01-01
A Modern Design of Experiments (MDOE) analysis of data acquired for an offset stream technology was presented. The data acquisition and concept development were funded under a Supersonics NRA NNX07AC62A awarded to Dimitri Papamoschou at University of California, Irvine. The technology involved the introduction of airfoils in the fan stream of a bypass ratio (BPR) two nozzle system operated at transonic exhaust speeds. The vanes deflected the fan stream relative to the core stream and resulted in reduced sideline noise for polar angles in the peak jet noise direction. Noise prediction models were developed for a range of vane configurations. The models interface with an existing ANOPP module and can be used or future system level studies.
National Hydrography Dataset (NHD)
,
2001-01-01
The National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000 scale and exists at that scale for the whole country. High resolution NHD adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Like the 1:100,000-scale NHD, high resolution NHD contains reach codes for networked features and isolated lakes, flow direction, names, stream level, and centerline representations for areal water bodies. Reaches are also defined to represent waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria set out by the Federal Geographic Data Committee.
NASA Astrophysics Data System (ADS)
León, Ricardo; Somoza, Luis; Medialdea, Teresa; Vázquez, Juan Tomás; González, Francisco Javier; López-González, Nieves; Casas, David; del Pilar Mata, María; del Fernández-Puga, María Carmen; Giménez-Moreno, Carmen Julia; Díaz-del-Río, Víctor
2012-12-01
During the MVSEIS-08 cruise of 2008, ten new mud volcanoes (MVs) were discovered on the offshore Moroccan continental margin (Gulf of Cádiz) at water depths between 750 and 1,600 m, using multibeam bathymetry, backscatter imagery, high-resolution seismic and gravity core data. Mud breccias were recovered in all cases, attesting to the nature of extrusion of these cones. The mud volcanoes are located in two fields: the MVSEIS, Moundforce, Pixie, Las Negras, Madrid, Guadix, Almanzor and El Cid MVs in the western Moroccan field, where mud volcanoes have long been suspected but to date not identified, and the Boabdil and Al Gacel MVs in the middle Moroccan field. Three main morphologies were observed: asymmetric, sub-circular and flat-topped cone-shaped types, this being the first report of asymmetric morphologies in the Gulf of Cádiz. Based on morpho-structural analysis, the features are interpreted to result from (1) repeated constructive (expulsion of fluid mud mixtures) and destructive (gravity-induced collapse and submarine landsliding) episodes and (2) interaction with bottom currents.
Richey, Julie; Tierney, Jessica E.
2016-01-01
The TEX86 and molecular biomarker proxies have been broadly applied in down-core marine sediments to reconstruct past sea surface temperature (SST). Although both TEX86 and have been interpreted as proxies for mean annual SST throughout the global ocean, regional studies of GDGTs and alkenones in sinking particles are required to understand the influence of seasonality, depth distribution and diagenesis on downcore variability. We measure GDGT and alkenone flux, as well as the TEX86 and indices in a 4-year sediment trap time series (2010-2014) in the northern Gulf of Mexico (nGoM), and compare these data with core-top sediments at the same location. GDGT and alkenone fluxes do not show a consistent seasonal cycle, however the largest flux peaks for both occurs in winter. co-varies with SST over the 4-year sampling interval, but the -SST relationship in this data set implies a smaller slope or non-linearity at high temperatures when compared with existing calibrations. Furthermore, the flux-weighted value from sinking particles is significantly lower than that of underlying core-top sediments, suggesting preferential diagenetic loss of the tri-unsaturated alkenone in sediments. TEX86 does not co-vary with SST, suggesting production in the subsurface upper water column. The flux-weighted mean TEX86 matches that of core-top sediments, confirming that TEX86 in the nGoM reflects local planktonic production rather than allochthonous or in-situ sedimentary production. We explore potential sources of uncertainty in both proxies in the nGoM, but demonstrate that they show nearly identical trends in 20th century SST, despite these factors.
NASA Astrophysics Data System (ADS)
Underwood, Sarah; Lapham, Laura; Teske, Andreas; Lloyd, Karen G.
2016-07-01
The Deepwater Horizon disaster caused a shift in microbial communities in Gulf of Mexico seawater, but less is known about the baseline for microbial communities in the underlying sediments. We compared 16S rRNA and functional gene sequences deriving from DNA and RNA with geochemical profiles (sulfate and methane concentrations, δ13C of methane and carbon dioxide, and chloride concentrations) of a sediment gravity core from the upper continental slope of the northwestern Gulf of Mexico (MC118) in 2008, 15 km from the spill site. The highest number of archaeal sequences were ANME-1 and ANME-2 archaea in the sulfate-reducing upper core segments (12 and 42 cmbsf), ANME-1 and Methanomicrobiales in the middle methanogenic depths (200 and 235 cmbsf), and ANME-1 at the deepest depths (309, 400, and 424 cmbsf). The presence of mcrA gene transcripts showed that members of the ANME-1 group are active throughout the core and transcribe the mcrA gene, a key gene of methanogenesis and anaerobic methane oxidation. The bacterial community consists mostly of members of the Deltaproteobacteria, Chloroflexi, Cytophaga, Epsilonproteobacteria, and the Japan Sea Group 1 throughout the core. The commonly detected genera of gammaproteobacterial hydrocarbon-degrading bacteria in the water column are not found in this sediment survey, indicating that the benthic sediment is an unlikely reservoir for these aerobes. However, the sediments contain members of the sulfate-reducing families Desulfobulbaceae and Desulfobacteraceae, some members of which degrade and completely oxidize aromatic hydrocarbons and alkanes, and the Desulfobacterium anilini lineage of obligately aromatics-degrading sulfate reducers. Thus, the benthic sediments are the most likely reservoir for the active deltaproteobacterial populations that were observed repeatedly after the Deepwater Horizon spill in the fall of 2010.
NASA Astrophysics Data System (ADS)
Nagihara, S.; Sclater, J. G.; Phillips, J. D.; Behrens, E. W.; Lewis, T.; Lawver, L. A.; Nakamura, Y.; Garcia-Abdeslem, J.; Maxwell, A. E.
1996-02-01
The seafloor depth of an oceanic basin reflects the average temperature of the lithosphere. Thus the western abyssal plain of the Gulf of Mexico, which has tectonically subsided much (>1 km) deeper than other basins of comparable ages (late Jurassic), should be underlain by an anomalously cold lithosphere. In order to examine this hypothesis, we made suites of high-accuracy heat flow measurements at 10 sites along a line connecting Deep Sea Drilling Project (DSDP) sites 90 and 91 in the Sigsbee abyssal plain. The new heat flow sites were initially surveyed by 3.5-kHz echo sounding, 4-channel seismic reflection, seismic refraction with eight ocean bottom seismometers, and nine piston cores. We occupied a total of 48 heat flow stations along the seismic survey line (3 to 6 at each site), including 28 where we measured in situ thermal conductivities over the practical depth interval (4 m) of the new multioutrigger bow heat flow probe. We determined the heat flow associated with the lithosphere by correcting the values measured at the seafloor (41 to 45 mW/m2) for (1) the thermal effect of the sedimentation and (2) the additional heat from the radioactive elements within the sediments. The sedimentation history, required for the first, was reconstructed at each heat flow site based on ages and thicknesses of the major seismic stratigraphical sequences, age data from the DSDP cores, 3.5-kHz subbottom reflectors, and correlation of turbidite units found in the piston cores. Radiogenic heat production was measured for 55 sediment samples from four DSDP holes in the gulf, whose age ranged from present to Early Cretaceous (0.83 μW/m3 on the average). This provided the correction for the second. The effects of these two secondary factors approximately cancel one another. The lithospheric heat flow under the abyssal plain thus estimated ranges from 40 to 47 mW/m2. These heat flow values are among the lowest in the Mesozoic ocean basins where highly reliable data (45 to 55 mW/m2) have been reported. Therefore the lithosphere under the gulf seems indeed colder than that under other old ocean basins. However, it is not as cold as expected from the large tectonic subsidence. The inconsistency between the depth and heat flow may imply an anomaly in the regional thermal isostasy.
NASA Astrophysics Data System (ADS)
Matsuzaki, Kenji M.; Suzuki, Noritoshi
2018-01-01
Expedition 341 of the Integrated Ocean Drilling Program (IODP) retrieved sediment cores spanning the time interval between the Pleistocene and Miocene from the southern Gulf of Alaska. Onboard Pleistocene radiolarian biostratigraphy is hereby refined by increasing the sampling resolution. The 178 core samples from the upper 190 m CCSF-B (Composite Core Depth Scale F-B) of Site U1417 contained faunal elements similar to the northwestern Pacific; for example, the three biozones in the northwestern Pacific (i.e., Eucyrtidium matuyamai, Stylatractus universus and Botryostrobus aquilonaris) were also recognized in the Gulf of Alaska, spanning 1.80-1.13 Ma, 1.13-0.45 Ma, and the last 0.45 Myr, respectively. Based on the age model that we used in this study and the shipboard paleomagnetic reversal events, the first occurrences (FOs) of Amphimelissa setosa and Schizodiscus japonicus in the northeastern Pacific were preliminarily determined to be 1.48 and 1.30 Ma, respectively. The last occurrence (LO) of Eucyrtidium matuyamai and the FO of Lychnocanoma sakaii, both well-established bioevents in the northwestern Pacific, were dated at 0.80 and 1.13 Ma, respectively. The LO of E. matuyamai is a synchronous event at 1.05 ± 0.1 Ma in the North Pacific, while the FOs of A. setosa and S. japonicus at 1.48 and 1.30 Ma, respectively, are significantly older than what has been found elsewhere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, T.L.; Musicki, Z.; Kohut, P.
1994-06-01
During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. The program includes two parallel projects being performed by Brookhaven National Laboratory (BNL) and Sandia National Laboratories (SNL). Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitativemore » results with those accidents initiated during full power operation as assessed in NUREG-1150. The objective of this report is to document the approach utilized in the Surry plant and discuss the results obtained. A parallel report for the Grand Gulf plant is prepared by SNL. This study shows that the core-damage frequency during mid-loop operation at the Surry plant is comparable to that of power operation. The authors recognize that there is very large uncertainty in the human error probabilities in this study. This study identified that only a few procedures are available for mitigating accidents that may occur during shutdown. Procedures written specifically for shutdown accidents would be useful.« less
NASA Astrophysics Data System (ADS)
El Sharawy, Mohamed S.; Gaafar, Gamal R.
2016-12-01
Both reservoir engineers and petrophysicists have been concerned about dividing a reservoir into zones for engineering and petrophysics purposes. Through decades, several techniques and approaches were introduced. Out of them, statistical reservoir zonation, stratigraphic modified Lorenz (SML) plot and the principal component and clustering analyses techniques were chosen to apply on the Nubian sandstone reservoir of Palaeozoic - Lower Cretaceous age, Gulf of Suez, Egypt, by using five adjacent wells. The studied reservoir consists mainly of sandstone with some intercalation of shale layers with varying thickness from one well to another. The permeability ranged from less than 1 md to more than 1000 md. The statistical reservoir zonation technique, depending on core permeability, indicated that the cored interval of the studied reservoir can be divided into two zones. Using reservoir properties such as porosity, bulk density, acoustic impedance and interval transit time indicated also two zones with an obvious variation in separation depth and zones continuity. The stratigraphic modified Lorenz (SML) plot indicated the presence of more than 9 flow units in the cored interval as well as a high degree of microscopic heterogeneity. On the other hand, principal component and cluster analyses, depending on well logging data (gamma ray, sonic, density and neutron), indicated that the whole reservoir can be divided at least into four electrofacies having a noticeable variation in reservoir quality, as correlated with the measured permeability. Furthermore, continuity or discontinuity of the reservoir zones can be determined using this analysis.
Impact of Fluidic Chevrons on Jet Noise
NASA Technical Reports Server (NTRS)
Henderson, Brenda S.; Kinzie, Kevin W.; Whitmire, Julia; Abeysinghe, Amal
2005-01-01
The impact of alternating fluidic core chevrons on the production of jet noise is investigated. Core nozzles for a representative 1/9th scale, bypass ratio 5 model system were manufactured with slots cut near the trailing edges to allow for air injection into the core and fan streams. The injectors followed an alternating pattern around the nozzle perimeter so that the injection alternated between injection into the core stream and injection into the fan stream. For the takeoff condition and a forward flight Mach number of 0.10, the overall sound pressure levels at the peak jet noise angle decrease with increasing injection pressure. Sound pressure levels increase for observation angles less than 110o at higher injection pressures due to increases in high frequency noise. Greater increases in high frequency noise are observed when the number of injectors increases from 8 to 12. When the forward flight Mach number is increased to 0.28, jet noise reduction (relative to the baseline) is observed at aft angles for increasing injection pressure while significant increases in jet noise are observed at forward observation angles due to substantial acoustic radiation at high frequencies. A comparison between inflow and alternating injectors shows that, for equal mass injection rates, the inflow nozzle produces greater low frequency noise reduction (relative to the baseline) than the alternating injectors at 90o and aft observation angles and a forward flight Mach number of 0.28. Preliminary computational fluid dynamic simulations indicate that the spatial decay rate of the hot potential core flow is less for the inflow nozzle than for the alternating nozzles which indicates that gentle mixing may be preferred over sever mixing when fluidic chevrons are used for jet noise reduction.
NASA Astrophysics Data System (ADS)
Gonzalez Rodriguez, S. M.; Bentley, S. J.; DeLong, K. L.; Xu, K.; Caporaso, A.; Obelcz, J. B.; Harley, G. L.; Reese, C. A.; Truong, J. T.
2016-12-01
We are investigating the origin and preservation of an ancient bald cypress forest (Taxodium distichum) discovered on the continental shelf seafloor, offshore of Gulf Shores, Alabama, USA, in 20 m water depth. The forest was likely buried in the late Pleistocene, possibly exhumed by Hurricane Ivan in 2004, and is now exposed as stumps in life position with little evidence of decay before recent marine exposure. Radiocarbon analyses show that the forest age is near (and in some cases beyond) the limits of 14C dating, at least 41-45 ky BP. In August 2015 and July 2016, submersible vibracores (up to 5 m in length) were collected. Ongoing core analyses include: organic content (loss on ignition), granulometry, and core logging using a Geotek Multi Sensor Core Logger to generate imagery, bulk density, and x-ray fluorescence data. To bolster 14C analyses, cores collected in 2016 are presently being dated using optically stimulated luminescence. Local stratigraphy consists of a surface facies of Holocene transgressive sands, underlain by possible estuarine sediments of interbedded sand and mud (potentially Holocene or Pleistocene), overlying a swamp or delta plain facies (likely Pleistocene) containing woody debris and mud. Deeper woody facies are thought to include the soil horizons of the ancient cypress forest. Cores collected in 2016 revealed a Pleistocene paleosol beneath Holocene sands in a nearby trough. Elevation differences between swamp and paleosol horizons will be evaluated from bathymetric and subbottom data, to help characterize the preserved ancient landscape. Initial interpretation based on close proximity of Pleistocene swamp and oxidized paleosol sediments, and regional geomorphic gradients suggest that this relatively diverse assemblage of facies developed up to tens of km from the glacial-age coastline, and relatively rapid burial prevented erosion by coastal processes during the Holocene transgression thus preserving the tree stumps and wood debris.
Schwing, Patrick T; Romero, Isabel C; Brooks, Gregg R; Hastings, David W; Larson, Rebekka A; Hollander, David J
2015-01-01
Sediment cores were collected from three sites (1000-1200 m water depth) in the northeastern Gulf of Mexico from December 2010 to June 2011 to assess changes in benthic foraminiferal density related to the Deepwater Horizon (DWH) event (April-July 2010, 1500 m water depth). Short-lived radioisotope geochronologies (²¹⁰Pb, ²³⁴Th), organic geochemical assessments, and redox metal concentrations were determined to relate changes in sediment accumulation rate, contamination, and redox conditions with benthic foraminiferal density. Cores collected in December 2010 indicated a decline in density (80-93%). This decline was characterized by a decrease in benthic foraminiferal density and benthic foraminiferal accumulation rate (BFAR) in the surface 10 mm relative to the down-core mean in all benthic foraminifera, including the dominant genera (Bulimina spp., Uvigerina spp., and Cibicidoides spp.). Cores collected in February 2011 documented a site-specific response. There was evidence of a recovery in the benthic foraminiferal density and BFAR at the site closest to the wellhead (45 NM, NE). However, the site farther afield (60 NM, NE) recorded a continued decline in benthic foraminiferal density and BFAR down to near-zero values. This decline in benthic foraminiferal density occurred simultaneously with abrupt increases in sedimentary accumulation rates, polycyclic aromatic hydrocarbon (PAH) concentrations, and changes in redox conditions. Persistent reducing conditions (as many as 10 months after the event) in the surface of these core records were a possible cause of the decline. Another possible cause was the increase (2-3 times background) in PAH's, which are known to cause benthic foraminifera mortality and inhibit reproduction. Records of benthic foraminiferal density coupled with short-lived radionuclide geochronology and organic geochemistry were effective in quantifying the benthic response and will continue to be a valuable tool in determining the long-term effects of the DWH event on a larger spatial scale.
