ERIC Educational Resources Information Center
Perry, Rebecca R.; Finkelstein, Neal D.; Seago, Nanette; Heredia, Alberto; Sobolew-Shubin, Sandy; Carroll, Cathy
2015-01-01
Math in Common® (MiC) is a five-year initiative that supports a formal network of 10 California school districts as they implement the Common Core State Standards in Mathematics (CCSS-M) across grades K-8. In spring 2015, WestEd administered surveys to understand the perspectives on Common Core State Standards-Mathematics (CCSS-M) implementation…
Effects of Enhanced Anchored Instruction on Skills Aligned to Common Core Math Standards
ERIC Educational Resources Information Center
Bottge, Brian A.; Cho, Sun-Joo
2013-01-01
This study compared how students with learning difficulties in math (MLD) who were randomly assigned to two instructional conditions answered items on problem solving tests aligned to the Common Core State Standards Initiative for Mathematics. Posttest scores showed improvement in the math performance of students receiving Enhanced Anchored…
ERIC Educational Resources Information Center
Rawding, Denise M.
2016-01-01
The Common Core Math Standards were written to address concerns that the math curriculum in the United States was not focused and coherent. Based on national and international assessments, the United States math scores have remained stagnant, while other countries have seen significant growth in their scores. This study, designed as an action…
ERIC Educational Resources Information Center
Stuart, Jennifer Lynn
2017-01-01
The purpose of this correlation study was to identify a possible relationship between elementary teacher background in mathematics as measured by completed college math credit hours, district-provided professional development hours of training in Common Core math standards, and years of teaching experience, and teacher efficacy in math as measured…
Common Core Math in the K-8 Classroom: Results from a National Teacher Survey
ERIC Educational Resources Information Center
Bay-Williams, Jennifer
2016-01-01
Successful implementation of the Common Core State Standards for Mathematics (CCSS-M) should result in noticeable differences in primary and middle school math classrooms across the United States. "Common Core Math in the K-8 Classroom: Results from a National Teacher Survey" takes a close look at how educators are implementing the…
Common Core Standards for High School Mathematics: A Quick-Start Guide
ERIC Educational Resources Information Center
Dempsey, Kathleen; Schwols, Armitra
2012-01-01
Shifting your high school's math program to new Common Core standards is much easier when teachers and leaders have this handy guide. Getting a copy for every staff member involved in the process ensures everyone knows: (1) How the six conceptual categories throughout the math standards are connected and reinforced; (2) How the modeling standards…
ERIC Educational Resources Information Center
Banks, Amber; LaFors, Jeannette
2015-01-01
Schools around California are implementing the new Common Core State Standards. In math specifically, where significant disparities in proficiency exist for African American, Latino, and low-income students as compared to their white, Asian and higher-income peers, these new standards provide an opportunity to close achievement and opportunity…
Why the Common Core Changes Math Instruction
ERIC Educational Resources Information Center
Faulkner, Valerie N.
2013-01-01
The Common Core math standards promote several important differences in how math concepts are taught and should be talked about. These changes will make it easier for younger students to comprehend and adapt to more complex concepts in the later grades. This guide should help elementary teachers make changes and adaptations that are in line the…
The Common Core Math Standards
ERIC Educational Resources Information Center
Wurman, Ze'ev; Wilson, W. Stephen
2012-01-01
More than 40 states have now signed onto the Common Core standards in English language arts and math, which have been both celebrated as a tremendous advance and criticized as misguided and for bearing the heavy thumbprint of the federal government. This article presents an interview with Ze'ev Wurman and W. Stephen Wilson. Wurman, who was a U.S.…
ERIC Educational Resources Information Center
Ippolito, Jacy; Dobbs, Christina L.; Charner-Laird, Megin
2017-01-01
Secondary teachers and leaders, many of whom are implementing the Common Core State Standards, are seeking guidance about how to implement disciplinary literacy practices. Of the four core subjects taught in secondary schools--English, history, math, and science--the authors have found through their work with secondary teachers that math teachers…
ERIC Educational Resources Information Center
Walters, Kirk; Torres, Aubrey Scheopner; Smith, Toni; Ford, Jennifer
2014-01-01
This study describes key challenges and necessary supports related to implementation of the Common Core State Standards for Mathematics (CCSSM) identified by rural math educators in the Northeast. The research team interviewed state and district math coordinators and surveyed teachers in Maine, New Hampshire, New York and Vermont, to assess their…
ERIC Educational Resources Information Center
Kirk, Walters; Smith, Toni M.; Ford, Jennifer; Scheopner Torres, Aubrey
2014-01-01
This study describes key challenges and necessary supports related to implementation of the Common Core State Standards for Mathematics (CCSSM) identified by rural math educators in the Northeast. The research team interviewed state and district math coordinators and surveyed teachers in Maine, New Hampshire, New York and Vermont, to assess their…
Preschool Literacy and the Common Core: A Professional Development Model
ERIC Educational Resources Information Center
Wake, Donna G.; Benson, Tammy Rachelle
2016-01-01
Many states have adopted the Common Core Standards for literacy and math and have begun enacting these standards in school curriculum. In states where these standards have been adopted, professional educators working in K-12 contexts have been working to create transition plans from existing state-based standards to the Common Core standards. A…
After Common Core, States Set Rigorous Standards
ERIC Educational Resources Information Center
Peterson, Paul E.; Barrows, Samuel; Gift, Thomas
2016-01-01
In spite of Tea Party criticism, union skepticism, and anti-testing outcries, the campaign to implement Common Core State Standards (otherwise known as Common Core) has achieved phenomenal success in statehouses across the country. Since 2011, 45 states have raised their standards for student proficiency in reading and math, with the greatest…
Math and ELA Meet at the Common Core
ERIC Educational Resources Information Center
Gardner, Nancy S.; Smith, Nicole
2016-01-01
Math and English language arts seem such disparate content areas but the Common Core State Standards actually draw out their similarities in the teaching and learning process. Both require students to learn grit and perseverance; both ask students to use reasons or evidence to support arguments; both require precision; both require structures to…
ERIC Educational Resources Information Center
Flaherty, John, Jr.; Sobolew-Shubin, Alexandria; Heredia, Alberto; Chen-Gaddini, Min; Klarin, Becca; Finkelstein, Neal D.
2014-01-01
Math in Common® (MiC) is a five-year initiative that supports a formal network of 10 California school districts as they implement the Common Core State Standards in mathematics (CCSS-M) across grades K-8. As the MiC initiative moves into its second year, one of the central activities that each of the districts is undergoing to support CCSS…
ERIC Educational Resources Information Center
Honeycutt, Robin A.
2013-01-01
Math instruction has undergone a tremendous amount of change since the late 1950s. "New math" of the 1960s, the standards movement, back to the basics in the early 90s, and now the common core standards have all had an impact on how mathematics is taught. This study examined the Math Expressions program, a conceptually based program…
The Common Core State Standards for Mathematics
ERIC Educational Resources Information Center
Akkus, Murat
2016-01-01
The Common Core State Standards for Mathematics (CCSSM) was published in 2010 and includes a complete collection of standards that are published and reviewed as a "common core" in which math skills have been extensively adopted. The recommendations provided have been entirely or partially adapted by more than 47 states of the US.…
ERIC Educational Resources Information Center
Davis-Wiley, Patricia; Miller, Roy V.
2013-01-01
Among the reported proven positive results of early world Language (WL) study are improved cognitive abilities and "higher achievement test scores in reading and math" (Stewart: 11), which are expected student performance outcomes for the Common Core Standards. The future viability of Foreign Language in Elementary Schools (FLES)…
Five Keys for Teaching Mental Math
ERIC Educational Resources Information Center
Olsen, James R.
