Science.gov

Sample records for core junctions modelling

  1. Modelling of crack deflection at core junctions in sandwich structures

    NASA Astrophysics Data System (ADS)

    Jakobsen, J.; Andreasen, J. H.; Thomsen, O. T.

    2009-08-01

    The paper treats the problem of crack propagation in sandwich panels with interior core junctions. When a face-core interface crack approaches a trimaterial wedge, as it may occur at a sandwich core junction, two options exist for further crack advance; one is for the interface crack to penetrate the wedge along the face-core interface, and the second is deflection along the core junction interface. Crack deflection is highly relevant and a requirement for the functionality of a newly developed peel stopper for sandwich structures. The physical model presented in this paper enables the quantitative prediction of the ratio of the toughnesses of the two wedge interfaces required to control the crack propagation, and the derived results can be applied directly in future designs of sandwich structures. The solution strategy is based on finite element analysis (FEA), and a realistic engineering practice example of a tri-material composition corresponding to face and core materials is presented.

  2. Localised Effects in Sandwich Structures with Internal Core Junctions:Modelling and Experimental Characterisation of Load Response, Failure and Fatigue

    NASA Astrophysics Data System (ADS)

    Johannes, Martin; Thomsen, Ole Thybo

    The objective is to provide an overview of the mechanisms which determine the occurrence and severity of localized bending effects in sandwich structures. It is known from analytical and numerical modelling that local effects lead to an increase of the face bending stresses as well as the core shear and transverse normal stresses. The modelling and experimental characterisation of local effects in sandwich structures will be addressed based on the simple and generic case of sandwich structures with internal core junctions under general shear, bending and in-plane loading conditions. The issue of failure and fatigue phenomena induced by the presence of core junctions will be discussed in detail, with the inclusion of recent theoretical and experimental results.

  3. Predictive modelling of ferroelectric tunnel junctions

    NASA Astrophysics Data System (ADS)

    Velev, Julian P.; Burton, John D.; Zhuravlev, Mikhail Ye; Tsymbal, Evgeny Y.

    2016-05-01

    Ferroelectric tunnel junctions combine the phenomena of quantum-mechanical tunnelling and switchable spontaneous polarisation of a nanometre-thick ferroelectric film into novel device functionality. Switching the ferroelectric barrier polarisation direction produces a sizable change in resistance of the junction—a phenomenon known as the tunnelling electroresistance effect. From a fundamental perspective, ferroelectric tunnel junctions and their version with ferromagnetic electrodes, i.e., multiferroic tunnel junctions, are testbeds for studying the underlying mechanisms of tunnelling electroresistance as well as the interplay between electric and magnetic degrees of freedom and their effect on transport. From a practical perspective, ferroelectric tunnel junctions hold promise for disruptive device applications. In a very short time, they have traversed the path from basic model predictions to prototypes for novel non-volatile ferroelectric random access memories with non-destructive readout. This remarkable progress is to a large extent driven by a productive cycle of predictive modelling and innovative experimental effort. In this review article, we outline the development of the ferroelectric tunnel junction concept and the role of theoretical modelling in guiding experimental work. We discuss a wide range of physical phenomena that control the functional properties of ferroelectric tunnel junctions and summarise the state-of-the-art achievements in the field.

  4. Electrostatic Modeling of Vacuum Insulator Triple Junctions

    SciTech Connect

    Tully, L K; Goerz, D A; Houck, T L; Javedani, J B

    2006-10-25

    Triple junctions are often initiation points for insulator flashover in pulsed power devices. The two-dimensional finite-element TriComp [1] modeling software suite was utilized for its electrostatic field modeling package to investigate electric field behavior in the anode and cathode triple junctions of a high voltage vacuum-insulator interface. TriComp enables simple extraction of values from a macroscopic solution for use as boundary conditions in a subset solution. Electric fields computed with this zoom capability correlate with theoretical analysis of the anode and cathode triple junctions within submicron distances for nominal electrode spacing of 1.0 cm. This paper will discuss the iterative zoom process with TriComp finite-element software and the corresponding theoretical verification of the results.

  5. Global Core Plasma Model

    NASA Technical Reports Server (NTRS)

    Gallagher, Dennis L.; Craven, P. D.; Comfort, R. H.

    1999-01-01

    Abstract. The Global Core Plasma Model (GCPM) provides, empirically derived, core plasma density as a function of geomagnetic and solar conditions throughout the inner magnetosphere. It is continuous in value and gradient and is composed of separate models for the ionosphere, the plasmasphere, the plasmapause, the trough, and the polar cap. The relative composition of plasmaspheric H+, He+, and O+ is included in the GCPM. A blunt plasmaspheric bulge and rotation of the bulge with changing geomagnetic conditions is included. The GCPM is an amalgam of density models, intended to serve as a framework for continued improvement as new measurements become available and are used to characterize core plasma density, composition, and temperature.

  6. Transcription factor AP-2γ is a core regulator of tight junction biogenesis and cavity formation during mouse early embryogenesis

    PubMed Central

    Choi, Inchul; Carey, Timothy S.; Wilson, Catherine A.; Knott, Jason G.

    2012-01-01

    The trophectoderm epithelium is the first differentiated cell layer to arise during mammalian development. Blastocyst formation requires the proper expression and localization of tight junction, polarity, ion gradient and H2O channel proteins in the outer cell membranes. However, the underlying transcriptional mechanisms that control their expression are largely unknown. Here, we report that transcription factor AP-2γ (Tcfap2c) is a core regulator of blastocyst formation in mice. Bioinformatics, chromatin immunoprecipitation and transcriptional analysis revealed that Tcfap2c binds and regulates a diverse group of genes expressed during blastocyst formation. RNA interference experiments demonstrated that Tcfap2c regulates genes important for tight junctions, cell polarity and fluid accumulation. Functional and ultrastructural studies revealed that Tcfap2c is necessary for tight junction assembly and paracellular sealing in trophectoderm epithelium. Aggregation of control eight-cell embryos with Tcfap2c knockdown embryos rescued blastocyst formation via direct contribution to the trophectoderm epithelium. Finally, we found that Tcfap2c promotes cellular proliferation via direct repression of p21 transcription during the morula-to-blastocyst transition. We propose a model in which Tcfap2c acts in a hierarchy to facilitate blastocyst formation through transcriptional regulation of core genes involved in tight junction assembly, fluid accumulation and cellular proliferation. PMID:23136388

  7. String networks with junctions in competition models

    NASA Astrophysics Data System (ADS)

    Avelino, P. P.; Bazeia, D.; Losano, L.; Menezes, J.; de Oliveira, B. F.

    2017-03-01

    In this work we give specific examples of competition models, with six and eight species, whose three-dimensional dynamics naturally leads to the formation of string networks with junctions, associated with regions that have a high concentration of enemy species. We study the two- and three-dimensional evolution of such networks, both using stochastic network and mean field theory simulations. If the predation, reproduction and mobility probabilities do not vary in space and time, we find that the networks attain scaling regimes with a characteristic length roughly proportional to t 1 / 2, where t is the physical time, thus showing that the presence of junctions, on its own, does not have a significant impact on their scaling properties.

  8. Modeling Core Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Mezzacappa, Anthony

    2017-01-01

    Core collapse supernovae, or the death throes of massive stars, are general relativistic, neutrino-magneto-hydrodynamic events. The core collapse supernova mechanism is still not in hand, though key components have been illuminated, and the potential for multiple mechanisms for different progenitors exists. Core collapse supernovae are the single most important source of elements in the Universe, and serve other critical roles in galactic chemical and thermal evolution, the birth of neutron stars, pulsars, and stellar mass black holes, the production of a subclass of gamma-ray bursts, and as potential cosmic laboratories for fundamental nuclear and particle physics. Given this, the so called ``supernova problem'' is one of the most important unsolved problems in astrophysics. It has been fifty years since the first numerical simulations of core collapse supernovae were performed. Progress in the past decade, and especially within the past five years, has been exponential, yet much work remains. Spherically symmetric simulations over nearly four decades laid the foundation for this progress. Two-dimensional modeling that assumes axial symmetry is maturing. And three-dimensional modeling, while in its infancy, has begun in earnest. I will present some of the recent work from the ``Oak Ridge'' group, and will discuss this work in the context of the broader work by other researchers in the field. I will then point to future requirements and challenges. Connections with other experimental, observational, and theoretical efforts will be discussed, as well.

  9. Model Building to Facilitate Understanding of Holliday Junction and Heteroduplex Formation, and Holliday Junction Resolution

    ERIC Educational Resources Information Center

    Selvarajah, Geeta; Selvarajah, Susila

    2016-01-01

    Students frequently expressed difficulty in understanding the molecular mechanisms involved in chromosomal recombination. Therefore, we explored alternative methods for presenting the two concepts of the double-strand break model: Holliday junction and heteroduplex formation, and Holliday junction resolution. In addition to a lecture and…

  10. Flexible Photodiodes Based on Nitride Core/Shell p–n Junction Nanowires

    PubMed Central

    2016-01-01

    A flexible nitride p-n photodiode is demonstrated. The device consists of a composite nanowire/polymer membrane transferred onto a flexible substrate. The active element for light sensing is a vertical array of core/shell p–n junction nanowires containing InGaN/GaN quantum wells grown by MOVPE. Electron/hole generation and transport in core/shell nanowires are modeled within nonequilibrium Green function formalism showing a good agreement with experimental results. Fully flexible transparent contacts based on a silver nanowire network are used for device fabrication, which allows bending the detector to a few millimeter curvature radius without damage. The detector shows a photoresponse at wavelengths shorter than 430 nm with a peak responsivity of 0.096 A/W at 370 nm under zero bias. The operation speed for a 0.3 × 0.3 cm2 detector patch was tested between 4 Hz and 2 kHz. The −3 dB cutoff was found to be ∼35 Hz, which is faster than the operation speed for typical photoconductive detectors and which is compatible with UV monitoring applications. PMID:27615556

  11. Flexible Photodiodes Based on Nitride Core/Shell p-n Junction Nanowires.

    PubMed

    Zhang, Hezhi; Dai, Xing; Guan, Nan; Messanvi, Agnes; Neplokh, Vladimir; Piazza, Valerio; Vallo, Martin; Bougerol, Catherine; Julien, François H; Babichev, Andrey; Cavassilas, Nicolas; Bescond, Marc; Michelini, Fabienne; Foldyna, Martin; Gautier, Eric; Durand, Christophe; Eymery, Joël; Tchernycheva, Maria

    2016-10-05

    A flexible nitride p-n photodiode is demonstrated. The device consists of a composite nanowire/polymer membrane transferred onto a flexible substrate. The active element for light sensing is a vertical array of core/shell p-n junction nanowires containing InGaN/GaN quantum wells grown by MOVPE. Electron/hole generation and transport in core/shell nanowires are modeled within nonequilibrium Green function formalism showing a good agreement with experimental results. Fully flexible transparent contacts based on a silver nanowire network are used for device fabrication, which allows bending the detector to a few millimeter curvature radius without damage. The detector shows a photoresponse at wavelengths shorter than 430 nm with a peak responsivity of 0.096 A/W at 370 nm under zero bias. The operation speed for a 0.3 × 0.3 cm(2) detector patch was tested between 4 Hz and 2 kHz. The -3 dB cutoff was found to be ∼35 Hz, which is faster than the operation speed for typical photoconductive detectors and which is compatible with UV monitoring applications.

  12. Silicon-core glass fibres as microwire radial-junction solar cells.

    PubMed

    Martinsen, F A; Smeltzer, B K; Nord, M; Hawkins, T; Ballato, J; Gibson, U J

    2014-09-04

    Vertically aligned radial-junction solar cell designs offer potential improvements over planar geometries, as carrier generation occurs close to the junction for all absorption depths, but most production methods still require a single crystal substrate. Here, we report on the fabrication of such solar cells from polycrystalline, low purity (99.98%) p-type silicon starting material, formed into silicon core, silica sheath fibres using bulk glass draw techniques. Short segments were cut from the fibres, and the silica was etched from one side, which exposed the core and formed a conical cavity around it. We then used vapour deposition techniques to create p-i-n junction solar cells. Prototype cells formed from single fibres have shown conversion efficiencies up to 3.6%, despite the low purity of the starting material. This fabrication method has the potential to reduce the energy cost and the silicon volume required for solar cell production. Simulations were performed to investigate the potential of the conical cavity around the silicon core for light collection. Absorption of over 90% of the incident light was predicted, over a wide range of wavelengths, using these structures in combination with a 10% volume fraction of silicon.

  13. Model building to facilitate understanding of holliday junction and heteroduplex formation, and holliday junction resolution.

    PubMed

    Selvarajah, Geeta; Selvarajah, Susila

    2016-07-08

    Students frequently expressed difficulty in understanding the molecular mechanisms involved in chromosomal recombination. Therefore, we explored alternative methods for presenting the two concepts of the double-strand break model: Holliday junction and heteroduplex formation, and Holliday junction resolution. In addition to a lecture and computer-animated video, we included a model building activity using pipe cleaners. Biotechnology undergraduates (n = 108) used the model to simulate Holliday junction and heteroduplex formation, and Holliday junction resolution. Based on student perception, an average of 12.85 and 78.35% students claimed that they completely and partially understood the two concepts, respectively. A test conducted to ascertain their understanding about the two concepts showed that 66.1% of the students provided the correct response to the three multiple choice questions. A majority of the 108 students attributed the inclusion of model building to their better understanding of Holliday junction and heteroduplex formation, and Holliday junction resolution. This underlines the importance of incorporating model building, particularly in concepts that require spatial visualization. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(4):381-390, 2016.

  14. Models of the earth's core

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.

    1981-01-01

    Combined inferences from seismology, high-pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to models of the earth's core with five basic properties. These are that core formation was contemporaneous with earth accretion; the core is not in chemical equilibrium with the mantle; the outer core is a fluid iron alloy containing significant quantities of lighter elements and is probably almost adiabatic and compositionally uniform; the more iron-rich inner solid core is a consequence of partial freezing of the outer core, and the energy release from this process sustains the earth's magnetic field; and the thermodynamic properties of the core are well constrained by the application of liquid-state theory to seismic and labroatory data.

  15. Models of the Earth's Core.

    PubMed

    Stevenson, D J

    1981-11-06

    Combined inferences from seismology, high-pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to models of the earth's core with the following properties. Core formation was contemporaneous with earth accretion; the core is not in chemical equilibrium with the mantle; the outer core is a fluid iron alloy containing significant quantities of lighter elements and is probably almost adiabatic and compositionally uniform; the more iron-rich inner solid core is a consequence of partial freezing of the outer core, and the energy release from this process sustains the earth's magnetic field; and the thermodynamic properties of the core are well constrained by the application of liquid-state theory to seismic and laboratory data.

  16. Dynamic gap junctional communication: a delimiting model for tissue responses.

    PubMed Central

    Christ, G J; Brink, P R; Ramanan, S V

    1994-01-01

    Gap junctions are aqueous intercellular channels formed by a diverse class of membrane-spanning proteins, known as connexins. These aqueous pores provide partial cytoplasmic continuity between cells in most tissues, and are freely permeable to a host of physiologically relevant second messenger molecules/ionic species (e.g., Ca2+, IP3, cAMP, cGMP). Despite the fact that these second messenger molecules/ionic species have been shown to alter junctional patency, there is no clear basis for understanding how dynamic and transient changes in the intracellular concentration of second messenger molecules might modulate the extent of intercellular communication among coupled cells. Thus, we have modified the tissue monolayer model of Ramanan and Brink (1990) to account for both the up-regulatory and down-regulatory effects on junctions by second messenger molecules that diffuse through gap junctions. We have chosen the vascular wall as our morphological correlate because of its anisotropy and large investment of gap junctions. The model allows us to illustrate the putative behavior of gap junctions under a variety of physiologically relevant conditions. The modeling studies demonstrated that transient alterations in intracellular second messenger concentrations are capable of producing 50-125% changes in the number of cells recruited into a functional syncytial unit, after activation of a single cell. Moreover, the model conditions required to demonstrate such physiologically relevant changes in intercellular diffusion among coupled cells are commonly observed in intact tissues and cultured cells. Images FIGURE 2 PMID:7811948

  17. Performance model assessment for multi-junction concentrating photovoltaic systems.

    SciTech Connect

    Riley, Daniel M.; McConnell, Robert.; Sahm, Aaron; Crawford, Clark; King, David L.; Cameron, Christopher P.; Foresi, James S.

    2010-03-01

    Four approaches to modeling multi-junction concentrating photovoltaic system performance are assessed by comparing modeled performance to measured performance. Measured weather, irradiance, and system performance data were collected on two systems over a one month period. Residual analysis is used to assess the models and to identify opportunities for model improvement.

  18. Lunar magnetism. [primordial core model

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.

    1975-01-01

    It is shown, for a very simple model of the moon, that the existence of a primordial core magnetic field would give rise to a present day nonzero dipole external field. In the investigation a uniformly magnetized core embedded in a permeable mantle is considered. The significance of the obtained results for the conclusions reported by Runcorn (1975) is discussed. Comments provided by Runcorn to the discussion are also presented.

  19. Axially connected nanowire core-shell p-n junctions: a composite structure for high-efficiency solar cells.

    PubMed

    Wang, Sijia; Yan, Xin; Zhang, Xia; Li, Junshuai; Ren, Xiaomin

    2015-01-01

    A composite nanostructure for high-efficiency solar cells that axially connects nanowire core-shell p-n junctions is proposed. By axially connecting the p-n junctions in one nanowire, the solar spectrum is separated and absorbed in the top and bottom cells with respect to the wavelength. The unique structure of nanowire p-n junctions enables substantial light absorption along the nanowire and efficient radial carrier separation and collection. A coupled three-dimensional optoelectronic simulation is used to evaluate the performance of the structure. With an excellent current matching, a promising efficiency of 19.9% can be achieved at a low filling ratio of 0.283 (the density of the nanowire array), which is much higher than the tandem axial p-n junctions.

  20. Haploinsufficiency for Core Exon Junction Complex Components Disrupts Embryonic Neurogenesis and Causes p53-Mediated Microcephaly

    PubMed Central

    Wang, Zefeng; Silver, Debra L.

    2016-01-01

    The exon junction complex (EJC) is an RNA binding complex comprised of the core components Magoh, Rbm8a, and Eif4a3. Human mutations in EJC components cause neurodevelopmental pathologies. Further, mice heterozygous for either Magoh or Rbm8a exhibit aberrant neurogenesis and microcephaly. Yet despite the requirement of these genes for neurodevelopment, the pathogenic mechanisms linking EJC dysfunction to microcephaly remain poorly understood. Here we employ mouse genetics, transcriptomic and proteomic analyses to demonstrate that haploinsufficiency for each of the 3 core EJC components causes microcephaly via converging regulation of p53 signaling. Using a new conditional allele, we first show that Eif4a3 haploinsufficiency phenocopies aberrant neurogenesis and microcephaly of Magoh and Rbm8a mutant mice. Transcriptomic and proteomic analyses of embryonic brains at the onset of neurogenesis identifies common pathways altered in each of the 3 EJC mutants, including ribosome, proteasome, and p53 signaling components. We further demonstrate all 3 mutants exhibit defective splicing of RNA regulatory proteins, implying an EJC dependent RNA regulatory network that fine-tunes gene expression. Finally, we show that genetic ablation of one downstream pathway, p53, significantly rescues microcephaly of all 3 EJC mutants. This implicates p53 activation as a major node of neurodevelopmental pathogenesis following EJC impairment. Altogether our study reveals new mechanisms to help explain how EJC mutations influence neurogenesis and underlie neurodevelopmental disease. PMID:27618312

  1. Application of Core Dynamics Modeling to Core-Mantle Interactions

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia

    2003-01-01

    Observations have demonstrated that length of day (LOD) variation on decadal time scales results from exchange of axial angular momentum between the solid mantle and the core. There are in general four core-mantle interaction mechanisms that couple the core and the mantle. Of which, three have been suggested likely the dominant coupling mechanism for the decadal core-mantle angular momentum exchange, namely, gravitational core-mantle coupling arising from density anomalies in the mantle and in the core (including the inner core), the electromagnetic coupling arising from Lorentz force in the electrically conducting lower mantle (e.g. D-layer), and the topographic coupling arising from non-hydrostatic pressure acting on the core-mantle boundary (CMB) topography. In the past decades, most effort has been on estimating the coupling torques from surface geomagnetic observations (kinematic approach), which has provided insights on the core dynamical processes. In the meantime, it also creates questions and concerns on approximations in the studies that may invalidate the corresponding conclusions. The most serious problem is perhaps the approximations that are inconsistent with dynamical processes in the core, such as inconsistencies between the core surface flow beneath the CMB and the CMB topography, and that between the D-layer electric conductivity and the approximations on toroidal field at the CMB. These inconsistencies can only be addressed with numerical core dynamics modeling. In the past few years, we applied our MoSST (Modular, Scalable, Self-consistent and Three-dimensional) core dynamics model to study core-mantle interactions together with geodynamo simulation, aiming at assessing the effect of the dynamical inconsistencies in the kinematic studies on core-mantle coupling torques. We focus on topographic and electromagnetic core-mantle couplings and find that, for the topographic coupling, the consistency between the core flow and the CMB topography is

  2. Molecular modeling of inelastic electron transport in molecular junctions

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Kula, Mathias; Luo, Yi

    2008-09-01

    A quantum chemical approach for the modeling of inelastic electron tunneling spectroscopy of molecular junctions based on scattering theory is presented. Within a harmonic approximation, the proposed method allows us to calculate the electron-vibration coupling strength analytically, which makes it applicable to many different systems. The calculated inelastic electron transport spectra are often in very good agreement with their experimental counterparts, allowing the revelation of detailed information about molecular conformations inside the junction, molecule-metal contact structures, and intermolecular interaction that is largely inaccessible experimentally.

  3. Extension of the ADC Charge-Collection Model to Include Multiple Junctions

    NASA Technical Reports Server (NTRS)

    Edmonds, Larry D.

    2011-01-01

    The ADC model is a charge-collection model derived for simple p-n junction silicon diodes having a single reverse-biased p-n junction at one end and an ideal substrate contact at the other end. The present paper extends the model to include multiple junctions, and the goal is to estimate how collected charge is shared by the different junctions.

  4. A Model for the Behavior of Magnetic Tunnel Junctions

    SciTech Connect

    Baker, Bryan John

    2003-01-01

    A magnetic tunnel junction is a device that changes its electrical resistance with a change in an applied magnetic field. A typical junction consists of two magnetic electrodes separated by a nonmagnetic insulating layer. The magnetizations of the two electrodes can have two possible extreme configurations, parallel and antiparallel. The antiparallel configuration is observed to have the higher measured resistance and the parallel configuration has the lower resistance. To switch between these two configurations a magnetic field is applied to the device which is primarily used to change the orientation of the magnetization of one electrode usually called the free layer, although with sufficient high magnetic field the orientation of the magnetizations of both of the electrodes can be changed. The most commonly used models for describing and explaining the electronic behavior of tunnel junctions are the Simmons model and the Brinkman model. However, both of these models were designed for simple, spin independent tunneling. The Simmons model does not address the issue of applied magnetic fields nor does it address the form of the electronic band structure in the metallic electrodes, including the important factor of spin polarization. The Brinkman model is similar, the main difference between the two models being the shape of the tunneling barrier potential between the two electrodes. Therefore, the research conducted in this thesis has developed a new theoretical model that addresses these important issues starting from basic principles. The main features of the new model include: the development of equations for true spin dependent tunneling through the insulating barrier, the differences in the orientations of the electrode magnetizations on either side of the barrier, and the effects of the density of states function on the behavior of the junction. The present work has explored densities of states that are more realistic than the simplified free electron density

  5. Summary of mathematical models for a conventional and vertical junction photoconverter

    NASA Technical Reports Server (NTRS)

    Heinbockel, J. H.

    1986-01-01

    The geometry and computer programming for mathematical models of a one-dimensional conventional photoconverter, a one-dimensional vertical junction photoconverter, a three-dimensional conventinal photoconverter, and a three-dimensional vertical junction solar cell are discussed.

  6. The core legion object model

    SciTech Connect

    Lewis, M.; Grimshaw, A.

    1996-12-31

    The Legion project at the University of Virginia is an architecture for designing and building system services that provide the illusion of a single virtual machine to users, a virtual machine that provides secure shared object and shared name spaces, application adjustable fault-tolerance, improved response time, and greater throughput. Legion targets wide area assemblies of workstations, supercomputers, and parallel supercomputers, Legion tackles problems not solved by existing workstation based parallel processing tools; the system will enable fault-tolerance, wide area parallel processing, inter-operability, heterogeneity, a single global name space, protection, security, efficient scheduling, and comprehensive resource management. This paper describes the core Legion object model, which specifies the composition and functionality of Legion`s core objects-those objects that cooperate to create, locate, manage, and remove objects in the Legion system. The object model facilitates a flexible extensible implementation, provides a single global name space, grants site autonomy to participating organizations, and scales to millions of sites and trillions of objects.

  7. Frame junction vibration transmission with a modified frame deformation model.

    PubMed

    Moore, J A

    1990-12-01

    A previous paper dealt with vibration transmission through junctions of connected frame members where the allowed frame deformations included bending, torsion, and longitudinal motions [J.A. Moore, J. Acoust. Soc. Am. 88, 2766-2776 (1990)]. In helicopter and aircraft structures the skin panels can constitute a high impedance connection along the length of the frames that effectively prohibits in-plane motion at the elevation of the skin panels. This has the effect of coupling in-plane bending and torsional motions within the frame. This paper discusses the transmission behavior through frame junctions that accounts for the in-plane constraint in idealized form by assuming that the attached skin panels completely prohibit inplane motion in the frames. Also, transverse shear deformation is accounted for in describing the relatively deep web frame constructions common in aircraft structures. Longitudinal motion in the frames is not included in the model. Transmission coefficient predictions again show the importance of out-of-plane bending deformation to the transmission of vibratory energy in an aircraft structure. Comparisons are shown with measured vibration transmission data along the framing in the overhead of a helicopter airframe, with good agreement. The frame junction description has been implemented within a general purpose statistical energy analysis (SEA) computer code in modeling the entire airframe structure including skin panels.

  8. Yankee Rowe simulator core model validation

    SciTech Connect

    Napolitano, M.E.

    1990-01-01

    This paper presents the validation of the Yankee Rowe simulator core model. Link-Miles Simulation Corporation is developing the Yankee Rowe simulator and Yankee Atomic Electric Company is involved in input and benchmark data generation, as well as simulator validation. Core model validation by Yankee comprises three tasks: (1) careful generation of fuel reactivity characteristics (B constants); (2) nonintegrated core model testing; and (3) fully integrated core model testing. Simulator core model validation and verification is a multistage process involving input and benchmark data generation as well as interactive debugging. Core characteristics were brought within acceptable criteria by this process. This process was achieved through constant communication between Link-Miles and Yankee engineers. Based on this validation, the Yankee Rowe simulator core model is found to be acceptable for training purposes.

  9. Performance model assessment for multi-junction concentrating photovoltaic systems.

    SciTech Connect

    Stein, Joshua S.; Riley, Daniel M.; McConnell, Robert.; Sahm, Aaron; Crawford, Clark; King, David L.; Cameron, Christopher P.; Foresi, James S.

    2010-03-01

    Four approaches to modeling multi-junction concentrating photovoltaic system performance are assessed by comparing modeled performance to measured performance. Measured weather, irradiance, and system performance data were collected on two systems over a one month period. Residual analysis is used to assess the models and to identify opportunities for model improvement. Large photovoltaic systems are typically developed as projects which supply electricity to a utility and are owned by independent power producers. Obtaining financing at favorable rates and attracting investors requires confidence in the projected energy yield from the plant. In this paper, various performance models for projecting annual energy yield from Concentrating Photovoltaic (CPV) systems are assessed by comparing measured system output to model predictions based on measured weather and irradiance data. The results are statistically analyzed to identify systematic error sources.

  10. Josephson-junction single plaquette as a model for the high-Tc grain-boundary junctions

    NASA Astrophysics Data System (ADS)

    Kim, Jinhee; Shin, Hyun Joon; Lee, Hu Jong

    1994-03-01

    We have calculated the widths of the integer and half-integer voltage steps in a square Josephson-junction single plaquette as a function of ac level for various filling factors f. The characteristic features of the step widths, corresponding to n=0, 1/2, and 1, show clear differences between small and large values of f, and are in reasonable agreement with the results observed experimentally in high-Tc single grain-boundary junctions. When the inhomogeneity in the critical current of the junctions parallel and perpendicular to the external current is introduced to the model the equations of motion for a single plaquette become equivalent to those of a dc superconducting quantum interference device in the limit of small loop inductance.

  11. A Nexus Model of the Temporal-Parietal Junction

    PubMed Central

    Carter, R. McKell; Huettel, Scott A.

    2013-01-01

    The temporal-parietal junction (TPJ) has been proposed to support either specifically social functions or non-specific processes of cognition like memory and attention. To account for diverse prior findings, we propose a Nexus Model for TPJ function: overlap of basic processes produces novel secondary functions at their convergence. We present meta-analytic evidence that is consistent with the anatomical convergence of attention, memory, language, and social processing in the TPJ – leading to a higher-order role in the creation of a social context for behavior. The Nexus Model accounts for recent examples of TPJ contributions specifically to decision making in a social context, and it provides a potential reconciliation for competing claims about TPJ function. PMID:23790322

  12. Modeling of charge transport in ion bipolar junction transistors.

    PubMed

    Volkov, Anton V; Tybrandt, Klas; Berggren, Magnus; Zozoulenko, Igor V

    2014-06-17

    Spatiotemporal control of the complex chemical microenvironment is of great importance to many fields within life science. One way to facilitate such control is to construct delivery circuits, comprising arrays of dispensing outlets, for ions and charged biomolecules based on ionic transistors. This allows for addressability of ionic signals, which opens up for spatiotemporally controlled delivery in a highly complex manner. One class of ionic transistors, the ion bipolar junction transistors (IBJTs), is especially attractive for these applications because these transistors are functional at physiological conditions and have been employed to modulate the delivery of neurotransmitters to regulate signaling in neuronal cells. Further, the first integrated complementary ionic circuits were recently developed on the basis of these ionic transistors. However, a detailed understanding of the device physics of these transistors is still lacking and hampers further development of components and circuits. Here, we report on the modeling of IBJTs using Poisson's and Nernst-Planck equations and the finite element method. A two-dimensional model of the device is employed that successfully reproduces the main characteristics of the measurement data. On the basis of the detailed concentration and potential profiles provided by the model, the different modes of operation of the transistor are analyzed as well as the transitions between the different modes. The model correctly predicts the measured threshold voltage, which is explained in terms of membrane potentials. All in all, the results provide the basis for a detailed understanding of IBJT operation. This new knowledge is employed to discuss potential improvements of ion bipolar junction transistors in terms of miniaturization and device parameters.

  13. Quantum interference in thermoelectric molecular junctions: A toy model perspective

    SciTech Connect

    Nozaki, Daijiro E-mail: research@nano.tu-dresden.de; Avdoshenko, Stas M.; Sevinçli, Hâldun; Cuniberti, Gianaurelio

    2014-08-21

    Quantum interference (QI) phenomena between electronic states in molecular circuits offer a new opportunity to design new types of molecular devices such as molecular sensors, interferometers, and thermoelectric devices. Controlling the QI effect is a key challenge for such applications. For the development of single molecular devices employing QI effects, a systematic study of the relationship between electronic structure and the quantum interference is needed. In order to uncover the essential topological requirements for the appearance of QI effects and the relationship between the QI-affected line shape of the transmission spectra and the electronic structures, we consider a homogeneous toy model where all on-site energies are identical and model four types of molecular junctions due to their topological connectivities. We systematically analyze their transmission spectra, density of states, and thermoelectric properties. Even without the degree of freedom for on-site energies an asymmetric Fano peak could be realized in the homogeneous systems with the cyclic configuration. We also calculate the thermoelectric properties of the model systems with and without fluctuation of on-site energies. Even under the fluctuation of the on-site energies, the finite thermoelectrics are preserved for the Fano resonance, thus cyclic configuration is promising for thermoelectric applications. This result also suggests the possibility to detect the cyclic configuration in the homogeneous systems and the presence of the QI features from thermoelectric measurements.

  14. Modeling of the Mechanical Function of the Human Gastroesophageal Junction Using an Anatomically-Realistic Three-Dimensional Model

    PubMed Central

    Yassi, R.; Cheng, L. K.; Rajagopal, V.; Nash, M. P.; Windsor, J. A.; Pullan, A. J.

    2009-01-01

    The aim of this study was to combine the anatomy and physiology of the human gastroesophageal junction (the junction between the esophagus and the stomach) into a unified computer model. A three-dimensional computer model of the gastroesophageal junction was created using cross-sectional images from a human cadaver. The governing equations of finite deformation elasticity were incorporated into the three-dimensional model. The model was used to predict the intraluminal pressure values (pressure inside the junction) due to the muscle contraction of the gastroesophageal junction and the effects of the surrounding structures. The intraluminal pressure results obtained from the three-dimensional model were consistent with experimental values available in the literature. The model was also used to examine the independent roles of each muscle layer (circular and longitudinal) of the gastroesophageal junction by contracting them separately. Results showed that the intraluminal pressure values predicted by the model were primarily due to the contraction of the circular muscle layer. If the circular muscle layer was quiescent, the contraction of the longitudinal muscle layer resulted in an expansion of the junction. In conclusion, the model provided reliable predictions of the intraluminal pressure values during the contraction of a normal gastroesophageal junction. The model also provided a framework to examine the role of each muscle layer during the contraction of the gastroesophageal junction. PMID:19481212

  15. Emergent Central Pattern Generator Behavior in Gap-Junction-Coupled Hodgkin-Huxley Style Neuron Model

    PubMed Central

    Memelli, Heraldo; Solomon, Irene C.

    2012-01-01

    Most models of central pattern generators (CPGs) involve two distinct nuclei mutually inhibiting one another via synapses. Here, we present a single-nucleus model of biologically realistic Hodgkin-Huxley neurons with random gap junction coupling. Despite no explicit division of neurons into two groups, we observe a spontaneous division of neurons into two distinct firing groups. In addition, we also demonstrate this phenomenon in a simplified version of the model, highlighting the importance of afterhyperpolarization currents (IAHP) to CPGs utilizing gap junction coupling. The properties of these CPGs also appear sensitive to gap junction conductance, probability of gap junction coupling between cells, topology of gap junction coupling, and, to a lesser extent, input current into our simulated nucleus. PMID:23365558

  16. Emergent central pattern generator behavior in gap-junction-coupled Hodgkin-Huxley style neuron model.

    PubMed

    Horn, Kyle G; Memelli, Heraldo; Solomon, Irene C

    2012-01-01

    Most models of central pattern generators (CPGs) involve two distinct nuclei mutually inhibiting one another via synapses. Here, we present a single-nucleus model of biologically realistic Hodgkin-Huxley neurons with random gap junction coupling. Despite no explicit division of neurons into two groups, we observe a spontaneous division of neurons into two distinct firing groups. In addition, we also demonstrate this phenomenon in a simplified version of the model, highlighting the importance of afterhyperpolarization currents (I(AHP)) to CPGs utilizing gap junction coupling. The properties of these CPGs also appear sensitive to gap junction conductance, probability of gap junction coupling between cells, topology of gap junction coupling, and, to a lesser extent, input current into our simulated nucleus.

  17. Dynamic compact model of thermally assisted switching magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    El Baraji, M.; Javerliac, V.; Guo, W.; Prenat, G.; Dieny, B.

    2009-12-01

    The general purpose of spin electronics is to take advantage of the electron's spin in addition to its electrical charge to build innovative electronic devices. These devices combine magnetic materials which are used as spin polarizer or analyzer together with semiconductors or insulators, resulting in innovative hybrid CMOS/magnetic (Complementary MOS) architectures. In particular, magnetic tunnel junctions (MTJs) can be used for the design of magnetic random access memories [S. Tehrani, Proc. IEEE 91, 703 (2003)], magnetic field programmable gate arrays [Y. Guillement, International Journal of Reconfigurable Computing, 2008], low-power application specific integrated circuits [S. Matsunaga, Appl. Phys. Express 1, 091301 (2008)], and rf oscillators. The thermally assisted switching (TAS) technology requires heating the MTJ before writing it by means of an external field. It reduces the overall power consumption, solves the data writing selectivity issues, and improves the thermal stability of the written information for high density applications. The design of hybrid architectures requires a MTJ compact model, which can be used in standard electrical simulators of the industry. As a result, complete simulations of CMOS/MTJ hybrid circuits can be performed before experimental realization and testing. This article presents a highly accurate model of the MTJ based on the TAS technology. It is compatible with the Spectre electrical simulator of Cadence design suite.

  18. Analyzing the Effects of Gap Junction Blockade on Neural Synchrony via a Motoneuron Network Computational Model

    PubMed Central

    Memelli, Heraldo; Horn, Kyle G.; Wittie, Larry D.; Solomon, Irene C.

    2012-01-01

    In specific regions of the central nervous system (CNS), gap junctions have been shown to participate in neuronal synchrony. Amongst the CNS regions identified, some populations of brainstem motoneurons are known to be coupled by gap junctions. The application of various gap junction blockers to these motoneuron populations, however, has led to mixed results regarding their synchronous firing behavior, with some studies reporting a decrease in synchrony while others surprisingly find an increase in synchrony. To address this discrepancy, we employ a neuronal network model of Hodgkin-Huxley-style motoneurons connected by gap junctions. Using this model, we implement a series of simulations and rigorously analyze their outcome, including the calculation of a measure of neuronal synchrony. Our simulations demonstrate that under specific conditions, uncoupling of gap junctions is capable of producing either a decrease or an increase in neuronal synchrony. Subsequently, these simulations provide mechanistic insight into these different outcomes. PMID:23365560

  19. Bipolar junction transistor models for circuit simulation of cosmic-ray-induced soft errors

    NASA Technical Reports Server (NTRS)

    Benumof, R.; Zoutendyk, J.

    1984-01-01

    This paper examines bipolar junction transistor models suitable for calculating the effects of large excursions of some of the variables determining the operation of a transistor. Both the Ebers-Moll and Gummel-Poon models are studied, and the junction and diffusion capacitances are evaluated on the basis of the latter model. The most interesting result of this analysis is that a bipolar junction transistor when struck by a cosmic particle may cause a single event upset in an electronic circuit if the transistor is operated at a low forward base-emitter bias.

  20. Liquid sodium models of the Earth's core

    NASA Astrophysics Data System (ADS)

    Adams, Matthew M.; Stone, Douglas R.; Zimmerman, Daniel S.; Lathrop, Daniel P.

    2015-12-01

    Our understanding of the dynamics of the Earth's core can be advanced by a combination of observation, experiments, and simulations. A crucial aspect of the core is the interplay between the flow of the conducting liquid and the magnetic field this flow sustains via dynamo action. This non-linear interaction, and the presence of turbulence in the flow, precludes direct numerical simulation of the system with realistic turbulence. Thus, in addition to simulations and observations (both seismological and geomagnetic), experiments can contribute insight into the core dynamics. Liquid sodium laboratory experiments can serve as models of the Earth's core with the key ingredients of conducting fluid, turbulent flow, and overall rotation, and can also approximate the geometry of the core. By accessing regions of parameter space inaccessible to numerical studies, experiments can benchmark simulations and reveal phenomena relevant to the Earth's core and other planetary cores. This review focuses on the particular contribution of liquid sodium spherical Couette devices to this subject matter.

  1. Novel model for the mechanisms of glutamate-dependent excitotoxicity: Role of neuronal gap junctions

    PubMed Central

    Belousov, Andrei B.

    2012-01-01

    In the mammalian central nervous system (CNS), coupling of neurons by gap junctions (electrical synapses) increases during early postnatal development, then decreases, but increases in the mature CNS following neuronal injury, such as ischemia, traumatic brain injury and epilepsy. Glutamate-dependent neuronal death also occurs in the CNS during development and neuronal injury, i.e., at the time when neuronal gap junction coupling is increased. Here, we review our recent studies on regulation of neuronal gap junction coupling by glutamate during development and injury and on the role of gap junctions in neuronal cell death. A novel model of the mechanisms of glutamate-dependent neuronal death is discussed, which includes neuronal gap junction coupling as a critical part of these mechanisms. PMID:22771704

  2. Modeling in the Common Core State Standards

    ERIC Educational Resources Information Center

    Tam, Kai Chung

    2011-01-01

    The inclusion of modeling and applications into the mathematics curriculum has proven to be a challenging task over the last fifty years. The Common Core State Standards (CCSS) has made mathematical modeling both one of its Standards for Mathematical Practice and one of its Conceptual Categories. This article discusses the need for mathematical…

  3. Flexure modelling at seamounts with dense cores

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Sep; Wessel, Paul

    2010-08-01

    The lithospheric response to seamounts and ocean islands has been successfully described by deformation of an elastic plate induced by a given volcanic load. If the shape and mass of a seamount are known, the lithospheric flexure due to the seamount is determined by the thickness of an elastic plate, Te, which depends on the load density and the age of the plate at the time of seamount construction. We can thus infer important thermomechanical properties of the lithosphere from Te estimates at seamounts and their correlation with other geophysical inferences, such as cooling of the plate. Whereas the bathymetry (i.e. shape) of a seamount is directly observable, the total mass often requires an assumption of the internal seamount structure. The conventional approach considers the seamount to have a uniform density (e.g. density of the crust). This choice, however, tends to bias the total mass acting on an elastic plate. In this study, we will explore a simple approximation to the seamount's internal structure that considers a dense core and a less dense outer edifice. Although the existence of a core is supported by various gravity and seismic studies, the role of such volcanic cores in flexure modelling has not been fully addressed. Here, we present new analytic solutions for plate flexure due to axisymmetric dense core loads, and use them to examine the effects of dense cores in flexure calculations for a variety of synthetic cases. Comparing analytic solutions with and without a core indicates that the flexure model with uniform density underestimates Te by at least 25 per cent. This bias increases when the uniform density is taken to be equal to the crustal density. We also propose a practical application of the dense core model by constructing a uniform density load of same mass as the dense core load. This approximation allows us to compute the flexural deflection and gravity anomaly of a seamount in the wavenumber domain and minimize the limitations

  4. Model for large arrays of Josephson junctions with unconventional superconductors

    NASA Astrophysics Data System (ADS)

    Khveshchenko, D. V.; Crooks, R.

    2011-10-01

    We study large arrays of mesoscopic junctions made out of gapless unconventional superconductors where the tunneling processes of both particle-hole and Cooper pairs give rise to a strongly retarded effective action which, contrary to the standard case, cannot be readily characterized in terms of a local Josephson energy. This action can be relevant, for example, to grain boundary and c-axis junctions in layered high-Tc superconductors. By using a particular functional representation, we describe emergent collective phenomena in this system, ascertain its phase diagram, and compute electrical conductivity.

  5. Experimental testing and modeling analysis of solute mixing at water distribution pipe junctions.

    PubMed

    Shao, Yu; Jeffrey Yang, Y; Jiang, Lijie; Yu, Tingchao; Shen, Cheng

    2014-06-01

    Flow dynamics at a pipe junction controls particle trajectories, solute mixing and concentrations in downstream pipes. The effect can lead to different outcomes of water quality modeling and, hence, drinking water management in a distribution network. Here we have investigated solute mixing behavior in pipe junctions of five hydraulic types, for which flow distribution factors and analytical equations for network modeling are proposed. First, based on experiments, the degree of mixing at a cross is found to be a function of flow momentum ratio that defines a junction flow distribution pattern and the degree of departure from complete mixing. Corresponding analytical solutions are also validated using computational-fluid-dynamics (CFD) simulations. Second, the analytical mixing model is further extended to double-Tee junctions. Correspondingly the flow distribution factor is modified to account for hydraulic departure from a cross configuration. For a double-Tee(A) junction, CFD simulations show that the solute mixing depends on flow momentum ratio and connection pipe length, whereas the mixing at double-Tee(B) is well represented by two independent single-Tee junctions with a potential water stagnation zone in between. Notably, double-Tee junctions differ significantly from a cross in solute mixing and transport. However, it is noted that these pipe connections are widely, but incorrectly, simplified as cross junctions of assumed complete solute mixing in network skeletonization and water quality modeling. For the studied pipe junction types, analytical solutions are proposed to characterize the incomplete mixing and hence may allow better water quality simulation in a distribution network.

  6. Towards Consistent Models of Starless Cores

    NASA Astrophysics Data System (ADS)

    Shustov, Boris; Pavlyuchenkov, Yaroslav; Shematovich, Valery; Wiebe, Dimitri; Henning, Thomas; Semenov, Dimitri; Launhardt, Ralf

    The complete theory of the earliest stages of star formation can be developed only on the basis of self-consistent coupled dynamical and chemical models for the evolution of protostellar clouds. The models including multidimensional geometry ""full"" chemistry and 2D/3D radiation transfer still do not exist. We analyze limitations of the existing approaches and main directions of the model improvements: revision of chemical reaction data bases reduction of chemical reaction network reasonable choice of model geometry radiation transfer. The most important goal of modeling of the real objects is to reveal unambiguous signatures of their evolutionary status. Starless cores are believed to be compact objects at very early stages of star formation. We use our results on 1D self-consistent evolution of starless cores to illustrate problems of modeling and interpretation. Special attention is drawn to the radiation transfer problem. New 2D code URAN(IA) for simulation of radiation transfer in molecular lines was developed. This code was used to analyze spectra of starless cores L1544 and CB17. The deduced parameters of these cores are discussed.

  7. Modeling Intrajunction Dispersion at a Well-Mixed Tidal River Junction

    DOE PAGES

    Wolfram, Phillip J.; Fringer, Oliver B.; Monsen, Nancy E.; ...

    2016-08-01

    In this paper, the relative importance of small-scale, intrajunction flow features such as shear layers, separation zones, and secondary flows on dispersion in a well-mixed tidal river junction is explored. A fully nonlinear, nonhydrostatic, and unstructured three-dimensional (3D) model is used to resolve supertidal dispersion via scalar transport at a well-mixed tidal river junction. Mass transport simulated in the junction is compared against predictions using a simple node-channel model to quantify the effects of small-scale, 3D intrajunction flow features on mixing and dispersion. The effects of three-dimensionality are demonstrated by quantifying the difference between two-dimensional (2D) and 3D model results.more » An intermediate 3D model that does not resolve the secondary circulation or the recirculating flow at the junction is also compared to the 3D model to quantify the relative sensitivity of mixing on intrajunction flow features. Resolution of complex flow features simulated by the full 3D model is not always necessary because mixing is primarily governed by bulk flow splitting due to the confluence–diffluence cycle. Finally, results in 3D are comparable to the 2D case for many flow pathways simulated, suggesting that 2D modeling may be reasonable for nonstratified and predominantly hydrostatic flows through relatively straight junctions, but not necessarily for the full junction network.« less

  8. Modeling Intrajunction Dispersion at a Well-Mixed Tidal River Junction

    SciTech Connect

    Wolfram, Phillip J.; Fringer, Oliver B.; Monsen, Nancy E.; Gleichauf, Karla T.; Fong, Derek A.; Monismith, Stephen G.

    2016-08-01

    In this paper, the relative importance of small-scale, intrajunction flow features such as shear layers, separation zones, and secondary flows on dispersion in a well-mixed tidal river junction is explored. A fully nonlinear, nonhydrostatic, and unstructured three-dimensional (3D) model is used to resolve supertidal dispersion via scalar transport at a well-mixed tidal river junction. Mass transport simulated in the junction is compared against predictions using a simple node-channel model to quantify the effects of small-scale, 3D intrajunction flow features on mixing and dispersion. The effects of three-dimensionality are demonstrated by quantifying the difference between two-dimensional (2D) and 3D model results. An intermediate 3D model that does not resolve the secondary circulation or the recirculating flow at the junction is also compared to the 3D model to quantify the relative sensitivity of mixing on intrajunction flow features. Resolution of complex flow features simulated by the full 3D model is not always necessary because mixing is primarily governed by bulk flow splitting due to the confluence–diffluence cycle. Finally, results in 3D are comparable to the 2D case for many flow pathways simulated, suggesting that 2D modeling may be reasonable for nonstratified and predominantly hydrostatic flows through relatively straight junctions, but not necessarily for the full junction network.

  9. Geodynamo Modeling of Core-Mantle Interactions

    NASA Technical Reports Server (NTRS)

    Kuang, Wei-Jia; Chao, Benjamin F.; Smith, David E. (Technical Monitor)

    2001-01-01

    Angular momentum exchange between the Earth's mantle and core influences the Earth's rotation on time scales of decades and longer, in particular in the length of day (LOD) which have been measured with progressively increasing accuracy for the last two centuries. There are four possible coupling mechanisms for transferring the axial angular momentum across the core-mantle boundary (CMB): viscous, magnetic, topography, and gravitational torques. Here we use our scalable, modularized, fully dynamic geodynamo model for the core to assess the importance of these torques. This numerical model, as an extension of the Kuang-Bloxham model that has successfully simulated the generation of the Earth's magnetic field, is used to obtain numerical results in various physical conditions in terms of specific parameterization consistent with the dynamical processes in the fluid outer core. The results show that depending on the electrical conductivity of the lower mantle and the amplitude of the boundary topography at CMB, both magnetic and topographic couplings can contribute significantly to the angular momentum exchange. This implies that the core-mantle interactions are far more complex than has been assumed and that there is unlikely a single dominant coupling mechanism for the observed decadal LOD variation.

  10. Mucin-type core 1 glycans regulate the localization of neuromuscular junctions and establishment of muscle cell architecture in Drosophila.

    PubMed

    Itoh, Kazuyoshi; Akimoto, Yoshihiro; Fuwa, Takashi J; Sato, Chikara; Komatsu, Akira; Nishihara, Shoko

    2016-04-01

    T antigen (Galβ1-3GalNAcα1-Ser/Thr), a core 1 mucin-type O-glycan structure, is synthesized by Drosophila core 1 β1,3-galactosyltrasferase 1 (dC1GalT1) and is expressed in various tissues. We previously reported that dC1GalT1 synthesizes T antigen expressed in hemocytes, lymph glands, and the central nervous system (CNS) and that dC1GalT1 mutant larvae display decreased numbers of circulating hemocytes and excessive differentiation of hematopoietic stem cells in lymph glands. dC1GalT1 mutant larvae have also been shown to have morphological defects in the CNS. However, the functions of T antigen in other tissues remain largely unknown. In this study, we found that glycans contributed to the localization of neuromuscular junction (NMJ) boutons. In dC1GalT1 mutant larvae, NMJs were ectopically formed in the cleft between muscles 6 and 7 and connected with these two muscles. dC1GalT1 synthesized T antigen, which was expressed at NMJs. In addition, we determined the function of mucin-type O-glycans in muscle cells. In dC1GalT1 mutant muscles, myofibers and basement membranes were disorganized. Moreover, ultrastructural defects in NMJs and accumulation of large endosome-like structures within both NMJ boutons and muscle cells were observed in dC1GalT1 mutants. Taken together, these results demonstrated that mucin-type O-glycans synthesized by dC1GalT1 were involved in the localization of NMJ boutons, synaptogenesis of NMJs, establishment of muscle cell architecture, and endocytosis.

  11. Micromagnetic modeling of critical current oscillations in magnetic Josephson junctions

    NASA Astrophysics Data System (ADS)

    Golovchanskiy, I. A.; Bol'ginov, V. V.; Stolyarov, V. S.; Abramov, N. N.; Ben Hamida, A.; Emelyanova, O. V.; Stolyarov, B. S.; Kupriyanov, M. Yu.; Golubov, A. A.; Ryazanov, V. V.

    2016-12-01

    In this work we propose and explore an effective numerical approach for investigation of critical current dependence on applied magnetic field for magnetic Josephson junctions with in-plane magnetization orientation. This approach is based on micromagnetic simulation of the magnetization reversal process in the ferromagnetic layer with introduced internal magnetic stiffness and subsequent reconstruction of the critical current value using total flux or reconstructed actual phase difference distribution. The approach is flexible and shows good agreement with experimental data obtained on Josephson junctions with ferromagnetic barriers. Based on this approach we have obtained a critical current dependence on applied magnetic field for rectangular magnetic Josephson junctions with high size aspect ratio. We have shown that the rectangular magnetic Josephson junctions can be considered for application as an effective Josephson magnetic memory element with the value of critical current defined by the orientation of magnetic moment at zero magnetic field. An impact of shape magnetic anisotropy on critical current is revealed and discussed. Finally, we have considered a curling magnetic state in the ferromagnetic layer and demonstrated its impact on critical current.

  12. 2D modeling of silicon based thin film dual and triple junction solar cells

    NASA Astrophysics Data System (ADS)

    Xiao, Y. G.; Uehara, K.; Lestrade, M.; Li, Z. Q.; Li, Z. M. S.

    2009-08-01

    Based on Crosslight APSYS, thin film amorphous Si (a-Si:H)/microcrystalline (μc-Si) dual-junction (DJ) and a- Si:H/amorphous SiGe:H (a-SiGe:H)/μc-Si triple-junction (TJ) solar cells are modeled. Basic physical quantities like band diagrams, optical absorption and generation are obtained. Quantum efficiency and I-V curves for individual junctions are presented for current matching analyses. The whole DJ and TJ cell I-V curves are also presented and the results are discussed with respect to the top surface ZnO:Al TCO layer affinity. The interface texture effect is modeled with FDTD (finite difference time domain) module and results for top junction are presented. The modeling results give possible clues to achieve high efficiency for DJ and TJ thin film solar cells.

  13. Model For Dense Molecular Cloud Cores

    NASA Technical Reports Server (NTRS)

    Doty, Steven D.; Neufeld, David A.

    1997-01-01

    We present a detailed theoretical model for the thermal balance, chemistry, and radiative transfer within quiescent dense molecular cloud cores that contain a central protostar. In the interior of such cores, we expect the dust and gas temperatures to be well coupled, while in the outer regions CO rotational emissions dominate the gas cooling and the predicted gas temperature lies significantly below the dust temperature. Large spatial variations in the gas temperature are expected to affect the gas phase chemistry dramatically; in particular, the predicted water abundance varies by more than a factor of 1000 within cloud cores that contain luminous protostars. Based upon our predictions for the thermal and chemical structure of cloud cores, we have constructed self-consistent radiative transfer models to compute the line strengths and line profiles for transitions of (12)CO, (13)CO, C(18)O, ortho- and para-H2(16)O, ortho- and para-H2(18)O, and O I. We carried out a general parameter study to determine the dependence of the model predictions upon the parameters assumed for the source. We expect many of the far-infrared and submillimeter rotational transitions of water to be detectable either in emission or absorption with the use of the Infrared Space Observatory (ISO) and the Submillimeter Wave Astronomy Satellite. Quiescent, radiatively heated hot cores are expected to show low-gain maser emission in the 183 GHz 3(sub 13)-2(sub 20) water line, such as has been observed toward several hot core regions using ground-based telescopes. We predict the (3)P(sub l) - (3)P(sub 2) fine-structure transition of atomic oxygen near 63 micron to be in strong absorption against the continuum for many sources. Our model can also account successfully for recent ISO observations of absorption in rovibrational transitions of water toward the source AFGL 2591.

  14. Enhanced Core Noise Modeling for Turbofan Engines

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J.

    2011-01-01

    This report describes work performed by MTC Technologies (MTCT) for NASA Glenn Research Center (GRC) under Contract NAS3-00178, Task Order No. 15. MTCT previously developed a first-generation empirical model that correlates the core/combustion noise of four GE engines, the CF6, CF34, CFM56, and GE90 for General Electric (GE) under Contract No. 200-1X-14W53048, in support of GRC Contract NAS3-01135. MTCT has demonstrated in earlier noise modeling efforts that the improvement of predictive modeling is greatly enhanced by an iterative approach, so in support of NASA's Quiet Aircraft Technology Project, GRC sponsored this effort to improve the model. Since the noise data available for correlation are total engine noise spectra, it is total engine noise that must be predicted. Since the scope of this effort was not sufficient to explore fan and turbine noise, the most meaningful comparisons must be restricted to frequencies below the blade passage frequency. Below the blade passage frequency and at relatively high power settings jet noise is expected to be the dominant source, and comparisons are shown that demonstrate the accuracy of the jet noise model recently developed by MTCT for NASA under Contract NAS3-00178, Task Order No. 10. At lower power settings the core noise became most apparent, and these data corrected for the contribution of jet noise were then used to establish the characteristics of core noise. There is clearly more than one spectral range where core noise is evident, so the spectral approach developed by von Glahn and Krejsa in 1982 wherein four spectral regions overlap, was used in the GE effort. Further analysis indicates that the two higher frequency components, which are often somewhat masked by turbomachinery noise, can be treated as one component, and it is on that basis that the current model is formulated. The frequency scaling relationships are improved and are now based on combustor and core nozzle geometries. In conjunction with the Task

  15. Formation and stability of ridge-ridge-ridge triple junctions in rheologically realistic lithosphere model

    NASA Astrophysics Data System (ADS)

    Gerya, Taras; Burov, Evgueni

    2015-04-01

    -branch junction formation and evolution by using high-resolution 3D numerical mechanical experiments that take into account realistic thermo-rheological structure and rheology of the lithosphere. We find that two major types of quadruple and triple junctions are formed under bi-directional or multidirectional far-field stress field: (i) plate rifting junctions are formed by the initial plate fragmentation and can be subsequently re-arranged into (ii) oceanic spreading junctions controlled by the new oceanic crust accretion. In particular, we document initial formation and destabilization of quadruple R-R-R-R junctions as initial plate rifting structures under bi-directional extension. In most cases, quadruple plate rifting junctions rapidly (typically within 1-2 Myr) evolve towards formation of two diverging triple oceanic spreading junctions connected by a linear spreading center lengthening with time. This configuration remains stable over long time scales. However, under certain conditions, quadruple junctions may also remain relatively stable. Asymmetric stretching results in various configurations, for example formation of "T-junctions" with trans-extensional components and combination of fast and slow spreading ridges. Combined with plume impingement, this scenario evolves in realistic patterns closely resembling observed plate dynamics. In particular, opening of the Red Sea and of the Afar rift system find a logical explanation within a single model. Numerical experiments also suggest that several existing oceanic spreading junctions form as the result of plate motions rearrangements after which only one of two plates spreading along the ridge become subjected to bi-directional spreading.

  16. Comparative analysis of system identification techniques for nonlinear modeling of the neuron-microelectrode junction.

    PubMed

    Khan, Saad Ahmad; Thakore, Vaibhav; Behal, Aman; Bölöni, Ladislau; Hickman, James J

    2013-03-01

    Applications of non-invasive neuroelectronic interfacing in the fields of whole-cell biosensing, biological computation and neural prosthetic devices depend critically on an efficient decoding and processing of information retrieved from a neuron-electrode junction. This necessitates development of mathematical models of the neuron-electrode interface that realistically represent the extracellular signals recorded at the neuroelectronic junction without being computationally expensive. Extracellular signals recorded using planar microelectrode or field effect transistor arrays have, until now, primarily been represented using linear equivalent circuit models that fail to reproduce the correct amplitude and shape of the signals recorded at the neuron-microelectrode interface. In this paper, to explore viable alternatives for a computationally inexpensive and efficient modeling of the neuron-electrode junction, input-output data from the neuron-electrode junction is modeled using a parametric Wiener model and a Nonlinear Auto-Regressive network with eXogenous input trained using a dynamic Neural Network model (NARX-NN model). Results corresponding to a validation dataset from these models are then employed to compare and contrast the computational complexity and efficiency of the aforementioned modeling techniques with the Lee-Schetzen technique of cross-correlation for estimating a nonlinear dynamic model of the neuroelectronic junction.

  17. Comparative analysis of system identification techniques for nonlinear modeling of the neuron-microelectrode junction

    PubMed Central

    Khan, Saad Ahmad; Thakore, Vaibhav; Behal, Aman; Bölöni, Ladislau; Hickman, James J.

    2016-01-01

    Applications of non-invasive neuroelectronic interfacing in the fields of whole-cell biosensing, biological computation and neural prosthetic devices depend critically on an efficient decoding and processing of information retrieved from a neuron-electrode junction. This necessitates development of mathematical models of the neuron-electrode interface that realistically represent the extracellular signals recorded at the neuroelectronic junction without being computationally expensive. Extracellular signals recorded using planar microelectrode or field effect transistor arrays have, until now, primarily been represented using linear equivalent circuit models that fail to reproduce the correct amplitude and shape of the signals recorded at the neuron-microelectrode interface. In this paper, to explore viable alternatives for a computationally inexpensive and efficient modeling of the neuron-electrode junction, input-output data from the neuron-electrode junction is modeled using a parametric Wiener model and a Nonlinear Auto-Regressive network with eXogenous input trained using a dynamic Neural Network model (NARX-NN model). Results corresponding to a validation dataset from these models are then employed to compare and contrast the computational complexity and efficiency of the aforementioned modeling techniques with the Lee-Schetzen technique of cross-correlation for estimating a nonlinear dynamic model of the neuroelectronic junction.

  18. Gibbons-Hawking boundary terms and junction conditions for higher-order brane gravity models

    SciTech Connect

    Balcerzak, Adam; Dabrowski, Mariusz P. E-mail: mpdabfz@wmf.univ.szczecin.pl

    2009-01-15

    We derive the most general junction conditions for the fourth-order brane gravity constructed of arbitrary functions of curvature invariants. We reduce these fourth-order theories to second order theories at the expense of introducing new scalar and tensor fields - the scalaron and the tensoron. In order to obtain junction conditions we apply the method of generalized Gibbons-Hawking boundary terms which are appended to the appropriate actions. After assuming the continuity of the scalaron and the tensoron on the brane, we recover junction conditions for such general brane universe models previously obtained by different methods. The derived junction conditions can serve studying the cosmological implications of the higher-order brane gravity models.

  19. Dissipation in a simple model of a topological Josephson junction.

    PubMed

    Matthews, Paul; Ribeiro, Pedro; García-García, Antonio M

    2014-06-20

    The topological features of low-dimensional superconductors have created a lot of excitement recently because of their broad range of applications in quantum information and their potential to reveal novel phases of quantum matter. A potential problem for practical applications is the presence of phase slips that break phase coherence. Dissipation in nontopological superconductors suppresses phase slips and can restore long-range order. Here, we investigate the role of dissipation in a topological Josephson junction. We show that the combined effects of topology and dissipation keep phase and antiphase slips strongly correlated so that the device is superconducting even under conditions where a nontopological device would be resistive. The resistive transition occurs at a critical value of the dissipation that is 4 times smaller than that expected for a conventional Josephson junction. We propose that this difference could be employed as a robust experimental signature of topological superconductivity.

  20. Osmotic forces and gap junctions in spreading depression: a computational model

    NASA Technical Reports Server (NTRS)

    Shapiro, B. E.

    2001-01-01

    In a computational model of spreading depression (SD), ionic movement through a neuronal syncytium of cells connected by gap junctions is described electrodiffusively. Simulations predict that SD will not occur unless cells are allowed to expand in response to osmotic pressure gradients and K+ is allowed to move through gap junctions. SD waves of [K+]out approximately 25 to approximately 60 mM moving at approximately 2 to approximately 18 mm/min are predicted over the range of parametric values reported in gray matter, with extracellular space decreasing up to approximately 50%. Predicted waveform shape is qualitatively similar to laboratory reports. The delayed-rectifier, NMDA, BK, and Na+ currents are predicted to facilitate SD, while SK and A-type K+ currents and glial activity impede SD. These predictions are consonant with recent findings that gap junction poisons block SD and support the theories that cytosolic diffusion via gap junctions and osmotic forces are important mechanisms underlying SD.

  1. Modeling single molecule junction mechanics as a probe of interface bonding

    NASA Astrophysics Data System (ADS)

    Hybertsen, Mark S.

    2017-03-01

    Using the atomic force microscope based break junction approach, applicable to metal point contacts and single molecule junctions, measurements can be repeated thousands of times resulting in rich data sets characterizing the properties of an ensemble of nanoscale junction structures. This paper focuses on the relationship between the measured force extension characteristics including bond rupture and the properties of the interface bonds in the junction. A set of exemplary model junction structures has been analyzed using density functional theory based calculations to simulate the adiabatic potential surface that governs the junction elongation. The junction structures include representative molecules that bond to the electrodes through amine, methylsulfide, and pyridine links. The force extension characteristics are shown to be most effectively analyzed in a scaled form with maximum sustainable force and the distance between the force zero and force maximum as scale factors. Widely used, two parameter models for chemical bond potential energy versus bond length are found to be nearly identical in scaled form. Furthermore, they fit well to the present calculations of N-Au and S-Au donor-acceptor bonds, provided no other degrees of freedom are allowed to relax. Examination of the reduced problem of a single interface, but including relaxation of atoms proximal to the interface bond, shows that a single-bond potential form renormalized by an effective harmonic potential in series fits well to the calculated results. This allows relatively accurate extraction of the interface bond energy. Analysis of full junction models shows cooperative effects that go beyond the mechanical series inclusion of the second bond in the junction, the spectator bond that does not rupture. Calculations for a series of diaminoalkanes as a function of molecule length indicate that the most important cooperative effect is due to the interactions between the dipoles induced by the donor

  2. Modeling single molecule junction mechanics as a probe of interface bonding

    DOE PAGES

    Hybertsen, Mark S.

    2017-03-07

    Using the atomic force microscope based break junction approach, applicable to metal point contacts and single molecule junctions, measurements can be repeated thousands of times resulting in rich data sets characterizing the properties of an ensemble of nanoscale junction structures. This paper focuses on the relationship between the measured force extension characteristics including bond rupture and the properties of the interface bonds in the junction. We analyzed a set of exemplary model junction structures using density functional theory based calculations to simulate the adiabatic potential surface that governs the junction elongation. The junction structures include representative molecules that bond tomore » the electrodes through amine, methylsulfide, and pyridine links. The force extension characteristics are shown to be most effectively analyzed in a scaled form with maximum sustainable force and the distance between the force zero and force maximum as scale factors. Widely used, two parameter models for chemical bond potential energy versus bond length are found to be nearly identical in scaled form. Furthermore, they fit well to the present calculations of N–Au and S–Au donor-acceptor bonds, provided no other degrees of freedom are allowed to relax. Examination of the reduced problem of a single interface, but including relaxation of atoms proximal to the interface bond, shows that a single-bond potential form renormalized by an effective harmonic potential in series fits well to the calculated results. This, then, allows relatively accurate extraction of the interface bond energy. Analysis of full junction models shows cooperative effects that go beyond the mechanical series inclusion of the second bond in the junction, the spectator bond that does not rupture. Calculations for a series of diaminoalkanes as a function of molecule length indicate that the most important cooperative effect is due to the interactions between the dipoles induced by

  3. Hepatic immunohistochemical localization of the tight junction protein ZO-1 in rat models of cholestasis.

    PubMed Central

    Anderson, J. M.; Glade, J. L.; Stevenson, B. R.; Boyer, J. L.; Mooseker, M. S.

    1989-01-01

    Structural alterations in hepatocyte tight junctions accompanying cholestasis were investigated using immunolocalization of ZO-1, the first known protein component of the tight junction. Disruption in the paracellular barrier function of the tight junction has been proposed to allow reflux of bile into the blood. Cholestasis was induced in 210 to 235 g male Sprague-Dawley rats either by five consecutive daily subcutaneous injections of 17-alpha-ethinyl estradiol (0.5 mg/kg/d in propylene glycol) or ligation of the common bile duct for 72 hours. The structural organization of the tight junction was assessed in each model by indirect immunofluorescent and immunoperoxidase staining for ZO-1 on frozen sections of liver and compared with controls. In control, sham-operated, and estradiol-injected animals, ZO-1 localizes in a uniform continuous manner along the margins of the canaliculi. In contrast, bile duct ligation results in the appearance of numerous discontinuities in ZO-1 staining accompanied by dilation or collapse of the lumenal space. Tissue content of the ZO-1 protein, as determined by quantitative immunoblotting, was unaffected in either cholestatic model compared with controls. These findings indicate that the molecular organization of the tight junction can be assessed from immunostaining patterns of ZO-1 in frozen sections of cholestatic livers. Under these experimental conditions, the organization of the tight junction at the level of the ZO-1 protein is altered by bile duct obstruction but not by ethinyl estradiol. Images Figure 1 Figure 2 PMID:2719075

  4. Modeling and theoretical efficiency of a silicon nanowire based thermoelectric junction with area enhancement

    SciTech Connect

    Seong, M; Sadhu, JS; Ma, J; Ghossoub, MG; Sinha, S

    2012-06-15

    Recent experimental work suggests that individual silicon nanowires with rough surfaces possess a thermoelectric figure of merit as high as 0.6 near room temperature. This paper addresses the possibility of using an array of such nanowires in a thermoelectric junction for generation. Employing a model of frequency dependent phonon boundary scattering, we estimate the effective thermal conductivity of the array and investigate heat flow through the junction. We show that charge transport is largely unaffected by the roughness scales considered. Enhancing the area for heat exchange at an individual 200 mu m x 200 mu m p-n junction yields significant temperature differences across the junction leading to power >0.6 mW and efficiency >1.5% for a junction with effective thermal conductivity <5 W/mK, when the source and sink are at 450 K and 300 K, respectively. We show that relatively short nanowires of similar to 50 mu m length are sufficient for obtaining peak power and reasonable efficiency. This substantially reduces the challenge of engineering low resistivity electrical contacts that critically affect power and efficiency. This paper provides insight into how fundamental transport in relation to bulk heat transfer and charge transport, affects the performance of thermoelectric junctions based on nanostructured materials. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4728189

  5. Predictive model for motorcycle accidents at three-legged priority junctions.

    PubMed

    Harnen, S; Umar, R S Radin; Wong, S V; Wan Hashim, W I

    2003-12-01

    In conjunction with a nationwide motorcycle safety program, the provision of exclusive motorcycle lanes has been implemented to overcome link-motorcycle accidents along trunk roads in Malaysia. However, not much work has been done to address accidents at junctions involving motorcycles. This article presents the development of predictive model for motorcycle accidents at three-legged major-minor priority junctions of urban roads in Malaysia. The generalized linear modeling technique was used to develop the model. The final model reveals that motorcycle accidents are proportional to the power of traffic flow. An increase in nonmotorcycle and motorcycle flows entering the junctions is associated with an increase in motorcycle accidents. Nonmotorcycle flow on major roads had the highest effect on the probability of motorcycle accidents. Approach speed, lane width, number of lanes, shoulder width, and land use were found to be significant in explaining motorcycle accidents at the three-legged major-minor priority junctions. These findings should enable traffic engineers to specifically design appropriate junction treatment criteria for nonexclusive motorcycle lane facilities.