Schwing, Patrick T.; Romero, Isabel C.; Brooks, Gregg R.; Hastings, David W.; Larson, Rebekka A.; Hollander, David J.
2015-01-01
Sediment cores were collected from three sites (1000–1200 m water depth) in the northeastern Gulf of Mexico from December 2010 to June 2011 to assess changes in benthic foraminiferal density related to the Deepwater Horizon (DWH) event (April-July 2010, 1500 m water depth). Short-lived radioisotope geochronologies (210Pb, 234Th), organic geochemical assessments, and redox metal concentrations were determined to relate changes in sediment accumulation rate, contamination, and redox conditions with benthic foraminiferal density. Cores collected in December 2010 indicated a decline in density (80–93%). This decline was characterized by a decrease in benthic foraminiferal density and benthic foraminiferal accumulation rate (BFAR) in the surface 10 mm relative to the down-core mean in all benthic foraminifera, including the dominant genera (Bulimina spp., Uvigerina spp., and Cibicidoides spp.). Cores collected in February 2011 documented a site-specific response. There was evidence of a recovery in the benthic foraminiferal density and BFAR at the site closest to the wellhead (45 NM, NE). However, the site farther afield (60 NM, NE) recorded a continued decline in benthic foraminiferal density and BFAR down to near-zero values. This decline in benthic foraminiferal density occurred simultaneously with abrupt increases in sedimentary accumulation rates, polycyclic aromatic hydrocarbon (PAH) concentrations, and changes in redox conditions. Persistent reducing conditions (as many as 10 months after the event) in the surface of these core records were a possible cause of the decline. Another possible cause was the increase (2–3 times background) in PAH’s, which are known to cause benthic foraminifera mortality and inhibit reproduction. Records of benthic foraminiferal density coupled with short-lived radionuclide geochronology and organic geochemistry were effective in quantifying the benthic response and will continue to be a valuable tool in determining the long-term effects of the DWH event on a larger spatial scale. PMID:25785988
THE SPLASH SURVEY: A SPECTROSCOPIC PORTRAIT OF ANDROMEDA'S GIANT SOUTHERN STREAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, Karoline M.; Guhathakurta, Puragra; Kollipara, Priya
2009-11-10
The giant southern stream (GSS) is the most prominent tidal debris feature in M31's stellar halo and covers a significant fraction of its southern quadrant. The GSS is a complex structure composed of a relatively metal-rich, high-surface-brightness 'core' and a lower metallicity, lower-surface-brightness 'envelope'. We present spectroscopy of red giant stars in six fields in the vicinity of M31's GSS (including four new fields and improved spectroscopic reductions for two previously published fields) and one field on stream C, an arc-like feature seen in star-count maps on M31's southeast minor axis at R approx 60 kpc. These data are partmore » of our ongoing Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo survey of M31 using the DEIMOS instrument on the Keck II 10 m telescope. Several GSS-related findings and measurements are presented here. We present the innermost kinematical detection of the GSS core to date (R = 17 kpc). This field also contains the inner continuation of a second kinematically cold component that was originally seen in a GSS core field at R approx 21 kpc. The velocity gradients of the GSS and the second component in the combined data set are parallel over a range of DELTAR = 7 kpc, suggesting that this may represent a bifurcation in the line-of-sight velocities of GSS stars. We present the first kinematical detection of substructure in the GSS envelope (S quadrant, R approx 58 kpc). Using kinematically identified samples, we show that the envelope debris has a approx0.7 dex lower mean photometric metallicity and possibly higher intrinsic velocity dispersion than the GSS core. The GSS is also identified in the field of the M31 dwarf spheroidal satellite And I; the GSS in this field has a metallicity distribution identical to that of the GSS core. We confirm the previous finding of two kinematically cold components in stream C, and measure intrinsic velocity dispersions of approx10 and approx4 km s{sup -1}. This compilation of the kinematical (mean velocity, intrinsic velocity dispersion) and chemical properties of stars in the GSS core and envelope, coupled with published surface-brightness measurements and wide-area star-count maps, will improve constraints on the orbit and internal structure of the dwarf satellite progenitor.« less
Coring the Chesapeake Bay impact crater
Poag, C.W.
2004-01-01
In July 1983, the shipboard scientists of Deep Sea Drilling Project Leg 95 found an unexpected bonus in a core taken 150 kilometers east of Atlantic City, N.J. At Site 612, the scientists recovered a 10-centimeter-thick layer of late Eocene debris ejected from an impact about 36 million years ago. Microfossils and argon isotope ratios from the same layer reveal that the ejecta were part of a broad North American impact debris field, previously known primarily from the Gulf of Mexico and Caribbean Sea. Since that serendipitous beginning, years of seismic reflection profiling, gravity measurements and core drilling have confirmed the source of that strewn field - the Chesapeake Bay impact crater, the largest structure of its kind in the United States, and the sixth-largest impact crater on Earth.
Main steam-line break core shroud loading calculations for BWRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoop, U.; Feltus, M.A.; Baratta, A.J.
1995-12-31
In July 1994, the U.S. Nuclear regulatory Commission sent out Generic Letter 94-03 to all boiling water reactors in the United States, informing them of intergranular stress corrosion cracking of core shrouds found in 2 reactors. The letter directed all to perform safety analysis of the BWR units. Penn State performed scoping calculations to determine the forces experienced by the core shroud during a main-stream line break transient.
NASA Astrophysics Data System (ADS)
Hidalgo, Pablo; Glezer, Ari
2011-11-01
Heat transfer enhancement by small-scale vorticity concentrations that are induced within the core flow of a mm-scale heated channel are investigated experimentally. These small-scale motions are engendered by the cross stream vibrations of a streamwise cantilevered reed that spans most of the channel's width. The interactions between the reed the core flow over a range of flow rates lead to the formation, shedding, and advection of time-periodic vorticity concentrations that interact with the wall boundary layers, and increase cross stream mixing of the core flow. Heating of the channel walls is controlled using microfabricated serpentine resistive heaters embedded with streamwise arrays of temperature sensors. It is shown that the actuation disrupts the thermal boundary layers and result in significant enhancement of the local and global heat transfer along the channel compared to the baseline flow in the absence of the reed. The effect of the reed on the cross flow is measured using high resolution particle image velocimetry (PIV), and the reed motion is characterized using a laser-based position sensor. The blockage induced by the presence of the reed and its cross stream motion is characterized using detailed streamwise pressure distributions. Supported by DARPA and UTRC.
Numerical prediction of an axisymmetric turbulent mixing layer using two turbulence models
NASA Astrophysics Data System (ADS)
Johnson, Richard W.
1992-01-01
Nuclear power, once considered and then rejected (in the U. S.) for application to space vehicle propulsion, is being reconsidered for powering space rockets, especially for interplanetary travel. The gas core reactor, a high risk, high payoff nuclear engine concept, is one that was considered in the 1960s and 70s. As envisioned then, the gas core reactor would consist of a heavy, slow moving core of fissioning uranium vapor surrounded by a fast moving outer stream of hydrogen propellant. Satisfactory operation of such a configuration would require stable nuclear reaction kinetics to occur simultaneously with a stable, coflowing, probably turbulent fluid system having a dense inner stream and a light outer stream. The present study examines the behavior of two turbulence models in numerically simulating an idealized version of the above coflowing fluid system. The two models are the standard k˜ɛ model and a thin shear algebraic stress model (ASM). The idealized flow system can be described as an axisymmetric mixing layer of constant density. Predictions for the radial distribution of the mean streamwise velocity and shear stress for several axial stations are compared with experiment. Results for the k˜ɛe predictions are broadly satisfactory while those for the ASM are distinctly poorer.
Pleistocene corals of the Florida keys: Architects of imposing reefs - Why?
Lidz, B.H.
2006-01-01
Five asymmetrical, discontinuous, stratigraphically successive Pleistocene reef tracts rim the windward platform margin off the Florida Keys. Built of large head corals, the reefs are imposing in relief (???30 m high by 1 km wide), as measured from seismic profiles. Well dated to marine oxygen isotope substages 5c, 5b, and 5a, corals at depth are inferred to date to the Stage 6/5 transition. The size of these reefs attests to late Pleistocene conditions that repeatedly induced vigorous and sustained coral growth. In contrast, the setting today, linked to Florida Bay and the Gulf of Mexico, is generally deemed marginal for reef accretion. Incursion onto the reef tract of waters that contain seasonally inconsistent temperature, salinity, turbidity, and nutrient content impedes coral growth. Fluctuating sea level and consequent settings controlled deposition. The primary dynamic was position of eustatic zeniths relative to regional topographic elevations. Sea level during the past 150 ka reached a maximum of ???10.6 m higher than at present ???125 ka, which gave rise to an inland coral reef (Key Largo Limestone) and ooid complex (Miami Limestone) during isotope substage 5e. These formations now form the Florida Keys and a bedrock ridge beneath The Quicksands (Gulf of Mexico). High-precision radiometric ages and depths of dated corals indicate subsequent apices remained ???15 to 9 m, respectively, below present sea level. Those peaks provided accommodation space sufficient for vertical reef growth yet exposed a broad landmass landward of the reefs for >100 ka. With time, space, lack of bay waters, and protection from the Gulf of Mexico, corals thrived in clear oceanic waters of the Gulf Stream, the only waters to reach them.
NASA Astrophysics Data System (ADS)
Katavouta, Anna; Thompson, Keith
2017-04-01
A high resolution regional model (1/36 degree) of the Gulf of Maine, Scotian Shelf and adjacent deep ocean (GoMSS) is developed to downscale ocean conditions from an existing global operational system. First, predictions from the regional GoMSS model in a one-way nesting set up are evaluated using observations from multiple sources including satellite-borne sensors of surface temperature and sea level, CTDs, Argo floats and moored current meters. It is shown that on the shelf, the regional model predicts more realistic fields than the global system because it has higher resolution and includes tides that are absent from the global system. However, in deep water the regional model misplaces deep ocean eddies and meanders associated with the Gulf Stream. This is because of unrealistic internally generated variability (associated with the one-way nesting set up) that leads to decoupling of the regional model from the global system in the deep water. To overcome this problem, the large scales (length scales > 90 km) of the regional model are spectrally nudged towards the global system fields. This leads to more realistic predictions off the shelf. Wavenumber spectra show that even though spectral nudging constrains the large scales, it does not suppress the variability on small scales; on the contrary, it favours the formation of eddies with length scales below the cut-off wavelength of the spectral nudging.
Formal development of a clock synchronization circuit
NASA Technical Reports Server (NTRS)
Miner, Paul S.
1995-01-01
This talk presents the latest stage in formal development of a fault-tolerant clock synchronization circuit. The development spans from a high level specification of the required properties to a circuit realizing the core function of the system. An abstract description of an algorithm has been verified to satisfy the high-level properties using the mechanical verification system EHDM. This abstract description is recast as a behavioral specification input to the Digital Design Derivation system (DDD) developed at Indiana University. DDD provides a formal design algebra for developing correct digital hardware. Using DDD as the principle design environment, a core circuit implementing the clock synchronization algorithm was developed. The design process consisted of standard DDD transformations augmented with an ad hoc refinement justified using the Prototype Verification System (PVS) from SRI International. Subsequent to the above development, Wilfredo Torres-Pomales discovered an area-efficient realization of the same function. Establishing correctness of this optimization requires reasoning in arithmetic, so a general verification is outside the domain of both DDD transformations and model-checking techniques. DDD represents digital hardware by systems of mutually recursive stream equations. A collection of PVS theories was developed to aid in reasoning about DDD-style streams. These theories include a combinator for defining streams that satisfy stream equations, and a means for proving stream equivalence by exhibiting a stream bisimulation. DDD was used to isolate the sub-system involved in Torres-Pomales' optimization. The equivalence between the original design and the optimized verified was verified in PVS by exhibiting a suitable bisimulation. The verification depended upon type constraints on the input streams and made extensive use of the PVS type system. The dependent types in PVS provided a useful mechanism for defining an appropriate bisimulation.
NASA Astrophysics Data System (ADS)
Pineda, L.; Ravelo, A. C.; Aiello, I. W.; Stewart, Z.; Sauthoff, W.
2015-12-01
Linda Pineda1Ana Christina Ravelo2Ivano Aiello3Zach Stewart2Wilson Sauthoff2 Earth and Planetary Sciences Department, UCSC Ocean Sciences Department, UCSC Moss Landing Marine Lab Natural climate change affects coastal water resources, human land use, and marine biological productivity. In particular, the seasonal migration of the Intertropical Convergence Zone (ITCZ) is influenced by changes in global-scale temperature and pressure gradients and is responsible for spatial changes in summertime rainfall in Mesoamerica impacting regional water resources and the strength of upwelling. In October 2014, aboard the Research Vessel El Puma, a 3.9 meter long core (G14-P12) was recovered from the Northeast flank of the Guaymas Basin in the Gulf of California within the oxygen minimum zone (27˚52.11'N, 111˚41.51'W, water depth of 677m) to investigate changes in seasonal upwelling and Central Mexico rainfall over the last ~1000 years. The age model was developed using Pb210, C14 and lamination counting. The time interval includes the Little Ice Age and the Medieval Warm Period. Biological productivity and precipitation proxy records were produced using an X-Ray Fluorescence (XRF) core-scanner and a color line scanner to generate a record of bulk chemistry and color reflectance. The records indicate marked decadal and centennial scale variability in the lithologic composition of the sediment superimposed on millimeter-scale variability that reflects the presence of seasonally laminated sediments. Nitrogen isotopic and nitrogen weight % measurements were used, in combination with the scanned data, to interpret changes in nitrate utilization and biological productivity. These new records will have broad implications on the link between regional coastal environmental conditions in the Gulf of California and global climate change.
NASA Astrophysics Data System (ADS)
Yümün, Zeki Ü.; Meriç, Engin; Avşar, Niyazi; Nazik, Atike; Barut, İpek F.; Yokeş, Baki; Sagular, Enis K.; Yildiz, Ayşegül; Eryilmaz, Mustafa; Kam, Erol; Başsari, Asiye; Sonuvar, Bora; Dinçer, Feyza; Baykal, Kubilay; Kaya, Seyhan
2016-12-01
The Gulf of Izmir has seen the construction of marinas at four locations; Karşıyaka, Bayraklı, İnciraltı and Urla (Çeşmealtı). Six drilling holes have been structured for each location. Morphological abnormities observed in foraminifer tests, obtained from these core drillings, and coloring encountered in both foraminifer tests and ostracod carapeces, provide evidence of natural and unnatural environmental pollution. The objectives of this study are to identify micro and macro fauna, foraminifers in particular, contained within sediments in the above-mentioned locations; to investigate the background of pollution in the Gulf Region; and to determine pollution's impact upon benthic foraminifer and ostracods. Çeşmealtı foraminifera tests did not lead to color and morphological changes. But foraminifera tests samples collected from Karşıyaka, Bayraklı and İnciraltı led them to turn black (Plate 4-6). However, concentrations of heavy metals (Ni, Cr and Mn) obtained from the sediments of Karşıyaka, Bayraklı and İnciraltı locations are higher than those obtained from the Çeşmealtı samples and high concentrations of these elements may be the cause of the color change in the samples during the foraminifera tests. In Karşıyaka and Bayraklı ostracod samples, Bosquetina carinella, Pterygocythereis jonesi, Semicytherura species; in the Çeşmealtı/Urla zone, Cyprideis torosa; in İnciraltı, Pseudopsammocythere reniformis; and in four zones, Loxoconcha and Xestoleberis species were observed in the range of relative frequency. The same analyses were done on nannoplankton but they did not lead to color and morphological changes.
Methane-derived authigenic carbonates from the northern Gulf of Mexico - MD02 Cruise
Chen, Y.; Matsumoto, R.; Paull, C.K.; Ussler, W.; Lorenson, T.; Hart, P.; Winters, W.