2015-01-01
After studying the Common Core State Standards for Mathematics (CCSSM) and brain-based learning research, James Olsen believes mental math instruction in secondary school mathematics (grades 7-12) and in teacher education programs needs increased attention. The purpose of this article is to share some keys for teaching mental math. Olsen also…
ERIC Educational Resources Information Center
Research For Action, 2012
2012-01-01
Funded by The Bill & Melinda Gates Foundation, the Literacy Design Collaborative (LDC) and Math Design Collaborative (MDC) offer a set of instructional and formative assessment tools in literacy and math, which were developed to help educators better prepare all students to meet the Common Core State Standards (CCSS) and succeed beyond high…
Almost There? The Road to Common Standards Reaches a Milestone
ERIC Educational Resources Information Center
Parker-Burgard, Don
2009-01-01
The Common Core State Standards Initiative is a collaborative effort between the Council of Chief State School Officers (CCSSO) and the National Governors Association (NGA) that is developing core K12 standards in English-language arts and math. The current patchwork of state standards makes it difficult, if not impossible, to evaluate student…
Something in Common: The Common Core Standards and the Next Chapter in American Education
ERIC Educational Resources Information Center
Rothman, Robert
2011-01-01
"Something in Common" is the first book to provide a detailed look at the groundbreaking Common Core State Standards and their potential to transform American education. This book tells the story of the unfolding political drama around the making of the Common Core State Standards for math and English language arts, which were adopted by…
ERIC Educational Resources Information Center
Research For Action, 2014
2014-01-01
Funded by The Bill & Melinda Gates Foundation, the Literacy Design Collaborative (LDC) and Math Design Collaborative (MDC) offer a set of instructional and formative assessment tools in literacy and math, which were developed to help educators better prepare all students to meet the Common Core State Standards (CCSS) and succeed beyond high…
Problem Solvers: Teacher Leader Teams with Content Specialist to Strengthen Math Instruction
ERIC Educational Resources Information Center
Zrike, Sara; Connolly, Christine
2015-01-01
In early November 2013, the authors started talking about visiting the Hurley School, a dual-language school in Boston, Massachusetts. The Hurley School had spent considerable time transitioning to the Common Core State Standards on literacy, but little time addressing the shifts in math. They worried that math classes were no longer rigorous…
Impact of Enhanced Anchored Instruction in Inclusive Math Classrooms
ERIC Educational Resources Information Center
Bottge, Brian A.; Toland, Michael D.; Gassaway, Linda; Butler, Mark; Choo, Sam; Griffen, Ann Katherine; Ma, Xin
2015-01-01
The Common Core State Standards for Mathematics will place more pressure on special education and math teachers to raise the skill levels of all students, especially those with disabilities in math (MD). The purpose of this study was to assess the effects of enhanced anchored instruction (EAI) on students with and without MD in co-taught general…
ERIC Educational Resources Information Center
Iowa Department of Education, 2015
2015-01-01
One central component of a great school system is a clear set of expectations, or standards, that educators help all students reach. In Iowa, that effort is known as the Iowa Core. The Iowa Core represents the statewide academic standards, which describe what students should know and be able to do in math, science, English language arts, and…
Math Placement: The Importance of Getting It Right for All Students. Research Brief
ERIC Educational Resources Information Center
Fong, Anthony; Finkelstein, Neal
2014-01-01
Given the Common Core State Standards for Mathematics, California's history of math acceleration in the middle grades, and the concern for correct math course placement for all students, this brief examines patterns from the past to shed light on considerations for the future. The brief, written by WestEd's Tony Fong and Neal Finkelstein, presents…
Criterion Validity Evidence for the easyCBM© CCSS Math Measures: Grades 6-8. Technical Report #1402
ERIC Educational Resources Information Center
Anderson, Daniel; Rowley, Brock; Alonzo, Julie; Tindal, Gerald
2012-01-01
The easyCBM© CCSS Math tests were developed to help inform teachers' instructional decisions by providing relevant information on students' mathematical skills, relative to the Common Core State Standards (CCSS). This technical report describes a study to explore the validity of the easyCBM© CCSS Math tests by evaluating the relation between…
ERIC Educational Resources Information Center
Jayanthi, Madhavi; Gersten, Russell; Taylor, Mary Jo; Smolkowski, Keith; Dimino, Joseph
2017-01-01
Contemporary state math standards emphasize that students must demonstrate an understanding of the mathematical ideas underlying the computations that have typically been the core of the elementary school math curriculum. The standards have put an increased emphasis on the study of fractions in upper elementary grades, which are the years during…
It All Adds Up: Learning Early Math through Play and Games
ERIC Educational Resources Information Center
Ramani, Geetha B.; Eason, Sarah H.
2015-01-01
Playing and learning mathematics do not have to be mutually exclusive activities, especially in kindergarten. Play and games can give young children opportunities to learn and develop foundational math skills that are aligned with Common Core standards for mathematics through age-appropriate, fun, and engaging activities.
Examining the Common Core State Standards in Agricultural Education
ERIC Educational Resources Information Center
McKim, Aaron J.; Lambert, Misty D.; Sorensen, Tyson J.; Velez, Jonathan J.
2015-01-01
The Common Core State Standards (CCSS) represent a shift in the American education system. Included in the CCSS are opportunities for agriculture teachers to integrate math and English language arts content into their curriculum. Using the theory of planned behavior, we sought to identify Oregon agriculture teachers' attitudes, familiarity with,…
Now What? Imperatives & Options for "Common Core" Implementation & Governance
ERIC Educational Resources Information Center
Finn, Chester E., Jr.; Petrilli, Michael J.
2010-01-01
Over the past year, the nation's governors and state school chiefs have achieved laudable consensus around a set of math and English standards, developed voluntarily and without federal involvement through the Common Core State Standards Initiative (CCSSI). Most states have signed on to them. More recently, the states have again teamed up--this…
The State of State Science Standards, 2005
ERIC Educational Resources Information Center
Gross, Paul R.
2005-01-01
Until now, the No Child Left Behind Act of 2001 (NCLB) has focused everyone's attention on reading and math--and on whether schools are making "adequate yearly progress" in those two core subjects. Although some states incorporate additional subjects into their own accountability systems, reading and math have dominated most discussions of state…
Common Core Preparation in Special Education Teacher Education Programs: Beginning the Conversation
ERIC Educational Resources Information Center
Murphy, Michelle R.; Marshall, Kathleen J.
2015-01-01
The Common Core State Standards (CCSS) were developed to encourage a common focus of instruction and evaluation in the areas of mathematics, reading/language arts, writing, speaking, and listening. As of 2011, all but five states have adopted CCSS for math and English Language Arts (ELA), with another adopting only the standards for ELA. With…
How Will the Common Core Initiative Impact the Testing Industry?
ERIC Educational Resources Information Center
Toch, Thomas; Tyre, Peg
2010-01-01
The National Governors Association and the Council of Chief State School Officers have sponsored the development of common K-12 education standards in math and English/language arts--a project known as the Common Core State Standards Initiative (CCSSI)--in an effort to improve college readiness for the nation's students and replace the patchwork…
A Case Study of Common Core Implementation in a Linked Learning Environment
ERIC Educational Resources Information Center
Biolchino, Erin Broun
2016-01-01
California is in the midst of significant educational reform initiatives, especially at the secondary level. The Common Core State Standards (CCSS) were adopted in 2010, and these new standards contain significant changes in the areas of math, English, and literacy across all subjects. Many districts are also implementing new initiatives to engage…
The Power of Probability: Poster/Teaching Guide for Grades 6-8. Expect the Unexpected with Math[R
ERIC Educational Resources Information Center
Actuarial Foundation, 2013
2013-01-01
"The Power of Probability" is a new math program aligned with the National Council of Teachers of Mathematics (NCTM) and Common Core State Standards, which gives students opportunities to practice their skills and knowledge of the mathematics of probability. Developed by The Actuarial Foundation, the program's lessons and worksheets motivate…
ERIC Educational Resources Information Center
Loveless, Tom
2016-01-01
The 2016 edition of the Brown Center Report (BCR) is number five in the third volume and the 15th issue overall. As is customary, this year's BCR contains three studies. Part one is on the Common Core State Standards (CCSS) and instruction in math and reading. National Assessment of Educational Progress (NAEP) data indicate that nonfiction is…
ERIC Educational Resources Information Center
Reumann-Moore, Rebecca; Lawrence, Nancy; Sanders, Felicia; Shaw, Kate; Christman, Jolley Bruce
2011-01-01
This document summarizes the findings from the initial round of research on the development and piloting of two types of instructional tools designed to support teachers' integration of the Common Core State Standards (CCSS) in literacy and math. In this interim report, Research for Action (RFA) presents key findings from the first half of the…
A Vertical Approach to Math Instruction