  6. An AlGaN Core-Shell Tunnel Junction Nanowire Light-Emitting Diode Operating in the Ultraviolet-C Band.

    PubMed

    Sadaf, S M; Zhao, S; Wu, Y; Ra, Y-H; Liu, X; Vanka, S; Mi, Z

    2017-02-08

    To date, semiconductor light emitting diodes (LEDs) operating in the deep ultraviolet (UV) spectral range exhibit very low efficiency due to the presence of large densities of defects and extremely inefficient p-type conduction of conventional AlGaN quantum well heterostructures. We have demonstrated that such critical issues can be potentially addressed by using nearly defect-free AlGaN tunnel junction core-shell nanowire heterostructures. The core-shell nanowire arrays exhibit high photoluminescence efficiency (∼80%) in the UV-C band at room temperature. With the incorporation of an epitaxial Al tunnel junction, the p-(Al)GaN contact-free nanowire deep UV LEDs showed nearly one order of magnitude reduction in the device resistance, compared to the conventional nanowire p-i-n device. The unpackaged Al tunnel junction deep UV LEDs exhibit an output power >8 mW and a peak external quantum efficiency ∼0.4%, which are nearly one to two orders of magnitude higher than previously reported AlGaN nanowire devices. Detailed studies further suggest that the maximum achievable efficiency is limited by electron overflow and poor light extraction efficiency due to the TM polarized emission.

  7. Three-dimensional models: an emerging investigational revolution for craniovertebral junction surgery.

    PubMed

    Goel, Atul; Jankharia, Bhavin; Shah, Abhidha; Sathe, Prashant

    2016-12-01

    Complex craniovertebral junctional anomalies can be daunting to treat surgically, and preoperative information regarding the osseous abnormalities, course of the vertebral arteries, size of the pedicles, and location of the transverse foramina is invaluable to surgeons operating on these challenging cases. The authors present their experience with the emerging technology of 3D model acquisition for surgery in 11 cases of complex craniovertebral junction region anomalies. For each case, a 3D printed model was made from thin CT scans using a 64-slice CT scanner. The inclination of the joints, the presence of false articulations, the size of the pedicles, and the course of the vertebral arteries were studied preoperatively on the 3D models. The sizes of the plates and screws to be used and the angle of insertion of the screws were calculated based on the data from the models. The model was scaled to actual size and was kept beside the operating surgeon in its anatomical position during surgery. The potential uses of the models and their advantages over conventional radiological investigations are discussed. The authors conclude that 3D models can be an invaluable aid during surgery for complex craniovertebral junction anomalies. The information available from a real life-size model supersedes the information available from 3D CT reconstructions and can also be superior to virtual simulation. The models are both cost effective and easy to build and the authors suggest that they may form the basis of investigations in the near future for craniovertebral junction surgery.

  8. From cusps to cores: a stochastic model

    NASA Astrophysics Data System (ADS)

    El-Zant, Amr A.; Freundlich, Jonathan; Combes, Françoise

    2016-09-01

    The cold dark matter model of structure formation faces apparent problems on galactic scales. Several threads point to excessive halo concentration, including central densities that rise too steeply with decreasing radius. Yet, random fluctuations in the gaseous component can `heat' the centres of haloes, decreasing their densities. We present a theoretical model deriving this effect from first principles: stochastic variations in the gas density are converted into potential fluctuations that act on the dark matter; the associated force correlation function is calculated and the corresponding stochastic equation solved. Assuming a power-law spectrum of fluctuations with maximal and minimal cutoff scales, we derive the velocity dispersion imparted to the halo particles and the relevant relaxation time. We further perform numerical simulations, with fluctuations realized as a Gaussian random field, which confirm the formation of a core within a time-scale comparable to that derived analytically. Non-radial collective modes enhance the energy transport process that erases the cusp, though the parametrizations of the analytical model persist. In our model, the dominant contribution to the dynamical coupling driving the cusp-core transformation comes from the largest scale fluctuations. Yet, the efficiency of the transformation is independent of the value of the largest scale and depends weakly (linearly) on the power-law exponent; it effectively depends on two parameters: the gas mass fraction and the normalization of the power spectrum. This suggests that cusp-core transformations observed in hydrodynamic simulations of galaxy formation may be understood and parametrized in simple terms, the physical and numerical complexities of the various implementations notwithstanding.

  9. Mathematical modeling of intrinsic Josephson junctions with capacitive and inductive couplings

    NASA Astrophysics Data System (ADS)

    Rahmonov, I. R.; Shukrinov, Yu M.; Zemlyanaya, E. V.; Sarhadov, I.; Andreeva, O.

    2012-11-01

    We investigate the current voltage characteristics (CVC) of intrinsic Josephson junctions (IJJ) with two types of couplings between junctions: capacitive and inductive. The IJJ model is described by a system of coupled sine-Gordon equations which is solved numerically by the 4th order Runge-Kutta method. The method of numerical simulation and numerical results are presented. The magnetic field distribution is calculated as the function of coordinate and time at different values of the bias current. The influence of model parameters on the CVC is studied. The behavior of the IJJ in dependence on coupling parameters is discussed.

  10. Strongly-coupled Josephson junction array for simulation of frustrated one-dimensional spin models

    NASA Astrophysics Data System (ADS)

    Zhou, Zhengwei; Du, Lianghui; Zhou, Xingxiang; Han, Yongjian; Guo, Guangcan

    2013-03-01

    We study the capacitance-coupled Josephson-junction array beyond the small-coupling limit. We find that, when the scale of the system is large, its Hamiltonian can be obtained without the small-coupling approximation and the system can be used to simulate strongly frustrated one-dimensional Ising spin problems. To engineer the system Hamiltonian for an ideal theoretical model, we apply a dynamical-decoupling technique to eliminate undesirable couplings in the system. Using a six-site junction array as an example, we numerically evaluate the system to show that it exhibits important characteristics of the frustrated spin model.

  11. Predictive model for the size of bubbles and droplets created in microfluidic T-junctions.

    PubMed

    van Steijn, Volkert; Kleijn, Chris R; Kreutzer, Michiel T

    2010-10-07

    We present a closed-form expression that allows the reader to predict the size of bubbles and droplets created in T-junctions without fitting. Despite the wide use of microfluidic devices to create bubbles and droplets, a physically sound expression for the size of bubbles and droplets, key in many applications, did not yet exist. The theoretical foundation of our expression comprises three main ingredients: continuity, geometrics and recently gained understanding of the mechanism which leads to pinch-off. Our simple theoretical model explains why the size of bubbles and droplets strongly depends on the shape of a T-junction, and teaches how the shape can be tuned to obtain the desired size. We successfully validated our model experimentally by analyzing the formation of gas bubbles, as well as liquid droplets, in T-junctions with a wide variety of shapes under conditions typical to multiphase microfluidics.

  12. Modified pressure loss model for T-junctions of engine exhaust manifold

    NASA Astrophysics Data System (ADS)

    Wang, Wenhui; Lu, Xiaolu; Cui, Yi; Deng, Kangyao

    2014-11-01

    The T-junction model of engine exhaust manifolds significantly influences the simulation precision of the pressure wave and mass flow rate in the intake and exhaust manifolds of diesel engines. Current studies have focused on constant pressure models, constant static pressure models and pressure loss models. However, low model precision is a common disadvantage when simulating engine exhaust manifolds, particularly for turbocharged systems. To study the performance of junction flow, a cold wind tunnel experiment with high velocities at the junction of a diesel exhaust manifold is performed, and the variation in the pressure loss in the T-junction under different flow conditions is obtained. Despite the trend of the calculated total pressure loss coefficient, which is obtained by using the original pressure loss model and is the same as that obtained from the experimental results, large differences exist between the calculated and experimental values. Furthermore, the deviation becomes larger as the flow velocity increases. By improving the Vazsonyi formula considering the flow velocity and introducing the distribution function, a modified pressure loss model is established, which is suitable for a higher velocity range. Then, the new model is adopted to solve one-dimensional, unsteady flow in a D6114 turbocharged diesel engine. The calculated values are compared with the measured data, and the result shows that the simulation accuracy of the pressure wave before the turbine is improved by 4.3% with the modified pressure loss model because gas compressibility is considered when the flow velocities are high. The research results provide valuable information for further junction flow research, particularly the correction of the boundary condition in one-dimensional simulation models.

  13. Theoretical values of various parameters in the Gummel-Poon model of a bipolar junction transistor

    NASA Technical Reports Server (NTRS)

    Benumof, R.; Zoutendyk, J.

    1986-01-01

    Various parameters in the Gummel-Poon model of a bipolar junction transistor are expressed in terms of the basic structure of a transistor. A consistent theoretical approach is used which facilitates an understanding of the foundations and limitations of the derived formulas. The results enable one to predict how changes in the geometry and composition of a transistor would affect performance.

  14. Vector spin modeling for magnetic tunnel junctions with voltage dependent effects

    SciTech Connect

    Manipatruni, Sasikanth Nikonov, Dmitri E.; Young, Ian A.

    2014-05-07

    Integration and co-design of CMOS and spin transfer devices requires accurate vector spin conduction modeling of magnetic tunnel junction (MTJ) devices. A physically realistic model of the MTJ should comprehend the spin torque dynamics of nanomagnet interacting with an injected vector spin current and the voltage dependent spin torque. Vector spin modeling allows for calculation of 3 component spin currents and potentials along with the charge currents/potentials in non-collinear magnetic systems. Here, we show 4-component vector spin conduction modeling of magnetic tunnel junction devices coupled with spin transfer torque in the nanomagnet. Nanomagnet dynamics, voltage dependent spin transport, and thermal noise are comprehended in a self-consistent fashion. We show comparison of the model with experimental magnetoresistance (MR) of MTJs and voltage degradation of MR with voltage. Proposed model enables MTJ circuit design that comprehends voltage dependent spin torque effects, switching error rates, spin degradation, and back hopping effects.

  15. No-Core Shell Model and Reactions

    SciTech Connect

    Navratil, P; Ormand, W E; Caurier, E; Bertulani, C

    2005-04-29

    There has been a significant progress in ab initio approaches to the structure of light nuclei. Starting from realistic two- and three-nucleon interactions the ab initio no-core shell model (NCSM) can predict low-lying levels in p-shell nuclei. It is a challenging task to extend ab initio methods to describe nuclear reactions. In this contribution, we present a brief overview of the NCSM with examples of recent applications as well as the first steps taken toward nuclear reaction applications. In particular, we discuss cross section calculations of p+{sup 6}Li and {sup 6}He+p scattering as well as a calculation of the astrophysically important {sup 7}Be(p, {gamma}){sup 8}B S-factor.

  16. Models of Isotopic Fractionation in Prestellar Cores

    NASA Technical Reports Server (NTRS)

    Charnley, Steven B.

    2012-01-01

    Anomalously fractionated isotopic material is found in many primitive Solar System objects, such as meteorites and comets. It is thought, in some cases, to trace interstellar matter that was incorporated into the Solar Nebula without undergoing significant processing. We will present the results of models of the nitrogen, oxygen, and carbon fractionation chemistry in dense molecular clouds, particularly in cores where substantial freeze-out of molecules on to dust has occurred. The range of fractionation ratios expected in different interstellar molecules will be discussed and compared to the ratios measured in molecular clouds, comets and meteoritic material. These studies make several predictions that can be tested in the near future by high-resolution molecular line observations with ALMA.

  17. No-Core Shell Model and Reactions

    SciTech Connect

    Navratil, Petr; Ormand, W. Erich; Caurier, Etienne; Bertulani, Carlos

    2005-10-14

    There has been a significant progress in ab initio approaches to the structure of light nuclei. Starting from realistic two- and three-nucleon interactions the ab initio no-core shell model (NCSM) can predict low-lying levels in p-shell nuclei. It is a challenging task to extend ab initio methods to describe nuclear reactions. In this contribution, we present a brief overview of the NCSM with examples of recent applications as well as the first steps taken toward nuclear reaction applications. In particular, we discuss cross section calculations of p+6Li and 6He+p scattering as well as a calculation of the astrophysically important 7Be(p,{gamma})8B S-factor.

  18. Feynman's and Ohta's Models of a Josephson Junction

    ERIC Educational Resources Information Center

    De Luca, R.

    2012-01-01

    The Josephson equations are derived by means of the weakly coupled two-level quantum system model given by Feynman. Adopting a simplified version of Ohta's model, starting from Feynman's model, the strict voltage-frequency Josephson relation is derived. The contribution of Ohta's approach to the comprehension of the additional term given by the…

  19. Modeling the time-dependent transient radiation response of semiconductor junctions

    NASA Astrophysics Data System (ADS)

    Wunsch, T. F.; Axness, C. L.

    1992-12-01

    Analytical one-dimensional time-dependent photocurrent models are developed from new solutions to the ambipolar transport equation. The p-n junction model incorporates the effects of an electric field in the quasi-neutral region, finite diode length, and an arbitrary generation function g = f(x,t). It provides improved accuracy over the Wirth-Rogers and Enlow-Alexander models. An approximate photocurrent solution for p-n-n(+), n-p-p(+), and p-i-n diode junctions is developed considering high-injection effects. Comparison with experimental data shows that a single set of physical parameters is adequate to characterize the model with respect to dose rate, pulse width, and geometry.

  20. Multiscale modelling of nucleosome core particle aggregation

    NASA Astrophysics Data System (ADS)

    Lyubartsev, Alexander P.; Korolev, Nikolay; Fan, Yanping; Nordenskiöld, Lars

    2015-02-01

    The nucleosome core particle (NCP) is the basic building block of chromatin. Under the influence of multivalent cations, isolated mononucleosomes exhibit a rich phase behaviour forming various columnar phases with characteristic NCP-NCP stacking. NCP stacking is also a regular element of chromatin structure in vivo. Understanding the mechanism of nucleosome stacking and the conditions leading to self-assembly of NCPs is still incomplete. Due to the complexity of the system and the need to describe electrostatics properly by including the explicit mobile ions, novel modelling approaches based on coarse-grained (CG) methods at the multiscale level becomes a necessity. In this work we present a multiscale CG computer simulation approach to modelling interactions and self-assembly of solutions of NCPs induced by the presence of multivalent cations. Starting from continuum simulations including explicit three-valent cobalt(III)hexammine (CoHex3+) counterions and 20 NCPs, based on a previously developed advanced CG NCP model with one bead per amino acid and five beads per two DNA base pair unit (Fan et al 2013 PLoS One 8 e54228), we use the inverse Monte Carlo method to calculate effective interaction potentials for a ‘super-CG’ NCP model consisting of seven beads for each NCP. These interaction potentials are used in large-scale simulations of up to 5000 NCPs, modelling self-assembly induced by CoHex3+. The systems of ‘super-CG’ NCPs form a single large cluster of stacked NCPs without long-range order in agreement with experimental data for NCPs precipitated by the three-valent polyamine, spermidine3+.

  1. Multiple inner core wobbles in a simple Earth model with inviscid core

    NASA Astrophysics Data System (ADS)

    Rogister, Yves

    2010-01-01

    The inner core wobble (ICW) is the chandler wobble of the inner core. Its predicted period for the PREM model is about 7.5 years, based upon the resolution of the Liouville equations of conservation of angular momentum. Here, solving the local equation of conservation of linear momentum with a truncated chain that couples the toroidal and spheroidal displacement fields, the ICW is computed for a model made up of three homogeneous layers: an incompressible liquid outer core and rigid mantle and inner core. Contrary to the angular momentum approach, as implemented up to now, that provides a single ICW, the linear momentum approach shows that the dynamics of the neutrally stratified outer core may generate a family of ICWs with periods ranging from a few dozens to thousands of days. The mode with the largest wobble amplitude in the inner core has a period close to that obtained with the angular momentum approach.

  2. Physical model of the contact resistivity of metal-graphene junctions

    SciTech Connect

    Chaves, Ferney A. Jiménez, David; Cummings, Aron W.; Roche, Stephan

    2014-04-28

    While graphene-based technology shows great promise for a variety of electronic applications, including radio-frequency devices, the resistance of the metal-graphene contact is a technological bottleneck for the realization of viable graphene electronics. One of the most important factors in determining the resistance of a metal-graphene junction is the contact resistivity. Despite the large number of experimental works that exist in the literature measuring the contact resistivity, a simple model of it is still lacking. In this paper, we present a comprehensive physical model for the contact resistivity of these junctions, based on the Bardeen Transfer Hamiltonian method. This model unveils the role played by different electrical and physical parameters in determining the specific contact resistivity, such as the chemical potential of interaction, the work metal-graphene function difference, and the insulator thickness between the metal and graphene. In addition, our model reveals that the contact resistivity is strongly dependent on the bias voltage across the metal-graphene junction. This model is applicable to a wide variety of graphene-based electronic devices and thus is useful for understanding how to optimize the contact resistance in these systems.

  3. A technique for modelling p- n junction depletion capacitance of multiple doping regions in integrated circuits

    NASA Astrophysics Data System (ADS)

    Pinkham, Raymond; Anderson, Daniel F.

    1986-08-01

    The continuing advancements in integrated circuit technology have placed new burdons on the circuit design engineer, who must rely extensively upon computer simulation to correctly predict circuit behavior. One challenge is to develop better modelling techniques to more accurately deal with complex p- n junction structures often used in modern VLSI designs. This paper presents an easily implemented method for deriving parameters which accurately model the behavior of MOS VLSI structures containing complex p- n junction capacitance components. The methodology is applicable to both planar and laterally diffused junctions, whether formed by direct ion implantation or by diffusion from a finite or infinite source. The theories behind the equations used and results of the application of this new technique are discussed. A flow chart for a fitter program based on the new method is presented and described. The corresponding program written for the TI-59 scientific programmable calculator is available. Final model parameters are given and are shown to produce a numerical capacitance model which is accurate to within 2%.

  4. Theoretical Modeling of Josephson Junctions for Digital Electronics

    DTIC Science & Technology

    2005-11-29

    the Mott insulator-superfluid transition in the Bose Hubbard model", National Institute of Standards and Technology, Gaithersberg (November, 2002...Phys. Rev. B 69, 165105--1-5 (2004). [20] D. 0. Demchencko, A. V. Joura, and J. K. Freericks, Effect of particle-hole asymmetry on the Mott- Hubbard

  5. Spontaneous calcium signals induced by gap junctions in a network model of astrocytes

    NASA Astrophysics Data System (ADS)

    Kazantsev, V. B.

    2009-01-01

    The dynamics of a network model of astrocytes coupled by gap junctions is investigated. Calcium dynamics of the single cell is described by the biophysical model comprising the set of three nonlinear differential equations. Intercellular dynamics is provided by the diffusion of inositol 1,4,5-trisphosphate (IP3) through gap junctions between neighboring astrocytes. It is found that the diffusion induces the appearance of spontaneous activity patterns in the network. Stability of the network steady state is analyzed. It is proved that the increase of the diffusion coefficient above a certain critical value yields the generation of low-amplitude subthreshold oscillatory signals in a certain frequency range. It is shown that such spontaneous oscillations can facilitate calcium pulse generation and provide a certain time scale in astrocyte signaling.

  6. Secular variation and core-flow modelling with stable strafication at the top of the core

    NASA Astrophysics Data System (ADS)

    Holme, Richard; Buffett, Bruce

    2015-04-01

    Observed geomagnetic secular variation has been used for many years to provide an observational constraint on the dynamics of the core through the modelling of its surface flow. Recent results in both seismology and mineral physics provide strong evidence of a stably stratified layer at the top of the core, which has substantial implications for the calculation of such flows. It has been assumed for many years that the dynamic state at the core surface is close to tangentially geostrophic, and pure stable stratification also requires a flow to be toroidal. Combining these two conditions requires variations in flow that are completely zonal toroidal, which are known not to provide an adequate explanation of the observed secular variation. However, a stably stratified layer can support flow instabilities of a more general character. Buffett (2014) has recently provided a model in which zonal toroidal motions are associated with the excitation of a zonal poloidal instability. This model is able to explain the broad variation of the axial dipole over the past 100 years, and also to explain feature of geomagnetic jerks that cannot be explained by purely torsional motions. This model has inspired a new generation of core-flow models, with a substantial time-varying zonal poloidal component, something that is absent from most models of core surface flow. Here, we present these new models, and consider to what extent this flow structure can explain the details of secular variation. We also consider the implications for the connection between core-surface flow and length-of-day variation - a stably stratified layer has implications for the interpretation of core flow and the Earth's angular momentum budget. Finally, we consider the ability of core-surface flow models to probe the structure of the stably- stratified layer. Buffett (2014). Geomagnetic fluctuations reveal stable stratification at the top of the Earth's core, Nature 507, 484-487, doi:10.1038/nature13122

  7. The Bose-Hubbard model: from Josephson junction arrays to optical lattices

    NASA Astrophysics Data System (ADS)

    Bruder, C.; Fazio, R.; Schön, G.

    2005-09-01

    [Dedicated to Bernhard Mühlschlegel on the occasion ofhis 80th birthday]The Bose-Hubbard model is a paradigm for the study of strongly correlated bosonic systems. We review some of its properties with emphasis on the implications on quantum phase transitions of Josephson junction arrays and quantum dynamics of topological excitations as well as the properties of ultra-cold atoms in optical lattices.

  8. Modeling and Simulation of a Dual-Junction CIGS Solar Cell Using Silvaco ATLAS

    DTIC Science & Technology

    2012-12-01

    Indium Gallium Selenide (CIGS) photovoltaic cell is investigated in this thesis. Research into implementing a dual-junction solar cell ...is the use of thin-film solar cells (TFSC) such as the Copper Indium Gallium Selenide, Cu(In,Ga)Se2, (CIGS). Despite their lower cost of production...Silvaco ATLASTM model of a single CIGS cell was created by utilizing actual solar cell parameters (such as layer thicknesses, gallium ratio,

  9. Bacterial Fouling in a Model Core System

    PubMed Central

    Shaw, J. C.; Bramhill, B.; Wardlaw, N. C.; Costerton, J. W.

    1985-01-01

    We have used a sintered glass bead core to simulate the spaces and surfaces of reservoir rock in studies of the bacterial plugging phenomenon that affects waterflood oil recovery operations. The passage of pure or mixed natural populations of bacteria through this solid matrix was initially seen to promote the formation of adherent bacterial microcolonies on available surfaces. Bacteria within these microcolonies produced huge amounts of exopolysaccharides and coalesced to form a confluent plugging biofilm that eventually caused a >99% decrease in core permeability. Aerobic bacteria developed a plugging biofilm on the inlet face of the core, facultative anaerobes plugged throughout the core, and dead bacteria did not effectively plug the narrow (33-μm) spaces of this solid matrix because they neither adhered extensively to surfaces nor produced the extensive exopolysaccharides characteristic of living cells. The presence of particles in the water used in these experiments rapidly decreased the core permeability because they became trapped in the developing biofilm and accelerated the plugging of pore spaces. Once established, cells within the bacterial biofilm could be killed by treatment with a biocide (isothiazalone), but their essentially inert carbohydrate biofilm matrix persisted and continued to plug the pore spaces, whereas treatment with 5% sodium hypochlorite killed the bacteria, dissolved the exopolysaccharide biofilm matrix, and restored permeability to these plugged glass bead cores. Images PMID:16346760

  10. Mathematical modeling of gap junction coupling and electrical activity in human β-cells

    NASA Astrophysics Data System (ADS)

    Loppini, Alessandro; Braun, Matthias; Filippi, Simonetta; Gram Pedersen, Morten

    2015-12-01

    Coordinated insulin secretion is controlled by electrical coupling of pancreatic β-cells due to connexin-36 gap junctions. Gap junction coupling not only synchronizes the heterogeneous β-cell population, but can also modify the electrical behavior of the cells. These phenomena have been widely studied with mathematical models based on data from mouse β-cells. However, it is now known that human β-cell electrophysiology shows important differences to its rodent counterpart, and although human pancreatic islets express connexin-36 and show evidence of β-cell coupling, these aspects have been little investigated in human β-cells. Here we investigate theoretically, the gap junction coupling strength required for synchronizing electrical activity in a small cluster of cells simulated with a recent mathematical model of human β-cell electrophysiology. We find a lower limit for the coupling strength of approximately 20 pS (i.e., normalized to cell size, ˜2 pS pF-1) below which spiking electrical activity is asynchronous. To confront this theoretical lower bound with data, we use our model to estimate from an experimental patch clamp recording that the coupling strength is approximately 100-200 pS (10-20 pS pF-1), similar to previous estimates in mouse β-cells. We then investigate the role of gap junction coupling in synchronizing and modifying other forms of electrical activity in human β-cell clusters. We find that electrical coupling can prolong the period of rapid bursting electrical activity, and synchronize metabolically driven slow bursting, in particular when the metabolic oscillators are in phase. Our results show that realistic coupling conductances are sufficient to promote synchrony in small clusters of human β-cells as observed experimentally, and provide motivation for further detailed studies of electrical coupling in human pancreatic islets.

  11. Controlling the conductance of molecular junctions using proton transfer reactions: A theoretical model study

    NASA Astrophysics Data System (ADS)

    Hofmeister, Chriszandro; Coto, Pedro B.; Thoss, Michael

    2017-03-01

    The influence of an intramolecular proton transfer reaction on the conductance of a molecular junction is investigated employing a generic model, which includes the effects of the electric field of the gate and leads electrodes and the coupling to a dissipative environment. Using a quantum master equation approach it is shown that, depending on the localization of the proton, the junction exhibits a high or low current state, which can be controlled by external electric fields. Considering different regimes, which range from weak to strong hydrogen bonds in the proton transfer complex and comprise situations with high and low barriers, necessary preconditions to achieve control are analyzed. The results show that systems with a weak hydrogen bond and a significant energy barrier for the proton transfer can be used as molecular transistors or diodes.

  12. Ab initio no core shell model

    SciTech Connect

    Barrett, Bruce R.; Navrátil, Petr; Vary, James P.

    2012-11-17

    and NNN interactions, characterized by the order of the expansion retained (e.g. 'next-to-next-to leading order' is NNLO), provide a high-quality fit to the NN data and the A = 3 ground-state (g.s.) properties. The derivations of NN, NNN, etc. interactions within meson-exchange and {chi}EFT are well-established but are not subjects of this review. Our focus is solution of the non-relativistic quantum many-body Hamiltonian that includes these interactions using our no core shell model (NCSM) formalism. In the next section we will briefly outline the NCSM formalism and then present applications, results and extensions in later sections.

  13. Characterization and modeling of radiation damages via internal radiative efficiency in multi-junction solar cells

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Yoshita, Masahiro; Nakamura, Tetsuya; Imaizumi, Mitsuru; Kim, Changsu; Mochizuki, Toshimitsu; Chen, Shaoqiang; Kanemitsu, Yoshihiko; Akiyama, Hidefumi

    2016-03-01

    In order to understand the radiation effects in space-used multi-junction solar cells, we characterized degradations of internal radiative efficiency (ηint i ) in respective subcells in InGaP/GaAs double-junction solar cells after 1-MeV electron irradiations with different electrons fluences (Φ) via absolute electroluminescence (EL) measurements, because ηint i purely represents material-quality change due to radiation damage, independently from cell structures. We analyzed the degradation of ηint i under different Φ and found that the data of ηint i versus Φ in moderate and high Φ regions are very similar and almost independent of subcell materials, while the difference in beginning-of-life qualities of InGaP and GaAs materials causes dominant difference in sub-cell sensitivity to the low radiation damages. Finally, a simple model was proposed to explain the mechanism in degradation of ηint i, and also well explained the degradation behavior in open-circuit voltage for these multi-junction solar cells.

  14. Neuromuscular junctions are pathological but not denervated in two mouse models of spinal bulbar muscular atrophy.

    PubMed

    Poort, Jessica E; Rheuben, Mary B; Breedlove, S Marc; Jordan, Cynthia L

    2016-09-01

    Spinal bulbar muscular atrophy (SBMA) is a progressive, late onset neuromuscular disease causing motor dysfunction in men. While the morphology of the neuromuscular junction (NMJ) is typically affected by neuromuscular disease, whether NMJs in SBMA are similarly affected by disease is not known. Such information will shed light on whether defective NMJs might contribute to the loss of motor function and represent a potential therapeutic target for treating symptoms of SBMA. To address this gap in information, the morphology of NMJs was examined in two mouse models of SBMA, a myogenic model that overexpresses wildtype androgen receptor (AR) exclusively in muscle fibres and a knockin (KI) model expressing a humanized mutant AR gene. The tripartite motor synapse consisting of motor nerve terminal, terminal Schwann cells (tSCs) and postsynaptic specialization were visualized and analysed using confocal microscopy. Counter to expectation, we found no evidence of denervation in either model, but junctions in both models show pathological fragmentation and an abnormal synaptophysin distribution consistent with functionally weak synapses. Neurofilament accumulations were observed only in the myogenic model, even though axonal transport dysfunction is characteristic of both models. The ultrastructure of NMJs revealed additional pathology, including deficits in docked vesicles presynaptically, wider synaptic clefts, and simpler secondary folds postsynaptically. The observed pathology of NMJs in diseased SBMA mice is likely the morphological correlates of defects in synaptic function which may underlie motor impairments associated with SBMA.

  15. A junction-orifice-fiber entrance layer model for capillary permeability: application to frog mesenteric capillaries.

    PubMed

    Fu, B M; Weinbaum, S; Tsay, R Y; Curry, F E

    1994-11-01

    The recent serial section electron microscopic studies by Adamson and Michel (1993) on microves gels of frog mesentery have revealed that the large pores in the junction strand of the interendothelial cleft are widely separated 150 nm wide orifice-like breaks whose gap height 20 nm is the same as the wide part of the cleft. In this paper a modified version of the model in Weinbaum et al. (1992) is first developed in which this orifice structure is explored in combination with a random or ordered fiber matrix layer that is at the luminal surface and/or occupies a fraction of the wide part of the cleft. This basic orifice model predicts that for the measured Lp to be achieved the fiber layer must be confined to a relatively narrow region at the entrance to the cleft where it serves as the primary molecular filter. The model provides a much better fit of the permeability P for intermediate size solutes between 1 and 2 nm radius than the previous model in Weinbaum et al., where the junction strand breaks were treated as finite depth circular or rectangular pores, but like the previous model significantly underestimates P for small ions. However, it is shown that if a small frequent pore of 1.5 nm radius with characteristic spacing comparable to the diameter of the junction proteins or a continuous narrow slit of approximately 1.5 to 2.3 nm gap height is also present in the continuous part of the junction strand, small ion permeability can also be satisfied. The 1.5 nm radius pore does not significantly change Lp, whereas the continuous narrow slit provides a contribution to Lp that is comparable to, or in the case of the 2.3 nm slit greater than, the widely spaced 150 nm orifices. Thus, for the narrow slit the contribution to Lp from the orifices can be as low as 1.0 x 10(-7) cm/s/cm H2O and it is also possible to satisfy the 2.5 fold increase in permeability that occurs when the matrix is enzymatically removed from the luminal side of the cleft, Adamson (1990). The

  16. Model-Form Uncertainty Quantification in RANS Simulation of Wing-Body Junction Flow

    NASA Astrophysics Data System (ADS)

    Wu, Jinlong; Wang, Jianxun; Xiao, Heng

    2015-11-01

    Junction flow, known as one of the remaining challenges for computational aerodynamics, occurs when a boundary layer encounters an obstacle mounted on the surface. Previous studies have shown that the RANS models are not capable to provide satisfactory prediction. In this work, a novel open-box, physics-informed Bayesian framework is used to quantify the model-form uncertainties in RANS simulation of junction flow. The first objective is to correct the bias in RANS prediction, by utilizing several observation data. The second one is to quantify the model-form uncertainties, which can enable risk-informed decision-making. To begin with a standard RANS simulation, which is performed on a 3:2 elliptic nose and NACA0020 tail cylinder, uncertainties with empirical prior knowledge and physical constraints are directly injected into the Reynolds stresses term, and the unbiased knowledge from observation data is incorporated by an iterative ensemble Kalman method. Current results show that the bias in the quantities of interest (QoIs) of the RANS prediction, e.g., mean velocity, turbulent kinetic energy, etc, can be significantly corrected by this novel Bayesian framework. The probability density distributions of QoIs show that the model-form uncertainty can be quantified as well.

  17. Model of stacked long Josephson junctions: Parallel algorithm and numerical results in case of weak coupling

    NASA Astrophysics Data System (ADS)

    Zemlyanaya, E. V.; Bashashin, M. V.; Rahmonov, I. R.; Shukrinov, Yu. M.; Atanasova, P. Kh.; Volokhova, A. V.

    2016-10-01

    We consider a model of system of long Josephson junctions (LJJ) with inductive and capacitive coupling. Corresponding system of nonlinear partial differential equations is solved by means of the standard three-point finite-difference approximation in the spatial coordinate and utilizing the Runge-Kutta method for solution of the resulting Cauchy problem. A parallel algorithm is developed and implemented on a basis of the MPI (Message Passing Interface) technology. Effect of the coupling between the JJs on the properties of LJJ system is demonstrated. Numerical results are discussed from the viewpoint of effectiveness of parallel implementation.

  18. Fluid dynamic modeling of junctions in internal combustion engine inlet and exhaust systems

    NASA Astrophysics Data System (ADS)

    Chalet, David; Chesse, Pascal

    2010-10-01

    The modeling of inlet and exhaust systems of internal combustion engine is very important in order to evaluate the engine performance. This paper presents new pressure losses models which can be included in a one dimensional engine simulation code. In a first part, a CFD analysis is made in order to show the importance of the density in the modeling approach. Then, the CFD code is used, as a numerical test bench, for the pressure losses models development. These coefficients depend on the geometrical characteristics of the junction and an experimental validation is made with the use of a shock tube test bench. All the models are then included in the engine simulation code of the laboratory. The numerical calculation of unsteady compressible flow, in each pipe of the inlet and exhaust systems, is made and the calculated engine torque is compared with experimental measurements.

  19. Theoretical results on the tandem junction solar cell based on its Ebers-Moll transistor model

    NASA Technical Reports Server (NTRS)

    Goradia, C.; Vaughn, J.; Baraona, C. R.

    1980-01-01

    A one-dimensional theoretical model of the tandem junction solar cell (TJC) with base resistivity greater than about 1 ohm-cm and under low level injection has been derived. This model extends a previously published conceptual model which treats the TJC as an npn transistor. The model gives theoretical expressions for each of the Ebers-Moll type currents of the illuminated TJC and allows for the calculation of the spectral response, I(sc), V(oc), FF and eta under variation of one or more of the geometrical and material parameters and 1MeV electron fluence. Results of computer calculations based on this model are presented and discussed. These results indicate that for space applications, both a high beginning of life efficiency, greater than 15% AM0, and a high radiation tolerance can be achieved only with thin (less than 50 microns) TJC's with high base resistivity (greater than 10 ohm-cm).

  20. Constraint on the 1D earth model near core-mantle boundary by free core nutation

    NASA Astrophysics Data System (ADS)

    Huang, Chengli; Zhang, Mian

    2015-04-01

    Free core nutation (FCN) is a normal mode of the rotating earth with fluid outer core (FOC). Its period depends on the physics of the mantle and FOC, especially the parameters near core-mantle boundary (CMB), like the density and elastic (Lame) parameters. FCN period can be determined very accurately by VLBI and superconductive tidal gravimetry, but the theoretical calculation results of FCN period from traditional approaches and 1D earth model (like PREM) deviate significantly from the accurate observation. Meanwhile, the influence of the uncertainty of a given earth model on nutation has never been studied before. In this work, a numerical experiment is presented to check this problem, and we want to see whether FCN can provide a constraint on the construction of a 1D earth model, especially on the gradient of material density near CMB.

  1. A seismologically consistent compositional model of Earth’s core

    PubMed Central

    Badro, James; Côté, Alexander S.; Brodholt, John P.

    2014-01-01

    Earth’s core is less dense than iron, and therefore it must contain “light elements,” such as S, Si, O, or C. We use ab initio molecular dynamics to calculate the density and bulk sound velocity in liquid metal alloys at the pressure and temperature conditions of Earth's outer core. We compare the velocity and density for any composition in the (Fe–Ni, C, O, Si, S) system to radial seismological models and find a range of compositional models that fit the seismological data. We find no oxygen-free composition that fits the seismological data, and therefore our results indicate that oxygen is always required in the outer core. An oxygen-rich core is a strong indication of high-pressure and high-temperature conditions of core differentiation in a deep magma ocean with an FeO concentration (oxygen fugacity) higher than that of the present-day mantle. PMID:24821817

  2. A seismologically consistent compositional model of Earth's core.

    PubMed

    Badro, James; Côté, Alexander S; Brodholt, John P

    2014-05-27

    Earth's core is less dense than iron, and therefore it must contain "light elements," such as S, Si, O, or C. We use ab initio molecular dynamics to calculate the density and bulk sound velocity in liquid metal alloys at the pressure and temperature conditions of Earth's outer core. We compare the velocity and density for any composition in the (Fe-Ni, C, O, Si, S) system to radial seismological models and find a range of compositional models that fit the seismological data. We find no oxygen-free composition that fits the seismological data, and therefore our results indicate that oxygen is always required in the outer core. An oxygen-rich core is a strong indication of high-pressure and high-temperature conditions of core differentiation in a deep magma ocean with an FeO concentration (oxygen fugacity) higher than that of the present-day mantle.

  3. Experimental Testing and Modeling Analysis of Solute Mixing at Water Distribution Pipe Junctions

    EPA Science Inventory

    Flow dynamics at a pipe junction controls particle trajectories, solute mixing and concentrations in downstream pipes. Here we have categorized pipe junctions into five hydraulic types, for which flow distribution factors and analytical equations for describing the solute mixing ...

  4. Core formation, evolution, and convection - A geophysical model

    NASA Technical Reports Server (NTRS)

    Ruff, L.; Anderson, D. L.

    1980-01-01

    A model for the formation and evolution of the earth's core, which provides an adequate energy source for maintaining the geodynamo, is proposed. A modified inhomogeneous accretion model is proposed which leads to initial iron and refractory enrichment at the center of the planet. The probable heat source for melting of the core is the decay of Al-26. The refractory material is emplaced irregularly in the lowermost mantle with uranium and thorium serving as a long-lived heat source. Fluid motions in the core are driven by the differential heating from above and the resulting cyclonic motions may be the source of the geodynamo.

  5. Core formation, evolution, and convection: A geophysical model

    NASA Technical Reports Server (NTRS)

    Ruff, L.; Anderson, D. L.

    1978-01-01

    A model is proposed for the formation and evolution of the Earth's core which provides an adequate energy source for maintaining the geodynamo. A modified inhomogeneous accretion model is proposed which leads to initial iron and refractory enrichment at the center of the planet. The probable heat source for melting of the core is the decay of Al. The refractory material is emplaced irregularly in the lowermost mantle with uranium and thorium serving as a long lived heat source. Fluid motions in the core are driven by the differential heating from above and the resulting cyclonic motions may be the source of the geodynamo.

  6. Mobilities of polyatomic ions in gases - Core model.

    NASA Technical Reports Server (NTRS)

    Mason, E. A.; O'Hara, H.; Smith, F. J.

    1972-01-01

    A core model, consisting of a (12-4) central potential displaced from the origin, is suggested as a representation of the interaction of polyatomic ions with neutral molecules. The diffusion collision integral, which describes ion mobility, is computed and tabulated as a function of temperature and core size. The addition of the core reduces the maximum in the mobility against temperature curve, and eventually reduces the mobility below its polarization limit at all temperatures. These results are in accord with limited available experimental data. Comparison is made with other models of ion-neutral interactions.

  7. Modeling the Arm II core in MicroCap IV

    SciTech Connect

    Dalton, A.C.

    1996-11-01

    This paper reports on how an electrical model for the core of the Arm II machine was created and how to use this model. We wanted to get a model for the electrical characteristics of the ARM II core, in order to simulate this machine and to assist in the design of a future machine. We wanted this model to be able to simulate saturation, variable loss, and reset. Using the Hodgdon model and the circuit analysis program MicroCap IV, this was accomplished. This paper is written in such a way as to allow someone not familiar with the project to understand it.

  8. Detailed physics based modeling of triple-junction InGaP/GaAs/Ge solar cell

    NASA Astrophysics Data System (ADS)

    Fedoseyev, Alexandre; Bald, Timothy; Raman, Ashok; Hubbard, Seth; Forbes, David; Freundlich, Alexandre

    2014-03-01

    Space exploration missions and space electronic equipment require improvements in solar cell efficiency and radiation hardness. Triple-junction photovoltaic (TJ PV) cell is one of the most widely used PV for space missions due to it high efficiency. A proper models and simulation techniques are needed to speed-up the development on novel solar cell devices and reduce the related expenses. In this paper we have developed a detailed 3D TCAD model of a TJ PV cell, and calibrated the various (not accurately known) physical parameters to match experimental data, such as dark and light JV, external quantum efficiency (EQE) . A detailed model of triple-junction InGaP/GaAs/Ge solar cell has been developed and implemented in CFDRC's 3D NanoTCAD simulator. The model schematic, materials, layer thicknesses, doping levels and meshing are discussed. This triple-junction model is based on the experimental measurements of a Spectrolab triple-junction cell by [1] with material layer thicknesses provided by Rochester Institute of Technology [2]. This model of the triple-junction solar cell is primarily intended to simulate the external quantum efficiency, JV and other characteristics of a physical cell. Simulation results of light JV characteristics and EQE are presented. The calculated performance parameters compare well against measured experimental data [1]. Photovoltaic performance parameters (Jsc, Voc, Jm, Vm, FF, and Efficiency) can also be simulated using the presented model. This TCAD model is to be used to design an enhanced TJ PV with increased efficiency and radiation tolerance. Keywords: photovoltaic cell, triple-junction, numerical modeling, TCAD, dark and light JV.

  9. A parabolic model to control quantum interference in T-shaped molecular junctions.

    PubMed

    Nozaki, Daijiro; Sevinçli, Hâldun; Avdoshenko, Stanislav M; Gutierrez, Rafael; Cuniberti, Gianaurelio

    2013-09-07

    Quantum interference (QI) effects in molecular devices have drawn increasing attention over the past years due to their unique features observed in the conductance spectrum. For the further development of single molecular devices exploiting QI effects, it is of great theoretical and practical interest to develop simple methods controlling the emergence and the positions of QI effects like anti-resonances or Fano line shapes in conductance spectra. In this work, starting from a well-known generic molecular junction with a side group (T-shaped molecule), we propose a simple graphical method to visualize the conditions for the appearance of quantum interference, Fano resonances or anti-resonances, in the conductance spectrum. By introducing a simple graphical representation (parabolic diagram), we can easily visualize the relation between the electronic parameters and the positions of normal resonant peaks and anti-resonant peaks induced by quantum interference in the conductance spectrum. This parabolic model not only can predict the emergence and energetic position of quantum interference from a few electronic parameters but also can enable one to know the coupling between the side group and the main conduction channel from measurements in the case of orthogonal basis. The results obtained within the parabolic model are validated using density-functional based quantum transport calculations in realistic T-shaped molecular junctions.

  10. Forward modeling of δ18O in Andean ice cores

    NASA Astrophysics Data System (ADS)

    Hurley, J. V.; Vuille, M.; Hardy, D. R.

    2016-08-01

    Tropical ice core archives are among the best dated and highest resolution from the tropics, but a thorough understanding of processes that shape their isotope signature as well as the simulation of observed variability remain incomplete. To address this, we develop a tropical Andean ice core isotope forward model from in situ hydrologic observations and satellite water vapor isotope measurements. A control simulation of snow δ18O captures the mean and seasonal trend but underestimates the observed intraseasonal variability. The simulation of observed variability is improved by including amount effects associated with South American cold air incursions, linking synoptic-scale disturbances and monsoon dynamics to tropical ice core δ18O. The forward model was calibrated with and run under present-day conditions but can also be driven with past climate forcings to reconstruct paleomonsoon variability. The model is transferable and may be used to render a (paleo)climatic context at other ice core locations.

  11. Toward a mineral physics reference model for the Moon's core.

    PubMed

    Antonangeli, Daniele; Morard, Guillaume; Schmerr, Nicholas C; Komabayashi, Tetsuya; Krisch, Michael; Fiquet, Guillaume; Fei, Yingwei

    2015-03-31

    The physical properties of iron (Fe) at high pressure and high temperature are crucial for understanding the chemical composition, evolution, and dynamics of planetary interiors. Indeed, the inner structures of the telluric planets all share a similar layered nature: a central metallic core composed mostly of iron, surrounded by a silicate mantle, and a thin, chemically differentiated crust. To date, most studies of iron have focused on the hexagonal closed packed (hcp, or ε) phase, as ε-Fe is likely stable across the pressure and temperature conditions of Earth's core. However, at the more moderate pressures characteristic of the cores of smaller planetary bodies, such as the Moon, Mercury, or Mars, iron takes on a face-centered cubic (fcc, or γ) structure. Here we present compressional and shear wave sound velocity and density measurements of γ-Fe at high pressures and high temperatures, which are needed to develop accurate seismic models of planetary interiors. Our results indicate that the seismic velocities proposed for the Moon's inner core by a recent reanalysis of Apollo seismic data are well below those of γ-Fe. Our dataset thus provides strong constraints to seismic models of the lunar core and cores of small telluric planets. This allows us to propose a direct compositional and velocity model for the Moon's core.

  12. Design optimization of thin-film/wafer-based tandem junction solar cells using analytical modeling

    NASA Astrophysics Data System (ADS)

    Davidson, Lauren; Toor, Fatima

    2016-03-01

    Several research groups are developing solar cells of varying designs and materials that are high efficiency as well as cost competitive with the single junction silicon (Si) solar cells commercially produced today. One of these solar cell designs is a tandem junction solar cell comprised of perovskite (CH3NH3PbI3) and silicon (Si). Loper et al.1 was able to create a 13.4% efficient tandem cell using a perovskite top cell and a Si bottom cell, and researchers are confident that the perovskite/Si tandem cell can be optimized in order to reach higher efficiencies without introducing expensive manufacturing processes. However, there are currently no commercially available software capable of modeling a tandem cell that is based on a thin-film based bottom cell and a wafer-based top cell. While PC1D2 and SCAPS3 are able to model tandem cells comprised solely of thin-film absorbers or solely of wafer-based absorbers, they result in convergence errors if a thin-film/wafer-based tandem cell, such as the perovskite/ Si cell, is modeled. The Matlab-based analytical model presented in this work is capable of modeling a thin-film/wafer-based tandem solar cell. The model allows a user to adjust the top and bottom cell parameters, such as reflectivity, material bandgaps, donor and acceptor densities, and material thicknesses, in order to optimize the short circuit current, open circuit voltage, and quantum efficiency of the tandem solar cell. Using the Matlab-based analytical model, we were able optimize a perovskite/Si tandem cell with an efficiency greater than 30%.

  13. Rapid remodeling of tight junctions during paracellular diapedesis in a human model of the blood-brain barrier.

    PubMed

    Winger, Ryan C; Koblinski, Jennifer E; Kanda, Takashi; Ransohoff, Richard M; Muller, William A

    2014-09-01

    Leukocyte transendothelial migration (TEM; diapedesis) is a critical event in immune surveillance and inflammation. Most TEM occurs at endothelial cell borders (paracellular). However, there is indirect evidence to suggest that, at the tight junctions of the blood-brain barrier (BBB), leukocytes migrate directly through the endothelial cell body (transcellular). Why leukocytes migrate through the endothelial cell body rather than the cell borders is unknown. To test the hypothesis that the tightness of endothelial cell junctions influences the pathway of diapedesis, we developed an in vitro model of the BBB that possessed 10-fold higher electrical resistance than standard culture conditions and strongly expressed the BBB tight junction proteins claudin-5 and claudin-3. We found that paracellular TEM was still the predominant pathway (≥98%) and TEM was dependent on PECAM-1 and CD99. We show that endothelial tight junctions expressing claudin-5 are dynamic and undergo rapid remodeling during TEM. Membrane from the endothelial lateral border recycling compartment is mobilized to the exact site of tight junction remodeling. This preserves the endothelial barrier by sealing the intercellular gaps with membrane and engaging the migrating leukocyte with unligated adhesion molecules (PECAM-1 and CD99) as it crosses the cell border. These findings provide new insights into leukocyte-endothelial interactions at the BBB and suggest that tight junctions are more dynamic than previously appreciated.

  14. Neuroprotective Role of Gap Junctions in a Neuron Astrocyte Network Model.

    PubMed

    Huguet, Gemma; Joglekar, Anoushka; Messi, Leopold Matamba; Buckalew, Richard; Wong, Sarah; Terman, David

    2016-07-26

    A detailed biophysical model for a neuron/astrocyte network is developed to explore mechanisms responsible for the initiation and propagation of cortical spreading depolarizations and the role of astrocytes in maintaining ion homeostasis, thereby preventing these pathological waves. Simulations of the model illustrate how properties of spreading depolarizations, such as wave speed and duration of depolarization, depend on several factors, including the neuron and astrocyte Na(+)-K(+) ATPase pump strengths. In particular, we consider the neuroprotective role of astrocyte gap junction coupling. The model demonstrates that a syncytium of electrically coupled astrocytes can maintain a physiological membrane potential in the presence of an elevated extracellular K(+) concentration and efficiently distribute the excess K(+) across the syncytium. This provides an effective neuroprotective mechanism for delaying or preventing the initiation of spreading depolarizations.

  15. Implementation of total dose effects in the bipolar junction transistor Gummel-Poon model

    SciTech Connect

    Montagner, X.; Fouillat, P.; Briand, R.; Touboul, A.; Schrimpf, R.D.; Galloway, K.F.; Calvet, M.C.; Calvel, P.

    1997-12-01

    The effects of total dose on the SPICE model of bipolar junction transistors are investigated. The limitations of the standard Gummel-Poon model for simulating the radiation-induced excess base current are analyzed, and a new model based on an empirical approach is proposed. Four new SPICE rad-parameters are presented, and investigated for different dose rates. The relevant parameters are extracted using a new algorithmic procedure, combining a genetic approach and the standard optimization technique which minimizes the RMS error between measured and simulated excess base current. It is shown that the excess base current is accurately described by the same formula whatever the device type is. An empirical fitting of the rad-parameters as a function of total dose is proposed to use in hardening electronic circuits for space-like environments.

  16. On the influence of a translating inner core in models of outer core convection

    NASA Astrophysics Data System (ADS)

    Davies, C. J.; Silva, L.; Mound, J.

    2013-01-01

    It has recently been proposed that the hemispheric seismic structure of the inner core can be explained by a self-sustained rigid-body translation of the inner core material, resulting in melting of the solid at the leading face and a compensating crystallisation at the trailing face. This process induces a hemispherical variation in the release of light elements and latent heat at the inner-core boundary, the two main sources of thermochemical buoyancy thought to drive convection in the outer core. However, the effect of a translating inner core on outer core convection is presently unknown. In this paper we model convection in the outer core with a nonmagnetic Boussinesq fluid in a rotating spherical shell driven by purely thermal buoyancy, incorporating the effect of a translating inner core by a time-independent spherical harmonic degree and order 1 (Y11) pattern of heat-flux imposed at the inner boundary. The analysis considers Rayleigh numbers up to 10 times the critical value for onset of nonmagnetic convection, a parameter regime where the effects of the inhomogeneous boundary condition are expected to be most pronounced, and focuses on varying q∗, the amplitude of the imposed boundary anomalies. The presence of inner boundary anomalies significantly affects the behaviour of the model system. Increasing q∗ leads to flow patterns dominated by azimuthal jets that span large regions of the shell where radial motion is significantly inhibited. Vigorous convection becomes increasingly confined to isolated regions as q∗ increases; these regions do not drift and always occur in the hemisphere subjected to a higher than average boundary heat-flux. Effects of the inner boundary anomalies are visible at the outer boundary in all inhomogeneous models considered. At low q∗ the expression of inner boundary effects at the core surface is a difference in the flow speed between the two hemispheres. As q∗ increases the spiralling azimuthal jets driven from the

  17. Seismic tomography and deformation modeling of the junction of the San Andreas and Calaveras faults

    USGS Publications Warehouse

    Dorbath, C.; Oppenheimer, D.; Amelung, F.; King, G.

    1996-01-01

    Local earthquake P traveltime data is inverted to obtain a three-dimensional tomographic image of the region centered on the junction of the San Andreas and Calaveras faults. The resulting velocity model is then used to relocate more than 17,000 earthquakes and to produce a model of fault structure in the region. These faults serve as the basis for modeling the topography using elastic dislocation methods. The region is of interest because active faults join, it marks the transition zone from creeping to locked fault behavior on the San Andreas fault, it exhibits young topography, and it has a good spatial distribution of seismicity. The tomographic data set is extensive, consisting of 1445 events, 96 stations, and nearly 95,000 travel time readings. Tomographic images are resolvable to depths of 12 km and show significant velocity contrasts across the San Andreas and Calaveras faults, a low-velocity zone associated with the creeping section of the San Andreas fault, and shallow low-velocity sediments in the southern Santa Clara valley and northern Salinas valley. Relocated earthquakes only occur where vp>5 km/s and indicate that portions of the San Andreas and Calaveras faults are non vertical, although we cannot completely exclude the possibility that all or part of this results from ray tracing problems. The new dips are more consistent with geological observations that dipping faults intersect the surface where surface traces have been mapped. The topographic modeling predicts extensive subsidence in regions characterized by shallow low-velocity material, presumably the result of recent sedimentation. Some details of the topography at the junction of the San Andreas and Calaveras faults are not consistent with the modeling results, suggesting that the current position of this "triple junction" has changed with time. The model also predicts those parts of the fault subject to contraction or extension perpendicular to the fault strike and hence the sense of any

  18. Update to Core reporting practices in structural equation modeling.

    PubMed

    Schreiber, James B

    2016-07-21

    This paper is a technical update to "Core Reporting Practices in Structural Equation Modeling."(1) As such, the content covered in this paper includes, sample size, missing data, specification and identification of models, estimation method choices, fit and residual concerns, nested, alternative, and equivalent models, and unique issues within the SEM family of techniques.

  19. Silicon-gold core-shell nanowire array for an optically and electrically characterized refractive index sensor based on plasmonic resonance and Schottky junction.

    PubMed

    Qin, Linling; Zhang, Cheng; Li, Runfeng; Li, Xiaofeng

    2017-04-01

    This work reports the plasmonically enhanced refractive index sensor consisting of silicon nanowire array (Si-NWA) coated by a conformal gold (Au) nanoshell. Compared to the pure Si or Au NWA system, the Si-Au core-shell setup leads to substantially enhanced optical in-coupling to excite strong surface plasmon resonance (SPR) for highly sensitive sensors. Results indicate that the SPR wavelength can be subtly tuned by manipulating the nanowire radius, and it shows a strong shift with very small variation of the refractive index of the analyte. Furthermore, we configure the system into the Schottky junction, which can separate the photogenerated hot electrons so that the electrical outputs under various incident wavelengths can be measured. The capabilities of optical and electrical measurements ensure a high flexibility of the sensing system. Through our optoelectronic evaluation, the optimally designed system shows a sensitivity up to 1008 nm per refractive index unit and a full width at half-maximum of 9.89 nm; moreover, the high sensing performance can be sustained in a relatively large range of the incident angle.

  20. Core Accretion - Gas Capture Model for Gas Giant Planet Formation

    NASA Astrophysics Data System (ADS)

    Hubickyj, O.; Bodenheimer, P.; Lissauer, J. J.

    2005-12-01

    The core accretion - gas capture model is generally accepted as the standard formation model for gas giant planets. This model proposes that a solid core grows via the accretion of planetesimals and then captures a massive envelope from the solar nebula gas. Simulations based on this model (Pollack et al. 1996, Bodenheimer et al. 2000) have been successful in explaining many features of giant planets. We have computed simulations (Hubickyj et al. 2005) of the growth of Jupiter using various values for the opacity produced by grains in the protoplanet's atmosphere and for the initial planetesimal surface density in the protoplanetary disk. We also explore the implications of halting the solid accretion at selected core mass values during the protoplanet's growth. Halting planetesimal accretion at low core mass simulates the presence of a competing embryo, and decreasing the atmospheric opacity due to grains emulates the settling and coagulation of grains within the protoplanet's atmosphere. We examine the effects of adjusting these parameters to determine whether or not gas runaway can occur for small mass cores on a reasonable timescale. Our results demonstrate that reducing grain opacities results in formation times less than half of those for models computed with full interstellar grain opacity values. The reduction of opacity due to grains in the upper portion of the envelope with T ≤ 500 K has the largest effect on the lowering of the formation time. If the accretion of planetesimals is not cut off prior to the accretion of gas, then decreasing the surface density of planetesimals lowers the final core mass of the protoplanet, but increases the formation timescale considerably. Finally, a core mass cutoff results in a reduction of the time needed for a protoplanet to evolve to the stage of runaway gas accretion, provided the cutoff mass is sufficiently large. The overall results indicate that, with reasonable parameters, it is possible that Jupiter formed at

  1. Summary of multi-core hardware and programming model investigations

    SciTech Connect

    Kelly, Suzanne Marie; Pedretti, Kevin Thomas Tauke; Levenhagen, Michael J.

    2008-05-01

    This report summarizes our investigations into multi-core processors and programming models for parallel scientific applications. The motivation for this study was to better understand the landscape of multi-core hardware, future trends, and the implications on system software for capability supercomputers. The results of this study are being used as input into the design of a new open-source light-weight kernel operating system being targeted at future capability supercomputers made up of multi-core processors. A goal of this effort is to create an agile system that is able to adapt to and efficiently support whatever multi-core hardware and programming models gain acceptance by the community.

  2. Modeling of LC-shunted intrinsic Josephson junctions in high-T c superconductors

    NASA Astrophysics Data System (ADS)

    Shukrinov, Yu M.; Rahmonov, I. R.; Kulikov, K. V.; Botha, A. E.; Plecenik, A.; Seidel, P.; Nawrocki, W.

    2017-02-01

    Resonance phenomena in a model of intrinsic Josephson junctions shunted by LC-elements (L-inductance, C-capacitance) are studied. The phase dynamics and IV-characteristics are investigated in detail when the Josephson frequency approaches the frequency of the resonance circuit. A realization of parametric resonance through the excitation of a longitudinal plasma wave, within the bias current interval corresponding to the resonance circuit branch, is demonstrated. It is found that the temporal dependence of the total voltage of the stack, and the voltage measured across the shunt capacitor, reflect the charging of superconducting layers, a phenomenon which might be useful as a means of detecting such charging experimentally. Thus, based on the voltage dynamics, a novel method for the determination of charging in the superconducting layers of coupled Josephson junctions is proposed. A demonstration and discussion of the influence of external electromagnetic radiation on the IV-characteristics and charge-time dependence is given. Over certain parameter ranges the radiation causes an interesting new type of temporal splitting in the charge-time oscillations within the superconducting layers.

  3. Macro model for stochastic behavior of resistance distribution of magnetic tunnel junction

    NASA Astrophysics Data System (ADS)

    Kil, Gyuhyun; Choi, Juntae; Song, Yunheub

    2015-04-01

    In this work, we fabricated MgO-based magnetic tunnel junction (MTJ) samples to observe behavior of resistance variation, and investigated a stochastic behavior model for MTJ resistance from measured real data. We found the relationship between parallel resistance (RP), anti-parallel resistance (RAP), and TMR from the measurements. The variation of barrier thickness affects not only resistance but also TMR. This means that broad RAP distribution is caused by RP distribution. In addition, RAP distribution can be reduced by increasing temperature and bias voltage. We developed a macro model that can evaluate resistance distribution based on the stochastic behavior of MTJ resistance variation from only tox varied. The amount of resistance variation, which is considered with regard to the circuit performance, can be obtained from Δtox designed by designer. In addition, the impact for operating circumstance such as bias and temperature can be considered by using fit equations.

  4. Micromagnetic model for studies on Magnetic Tunnel Junction switching dynamics, including local current density

    NASA Astrophysics Data System (ADS)

    Frankowski, Marek; Czapkiewicz, Maciej; Skowroński, Witold; Stobiecki, Tomasz

    2014-02-01

    We present a model introducing the Landau-Lifshitz-Gilbert equation with a Slonczewski's Spin-Transfer-Torque (STT) component in order to take into account spin polarized current influence on the magnetization dynamics, which was developed as an Object Oriented MicroMagnetic Framework extension. We implement the following computations: magnetoresistance of vertical channels is calculated from the local spin arrangement, local current density is used to calculate the in-plane and perpendicular STT components as well as the Oersted field, which is caused by the vertical current flow. The model allows for an analysis of all listed components separately, therefore, the contribution of each physical phenomenon in dynamic behavior of Magnetic Tunnel Junction (MTJ) magnetization is discussed. The simulated switching voltage is compared with the experimental data measured in MTJ nanopillars.

  5. Expression of the core exon-junction complex factor eukaryotic initiation factor 4A3 is increased during spatial exploration and striatally-mediated learning.

    PubMed

    Barker-Haliski, M L; Pastuzyn, E D; Keefe, K A

    2012-12-13

    Regulation of dendritically localized mRNAs offers an important means by which neurons can sculpt precise signals at synapses. Arc is one such dendritically localized mRNA, and it has been shown to contain two exon-junction complexes (EJCs) within its 3'UTR. The EJC has been postulated to regulate cytoplasmic Arc mRNA availability through translation-dependent decay and thus contribute to synaptic plasticity. Core proteins of the EJC include eIF4A3, an RNA helicase, and Magoh, which stabilizes the interaction of eIF4A3 with target mRNAs. Arc mRNA expression is activity-regulated in numerous brain regions, including the dorsal striatum and hippocampus. Therefore in this study, the in vivo expression of these core EJC components was investigated in adult Sprague-Dawley rats to determine whether there are also behaviorally regulated changes in their expression. In the present work, there was no change in the expression of Magoh mRNA following spatial exploration, a paradigm previously reported to robustly and reliably upregulate Arc mRNA expression. Interestingly, however, there were increases in eIF4A3 mRNA levels in the dorsal striatum and hippocampus following spatial exploration, similar to previous reports for Arc mRNA. Furthermore, there were activity-dependent changes in eIF4A3 protein distribution and expression within the striatum following spatial exploration. Importantly, eIF4A3 protein colocalized with Arc mRNA in vivo. Like Arc mRNA expression, eIF4A3 mRNA expression in the dorsomedial striatum, but not dorsolateral striatum or hippocampus, significantly correlated with behavioral performance on a striatally-mediated, response-reversal learning task. This study provides direct evidence that a core EJC component, eIF4A3, shows activity-dependent changes in both mRNA and protein expression in the adult mammalian brain. These findings thus further implicate eIF4A3 as a key mediator of Arc mRNA availability underlying learning and memory processes in vivo.

  6. Modeling of Core Competencies in the Registrar's Office

    ERIC Educational Resources Information Center

    Pikowsky, Reta

    2009-01-01

    The Office of the Registrar at the Georgia Institute of Technology, in cooperation with the Office of Human Resources, has been engaged since February 2008 in a pilot project to model core competencies for the leadership team and the staff. It is the hope of the office of Human resources that this pilot will result in a model that can be used…

  7. Flow past a wing-body junction - Experimental evaluation of turbulence models

    NASA Astrophysics Data System (ADS)

    Devenport, William J.; Simpson, Roger L.

    1992-04-01

    Detailed three-component laser Doppler velocimeter measurements have been made in the flow of a turbulent boundary layer past an idealized wing-body junction. These measurements are used to evaluate the closure assumptions of a number of turbulence models. Many of these models require or imply a relationship between the angles of the turbulence shear-stress and mean-velocity vectors. In the present flow, these angles are not only different but do not follow any simple relationship. To predict the shear-stress angle, accurate modeling of the full shear-stress transport equations is clearly needed. In particular, new models based on measurements are needed for the pressure-strain term. The closure assumptions of six turbulence models are tested by using them to predict the magnitude of the shear-stress vector from the mean-velocity and/or turbulence kinetic energy. Among the best are those of the Cebeci-Smith and algebraic-stress models. The k-epsilon model does not appear suited to this vortical flow.

  8. A multiscale model of Earth's inner-core anisotropy

    NASA Astrophysics Data System (ADS)

    Merkel, Sébastien; Lincot, Ainhoa; Deguen, Renaud; Cardin, Philippe

    2016-04-01

    The Earth's solid inner-core exhibits a global seismic anisotropy of several percents. It results from a coherent alignment of anisotropic Fe-alloy crystals through the inner-core history that can be sampled by present-day seismic observations. By combining self-consistent polycrystal plasticity, inner-core formation models, Monte-Carlo search for elastic moduli, and simulations of seismic measurements, we introduce a multiscale model that can reproduce a global seismic anisotropy of several percents aligned with the Earth's rotation axis. Cubic-structured Fe-alloy fail at producing significant global scale anisotropy. Conditions for a successful model are an hexagonal-close-packed structure for the inner-core Fe-alloy, plastic deformation by pyramidal ⟨c + a⟩ slip, and large-scale flow induced by a low-degree inner-core formation model. For global anisotropies ranging between 1 and 3%, the elastic anisotropy in the single crystal ranges from 5 to 20% with larger velocities along the c-axis.

  9. Core-oscillator model of Caulobacter crescentus

    NASA Astrophysics Data System (ADS)

    Vandecan, Yves; Biondi, Emanuele; Blossey, Ralf

    2016-06-01

    The gram-negative bacterium Caulobacter crescentus is a powerful model organism for studies of bacterial cell cycle regulation. Although the major regulators and their connections in Caulobacter have been identified, it still is a challenge to properly understand the dynamics of its circuitry which accounts for both cell cycle progression and arrest. We show that the key decision module in Caulobacter is built from a limit cycle oscillator which controls the DNA replication program. The effect of an induced cell cycle arrest is demonstrated to be a key feature to classify the underlying dynamics.

  10. Large magnetocapacitance effect in magnetic tunnel junctions based on Debye-Fröhlich model

    SciTech Connect

    Kaiju, Hideo Takei, Masashi; Misawa, Takahiro; Nishii, Junji; Nagahama, Taro; Xiao, Gang

    2015-09-28

    The frequency dependence of tunneling magnetocapacitance (TMC) in magnetic tunnel junctions (MTJs) is investigated theoretically and experimentally. According to the calculation based on Debye-Fröhlich model combined with Julliere formula, the TMC ratio strongly depends on the frequency and it has the maximum peak at a specific frequency. The calculated frequency dependence of TMC is in good agreement with the experimental results obtained in MgO-based MTJs with a tunneling magnetoresistance (TMR) ratio of 108%, which exhibit a large TMC ratio of 155% at room temperature. This calculation also predicts that the TMC ratio can be as large as about 1000% for a spin polarization of 87%, while the TMR ratio is 623% for the same spin polarization. These theoretical and experimental findings provide a deeper understanding on AC spin-dependent transport in the MTJs and will open up wider opportunities for device applications, such as highly sensitive magnetic sensors and impedance-tunable devices.

  11. Field theoretical model of multilayered Josephson junction and dynamics of Josephson vortices

    NASA Astrophysics Data System (ADS)

    Fujimori, Toshiaki; Iida, Hideaki; Nitta, Muneto

    2016-09-01

    Multilayered Josephson junctions are modeled in the context of a field theory, and dynamics of Josephson vortices trapped inside insulators are studied. Starting from a theory consisting of complex and real scalar fields coupled to a U(1) gauge field which admit parallel N -1 domain-wall solutions, Josephson couplings are introduced weakly between the complex scalar fields. The N -1 domain walls behave as insulators separating N superconductors, where one of the complex scalar fields has a gap. We construct the effective Lagrangian on the domain walls, which reduces to a coupled sine-Gordon model for well-separated walls and contains more interactions for walls at short distance. We then construct sine-Gordon solitons emerging in an effective theory in which we identify Josephson vortices carrying singly quantized magnetic fluxes. When two neighboring superconductors tend to have the same phase, the ground state does not change with the positions of domain walls (the width of superconductors). On the other hand, when two neighboring superconductors tend to have π -phase differences, the ground state has a phase transition depending on the positions of domain walls; when the two walls are close to each other (one superconductor is thin), frustration occurs because of the coupling between the two superconductors besides the thin superconductor. Focusing on the case of three superconductors separated by two insulators, we find for the former case that the interaction between two Josephson vortices on different insulators changes its nature, i.e., attractive or repulsive, depending on the positions of the domain walls. In the latter case, there emerges fractional Josephson vortices when two degenerate ground states appear due to spontaneous charge-symmetry breaking, and the number of the Josephson vortices varies with the position of the domain walls. Our predictions should be verified in multilayered Josephson junctions.

  12. Nanotube junctions

    DOEpatents

    Crespi, Vincent Henry; Cohen, Marvin Lou; Louie, Steven Gwon Sheng; Zettl, Alexander Karlwalter

    2003-01-01

    The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.

  13. Nanotube junctions

    DOEpatents

    Crespi, Vincent Henry; Cohen, Marvin Lou; Louie, Steven Gwon; Zettl, Alexander Karlwalte

    2004-12-28

    The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.

  14. Modeling Laser Effects on Multi-Junction Solar Cells Using Silvaco ATLAS Software for Spacecraft Power Beaming Applications

    DTIC Science & Technology

    2010-06-01

    devised was meant to achieve the highest efficiency of the solar cell while maintaining the same power output. In a perfect world the system would...CHAMPION CELL - 36.28% Efficiency !! #This model is an explicit InGaP/ GaAs /Ge Triple Junction solar cell with Tunnel Junction KATO OPTM 0.82InGaP...the same output of the cell as experienced under solar illumination, thereby replacing the sun. The original cell boasted 36.29% efficiency under

  15. The Drosophila larval neuromuscular junction as a model for scaffold complexes at glutamatergic synapses: benefits and limitations.

    PubMed

    Thomas, Ulrich; Kobler, Oliver; Gundelfinger, Eckart D

    2010-09-01

    Based on unbeatable genetic accessibility and relative simplicity, the Drosophila larval neuromuscular junction has become a widely used model system for studying functional and structural aspects of excitatory glutamatergic synapses. Membrane-associated guanylate kinase-like proteins (MAGUKs) are first-order scaffolding molecules enriched at many cellular junctions, including synapses, where they coordinate multiple binding partners, including cell adhesion molecules and ion channels. The enrichment of the prototypic MAGUK Discs-Large at larval NMJs apparently parallels the high abundance of its homologs at excitatory synapses in the mammalian central nervous system. Here, the authors review selected aspects of the long-standing work on Dlg at fly neuromuscular junctions, thereby scrutinizing its subcellular localization, function, and regulation with regard to corresponding aspects of MAGUKs in vertebrate neurons.

  16. Novel modeling and dynamic simulation of magnetic tunnel junctions for spintronic sensor development

    NASA Astrophysics Data System (ADS)

    Ji, Yu; Liu, Jie; Yang, Chunsheng

    2017-01-01

    Spintronic magnetic sensors with the integration of magnetic materials and microstructures have been enabling people to make use of the electron spin and charge properties in many applications. The high demand for such sensors has in turn spurred the technology developments in both novel materials and their atomic-level controls. Few works, however, have been carried out and reported thus far in modeling and simulation of these spintronic magnetic sensing units based on magnetic tunnel junction (MTJ) technology. Accordingly, this paper proposes a novel modeling approach as well as an iterative simulation methodology for MTJs. A more comprehensive electrical tunneling model is established for better interpreting the conductance and current generated by the electron tunneling, and this model can also facilitate the iterative simulation of the micromagnetic dynamics. Given the improved tunneling model as well as the updated dynamic simulation, the electric characteristics of an MTJ with an external magnetic field can be conveniently computed, which provides a reliable benchmark for the future development of novel spintronic magnetic sensors.