2007-01-01
Authigenic carbonates were sampled in piston cores collected from both the Tunica Mound and the Mississippi Canyon area on the continental slope of the northern Gulf of Mexico during a Marion Dufresne cruise in July 2002. The carbonates are present as hardgrounds, porous crusts, concretions or nodules and shell fragments with or without carbonate cements. Carbonates occurred at gas venting sites which are likely to overlie gas hydrates bearing sediments. Electron microprobe, X-ray diffraction (XRD) and thinsection investigations show that these carbonates are high-Mg calcite (6-21??mol% MgCO3), with significant presence of framboidal pyrite. All carbonates are depleted in 13C (??13C = - 61.9 to - 31.5??? PDB) indicating that the carbon is derived mainly from anaerobic methane oxidation (AMO). Age estimates based on 14C dating of shell fragments and on regional sedimentation rates indicate that these authigenic carbonates formed within the last 1000??yr in the Mississippi Canyon and within 5500??yr at the Tunica Mound. The oxygen isotopic composition of carbonates ranges from + 3.4 to + 5.9??? PDB. Oxygen isotopic compositions and Mg2+ contents of carbonates, and present in-situ temperatures of bottom seawater/sediments, show that some of these carbonates, especially from a core associated with underlying massive gas hydrates precipitated in or near equilibrium with bottom-water. On the other hand, those carbonates more enriched in 18O are interpreted to have precipitated from 18O-rich fluids which are thought to have been derived from the dissociation of gas hydrates. The dissociation of gas hydrates in the northern Gulf of Mexico within the last 5500??yr may be caused by nearby salt movement and related brines. ?? 2007 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Truong, J. T.; DeLong, K. L.; Bentley, S. J.; Xu, K.; Harley, G. L.; Reese, A.; Gonzalez, S.; Obelcz, J.; Caporaso, A.
2017-12-01
Exposed at the bottom of a trough 13 km offshore Orange Beach, AL on the Gulf of Mexico (GOM) shelf in 18 m water depth are exceptionally preserved in situ bald cypress (Taxodium distichum) stumps. Preserved seeds (T. distichum, Cephalanthus occidentalis, Hibiscus lasiocarpos, Liquidambar styraciflua) discovered in core catcher samples illustrate the exceptional preservation of the site. Woody debris samples have come back radiocarbon dead with an exception to samples located in the upper peat layer with 14C ages from 37,350-41,830 years BP. Optically stimulated luminescence and 14C dates, in combination with GOM eustatic sea level curves, suggest the forest was located 30 m above the paleoshoreline. How the forest remained preserved during subaerial exposure of the continental shelf through the Last Glacial Maximum lowstand until ensuing Holocene sea level transgression remains unknown. The R/V Coastal Profiler collected 7 vibracores from the study site in 2015 and an additional 11 in 2016. A single core (DF1) contains facies identified as the Holocene Mississippi-Alabama-Florida sand sheet, a transitional facies of interbedded sand and mud, and a basal floodplain facies in which the stumps reside. This study seeks to identify the location of the Pleistocene-Holocene unconformity and to assist in stratigraphy of the area. Foraminiferal assemblages found within the transitional facies are of a shallow marine environment that suggests Holocene in age. It is hypothesized that a pulse of sea level rise during Marine Isotope Stages 3-4 caused subsequent rapid aggradation of the paleovalley system allowing for preservation through >30 kyrs of subaerial exposure. One of the ultimate goals of this study is to serve as a guide for identification of other possible sites along the gulf coast.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigra, Lou; Stanimirovic, Snezana; Gallagher, John S. III
2012-11-20
The Magellanic Stream (MS) is a nearby laboratory for studying the fate of cool gas streams injected into a gaseous galactic halo. We investigate properties of the boundary layer between the cool MS gas and the hot Milky Way halo with 21 cm H I observations of a relatively isolated cloud having circular projection in the northern MS. Through averaging and modeling techniques, our observations, obtained with the Robert C. Byrd Green Bank Telescope, reach unprecedented 3{sigma} sensitivity of {approx}1 Multiplication-Sign 10{sup 17} cm{sup -2}, while retaining the telescope's 9.'1 resolution in the essential radial dimension. We find an envelopemore » of diffuse neutral gas with FWHM of 60 km s{sup -1}, associated in velocity with the cloud core having FWHM of 20 km s{sup -1}, extending to 3.5 times the core radius with a neutral mass seven times that of the core. We show that the envelope is too extended to represent a conduction-dominated layer between the core and the halo. Its observed properties are better explained by a turbulent mixing layer driven by hydrodynamic instabilities. The fortuitous alignment of the NGC 7469 background source near the cloud center allows us to combine UV absorption and H I emission data to determine a core temperature of 8350 {+-} 350 K. We show that the H I column density and size of the core can be reproduced when a slightly larger cloud is exposed to Galactic and extragalactic background ionizing radiation. Cooling in the large diffuse turbulent mixing layer envelope extends the cloud lifetime by at least a factor of two relative to a simple hydrodynamic ablation case, suggesting that the cloud is likely to reach the Milky Way disk.« less
NASA Technical Reports Server (NTRS)
Hakkinen, Sirpa
1999-01-01
Sea surface height (SSH) from altimeter observations from 1992 on and from modeling results is investigated to determine the modes of variability and the linkages to the state of oceanic circulation in the North Atlantic. First the altimeter and model simulated SSH are analyzed using the empirical orthogonal function (EOF) analysis. They are found to share a similar leading mode where the center of action is along the Gulf Stream and North Atlantic Current with opposite sign anomalies in the subpolar gyre and in the slope waters along the Eastern Seaboard. The time series of the leading EOF mode from the altimeter data shows that between winters of 1995 and 1996, SSH over the Gulf Stream decreased by about 12cm which change is reproduced by the model simulation. Based on the relationship from the model simulations between the time series of the SSH EOF1 and meridional heat transport, it is suggested that associated with this SSH change in 1995-96, the overturning has slowed down from its heights in the early 90's. Furthermore, it is shown that decadal variability in the leading SSH mode originates from the thermal forcing component. This adds confidence to the qualitative relationship between the state of overturning/meridional heat transport and SSH in the limited area described by the EOF1. SSH variability in the eastern side of the North Atlantic basin, outside the western boundary current region, is determined by local and remote (Rossby waves) wind stress curl forcing.
NASA Astrophysics Data System (ADS)
Weiss, M.; Kruse, S.; Burnett, W. C.; Chanton, J.; Greenwood, W.; Murray, M.; Peterson, R.; Swarzenski, P.
2005-12-01
In an effort to evaluate geophysical and thermal methods for detecting submarine groundwater discharge (SGD) on the Florida Gulf coast, a suite of water-borne surveys were run in conjunction with aerial thermal imagery over the lower Suwannee estuary in March 2005. Marine resistivity streaming data were collected alongside continuous radon and methane sampling from surface waters. Resistivity measurements were collected with dipole-dipole geometries. Readings were inverted for terrain resistivity assuming two-dimensional structure and constraining uppermost layers to conform to measured water depths and surface water conductivities. Thermal images were collected at the end of winter and at night to maximize temperatures between warmer discharging groundwater and colder surface waters. For the preliminary data analysis presented here, we assume high radon and methane concentrations coincide with zones of high SGD, and look at relationships between radon and methane concentrations and terrain resistivity and thermal imagery intensity values. For a limited set of coincident thermal intensity and radon readings, thermal intensities are higher at sites with the highest radon readings. These preliminary results suggest that in this environment, thermal imagery may be effective for identifying the "hottest" spots for SGD, but not for zones of diffuse discharge. The thermal imagery shows high intensity features at the heads of tidal streams, but shallow water depths precluded boat-based resistivity and sampling at these sites. Shallow terrain resistivities generally show a positive correlation with methane concentrations, as would be expected over zones of discharging groundwater that is fresher than Gulf surface water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pomeroy, L.R.
There are three distinct but not mutually exclusive areas of research in this contract, studies of intrusions of the west wall of the Gulf Stream onto the outer continental shelf, studies of the flux of materials across nearshore density fronts, and advances in understanding of the planktonic food web of the continental shelf. Studies of frontal events on the outer and inner continental shelf involve distinctive physical and chemical regimes and have proven to require distinctive biological approaches. The studies of the food web run through our work on both of the frontal regimes, but certain aspects have become subjectsmore » in their own right. We have developed a simulation model of the flux of energy through the continental shelf food web which we believe to be more realistic than previous ones of its type. We have examined several of the many roles of dissolved organic compounds in sea water which originate either from release by phytoplankton, digestive processes or metabolites of zooplankton, or extracellular digestion of microorganisms. Methods have been developed under this contract to measure both the chelating capacity of naturally occurring organic materials and the copper concentration in the water. It has been possible to characterize the effects, both toxic and stimulatory, of copper on photosynthesis of naturally occurring phytoplankton populations. It is possible to characterize in considerable detail the course of biological events associated with meanders of the Gulf Stream. We are now in a position to explain the limits to biological productivity of the outer continental shelf of the southeastern US and the reasons why that biological production moves through the food web in the characteristic way that it does.« less
The Use of Mesoscale Eddies and Gulf Stream Meanders by White Sharks Carcharodon carcharias
NASA Astrophysics Data System (ADS)
Gaube, P.; Thorrold, S.; Braun, C.; McGillicuddy, D. J., Jr.; Lawson, G. L.; Skomal, G. B.
2016-02-01
Large pelagic fishes like sharks, tuna, swordfish, and billfish spend a portion of their lives in the open ocean, yet their spatial distribution in this vast habitat remains relatively unknown. Mesoscale ocean eddies, rotating vortices with radius scales of approximately 100 km, structure open ocean ecosystems from primary producers to apex predators by influencing nutrient distributions and transporting large trapped parcels of water over long distances. Recent advances in both the tagging and tracking of marine animals combined with improved detection and tracking of mesoscale eddies has shed some light on the oceanographic features influencing their migrations. Here we show that white sharks use the interiors of anticyclonic and cyclonic eddies differently, a previously undocumented behavior. While swimming in warm, subtropical water, white sharks preferentially inhabit anticyclonic eddies compared to cyclonic eddies. In the vicinity of the Gulf Stream, the depth and duration of dives recorded by an archival temperature- and depth-recording tag affixed to a large female are shown to be significantly deeper and longer in anticyclonic eddies compared to those in cyclonic eddies. This asymmetry is linked to positive subsurface temperature anomalies generated by anticyclonic eddies that are more than 7 degrees C warmer than cyclonic eddies, thus reducing the need for these animals to expend as much energy regulating their internal temperature. In addition, anticyclonic eddies may be regions of enhance foraging success, as suggested by a series of acoustics surveys in the North Atlantic which indicated elevated mesopelagic fish biomass in anticyclones compared to cyclones.
McMillan, Sara K; Piehler, Michael F; Thompson, Suzanne P; Paerl, Hans W
2010-01-01
Assimilation of inorganic N by photoautotrophs has positive impacts on nutrient retention; however this retention is only temporary. As the biomass senesces, organic and inorganic forms of N are released back to the stream where they can be further transformed (i.e., nitrification, denitrification) or exported downstream. The purpose of this study was to assess the fate of the remineralized N, particularly the potential for removal by denitrification. Experiments were conducted on intact sediment cores from streams in an agricultural watershed. Cores were amended with varying ages of algal leachate and denitrification rates were measured with a membrane inlet mass spectrometer. Results of this study demonstrated that senescing algal biomass stimulated denitrification rates and provided a source of N and labile C to denitrifiers. Regardless of leachate age, addition of leachate to intact cores revealed a net loss of dissolved inorganic N from the water column. Denitrification rates were most strongly related to concentrations of dissolved and particulate C in the overlying water and secondarily to C quality (molar C to N ratio of total dissolved C and N) and NO(3)(-) flux. Using a mass balance approach, the proportion of N from senescing algal biomass that was denitrified accounted for as much as 10% of the total dissolved nitrogen (TDN) and up to 100% of the NO(3)(-) during a 3-h experiment. These results suggest an important link between instream algal uptake and eventual denitrification thereby providing a pathway for permanent removal of watershed-derived N from the stream ecosystem.
NASA Astrophysics Data System (ADS)
Khim, B. K.; Kim, S.; Asahi, H.
2016-12-01
IODP Expedition 341 Site U1417 (56o57.59'N, 147o6.59'W, 4200 m) is located in the distal Surveyor Fan in the Gulf of Alaska, Northeast Pacific. In this study, we documented biogenic opal content and its mass accumulation rate using a total of 445 sediments from Hole U1417D (below core 43X, 275 CSF-A m) and from Hole U1417E (below core 14R, 465 CSF-A m) which were assigned to Pliocene-Miocene epoch on the basis of shipboard age model. Biogenic opal content and MAR were generally low (<10% and 0.5 g/cm2/kyr, respectively) throughout the core. A significant offset of biogenic opal contents between Site U1417 and Site 887 (54o21.9'N, 148o26.8'W, 3633 m) is observed; much lower at Site U1417. However, biogenic opal content was distinctively high (20 to 40%) at 23 Ma, 15 Ma, 12 Ma, and 8 Ma, which correspond to the lithologic unit changes. These intervals are also characterized by low NGR, MS, and linear sedimentation rate (LSR), indicating the sediment deposition under warm climate/less glacier influence. Thus, the intervals seem to correspond to climatic optimums during the Miocene. Based on terrigenous MAR at Site 887, terrigenous materials supplied by glacial denudation increased greatly since the Northern Hemisphere Glaciation (NHG; 3.5-2.5 Ma). However, Site U1417 shows that high MS representing the terrestrial input occurred far earlier since 8 Ma. It may imply that the formation of glacier in the Gulf of Alaska began earlier or that terrestrial material input was enhanced by sea-ice or turbidite. Intermittent peaks of biogenic opal content and MAR after 8 Ma coincided with the occurrence of cold water/littoral and neritic diatoms and deep cold water radiolarian species, which is likely related to gradual glaciation. Biogenic opal productivity was high during the early Pliocene (5-3.5 Ma), and then it decreased during the NHG.
NASA Astrophysics Data System (ADS)
Thirumalai, K.; Quinn, T. M.; Okumura, Y.; Richey, J. N.; Partin, J. W.; Poore, R. Z.
2015-12-01
Surface circulation in the Atlantic Ocean is an important mediator of global climate and yet its variability is poorly constrained on centennial timescales. Changes in the Atlantic meridional overturning circulation (AMOC) have been implicated in late Holocene climate variability in the Western Hemisphere, although the relationship between AMOC variability and hydroclimate is uncertain due to the lack of sufficiently highly resolved proxy records. Here we present a replicated reconstruction of sea-surface temperature (SST) and salinity (SSS) from the Garrison Basin in the northern Gulf of Mexico (NGOM) spanning the last 4,400 years to better constrain past sea-surface conditions. We generated time series of paired Mg/Ca (SST proxy) and δ18O (SST and SSS proxy) variations in planktic foraminifer Globigerinoides ruber (white variety) from three multi-cores collected in 2010. Using a Monte Carlo-based technique we produce a stacked record from the three multi-cores and constrain analytical, calibration, chronological, and sampling uncertainties. We apply this technique to existing paired Mg/Ca- δ18O studies in the Gulf of Mexico and Atlantic Ocean to facilitate comparison between time-uncertain proxy reconstructions. The Garrison Basin stack exhibits large centennial-scale variability (σSST~0.6°C; δ18Osw~0.17‰) and indicates a substantially cool (0.9±0.5°C) and fresh (0.26±0.1‰) Little Ice Age (LIA; 1450-1850 A.D.), corroborating extant records from the Gulf of Mexico. Focusing on the last millennium, we analyze a suite of oceanic and terrestrial proxy records to demonstrate a centennial-scale link between salt advection in the Atlantic Ocean, a diagnostic parameter of ocean circulation, and hydroclimate in the adjacent continents. The ensuing multiproxy relationships seem to be consistent with spatial field correlations of limited salinity and rainfall instrumental/reanalysis data, which suggest that NGOM salinity varies with large-scale Atlantic Ocean circulation and continental precipitation. Our results imply significant centennial-scale variability over the late Holocene and are consistent with limited observational analysis indicating a slowdown of AMOC during the LIA.
Scientific objectives of the Gulf of Mexico gas hydrate JIP leg II drilling
Jones, Emrys; Latham, T.; McConnell, Daniel R.; Frye, Matthew; Hunt, J.H.; Shedd, William; Shelander, Dianna; Boswell, Ray; Rose, Kelly K.; Ruppel, Carolyn D.; Hutchinson, Deborah R.; Collett, Timothy S.; Dugan, Brandon; Wood, Warren T.