ERIC Educational Resources Information Center
Gojak, Linda
2012-01-01
In the current era of mathematics standards, whether they are Common Core State Standards or other state standards, effective vertical mathematics teams offer an opportunity for teachers to grow professionally through shared experiences, for leadership to grow among the faculty, and for the school to change its perspective on the teaching and…
Assessing Impacts of "Math in Focus," a "Singapore Math" Program for American Schools
ERIC Educational Resources Information Center
Jaciw, Andrew P.; Hegseth, Whitney; Toby, Megan
2015-01-01
The Common Core State Standards (CCSS) have been developed in response to the criticism that students in the U.S. are graduating from high school without being college and career ready and that they are falling behind their counterparts in other countries in key subject areas. In this work, the authors report the results of an efficacy study that…
Despite Common Core, States Still Lack Common Standards
ERIC Educational Resources Information Center
Peterson, Paul E.; Kaplan, Peter
2013-01-01
Only 35 percent of U.S. 8th graders were identified as proficient in math by the 2011 National Assessment of Educational Progress (NAEP). According to the most recent calculations available, the United States stands at the 32nd rank in math among nations in the industrialized world. In reading, the U.S. ranks 17th in the world (see "Are U.S.…
ERIC Educational Resources Information Center
Peretin, Janeen
2014-01-01
This study was designed to determine whether or not the use of focused professional development using a checklist based on the Common Core State Standards Mathematical Practices impacted students' math scores as measured by an assessment that requires the use of the practices. Additionally, the researcher sought to determine whether or not the use…
Plan, Save, Succeed! Financial Literacy Poster/Teaching Guide. Expect the Unexpected with Math[R
ERIC Educational Resources Information Center
Actuarial Foundation, 2013
2013-01-01
"Plan, Save, Succeed!" is a new program aligned with Jumpstart Coalition National Standards in K-12 Personal Finance Education, National Council of Teachers of Mathematics (NCTM) Standards, and Common Core Standards for Mathematical Practice. "Plan, Save, Succeed!" is designed to help students understand key financial literacy topics including…
ERIC Educational Resources Information Center
Anderson, Daniel; Alonzo, Julie; Tindal, Gerald
2012-01-01
The purpose of this technical report is to document the piloting and scaling of new easyCBM mathematics test items aligned with the Common Core State Standards (CCSS) and to describe the process used to revise and supplement the 2012 research version easyCBM CCSS math tests in Grades 6-8. For all operational 2012 research version test forms (10…
ERIC Educational Resources Information Center
Marion, Carol
2010-01-01
The purpose of this study was to obtain the attitudes and beliefs of mathematics teachers in the School District of Philadelphia regarding an eighth grade middle school mathematics core curriculum. This study explored the attitudes and beliefs of teachers in the reform of an eighth grade math "Core Curriculum, Math In Context" (School…
Standards-Based Technology Integration for Emergent Bilinguals
ERIC Educational Resources Information Center
Ronan, Briana
2018-01-01
Today's educators serve the United States public-school system at a time of considerable curricular, technological, and demographic change. In 2010, the Common Core State Standards in Math and English Language Arts significantly altered the curricular landscape of K-12 classrooms. On the heels of this reform came the adoptions of English…
Review of the Draft K-12 Common Core Standards
ERIC Educational Resources Information Center
Carmichael, Sheila Byrd; Wilson, W. Stephen; Martino, Gabrielle; Finn, Chester E., Jr.; Porter-Magee, Kathleen; Winkler, Amber M.
2010-01-01
American education approached a possible turning point when the National Governors Association (NGA) and Council of Chief State School Officers (CCSSO) released drafts of proposed new academic standards in English language arts and math for kindergarten through high school. Already the object of much interest--and some controversy--these are…
ERIC Educational Resources Information Center
Perry, Rebecca R.; Seago, Nanette M.; Burr, Elizabeth; Broek, Marie; Finkelstein, Neal D.
2015-01-01
Math in Common® (MiC) is a five-year initiative that supports a formal network of 10 California school districts as they implement the Common Core State Standards in Mathematics (CCSS-M) across grades K-8. This research brief explores how best to select or develop and use classroom observation systems in order to document instructional shifts and…
ERIC Educational Resources Information Center
Ujifusa, Andrew
2012-01-01
Results from new state tests in Kentucky--the first in the nation explicitly tied to the Common Core State Standards--show that the share of students scoring "proficient" or better in reading and math dropped by roughly a third or more in both elementary and middle school the first year the tests were given. Kentucky in 2010 was the…
Establishing and Sustaining an Effective Pre-Kindergarten Math Intervention at Scale
ERIC Educational Resources Information Center
Klein, Alice; Starkey, Prentice; DeFlorio, Lydia; Brown, E. Todd
2012-01-01
Educators are increasingly concerned about the low level of mathematics performance of U.S. students on the TIMSS and other international assessments of mathematics (National Mathematics Advisory Panel, 2008) as well as their insufficient preparation for mathematics standards, such as the Common Core State Standards. Students from low-income and…
Standardized Curriculum for Machine Tool Operation/Machine Shop.
ERIC Educational Resources Information Center
Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.
Standardized vocational education course titles and core contents for two courses in Mississippi are provided: machine tool operation/machine shop I and II. The first course contains the following units: (1) orientation; (2) shop safety; (3) shop math; (4) measuring tools and instruments; (5) hand and bench tools; (6) blueprint reading; (7)…
Fracking: Drilling into Math and Social Justice
ERIC Educational Resources Information Center
Hendrickson, Katie A.
2015-01-01
Mathematical modeling, a focus of the Common Core State Standards for School Mathematics (CCSSI 2010) and one of the Standards for Mathematical Practice, is generally considered to be the process of exploring a real-world situation and making sense of it using mathematics (Lesh and Zawojewski 2007). Teachers need to create opportunities for…
Good Questions: Great Ways to Differentiate Mathematics Instruction. Second Edition
ERIC Educational Resources Information Center
Small, Marian
2012-01-01
Expanded to include connections to Common Core State Standards, as well as National Council of Teachers of Mathematics (NCTM) standards, this critically acclaimed book will help every teacher and coach to meet the challenges of differentiating mathematics instruction in the K-8 classroom. In this bestseller, math education expert Marian Small…
Computer Science (CS) Education in Indian Schools: Situation Analysis Using Darmstadt Model
ERIC Educational Resources Information Center
Raman, Raghu; Venkatasubramanian, Smrithi; Achuthan, Krishnashree; Nedungadi, Prema
2015-01-01
Computer science (CS) and its enabling technologies are at the heart of this information age, yet its adoption as a core subject by senior secondary students in Indian schools is low and has not reached critical mass. Though there have been efforts to create core curriculum standards for subjects like Physics, Chemistry, Biology, and Math, CS…
LDC and MDC Theory of Action and the Landscape of Implementation. Brief One
ERIC Educational Resources Information Center
Duffy, Mark; Park, Elizabeth
2012-01-01
To support the implementation of the Common Core State Standards (CCSS), the Bill and Melinda Gates Foundation invested in the development and dissemination of two tools aimed at operationalizing classroom instruction based on the standards: (1) the Literacy Design Collaborative (LDC)'s Framework; and (2) the Math Design Collaborative (MDC)'s…
ERIC Educational Resources Information Center
Jimenez, Bree A.; Staples, Kelli
2015-01-01
This study investigated the effect of systematic early numeracy skill instruction on grade-aligned 4th and 5th grade Common Core math skill acquisition for three 4th and 5th grade students with a significant intellectual disability. Students were taught early numeracy skills (e.g., number identification, making sets to five items, simple addition)…
ERIC Educational Resources Information Center
Swinford, Ashleigh
2016-01-01
With rigor outlined in state and Common Core standards and the addition of constructed-response test items to most state tests, math constructed-response questions have become increasingly popular in today's classroom. Although constructed-response problems can present a challenge for students, they do offer a glimpse of students' learning through…
ERIC Educational Resources Information Center
Shumway, Jessica F.; Kyriopoulos, Joan
2014-01-01
Being able to find the correct answer to a math problem does not always indicate solid mathematics mastery. A student who knows how to apply the basic algorithms can correctly solve problems without understanding the relationships between numbers or why the algorithms work. The Common Core standards require that students actually understand…
Algebra? There's an App for That: Florida Goes Online with Math Support for Teachers and Students
ERIC Educational Resources Information Center
Schackow, Joy Bronston; Cugini, Stephanie
2016-01-01
The transition to Common Core State Standards for Mathematics has created a need for high-quality professional learning on content and pedagogy. This is especially true for algebra 1 teachers in Florida, where students must pass a standards-based exam as a requirement to earning a high school diploma. Time, distance, and cost constraints can get…
Strategies for Teaching Fractions: Using Error Analysis for Intervention and Assessment
ERIC Educational Resources Information Center
Spangler, David B.