  17. Probiotics modify tight-junction proteins in an animal model of nonalcoholic fatty liver disease

    PubMed Central

    Briskey, David; Heritage, Mandy; Jaskowski, Lesley-Anne; Peake, Jonathan; Gobe, Glenda; Subramaniam, V. Nathan; Crawford, Darrell; Campbell, Catherine; Vitetta, Luis

    2016-01-01

    Background: We have investigated the effects of a multispecies probiotic preparation containing a combination of probiotic bacterial genera that included Bifidobacteria, Lactobacilli and a Streptococcus in a mouse model of high-fat diet or obesity-induced liver steatosis. Methods: Three groups of C57B1/6J mice were fed either a standard chow or a high-fat diet for 20 weeks, while a third group was fed a high-fat diet for 10 weeks and then concomitantly administered probiotics for a further 10 weeks. Serum, liver and large bowel samples were collected for analysis. Results: The expression of the tight-junction proteins ZO-1 and ZO-2 was reduced (p < 0.05) in high-fat diet-fed mice compared to chow-fed mice. Probiotic supplementation helped to maintain tight ZO-1 and ZO-2 expression compared with the high-fat diet group (p < 0.05), but did not restore ZO-1 or ZO-2 expression compared with chow-fed mice. Mice fed a high-fat diet ± probiotics had significant steatosis development compared with chow-fed mice (p < 0.05); steatosis was less severe in the probiotics group compared with the high-fat diet group. Hepatic triglyceride concentration was higher in mice fed a high-fat diet ± probiotics compared with the chow group (p < 0.05), and was lower in the probiotics group compared with the high-fat diet group (p < 0.05). Compared with chow-fed mice, serum glucose, cholesterol concentration and the activity of alanine transaminase were higher (p < 0.05), whereas serum triglyceride concentration was lower (p < 0.05) in mice fed a high-fat diet ± probiotics. Conclusions: Supplementation with a multispecies probiotic formulation helped to maintain tight-junction proteins ZO-1 and ZO-2, and reduced hepatic triglyceride concentration compared with a high-fat diet alone. PMID:27366215

  18. Mathematical Modeling, Sense Making, and the Common Core State Standards

    ERIC Educational Resources Information Center

    Schoenfeld, Alan H.

    2013-01-01

    On October 14, 2013 the Mathematics Education Department at Teachers College hosted a full-day conference focused on the Common Core Standards Mathematical Modeling requirements to be implemented in September 2014 and in honor of Professor Henry Pollak's 25 years of service to the school. This article is adapted from my talk at this conference…

  19. Contemporary Programming Concepts: A Common Core Model for Career Education

    ERIC Educational Resources Information Center

    Huffman, Harry; Valentine, Ivan E.

    1974-01-01

    A model shows how learning strands from the core subjects in grades K-9 can be woven into a strong career plan based on effective career guidance and counseling, enabling students to eventually establish an occupational objective and distinguish among educational alternatives leading to that objective. (AG)

  20. Model for LMFBR core transient analysis in real-time

    SciTech Connect

    Tzanos, C.P.

    1986-01-01

    This paper discusses the modeling of LMFBR core transients. It is shown that with a proper choice of shape functions a nodal approximation of the coolant, cladding, and fuel temperature distributions leads to adequately accurate power and temperature predictions, as well as adequately short computation times.

  1. Model of radiation-induced gain degradation of NPN bipolar junction transistor at different dose rates

    NASA Astrophysics Data System (ADS)

    Qifeng, Zhao; Yiqi, Zhuang; Junlin, Bao; Wei, Hu

    2015-06-01

    Ionizing-radiation-induced current gain degradation in NPN bipolar junction transistors is due to an increase in base current as a result of recombination at the surface of the device. A model is presented which identifies the physical mechanism responsible for current gain degradation. The increase in surface recombination velocity due to interface states results in an increase in base current. Besides, changing the surface potential along the base surface induced by the oxide-trapped charges can also lead to an increased base current. By combining the production mechanisms of oxide-trapped charges and interface states, this model can explain the fact that the current gain degradation is more severe at a low dose rate than at a high dose rate. The radiations were performed in a Co60 source up to a total dose of 70 krad(Si). The low dose rate was 0.1 rad(Si)/s and the high dose rate was 10 rad(Si)/s. The model accords well with the experimental results. Project supported by the National Natural Science Foundation of China (Nos. 61076101, 61204092).

  2. Experimental Model of Proximal Junctional Fracture after Multilevel Posterior Spinal Instrumentation

    PubMed Central

    Levasseur, Annie; Parent, Stefan; Petit, Yvan

    2016-01-01

    There is a high risk of proximal junctional fractures (PJF) with multilevel spinal instrumentation, especially in the osteoporotic spine. This problem is associated with significant morbidity and possibly the need for reoperation. Various techniques have been proposed in an attempt to decrease the risk of PJF but there is no experimental model described for in vitro production of PJF after multilevel instrumentation. The objective of this study is to develop an experimental model of PJF after multilevel posterior instrumentation. Initially, four porcine specimens including 4 vertebrae and instrumented at the 3 caudal vertebrae using a pedicle screw construct were subjected to different loading conditions. Loading conditions on porcine specimens involving cyclic loading along the axis of the center vertebral body line, with constrained flexion between 0° and 15° proximally, and fully constraining the specimen distally resulted in a fracture pattern most representative of a PJF seen clinically in humans, so to undergo human cadaveric testing with similar loading conditions was decided. Clinically relevant PJF were produced in all 3 human specimens. The experimental model described in this study will allow the evaluation of different parameters influencing the incidence and prevention of PJF after multilevel posterior spinal instrumentation. PMID:27610381

  3. Model-based parameterisation of a hydrocyclone air-core

    PubMed

    Podd; Schlaberg; Hoyle

    2000-03-01

    An important metric for the accurate control of a hydrocyclone is the diameter of its air-core. Ultrasonic data from a 16-transducer, 1.5 MHz pulse-echo tomographic system are analysed to determine the variation of the air-core diameter with various operating conditions. The back-projection image reconstruction method is not accurate enough for this task. Sub-millimetre accuracy is obtained, however, by applying a combination of signal processing and model-based reconstruction, using the fact that there is a small variation in the air-core boundary position. The findings correspond well to the results obtained from X-ray and electrical resistance modalities.

  4. Toxicants target cell junctions in the testis: Insights from the indazole-carboxylic acid model

    PubMed Central

    Cheng, C Yan

    2014-01-01

    There are numerous types of junctions in the seminiferous epithelium which are integrated with, and critically dependent on the Sertoli cell cytoskeleton. These include the basal tight junctions between Sertoli cells that form the main component of the blood–testis barrier, the basal ectoplasmic specializations (basal ES) and basal tubulobulbar complexes (basal TBC) between Sertoli cells; as well as apical ES and apical TBC between Sertoli cells and the developing spermatids that orchestrate spermiogenesis and spermiation. These junctions, namely TJ, ES, and TBC interact with actin microfilament-based cytoskeleton, which together with the desmosomal junctions that interact with the intermediate filament-based cytoskeleton plus the highly polarized microtubule-based cytoskeleton are working in concert to move spermatocytes and spermatids between the basal and luminal aspect of the seminiferous epithelium. In short, these various junctions are structurally complexed with the actin- and microtubule-based cytoskeleton or intermediate filaments of the Sertoli cell. Studies have shown toxicants (e.g., cadmium, bisphenol A (BPA), perfluorooctanesulfonate (PFOS), phthalates, and glycerol), and some male contraceptives under development (e.g., adjudin, gamendazole), exert their effects, at least in part, by targeting cell junctions in the testis. The disruption of Sertoli–Sertoli cell and Sertoli–germ cell junctions, results in the loss of germ cells from the seminiferous epithelium. Adjudin, a potential male contraceptive under investigation in our laboratory, produces loss of spermatids from the seminiferous tubules through disruption of the Sertoli cell spermatid junctions and disruption of the Sertoli cell cytoskeleton. The molecular and structural changes associated with adjudin administration are described, to provide an example of the profile of changes caused by disturbance of Sertoli-germ cell and also Sertoli cell-cell junctions. PMID:26413399

  5. Modeling of Intrinsic Josephson Junctions in High Temperature Superconductors under External Radiation in the Breakpoint Region

    NASA Astrophysics Data System (ADS)

    Shukrinov, Yu. M.; Rahmonov, I. R.; Plecenik, A.; Streltsova, O. I.; Zuev, M. I.; Ososkov, G. A.

    2016-02-01

    The current-voltage (IV) characteristics of the intrinsic Josephson junctions in high temperature superconductors under external electromagnetic radiation are calculated numerically in the parametric resonance region. We discuss a numerical method for calculation of the Shapiro step width on the amplitude of radiation. In order to accelerate computations we used parallelization by task parameter via Simple Linux Utility for Resource Management (SLURM) arrays and tested it in the case of a single junction. An analysis of the junction transitions between rotating and oscillating states in the branching region of IV-characteristics is presented.

  6. VIPRE modeling of VVER-1000 reactor core for DNB analyses

    SciTech Connect

    Sung, Y.; Nguyen, Q.; Cizek, J.

    1995-09-01

    Based on the one-pass modeling approach, the hot channels and the VVER-1000 reactor core can be modeled in 30 channels for DNB analyses using the VIPRE-01/MOD02 (VIPRE) code (VIPRE is owned by Electric Power Research Institute, Palo Alto, California). The VIPRE one-pass model does not compromise any accuracy in the hot channel local fluid conditions. Extensive qualifications include sensitivity studies of radial noding and crossflow parameters and comparisons with the results from THINC and CALOPEA subchannel codes. The qualifications confirm that the VIPRE code with the Westinghouse modeling method provides good computational performance and accuracy for VVER-1000 DNB analyses.

  7. A New Global Core Plasma Model of the Plasmasphere

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Comfort, R. H.; Craven, P. D.

    2014-01-01

    The Global Core Plasma Model (GCPM) is the first empirical model for thermal inner magnetospheric plasma designed to integrate previous models and observations into a continuous in value and gradient representation of typical total densities. New information about the plasmasphere, in particular, makes possible significant improvement. The IMAGE Mission Radio Plasma Imager (RPI) has obtained the first observations of total plasma densities along magnetic field lines in the plasmasphere and polar cap. Dynamics Explorer 1 Retarding Ion Mass Spectrometer (RIMS) has provided densities in temperatures in the plasmasphere for 5 ion species. These and other works enable a new more detailed empirical model of thermal in the inner magnetosphere that will be presented.

  8. A Mouse Model of Generalized non-Herlitz Junctional Epidermolysis Bullosa

    PubMed Central

    Bubier, Jason A.; Sproule, Thomas J.; Petell, Lydia; Webb, Cameron; Fine, Jo-David; Roopenian, Derry C.; Sundberg, John P.

    2010-01-01

    Epidermolysis bullosa (EB) is a class of intractable, rare, genetic disorders characterized by fragile skin and blister formation as a result of dermal-epidermal mechanical instability. EB presents with considerable clinical and molecular heterogeneity. Viable animal models of junctional epidermolysis bullosa (JEB), that both mimic the human disease and survive beyond the neonatal period, are needed. We identified a spontaneous, autosomal recessive mutation (Lamc2 jeb) due to a Murine Leukemia Virus long terminal repeat insertion in Lamc2 that results in a hypomorphic allele with reduced levels of LAMC2 protein. These mutant mice develop a progressive blistering disease validated at the gross and microscopic levels to closely resemble generalized non-Herlitz JEB. The Lamc2 jeb mice display additional extracutaneous features such as loss of bone mineralization and abnormal teeth, as well as a respiratory phenotype that is recognized but not as well characterized in humans. This model faithfully recapitulates human JEB and provides an important preclinical tool to test novel therapeutic approaches. PMID:20336083

  9. Primary esophageal and gastro-esophageal junction cancer xenograft models: clinicopathological features and engraftment.

    PubMed

    Dodbiba, Lorin; Teichman, Jennifer; Fleet, Andrew; Thai, Henry; Sun, Bin; Panchal, Devang; Patel, Devalben; Tse, Alvina; Chen, Zhuo; Faluyi, Olusola O; Renouf, Daniel J; Girgis, Hala; Bandarchi, Bizhan; Schwock, Joerg; Xu, Wei; Bristow, Robert G; Tsao, Ming-Sound; Darling, Gail E; Ailles, Laurie E; El-Zimaity, Hala; Liu, Geoffrey

    2013-04-01

    There are very few xenograft models available for the study of esophageal (E) and gastro-esophageal junction (GEJ) cancer. Using a NOD/SCID model, we implanted 90 primary E and GEJ tumors resected from patients and six endoscopic biopsy specimens. Of 69 resected tumors with histologically confirmed viable adenocarcinoma or squamous cell carcinoma, 22 (32%) was engrafted. One of 11 tumors, considered to have had a complete pathological response to neo-adjuvant chemo-radiation, also engrafted. Of the 23 patients whose tumors were engrafted, 65% were male; 30% were early stage while 70% were late stage; 22% received neo-adjuvant chemo-radiation; 61% were GEJ cancers. Engraftment occurred in 18/54 (33%) adenocarcinomas and 5/16 (31%) squamous cell carcinomas. Small endoscopic biopsy tissue had a 50% (3/6) engraftment rate. Of the factors analyzed, pretreatment with chemo-radiation and well/moderate differentiation showed significantly lower correlation with engraftment (P<0.05). In the subset of patients who did not receive neo-adjuvant chemo-radiation, 18/41 (44%) engrafted compared with those with pretreatment where 5/29 (17%, P=0.02) engrafted. Primary xenograft lines may be continued through 4-12 passages. Xenografts maintained similar histology and morphological characteristics with only minor variations even after multiple passaging in most instances.

  10. Novel compact model for multi-level spin torque magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Prajapati, Sanjay; Verma, Shivam; Kulkarni, Anant Aravind; Kaushik, Brajesh Kumar

    2016-10-01

    Spin-transfer torque (STT) and spin-orbit torque (SOT) based magnetic tunnel junction (MTJ) devices are emerging as strong contenders for the next generation memories. Conventional STT magneto-resistive random access memory (MRAM) offers lower power, non-volatility and CMOS process compatibility. However, higher current requirement during the write operation leads to tunnel barrier reliability issues and larger access devices. SOT-MRAM eliminates the reliability issues with strong spin polarized current (100%) and separate read/write current paths; however, the additional two access transistors in SOT-MRAM results into increased cell area. Multilevel cell (MLC) structure paves a way to circumvent the problems related to the conventional STT/SOT based MTJ devices and provides enhanced integration density at reduced cost per bit. Conventional STT/SOT-MRAM requires a unit cell area of 10-60 F2 and reported simulations have been based on available single-level MTJ compact models. However, till date no compact model exists that can capture the device physics of MLC-MTJ accurately. Hence, a novel compact model is proposed in this paper to capture the accurate device physics and behaviour of the MLC-MTJs. It is designed for MLCs with different MTJ configurations demonstrated so far, such as series and parallel free layer based MLC-MTJs. The proposed model is coded in Verilog-A, which is compatible with SPICE for circuit level simulations. The model is in close agreement with the experimental results exhibiting an average error of less than 15%.

  11. Josephson junction

    DOEpatents

    Wendt, J.R.; Plut, T.A.; Martens, J.S.

    1995-05-02

    A novel method for fabricating nanometer geometry electronic devices is described. Such Josephson junctions can be accurately and reproducibly manufactured employing photolithographic and direct write electron beam lithography techniques in combination with aqueous etchants. In particular, a method is described for manufacturing planar Josephson junctions from high temperature superconducting material. 10 figs.

  12. Josephson junction

    DOEpatents

    Wendt, Joel R.; Plut, Thomas A.; Martens, Jon S.

    1995-01-01

    A novel method for fabricating nanometer geometry electronic devices is described. Such Josephson junctions can be accurately and reproducibly manufactured employing photolithographic and direct write electron beam lithography techniques in combination with aqueous etchants. In particular, a method is described for manufacturing planar Josephson junctions from high temperature superconducting material.

  13. Geophysical Age Dating of Seamounts using Dense Core Flexure Model

    NASA Astrophysics Data System (ADS)

    Hwang, Gyuha; Kim, Seung-Sep

    2016-04-01

    Lithospheric flexure of oceanic plate is thermo-mechanical response of an elastic plate to the given volcanic construct (e.g., seamounts and ocean islands). If the shape and mass of such volcanic loads are known, the flexural response is governed by the thickness of elastic plate, Te. As the age of oceanic plate increases, the elastic thickness of oceanic lithosphere becomes thicker. Thus, we can relate Te with the age of plate at the time of loading. To estimate the amount of the driving force due to seamounts on elastic plate, one needs to approximate their density structure. The most common choice is uniform density model, which utilizes constant density value for a seamount. This approach simplifies computational processes for gravity prediction and error estimates. However, the uniform density model tends to overestimate the total mass of the seamount and hence produces more positive gravitational contributions from the load. Minimization of gravity misfits using uniform density, therefore, favors thinner Te in order to increase negative contributions from the lithospheric flexure, which can compensate for the excessive positives from the seamount. An alternative approach is dense core model, which approximate the heterogeneity nature of seamount density as three bodies of infill sediment, edifice, and dense core. In this study, we apply the dense core model to the Louisville Seamount Chain for constraining flexural deformation. We compare Te estimates with the loading time of the examined seamounts to redefine empirical geophysical age dating of seamounts.

  14. Gap junctions.

    PubMed

    Goodenough, Daniel A; Paul, David L

    2009-07-01

    Gap junctions are aggregates of intercellular channels that permit direct cell-cell transfer of ions and small molecules. Initially described as low-resistance ion pathways joining excitable cells (nerve and muscle), gap junctions are found joining virtually all cells in solid tissues. Their long evolutionary history has permitted adaptation of gap-junctional intercellular communication to a variety of functions, with multiple regulatory mechanisms. Gap-junctional channels are composed of hexamers of medium-sized families of integral proteins: connexins in chordates and innexins in precordates. The functions of gap junctions have been explored by studying mutations in flies, worms, and humans, and targeted gene disruption in mice. These studies have revealed a wide diversity of function in tissue and organ biology.

  15. Gap Junctions

    PubMed Central

    Goodenough, Daniel A.; Paul, David L.

    2009-01-01

    Gap junctions are aggregates of intercellular channels that permit direct cell–cell transfer of ions and small molecules. Initially described as low-resistance ion pathways joining excitable cells (nerve and muscle), gap junctions are found joining virtually all cells in solid tissues. Their long evolutionary history has permitted adaptation of gap-junctional intercellular communication to a variety of functions, with multiple regulatory mechanisms. Gap-junctional channels are composed of hexamers of medium-sized families of integral proteins: connexins in chordates and innexins in precordates. The functions of gap junctions have been explored by studying mutations in flies, worms, and humans, and targeted gene disruption in mice. These studies have revealed a wide diversity of function in tissue and organ biology. PMID:20066080

  16. Coupled edge-core model of fusion reactor

    NASA Astrophysics Data System (ADS)

    Zagórski, R.; Kulinski, S.; Scholz, M.

    1997-10-01

    A model has been developed which is capable to describe in a self consistent way the plasma dynamics in the centre and edge region of a fusion reactor. The core plasma is treated in the frame of the 0D model in which an empirical scaling law for the energy confinement time is included. The model accounts for energy losses due to Bremsstrahlung and line radiation as well as alpha particle heating. A 1D analytical model for plasma and impurity transport outside the last close magnetic surface (LCMS) is applied. The model accounts for the strong gradients of the plasma parameters along the magnetic field lines in the divertor. The sputtering phenomena at the plate and radiating cooling by injected impurities are treated self consistently in the model. The model has been used to investigate operating regimes of the ignition experiment. Analysis have been performed for different first wall materials (C, Ni, Mo, W) for ITER like tokamak.

  17. Modelling exchange bias in core/shell nanoparticles.

    PubMed

    Iglesias, Oscar; Batlle, Xavier; Labarta, Amílcar

    2007-10-10

    We present an atomistic model of a single nanoparticle with core/shell structure that takes into account its lattice structure and spherical geometry, and in which the values of microscopic parameters such as anisotropy and exchange constants can be tuned in the core, shell and interfacial regions. By means of Monte Carlo simulations of the hysteresis loops based on this model, we have determined the range of microscopic parameters for which loop shifts after field cooling can be observed. The study of the magnetic order of the interfacial spins for different particle sizes and values of the interfacial exchange coupling have allowed us to correlate the appearance of loop asymmetries and vertical displacements to the existence of a fraction of uncompensated spins at the shell interface that remain pinned during field cycling, offering new insight on the microscopic origin of the experimental phenomenology.

  18. Structural and spectral studies of sunspots. [umbral core modelling

    NASA Technical Reports Server (NTRS)

    Wyller, A. A.

    1974-01-01

    Observations of umbral cores, both by multicolor photometry and by narrow band photometry in the vicinity of the sodium D lines, are described, and evidence is given which supports the validity of many umbral models, each of which describes different aspects of the observed umbral cores. Theoretical studies carried on at the observatory include the following: (1) Zeeman profiles of the sodium D sub 2 line and other lines; (2) turbulent heat conduction, sound waves, and the missing flux in sunspots; (3) chromospheric heating above spots by Alfven waves; (4) magnetic convection in the sun and solar neutrinos; (5) models of starspots on flare stars; (5) starspots on the primaries of contact binary systems; and (6) implications of starspots on red dwarfs.

  19. 98. View of IBM digital computer model 7090 magnet core ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    98. View of IBM digital computer model 7090 magnet core installation. ITT Artic Services, Inc., Official photograph BMEWS Site II, Clear, AK, by unknown photographer, 17 September 1965. BMEWS, clear as negative no. A-6606. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  20. Thermal conductivity modeling of core-shell and tubular nanowires.

    PubMed

    Yang, Ronggui; Chen, Gang; Dresselhaus, Mildred S

    2005-06-01

    The heteroepitaxial growth of crystalline core-shell nanostructures of a variety of materials has become possible in recent years, allowing the realization of various novel nanoscale electronic and optoelectronic devices. The increased surface or interface area will decrease the thermal conductivity of such nanostructures and impose challenges for the thermal management of such devices. In the meantime, the decreased thermal conductivity might benefit the thermoelectric conversion efficiency. In this paper, we present modeling results on the lattice thermal conductivity of core-shell and tubular nanowires along the wire axis direction using the phonon Boltzmann equation. We report the dependence of the thermal conductivity on the surface conditions and the core-shell geometry for silicon core-germanium shell and tubular silicon nanowires at room temperature. The results show that the effective thermal conductivity changes not only with the composition of the constituents but also with the radius of the nanowires and nanopores due to the nature of the ballistic phonon transport. The results in this work have implications for the design and operation of a variety of nanoelectronic devices, optoelectronic devices, and thermoelectric materials and devices.

  1. Exchange bias phenomenology and models of core/shell nanoparticles.

    PubMed

    Iglesias, Oscar; Labarta, Amílcar; Batlle, Xavier

    2008-06-01

    Some of the main experimental observations related to the occurrence of exchange bias in magnetic systems are reviewed, focusing the attention on the peculiar phenomenology associated to nanoparticles with core/shell structure as compared to thin film bilayers. The main open questions posed by the experimental observations are presented and contrasted to existing theories and models for exchange bias formulated up to date. We also present results of simulations based on a simple model of a core/shell nanoparticle in which the values of microscopic parameters such as anisotropy and exchange constants can be tuned in the core, shell and at the interfacial regions, offering new insight on the microscopic origin of the experimental phenomenology. A detailed study of the magnetic order of the interfacial spins shows compelling evidence that most of the experimentally observed effects can be qualitatively accounted within the context of this model and allows also to quantify the magnitude of the loop shifts in striking agreement with the macroscopic observed values.

  2. Quasi-exactly solvable relativistic soft-core Coulomb models

    SciTech Connect

    Agboola, Davids Zhang, Yao-Zhong

    2012-09-15

    By considering a unified treatment, we present quasi exact polynomial solutions to both the Klein-Gordon and Dirac equations with the family of soft-core Coulomb potentials V{sub q}(r)=-Z/(r{sup q}+{beta}{sup q}){sup 1/q}, Z>0, {beta}>0, q{>=}1. We consider cases q=1 and q=2 and show that both cases are reducible to the same basic ordinary differential equation. A systematic and closed form solution to the basic equation is obtained using the Bethe ansatz method. For each case, the expressions for the energies and the allowed parameters are obtained analytically and the wavefunctions are derived in terms of the roots of a set of Bethe ansatz equations. - Highlights: Black-Right-Pointing-Pointer The relativistic bound-state solutions of the soft-core Coulomb models. Black-Right-Pointing-Pointer Quasi-exact treatments of the Dirac and Klein-Gordon equations for the soft-core Coulomb models. Black-Right-Pointing-Pointer Solutions obtained in terms of the roots to the Bethe ansatz equations. Black-Right-Pointing-Pointer The hidden Lie algebraic structure discussed for the models. Black-Right-Pointing-Pointer Results useful in describing mesonic atoms and interaction of intense laser fields with atom.

  3. Gap Junctions

    PubMed Central

    Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L.; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik

    2013-01-01

    Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1981-2035, 2012. PMID:23723031

  4. Biaxial Nematic Phase in Model Bent-Core Systems

    NASA Astrophysics Data System (ADS)

    Grzybowski, Piotr; Longa, Lech

    2011-07-01

    We determine the bifurcation phase diagrams with isotropic (I), uniaxial (NU) and biaxial (NB) nematic phases for model bent-core mesogens using Onsager-type theory. The molecules comprise two or three Gay-Berne interacting ellipsoids of uniaxial and biaxial shape and a transverse central dipole. The Landau point is found to turn into an I-NB line for the three-center model with a large dipole moment. For the biaxial ellipsoids, a line of Landau points is observed even in the absence of the dipoles.

  5. The Open Provenance Model core specification (v1.1)

    SciTech Connect

    Moreau, Luc; Clifford, Ben; Freire, Juliana; Futrelle, Joe; Gil, Yolanda; Groth, Paul; Kwasnikowska, Natalia; Miles, Simon; Missier, Paolo; Myers, Jim; Plale, Beth; Simmhan, Yogesh; Stephan, Eric; den Bussche, Jan Van

    2011-06-01

    The Open Provenance Model is a model of provenance that is designed to meet the following requirements: (1) To allow provenance information to be ex- changed between systems, by means of a compatibility layer based on a shared provenance model. (2) To allow developers to build and share tools that operate on such a provenance model. (3) To deFIne provenance in a precise, technology- agnostic manner. (4) To support a digital representation of provenance for any “thing, whether produced by computer systems or not. (5) To allow multiple levels of description to coexist. (6) To deFIne a core set of rules that identify the valid inferences that can be made on provenance representation. This docu- ment contains the speciFIcation of the Open Provenance Model (v1.1) resulting from a commChallenge.

  6. Understanding Core-Mantle Coupling Through Dynamo Models

    NASA Astrophysics Data System (ADS)

    Sreenivasan, B.

    2007-12-01

    Core-mantle interaction in the Earth is studied using convection-driven dynamo models. We begin by considering an idealized regime that supports locking of the fluid motion and magnetic field to external inhomogeneities. In perfect locking, the azimuthal velocity in the fluid core has the profile of a thermal wind imposed by the boundary. In strongly convective dynamos, the competition between buoyancy-driven and boundary-driven thermal winds determines the extent of fluid-boundary coupling. We go on to show that dynamos with weakly convecting outer layers support locking, whereas strongly convecting outer regions swamp any influence of the lateral variations at the boundary. Finally, we investigate the tomographic boundary condition to see how its individual harmonic components may affect the morphology of the geomagnetic field.

  7. Dynamical Models to Infer the Core Mass Fraction of Venus

    NASA Astrophysics Data System (ADS)

    Quintana, Elisa V.; Barclay, Thomas

    2016-10-01

    The uncompressed density of Venus is just a few percent lower than Earth's, however the nature of the interior core structure of Venus remains unclear. Employing state-of-the-art dynamical formation models that allow both accretion and collisional fragmentation, we perform hundreds of simulations of terrestrial planet growth around the Sun in the presence of the giant planets. For both Earth and Venus analogs, we quantify the iron-silicate ratios, water/volatile abundances and specific impact energies of all collisions that lead to their formation. Preliminary results suggest that the distributions of core mass fraction and water content are comparable among the Earth and Venus analogs, suggesting that Earth and Venus may indeed have formed with similar structures and compositions.

  8. Testing a new Free Core Nutation empirical model

    NASA Astrophysics Data System (ADS)

    Belda, Santiago; Ferrándiz, José M.; Heinkelmann, Robert; Nilsson, Tobias; Schuh, Harald

    2016-03-01

    The Free Core Nutation (FCN) is a free mode of the Earth's rotation caused by the different material characteristics of the Earth's core and mantle. This causes the rotational axes of those layers to slightly diverge from each other, resulting in a wobble of the Earth's rotation axis comparable to nutations. In this paper we focus on estimating empirical FCN models using the observed nutations derived from the VLBI sessions between 1993 and 2013. Assuming a fixed value for the oscillation period, the time-variable amplitudes and phases are estimated by means of multiple sliding window analyses. The effects of using different a priori Earth Rotation Parameters (ERP) in the derivation of models are also addressed. The optimal choice of the fundamental parameters of the model, namely the window width and step-size of its shift, is searched by performing a thorough experimental analysis using real data. The former analyses lead to the derivation of a model with a temporal resolution higher than the one used in the models currently available, with a sliding window reduced to 400 days and a day-by-day shift. It is shown that this new model increases the accuracy of the modeling of the observed Earth's rotation. Besides, empirical models determined from USNO Finals as a priori ERP present a slightly lower Weighted Root Mean Square (WRMS) of residuals than IERS 08 C04 along the whole period of VLBI observations, according to our computations. The model is also validated through comparisons with other recognized models. The level of agreement among them is satisfactory. Let us remark that our estimates give rise to the lowest residuals and seem to reproduce the FCN signal in more detail.

  9. Chemical modeling of interstellar molecules in dense cores

    NASA Astrophysics Data System (ADS)

    Quan, Donghui

    There are billions of stars in our galaxy, the Milky Way Galaxy. In between the stars is where the so-called "interstellar medium" locates. The majority of the mass of interstellar medium is clumped into interstellar clouds, in which cold and hot dense cores exist. Despite of the extremely low densities and low temperatures of the dense cores, over one hundred molecules have been found in these sources. This makes the field of astrochemistry vivid. Chemical modeling plays very important roles to understand the mechanism of formation and destruction of interstellar molecules. In this thesis, chemical kinetics models of different types were applied: in Chapter 4, pure gas phase models were used for seven newly detected or confirmed molecules by the Green Bank Telescope; in Chapter 5, the potential reason of non-detection of O 2 was explored; in Chapter 6, the mysterious behavior of CHNO and CHNS isomers were studied by gas-grain models. In addition, effects of varying rate coefficients to the models are also discussed in Chapter 3 and 7.

  10. Astrocytic gap junctional networks suppress cellular damage in an in vitro model of ischemia

    SciTech Connect

    Shinotsuka, Takanori; Yasui, Masato; Nuriya, Mutsuo

    2014-02-07

    Highlights: • Astrocytes exhibit characteristic changes in [Ca{sup 2+}]{sub i} under OGD. • Astrocytic [Ca{sup 2+}]{sub i} increase is synchronized with a neuronal anoxic depolarization. • Gap junctional couplings protect neurons as well as astrocytes during OGD. - Abstract: Astrocytes play pivotal roles in both the physiology and the pathophysiology of the brain. They communicate with each other via extracellular messengers as well as through gap junctions, which may exacerbate or protect against pathological processes in the brain. However, their roles during the acute phase of ischemia and the underlying cellular mechanisms remain largely unknown. To address this issue, we imaged changes in the intracellular calcium concentration ([Ca{sup 2+}]{sub i}) in astrocytes in mouse cortical slices under oxygen/glucose deprivation (OGD) condition using two-photon microscopy. Under OGD, astrocytes showed [Ca{sup 2+}]{sub i} oscillations followed by larger and sustained [Ca{sup 2+}]{sub i} increases. While the pharmacological blockades of astrocytic receptors for glutamate and ATP had no effect, the inhibitions of gap junctional intercellular coupling between astrocytes significantly advanced the onset of the sustained [Ca{sup 2+}]{sub i} increase after OGD exposure. Interestingly, the simultaneous recording of the neuronal membrane potential revealed that the onset of the sustained [Ca{sup 2+}]{sub i} increase in astrocytes was synchronized with the appearance of neuronal anoxic depolarization. Furthermore, the blockade of gap junctional coupling resulted in a concurrent faster appearance of neuronal depolarizations, which remain synchronized with the sustained [Ca{sup 2+}]{sub i} increase in astrocytes. These results indicate that astrocytes delay the appearance of the pathological responses of astrocytes and neurons through their gap junction-mediated intercellular network under OGD. Thus, astrocytic gap junctional networks provide protection against tissue damage

  11. Electromagnetic model for near-field microwave microscope with atomic resolution: Determination of tunnel junction impedance

    SciTech Connect

    Reznik, Alexander N.

    2014-08-25

    An electrodynamic model is proposed for the tunneling microwave microscope with subnanometer space resolution as developed by Lee et al. [Appl. Phys. Lett. 97, 183111 (2010)]. Tip-sample impedance Z{sub a} was introduced and studied in the tunneling and non-tunneling regimes. At tunneling breakdown, the microwave current between probe and sample flows along two parallel channels characterized by impedances Z{sub p} and Z{sub t} that add up to form overall impedance Z{sub a}. Quantity Z{sub p} is the capacitive impedance determined by the near field of the probe and Z{sub t} is the impedance of the tunnel junction. By taking into account the distance dependences of effective tip radius r{sub 0}(z) and tunnel resistance R{sub t}(z) = Re[Z{sub t}(z)], we were able to explain the experimentally observed dependences of resonance frequency f{sub r}(z) and quality factor Q{sub L}(z) of the microscope. The obtained microwave resistance R{sub t}(z) and direct current tunnel resistance R{sub t}{sup dc}(z) exhibit qualitatively similar behavior, although being largely different in both magnitude and the characteristic scale of height dependence. Interpretation of the microwave images of the atomic structure of test samples proved possible by taking into account the inductive component of tunnel impedance ImZ{sub t} = ωL{sub t}. Relation ωL{sub t}/R{sub t} ≈ 0.235 was obtained.

  12. A New Global Core Plasma Model of the Plasmasphere

    NASA Astrophysics Data System (ADS)

    Gallagher, D. L.; Comfort, R. H.; Craven, P. D.

    2014-12-01

    The Global Core Plasma Model (GCPM) is the first empirical model for thermal inner magnetospheric plasma designed to integrate previous models and observations into a global, continuous in value and gradient, representation of typical total densities. New information about the plasmasphere, in particular, makes possible significant improvement. The IMAGE Mission Radio Plasma Imager (RPI) has obtained the first observations of total plasma densities along magnetic field lines in the plasmasphere and polar cap. Dynamics Explorer 1 Retarding Ion Mass Spectrometer (RIMS) has provided densities and temperatures in the plasmasphere for five ion species. These and other works enable a new more robust empirical model of thermal in the inner magnetosphere that will be presented.

  13. Radical precursors and related species from traffic as observed and modeled at an urban highway junction.

    PubMed

    Rappenglück, Bernhard; Lubertino, Graciela; Alvarez, Sergio; Golovko, Julia; Czader, Beata; Ackermann, Luis

    2013-11-01

    Nitrous acid (HONO) and formaldehyde (HCHO) are important precursors for radicals and are believed to favor ozone formation significantly. Traffic emission data for both compounds are scarce and mostly outdated. A better knowledge of today's HCHO and HONO emissions related to traffic is needed to refine air quality models. Here the authors report results from continuous ambient air measurements taken at a highway junction in Houston, Texas, from July 15 to October 15, 2009. The observational data were compared with emission estimates from currently available mobile emission models (MOBILE6; MOVES [MOtor Vehicle Emission Simulator]). Observations indicated a molar carbon monoxide (CO) versus nitrogen oxides (NO(x)) ratio of 6.01 +/- 0.15 (r2 = 0.91), which is in agreement with other field studies. Both MOBILE6 and MOVES overestimate this emission ratio by 92% and 24%, respectively. For HCHO/CO, an overall slope of 3.14 +/- 0.14 g HCHO/kg CO was observed. Whereas MOBILE6 largely underestimates this ratio by 77%, MOVES calculates somewhat higher HCHO/CO ratios (1.87) than MOBILE6, but is still significantly lower than the observed ratio. MOVES shows high HCHO/CO ratios during the early morning hours due to heavy-duty diesel off-network emissions. The differences of the modeled CO/NO(x) and HCHO/CO ratios are largely due to higher NO(x) and HCHO emissions in MOVES (30% and 57%, respectively, increased from MOBILE6 for 2009), as CO emissions were about the same in both models. The observed HONO/NO(x) emission ratio is around 0.017 +/- 0.0009 kg HONO/kg NO(x) which is twice as high as in MOVES. The observed NO2/NO(x) emission ratio is around 0.16 +/- 0.01 kg NO2/kg NO(x), which is a bit more than 50% higher than in MOVES. MOVES overestimates the CO/CO2 emission ratio by a factor of 3 compared with the observations, which is 0.0033 +/- 0.0002 kg CO/kg CO2. This as well as CO/NO(x) overestimation is coming from light-duty gasoline vehicles.

  14. The Candy Wrapper Velocity Model for the Earth's Inner Core

    NASA Astrophysics Data System (ADS)

    Mattesini, M.

    2014-12-01

    Recent global expansion of seismic data motivated a number of seismological studies of the Earth's inner core that proposed the existence of increasingly complex structure and anisotropy. In the meantime, new hypotheses of dynamic mechanisms have been put forward to interpret seismological results. Here, the nature of hemispherical dichotomy and anisotropy is re-investigated by bridging the observations of PKP(bc-df) differential travel-times with the iron bcc/hcp elastic properties computed from first-principles methods.The Candy Wrapper velocity model introduced here accounts for a dynamic picture of the inner core (i.e., the eastward drift of material), where different iron crystal shapes can be stabilized at the two hemispheres. We show that seismological data are best explained by a rather complicated, mosaic-like, structure of the inner core, where well-separated patches of different iron crystals compose the anisotropic western hemispherical region, and a conglomerate of almost indistinguishable iron phases builds-up the weakly anisotropic eastern side.

  15. Core-Envelope Interior Models of the Outer Planets

    NASA Astrophysics Data System (ADS)

    Schubert, G.; Anderson, J. D.; Helled, R.

    2009-12-01

    The constraints on giant planet interior models with density discontinuities, for example, a core-envelope boundary, are more difficult to treat than a continuous density distribution that decreases monotonically and continuously from the center to the surface of the planet. We revise our previous interior calculations (Anderson, J. D., and G. Schubert, Saturn’s gravitational field, internal rotation, and interior structure, 2007, Science, 317, 1384-1387, doi: 101126/science.1144835, 2007), which solved a system of integro-differential equations to third order in the smallness parameter ω2a3/GM (ω is the angular velocity of the planet, a is the planet’s equatorial radius, G is the gravitational constant, and M is the planet’s mass), and introduce Clairaut’s differential equation for the flattening f, with appropriate boundary conditions at the planet’s surface and at its center. The calculations can be carried to second order in the smallness parameter by solving Darwin’s differential equation for k, a parameter that describes a second-order deviation from sphericity. In principle, the calculations can be extended to differential equations of arbitrary order in smallness. As with our earlier method, we apply this revised method to the outer planets with interiors comprising a compressible core, obeying a linear density distribution, and an envelope in which density vs. radius is described by a sixth degree polynomial. This method of gravity sounding, with cores and envelope polynomial density distributions, can yield insights into a class of possible cores that fit the boundary conditions, consisting of the measured even zonal gravitational harmonics, plus the measured size and total mass of the planet. We apply the method to the four outer planets.

  16. Beyond the Lorentzian Model in Quantum Transport: Energy-Dependent Resonance Broadening in Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Liu, Zhenfei; Neaton, Jeffrey B.

    In quantum transport calculations, transmission functions of molecular junctions, as well as spectral functions of metal-organic interfaces, often feature peaks originating from molecular resonances. These resonance peaks are often assumed to be Lorentzian, with an energy-independent broadening function Γ. However, in the general case, the wide-band-limit breaks down, and the Lorentzian approximation is no longer valid. Here, we develop a new energy-dependent broadening function Γ (E) , based on diagonalization of non-Hermitian matrices within a non-equilbrium Green's function (NEGF) formalism. As defined, Γ (E) can describe resonances of non-Lorentzian nature and can be decomposed into components associated with the left and right leads, respectively; and it is particularly useful in understanding transport properties in terms of molecular orbitals in asymmetric junctions. We compute this quantity via an ab initio NEGF approach based on density functional theory and illustrate its utility with several junctions of experimental relevance, including recent work on rectification in Au-graphite junctions. This work is supported by the DOE, and computational resources are provided by NERSC.

  17. Modeling Radiation Effects on a Triple Junction Solar Cell using Silvaco ATLAS

    DTIC Science & Technology

    2012-06-01

    Indium - Gallium -Phosphide and Germanium solar cells . The effects of...32. 37 Figure 32. InGaP/GaAs/Ge Solar Cell . From [37]. The indium gallium phosphide (InGaP) material creates the least current but the highest...Phosphide, and Gallium Arsenide solar cells individually and together in a triple junction cell is presented in this thesis. A discussion on

  18. Ab-Initio Shell Model with a Core

    SciTech Connect

    Lisetskiy, A F; Barrett, B R; Kruse, M; Navratil, P; Stetcu, I; Vary, J P

    2008-06-04

    We construct effective 2- and 3-body Hamiltonians for the p-shell by performing 12{h_bar}{Omega} ab initio no-core shell model (NCSM) calculations for A=6 and 7 nuclei and explicitly projecting the many-body Hamiltonians onto the 0{h_bar}{Omega} space. We then separate these effective Hamiltonians into 0-, 1- and 2-body contributions (also 3-body for A=7) and analyze the systematic behavior of these different parts as a function of the mass number A and size of the NCSM basis space. The role of effective 3- and higher-body interactions for A > 6 is investigated and discussed.

  19. Ab Initio and Ab Exitu No-Core Shell Model

    SciTech Connect

    Vary, J P; Navratil, P; Gueorguiev, V G; Ormand, W E; Nogga, A; Maris, P; Shirokov, A

    2007-10-02

    We outline two complementary approaches based on the no core shell model (NCSM) and present recent results. In the ab initio approach, nuclear properties are evaluated with two-nucleon (NN) and three-nucleon interactions (TNI) derived within effective field theory (EFT) based on chiral perturbation theory (ChPT). Fitting two available parameters of the TNI generates good descriptions of light nuclei. In a second effort, an ab exitu approach, results are obtained with a realistic NN interaction derived by inverse scattering theory with off-shell properties tuned to fit light nuclei. Both approaches produce good results for observables sensitive to spin-orbit properties.

  20. Symmetry Based No Core Shell Model in a Deformed Basis

    NASA Astrophysics Data System (ADS)

    Kekejian, David; Draayer, Jerry; Launey, Kristina

    2017-01-01

    To address current limitations of shell-model descriptions of large spatial deformation and cluster structures, we adopt a no-core shell model with a deformed harmonic oscillator basis and implement an angular momentum projection in a symmetry-adapted scheme. This approach allows us to reach larger model spaces as a result of computational memory savings for calculations of highly deformed states, such as the Hoyle state in C-12. The method is first tested with schematic interactions, but the ultimate goal is to carry forward calculations with realistic nucleon-nucleon interactions in future work. Supported by the U.S. NSF (OCI-0904874, ACI-1516338) and the U.S. DOE (DE-SC0005248), and benefitted from computing resources provided by Blue Waters and LSU's Center for Computation & Technology.

  1. Computational modeling for hexcan failure under core distruptive accidental conditions

    SciTech Connect

    Sawada, T.; Ninokata, H.; Shimizu, A.

    1995-09-01

    This paper describes the development of computational modeling for hexcan wall failures under core disruptive accident conditions of fast breeder reactors. A series of out-of-pile experiments named SIMBATH has been analyzed by using the SIMMER-II code. The SIMBATH experiments were performed at KfK in Germany. The experiments used a thermite mixture to simulate fuel. The test geometry of SIMBATH ranged from single pin to 37-pin bundles. In this study, phenomena of hexcan wall failure found in a SIMBATH test were analyzed by SIMMER-II. Although the original model of SIMMER-II did not calculate any hexcan failure, several simple modifications made it possible to reproduce the hexcan wall melt-through observed in the experiment. In this paper the modifications and their significance are discussed for further modeling improvements.

  2. Dynamic phenomena arising from an extended Core Group model.

    PubMed

    Greenhalgh, David; Griffiths, Martin

    2009-10-01

    In order to obtain a reasonably accurate model for the spread of a particular infectious disease through a population, it may be necessary for this model to possess some degree of structural complexity. Many such models have, in recent years, been found to exhibit a phenomenon known as backward bifurcation, which generally implies the existence of two subcritical endemic equilibria. It is often possible to refine these models yet further, and we investigate here the influence such a refinement may have on the dynamic behaviour of a system in the region of the parameter space near R(0)=1. We consider a natural extension to a so-called Core Group model for the spread of a sexually transmitted disease, arguing that this may in fact give rise to a more realistic model. From the deterministic viewpoint we study the possible shapes of the resulting bifurcation diagrams and the associated stability patterns. Stochastic versions of both the original and the extended models are also developed so that the probability of extinction and time to extinction may be examined, allowing us to gain further insights into the complex system dynamics near R(0)=1. A number of interesting phenomena are observed, for which heuristic explanations are provided.

  3. A numerical strategy for modelling rotating stall in core compressors

    NASA Astrophysics Data System (ADS)

    Vahdati, M.

    2007-03-01

    The paper will focus on one specific core-compressor instability, rotating stall, because of the pressing industrial need to improve current design methods. The determination of the blade response during rotating stall is a difficult problem for which there is no reliable procedure. During rotating stall, the blades encounter the stall cells and the excitation depends on the number, size, exact shape and rotational speed of these cells. The long-term aim is to minimize the forced response due to rotating stall excitation by avoiding potential matches between the vibration modes and the rotating stall pattern characteristics. Accurate numerical simulations of core-compressor rotating stall phenomena require the modelling of a large number of bladerows using grids containing several tens of millions of points. The time-accurate unsteady-flow computations may need to be run for several engine revolutions for rotating stall to get initiated and many more before it is fully developed. The difficulty in rotating stall initiation arises from a lack of representation of the triggering disturbances which are inherently present in aeroengines. Since the numerical model represents a symmetric assembly, the only random mechanism for rotating stall initiation is provided by numerical round-off errors. In this work, rotating stall is initiated by introducing a small amount of geometric mistuning to the rotor blades. Another major obstacle in modelling flows near stall is the specification of appropriate upstream and downstream boundary conditions. Obtaining reliable boundary conditions for such flows can be very difficult. In the present study, the low-pressure compression (LPC) domain is placed upstream of the core compressor. With such an approach, only far field atmospheric boundary conditions are specified which are obtained from aircraft speed and altitude. A chocked variable-area nozzle, placed after the last compressor bladerow in the model, is used to impose boundary

  4. Systems Modeling for Crew Core Body Temperature Prediction Postlanding

    NASA Technical Reports Server (NTRS)

    Cross, Cynthia; Ochoa, Dustin

    2010-01-01

    The Orion Crew Exploration Vehicle, NASA s latest crewed spacecraft project, presents many challenges to its designers including ensuring crew survivability during nominal and off nominal landing conditions. With a nominal water landing planned off the coast of San Clemente, California, off nominal water landings could range from the far North Atlantic Ocean to the middle of the equatorial Pacific Ocean. For all of these conditions, the vehicle must provide sufficient life support resources to ensure that the crew member s core body temperatures are maintained at a safe level prior to crew rescue. This paper will examine the natural environments, environments created inside the cabin and constraints associated with post landing operations that affect the temperature of the crew member. Models of the capsule and the crew members are examined and analysis results are compared to the requirement for safe human exposure. Further, recommendations for updated modeling techniques and operational limits are included.

  5. Mean-field fluid behavior of the gaussian core model

    PubMed

    Louis; Bolhuis; Hansen

    2000-12-01

    We show that the Gaussian core model of particles interacting via a penetrable repulsive Gaussian potential, first considered by Stillinger [J. Chem. Phys. 65, 3968 (1976)], behaves as a weakly correlated "mean-field fluid" over a surprisingly wide density and temperature range. In the bulk, the structure of the fluid phase is accurately described by the random phase approximation for the direct correlation function, and by the more sophisticated hypernetted chain integral equation. The resulting pressure deviates very little from a simple mean-field-like quadratic form in the density, while the low density virial expansion turns out to have an extremely small radius of convergence. Density profiles near a hard wall are also very accurately described by the corresponding mean-field free-energy functional. The binary version of the model exhibits a spinodal instability against demixing at high densities. Possible implications for semidilute polymer solutions are discussed.

  6. Development of CFD model for augmented core tripropellant rocket engine

    NASA Technical Reports Server (NTRS)

    Jones, Kenneth M.

    1994-01-01

    The Space Shuttle era has made major advances in technology and vehicle design to the point that the concept of a single-stage-to-orbit (SSTO) vehicle appears more feasible. NASA presently is conducting studies into the feasibility of certain advanced concept rocket engines that could be utilized in a SSTO vehicle. One such concept is a tripropellant system which burns kerosene and hydrogen initially and at altitude switches to hydrogen. This system will attain a larger mass fraction because LOX-kerosene engines have a greater average propellant density and greater thrust-to-weight ratio. This report describes the investigation to model the tripropellant augmented core engine. The physical aspects of the engine, the CFD code employed, and results of the numerical model for a single modular thruster are discussed.

  7. A vectorized heat transfer model for solid reactor cores

    SciTech Connect

    Rider, W.J.; Cappiello, M.W.; Liles, D.R.

    1990-01-01

    The new generation of nuclear reactors includes designs that are significantly different from light water reactors. Among these new reactor designs is the Modular High-Temperature Gas-Cooled Reactor (MHTGR). In addition, nuclear thermal rockets share a number of similarities with terrestrial HTGRs and would be amenable to similar types of analyses. In these reactors, the heat transfer in the solid core mass is of primary interest in design and safety assessment. One significant safety feature of these reactors is the capability to withstand a loss of pressure and forced cooling in the primary system and still maintain peak fuel temperatures below the safe threshold for retaining the fission products. To accurately assess the performance of gas-cooled reactors during these types of transients, a Helium/Hydrogen Cooled Reactor Analysis (HERA) computer code has been developed. HERA has the ability to model arbitrary geometries in three dimensions, which allows the user to easily analyze reactor cores constructed of prismatic graphite elements. The code accounts for heat generation in the fuel, control rods and other structures; conduction and radiation across gaps; convection to the coolant; and a variety of boundary conditions. The numerical solution scheme has been optimized for vector computers, making long transient analyses economical. Time integration is either explicit or implicit, which allows the use of the model to accurately calculate both short- or long-term transients with an efficient use of computer time. Both the basic spatial and temporal integration schemes have been benchmarked against analytical solutions. Also, HERA has been used to analyze a depressurized loss of forced cooling transient in a HTGR with a very detailed three-dimensional input model. The results compare favorably with other means of analysis and provide further validation of the models and methods. 18 refs., 11 figs.

  8. LOW MACH NUMBER MODELING OF CORE CONVECTION IN MASSIVE STARS

    SciTech Connect

    Gilet, C.; Almgren, A. S.; Bell, J. B.; Nonaka, A.; Woosley, S. E.; Zingale, M.

    2013-08-20

    This work presents three-dimensional simulations of core convection in a 15 M{sub Sun} star halfway through its main sequence lifetime. To perform the necessary long-time calculations, we use the low Mach number code MAESTRO, with initial conditions taken from a one-dimensional stellar model. We first identify several key factors that the one-dimensional initial model must satisfy to ensure efficient simulation of the convection process. We then use the three-dimensional simulations to examine the effects of two common modeling choices on the resulting convective flow: using a fixed composition approximation and using a reduced domain size. We find that using a fixed composition model actually increases the computational cost relative to using the full multi-species model because the fixed composition system takes longer to reach convection that is in a quasi-static state. Using a reduced (octant rather than full sphere) simulation domain yields flow with statistical properties that are within a factor of two of the full sphere simulation values. Both the octant and full sphere simulations show similar mixing across the convection zone boundary that is consistent with the turbulent entrainment model. However, the global character of the flow is distinctly different in the octant simulation, showing more rapid changes in the large-scale structure of the flow and thus a more isotropic flow on average.

  9. Low Mach Number Modeling of Core Convection in Massive Stars

    NASA Astrophysics Data System (ADS)

    Gilet, C.; Almgren, A. S.; Bell, J. B.; Nonaka, A.; Woosley, S. E.; Zingale, M.

    2013-08-01

    This work presents three-dimensional simulations of core convection in a 15 M ⊙ star halfway through its main sequence lifetime. To perform the necessary long-time calculations, we use the low Mach number code MAESTRO, with initial conditions taken from a one-dimensional stellar model. We first identify several key factors that the one-dimensional initial model must satisfy to ensure efficient simulation of the convection process. We then use the three-dimensional simulations to examine the effects of two common modeling choices on the resulting convective flow: using a fixed composition approximation and using a reduced domain size. We find that using a fixed composition model actually increases the computational cost relative to using the full multi-species model because the fixed composition system takes longer to reach convection that is in a quasi-static state. Using a reduced (octant rather than full sphere) simulation domain yields flow with statistical properties that are within a factor of two of the full sphere simulation values. Both the octant and full sphere simulations show similar mixing across the convection zone boundary that is consistent with the turbulent entrainment model. However, the global character of the flow is distinctly different in the octant simulation, showing more rapid changes in the large-scale structure of the flow and thus a more isotropic flow on average.

  10. Epithelial Junction Opener Improves Oncolytic Adenovirus Therapy in Mouse Tumor Models

    PubMed Central

    Yumul, Roma; Richter, Maximilian; Lu, Zhuo-Zhuang; Saydaminova, Kamola; Wang, Hongjie; Wang, Chung-Huei Katherine; Carter, Darrick; Lieber, André

    2016-01-01

    A central resistance mechanism in solid tumors is the maintenance of epithelial junctions between malignant cells that prevent drug penetration into the tumor. Human adenoviruses (Ads) have evolved mechanisms to breach epithelial barriers. For example, during Ad serotype 3 (Ad3) infection of epithelial tumor cells, massive amounts of subviral penton-dodecahedral particles (PtDd) are produced and released from infected cells to trigger the transient opening of epithelial junctions, thus facilitating lateral virus spread. We show here that an Ad3 mutant that is disabled for PtDd production is significantly less effective in killing of epithelial human xenograft tumors than the wild-type Ad3 virus. Intratumoral spread and therapeutic effect of the Ad3 mutant was enhanced by co-administration of a small recombinant protein (JO; produced in Escherichia coli) that incorporated the minimal junction opening domains of PtDd. We then demonstrated that co-administration of JO with replication-competent Ads that do not produce PtDd (Ad5, Ad35) resulted in greater attenuation of tumor growth than virus injection alone. Furthermore, we genetically modified a conditionally replicating Ad5-based oncolytic Ad (Ad5Δ24) to express a secreted form of JO upon replication in tumor cells. The JO-expressing virus had a significantly greater antitumor effect than the unmodified AdΔ24 version. Our findings indicate that epithelial junctions limit the efficacy of oncolytic Ads and that this problem can be address by co-injection or expression of JO. JO has also the potential for improving cancer therapy with other types of oncolytic viruses. PMID:26993072

  11. Model uniform core criteria for mass casualty triage.

    PubMed

    2011-06-01

    There is a need for model uniform core criteria for mass casualty triage because disasters frequently cross jurisdictional lines and involve responders from multiple agencies who may be using different triage tools. These criteria (Tables 1-4) reflect the available science, but it is acknowledged that there are significant research gaps. When no science was available, decisions were formed by expert consensus derived from the available triage systems. The intent is to ensure that providers at a mass-casualty incident use triage methodologies that incorporate these core principles in an effort to promote interoperability and standardization. At a minimum, each triage system must incorporate the criteria that are listed below. Mass casualty triage systems in use can be modified using these criteria to ensure interoperability. The criteria include general considerations, global sorting, lifesaving interventions, and assignment of triage categories. The criteria apply only to providers who are organizing multiple victims in a discrete geographic location or locations, regardless of the size of the incident. They are classified by whether they were derived through available direct scientific evidence, indirect scientific evidence, expert consensus, and/or are used in multiple existing triage systems. These criteria address only primary triage and do not consider secondary triage. For the purposes of this document the term triage refers to mass-casualty triage and provider refers to any person who assigns primary triage categories to victims of a mass-casualty incident.

  12. Development of an automated core model for nuclear reactors

    SciTech Connect

    Mosteller, R.D.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to develop an automated package of computer codes that can model the steady-state behavior of nuclear-reactor cores of various designs. As an added benefit, data produced for steady-state analysis also can be used as input to the TRAC transient-analysis code for subsequent safety analysis of the reactor at any point in its operating lifetime. The basic capability to perform steady-state reactor-core analysis already existed in the combination of the HELIOS lattice-physics code and the NESTLE advanced nodal code. In this project, the automated package was completed by (1) obtaining cross-section libraries for HELIOS, (2) validating HELIOS by comparing its predictions to results from critical experiments and from the MCNP Monte Carlo code, (3) validating NESTLE by comparing its predictions to results from numerical benchmarks and to measured data from operating reactors, and (4) developing a linkage code to transform HELIOS output into NESTLE input.

  13. Mouse models of Casc3 reveal developmental functions distinct from other components of the exon junction complex.

    PubMed

    Mao, Hanqian; Brown, Hannah E; Silver, Debra L

    2017-01-01

    The exon junction complex (EJC) is a multiprotein complex integral to mRNA metabolism. Biochemistry and genetic studies have concluded that the EJC is composed of four core proteins, MAGOH, EIF4A3, RBM8A, and CASC3. Yet recent studies in Drosophila indicate divergent physiological functions for Barentsz, the mammalian Casc3 ortholog, raising the question as to whether CASC3 is a constitutive component of the EJC. This issue remains poorly understood, particularly in an in vivo mammalian context. We previously found that haploinsufficiency for Magoh, Eif4a3, or Rbm8a disrupts neuronal viability and neural progenitor proliferation, resulting in severe microcephaly. Here, we use two new Casc3 mouse alleles to demonstrate developmental phenotypes that sharply contrast those of other core EJC components. Homozygosity for either null or hypomorphic Casc3 alleles led to embryonic and perinatal lethality, respectively. Compound embryos lacking Casc3 expression were smaller with proportionately reduced brain size. Mutant brains contained fewer neurons and progenitors, but no apoptosis, all phenotypes explained by developmental delay. This finding, which contrasts with severe neural phenotypes evident in other EJC mutants, indicates Casc3 is largely dispensable for brain development. In the developing brain, CASC3 protein expression is substoichiometric relative to MAGOH, EIF4A3, and RBM8A. Taken together, this argues that CASC3 is not an essential EJC component in brain development and suggests it could function in a tissue-specific manner.

  14. The Geological information and modelling Thematic Core Service of EPOS

    NASA Astrophysics Data System (ADS)

    Robida, François; Wächter, Joachim; Tulstrup, Jørgen; Lorenz, Henning; Carter, Mary; Cipolloni, Carlo; Morel, Olivier

    2016-04-01

    Geological data and models are important assets for the EPOS community. The Geological information and modelling Thematic Core Service of EPOS is being designed and will be implemented in an efficient and sustainable access system for geological multi-scale data assets for EPOS through the integration of distributed infrastructure components (nodes) of geological surveys, research institutes and the international drilling community (ICDP/IODP). The TCS will develop and take benefit of the synergy between the existing data infrastructures of the Geological Surveys of Europe (EuroGeoSurveys / OneGeology-Europe / EGDI) and of the large amount of information produced by the research organisations. These nodes will offer a broad range of resources including: geological maps, borehole data, geophysical data (seismic data, borehole log data), archived information on physical material (samples, cores), geochemical and other analyses of rocks, soils and minerals, and Geological models (3D, 4D). The services will be implemented on international standards (such as INSPIRE, IUGS/CGI, OGC, W3C, ISO) in order to guarantee their interoperability with other EPOS TCS as well as their compliance with INSPIRE European Directive or international initiatives (such as OneGeology). This will provide future virtual research environments with means to facilitate the use of existing information for future applications. In addition, workflows will be established that allow the integration of other existing and new data and applications. Processing and the use of simulation and visualization tools will subsequently support the integrated analysis and characterization of complex subsurface structures and their inherent dynamic processes. This will in turn aid in the overall understanding of complex multi-scale geo-scientific questions. This TCS will work alongside other EPOS TCSs to create an efficient and comprehensive multidisciplinary research platform for the Earth Sciences in Europe.

  15. The Geological information and modelling Thematic Core Service of EPOS

    NASA Astrophysics Data System (ADS)

    Robida, François; Wächter, Joachim; Tulstrup, Jørgen; Lorenz, Henning; Carter, Mary; Cipolloni, Carlo

    2015-04-01

    Geological data and models are important assets for the EPOS community. The Geological information and modelling Thematic Core Service of EPOS will be designed and implemented in an efficient and sustainable access system for geological multi-scale data assets for EPOS through the integration of distributed infrastructure components (nodes) of geological surveys, research institutes and the international drilling community (ICDP) . The TCS will develop and take benefit of the synergy between the existing data infrastructures of the Geological Surveys of Europe (EuroGeoSurveys / OneGeology-Europe / EGDI) and on the large amount of information produced by the research organisations. These nodes will offer a broad range of resources including: digitised geological maps, borehole data, geophysical data (seismic data, borehole log data), archived information on physical material (samples, cores), geochemical and other analyses of rocks, soils and minerals, and Geological models (3D, 4D). The services will be implemented on international standards (such as INSPIRE, IUGS/CGI, OGC, W3C, ISO) in order to guarantee their interoperability with other EPOS TCS as well as their compliance with INSPIRE European Directive or international initiatives (such as OneGeology). This will provide future virtual research environments with means to facilitate the use of existing information for future applications. In addition, workflows will be established that allow the integration of other existing and new data and applications. Processing and the use of simulation and visualization tools will subsequently support the integrated analysis and characterization of complex subsurface structures and their inherent dynamic processes. This will in turn aid in the overall understanding of complex multi-scale geo-scientific questions. This TCS will work alongside other EPOS TCSs to create an efficient and comprehensive multidisciplinary research platform for the Earth Sciences in Europe.

  16. Integration of geometric consistency contributory factors in three-leg junctions collision prediction models of Portuguese two-lane national highways.

    PubMed

    da Costa, Jocilene Otilia; Jacques, Maria Alice Prudêncio; Soares, Francisco Emanuel Cunha; Freitas, Elisabete Fraga

    2016-01-01

    This paper aims at developing a collision prediction model for three-leg junctions located in national roads (NR) in Northern Portugal. The focus is to identify factors that contribute for collision type crashes in those locations, mainly factors related to road geometric consistency, since literature is scarce on those, and to research the impact of three modeling methods: generalized estimating equations, random-effects negative binomial models and random-parameters negative binomial models, on the factors of those models. The database used included data published between 2008 and 2010 of 177 three-leg junctions. It was split in three groups of contributing factors which were tested sequentially for each of the adopted models: at first only traffic, then, traffic and the geometric characteristics of the junctions within their area of influence; and, lastly, factors which show the difference between the geometric characteristics of the segments boarding the junctions' area of influence and the segment included in that area were added. The choice of the best modeling technique was supported by the result of a cross validation made to ascertain the best model for the three sets of researched contributing factors. The models fitted with random-parameters negative binomial models had the best performance in the process. In the best models obtained for every modeling technique, the characteristics of the road environment, including proxy measures for the geometric consistency, along with traffic volume, contribute significantly to the number of collisions. Both the variables concerning junctions and the various national highway segments in their area of influence, as well as variations from those characteristics concerning roadway segments which border the already mentioned area of influence have proven their relevance and, therefore, there is a rightful need to incorporate the effect of geometric consistency in the three-leg junctions safety studies.

  17. Benchmarking spin-state chemistry in starless core models

    NASA Astrophysics Data System (ADS)

    Sipilä, O.; Caselli, P.; Harju, J.

    2015-06-01

    Aims: We aim to present simulated chemical abundance profiles for a variety of important species, giving special attention to spin-state chemistry, in order to provide reference results to which present and future models can be compared. Methods: We employ gas-phase and gas-grain models to investigate chemical abundances in physical conditions that correspond to starless cores. To this end, we have developed new chemical reaction sets for both gas-phase and grain-surface chemistry, including the deuterated forms of species with up to six atoms and the spin-state chemistry of light ions and of the species involved in the ammonia and water formation networks. The physical model is kept simple to facilitate straightforward benchmarking of other models against the results of this paper. Results: We find that the ortho/para ratios of ammonia and water are similar in both gas-phase and gas-grain models, particularly at late times, implying that the ratios are determined by gas-phase processes. Furthermore, the ratios do not exhibit any strong dependence on core density. We derive late-time ortho/para ratios of ~0.5 for ammonia and ~1.6 for water. We find that including or excluding deuterium in the calculations has little effect on the abundances of non-deuterated species and on the ortho/para ratios of ammonia and water, especially in gas-phase models where deuteration is naturally hindered by the presence of abundant heavy elements. Although we study a rather narrow temperature range (10-20 K), we find strong temperature dependence in, e.g., deuteration and nitrogen chemistry. For example, the depletion timescale of ammonia is significantly reduced when the temperature is increased from 10 to 20 K; this is because the increase in temperature translates into increased accretion rates, while the very high binding energy of ammonia prevents it from being desorbed at 20 K. Appendices are available in electronic form at http://www.aanda.org

  18. A Single-Level Tunnel Model to Account for Electrical Transport through Single Molecule- and Self-Assembled Monolayer-based Junctions

    PubMed Central

    Garrigues, Alvar R.; Yuan, Li; Wang, Lejia; Mucciolo, Eduardo R.; Thompon, Damien; del Barco, Enrique; Nijhuis, Christian A.

    2016-01-01

    We present a theoretical analysis aimed at understanding electrical conduction in molecular tunnel junctions. We focus on discussing the validity of coherent versus incoherent theoretical formulations for single-level tunneling to explain experimental results obtained under a wide range of experimental conditions, including measurements in individual molecules connecting the leads of electromigrated single-electron transistors and junctions of self-assembled monolayers (SAM) of molecules sandwiched between two macroscopic contacts. We show that the restriction of transport through a single level in solid state junctions (no solvent) makes coherent and incoherent tunneling formalisms indistinguishable when only one level participates in transport. Similar to Marcus relaxation processes in wet electrochemistry, the thermal broadening of the Fermi distribution describing the electronic occupation energies in the electrodes accounts for the exponential dependence of the tunneling current on temperature. We demonstrate that a single-level tunnel model satisfactorily explains experimental results obtained in three different molecular junctions (both single-molecule and SAM-based) formed by ferrocene-based molecules. Among other things, we use the model to map the electrostatic potential profile in EGaIn-based SAM junctions in which the ferrocene unit is placed at different positions within the molecule, and we find that electrical screening gives rise to a strongly non-linear profile across the junction. PMID:27216489

  19. Core polarization and modern realistic shell-model Hamiltonians

    NASA Astrophysics Data System (ADS)

    Coraggio, L.; Covello, A.; Gargano, A.; Itaco, N.

    The understanding of the convergence properties of the shell-model effective Hamiltonian, within the framework of the many-body perturbation theory, is a long-standing problem. The infinite summation of a certain class of diagrams, the so-called “bubble diagrams,” may be provided calculating the Kirson-Babu-Brown induced interaction, and provides a valid instrument to study whether or not the finite summation of the perturbative series is well-grounded. Here, we perform an application of the calculation of the Kirson-Babu-Brown induced interaction to derive the shell-model effective Hamiltonian for p-shell nuclei starting from a modern nucleon-nucleon potential, obtained by way of the chiral perturbation theory. The outcome of our calculation is compared with a standard calculation of the shell-model Hamiltonian, where the core-polarization effects are calculated only up to third-order in perturbation theory. The results of the two calculations are very close to each other, evidencing that the perturbative approach to the derivation of the shell-model Hamiltonian is still a valid tool for nuclear structure studies.

  20. A New Global Core Plasma Model of the Plasmasphere

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Comfort, R. H.; Craven, P. D.

    2014-01-01

    The Global Core Plasma Model (GCPM) is the first empirical model for thermal inner magnetospheric plasma designed to integrate previous models and observations into a continuous in value and gradient representation of typical total densities. New information about the plasmasphere, in particular, make possible significant improvement. The IMAGE Mission Radio Plasma Imager (RPI) has obtained the first observations of total plasma densities along magnetic field lines in the plasmasphere and polar cap. Dynamics Explorer 1 Retarding Ion Mass Spectrometer (RIMS) has provided densities in temperatures in the plasmasphere for 5 ion species. These and other works enable a new more detailed empirical model of thermal in the inner magnetosphere that will be presented. Specifically shown here are the inner-plasmasphere RIMS measurements, radial fits to densities and temperatures for H(+), He(+), He(++), O(+), and O(+) and the error associated with these initial simple fits. Also shown are more subtle dependencies on the f10.7 P-value (see Richards et al. [1994]).

  1. No-core shell model in an EFT framework

    NASA Astrophysics Data System (ADS)

    Stetcu, Ionel; Torkkola, Juhani L.; Barrett, Bruce R.; van Kolck, Ubirajara

    2006-10-01

    Based on an effective field theory (EFT) that integrates out the pions as degrees of freedom (pionless theory), we present a new approach to the derivation of effective interactions suitable for many-body calculations by means of the no-core shell model. The main investigation is directed toward the description of two-body scattering observables in a restricted harmonic oscillator (HO) basis, and the inherent Gibbs oscillation problem which arises from the truncation of the Hilbert space using HO wave functions. Application of the effective interactions to the description of ^4He will be discussed. I.S. J.L.T, and B.R.B. acknowledge partial support by NSF grant numbers PHY0070858 and PHY0244389. U.v.K. acknowledges partial support from DOE grant number DE-FG02-04ER41338 and from the Sloan Foundation.

  2. Analytical model and new structure of the enhancement-mode polarization-junction HEMT with vertical conduction channel

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Xiong, Jiayun; Wei, Jie; Wu, Junfeng; Peng, Fu; Deng, Siyu; Zhang, Bo; Luo, Xiaorong

    2016-04-01

    A novel enhancement-mode (E-mode) polarization-junction HEMT with vertical conduction channel (PVC-HEMT) is proposed, and its analytical model for threshold voltage (Vth) is presented. It has two features: one is GaN/AlGaN/GaN double hetero-structure, the other is that source and drain locate at the same side of trench-type MOS gate (T-gate), and the source contacts with the T-gate, which forms vertical conduction channel (VC). The 2-D hole gas (2-DHG) and 2-D electron gas (2-DEG) are formed at the GaN-top/AlGaN and AlGaN/GaN-buffer interface, respectively, forming the polarization-junction. First, the E-mode operation is realized because 2-DHG under the source prevents the electrons injecting from source to 2-DEG, breaking through the conventional E-mode method by depleting 2-DEG under the gate. Second, a uniform electric field (E-field) distribution is achieved due to the assisted depletion effect by polarization-junction. Third, the source reduces the E-field peak at the T-gate side and modulates the E-field distribution. The breakdown voltage (BV) of PVC-HEMT is 705 V and specific ON-resistance (RON,sp) is 1.18 mΩ cm2. Compared with conventional HEMT (C-HEMT), PVC-HEMT has a smaller size due to the special location of the source and T-gate. An analytic threshold voltage model is presented and the analytical results agree well with the simulated results.