2008-01-01
The Gulf of Mexico Methane Hydrate Joint Industry Project (JIP) has been performing research on marine gas hydrates since 2001 and is sponsored by both the JIP members and the U.S. Department of Energy. In 2005, the JIP drilled the Atwater Valley and Keathley Canyon exploration blocks in the Gulf of Mexico to acquire downhole logs and recover cores in silt- and clay-dominated sediments interpreted to contain gas hydrate based on analysis of existing 3-D seismic data prior to drilling. The new 2007-2009 phase of logging and coring, which is described in this paper, will concentrate on gas hydrate-bearing sands in the Alaminos Canyon, Green Canyon, and Walker Ridge protraction areas. Locations were selected to target higher permeability, coarser-grained lithologies (e.g., sands) that have the potential for hosting high saturations of gas hydrate and to assist the U.S. Minerals Management Service with its assessment of gas hydrate resources in the Gulf of Mexico.This paper discusses the scientific objectives for drilling during the upcoming campaign and presents the results from analyzing existing seismic and well log data as part of the site selection process. Alaminos Canyon 818 has the most complete data set of the selected blocks, with both seismic data and comprehensive downhole log data consistent with the occurrence of gas hydrate-bearing sands. Preliminary analyses suggest that the Frio sandstone just above the base of the gas hydrate stability zone may have up to 80% of the available sediment pore space occupied by gas hydrate.The proposed sites in the Green Canyon and Walker Ridge areas are also interpreted to have gas hydrate-bearing sands near the base of the gas hydrate stability zone, but the choice of specific drill sites is not yet complete. The Green Canyon site coincides with a 4-way closure within a Pleistocene sand unit in an area of strong gas flux just south of the Sigsbee Escarpment. The Walker Ridge site is characterized by a sand-prone sedimentary section that rises stratigraphically across the base of the gas hydrate stability zone and that has seismic indicators of gas hydrate.
Sedimentation in mountain streams: A review of methods of measurement
Hedrick, Lara B.; Anderson, James T.; Welsh, Stuart A.; Lin, Lian-Shin
2013-01-01
The goal of this review paper is to provide a list of methods and devices used to measure sediment accumulation in wadeable streams dominated by cobble and gravel substrate. Quantitative measures of stream sedimentation are useful to monitor and study anthropogenic impacts on stream biota, and stream sedimentation is measurable with multiple sampling methods. Evaluation of sedimentation can be made by measuring the concentration of suspended sediment, or turbidity, and by determining the amount of deposited sediment, or sedimentation on the streambed. Measurements of deposited sediments are more time consuming and labor intensive than measurements of suspended sediments. Traditional techniques for characterizing sediment composition in streams include core sampling, the shovel method, visual estimation along transects, and sediment traps. This paper provides a comprehensive review of methodology, devices that can be used, and techniques for processing and analyzing samples collected to aid researchers in choosing study design and equipment.
Folger, David W.; Needell, Sally W.
1983-01-01
Mineral and energy resources of the continental margins of the United States arc important to the Nation's commodity independence and to its balance of payments. These resources are being studied along the continental margins of the Atlantic Ocean and the Gulf of Mexico in keeping with the mission of the U.S. Geological Survey to survey the geologic structures, mineral resources, and products of the national domain.'(Organic Act of 1879). An essential corollary to these resource studies is the study of potential geologic hazards that may be associated with offshore resource exploration and exploitation. In cooperation with the U.S. Bureau of Land Management, the Geological Survey, through its Atlantic-Gulf of Mexico Marine Geology Program, carries out extensive research to evaluate hazards from sediment mobility, shallow gas, and slumping and to acquire information on the distribution and concentration of trace metals and biogenic and petroleum-derived hydrocarbons in sea-floor sediments. All these studies arc providing needed background information, including information on pollutant dispersal, on the nearshore, estuarine, and lacustrine areas that may be near pipeline and nuclear powerplant sites. Users of these data include the Congress, many Federal agencies, the coastal States, private industry, academia, and the concerned public. The results of the regional structural, stratigraphic, and resource studies carried out under the Atlantic-Gulf of Mexico Marine Geology Program have been used by the Geological Survey and the Bureau of Land Management to select areas for future leasing and to aid in the evaluation of tracts nominated for leasing. Resource studies have concentrated mostly on the Atlantic Outer Continental Shelf frontier areas. Geologic detailing of five major basins along the U.S. Atlantic margin, where sediments are as much as 14 km thick, have been revealed by 25,000 km of 24-and 48-channel common-depth-point seismic data, 187,000 km of acromagnetic data, and 39,000 km of gravity data, plus 10,000 samples and logs obtained from U.S. Geological Survey and industry drilling (for example, coreholes of the Atlantic Slope Program, Joint Oceanographic Institutions Deep Earth Sampling, Continental Offshore Stratigraphic Tests, and the Atlantic Margin Coring Program). A sedimentary section of Jurassic and Cretaceous age grades from terrigenous clastic rocks nearshore to carbonate rocks offshore; this section is part of an extensive buried bank-platform complex that could contain large reserves of natural gas and oil. The volume of sediment deposited offshore far exceeds the volume deposited onshore where extensive accumulations of oil, gas, and minerals have been found. Commercial exploratory drilling offshore thus far has been limited to the Baltimore Canyon Trough area off New Jersey, where at least two holes have found gas; leasing has taken place in the Southeast Georgia Embayment, where drilling was scheduled to begin in 1979, and is imminent in the Georges Bank area off New England. In addition, hydrogeologic and hydrochemical data obtained from the drilling studies have delineated freshwater-bearing submarine extensions of land aquifers that are important coastal ground-water resources. Hazards in the Georges Bank area include sand mobility associated with strong currents and storm-driven waves; high concentrations of suspended sediment in the water column that, when mixed with spilled oil, may sink to the bottom; and slumping along the upper slope. In the Baltimore Canyon, high sediment mobility accompanies major winter storms, and slumped material may cover as much as 20 percent of the upper slope. Potentially unstable slope areas are being studied in great detail to provide data on timing, triggering mechanisms, and rates of sediment movement. In the Southeast Georgia Embayment and Blake Plateau Basin, strong Gulf Stream flow poses a major problem to all offshore operations. In the Gulf o
Habitat use of the Louisiana Waterthrush during the non-breeding season in Puerto Rico
M.T. Hallworth; L.R. Reitsma; K. Parent
2011-01-01
We used radiotelemetry to quantify habitat and spatial use patterns of neighboring Louisiana Waterthrush (Parkesia motacilla) along two streams in the Caribbean National Forest in Puerto Rico during 2005â2007. Home range sizes varied with younger birds having larger home ranges and core areas than older birds. All birds occupied some length of stream but a wide range...
NASA Astrophysics Data System (ADS)
Citta, John J.; Quakenbush, Lori T.; Okkonen, Stephen R.; Druckenmiller, Matthew L.; Maslowski, Wieslaw; Clement-Kinney, Jaclyn; George, John C.; Brower, Harry; Small, Robert J.; Ashjian, Carin J.; Harwood, Lois A.; Heide-Jørgensen, Mads Peter
2015-08-01
The Bering-Chukchi-Beaufort (BCB) population of bowhead whales (Balaena mysticetus) ranges across the seasonally ice-covered waters of the Bering, Chukchi, and Beaufort seas. We used locations from 54 bowhead whales, obtained by satellite telemetry between 2006 and 2012, to define areas of concentrated use, termed "core-use areas". We identified six primary core-use areas and describe the timing of use and physical characteristics (oceanography, sea ice, and winds) associated with these areas. In spring, most whales migrated from wintering grounds in the Bering Sea to the Cape Bathurst polynya, Canada (Area 1), and spent the most time in the vicinity of the halocline at depths <75 m, which are within the euphotic zone, where calanoid copepods ascend following winter diapause. Peak use of the polynya occurred between 7 May and 5 July; whales generally left in July, when copepods are expected to descend to deeper depths. Between 12 July and 25 September, most tagged whales were located in shallow shelf waters adjacent to the Tuktoyaktuk Peninsula, Canada (Area 2), where wind-driven upwelling promotes the concentration of calanoid copepods. Between 22 August and 2 November, whales also congregated near Point Barrow, Alaska (Area 3), where east winds promote upwelling that moves zooplankton onto the Beaufort shelf, and subsequent relaxation of these winds promoted zooplankton aggregations. Between 27 October and 8 January, whales congregated along the northern shore of Chukotka, Russia (Area 4), where zooplankton likely concentrated along a coastal front between the southeastward-flowing Siberian Coastal Current and northward-flowing Bering Sea waters. The two remaining core-use areas occurred in the Bering Sea: Anadyr Strait (Area 5), where peak use occurred between 29 November and 20 April, and the Gulf of Anadyr (Area 6), where peak use occurred between 4 December and 1 April; both areas exhibited highly fractured sea ice. Whales near the Gulf of Anadyr spent almost half of their time at depths between 75 and 100 m, usually near the seafloor, where a subsurface front between cold Anadyr Water and warmer Bering Shelf Water presumably aggregates zooplankton. The amount of time whales spent near the seafloor in the Gulf of Anadyr, where copepods (in diapause) and, possibly, euphausiids are expected to aggregate provides strong evidence that bowhead whales are feeding in winter. The timing of bowhead spring migration corresponds with when zooplankton are expected to begin their spring ascent in April. The core-use areas we identified are also generally known from other studies to have high densities of whales and we are confident these areas represent the majority of important feeding areas during the study (2006-2012). Other feeding areas, that we did not detect, likely existed during the study and we expect core-use area boundaries to shift in response to changing hydrographic conditions.
Sheibley, R.W.; Duff, J.H.; Jackman, A.P.; Triska, F.J.
2003-01-01
Inorganic N transformations were examined in streambed sediments from the Shingobee River using sediment perfusion cores. The experimental design simulated groundwater-stream water mixing within sediment cores, which provided a well-defined one-dimensional representation of in situ hydrologic conditions. Two distinct hydrologic and chemical settings were preserved in the sediment cores: the lowermost sediments, perfused with groundwater, remained anaerobic during the incubations, whereas the uppermost sediments, perfused with oxic water pumped from the overlying water column, simulated stream water penetration into the bed. The maintenance of oxic and anoxic zones formed a biologically active aerobic-anaerobic interface. Ammonium (NH4+) dissolved in groundwater was transported conservatively through the lower core zone but was removed as it mixed with aerated recycle water. Concurrently, a small quantity of nitrate (NO3-) equaling ???25% of the NH4+ loss was produced in the upper sediments. The NH4+ and NO3- profiles in the uppermost sediments resulted from coupled nitrification-denitrification, because assimilation and sorption were negligible. We hypothesize that anaerobic microsites within the aerated upper sediments supported denitrification. Rates of nitrification and denitrification in the perfusion cores ranged 42-209 and 53-160 mg N m-2 day-1, respectively. The use of modified perfusion cores permitted the identification and quantification of N transformations and verified process control by surface water exchange into the shallow hyporheic zone of the Shingobee River.
ERIC Educational Resources Information Center
Gilliland, John W.
Development of a design for a new elementary school facility is traced through evaluation of various innovative facilities. Significant features include--(1) the spiral plan form, (2) centralized core levels including teacher work center, "perception" core, and interior stream aquariam, (3) the learning laboratory classroom suites, (4) a unique…
NASA Technical Reports Server (NTRS)
Majjigi, R. K.; Brausch, J. F.; Janardan, B. A.; Balsa, T. F.; Knott, P. R.; Pickup, N.
1984-01-01
A technology base for the thermal acoustic shield concept as a noise suppression device for single stream exhaust nozzles was developed. Acoustic data for 314 test points for 9 scale model nozzle configurations were obtained. Five of these configurations employed an unsuppressed annular plug core jet and the remaining four nozzles employed a 32 chute suppressor core nozzle. Influence of simulated flight and selected geometric and aerodynamic flow variables on the acoustic behavior of the thermal acoustic shield was determined. Laser velocimeter and aerodynamic measurements were employed to yield valuable diagnostic information regarding the flow field characteristics of these nozzles. An existing theoretical aeroacoustic prediction method was modified to predict the acoustic characteristics of partial thermal acoustic shields.
Stelzer, R.S.; Bartsch, L.A.; Richardson, W.B.; Strauss, E.A.
2011-01-01
1.Although it is well known that sediments can be hot spots for nitrogen transformation in streams, many previous studies have confined measurements of denitrification and nitrate retention to shallow sediments (<5cm deep). We determined the extent of nitrate processing in deeper sediments of a sand plains stream (Emmons Creek) by measuring denitrification in core sections to a depth of 25cm and by assessing vertical nitrate profiles, with peepers and piezometers, to a depth of 70cm. 2.Denitrification rates of sediment slurries based on acetylene block were higher in shallower core sections. However, core sections deeper than 5cm accounted for 68% of the mean depth-integrated denitrification rate. 3.Vertical hydraulic gradient and vertical profiles of pore water chloride concentration suggested that deep ground water upwelled through shallow sediments before discharging to the stream channel. The results of a two-source mixing model based on chloride concentrations suggested that the hyporheic zone was very shallow (<5cm) in Emmons Creek. 4.Vertical profiles showed that nitrate concentration in shallow ground water was about 10-60% of the nitrate concentration of deep ground water. The mean nitrate concentrations of deep and shallow ground water were 2.17 and 0.73mgNO3-NL-1, respectively. 5.Deep ground water tended to be oxic (6.9mgO2L-1) but approached anoxia (0.8mgO2L-1) after passing through shallow, organic carbon-rich sediments, which suggests that the decline in the nitrate concentrations of upwelling ground water was because of denitrification. 6.Collectively, our results suggest that there is substantial nitrate removal occurring in deep sediments, below the hyporheic zone, in Emmons Creek. Our findings suggest that not accounting for nitrate removal in deep sediments could lead to underestimates of nitrogen processing in streams and catchments. ?? 2011 Blackwell Publishing Ltd.
Scott, Brian H.; Leccese, Paul A.; Saleem, Kadharbatcha S.; Kikuchi, Yukiko; Mullarkey, Matthew P.; Fukushima, Makoto; Mishkin, Mortimer; Saunders, Richard C.
2017-01-01
Abstract In the ventral stream of the primate auditory cortex, cortico-cortical projections emanate from the primary auditory cortex (AI) along 2 principal axes: one mediolateral, the other caudorostral. Connections in the mediolateral direction from core, to belt, to parabelt, have been well described, but less is known about the flow of information along the supratemporal plane (STP) in the caudorostral dimension. Neuroanatomical tracers were injected throughout the caudorostral extent of the auditory core and rostral STP by direct visualization of the cortical surface. Auditory cortical areas were distinguished by SMI-32 immunostaining for neurofilament, in addition to established cytoarchitectonic criteria. The results describe a pathway comprising step-wise projections from AI through the rostral and rostrotemporal fields of the core (R and RT), continuing to the recently identified rostrotemporal polar field (RTp) and the dorsal temporal pole. Each area was strongly and reciprocally connected with the areas immediately caudal and rostral to it, though deviations from strictly serial connectivity were observed. In RTp, inputs converged from core, belt, parabelt, and the auditory thalamus, as well as higher order cortical regions. The results support a rostrally directed flow of auditory information with complex and recurrent connections, similar to the ventral stream of macaque visual cortex. PMID:26620266
Hierarchical auditory processing directed rostrally along the monkey's supratemporal plane.
Kikuchi, Yukiko; Horwitz, Barry; Mishkin, Mortimer
2010-09-29
Connectional anatomical evidence suggests that the auditory core, containing the tonotopic areas A1, R, and RT, constitutes the first stage of auditory cortical processing, with feedforward projections from core outward, first to the surrounding auditory belt and then to the parabelt. Connectional evidence also raises the possibility that the core itself is serially organized, with feedforward projections from A1 to R and with additional projections, although of unknown feed direction, from R to RT. We hypothesized that area RT together with more rostral parts of the supratemporal plane (rSTP) form the anterior extension of a rostrally directed stimulus quality processing stream originating in the auditory core area A1. Here, we analyzed auditory responses of single neurons in three different sectors distributed caudorostrally along the supratemporal plane (STP): sector I, mainly area A1; sector II, mainly area RT; and sector III, principally RTp (the rostrotemporal polar area), including cortex located 3 mm from the temporal tip. Mean onset latency of excitation responses and stimulus selectivity to monkey calls and other sounds, both simple and complex, increased progressively from sector I to III. Also, whereas cells in sector I responded with significantly higher firing rates to the "other" sounds than to monkey calls, those in sectors II and III responded at the same rate to both stimulus types. The pattern of results supports the proposal that the STP contains a rostrally directed, hierarchically organized auditory processing stream, with gradually increasing stimulus selectivity, and that this stream extends from the primary auditory area to the temporal pole.
Importance of the Gulf of Mexico as a climate driver for U.S. severe thunderstorm activity
NASA Astrophysics Data System (ADS)
Molina, M. J.; Timmer, R. P.; Allen, J. T.