2011-01-01
Many students struggle with fractions and must understand them before learning higher-level math. Veteran educator David B. Spangler provides research-based tools that are aligned with NCTM and Common Core State Standards. He outlines powerful diagnostic methods for analyzing student work and providing timely, specific, and meaningful…
Bringing Stories to Life: Integrating Literature and Math Manipulatives
ERIC Educational Resources Information Center
Larson, Lotta C.; Rumsey, Chepina
2018-01-01
This Teaching Tip describes the use of children's literature to help second-grade students meet Common Core State Standards for English Language Arts and for Mathematics. During a shared reading experience, students used manipulatives to represent plot and characters while demonstrating mathematical reasoning. The article offers instructional…
The Right Equation for Math Teaching
ERIC Educational Resources Information Center
Schifter, Deborah; Granofsky, Burt
2012-01-01
Full implementation of the Common Core State Standards for mathematics is still a few years away for many states. But district and school leaders are faced with many decisions now--from curriculum adoption to teacher professional development--that will influence the long-term effectiveness of this bold initiative. School leaders have a significant…
ERIC Educational Resources Information Center
Brozo, William G.
2013-01-01
Considering the nature of the complex prose that K-12 students today must learn from, in light of the Common Core State Standards, students need to read informational texts on a meaningful level-and with enthusiasm. Teachers, Brozo says, need to achieve three goals: motivate students to read informational texts, expand students' background…
ERIC Educational Resources Information Center
Murthy, Geetha J.
2016-01-01
This study examined the effect of the eight Common Core mathematical practices on math achievement and math attitudes for a sample of low-performing students in Grade 6. The treatment sample (n = 63) consisted of four classes of Grade 6 students who had scored below proficient levels in state math assessments. This study was conducted in a…
iLEAP Assessment Guide-Revised. Grade 6: English Language Arts, Math, Science, Social Studies
ERIC Educational Resources Information Center
Louisiana Department of Education, 2012
2012-01-01
"Louisiana Believes" embraces the principle that all children can achieve at high levels, as evidenced in Louisiana's recent adoption of the Common Core State Standards (CCSS). "Louisiana Believes" also promotes the idea that Louisiana's educators should be empowered to make decisions to support the success of their students.…
iLEAP Assessment Guide-Revised. Grade 3: English Language Arts, Math, Science, Social Studies
ERIC Educational Resources Information Center
Louisiana Department of Education, 2012
2012-01-01
"Louisiana Believes" embraces the principle that all children can achieve at high levels, as evidenced in Louisiana's recent adoption of the Common Core State Standards (CCSS). "Louisiana Believes" also promotes the idea that Louisiana's educators should be empowered to make decisions to support the success of their students.…
iLEAP Assessment Guide-Revised Grade 7: English Language Arts, Math, Science, Social Studies
ERIC Educational Resources Information Center
Louisiana Department of Education, 2012
2012-01-01
"Louisiana Believes" embraces the principle that all children can achieve at high levels, as evidenced in Louisiana's recent adoption of the Common Core State Standards (CCSS). "Louisiana Believes" also promotes the idea that Louisiana's educators should be empowered to make decisions to support the success of their students.…
iLEAP Assessment Guide-Revised, Grade 5: English Language Arts, Math, Science, Social Studies
ERIC Educational Resources Information Center
Louisiana Department of Education, 2012
2012-01-01
"Louisiana Believes" embraces the principle that all children can achieve at high levels, as evidenced in Louisiana's recent adoption of the Common Core State Standards (CCSS). "Louisiana Believes" also promotes the idea that Louisiana's educators should be empowered to make decisions to support the success of their students.…
ERIC Educational Resources Information Center
Sullivan, Dennis D.
2016-01-01
This study sought to identify the relationships among elementary teachers instructional practices in mathematics pre- and post-CCLS implementation in relation to technological and pedagogical content knowledge (TPACK), formative assessment, reflective practice, receptivity to change, academic optimism, and instructional leadership across age,…
Goldilocks Discourse--Math Scaffolding That's Just Right
ERIC Educational Resources Information Center
Dale, Rachel; Scherrer, Jimmy
2015-01-01
The Common Core has brought a sharp shift in what it means to be mathematically literate. Becoming mathematically literate is now as much a matter of acquiring mathematical practices as of acquiring any defined set of content standards. This more ambitious definition of literacy presents a challenge not only for students, but also for teachers who…
Dropping in on the Math of Plinko
ERIC Educational Resources Information Center
Naresh, Nirmala; Royce, Bridget
2013-01-01
The game of Plinko offers students an exciting real-world example of the applications of probability and data analysis. The Common Core State Standards for Mathematics (CCSSI 2010) and the Guidelines for Assessment in Statistics Education (GAISE) (Franklin et al. 2007) suggest that students in grades 6-8 be given ample opportunities to engage in…
ERIC Educational Resources Information Center
Irvin, P. Shawn; Park, Bitnara Jasmine; Alonzo, Julie; Tindal, Gerald
2012-01-01
Within a response to intervention system of teaching and learning, important instructional decision-making (e.g., implementation of targeted intervention) is regularly tied to the results of formative assessments administered to students throughout the academic year. The validity of these instructional decisions depends to an extent on the…
Questions Arise about Algebra 2 for All Students
ERIC Educational Resources Information Center
Robelen, Erik W.
2013-01-01
Should all students take Algebra 2? Florida seemed to say "no" this spring with the passage of a law striking it from graduation requirements. Texas said much the same in legislation Republican Gov. Rick Perry signed this week that also backs away from Algebra 2 for all. Those steps come as the Common Core State Standards for math set…
Impact of Math Snacks Games on Students' Conceptual Understanding
ERIC Educational Resources Information Center
Winburg, Karin; Chamberlain, Barbara; Valdez, Alfred; Trujillo, Karen; Stanford, Theodore B.
2016-01-01
This "Math Snacks" intervention measured 741 fifth grade students' gains in conceptual understanding of core math concepts after game-based learning activities. Teachers integrated four "Math Snacks" games and related activities into instruction on ratios, coordinate plane, number systems, fractions and decimals. Using a…
Using the Intel Math Kernel Library on Peregrine | High-Performance
Computing | NREL the Intel Math Kernel Library on Peregrine Using the Intel Math Kernel Library on Peregrine Learn how to use the Intel Math Kernel Library (MKL) with Peregrine system software. MKL architectures. Core math functions in MKL include BLAS, LAPACK, ScaLAPACK, sparse solvers, fast Fourier
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-05
... assistance needed and at what level (e.g., SEA, LEA, school or classroom)? a. Common Core State Standards or..., or students; k. ESEA flexibility and ELs; l. Science, technology, engineering, and math (STEM...; o. ELs at the secondary school level; p. ELs served under IDEA; q. Civil rights and ELs; or r. Other...
Partnering with Parents: Using Cap Kits to Support Learning Activities at Home
ERIC Educational Resources Information Center
Sanderson, Donna
2017-01-01
The idea of using plastic bottle caps to enhance children's literacy and math skills was introduced in a pre-kindergarten methods and field class at West Chester University. We wanted an essentially cost-free way to create fun, hands-on, educational games for young students to learn basic skills supporting the Common Core State Standards (adopted…
Assessing the Genetics Content in the Next Generation Science Standards.
Lontok, Katherine S; Zhang, Hubert; Dougherty, Michael J
2015-01-01
Science standards have a long history in the United States and currently form the backbone of efforts to improve primary and secondary education in science, technology, engineering, and math (STEM). Although there has been much political controversy over the influence of standards on teacher autonomy and student performance, little light has been shed on how well standards cover science content. We assessed the coverage of genetics content in the Next Generation Science Standards (NGSS) using a consensus list of American Society of Human Genetics (ASHG) core concepts. We also compared the NGSS against state science standards. Our goals were to assess the potential of the new standards to support genetic literacy and to determine if they improve the coverage of genetics concepts relative to state standards. We found that expert reviewers cannot identify ASHG core concepts within the new standards with high reliability, suggesting that the scope of content addressed by the standards may be inconsistently interpreted. Given results that indicate that the disciplinary core ideas (DCIs) included in the NGSS documents produced by Achieve, Inc. clarify the content covered by the standards statements themselves, we recommend that the NGSS standards statements always be viewed alongside their supporting disciplinary core ideas. In addition, gaps exist in the coverage of essential genetics concepts, most worryingly concepts dealing with patterns of inheritance, both Mendelian and complex. Finally, state standards vary widely in their coverage of genetics concepts when compared with the NGSS. On average, however, the NGSS support genetic literacy better than extant state standards.