  3. Numerical modelling of triple-junction tectonics at Karlıova, Eastern Turkey, with implications for regional magma transport

    NASA Astrophysics Data System (ADS)

    Karaoğlu, Özgür; Browning, John; Bazargan, Mohsen; Gudmundsson, Agust

    2016-10-01

    Few places on Earth are as tectonically active as the Karlıova region of eastern Turkey. In this region, complex interactions between the Arabian, Eurasian and Anatolian plates occur at the Karlıova Triple Junction (KTJ). The relationship between tectonics and magma propagation in triple-junction tectonic settings is poorly understood. Here we present new field and numerical results on the mechanism of magma propagation at the KTJ. We explore the effects of crustal heterogeneity and anisotropy, in particular the geometry and mechanical properties of many faults and layers, on magma propagation paths under a variety of tectonic loadings. We propose that two major volcanic centres in the area, the Turnadağ volcano and the Varto caldera, are both fed by comparatively shallow magma chambers at depths of about 8 km, which, in turn, are fed by a single, much larger and deeper reservoir at about 15-18 km depth. By contrast, the nearby Özenç volcanic area is fed directly by the deeper reservoir. We present a series of two-dimensional and three-dimensional numerical models showing that the present tectonic stresses encourage magma-chamber rupture and dyke injection. The results show that inversion tectonics encourages the formation of magma paths as potential feeder dykes. Our three-dimensional models allow us to explore the local stresses induced by complex loading conditions at the Karlıova triple junction, using an approach that can in future be applied to other similar tectonic regions. The numerical results indicate a great complexity in the potential magma (dyke) paths, resulting from local stresses generated by interaction between mechanical layers, major faults, and magma chambers. In particular, the results suggest three main controls on magma path formation and eventual eruptions at KTJ: (1) the geometry and attitude of the associated faults; (2) the heterogeneity and anisotropy of the crust; and (3) mechanical (stress) interactions between deep and shallow

  4. The performances of silicon solar cell with core-shell p-n junctions of micro-nano pillars fabricated by cesium chloride self-assembly and dry etching

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Zhang, Xinshuai; Dong, Gangqiang; Liao, Yuanxun; Wang, Bo; Zhang, Tianchong; Yi, Futing

    2014-03-01

    Silicon micro-nano pillars are cost-efficiently integrated using twice cesium chloride (CsCl) islands lithography technique and dry etching for solar cell applications. The micro PMMA islands are fabricated by inductively coupled plasma (ICP) dry etching with micro CsCl islands as masks, and the nano CsCl islands with nano sizes then are made on the surface of micro PMMA islands and silicon. By ICP dry etching with the mask of micro PMMA islands and nano CsCl islands, the micro-nano silicon pillars are made and certain height micro pillars are randomly positioned between dense arrays of nano pillars with different morphologies by controlling etching conditions. With 300 nm depth p-n junction detected by secondary-ion mass spectrometry (SIMS), the micro pillars of the diameter about 1 μm form the core-shell p-n junction to maximize utility of p-n junction interface and enable efficient free carrier collection, and the nano tapered pillars of 150 nm diameter are used to decrease reflection by a graded-refractive-index. Compared to single micro or nano pillar arrayed cells, the co-integrated solar cell with micro and nano pillars demonstrates improved photovoltaic characteristic that is a photovoltaic conversion efficiency (PCE) of 15.35 % with a short circuit current density ( J sc) of 38.40 mA/cm2 and an open circuit voltage ( V oc) of 555.7 mV, which benefits from the advantages of micro-nano pillar structures and can be further improved upon process optimization.

  5. Application of Stochastic Automata Networks for Creation of Continuous Time Markov Chain Models of Voltage Gating of Gap Junction Channels

    PubMed Central

    Pranevicius, Henrikas; Pranevicius, Mindaugas; Pranevicius, Osvaldas; Bukauskas, Feliksas F.

    2015-01-01

    The primary goal of this work was to study advantages of numerical methods used for the creation of continuous time Markov chain models (CTMC) of voltage gating of gap junction (GJ) channels composed of connexin protein. This task was accomplished by describing gating of GJs using the formalism of the stochastic automata networks (SANs), which allowed for very efficient building and storing of infinitesimal generator of the CTMC that allowed to produce matrices of the models containing a distinct block structure. All of that allowed us to develop efficient numerical methods for a steady-state solution of CTMC models. This allowed us to accelerate CPU time, which is necessary to solve CTMC models, ∼20 times. PMID:25705700

  6. Phase diagram of the Gaussian-core model.

    PubMed

    Prestipino, Santi; Saija, Franz; Giaquinta, Paolo V

    2005-05-01

    We trace with high numerical accuracy the phase diagram of the Gaussian-core model, a classical system of point particles interacting via a Gaussian-shaped, purely repulsive potential. This model, which provides a reliable qualitative description of the thermal behavior of interpenetrable globular polymers, is known to exhibit a polymorphic fcc-bcc transition at low densities and reentrant melting at high densities. Extensive Monte Carlo simulations, carried out in conjunction with accurate calculations of the solid free energies, lead to a thermodynamic scenario that is partially modified with respect to previous knowledge. In particular, we find that: (i) the fluid-bcc-fcc triple-point temperature is about one third of the maximum freezing temperature; (ii) upon isothermal compression, the model exhibits a fluid-bcc-fcc-bcc-fluid sequence of phases in a narrow range of temperatures just above the triple point. We discuss these results in relation to the behavior of star-polymer solutions and of other softly repulsive systems.

  7. Numerical Results of Earth's Core Accumulation 3-D Modelling

    NASA Astrophysics Data System (ADS)

    Khachay, Yurie; Anfilogov, Vsevolod

    2013-04-01

    For a long time as a most convenient had been the model of mega impact in which the early forming of the Earth's core and mantle had been the consequence of formed protoplanet collision with the body of Mercurial mass. But all dynamical models of the Earth's accumulation and the estimations after the Pb-Pb system, lead to the conclusion that the duration of the planet accumulation was about 1 milliard years. But isotopic results after the W-Hf system testify about a very early (5-10) million years, dividing of the geochemical reservoirs of the core and mantle. In [1,3] it is shown, that the account of energy dissipating by the decay of short living radioactive elements and first of all Al,it is sufficient for heating even small bodies with dimensions about (50-100) km up to the iron melting temperature and can be realized a principal new differentiation mechanism. The inner parts of the melted preplanets can join and they are mainly of iron content, but the cold silicate fragments return to the supply zone. Only after the increasing of the gravitational radius, the growing area of the future core can save also the silicate envelope fragments. All existing dynamical accumulation models are constructed by using a spherical-symmetrical model. Hence for understanding the further planet evolution it is significant to trace the origin and evolution of heterogeneities, which occur on the planet accumulation stage. In that paper we are modeling distributions of temperature, pressure, velocity of matter flowing in a block of 3D- spherical body with a growing radius. The boundary problem is solved by the finite-difference method for the system of equations, which include equations which describe the process of accumulation, the Safronov equation, the equation of impulse balance, equation Navier-Stocks, equation for above litho static pressure and heat conductivity in velocity-pressure variables using the Businesque approach. The numerical algorithm of the problem solution in

  8. Dot junction solar cells

    NASA Technical Reports Server (NTRS)

    Daud, T.; Crotty, G. T.

    1986-01-01

    A design of solar cells with reduced junction area on the cell surface is investigated for reduction of saturation current and increase in open-circuit voltage. Equidiameter dot junctions distributed across the surface of the cell offer an efficient alternative, with variations in dot diameter and in the spacing between dots giving the required variations in the ratio of junction area to total surface area. A simplified analysis for short-circuit current and other cell parameters, which enables cell design optimization, is presented. Experimental solar-cell performance results, as functions of different area ratios, are presented and compared with the model. It is shown that saturation current reduction is possible for achieving efficiencies as high as 18 percent in flat-plate terrestrial applications.

  9. Evolution of resistive switching and its ionic models in Pt/Nb-doped SrTiO3 junctions

    NASA Astrophysics Data System (ADS)

    Yang, Mei; Ma, Xiaohua; Wang, Hong; Xi, He; Lv, Ling; Zhang, Peng; Xie, Yong; Gao, Haixia; Cao, Yanrong; Li, Shuwei; Hao, Yue

    2016-07-01

    Charge-trapping or ionic mechanisms of the resistive switching (RS) at metal/Nb-doped SrTiO3 (NSTO) interfaces are still unclear. Here, the electrical properties and RS evolution at Pt/NSTO interfaces are investigated. A volatile RS in the fresh junctions complies with Schottky theory involving an interfacial layer and electrically dependent permittivity. The RS is interpreted by a redox-reaction modulated barrier model. A nonvolatile RS emerges and evolves with increasing the forward voltage. I-V and C-V characteristics imply different conductive filament (CF) configurations in high and low resistance states. An in-barrier ionic CF model is established for the nonvolatile RS. The coherent ionic models are beneficial for understanding the interfacial role in RS and for regulating RS characteristics or realizing high quality metal/oxide diodes.

  10. The composition of Earth's core from equations of state, metal-silicate partitioning, and core formation modeling

    NASA Astrophysics Data System (ADS)

    Fischer, Rebecca; Campbell, Andrew; Ciesla, Fred

    2016-04-01

    The Earth accreted in a series of increasingly large and violent collisions. Simultaneously, the metallic core segregated from the silicate mantle, acquiring its modern composition through high pressure (P), high temperature (T) partitioning reactions. Here we present a model that couples these aspects of early planetary evolution, building on recent accretion simulations and metal-silicate partitioning experiments, constrained by density measurements of Fe-rich alloys. Previously, the equations of state of FeO, Fe-9Si, Fe-16Si, and FeSi were measured to megabar pressures and several thousand K using a laser-heated diamond anvil cell. With these equations of state, we determined that the core's density can be reproduced through the addition of 11.3 +/- 0.6 wt% silicon or 8.1 +/- 1.1 wt% oxygen to an Fe-Ni alloy (Fischer et al., 2011, 2014). Metal-silicate partitioning experiments of Ni, Co, V, Cr, Si, and O have been performed in a diamond anvil cell to 100 GPa and 5700 K, allowing the effects of P, T, and composition on the partitioning behaviors of these elements to be parameterized (Fischer et al., 2015; Siebert et al., 2012). Here we apply those experimental results to model Earth's core formation, using N-body simulations to describe the delivery, masses, and original locations of planetary building blocks (Fischer and Ciesla, 2014). As planets accrete, their core and mantle compositions are modified by high P-T reactions with each collision (Rubie et al., 2011). For partial equilibration of the mantle at 55% of the evolving core-mantle boundary pressure and the liquidus temperature, we find that the core contains 5.4 wt% Si and 1.9 wt% O. This composition is consistent with the seismologically-inferred density of Earth's core, based on comparisons to our equations of state, and indicate that the core cannot contain more than ~2 wt% S or C. Earth analogues experience 1.2 +/- 0.2 log units of oxidation during accretion, due to both the effects of high P

  11. Edge and coupled core/edge transport modeling in tokamak

    SciTech Connect

    Pearlstein, L D; Casper, T A; Cohen, R H; LoDestro, L L; Mattor, N; Porter, G D; Rensink, M E; Rognlien, T D; Ryutov, D D; Scott, H A; Wan, A

    1998-10-14

    Recent advances in the theory and modelling of tokamak edge, scrape-off-layer and divertor plasmas are described. The effects of the poloidal ExB drift on inner/outer divertor-plate asymmetries within a 1D analysis are shown to be in good agreement with experimental observations; above a critical v ExB, the model predicts transitions to supersonic SOL flow at the inboard midplane. Two-dimensional simulations show the importance of ExB flow in the private-flux region and B-drift effects. A theory of rough plasma-facing surfaces is given, and interesting effects, some traveling back up the magnetic field-lines to the SOL plasma, are predicted. The parametric dependence of detached-plasma states in slab geometry has been explored; with sufficient pumping, the location of the ionization front can be controlled; otherwise only fronts at the plate or the X-point are stable. Studies with a more accurate Monte-Carlo neutrals model and a detailed non-LTE radiation-transport code indicate various effects are important for quantitative rnodelling. Long-lived oscillatory UEDGE solutions in both ITER and DIII-D are reported. Detailed simulations of the DIII-D core and edge are presented; impurity and plasma flow are shown to be well modelled with UEDGE, and the roles of impurity and neutral transport in the edge and SOL are discussed.

  12. Modeling of residual stresses in core shroud structures

    SciTech Connect

    Zhang, J.; Dong, P.; Brust, F.W.; Mayfield, M.; McNeil, M.; Shack, W.J.

    1997-10-01

    A BWR core shroud is a cylindrical shell that surrounds the reactor core. Feedwater for the reactor is introduced into the annulus between the reactor vessel wall and the shroud. The shroud separates the feedwater from the cooling water flowing up through the reactor core. The shroud also supports the top guide which provides lateral support to the fuel assemblies and maintains core geometry during operational transients and postulated accidents to permit control rod insertion and provides the refloodable volume needed to ensure safe shutdown and cooling of the core during postulated accident conditions. Core shrouds were fabricated from welded Type 304 or 304L stainless steel plates and are supported at the top and bottom by forged ring support structures. In 1990, cracking was reported in the core shroud of a non-U.S. BWR. The cracks were located in the heat-affected zone (HAZ) of a circumferential core shroud weld. Subsequent inspections in U.S. BWRs have revealed the presence of numerous flaw indications in some BWR core shrouds, primarily in weld HAZs. In several instances, this cracking was quite extensive, with the cracks extending 75% or more around the circumference of some welds. However, because the applied stresses on the shroud are low during operation and postulated accidents and because of the high fracture toughness of stainless steel, adequate structural margins can be preserved even in the presence of extensive cracking. Although assessments by the USNRC staff of the potential significance of this cracking have shown that core shroud cracking does not pose a high degree of risk in the short term, the staff concluded that the cracking was a safety concern for the long term because of the uncertainties associated with the behavior of core shrouds with complete 360{degrees} through-wall cracks under accident conditions and because it could eliminate a layer of defense-in-depth.

  13. Preschool Literacy and the Common Core: A Professional Development Model

    ERIC Educational Resources Information Center

    Wake, Donna G.; Benson, Tammy Rachelle

    2016-01-01

    Many states have adopted the Common Core Standards for literacy and math and have begun enacting these standards in school curriculum. In states where these standards have been adopted, professional educators working in K-12 contexts have been working to create transition plans from existing state-based standards to the Common Core standards. A…

  14. Mild hypothermia alleviates brain oedema and blood-brain barrier disruption by attenuating tight junction and adherens junction breakdown in a swine model of cardiopulmonary resuscitation

    PubMed Central

    Li, Jiebin; Li, Chunsheng; Yuan, Wei; Wu, Junyuan; Li, Jie; Li, Zhenhua; Zhao, Yongzhen

    2017-01-01

    Mild hypothermia improves survival and neurological recovery after cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). However, the mechanism underlying this phenomenon is not fully elucidated. The aim of this study was to determine whether mild hypothermia alleviates early blood–brain barrier (BBB) disruption. We investigated the effects of mild hypothermia on neurologic outcome, survival rate, brain water content, BBB permeability and changes in tight junctions (TJs) and adherens junctions (AJs) after CA and CPR. Pigs were subjected to 8 min of untreated ventricular fibrillation followed by CPR. Mild hypothermia (33°C) was intravascularly induced and maintained at this temperature for 12 h, followed by active rewarming. Mild hypothermia significantly reduced cortical water content, decreased BBB permeability and attenuated TJ ultrastructural and basement membrane breakdown in brain cortical microvessels. Mild hypothermia also attenuated the CPR-induced decreases in TJ (occludin, claudin-5, ZO-1) and AJ (VE-cadherin) protein and mRNA expression. Furthermore, mild hypothermia decreased the CA- and CPR-induced increases in matrix metalloproteinase-9 (MMP-9) and vascular endothelial growth factor (VEGF) expression and increased angiogenin-1 (Ang-1) expression. Our findings suggest that mild hypothermia attenuates the CA- and resuscitation-induced early brain oedema and BBB disruption, and this improvement might be at least partially associated with attenuation of the breakdown of TJ and AJ, suppression of MMP-9 and VEGF expression, and upregulation of Ang-1 expression. PMID:28355299

  15. Measuring Neuromuscular Junction Functionality in the SOD1(G93A) Animal Model of Amyotrophic Lateral Sclerosis.

    PubMed

    Rizzuto, Emanuele; Pisu, Simona; Musarò, Antonio; Del Prete, Zaccaria

    2015-09-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that leads to motor neuron degeneration, alteration in neuromuscular junctions (NMJs), muscle atrophy, and paralysis. To investigate the NMJ functionality in ALS we tested, in vitro, two innervated muscle types excised from SOD1(G93A) transgenic mice at the end-stage of the disease: the Soleus, a postural muscle almost completely paralyzed at that stage, and the diaphragm, which, on the contrary, is functional until death. To this aim we employed an experimental protocol that combined two types of electrical stimulation: the direct stimulation and the stimulation through the nerve. The technique we applied allowed us to determine the relevance of NMJ functionality separately from muscle contractile properties in SOD1(G93A) animal model. Functional measurements revealed that the muscle contractility of transgenic diaphragms is almost unaltered in comparison to control muscles, while transgenic Soleus muscles were severely compromised. In contrast, when stimulated via the nerve, both transgenic muscle types showed a strong decrease of the contraction force, a slowing down of the kinetic parameters, as well as alterations in the neurotransmission failure parameter. All together, these results confirm a severely impaired functionality in the SOD1(G93A) neuromuscular junctions.

  16. Neuromuscular disease. DOK7 gene therapy benefits mouse models of diseases characterized by defects in the neuromuscular junction.

    PubMed

    Arimura, Sumimasa; Okada, Takashi; Tezuka, Tohru; Chiyo, Tomoko; Kasahara, Yuko; Yoshimura, Toshiro; Motomura, Masakatsu; Yoshida, Nobuaki; Beeson, David; Takeda, Shin'ichi; Yamanashi, Yuji

    2014-09-19

    The neuromuscular junction (NMJ) is the synapse between a motor neuron and skeletal muscle. Defects in NMJ transmission cause muscle weakness, termed myasthenia. The muscle protein Dok-7 is essential for activation of the receptor kinase MuSK, which governs NMJ formation, and DOK7 mutations underlie familial limb-girdle myasthenia (DOK7 myasthenia), a neuromuscular disease characterized by small NMJs. Here, we show in a mouse model of DOK7 myasthenia that therapeutic administration of an adeno-associated virus (AAV) vector encoding the human DOK7 gene resulted in an enlargement of NMJs and substantial increases in muscle strength and life span. When applied to model mice of another neuromuscular disorder, autosomal dominant Emery-Dreifuss muscular dystrophy, DOK7 gene therapy likewise resulted in enlargement of NMJs as well as positive effects on motor activity and life span. These results suggest that therapies aimed at enlarging the NMJ may be useful for a range of neuromuscular disorders.

  17. Applying the Network Simulation Method for testing chaos in a resistively and capacitively shunted Josephson junction model

    NASA Astrophysics Data System (ADS)

    Bellver, Fernando Gimeno; Garratón, Manuel Caravaca; Soto Meca, Antonio; López, Juan Antonio Vera; Guirao, Juan L. G.; Fernández-Martínez, Manuel

    In this paper, we explore the chaotic behavior of resistively and capacitively shunted Josephson junctions via the so-called Network Simulation Method. Such a numerical approach establishes a formal equivalence among physical transport processes and electrical networks, and hence, it can be applied to efficiently deal with a wide range of differential systems. The generality underlying that electrical equivalence allows to apply the circuit theory to several scientific and technological problems. In this work, the Fast Fourier Transform has been applied for chaos detection purposes and the calculations have been carried out in PSpice, an electrical circuit software. Overall, it holds that such a numerical approach leads to quickly computationally solve Josephson differential models. An empirical application regarding the study of the Josephson model completes the paper.

  18. Computer modeling of a two-junction, monolithic cascade solar cell

    NASA Technical Reports Server (NTRS)

    Lamorte, M. F.; Abbott, D.

    1979-01-01

    The theory and design criteria for monolithic, two-junction cascade solar cells are described. The departure from the conventional solar cell analytical method and the reasons for using the integral form of the continuity equations are briefly discussed. The results of design optimization are presented. The energy conversion efficiency that is predicted for the optimized structure is greater than 30% at 300 K, AMO and one sun. The analytical method predicts device performance characteristics as a function of temperature. The range is restricted to 300 to 600 K. While the analysis is capable of determining most of the physical processes occurring in each of the individual layers, only the more significant device performance characteristics are presented.

  19. Chemically synthesized nanowire TiO2/ZnO core-shell p-n junction array for high sensitivity ultraviolet photodetector

    NASA Astrophysics Data System (ADS)

    Dao, T. D.; Dang, C. T. T.; Han, G.; Hoang, C. V.; Yi, W.; Narayanamurti, V.; Nagao, T.

    2013-11-01

    A sol-gel-based ultrathin TiO2 lamination coating was adapted to a hydrothermally grown ZnO nanowire array to realize an all-oxide ultra-sensitive p-n photodiode. The core-shell heterojunction—the key component of the device—is composed of a 5-10 nm thick p-type Cr-doped TiO2 nanoshell and n-type single-crystalline ZnO nanowires (50 nm radius). Owing to the enhanced light scattering and carrier separation in the core-shell architecture, this device exhibits the highest performance among the ZnO nanowire-based photodetectors. At a moderate reverse bias of -5 V and under ultraviolet light illumination at 104 μW, it shows a switch current ratio of 140 and a responsivity as large as 250 A/W, while it shows nearly no response to the infrared and visible light.

  20. New Insights from Modeling of Core-collapse Supernova Spectra

    NASA Astrophysics Data System (ADS)

    Hillier, D. John; Dessart, Luc

    2013-06-01

    With the advent of modern survey telescopes, research into supernovae (SNe) is making huge advances. The surveys are discovering thousands of SNe, identifying new classes of SNe, refining the statistics of SNe occurrence as a function of class and host galaxy properties, and allowing the direct identification of SNe progenitors. With these new observations comes the need for theoretical advances in modeling SNe spectra. In this presentation we discuss recent advances in modeling and interpreting the spectra of core-collapse SNe (Types Ib, Ic, and II) and pair-instability SNe. Recent investigations have revealed the importance of mixing nickel into the helium-rich layer for the excitation of He I lines in Type Ib and Ic supernovae. In particular, we were able to generate Ib and Ic like spectra from the same progenitor model - the only distinction in the SN ejecta is the amount of mixing. There is also now a general realization that most Ib and Ic SNe arise from intermediate mass stars (M < 20 Mo) which have undergone complex mass-transfer and mass-loss processes in a binary system. While some super-luminous SNe have been associated with the pair-production instability, detailed spectroscopic modeling has revealed that the observed post-maximum spectra are too blue, and this raises serious doubts as to their origin. With the advent of the mesa star, a publicly available stellar evolution code, we can now create our own SN progenitors with physically consistent structures. Importantly, we can alter the inputs to mesa star to check the influence of different evolutionary parameters on the structure of the pre-SN star, and its subsequent influence on the SN light curve and spectra. We have used mesa star to generate RSG progenitors for a star with an initial mass of 15 Mo, and have examined the influence of the assumed mixing length, metallicity, rotation, and mass-loss rate. All show measurable effects on the pre-SN progenitor, and on the resulting SN light curves and

  1. Integrating a human thermoregulatory model with a clothing model to predict core and skin temperatures.

    PubMed

    Yang, Jie; Weng, Wenguo; Wang, Faming; Song, Guowen

    2017-05-01

    This paper aims to integrate a human thermoregulatory model with a clothing model to predict core and skin temperatures. The human thermoregulatory model, consisting of an active system and a passive system, was used to determine the thermoregulation and heat exchanges within the body. The clothing model simulated heat and moisture transfer from the human skin to the environment through the microenvironment and fabric. In this clothing model, the air gap between skin and clothing, as well as clothing properties such as thickness, thermal conductivity, density, porosity, and tortuosity were taken into consideration. The simulated core and mean skin temperatures were compared to the published experimental results of subject tests at three levels of ambient temperatures of 20 °C, 30 °C, and 40 °C. Although lower signal-to-noise-ratio was observed, the developed model demonstrated positive performance at predicting core temperatures with a maximum difference between the simulations and measurements of no more than 0.43 °C. Generally, the current model predicted the mean skin temperatures with reasonable accuracy. It could be applied to predict human physiological responses and assess thermal comfort and heat stress.

  2. Simulating and modeling the breakdown voltage in a semi-insulating GaAs P+N junction diode

    NASA Astrophysics Data System (ADS)

    Resfa, A.; Menezla, Brahimi. R.; Benchhima, M.

    2014-08-01

    This work aims to determine the characteristic I (breakdown voltage) of the inverse current in a GaAs PN junction diode, subject to a reverse polarization, while specifying the parameters that influence the breakdown voltage of the diode. In this work, we simulated the behavior of the ionization phenomenon by impact breakdown by avalanche of the PN junctions, subject to an inverse polarization. We will take into account both the trapping model in a stationary regime in the P+N structure using like material of basis the III-V compounds and mainly the GaAs semi-insulating in which the deep centers have in important densities. We are talking about the model of trapping in the space charge region (SCR) and that is the trap density donor and acceptor states. The carrier crossing the space charge region (SCR) of W thickness creates N electron—hole pairs: for every created pair, the electron and the hole are swept quickly by the electric field, each in an opposite direction, which comes back, according to an already accepted reasoning, to the crossing of the space charge region (SCR) by an electron or a hole. So the even N pair created by the initial particle provoke N2 ionizations and so forth. The study of the physical and electrical behaviour of semiconductors is based on the influence of the presence of deep centers on the characteristic I(V) current-tension, which requires the calculation of the electrostatic potential, the electric field, the integral of ionization, the density of the states traps, the diffusion current of minority in the regions (1) and (3), the current thermal generation in the region (2), the leakage current in the surface, and the breakdown voltage.

  3. Continuity of Monolayer-Bilayer Junctions for Localization of Lipid Raft Microdomains in Model Membranes

    PubMed Central

    Ryu, Yong-Sang; Wittenberg, Nathan J.; Suh, Jeng-Hun; Lee, Sang-Wook; Sohn, Youngjoo; Oh, Sang-Hyun; Parikh, Atul N.; Lee, Sin-Doo

    2016-01-01

    We show that the selective localization of cholesterol-rich domains and associated ganglioside receptors prefer to occur in the monolayer across continuous monolayer-bilayer junctions (MBJs) in supported lipid membranes. For the MBJs, glass substrates were patterned with poly(dimethylsiloxane) (PDMS) oligomers by thermally-assisted contact printing, leaving behind 3 nm-thick PDMS patterns. The hydrophobicity of the transferred PDMS patterns was precisely tuned by the stamping temperature. Lipid monolayers were formed on the PDMS patterned surface while lipid bilayers were on the bare glass surface. Due to the continuity of the lipid membranes over the MBJs, essentially free diffusion of lipids was allowed between the monolayer on the PDMS surface and the upper leaflet of the bilayer on the glass substrate. The preferential localization of sphingomyelin, ganglioside GM1 and cholesterol in the monolayer region enabled to develop raft microdomains through coarsening of nanorafts. Our methodology provides a simple and effective scheme of non-disruptive manipulation of the chemical landscape associated with lipid phase separations, which leads to more sophisticated applications in biosensors and as cell culture substrates. PMID:27230411

  4. Continuity of monolayer-bilayer junctions for localization of lipid raft microdomains in model membranes

    SciTech Connect

    Ryu, Yong -Sang; Wittenberg, Nathan J.; Suh, Jeng -Hun; Lee, Sang -Wook; Sohn, Youngjoo; Oh, Sang -Hyun; Parikh, Atul N.; Lee, Sin -Doo

    2016-05-27

    We show that the selective localization of cholesterol-rich domains and associated ganglioside receptors prefer to occur in the monolayer across continuous monolayer-bilayer junctions (MBJs) in supported lipid membranes. For the MBJs, glass substrates were patterned with poly(dimethylsiloxane) (PDMS) oligomers by thermally-assisted contact printing, leaving behind 3 nm-thick PDMS patterns. The hydrophobicity of the transferred PDMS patterns was precisely tuned by the stamping temperature. Lipid monolayers were formed on the PDMS patterned surface while lipid bilayers were on the bare glass surface. Due to the continuity of the lipid membranes over the MBJs, essentially free diffusion of lipids was allowed between the monolayer on the PDMS surface and the upper leaflet of the bilayer on the glass substrate. The preferential localization of sphingomyelin, ganglioside GM1 and cholesterol in the monolayer region enabled to develop raft microdomains through coarsening of nanorafts. Furthermore, our methodology provides a simple and effective scheme of non-disruptive manipulation of the chemical landscape associated with lipid phase separations, which leads to more sophisticated applications in biosensors and as cell culture substrates.

  5. Continuity of monolayer-bilayer junctions for localization of lipid raft microdomains in model membranes

    DOE PAGES

    Ryu, Yong -Sang; Wittenberg, Nathan J.; Suh, Jeng -Hun; ...

    2016-05-27

    We show that the selective localization of cholesterol-rich domains and associated ganglioside receptors prefer to occur in the monolayer across continuous monolayer-bilayer junctions (MBJs) in supported lipid membranes. For the MBJs, glass substrates were patterned with poly(dimethylsiloxane) (PDMS) oligomers by thermally-assisted contact printing, leaving behind 3 nm-thick PDMS patterns. The hydrophobicity of the transferred PDMS patterns was precisely tuned by the stamping temperature. Lipid monolayers were formed on the PDMS patterned surface while lipid bilayers were on the bare glass surface. Due to the continuity of the lipid membranes over the MBJs, essentially free diffusion of lipids was allowed betweenmore » the monolayer on the PDMS surface and the upper leaflet of the bilayer on the glass substrate. The preferential localization of sphingomyelin, ganglioside GM1 and cholesterol in the monolayer region enabled to develop raft microdomains through coarsening of nanorafts. Furthermore, our methodology provides a simple and effective scheme of non-disruptive manipulation of the chemical landscape associated with lipid phase separations, which leads to more sophisticated applications in biosensors and as cell culture substrates.« less

  6. An analytical model for the evolution of starless cores - I. The constant-mass case

    NASA Astrophysics Data System (ADS)

    Pattle, K.

    2016-07-01

    We propose an analytical model for the quasi-static evolution of starless cores confined by a constant external pressure, assuming that cores are isothermal and obey a spherically symmetric density distribution. We model core evolution for Plummer-like and Gaussian density distributions in the adiabatic and isothermal limits, assuming Larson-like dissipation of turbulence. We model the variation in the terms in the virial equation as a function of core characteristic radius, and determine whether cores are evolving towards virial equilibrium or gravitational collapse. We ignore accretion on to cores in the current study. We discuss the different behaviours predicted by the isothermal and adiabatic cases, and by our choice of index for the size-linewidth relation, and suggest a means of parametrizing the magnetic energy term in the virial equation. We model the evolution of the set of cores observed by Pattle et al. in the L1688 region of Ophiuchus in the `virial plane'. We find that not all virially bound and pressure-confined cores will evolve to become gravitationally bound, with many instead contracting to virial equilibrium with their surroundings, and find an absence of gravitationally dominated and virially unbound cores. We hypothesize a `starless core desert' in this quadrant of the virial plane, which may result from cores initially forming as pressure-confined objects. We conclude that a virially bound and pressure-confined core will not necessarily evolve to become gravitationally bound, and thus cannot be considered pre-stellar. A core can only be definitively considered pre-stellar (collapsing to form an individual stellar system) if it is gravitationally unstable.

  7. Little Earth Experiment: An instrument to model planetary cores

    NASA Astrophysics Data System (ADS)

    Aujogue, Kélig; Pothérat, Alban; Bates, Ian; Debray, François; Sreenivasan, Binod

    2016-08-01

    In this paper, we present a new experimental facility, Little Earth Experiment, designed to study the hydrodynamics of liquid planetary cores. The main novelty of this apparatus is that a transparent electrically conducting electrolyte is subject to extremely high magnetic fields (up to 10 T) to produce electromagnetic effects comparable to those produced by moderate magnetic fields in planetary cores. This technique makes it possible to visualise for the first time the coupling between the principal forces in a convection-driven dynamo by means of Particle Image Velocimetry (PIV) in a geometry relevant to planets. We first present the technology that enables us to generate these forces and implement PIV in a high magnetic field environment. We then show that the magnetic field drastically changes the structure of convective plumes in a configuration relevant to the tangent cylinder region of the Earth's core.

  8. Effects of low-intensity pulsed ultrasound on new trabecular bone during bone-tendon junction healing in a rabbit model: a synchrotron radiation micro-CT study.

    PubMed

    Lu, Hongbin; Zheng, Cheng; Wang, Zhanwen; Chen, Can; Chen, Huabin; Hu, Jianzhong

    2015-01-01

    This study was designed to evaluate the effects of low-intensity pulsed ultrasound on bone regeneration during the bone-tendon junction healing process and to explore the application of synchrotron radiation micro computed tomography in three dimensional visualization of the bone-tendon junction to evaluate the microarchitecture of new trabecular bone. Twenty four mature New Zealand rabbits underwent partial patellectomy to establish a bone-tendon junction injury model at the patella-patellar tendon complex. Animals were then divided into low-intensity pulsed ultrasound treatment (20 min/day, 7 times/week) and placebo control groups, and were euthanized at week 8 and 16 postoperatively (n = 6 for each group and time point). The patella-patellar tendon specimens were harvested for radiographic, histological and synchrotron radiation micro computed tomography detection. The area of the newly formed bone in the ultrasound group was significantly greater than that of control group at postoperative week 8 and 16. The high resolution three dimensional visualization images of the bone-tendon junction were acquired by synchrotron radiation micro computed tomography. Low-intensity pulsed ultrasound treatment promoted dense and irregular woven bone formation at week 8 with greater bone volume fraction, number and thickness of new trabecular bone but with lower separation. At week 16, ultrasound group specimens contained mature lamellar bone with higher bone volume fraction and thicker trabeculae than that of control group; however, there was no significant difference in separation and number of the new trabecular bone. This study confirms that low-intensity pulsed ultrasound treatment is able to promote bone formation and remodeling of new trabecular bone during the bone-tendon junction healing process in a rabbit model, and the synchrotron radiation micro computed tomography could be applied for three dimensional visualization to quantitatively evaluate the

  9. Inhibition of gap junction intercellular communication by extremely low-frequency electromagnetic fields in osteoblast-like models is dependent on cell differentiation.

    PubMed

    Yamaguchi, Dean T; Huang, Jason; Ma, Defang; Wang, Paul K C

    2002-02-01

    Electromagnetic fields have been used to augment the healing of fractures because of its ability to increase new bone formation. The mechanism of how electromagnetic fields can promote new bone formation is unknown, although the interaction of electromagnetic fields with components of the plasma membrane of cells has been hypothesized to occur in bone cells. Gap junctions occur among bone forming cells, the osteoblasts, and have been hypothesized to play a role in new bone formation. Thus it was investigated whether extremely low-frequency (ELF) magnetic fields alter gap junction intercellular communication in the pre-osteoblastic model, MC3T3-E1, and the well-differentiated osteoblastic model, ROS 17/2.8. ELF magnetic field exposure systems were designed to be used for an inverted microscope stage and for a tissue culture incubator. Using these systems, it was found that magnetic fields over a frequency range from 30 to 120 Hz and field intensities up to 12.5 G dose dependently decreased gap junction intercellular communication in MC3T3-E1 cells during their proliferative phase of development. The total amount of connexin 43 protein and the distribution of connexin 43 gap junction protein between cytoplasmic and plasma membrane pools were unaltered by treatment with ELF magnetic fields. Cytosolic calcium ([Ca(2+)](i)) which can inhibit gap junction communication, was not altered by magnetic field exposure. Identical exposure conditions did not affect gap junction communication in the ROS 17/2.8 cell line and when MC3T3-E1 cells were more differentiated. Thus ELF magnetic fields may affect only less differentiated or pre-osteoblasts and not fully differentiated osteoblasts. Consequently, electromagnetic fields may aid in the repair of bone by effects exerted only on osteoprogenitor or pre-osteoblasts.

  10. Fractional order junctions

    NASA Astrophysics Data System (ADS)

    Machado, J. Tenreiro

    2015-01-01

    Gottfried Leibniz generalized the derivation and integration, extending the operators from integer up to real, or even complex, orders. It is presently recognized that the resulting models capture long term memory effects difficult to describe by classical tools. Leon Chua generalized the set of lumped electrical elements that provide the building blocks in mathematical models. His proposal of the memristor and of higher order elements broadened the scope of variables and relationships embedded in the development of models. This paper follows the two directions and proposes a new logical step, by generalizing the concept of junction. Classical junctions interconnect system elements using simple algebraic restrictions. Nevertheless, this simplistic approach may be misleading in the presence of unexpected dynamical phenomena and requires including additional "parasitic" elements. The novel γ -junction includes, as special cases, the standard series and parallel connections and allows a new degree of freedom when building models. The proposal motivates the search for experimental and real world manifestations of the abstract conjectures.

  11. The Unified Core: A "Major" Learning Community Model in Action

    ERIC Educational Resources Information Center

    Powell, Gwynn M.; Johnson, Corey W.; James, J. Joy; Dunlap, Rudy

    2011-01-01

    The Unified Core is an innovative approach to higher education that blends content through linked courses within a major to create a community of learners. This article offers the theoretical background for the approach, describes the implementation, and offers suggestions to educators who would like to design their own version of this innovative…

  12. Continuously Optimized Reliable Energy (CORE) Microgrid: Models & Tools (Fact Sheet)

    SciTech Connect

    Not Available

    2013-07-01

    This brochure describes Continuously Optimized Reliable Energy (CORE), a trademarked process NREL employs to produce conceptual microgrid designs. This systems-based process enables designs to be optimized for economic value, energy surety, and sustainability. Capabilities NREL offers in support of microgrid design are explained.

  13. A Core Journal Decision Model Based on Weighted Page Rank

    ERIC Educational Resources Information Center

    Wang, Hei-Chia; Chou, Ya-lin; Guo, Jiunn-Liang

    2011-01-01

    Purpose: The paper's aim is to propose a core journal decision method, called the local impact factor (LIF), which can evaluate the requirements of the local user community by combining both the access rate and the weighted impact factor, and by tracking citation information on the local users' articles. Design/methodology/approach: Many…

  14. Dynamics of plume-triple junction interaction: Results from a series of three-dimensional numerical models and implications for the formation of oceanic plateaus

    NASA Astrophysics Data System (ADS)

    Dordevic, Mladen; Georgen, Jennifer

    2016-03-01

    Mantle plumes rising in the vicinity of mid-ocean ridges often generate anomalies in melt production and seafloor depth. This study investigates the dynamical interactions between a mantle plume and a ridge-ridge-ridge triple junction, using a parameter space approach and a suite of steady state, three-dimensional finite element numerical models. The top domain boundary is composed of three diverging plates, with each assigned half-spreading rates with respect to a fixed triple junction point. The bottom boundary is kept at a constant temperature of 1350°C except where a two-dimensional, Gaussian-shaped thermal anomaly simulating a plume is imposed. Models vary plume diameter, plume location, the viscosity contrast between plume and ambient mantle material, and the use of dehydration rheology in calculating viscosity. Importantly, the model results quantify how plume-related anomalies in mantle temperature pattern, seafloor depth, and crustal thickness depend on the specific set of parameters. To provide an example, one way of assessing the effect of conduit position is to calculate normalized area, defined to be the spatial dispersion of a given plume at specific depth (here selected to be 50 km) divided by the area occupied by the same plume when it is located under the triple junction. For one particular case modeled where the plume is centered in an intraplate position 100 km from the triple junction, normalized area is just 55%. Overall, these models provide a framework for better understanding plateau formation at triple junctions in the natural setting and a tool for constraining subsurface geodynamical processes and plume properties.

  15. Multiscale model of global inner-core anisotropy induced by hcp alloy plasticity

    NASA Astrophysics Data System (ADS)

    Lincot, A.; Cardin, Ph.; Deguen, R.; Merkel, S.

    2016-02-01

    The Earth's solid inner core exhibits a global seismic anisotropy of several percents. It results from a coherent alignment of anisotropic Fe alloy crystals through the inner-core history that can be sampled by present-day seismic observations. By combining self-consistent polycrystal plasticity, inner-core formation models, Monte-Carlo search for elastic moduli, and simulations of seismic measurements, we introduce a multiscale model that can reproduce a global seismic anisotropy of several percents aligned with the Earth's rotation axis. Conditions for a successful model are an hexagonal close packed structure for the inner-core Fe alloy, plastic deformation by pyramidal slip, and large-scale flow induced by a low-degree inner-core formation model. For global anisotropies ranging between 1 and 3%, the elastic anisotropy in the single crystal ranges from 5 to 20% with larger velocities along the c axis.

  16. High Flux Isotope Reactor Core Analysis-Challenges and Recent Enhancements in Modeling and Simulation

    SciTech Connect

    Ilas, Germina

    2016-01-01

    A concerted effort over the past few years has focused on enhancing the core depletion models for the High Flux Isotope Reactor (HFIR) as part of a comprehensive study for designing a HFIR core that would use low-enriched uranium (LEU) fuel. A HFIR core depletion model that is based on current state-of-the-art methods and nuclear data was needed for use as a reference for the design of an LEU fuel for HFIR and to improve the basis for analyses that support HFIR s current operation with high-enriched uranium (HEU) fuel. This paper summarizes the recent improvements in modeling and simulation for HFIR core analyses, with a focus on core depletion models.

  17. Structure and mechanical properties of the ribosomal L1 stalk three-way junction

    PubMed Central

    Réblová, Kamila; Šponer, Jiří; Lankaš, Filip

    2012-01-01

    The L1 stalk is a key mobile element of the large ribosomal subunit which interacts with tRNA during translocation. Here, we investigate the structure and mechanical properties of the rRNA H76/H75/H79 three-way junction at the base of the L1 stalk from four different prokaryotic organisms. We propose a coarse-grained elastic model and parameterize it using large-scale atomistic molecular dynamics simulations. Global properties of the junction are well described by a model in which the H76 helix is represented by a straight, isotropically flexible elastic rod, while the junction core is represented by an isotropically flexible spherical hinge. Both the core and the helix contribute substantially to the overall H76 bending fluctuations. The presence of wobble pairs in H76 does not induce any increased flexibility or anisotropy to the helix. The half-closed conformation of the L1 stalk seems to be accessible by thermal fluctuations of the junction itself, without any long-range allosteric effects. Bending fluctuations of H76 with a bulge introduced in it suggest a rationale for the precise position of the bulge in eukaryotes. Our elastic model can be generalized to other RNA junctions found in biological systems or in nanotechnology. PMID:22451682

  18. Impaired Tight Junctions in Atopic Dermatitis Skin and in a Skin-Equivalent Model Treated with Interleukin-17

    PubMed Central

    Yuki, Takuo; Tobiishi, Megumi; Kusaka-Kikushima, Ayumi; Ota, Yukiko; Tokura, Yoshiki

    2016-01-01

    Tight junction (TJ) dysfunction in the stratum granulosum leads to aberrant barrier function of the stratum corneum (SC) in the epidermis. However, it is unclear whether TJs are perturbed in atopic dermatitis (AD), a representative aberrant SC-related skin disease, and whether some factors related to AD pathogenesis induce TJ dysfunction. To address these issues, we investigated the alterations of TJs in AD skin and the effects of Th2 and Th17 cytokines on TJs in a skin-equivalent model. The levels of TJ proteins were determined in the epidermis of nonlesional and lesional skin sites of AD. Western blot and immunohistochemical analyses revealed that the levels of zonula occludens 1 were decreased in the nonlesional sites of AD, and the levels of zonula occludens 1 and claudin-1 were decreased in the lesional sites relative to the levels in skin from healthy subjects. Next, we examined the effects of interleukin (IL)-4, tumor necrosis factor-α, IL-17, and IL-22 on the TJ barrier in a skin-equivalent model. Only IL-17 impaired the TJ barrier. Furthermore, we observed a defect in filaggrin monomer degradation in the IL-17–treated skin model. Thus, TJs are dysfunctional in AD, at least partly, due to the effect of IL-17, which may result in an aberrant SC barrier. PMID:27588419

  19. Compact-device model development for the energy-delay analysis of magneto-electric magnetic tunnel junction structures

    NASA Astrophysics Data System (ADS)

    Sharma, N.; Bird, J. P.; Dowben, P. A.; Marshall, A.

    2016-06-01

    We discuss the application of a novel class of device, the magneto-electric magnetic tunnel junction (ME-MTJ) to realize a variety of computational functions, including majority logic and the XNOR/XOR gate. We also develop a compact model to describe the operation of these devices, which function by utilizing the phenomenon of ‘voltage-controlled magnetism’ to switch the operational state of MTJs. The model breaks down the switching process into three key stages of operation: electrical-to-magnetic conversion, magnetization transfer, and final-state readout. Estimates for the switching energy and delay of these devices, obtained from this compact model, reveal significant improvements in both of these parameters when compared to conventional MTJs switched by spin-transfer-torque. In fact, the capacity to use the ME-MTJ to implement complex logical operations within a single device allows its energy costs to even approach those of low-power CMOS. The added benefits of non-volatility and compact circuit footprint, combined with their potential for heterogeneous integration with CMOS, make the ME devices of considerable interest for post-CMOS technology.

  20. A Core-Particle Model for Periodically Focused Ion Beams with Intense Space-Charge

    SciTech Connect

    Lund, S M; Barnard, J J; Bukh, B; Chawla, S R; Chilton, S H

    2006-08-02

    A core-particle model is derived to analyze transverse orbits of test particles evolving in the presence of a core ion beam described by the KV distribution. The core beam has uniform density within an elliptical cross-section and can be applied to model both quadrupole and solenoidal focused beams in periodic or aperiodic lattices. Efficient analytical descriptions of electrostatic space-charge fields external to the beam core are derived to simplify model equations. Image charge effects are analyzed for an elliptical beam centered in a round, conducting pipe to estimate model corrections resulting from image charge nonlinearities. Transformations are employed to remove coherent utter motion associated with oscillations of the ion beam core due to rapidly varying, linear applied focusing forces. Diagnostics for particle trajectories, Poincare phase-space projections, and single-particle emittances based on these transformations better illustrate the effects of nonlinear forces acting on particles evolving outside the core. A numerical code has been written based on this model. Example applications illustrate model characteristics. The core-particle model described has recently been applied to identify physical processes leading to space-charge transport limits for an rms matched beam in a periodic quadrupole focusing channel [Lund and Chawla, Nuc. Instr. and Meth. A 561, 203 (2006)]. Further characteristics of these processes are presented here.

  1. Stability of core-shell nanowires in selected model solutions

    NASA Astrophysics Data System (ADS)

    Kalska-Szostko, B.; Wykowska, U.; Basa, A.; Zambrzycka, E.

    2015-03-01

    This paper presents the studies of stability of magnetic core-shell nanowires prepared by electrochemical deposition from an acidic solution containing iron in the core and modified surface layer. The obtained nanowires were tested according to their durability in distilled water, 0.01 M citric acid, 0.9% NaCl, and commercial white wine (12% alcohol). The proposed solutions were chosen in such a way as to mimic food related environment due to a possible application of nanowires as additives to, for example, packages. After 1, 2 and 3 weeks wetting in the solutions, nanoparticles were tested by Infrared Spectroscopy, Atomic Absorption Spectroscopy, Transmission Electron Microscopy and X-ray diffraction methods.

  2. Mesoscale modeling of functional properties in core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Mangeri, John; Heinonen, Olle; Karpeev, Dmitry; Nakhmanson, Serge

    2015-03-01

    Core-shell nanoparticle systems of Zn-ZnO and ZnO-TiO2 are studied computationally using the highly scalable MOOSE finite-element framework, developed at Idaho National Lab. The elastic anisotropic mismatch of the core and shell create an imprinting effect within the shell that produces a wide variation of strains. Due to this diversity of strains, the sharp band gap edges of the bulk semiconductor are observed to be ``thinned-out'' much like amorphous silicon. We show that a variety of factors, such as particle size, core-to-shell volume ratio, applied hydrostatic pressure, shell microstructure, as well as the effect of surface elasticity, can influence the distribution of optical band-gap values within the particle, which may prove useful within the field of photovoltaics. Part of the work by O.H. was supported by Award 70NANB14H012 from U.S. Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Material Design.

  3. Quantum Tunneling Model of a P-N Junction in Silvaco

    DTIC Science & Technology

    2008-09-01

    September 1-5, 2008. [14] M. Shur, Physics of Semiconductor Devices, Prentice–Hall, Inc, 1990. [15] R. P. Feynman , The Feynman Lectures on Physics , Volume... physically based 2-D model was created in Silvaco Inc.’s ATLAS© software to model the quantum tunneling effect that is realized within a multi...photovoltaic cell. A physically based 2-D model was created in Silvaco Inc.’s software to model the quantum tunneling effect that is realized within a

  4. Discussion about modeling the effects of neutron flux exposure for nuclear reactor core analysis

    SciTech Connect

    Vondy, D.R.

    1986-04-01

    Methods used to calculate the effects of exposure to a neutron flux are described. The modeling of the nuclear-reactor core history presents an analysis challenge. The nuclide chain equations must be solved, and some of the methods in use for this are described. Techniques for treating reactor-core histories are discussed and evaluated.

  5. Sustained phenotypic reversion of junctional epidermolysis bullosa dog keratinocytes: Establishment of an immunocompetent animal model for cutaneous gene therapy

    SciTech Connect

    Spirito, Flavia; Capt, Annabelle; Rio, Marcela Del; Larcher, Fernando; Guaguere, Eric; Danos, Olivier; Meneguzzi, Guerrino . E-mail: meneguzz@unice.fr

    2006-01-20

    Gene transfer represents the unique therapeutic issue for a number of inherited skin disorders including junctional epidermolysis bullosa (JEB), an untreatable genodermatose caused by mutations in the adhesion ligand laminin 5 ({alpha}3{beta}3{gamma}2) that is secreted in the extracellular matrix by the epidermal basal keratinocytes. Because gene therapy protocols require validation in animal models, we have phenotypically reverted by oncoretroviral transfer of the curative gene the keratinocytes isolated from dogs with a spontaneous form of JEB associated with a genetic mutation in the {alpha}3 chain of laminin 5. We show that the transduced dog JEB keratinocytes: (1) display a sustained secretion of laminin 5 in the extracellular matrix; (2) recover the adhesion, proliferation, and clonogenic capacity of wild-type keratinocytes; (3) generate fully differentiated stratified epithelia that after grafting on immunocompromised mice produce phenotypically normal skin and sustain permanent expression of the transgene. We validate an animal model that appears particularly suitable to demonstrate feasibility, efficacy, and safety of genetic therapeutic strategies for cutaneous disorders before undertaking human clinical trials.

  6. Characterization, Modeling and Design Parameters Identification of Silicon Carbide Junction Field Effect Transistor for Temperature Sensor Applications

    PubMed Central

    Salah, Tarek Ben; Khachroumi, Sofiane; Morel, Hervé

    2010-01-01

    Sensor technology is moving towards wide-band-gap semiconductors providing high temperature capable devices. Indeed, the higher thermal conductivity of silicon carbide, (three times more than silicon), permits better heat dissipation and allows better cooling and temperature management. Though many temperature sensors have already been published, little endeavours have been invested in the study of silicon carbide junction field effect devices (SiC-JFET) as a temperature sensor. SiC-JFETs devices are now mature enough and it is close to be commercialized. The use of its specific properties versus temperatures is the major focus of this paper. The SiC-JFETs output current-voltage characteristics are characterized at different temperatures. The saturation current and its on-resistance versus temperature are successfully extracted. It is demonstrated that these parameters are proportional to the absolute temperature. A physics-based model is also presented. Relationships between on-resistance and saturation current versus temperature are introduced. A comparative study between experimental data and simulation results is conducted. Important to note, the proposed model and the experimental results reflect a successful agreement as far as a temperature sensor is concerned. PMID:22315547

  7. Characterization, modeling and design parameters identification of silicon carbide junction field effect transistor for temperature sensor applications.

    PubMed

    Ben Salah, Tarek; Khachroumi, Sofiane; Morel, Hervé

    2010-01-01

    Sensor technology is moving towards wide-band-gap semiconductors providing high temperature capable devices. Indeed, the higher thermal conductivity of silicon carbide, (three times more than silicon), permits better heat dissipation and allows better cooling and temperature management. Though many temperature sensors have already been published, little endeavours have been invested in the study of silicon carbide junction field effect devices (SiC-JFET) as a temperature sensor. SiC-JFETs devices are now mature enough and it is close to be commercialized. The use of its specific properties versus temperatures is the major focus of this paper. The SiC-JFETs output current-voltage characteristics are characterized at different temperatures. The saturation current and its on-resistance versus temperature are successfully extracted. It is demonstrated that these parameters are proportional to the absolute temperature. A physics-based model is also presented. Relationships between on-resistance and saturation current versus temperature are introduced. A comparative study between experimental data and simulation results is conducted. Important to note, the proposed model and the experimental results reflect a successful agreement as far as a temperature sensor is concerned.

  8. Electrical signal transmission and gap junction regulation in a bone cell network: a cable model for an osteon

    NASA Technical Reports Server (NTRS)

    Zhang, D.; Cowin, S. C.; Weinbaum, S.

    1997-01-01

    A cable model is formulated to estimate the spatial distribution of intracellular electric potential and current, from the cement line to the lumen of an osteon, as the frequency of the loading and the conductance of the gap junction are altered. The model predicts that the characteristic diffusion time for the spread of current along the membrane of the osteocytic processes, 0.03 sec, is nearly the same as the predicted pore pressure relaxation time in Zeng et al. (Annals of Biomedical Engineering. 1994) for the draining of the bone fluid into the osteonal canal. This approximate equality of characteristic times causes the cable to behave as a high-pass, low-pass filter cascade with a maximum in the spectral response for the intracellular potential at approximately 30 Hz. This behavior could be related to the experiments of Rubin and McLeod (Osteoporosis, Academic Press, 1996) which show that live bone appears to be selectively responsive to mechanical loading in a specific frequency range (15-30 Hz) for several species.

  9. Modeling convective core overshoot and diffusion in Procyon constrained by asteroseismic data

    SciTech Connect

    Guenther, D. B.; Gruberbauer, M.; Demarque, P.

    2014-06-01

    We compare evolved stellar models, which match Procyon's mass and position in the HR diagram, to current ground-based asteroseismic observations. Diffusion of helium and metals along with two conventional core overshoot descriptions and the Kuhfuss nonlocal theory of convection are considered. We establish that one of the two published asteroseismic data reductions for Procyon, which mainly differ in their identification of even versus odd l values, is a significantly more probable and self-consistent match to our models than the other. The most probable models according to our Bayesian analysis have evolved to just short of turnoff, still retaining a hydrogen convective core. Our most probable models include Y and Z diffusion and have conventional core overshoot between 0.9 and 1.5 pressure scale heights, which increases the outer radius of the convective core by between 36% and 43%, respectively. We discuss the significance of this comparatively higher than expected core overshoot amount in terms of internal mixing during evolution. The parameters of our most probable models are similar regardless of whether adiabatic or nonadiabatic model p-mode frequencies are compared to the observations, although, the Bayesian probabilities are greater when the nonadiabatic model frequencies are used. All the most probable models (with or without core overshoot, adiabatic or nonadiabatic model frequencies, diffusion or no diffusion, including priors for the observed HRD location and mass or not) have masses that are within 1σ of the observed mass 1.497 ± 0.037 M {sub ☉}.

  10. Modeling of the interleaved hysteresis loop in the measurements of rotational core losses

    NASA Astrophysics Data System (ADS)

    Alatawneh, Natheer; Pillay, Pragasen

    2016-01-01

    The measurement of core losses in machine laminations reveals a fundamental difference between rotational and pulsating types. Rotational core losses under rotating fields decrease at high flux density, while pulsating losses keep increasing steadily. Experimental analyses of loss components Px and Py in x and y directions with rotating fields show that the loss decreases in one loss component and sometimes attains negative values. Tracking the evolution of hysteresis loops along this loss component discloses a peculiar behavior of magnetic hysteresis, where the loop changes its path from counterclockwise to clockwise within a cycle of magnetization process, the so called interleaved hysteresis loop. This paper highlights a successful procedure for modeling the interleaved hysteresis loop in the measurement of rotational core losses in electrical machine laminations using the generalized Prandtl-Ishlinskii (PI) model. The efficiency of the proposed model is compared to Preisach model. Results and conclusion of this work are of importance toward building an accurate model of rotational core losses.

  11. A computationally efficient spectral method for modeling core dynamics

    NASA Astrophysics Data System (ADS)

    Marti, P.; Calkins, M. A.; Julien, K.

    2016-08-01

    An efficient, spectral numerical method is presented for solving problems in a spherical shell geometry that employs spherical harmonics in the angular dimensions and Chebyshev polynomials in the radial direction. We exploit the three-term recurrence relation for Chebyshev polynomials that renders all matrices sparse in spectral space. This approach is significantly more efficient than the collocation approach and is generalizable to both the Galerkin and tau methodologies for enforcing boundary conditions. The sparsity of the matrices reduces the computational complexity of the linear solution of implicit-explicit time stepping schemes to O(N) operations, compared to O>(N2>) operations for a collocation method. The method is illustrated by considering several example problems of important dynamical processes in the Earth's liquid outer core. Results are presented from both fully nonlinear, time-dependent numerical simulations and eigenvalue problems arising from the investigation of the onset of convection and the inertial wave spectrum. We compare the explicit and implicit temporal discretization of the Coriolis force; the latter becomes computationally feasible given the sparsity of the differential operators. We find that implicit treatment of the Coriolis force allows for significantly larger time step sizes compared to explicit algorithms; for hydrodynamic and dynamo problems at an Ekman number of E=10-5, time step sizes can be increased by a factor of 3 to 16 times that of the explicit algorithm, depending on the order of the time stepping scheme. The implementation with explicit Coriolis force scales well to at least 2048 cores, while the implicit implementation scales to 512 cores.

  12. Diffused junction p(+)-n solar cells in bulk GaAs. II - Device characterization and modelling

    NASA Technical Reports Server (NTRS)

    Keeney, R.; Sundaram, L. M. G.; Rode, H.; Bhat, I.; Ghandhi, S. K.; Borrego, J. M.

    1984-01-01

    The photovoltaic characteristics of p(+)-n junction solar cells fabricated on bulk GaAs by an open tube diffusion technique are presented in detail. Quantum efficiency measurements were analyzed and compared to computer simulations of the cell structure in order to determine material parameters such as diffusion length, surface recombination velocity and junction depth. From the results obtained it is projected that proper optimization of the cell parameters can increase the efficiency of the cells to close to 20 percent.

  13. The limiting problem of the drift-diffusion-Poisson model with discontinuous p-n-junctions

    NASA Astrophysics Data System (ADS)

    Lian, Songzhe; Yuan, Hongjun; Cao, Chunling; Gao, Wenjie

    2008-11-01

    In this paper, the authors consider the limiting problem of the drift-diffusion-Poisson model for semiconductors. Different from previous papers, the model considered involve some special doping profiles D which have the property that the function is allowed to have a jump-discontinuity and sign changing property but D2 is required to be Lipschitz continuous. The existence, uniqueness and large-time asymptotic behavior of the global (in time) solutions are given.

  14. Consistent treatment of viscoelastic effects at junctions in one-dimensional blood flow models

    NASA Astrophysics Data System (ADS)

    Müller, Lucas O.; Leugering, Günter; Blanco, Pablo J.

    2016-06-01

    While the numerical discretization of one-dimensional blood flow models for vessels with viscoelastic wall properties is widely established, there is still no clear approach on how to couple one-dimensional segments that compose a network of viscoelastic vessels. In particular for Voigt-type viscoelastic models, assumptions with regard to boundary conditions have to be made, which normally result in neglecting the viscoelastic effect at the edge of vessels. Here we propose a coupling strategy that takes advantage of a hyperbolic reformulation of the original model and the inherent information of the resulting system. We show that applying proper coupling conditions is fundamental for preserving the physical coherence and numerical accuracy of the solution in both academic and physiologically relevant cases.

  15. Modeling and design of multiple buried junctions detectors for color systems development

    NASA Astrophysics Data System (ADS)

    Alexandre, Annick; Sou, Gerard; Ben Chouikha, Mohamed; Sedjil, Mohamed; Lu, Guo N.; Alquie, George

    2000-04-01

    Two novel integrated optical detectors called BDJ detector and BTJ detector have been developed in our laboratory. These two detectors have different applications: the BDJ detector elaborated in CMOS process can be used for wavelength or light flux detection while the BTJ detector based on a bipolar structure gives the trichromatics components of a light. To develop microsystems, we need simulation tools as SPICE model. So, we have elaborated a physical mode, proposed a parameters extraction method and study influence of different parameters for BDJ detectors. Simulations and measurements have validated these models. More, we prose a design of BTJ detectors for developing new color imaging systems.

  16. Toward a mineral physics reference model for the Moon’s core

    PubMed Central

    Antonangeli, Daniele; Morard, Guillaume; Schmerr, Nicholas C.; Komabayashi, Tetsuya; Krisch, Michael; Fiquet, Guillaume; Fei, Yingwei

    2015-01-01

    The physical properties of iron (Fe) at high pressure and high temperature are crucial for understanding the chemical composition, evolution, and dynamics of planetary interiors. Indeed, the inner structures of the telluric planets all share a similar layered nature: a central metallic core composed mostly of iron, surrounded by a silicate mantle, and a thin, chemically differentiated crust. To date, most studies of iron have focused on the hexagonal closed packed (hcp, or ε) phase, as ε-Fe is likely stable across the pressure and temperature conditions of Earth’s core. However, at the more moderate pressures characteristic of the cores of smaller planetary bodies, such as the Moon, Mercury, or Mars, iron takes on a face-centered cubic (fcc, or γ) structure. Here we present compressional and shear wave sound velocity and density measurements of γ-Fe at high pressures and high temperatures, which are needed to develop accurate seismic models of planetary interiors. Our results indicate that the seismic velocities proposed for the Moon’s inner core by a recent reanalysis of Apollo seismic data are well below those of γ-Fe. Our dataset thus provides strong constraints to seismic models of the lunar core and cores of small telluric planets. This allows us to propose a direct compositional and velocity model for the Moon’s core. PMID:25775531

  17. Bulk Earth Compositional Models Require the Presence of Potassium in Earth's Core

    NASA Astrophysics Data System (ADS)

    van Westrenen, W.; Rama Murthy, V.

    2006-12-01

    Constraining the concentration of radioactive potassium-40 as a heat source in Earth's metallic core is crucial for the development of accurate models for the formation and dynamic evolution of the core and lower mantle. A growing body of experimental evidence suggests that significant amounts of potassium can be incorporated into sulphur-bearing iron melts at relatively low pressure (e.g. Rama Murthy et al., Nature 2003), and in sulphur-free iron melts at high pressure (e.g. Lee and Jeanloz, GRL 2003; Hirao et al., GRL 2006), at concentrations consistent with recent core/mantle thermal evolution studies (e.g. Nimmo et al., GJI 2004; Nakagawa and Tackley, G3 2005; Costin and Butler, PEPI 2006). In spite of these studies, the notion of core K has been questioned in the context of current geochemical models for the composition of the bulk silicate Earth (BSE) and Earth's core (e.g. McDonough, Treatise on Geochemistry 2003). Arguments against the presence of potassium in the core are based on: (1) Trends in the elemental composition of the bulk silicate Earth (BSE) compared to the composition of CI carbonaceous chondrite (CC) as a function of element condensation temperatures, (2) Systematics of K/U versus Rb/Sr concentration ratios in BSE and chondrites, and (3) The mantle abundance of Ca relative to other refractory lithophile elements on the presumption that K entry into the core also extracts Ca. Here we show that none of these arguments are valid. Crucially, an updated cosmochemical model of bulk Earth composition, using recent data compilations of CC / BSE compositions and condensation temperatures, requires the presence of ± 250 ppm K in the core, while still being fully consistent with clearly non-linear chondrite K/U - Rb/Sr trends. We conclude that both experimental data and geochemical Bulk Earth models allow for the presence of K in Earth's core.

  18. Characterization of behavioral and neuromuscular junction phenotypes in a novel allelic series of SMA mouse models.

    PubMed

    Osborne, Melissa; Gomez, Daniel; Feng, Zhihua; McEwen, Corissa; Beltran, Jose; Cirillo, Kim; El-Khodor, Bassem; Lin, Ming-Yi; Li, Yun; Knowlton, Wendy M; McKemy, David D; Bogdanik, Laurent; Butts-Dehm, Katherine; Martens, Kimberly; Davis, Crystal; Doty, Rosalinda; Wardwell, Keegan; Ghavami, Afshin; Kobayashi, Dione; Ko, Chien-Ping; Ramboz, Sylvie; Lutz, Cathleen

    2012-10-15

    A number of mouse models for spinal muscular atrophy (SMA) have been genetically engineered to recapitulate the severity of human SMA by using a targeted null mutation at the mouse Smn1 locus coupled with the transgenic addition of varying copy numbers of human SMN2 genes. Although this approach has been useful in modeling severe SMA and very mild SMA, a mouse model of the intermediate form of the disease would provide an additional research tool amenable for drug discovery. In addition, many of the previously engineered SMA strains are multi-allelic by design, containing a combination of transgenes and targeted mutations in the homozygous state, making further genetic manipulation difficult. A new genetic engineering approach was developed whereby variable numbers of SMN2 sequences were incorporated directly into the murine Smn1 locus. Using combinations of these alleles, we generated an allelic series of SMA mouse strains harboring no, one, two, three, four, five, six or eight copies of SMN2. We report here the characterization of SMA mutants in this series that displayed a range in disease severity from embryonic lethal to viable with mild neuromuscular deficits.

  19. SAPHIR: a physiome core model of body fluid homeostasis and blood pressure regulation.

    PubMed

    Thomas, S Randall; Baconnier, Pierre; Fontecave, Julie; Françoise, Jean-Pierre; Guillaud, François; Hannaert, Patrick; Hernández, Alfredo; Le Rolle, Virginie; Mazière, Pierre; Tahi, Fariza; White, Ronald J

    2008-09-13

    We present the current state of the development of the SAPHIR project (a Systems Approach for PHysiological Integration of Renal, cardiac and respiratory function). The aim is to provide an open-source multi-resolution modelling environment that will permit, at a practical level, a plug-and-play construction of integrated systems models using lumped-parameter components at the organ/tissue level while also allowing focus on cellular- or molecular-level detailed sub-models embedded in the larger core model. Thus, an in silico exploration of gene-to-organ-to-organism scenarios will be possible, while keeping computation time manageable. As a first prototype implementation in this environment, we describe a core model of human physiology targeting the short- and long-term regulation of blood pressure, body fluids and homeostasis of the major solutes. In tandem with the development of the core models, the project involves database implementation and ontology development.

  20. Disruption of Tight Junctions by Cellulose Sulfate Facilitates HIV Infection: Model of Microbicide Safety

    PubMed Central

    Mesquita, Pedro M. M.; Cheshenko, Natalia; Wilson, Sarah S.; Mhatre, Mohak; Guzman, Esmeralda; Fakioglu, Esra; Keller, Marla J.; Herold, Betsy C.

    2010-01-01

    Background The lack of biomarkers that are predictive of safety is a critical gap in the development of microbicides. The present experiments were designed to evaluate the predictive value of in vitro models of microbicide safety. Methods Changes in the epithelial barrier were evaluated by measuring transepithelial electrical resistance (TER) after exposure of human epithelial cells to candidate microbicides in a dual-chamber system. The significance of observed changes was addressed by challenging cultures with human immuodeficiency virus (HIV) and measuring the ability of virus to cross the epithelium and infect target T cells cultured in the lower chamber. Results Exposure to nonoxynol-9 (N-9) or cellulose sulfate (CS), but not 9-[2-(phosphonomethoxy)propyl]adenine (also referred to as tenofovir) or PRO2000, resulted in a rapid and sustained reduction in TER and a marked increase in HIV infection of T cells cultured in the lower chamber. Moreover, CS triggered nuclear factor κB activation in peripheral blood mononuclear cells and increased HIV replication in chronically infected U1 cells. Conclusions Epithelial barrier disruption and enhanced viral replication may have contributed to the increased risk of HIV acquisition observed in phase 3 trials of N-9 and CS. Expansion of in vitro safety testing to include these models would provide a more stringent preclinical assessment of microbicide safety and may prove to be more predictive of clinical outcomes. PMID:19586414

  1. Entropy-Driven Folding of an RNA Helical Junction: An Isothermal Titration Calorimetric Analysis of the Hammerhead Ribozyme†

    PubMed Central

    Mikulecky, Peter J.; Takach, Jennifer C.; Feig, Andrew L.

    2008-01-01

    Helical junctions are extremely common motifs in naturally occurring RNAs, but little is known about the thermodynamics that drive their folding. Studies of junction folding face several challenges: non-two-state folding behavior, superposition of secondary and tertiary structural energetics, and drastically opposing enthalpic and entropic contributions to folding. Here we describe a thermodynamic dissection of the folding of the hammerhead ribozyme, a three-way RNA helical junction, by using isothermal titration calorimetry of bimolecular RNA constructs. By using this method, we show that tertiary folding of the hammerhead core occurs with a highly unfavorable enthalpy change, and is therefore entropically driven. Furthermore, the enthalpies and heat capacities of core folding are the same whether supported by monovalent or divalent ions. These properties appear to be general to the core sequence of bimolecular hammerhead constructs. We present a model for the ion-induced folding of the hammerhead core that is similar to those advanced for the folding of much larger RNAs, involving ion-induced collapse to a structured, non-native state accompanied by rearrangement of core residues to produce the native fold. In agreement with previous enzymological and structural studies, our thermodynamic data suggest that the hammerhead structure is stabilized in vitro predominantly by diffusely bound ions. Our approach addresses several significant challenges that accompany the study of junction folding, and should prove useful in defining the thermodynamic determinants of stability in these important RNA motifs. PMID:15134461

  2. Entropy-driven folding of an RNA helical junction: an isothermal titration calorimetric analysis of the hammerhead ribozyme.

    PubMed

    Mikulecky, Peter J; Takach, Jennifer C; Feig, Andrew L

    2004-05-18

    Helical junctions are extremely common motifs in naturally occurring RNAs, but little is known about the thermodynamics that drive their folding. Studies of junction folding face several challenges: non-two-state folding behavior, superposition of secondary and tertiary structural energetics, and drastically opposing enthalpic and entropic contributions to folding. Here we describe a thermodynamic dissection of the folding of the hammerhead ribozyme, a three-way RNA helical junction, by using isothermal titration calorimetry of bimolecular RNA constructs. By using this method, we show that tertiary folding of the hammerhead core occurs with a highly unfavorable enthalpy change, and is therefore entropically driven. Furthermore, the enthalpies and heat capacities of core folding are the same whether supported by monovalent or divalent ions. These properties appear to be general to the core sequence of bimolecular hammerhead constructs. We present a model for the ion-induced folding of the hammerhead core that is similar to those advanced for the folding of much larger RNAs, involving ion-induced collapse to a structured, non-native state accompanied by rearrangement of core residues to produce the native fold. In agreement with previous enzymological and structural studies, our thermodynamic data suggest that the hammerhead structure is stabilized in vitro predominantly by diffusely bound ions. Our approach addresses several significant challenges that accompany the study of junction folding, and should prove useful in defining the thermodynamic determinants of stability in these important RNA motifs.