2016-12-01
Different features of the Gulf of Mexico (GOM), such as the Loop Current and warm-core rings, are found to influence monthly-to-seasonal severe weather occurrence in different regions of the United States (U.S.). The warmer (cooler) the GOM sea surface temperatures, the more (less) hail and tornadoes occur during March-May over the southern U.S. This pattern is reflected physically in boundary layer specific humidity and mixed-layer convective available potential energy, two large-scale atmospheric conditions favorable for severe weather occurrence. This relationship is complicated by interactions between the GOM and El Niño-Southern Oscillation (ENSO) but persists when analyzing ENSO neutral conditions. This suggests that the GOM can influence hail and tornado occurrence and provides another source of regional predictability for seasonal severe weather.
Misarti, Nicole; Finney, Bruce P.; Jordan, James W.; Maschner, Herbert D. G.; Addison, Jason A.; Shapley, Mark D.; Krumhardt, Andrea P.; Beget, James E.
2012-01-01
The debate over a coastal migration route for the First Americans revolves around two major points: seafaring technology, and a viable landscape and resource base. Three lake cores from Sanak Island in the western Gulf of Alaska yield the first radiocarbon ages from the continental shelf of the Northeast Pacific and record deglaciation nearly 17 ka BP (thousands of calendar years ago), much earlier than previous estimates based on extrapolated data from other sites outside the coastal corridor in the Gulf of Alaska. Pollen data suggest an arid, terrestrial ecosystem by 16.3 ka BP. Therefore glaciers would not have hindered the movement of humans along the southern edge of the Bering Land Bridge for two millennia before the first well-recognized “New World” archaeological sites were inhabited.
Sulak, K.J.; Randall, M.T.; Edwards, R.E.; Summers, T.M.; Luke, K.E.; Smith, W.T.; Norem, A.D.; Harden, William M.; Lukens, R.H.; Parauka, F.; Bolden, S.; Lehnert, R.
2009-01-01
Three automated listening post-telemetry studies were undertaken in the Suwannee and Apalachicola estuaries to gain knowledge of habitats use by juvenile Gulf Sturgeons (Acipenser oxyrinchus desotoi) on winter feeding grounds. A simple and reliable method for external attachment of small acoustic tags to the dorsal fin base was developed using shrink-tubing. Suspending receivers on masts below anchored buoys improved reception and facilitated downloading; a detection range of 500–2500 m was realized. In the Apalachicola estuary, juvenile GS stayed in shallow water (< 2 m) within the estuarine transition zone all winter in the vicinity of the Apalachicola River mouth. Juvenile GS high-use areas did not coincide with high density benthic macrofauna areas from the most recent (1999) benthos survey. In the Suwannee estuary, juveniles ranged widely and individually throughout oligohaline to mesohaline subareas of the estuary, preferentially using mesohaline subareas seaward of Suwannee Reef (52% of acoustic detections). The river mouth subarea was important only in early and late winter, during the times of adult Gulf Sturgeon migrations (41% of detections). Preferred winter feeding subareas coincided spatially with known areas of dense macrofaunal benthos concentrations. Following a dramatic drop in air and water temperatures, juvenile GS left the river mouth and estuary, subsequently being detected 8 km offshore in polyhaline open Gulf of Mexico waters, before returning to the estuary. Cold-event offshore excursions demonstrate that they can tolerate full-salinity polyhaline waters in the open Gulf of Mexico, for at least several days at a time. For juvenile sturgeons, the stress and metabolic cost of enduring high salinity (Jarvis et al., 2001; McKenzie et al., 2001; Singer and Ballantyne, 2002) for short periods in deep offshore waters seems adaptively advantageous relative to the risk of cold-event mortality in shallow inshore waters of lower salinity. Thus, while juveniles can tolerate high salinities for days to weeks to escape cold events, they appear to make only infrequent use of open polyhaline waters. Throughout the winter foraging period, juvenile GS stayed primarily within the core area of Suwannee River mouth influence, extending about 12 km north and south of the river mouth, and somewhat seaward of Suwannee Reef (< 5 km offshore). None were detected departing the core area past either of the northern or southern acoustic gates, located 66 and 52 km distant from the river mouth, respectively.
Ocean current surface measurement using dynamic elevations obtained by the GEOS-3 radar altimeter
NASA Technical Reports Server (NTRS)
Leitao, C. D.; Huang, N. E.; Parra, C. G.
1977-01-01
Remote Sensing of the ocean surface from the GEOS-3 satellite using radar altimeter data has confirmed that the altimeter can detect the dynamic ocean topographic elevations relative to an equipotential surface, thus resulting in a reliable direct measurement of the ocean surface. Maps of the ocean dynamic topography calculated over a one month period and with 20 cm contour interval are prepared for the last half of 1975. The Gulf Stream is observed by the rapid slope change shown by the crowding of contours. Cold eddies associated with the current are seen as roughly circular depressions.
On the recovery of gravity anomalies from high precision altimeter data
NASA Technical Reports Server (NTRS)
Lelgemann, D.
1976-01-01
A model for the recovery of gravity anomalies from high precision altimeter data is derived which consists of small correction terms to the inverse Stokes' formula. The influence of unknown sea surface topography in the case of meandering currents such as the Gulf Stream is discussed. A formula was derived in order to estimate the accuracy of the gravity anomalies from the known accuracy of the altimeter data. It is shown that for the case of known harmonic coefficients of lower order the range of integration in Stokes inverse formula can be reduced very much.
A global monthly sea surface temperature climatology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shea, D.J.; Trenberth, K.E.; Reynolds, R.W.
1992-09-01
The paper presents a new global 2 deg x 2 deg monthly sea surface temperature (SST) climatology, referred here to as the Shea-Trenberth-Reynolds (STR) climatology, which was derived by modifying a 1950-1979-based SST climatology from the Climate Analysis Center (CAC), by using data from the Comprehensive Ocean-Atmosphere Data Set to improve the SST estimates in the regions of the Kuroshio and the Gulf Stream. A comparison of the STR climatology with the Alexander and Mobley SST climatology showed that the STR climatology is warmer in the Northern Hemisphere, and colder poleward of 45 deg S. 22 refs.
EPA Office of Water (OW): 2002 SPARROW Total NP (Catchments)
SPARROW (SPAtially Referenced Regressions On Watershed attributes) is a watershed modeling tool with output that allows the user to interpret water quality monitoring data at the regional and sub-regional scale. The model relates in-stream water-quality measurements to spatially referenced characteristics of watersheds, including pollutant sources and environmental factors that affect rates of pollutant delivery to streams from the land and aquatic, in-stream processing . The core of the model consists of a nonlinear regression equation describing the non-conservative transport of contaminants from point and non-point (or ??diffuse??) sources on land to rivers and through the stream and river network. SPARROW estimates contaminant concentrations, loads (or ??mass,?? which is the product of concentration and streamflow), and yields in streams (mass of nitrogen and of phosphorus entering a stream per acre of land). It empirically estimates the origin and fate of contaminants in streams and receiving bodies, and quantifies uncertainties in model predictions. The model predictions are illustrated through detailed maps that provide information about contaminant loadings and source contributions at multiple scales for specific stream reaches, basins, or other geographic areas.
Preliminary Report on Cruise NBP01-01, East Antarctic Margin
NASA Astrophysics Data System (ADS)
Leventer, A.; Brachfeld, S.; Domack, E.; Dunbar, R.; Manley, P.; McClennen, C.; Kryc, K.; Beaman, R.; Moy, A.; Pike, J.; Shevenell, A.; Taylor, F.
2001-12-01
Cruise NBP01-01 of the RVIB NB Palmer was a marine geologic and geophysical investigation of the East Antarctic Margin, from Wilkes Land to Edward VIII Gulf, between approximately 150 E to 50 E. The primary objective of the cruise was to develop a record of climate and oceanographic change during the Quaternary, using sediment cores collected via a combination of short and long coring (25 meter jumbo piston cores [JPCs]). Specific goals of this project include development of (1) a century to millennial-scale record of Holocene paleoenvironments and (2) a record of previous stadial and interstadial events on the shelf. Fieldwork on NBP01-01 is a continuation of previous work along the Antarctic Peninsula and in the Ross Sea that has helped us develop an understanding of both the glacial-interglacial history of Antarctica as well as the details of climate variability within the present interglacial. However, both the Antarctic Peninsula and the Ross Sea are influenced primarily by the West Antarctic Ice Sheet, while limited information has been acquired based on data from the East Antarctic Margin. Given large-scale differences between these systems, Cruise NBP0101 gave us the chance to combine our previous knowledge with new data to develop an integrated perspective on climate history in Antarctica through the Quaternary. Core sites were selected based on a combination of sub-bottom profiling via the Bathy2000 and seafloor mapping using the MultiBeam, in addition to information based on previous work. Two depositional environments were targeted - deep basins and troughs of the shelf, and the Prydz Channel and Amery Depression. Deeps investigated include the Mertz Trough, Mertz-Ninnis Trough, and the Dumont d'Urville Trough along the Wilkes Land Margin, the Svenner Channel in Prydz Bay, Nielsen Basin and Iceberg Alley along the Mac.Robertson Shelf, and Edward VIII Gulf, off Enderby Land. A total of 13 JPCs were recovered from these sites, with cores often paired to obtain both the highest resolution record possible and a lower resolution record reaching back to glacial conditions. The four cores opened so far demonstrate complete Holocene records and reach back to glacial sediments. In the Prydz Channel and Amery Depression, three JPCs were collected. Initial data suggest these cores penetrate sequences of up to 5 alternating siliceous mud and glacial units.
Innovations in Sampling Pore Fluids From Deep-Sea Hydrate Sites
NASA Astrophysics Data System (ADS)
Lapham, L. L.; Chanton, J. P.; Martens, C. S.; Schaefer, H.; Chapman, N. R.; Pohlman, J. W.
2003-12-01
We have developed a sea-floor probe capable of collecting and returning undecompressed pore water samples at in situ pressures for determination of dissolved gas concentrations and isotopic values in deep-sea sediments. In the summer of 2003, we tested this instrument in sediments containing gas hydrates off Vancouver Island, Cascadia Margin from ROPOS (a remotely operated vehicle) and in the Gulf of Mexico from Johnson-Sea-Link I (a manned submersible). Sediment push cores were collected alongside the probe to compare methane concentrations and stable carbon isotope compositions in decompressed samples vs. in situ samples obtained by probe. When sufficient gas was available, ethane and propane concentrations and isotopes were also compared. Preliminary data show maximum concentrations of dissolved methane to be 5mM at the Cascadia Margin Fish Boat site (850m water depth) and 12mM in the Gulf of Mexico Bush Hill hydrate site (550m water depth). Methane concentrations were, on average, five times as high in probe samples as in the cores. Carbon isotopic values show a thermogenic input and oxidative effects approaching the sediment-water interface at both sites. This novel data set will provide information that is critical to the understanding of the in situ processes and environmental conditions controlling gas hydrate occurrences in sediments.
Clinothem Lobe Growth and Possible Ties to Downslope Processes in the Gulf of Papua
NASA Astrophysics Data System (ADS)
Wei, E. A. Y.; Driscoll, N. W.; Milliman, J. D.; Slingerland, R. L.
2014-12-01
The Gulf of Papua is fed by the large-floodplain Fly River and small mountainous rivers to the north, thus creating an ideal environment where end-member cases of river systems and their deltas (e.g. the large-floodplain Brazos River and the narrow-shelved Eel River) can be studied. Input from five rivers into the gulf has constructed a three-dimensional mid-shelf clinothem composed of three depositional lobes, with a central lobe downlapped by two younger lobes to the north and south. This geometry suggests that the three lobes are not syndepositional but rather that clinoform depocenters have shifted 60 km, thus bypassing adjacent accommodation. Newly examined CHIRP (Compressed High Intensity Radar Pulse) seismic lines and XRF analysis of piston cores from the 2004 NSF MARGINS program reveal distinct lobes offshore that exhibit increased complexity moving shoreward. Evidence of shoreward complexity and lobe interfingering cause us to question the originally proposed mechanism for depocenter shift involving circulation changes. An alternative hypothesis that stems from distinct lobe architecture farther offshore suggests that channelized downslope processes and nearshore storage may play important roles in lobe growth.
Globigerinoides ruber morphotypes in the Gulf of Mexico: a test of null hypothesis
Thirumalai, Kaustubh; Richey, Julie N.; Quinn, Terrence M.; Poore, Richard Z.
2014-01-01
Planktic foraminifer Globigerinoides ruber (G. ruber), due to its abundance and ubiquity in the tropical/subtropical mixed layer, has been the workhorse of paleoceanographic studies investigating past sea-surface conditions on a range of timescales. Recent geochemical work on the two principal white G. ruber (W) morphotypes, sensu stricto (ss) and sensu lato (sl), has hypothesized differences in seasonal preferences or calcification depths, implying that reconstructions using a non-selective mixture of morphotypes could potentially be biased. Here, we test these hypotheses by performing stable isotope and abundance measurements on the two morphotypes in sediment trap, core-top, and downcore samples from the northern Gulf of Mexico. As a test of null hypothesis, we perform the same analyses on couplets of G. ruber (W) specimens with attributes intermediate to the holotypic ss and sl morphologies. We find no systematic or significant offsets in coeval ss-sl δ18O, and δ13C. These offsets are no larger than those in the intermediate pairs. Coupling our results with foraminiferal statistical model INFAUNAL, we find that contrary to previous work elsewhere, there is no evidence for discrepancies in ss-sl calcifying depth habitat or seasonality in the Gulf of Mexico.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, T.L.; Musicki, Z.; Kohut, P.
1994-06-01
During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the Potential risks during low Power and shutdown operations. The program includes two parallel projects being performed by Brookhaven National Laboratory (BNL) and Sandia National Laboratories (SNL). Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the Plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitativemore » results with those accidents initiated during full power operation as assessed in NUREG-1150. The objective of this report is to document the approach utilized in the Surry plant and discuss the results obtained. A parallel report for the Grand Gulf plant is prepared by SNL. This study shows that the core-damage frequency during mid-loop operation at the Surry plant is comparable to that of power operation. We recognize that there is very large uncertainty in the human error probabilities in this study. This study identified that only a few procedures are available for mitigating accidents that may occur during shutdown. Procedures written specifically for shutdown accidents would be useful. This document, Volume 2, Pt. 2 provides appendices A through D of this report.« less
Oxygen isotope geochemistry of Laurentide ice-sheet meltwater across Termination I
NASA Astrophysics Data System (ADS)
Vetter, Lael; Spero, Howard J.; Eggins, Stephen M.; Williams, Carlie; Flower, Benjamin P.
2017-12-01
We present a new method that quantifies the oxygen isotope geochemistry of Laurentide ice-sheet (LIS) meltwater across the last deglaciation, and reconstruct decadal-scale variations in the δ18O of LIS meltwater entering the Gulf of Mexico between ∼18 and 11 ka. We employ a technique that combines laser ablation ICP-MS (LA-ICP-MS) and oxygen isotope analyses on individual shells of the planktic foraminifer Orbulina universa to quantify the instantaneous δ18Owater value of Mississippi River outflow, which was dominated by meltwater from the LIS. For each individual O. universa shell, we measure Mg/Ca (a proxy for temperature) and Ba/Ca (a proxy for salinity) with LA-ICP-MS, and then analyze the same O. universa for δ18O using the remaining material from the shell. From these proxies, we obtain δ18Owater and salinity estimates for each individual foraminifer. Regressions through data obtained from discrete core intervals yield δ18Ow vs. salinity relationships with a y-intercept that corresponds to the δ18Owater composition of the freshwater end-member. Our data suggest that from 15.5 through 14.6 ka, estimated δ18Ow values of Mississippi River discharge from discrete core intervals range from -11‰ to -21‰ VSMOW, which is consistent with δ18O values from both regional precipitation and the low-elevation, southern margin of the LIS. During the Bølling and Allerød (14.0 through 13.3 ka), estimated δ18Ow values of Mississippi River discharge from discrete core intervals range from -22‰ to -38‰ VSMOW. These values suggest a dynamic melting history of different parts of the LIS, with potential contributions to Mississippi River outflow from both the low-elevation, southern margin of the LIS and high-elevation, high-latitude domes in the LIS interior that were transported to the ablation zone. Prior to ∼15.5 ka, the δ18Owater value of the Mississippi River was similar to that of regional precipitation or low-latitude LIS meltwater, but the Ba concentration in the Mississippi basin was affected by changes in weathering within the watershed, complicating Ba-salinity relationships in the Gulf of Mexico. After 13 ka, our data suggest Mississippi River outflow did not influence surface salinity above our Gulf of Mexico Orca Basin core site. Rather, we hypothesize that open ocean conditions prevailed as sea level rose and the paleoshoreline at the southern edge of North America retreated northward.