The MP (Materialization Pattern) Model for Representing Math Educational Standards
NASA Astrophysics Data System (ADS)
Choi, Namyoun; Song, Il-Yeol; An, Yuan
Representing natural languages with UML has been an important research issue for various reasons. Little work has been done for modeling imperative mood sentences which are the sentence structure of math educational standard statements. In this paper, we propose the MP (Materialization Pattern) model that captures the semantics of English sentences used in math educational standards. The MP model is based on the Reed-Kellogg sentence diagrams and creates MP schemas with the UML notation. The MP model explicitly represents the semantics of the sentences by extracting math concepts and the cognitive process of math concepts from math educational standard statements, and simplifies modeling. This MP model is also developed to be used for aligning math educational standard statements via schema matching.
ERIC Educational Resources Information Center
Herman, Joan L.; Matrundola, Deborah La Torre; Epstein, Scott; Leon, Seth; Dai, Yunyun; Reber, Sarah; Choi, Kilchan
2015-01-01
With support from the Bill and Melinda Gates Foundation, researchers and experts in mathematics education developed the Mathematics Design Collaborative (MDC) as a strategy to support the transition to Common Core State Standards in math. MDC provides short formative assessment lessons known as Classroom Challenges for use in middle and high…
ERIC Educational Resources Information Center
Fast, Lisa A.; Lewis, James L.; Bryant, Michael J.; Bocian, Kathleen A.; Cardullo, Richard A.; Rettig, Michael; Hammond, Kimberly A.
2010-01-01
We examined the effect of the perceived classroom environment on math self-efficacy and the effect of math self-efficacy on standardized math test performance. Upper elementary school students (N = 1,163) provided self-reports of their perceived math self-efficacy and the degree to which their math classroom environment was mastery oriented,…
ERIC Educational Resources Information Center
Anderson, Daniel; Alonzo, Julie; Tindal, Gerald
2012-01-01
In this technical report, we describe the results of a study of mathematics items written to align with the Common Core State Standards (CCSS) in grades 6-8. In each grade, CCSS items were organized into forms, and the reliability of these forms was evaluated along with an experimental form including items aligned with the National Council of…
ERIC Educational Resources Information Center
Carlson, Lynn
2013-01-01
Educators today are faced with learning to implement the Common Core Standards in Language Arts and Math. Administrators are requiring grade level general education teachers/special education teachers to meet in Private Learning Communities in order to discuss the best ways to implement the CCS as well as to discuss best practices for writing…
Assessing the Genetics Content in the Next Generation Science Standards
Lontok, Katherine S.; Zhang, Hubert; Dougherty, Michael J.
2015-01-01
Science standards have a long history in the United States and currently form the backbone of efforts to improve primary and secondary education in science, technology, engineering, and math (STEM). Although there has been much political controversy over the influence of standards on teacher autonomy and student performance, little light has been shed on how well standards cover science content. We assessed the coverage of genetics content in the Next Generation Science Standards (NGSS) using a consensus list of American Society of Human Genetics (ASHG) core concepts. We also compared the NGSS against state science standards. Our goals were to assess the potential of the new standards to support genetic literacy and to determine if they improve the coverage of genetics concepts relative to state standards. We found that expert reviewers cannot identify ASHG core concepts within the new standards with high reliability, suggesting that the scope of content addressed by the standards may be inconsistently interpreted. Given results that indicate that the disciplinary core ideas (DCIs) included in the NGSS documents produced by Achieve, Inc. clarify the content covered by the standards statements themselves, we recommend that the NGSS standards statements always be viewed alongside their supporting disciplinary core ideas. In addition, gaps exist in the coverage of essential genetics concepts, most worryingly concepts dealing with patterns of inheritance, both Mendelian and complex. Finally, state standards vary widely in their coverage of genetics concepts when compared with the NGSS. On average, however, the NGSS support genetic literacy better than extant state standards. PMID:26222583
enVisionMATH. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2013
2013-01-01
"enVisionMATH," published by Pearson Education, Inc., is a core curriculum for students in kindergarten through grade 6. The program seeks to help students develop an understanding of math concepts through problem-based instruction, small-group interaction, and visual learning with a focus on reasoning and modeling. Differentiated…
Liew, Jeffrey; Lench, Heather C; Kao, Grace; Yeh, Yu-Chen; Kwok, Oi-man
2014-01-01
Standardized testing has become a common form of student evaluation with high stakes, and limited research exists on understanding the roles of students' personality traits and social-evaluative threat on their academic performance. This study examined the roles of avoidance temperament (i.e., fear and behavioral inhibition) and evaluative threat (i.e., fear of failure and being viewed as unintelligent) in standardized math test and course grades in college students. Undergraduate students (N=184) from a large public university were assessed on temperamental fear and behavioral inhibition. They were then given 15 minutes to complete a standardized math test. After the test, students provided data on evaluative threat and their math performance (scores on standardized college entrance exam and average grades in college math courses). Results indicate that avoidance temperament was linked to social-evaluative threat and low standardized math test scores. Furthermore, evaluative threat mediated the influence of avoidance temperament on both types of math performance. Results have educational and clinical implications, particularly for students at risk for test anxiety and underperformance. Interventions targeting emotion regulation and stress management skills may help individuals reduce their math and test anxieties.
ERIC Educational Resources Information Center
Mead, Tim; Scibora, Lesley
2016-01-01
The purpose of the study was to determine if standardized math test scores improve by administering different types of exercise during math instruction. Three sixth grade classes were assessed on the Measures of Academic Progress (MAP) and the Minnesota Comprehensive Assessment (MCA) standardized math tests during the 2012 and 2013 academic year.…
Effectiveness of a Class-Wide Peer-Mediated Elementary Math Differentiation Strategy
ERIC Educational Resources Information Center
Lloyd, Jason D.
2017-01-01
Approximately 60% of classroom students have insufficient math skills. Within a Multi-Tiered Systems of Support (MTSS) framework, teachers can implement core differentiation strategies targeted at improving math skills of an entire class of students. Differentiation programs are developed in order to target academic skills of groups of students…
Saxon Math. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2013
2013-01-01
"Saxon Math," published by Houghton Mifflin Harcourt, is a core curriculum for students in grades K-5. A distinguishing feature of the curriculum is its use of an incremental approach for instruction and assessment. This approach limits the amount of new math content delivered to students each day and allows time for daily practice. New…
Saxon Math. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2013
2013-01-01
"Saxon Math", published by Houghton Mifflin Harcourt, is a core curriculum for students in grades K-12. This report includes studies that investigate the potential impact of "Saxon Math" for students in grades 6-8. A distinguishing feature of the curriculum is its use of an incremental approach for instruction and assessment.…
Saxon Math. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2016
2016-01-01
"Saxon Math" is a core curriculum for students in grades K-12 that uses an incremental approach to instruction and assessment. This approach limits the amount of new math content delivered to students each day and allows time for daily practice. New concepts are introduced gradually and integrated with previously introduced content so…
Assessing Impacts of "Math in Focus," a "Singapore Math" Program
ERIC Educational Resources Information Center
Jaciw, Andrew P.; Hegseth, Whitney Michelle; Lin, Li; Toby, Megan; Newman, Denis; Ma, Boya; Zacamy, Jenna
2016-01-01
This study investigates, through a cluster randomized trial, the impact of "Math in Focus," a core mathematics program modeled after instructional approaches used in Singapore, on third- through fifth-grade students' achievement in mathematics. The program is currently being used in more than 400 school districts in the United States.…
Saxon Elementary School Math. Revised. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2007
2007-01-01
"Saxon Elementary School Math," published by Harcourt Achieve, is a core curriculum for students in kindergarten through grade 5. A distinguishing feature of "Saxon Elementary School Math" is its use of a distributed approach, as opposed to a chapter-based approach, for instruction and assessment. The program is built on the…
NASA Astrophysics Data System (ADS)
Hanson, E. W.; Burakowski, E. A.