  3. A liquid sodium model of the Earth's core

    NASA Astrophysics Data System (ADS)

    Lathrop, Daniel; Adams, Matthew; Stone, Douglas; Doan, Minh

    2016-11-01

    We present results from the three meter liquid sodium spherical Couette experiment at full speed (4 Hz outer sphere rotation rate and a range of inner sphere rates). The experiment is geometrically similar with the earth's core. We study hydrodynamic and hydromagnetic phenomena in rapidly rotating turbulence, as well as magnetic field induction by those flows. Two external electromagnets apply dipole or quadrupole magnetic fields, while an array of 31 external Hall sensors measure the resulting induced magnetic field. This allows us to study dynamo gain (as we yet have no self-generating magnetic dynamo) and broader range of rotating turbulence phenomena. We report substantial magnetic field gain for a variety of flow states. One of these states exhibits bistability in the hydrodynamic flow with magnetic field gain only in one of the two states. Zonal flow shear drives large azimuthal magnetic fields, prompting a need to measure the zonal flows. This has prompted us to develop acoustic mode velocimetry measurements adapted from helioseismology. Prior to measurements in the larger experiment, we develop this technique in our 60 cm diameter spherical Couette experiment in nitrogen gas. There, we compare acoustic mode frequency splittings with theoretical predictions for solid body flow and turbulent flow, and obtain excellent agreement. We also use this technique to estimate the zonal shear in those experiments. NSF EAR 1417148.

  4. An investigation of ab initio shell-model interactions derived by no-core shell model

    NASA Astrophysics Data System (ADS)

    Wang, XiaoBao; Dong, GuoXiang; Li, QingFeng; Shen, CaiWan; Yu, ShaoYing

    2016-09-01

    The microscopic shell-model effective interactions are mainly based on the many-body perturbation theory (MBPT), the first work of which can be traced to Brown and Kuo's first attempt in 1966, derived from the Hamada-Johnston nucleon-nucleon potential. However, the convergence of the MBPT is still unclear. On the other hand, ab initio theories, such as Green's function Monte Carlo (GFMC), no-core shell model (NCSM), and coupled-cluster theory with single and double excitations (CCSD), have made many progress in recent years. However, due to the increasing demanding of computing resources, these ab initio applications are usually limited to nuclei with mass up to A = 16. Recently, people have realized the ab initio construction of valence-space effective interactions, which is obtained through a second-time renormalization, or to be more exactly, projecting the full-manybody Hamiltonian into core, one-body, and two-body cluster parts. In this paper, we present the investigation of such ab initio shell-model interactions, by the recent derived sd-shell effective interactions based on effective J-matrix Inverse Scattering Potential (JISP) and chiral effective-field theory (EFT) through NCSM. In this work, we have seen the similarity between the ab initio shellmodel interactions and the interactions obtained by MBPT or by empirical fitting. Without the inclusion of three-body (3-bd) force, the ab initio shell-model interactions still share similar defects with the microscopic interactions by MBPT, i.e., T = 1 channel is more attractive while T = 0 channel is more repulsive than empirical interactions. The progress to include more many-body correlations and 3-bd force is still badly needed, to see whether such efforts of ab initio shell-model interactions can reach similar precision as the interactions fitted to experimental data.

  5. Towards 12% stabilised efficiency in single junction polymorphous silicon solar cells: experimental developments and model predictions

    NASA Astrophysics Data System (ADS)

    Abolmasov, Sergey; Cabarrocas, Pere Roca i.; Chatterjee, Parsathi

    2016-01-01

    We have combined recent experimental developments in our laboratory with modelling to devise ways of maximising the stabilised efficiency of hydrogenated amorphous silicon (a-Si:H) PIN solar cells. The cells were fabricated using the conventional plasma enhanced chemical vapour deposition (PECVD) technique at various temperatures, pressures and gas flow ratios. A detailed electrical-optical simulator was used to examine the effect of using wide band gap P-and N-doped μc-SiOx:H layers, as well as a MgF2 anti-reflection coating (ARC) on cell performance. We find that with the best quality a-Si:H so far produced in our laboratory and optimised deposition parameters for the corresponding solar cell, we could not attain a 10% stabilised efficiency due to the high stabilised defect density of a-Si:H, although this landmark has been achieved in some laboratories. On the other hand, a close cousin of a-Si:H, hydrogenated polymorphous silicon (pm-Si:H), a nano-structured silicon thin film produced by PECVD under conditions close to powder formation, has been developed in our laboratory. This material has been shown to have a lower initial and stabilised defect density as well as higher hole mobility than a-Si:H. Modelling indicates that it is possible to attain stabilised efficiencies of 12% when pm-Si:H is incorporated in a solar cell, deposited in a NIP configuration to reduce the P/I interface defects and combined with P- and N-doped μc-SiOx:H layers and a MgF2 ARC.

  6. Structure and thermodynamics of core-softened models for alcohols

    SciTech Connect

    Munaò, Gianmarco; Urbic, Tomaz

    2015-06-07

    The phase behavior and the fluid structure of coarse-grain models for alcohols are studied by means of reference interaction site model (RISM) theory and Monte Carlo simulations. Specifically, we model ethanol and 1-propanol as linear rigid chains constituted by three (trimers) and four (tetramers) partially fused spheres, respectively. Thermodynamic properties of these models are examined in the RISM context, by employing closed formulæ for the calculation of free energy and pressure. Gas-liquid coexistence curves for trimers and tetramers are reported and compared with already existing data for a dimer model of methanol. Critical temperatures slightly increase with the number of CH{sub 2} groups in the chain, while critical pressures and densities decrease. Such a behavior qualitatively reproduces the trend observed in experiments on methanol, ethanol, and 1-propanol and suggests that our coarse-grain models, despite their simplicity, can reproduce the essential features of the phase behavior of such alcohols. The fluid structure of these models is investigated by computing radial distribution function g{sub ij}(r) and static structure factor S{sub ij}(k); the latter shows the presence of a low−k peak at intermediate-high packing fractions and low temperatures, suggesting the presence of aggregates for both trimers and tetramers.

  7. Structure and thermodynamics of core-softened models for alcohols.

    PubMed

    Munaò, Gianmarco; Urbic, Tomaz

    2015-06-07

    The phase behavior and the fluid structure of coarse-grain models for alcohols are studied by means of reference interaction site model (RISM) theory and Monte Carlo simulations. Specifically, we model ethanol and 1-propanol as linear rigid chains constituted by three (trimers) and four (tetramers) partially fused spheres, respectively. Thermodynamic properties of these models are examined in the RISM context, by employing closed formulæ for the calculation of free energy and pressure. Gas-liquid coexistence curves for trimers and tetramers are reported and compared with already existing data for a dimer model of methanol. Critical temperatures slightly increase with the number of CH2 groups in the chain, while critical pressures and densities decrease. Such a behavior qualitatively reproduces the trend observed in experiments on methanol, ethanol, and 1-propanol and suggests that our coarse-grain models, despite their simplicity, can reproduce the essential features of the phase behavior of such alcohols. The fluid structure of these models is investigated by computing radial distribution function gij(r) and static structure factor Sij(k); the latter shows the presence of a low-k peak at intermediate-high packing fractions and low temperatures, suggesting the presence of aggregates for both trimers and tetramers.

  8. State space modeling of reactor core in a pressurized water reactor

    SciTech Connect

    Ashaari, A.; Ahmad, T.; M, Wan Munirah W.; Shamsuddin, Mustaffa; Abdullah, M. Adib

    2014-07-10

    The power control system of a nuclear reactor is the key system that ensures a safe operation for a nuclear power plant. However, a mathematical model of a nuclear power plant is in the form of nonlinear process and time dependent that give very hard to be described. One of the important components of a Pressurized Water Reactor is the Reactor core. The aim of this study is to analyze the performance of power produced from a reactor core using temperature of the moderator as an input. Mathematical representation of the state space model of the reactor core control system is presented and analyzed in this paper. The data and parameters are taken from a real time VVER-type Pressurized Water Reactor and will be verified using Matlab and Simulink. Based on the simulation conducted, the results show that the temperature of the moderator plays an important role in determining the power of reactor core.

  9. Interfacing Cultured Neurons to Microtransducers Arrays: A Review of the Neuro-Electronic Junction Models.

    PubMed

    Massobrio, Paolo; Massobrio, Giuseppe; Martinoia, Sergio

    2016-01-01

    Microtransducer arrays, both metal microelectrodes and silicon-based devices, are widely used as neural interfaces to measure, extracellularly, the electrophysiological activity of excitable cells. Starting from the pioneering works at the beginning of the 70's, improvements in manufacture methods, materials, and geometrical shape have been made. Nowadays, these devices are routinely used in different experimental conditions (both in vivo and in vitro), and for several applications ranging from basic research in neuroscience to more biomedical oriented applications. However, the use of these micro-devices deeply depends on the nature of the interface (coupling) between the cell membrane and the sensitive active surface of the microtransducer. Thus, many efforts have been oriented to improve coupling conditions. Particularly, in the latest years, two innovations related to the use of carbon nanotubes as interface material and to the development of micro-structures which can be engulfed by the cell membrane have been proposed. In this work, we review what can be simulated by using simple circuital models and what happens at the interface between the sensitive active surface of the microtransducer and the neuronal membrane of in vitro neurons. We finally focus our attention on these two novel technological solutions capable to improve the coupling between neuron and micro-nano transducer.

  10. Interfacing Cultured Neurons to Microtransducers Arrays: A Review of the Neuro-Electronic Junction Models

    PubMed Central

    Massobrio, Paolo; Massobrio, Giuseppe; Martinoia, Sergio

    2016-01-01

    Microtransducer arrays, both metal microelectrodes and silicon-based devices, are widely used as neural interfaces to measure, extracellularly, the electrophysiological activity of excitable cells. Starting from the pioneering works at the beginning of the 70's, improvements in manufacture methods, materials, and geometrical shape have been made. Nowadays, these devices are routinely used in different experimental conditions (both in vivo and in vitro), and for several applications ranging from basic research in neuroscience to more biomedical oriented applications. However, the use of these micro-devices deeply depends on the nature of the interface (coupling) between the cell membrane and the sensitive active surface of the microtransducer. Thus, many efforts have been oriented to improve coupling conditions. Particularly, in the latest years, two innovations related to the use of carbon nanotubes as interface material and to the development of micro-structures which can be engulfed by the cell membrane have been proposed. In this work, we review what can be simulated by using simple circuital models and what happens at the interface between the sensitive active surface of the microtransducer and the neuronal membrane of in vitro neurons. We finally focus our attention on these two novel technological solutions capable to improve the coupling between neuron and micro-nano transducer. PMID:27445657

  11. Competency Model 101. The Process of Developing Core Competencies.

    ERIC Educational Resources Information Center

    Eichelberger, Lisa Wright; Hewlett, Peggy O'Neill

    1999-01-01

    The Mississippi Competency Model defines nurses' roles as provider (caregiver, teacher, counselor, advocate), professional (scholar, collaborator, ethicist, researcher), and manager (leader, facilitator, intrapreneur, decision maker, technology user) for four levels of nursing: licensed practical nurse, associate degree, bachelor's degree, and…

  12. Increased intestinal permeability and tight junction disruption by altered expression and localization of occludin in a murine graft versus host disease model

    PubMed Central

    2011-01-01

    Background Hematopoietic stem cell transplantation is increasingly performed for hematologic diseases. As a major side effect, acute graft versus host disease (GvHD) with serious gastrointestinal symptoms including diarrhea, gastrointestinal bleeding and high mortality can be observed. Because surveillance and biopsies of human gastrointestinal GvHD are difficult to perform, rare information of the alterations of the gastrointestinal barrier exists resulting in a need for systematic animal models. Methods To investigate the effects of GvHD on the intestinal barrier of the small intestine we utilized an established acute semi allogenic GvHD in C57BL/6 and B6D2F1 mice. Results By assessing the differential uptake of lactulose and mannitol in the jejunum, we observed an increased paracellular permeability as a likely mechanism for disturbed intestinal barrier function. Electron microscopy, immunohistochemistry and PCR analysis indicated profound changes of the tight-junction complex, characterized by downregulation of the tight junction protein occludin without any changes in ZO-1. Furthermore TNF-α expression was significantly upregulated. Conclusions This analysis in a murine model of GvHD of the small intestine demonstrates serious impairment of intestinal barrier function in the jejunum, with an increased permeability and morphological changes through downregulation and localization shift of the tight junction protein occludin. PMID:21977944

  13. The utility of a multimaterial 3D printed model for surgical planning of complex deformity of the skull base and craniovertebral junction.

    PubMed

    Pacione, Donato; Tanweer, Omar; Berman, Phillip; Harter, David H

    2016-11-01

    Utilizing advanced 3D printing techniques, a multimaterial model was created for the surgical planning of a complex deformity of the skull base and craniovertebral junction. The model contained bone anatomy as well as vasculature and the previously placed occipital cervical instrumentation. Careful evaluation allowed for a unique preoperative perspective of the craniovertebral deformity and instrumentation options. This patient-specific model was invaluable in choosing the most effective approach and correction strategy, which was not readily apparent from standard 2D imaging. Advanced 3D multimaterial printing provides a cost-effective method of presurgical planning, which can also be used for both patient and resident education.

  14. Global/Regional Integrated Model System (GRIMs): Double Fourier Series (DFS) Dynamical Core

    NASA Astrophysics Data System (ADS)

    Koo, M.; Hong, S.

    2013-12-01

    A multi-scale atmospheric/oceanic model system with unified physics, the Global/Regional Integrated Model system (GRIMs) has been created for use in numerical weather prediction, seasonal simulations, and climate research projects, from global to regional scales. It includes not only the model code, but also the test cases and scripts. The model system is developed and practiced by taking advantage of both operational and research applications. We outlines the history of GRIMs, its current applications, and plans for future development, providing a summary useful to present and future users. In addition to the traditional spherical harmonics (SPH) dynamical core, a new spectral method with a double Fourier series (DFS) is available in the GRIMs (Table 1). The new DFS dynamical core with full physics is evaluated against the SPH dynamical core in terms of short-range forecast capability for a heavy rainfall event and seasonal simulation framework. Comparison of the two dynamical cores demonstrates that the new DFS dynamical core exhibits performance comparable to the SPH in terms of simulated climatology accuracy and the forecast of a heavy rainfall event. Most importantly, the DFS algorithm guarantees improved computational efficiency in the cluster computer as the model resolution increases, which is consistent with theoretical values computed from the dry primitive equation model framework of Cheong (Fig. 1). The current study shows that, at higher resolutions, the DFS approach can be a competitive dynamical core because the DFS algorithm provides the advantages of both the spectral method for high numerical accuracy and the grid-point method for high performance computing in the aspect of computational cost. GRIMs dynamical cores

  15. Developing a theory of the strategic core of teams: a role composition model of team performance.

    PubMed

    Humphrey, Stephen E; Morgeson, Frederick P; Mannor, Michael J

    2009-01-01

    Although numerous models of team performance have been articulated over the past 20 years, these models have primarily focused on the individual attribute approach to team composition. The authors utilized a role composition approach, which investigates how the characteristics of a set of role holders impact team effectiveness, to develop a theory of the strategic core of teams. Their theory suggests that certain team roles are most important for team performance and that the characteristics of the role holders in the "core" of the team are more important for overall team performance. This theory was tested in 778 teams drawn from 29 years of major league baseball (1974'-2002). Results demonstrate that although high levels of experience and job-related skill are important predictors of team performance, the relationships between these constructs and team performance are significantly stronger when the characteristics are possessed by core role holders (as opposed to non-core role holders). Further, teams that invest more of their financial resources in these core roles are able to leverage such investments into significantly improved performance. These results have implications for team composition models, as they suggest a new method for considering individual contributions to a team's success that shifts the focus onto core roles. (PsycINFO Database Record (c) 2009 APA, all rights reserved).

  16. Chemical modeling of the L1498 and L1517B prestellar cores: CO and HCO+ depletion

    NASA Astrophysics Data System (ADS)

    Maret, S.; Bergin, E. A.; Tafalla, M.

    2013-11-01

    Prestellar cores exhibit a strong chemical differentiation, which is mainly caused by the freeze-out of molecules onto the grain surfaces. Understanding this chemical structure is important, because molecular lines are often used as probes to constrain the core physical properties. Here we present new observations and analysis of the C18O (1-0) and H13CO+ (1-0) line emission in the L1498 and L1517B prestellar cores, located in the Taurus-Auriga molecular complex. We model these observations with a detailed chemistry network coupled to a radiative transfer code. Our model successfully reproduces the observed C18O (1-0) emission for a chemical age of a few 105 years. On the other hand, the observed H13CO+ (1-0) is reproduced only if cosmic-ray desorption by secondary photons is included, and if the grains have grown to a bigger size than average ISM grains in the core interior. This grain growth is consistent with the infrared scattered light ("coreshine") detected in these two objects, and is found to increase the CO abundance in the core interior by about a factor four. According to our model, CO is depleted by about 2-3 orders of magnitude in the core center. Based on observations carried out with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Appendix A is available in electronic form at http://www.aanda.org

  17. Epithelial adhesive junctions

    PubMed Central

    Capaldo, Christopher T.; Farkas, Attila E.

    2014-01-01

    Epithelial adhesive cell-to-cell contacts contain large, plasma membrane-spanning multiprotein aggregates that perform vital structural and signaling functions. Three prominent adhesive contacts are the tight junction, adherens junction, and the desmosome. Each junction type has unique cellular functions and a complex molecular composition. In this review, we comment on recent and exciting advances in our understanding of junction composition and function. PMID:24592313

  18. Wideband rotating junctions

    NASA Astrophysics Data System (ADS)

    Pochernyaev, V. N.

    1993-06-01

    Rotating junctions of coaxial-waveguide and waveguide type with a traveling wave coefficient exceeding 0.8 in a wide frequency range are considered. The design of these junctions is based on a method of the theory of electrodynamic circuits. Numerical results are obtained for rotating junctions of partially filled rectangular waveguide type and their particular cases.

  19. Degradation modeling of InGaP/GaAs/Ge triple-junction solar cells irradiated by protons

    NASA Astrophysics Data System (ADS)

    Maximenko, S. I.; Lumb, M. P.; Messenger, S. R.; Hoheisel, R.; Affouda, C.; Scheiman, D.; Gonzalez, M.; Lorentzen, J.; Jenkins, P. P.; Walters, R. J.

    2014-03-01

    Experimental results on triple-junction solar cells irradiated by 3 MeV proton irradiation to very high damage levels are presented. The minority carrier transport properties were obtained through quantum efficiency and EBIC measurements and an analytical drift-diffusion solver was used in understanding the results for different degradation levels where multiple damage mechanisms are evident.

  20. Synaptic Deficits at Neuromuscular Junctions in Two Mouse Models of Charcot–Marie–Tooth Type 2d

    PubMed Central

    Spaulding, Emily L.; Sleigh, James N.; Morelli, Kathryn H.; Pinter, Martin J.; Burgess, Robert W.

    2016-01-01

    Patients with Charcot–Marie–Tooth Type 2D (CMT2D), caused by dominant mutations in Glycl tRNA synthetase (GARS), present with progressive weakness, consistently in the hands, but often in the feet also. Electromyography shows denervation, and patients often report that early symptoms include cramps brought on by cold or exertion. Based on reported clinical observations, and studies of mouse models of CMT2D, we sought to determine whether weakened synaptic transmission at the neuromuscular junction (NMJ) is an aspect of CMT2D. Quantal analysis of NMJs in two different mouse models of CMT2D (GarsP278KY, GarsC201R), found synaptic deficits that correlated with disease severity and progressed with age. Results of voltage-clamp studies revealed presynaptic defects characterized by: (1) decreased frequency of spontaneous release without any change in quantal amplitude (miniature endplate current), (2) reduced amplitude of evoked release (endplate current) and quantal content, (3) age-dependent changes in the extent of depression in response to repetitive stimulation, and (4) release failures at some NMJs with high-frequency, long-duration stimulation. Drugs that modify synaptic efficacy were tested to see whether neuromuscular performance improved. The presynaptic action of 3,4 diaminopyridine was not beneficial, whereas postsynaptic-acting physostigmine did improve performance. Smaller mutant NMJs with correspondingly fewer vesicles and partial denervation that eliminates some release sites also contribute to the reduction of release at a proportion of mutant NMJs. Together, these voltage-clamp data suggest that a number of release processes, while essentially intact, likely operate suboptimally at most NMJs of CMT2D mice. SIGNIFICANCE STATEMENT We have uncovered a previously unrecognized aspect of axonal Charcot–Marie–Tooth disease in mouse models of CMT2D. Synaptic dysfunction contributes to impaired neuromuscular performance and disease progression. This

  1. PolCat: Modelling submillimetre polarization of molecular cloud cores using successive parametrized coordinate transformations

    NASA Astrophysics Data System (ADS)

    Franzmann, E. L.; Fiege, J. D.

    2016-12-01

    We introduce a software package called PolCat for modelling magnetized molecular cloud cores using submillimetre linear polarization and continuum intensity maps from thermal dust emission. Our PolCat modelling software builds a three-dimensional triaxial core model via the use of consecutive parametrized coordinate transformations, and produces simulated polarization maps to fit to observational datasets. We utilize a multi-objective evolutionary optimizer to search the parameter space to simultaneously minimize χ2 for the intensity and polarization position angle maps. The aim of this paper is to test PolCat by applying it to several artificial data sets, characterizing the capabilities and performance of the code using approximately 400 test runs. We find that PolCat is able to distinguish between polarization maps of twisted and non-twisted field geometries and identify the symmetry of the twist when one exists in the data. PolCat generally obtains the correct shapes of cores when fit to models with the correct field geometry. We characterized the degeneracy of our models due to orientation, finding that there are at least eight degenerate core orientations that produce identical polarization maps for the case of triaxial cores. The degeneracy increases with core symmetry. We expect PolCat to be a useful tool for modelling observational polarization data sets. Our tests demonstrate that the code can often eliminate incorrect field configurations, while finding a range or potential models that can explain the data. Physical considerations can often further reduce the set of allowed models, resulting in reasonable constraints on field geometry.

  2. Dressed fluxon in a Josephson window junction

    NASA Astrophysics Data System (ADS)

    Caputo, Jean Guy; Flytzanis, Nikos; Devoret, Michel

    1994-09-01

    The static fluxon solutions of a Josephson window junction have been studied numerically. We show that the effect of the idle region surrounding the junction is to ``dress'' the fluxon causing its energy to increase. This effect can be predicted accurately by a simple model.

  3. Benchmark calculation of no-core Monte Carlo shell model in light nuclei

    SciTech Connect

    Abe, T.; Shimizu, N.; Maris, P.; Vary, J. P.; Otsuka, T.; Utsuno, Y.

    2011-05-06

    The Monte Carlo shell model is firstly applied to the calculation of the no-core shell model in light nuclei. The results are compared with those of the full configuration interaction. The agreements between them are within a few % at most.

  4. Muscle spindles exhibit core lesions and extensive degeneration of intrafusal fibers in the Ryr1{sup I4895T/wt} mouse model of core myopathy

    SciTech Connect

    Zvaritch, Elena; MacLennan, David H.

    2015-04-24

    Muscle spindles from the hind limb muscles of adult Ryr1{sup I4895T/wt} (IT/+) mice exhibit severe structural abnormalities. Up to 85% of the spindles are separated from skeletal muscle fascicles by a thick layer of connective tissue. Many intrafusal fibers exhibit degeneration, with Z-line streaming, compaction and collapse of myofibrillar bundles, mitochondrial clumping, nuclear shrinkage and pyknosis. The lesions resemble cores observed in the extrafusal myofibers of this animal model and of core myopathy patients. Spindle abnormalities precede those in extrafusal fibers, indicating that they are a primary pathological feature in this murine Ryr1-related core myopathy. Muscle spindle involvement, if confirmed for human core myopathy patients, would provide an explanation for an array of devastating clinical features characteristic of these diseases and provide novel insights into the pathology of RYR1-related myopathies. - Highlights: • Muscle spindles exhibit structural abnormalities in a mouse model of core myopathy. • Myofibrillar collapse and mitochondrial clumping is observed in intrafusal fibers. • Myofibrillar degeneration follows a pattern similar to core formation in extrafusal myofibers. • Muscle spindle abnormalities are a part of the pathological phenotype in the mouse model of core myopathy. • Direct involvement of muscle spindles in the pathology of human RYR1-related myopathies is proposed.

  5. The modeling of core melting and in-vessel corium relocation in the APRIL code

    SciTech Connect

    Kim. S.W.; Podowski, M.Z.; Lahey, R.T.

    1995-09-01

    This paper is concerned with the modeling of severe accident phenomena in boiling water reactors (BWR). New models of core melting and in-vessel corium debris relocation are presented, developed for implementation in the APRIL computer code. The results of model testing and validations are given, including comparisons against available experimental data and parametric/sensitivity studies. Also, the application of these models, as parts of the APRIL code, is presented to simulate accident progression in a typical BWR reactor.

  6. [Gap junctions and cancer: implications and perspectives].

    PubMed

    Mesnil, Marc

    2004-02-01

    Gap junctions are made of intercellular channels which permit the diffusion from cytoplasm to cytoplasm of small hydrophilic molecules (<1,200 Da) such as ions, sugars, amino acids, nucleotides, second messengers (calcium, inositol triphosphate, etc.). Since their discovery in the early sixties, several groups have described the loss of their function in cancer cells. The accumulation of such data led to the hypothesis that gap junctions are involved in the carcinogenesis process. This assumption has been confirmed by data establishing that gap junctional intercellular communication is inhibited by most of the tumor promoters and that the restoration of such a communication, by transfection of cDNAs encoding gap junction proteins (connexins), inhibits the aberrant growth rates of tumorigenic cells. Despite these important informations, several fundamental questions remain still open. First, we do not know how gap junctions mediate such a tumor suppressor effect and whether it may depend either on the cell type or on the connexin type. Moreover, most of the data concerning a possible involvement of gap junctions in carcinogenesis have been obtained from in vitro and animal models. The very few results which have been currently collected from human tumors are not sufficient to have a clear idea concerning the real involvement of gap junctions in sporadic human cancers. These points as well as other unresolved questions about the role of gap junctional intercellular communication in carcinogenesis are mentioned. To bring some answers, some prospects are proposed with the objective to use gap junctions for increasing the effect of anticancer therapies.

  7. Generalized Thermohydraulics Module GENFLO for Combining With the PWR Core Melting Model, BWR Recriticality Neutronics Model and Fuel Performance Model

    SciTech Connect

    Miettinen, Jaakko; Hamalainen, Anitta; Pekkarinen, Esko

    2002-07-01

    Thermal hydraulic simulation capability for accident conditions is needed at present in VTT in several programs. Traditional thermal hydraulic models are too heavy for simulation in the analysis tasks, where the main emphasis is the rapid neutron dynamics or the core melting. The GENFLO thermal hydraulic model has been developed at VTT for special applications in the combined codes. The basic field equations in GENFLO are for the phase mass, the mixture momentum and phase energy conservation equations. The phase separation is solved with the drift flux model. The basic variables to be solved are the pressure, void fraction, mixture velocity, gas enthalpy, liquid enthalpy, and concentration of non-condensable gas fractions. The validation of the thermohydraulic solution alone includes large break LOCA reflooding experiments and in specific for the severe accident conditions QUENCH tests. In the recriticality analysis the core neutronics is simulated with a two-dimensional transient neutronics code TWODIM. The recriticality with one rapid prompt peak is expected during a severe accident scenario, where the control rods have been melted and ECCS reflooding is started after the depressurization. The GENFLO module simulates the BWR thermohydraulics in this application. The core melting module has been developed for the real time operator training by using the APROS engineering simulators. The core heatup, oxidation, metal and fuel pellet relocation and corium pool formation into the lower plenum are calculated. In this application the GENFLO model simulates the PWR vessel thermohydraulics. In the fuel performance analysis the fuel rod transient behavior is simulated with the FRAPTRAN code. GENFLO simulates the subchannel around a single fuel rod and delivers the heat transfer on the cladding surface for the FRAPTRAN. The transient boundary conditions for the subchannel are transmitted from the system code for operational transient, loss of coolant accidents and

  8. Ex-Vessel Core Melt Modeling Comparison between MELTSPREAD-CORQUENCH and MELCOR 2.1

    SciTech Connect

    Robb, Kevin R.; Farmer, Mitchell; Francis, Matthew W.

    2014-03-01

    System-level code analyses by both United States and international researchers predict major core melting, bottom head failure, and corium-concrete interaction for Fukushima Daiichi Unit 1 (1F1). Although system codes such as MELCOR and MAAP are capable of capturing a wide range of accident phenomena, they currently do not contain detailed models for evaluating some ex-vessel core melt behavior. However, specialized codes containing more detailed modeling are available for melt spreading such as MELTSPREAD as well as long-term molten corium-concrete interaction (MCCI) and debris coolability such as CORQUENCH. In a preceding study, Enhanced Ex-Vessel Analysis for Fukushima Daiichi Unit 1: Melt Spreading and Core-Concrete Interaction Analyses with MELTSPREAD and CORQUENCH, the MELTSPREAD-CORQUENCH codes predicted the 1F1 core melt readily cooled in contrast to predictions by MELCOR. The user community has taken notice and is in the process of updating their systems codes; specifically MAAP and MELCOR, to improve and reduce conservatism in their ex-vessel core melt models. This report investigates why the MELCOR v2.1 code, compared to the MELTSPREAD and CORQUENCH 3.03 codes, yield differing predictions of ex-vessel melt progression. To accomplish this, the differences in the treatment of the ex-vessel melt with respect to melt spreading and long-term coolability are examined. The differences in modeling approaches are summarized, and a comparison of example code predictions is provided.

  9. Atomically informed nonlocal semi-discrete variational Peierls-Nabarro model for planar core dislocations.

    PubMed

    Liu, Guisen; Cheng, Xi; Wang, Jian; Chen, Kaiguo; Shen, Yao

    2017-03-02

    Prediction of Peierls stress associated with dislocation glide is of fundamental concern in understanding and designing the plasticity and mechanical properties of crystalline materials. Here, we develop a nonlocal semi-discrete variational Peierls-Nabarro (SVPN) model by incorporating the nonlocal atomic interactions into the semi-discrete variational Peierls framework. The nonlocal kernel is simplified by limiting the nonlocal atomic interaction in the nearest neighbor region, and the nonlocal coefficient is directly computed from the dislocation core structure. Our model is capable of accurately predicting the displacement profile, and the Peierls stress, of planar-extended core dislocations in face-centered cubic structures. Our model could be extended to study more complicated planar-extended core dislocations, such as <110> {111} dislocations in Al-based and Ti-based intermetallic compounds.

  10. Atomically informed nonlocal semi-discrete variational Peierls-Nabarro model for planar core dislocations

    NASA Astrophysics Data System (ADS)

    Liu, Guisen; Cheng, Xi; Wang, Jian; Chen, Kaiguo; Shen, Yao

    2017-03-01

    Prediction of Peierls stress associated with dislocation glide is of fundamental concern in understanding and designing the plasticity and mechanical properties of crystalline materials. Here, we develop a nonlocal semi-discrete variational Peierls-Nabarro (SVPN) model by incorporating the nonlocal atomic interactions into the semi-discrete variational Peierls framework. The nonlocal kernel is simplified by limiting the nonlocal atomic interaction in the nearest neighbor region, and the nonlocal coefficient is directly computed from the dislocation core structure. Our model is capable of accurately predicting the displacement profile, and the Peierls stress, of planar-extended core dislocations in face-centered cubic structures. Our model could be extended to study more complicated planar-extended core dislocations, such as <110> {111} dislocations in Al-based and Ti-based intermetallic compounds.

  11. Atomically informed nonlocal semi-discrete variational Peierls-Nabarro model for planar core dislocations

    PubMed Central

    Liu, Guisen; Cheng, Xi; Wang, Jian; Chen, Kaiguo; Shen, Yao

    2017-01-01

    Prediction of Peierls stress associated with dislocation glide is of fundamental concern in understanding and designing the plasticity and mechanical properties of crystalline materials. Here, we develop a nonlocal semi-discrete variational Peierls-Nabarro (SVPN) model by incorporating the nonlocal atomic interactions into the semi-discrete variational Peierls framework. The nonlocal kernel is simplified by limiting the nonlocal atomic interaction in the nearest neighbor region, and the nonlocal coefficient is directly computed from the dislocation core structure. Our model is capable of accurately predicting the displacement profile, and the Peierls stress, of planar-extended core dislocations in face-centered cubic structures. Our model could be extended to study more complicated planar-extended core dislocations, such as <110> {111} dislocations in Al-based and Ti-based intermetallic compounds. PMID:28252102

  12. The Accuracy of the ABAQUS FE Numerical Modeling for Sandwich Beams with Foam Core

    NASA Astrophysics Data System (ADS)

    Papakaliatakis, G. E.; Karavagelas, N.

    2009-08-01

    The foam of the sandwich core is a compressible material and in ABAQUS FEA is modelled using the crushable foam model. There are crushable foam models with volumetric hardening and with isotropic hardening in ABAQUS standard analysis and the same models for the ABAQUS explicit analysis, for isotropic compressible materials. Also, the Hill's plasticity model for general anisotropic incompressible solids, is available in ABAQUS. All the above modelling cases were performed for sandwich beams with composite faces and PVC foam cores. The specimens were subjected to three-point bending, under quasi-static loading, using the experimental load-deflection curves to compare with ABAQUS FEA predictions. The best modelling case is suggested.

  13. The spectral element dynamical core in the Community Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Taylor, Mark

    2013-11-01

    I will describe our work developing CAM-SE, a highly scalable version of the Community Atmosphere Model (CAM). CAM-SE solves the hydrostatic equations with a spectral element horizontal descritization and the hybrid coordinate Simmons & Burridge (1981) vertical discretization. It uses a mimetic formulation of spectral elements which preserves the adjoint and annihilator properties of the divergence, gradient and curl operations. These mimetic properties result in local conservation (to machine precision) of mass, tracer mass and (2D) potential vorticity, and semi-discrete conservation (exact with exact time-discretization) of total energy. Hyper-viscsoity is used for all numerical dissipation. The spectral element method naturally supports unstructured/variable resolution grids. We are using this capability to perform simulations with 1/8 degree resolution over the central U.S., transitioning to 1 degree over most of the globe. This is a numerically efficient way to study the resolution sensitivity of CAM's many subgrid parameterizations.

  14. VERA-CS Modeling and Simulation of PWR Main Steam Line Break Core Response to DNB

    SciTech Connect

    Salko, Robert K; Sung, Yixing; Kucukboyaci, Vefa; Xu, Yiban; Cao, Liping

    2016-01-01

    The Virtual Environment for Reactor Applications core simulator (VERA-CS) being developed by the Consortium for the Advanced Simulation of Light Water Reactors (CASL) includes coupled neutronics, thermal-hydraulics, and fuel temperature components with an isotopic depletion capability. The neutronics capability employed is based on MPACT, a three-dimensional (3-D) whole core transport code. The thermal-hydraulics and fuel temperature models are provided by the COBRA-TF (CTF) subchannel code. As part of the CASL development program, the VERA-CS (MPACT/CTF) code system was applied to model and simulate reactor core response with respect to departure from nucleate boiling ratio (DNBR) at the limiting time step of a postulated pressurized water reactor (PWR) main steamline break (MSLB) event initiated at the hot zero power (HZP), either with offsite power available and the reactor coolant pumps in operation (high-flow case) or without offsite power where the reactor core is cooled through natural circulation (low-flow case). The VERA-CS simulation was based on core boundary conditions from the RETRAN-02 system transient calculations and STAR-CCM+ computational fluid dynamics (CFD) core inlet distribution calculations. The evaluation indicated that the VERA-CS code system is capable of modeling and simulating quasi-steady state reactor core response under the steamline break (SLB) accident condition, the results are insensitive to uncertainties in the inlet flow distributions from the CFD simulations, and the high-flow case is more DNB limiting than the low-flow case.

  15. Investigation of approximations in thermal-hydraulic modeling of core conversions

    SciTech Connect

    Garner, Patrick L.; Hanan, Nelson A.

    2008-07-15

    Neutronics analyses for core conversions are usually fairly detailed, for example representing all 4 flats and all 4 corners of all 6 tubes of all 20 IRT-3M or -4M fuel assemblies in the core of the VVR-SM reactor in Uzbekistan. The coupled neutronics and thermal-hydraulic analysis for safety analysis transients is usually less detailed, for example modeling only a hot and an average fuel plate and the associated coolant. Several of the approximations have been studied using the RELAP5 and PARET computer codes in order to provide assurance that the lack of full detail is not important to the safety analysis. Two specific cases studied are (1) representation of a core of same- type fuel assemblies by a hot and an average assembly each having multiple channels as well as by merely a hot and average channel and (2) modeling a core containing multiple fuel types as the sum of fractional core models for each fuel type. (author)

  16. Endophenotype Network Models: Common Core of Complex Diseases

    NASA Astrophysics Data System (ADS)

    Ghiassian, Susan Dina; Menche, Jörg; Chasman, Daniel I.; Giulianini, Franco; Wang, Ruisheng; Ricchiuto, Piero; Aikawa, Masanori; Iwata, Hiroshi; Müller, Christian; Zeller, Tania; Sharma, Amitabh; Wild, Philipp; Lackner, Karl; Singh, Sasha; Ridker, Paul M.; Blankenberg, Stefan; Barabási, Albert-László; Loscalzo, Joseph

    2016-06-01

    Historically, human diseases have been differentiated and categorized based on the organ system in which they primarily manifest. Recently, an alternative view is emerging that emphasizes that different diseases often have common underlying mechanisms and shared intermediate pathophenotypes, or endo(pheno)types. Within this framework, a specific disease’s expression is a consequence of the interplay between the relevant endophenotypes and their local, organ-based environment. Important examples of such endophenotypes are inflammation, fibrosis, and thrombosis and their essential roles in many developing diseases. In this study, we construct endophenotype network models and explore their relation to different diseases in general and to cardiovascular diseases in particular. We identify the local neighborhoods (module) within the interconnected map of molecular components, i.e., the subnetworks of the human interactome that represent the inflammasome, thrombosome, and fibrosome. We find that these neighborhoods are highly overlapping and significantly enriched with disease-associated genes. In particular they are also enriched with differentially expressed genes linked to cardiovascular disease (risk). Finally, using proteomic data, we explore how macrophage activation contributes to our understanding of inflammatory processes and responses. The results of our analysis show that inflammatory responses initiate from within the cross-talk of the three identified endophenotypic modules.

  17. A stochastic four-state model of contingent gating of gap junction channels containing two "fast" gates sensitive to transjunctional voltage.

    PubMed

    Paulauskas, Nerijus; Pranevicius, Mindaugas; Pranevicius, Henrikas; Bukauskas, Feliksas F

    2009-05-20

    Connexins, a family of membrane proteins, form gap junction (GJ) channels that provide a direct pathway for electrical and metabolic signaling between cells. We developed a stochastic four-state model describing gating properties of homotypic and heterotypic GJ channels each composed of two hemichannels (connexons). GJ channel contain two "fast" gates (one per hemichannel) oriented opposite in respect to applied transjunctional voltage (V(j)). The model uses a formal scheme of peace-linear aggregate and accounts for voltage distribution inside the pore of the channel depending on the state, unitary conductances and gating properties of each hemichannel. We assume that each hemichannel can be in the open state with conductance gamma(h,o) and in the residual state with conductance gamma(h,res), and that both gamma(h,o) and gamma(h,res) rectifies. Gates can exhibit the same or different gating polarities. Gating of each hemichannel is determined by the fraction of V(j) that falls across the hemichannel, and takes into account contingent gating when gating of one hemichannel depends on the state of apposed hemichannel. At the single-channel level, the model revealed the relationship between unitary conductances of hemichannels and GJ channels and how this relationship is affected by gamma(h,o) and gamma(h,res) rectification. Simulation of junctions containing up to several thousands of homotypic or heterotypic GJs has been used to reproduce experimentally measured macroscopic junctional current and V(j)-dependent gating of GJs formed from different connexin isoforms. V(j)-gating was simulated by imitating several frequently used experimental protocols: 1), consecutive V(j) steps rising in amplitude, 2), slowly rising V(j) ramps, and 3), series of V(j) steps of high frequency. The model was used to predict V(j)-gating of heterotypic GJs from characteristics of corresponding homotypic channels. The model allowed us to identify the parameters of V(j)-gates under which

  18. Contribution to modeling of the reflooding of a severely damaged reactor core using PRELUDE experimental results

    SciTech Connect

    Bachrata, A.; Fichot, F.; Repetto, G.; Quintard, M.; Fleurot, J.

    2012-07-01

    In case of accident at a nuclear power plant, water sources may not be available for a long period of time and the core heats up due to the residual power. The reflooding (injection of water into core) may be applied if the availability of safety injection is recovered during accident. If the injection becomes available only in the late phase of accident, water will enter a core configuration that will differ significantly from original rod-bundle geometry. Any attempt to inject water after significant core degradation can lead to further fragmentation of core material. The fragmentation of fuel rods may result in the formation of a 'debris bed'. The typical particle size in a debris bed might reach few millimeters (characteristic length-scale: 1 to 5 mm), i.e., a high permeability porous medium. The French 'Institut de Radioprotection et de Surete Nucleaire' is developing experimental programs (PEARL and PRELUDE) and simulation tools (ICARE-CATHARE and ASTEC) to study and optimize the severe accident management strategy and to assess the probabilities to stop the progress of in-vessel core degradation. It is shown that the quench front exhibits either a ID behaviour or a 2D one, depending on injection rate or bed characteristics. The PRELUDE experiment covers a rather large range of variation of parameters, for which the developed model appears to be quite predictive. (authors)

  19. Use of Z310 Cells as an In Vitro Blood-Cerebrospinal Fluid Barrier Model: Tight Junction Proteins and Transport Properties

    PubMed Central

    Shi, Lewis Zhichang; Li, G. Jane; Wang, Shunzhen; Zheng, Wei

    2009-01-01

    Immortalized rat choroidal epithelial Z310 cells have the potential to become an in vitro model for studying transport of materials at blood-cerebrospinal fluid barrier (BCB) (Shi and Zheng, Brain Research 1057:37-48, 2005). This study was designed to demonstrate the presence of tight junction properties in Z310 cells and the functionality of Z310 monolayer in transport of selected model compounds. Western blot analyses revealed the presence of claudin-1, ZO-1, and occludin in Z310 cells. Transmission electron microscopy showed a “tight junction” type of structure in the sub-apical lateral membranes between adjacent Z310 cells. Real-time RT-PCR revealed that Z310 cells expressed representative transporters such as DMT1, MTP1, TfR, p-glycoprotein, ATP7A, ZnT1, ABCC1, Oat3, OCT1 and OB-Ra. Moreover, Z310 cells cultured in a two-chamber Transwell device possessed the ability to transport zidovudine (anionic drug), thyroxine (hormone), thymidine (nucleoside), and leptin (large polypeptide) with kinetic properties similar to those obtained from the in vitro model based on primary culture of choroidal epithelial cells. Taken together, these data indicate that the Z310 BCB model expresses major tight junction proteins and forms a tight barrier in vitro. The model also exhibits the ability to transport substances of various categories across the barrier. PMID:17825520

  20. Porphyrin-Cored Polymer Nanoparticles: Macromolecular Models for Heme Iron Coordination.

    PubMed

    Rodriguez, Kyle J; Hanlon, Ashley M; Lyon, Christopher K; Cole, Justin P; Tuten, Bryan T; Tooley, Christian A; Berda, Erik B; Pazicni, Samuel

    2016-10-03

    Porphyrin-cored polymer nanoparticles (PCPNs) were synthesized and characterized to investigate their utility as heme protein models. Created using collapsible heme-centered star polymers containing photodimerizable anthracene units, these systems afford model heme cofactors buried within hydrophobic, macromolecular environments. Spectroscopic interrogations demonstrate that PCPNs display redox and ligand-binding reactivity similar to that of native systems and thus are potential candidates for modeling biological heme iron coordination.

  1. Solid-liquid phase equilibria of the Gaussian core model fluid.

    PubMed

    Mausbach, Peter; Ahmed, Alauddin; Sadus, Richard J

    2009-11-14

    The solid-liquid phase equilibria of the Gaussian core model are determined using the GWTS [J. Ge, G.-W. Wu, B. D. Todd, and R. J. Sadus, J. Chem. Phys. 119, 11017 (2003)] algorithm, which combines equilibrium and nonequilibrium molecular dynamics simulations. This is the first reported use of the GWTS algorithm for a fluid system displaying a reentrant melting scenario. Using the GWTS algorithm, the phase envelope of the Gaussian core model can be calculated more precisely than previously possible. The results for the low-density and the high-density (reentrant melting) sides of the solid state are in good agreement with those obtained by Monte Carlo simulations in conjunction with calculations of the solid free energies. The common point on the Gaussian core envelope, where equal-density solid and liquid phases are in coexistence, could be determined with high precision.

  2. A Model for Enhancing Internet Medical Document Retrieval with “Medical Core Metadata”

    PubMed Central

    Malet, Gary; Munoz, Felix; Appleyard, Richard; Hersh, William

    1999-01-01

    Objective: Finding documents on the World Wide Web relevant to a specific medical information need can be difficult. The goal of this work is to define a set of document content description tags, or metadata encodings, that can be used to promote disciplined search access to Internet medical documents. Design: The authors based their approach on a proposed metadata standard, the Dublin Core Metadata Element Set, which has recently been submitted to the Internet Engineering Task Force. Their model also incorporates the National Library of Medicine's Medical Subject Headings (MeSH) vocabulary and Medline-type content descriptions. Results: The model defines a medical core metadata set that can be used to describe the metadata for a wide variety of Internet documents. Conclusions: The authors propose that their medical core metadata set be used to assign metadata to medical documents to facilitate document retrieval by Internet search engines. PMID:10094069

  3. Electroelastic fields in artificially created vortex cores in epitaxial BiFeO3 thin films

    DOE PAGES

    Winchester, Ben; Wisinger, Nina Balke; Cheng, X. X.; ...

    2015-08-03

    Here we employ phase-field modeling to explore the elastic properties of artificially created 1-D domain walls in (001)p-oriented BiFeO3 thin films, composed of a junction of the four polarization variants, all with the same out-of-plane polarization. It was found that these junctions exhibit peculiarly high electroelastic fields induced by the neighboring ferroelastic/ferroelectric domains. The vortex core exhibits a volume expansion, while the anti-vortex core is more compressive. We also discuss possible ways to control the electroelastic field, such as varying material constant and applying transverse electric field.

  4. Final Report, NERI Project: ''An Innovative Reactor Analysis Methodology Based on a Quasidiffusion Nodal Core Model''

    SciTech Connect

    Dmitriy Y. Anistratov; Marvin L. Adams; Todd S. Palmer; Kord S. Smith; Kevin Clarno; Hikaru Hiruta; Razvan Nes

    2003-08-04

    OAK (B204) Final Report, NERI Project: ''An Innovative Reactor Analysis Methodology Based on a Quasidiffusion Nodal Core Model'' The present generation of reactor analysis methods uses few-group nodal diffusion approximations to calculate full-core eigenvalues and power distributions. The cross sections, diffusion coefficients, and discontinuity factors (collectively called ''group constants'') in the nodal diffusion equations are parameterized as functions of many variables, ranging from the obvious (temperature, boron concentration, etc.) to the more obscure (spectral index, moderator temperature history, etc.). These group constants, and their variations as functions of the many variables, are calculated by assembly-level transport codes. The current methodology has two main weaknesses that this project addressed. The first weakness is the diffusion approximation in the full-core calculation; this can be significantly inaccurate at interfaces between different assemblies. This project used the nodal diffusion framework to implement nodal quasidiffusion equations, which can capture transport effects to an arbitrary degree of accuracy. The second weakness is in the parameterization of the group constants; current models do not always perform well, especially at interfaces between unlike assemblies. The project developed a theoretical foundation for parameterization and homogenization models and used that theory to devise improved models. The new models were extended to tabulate information that the nodal quasidiffusion equations can use to capture transport effects in full-core calculations.

  5. A dissolution model that accounts for coverage of mineral surfaces by precipitation in core floods

    NASA Astrophysics Data System (ADS)

    Pedersen, Janne; Jettestuen, Espen; Madland, Merete V.; Hildebrand-Habel, Tania; Korsnes, Reidar I.; Vinningland, Jan Ludvig; Hiorth, Aksel

    2016-01-01

    In this paper, we propose a model for evolution of reactive surface area of minerals due to surface coverage by precipitating minerals. The model is used to interpret results from an experiment where a chalk core was flooded with MgCl2 for 1072 days, giving rise to calcite dissolution and magnesite precipitation. The model successfully describes both the long-term behavior of the measured effluent concentrations and the more or less homogeneous distribution of magnesite found in the core after 1072 days. The model also predicts that precipitating magnesite minerals form as larger crystals or aggregates of smaller size crystals, and not as thin flakes or as a monomolecular layer. Using rate constants obtained from literature gave numerical effluent concentrations that diverged from observed values only after a few days of flooding. To match the simulations to the experimental data after approximately 1 year of flooding, a rate constant that is four orders of magnitude lower than reported by powder experiments had to be used. We argue that a static rate constant is not sufficient to describe a chalk core flooding experiment lasting for nearly 3 years. The model is a necessary extension of standard rate equations in order to describe long term core flooding experiments where there is a large degree of textural alteration.

  6. RADIATION TRANSFER OF MODELS OF MASSIVE STAR FORMATION. I. DEPENDENCE ON BASIC CORE PROPERTIES

    SciTech Connect

    Zhang Yichen; Tan, Jonathan C. E-mail: jt@astro.ufl.edu

    2011-05-20

    Radiative transfer calculations of massive star formation are presented. These are based on the Turbulent Core Model of McKee and Tan and self-consistently included a hydrostatic core, an inside-out expansion wave, a zone of free-falling rotating collapse, wide-angle dust-free outflow cavities, an active accretion disk, and a massive protostar. For the first time for such models, an optically thick inner gas disk extends inside the dust destruction front. This is important to conserve the accretion energy naturally and for its shielding effect on the outer region of the disk and envelope. The simulation of radiation transfer is performed with the Monte Carlo code of Whitney, yielding spectral energy distributions (SEDs) for the model series, from the simplest spherical model to the fiducial one, with the above components each added step by step. Images are also presented in different wavebands of various telescope cameras, including Spitzer IRAC and MIPS, SOFIA FORCAST, and Herschel PACS and SPIRE. The existence of the optically thick inner disk produces higher optical wavelength fluxes but reduces near- and mid-IR emission. The presence of outflow cavities, the inclination angle to the line of sight, and the thickness of the disk all affect the SEDs and images significantly. For the high-mass surface density cores considered here, the mid-IR emission can be dominated by the outflow cavity walls, as has been suggested by De Buizer. The effect of varying the pressure of the environment bounding the surface of the massive core is also studied. With lower surface pressures, the core is larger, has lower extinction and accretion rates, and the observed mid-IR flux from the disk can then be relatively high even though the accretion luminosity is lower. In this case the silicate absorption feature becomes prominent, in contrast to higher density cores forming under higher pressures.

  7. Radiation Transfer of Models of Massive Star Formation. I. Dependence on Basic Core Properties

    NASA Astrophysics Data System (ADS)

    Zhang, Yichen; Tan, Jonathan C.

    2011-05-01

    Radiative transfer calculations of massive star formation are presented. These are based on the Turbulent Core Model of McKee & Tan and self-consistently included a hydrostatic core, an inside-out expansion wave, a zone of free-falling rotating collapse, wide-angle dust-free outflow cavities, an active accretion disk, and a massive protostar. For the first time for such models, an optically thick inner gas disk extends inside the dust destruction front. This is important to conserve the accretion energy naturally and for its shielding effect on the outer region of the disk and envelope. The simulation of radiation transfer is performed with the Monte Carlo code of Whitney, yielding spectral energy distributions (SEDs) for the model series, from the simplest spherical model to the fiducial one, with the above components each added step by step. Images are also presented in different wavebands of various telescope cameras, including Spitzer IRAC and MIPS, SOFIA FORCAST, and Herschel PACS and SPIRE. The existence of the optically thick inner disk produces higher optical wavelength fluxes but reduces near- and mid-IR emission. The presence of outflow cavities, the inclination angle to the line of sight, and the thickness of the disk all affect the SEDs and images significantly. For the high-mass surface density cores considered here, the mid-IR emission can be dominated by the outflow cavity walls, as has been suggested by De Buizer. The effect of varying the pressure of the environment bounding the surface of the massive core is also studied. With lower surface pressures, the core is larger, has lower extinction and accretion rates, and the observed mid-IR flux from the disk can then be relatively high even though the accretion luminosity is lower. In this case the silicate absorption feature becomes prominent, in contrast to higher density cores forming under higher pressures.

  8. Late Cenozoic migration of the Caribbean-North America-Cocos triple junction: the zipper and pull-up models (Guatemala)

    NASA Astrophysics Data System (ADS)

    Authemayou, Christine; Brocard, Gilles; Teyssier, Christian; Simon-Labric, Thibaut; Noe Chiquín, E.; Guttiérrez, Axel; Morán, Sergio; Suski, Barbara; Cosenza, Beatriz; Holliger, Klaus

    2013-04-01

    Our study deals with the crustal deformation produced by the migration of a triple plate junction implying a subduction zone and a transform fault system separating two continental plates. We have chosen the Caribbean-North America-Cocos triple junction as a case study. The Polochic-Motagua fault system are part of the sinistral transform boundary between the North American and Caribbean plates. To the west, these system interact with the subduction zone of the Cocos plate. The linearity of the subduction zone is explained by a mechanically strong oceanic plate that does not tear in the triple junction implying intra-continental deformation. Structural and geomorphic data allow us to propose two tectonic models involving the progressive capture of southern North American blocks by the trailing edge of the Caribbean plate (pull-up tectonics) and a progressive suturing of fault-bounded blocks to the trailing edge of the Caribbean plate associated with a continuous forearc sliver along the two continental plates (zipper model). As a result, the forearc sliver helps maintain a linear subduction zone along the trailing edge of the Caribbean plate. The Late Quaternary activity of the Polochic transform fault have been constrained by determining the active structure geometry and quantifying recent displacement rates. Slip rates have been estimated from offsets of Quaternary volcanic markers and alluvial fan using in situ cosmogenic 36Cl exposure dating. Holocene left-lateral slip rate and Mid-Pleistocene vertical slip-rate have been estimated to 4.8 ± 2.3 mm/y and 0.3 ± 0.06 mm/y, respectively, on the central part of the Polochic fault. The non-negligible vertical motion participates in the uplift of the block north of the fault in agreement with the proposed pull-up model.

  9. Models of molecular cloud cores. II - Multitransition study of CS-34

    NASA Astrophysics Data System (ADS)

    Mundy, L. G.; Evans, N. J., II; Snell, R. L.; Goldsmith, P. F.; Bally, J.

    1986-07-01

    The dense cores embedded in the M17, S140 and NGC 2024 molecular clouds are mapped in the J = 5-4, J = 3-2, and J = 2-1 transitions of CS-34, and these lines are found to be a factor of 3-4 weaker, and 25 percent narrower, than the CS lines mapped in these cores by Snell et al. (1984). The data are well fitted by spherical LGV models for the excitation, and the excellent correlation between the CS-34 and CS column densities corroborates the absence of a systematic increase in the gas density with decreasing core radius found by Snell et al. Though the CS/CS-34 column density ratio is 9-17, rather than the terrestrial value of 22.5, the column density relationship is linear. The data support of a clump model in which the column density distribution in the core is determined by the volume filling factor of clumps with high, fairly uniform gas density, and it is suggested that the dense gas in the data represents the dominant component of the core gas.

  10. Effect of superconducting solenoid model cores on spanwise iron magnet roll control

    NASA Technical Reports Server (NTRS)

    Britcher, C. P.

    1985-01-01

    Compared with conventional ferromagnetic fuselage cores, superconducting solenoid cores appear to offer significant reductions in the projected cost of a large wind tunnel magnetic suspension and balance system. The provision of sufficient magnetic roll torque capability has been a long-standing problem with all magnetic suspension and balance systems; and the spanwise iron magnet scheme appears to be the most powerful system available. This scheme utilizes iron cores which are installed in the wings of the model. It was anticipated that the magnetization of these cores, and hence the roll torque generated, would be affected by the powerful external magnetic field of the superconducting solenoid. A preliminary study has been made of the effect of the superconducting solenoid fuselage model core concept on the spanwise iron magnet roll torque generation schemes. Computed data for one representative configuration indicate that reductions in available roll torque occur over a range of applied magnetic field levels. These results indicate that a 30-percent increase in roll electromagnet capacity over that previously determined will be required for a representative 8-foot wind tunnel magnetic suspension and balance system design.

  11. Immunoglobulins from Animal Models of Motor Neuron Disease and from Human Amyotrophic Lateral Sclerosis Patients Passively Transfer Physiological Abnormalities to the Neuromuscular Junction

    NASA Astrophysics Data System (ADS)

    Apel, Stanley H.; Engelhardt, Jozsef I.; Garcia, Jesus; Stefani, Enrico

    1991-01-01

    Amyotrophic lateral sclerosis (ALS) is a devastating human disease of upper and lower motoneurons of unknown etiology. In support of the potential role of autoimmunity in ALS, two immune-mediated animal models of motoneuron disease have been developed that resemble ALS with respect to the loss of motoneurons, the presence of IgG within motoneurons and at the neuromuscular junction, and with respect to altered physiology of the motor nerve terminal. To provide direct evidence for the primary role of humoral immunity, passive transfer with immunoglobulins from the two animal models and human ALS was carried out. Mice injected with serum or immunoglobulins from the animal disease models and human ALS but not controls demonstrated IgG in motoneurons and at the neuromuscular junction. The mice also demonstrated an increase in miniature end-plate potential (mepp) frequency, with normal amplitude and time course and normal resting membrane potential, indicating an increased resting quantal release of acetylcholine from the nerve terminal. The ability to transfer motoneuron dysfunction with serum immunoglobulins provides evidence for autoimmune mechanisms in the pathogenesis of both the animal models and human ALS.

  12. Use of the shrinking core/exposure model to describe the leachability from cement stabilized wastes

    SciTech Connect

    Hinsenveld, M.; Bishop, P.L.

    1996-12-31

    Based on physical evidence and observation of the acid dependency of the leaching process, a shrinking core model seems to be an appropriate model for cement stabilized waste. It is argues that for cement stabilized wastes, the bulk diffusion model is likely to be in error. Recent findings will be used to support the concept of a shrinking core model. To be able to deal with varying acidities in the leachant, the concept of exposure will be introduced. The model will be derived for a flat surface to illustrate that, as in the ANS 16.1 model, a parabolic leaching behavior can be obtained. Some other characteristics of the model are indicated. It is shown that the shrinking core model, using the concept of exposure, adequately takes into account the physical observations as well as adequately correlates the leaching data for a mode specimen contaminated with lead. The findings indicate that kinetic factors may play a role in the release of metals. Their relevance for the interpretation of TCLP results is indicated.

  13. Reflector modelling of small high leakage cores making use of multi-group nodal equivalence theory

    SciTech Connect

    Theron, S. A.; Reitsma, F.

    2012-07-01

    This research focuses on modelling reflectors in typical material testing reactors (MTRs). Equivalence theory is used to homogenise and collapse detailed transport solutions to generate equivalent nodal parameters and albedo boundary conditions for reflectors, for subsequent use in full core nodal diffusion codes. This approach to reflector modelling has been shown to be accurate for two-group large commercial light water reactor (LWR) analysis, but has not been investigated for MTRs. MTRs are smaller, with much larger leakage, environment sensitivity and multi-group spectrum dependencies than LWRs. This study aims to determine if this approach to reflector modelling is an accurate and plausible homogenisation technique for the modelling of small MTR cores. The successful implementation will result in simplified core models, better accuracy and improved efficiency of computer simulations. Codes used in this study include SCALE 6.1, OSCAR-4 and EQUIVA (the last two codes are developed and used at Necsa). The results show a five times reduction in calculational time for the proposed reduced reactor model compared to the traditional explicit model. The calculated equivalent parameters however show some sensitivity to the environment used to generate them. Differences in the results compared to the current explicit model, require more careful investigation including comparisons with a reference result, before its implementation can be recommended. (authors)

  14. Model of a tunneling current in a p-n junction based on armchair graphene nanoribbons - an Airy function approach and a transfer matrix method

    NASA Astrophysics Data System (ADS)

    Suhendi, Endi; Syariati, Rifki; Noor, Fatimah A.; Kurniasih, Neny; Khairurrijal

    2014-03-01

    We modeled a tunneling current in a p-n junction based on armchair graphene nanoribbons (AGNRs) by using an Airy function approach (AFA) and a transfer matrix method (TMM). We used β-type AGNRs, in which its band gap energy and electron effective mass depends on its width as given by the extended Huckel theory. It was shown that the tunneling currents evaluated by employing the AFA are the same as those obtained under the TMM. Moreover, the calculated tunneling current was proportional to the voltage bias and inversely with temperature.

  15. Model of a tunneling current in a p-n junction based on armchair graphene nanoribbons - an Airy function approach and a transfer matrix method

    SciTech Connect

    Suhendi, Endi; Syariati, Rifki; Noor, Fatimah A.; Khairurrijal; Kurniasih, Neny

    2014-03-24

    We modeled a tunneling current in a p-n junction based on armchair graphene nanoribbons (AGNRs) by using an Airy function approach (AFA) and a transfer matrix method (TMM). We used β-type AGNRs, in which its band gap energy and electron effective mass depends on its width as given by the extended Huckel theory. It was shown that the tunneling currents evaluated by employing the AFA are the same as those obtained under the TMM. Moreover, the calculated tunneling current was proportional to the voltage bias and inversely with temperature.

  16. Can Cognitive Writing Models Inform the Design of the Common Core State Standards?

    ERIC Educational Resources Information Center

    Hayes, John R.; Olinghouse, Natalie G.

    2015-01-01

    In this article, we compare the Common Core State Standards in Writing to the Hayes cognitive model of writing, adapted to describe the performance of young and developing writers. Based on the comparison, we propose the inclusion of standards for motivation, goal setting, writing strategies, and attention by writers to the text they have just…

  17. Model Core Teaching Standards: A Resource for State Dialogue. (Draft for Public Comment)

    ERIC Educational Resources Information Center

    Council of Chief State School Officers, 2010

    2010-01-01

    With this document, the Council of Chief State School Officers (CCSSO) offers for public dialogue and comment a set of model core teaching standards that outline what teachers should know and be able to do to help all students reach the goal of being college- and career-ready in today's world. These standards are an update of the 1992 Interstate…

  18. Muscle spindles exhibit core lesions and extensive degeneration of intrafusal fibers in the Ryr1(I4895T/wt) mouse model of core myopathy.

    PubMed

    Zvaritch, Elena; MacLennan, David H

    2015-04-24

    Muscle spindles from the hind limb muscles of adult Ryr1(I4895T/wt) (IT/+) mice exhibit severe structural abnormalities. Up to 85% of the spindles are separated from skeletal muscle fascicles by a thick layer of connective tissue. Many intrafusal fibers exhibit degeneration, with Z-line streaming, compaction and collapse of myofibrillar bundles, mitochondrial clumping, nuclear shrinkage and pyknosis. The lesions resemble cores observed in the extrafusal myofibers of this animal model and of core myopathy patients. Spindle abnormalities precede those in extrafusal fibers, indicating that they are a primary pathological feature in this murine Ryr1-related core myopathy. Muscle spindle involvement, if confirmed for human core myopathy patients, would provide an explanation for an array of devastating clinical features characteristic of these diseases and provide novel insights into the pathology of RYR1-related myopathies.

  19. Models for the Binary Complex of Bacteriophage T4 Gp59 Helicase Loading Protein. GP32 Single-Stranded DNA-Binding Protein and Ternary Complex with Pseudo-Y Junction DNA

    SciTech Connect

    Hinerman, Jennifer M.; Dignam, J. David; Mueser, Timothy C.

    2012-04-05

    The bacteriophage T4 gp59 helicase assembly protein (gp59) is required for loading of gp41 replicative helicase onto DNA protected by gp32 single-stranded DNA-binding protein. The gp59 protein recognizes branched DNA structures found at replication and recombination sites. Binding of gp32 protein (full-length and deletion constructs) to gp59 protein measured by isothermal titration calorimetry demonstrates that the gp32 protein C-terminal A-domain is essential for protein-protein interaction in the absence of DNA. Sedimentation velocity experiments with gp59 protein and gp32ΔB protein (an N-terminal B-domain deletion) show that these proteins are monomers but form a 1:1 complex with a dissociation constant comparable with that determined by isothermal titration calorimetry. Small angle x-ray scattering (SAXS) studies indicate that the gp59 protein is a prolate monomer, consistent with the crystal structure and hydrodynamic properties determined from sedimentation velocity experiments. SAXS experiments also demonstrate that gp32ΔB protein is a prolate monomer with an elongated A-domain protruding from the core. Moreover, fitting structures of gp59 protein and the gp32 core into the SAXS-derived molecular envelope supports a model for the gp59 protein-gp32ΔB protein complex. Our earlier work demonstrated that gp59 protein attracts full-length gp32 protein to pseudo-Y junctions. A model of the gp59 protein-DNA complex, modified to accommodate new SAXS data for the binary complex together with mutational analysis of gp59 protein, is presented in the accompanying article (Dolezal, D., Jones, C. E., Lai, X., Brister, J. R., Mueser, T. C., Nossal, N. G., and Hinton, D. M. (2012) J. Biol. Chem. 287, 18596–18607).

  20. Resolution and Dynamical Core Dependence of Atmospheric River Frequency in Global Model Simulations

    SciTech Connect

    Hagos, Samson M.; Leung, Lai-Yung R.; Yang, Qing; Zhao, Chun; Lu, Jian

    2015-04-01

    This study examines the sensitivity of atmospheric river (AR) frequency simulated by a global model with different grid resolutions and dynamical cores. Analysis is performed on aquaplanet simulations using version 4 of Community Atmosphere Model (CAM4) at 240, 120, 60 and 30 km model resolutions each with the Model for Prediction Across Scales (MPAS) and High-Order Methods Modeling Environment (HOMME) dynamical cores. The frequency of AR events decreases with model resolution and the HOMME dynamical core produces more AR events than MPAS. Comparing the frequencies determined using absolute and percentile thresholds of large-scale conditions used to define an AR, model sensitivity is found to be related to the overall sensitivity of sub-tropical westerlies, atmospheric precipitable water content and profile and to a lesser extent on extra-tropical Rossby wave activity to model resolution and dynamical core. Real world simulations using MPAS at 120 km and 30 km grid resolutions also exhibit a decrease of AR frequency with increasing resolution over southern East Pacific, but there difference is smaller over northern East Pacific. This inter-hemispheric difference is related to the enhancement of convection in over the tropics with increased resolution. This anomalous convection sets off Rossby wave patterns that weaken the subtropical westerlies over southern East Pacific but have relatively little effect on those over northern East Pacific. In comparison to NCEP2 reanalysis, MPAS real world simulations are found to underestimate AR frequencies at both resolutions likely because of their climatologically drier sub-tropics and poleward shifted jets. This study highlights the important links between model climatology of large-scale conditions and extremes.

  1. The FACETS project: integrated core-edge-wall modeling with concurrent execution

    NASA Astrophysics Data System (ADS)

    Cary, J. R.; Balay, S.; Candy, J.; Carlsson, J. A.; Cohen, R. H.; Epperly, T.; Estep, D. J.; Fahey, M. R.; Groebner, R. J.; Hakim, A. H.; Hammett, G. W.; Indireshkumar, K.; Kruger, S. E.; Maloney, A. D.; McCune, D. C.; McInnes, L.; Morris, A.; Pankin, A.; Pletzer, A.; Pigarov, A.; Rognlien, T. D.; Shasharina, S.; Shende, S.; Vadlamani, S.; Zhang, H.

    2009-11-01

    The multi-institutional FACETS project has the physics goals of using computation to understand of how a consistent, coupled core-edge-wall plasma evolves, including energy flow, particle recycling, and the variation of power density on divertor plates with plasma under different conditions. FACETS is being developed to take advantage of Leadership Class Facilities (LCFs), while still being able to run on laptops with reduced fidelity models. This presentation will provide a high-level overview of the project, discussing the issues of componentization, solvers, performance monitoring, testing, visualization and first physics results for core-edge coupling.

  2. Solute drag in polycrystalline materials: Derivation and numerical analysis of a variational model for the effect of solute on the motion of boundaries and junctions during coarsening

    NASA Astrophysics Data System (ADS)

    Wilson, Seth Robert

    A mathematical model that results in an expression for the local acceleration of a network of sharp interfaces interacting with an ambient solute field is proposed. This expression comprises a first-order differential equation for the local velocity that, given the appropriate initial conditions, may be used to predict the subsequent time evolution of the system, including non-steady state absorption and desorption of solute. Evolution equations for both interfaces and the junction of interfaces are derived by maximizing a functional approximating the rate at which the local Gibbs free energy density decreases, as a function of the local solute content and the instantaneous velocity. The model has been formulated in three dimensions, and non-equilibrium effects such as grain boundary diffusion, solute gradients, and time-dependant segregation are taken into account. As a consequence of this model, it is shown that both interfaces and the junctions between interfaces obey evolution equations that closely resemble Newton's second law. In particular, the concept of "thrust" in variable-mass systems is shown to have a direct analog in solute-interface interaction. Numerical analysis of the equations that result reveals that a double cusp catastrophe governs the behavior of the solute-interface system, for which trajectories that include hysteresis, slip-stick motion, and jerky motion are all conceivable. The geometry of the cusp catastrophe is quantified, and a number of relations between physical parameters and system behavior are consequently predicted.

  3. Spherical relativistic vacuum core models in a Λ-dominated era

    NASA Astrophysics Data System (ADS)

    Yousaf, Z.

    2017-02-01

    This paper is devoted to analyzing the effects of the cosmological constant in the evolution of exact analytical collapsing vacuum core celestial models. For this purpose, relativistic spherical geometry coupled with null expansion locally anisotropic matter distributions is considered. We have first developed a relation between tidal forces and structural variables. We then explored some viable spherical cosmological models by taking the expansion-free condition. Our first class of spherical models is obtained after constraining system matter content, while the second class is obtained by considering barotropic equation of state. We propose that our calculated solutions could be regarded as a relativistic toy model for those astronomical compact populations where vacuum core is expected to appear, like cosmological voids.

  4. Does the Core Contain Potassium?: An Assessment of the Uncertainties in Thermal and Dynamo Evolution Models

    NASA Astrophysics Data System (ADS)

    Nimmo, F.