On the radial oxygen distribution in the Galactic disc - II. Effects of local streams
NASA Astrophysics Data System (ADS)
Mishurov, Yu N.; Tkachenko, R. V.
2018-06-01
We analyse the idea that the local dips (˜1 kpc along the Galactic radius) observed in oxygen abundance are associated with the infall of intergalactic low-abundant gas (˜0.2 Z⊙) on to the Galactic disc during the last ˜100 Myr. We term such infall events local streams. The derived masses of the falling gas (of the order of several times 108 M⊙) are close to the observed ones (e.g. in the Magellanic Stream). Such local streams do not change the mean mass of oxygen ejected per core-collapse supernova (CC SN) event, so that our previous inference on probable upper initial masses for progenitors of CC SNe remains valid.
Effects of surface and groundwater interactions on phosphorus transport within streambank sediments.
Thompson, Carol A; McFarland, Anne M S
2010-01-01
Understanding internal stream P transfers is important in controlling eutrophication. To determine the direction of groundwater and surface water interactions and evaluate P retention within streambank sediments, groundwater well pairs, about 5-m deep, were installed at three locations along a second-order, eutrophic stream in north-central Texas. Well cores were analyzed for P, and groundwater levels were monitored for about 2 yr. Water levels in wells furthest upstream always indicated a losing stream, while wells further downstream showed a gaining stream except during flow reversals with storm events and periods with reservoir backwater. Total-P from well cores ranged from 54 to 254 mg kg(-1) and was typically high near surface, decreased downward until redoximorphic features were encountered and then increased notably with depth to near or above surface concentrations. Very little extractable P occurred in sediments from the two upstream well sets; however, the set furthest downstream showed extractable P throughout with a high of 21 mg kg(-1) near the bottom. Repeated wetting-drying at sites A and B as noted by redoximorphic features may have shifted P into more stable sediment-bound forms. The decrease in extractable P at sites A and B compared to site C may be explained by conditions at C that were wetter and potentially anaerobic. Because the overall stream reach was more often losing than gaining, there appears to be a mass flow of P into streambank sediments. Streambank erosion may then transport this P downstream if not controlled.
Nutrient interleaving below the mixed layer of the Kuroshio Extension Front
NASA Astrophysics Data System (ADS)
Nagai, Takeyoshi; Clayton, Sophie
2017-08-01
Nitrate interleaving structures were observed below the mixed layer during a cruise to the Kuroshio Extension in October 2009. In this paper, we investigate the formation mechanisms for these vertical nitrate anomalies, which may be an important source of nitrate to the oligotrphoc surface waters south of the Kuroshio Extension Front. We found that nitrate concentrations below the main stream of the Kuroshio Extension were elevated compared to the ambient water of the same density ( σ 𝜃 = 23.5-25). This appears to be analogous to the "nutrient stream" below the mixed layer, associated with the Gulf Stream. Strong turbulence was observed above the vertical nitrate anomaly, and we found that this can drive a large vertical turbulent nitrate flux >O (1 mmol N m-2 day-1). A realistic, high-resolution (2 km) numerical simulation reproduces the observed Kuroshio nutrient stream and nitrate interleaving structures, with similar lateral and vertical scales. The model results suggest that the nitrate interleaving structures are first generated at the western side of the meander crest on the south side of the Kuroshio Extension, where the southern tip of the mixed layer front is under frontogenesis. Lagrangian analyses reveal that the vertical shear of geostrophic and subinertial ageostrophic flow below the mixed layer tilts the existing along-isopycnal nitrate gradient of the Kuroshio nutrient stream to form nitrate interleaving structures. This study suggests that the multi-scale combination of (i) the lateral stirring of the Kuroshio nutrient stream by developed mixed layer fronts during fall to winter, (ii) the associated tilting of along-isopycnal nitrate gradient of the nutrient stream by subinertial shear, which forms vertical interleaving structures, and (iii) the strong turbulent diffusion above them, may provide a route to supply nutrients to oligotrophic surface waters on the south side of the Kuroshio Extension.
Galuardi, Benjamin; Lutcavage, Molly
2012-01-01
Between 2005 and 2009, we deployed 58 miniature pop-up satellite archival tags (PSAT) and 132 implanted archival tags on juvenile Atlantic bluefin tuna (age 2–5) in the northwest Atlantic Ocean. Data returned from these efforts (n = 26 PSATs, 1 archival tag) revealed their dispersal routes, horizontal and vertical movements and habitat utilization. All of the tagged bluefin tuna remained in the northwest Atlantic for the duration observed, and in summer months exhibited core-use of coastal seas extending from Maryland to Cape Cod, MA, (USA) out to the shelf break. Their winter distributions were more spatially disaggregated, ranging south to the South Atlantic Bight, northern Bahamas and Gulf Stream. Vertical habitat patterns showed that juvenile bluefin tuna mainly occupied shallow depths (mean = 5–12 m, sd = 15–23.7 m) and relatively warm water masses in summer (mean = 17.9–20.9°C, sd = 4.2–2.6°C) and had deeper and more variable depth patterns in winter (mean = 41–58 m, sd = 48.9–62.2 m). Our tagging results reveal annual dispersal patterns, behavior and oceanographic associations of juvenile Atlantic bluefin tuna that were only surmised in earlier studies. Fishery independent profiling from electronic tagging also provide spatially and temporally explicit information for evaluating dispersals rates, population structure and fisheries catch patterns. PMID:22629461
NASA Astrophysics Data System (ADS)
Choumiline, K.; Rodríguez-Figueroa, G.; Shumilin, E.; Sapozhnikov, D.
2007-05-01
To verify the possibilities of U enrichments in the marine sedimentary environment of the eastern sector of the central Gulf of Califoria (GC), eleven sediment cores were collected in front of the Santa Rosalia mining region, peninsula of Baja California. Uranium and some other trace element contents in sliced core layers, dried and homogenized, were determined using instrumental neutron activation analysis. Average total U contents in sediments of five cores collected in the open GC in front of Santa Rosalía at sites with water depths from 265 m to 1030 m and in the Guaymas Basin with 2019 m, ranged from 1.36±0.26 mg kg-1 (Guaymas Basin) to 9.31±3.03 mg kg-1 (SR63 core, depth 630 m). To distinguish non-lithogenic U from the lithogenic one, the normalization of total U contents to the concentrations of Sc in the samples was used. That because this element is a reliable indicator of crustal materials, mainly aluminosilicates in the marine sediments. The relative contribution of non-lithogenic (authigenic) U varied from 49.8±3 % (Guaymas Basin) to 84.2±8.2 % (SR62 core) of the total U content in the sediments of the open central GC. Surprisingly, in three sediment cores from the coastal zone adjacent to the town of Santa Rosalía in water depth range 3-6 m very high concentrations of total U were found, ranging from 54.2±7.3 mg kg-1 (SR4 core) to 110±13 mg kg-1 (SR2 core) and exceeding not only U average abundance in the earth´s crust (2.7 mg kg-1), but also its levels found for SR62 core, as well as those reported for natural enrichments of U in suboxic-anoxic environments, e.g. at Mexico and Peru margin sites (3.04 mg kg-1 - 24.54 mg kg-1, McManus et al., 2006). The relative contribution of non-lithogenic U in the sediments of these three anomalous cores varied from 97.2±0.4 % (SR4 core) to 98.80.2 % (SR1 and SR2 cores) of their total U content. The sediments were also depleted in organic C (0.05 % - 0.18 %), which is not typical for marine solid phases enriched in authigenic U. Additional surface sampling around the cores with high levels of U, helped to define the spatial distribution of this element, as well as Co, Cu, Zn, light lanthanides and europium, which also showed "anomalies". The association with anthropogenic impact is discussed because the geochemical fingerprints of these sediments are the same as for solid wastes of copper smelting, which has occurred in Santa Rosalía in the past century till 1984.
Mulholland, P.J.; Best, G.R.; Coutant, C.C.; Hornberger, G.M.; Meyer, J.L.; Robinson, P.J.; Stenberg, J.R.; Turner, R.E.; Vera-Herrera, F.; Wetzel, R.G.
1997-01-01
The south-eastern United States and Gulf Coast of Mexico is physiographically diverse, although dominated by a broad coastal plain. Much of the region has a humid, warm temperate climate with little seasonality in precipitation but strong seasonality in runoff owing to high rates of summer evapotranspiration. The climate of southern Florida and eastern Mexico is subtropical with a distinct summer wet season and winter dry season. Regional climate models suggest that climate change resulting from a doubling of the pre-industrial levels of atmospheric CO2 may increase annual air temperatures by 3-4??C. Changes in precipitation are highly uncertain, but the most probable scenario shows higher levels over all but the northern, interior portions of the region, with increases primarily occurring in summer and occurring as more intense or clustered storms. Despite the increases in precipitation, runoff is likely to decline over much of the region owing to increases in evapotranspiration exceeding increases in precipitation. Only in Florida and the Gulf Coast areas of the US and Mexico are precipitation increases likely to exceed evapotranspiration increases, producing an increase in runoff. However, increases in storm intensity and clustering are likely to result in more extreme hydrographs, with larger peaks in flow but lower baseflows and longer periods of drought. The ecological effects of climate change on freshwaters of the region include: (1) a general increase in rates of primary production, organic matter decomposition and nutrient cycling as a result of higher temperatures and longer growing seasons: (2) reduction in habitat for cool water species, particularly fish and macroinvertebrates in Appalachian streams; (3) reduction in water quality and in suitable habitat in summer owing to lower baseflows and intensification of the temperature-dissolved oxygen squeeze in many rivers and reservoirs; (4) reduction in organic matter storage and loss of organisms during more intense flushing events in some streams and wetlands; (5) shorter periods of inundation of riparian wetlands and greater drying of wetland soils, particularly in northern and inland areas; (6) expansion of subtropical species northwards, including several non-native nuisance species currently confined to southern Florida; (7) expansion of wetlands in Florida and coastal Mexico, but increase in eutrophication of Florida lakes as a result of greater runoff from urban and agricultural areas; and (8) changes in the flushing rate of estuaries that would alter their salinity regimes, stratification and water quality as well as influence productivity in the Gulf of Mexico. Many of the expected climate change effects will exacerbate current anthropogenic stresses on the region's freshwater systems, including increasing demands for water, increasing waste heat loadings and land use changes that alter the quantity and quality of runoff to streams and reservoirs. Research is needed especially in several critical areas: long-term monitoring of key hydrological, chemical and biological properties (particularly water balances in small, forested catchments and temperature-sensitive species); experimental studies of the effects of warming on organisms and ecosystem processes under realistic conditions (e.g. in situ heating experiments); studies of the effects of natural hydrological variation on biological communities; and assessment of the effects of water management activities on organisms and ecosystem processes, including development and testing of management and restoration strategies designed to counteract changes in climate. ?? 1997 by John Wiley & Sons, Ltd.
Staub, Erik L.; Peak, Kelly L.; Tighe, Kirsten C.; Sadorf, Eric M.; Harned, Douglas A.
2010-01-01
Water-quality data from selected surface-water monitoring sites in the Southeastern United States were assessed for trends in concentrations of nutrients, suspended sediment, and major constituents and for in-stream nutrient and suspended-sediment loads for the period 1973-2005. The area of interest includes river basins draining into the southern Atlantic Ocean, the Gulf of Mexico, and the Tennessee River-drainage basins in Hydrologic Regions 03 (South Atlantic - Gulf) and 06 (Tennessee). This data assessment is related to studies of several major river basins as part of the U.S. Geological Survey National Water-Quality Assessment Program, which was designed to assess national water-quality trends during a common time period (1993-2004). Included in this report are data on which trend tests could be performed from 44 U.S. Geological Survey National Water Information System (NWIS) sampling sites. The constituents examined include major ions, nutrients, and suspended sediment; the physical properties examined include pH, specific conductance, dissolved oxygen, and streamflow. Also included are data that were tested for trends from an additional 290 sites from the U.S. Environmental Protection Agency Storage and Retrieval (STORET) database. The trend analyses of the STORET data were limited to total nitrogen and total phosphorus concentrations. Data from 48 U.S. Geological Survey NWIS sampling sites with sufficient water-quality and continuous streamflow data for estimating nutrient and sediment loads are included. The methods of data compilation and modification used prior to performing trend tests and load estimation are described. Results of the seasonal Kendall trend test and the Tobit trend test are given for the 334 monitoring sites, and in-stream load estimates are given for the 48 monitoring sites. Basin characteristics are provided, including regional landscape variables and agricultural nutrient sources (annual variations in cropping and fertilizer use). The data and results presented in this report are in tabular format and can be downloaded and used by environmental researchers and water managers, particularly in the Southeast.
NASA Astrophysics Data System (ADS)
Allison, Mead A.; Pratt, Thad C.
2017-12-01
Lagrangian longitudinal surveys and fixed station data are utilized from the lowermost Mississippi River reach in Louisiana at high and low discharge in 2012-2013 to examine the changing stream power, sediment transport capacity, and nitrate conveyance in this backwater reach of the river. Nitrate appears to remain conservative through the backwater reach at higher discharges (>15,000 m3/s), thus, nitrate levels supplied from the catchment are those exported to the Gulf of Mexico, fueling coastal hypoxia. At lower discharges, interaction with fine sediments and organic matter stored on the bed due to estuarine and tidal processes, likely elevates nitrate levels prior to entering the Gulf: a further 1-2 week long spike in nitrate concentrations is associated with the remobilization of this sediments during the rising discharge phase of the Mississippi. Backwater characteristics are clearly observed in the study reach starting at river kilometer 703 (Vicksburg) in both longitudinal study periods. Stream power at the lowermost station is only 16% of that at Vicksburg in the high discharge survey, and 0.6% at low flow. The high-to-low discharge study differential in unit stream power at a station increases between Vicksburg and the lowermost station from a factor of 3 to 47-50 times. At high discharge, ∼30% of this energy loss can be ascribed to the removal of water to the Atchafalaya at Old River Control. Suspended sediment flux decreases downstream in the studied reach in both studies: the lowermost station has 75% of the flux at Vicksburg in the high discharge study, and 0.9% in the low discharge study. The high discharge values, given that this study was conducted during the highest rising hydrograph of the water year, are augmented by sediment resuspended from the bed that was deposited in the previous low discharge phase. Examination of this first detailed field observation studies of the backwater phenomenon in a major river, shows that observed suspended particle sizes and calculated shear velocities compare favorably with suspension coefficients derived by previous investigators using flume experiments and modeling.
NASA Astrophysics Data System (ADS)
Morén, Björn M.; Petter Sejrup, Hans; Hjelstuen, Berit O.; Haflidason, Haflidi; Schäuble, Cathrina; Borge, Marianne
2014-05-01
The Norwegian Channel Ice Stream repeatedly drained large part of the Fennoscandian Ice Sheet through Mid and Late Pleistocene glacial stages. During parts of Marine Isotope Stages 2 and 3, glacial ice from Fennoscandia and the British Isles coalesced in the central North Sea and the Norwegian Channel Ice Stream reached the shelf edge on multiple occasions. Through the last decades a large amount of acoustic and sediment core data have been collected from the Norwegian Channel, providing a good background for studies focussing on stability- and development-controlling parameters for marine-based ice streams, the retreat rate of the Norwegian Channel Ice Stream, and the behaviour of the Fennoscandian Ice Sheet. Further, this improved understanding can be used to develop more accurate numerical climate models and models which can be used to model ice-sheet behaviour of the past as well as the future. This study presents new acoustic records and data from sediment cores which contribute to a better understanding of the retreat pattern and the retreat rate of the last ice stream that occupied the Norwegian Channel. From bathymetric and TOPAS seismic data, mega-scale glacial lineations, grounding-zone wedges, and end moraines have been mapped, thereby allowing us to reconstruct the pro- and subglacial conditions at the time of the creation of these landforms. It is concluded that the whole Norwegian Channel was deglaciated in just over 1 000 years and that for most of this time the ice margin was located at positions reflected by depositional grounding-zone wedges. Further work will explore the influence of channel shape and feeding of ice from western Norwegian fjords on this retreat pattern through numerical modelling.
NASA Astrophysics Data System (ADS)
Showalter, L. M.