2014-12-01
For much of the northern United States, the months surrounding the winter solstice are times of increased darkness, low temperatures, and frozen landscapes. It's a time when many high school science educators, who otherwise would venture outside with their classes, hunker down and are wary of the outdoors. However, a plethora of learning opportunities lies just beyond the classroom. Working collaboratively, a high school science teacher and a snow scientist have developed multiple activities to engage students in the scientific process of collecting, analyzing and interpreting the winter world using snow data to (1) learn about the insulative properties of snow, and (2) to learn about the role of snow cover on winter climate through its reflective properties while participating in a volunteer network that collects snow depth, albedo (reflectivity), and density data. These outdoor field-based snow investigations incorporate Next Generation Science Standards (NGSS) and disciplinary core ideas, including ESS2.C: The roles of water in Earth's surface processes and ESS2.D: Weather and Climate. Additionally, the lesson plans presented address Common Core State Standards (CCSS) in Mathematics, including the creation and analysis of bar graphs and time series plots (CCSS.Math.HSS-ID.A.1) and xy scatter plots (CCSS.Math.HSS-ID.B.6). High school students participating in the 2013/2014 snow sampling season described their outdoor learning experience as "authentic" and "hands-on" as compared to traditional class indoors. They emphasized that learning outdoors was essential to their understanding of underlying content and concepts because they "learn through actual experience."
Infusing the Arts into Literacy and Math
ERIC Educational Resources Information Center
Principal, 2012
2012-01-01
Schools that are integrating the arts into literacy, math, and other core subjects are dispelling the notion that there's an either-or choice in education--either you focus on literacy and math or you provide a well-rounded curriculum in the arts and other subjects. Crayola grant-recipient schools are demonstrating that you can do both--and end up…
ERIC Educational Resources Information Center
O'Connell, Susan; Croskey, Suzanne G.
2008-01-01
The National Council of Teachers of Mathematics' (NCTM's) Process Standards support teaching that helps students develop independent, effective mathematical thinking. The books in the Heinemann Math Process Standards Series give every middle grades math teacher the opportunity to explore each standard in depth. The series offers friendly,…
ERIC Educational Resources Information Center
Schackow, Joy Bronston; O'Connell, Susan
2008-01-01
The National Council of Teachers of Mathematics' (NCTM's) Process Standards support teaching that helps students develop independent, effective mathematical thinking. The books in the Heinemann Math Process Standards Series give every middle grades math teacher the opportunity to explore each standard in depth. The series offers friendly,…
Searching for the Golden Model of Education: Cross-National Analysis of Math Achievement
Bodovski, Katerina; Byun, Soo-yong; Chykina, Volha; Chung, Hee Jin
2017-01-01
We utilized four waves of TIMSS data in addition to the information we have collected on countries’ educational systems to examine whether different degrees of standardization, differentiation, proportion of students in private schools and governmental spending on education influence students’ math achievement, its variation and socioeconomic status (SES) gaps in math achievement. Findings: A higher level of standardization of educational systems was associated with higher average math achievement. Greater expenditure on education (as % of total government expenditure) was associated with a lower level of dispersion of math achievement and smaller SES gaps in math achievement. Wealthier countries exhibited higher average math achievement and a narrower variation. Higher income inequality (measured by Gini index) was associated with a lower average math achievement and larger SES gaps. Further, we found that higher level of standardization alleviates the negative effects of differentiation in the systems with more rigid tracking. PMID:29151667
Synchronizing Physics And Math Standards
NASA Astrophysics Data System (ADS)
Weisel, Derek
2008-04-01
State and national standards tend to focus primarily on math and reading. This has led many schools to focus the majority of instruction time on these two subjects. This creates the negative effect of placing less emphasis on physics in many schools. An effective way to keep physics as a primary focus in schools is to emphasize that physics curriculum meets many of the math standards and can be used as a tool to introduce, practice and reinforce important math concepts. This is also a way for physics curriculum to be introduced at the elementary level. This talk will highlight some common areas where math standards are being met and exceeded in the physics curriculum.
Saxon Middle School Math. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2007
2007-01-01
"Saxon Math" curricula and materials are available for grades K through 12, with the content and skills designed to meet National Council of Teachers of Mathematics (NCTM) standards and various state standards. This WWC report focuses on middle school math curricula, defined as all Saxon Math curricula for grades 6 through 9. The…
The Impact of the 2012 TNCore Math Training on Teaching Practices and Effectiveness. Policy Brief
ERIC Educational Resources Information Center
Booker, Laura Neergaard
2013-01-01
During the spring and summer of 2012, the Tennessee Department of Education trained about 200 Common Core Coaches who then went on to facilitate summer trainings for thousands of the state's third through eighth grade math teachers. The following summer, the training sessions reached nearly 30,000 teachers across the state, covering math, English…
The Mediating Relation between Symbolic and Nonsymbolic Foundations of Math Competence
Price, Gavin R.; Fuchs, Lynn S.
2016-01-01
This study investigated the relation between symbolic and nonsymbolic magnitude processing abilities with 2 standardized measures of math competence (WRAT Arithmetic and KeyMath Numeration) in 150 3rd- grade children (mean age 9.01 years). Participants compared sets of dots and pairs of Arabic digits with numerosities 1–9 for relative numerical magnitude. In line with previous studies, performance on both symbolic and nonsymbolic magnitude processing was related to math ability. Performance metrics combining reaction and accuracy, as well as weber fractions, were entered into mediation models with standardized math test scores. Results showed that symbolic magnitude processing ability fully mediates the relation between nonsymbolic magnitude processing and math ability, regardless of the performance metric or standardized test. PMID:26859564
The Mediating Relation between Symbolic and Nonsymbolic Foundations of Math Competence.
Price, Gavin R; Fuchs, Lynn S
2016-01-01
This study investigated the relation between symbolic and nonsymbolic magnitude processing abilities with 2 standardized measures of math competence (WRAT Arithmetic and KeyMath Numeration) in 150 3rd-grade children (mean age 9.01 years). Participants compared sets of dots and pairs of Arabic digits with numerosities 1-9 for relative numerical magnitude. In line with previous studies, performance on both symbolic and nonsymbolic magnitude processing was related to math ability. Performance metrics combining reaction and accuracy, as well as weber fractions, were entered into mediation models with standardized math test scores. Results showed that symbolic magnitude processing ability fully mediates the relation between nonsymbolic magnitude processing and math ability, regardless of the performance metric or standardized test.
Teaching Algebra to Students With Learning Disabilities: Where Have We Come and Where Should We Go?
Watt, Sarah J; Watkins, Jessie R; Abbitt, Jason
2016-07-01
This review investigates effective interventions for teaching algebra to students with learning disabilities and evaluates the complexity and alignment of skills with the Common Core State Standards in math. The review includes the results of 10 experimental and 5 single-subject designs (N = 15) producing a moderate overall effect size (g = 0.48). A total of five interventions were identified and analyzed across the studies using effect size data. © Hammill Institute on Disabilities 2014.
ERIC Educational Resources Information Center
Smail, Linda
2017-01-01
Mathematics is the foundation of all sciences, but most students have problems learning math. Although students' success in life related to their success in learning, many would not take a math course unless it is their university's core requirements. Multiple reasons exist for students' poor performance in mathematics, but one prevalent variable…
The Impact of Early Exposure of Eighth Grade Math Standards on End of Grade Assessments
ERIC Educational Resources Information Center
Robertson, Tonjai E.
2016-01-01
The purpose of this study was to examine the Cumberland County Schools district-wide issue surrounding the disproportional performance of eighth grade Math I students' proficiency scores on standardized end-of-grade and end-of-course assessments. The study focused on the impact of the school district incorporating eighth grade math standards in…
ERIC Educational Resources Information Center
Lee, Joohi
2016-01-01
This study is purposed to measure the efficacy of implementing College and Career Readiness Standards (CCRS) math standards into math methods courses for early childhood and elementary education teacher candidates at an urban university located in the Dallas and Fort Worth metroplex area. A total of 161 college seniors (teacher candidates)…
Conditions for Scale and Sustainability. Brief Four
ERIC Educational Resources Information Center
Levin, Stephanie; Duffy, Mark; Dever, Kelly
2012-01-01
Math experts developed Formative Assessment Lessons that teachers can incorporate throughout the year's curriculum. Both tools target the "instructional core." A study by Research for Action (RFA) examining the first year of piloting the Literacy Design Collaborative (LDC) and Math Design Collaborative (MDC) tools (2010-11) found…
Math: Basic Skills Content Standards
ERIC Educational Resources Information Center
CASAS - Comprehensive Adult Student Assessment Systems (NJ1), 2008
2008-01-01
This document presents content standards tables for math. [CASAS content standards tables are designed for educators at national, state and local levels to inform the alignment of content standards, instruction and assessment. The Content Standards along with the CASAS Competencies form the basis of the CASAS integrated assessment and curriculum…
ERIC Educational Resources Information Center
Andrews, Amanda; Brown, Jennifer
2015-01-01
Math anxiety is a reoccurring problem for many students, and the effects of this anxiety on college students are increasing. The purpose of this study was to examine the association between pre-enrollment math anxiety, standardized test scores, math placement scores, and academic success during freshman math coursework (i.e., pre-algebra, college…
ERIC Educational Resources Information Center
Cunnington, Marisol; Kantrowitz, Andrea; Harnett, Susanne; Hill-Ries, Aline
2014-01-01
The "Framing Student Success: Connecting Rigorous Visual Arts, Math and Literacy Learning" experimental demonstration project was designed to develop and test an instructional program integrating high-quality, standards-based instruction in the visual arts, math, and literacy. Developed and implemented by arts-in-education organization…
Number Wonders: 171 Activities to Meet Math Standards & Inspire Students
ERIC Educational Resources Information Center
Kuhns, Catherine Jones
2006-01-01
In this book, author Catherine Jones Kuhns introduces student- and teacher-friendly math activities designed to get students thinking like mathematicians and loving mathematics, while addressing content standards through grade 2. She also shows how to make math fun for students, get children actively engaged in learning, create a student-centered…
ERIC Educational Resources Information Center
What Works Clearinghouse, 2013
2013-01-01
"Scott Foresman-Addison Wesley Elementary Mathematics" is a core mathematics curriculum for students in prekindergarten through grade 6. The program aims to improve students' understanding of key math concepts through problem-solving instruction, hands-on activities, and math problems that involve reading and writing. The curriculum…
Exploring the Role of Agriculture Teachers in Core Academic Integration
ERIC Educational Resources Information Center
McKim, Aaron J.; Sorenson, Tyson J.; Velez, Jonathan J.