    2006-12-01

    The long-term thermal evolution of the core, and the history of the geodynamo, are determined by the rate at which heat is extracted from the core, and the presence of any heat sources within the core [1,2]. Radioactive potassium may provide one such heat source: mineral physics results [3,4] are permissive but not definitive; cosmochemical constraints are weak [5]; and geoneutrino detection [6] does not yet have the required resolution. Theoretical models [1-2,7-9] can help to address whether or not potassium is present in the core. Since the evolution of the CMB heat flux is hard to calculate, a better approach is to assume that the entropy available to power the geodynamo has remained constant over time, and to infer the resulting heat flux [2]. Unfortunately, several important parameters, notably core thermal conductivity and the entropy production rate required to sustain the geodynamo, are uncertain. I have carried out a suite of models using a wide range of parameter values based on published results. In the absence of potassium, an ancient inner core [10] and a continuously active geodynamo are only possible if 1) the dissipation generated by the dynamo is small, <0.25 TW 2) the CMB heat flux has stayed constant at ~ 4 TW for the whole of Earth history. The latter condition is in conflict with recent estimates of the present-day CMB heat flux of 10± 4 TW [11,12]. An ancient inner core, if correct, appears to require the presence of 100 ppm potassium in the core. [1] Buffett, GRL 29, 1566, 2002. [2] Labrosse, PEPI 140, 127-143, 2003. [3] Lee et al., GRL 31, L11603, 2004. [4] Gessmann and Wood, EPSL 200, 63-78, 2002. [5] Lassiter G3, Q11012, 2004. [6] Araki et al., Nature 436, 499-503, 2005. [7] Lister PEPI 140, 145-158, 2003. [8] Roberts et al., in Earth's Core and Lower Mantle, ed. Jones et al. [9] Nimmo et al. GJI 156, 363-376, 2004. [10] Brandon et al., EPSL 206, 411-426, 2003. [11] Hernlund et al., Nature 434, 882-886, 2005. [12] Zhong, JGR 111, B04409

  5. Development of a core competency model for the master of public health degree.

    PubMed

    Calhoun, Judith G; Ramiah, Kalpana; Weist, Elizabeth McGean; Shortell, Stephen M

    2008-09-01

    Core competencies have been used to redefine curricula across the major health professions in recent decades. In 2006, the Association of Schools of Public Health identified core competencies for the master of public health degree in graduate schools and programs of public health. We provide an overview of the model development process and a listing of 12 core domains and 119 competencies that can serve as a resource for faculty and students for enhancing the quality and accountability of graduate public health education and training. The primary vision for the initiative is the graduation of professionals who are more fully prepared for the many challenges and opportunities in public health in the forthcoming decade.

  6. Development of a Core Competency Model for the Master of Public Health Degree

    PubMed Central

    Calhoun, Judith G.; Ramiah, Kalpana; Weist, Elizabeth McGean; Shortell, Stephen M.

    2008-01-01

    Core competencies have been used to redefine curricula across the major health professions in recent decades. In 2006, the Association of Schools of Public Health identified core competencies for the master of public health degree in graduate schools and programs of public health. We provide an overview of the model development process and a listing of 12 core domains and 119 competencies that can serve as a resource for faculty and students for enhancing the quality and accountability of graduate public health education and training. The primary vision for the initiative is the graduation of professionals who are more fully prepared for the many challenges and opportunities in public health in the forthcoming decade. PMID:18633093

  7. MODELING OF COUPLED EDGE STOCHASTIC AND CORE RESONANT MAGNETIC FIELD EFFECTS IN DIVERTED TOKAMAKS

    SciTech Connect

    EVANS, T.E.; MOYER, R.A.

    2002-06-01

    Attaining the highest performance in poloidally diverted tokamaks requires resonant magnetic perturbation coils to avoid core instabilities (locked, resistive wall and neoclassical tearing modes). These coils also perturb the pedestal and edge region, causing varying degrees of stochasticity with remnant islands. The effects of the DIII-D locked mode control coil on the edge and core of Ohmic plasmas are modeled with the field line integration code TRIP3D and compared with experimental measurements. Without detailed profile analysis and field line integration, it is difficult to establish whether a given response is due to a ''core mode'' or an ''edge stochastic boundary.'' In diverted Ohmic plasmas, the boundary stochastic layer displays many characteristics associated with such layers in non-diverted tokamaks. Comparison with stochastic boundary results from non-diverted tokamaks indicates that a significant difference in diverted tokamaks is a ''focusing'' of the magnetic field line loss into the vicinity of the divertor.

  8. Final Report: Legion Core Object Model, March 1, 1996 - September 30, 1999

    SciTech Connect

    Grimshaw, Andrew S.

    1999-09-30

    The model specifies the composition and functionality of Legion's core objects - those objects that cooperate to create, locate, manage, and remove objects from the legion project. In particular, the object model facilitates a flexible extensible implementation, provides a single persistent name space, grants site autonomy to participating organizations, and scales to millions of sites and trillions of objects. Further, it offers a framework that is well suited to providing mechanisms for high performance, security, fault tolerance and commerce.

  9. NUMERICAL MODELING OF MULTI-WAVELENGTH SPECTRA OF M87 CORE EMISSION

    SciTech Connect

    Hilburn, G.; Liang, E. P.

    2012-02-10

    Spectral fits to M87 core data from radio to hard X-ray are generated via a specially selected software suite, comprised of the High-Accuracy Relativistic Magnetohydrodynamics GRMHD accretion disk model and a two-dimensional Monte Carlo radiation transport code. By determining appropriate parameter changes necessary to fit X-ray-quiescent and flaring behavior of M87's core, we assess the reasonableness of various flaring mechanisms. This shows that an accretion disk model of M87's core out to 28 GM/c{sup 2} can describe the inner emissions. High spin rates show GRMHD-driven polar outflow generation, without citing an external jet model. Our results favor accretion rate changes as the dominant mechanism of X-ray flux and index changes, with variations in density of approximately 20% necessary to scale between the average X-ray spectrum and flaring or quiescent spectra. The best-fit parameters are black hole spin a/M > 0.8 and maximum accretion flow density n {<=} 3 Multiplication-Sign 10{sup 7} cm{sup -3}, equivalent to horizon accretion rates between m-dot = M-dot / M-dot{sub Edd}{approx}2 Multiplication-Sign 10{sup -6} and 1 Multiplication-Sign 10{sup -5} (with M-dot{sub Edd} defined assuming a radiative efficiency {eta} = 0.1). These results demonstrate that the immediate surroundings of M87's core are appropriate to explain observed X-ray variability.

  10. Ion bipolar junction transistors

    PubMed Central

    Tybrandt, Klas; Larsson, Karin C.; Richter-Dahlfors, Agneta; Berggren, Magnus

    2010-01-01

    Dynamic control of chemical microenvironments is essential for continued development in numerous fields of life sciences. Such control could be achieved with active chemical circuits for delivery of ions and biomolecules. As the basis for such circuitry, we report a solid-state ion bipolar junction transistor (IBJT) based on conducting polymers and thin films of anion- and cation-selective membranes. The IBJT is the ionic analogue to the conventional semiconductor BJT and is manufactured using standard microfabrication techniques. Transistor characteristics along with a model describing the principle of operation, in which an anionic base current amplifies a cationic collector current, are presented. By employing the IBJT as a bioelectronic circuit element for delivery of the neurotransmitter acetylcholine, its efficacy in modulating neuronal cell signaling is demonstrated. PMID:20479274

  11. Ion bipolar junction transistors.

    PubMed

    Tybrandt, Klas; Larsson, Karin C; Richter-Dahlfors, Agneta; Berggren, Magnus

    2010-06-01

    Dynamic control of chemical microenvironments is essential for continued development in numerous fields of life sciences. Such control could be achieved with active chemical circuits for delivery of ions and biomolecules. As the basis for such circuitry, we report a solid-state ion bipolar junction transistor (IBJT) based on conducting polymers and thin films of anion- and cation-selective membranes. The IBJT is the ionic analogue to the conventional semiconductor BJT and is manufactured using standard microfabrication techniques. Transistor characteristics along with a model describing the principle of operation, in which an anionic base current amplifies a cationic collector current, are presented. By employing the IBJT as a bioelectronic circuit element for delivery of the neurotransmitter acetylcholine, its efficacy in modulating neuronal cell signaling is demonstrated.

  12. Studies of mixed HEU-LEU-MTR cores using 3D models

    SciTech Connect

    Haenggi, P.; Lehmann, E.; Hammer, J.; Christen, R.

    1997-08-01

    Several different core loadings were assembled at the SAPHIR research reactor in Switzerland combining the available types of MTR-type fuel elements, consisting mainly of both HEU and LEU fuel. Bearing in mind the well known problems which can occur in such configurations (especially power peaking), investigations have been carried out for each new loading with a 2D neutron transport code (BOXER). The axial effects were approximated by a global buckling value and therefore the radial effects could be studied in considerably detail. Some of the results were reported at earlier RERTR meetings and were compared to those obtained by other methods and with experimental values. For the explicit study of the third dimension of the core, another code (SILWER), which has been developed in PSI for LWR power plant cores, has been selected. With the help of an adapted model for the MTR-core of SAPHIR, several important questions have been addressed. Among other aspects, the estimation of the axial contribution to the hot channel factors, the influence of the control rod position and of the Xe-poisoning on the power distribution were studied. Special attention was given to a core position where a new element was assumed placed near a empty, water filled position. The comparison of elements of low and high enrichments at this position was made in terms of the induced power peaks, with explicit consideration of axial effects. The program SILWER has proven to be applicable to MTR-cores for the investigation of axial effects. For routine use as for the support of reactor operation, this 3D code is a good supplement to the standard 2D model.

  13. The treatment of mixing in core helium burning models - II. Constraints from cluster star counts

    NASA Astrophysics Data System (ADS)

    Constantino, Thomas; Campbell, Simon W.; Lattanzio, John C.; van Duijneveldt, Adam

    2016-03-01

    The treatment of convective boundaries during core helium burning is a fundamental problem in stellar evolution calculations. In the first paper of this series, we showed that new asteroseismic observations of these stars imply they have either very large convective cores or semiconvection/partially mixed zones that trap g modes. We probe this mixing by inferring the relative lifetimes of asymptotic giant branch (AGB) and horizontal branch (HB) from R2, the observed ratio of these stars in recent HST photometry of 48 Galactic globular clusters. Our new determinations of R2 are more self-consistent than those of previous studies and our overall calculation of R2 = 0.117 ± 0.005 is the most statistically robust now available. We also establish that the luminosity difference between the HB and the AGB clump is Δ log {L}_HB^AGB = 0.455 ± 0.012. Our results accord with earlier findings that standard models predict a lower R2 than is observed. We demonstrate that the dominant sources of uncertainty in models are the prescription for mixing and the stochastic effects that can result from its numerical treatment. The luminosity probability density functions that we derive from observations feature a sharp peak near the AGB clump. This constitutes a strong new argument against core breathing pulses, which broaden the predicted width of the peak. We conclude that the two mixing schemes that can match the asteroseismology are capable of matching globular cluster observations, but only if (i) core breathing pulses are avoided in models with a semiconvection/partially mixed zone, or (ii) that models with large convective cores have a particular depth of mixing beneath the Schwarzschild boundary during subsequent early-AGB `gravonuclear' convection.

  14. Reprogramming of cell junction modules during stepwise epithelial to mesenchymal transition and accumulation of malignant features in vitro in a prostate cell model

    SciTech Connect

    Ke, Xi-song; Li, Wen-cheng; Hovland, Randi; Qu, Yi; Liu, Run-hui; McCormack, Emmet; Thorsen, Frits; Olsen, Jan Roger; Molven, Anders; Kogan-Sakin, Ira; Rotter, Varda; Akslen, Lars A.; Oyan, Anne Margrete; Kalland, Karl-Henning

    2011-01-15

    Epithelial to mesenchymal transition (EMT) is pivotal in tumor metastasis. Our previous work reported an EMT model based on primary prostate epithelial cells (EP156T) which gave rise to cells with mesenchymal phenotype (EPT1) without malignant transformation. To promote prostate cell transformation, cells were maintained in saturation density cultures to select for cells overriding quiescence. Foci formed repeatedly following around 8 weeks in confluent EPT1 monolayers. Only later passage EPT1, but not EP156T cells of any passage, could form foci. Cells isolated from the foci were named EPT2 and formed robust colonies in soft agar, a malignant feature present neither in EP156T nor in EPT1 cells. EPT2 cells showed additional malignant traits in vitro, including higher ability to proliferate following confluence, higher resistance to apoptosis and lower dependence on exogenous growth factors than EP156T and EPT1 cells. Microarray profiling identified gene sets, many of which belong to cell junction modules, that changed expression from EP156T to EPT1 cells and continued to change from EPT1 to EPT2 cells. Our findings provide a novel stepwise cell culture model in which EMT emerges independently of transformation and is associated with subsequent accumulation of malignant features in prostate cells. Reprogramming of cell junction modules is involved in both steps.

  15. Zipper and freeway shear zone junctions

    NASA Astrophysics Data System (ADS)

    Passchier, Cees; Platt, John

    2016-04-01

    Ductile shear zones are usually presented as isolated planar high-strain domains in a less deformed wall rock, characterised by shear sense indicators such as characteristic deflected foliation traces. Many shear zones, however, form branched systems and if movement on such branches is contemporaneous, the resulting geometry can be complicated and lead to unusual fabric geometries in the wall rock. For Y-shaped shear zone junctions with three simultaneously operating branches, and with slip directions at a high angle to the branch line, eight basic types of shear zone triple junctions are possible, divided into three groups. The simplest type, called freeway junctions, have similar shear sense on all three branches. If shear sense is different on the three branches, this can lead to space problems. Some of these junctions have shear zone branches that join to form a single branch, named zipper junctions, or a single shear zone which splits to form two, known as wedge junctions. Closing zipper junctions are most unusual, since they form a non-active high-strain zone with opposite deflection of foliations. Shear zipper and shear wedge junctions have two shear zones with similar shear sense, and one with the opposite sense. All categories of shear zone junctions show characteristic flow patterns in the shear zone and its wall rock. Shear zone junctions with slip directions normal to the branch line can easily be studied, since ideal sections of shear sense indicators lie in the plane normal to the shear zone branches and the branch line. Expanding the model to allow slip oblique and parallel to the branch line in a full 3D setting gives rise to a large number of geometries in three main groups. Slip directions can be parallel on all branches but oblique to the branch line: two slip directions can be parallel and a third oblique, or all three branches can have slip in different directions. Such more complex shear zone junctions cannot be studied to advantage in a

  16. Core curricula for postdoctoral dental students: recent problems, potential solutions, and a model for the future.

    PubMed

    Iacopino, Anthony M; Taft, Thomas B

    2007-11-01

    Dentistry in 2000. This core curriculum was designed to 1) be user-friendly; 2) allow flexibility; 3) meet specific programmatic/accreditation needs for each advanced education program; and 4) provide assessment tools for continuous resident feedback and curriculum improvement. Assessment data obtained from residents, faculty, and program directors indicate that this approach has been successful and has transformed graduate education at Marquette. Thus, this model may prove useful for other institutions seeking to refine or develop graduate core curricula.

  17. Core and Crustal Geomagnetic Field Modeling Using Oersted and Magsat Data

    NASA Technical Reports Server (NTRS)

    Constable, Catherine; Parker, Robert L.

    1999-01-01

    This grant supplied funding to use Magsat and Oersted magnetic field data to model the magnetic field due to Earth's core and crust. Since the launch of Oersted was significantly delayed and no data were yet available by 5/31/99, the end of the funding period, it is perhaps fortunate that our primary goals were to develop and exploit innovative schemes for modeling the geomagnetic field, including new techniques for minimizing the influence of crustal magnetic fields in core field modelling. We were able to proceed with these efforts independently despite the lack of new observations. The work carried out under this grant has resulted in four peer-reviewed publications, with ongoing work contributing to a fifth in press paper. The research also provided significant contributions to education in PhD theses. Details of the results from this work can be found in the attached copies of the published work.

  18. Ein anisotropes homologes Modell für den Core-Kollaps in Sternhaufen.

    NASA Astrophysics Data System (ADS)

    Louis, P. D.

    1990-07-01

    The author describes a new method for computing the quasi-stationary evolution of spherical star clusters, which is based on moment equations of Boltzmann's equation. The deficiency of high velocity stars and the anisotropic velocity distribution, both of which are distinctive features of real stellar systems, are approximated by single parameters. The effects of gravitational encounters between individual stars are represented by collision terms in the moment equations which are considered up to fourth order in this treatment. Using heuristic algebraic relations between the flux velocities the moment equations are closed at fifth order. The model is applied to the phenomenon of core collapse in one-component star clusters. The ordinary differential equations for self-similar evolution are derived and the eigenvalue problem for pre-collapse is solved. In the isotropic version the author finds a power-law index and a core collapse rate which are in reasonable agreement with existing homological models. The anisotropic model is characterized by a somewhat steeper density profile, a considerably reduced value for the core collapse rate and moderate anisotropy in the outer parts of the halo. The effects of modifying the equations of this approximative model are discussed in detail and the discrepancies between Larson's calculations and other models including anisotropy are resolved.

  19. A decision tree algorithm for investigation of model biases related to dynamical cores and physical parameterizations

    PubMed Central

    Rood, Richard B.

    2016-01-01

    Abstract An object‐based evaluation method using a pattern recognition algorithm (i.e., classification trees) is applied to the simulated orographic precipitation for idealized experimental setups using the National Center of Atmospheric Research (NCAR) Community Atmosphere Model (CAM) with the finite volume (FV) and the Eulerian spectral transform dynamical cores with varying resolutions. Daily simulations were analyzed and three different types of precipitation features were identified by the classification tree algorithm. The statistical characteristics of these features (i.e., maximum value, mean value, and variance) were calculated to quantify the difference between the dynamical cores and changing resolutions. Even with the simple and smooth topography in the idealized setups, complexity in the precipitation fields simulated by the models develops quickly. The classification tree algorithm using objective thresholding successfully detected different types of precipitation features even as the complexity of the precipitation field increased. The results show that the complexity and the bias introduced in small‐scale phenomena due to the spectral transform method of CAM Eulerian spectral dynamical core is prominent, and is an important reason for its dissimilarity from the FV dynamical core. The resolvable scales, both in horizontal and vertical dimensions, have significant effect on the simulation of precipitation. The results of this study also suggest that an efficient and informative study about the biases produced by GCMs should involve daily (or even hourly) output (rather than monthly mean) analysis over local scales. PMID:28239437

  20. Modeling Shallow Core-Level Transitions in the Reflectance Spectra of Gallium-Containing Semiconductors

    NASA Astrophysics Data System (ADS)

    Stoute, Nicholas; Aspnes, David

    2012-02-01

    The electronic structure of covalent materials is typically approached by band theory. However, shallow core level transitions may be better modeled by an atomic-scale approach. We investigate shallow d-core level reflectance spectra in terms of a local atomic-multiplet theory, a novel application of a theory typically used for higher-energy transitions on more ionic type material systems. We examine specifically structure in reflectance spectra of GaP, GaAs, GaSb, GaSe, and GaAs1-xPx due to transitions that originate from Ga3d core levels and occur in the 20 to 25 eV range. We model these spectra as a Ga^+3 closed-shell ion whose transitions are influenced by perturbations on 3d hole-4p electron final states. These are specifically spin-orbit effects on the hole and electron, and a crystal-field effect on the hole, attributed to surrounding bond charges and positive ligand anions. Empirical radial-strength parameters were obtained by least-squares fitting. General trends with respect to anion electronegativity are consistent with expectations. In addition to the spin-orbit interaction, crystal-field effects play a significant role in breaking the degeneracy of the d levels, and consequently are necessary to understand shallow 3d core level spectra.

  1. Seismic anisotropy in the Earth's innermost inner core: Testing structural models against mineral physics predictions

    SciTech Connect

    Romanowicz, Barbara; Cao, Aimin; Godwal, Budhiram; Wenk, Rudy; Ventosa, Sergi; Jeanloz, Raymond

    2016-01-06

    Using an updated data set of ballistic PKIKP travel time data at antipodal distances, we test different models of anisotropy in the Earth's innermost inner core (IMIC) and obtain significantly better fits for a fast axis aligned with Earth's rotation axis, rather than a quasi-equatorial direction, as proposed recently. Reviewing recent results on the single crystal structure and elasticity of iron at core conditions, we find that an hcp structure with the fast c axis parallel to Earth's rotation is more likely but a body-centered cubic structure with the [111] axis aligned in that direction results in very similar predictions for seismic anisotropy. These models are therefore not distinguishable based on current seismological data. In addition, to match the seismological observations, the inferred strength of anisotropy in the IMIC (6–7%) implies almost perfect alignment of iron crystals, an intriguing, albeit unlikely situation, especially in the presence of heterogeneity, which calls for further studies. Fast axis of anisotropy in the central part of the inner core aligned with Earth's axis of rotation Lastly, the structure of iron in the inner core is most likely hcp, not bcc Not currently possible to distinguish between hcp and bcc structures from seismic observations

  2. A decision tree algorithm for investigation of model biases related to dynamical cores and physical parameterizations.

    PubMed

    Soner Yorgun, M; Rood, Richard B

    2016-12-01

    An object-based evaluation method using a pattern recognition algorithm (i.e., classification trees) is applied to the simulated orographic precipitation for idealized experimental setups using the National Center of Atmospheric Research (NCAR) Community Atmosphere Model (CAM) with the finite volume (FV) and the Eulerian spectral transform dynamical cores with varying resolutions. Daily simulations were analyzed and three different types of precipitation features were identified by the classification tree algorithm. The statistical characteristics of these features (i.e., maximum value, mean value, and variance) were calculated to quantify the difference between the dynamical cores and changing resolutions. Even with the simple and smooth topography in the idealized setups, complexity in the precipitation fields simulated by the models develops quickly. The classification tree algorithm using objective thresholding successfully detected different types of precipitation features even as the complexity of the precipitation field increased. The results show that the complexity and the bias introduced in small-scale phenomena due to the spectral transform method of CAM Eulerian spectral dynamical core is prominent, and is an important reason for its dissimilarity from the FV dynamical core. The resolvable scales, both in horizontal and vertical dimensions, have significant effect on the simulation of precipitation. The results of this study also suggest that an efficient and informative study about the biases produced by GCMs should involve daily (or even hourly) output (rather than monthly mean) analysis over local scales.

  3. Seismic anisotropy in the Earth's innermost inner core: Testing structural models against mineral physics predictions

    DOE PAGES

    Romanowicz, Barbara; Cao, Aimin; Godwal, Budhiram; ...

    2016-01-06

    Using an updated data set of ballistic PKIKP travel time data at antipodal distances, we test different models of anisotropy in the Earth's innermost inner core (IMIC) and obtain significantly better fits for a fast axis aligned with Earth's rotation axis, rather than a quasi-equatorial direction, as proposed recently. Reviewing recent results on the single crystal structure and elasticity of iron at core conditions, we find that an hcp structure with the fast c axis parallel to Earth's rotation is more likely but a body-centered cubic structure with the [111] axis aligned in that direction results in very similar predictionsmore » for seismic anisotropy. These models are therefore not distinguishable based on current seismological data. In addition, to match the seismological observations, the inferred strength of anisotropy in the IMIC (6–7%) implies almost perfect alignment of iron crystals, an intriguing, albeit unlikely situation, especially in the presence of heterogeneity, which calls for further studies. Fast axis of anisotropy in the central part of the inner core aligned with Earth's axis of rotation Lastly, the structure of iron in the inner core is most likely hcp, not bcc Not currently possible to distinguish between hcp and bcc structures from seismic observations« less

  4. Fast Off-Lattice Monte Carlo Simulations with a Novel Soft-Core Spherocylinder Model

    NASA Astrophysics Data System (ADS)

    Zong, Jing; Zhang, Xinghua; Wang, Qiang (David)

    2011-03-01

    Fast off-lattice Monte Carlo simulations with soft-core repulsive potentials that allow particle overlapping give orders of magnitude faster/better sampling of the configurational space than conventional molecular simulations with hard-core repulsions (such as in the Lennard-Jones potential). Here we present our fast off-lattice Monte Carlo simulations on the structures and phase transitions of liquid crystals and rod-coil diblock copolymers based on a novel and computationally efficient anisotropic soft-core potential that gives exact treatment of the excluded-volume interactions between two spherocylinders (thus the orientational interaction between them favoring their parallel alignment). Our model further takes into account the degree of overlap of two spherocylinders, thus superior to other soft-core models that depend only on their shortest distance. It has great potential applications in the study of liquid crystals, block copolymers containing rod blocks, and liquid crystalline polymers. Q. Wang and Y. Yin, J. Chem. Phys., 130, 104903 (2009).

  5. A high-grain diet alters the omasal epithelial structure and expression of tight junction proteins in a goat model.

    PubMed

    Liu, Jun-Hua; Xu, Ting-Ting; Zhu, Wei-Yun; Mao, Sheng-Yong

    2014-07-01

    The omasal epithelial barrier plays important roles in maintaining nutrient absorption and immune homeostasis in ruminants. However, little information is currently available about the changes in omasal epithelial barrier function at the structural and molecular levels during feeding of a high-grain (HG) diet. Ten male goats were randomly assigned to two groups, fed either a hay diet (0% grain; n = 5) or HG diet (65% grain; n = 5). Changes in omasal epithelial structure and expression of tight junction (TJ) proteins were determined via electron microscopy and Western blot analysis. After 7 weeks on each diet, omasal contents in the HG group showed significantly lower pH (P <0.001) and significantly higher concentrations of free lipopolysaccharides (LPS; P = 0.001) than the hay group. The goats fed a HG diet showed profound alterations in omasal epithelial structure and TJ proteins, corresponding to depression of thickness of total epithelia, stratum granulosum, and the sum of the stratum spinosum and stratum basale, marked epithelial cellular damage, erosion of intercellular junctions and down-regulation in expression of the TJ proteins, claudin-4 and occludin. The study demonstrates that feeding a HG diet is associated with omasal epithelial cellular damage and changes in expression of TJ proteins. These research findings provide an insight into the possible significance of diet on the omasal epithelial barrier in ruminants.

  6. A statistical model of the human core-temperature circadian rhythm

    NASA Technical Reports Server (NTRS)

    Brown, E. N.; Choe, Y.; Luithardt, H.; Czeisler, C. A.

    2000-01-01

    We formulate a statistical model of the human core-temperature circadian rhythm in which the circadian signal is modeled as a van der Pol oscillator, the thermoregulatory response is represented as a first-order autoregressive process, and the evoked effect of activity is modeled with a function specific for each circadian protocol. The new model directly links differential equation-based simulation models and harmonic regression analysis methods and permits statistical analysis of both static and dynamical properties of the circadian pacemaker from experimental data. We estimate the model parameters by using numerically efficient maximum likelihood algorithms and analyze human core-temperature data from forced desynchrony, free-run, and constant-routine protocols. By representing explicitly the dynamical effects of ambient light input to the human circadian pacemaker, the new model can estimate with high precision the correct intrinsic period of this oscillator ( approximately 24 h) from both free-run and forced desynchrony studies. Although the van der Pol model approximates well the dynamical features of the circadian pacemaker, the optimal dynamical model of the human biological clock may have a harmonic structure different from that of the van der Pol oscillator.

  7. Preliminary design report for SCDAP/RELAP5 lower core plate model

    SciTech Connect

    Coryell, E.W.; Griffin, F.P.

    1998-07-01

    The SCDAP/RELAP5 computer code is a best-estimate analysis tool for performing nuclear reactor severe accident simulations. Under primary sponsorship of the US Nuclear Regulatory Commission (NRC), Idaho National Engineering and Environmental Laboratory (INEEL) is responsible for overall maintenance of this code and for improvements for pressurized water reactor (PWR) applications. Since 1991, Oak Ridge National Laboratory (ORNL) has been improving SCDAP/RELAP5 for boiling water reactor (BWR) applications. The RELAP5 portion of the code performs the thermal-hydraulic calculations for both normal and severe accident conditions. The structures within the reactor vessel and coolant system can be represented with either RELAP5 heat structures or SCDAP/RELAP5 severe accident structures. The RELAP5 heat structures are limited to normal operating conditions (i.e., no structural oxidation, melting, or relocation), while the SCDAP portion of the code is capable of representing structural degradation and core damage progression that can occur under severe accident conditions. DCDAP/RELAP5 currently assumes that molten material which leaves the core region falls into the lower vessel head without interaction with structural materials. The objective of this design report is to describe the modifications required for SCDAP/RELAP5 to treat the thermal response of the structures in the core plate region as molten material relocates downward from the core, through the core plate region, and into the lower plenum. This has been a joint task between INEEL and ORNL, with INEEL focusing on PWR-specific design, and ORNL focusing upon the BWR-specific aspects. Chapter 2 describes the structures in the core plate region that must be represented by the proposed model. Chapter 3 presents the available information about the damage progression that is anticipated to occur in the core plate region during a severe accident, including typical SCDAP/RELAP5 simulation results. Chapter 4 provides a

  8. Small-scale disturbances in the stratigraphy of ice cores: observations and numerical model simulations

    NASA Astrophysics Data System (ADS)

    Jansen, Daniela; LLorens, Maria-Gema; Westhoff, Julien; Steinbach, Florian; Kipfstuhl, Sepp; Bons, Paul D.; Griera, Albert; Eichler, Jan; Weikusat, Ilka

    2016-04-01

    Visual stratigraphy of ice cores from Greenland as well as Antarctica revealed folding on a cm scale, with fold amplitudes varying from less than 1 cm to a few decimetres. Stratigraphy bands are visualized by an indirect light source scattering on surfaces inside the ice, mainly particles and air bubbles / hydrates. Due to their potential influence on the integrity of the climatic record, folds have been subject to modelling studies, however, the initial formation of the disturbances is not fully understood. In this study we present a detailed analysis of the visible folds from the NEEM ice core from Greenland and the EDML ice core from Antarctica, discuss their characteristics and frequency and present examples of typical fold structures. We also analyse the structures with regard to the deformation boundary conditions under which they formed. In case of the NEEM core the structures evolve from gentle waves at about 1500 m to overturned z-folds with increasing depth. Occasionally, the folding causes significant thickening of layers. Their similar-fold shape indicates that they are passive features and are probably not initiated by rheology differences between alternating layers. Layering is heavily disturbed and tracing of single layers is no longer possible below a depth of 2160 m. C-axes orientation distributions for the corresponding core sections were analysed where available in addition to visual stratigraphy. The data show axial-plane parallel strings of grains with c-axis orientations that deviate from that of the matrix, which shows a single-maximum fabric at the depth where the folding occurs. In case of the EDML ice cores the folding starts at a depth of about 1700 m and show very similar characteristics as found in the NEEM core. Numerical modelling of crystal viscoplasticity deformation and dynamic recrystallisation was used to improve the understanding of the formation of the observed structures during deformation. The modelling reproduces the

  9. Simulating High Flux Isotope Reactor Core Thermal-Hydraulics via Interdimensional Model Coupling

    SciTech Connect

    Travis, Adam R

    2014-05-01

    A coupled interdimensional model is presented for the simulation of the thermal-hydraulic characteristics of the High Flux Isotope Reactor core at Oak Ridge National Laboratory. The model consists of two domains a solid involute fuel plate and the surrounding liquid coolant channel. The fuel plate is modeled explicitly in three-dimensions. The coolant channel is approximated as a twodimensional slice oriented perpendicular to the fuel plate s surface. The two dimensionally-inconsistent domains are linked to one another via interdimensional model coupling mechanisms. The coupled model is presented as a simplified alternative to a fully explicit, fully three-dimensional model. Involute geometries were constructed in SolidWorks. Derivations of the involute construction equations are presented. Geometries were then imported into COMSOL Multiphysics for simulation and modeling. Both models are described in detail so as to highlight their respective attributes in the 3D model, the pursuit of an accurate, reliable, and complete solution; in the coupled model, the intent to simplify the modeling domain as much as possible without affecting significant alterations to the solution. The coupled model was created with the goal of permitting larger portions of the reactor core to be modeled at once without a significant sacrifice to solution integrity. As such, particular care is given to validating incorporated model simplifications. To the greatest extent possible, the decrease in solution time as well as computational cost are quantified versus the effects such gains have on the solution quality. A variant of the coupled model which sufficiently balances these three solution characteristics is presented alongside the more comprehensive 3D model for comparison and validation.

  10. The Cusp/Core problem: supernovae feedback versus the baryonic clumps and dynamical friction model

    NASA Astrophysics Data System (ADS)

    Del Popolo, A.; Pace, F.

    2016-05-01

    In the present paper, we compare the predictions of two well known mechanisms considered able to solve the cusp/core problem (a. supernova feedback; b. baryonic clumps-DM interaction) by comparing their theoretical predictions to recent observations of the inner slopes of galaxies with masses ranging from dSphs to normal spirals. We compare the α-V_{rot} and the α-M_{ast} relationships, predicted by the two models with high resolution data coming from Adams et al. (Astrophys. J. 789, 63, 2014), Simon et al. (Astrophys. J. 621, 757, 2005), LITTLE THINGS (Oh et al. in Astron. J. 149, 180, 2015), THINGS dwarves (Oh et al. in Astron. J. 141, 193, 2011a; Oh et al. in Astron. J. 142, 224, 2011b), THINGS spirals (Oh et al. in Astron. J. 149, 180, 2015), Sculptor, Fornax and the Milky Way. The comparison of the theoretical predictions with the complete set of data shows that the two models perform similarly, while when we restrict the analysis to a smaller subsample of higher quality, we show that the method presented in this paper (baryonic clumps-DM interaction) performs better than the one based on supernova feedback. We also show that, contrarily to the first model prediction, dSphs of small mass could have cored profiles. This means that observations of cored inner profiles in dSphs having a stellar mass <106 M_{⊙} not necessarily imply problems for the ΛCDM model.

  11. A computationally efficient method for full-core conjugate heat transfer modeling of sodium fast reactors

    DOE PAGES

    Hu, Rui; Yu, Yiqi

    2016-09-08

    For efficient and accurate temperature predictions of sodium fast reactor structures, a 3-D full-core conjugate heat transfer modeling capability is developed for an advanced system analysis tool, SAM. The hexagon lattice core is modeled with 1-D parallel channels representing the subassembly flow, and 2-D duct walls and inter-assembly gaps. The six sides of the hexagon duct wall and near-wall coolant region are modeled separately to account for different temperatures and heat transfer between coolant flow and each side of the duct wall. The Jacobian Free Newton Krylov (JFNK) solution method is applied to solve the fluid and solid field simultaneouslymore » in a fully coupled fashion. The 3-D full-core conjugate heat transfer modeling capability in SAM has been demonstrated by a verification test problem with 7 fuel assemblies in a hexagon lattice layout. In addition, the SAM simulation results are compared with RANS-based CFD simulations. Very good agreements have been achieved between the results of the two approaches.« less

  12. A computationally efficient method for full-core conjugate heat transfer modeling of sodium fast reactors

    SciTech Connect

    Hu, Rui; Yu, Yiqi

    2016-09-08

    For efficient and accurate temperature predictions of sodium fast reactor structures, a 3-D full-core conjugate heat transfer modeling capability is developed for an advanced system analysis tool, SAM. The hexagon lattice core is modeled with 1-D parallel channels representing the subassembly flow, and 2-D duct walls and inter-assembly gaps. The six sides of the hexagon duct wall and near-wall coolant region are modeled separately to account for different temperatures and heat transfer between coolant flow and each side of the duct wall. The Jacobian Free Newton Krylov (JFNK) solution method is applied to solve the fluid and solid field simultaneously in a fully coupled fashion. The 3-D full-core conjugate heat transfer modeling capability in SAM has been demonstrated by a verification test problem with 7 fuel assemblies in a hexagon lattice layout. In addition, the SAM simulation results are compared with RANS-based CFD simulations. Very good agreements have been achieved between the results of the two approaches.

  13. Indian Ocean Triple Junction

    SciTech Connect

    Tapscott, C.R.; Patriat, P.; Fisher, R.L.; Sclater, J.G.; Hoskins, H.; Parsons, B.

    1980-09-10

    The boundaries of three major plates (Africa, India, and Antarctica) meet in a triple junction in the Indian Ocean near 25 /sup 0/S, 70 /sup 0/E. Using observed bathymetry and magnetic anomalies, we locate the junction to within 5 km and show that it is a ridge-ridge-ridge type. Relative plate motion is N60 /sup 0/E at 50 mm/yr (full rate) across the Central Indian Ridge, N47 /sup 0/E at 60 mm/yr across the Southeast Indian Ridge, and N3 /sup 0/W at 15 mm/yr across te Southwest Indian Ridge; the observed velocity triangle is closed. Poles of instantaneous relative plate motion are determined for all plate pairs. The data in the South Atlantic and Indian oceans are consistent with a rigid African plate without significant internal deformation. Two of the ridges at the triple junction are normal midocean spreading centers with well-defined median valleys. The Southwest Indian Ridge, however, has a peculiar morphology near the triple junction, that of an elongate triangular deep, with the triple junction at its apex. The floor of the deep represents crust formed at the Southwest Indian Ridge, and the morphology is a consequence of the evolution of the triple junction and is similar to that at the Galapagos Triple Junction. Though one cannot determine with precision the stability conditions at the triple junction, the development of the junction over the last 10 m.y. can be mapped, and the topographic expressions of the triple junction traces may be detected on the three plates.

  14. Scalability and Efficiency of Earth System Models in the Multi-Core-Age

    NASA Astrophysics Data System (ADS)

    Biercamp, J.; Adamidis, P.; Jahns, T.; Rosenhauer, M.

    2009-04-01

    Climate and Earth system modeling today is performed with intricate systems of coupled models. Complexity and spatial resolution of these models is limited by computing resources. Necessary and envisaged improvements will require an increase of the computing power available to climate models by several orders of magnitude. Until very recently the speed of a single CPU (central processing unit) doubled roughly every two years. This has come to an end for technical and physical reasons. The new rule of thumb says that the number of computational cores will double every two years. Climate modelers will have to learn how to use very large numbers of cores in parallel. Modern supercomputer already use thousands of cores. If, with a global atmosphere model, we wanted to achieve 1000 forecast days per day at a horizontal resolution of 1km, we would need to run it on more than 10.000.000 processing units in parallel. Today nobody knows how to program such an application, how to handle the enormous data streams produced by it and how to pay for the power bill of such a machine. In this talk we will discuss our strategies to scale earth system models to high numbers of processor cores. We will mainly focus on two projects. "ScalES" (Scalable Earth System Models) is a BMBF funded project led by DKRZ which started in January 2009. In this project we will identify bottlenecks which inhibit efficient scaling of typical climate models and will implement prototype solutions in the COSMOS coupled Earth system model. In particular the project will address parallel I/O, load balancing, efficient parallel coupling of component models and efficient use of state-of-the-art computer architectures. "PeAKliM" (Petaflop-Architectures in Climate und Meteorology) is a joint initiative of climate researchers and mathematicians which aims at tackling the question, what kind of architecture is best suited for climate and weather models and to already now investigate into algorithms for future

  15. Improvement of the Analytical Model of a Laminated Core Parametric Motor

    NASA Astrophysics Data System (ADS)

    Tajima, Katsubumi; Sato, Tadashi; Sakamoto, Yoshinori

    A laminated core parametric induction motor has desirable features and the planer structure to make it possible to reduce the production cost of the motor by mass production. In the past work, we showed the validity to apply the two-dimensional reluctance network analytical model to the dynamic analysis of the motor while the rotor is driving. In this paper, we investigate the improvement the accuracy of the analytical method of the motor by using new reluctance network analytical model of the motor. In this model, the magnetic circuits of the stator and the rotor are connected by the variable reluctances that are expressed as the function of the rotating angle.

  16. Coherent network analysis of gravitational waves from three-dimensional core-collapse supernova models

    NASA Astrophysics Data System (ADS)

    Hayama, Kazuhiro; Kuroda, Takami; Kotake, Kei; Takiwaki, Tomoya

    2015-12-01

    Using predictions from three-dimensional (3D) hydrodynamics simulations of core-collapse supernovae (CCSNe), we present a coherent network analysis for the detection, reconstruction, and source localization of the gravitational-wave (GW) signals. We use the RIDGE pipeline for the analysis, in which the network of LIGO Hanford, LIGO Livingston, VIRGO, and KAGRA is considered. By combining with a GW spectrogram analysis, we show that several important hydrodynamics features in the original waveforms persist in the waveforms of the reconstructed signals. The characteristic excess in the spectrograms originates not only from the rotating core collapse, bounce, and subsequent ringdown of the proto-neutron star (PNS) as previously identified, but also from the formation of magnetohydrodynamics jets and nonaxisymmetric instabilities in the vicinity of the PNS. Regarding the GW signals emitted near the rotating core bounce, the horizon distance extends up to ˜18 kpc for the most rapidly rotating 3D model in this work. Following the rotating core bounce, the dominant source of the GW emission shifts to the nonaxisymmetric instabilities. The horizon distances extend maximally up to ˜40 kpc seen from the spin axis. With an increasing number of 3D models trending towards explosion recently, our results suggest that in addition to the best-studied GW signals due to rotating core collapse and bounce, the time is ripe to consider how we can do science from GWs of CCSNe much more seriously than before. In particular, the quasiperiodic signals due to the nonaxisymmetric instabilities and the detectability deserves further investigation to elucidate the inner workings of the rapidly rotating CCSNe.

  17. A Common Core for Active Conceptual Modeling for Learning from Surprises

    NASA Astrophysics Data System (ADS)

    Liddle, Stephen W.; Embley, David W.

    The new field of active conceptual modeling for learning from surprises (ACM-L) may be helpful in preserving life, protecting property, and improving quality of life. The conceptual modeling community has developed sound theory and practices for conceptual modeling that, if properly applied, could help analysts model and predict more accurately. In particular, we need to associate more semantics with links, and we need fully reified high-level objects and relationships that have a clear, formal underlying semantics that follows a natural, ontological approach. We also need to capture more dynamic aspects in our conceptual models to more accurately model complex, dynamic systems. These concepts already exist, and the theory is well developed; what remains is to link them with the ideas needed to predict system evolution, thus enabling risk assessment and response planning. No single researcher or research group will be able to achieve this ambitious vision alone. As a starting point, we recommend that the nascent ACM-L community agree on a common core model that supports all aspects—static and dynamic—needed for active conceptual modeling in support of learning from surprises. A common core will more likely gain the traction needed to sustain the extended ACM-L research effort that will yield the advertised benefits of learning from surprises.

  18. In Vitro Models of GJB2-Related Hearing Loss Recapitulate Ca(2+) Transients via a Gap Junction Characteristic of Developing Cochlea.

    PubMed

    Fukunaga, Ichiro; Fujimoto, Ayumi; Hatakeyama, Kaori; Aoki, Toru; Nishikawa, Atena; Noda, Tetsuo; Minowa, Osamu; Kurebayashi, Nagomi; Ikeda, Katsuhisa; Kamiya, Kazusaku

    2016-12-13

    Mutation of the Gap Junction Beta 2 gene (GJB2) encoding connexin 26 (CX26) is the most frequent cause of hereditary deafness worldwide and accounts for up to 50% of non-syndromic sensorineural hearing loss cases in some populations. Therefore, cochlear CX26-gap junction plaque (GJP)-forming cells such as cochlear supporting cells are thought to be the most important therapeutic target for the treatment of hereditary deafness. The differentiation of pluripotent stem cells into cochlear CX26-GJP-forming cells has not been reported. Here, we detail the development of a novel strategy to differentiate induced pluripotent stem cells into functional CX26-GJP-forming cells that exhibit spontaneous ATP- and hemichannel-mediated Ca(2+) transients typical of the developing cochlea. Furthermore, these cells from CX26-deficient mice recapitulated the drastic disruption of GJPs, the primary pathology of GJB2-related hearing loss. These in vitro models should be useful for establishing inner-ear cell therapies and drug screening that target GJB2-related hearing loss.

  19. Comparative genome-scale metabolic modeling of actinomycetes: the topology of essential core metabolism.

    PubMed

    Alam, Mohammad Tauqeer; Medema, Marnix H; Takano, Eriko; Breitling, Rainer

    2011-07-21

    Actinomycetes are highly important bacteria. On one hand, some of them cause severe human and plant diseases, on the other hand, many species are known for their ability to produce antibiotics. Here we report the results of a comparative analysis of genome-scale metabolic models of 37 species of actinomycetes. Based on in silico knockouts we generated topological and genomic maps for each organism. Combining the collection of genome-wide models, we constructed a global enzyme association network to identify both a conserved "core network" and an "essential core network" of the entire group. As has been reported for low-degree metabolites in several organisms, low-degree enzymes (in linear pathways) turn out to be generally more essential than high-degree enzymes (in metabolic hubs).

  20. Seismic anisotropy in the Earth's innermost inner core: Testing structural models against mineral physics predictions

    NASA Astrophysics Data System (ADS)

    Romanowicz, Barbara; Cao, Aimin; Godwal, Budhiram; Wenk, Rudy; Ventosa, Sergi; Jeanloz, Raymond

    2016-01-01

    Using an updated data set of ballistic PKIKP travel time data at antipodal distances, we test different models of anisotropy in the Earth's innermost inner core (IMIC) and obtain significantly better fits for a fast axis aligned with Earth's rotation axis, rather than a quasi-equatorial direction, as proposed recently. Reviewing recent results on the single crystal structure and elasticity of iron at core conditions, we find that an hcp structure with the fast c axis parallel to Earth's rotation is more likely but a body-centered cubic structure with the [111] axis aligned in that direction results in very similar predictions for seismic anisotropy. These models are therefore not distinguishable based on current seismological data. In addition, to match the seismological observations, the inferred strength of anisotropy in the IMIC (6-7%) implies almost perfect alignment of iron crystals, an intriguing, albeit unlikely situation, especially in the presence of heterogeneity, which calls for further studies.

  1. Beyond the No Core Shell Model: Extending the NCSM to Heavier Nuclei

    SciTech Connect

    Barrett, Bruce R.

    2011-05-06

    The No Core Shell Model (NCSM) is an ab initio method for calculating the properties of light nuclei, up to about A = 20, in which all A nucleons are treated as being active. It is difficult to go to larger A values due to the rapid grow of the basis spaces required in order to obtain converged results. In this presentation we briefly discuss three new techniques for extending the NCSM to heavier mass nuclei.

  2. Modeling heterogeneous polymer-grafted nanoparticle networks having biomimetic core-shell structure

    NASA Astrophysics Data System (ADS)

    Mbanga, Badel L.; Yashin, Victor V.; Holten-Andersen, Niels; Balazs, Anna C.

    Inspired by the remarkable mechanical properties of such biological structures as mussel adhesive fibers, we use 3D computational modeling to study the behavior of heterogeneous polymer-grafted nanoparticle (PGN) networks under tensile deformation. The building block of a PGN network is a nanoparticle with grafted polymer chains whose free ends' reactive groups can form both permanent and labile bonds with the end chains on the nearby particles. The tunable behavior of cross-linked PGN networks makes them excellent candidates for designing novel materials with enhanced mechanical properties. Here, we consider the PGN networks having the core-shell structures, in which the type and strength of the inter-particle bonds in the outer shell differ from those in the core. Using the computer simulations, we obtain and compare the ultimate tensile properties (strength, toughness, ductility) and the strain recovery properties for the uniform samples and various core-shell structures. We demonstrate that the core-shell structures could be designed to obtain highly resilient self-healing materials

  3. Solution to the inverse problem of estimating gap-junctional and inhibitory conductance in inferior olive neurons from spike trains by network model simulation.

    PubMed

    Onizuka, Miho; Hoang, Huu; Kawato, Mitsuo; Tokuda, Isao T; Schweighofer, Nicolas; Katori, Yuichi; Aihara, Kazuyuki; Lang, Eric J; Toyama, Keisuke

    2013-11-01

    The inferior olive (IO) possesses synaptic glomeruli, which contain dendritic spines from neighboring neurons and presynaptic terminals, many of which are inhibitory and GABAergic. Gap junctions between the spines electrically couple neighboring neurons whereas the GABAergic synaptic terminals are thought to act to decrease the effectiveness of this coupling. Thus, the glomeruli are thought to be important for determining the oscillatory and synchronized activity displayed by IO neurons. Indeed, the tendency to display such activity patterns is enhanced or reduced by the local administration of the GABA-A receptor blocker picrotoxin (PIX) or the gap junction blocker carbenoxolone (CBX), respectively. We studied the functional roles of the glomeruli by solving the inverse problem of estimating the inhibitory (gi) and gap-junctional conductance (gc) using an IO network model. This model was built upon a prior IO network model, in which the individual neurons consisted of soma and dendritic compartments, by adding a glomerular compartment comprising electrically coupled spines that received inhibitory synapses. The model was used in the forward mode to simulate spike data under PIX and CBX conditions for comparison with experimental data consisting of multi-electrode recordings of complex spikes from arrays of Purkinje cells (complex spikes are generated in a one-to-one manner by IO spikes and thus can substitute for directly measuring IO spike activity). The spatiotemporal firing dynamics of the experimental and simulation spike data were evaluated as feature vectors, including firing rates, local variation, auto-correlogram, cross-correlogram, and minimal distance, and were contracted onto two-dimensional principal component analysis (PCA) space. gc and gi were determined as the solution to the inverse problem such that the simulation and experimental spike data were closely matched in the PCA space. The goodness of the match was confirmed by an analysis of variance

  4. Shape and wobbling wave excitations in Josephson junctions: Exact solutions of the (2+1) -dimensional sine-Gordon model

    NASA Astrophysics Data System (ADS)

    Gulevich, D. R.; Kusmartsev, F. V.; Savel'Ev, Sergey; Yampol'Skii, V. A.; Nori, Franco

    2009-09-01

    We predict a class of excitations propagating along a Josephson vortex in two-dimensional Josephson junctions. These excitations are associated with the distortion of a Josephson vortex line of an arbitrary profile. We derive a universal analytical expression for the energy of arbitrary-shape excitations, investigate their influence on the dynamics of a vortex line, and discuss conditions where such excitations can be created. Finally, we show that such excitations play the role of a clock for a relativistically-moving Josephson vortex and suggest an experiment to measure a time-dilation effect analogous to that in special relativity. The position of the shape excitation on a Josephson vortex acts like a “minute hand” showing the time in the rest frame associated with the vortex. Remarkably, at some conditions, the shape wave can carry negative energy: a vortex with the shape excitation can have less energy than the same vortex without it.

  5. Crack growth rate in core shroud horizontal welds using two models for a BWR

    NASA Astrophysics Data System (ADS)

    Arganis Juárez, C. R.; Hernández Callejas, R.; Medina Almazán, A. L.

    2015-05-01

    An empirical crack growth rate correlation model and a predictive model based on the slip-oxidation mechanism for Stress Corrosion Cracking (SCC) were used to calculate the crack growth rate in a BWR core shroud. In this study, the crack growth rate was calculated by accounting for the environmental factors related to aqueous environment, neutron irradiation to high fluence and the complex residual stress conditions resulting from welding. In estimating the SCC behavior the crack growth measurements data from a Boiling Water Reactor (BWR) plant are referred to, and the stress intensity factor vs crack depth throughout thickness is calculated using a generic weld residual stress distribution for a core shroud, with a 30% stress relaxation induced by neutron irradiation. Quantitative agreement is shown between the measurements of SCC growth rate and the predictions of the slip-oxidation mechanism model for relatively low fluences (5 × 1024 n/m2), and the empirical model predicted better the SCC growth rate than the slip-oxidation model for high fluences (>1 × 1025 n/m2). The relevance of the models predictions for SCC growth rate behavior depends on knowing the model parameters.

  6. Failure Predictions for VHTR Core Components using a Probabilistic Contiuum Damage Mechanics Model

    SciTech Connect

    Fok, Alex

    2013-10-30

    The proposed work addresses the key research need for the development of constitutive models and overall failure models for graphite and high temperature structural materials, with the long-term goal being to maximize the design life of the Next Generation Nuclear Plant (NGNP). To this end, the capability of a Continuum Damage Mechanics (CDM) model, which has been used successfully for modeling fracture of virgin graphite, will be extended as a predictive and design tool for the core components of the very high- temperature reactor (VHTR). Specifically, irradiation and environmental effects pertinent to the VHTR will be incorporated into the model to allow fracture of graphite and ceramic components under in-reactor conditions to be modeled explicitly using the finite element method. The model uses a combined stress-based and fracture mechanics-based failure criterion, so it can simulate both the initiation and propagation of cracks. Modern imaging techniques, such as x-ray computed tomography and digital image correlation, will be used during material testing to help define the baseline material damage parameters. Monte Carlo analysis will be performed to address inherent variations in material properties, the aim being to reduce the arbitrariness and uncertainties associated with the current statistical approach. The results can potentially contribute to the current development of American Society of Mechanical Engineers (ASME) codes for the design and construction of VHTR core components.

  7. Differential effects of hydrocortisone and TNFα on tight junction proteins in an in vitro model of the human blood–brain barrier

    PubMed Central

    Förster, Carola; Burek, Malgorzata; Romero, Ignacio A; Weksler, Babette; Couraud, Pierre-Olivier; Drenckhahn, Detlev

    2008-01-01

    Homeostasis of the central nervous system (CNS) microenvironment is maintained by the blood–brain barrier (BBB) which regulates the transport of molecules from blood into brain and back. Many disorders change the functionality and integrity of the BBB. Glucocorticoids are being used sucessfully in the treatment of some disorders while their effects on others are questionable. In addition, conflicting results between clinical and experimental experience using animal models has arisen, so that the results of molecular studies in animal models need to be revisited in an appropriate in vitro model of the human BBB for more effective treatment strategies. Using the human brain microvascular endothelial cell line hCMEC/D3, the influence of glucocorticoids on the expression of barrier constituting adherens junction and tight junction transmembrane proteins (VE-cadherin, occludin, claudins) was investigated and compared to other established BBB models. In hCMEC/D3 cells the administration of glucocorticoids induced expression of the targets occludin 2.75 ± 0.04-fold and claudin-5 up to 2.32 ± 0.11-fold, which is likely to contribute to the more than threefold enhancement of transendothelial electrical resistance reflecting barrier tightness. Our analyses further provide direct evidence that the GC hydrocortisone prevents endothelial barrier breakdown in response to pro-inflammatory stimuli (TNFα administration), which could be demonstrated to be partly based on maintenance of occludin levels. Our studies strongly suggest stabilization of BBB function as a mode of GC action on a molecular level in the human brain vasculature. PMID:18258663

  8. Microtubules regulate disassembly of epithelial apical junctions

    PubMed Central

    Ivanov, Andrei I; McCall, Ingrid C; Babbin, Brian; Samarin, Stanislav N; Nusrat, Asma; Parkos, Charles A

    2006-01-01

    Background Epithelial tight junction (TJ) and adherens junction (AJ) form the apical junctional complex (AJC) which regulates cell-cell adhesion, paracellular permeability and cell polarity. The AJC is anchored on cytoskeletal structures including actin microfilaments and microtubules. Such cytoskeletal interactions are thought to be important for the assembly and remodeling of apical junctions. In the present study, we investigated the role of microtubules in disassembly of the AJC in intestinal epithelial cells using a model of extracellular calcium depletion. Results Calcium depletion resulted in disruption and internalization of epithelial TJs and AJs along with reorganization of perijunctional F-actin into contractile rings. Microtubules reorganized into dense plaques positioned inside such F-actin rings. Depolymerization of microtubules with nocodazole prevented junctional disassembly and F-actin ring formation. Stabilization of microtubules with either docetaxel or pacitaxel blocked contraction of F-actin rings and attenuated internalization of junctional proteins into a subapical cytosolic compartment. Likewise, pharmacological inhibition of microtubule motors, kinesins, prevented contraction of F-actin rings and attenuated disassembly of apical junctions. Kinesin-1 was enriched at the AJC in cultured epithelial cells and it also accumulated at epithelial cell-cell contacts in normal human colonic mucosa. Furthermore, immunoprecipitation experiments demonstrated association of kinesin-1 with the E-cadherin-catenin complex. Conclusion Our data suggest that microtubules play a role in disassembly of the AJC during calcium depletion by regulating formation of contractile F-actin rings and internalization of AJ/TJ proteins. PMID:16509970

  9. The soundproof dynamical core for COSMO model: representation of convective flows.

    NASA Astrophysics Data System (ADS)

    Wójcik, Damian; Piotrowski, Zbigniew; Rosa, Bogdan; Ziemiański, Michał

    2014-05-01

    Research conducted at Polish Institute of Meteorology and Water Management, National Research Institute, in collaboration with Consortium for Small Scale Modeling (COSMO) are aimed at developing new conservative dynamical core for next generation operational weather prediction model. As the result, a new prototype model was developed with dynamical core based on anelastic set of equation and numerics adopted from the EULAG model. An employment of EULAG allowed to profit from its desirable conservative properties and numerical robustness confirmed in number of benchmark tests and widely documented in scientific literature. The hybrid model consists of EULAG dynamical core implemented into the software environment of the operational COSMO model and basic COSMO physical parameterizations involving turbulence, friction, radiation, moist processes and surface fluxes (COSMO-EULAG). The tool is capable to compute weather forecast in mountainous area for the horizontal resolution of 0.28 km and with slopes reaching 60 degrees of inclination. The presentation is focused on two current research topics. First, the model and especially its dynamics-physics coupling is examined within idealized framework for representation of convective flows. The study is based on two complementary convection benchmarks of Weisman and Klemp (Mon. Wea. Rev. 110:504, 1982) and Grabowski et al. (Q. J. R. Meteorol. Soc. 132:317, 2006). While the first experiment can be used to examine a life cycle of a single convective storm structure in COSMO-EULAG model, the second experiment allows to evaluate the model representation of statistical properties of daytime convective development over land, involving convection initiation as well as is transition into a deep phase. The study involves also the comparison of COSMO-EULAG results with results of standard compressible COSMO-Runge-Kutta model to test the suitability of the anelastic dynamical core for operational mesoscale high-resolution NWP. Next

  10. Electroelastic fields in artificially created vortex cores in epitaxial BiFeO3 thin films

    SciTech Connect

    Winchester, Ben; Wisinger, Nina Balke; Cheng, X. X.; Morozovska, A. N.; Kalinin, Sergei; Chen, L. Q.

    2015-08-03

    Here we employ phase-field modeling to explore the elastic properties of artificially created 1-D domain walls in (001)p-oriented BiFeO3 thin films, composed of a junction of the four polarization variants, all with the same out-of-plane polarization. It was found that these junctions exhibit peculiarly high electroelastic fields induced by the neighboring ferroelastic/ferroelectric domains. The vortex core exhibits a volume expansion, while the anti-vortex core is more compressive. We also discuss possible ways to control the electroelastic field, such as varying material constant and applying transverse electric field.

  11. Superposition of Quantum Confinement Energy (SQCE) model for estimating shell thickness in core-shell quantum dots: validation and comparison.

    PubMed

    Saran, Amit D; Mehra, Anurag; Bellare, Jayesh R

    2012-07-15

    A novel theoretical model based on superposition of core and shell band-gaps, termed as SQCE model, is developed and reported here, which enables one to estimate the shell thickness in a core-shell quantum dot (QD), which is critically important in deciding its optical and electronic properties. We apply the model to two experimental core-shell QD systems, CdSe-CdS and CdSe-ZnS, which we synthesize by microemulsion method. We synthesize and study two series of samples, R and S to study the optical properties. The core size is varied in the R-series (by varying water-to-surfactant ratio, R) whereas the shell thickness is varied in the S-series (by varying the shell-to-core precursor molar ratio, S). The core and core-shell QDs from R-series and S-series are characterized for particle size, shape and crystallographic information. The shell thickness for all core-shell QD samples is estimated by SQCE model, and experimentally measured with TEM and SAXS. A close match is observed between experimental values and model predictions, thus validating the model. Further, the optimum shell thickness (corresponding to maximum quantum yield) values for CdS and ZnS over a 4.26 nm CdSe core have been estimated as 0.585 nm and 0.689 nm, respectively, from the SQCE model. The SQCE model developed in this work is applicable to other core-shell quantum dots also, such as CdTe-CdS, CdTe-CdSe and CdS-ZnS, and will serve as a useful complement to experimental measurement.

  12. Direct analysis of Holliday junction resolving enzyme in a DNA origami nanostructure.

    PubMed

    Suzuki, Yuki; Endo, Masayuki; Cañas, Cristina; Ayora, Silvia; Alonso, Juan C; Sugiyama, Hiroshi; Takeyasu, Kunio

    2014-06-01

    Holliday junction (HJ) resolution is a fundamental step for completion of homologous recombination. HJ resolving enzymes (resolvases) distort the junction structure upon binding and prior cleavage, raising the possibility that the reactivity of the enzyme can be affected by a particular geometry and topology at the junction. Here, we employed a DNA origami nano-scaffold in which each arm of a HJ was tethered through the base-pair hybridization, allowing us to make the junction core either flexible or inflexible by adjusting the length of the DNA arms. Both flexible and inflexible junctions bound to Bacillus subtilis RecU HJ resolvase, while only the flexible junction was efficiently resolved into two duplexes by this enzyme. This result indicates the importance of the structural malleability of the junction core for the reaction to proceed. Moreover, cleavage preferences of RecU-mediated reaction were addressed by analyzing morphology of the reaction products.

  13. Direct analysis of Holliday junction resolving enzyme in a DNA origami nanostructure

    PubMed Central

    Suzuki, Yuki; Endo, Masayuki; Cañas, Cristina; Ayora, Silvia; Alonso, Juan C.; Sugiyama, Hiroshi; Takeyasu, Kunio

    2014-01-01

    Holliday junction (HJ) resolution is a fundamental step for completion of homologous recombination. HJ resolving enzymes (resolvases) distort the junction structure upon binding and prior cleavage, raising the possibility that the reactivity of the enzyme can be affected by a particular geometry and topology at the junction. Here, we employed a DNA origami nano-scaffold in which each arm of a HJ was tethered through the base-pair hybridization, allowing us to make the junction core either flexible or inflexible by adjusting the length of the DNA arms. Both flexible and inflexible junctions bound to Bacillus subtilis RecU HJ resolvase, while only the flexible junction was efficiently resolved into two duplexes by this enzyme. This result indicates the importance of the structural malleability of the junction core for the reaction to proceed. Moreover, cleavage preferences of RecU-mediated reaction were addressed by analyzing morphology of the reaction products. PMID:24792171

  14. Competitive repetition suppression (CoRe) clustering: a biologically inspired learning model with application to robust clustering.

    PubMed

    Bacciu, Davide; Starita, Antonina

    2008-11-01

    Determining a compact neural coding for a set of input stimuli is an issue that encompasses several biological memory mechanisms as well as various artificial neural network models. In particular, establishing the optimal network structure is still an open problem when dealing with unsupervised learning models. In this paper, we introduce a novel learning algorithm, named competitive repetition-suppression (CoRe) learning, inspired by a cortical memory mechanism called repetition suppression (RS). We show how such a mechanism is used, at various levels of the cerebral cortex, to generate compact neural representations of the visual stimuli. From the general CoRe learning model, we derive a clustering algorithm, named CoRe clustering, that can automatically estimate the unknown cluster number from the data without using a priori information concerning the input distribution. We illustrate how CoRe clustering, besides its biological plausibility, posses strong theoretical properties in terms of robustness to noise and outliers, and we provide an error function describing CoRe learning dynamics. Such a description is used to analyze CoRe relationships with the state-of-the art clustering models and to highlight CoRe similitude with rival penalized competitive learning (RPCL), showing how CoRe extends such a model by strengthening the rival penalization estimation by means of loss functions from robust statistics.

  15. Hot Plasma from Solar Active Region Cores: a Test of AC and DC Coronal Heating Models?

    NASA Astrophysics Data System (ADS)

    Schmelz, J. T.; Asgari-Targhi, M.; Christian, G. M.; Dhaliwal, R. S.; Pathak, S.

    2015-06-01

    Direct current (DC) models of solar coronal heating invoke magnetic reconnection to convert magnetic free energy into heat, whereas alternating current (AC) models invoke wave dissipation. In both cases the energy is supplied by photospheric footpoint motions. For a given footpoint velocity amplitude, DC models predict lower average heating rates but greater temperature variability when compared to AC models. Therefore, evidence of hot plasma (T > 5 MK) in the cores of active regions could be one of the ways for current observations to distinguish between AC and DC models. We have analyzed data from the X-Ray Telescope (XRT) and the Atmospheric Imaging Assembly for 12 quiescent active region cores, all of which were observed in the XRT Be_thick channel. We did Differential Emission Measure (DEM) analysis and achieved good fits for each data set. We then artificially truncated the hot plasma of the DEM model at 5 MK and examined the resulting fits to the data. For some regions in our sample, the XRT intensities continued to be well-matched by the DEM predictions, even without the hot plasma. This truncation, however, resulted in unacceptable fits for the other regions. This result indicates that the hot plasma is present in these regions, even if the precise DEM distribution cannot be determined with the data available. We conclude that reconnection may be heating the hot plasma component of these active regions.

  16. HOT PLASMA FROM SOLAR ACTIVE REGION CORES: A TEST OF AC AND DC CORONAL HEATING MODELS?

    SciTech Connect

    Schmelz, J. T.; Christian, G. M.; Dhaliwal, R. S.; Pathak, S.; Asgari-Targhi, M.

    2015-06-20

    Direct current (DC) models of solar coronal heating invoke magnetic reconnection to convert magnetic free energy into heat, whereas alternating current (AC) models invoke wave dissipation. In both cases the energy is supplied by photospheric footpoint motions. For a given footpoint velocity amplitude, DC models predict lower average heating rates but greater temperature variability when compared to AC models. Therefore, evidence of hot plasma (T > 5 MK) in the cores of active regions could be one of the ways for current observations to distinguish between AC and DC models. We have analyzed data from the X-Ray Telescope (XRT) and the Atmospheric Imaging Assembly for 12 quiescent active region cores, all of which were observed in the XRT Be-thick channel. We did Differential Emission Measure (DEM) analysis and achieved good fits for each data set. We then artificially truncated the hot plasma of the DEM model at 5 MK and examined the resulting fits to the data. For some regions in our sample, the XRT intensities continued to be well-matched by the DEM predictions, even without the hot plasma. This truncation, however, resulted in unacceptable fits for the other regions. This result indicates that the hot plasma is present in these regions, even if the precise DEM distribution cannot be determined with the data available. We conclude that reconnection may be heating the hot plasma component of these active regions.

  17. A spectral transform dynamical core option within the Community Atmosphere Model (CAM4)

    SciTech Connect

    Evans, Katherine J; Mahajan, Salil; Branstetter, Marcia L; McClean, Julie L.; Caron, Julie M.; Maltrud, Matthew E.; Hack, James J; Bader, David C; Neale, Rich

    2014-01-01

    A spectral transform dynamical core with an 85 spectral truncation resolution (T85) within the Community Atmosphere Model (CAM), version 4, is evaluated within the recently released Community Earth System Model, version 1.0 (CESM) global climate model. The spectral dynamical core option provides a well-known base within the climate model community from which to assess climate behavior and statistics, and its relative computational efficiency for smaller computing platforms allows it to be extended to perform climate length simulations using high-resolution configurations in the near term. To establish the characteristics of the CAM4 T85, an ensemble of simulations covering the present day observational period using forced sea surface temperatures and prescribed sea-ice extent are evaluated. Overall, the T85 ensemble attributes and biases are similar to a companion ensemble of simulations using the one degree finite volume (FV1) dynamical core, relative to observed and model derived datasets. Notable improvements with T85 compared to FV1 include the representation of wintertime Arctic sea level pressure and summer precipitation over the Western Indian subcontinent. The mean and spatial patterns of the land surface temperature trends over the AMIP period are generally well simulated with the T85 ensemble relative to observations, however the model is not able to capture the extent nor magnitude of changes in temperature extremes over the boreal summer, where the changes are most dramatic. Biases in the wintertime Arctic surface temperature and annual mean surface stress fields persist with T85 as with the CAM3 version of T85.

  18. A model for the magnetic cores of linear induction accelerator cells

    SciTech Connect

    Melton, J.G.; Rose, E.A.

    1995-08-01

    Linear induction cells are used in the electron beam accelerator for the proposed Dual Axis Radiographic Hydrotest (DARHT) facility that would be built at Los Alamos National Laboratory. Ferrite cores are used in each cell to produce 250 kV, flat to within {plus_minus}1% for 70 ns. In the course of operating a prototype test stand for the full accelerator, circuit models have been developed for the pulsed power system and the induction cells that have been useful in achieving the {plus_minus}1% flatness requirement. The circuit models use the MicroCap IV{trademark} electronic circuit analysis program, which includes a Jiles-Atherton model for magnetic materials. In addition, the coaxial, ferrite-filled geometry of the cell is modelled by a multiple-section lumped-element transmission line. Propagation of a voltage pulse through the ferrite cores, including saturation effects, can be reproduced. The model has been compared to actual waveforms obtained from prototype operations, and good results have been obtained for a wide range of operating conditions. Interest in possible future applications have led the authors to use the model to predict the behavior of accelerator cells driven by multiple voltage pulses without an intervening magnetic reset of the ferrite cores. Results show that multiple pulses can be applied to the accelerator cells without a magnetic reset, but with some degradation of later pulses. The degradation appears as a droop on the flat portion of the second (and subsequent) pulses. The droop can be corrected by shaping the waveform of the incident pulses.

  19. Severe accident modeling of a PWR core with different cladding materials

    SciTech Connect

    Johnson, S. C.; Henry, R. E.; Paik, C. Y.

    2012-07-01

    The MAAP v.4 software has been used to model two severe accident scenarios in nuclear power reactors with three different materials as fuel cladding. The TMI-2 severe accident was modeled with Zircaloy-2 and SiC as clad material and a SBO accident in a Zion-like, 4-loop, Westinghouse PWR was modeled with Zircaloy-2, SiC, and 304 stainless steel as clad material. TMI-2 modeling results indicate that lower peak core temperatures, less H 2 (g) produced, and a smaller mass of molten material would result if SiC was substituted for Zircaloy-2 as cladding. SBO modeling results indicate that the calculated time to RCS rupture would increase by approximately 20 minutes if SiC was substituted for Zircaloy-2. Additionally, when an extended SBO accident (RCS creep rupture failure disabled) was modeled, significantly lower peak core temperatures, less H 2 (g) produced, and a smaller mass of molten material would be generated by substituting SiC for Zircaloy-2 or stainless steel cladding. Because the rate of SiC oxidation reaction with elevated temperature H{sub 2}O (g) was set to 0 for this work, these results should be considered preliminary. However, the benefits of SiC as a more accident tolerant clad material have been shown and additional investigation of SiC as an LWR core material are warranted, specifically investigations of the oxidation kinetics of SiC in H{sub 2}O (g) over the range of temperatures and pressures relevant to severe accidents in LWR 's. (authors)

  20. N Reactor core heatup sensitivity study for the 32-inch unit cell model

    SciTech Connect

    Martin, F.; Zimmerman, B.; Heard, F.

    1988-02-01

    A number of N Reactor core heatup studies have been performed using the TRUMP-BD computer code. These studies were performed to address questions concerning the dependency of results on potential variations in the material properties and/or modeling assumptions. This report described and documents a series of 31 TRUMP-BD runs that were performed to determine the sensitivity of calculated inner-fuel temperatures to a variety of TRUMP input parameters and also to a change in the node density in a high-temperature-gradient region. The results of this study are based on the 32-in. model. 18 refs., 17 figs., 2 tab.