2017-12-01
The Gulf Research Program (GRP) was developed as part of legal settlements with the companies involved in the Deepwater Horizon (DWH) disaster. The Federal Government asked the National Academy of Sciences to establish a new program to fund and conduct activities to enhance offshore energy system safety and protect human health and the environment in the Gulf of Mexico and other regions along the U.S. outer continental shelf. An important part of the program is a commitment to open data and data sharing among the variety of disciplines it funds. The DWH disaster produced a major influx of funding for the Gulf region and various groups and organizations are collaborating to ensure that the science being conducted via these funding streams is not duplicative. A number of data focused sub groups have formed and are working to leverage existing efforts to strengthen data sharing and collaboration in the region. For its part, the GRP is developing a data program that encourages researchers to share data openly while providing avenues for acknowledgement of data sharing and research collaborations. A main problem with collaborative data sharing is often not the technologies available but instead the human component. The "traditional" path for scientific research has not generally involved making data widely or readily available in a short time frame. It takes a lot of effort to challenge this norm and change the way researchers view data sharing and its value for them and the world at large. The GRP data program aims to build a community of researchers that not only share their data but who also help show the value of this practice to the greater scientific community. To this end, the GRP will support a variety of education and training opportunities to help develop a base of researchers more informed on issues related to open data and data sharing and working to leverage the technology and expertise of others to develop a culture of data sharing in the Gulf of Mexico.
NASA Astrophysics Data System (ADS)
Katavouta, Anna; Thompson, Keith R.
2016-08-01
The overall goal is to downscale ocean conditions predicted by an existing global prediction system and evaluate the results using observations from the Gulf of Maine, Scotian Shelf and adjacent deep ocean. The first step is to develop a one-way nested regional model and evaluate its predictions using observations from multiple sources including satellite-borne sensors of surface temperature and sea level, CTDs, Argo floats and moored current meters. It is shown that the regional model predicts more realistic fields than the global system on the shelf because it has higher resolution and includes tides that are absent from the global system. However, in deep water the regional model misplaces deep ocean eddies and meanders associated with the Gulf Stream. This is not because the regional model's dynamics are flawed but rather is the result of internally generated variability in deep water that leads to decoupling of the regional model from the global system. To overcome this problem, the next step is to spectrally nudge the regional model to the large scales (length scales > 90 km) of the global system. It is shown this leads to more realistic predictions off the shelf. Wavenumber spectra show that even though spectral nudging constrains the large scales, it does not suppress the variability on small scales; on the contrary, it favours the formation of eddies with length scales below the cutoff wavelength of the spectral nudging.
NASA Astrophysics Data System (ADS)
Tian, H.; Zhang, B.; Xu, R.; Yang, J.; Yao, Y.; Pan, S.; Lohrenz, S. E.; Cai, W. J.; He, R.; Najjar, R. G.; Friedrichs, M. A. M.; Hofmann, E. E.
2017-12-01
Carbon export through river channels to coastal waters is a fundamental component of the global carbon cycle. Changes in the terrestrial environment, both natural (e.g., climatic change, enriched CO2 concentration, and elevated ozone concentration) and anthropogenic (e.g, deforestation, cropland expansion, and urbanization) have greatly altered carbon production, stocks, decomposition, movement and export from land to river and ocean systems. However, the magnitude and spatiotemporal patterns of lateral carbon fluxes from land to oceans and the underlying mechanisms responsible for these fluxes remain far from certain. Here we applied a process-based land model with explicit representation of carbon processes in stream and rivers (Dynamic Land Ecosystem Model: DLEM 2.0) to examine how changes in climate, land use, atmospheric CO2, and nitrogen deposition have affected the carbon fluxes from North American continent to Ocean during 1980-2015. Our simulated results indicated that terrestrial carbon export shows substantially spatial and temporal variability. Of the five sub-regions (Arctic coast, Pacific coast, Gulf of Mexico, Atlantic coast, and Great lakes), the Arctic sub-region provides the highest DOC flux, whereas the Gulf of Mexico sub-region provided the highest DIC flux. However, terrestrial carbon export to the arctic oceans showed increasing trends for both DOC and DIC, whereas DOC and DIC export to the Gulf of Mexico decreased in the recent decades. Future pattern of riverine carbon fluxes would be largely dependent on the climate change and land use scenarios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leggett, R.B.; Borling, D.C.; Powers, B.S.
1998-02-01
A multiphase flowmeter (MPFM) installed in offshore Egypt has accurately measured three-phase flow in extremely gassy flow conditions. The meter is completely nonintrusive, with no moving parts, requires no flow mixing before measurement, and has no bypass loop to remove gas before multiphase measurement. Flow regimes observed during the field test of this meter ranged from severe slugging to annular flow caused by the dynamics of gas-lift gas in the production stream. Average gas-volume fraction ranged from 93 to 98% during tests conducted on seven wells. The meter was installed in the Gulf of Suez on a well protector platformmore » in the Gulf of Suez Petroleum Co. (Gupco) October field, and was placed in series with a test separator located on a nearby production platform. Wells were individually tested with flow conditions ranging from 1,300 to 4,700 B/D fluid, 2.4 to 3.9 MMscf/D of gas, and water cuts from 1 to 52%. The meter is capable of measuring water cuts up to 100%. Production was routed through both the MPFM and the test separator simultaneously as wells flowed with the assistance of gas-lift gas. The MPFM measured gas and liquid rates to within {+-} 10% of test-separator reference measurement flow rates, and accomplished this at gas-volume fractions from 93 to 96%. At higher gas-volume fractions up to 98%, accuracy deteriorated but the meter continued to provide repeatable results.« less
Feature-oriented regional modeling and simulations in the Gulf of Maine and Georges Bank
NASA Astrophysics Data System (ADS)
Gangopadhyay, Avijit; Robinson, Allan R.; Haley, Patrick J.; Leslie, Wayne G.; Lozano, Carlos J.; Bisagni, James J.; Yu, Zhitao
2003-03-01
The multiscale synoptic circulation system in the Gulf of Maine and Georges Bank (GOMGB) region is presented using a feature-oriented approach. Prevalent synoptic circulation structures, or 'features', are identified from previous observational studies. These features include the buoyancy-driven Maine Coastal Current, the Georges Bank anticyclonic frontal circulation system, the basin-scale cyclonic gyres (Jordan, Georges and Wilkinson), the deep inflow through the Northeast Channel (NEC), the shallow outflow via the Great South Channel (GSC), and the shelf-slope front (SSF). Their synoptic water-mass ( T- S) structures are characterized and parameterized in a generalized formulation to develop temperature-salinity feature models. A synoptic initialization scheme for feature-oriented regional modeling and simulation (FORMS) of the circulation in the coastal-to-deep region of the GOMGB system is then developed. First, the temperature and salinity feature-model profiles are placed on a regional circulation template and then objectively analyzed with appropriate background climatology in the coastal region. Furthermore, these fields are melded with adjacent deep-ocean regional circulation (Gulf Stream Meander and Ring region) along and across the SSF. These initialization fields are then used for dynamical simulations via the primitive equation model. Simulation results are analyzed to calibrate the multiparameter feature-oriented modeling system. Experimental short-term synoptic simulations are presented for multiple resolutions in different regions with and without atmospheric forcing. The presented 'generic and portable' methodology demonstrates the potential of applying similar FORMS in many other regions of the Global Coastal Ocean.
McCallum, Malcolm L; Trauth, Stanley E
2003-07-01
The northern cricket frog (Acris crepitans) is a resident of streams, rivers, and wetlands of eastern North America. We documented abnormalities in A. crepitans housed in the Arkansas State University Museum of Zoology Herpetology Collection. Abnormality frequency increased from 1957 to 2000 (chi 2 = 43.76, df = 3, P < 0.001). From 1957 through 1979 only 3.33% of specimens were unusual. This rate was 6.87% during the 1990s, and in 2000 it was 8.48%. High frequencies of abnormalities were identified in the following Ozark highland counties: Sharp, Lawrence, and Randolph. We observed 104 abnormalities among 1,464 frogs (7.10%). The differential abnormality frequencies observed between the Arkansas lowlands and highlands are striking. The Ozarks had significantly higher frequencies of abnormalities than other Arkansas regions (chi 2 = 59.76, df = 4, P < 0.001). The Ouachita Mountains had significantly higher frequencies than the Gulf Coastal Plain, Delta, or Arkansas River Valley (chi 2 = 13.172, df = 3, P < 0.01). There was no difference in abnormality frequency between the Gulf Coastal Plain, Delta, and Arkansas River Valley (chi 2 = 0.422, df = 2, P > 0.70). Proposed hypotheses for distributions include: 1) A. crepitans might possess naturally high abnormality levels, and land use practices of the Delta may reduce this variability; 2) an unknown xenobiotic may be in Ozark streams causing increased numbers of abnormalities; 3) the museum's collection effort may be skewed; 4) Delta habitat might be more favorable for green tree frogs (Hyla cinerea) allowing this species to drive out A. crepitans through competition; here, abnormal metamorphs are not detected because they are even less competitive than normal individuals.
NASA Astrophysics Data System (ADS)
Hand, Ralf; Keenlyside, Noel; Omrani, Nour-Eddine; Greatbatch, Richard; Bader, Jürgen
2017-04-01
Climate change simulations robustly show a warming hole in the sub-polar North Atlantic that results from slowing of the AMOC countering the global warming signal. Here we investigate how the distinct SST spatial structures, which include a sharpening of the Gulf Stream SST gradients, influence climate change in the NA sector in winter. For this we analyse the RCP8.5 scenario simulation of the MPI Earth System Model. Additional sensitivity experiments with the atmospheric model component, ECHAM5, are performed to deconstruct the effect of the local spatial structure of the SST change from those arising from large-scale warming of the ocean, remote SST pattern changes and changed radiative forcings. The MPI model simulation shows a signifcant decrease in precipitation to the south of the GS extension region in the future, despite a strong increase in underlying SST. While directly to the north there is a significant increase in precipitation. These distinct features in the precipitation response over the North Atlantic result from the local SST. Over the Gulf Stream, the differential structure of the precipitation changes reflects the changes of the local SST gradients there. Over the subpolar gyre the increase in precipitation is partly suppressed. In this region the Subpolar Gyre the weakened AMOC causes a SST warming, that is much weaker than the warming other regions of the ocean show at the same latitude. The large-scale response, which includes the overall increase in precipitation over the NA is due to the overall warming, remote SSTs and/or directly connected to the radiative forcing.
NASA Astrophysics Data System (ADS)
Seo, H.; Kwon, Y. O.; Joyce, T. M.
2016-02-01
A remarkably strong nonlinear behavior of the atmospheric circulation response to North Atlantic SST anomalies (SSTA) is revealed from a set of large-ensemble, high-resolution, and hemispheric-scale Weather Research and Forecasting (WRF) model simulations. The model is forced with the SSTA associated with meridional shift of the Gulf Stream (GS) path, constructed from a lag regression of the winter SST on a GS Index from observation. Analysis of the systematic set of experiments with SSTAs of varied amplitudes and switched signs representing various GS-shift scenarios provides unique insights into mechanism for emergence and evolution of transient and equilibrium response of atmospheric circulation to extratropical SSTA. Results show that, independent of sign of the SSTA, the equilibrium response is characterized by an anomalous trough over the North Atlantic Ocean and the Western Europe concurrent with enhanced storm track, increased rainfall, and reduced blocking days. To the north of the anomalous low, an anomalous ridge emerges over the Greenland, Iceland, and Norwegian Seas accompanied by weakened storm track, reduced rainfall and increased blocking days. This nonlinear component of the total response dominates the weak and oppositely signed linear response that is directly forced by the SSTA, yielding an anomalous ridge (trough) downstream of the warm (cold) SSTA. The amplitude of the linear response is proportional to that of the SSTA, but this is masked by the overwhelmingly strong nonlinear behavior showing no clear correspondence to the SSTA amplitude. The nonlinear pattern emerges 3-4 weeks after the model initialization in November and reaches its first peak amplitude in December/January. It appears that altered baroclinic wave activity due to the GS SSTA in November lead to low-frequency height responses in December/January through transient eddy vorticity flux convergence.
Transport and Fate of Nutrients Along the U.S. East Coast
NASA Astrophysics Data System (ADS)
Hofmann, E. E.; Narvaez, D.; Friedrichs, M. A. M.; Najjar, R.; Tian, H.; Hyde, K.; Mannino, A.; Signorini, S. R.; Wilkin, J.; St-Laurent, P.
2017-12-01
As part of a NASA-funded multi-investigator project, a land-estuarine-ocean biogeochemical modeling system was implemented and verified with remote sensing and in situ data to examine processes controlling fluxes on land, their coupling to riverine systems, the delivery of materials to estuaries and the coastal ocean, and marine ecosystem responses to these changing riverine inputs and changing climate forcing. This modeling system is being used to develop nutrient budgets for the U.S. east coast continental shelf and to examine seasonal and interannual variability in nutrient fluxes. An important aspect of these nutrient budgets is the transport and fate of nutrients released along the inner shelf. Results from a five-year simulation (2004 to 2008) that used tracer releases from the main rivers along the Middle Atlantic Bight (MAB) and South Atlantic Bight (SAB) provide insights into transport pathways that connect the inner and outer continental shelf. Tracers released along the inner MAB spread along the shelf with a general southward and offshore transport. Inner shelf inputs from the large estuarine systems are transported to the mid and outer MAB shelf. Tracers that reach the mid to outer shelf can be entrained in the Gulf Stream. Export from the MAB to the SAB occurs during periods of southerly winds. Transport processes along the SAB are similar, but Gulf Stream entrainment is a larger component of tracer transport. Superimposed on the MAB and SAB transport patterns is considerable seasonal and interannual variability. The results from these retrospective simulations improve understanding of the coupling at the land-water interface and shelf-wide transport patterns that advance the ability to predict the effects of localized human impacts and broader-scale climate-related impacts on the U.S. east coast continental shelf system.
NASA Technical Reports Server (NTRS)
Capotondi, Antonietta; Holland, William R.; Malanotte-Rizzoli, Paola
1995-01-01
The improvement in the climatological behavior of a numerical model as a consequence of the assimilation of surface data is investigated. The model used for this study is a quasigeostrophic (QG) model of the Gulf Stream region. The data that have been assimilated are maps of sea surface height that have been obtained as the superposition of sea surface height variability deduced from the Geosat altimeter measurements and a mean field constructed from historical hydrographic data. The method used for assimilating the data is the nudging technique. Nudging has been implemented in such a way as to achieve a high degree of convergence of the surface model fields toward the observations. Comparisons of the assimilation results with available in situ observations show a significant improvement in the degree of realism of the climatological model behavior, with respect to the model in which no data are assimilated. The remaining discrepancies in the model mean circulation seem to be mainly associated with deficiencies in the mean component of the surface data that are assimilated. On the other hand, the possibility of building into the model more realistic eddy characteristics through the assimilation of the surface eddy field proves very successful in driving components of the mean model circulation that are in relatively good agreement with the available observations. Comparisons with current meter time series during a time period partially overlapping the Geosat mission show that the model is able to 'correctly' extrapolate the instantaneous surface eddy signals to depths of approximately 1500 m. The correlation coefficient between current meter and model time series varies from values close to 0.7 in the top 1500 m to values as low as 0.1-0.2 in the deep ocean.
NASA Astrophysics Data System (ADS)
Hsieh, J. S.; Chang, P.; Saravanan, R.
2017-12-01
Frontal and mesoscale air-sea interactions along the Gulf Stream (GS) during boreal winter are investigated using an eddy-resolving and convection-permitting coupled regional climate model with atmospheric grid resolutions varying from meso-β (27-km) to -r (9-km and 3-km nest) scales in WRF and a 9-km ocean model (ROMS) that explicitly resolves the ocean mesoscale eddies across the North Atlantic basin. The mesoscale wavenumber energy spectra for the simulated surface wind stress and SST demonstrate good agreement with the observed spectra calculated from the observational QuikSCAT and AMSR-E datasets, suggesting that the model well captures the energy cascade of the mesoscale eddies in both the atmosphere and the ocean. Intercomparison among different resolution simulations indicates that after three months of integration the simulated GS path tends to overshoot beyond the separation point in the 27-km WRF coupled experiments than the observed climatological path of the GS, whereas the 3-km nested and 9-km WRF coupled simulations realistically simulate GS separation. The GS overshoot in 27-km WRF coupled simulations is accompanied with a significant SST warming bias to the north of the GS extension. Such biases are associated with the deficiency of wind stress-SST coupling strengths simulated by the coupled model with a coarser resolution in WRF. It is found that the model at 27-km grid spacing can approximately simulate 72% (62%) of the observed mean coupling strength between surface wind stress curl (divergence) and crosswind (downwind) SST gradient while by increasing the WRF resolutions to 9 km or 3 km the coupled model can much better capture the observed coupling strengths.
Observed and modeled mesoscale variability near the Gulf Stream and Kuroshio Extension
NASA Astrophysics Data System (ADS)
Schmitz, William J.; Holland, William R.