2016-01-01
Core academic skills are essential for success in our society. However, an abundance of research has identified a large proportion of secondary school students are under performing in core academic areas such as literacy and math. Researchers have suggested integrating core academic content throughout all secondary coursework as a potential…
Enhancing Core Mathematics Instruction for Students at Risk for Mathematics Disabilities
ERIC Educational Resources Information Center
Doabler, Christian T.; Cary, Mari Strand; Jungjohann, Kathleen; Clarke, Ben; Fien, Hank; Baker, Scott; Smolkowski, Keith; Chard, David
2012-01-01
This paper presents eight practical guidelines that teachers can use to make core instruction more systematic and explicit for students with or at-risk for mathematics disabilities. In the paper, we use the notion of explicit and systematic instruction as a foundation for intensifying core math instruction. Explicit and systematic core instruction…
ERIC Educational Resources Information Center
Brown, Linda
2012-01-01
Math achievement for students in the United States is not as high as in other countries. In response, one state implemented a new standards-based, integrated math curriculum that combines traditional high school math courses and emphasizes student centered instruction. The purpose of this study was to examine the implementation of a standards…
ERIC Educational Resources Information Center
Donlevy, James G., Ed.; Donlevy, Tia Rice, Ed.
1999-01-01
Reviews the NTTI (National Teacher Training Institute) for Math, Science and Technology model that trains teachers to use video and Internet resources to enhance math and science instruction. Discusses multimedia methodology; standards-based training; program impact in schools; and lesson plans available on the NTTI Web site. (Author/LRW)
Brief Report: Gum Chewing Affects Standardized Math Scores in Adolescents
ERIC Educational Resources Information Center
Johnston, Craig A.; Tyler, Chermaine; Stansberry, Sandra A.; Moreno, Jennette P.; Foreyt, John P.
2012-01-01
Gum chewing has been shown to improve cognitive performance in adults; however, gum chewing has not been evaluated in children. This study examined the effects of gum chewing on standardized test scores and class grades of eighth grade math students. Math classes were randomized to a gum chewing (GC) condition that provided students with gum…
Math Process Standards Series, Grades 3-5
ERIC Educational Resources Information Center
O'Connell, Susan, Ed.
2008-01-01
NCTM's Process Standards support teaching that helps upper elementary level children develop independent, effective mathematical thinking. The books in the Heinemann Math Process Standards Series give every intermediate-grades teacher the opportunity to explore each standard in depth. With language and examples that don't require prior math…
Contextual Factors Related to Math Anxiety in Second-Grade Children
ERIC Educational Resources Information Center
Jameson, Molly M.
2014-01-01
As the United States falls farther behind other countries in standardized math assessments, the author seeks to understand why U.S. students perform so poorly. One of the possible explanations to U.S. students' poor math performance may be math anxiety. However, math anxiety in elementary school children is a neglected area in the research. The…
MathsFlip: Flipped Learning. Evaluation Report and Executive Summary
ERIC Educational Resources Information Center
Rudd, Peter; Aguilera, Alaidde Berenice Villaneuva; Elliott, Louise; Chambers, Bette
2017-01-01
The MathsFlip intervention aimed to improve the attainment of pupils in Years 5 and 6. The programme, developed by Shireland Collegiate Academy, used a 'flipped learning' approach involving pupils learning core content online, outside of class time, and then participating in activities in class to reinforce their learning. The programme used an…
Montessori(TM) Math by Colors [CD Rom.
ERIC Educational Resources Information Center
1995
Montessori(TM) Learning Software programs are purportedly built upon the core concept of the Montessori philosophy, that a major path to intellectual development is through a child's hands and senses. Math by Colors, recommended for ages 4 to 8, encourages hands-on discovery by allowing the child to choose the right color from the assembled paint…
Teaching Math to My Scholars: Inner City Middle School Students
ERIC Educational Resources Information Center
Iyer, Ranjani; Pitts, Joseph
2017-01-01
Teaching in an inner city school requires classroom management, resilience, and most importantly strategies to promote learning and growth. There is a constant need for acceleration in student growth in core subjects, especially Math. A blended learning model can be an effective option for schools to personalize learning experiences for students…
Mathematical outcomes and working memory in children with TBI and orthopedic injury.
Raghubar, Kimberly P; Barnes, Marcia A; Prasad, Mary; Johnson, Chad P; Ewing-Cobbs, Linda
2013-03-01
This study compared mathematical outcomes in children with predominantly moderate to severe traumatic brain injury (TBI; n550) or orthopedic injury (OI; n547) at 2 and 24 months post-injury. Working memory and its contribution to math outcomes at 24 months post-injury was also examined. Participants were administered an experimental cognitive addition task and standardized measures of calculation, math fluency, and applied problems; as well as experimental measures of verbal and visual-spatial working memory. Although children with TBI did not have deficits in foundational math fact retrieval, they performed more poorly than OIs on standardized measures of math. In the TBI group, performance on standardized measures was predicted by age at injury, socioeconomic status, and the duration of impaired consciousness. Children with TBI showed impairments on verbal, but not visual working memory relative to children with OI. Verbal working memory mediated group differences on math calculations and applied problems at 24 months post-injury. Children with TBI have difficulties in mathematics, but do not have deficits in math fact retrieval, a signature deficit of math disabilities. Results are discussed with reference to models of mathematical cognition and disability and the role of working memory in math learning and performance for children with TBI.
Mathematical Outcomes and Working Memory in Children With TBI and Orthopedic Injury
Raghubar, Kimberly P.; Barnes, Marcia A.; Prasad, Mary; Johnson, Chad P.; Ewing-Cobbs, Linda
2013-01-01
This study compared mathematical outcomes in children with predominantly moderate to severe traumatic brain injury (TBI; n =50) or orthopedic injury (OI; n=47) at 2 and 24 months post-injury. Working memory and its contribution to math outcomes at 24 months post-injury was also examined. Participants were administered an experimental cognitive addition task and standardized measures of calculation, math fluency, and applied problems; as well as experimental measures of verbal and visual-spatial working memory. Although children with TBI did not have deficits in foundational math fact retrieval, they performed more poorly than OIs on standardized measures of math. In the TBI group, performance on standardized measures was predicted by age at injury, socioeconomic status, and the duration of impaired consciousness. Children with TBI showed impairments on verbal, but not visual working memory relative to children with OI. Verbal working memory mediated group differences on math calculations and applied problems at 24 months post-injury. Children with TBI have difficulties in mathematics, but do not have deficits in math fact retrieval, a signature deficit of math disabilities. Results are discussed with reference to models of mathematical cognition and disability and the role of working memory in math learning and performance for children with TBI. PMID:23164058
Accelerated Math[TM]. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2011
2011-01-01
"Accelerated Math"[TM], published by Renaissance Learning, is a software tool used to customize assignments and monitor progress in math for students in grades 1-12. The "Accelerated Math"[TM] software creates individualized assignments aligned with state standards and national guidelines, scores student work, and generates…
Math's Double Standard. Math Works
ERIC Educational Resources Information Center
Achieve, Inc., 2013
2013-01-01
Far too many students in the U.S. give up on math early because it does not come easy and they believe only students with innate ability can really be "good" at mathematics, a notion that is all too often reinforced by adults who believe the same thing. There is a serious gap between how Americans value math generally and how they value math for…
Math Process Standards Series, Grades PreK-2 [with CD-ROMs
ERIC Educational Resources Information Center
O'Connell, Susan, Ed.