  1. Fuel performance models for high-temperature gas-cooled reactor core design

    SciTech Connect

    Stansfield, O.M.; Simon, W.A.; Baxter, A.M.

    1983-09-01

    Mechanistic fuel performance models are used in high-temperature gas-cooled reactor core design and licensing to predict failure and fission product release. Fuel particles manufactured with defective or missing SiC, IPyC, or fuel dispersion in the buffer fail at a level of less than 5 x 10/sup -4/ fraction. These failed particles primarily release metallic fission products because the OPyC remains intact on 90% of the particles and retains gaseous isotopes. The predicted failure of particles using performance models appears to be conservative relative to operating reactor experience.

  2. A mean spherical model for soft potentials: The hard core revealed as a perturbation

    NASA Technical Reports Server (NTRS)

    Rosenfeld, Y.; Ashcroft, N. W.

    1978-01-01

    The mean spherical approximation for fluids is extended to treat the case of dense systems interacting via soft-potentials. The extension takes the form of a generalized statement concerning the behavior of the direct correlation function c(r) and radial distribution g(r). From a detailed analysis that views the hard core portion of a potential as a perturbation on the whole, a specific model is proposed which possesses analytic solutions for both Coulomb and Yukawa potentials, in addition to certain other remarkable properties. A variational principle for the model leads to a relatively simple method for obtaining numerical solutions.

  3. Converging sequences in the ab initio no-core shell model

    SciTech Connect

    Forssen, C.; Vary, J. P.; Caurier, E.; Navratil, P.

    2008-02-15

    We demonstrate the existence of multiple converging sequences in the ab initio no-core shell model. By examining the underlying theory of effective operators, we expose the physical foundations for the alternative pathways to convergence. This leads us to propose a revised strategy for evaluating effective interactions for A-body calculations in restricted model spaces. We suggest that this strategy is particularly useful for applications to nuclear processes in which states of both parities are used simultaneously, such as for transition rates. We demonstrate the utility of our strategy with large-scale calculations in light nuclei.

  4. Preparedness for clinical: evaluation of the core elements of the Clinical Immersion curriculum model.

    PubMed

    Diefenbeck, Cynthia; Herrman, Judith; Wade, Gail; Hayes, Evelyn; Voelmeck, Wayne; Cowperthwait, Amy; Norris, Susan

    2015-01-01

    The Clinical Immersion Model is an innovative baccalaureate nursing curriculum that has demonstrated successful outcomes over the past 10 years. For those intending to adopt the model, individual components in isolation may prove ineffective. This article describes three core components of the curriculum that form the foundation of preparation for the senior-year clinical immersion. Detailed student-centered outcomes evaluation of these critical components is shared. Results of a mixed-methods evaluation, including surveys and focus groups, are presented. Implications of this curricular evaluation and future directions are explored.

  5. Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2010

    SciTech Connect

    Rahmat Aryaeinejad; Douglas S. Crawford; Mark D. DeHart; George W. Griffith; D. Scott Lucas; Joseph W. Nielsen; David W. Nigg; James R. Parry; Jorge Navarro

    2010-09-01

    Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance and, to some extent, experiment management are obsolete, inconsistent with the state of modern nuclear engineering practice, and are becoming increasingly difficult to properly verify and validate (V&V). Furthermore, the legacy staff knowledge required for application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In 2009 the Idaho National Laboratory (INL) initiated a focused effort to address this situation through the introduction of modern high-fidelity computational software and protocols, with appropriate V&V, within the next 3-4 years via the ATR Core Modeling and Simulation and V&V Update (or “Core Modeling Update”) Project. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF).

  6. Neutron scattering studies and modeling of high mobility group 14 core nucleosome complex

    SciTech Connect

    Uberbacher, E.C.; Mardian, J.K.; Rossi, R.M.; Olins, D.E.; Bunick, G.J.

    1982-09-01

    Considerable evidence relates the nonhistone proteins high mobility group (HMG) 14 and HMG 17 with the structure of active or potentially active chromatin. In this study, bulk nucleosome core particles prepared from chicken erythrocytes and the complex formed by binding two HMG 14 molecules per nucleosome core were studied by use of small-angle neutron scattering techniques. By varying the H/sub 2/O//sup 2/H/sub 2/O ratio, and hence the contrast between the solvent and the particles, it was possible to determine the radius of gyration of the protein and of the DNA independently and as a function of HMG 14 binding. The results show an increase of 0.9 +/- 0.6 angstrom (mean +/- SEM) in the protein radius of gyration and of 2.7 +/- 0.6 angstrom in the DNA radius of gyration upon binding of HMG 14 to the nucleosome. These changes are considered in the light of several postulated modes for the unfolding or perturbation of the nucleosome structure. Modeling calculations demonstrate that the observed changes in radius of gyration for the DNA and for the protein are too small to be consistent with an overall unfolding or opening of the core particle upon HMG 14 binding. However, the observed changes are consistent with several models that involve only minor changes in the structure. It is postulated that the differences observed may be an indication of the type of conformational changes occurring in active nucleosomes.

  7. Long-term reactive transport modelling of Berea and chalk core flood experiment

    NASA Astrophysics Data System (ADS)

    Souza, A. V.; Godoy, J.; Tonietto, G.

    2013-12-01

    Carbon sequestration in geological structures establishes a long-term chemical system between the dissolved gas, fluids and rocks from the injection site. Thus, the time scale used to assess the progress of chemical reactions is normally between tens and hundreds of years. Geochemical modeling is used in a variety of fields, including environmental protection and remediation, the petroleum industry, and economic geology and it is one of the best alternatives to evaluate the reactions with geochemical data possible injection sites. In this work we used data presented in a recent article (SPE165500) in different scenarios injection with three scales 50, 100, 250 and 1000 years. The experimental data used were from core flood experiment Berea and chalk in a condition similar to those found in the reservoirs of the North Sea. (340 bar and 130 C). The approach used to the lack of appropriate kinetic parameter in reservoir conditions, was the use of experimental data collected in two different conditions (340 bar and 130 C) and (2 Bar at room temperature) after the rocky core. The numerical simulations carried out using the same conditions with two different geochemical softwares PHREEQC and TOUGHREACTS. The results provide a detailed understanding of the system resulting rock-fluid-CO2 in the medium and long term. However, the accuracy of the models is strongly dependent on the mineral primary and secondary cores found in rocks.

  8. NUMERICAL VERIFICATION OF THE RELAP-7 CORE CHANNEL SINGLE-PHASE MODEL

    SciTech Connect

    Haihua Zhao; Ling Zou; Hongbin Zhang; Richard Martineau

    2014-06-01

    The RELAP-7 code is the next generation of nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). All the physics in RELAP-7 are fully coupled and the errors resulted from the traditional operator-splitting approach are eliminated. By using 2nd order methods in both time and space and eliminating operator-splitting errors, the numerical error of RELAP-7 can be minimized. Numerical verification is the process to verify the orders of numerical methods. It is an important part of modern verification and validation process. The core channel component in RELAP-7 is designed to simulate coolant flow as well as the conjugated heat transfer between coolant flow and the fuel rod. A special treatment at fuel centerline to avoid numerical singularity for the cylindrical heat conduction in the continuous finite element mesh is discussed. One steady state test case and one fast power up transient test case are utilized for the verification of the core channel model with single-phase flow. Analytical solution for the fuel pin temperature and figures of merit such as peak clad temperature and peak fuel temperature are used to define numerical errors. These cases prove that the mass and energy are well conserved and 2nd order convergence rates for both time and space are achieved in the core channel model.

  9. A Journey in Standard Development: The Core Manufacturing Simulation Data (CMSD) Information Model.

    PubMed

    Lee, Yung-Tsun Tina

    2015-01-01

    This report documents a journey "from research to an approved standard" of a NIST-led standard development activity. That standard, Core Manufacturing Simulation Data (CMSD) information model, provides neutral structures for the efficient exchange of manufacturing data in a simulation environment. The model was standardized under the auspices of the international Simulation Interoperability Standards Organization (SISO). NIST started the research in 2001 and initiated the standardization effort in 2004. The CMSD standard was published in two SISO Products. In the first Product, the information model was defined in the Unified Modeling Language (UML) and published in 2010 as SISO-STD-008-2010. In the second Product, the information model was defined in Extensible Markup Language (XML) and published in 2013 as SISO-STD-008-01-2012. Both SISO-STD-008-2010 and SISO-STD-008-01-2012 are intended to be used together.

  10. A Journey in Standard Development: The Core Manufacturing Simulation Data (CMSD) Information Model

    PubMed Central

    Lee, Yung-Tsun Tina

    2015-01-01

    This report documents a journey “from research to an approved standard” of a NIST-led standard development activity. That standard, Core Manufacturing Simulation Data (CMSD) information model, provides neutral structures for the efficient exchange of manufacturing data in a simulation environment. The model was standardized under the auspices of the international Simulation Interoperability Standards Organization (SISO). NIST started the research in 2001 and initiated the standardization effort in 2004. The CMSD standard was published in two SISO Products. In the first Product, the information model was defined in the Unified Modeling Language (UML) and published in 2010 as SISO-STD-008-2010. In the second Product, the information model was defined in Extensible Markup Language (XML) and published in 2013 as SISO-STD-008-01-2012. Both SISO-STD-008-2010 and SISO-STD-008-01-2012 are intended to be used together. PMID:26958450

  11. Maximizing Multi-core Performance of the Weather Research and Forecast Model over the Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Roe, K.; Stevens, D.

    2010-09-01

    The Hawaiian Islands consist of dramatic terrain changes over short distances, resulting in a variety of microclimates in close proximity. To handle these challenging conditions, weather models must be run at very fine vertical and horizontal resolutions to produce accurate forecasts. Computational demands require WRF to be executed in parallel on the Maui High Performance Computing Center’s Mana system, a PowerEdge M610 Linux cluster. This machine has 1,152 compute nodes, each with two 2.8 GHz quad-core Intel® Nehalem processors and 24 GB RAM. Realizing maximum performance on Mana relied on the determination of an optimal number of cores to use per socket, the efficiency of an MPI only implementation, an optimal set of parameters for adaptive time stepping, a way to meet the strict stability requirements necessary for Hawaii, effective choices for processor and memory affinity, and parallel automation techniques for producing forecast imagery.

  12. Wind Tunnel Magnetic Suspension and Balance Systems With Transversely Magnetized Model Cores

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.

    1998-01-01

    This paper discusses the possibility of using vertically magnetized model cores for wind tunnel Magnetic Suspension and Balance Systems (MSBS) in an effort to resolve the traditional "roll control" problem. A theoretical framework is laid out, based on previous work related to generic technology development efforts at NASA Langley Research Center. The impact of the new roll control scheme on traditional wind tunnel MSBS configurations is addressed, and the possibility of demonstrating the new scheme with an existing electromagnet assembly is explored. The specific system considered is the ex- Massachusetts Institute of Technology (MIT), ex-NASA, 6-inch MSBS currently in the process of recommissioning at Old Dominion University. This system has a sufficiently versatile electromagnet configuration such that straightforward "conversion" to vertically magnetized cores appears possible.

  13. Accounting for crustal magnetization in models of the core magnetic field

    NASA Technical Reports Server (NTRS)

    Jackson, Andrew

    1990-01-01

    The problem of determining the magnetic field originating in the earth's core in the presence of remanent and induced magnetization is considered. The effect of remanent magnetization in the crust on satellite measurements of the core magnetic field is investigated. The crust as a zero-mean stationary Gaussian random process is modelled using an idea proposed by Parker (1988). It is shown that the matrix of second-order statistics is proportional to the Gram matrix, which depends only on the inner-products of the appropriate Green's functions, and that at a typical satellite altitude of 400 km the data are correlated out to an angular separation of approximately 15 deg. Accurate and efficient means of calculating the matrix elements are given. It is shown that the variance of measurements of the radial component of a magnetic field due to the crust is expected to be approximately twice that in horizontal components.

  14. Initial Comparison of Direct and Legacy Modeling Approaches for Radial Core Expansion Analysis

    SciTech Connect

    Shemon, Emily R.

    2016-10-10

    Radial core expansion in sodium-cooled fast reactors provides an important reactivity feedback effect. As the reactor power increases due to normal start up conditions or accident scenarios, the core and surrounding materials heat up, causing both grid plate expansion and bowing of the assembly ducts. When the core restraint system is designed correctly, the resulting structural deformations introduce negative reactivity which decreases the reactor power. Historically, an indirect procedure has been used to estimate the reactivity feedback due to structural deformation which relies upon perturbation theory and coupling legacy physics codes with limited geometry capabilities. With advancements in modeling and simulation, radial core expansion phenomena can now be modeled directly, providing an assessment of the accuracy of the reactivity feedback coefficients generated by indirect legacy methods. Recently a new capability was added to the PROTEUS-SN unstructured geometry neutron transport solver to analyze deformed meshes quickly and directly. By supplying the deformed mesh in addition to the base configuration input files, PROTEUS-SN automatically processes material adjustments including calculation of region densities to conserve mass, calculation of isotopic densities according to material models (for example, sodium density as a function of temperature), and subsequent re-homogenization of materials. To verify the new capability of directly simulating deformed meshes, PROTEUS-SN was used to compute reactivity feedback for a series of contrived yet representative deformed configurations for the Advanced Burner Test Reactor design. The indirect legacy procedure was also performed to generate reactivity feedback coefficients for the same deformed configurations. Interestingly, the legacy procedure consistently overestimated reactivity feedbacks by 35% compared to direct simulations by PROTEUS-SN. This overestimation indicates that the legacy procedures are in fact

  15. Wisconsin Model Early Learning Standards Alignment with Wisconsin Common Core State Standards for English Language Arts and Mathematics

    ERIC Educational Resources Information Center

    Wisconsin Department of Public Instruction, 2011

    2011-01-01

    Wisconsin's adoption of the Common Core State Standards provides an excellent opportunity for Wisconsin school districts and communities to define expectations from birth through preparation for college and work. By aligning the existing Wisconsin Model Early Learning Standards with the Wisconsin Common Core State Standards, expectations can be…

  16. A Numerical Model for Magnetohydrodynamic Waves in a Stably-Stratified Layer in Earth's Core

    NASA Astrophysics Data System (ADS)

    Knezek, N. R.; Buffett, B. A.

    2015-12-01

    A numerical model for magnetohydrodynamic waves in a thin shell is developed and applied to study the effect of a stably-stratified layer in Earth's core on geomagnetic secular variation. The model employs a spherical coordinate system with finite differences in r and θ and Fourier decomposition in Φ. The model is linearized assuming a background azimuthal velocity field UΦ(r,θ) and an arbitrary background magnetic field Br,θ,Φ(r,θ). The Boussinesq approximation is employed and the buoyancy forces are prescribed in terms of a spatially variable Brunt-Vaisala frequency N(r,θ). The equations are cast into a sparse generalized eigenvalue problem by assuming solutions of the form uj,bj,p=CjeimΦ+λt and eigenmodes are found. Good agreement is obtained with previous approximate analytical solutions for zonal (m=0) magnetic-Archimedes-Coriolis (MAC) waves (e.g. Braginsky, 1993), global magnetic-Rossby (m>0) waves (e.g. Braginsky, 1998), and equatorially-trapped magnetic-Rossby waves (e.g. Bergman, 1993). This model is employed to study the origins of the fast equatorial waves observed by Chulliat et al. (2015) in recent high-resolution magnetic field models to constrain plausible properties of the stably-stratified layer and core-surface magnetic field.

  17. TRACE/PARCS Core Modeling of a BWR/5 for Accident Analysis of ATWS Events

    SciTech Connect

    Cuadra A.; Baek J.; Cheng, L.; Aronson, A.; Diamond, D.; Yarsky, P.

    2013-11-10

    The TRACE/PARCS computational package [1, 2] isdesigned to be applicable to the analysis of light water reactor operational transients and accidents where the coupling between the neutron kinetics (PARCS) and the thermal-hydraulics and thermal-mechanics (TRACE) is important. TRACE/PARCS has been assessed for itsapplicability to anticipated transients without scram(ATWS) [3]. The challenge, addressed in this study, is to develop a sufficiently rigorous input model that would be acceptable for use in ATWS analysis. Two types of ATWS events were of interest, a turbine trip and a closure of main steam isolation valves (MSIVs). In the first type, initiated by turbine trip, the concern is that the core will become unstable and large power oscillations will occur. In the second type,initiated by MSIV closure,, the concern is the amount of energy being placed into containment and the resulting emergency depressurization. Two separate TRACE/PARCS models of a BWR/5 were developed to analyze these ATWS events at MELLLA+ (maximum extended load line limit plus)operating conditions. One model [4] was used for analysis of ATWS events leading to instability (ATWS-I);the other [5] for ATWS events leading to emergency depressurization (ATWS-ED). Both models included a large portion of the nuclear steam supply system and controls, and a detailed core model, presented henceforth.

  18. Characterization and modeling of screen-printed metal insulator semiconductor tunnel junctions for integrated bypass functionality in crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Thaidigsmann, Benjamin; Lohmüller, Elmar; Fertig, Fabian; Clement, Florian; Wolf, Andreas

    2013-06-01

    This work investigates sintered, screen-printed silver contacts on lowly doped p-type silicon with different intermediate dielectric layer systems using scanning electron microscopy and dark current-voltage measurements. The data reveal electron tunneling through a thin insulating layer as the most probable transport mechanism. A model based on Fowler-Nordheim and direct tunneling is presented that allows for the description of reverse current-voltage characteristics and the extraction of effective contact properties. The investigated screen-printed metal insulator semiconductor structures are proposed as solar cell integrated bypass that reduces the risk of hot spot generation and power loss during partial shading of a module. Furthermore, the integrated bypass approach enables the fabrication of solar cells from silicon material that tends to show early breakdown of the p-n-junction.

  19. Drug release profile in core-shell nanofibrous structures: a study on Peppas equation and artificial neural network modeling.

    PubMed

    Maleki, Mahboubeh; Amani-Tehran, Mohammad; Latifi, Masoud; Mathur, Sanjay

    2014-01-01

    Release profile of drug constituent encapsulated in electrospun core-shell nanofibrous mats was modeled by Peppas equation and artificial neural network. Core-shell fibers were fabricated by co-axial electrospinning process using tetracycline hydrochloride (TCH) as the core and poly(l-lactide-co-glycolide) (PLGA) or polycaprolactone (PCL) as the shell materials. The density and hydrophilicity of the shell polymers, feed rates and concentrations of core and shell phases, the contribution of TCH in core material and electrical field were the parameters fed to the perceptron network to predict Peppas constants in order to derive release pattern. This study demonstrated the viability of the prediction tool in determining drug release profile of electrospun core-shell nanofibrous scaffolds.

  20. Simulations and interpretation of fractional giant Shapiro steps in two-dimensional Josephson-junction arrays

    SciTech Connect

    Octavio, M. ); Free, J.U. Physics Department, Harvard University, Cambridge, Massachusetts ); Benz, S.P. ); Newrock, R.S.; Mast, D.B. ); Lobb, C.J. )

    1991-09-01

    We present simulations of two-dimensional Josephson-junction arrays to study giant Shapiro steps in these arrays. The amplitude and frequency dependence of the step widths is found to be more complex than in single junctions. The fractional step widths are found to decrease more rapidly with increasing frequency or rf current than conventional steps in single junctions. The washboard model of single junctions is extended to arrays to explain these differences between arrays and single junctions.

  1. Presynaptic spike broadening reduces junctional potential amplitude.

    PubMed

    Spencer, A N; Przysiezniak, J; Acosta-Urquidi, J; Basarsky, T A

    1989-08-24

    Presynaptic modulation of action potential duration may regulate synaptic transmission in both vertebrates and invertebrates. Such synaptic plasticity is brought about by modifications to membrane currents at presynaptic release sites, which, in turn, lead to changes in the concentration of cytosolic calcium available for mediating transmitter release. The 'primitive' neuromuscular junction of the jellyfish Polyorchis penicillatus is a useful model of presynaptic modulation. In this study, we show that the durations of action potentials in the motor neurons of this jellyfish are negatively correlated with the amplitude of excitatory junctional potentials. We present data from in vitro voltage-clamp experiments showing that short duration voltage spikes, which elicit large excitatory junctional potentials in vivo, produce larger and briefer calcium currents than do long duration action potentials, which elicit small excitatory junctional potentials.

  2. Chirality effect in disordered graphene ribbon junctions

    NASA Astrophysics Data System (ADS)

    Long, Wen

    2012-05-01

    We investigate the influence of edge chirality on the electronic transport in clean or disordered graphene ribbon junctions. By using the tight-binding model and the Landauer-Büttiker formalism, the junction conductance is obtained. In the clean sample, the zero-magnetic-field junction conductance is strongly chirality-dependent in both unipolar and bipolar ribbons, whereas the high-magnetic-field conductance is either chirality-independent in the unipolar or chirality-dependent in the bipolar ribbon. Furthermore, we study the disordered sample in the presence of magnetic field and find that the junction conductance is always chirality-insensitive for both unipolar and bipolar ribbons with adequate disorders. In addition, the disorder-induced conductance plateaus can exist in all chiral bipolar ribbons provided the disorder strength is moderate. These results suggest that we can neglect the effect of edge chirality in fabricating electronic devices based on the magnetotransport in a disordered graphene ribbon.

  3. EColiCore2: a reference network model of the central metabolism of Escherichia coli and relationships to its genome-scale parent model.

    PubMed

    Hädicke, Oliver; Klamt, Steffen

    2017-01-03

    Genome-scale metabolic modeling has become an invaluable tool to analyze properties and capabilities of metabolic networks and has been particularly successful for the model organism Escherichia coli. However, for several applications, smaller metabolic (core) models are needed. Using a recently introduced reduction algorithm and the latest E. coli genome-scale reconstruction iJO1366, we derived EColiCore2, a model of the central metabolism of E. coli. EColiCore2 is a subnetwork of iJO1366 and preserves predefined phenotypes including optimal growth on different substrates. The network comprises 486 metabolites and 499 reactions, is accessible for elementary-modes analysis and can, if required, be further compressed to a network with 82 reactions and 54 metabolites having an identical solution space as EColiCore2. A systematic comparison of EColiCore2 with its genome-scale parent model iJO1366 reveals that several key properties (flux ranges, reaction essentialities, production envelopes) of the central metabolism are preserved in EColiCore2 while it neglects redundancies along biosynthetic routes. We also compare calculated metabolic engineering strategies in both models and demonstrate, as a general result, how intervention strategies found in a core model allow the identification of valid strategies in a genome-scale model. Overall, EColiCore2 holds promise to become a reference model of E. coli's central metabolism.

  4. EColiCore2: a reference network model of the central metabolism of Escherichia coli and relationships to its genome-scale parent model

    PubMed Central

    Hädicke, Oliver; Klamt, Steffen

    2017-01-01

    Genome-scale metabolic modeling has become an invaluable tool to analyze properties and capabilities of metabolic networks and has been particularly successful for the model organism Escherichia coli. However, for several applications, smaller metabolic (core) models are needed. Using a recently introduced reduction algorithm and the latest E. coli genome-scale reconstruction iJO1366, we derived EColiCore2, a model of the central metabolism of E. coli. EColiCore2 is a subnetwork of iJO1366 and preserves predefined phenotypes including optimal growth on different substrates. The network comprises 486 metabolites and 499 reactions, is accessible for elementary-modes analysis and can, if required, be further compressed to a network with 82 reactions and 54 metabolites having an identical solution space as EColiCore2. A systematic comparison of EColiCore2 with its genome-scale parent model iJO1366 reveals that several key properties (flux ranges, reaction essentialities, production envelopes) of the central metabolism are preserved in EColiCore2 while it neglects redundancies along biosynthetic routes. We also compare calculated metabolic engineering strategies in both models and demonstrate, as a general result, how intervention strategies found in a core model allow the identification of valid strategies in a genome-scale model. Overall, EColiCore2 holds promise to become a reference model of E. coli’s central metabolism. PMID:28045126

  5. Tight Junction Proteins in Human Schwann Cell Autotypic Junctions

    PubMed Central

    Alanne, Maria H.; Pummi, Kati; Heape, Anthony M.; Grènman, Reidar; Peltonen, Juha; Peltonen, Sirkku

    2009-01-01

    Tight junctions (TJs) form physical barriers in various tissues and regulate paracellular transport of ions, water, and molecules. Myelinating Schwann cells form highly organized structures, including compact myelin, nodes of Ranvier, paranodal regions, Schmidt-Lanterman incisures, periaxonal cytoplasmic collars, and mesaxons. Autotypic TJs are formed in non-compacted myelin compartments between adjacent membrane lamellae of the same Schwann cell. Using indirect immunofluorescence and RT-PCR, we analyzed the expression of adherens junction (E-cadherin) and TJ [claudins, zonula occludens (ZO)-1, occludin] components in human peripheral nerve endoneurium, showing clear differences with published rodent profiles. Adult nerve paranodal regions contained E-cadherin, claudin-1, claudin-2, and ZO-1. Schmidt-Lanterman incisures contained E-cadherin, claudin-1, claudin-2, claudin-3, claudin-5, ZO-1, and occludin. Mesaxons contained E-cadherin, claudin-1, claudin-2, claudin-3, ZO-1, and occludin. None of the proteins studied were associated with nodal inter-Schwann cell junctions. Fetal nerve expression of claudin-1, claudin-3, ZO-1, and occludin was predominantly punctate, with a mesaxonal labeling pattern, but paranodal (ZO-1, claudin-3) and Schmidt-Lanterman incisure (claudins-1 and -3) expression profiles typical of compact myelin were visible by gestational week 37. The clear differences observed between human and published rodent nerve profiles emphasize the importance of human studies when translating the results of animal models to human diseases. (J Histochem Cytochem 57:523–529, 2009) PMID:19153196

  6. Exploring the Membrane Potential of Simple Dual-Membrane Systems as Models for Gap-Junction Channels.

    PubMed

    Escalona, Yerko; Garate, Jose A; Araya-Secchi, Raul; Huynh, Tien; Zhou, Ruhong; Perez-Acle, Tomas

    2016-06-21

    The conductance of ion channels can be modulated by a transmembrane potential difference, due to alterations on ion-mobility and also by changes in the pore structure. Despite the vast knowledge regarding the influence of voltage on transport properties of ion channels, little attention has been paid to describe, with atomic detail, the modulation of ionic transport in gap-junction channels (GJCs). Hence, molecular dynamics simulations were performed to explore the conductance of simple dual-membrane systems that account for the very basic features of GJCs. In doing so, we studied the influence of different charge distributions in the channel surface on these idealized systems under external electric fields, paying attention to the behavior of the electrostatic potential, ion density, ion currents, and equilibrium properties. Our results demonstrate that the incorporation of a charge distribution akin GJCs decreased anionic currents, favoring the transport of cationic species. Moreover, a thermodynamic characterization of ionic transport in these systems demonstrate the existence of a kinetic barrier that hinders anionic currents, reinforcing the role played by the internal arrangement of charges in GJCs. Overall, our results provide insights at the atomic scale on the effects of charge distributions over ionic transport, constituting a step forward into a better understanding of GJCs.

  7. Paired octamer rings of retinoschisin suggest a junctional model for cell-cell adhesion in the retina.

    PubMed

    Tolun, Gökhan; Vijayasarathy, Camasamudram; Huang, Rick; Zeng, Yong; Li, Yan; Steven, Alasdair C; Sieving, Paul A; Heymann, J Bernard

    2016-05-10

    Retinoschisin (RS1) is involved in cell-cell junctions in the retina, but is unique among known cell-adhesion proteins in that it is a soluble secreted protein. Loss-of-function mutations in RS1 lead to early vision impairment in young males, called X-linked retinoschisis. The disease is characterized by separation of inner retinal layers and disruption of synaptic signaling. Using cryo-electron microscopy, we report the structure at 4.1 Å, revealing double octamer rings not observed before. Each subunit is composed of a discoidin domain and a small N-terminal (RS1) domain. The RS1 domains occupy the centers of the rings, but are not required for ring formation and are less clearly defined, suggesting mobility. We determined the structure of the discoidin rings, consistent with known intramolecular and intermolecular disulfides. The interfaces internal to and between rings feature residues implicated in X-linked retinoschisis, indicating the importance of correct assembly. Based on this structure, we propose that RS1 couples neighboring membranes together through octamer-octamer contacts, perhaps modulated by interactions with other membrane components.

  8. Modeling light-induced charge transfer dynamics across a metal-molecule-metal junction: bridging classical electrodynamics and quantum dynamics.

    PubMed

    Hu, Zixuan; Ratner, Mark A; Seideman, Tamar

    2014-12-14

    We develop a numerical approach for simulating light-induced charge transport dynamics across a metal-molecule-metal conductance junction. The finite-difference time-domain method is used to simulate the plasmonic response of the metal structures. The Huygens subgridding technique, as adapted to Lorentz media, is used to bridge the vastly disparate length scales of the plasmonic metal electrodes and the molecular system, maintaining accuracy. The charge and current densities calculated with classical electrodynamics are transformed to an electronic wavefunction, which is then propagated through the molecular linker via the Heisenberg equations of motion. We focus mainly on development of the theory and exemplify our approach by a numerical illustration of a simple system consisting of two silver cylinders bridged by a three-site molecular linker. The electronic subsystem exhibits fascinating light driven dynamics, wherein the charge density oscillates at the driving optical frequency, exhibiting also the natural system timescales, and a resonance phenomenon leads to strong conductance enhancement.

  9. Modeling light-induced charge transfer dynamics across a metal-molecule-metal junction: Bridging classical electrodynamics and quantum dynamics

    SciTech Connect

    Hu, Zixuan; Ratner, Mark A.; Seideman, Tamar

    2014-12-14

    We develop a numerical approach for simulating light-induced charge transport dynamics across a metal-molecule-metal conductance junction. The finite-difference time-domain method is used to simulate the plasmonic response of the metal structures. The Huygens subgridding technique, as adapted to Lorentz media, is used to bridge the vastly disparate length scales of the plasmonic metal electrodes and the molecular system, maintaining accuracy. The charge and current densities calculated with classical electrodynamics are transformed to an electronic wavefunction, which is then propagated through the molecular linker via the Heisenberg equations of motion. We focus mainly on development of the theory and exemplify our approach by a numerical illustration of a simple system consisting of two silver cylinders bridged by a three-site molecular linker. The electronic subsystem exhibits fascinating light driven dynamics, wherein the charge density oscillates at the driving optical frequency, exhibiting also the natural system timescales, and a resonance phenomenon leads to strong conductance enhancement.

  10. Mycobacterium tuberculosis RecG binds and unwinds model DNA substrates with a preference for Holliday junctions

    PubMed Central

    Zegeye, Ephrem Debebe; Balasingham, Seetha V.; Laerdahl, Jon K.; Homberset, Håvard

    2012-01-01

    The RecG enzyme, a superfamily 2 helicase, is present in nearly all bacteria. Here we report for the first time that the recG gene is also present in the genomes of most vascular plants as well as in green algae, but is not found in other eukaryotes or archaea. The precise function of RecG is poorly understood, although ample evidence shows that it plays critical roles in DNA repair, recombination and replication. We further demonstrate that Mycobacterium tuberculosis RecG (RecGMtb) DNA binding activity had a broad substrate specificity, whereas it only unwound branched-DNA substrates such as Holliday junctions (HJs), replication forks, D-loops and R-loops, with a strong preference for the HJ as a helicase substrate. In addition, RecGMtb preferentially bound relatively long (≥40 nt) ssDNA, exhibiting a higher affinity for the homopolymeric nucleotides poly(dT), poly(dG) and poly(dC) than for poly(dA). RecGMtb helicase activity was supported by hydrolysis of ATP or dATP in the presence of Mg2+, Mn2+, Cu2+ or Fe2+. Like its Escherichia coli orthologue, RecGMtb is also a strictly DNA-dependent ATPase. PMID:22628485

  11. MODELING THE FORMATION OF GIANT PLANET CORES. I. EVALUATING KEY PROCESSES

    SciTech Connect

    Levison, Harold F.; Thommes, Edward; Duncan, Martin J.

    2010-04-15

    One of the most challenging problems we face in our understanding of planet formation is how Jupiter and Saturn could have formed before the solar nebula dispersed. The most popular model of giant planet formation is the so-called core accretion model. In this model a large planetary embryo formed first, mainly by two-body accretion. This is then followed by a period of inflow of nebular gas directly onto the growing planet. The core accretion model has an Achilles heel, namely the very first step. We have undertaken the most comprehensive study of this process to date. In this study, we numerically integrate the orbits of a number of planetary embryos embedded in a swarm of planetesimals. In these experiments, we have included a large number of physical processes that might enhance accretion. In particular, we have included (1) aerodynamic gas drag, (2) collisional damping between planetesimals, (3) enhanced embryo cross sections due to their atmospheres, (4) planetesimal fragmentation, and (5) planetesimal-driven migration. We find that the gravitational interaction between the embryos and the planetesimals leads to the wholesale redistribution of material-regions are cleared of material and gaps open near the embryos. Indeed, in 90% of our simulations without fragmentation, the region near those embryos is cleared of planetesimals before much growth can occur. Thus, the widely used assumption that the surface density distribution of planetesimals is smooth can lead to misleading results. In the remaining 10% of our simulations, the embryos undergo a burst of outward migration that significantly increases growth. On timescales of {approx}10{sup 5} years, the outer embryo can migrate {approx}6 AU and grow to roughly 30 M {sub +}. This represents a largely unexplored mode of core formation. We also find that the inclusion of planetesimal fragmentation tends to inhibit growth except for a narrow range of fragment migration rates.

  12. A THREE-PHASE CHEMICAL MODEL OF HOT CORES: THE FORMATION OF GLYCINE

    SciTech Connect

    Garrod, Robin T.

    2013-03-01

    A new chemical model is presented that simulates fully coupled gas-phase, grain-surface, and bulk-ice chemistry in hot cores. Glycine (NH{sub 2}CH{sub 2}COOH), the simplest amino acid, and related molecules such as glycinal, propionic acid, and propanal, are included in the chemical network. Glycine is found to form in moderate abundance within and upon dust-grain ices via three radical-addition mechanisms, with no single mechanism strongly dominant. Glycine production in the ice occurs over temperatures {approx}40-120 K. Peak gas-phase glycine fractional abundances lie in the range 8 Multiplication-Sign 10{sup -11}-8 Multiplication-Sign 10{sup -9}, occurring at {approx}200 K, the evaporation temperature of glycine. A gas-phase mechanism for glycine production is tested and found insignificant, even under optimal conditions. A new spectroscopic radiative-transfer model is used, allowing the translation and comparison of the chemical-model results with observations of specific sources. Comparison with the nearby hot-core source NGC 6334 IRS1 shows excellent agreement with integrated line intensities of observed species, including methyl formate. The results for glycine are consistent with the current lack of a detection of this molecule toward other sources; the high evaporation temperature of glycine renders the emission region extremely compact. Glycine detection with ALMA is predicted to be highly plausible, for bright, nearby sources with narrow emission lines. Photodissociation of water and subsequent hydrogen abstraction from organic molecules by OH, and NH{sub 2}, are crucial to the buildup of complex organic species in the ice. The inclusion of alternative branches within the network of radical-addition reactions appears important to the abundances of hot-core molecules; less favorable branching ratios may remedy the anomalously high abundance of glycolaldehyde predicted by this and previous models.

  13. Quantum junction solar cells.

    PubMed

    Tang, Jiang; Liu, Huan; Zhitomirsky, David; Hoogland, Sjoerd; Wang, Xihua; Furukawa, Melissa; Levina, Larissa; Sargent, Edward H

    2012-09-12

    Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO(2)); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics.

  14. Constraints on geomagnetic secular variation modeling from electromagnetism and fluid dynamics of the Earth's core

    NASA Technical Reports Server (NTRS)

    Benton, E. R.

    1986-01-01

    A spherical harmonic representation of the geomagnetic field and its secular variation for epoch 1980, designated GSFC(9/84), is derived and evaluated. At three epochs (1977.5, 1980.0, 1982.5) this model incorporates conservation of magnetic flux through five selected patches of area on the core/mantle boundary bounded by the zero contours of vertical magnetic field. These fifteen nonlinear constraints are included like data in an iterative least squares parameter estimation procedure that starts with the recently derived unconstrained field model GSFC (12/83). Convergence is approached within three iterations. The constrained model is evaluated by comparing its predictive capability outside the time span of its data, in terms of residuals at magnetic observatories, with that for the unconstrained model.

  15. Modeling of BWR core meltdown accidents - for application in the MELRPI. MOD2 computer code

    SciTech Connect

    Koh, B R; Kim, S H; Taleyarkhan, R P; Podowski, M Z; Lahey, Jr, R T

    1985-04-01

    This report summarizes improvements and modifications made in the MELRPI computer code. A major difference between this new, updated version of the code, called MELRPI.MOD2, and the one reported previously, concerns the inclusion of a model for the BWR emergency core cooling systems (ECCS). This model and its computer implementation, the ECCRPI subroutine, account for various emergency injection modes, for both intact and rubblized geometries. Other changes to MELRPI deal with an improved model for canister wall oxidation, rubble bed modeling, and numerical integration of system equations. A complete documentation of the entire MELRPI.MOD2 code is also given, including an input guide, list of subroutines, sample input/output and program listing.

  16. An Exact Solution to the Central Core Model of the Renal Medulla

    NASA Astrophysics Data System (ADS)

    Mickens, Ronald E.

    1998-11-01

    The central core model of the renal medulla provides a mathematical representation of the urine concentration mechanism. The model consists of eight coupled, nonlinear ODE's subject to certain initial and boundary conditions. Many investigators have studied the properties of the solutions to these equations, however no general analytic solution is known to exist. Thus, special exact solutions assume a position of significance by providing a basis for insight into the understanding of more realistic models used to analyze actual data. We calculate an exact solution for the case in which the water permeabilities are zero and a particular, but realistic, functional form is used for the metabolic pump. A detailed discussion will be given for the results obtained on the four cencentration and four flux functions that define the model. If invited to do so, the author is willing to expand the talk for the above abstract to twenty minutes.

  17. The Dependence of ITCZ Structure on Model Resolution and Dynamical Core in Aquaplanet Simulations

    SciTech Connect

    Landu, Kiranmayi; Leung, Lai-Yung R.; Hagos, Samson M.; Vinoj, V.; Rauscher, Sara; Ringler, Todd; Taylor, Mark

    2014-03-15

    Aqua-planet simulations using the Community Atmosphere Model version 4 (CAM4) with the Model for Prediction Across Scales Atmosphere (MPAS-A) and Higher Order Method Modeling Environment (HOMME) dynamical cores and zonally symmetric sea surface temperature (SST) structure are studied to understand the dependence of the inter-tropical convergence zone (ITCZ) structure on resolution and dynamical core. While all resolutions in HOMME and the low-resolution MPAS-A simulations give a single equatorial peak in zonal mean precipitation, the high-resolution MPAS-A simulations give a double ITCZ with precipitation peaking around 2° to 3° on either side of the equator. This study reveals that the structure of ITCZ is dependent on the feedbacks among convection and large-scale circulation and surface heat fluxes. We show that, by increasing convective available potential energy (CAPE) off the equator, the simulations with higher wind induced surface heat fluxes result in double ITCZ structure. This in turn leads to stronger convection and positive feedback with the large-scale circulation. We further show that the dominance of anti-symmetric waves in a model is not enough to cause double ITCZ, and the lateral extent of equatorial waves does not play an important role in determining the width of the ITCZ but rather the latter may influence the former.

  18. Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2011

    SciTech Connect

    David W. Nigg; Devin A. Steuhm

    2011-09-01

    Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance and, to some extent, experiment management are obsolete, inconsistent with the state of modern nuclear engineering practice, and are becoming increasingly difficult to properly verify and validate (V&V). Furthermore, the legacy staff knowledge required for application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In 2009 the Idaho National Laboratory (INL) initiated a focused effort to address this situation through the introduction of modern high-fidelity computational software and protocols, with appropriate V&V, within the next 3-4 years via the ATR Core Modeling and Simulation and V&V Update (or 'Core Modeling Update') Project. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF). The ATR Core Modeling Update Project, targeted for full implementation in phase with the anticipated ATR Core Internals Changeout (CIC) in the 2014 time frame, began during the last quarter of Fiscal Year 2009, and has just completed its first full year. Key accomplishments so far have encompassed both computational as well as experimental work. A new suite of stochastic and deterministic transport theory based reactor physics codes and their supporting nuclear data libraries (SCALE, KENO-6, HELIOS, NEWT, and ATTILA) have been installed at the INL under various permanent sitewide license agreements and corresponding baseline models of the ATR and ATRC are now operational, demonstrating the basic feasibility of these code packages for their intended purpose. Furthermore, a

  19. A histone octamer blocks branch migration of a Holliday junction.

    PubMed Central

    Grigoriev, M; Hsieh, P

    1997-01-01

    The Holliday junction is a key intermediate in genetic recombination. Here, we examine the effect of a nucleosome core on movement of the Holliday junction in vitro by spontaneous branch migration. Histone octamers consisting of H2A, H2B, H3, and H4 are reconstituted onto DNA duplexes containing an artificial nucleosome-positioning sequence consisting of a tandem array of an alternating AT-GC sequence motif. Characterization of the reconstituted branch migration substrates by micrococcal nuclease mapping and exonuclease III and hydroxyl radical footprinting reveal that 70% of the reconstituted octamers are positioned near the center of the substrate and the remaining 30% are located at the distal end, although in both cases some translational degeneracy is observed. Branch migration assays with the octamer-containing substrates reveal that the Holliday junction cannot migrate spontaneously through DNA organized into a nucleosomal core unless DNA-histone interactions are completely disrupted. Similar results are obtained with branch migration substrates containing an octamer positioned on a naturally occurring sequence derived from the yeast GLN3 locus. Digestion of Holliday junctions with T7 endonuclease I establishes that the junction is not trapped by the octamer but can branch migrate in regions free of histone octamers. Our findings suggest that migration of Holliday junctions during recombination and the recombinational repair of DNA damage requires proteins not only to accelerate the intrinsic rate of branch migration but also to facilitate the passage of the Holliday junction through a nucleosome. PMID:9372946

  20. An approach to model reactor core nodalization for deterministic safety analysis

    SciTech Connect

    Salim, Mohd Faiz Samsudin, Mohd Rafie; Mamat Ibrahim, Mohd Rizal; Roslan, Ridha Sadri, Abd Aziz; Farid, Mohd Fairus Abd

    2016-01-22

    Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH{sub 1.6}, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D{sup ®} computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.

  1. Core competency requirements among extension workers in peninsular Malaysia: Use of Borich's needs assessment model.

    PubMed

    Umar, Sulaiman; Man, Norsida; Nawi, Nolila Mohd; Latif, Ismail Abd; Samah, Bahaman Abu

    2017-06-01

    The study described the perceived importance of, and proficiency in core agricultural extension competencies among extension workers in Peninsular Malaysia; and evaluating the resultant deficits in the competencies. The Borich's Needs Assessment Model was used to achieve the objectives of the study. A sample of 298 respondents was randomly selected and interviewed using a pre-tested structured questionnaire. Thirty-three core competency items were assessed. Instrument validity and reliability were ensured. The cross-sectional data obtained was analysed using SPSS for descriptive statistics including mean weighted discrepancy score (MWDS). Results of the study showed that on a scale of 5, the most important core extension competency items according to respondents' perception were: "Making good use of information and communication technologies/access and use of web-based resources" (M=4.86, SD=0.23); "Conducting needs assessments" (M=4.84, SD=0.16); "organizing extension campaigns" (M=4.82, SD=0.47) and "Managing groups and teamwork" (M=4.81, SD=0.76). In terms of proficiency, the highest competency identified by the respondents was "Conducting farm and home visits (M=3.62, SD=0.82) followed by 'conducting meetings effectively' (M=3.19, SD=0.72); "Conducting focus group discussions" (M=3.16, SD=0.32) and "conducting community forums" (M=3.13, SD=0.64). The discrepancies implying competency deficits were widest in "Acquiring and allocating resources" (MWDS=12.67); use of information and communication technologies (ICTs) and web-based resources in agricultural extension (MWDS=12.59); and report writing and sharing the results and impacts (MWDS=11.92). It is recommended that any intervention aimed at developing the capacity of extension workers in Peninsular Malaysia should prioritize these core competency items in accordance with the deficits established in this study.

  2. An approach to model reactor core nodalization for deterministic safety analysis

    NASA Astrophysics Data System (ADS)

    Salim, Mohd Faiz; Samsudin, Mohd Rafie; Mamat @ Ibrahim, Mohd Rizal; Roslan, Ridha; Sadri, Abd Aziz; Farid, Mohd Fairus Abd

    2016-01-01

    Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH1.6, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D® computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.

  3. A moist aquaplanet variant of the Held–Suarez test for atmospheric model dynamical cores

    DOE PAGES

    Thatcher, Diana R.; Jablonowski, Christiane

    2016-04-04

    A moist idealized test case (MITC) for atmospheric model dynamical cores is presented. The MITC is based on the Held–Suarez (HS) test that was developed for dry simulations on “a flat Earth” and replaces the full physical parameterization package with a Newtonian temperature relaxation and Rayleigh damping of the low-level winds. This new variant of the HS test includes moisture and thereby sheds light on the nonlinear dynamics–physics moisture feedbacks without the complexity of full-physics parameterization packages. In particular, it adds simplified moist processes to the HS forcing to model large-scale condensation, boundary-layer mixing, and the exchange of latent and sensible heat betweenmore » the atmospheric surface and an ocean-covered planet. Using a variety of dynamical cores of the National Center for Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM), this paper demonstrates that the inclusion of the moist idealized physics package leads to climatic states that closely resemble aquaplanet simulations with complex physical parameterizations. This establishes that the MITC approach generates reasonable atmospheric circulations and can be used for a broad range of scientific investigations. This paper provides examples of two application areas. First, the test case reveals the characteristics of the physics–dynamics coupling technique and reproduces coupling issues seen in full-physics simulations. In particular, it is shown that sudden adjustments of the prognostic fields due to moist physics tendencies can trigger undesirable large-scale gravity waves, which can be remedied by a more gradual application of the physical forcing. Second, the moist idealized test case can be used to intercompare dynamical cores. These examples demonstrate the versatility of the MITC approach and suggestions are made for further application areas. The new moist variant of the HS test can be considered a test case of intermediate complexity.« less

  4. Scattering of S waves diffracted at the core-mantle boundary: forward modelling

    NASA Astrophysics Data System (ADS)

    Emery, Valérie; Maupin, Valérie; Nataf, Henri-Claude

    1999-11-01

    The lowermost 200-300 km of the Earth's mantle, known as the D'' layer, is an extremely complex and heterogeneous region where transfer processes between the core and the mantle take place. Diffracted S waves propagate over large distances and are very sensitive to the velocity structure of this region. Strong variations of ampli-tudes and waveforms are observed on recordings from networks of broad-band seismic stations. We perform forward modelling of diffracted S waves in laterally heterogeneous structures in order to analyse whether or not these observations can be related to lateral inhomogeneities in D''. We combine the diffraction due to the core and the scattering due to small-scale volumetric heterogeneities (10-100 km) by coupling single scattering (Born approximation) with the Langer approximation, which describes Sdiff wave propagation. The influence on the direct as well as on the scattered wavefields of the CMB as well as of possible tunnelling in the core or in D'' is fully accounted for. The SH and the SV components of the diffracted waves are analysed, as well as their coupling. The modelling is applied in heterogeneous models with different geometries: isolated heterogeneities, vertical cylinders, horizontal inhomogeneities and random media. Amplitudes of scattered waves are weak and only velocity perturbations of the order of 10 per cent over a volume of 240 x 240 x 300 km3 produce visible effects on seismograms. The two polarizations of Sdiff have different radial sensitivities, the SH components being more sensitive to heterogeneities closer to the CMB. However, we do not observe significant time-shifts between the two components similar to those produced by anisotropy. The long-period Sdiff have a poor lateral resolution and average the velocity perturbations in their Fresnel zone. Random small-scale heterogeneities with +/- 10 per cent velocity contrast in the layer therefore have little effect on Sdiff, in contrast to their effect on PKIKP.

  5. Modelling of Equilibrium Between Mantle and Core: Refractory, Volatile, and Highly Siderophile Elements

    NASA Technical Reports Server (NTRS)

    Righter, K.; Danielson, L.; Pando, K.; Shofner, G.; Lee, C. -T.

    2013-01-01

    Siderophile elements have been used to constrain conditions of core formation and differentiation for the Earth, Mars and other differentiated bodies [1]. Recent models for the Earth have concluded that the mantle and core did not fully equilibrate and the siderophile element contents of the mantle can only be explained under conditions where the oxygen fugacity changes from low to high during accretion and the mantle and core do not fully equilibrate [2,3]. However these conclusions go against several physical and chemical constraints. First, calculations suggest that even with the composition of accreting material changing from reduced to oxidized over time, the fO2 defined by metal-silicate equilibrium does not change substantially, only by approximately 1 logfO2 unit [4]. An increase of more than 2 logfO2 units in mantle oxidation are required in models of [2,3]. Secondly, calculations also show that metallic impacting material will become deformed and sheared during accretion to a large body, such that it becomes emulsified to a fine scale that allows equilibrium at nearly all conditions except for possibly the length scale for giant impacts [5] (contrary to conclusions of [6]). Using new data for D(Mo) metal/silicate at high pressures, together with updated partitioning expressions for many other elements, we will show that metal-silicate equilibrium across a long span of Earth s accretion history may explain the concentrations of many siderophile elements in Earth's mantle. The modeling includes refractory elements Ni, Co, Mo, and W, as well as highly siderophile elements Au, Pd and Pt, and volatile elements Cd, In, Bi, Sb, Ge and As.

  6. A moist aquaplanet variant of the Held-Suarez test for atmospheric model dynamical cores

    NASA Astrophysics Data System (ADS)

    Thatcher, Diana R.; Jablonowski, Christiane

    2016-04-01

    A moist idealized test case (MITC) for atmospheric model dynamical cores is presented. The MITC is based on the Held-Suarez (HS) test that was developed for dry simulations on "a flat Earth" and replaces the full physical parameterization package with a Newtonian temperature relaxation and Rayleigh damping of the low-level winds. This new variant of the HS test includes moisture and thereby sheds light on the nonlinear dynamics-physics moisture feedbacks without the complexity of full-physics parameterization packages. In particular, it adds simplified moist processes to the HS forcing to model large-scale condensation, boundary-layer mixing, and the exchange of latent and sensible heat between the atmospheric surface and an ocean-covered planet. Using a variety of dynamical cores of the National Center for Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM), this paper demonstrates that the inclusion of the moist idealized physics package leads to climatic states that closely resemble aquaplanet simulations with complex physical parameterizations. This establishes that the MITC approach generates reasonable atmospheric circulations and can be used for a broad range of scientific investigations. This paper provides examples of two application areas. First, the test case reveals the characteristics of the physics-dynamics coupling technique and reproduces coupling issues seen in full-physics simulations. In particular, it is shown that sudden adjustments of the prognostic fields due to moist physics tendencies can trigger undesirable large-scale gravity waves, which can be remedied by a more gradual application of the physical forcing. Second, the moist idealized test case can be used to intercompare dynamical cores. These examples demonstrate the versatility of the MITC approach and suggestions are made for further application areas. The new moist variant of the HS test can be considered a test case of intermediate complexity.

  7. No-Core Shell Model Calculations in Light Nuclei with Three-Nucleon Forces

    SciTech Connect

    Barrett, B R; Vary, J P; Nogga, A; Navratil, P; Ormand, W E

    2004-01-08

    The ab initio No-Core Shell Model (NCSM) has recently been expanded to include nucleon-nucleon (NN) and three-nucleon (3N) interactions at the three-body cluster level. Here it is used to predict binding energies and spectra of p-shell nuclei based on realistic NN and 3N interactions. It is shown that 3N force (3NF) properties can be studied in these nuclear systems. First results show that interactions based on chiral perturbation theory lead to a realistic description of {sup 6}Li.

  8. Modeling Stress Strain Relationships and Predicting Failure Probabilities For Graphite Core Components

    SciTech Connect

    Duffy, Stephen

    2013-09-09

    This project will implement inelastic constitutive models that will yield the requisite stress-strain information necessary for graphite component design. Accurate knowledge of stress states (both elastic and inelastic) is required to assess how close a nuclear core component is to failure. Strain states are needed to assess deformations in order to ascertain serviceability issues relating to failure, e.g., whether too much shrinkage has taken place for the core to function properly. Failure probabilities, as opposed to safety factors, are required in order to capture the bariability in failure strength in tensile regimes. The current stress state is used to predict the probability of failure. Stochastic failure models will be developed that can accommodate possible material anisotropy. This work will also model material damage (i.e., degradation of mechanical properties) due to radiation exposure. The team will design tools for components fabricated from nuclear graphite. These tools must readily interact with finite element software--in particular, COMSOL, the software algorithm currently being utilized by the Idaho National Laboratory. For the eleastic response of graphite, the team will adopt anisotropic stress-strain relationships available in COMSO. Data from the literature will be utilized to characterize the appropriate elastic material constants.

  9. No-Core Shell Model for 48-Ca, 48-Sc and 48-Ti

    SciTech Connect

    Popescu, S; Stoica, S; Vary, J P; Navratil, P

    2004-10-26

    The authors report the first no-core shell model results for {sup 48}Ca, {sup 48}Sc and {sup 48}Ti with derived and modified two-body Hamiltonians. We use an oscillator basis with a limited {bar h}{Omega} range around 40/A{sup 1/3} = 11 MeV and a limited model space up to 1 {bar h}{Omega}. No single-particle energies are used. They find that the charge dependence of the bulk binding energy of eight A = 48 nuclei is reasonably described with an effective Hamiltonian derived from the CD-Bonn interaction while there is an overall underbinding by about 0.4 MeV/nucleon. However, resulting spectra exhibit deficiencies that are anticipated due to: (1) basis space limitations and/or the absence of effective many-body interactions; and, (2) the absence of genuine three-nucleon interactions. They introduce phenomenological modifications to obtain fits to total binding and low-lying spectra. The resulting no-core shell model opens a path for applications to experiments such as the double-beta ({beta}{beta}) decay process.

  10. Core/shell CdS/ZnS nanoparticles: Molecular modelling and characterization by photocatalytic decomposition of Methylene Blue

    NASA Astrophysics Data System (ADS)

    Praus, Petr; Svoboda, Ladislav; Tokarský, Jonáš; Hospodková, Alice; Klemm, Volker

    2014-02-01

    Core/shell CdS/ZnS nanoparticles were modelled in the Material Studio environment and synthesized by one-pot procedure. The core CdS radius size and thickness of the ZnS shell composed of 1-3 ZnS monolayers were predicted from the molecular models. From UV-vis absorption spectra of the CdS/ZnS colloid dispersions transition energies of CdS and ZnS nanostructures were calculated. They indicated penetration of electrons and holes from the CdS core into the ZnS shell and relaxation strain in the ZnS shell structure. The transitions energies were used for calculation of the CdS core radius by the Schrödinger equation. Both the relaxation strain in ZnS shells and the size of the CdS core radius were predicted by the molecular modelling. The ZnS shell thickness and a degree of the CdS core coverage were characterized by the photocatalytic decomposition of Methylene Blue (MB) using CdS/ZnS nanoparticles as photocatalysts. The observed kinetic constants of the MB photodecomposition (kobs) were evaluated and a relationship between kobs and the ZnS shell thickness was derived. Regression results revealed that 86% of the CdS core surface was covered with ZnS and the average thickness of ZnS shell was about 12% higher than that predicted by molecular modelling.

  11. Inference of ICF implosion core mix using experimental data and theoretical mix modeling

    SciTech Connect

    Sherrill, Leslie Welser; Haynes, Donald A; Cooley, James H; Sherrill, Manolo E; Mancini, Roberto C; Tommasini, Riccardo; Golovkin, Igor E; Haan, Steven W

    2009-01-01

    The mixing between fuel and shell materials in Inertial Confinement Fusion (lCF) implosion cores is a current topic of interest. The goal of this work was to design direct-drive ICF experiments which have varying levels of mix, and subsequently to extract information on mixing directly from the experimental data using spectroscopic techniques. The experimental design was accomplished using hydrodynamic simulations in conjunction with Haan's saturation model, which was used to predict the mix levels of candidate experimental configurations. These theoretical predictions were then compared to the mixing information which was extracted from the experimental data, and it was found that Haan's mix model predicted trends in the width of the mix layer as a function of initial shell thickness. These results contribute to an assessment of the range of validity and predictive capability of the Haan saturation model, as well as increasing confidence in the methods used to extract mixing information from experimental data.

  12. A simple model for solute-solvent separation through nanopores based on core-softened potentials

    NASA Astrophysics Data System (ADS)

    de Vasconcelos, Cláudia K. B.; Batista, Ronaldo J. C.; da Rocha Régis, McGlennon; Manhabosco, Taíse M.; de Oliveira, Alan B.

    2016-07-01

    We propose an effective model for solute separation from fluids through reverse osmosis based on core-softened potentials. Such potentials have been used to investigate anomalous fluids in several situations under a great variety of approaches. Due to their simplicity, computational simulations become faster and mathematical treatments are possible. Our model aims to mimic water desalination through nano-membranes through reverse osmosis, for which we have found reasonable qualitative results when confronted against all-atoms simulations found in the literature. The purpose of this work is not to replace any fully atomistic simulation at this stage, but instead to pave the first steps towards coarse-grained models for water desalination processes. This may help to approach problems in larger scales, in size and time, and perhaps make analytical theories more viable.

  13. Simulating HFIR Core Thermal Hydraulics Using 3D-2D Model Coupling

    SciTech Connect

    Travis, Adam R; Freels, James D; Ekici, Kivanc

    2013-01-01

    A model utilizing interdimensional variable coupling is presented for simulating the thermal hydraulic interactions of the High Flux Isotope Reactor (HFIR) core at Oak Ridge National Laboratory (ORNL). The model s domain consists of a single, explicitly represented three-dimensional fuel plate and a simplified two-dimensional coolant channel slice. In simplifying the coolant channel, and thus the number of mesh points in which the Navier-Stokes equations must be solved, the computational cost and solution time are both greatly reduced. In order for the reduced-dimension coolant channel to interact with the explicitly represented fuel plate, however, interdimensional variable coupling must be enacted along all shared boundaries. The primary focus of this paper is in detailing the collection, storage, passage, and application of variables across this interdimensional interface. Comparisons are made showing the general speed-up associated with this simplified coupled model.

  14. Graphene tunnel junctions with aluminum oxide barrier

    NASA Astrophysics Data System (ADS)

    Feng, Ying; Trainer, Daniel J.; Chen, Ke

    2016-10-01

    We report a development of graphene tunnel junctions made by chemical vapor deposition grown graphene and sputtered aluminum insulating by an in-situ grown aluminum oxide. The thin oxide layer formed in between the metal layer and the two-dimensional material is a crucial part of a tunnel junction. We characterized surface morphology of oxide layers and studied tunneling spectra of lead and silver tunnel junctions to estimate the quality of the aluminum oxide. The Brinkman-Rowell-Dynes model was applied to fit the conductance-voltage plots to calculate the thickness of oxide layers. Junctions with graphene both on bottom and on top were fabricated and their tunneling properties were characterized after exposure to air for weeks to test time stability. Furthermore, the resistances of graphene tunnel junctions with aluminum oxide formed naturally and in an oxygen atmosphere were studied. Our results demonstrate that in-situ aluminum oxide is an effective barrier for graphene tunnel junctions. The methods of barrier formation enable the realization of more tunnel devices and circuits based on graphene.

  15. Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2012

    SciTech Connect

    David W. Nigg, Principal Investigator; Kevin A. Steuhm, Project Manager

    2012-09-01

    Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance, and to some extent, experiment management, are inconsistent with the state of modern nuclear engineering practice, and are difficult, if not impossible, to properly verify and validate (V&V) according to modern standards. Furthermore, the legacy staff knowledge required for application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In late 2009, the Idaho National Laboratory (INL) initiated a focused effort, the ATR Core Modeling Update Project, to address this situation through the introduction of modern high-fidelity computational software and protocols. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF). The ATR Core Modeling Update Project, targeted for full implementation in phase with the next anticipated ATR Core Internals Changeout (CIC) in the 2014-2015 time frame, began during the last quarter of Fiscal Year 2009, and has just completed its third full year. Key accomplishments so far have encompassed both computational as well as experimental work. A new suite of stochastic and deterministic transport theory based reactor physics codes and their supporting nuclear data libraries (HELIOS, KENO6/SCALE, NEWT/SCALE, ATTILA, and an extended implementation of MCNP5) has been installed at the INL under various licensing arrangements. Corresponding models of the ATR and ATRC are now operational with all five codes, demonstrating the basic feasibility of the new code packages for their intended purpose. Of particular importance, a set of as-run core

  16. A proposed route to independent measurements of tight junction conductance at discrete cell junctions

    PubMed Central

    Zhou, Lushan; Zeng, Yuhan; Baker, Lane A; Hou, Jianghui

    2015-01-01

    Direct recording of tight junction permeability is of pivotal importance to many biologic fields. Previous approaches bear an intrinsic disadvantage due to the difficulty of separating tight junction conductance from nearby membrane conductance. Here, we propose the design of Double whole-cell Voltage Clamp - Ion Conductance Microscopy (DVC-ICM) based on previously demonstrated potentiometric scanning of local conductive pathways. As proposed, DVC-ICM utilizes two coordinated whole-cell patch-clamps to neutralize the apical membrane current during potentiometric scanning, which in models described here will profoundly enhance the specificity of tight junction recording. Several potential pitfalls are considered, evaluated and addressed with alternative countermeasures. PMID:26716077

  17. Laboratory-numerical models of rapidly rotating convection in planetary cores

    NASA Astrophysics Data System (ADS)

    Cheng, J. S.; Stellmach, S.; Ribeiro, A.; Grannan, A.; King, E. M.; Aurnou, J. M.

    2015-04-01

    We present laboratory and numerical models investigating the behavioural regimes of rapidly rotating convection in high-latitude planetary core-style settings. Our combined laboratory-numerical approach, utilizing simplified geometries, can access more extreme parameters (e.g. Rayleigh numbers Ra ≲ 1013; Nusselt numbers Nu ≲ 103; Ekman numbers E ≳ 3 × 10- 8) than current global-scale dynamo simulations. Using flow visualizations and heat transfer measurements, we study the axialized flows that exist near the onset of rotating convection, as well as the 3-D flows that develop with stronger forcing. With water as the working fluid (Prandtl number Pr ≃ 7), we find a steep scaling trend for rapidly rotating convective heat transfer, Nu ˜ (Ra/RaC)3.6, that is associated with the existence of coherent, axialized columns. This rapidly rotating trend is steeper than the trends found at moderate values of the Ekman number, and continues a trend of ever-steepening scalings as the rotation rate of the system is increased. In contrast, in more strongly forced or lower rotation rate cases, the heat transfer scaling consistently follows a shallower slope equivalent to that of non-rotating convection systems. The steep heat transfer scaling in the columnar convection regime, corroborated by our laboratory flow visualizations, imply that coherent, axial columns have a relatively narrow range of stability. Thus, we hypothesize that coherent convection columns are not stable in planetary core settings, where the Ekman number is estimated to be ˜10-15. As a consequence, convective motions in the core may not be related to the columnar motions found in present-day global-scale models. Instead, we hypothesize that turbulent rotating convection cascades energy upwards from 3-D motions to large-scale quasi-2-D flow structures that are capable of efficiently generating planetary-scale magnetic fields. We argue that the turbulent regimes of rapidly rotating convection are

  18. Collapse and Fragmentation Models of Prolate Molecular Cloud Cores. II. Initial Differential Rotation

    NASA Astrophysics Data System (ADS)

    Di G. Sigalotti, Leonardo

    1998-05-01

    The prevalence of companions to pre-main-sequence stars and the emerging observational evidence for binary and multiple protostellar condensations suggest that fragmentation during protostellar collapse is a mechanism that may occur frequently in the star formation process. Here a second-order accurate hydrodynamic code has been used to investigate the gravitational (postmagnetic) collapse and fragmentation of low-mass (~1 M⊙), small (~0.05 pc) molecular cloud cores, starting from moderately centrally condensed (Gaussian), prolate (2:1 and 4:1 axial ratios) configurations with varying thermal energies (α) and degrees of differential rotation (ν = 1/3 and 2/3). To facilitate comparisons with previous collapse calculations of uniformly rotating prolate cloud cores (Sigalotti & Klapp), all the models were made to start with a ratio of rotational to gravitational energy of β ~ 0.036. The results indicate that prolate clouds are highly susceptible to binary fragmentation and that with respect to uniformly rotating initial conditions, differential rotation plays no role in either determining or enhancing fragmentation in initially slowly rotating clouds. In contrast to the fragmentation criteria previously established by Boss and Myhill, the results also indicate that clouds with α = 0.56 and varied prolateness collapse in a similar fashion, producing intermediate central condensations of oblate spheroidal shape before fragmenting into either a binary (2:1 clouds) or multiple protostellar core (4:1 clouds). The models with α <= 0.45 all produced binary systems after having formed intermediate central condensations, which might be of prolate ellipsoidal (2:1 clouds) or narrow cylindrical (4:1 clouds) shape. The mass and separation of the binary fragments increase with decreasing α and with an increase of both the degree of differential rotation and the cloud elongation. The results imply that for initial low β, the degree of cloud prolateness has a greater effect

  19. Nuclear magnetic resonance structure of the III-IV-V three-way junction from the Varkud satellite ribozyme and identification of magnesium-binding sites using paramagnetic relaxation enhancement.

    PubMed

    Bonneau, Eric; Legault, Pascale

    2014-10-07

    The VS ribozyme is a catalytic RNA found within some natural isolates of Neurospora that is being used as a model system to improve our understanding of RNA structure, catalysis, and engineering. The catalytic domain contains five helical domains (SLII-SLVI) that are organized by two three-way junctions. The III-IV-V junction is required for high-affinity binding of the substrate domain (SLI) through formation of a kissing loop interaction with SLV. Here, we determine the high-resolution nuclear magnetic resonance (NMR) structure of a 47-nucleotide RNA containing the III-IV-V junction (J345). The J345 RNA adopts a Y-shaped fold typical of the family C three-way junctions, with coaxial stacking between stems III and IV and an acute angle between stems III and V. The NMR structure reveals that the core of the III-IV-V junction contains four stacked base triples, a U-turn motif, a cross-strand stacking interaction, an A-minor interaction, and a ribose zipper. In addition, the NMR structure shows that the cCUUGg tetraloop used to stabilize stem IV adopts a novel RNA tetraloop fold, different from the known gCUUGc tetraloop structure. Using Mn(2+)-induced paramagnetic relaxation enhancement, we identify six Mg(2+)-binding sites within J345, including one associated with the cCUUGg tetraloop and two with the junction core. The NMR structure of J345 likely represents the conformation of the III-IV-V junction in the context of the active VS ribozyme and suggests that this junction functions as a dynamic hinge that contributes to substrate recognition and catalysis. Moreover, this study highlights a new role for family C three-way junctions in long-range tertiary interactions.

  20. NON-EQUILIBRIUM CHEMISTRY OF DYNAMICALLY EVOLVING PRESTELLAR CORES. I. BASIC MAGNETIC AND NON-MAGNETIC MODELS AND PARAMETER STUDIES

    SciTech Connect

    Tassis, Konstantinos; Willacy, Karen; Yorke, Harold W.; Turner, Neal J.

    2012-07-01

    We combine dynamical and non-equilibrium chemical modeling of evolving prestellar molecular cloud cores and investigate the evolution of molecular abundances in the contracting core. We model both magnetic cores, with varying degrees of initial magnetic support, and non-magnetic cores, with varying collapse delay times. We explore, through a parameter study, the competing effects of various model parameters in the evolving molecular abundances, including the elemental C/O ratio, the temperature, and the cosmic-ray ionization rate. We find that different models show their largest quantitative differences at the center of the core, whereas the outer layers, which evolve slower, have abundances which are severely degenerate among different dynamical models. There is a large range of possible abundance values for different models at a fixed evolutionary stage (central density), which demonstrates the large potential of chemical differentiation in prestellar cores. However, degeneracies among different models, compounded with uncertainties induced by other model parameters, make it difficult to discriminate among dynamical models. To address these difficulties, we identify abundance ratios between particular molecules, the measurement of which would have maximal potential for discrimination among the different models examined here. In particular, we find that the ratios between NH{sub 3} and CO, NH{sub 2} and CO, and NH{sub 3} and HCO{sup +} are sensitive to the evolutionary timescale, and that the ratio between HCN and OH is sensitive to the C/O ratio. Finally, we demonstrate that measurements of the central deviation (central depletion or enhancement) of abundances of certain molecules are good indicators of the dynamics of the core.

  1. Evaluating the Efficiency of a Multi-core Aware Multi-objective Optimization Tool for Calibrating the SWAT Model

    SciTech Connect

    Zhang, X.; Izaurralde, R. C.; Zong, Z.; Zhao, K.; Thomson, A. M.

    2012-08-20

    The efficiency of calibrating physically-based complex hydrologic models is a major concern in the application of those models to understand and manage natural and human activities that affect watershed systems. In this study, we developed a multi-core aware multi-objective evolutionary optimization algorithm (MAMEOA) to improve the efficiency of calibrating a worldwide used watershed model (Soil and Water Assessment Tool (SWAT)). The test results show that MAMEOA can save about 1-9%, 26-51%, and 39-56% time consumed by calibrating SWAT as compared with sequential method by using dual-core, quad-core, and eight-core machines, respectively. Potential and limitations of MAMEOA for calibrating SWAT are discussed. MAMEOA is open source software.

  2. A core stochastic population projection model for Florida manatees (Trichechus manatus latirostris)

    USGS Publications Warehouse

    Runge, Michael C.; Sanders-Reed, Carol A.; Fonnesbeck, Christopher J.

    2007-01-01

    probability of extinction is low, the model predicts that current and emerging threats are likely to result in a long-term decline in the statewide population and a change in the regional distribution of manatees. Analyses of sensitivity and variance contribution highlight the importance of reducing uncertainty in some life-history parameters, particularly adult survival, temporal variance of adult survival, and long-term warm-water capacity. This core biological model is expected to evolve over time, as better information becomes available about manatees and their habitat, and as new assessment needs arise. We anticipate that this core model will be customized for other state and federal assessments in the near future.

  3. Two-dimensional Core-collapse Supernova Models with Multi-dimensional Transport

    NASA Astrophysics Data System (ADS)

    Dolence, Joshua C.; Burrows, Adam; Zhang, Weiqun

    2015-02-01

    We present new two-dimensional (2D) axisymmetric neutrino radiation/hydrodynamic models of core-collapse supernova (CCSN) cores. We use the CASTRO code, which incorporates truly multi-dimensional, multi-group, flux-limited diffusion (MGFLD) neutrino transport, including all relevant {O}(v/c) terms. Our main motivation for carrying out this study is to compare with recent 2D models produced by other groups who have obtained explosions for some progenitor stars and with recent 2D VULCAN results that did not incorporate {O}(v/c) terms. We follow the evolution of 12, 15, 20, and 25 solar-mass progenitors to approximately 600 ms after bounce and do not obtain an explosion in any of these models. Though the reason for the qualitative disagreement among the groups engaged in CCSN modeling remains unclear, we speculate that the simplifying "ray-by-ray" approach employed by all other groups may be compromising their results. We show that "ray-by-ray" calculations greatly exaggerate the angular and temporal variations of the neutrino fluxes, which we argue are better captured by our multi-dimensional MGFLD approach. On the other hand, our 2D models also make approximations, making it difficult to draw definitive conclusions concerning the root of the differences between groups. We discuss some of the diagnostics often employed in the analyses of CCSN simulations and highlight the intimate relationship between the various explosion conditions that have been proposed. Finally, we explore the ingredients that may be missing in current calculations that may be important in reproducing the properties of the average CCSNe, should the delayed neutrino-heating mechanism be the correct mechanism of explosion.