1986-08-01
Our earliest intercomparisons between western North Atlantic data and eddy-resolving two-layer quasi-geostrophic symmetric-double-gyre steady wind-forced numerical model results focused on the amplitudes and largest horizontal scales in patterns of eddy kinetic energy, primarily abyssal. Here, intercomparisons are extended to recent eight-layer model runs and new data which allow expansion of the investigation to the Kuroshio Extension and throughout much of the water column. Two numerical experiments are shown to have realistic zonal, vertical, and temporal eddy scales in the vicinity of the Kuroshio Extension in one case and the Gulf Stream in the other. Model zonal mean speeds are larger than observed, but vertical shears are in general agreement with the data. A longitudinal displacement between the maximum intensity in surface and abyssal eddy fields as observed for the North Atlantic is not found in the model results. The numerical simulations examined are highly idealized, notably with respect to basin shape, topography, wind-forcing, and of course dissipation. Therefore the zero-order agreement between modeled and observed basic characteristics of mid-latitude jets and their associated eddy fields suggests that such properties are predominantly determined by the physical mechanisms which dominate the models, where the fluctuations are the result of instability processes. The comparatively high vertical resolution of the model is needed to compare with new higher-resolution data as well as for dynamical reasons, although the precise number of layers required either kinematically or dynamically (or numerically) has not been determined; we estimate four to six when no attempt is made to account for bottom- or near-surface-intensified phenomena.
Regional Ocean Data Portal: Transforming Information to Knowledge
NASA Astrophysics Data System (ADS)
Howard, M. K.; Gayanilo, F. C.; Jochens, A. E.
2009-12-01
The mission of the Gulf of Mexico Coastal Ocean Observing System’s (GCOOS) regional data portal is to aggregate data and model output from distributed providers and to offer these, and derived products, through a single access point in standardized ways to a diverse set of users. The portal evolved under the NOAA-led U.S. Integrated Ocean Observing System (IOOS) program where automated largely-unattended machine-to-machine interoperability has always been a guiding tenet for system design. Initially, the portal focused on aggregating relatively homogeneous oceanographic and marine meteorological data from the principal Gulf of Mexico data providers. Obtaining community agreements from the data providers on data formats, vocabularies, and levels of service was relatively easy because the technical barriers to participation were low and we were able to provide financial support to them to make small additions or changes to their local data systems. Over time, the portal requirements became more complex as new parameters, new providers and heterogeneous data streams were added and the spatial domain increased to include beaches and adjacent wetlands. This began to strain our resources and take us outside our science domains of expertise. During the same period, the Gulf of Mexico Alliance (GOMA), a new environmental quality initiative involving the five Gulf states and Mexico with similar goals and directives as those of our sponsor, gained momentum and demanded both our attention and participation. GOMA is working, mostly among themselves, to discover or establish community standards for various types of data sets - e.g. water quality and nutrients. In addition to aggregation, the portal is also tasked with producing products from the collected information streams. Arriving at a prioritized list of desired products has been a major part of the business conducted by the GCOOS Regional Association (RA). Numerous stakeholder (e.g. emergency responders, oil and gas producers, recreational boaters, etc.) workshops were held to elicit user needs and requirements for observing system products for each group. The GCOOS-RA’s Products and Services Committee and Education and Outreach Council have gone through similar activities aimed at determining what products various users groups want. We have been sensitive to the private sector when deciding which products to produce. While science users want numbers, users of all types mainly want maps. We have tried to develop flexible capabilities within the portal that helps users to create their own fused products, ad hoc, for a variety of output devices, from desktop screens to the smart phones. We will discuss how our data management system has evolved within the backdrop of rapidly changing technologies and diverse community requirements.
Fey, David L.; Church, Stan E.
1998-01-01
Metal-mining related wastes in the Boulder River basin study area in northern Jefferson County, Montana have been implicated in their detrimental effects on water quality with regard to acid-generation and toxic-metal solubility. Sediments, fluvial tailings and water from High Ore Creek have been identified as significant contributors to water quality degradation of the Boulder River below Basin, Montana. A study of 42 fluvial tailings cores and 7 stream sediments from High Ore Creek was undertaken to determine the concentrations of environmentally sensitive elements (i.e. Ag, As, Cd, Cu, Pb, Zn) present in these materials, and the mineral phases containing those elements. Two sites of fluvial deposition of mine-waste contaminated sediment on upper High Ore Creek were sampled using a one-inch soil probe. Forty-two core samples were taken producing 247 subsamples. The samples were analyzed by ICP-AES (inductively coupled-plasma atomic emission spectroscopy) using a total mixed-acid digestion. Results of the core analyses show that the elements described above are present at very high concentrations (to 22,000 ppm As, to 460 ppm Ag, to 900 ppm Cd, 4,300 ppm Cu, 46,000ppm Pb, and 50,000 ppm Zn). Seven stream-sediment samples were also analyzed by ICP-AES for total element content and for leachable element content. Results show that the sediment of High Ore Creek has elevated levels of ore-related metals throughout its length, down to the confluence with the Boulder River, and that the metals are, to a significant degree, contained in the leachable phase, namely the hydrous amorphous iron- and manganese-hydroxide coatings on detrital sediment particles.
Counting Dependence Predictors
2008-05-02
sophisticated dependence predictors, such as Store Sets, have been tightly coupled to the fetch and ex- ecution streams, requiring global knowledge of...applicable to any architecture with distributed fetch and distributed memory banks, in which the comprehensive event completion knowledge needed by previous...adapted for Core Fusion [5] by giv- ing its steering management unit (SMU) the responsibilities of the controller core. While Ipek et al. describe how a
Scott, Brian H; Leccese, Paul A; Saleem, Kadharbatcha S; Kikuchi, Yukiko; Mullarkey, Matthew P; Fukushima, Makoto; Mishkin, Mortimer; Saunders, Richard C
2017-01-01
In the ventral stream of the primate auditory cortex, cortico-cortical projections emanate from the primary auditory cortex (AI) along 2 principal axes: one mediolateral, the other caudorostral. Connections in the mediolateral direction from core, to belt, to parabelt, have been well described, but less is known about the flow of information along the supratemporal plane (STP) in the caudorostral dimension. Neuroanatomical tracers were injected throughout the caudorostral extent of the auditory core and rostral STP by direct visualization of the cortical surface. Auditory cortical areas were distinguished by SMI-32 immunostaining for neurofilament, in addition to established cytoarchitectonic criteria. The results describe a pathway comprising step-wise projections from AI through the rostral and rostrotemporal fields of the core (R and RT), continuing to the recently identified rostrotemporal polar field (RTp) and the dorsal temporal pole. Each area was strongly and reciprocally connected with the areas immediately caudal and rostral to it, though deviations from strictly serial connectivity were observed. In RTp, inputs converged from core, belt, parabelt, and the auditory thalamus, as well as higher order cortical regions. The results support a rostrally directed flow of auditory information with complex and recurrent connections, similar to the ventral stream of macaque visual cortex. Published by Oxford University Press 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
NASA Astrophysics Data System (ADS)
Grimoldi, E.; Roberts, D. H.; Evans, D. J. A.; Stewart, H. A.; Sejrup, H. P.; Hjelstuen, B. O. B.; Haflidason, H.; Clark, C.
2016-12-01
The deglacial history of the former eastern margin of the last British and Irish Ice Sheet (BIIS) is still poorly understood, particularly in the western North Sea basin. The North Sea Lobe (NSL) affected the area, although gaps remain in our knowledge of the geomorphological and sedimentary imprint that the ice stream left on the seafloor and, more importantly, of its way of final retreat. In this work we analyse new high-resolution multibeam bathymetry, 2D seismic profiles and five vibro-cores, collected in the western North Sea in collaboration with the Britice-Chrono project, and provide new insights on the seafloor geomorphology and acoustic and lithological facies that characterize the Quaternary sediments of the area. The presence of bedrock-cored lineations orientated WNW-ESE to NW-SE indicates that the NSL was fed by the Forth ice stream which moved offshore from southern Scotland. Moraine ridges and two grounding zone wedges, perpendicular to the lineations, suggest that the NSL underwent different phases of stillstand/readvance and retreated towards the north-west. Five acoustic facies (AF) were identified, four of which are found on top of pre-Quaternary strata (AF 1), though their lateral extension is discontinuous. They are interpreted to represent glacigenic diamicts (AF 2 and 3), that are overlain by glacimarine (AF 4) and by Holocene deposits (AF 5). The vibro-cores penetrate in depth until reaching the top of AF 3. This facies correlates to the diamictic sediments observed in the cores, which are characterized by soft silts and clays and abundant clasts. The glacimarine sediments generally appear as highly laminated silts and clays with dropstones that usually become less frequent going upwards in the cores. These sediments are also characterized by foraminifera species associated with glacial environments. Foraminifera tests were dated within the galcimarine sequences in two cores and will help constrain the timing of ice retreat. By compiling all the available datasets, we suggest that the NSL flew sub-parallel to the coasts of eastern England during the Late Devensian and underwent different phases of stillstands/readvances that indicate a slow retreat towards land.
Coupling Meteorological, Land Surface and Water Temperature Models in the Mississippi River Basin
NASA Astrophysics Data System (ADS)
Tang, C.; Cooter, E. J.
2017-12-01
Water temperature is a significant factor influencing of the stream ecosystem and water management especially under climate change. In this study, we demonstrate a physically based semi-Lagrangian water temperature model (RBM) coupled with the Variable Infiltration Capacity (VIC) hydrology model and Weather Research & Forecasting Model (WRF) in the Mississippi River Basin (MRB). The results of this coupling compare favorably with observed water temperature data at river gages throughout the MRB. Further sensitivity analysis shows that mean water temperatures increase by 1.3°C, 1.5°C, and 1.8°C in northern, central and southern MRB zones, respectively, under a hypothetical uniform air temperature increase of 3°C. If air temperatures increase uniformly by 6°C in this scenario, then water temperatures are projected to increase by 3.3°C, 3.5°C and 4.0°C. Lastly, downscaled air temperatures from a global climate model are used to drive the coupled VIC and RBM model from 2020 to 2099. Average stream temperatures from 2020 to 2099 increase by 1°C to 8°C above 1950 to 2010 average water temperatures, with non-uniform increases along the river. In some portions of the MRB, stream temperatures could increase above survival thresholds for several native fish species, which are critical components of the stream ecosystem. The increased water temperature accelerates harmful algal blooming which results in a larger dead zone in the Gulf of Mexico.
Cold fronts and shocks formed by gas streams in galaxy clusters
NASA Astrophysics Data System (ADS)
Zinger, E.; Dekel, A.; Birnboim, Y.; Nagai, D.; Lau, E.; Kravtsov, A. V.
2018-05-01
Cold fronts (CFs) and shocks are hallmarks of the complex intra-cluster medium (ICM) in galaxy clusters. They are thought to occur due to gas motions within the ICM and are often attributed to galaxy mergers within the cluster. Using hydro-cosmological simulations of clusters of galaxies, we show that collisions of inflowing gas streams, seen to penetrate to the very centre of about half the clusters, offer an additional mechanism for the formation of shocks and CFs in cluster cores. Unlike episodic merger events, a gas stream inflow persists over a period of several Gyr and it could generate a particular pattern of multiple CFs and shocks.
Holocene tsunamigenic sediments and tsunami modelling in the Thermaikos Gulf area (northern Greece)
NASA Astrophysics Data System (ADS)
Reicherter, Klaus; Papanikolaou, Ioannis D.; Roger, Jean; Grützner, Christoph; Stamatis, Georgios; Papanikolaou, Dimitrios
2010-05-01
Shallow drill cores in flat and southerly exposed coastal areas around the Thermaikos Gulf (Thessalonica, northern Greece) provided evidence for past high energy sedimentary events, which are interpreted as tsunamites. A tsunamigenic source is located along the western tip of the North Anatolian Fault Zone (NAFZ) in the North Aegean Basin, where water depths ranging between 1.200 and 1.650 m are sufficiently deep to generate tsunamis. However, the event layers up to now cannot be assigned to individual seismic or landslide sources, but the potential of a tsunami threat in the Thermaikos Gulf area can now be tested, following both sedimentological and modelling processes. Such potential threat regarding the Thermaikos Gulf has only recently been notified but never tested and studied in depth. As a result, several Holocene coarse clastic layers have been found intercalated in clayey or gypsiferous lagoonal deposits. These layers have erosive bases, show fining-up and thinning-up sequences, and include shell debris, foraminifera and rip-up clasts of lagoonal sediments. A widely observed significant feature of these layers involves mud-coated beach clasts, clasts that rework the high-plasticity clays of lagoons. Such features that indicate highly disturbed sedimentological condition (hyperpyncal flows) are rarely described elsewhere. Multiple intercalations of these layers with all the mentioned indicative features downhole are interpreted paleotsunami deposits from tsunamis generated by earthquakes or earthquake-triggered submarine landslides triggered by seismic shaking in the Thermaikos Gulf. Modelling of the tsunami potential of the basin-bounding fault southwards of the Thermaikos Gulf provides an example for possible tsunami generation at only one segment of NAFZ along an approx. 55 km normal fault at the southern fault-bound margin of the North Aegean Basin. The Herodotus Histories report on inundations and sea withdrawals occurring during the Greek-Persian war, which occurred near Potidea. In the ancient Greek village Mende we found evidence for a tsunamigenic layer, dated with shells to 2500 BP, which may tentatively be interpreted as the sedimentary remains of the "Herodotus tsunami" in 479 BC. Acknowledgements: This work has been supported financially by the DAAD-IKYDA Project (Tracing tsunami deposits in the Thermaikos Gulf, Northern Greece. Implications for seismic and tsunami hazard and archaeology) and the RWTH Aachen University.
NASA Astrophysics Data System (ADS)
Eckes, S. W.; Shepherd, S. L.
2017-12-01
Accurately characterizing subsurface structure and function of remediated floodplains is indispensable in understanding the success of stream restoration projects. Although many of these projects are designed to address increased storm water runoff due to urbanization, long term monitoring and assessment are often limited in scope and methodology. Common monitoring practices include geomorphic surveys, stream discharge, and suspended sediment loads. These data are comprehensive for stream monitoring but they do not address floodplain function in terms of infiltration and through flow. Developing noninvasive methods for monitoring floodplain moisture transfer and distribution will aid in current and future stream restoration endeavors. Ground penetrating radar (GPR) has been successfully used in other physiographic regions for noninvasive and continuous monitoring of (1) natural geomorphic environments including subsurface structure and landform change and (2) soil and turf management to monitor subsurface moisture content. We are testing the viability of these existing methods to expand upon the broad capabilities of GPR. Determining suitability will be done in three parts using GPR to (1) find known buried objects of typical materials used in remediation at measured depths, (2) understand GPR functionality in varying soil moisture content thresholds on turf plots, and (3) model reference, remediated, and impacted floodplains in a case study in the D'Olive Creek watershed located in Baldwin County, Alabama. We hypothesize that these methods will allow us to characterize moisture transfer from precipitation and runoff to the floodplain which is a direct function of floodplain health. The need for a methodology to monitor floodplains is widespread and with increased resolution and mobility, expanding GPR applications may help streamline remediation and monitoring practices.
Transport and fate of nitrate at the ground-water/surface-water interface
Puckett, L.J.; Zamora, C.; Essaid, H.; Wilson, J.T.; Johnson, H.M.; Brayton, M.J.; Vogel, J.R.
2008-01-01
Although numerous studies of hyporheic exchange and denitrification have been conducted in pristine, high-gradient streams, few studies of this type have been conducted in nutrient-rich, low-gradient streams. This is a particularly important subject given the interest in nitrogen (N) inputs to the Gulf of Mexico and other eutrophic aquatic systems. A combination of hydrologic, mineralogical, chemical, dissolved gas, and isotopic data, were used to determine the processes controlling transport and fate of NO3- in streambeds at five sites across the USA. Water samples were collected from streambeds at depths ranging from 0.3 to 3 m at three to five points across the stream and in two to five separate transects. Residence times of water ranging from 0.28 to 34.7 d m-1 in the streambeds of N-rich watersheds played an important role in allowing denitrification to decrease NO3- concentrations. Where potential electron donors were limited and residence times were short, denitrification was limited. Consequently, in spite of reducing conditions at some sites, NO3- was transported into the stream. At two of the five study sites, NO3- in surface water infiltrated the streambeds and concentrations decreased, supporting current models that NO3- would be retained in N-rich streams. At the other three study sites, hydrogeologic controls limited or prevented infiltration of surface water into the streambed, and ground-water discharge contributed to NO 3- loads. Our results also show that in these low hydrologic-gradient systems, storm and other high-flow events can be important factors for increasing surface-water movement into streambeds. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.