  4. Proposed Core Competencies and Empirical Validation Procedure in Competency Modeling: Confirmation and Classification.

    PubMed

    Baczyńska, Anna K; Rowiński, Tomasz; Cybis, Natalia

    2016-01-01

    Competency models provide insight into key skills which are common to many positions in an organization. Moreover, there is a range of competencies that is used by many companies. Researchers have developed core competency terminology to underline their cross-organizational value. The article presents a theoretical model of core competencies consisting of two main higher-order competencies called performance and entrepreneurship. Each of them consists of three elements: the performance competency includes cooperation, organization of work and goal orientation, while entrepreneurship includes innovativeness, calculated risk-taking and pro-activeness. However, there is lack of empirical validation of competency concepts in organizations and this would seem crucial for obtaining reliable results from organizational research. We propose a two-step empirical validation procedure: (1) confirmation factor analysis, and (2) classification of employees. The sample consisted of 636 respondents (M = 44.5; SD = 15.1). Participants were administered a questionnaire developed for the study purpose. The reliability, measured by Cronbach's alpha, ranged from 0.60 to 0.83 for six scales. Next, we tested the model using a confirmatory factor analysis. The two separate, single models of performance and entrepreneurial orientations fit quite well to the data, while a complex model based on the two single concepts needs further research. In the classification of employees based on the two higher order competencies we obtained four main groups of employees. Their profiles relate to those found in the literature, including so-called niche finders and top performers. Some proposal for organizations is discussed.

  5. TWO-DIMENSIONAL CORE-COLLAPSE SUPERNOVA MODELS WITH MULTI-DIMENSIONAL TRANSPORT

    SciTech Connect

    Dolence, Joshua C.; Burrows, Adam; Zhang, Weiqun E-mail: burrows@astro.princeton.edu

    2015-02-10

    We present new two-dimensional (2D) axisymmetric neutrino radiation/hydrodynamic models of core-collapse supernova (CCSN) cores. We use the CASTRO code, which incorporates truly multi-dimensional, multi-group, flux-limited diffusion (MGFLD) neutrino transport, including all relevant O(v/c) terms. Our main motivation for carrying out this study is to compare with recent 2D models produced by other groups who have obtained explosions for some progenitor stars and with recent 2D VULCAN results that did not incorporate O(v/c) terms. We follow the evolution of 12, 15, 20, and 25 solar-mass progenitors to approximately 600 ms after bounce and do not obtain an explosion in any of these models. Though the reason for the qualitative disagreement among the groups engaged in CCSN modeling remains unclear, we speculate that the simplifying ''ray-by-ray'' approach employed by all other groups may be compromising their results. We show that ''ray-by-ray'' calculations greatly exaggerate the angular and temporal variations of the neutrino fluxes, which we argue are better captured by our multi-dimensional MGFLD approach. On the other hand, our 2D models also make approximations, making it difficult to draw definitive conclusions concerning the root of the differences between groups. We discuss some of the diagnostics often employed in the analyses of CCSN simulations and highlight the intimate relationship between the various explosion conditions that have been proposed. Finally, we explore the ingredients that may be missing in current calculations that may be important in reproducing the properties of the average CCSNe, should the delayed neutrino-heating mechanism be the correct mechanism of explosion.

  6. Proposed Core Competencies and Empirical Validation Procedure in Competency Modeling: Confirmation and Classification

    PubMed Central

    Baczyńska, Anna K.; Rowiński, Tomasz; Cybis, Natalia

    2016-01-01

    Competency models provide insight into key skills which are common to many positions in an organization. Moreover, there is a range of competencies that is used by many companies. Researchers have developed core competency terminology to underline their cross-organizational value. The article presents a theoretical model of core competencies consisting of two main higher-order competencies called performance and entrepreneurship. Each of them consists of three elements: the performance competency includes cooperation, organization of work and goal orientation, while entrepreneurship includes innovativeness, calculated risk-taking and pro-activeness. However, there is lack of empirical validation of competency concepts in organizations and this would seem crucial for obtaining reliable results from organizational research. We propose a two-step empirical validation procedure: (1) confirmation factor analysis, and (2) classification of employees. The sample consisted of 636 respondents (M = 44.5; SD = 15.1). Participants were administered a questionnaire developed for the study purpose. The reliability, measured by Cronbach’s alpha, ranged from 0.60 to 0.83 for six scales. Next, we tested the model using a confirmatory factor analysis. The two separate, single models of performance and entrepreneurial orientations fit quite well to the data, while a complex model based on the two single concepts needs further research. In the classification of employees based on the two higher order competencies we obtained four main groups of employees. Their profiles relate to those found in the literature, including so-called niche finders and top performers. Some proposal for organizations is discussed. PMID:27014111

  7. Emergence of cluster structures and collectivity within a no-core shell-model framework

    NASA Astrophysics Data System (ADS)

    Launey, K. D.; Dreyfuss, A. C.; Draayer, J. P.; Dytrych, T.; Baker, R.

    2014-12-01

    An innovative symmetry-guided concept, which capitalizes on partial as well as exact symmetries that underpin the structure of nuclei, is discussed. Within this framework, ab initio applications of the theory to light nuclei reveal the origin of collective modes and the emergence a simple orderly pattern from first principles. This provides a strategy for determining the nature of bound states of nuclei in terms of a relatively small fraction of the complete shell-model space, which, in turn, can be used to explore ultra-large model spaces for a description of alpha-cluster and highly deformed structures together with the associated rotations. We find that by using only a fraction of the model space extended far beyond current no-core shell-model limits and a long-range interaction that respects the symmetries in play, the outcome reproduces characteristic features of the low-lying 0+ states in 12 C (including the elusive Hoyle state and its 2+ excitation) and agrees with ab initio results in smaller spaces. This is achieved by selecting those particle configurations and components of the interaction found to be foremost responsible for the primary physics governing clustering phenomena and large spatial deformation in the ground-state and Hoyle-state rotational bands of 12 C. For these states, we offer a novel perspective emerging out of no-core shell-model considerations, including a discussion of associated nuclear deformation, matter radii, and density distribution. The framework we find is also extensible to negative-parity states (e.g., the 3-1 state in 12C) and beyond, namely, to the low-lying 0+ states of 8Be as well as the ground-state rotational band of Ne, Mg, and Si isotopes. The findings inform key features of the nuclear interaction and point to a new insight into the formation of highly-organized simple patterns in nuclear dynamics.

  8. Decoherence in models for hard-core bosons coupled to optical phonons

    NASA Astrophysics Data System (ADS)

    Dey, A.; Lone, M. Q.; Yarlagadda, S.

    2015-09-01

    Understanding coherent dynamics of excitons, spins, or hard-core bosons (HCBs) has tremendous scientific and technological implications for quantum computation. Here, we study decay of excited-state population and decoherence in two models for HCBs, namely, a two-site HCB model with site-dependent strong potentials and subject to non-Markovian dynamics and an infinite-range HCB model governed by Markovian dynamics. Both models are investigated in the regimes of antiadiabaticity and strong HCB-phonon coupling with each site providing a different local optical phonon environment; furthermore, the HCB systems in both models are taken to be initially uncorrelated with the environment in the polaronic frame of reference. In the case of the two-site HCB model, we show clearly that the degree of decoherence and decay of excited state are enhanced by the proximity of the site-energy difference to the eigenenergy of phonons and are most pronounced when the site-energy difference is at resonance with twice the polaronic energy; additionally, the decoherence and the decay effects are reduced when the strength of HCB-phonon coupling is increased. For the infinite-range model, when the site energies are the same, we derive an effective many-body Hamiltonian that commutes with the long-range system Hamiltonian and thus has the same set of eigenstates; consequently, a quantum-master-equation approach shows that the quantum states of the system do not decohere.

  9. Zonal Flow Velocimetry using Acoustic Modes in Experimental Models of a Planetary Core

    NASA Astrophysics Data System (ADS)

    Adams, M. M.; Mautino, A. R.; Stone, D.; Triana, S. A.; Lekic, V.; Lathrop, D. P.

    2015-12-01

    Rotating hydromagnetic experiments can serve as models of planetary cores, matching some of the dimensionless parameters relevant to planets. One challenge with such experiments is determining the flows present. The opacity of the fluids used in these experiments (e.g. liquid sodium) prevents direct flow visualization techniques from being employed. One method allowing determination of zonal flows in such experiments is acoustic mode velocimetry. In this technique, the rotational splittings of acoustic mode spectra are used to infer the azimuthal velocity profile of the flow. Here we present the use of this technique to study flows in experimental models of the Earth's core. Most of these results were obtained in a 60 cm diameter spherical Couette device, with a 20 cm diameter inner sphere, and using nitrogen gas as the working fluid. Turbulent flow is driven in the system via differential rotation of the outer shell and inner sphere. Acoustic modes are excited in the fluid volume using a speaker, and microphones are used to measure the frequencies and rotational splittings of the modes. We compare the observed splittings with those predicted by theory as a way of validating the method, and infer mean flows from these observations. We also present some preliminary results of acoustic studies in the 3 m diameter liquid sodium spherical Couette experiment. Finally, we discuss future prospects for this experimental technique.

  10. Neural Tissue Motion Impacts Cerebrospinal Fluid Dynamics at the Cervical Medullary Junction: A Patient-Specific Moving-Boundary Computational Model.

    PubMed

    Pahlavian, Soroush Heidari; Loth, Francis; Luciano, Mark; Oshinski, John; Martin, Bryn A

    2015-12-01

    Central nervous system (CNS) tissue motion of the brain occurs over 30 million cardiac cycles per year due to intracranial pressure differences caused by the pulsatile blood flow and cerebrospinal fluid (CSF) motion within the intracranial space. This motion has been found to be elevated in type 1 Chiari malformation. The impact of CNS tissue motion on CSF dynamics was assessed using a moving-boundary computational fluid dynamics (CFD) model of the cervical-medullary junction (CMJ). The cerebellar tonsils and spinal cord were modeled as rigid surfaces moving in the caudocranial direction over the cardiac cycle. The CFD boundary conditions were based on in vivo MR imaging of a 35-year old female Chiari malformation patient with ~150-300 µm motion of the cerebellar tonsils and spinal cord, respectively. Results showed that tissue motion increased CSF pressure dissociation across the CMJ and peak velocities up to 120 and 60%, respectively. Alterations in CSF dynamics were most pronounced near the CMJ and during peak tonsillar velocity. These results show a small CNS tissue motion at the CMJ can alter CSF dynamics for a portion of the cardiac cycle and demonstrate the utility of CFD modeling coupled with MR imaging to help understand CSF dynamics.

  11. Neural tissue motion impacts cerebrospinal fluid dynamics at the cervical medullary junction: a patient-specific moving-boundary computational model

    PubMed Central

    Pahlavian, Soroush Heidari; Loth, Francis; Luciano, Mark; Oshinski, John; Martin, Bryn A.

    2015-01-01

    Central nervous system (CNS) tissue motion of the brain occurs over 30 million cardiac cycles per year due to intracranial pressure differences caused by the pulsatile intracranial blood flow and cerebrospinal fluid (CSF) motion within the intracranial space. This motion has been found to be elevated in type 1 Chiari malformation. The impact of CNS tissue motion on CSF dynamics was assessed using moving-boundary computational fluid dynamics (CFD) models of the cervical-medullary junction (CMJ). The cerebellar tonsils and spinal cord were modeled as rigid surfaces moving in the caudocranial direction over the cardiac cycle. The CFD boundary conditions were based on in vivo MR imaging of a 35-year old female Chiari malformation patient with ~150 to 300 μm motion of the cerebellar tonsils and spinal cord, respectively. Results showed that tissue motion increased CSF pressure dissociation across the CMJ and peak velocities up to 120% and 60%, respectively. Alterations in CSF dynamics were most pronounced near the CMJ and during peak tonsillar velocity. These results show a small CNS tissue motion at the CMJ can alter CSF dynamics for a portion of the cardiac cycle and demonstrate the utility of CFD modeling coupled with MR imaging to help understand CSF dynamics. PMID:26108203

  12. Using archaeomagnetic field models to constrain the physics of the core: robustness and preferred locations of reversed flux patches

    NASA Astrophysics Data System (ADS)

    Terra-Nova, Filipe; Amit, Hagay; Hartmann, Gelvam A.; Trindade, Ricardo I. F.

    2016-09-01

    Archaeomagnetic field models cover longer timescales than historical models and may therefore resolve the motion of geomagnetic features on the core-mantle boundary (CMB) in a more meaningful statistical sense. Here we perform a detailed appraisal of archaeomagnetic field models to infer some aspects of the physics of the outer core. We characterize and compare the identification and tracking of reversed flux patches (RFPs) in order to assess the RFPs robustness. We find similar behaviour within a family of models but differences among different families, suggesting that modelling strategy is more influential than data set. Similarities involve recurrent positions of RFPs, but no preferred direction of motion is found. The tracking of normal flux patches shows similar qualitative behaviour confirming that RFPs identification and tracking is not strongly biased by their relative weakness. We also compare the tracking of RFPs with that of the historical field model gufm1 and with seismic anomalies of the lowermost mantle to explore the possibility that RFPs have preferred locations prescribed by lower mantle lateral heterogeneity. The archaeomagnetic field model that most resembles the historical field is interpreted in terms of core dynamics and core-mantle thermal interactions. This model exhibits correlation between RFPs and low seismic shear velocity in co-latitude and a shift in longitude. These results shed light on core processes, in particular we infer toroidal field lines with azimuthal orientation below the CMB and large fluid upwelling structures with a width of about 80° (Africa) and 110° (Pacific) at the top of the core. Finally, similar preferred locations of RFPs in the past 9 and 3 kyr of the same archaeomagnetic field model suggest that a 3 kyr period is sufficiently long to reliably detect mantle control on core dynamics. This allows estimating an upper bound of 220-310 km for the magnetic boundary layer thickness below the CMB.

  13. Four-junction superconducting circuit

    NASA Astrophysics Data System (ADS)

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J. Q.

    2016-06-01

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit.

  14. A professional development model for medical laboratory scientists working in the Core Laboratory.

    PubMed

    Ali, Faheem A; Pulido, Lila A; Garza, Melinda N; Amerson, Megan H; Greenhill, Brandy; Brown, Krystyna N; Lim, Shari K; Manyam, Venkatesara R; Nguyen, Hannah N; Prudhomme, Carrie C; Regan, Laura E; Sims, Willie R; Umeh, Afamefuna U; Williams, Rosemary; Tillman, Patricia K; Hu, Peter C

    2012-01-01

    The Division of Pathology and Laboratory Medicine at The University of Texas MD Anderson Cancer Center has implemented a professional development model designed to further the education, expertise, and experiences of medical laboratory scientists in the core laboratory. The professional development model (PDM) has four competency levels: Discovery, Application, Maturation and Expert. All levels require the medical laboratory scientist to learn new skill sets, complete task and projects, and meet continuing education and certification requirements. Each level encourages personal development, recognizes increased competencies, and sets high standards for all services provided. Upon completion of a level within a given timeframe, the medical laboratory scientist receives a salary adjustment based on the competency level completed.

  15. Gas Core Reactor Numerical Simulation Using a Coupled MHD-MCNP Model

    NASA Technical Reports Server (NTRS)

    Kazeminezhad, F.; Anghaie, S.

    2008-01-01

    Analysis is provided in this report of using two head-on magnetohydrodynamic (MHD) shocks to achieve supercritical nuclear fission in an axially elongated cylinder filled with UF4 gas as an energy source for deep space missions. The motivation for each aspect of the design is explained and supported by theory and numerical simulations. A subsequent report will provide detail on relevant experimental work to validate the concept. Here the focus is on the theory of and simulations for the proposed gas core reactor conceptual design from the onset of shock generations to the supercritical state achieved when the shocks collide. The MHD model is coupled to a standard nuclear code (MCNP) to observe the neutron flux and fission power attributed to the supercritical state brought about by the shock collisions. Throughout the modeling, realistic parameters are used for the initial ambient gaseous state and currents to ensure a resulting supercritical state upon shock collisions.

  16. Analysis of the dynamics of coal char combustion with ignition and extinction phenomena: Shrinking core model

    SciTech Connect

    Sadhukhan, A.K.; Gupta, P.; Saha, R.K.

    2008-09-15

    Single-particle combustion of coal char is analyzed using a generalized shrinking core model. Finite volume method, which was earlier employed by the authors in solving moving boundary problems involving fluid-solid noncatalytic reactions in general, is used to solve fully transient mass and energy equations. The model takes into account convection and diffusion inside the particle as well as in the boundary layer. The computed results are compared with the experimental data of the authors for combustion of coal char in a fluidized bed combustor. The effects of parameters such as bulk temperature and initial particle radius on the combustion dynamics are examined. The phenomena of ignition and extinction are also investigated. Finally, the importance of Stefan flow, originating due to nonequimolar counterdiffusion, on combustion of coal char is analyzed.

  17. Mean-field dynamic criticality and geometric transition in the Gaussian core model

    NASA Astrophysics Data System (ADS)

    Coslovich, Daniele; Ikeda, Atsushi; Miyazaki, Kunimasa

    2016-04-01

    We use molecular dynamics simulations to investigate dynamic heterogeneities and the potential energy landscape of the Gaussian core model (GCM). Despite the nearly Gaussian statistics of particles' displacements, the GCM exhibits giant dynamic heterogeneities close to the dynamic transition temperature. The divergence of the four-point susceptibility is quantitatively well described by the inhomogeneous version of the mode-coupling theory. Furthermore, the potential energy landscape of the GCM is characterized by large energy barriers, as expected from the lack of activated, hopping dynamics, and display features compatible with a geometric transition. These observations demonstrate that all major features of mean-field dynamic criticality can be observed in a physically sound, three-dimensional model.

  18. Effective Operators Within the Ab Initio No-Core Shell Model

    SciTech Connect

    Stetcu, I; Barrett, B R; Navratil, P; Vary, J P

    2004-11-30

    We implement an effective operator formalism for general one- and two-body operators, obtaining results consistent with the no-core shell model (NCSM) wave functions. The Argonne V8' nucleon-nucleon potential was used in order to obtain realistic wave functions for {sup 4}He, {sup 6}Li and {sup 12}C. In the NCSM formalism, we compute electromagnetic properties using the two-body cluster approximation for the effective operators and obtain results which are sensitive to the range of the bare operator. To illuminate the dependence on the range, we employ a Gaussian two-body operator of variable range, finding weak renormalization of long range operators (e.g., quadrupole) in a fixed model space. This is understood in terms of the two-body cluster approximation which accounts mainly for short-range correlations. Consequently, short range operators, such as the relative kinetic energy, will be well renormalized in the two-body cluster approximation.

  19. Preservice Secondary Teachers' Conceptions from a Mathematical Modeling Activity and Connections to the Common Core State Standards

    ERIC Educational Resources Information Center

    Stohlmann, Micah; Maiorca, Cathrine; Olson, Travis A.

    2015-01-01

    Mathematical modeling is an essential integrated piece of the Common Core State Standards. However, researchers have shown that mathematical modeling activities can be difficult for teachers to implement. Teachers are more likely to implement mathematical modeling activities if they have their own successful experiences with such activities. This…

  20. Bistable front dynamics in a contractile medium: Travelling wave fronts and cortical advection define stable zones of RhoA signaling at epithelial adherens junctions

    PubMed Central

    Budnar, Srikanth; Yap, Alpha S.

    2017-01-01

    Mechanical coherence of cell layers is essential for epithelia to function as tissue barriers and to control active tissue dynamics during morphogenesis. RhoA signaling at adherens junctions plays a key role in this process by coupling cadherin-based cell-cell adhesion together with actomyosin contractility. Here we propose and analyze a mathematical model representing core interactions involved in the spatial localization of junctional RhoA signaling. We demonstrate how the interplay between biochemical signaling through positive feedback, combined with diffusion on the cell membrane and mechanical forces generated in the cortex, can determine the spatial distribution of RhoA signaling at cell-cell junctions. This dynamical mechanism relies on the balance between a propagating bistable signal that is opposed by an advective flow generated by an actomyosin stress gradient. Experimental observations on the behavior of the system when contractility is inhibited are in qualitative agreement with the predictions of the model. PMID:28273072

  1. Thermodynamic properties of Fe-S alloys from molecular dynamics modeling: Implications for the lunar fluid core

    NASA Astrophysics Data System (ADS)

    Kuskov, Oleg L.; Belashchenko, David K.

    2016-09-01

    Density and sound velocity of Fe-S liquids for the P-T parameters of the lunar core have not been constrained well. From the analysis of seismic wave travel time, Weber et al. (2011) proposed that the lunar core is composed of iron alloyed with ⩽6 wt% of light elements, such as S. A controversial issue in models of planetary core composition concerns whether Fe-S liquids under high pressure - temperature conditions provide sound velocity and density data, which match the seismic model. Here we report the results of molecular dynamics (MD) simulations of iron-sulfur alloys based on Embedded Atom Model (EAM). The results of calculations include caloric, thermal and elastic properties of Fe-S alloys at concentrations of sulfur 0-18 at.%, temperatures up to 2500 K and pressures up to 14 GPa. The effect of sulfur on the elastic properties of Fe-rich melts is most evident in the notably decreased density with added S content. In the MD simulation, the density and bulk modulus KT of liquid Fe-S decrease with increasing sulfur content, while the bulk modulus KS decreases as a whole but has some fluctuations with increasing sulfur content. The sound velocity increases with increasing pressure, but depends weakly on temperature and the concentration of sulfur. For a fluid Fe-S core of the Moon (∼5 GPa/2000 K) with 6-16 at.% S (3.5-10 wt%), the sound velocity and density may be estimated at the level of 4000 m s-1 and 6.25-7.0 g cm-3. Comparison of thermodynamic calculations with the results of interpretation of seismic observations shows good agreement of P-wave velocities in the liquid outer core, while the core density does not match the seismic models. At such concentrations of sulfur and a density by 20-35% higher than the model seismic density, a radius for the fluid outer core should be less than about 330 km found by Weber et al. because at the specified mass and moment of inertia values of the Moon an increase of the core density leads to a decrease of the core

  2. Core layering

    NASA Astrophysics Data System (ADS)

    Jacobson, S. A.; Rubie, D. C.; Hernlund, J. W.; Morbidelli, A.

    2015-12-01

    We have created a planetary accretion and differentiation model that self-consistently builds and evolves Earth's core. From this model, we show that the core grows stably stratified as the result of rising metal-silicate equilibration temperatures and pressures, which increases the concentrations of light element impurities into each newer core addition. This stable stratification would naturally resist convection and frustrate the onset of a geodynamo, however, late giant impacts could mechanically mix the distinct accreted core layers creating large homogenous regions. Within these regions, a geodynamo may operate. From this model, we interpret the difference between the planetary magnetic fields of Earth and Venus as a difference in giant impact histories. Our planetary accretion model is a numerical N-body integration of the Grand Tack scenario [1]—the most successful terrestrial planet formation model to date [2,3]. Then, we take the accretion histories of Earth-like and Venus-like planets from this model and post-process the growth of each terrestrial planet according to a well-tested planetary differentiation model [4,5]. This model fits Earth's mantle by modifying the oxygen content of the pre-cursor planetesimals and embryos as well as the conditions of metal-silicate equilibration. Other non-volatile major, minor and trace elements included in the model are assumed to be in CI chondrite proportions. The results from this model across many simulated terrestrial planet growth histories are robust. If the kinetic energy delivered by larger impacts is neglected, the core of each planet grows with a strong stable stratification that would significantly impede convection. However, if giant impact mixing is very efficient or if the impact history delivers large impacts late, than the stable stratification can be removed. [1] Walsh et al. Nature 475 (2011) [2] O'Brien et al. Icarus 223 (2014) [3] Jacobson & Morbidelli PTRSA 372 (2014) [4] Rubie et al. EPSL 301

  3. STEADY STATE MODELING OF THE MINIMUM CRITICAL CORE OF THE TRANSIENT REACTOR TEST FACILITY

    SciTech Connect

    Anthony L. Alberti; Todd S. Palmer; Javier Ortensi; Mark D. DeHart

    2016-05-01

    With the advent of next generation reactor systems and new fuel designs, the U.S. Department of Energy (DOE) has identified the need for the resumption of transient testing of nuclear fuels. The DOE has decided that the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory (INL) is best suited for future testing. TREAT is a thermal neutron spectrum, air-cooled, nuclear test facility that is designed to test nuclear fuels in transient scenarios. These specific scenarios range from simple temperature transients to full fuel melt accidents. DOE has expressed a desire to develop a simulation capability that will accurately model the experiments before they are irradiated at the facility. It is the aim for this capability to have an emphasis on effective and safe operation while minimizing experimental time and cost. The multi physics platform MOOSE has been selected as the framework for this project. The goals for this work are to identify the fundamental neutronics properties of TREAT and to develop an accurate steady state model for future multiphysics transient simulations. In order to minimize computational cost, the effect of spatial homogenization and angular discretization are investigated. It was found that significant anisotropy is present in TREAT assemblies and to capture this effect, explicit modeling of cooling channels and inter-element gaps is necessary. For this modeling scheme, single element calculations at 293 K gave power distributions with a root mean square difference of 0.076% from those of reference SERPENT calculations. The minimum critical core configuration with identical gap and channel treatment at 293 K resulted in a root mean square, total core, radial power distribution 2.423% different than those of reference SERPENT solutions.

  4. Laboratory Models of Librationally-Driven Flow in Planetary Core and Sub-Surface Oceans.

    NASA Astrophysics Data System (ADS)

    Noir, Jerome; Hemmerlin, F.; Wicht, J.; Baca, S. M.; Aurnou, J. M.

    2008-09-01

    Many planetary bodies, including Mercury, Titan, Europa and the Earth's moon, undergo forced longitudinal librations. In this study, we investigate experimentally how longitudinal librations of a planet viscously couples with its interior fluid dynamics. We focus on libration frequencies less than or equal to the planetary rotation frequency, moderate Ekman numbers (E=10-2 to 10-5) and Rossby numbers between 0.03 and 5. In addition, we model flow in three different core geometry: full sphere, rinner 0.6 router and rinner 0.9 router. Direct flow visualizations in the experiment allows us to identify 3 distinct flow regimes, the onsets of which are governed by a critical boundary layer Reynolds number, Re, and are independent of the inner core size. For Re<20; the flow remains stable in the entire volume of fluid; coupled numerical simulations show that the flow is dominated by inertial modes. For 20core-mantle boundary (CMB) and Titan and Europa ice-shell. In the Earth's moon, we argue that the flow below the CMB is in the laminar longitudinal roll regime. The authors wish to the thank NASA's PG&G and PME Programs for reasearch funding (NNG0697G).

  5. Modeling of dislocation core structures in Mg7Si2O8(OH)6 phase A

    NASA Astrophysics Data System (ADS)

    Gouriet, K.; Cordier, P.; Carrez, P.; Mussi, A.; Caracas, R.

    2013-12-01

    Dense hydrous magnesium silicates (DHMS), such as Phase A [Mg7Si2O8(OH)6] play an important role in the transport of water within the upper mantle. The importance of these hydrous phases is not restricted to water storage. Indeed, at greater depths, the knowledge of the rheological properties of hydrous phases is also important for a best understanding of the dynamics of subduction. Recently, Mussi et al. [1] have performed an experimental study of the deformation mechanisms of phase A at 400°C and 700°C at 11 GPa. The authors have observed dislocation activity in basal, prismatic and pyramidal planes, with dissociation of dislocations in the basal and pyramidal planes. To complement this study, we modeled dislocation core structures in this mineral. In this study, we focus on the core structures of dislocations with 1/3[2-1-10] and 1/3[01-10] Burgers vectors. We have first investigated the structural and elastic properties of phase A at high pressure based on first-principles calculations. To understand how the structure of phase A can be sheared, the generalized stacking fault energies (or γ-surfaces) are calculated for the basal and prismatic planes. We found stable stacking fault in the basal plane at 1/3[01-10], suggesting possible dislocation dissociation in this plane. The core structures of screw dislocations have been calculated using the Peierls-Nabarro-Galerkin method involving γ-surfaces as an input. These calculations confirm the dissociation of dislocations with 1/3[2-1-10]Burgers vector in the basal plane. [1] A. Mussi, P. Cordier, D. J. Frost, Europeen Journal of Mineralogy 24 pp. 429-438 (2012)

  6. An Iron-Rain Model for Core Formation on Asteroid 4 Vesta

    NASA Technical Reports Server (NTRS)

    Kiefer, Walter S.; Mittlefehldt, David W.

    2016-01-01

    Asteroid 4 Vesta is differentiated into a crust, mantle, and core, as demonstrated by studies of the eucrite and diogenite meteorites and by data from NASA's Dawn spacecraft. Most models for the differentiation and thermal evolution of Vesta assume that the metal phase completely melts within 20 degrees of the eutectic temperature, well before the onset of silicate melting. In such a model, core formation initially happens by Darcy flow, but this is an inefficient process for liquid metal and solid silicate. However, the likely chemical composition of Vesta, similar to H chondrites with perhaps some CM or CV chondrite, has 13-16 weight percent S. For such compositions, metal-sulfide melting will not be complete until a temperature of at least 1350 degrees Centigrade. The silicate solidus for Vesta's composition is between 1100 and 1150 degrees Centigrade, and thus metal and silicate melting must have substantially overlapped in time on Vesta. In this chemically and physically more likely view of Vesta's evolution, metal sulfide drops will sink by Stokes flow through the partially molten silicate magma ocean in a process that can be envisioned as "iron rain". Measurements of eucrites show that moderately siderophile elements such as Ni, Mo, and W reached chemical equilibrium between the metal and silicate phases, which is an important test for any Vesta differentiation model. The equilibration time is a function of the initial metal grain size, which we take to be 25-45 microns based on recent measurements of H6 chondrites. For these sizes and reasonable silicate magma viscosities, equilibration occurs after a fall distance of just a few meters through the magma ocean. Although metal drops may grow in size by merger with other drops, which increases their settling velocities and decreases the total core formation time, the short equilibration distance ensures that the moderately siderophile elements will reach chemical equilibrium between metal and silicate before

  7. Towards field theory in spaces with multivolume junctions

    NASA Astrophysics Data System (ADS)

    Fomin, P. I.; Shtanov, Yu V.

    2002-06-01

    We consider a spacetime formed by several pieces with common timelike boundary which plays the role of a junction between them. We establish junction conditions for fields of various spins and derive the resulting laws of wave propagation through the junction, which turn out to be quite similar for fields of all spins. As an application, we consider the case of multivolume junctions in four-dimensional spacetime that may arise in the context of the theory of quantum creation of a closed universe on the background of a big mother universe. The theory developed can also be applied to braneworld models and to the superstring theory.

  8. Identification of neuronal and angiogenic growth factors in an in vitro blood-brain barrier model system: Relevance in barrier integrity and tight junction formation and complexity.

    PubMed

    Freese, Christian; Hanada, Sanshiro; Fallier-Becker, Petra; Kirkpatrick, C James; Unger, Ronald E

    2017-05-01

    We previously demonstrated that the co-cultivation of endothelial cells with neural cells resulted in an improved integrity of the in vitro blood-brain barrier (BBB), and that this model could be useful to evaluate the transport properties of potential central nervous system disease drugs through the microvascular brain endothelial. In this study we have used real-time PCR, fluorescent microscopy, protein arrays and enzyme-linked immunosorbent assays to determine which neural- and endothelial cell-derived factors are produced in the co-culture and improve the integrity of the BBB. In addition, a further improvement of the BBB integrity was achieved by adjusting serum concentrations and growth factors or by the addition of brain pericytes. Under specific conditions expression of angiogenic, angiostatic and neurotrophic factors such as endostatin, pigment epithelium derived factor (PEDF/serpins-F1), tissue inhibitor of metalloproteinases (TIMP-1), and vascular endothelial cell growth factor (VEGF) closely mimicked the in vivo situation. Freeze-fracture analysis of these cultures demonstrated the quality and organization of the endothelial tight junction structures and their association to the two different lipidic leaflets of the membrane. Finally, a multi-cell culture model of the BBB with a transendothelial electrical resistance up to 371 (±15) Ω×cm(2) was developed, which may be useful for preliminary screening of drug transport across the BBB and to evaluate cellular crosstalk of cells involved in the neurovascular unit.

  9. Josephson junction in a thin film

    SciTech Connect

    Kogan, V. G.; Dobrovitski, V. V.; Clem, J. R.; Mawatari, Yasunori; Mints, R. G.

    2001-04-01

    The phase difference {phi}(y) for a vortex at a line Josephson junction in a thin film attenuates at large distances as a power law, unlike the case of a bulk junction where it approaches exponentially the constant values at infinities. The field of a Josephson vortex is a superposition of fields of standard Pearl vortices distributed along the junction with the line density {phi}'(y)/2{pi}. We study the integral equation for {phi}(y) and show that the phase is sensitive to the ratio l/{Lambda}, where l={lambda}{sub J}{sup 2}/{lambda}{sub L}, {Lambda}=2{lambda}{sub L}{sup 2}/d, {lambda}{sub L}, and {lambda}{sub J} are the London and Josephson penetration depths, and d is the film thickness. For l<<{Lambda}, the vortex ''core'' of the size l is nearly temperature independent, while the phase ''tail'' scales as l{Lambda}/y{sup 2}={lambda}{sub J}2{lambda}{sub L}/d/y{sup 2}; i.e., it diverges as T{yields}T{sub c}. For l>>{Lambda}, both the core and the tail have nearly the same characteristic length l{Lambda}.

  10. MUTILS - a set of efficient modeling tools for multi-core CPUs implemented in MEX

    NASA Astrophysics Data System (ADS)

    Krotkiewski, Marcin; Dabrowski, Marcin

    2013-04-01

    The need for computational performance is common in scientific applications, and in particular in numerical simulations, where high resolution models require efficient processing of large amounts of data. Especially in the context of geological problems the need to increase the model resolution to resolve physical and geometrical complexities seems to have no limits. Alas, the performance of new generations of CPUs does not improve any longer by simply increasing clock speeds. Current industrial trends are to increase the number of computational cores. As a result, parallel implementations are required in order to fully utilize the potential of new processors, and to study more complex models. We target simulations on small to medium scale shared memory computers: laptops and desktop PCs with ~8 CPU cores and up to tens of GB of memory to high-end servers with ~50 CPU cores and hundereds of GB of memory. In this setting MATLAB is often the environment of choice for scientists that want to implement their own models with little effort. It is a useful general purpose mathematical software package, but due to its versatility some of its functionality is not as efficient as it could be. In particular, the challanges of modern multi-core architectures are not fully addressed. We have developed MILAMIN 2 - an efficient FEM modeling environment written in native MATLAB. Amongst others, MILAMIN provides functions to define model geometry, generate and convert structured and unstructured meshes (also through interfaces to external mesh generators), compute element and system matrices, apply boundary conditions, solve the system of linear equations, address non-linear and transient problems, and perform post-processing. MILAMIN strives to combine the ease of code development and the computational efficiency. Where possible, the code is optimized and/or parallelized within the MATLAB framework. Native MATLAB is augmented with the MUTILS library - a set of MEX functions that

  11. An Intercomparison of the Dynamical Cores of Global Atmospheric Circulation Models for Mars

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1998-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. The focus of this JRI has been to evaluate the dynamical 'cores' of two global atmospheric circulation models for Mars that are in operation at the NASA Ames Research Center. The two global circulation models in use are fundamentally different: one uses spherical harmonics in its horizontal representation of field variables; the other uses finite differences on a uniform longitude-latitude grid. Several simulations have been conducted to assess how the dynamical processors of each of these circulation models perform using identical 'simple physics' parameterizations. A variety of climate statistics (e.g., time-mean flows and eddy fields) have been compared for realistic solstitial mean basic states. Results of this research have demonstrated that the two Mars circulation models with completely different spatial representations and discretizations produce rather similar circulation statistics for first-order meteorological fields, suggestive of a tendency for convergence of numerical solutions. Second and higher-order fields can, however, vary significantly between the two models.

  12. A southern Africa harmonic spline core field model derived from CHAMP satellite data

    NASA Astrophysics Data System (ADS)

    Nahayo, E.; Kotzé, P. B.; McCreadie, H.

    2015-02-01

    The monitoring of the Earth's magnetic field time variation requires a continuous recording of geomagnetic data with a good spatial coverage over the area of study. In southern Africa, ground recording stations are limited and the use of satellite data is needed for the studies where high spatial resolution data is required. We show the fast time variation of the geomagnetic field in the southern Africa region by deriving an harmonic spline model from CHAMP satellite measurements recorded between 2001 and 2010. The derived core field model, the Southern Africa Regional Model (SARM), is compared with the global model GRIMM-2 and the ground based data recorded at Hermanus magnetic observatory (HER) in South Africa and Tsumeb magnetic observatory (TSU) in Namibia where the focus is mainly on the long term variation of the geomagnetic field. The results of this study suggest that the regional model derived from the satellite data alone can be used to study the small scale features of the time variation of the geomagnetic field where ground data is not available. In addition, these results also support the earlier findings of the occurrence of a 2007 magnetic jerk and rapid secular variation fluctuations of 2003 and 2004 in the region.

  13. Multiple phase transitions in extended hard-core lattice gas models in two dimensions.

    PubMed

    Nath, Trisha; Rajesh, R

    2014-07-01

    We study the k-NN hard-core lattice gas model in which the first k next-nearest-neighbor sites of a particle are excluded from occupation by other particles on a two-dimensional square lattice. This model is the lattice version of the hard-disk system with increasing k corresponding to decreasing lattice spacing. While the hard-disk system is known to undergo a two-step freezing process with increasing density, the lattice model has been known to show only one transition. Here, based on Monte Carlo simulations and high-density expansions of the free energy and density, we argue that for k = 4,10,11,14,⋯, the lattice model undergoes multiple transitions with increasing density. Using Monte Carlo simulations, we confirm the same for k = 4,...,11. This, in turn, resolves an existing puzzle as to why the 4-NN model has a continuous transition against the expectation of a first-order transition.

  14. Pan- and core- network analysis of co-expression genes in a model plant

    PubMed Central

    He, Fei; Maslov, Sergei

    2016-01-01

    Genome-wide gene expression experiments have been performed using the model plant Arabidopsis during the last decade. Some studies involved construction of coexpression networks, a popular technique used to identify groups of co-regulated genes, to infer unknown gene functions. One approach is to construct a single coexpression network by combining multiple expression datasets generated in different labs. We advocate a complementary approach in which we construct a large collection of 134 coexpression networks based on expression datasets reported in individual publications. To this end we reanalyzed public expression data. To describe this collection of networks we introduced concepts of ‘pan-network’ and ‘core-network’ representing union and intersection between a sizeable fractions of individual networks, respectively. We showed that these two types of networks are different both in terms of their topology and biological function of interacting genes. For example, the modules of the pan-network are enriched in regulatory and signaling functions, while the modules of the core-network tend to include components of large macromolecular complexes such as ribosomes and photosynthetic machinery. Our analysis is aimed to help the plant research community to better explore the information contained within the existing vast collection of gene expression data in Arabidopsis. PMID:27982071

  15. [Kampo Medicine in the New Model Core Curriculum of Pharmaceutical Education].

    PubMed

    Kobayashi, Yoshinori

    2016-01-01

    What should we educate for Kampo medicine in the model core curriculum of pharmaceutical education? The curricular core should be discussed considering the points mentioned below. (1) Positioning of Kampo medicine in the Japanese medical care system. Kampo medicine is an authorized medical care category in the National Health Insurance (NHI) program in Japan. The NHI drug price list carries 148 Kampo formulations. According to the report of the Japan Kampo Medicines Manufacturers Association in 2011, approximately 90% of Japanese physicians prescribe Kampo medicines. (2) Differences between Kampo medicine and western medicine: In Kampo medicine, the most suitable formula among various Kampo formulas to normalize the psychophysical state of individual patients is selected. In other words, if there is a complaint, there are always some treatments. (3) A strong point of Kampo medicine: Kampo medicine enables physicians to deal with difficult-to-treat conditions by western medicine alone. Also, by using the scale of Kampo medicine, each patient can grasp his or her own systemic state and improve their lifestyle. To extend healthy life expectancy, a basic knowledge of Kampo medicine may play a significant role in integrated health care. "The guide book of the approval standards for OTC Kampo products", "the pharmaceutical advanced educational guideline", and "the manual of the exam questions preparation for registered sales clerks" should also be consulted before selecting the area and contents that should be covered.

  16. A transmission line model for propagation in elliptical core optical fibers

    SciTech Connect

    Georgantzos, E.; Boucouvalas, A. C.; Papageorgiou, C.

    2015-12-31

    The calculation of mode propagation constants of elliptical core fibers has been the purpose of extended research leading to many notable methods, with the classic step index solution based on Mathieu functions. This paper seeks to derive a new innovative method for the determination of mode propagation constants in single mode fibers with elliptic core by modeling the elliptical fiber as a series of connected coupled transmission line elements. We develop a matrix formulation of the transmission line and the resonance of the circuits is used to calculate the mode propagation constants. The technique, used with success in the case of cylindrical fibers, is now being extended for the case of fibers with elliptical cross section. The advantage of this approach is that it is very well suited to be able to calculate the mode dispersion of arbitrary refractive index profile elliptical waveguides. The analysis begins with the deployment Maxwell’s equations adjusted for elliptical coordinates. Further algebraic analysis leads to a set of equations where we are faced with the appearance of harmonics. Taking into consideration predefined fixed number of harmonics simplifies the problem and enables the use of the resonant circuits approach. According to each case, programs have been created in Matlab, providing with a series of results (mode propagation constants) that are further compared with corresponding results from the ready known Mathieu functions method.

  17. Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2013

    SciTech Connect

    David W. Nigg

    2013-09-01

    Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance, and to some extent, experiment management, are inconsistent with the state of modern nuclear engineering practice, and are difficult, if not impossible, to verify and validate (V&V) according to modern standards. Furthermore, the legacy staff knowledge required for effective application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In late 2009, the Idaho National Laboratory (INL) initiated a focused effort, the ATR Core Modeling Update Project, to address this situation through the introduction of modern high-fidelity computational software and protocols. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF).

  18. Modeling active galactic nucleus feedback in cool-core clusters: The balance between heating and cooling

    SciTech Connect

    Li, Yuan; Bryan, Greg L.

    2014-07-01

    We study the long-term evolution of an idealized cool-core galaxy cluster under the influence of momentum-driven active galactic nucleus (AGN) feedback using three-dimensional high-resolution (60 pc) adaptive mesh refinement simulations. The feedback is modeled with a pair of precessing jets whose power is calculated based on the accretion rate of the cold gas surrounding the supermassive black hole (SMBH). The intracluster medium first cools into clumps along the propagation direction of the jets. As the jet power increases, gas condensation occurs isotropically, forming spatially extended structures that resemble the observed Hα filaments in Perseus and many other cool-core clusters. Jet heating elevates the gas entropy, halting clump formation. The cold gas that is not accreted onto the SMBH settles into a rotating disk of ∼10{sup 11} M {sub ☉}. The hot gas cools directly onto the disk while the SMBH accretes from its innermost region, powering the AGN that maintains a thermally balanced state for a few Gyr. The mass cooling rate averaged over 7 Gyr is ∼30 M {sub ☉} yr{sup –1}, an order of magnitude lower than the classic cooling flow value. Medium resolution simulations produce similar results, while in low resolution runs, the cluster experiences cycles of gas condensation and AGN outbursts. Owing to its self-regulating mechanism, AGN feedback can successfully balance cooling with a wide range of model parameters. Our model also produces cold structures in early stages that are in good agreement with the observations. However, the long-lived massive cold disk is unrealistic, suggesting that additional physical processes are still needed.

  19. Modeling two-dimensional structure at the core-mantle boundary

    NASA Astrophysics Data System (ADS)

    Helmberger, D. V.; Garnero, E. J.; Ding, X.

    1996-06-01

    Recent studies of SKS waveform modeling emphasize the strong variation of seismic properties at the core-mantle boundary (CMB) and the need for two-dimensional and three-dimensional waveform modeling capabilities. In particular, the bifurcation of SKS into SP dKS and SKP dS near 110° shows strong regional variations. The first of these phases has a P wave diffraction along the bottom of the mantle near the source, while the latter phase occurs at the receiver end. Generalized ray theory proves effective in generating theoretical seismograms in this type of problem because each of these diffractions is associated with a particular transmission coefficient: Tsp which transmits shear waves into primary waves when crossing the CMB and Tsp which transmits the primary waves back into shear waves at the receiver end. Each region can then be isolated and have its separate fine structure, sharp or gradational. Two classes of boundaries are explored: the CMB as a simple, sharp interface and the CMB with a very low velocity transition layer (10% slower than reference models). The two diffractions produced by these structures have diagnostic arrival times and wave shapes and when combined with the geometric SKS produce distinct waveform characteristics not easily generated by other means. Since the ray paths associated with these three phases are virtually identical in the mantle and only differ along a short sample of CMB and in the one-dimensional fluid core, we can isolate the small localized CMB region sampled. Thus the waveform character of the extended SKS in the range of 105° to 120° becomes an excellent CMB probe which we demonstrate on a small sample of observations from the Fiji-Tonga region as recorded in North America.

  20. Impact of Pin-by-Pin Thermal-Hydraulic Feedback Modeling on Steady-State Core Characteristics

    SciTech Connect

    Yamamoto, Akio; Ikeno, Tsutomu

    2005-02-15

    In this paper, the effect of a pin-by-pin thermal-hydraulic feedback treatment on the core characteristics at a steady-state condition is investigated using a three-dimensional fine-mesh core calculation code. Currently, advanced nodal codes treat the inside of an assembly as homogeneous, and the temperature distribution inside a node is usually ignored. Namely, the fuel temperature is estimated from the assembly average power density, and the moderator temperature is calculated from the nodewise closed-channel model. However, the validity of a flat temperature distribution inside a node has not yet been investigated, because a three-dimensional pin-by-pin whole-core calculation must be done for comparison. A three-dimensional pin-by-pin nodal-transport code for a pressurized water reactor (PWR) core analysis, SCOPE2, was used in this study since it can directly treat the pin-by-pin feedback effect. A whole-core subchannel analysis code was developed to enhance the thermal-hydraulic capability of SCOPE2. The pin-by-pin feedback models for fuel and moderator temperature were established, and their impact on the core characteristics was investigated in a 3 x 3 multiassembly and the whole PWR core geometries. The calculations showed that modeling of the pin-by-pin temperature distribution revealed a negligible effect on core reactivity and only a slight impact on the radial peaking factor. The difference in the radial peaking factor that is exposed by the pin-by-pin temperature modeling is less than 0.005 in the test calculations.

  1. Performance measurements of a pilot superconducting solenoid model core for a wind tunnel magnetic suspension and balance system

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.; Britcher, C. P.

    1983-01-01

    The results of experimental demonstrations of a superconducting solenoid model core in the Southampton University Magnetic Suspension and Balance System are detailed. Technology and techniques relevant to large-scale wind tunnel MSBSs comprise the long term goals. The magnetic moment of solenoids, difficulties peculiar to superconducting solenoid cores, lift force and pitching moment, dynamic lift calibration, and helium boil-off measurements are discussed.

  2. Core Formation in Planetesimals: Textural Analyses From 3D Synchrotron Imaging and Complex Systems Modeling

    NASA Astrophysics Data System (ADS)

    Rushmer, T. A.; Tordesillas, A.; Walker, D. M.; Parkinson, D. Y.; Clark, S. M.

    2012-12-01

    Recent scenarios of core formation in planetesimals using calculations from planetary dynamists and from extinct radionuclides (e.g. 26Al, 60Fe), call for segregation of a metal liquid (core) from both solid silicate and a partially molten silicate - a silicate mush - matrix. These segregation scenarios require segregation of metallic metal along fracture networks or by the growth of molten core material into blebs large enough to overcome the strength of the mush matrix. Such segregation scenarios usually involve high strain rates so that separation can occur, which is in agreement with the accretion model of planetary growth. Experimental work has suggested deformation and shear can help develop fracture networks and coalesce metallic blebs. Here, we have developed an innovative approach that currently combines 2D textures in experimental deformation experiments on a partially molten natural meteorite with complex network analyses. 3D textural data from experimental samples, deformed at high strain rates, with or without silicate melts present, have been obtained by synchrotron-based high resolution hard x-ray microtomography imaging. A series of two-dimensional images is collected as the sample is rotated, and tomographic reconstruction yields the full 3D representation of the sample. Virtual slices through the 3D object in any arbitrary direction can be visualized, or the full data set can be visualized by volume rendering. More importantly, automated image filtering and segmentation allows the extraction of boundaries between the various phases. The volumes, shapes, and distributions of each phase, and the connectivity between them, can then be quantitatively analysed, and these results can be compared to models. We are currently using these new visual data sets to augment our 2D data. These results will be included in our current complex system analytical approach. This integrated method can elucidate and quantify the growth of metallic blebs in regions where

  3. Using Animations to Study the Formation of Gas Giant Planets via the Core Accretion Model

    NASA Astrophysics Data System (ADS)

    Hubickyj, O.; Lissauer, J. J.; Bodemheimer, P.; D'Angelo, G.

    2009-12-01

    With the ever increasing number of extrasolar planets being discovered (373 as of 8/13/09 quoted by The Extrasolar Planets Encyclopedia: exoplanet.eu) and the recognition of their diverse nature it is very important to understand the formation processes of the gas giant planets. The core accretion model has successfully explained many features of the formation of gas giant planets in the Solar System (Pollack et al. 1996, Hubickyj et al. 2005) and it has provided an explanation of the characteristics of exoplanets. One example is the observed frequency of planets around stars with a high metal content (e.g. Kornet et al. 2005, Valenti and Fischer 2008). Improvements to the input physics to our computer model have resulted in the very important result that gas giant planets (i.e. Jupiter) can form via the core accretion model on a timescale that agrees with observations of protoplanetary disks (Hillenbrand 2008). These observations set the formation time to about 3 to 5 million years. We will present our recent results (Hubickyj et al. 2005,Lissauer et al. 2009) in the form of animations. Our models generate a substantial amount of data. Having published plots of the important values of our study: mass and radius growth, luminosity, and accretion rates as a function of time, we are now ready to study the second tier of information from our recorded data. We examine the energy profiles within the envelope as it evolves, the location and changes of the convective layers, and the location of the mass deposited by the planetesimals in the envelope as the protoplanet evolves. We find that by animating the data we can study the internal processes in the growing envelope of the protoplanet. The qualitative nature of the processes in the protoplanetary envelope is easily discerned in these animations and a deeper insight to the core accretion processes in the gas giant planets is gained. Hillenbrand, L. A. 2008. Disk-dispersal and planet-formation timescales. Physica

  4. Numerical Investigation of Josephson Junction Structures

    SciTech Connect

    Hristov, I.; Dimova, S.; Boyadjiev, T.

    2009-10-29

    Multilayered long Josephson Junction Structures form an interesting physical system where both nonlinearity and interaction between subsystems play an important role. Such systems allow to study physical effects that do not occur in single Josephson junction.The Sakai-Bodin-Pedersen model--a system of perturbed sine-Gordon equations--is used to study the dynamic states of stacks of inductively coupled long Josephson Junctions (LJJs). The corresponding static problem is numerically investigated as well. In order to study the stability of possible static solutions a Sturm-Liouville problem is generated and solved.The transitions from static to dynamic state and the scenario of these transitions are analyzed depending on the model parameters. Different physical characteristics--current-voltage characteristics, individual instant voltages and internal magnetic fields, are calculated and interpreted.

  5. Victory Junction Gang Camp

    ERIC Educational Resources Information Center

    Shell, Ryan

    2007-01-01

    This article describes the Victory Junction Gang Camp, a not-for-profit, NASCAR-themed camp for children with chronic medical conditions that serves 24 different disease groups. The mission of the camp is to give children life-changing camping experiences that are exciting, fun, and empowering in a safe and medically sound environment. While doing…

  6. Multi-Model Comparison of Southern Ocean and Sea Ice Trends in CORE-II and CMIP5 Model

    NASA Astrophysics Data System (ADS)

    Downes, S. M.; Griffies, S. M.; Farneti, R.; Marsland, S. J.; Uotila, P.; Hogg, A.

    2014-12-01

    The Southern Ocean circulation, influenced by buoyancy, momentum and sea ice processes, varies on seasonal to centennial timescales. Incomplete spatio-temporal observations of the full ocean water column, overlying ocean-ice-atmosphere fluxes, and adjacent polar dynamics challenge our ability to model the Southern Ocean. However, several studies have indicated this region is particularly important in the evolving climate, including the anthropogenic influences. Models coherently capture large-scale Southern Ocean patterns, however it is the magnitude and location of these patterns that varies widely. In particular, difficulties with modelling of small scale processes remains an outstanding issue. Here we review the representation of the Southern Ocean circulation, including fluxes at the ocean-ice and ocean-atmosphere interfaces, in numerous coupled climate models from two international modeling efforts, namely the Coordinated Ocean-ice Reference Experiments Phase II (CORE-II) and Coupled Model Intercomparison Project Phase 5 (CMIP5). We focus on the relationships between large scale and mesoscale overturning circulation, formation of key water masses and the associated deep winter mixed layers, buoyancy and wind fluxes, and sea ice. We identify major uncertainties in the modelling of past, present and projected large-scale ocean processes, and provide insights for future modelling directions.

  7. A Kinetic Vlasov Model for Plasma Simulation Using Discontinuous Galerkin Method on Many-Core Architectures

    NASA Astrophysics Data System (ADS)

    Reddell, Noah

    Advances are reported in the three pillars of computational science achieving a new capability for understanding dynamic plasma phenomena outside of local thermodynamic equilibrium. A continuum kinetic model for plasma based on the Vlasov-Maxwell system for multiple particle species is developed. Consideration is added for boundary conditions in a truncated velocity domain and supporting wall interactions. A scheme to scale the velocity domain for multiple particle species with different temperatures and particle mass while sharing one computational mesh is described. A method for assessing the degree to which the kinetic solution differs from a Maxwell-Boltzmann distribution is introduced and tested on a thoroughly studied test case. The discontinuous Galerkin numerical method is extended for efficient solution of hyperbolic conservation laws in five or more particle phase-space dimensions using tensor-product hypercube elements with arbitrary polynomial order. A scheme for velocity moment integration is integrated as required for coupling between the plasma species and electromagnetic waves. A new high performance simulation code WARPM is developed to efficiently implement the model and numerical method on emerging many-core supercomputing architectures. WARPM uses the OpenCL programming model for computational kernels and task parallelism to overlap computation with communication. WARPM single-node performance and parallel scaling efficiency are analyzed with bottlenecks identified guiding future directions for the implementation. The plasma modeling capability is validated against physical problems with analytic solutions and well established benchmark problems.

  8. A new model for the computation of the formation factor of core rocks

    NASA Astrophysics Data System (ADS)

    Beltrán, A.; Chávez, O.; Zaldivar, J.; Godínez, F. A.; García, A.; Zenit, R.

    2017-04-01

    Among all the rock parameters measured by modern well logging tools, the formation factor is essential because it can be used to calculate the volume of oil- and/or gas in wellsite. A new mathematical model to calculate the formation factor is analytically derived from first principles. Given the electrical properties of both rock and brine (resistivities) and tortuosity (a key parameter of the model), it is possible to calculate the dependence of the formation factor with porosity with good accuracy. When the cementation exponent ceases to remain constant with porosity; the new model is capable of capturing both: the non-linear behavior (for small porosity values) and the typical linear one in log-log plots for the formation factor vs. porosity. Comparisons with experimental data from four different conventional core rock lithologies: sands, sandstone, limestone and volcanic are shown, for all of them a good agreement is observed. This new model is robust, simple and of easy implementation for practical applications. In some cases, it could substitute Archie's law replacing its empirical nature.

  9. On the Requirements for Realistic Modeling of Neutrino Transport in Simulations of Core-collapse Supernovae

    SciTech Connect

    Lentz, Eric J; Mezzacappa, Anthony; Messer, Bronson; Liebendoerfer, Matthias; Hix, William Raphael; Bruenn, S. W.

    2012-01-01

    We have conducted a series of numerical experiments with the spherically-symmetric, general-relativistic neutrino radiation hydrodynamics code Agile-BOLTZTRAN to examine the effects of several approximations used in multidimensional core-collapse supernova simulations. Our code permits us to examine the effects of these approximations quantitatively by removing, or substituting for, the pieces of supernova physics of interest. These approximations include: (1) using Newtonian versus general-relativistic gravity, hydrodynamics, and transport; (2) using older weak interactions, including the omission of non-isoenergetic neutrino scattering, versus up-to-date weak interactions; and (3) omitting the velocity-dependent terms, or observer corrections, from the neutrino Boltzmann kinetic equation. We demonstrate that each of these changes has non-negligible effects on the outcomes of our simulations. Finally, we discuss the impact these results have for current, and future, multidimensional models.

  10. Exploration of optimal many-core models for efficient image segmentation.

    PubMed

    Kim, Yongmin; Kang, Myeongsu; Kim, Jong-Myon

    2013-05-01

    Image segmentation plays a crucial role in numerous biomedical imaging applications, assisting clinicians or health care professionals with diagnosis of various diseases using scientific data. However, its high computational complexities require substantial amount of time and have limited their applicability. Research has thus focused on parallel processing models that support biomedical image segmentation. In this paper, we present analytical results of the design space exploration of many-core processors for efficient fuzzy c-means (FCM) clustering, which is widely used in many medical image segmentations. We quantitatively evaluate the impact of varying a number of processing elements (PEs) and an amount of local memory for a fixed image size on system performance and efficiency using architectural and workload simulations. Experimental results indicate that PEs=4,096 provides the most efficient operation for the FCM algorithm with four clusters, while PEs=1,024 and PEs=4,096 yield the highest area efficiency and energy efficiency, respectively, for three clusters.

  11. Ab Initio No-Core Shell Model Calculations Using Realistic Two- and Three-Body Interactions

    SciTech Connect

    Navratil, P; Ormand, W E; Forssen, C; Caurier, E

    2004-11-30

    There has been significant progress in the ab initio approaches to the structure of light nuclei. One such method is the ab initio no-core shell model (NCSM). Starting from realistic two- and three-nucleon interactions this method can predict low-lying levels in p-shell nuclei. In this contribution, we present a brief overview of the NCSM with examples of recent applications. We highlight our study of the parity inversion in {sup 11}Be, for which calculations were performed in basis spaces up to 9{Dirac_h}{Omega} (dimensions reaching 7 x 10{sup 8}). We also present our latest results for the p-shell nuclei using the Tucson-Melbourne TM three-nucleon interaction with several proposed parameter sets.

  12. Infrared length scale and extrapolations for the no-core shell model

    DOE PAGES

    Wendt, K. A.; Forssén, C.; Papenbrock, T.; ...

    2015-06-03

    In this paper, we precisely determine the infrared (IR) length scale of the no-core shell model (NCSM). In the NCSM, the A-body Hilbert space is truncated by the total energy, and the IR length can be determined by equating the intrinsic kinetic energy of A nucleons in the NCSM space to that of A nucleons in a 3(A-1)-dimensional hyper-radial well with a Dirichlet boundary condition for the hyper radius. We demonstrate that this procedure indeed yields a very precise IR length by performing large-scale NCSM calculations for 6Li. We apply our result and perform accurate IR extrapolations for bound statesmore » of 4He, 6He, 6Li, and 7Li. Finally, we also attempt to extrapolate NCSM results for 10B and 16O with bare interactions from chiral effective field theory over tens of MeV.« less

  13. Recent Advances in the Theoretical Modeling of Pulsating Low-mass He-core White Dwarfs

    NASA Astrophysics Data System (ADS)

    Córsico, A. H.; Althaus, L. G.; Calcaferro, L. M.; Serenelli, A. M.; Kepler, S. O.; Jeffery, C. S.

    2017-03-01

    Many extremely low-mass (ELM) white-dwarf (WD) stars are currently being found in the field of the Milky Way. Some of these stars exhibit long-period nonradial g-mode pulsations, and constitute the class of ELMV pulsating WDs. In addition, several low-mass pre-WDs, which could be precursors of ELM WDs, have been observed to show short-period photometric variations likely due to nonradial p modes and radial modes. They could constitute a new class of pulsating low-mass pre-WD stars, the pre-ELMV stars. Here, we present the recent results of a thorough theoretical study of the nonadiabatic pulsation properties of low-mass He-core WDs and pre-WDs on the basis of fully evolutionary models representative of these stars.

  14. Sp(3, R) decomposition of the SU(3) no-core shell model basis

    NASA Astrophysics Data System (ADS)

    Luo, Fengqiao; Caprio, Mark A.; Dytrych, Tomas

    2014-03-01

    Numerical evidence shows an important role of the symplectic Sp(3, R) symmetry in the ab initio no-core shell model results for light nuclei. Therefore, the construction of symplectic states from SU(3) states is necessary, as a prerequisite and crucial step of understanding the symplectic symmetry for those nuclei. This presentation will provide an introduction to our numerical calculation that decomposes the basis states of Sp(3, R) irreducible representations in terms of SU(3) nuclear basis. We use the null space of the Sp(3, R) generator B (02) to find the extremal states, and then ladder them with the generator A (20) to build the entire irreps. Supported by the Research Corporation for Science Advancement under a Cottrell Scholar Award, by the US DOE under grants DE-FG02-95ER-40934 and DE-SC0005248, and by the US NSF under grant OCI-0904874.

  15. Intercellular junctions in myriapods.

    PubMed

    Dallai, R; Bigliardi, E; Lane, N J

    1990-01-01

    Tissue from the intestinal tract of myriapods, including millipedes, centipedes and pauropods were examined in tracer-impregnated sections and freeze-fracture replicas. The foregut and hindgut of all three classes exhibit pleated septate junctions; these display undulating intercellular ribbons in thin sections. In replicas they show discrete intramembranous particle (IMP) arrays aligned in rows in parallel; with one another. The tissues of the hindgut also possess scalariform junctions, characterized by cross-striated intercellular clefts in sections and IMP-enriched membranes in replicas. Gap junctions occur in all groups, but they are atypical in replicas in that their component IMPs do not always fracture onto the E face, as is characteristic of other arthropods; some IMPs cleave to the P face and others to the E face. The midgut of these organisms exhibits smooth septate junctions with conventional straight septal ribbons and occasional interseptal columns. However the intramembranous appearance in replicas is variable, particularly in centipedes, in that the rows of IMPs in chemically-unfixed propanecryofixed tissues, are prominent and adhere preferentially to the E face, with complementary P face grooves, while in fixed tissues the IMPs are much less distinct and fracture to either P face or E face. They tend not to protrude far beyond the mid-plane of the membrane bilayer and lie in rows which commonly take on the form of a network. Individual rows of the network sometimes curve to run beside a second row, over a short distance, before bending away into another part of the network. The aligned particle rows, which are much more prominent in millipedes, where they frequently lie in close parallel appositions, do not fuse into ridges as often occurs in insect tissues. The myriapod junctions, therefore, are of the same general kind as are found in the gut tract of other arthropod groups, but differ with respect to the subtleties of their intramembranous

  16. A STRONGLY COUPLED REACTOR CORE ISOLATION COOLING SYSTEM MODEL FOR EXTENDED STATION BLACK-OUT ANALYSES

    SciTech Connect

    Zhao, Haihua; Zhang, Hongbin; Zou, Ling; Martineau, Richard Charles

    2015-03-01

    The reactor core isolation cooling (RCIC) system in a boiling water reactor (BWR) provides makeup cooling water to the reactor pressure vessel (RPV) when the main steam lines are isolated and the normal supply of water to the reactor vessel is lost. The RCIC system operates independently of AC power, service air, or external cooling water systems. The only required external energy source is from the battery to maintain the logic circuits to control the opening and/or closure of valves in the RCIC systems in order to control the RPV water level by shutting down the RCIC pump to avoid overfilling the RPV and flooding the steam line to the RCIC turbine. It is generally considered in almost all the existing station black-out accidents (SBO) analyses that loss of the DC power would result in overfilling the steam line and allowing liquid water to flow into the RCIC turbine, where it is assumed that the turbine would then be disabled. This behavior, however, was not observed in the Fukushima Daiichi accidents, where the Unit 2 RCIC functioned without DC power for nearly three days. Therefore, more detailed mechanistic models for RCIC system components are needed to understand the extended SBO for BWRs. As part of the effort to develop the next generation reactor system safety analysis code RELAP-7, we have developed a strongly coupled RCIC system model, which consists of a turbine model, a pump model, a check valve model, a wet well model, and their coupling models. Unlike the traditional SBO simulations where mass flow rates are typically given in the input file through time dependent functions, the real mass flow rates through the turbine and the pump loops in our model are dynamically calculated according to conservation laws and turbine/pump operation curves. A simplified SBO demonstration RELAP-7 model with this RCIC model has been successfully developed. The demonstration model includes the major components for the primary system of a BWR, as well as the safety

  17. Percentage of Positive Biopsy Cores: A Better Risk Stratification Model for Prostate Cancer?

    SciTech Connect

    Huang Jiayi; Vicini, Frank A.; Williams, Scott G.; Ye Hong; McGrath, Samuel; Ghilezan, Mihai; Krauss, Daniel; Martinez, Alvaro A.; Kestin, Larry L.

    2012-07-15

    Purpose: To assess the prognostic value of the percentage of positive biopsy cores (PPC) and perineural invasion in predicting the clinical outcomes after radiotherapy (RT) for prostate cancer and to explore the possibilities to improve on existing risk-stratification models. Methods and Materials: Between 1993 and 2004, 1,056 patients with clinical Stage T1c-T3N0M0 prostate cancer, who had four or more biopsy cores sampled and complete biopsy core data available, were treated with external beam RT, with or without a high-dose-rate brachytherapy boost at William Beaumont Hospital. The median follow-up was 7.6 years. Multivariate Cox regression analysis was performed with PPC, Gleason score, pretreatment prostate-specific antigen, T stage, PNI, radiation dose, androgen deprivation, age, prostate-specific antigen frequency, and follow-up duration. A new risk stratification (PPC classification) was empirically devised to incorporate PPC and replace the T stage. Results: On multivariate Cox regression analysis, the PPC was an independent predictor of distant metastasis, cause-specific survival, and overall survival (all p < .05). A PPC >50% was associated with significantly greater distant metastasis (hazard ratio, 4.01; 95% confidence interval, 1.86-8.61), and its independent predictive value remained significant with or without androgen deprivation therapy (all p < .05). In contrast, PNI and T stage were only predictive for locoregional recurrence. Combining the PPC ({<=}50% vs. >50%) with National Comprehensive Cancer Network risk stratification demonstrated added prognostic value of distant metastasis for the intermediate-risk (hazard ratio, 5.44; 95% confidence interval, 1.78-16.6) and high-risk (hazard ratio, 4.39; 95% confidence interval, 1.70-11.3) groups, regardless of the use of androgen deprivation and high-dose RT (all p < .05). The proposed PPC classification appears to provide improved stratification of the clinical outcomes relative to the National

  18. Necrotizing Enterocolitis in a mouse model leads to widespread renal inflammation, acute kidney injury and disruption of renal tight junction proteins

    PubMed Central

    Garg, Parvesh M; Tatum, Rodney; Ravisankar, Srikanth; Shekhawat, Prem S; Chen, Yan-Hua

    2015-01-01

    BACKGROUND Necrotizing enterocolitis (NEC) is a devastating condition affecting premature infants and leads to high mortality and chronic morbidity. Severe form of NEC is associated with acute renal failure, fluid imbalance, hyponatremia and acidosis. We investigated the effect of NEC on tight junction (TJ) proteins in kidneys using a NEC mouse model to investigate the basis for the observed renal dysfunction. METHODS NEC was induced in C57BL/6 mice by formula feeding and subjecting them to periods of hypoxia and cold stress. NEC was confirmed by gross and histological examination. We studied various markers of inflammation in kidneys and investigated changes in expression of several TJ proteins and AQP2 using immunofluorecent staining and Western blotting. RESULTS We found markedly increased expression of NFκB, TGFβ and ERK1/2 along with claudin-1, -2, -3, -4, -8 and AQP-2 in NEC kidneys. The membrane localization of claudin-2 was altered in the NEC kidneys and its immunostaining signal at TJ was disrupted. CONCLUSION NEC led to a severe inflammatory response not only in the gut but also the kidneys. NEC increased expression of several TJ proteins and caused disruption of claudin-2 in renal tubules. These observed changes can help explain some of the clinical findings observed in NEC. PMID:26270572

  19. Parameter Sensitivity Study of the Unreacted-Core Shrinking Model: A Computer Activity for Chemical Reaction Engineering Courses

    ERIC Educational Resources Information Center

    Tudela, Ignacio; Bonete, Pedro; Fullana, Andres; Conesa, Juan Antonio

    2011-01-01

    The unreacted-core shrinking (UCS) model is employed to characterize fluid-particle reactions that are important in industry and research. An approach to understand the UCS model by numerical methods is presented, which helps the visualization of the influence of the variables that control the overall heterogeneous process. Use of this approach in…

  20. No-core configuration-interaction model for the isospin- and angular-momentum-projected states

    NASA Astrophysics Data System (ADS)

    Satuła, W.; Båczyk, P.; Dobaczewski, J.; Konieczka, M.

    2016-08-01

    Background: Single-reference density functional theory is very successful in reproducing bulk nuclear properties like binding energies, radii, or quadrupole moments throughout the entire periodic table. Its extension to the multireference level allows for restoring symmetries and, in turn, for calculating transition rates. Purpose: We propose a new variant of the no-core-configuration-interaction (NCCI) model treating properly isospin and rotational symmetries. The model is applicable to any nucleus irrespective of its mass and neutron- and proton-number parity. It properly includes polarization effects caused by an interplay between the long- and short-range forces acting in the atomic nucleus. Methods: The method is based on solving the Hill-Wheeler-Griffin equation within a model space built of linearly dependent states having good angular momentum and properly treated isobaric spin. The states are generated by means of the isospin and angular-momentum projection applied to a set of low-lying (multi)particle-(multi)hole deformed Slater determinants calculated using the self-consistent Skyrme-Hartree-Fock approach. Results: The theory is applied to calculate energy spectra in N ≈Z nuclei that are relevant from the point of view of a study of superallowed Fermi β decays. In particular, a new set of the isospin-symmetry-breaking corrections to these decays is given. Conclusions: It is demonstrated that the NCCI model is capable of capturing main features of low-lying energy spectra in light and medium-mass nuclei using relatively small model space and without any local readjustment of its low-energy coupling constants. Its flexibility and a range of applicability makes it an interesting alternative to the conventional nuclear shell model.