2007-01-01
The National Council of Teachers of Mathematics (NCTM)'s Process Standards support teaching that helps children develop independent, effective mathematical thinking. The books in the Heinemann Math Process Standards Series give every primary teacher the opportunity to explore each standard in depth. With language and examples that don't require…
ERIC Educational Resources Information Center
Gomez, Angela Nicole
2012-01-01
The purpose of this study was to investigate the effectiveness of "MathFacts in a Flash" software in helping students learn math standards. In each of their classes, the third-, fourth-, and fifth-grade students in a small private Roman Catholic school from the Pacific Northwest were randomly assigned either to a control group that used…
ERIC Educational Resources Information Center
Vasquez-Mireles, Selina; West, Sandra
2007-01-01
A correlated science lesson is characterized as an integrated science lesson in that it may incorporate traditionally integrated activities and use math as a tool. However, a correlated math-science lesson also: (1) has the pertinent math and science objectives aligned with state standards; and (2) teaches parallel science and math ideas equally.…
Writing in Math: A Disciplinary Literacy Approach
ERIC Educational Resources Information Center
Brozo, William G.; Crain, Sarah
2018-01-01
Mathematics teachers often resist generic literacy strategies because they do not seem relevant to math learning. Discipline-specific literacy practices that emerge directly from the math content and processes under study are more likely to be embraced by math teachers. Furthermore, national and state-level mathematics standards as well as Common…
NASA Astrophysics Data System (ADS)
Mercer, Gary J.
This quantitative study examined the relationship between secondary students with math anxiety and physics performance in an inquiry-based constructivist classroom. The Revised Math Anxiety Rating Scale was used to evaluate math anxiety levels. The results were then compared to the performance on a physics standardized final examination. A simple correlation was performed, followed by a multivariate regression analysis to examine effects based on gender and prior math background. The correlation showed statistical significance between math anxiety and physics performance. The regression analysis showed statistical significance for math anxiety, physics performance, and prior math background, but did not show statistical significance for math anxiety, physics performance, and gender.
The Relevance of Culturally Based Curriculum and Instruction: The Case of Nancy Sharp
ERIC Educational Resources Information Center
Lipka, Jerry; Sharp, Nancy; Brenner, Betsy; Yanez, Evelyn; Sharp, Ferdinand
2005-01-01
Ms. Sharp's case is particularly instructive as it shows how this experienced Yup'ik teacher steeped in the traditions of her culture effectively implemented a culturally based math module. Ms. Sharp's pedagogical creatively allowed her to authentically bring together a core academic content area, math, with Yup'ik traditions, knowledge, and ways…
Automated Creation of Labeled Pointcloud Datasets in Support of Machine-Learning Based Perception
2017-12-01
computationally intensive 3D vector math and took more than ten seconds to segment a single LIDAR frame from the HDL-32e with the Dell XPS15 9650’s Intel...Core i7 CPU. Depth Clustering avoids the computationally intensive 3D vector math of Euclidean Clustering-based DON segmentation and, instead
ERIC Educational Resources Information Center
Garet, Michael S.; Heppen, Jessica B.; Walters, Kirk; Parkinson, Julia; Smith, Toni M.; Song, Mengli; Garrett, Rachel; Yang, Rui; Borman, Geoffrey D.
2016-01-01
This report examines the impact of content-intensive Professional Development (PD) on teachers' math content knowledge, their instructional practice, and their students' achievement. The study's PD had three components, totaling 93 hours. The core of the PD was "Intel Math," an intensive 80-hour workshop delivered in summer 2013 that…
ERIC Educational Resources Information Center
What Works Clearinghouse, 2012
2012-01-01
"Great Explorations in Math and Science[R] (GEMS[R]) Space Science" is an instructional sequence for grades 3-5 that covers fundamental concepts, including planetary sizes and distance, the Earth's shape and movement, gravity, and moon phases and eclipses. Part of the "GEMS"[R] core curriculum, "GEMS[R] Space Science"…
Attitudes of College Students Enrolled in 2-Year Health Care Programs towards Online Learning
ERIC Educational Resources Information Center
Abdulla, Dalya
2012-01-01
Colleges offering 2-year diplomas to high-school graduates were among the forefront leaders in online learning however studies illustrating appropriate course construction for such student populations are scarce. Pharmacy Math (MATH16532) is a core course for students enrolled in the Practical Nursing (PN) and Pharmacy Technician (PT) programs at…
Regularity Results for a Class of Functionals with Non-Standard Growth
NASA Astrophysics Data System (ADS)
Acerbi, Emilio; Mingione, Giuseppe
We consider the integral functional
ERIC Educational Resources Information Center
Solomon, Pearl Gold
2007-01-01
In a new edition of her standards-based math workbook, author Pearl Gold Solomon covers essential concepts and skills as defined by the National Council of Teachers of Mathematics for learners in middle schools. Designed as a comprehensive resource for planning curriculum, instruction, and assessment, The Math We Need to Know and Do in Grades 6-9,…
Singapore Math®. What Works Clearinghouse Intervention Report. Updated December 2015
ERIC Educational Resources Information Center
What Works Clearinghouse, 2015
2015-01-01
This report on "Singapore Math®" updates the 2009 WWC review of the curriculum to include seven new studies. Despite the additional research, no studies meet WWC design standards and therefore, no conclusions can be made about the effectiveness of "Singapore Math®." [For the 2009 report, "Singapore Math," see…
Working memory, math performance, and math anxiety.
Ashcraft, Mark H; Krause, Jeremy A
2007-04-01
The cognitive literature now shows how critically math performance depends on working memory, for any form of arithmetic and math that involves processes beyond simple memory retrieval. The psychometric literature is also very clear on the global consequences of mathematics anxiety. People who are highly math anxious avoid math: They avoid elective coursework in math, both in high school and college, they avoid college majors that emphasize math, and they avoid career paths that involve math. We go beyond these psychometric relationships to examine the cognitive consequences of math anxiety. We show how performance on a standardized math achievement test varies as a function of math anxiety, and that math anxiety compromises the functioning of working memory. High math anxiety works much like a dual task setting: Preoccupation with one's math fears and anxieties functions like a resource-demanding secondary task. We comment on developmental and educational factors related to math and working memory, and on factors that may contribute to the development of math anxiety.
NASA Technical Reports Server (NTRS)
Lawson, Charles L.; Krogh, Fred; Van Snyder, W.; Oken, Carol A.; Mccreary, Faith A.; Lieske, Jay H.; Perrine, Jack; Coffin, Ralph S.; Wayne, Warren J.
1994-01-01
MATH77 is high-quality library of ANSI FORTRAN 77 subprograms implementing contemporary algorithms for basic computational processes of science and engineering. Release 4.0 of MATH77 contains 454 user-callable and 136 lower-level subprograms. MATH77 release 4.0 subroutine library designed to be usable on any computer system supporting full ANSI standard FORTRAN 77 language.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linder-Scholer, B.
1994-12-31
An overview of SCI/MATH/MN - Minnesota`s standards-based, systemic approach to the reform and improvement of the K-12 science and mathematics education delivery system - is offered as an illustration of the challenges of aligning state educational practices with the national curriculum standards, and as a model for business involvement in state educational policy issues that will enable fundamental, across-the-system reform. SCI/MATH/MN illustrates the major challenges involved in developing a statewide vision for math and science education reform, articulating frameworks aligned with the national standards, building capacity for system-oriented change at the local level, and involving business in systemic reform.
Differentiated Instruction for K-8 Math and Science: Activities and Lesson Plans
ERIC Educational Resources Information Center
Hamm, Mary; Adams, Dennis
2008-01-01
This book offers practical recommendations to reach every student in a K-8 classroom. Research-based and written in a teacher-friendly style, it will help teachers with classroom organization and lesson planning in math and science. Included are math and science games, activities, ideas, and lesson plans based on the math and science standards.…
ERIC Educational Resources Information Center
Ellwood, Cheryl Kathryn
2013-01-01
Professional learning communities and teacher efficacy are at the core of many of the current educational reform models. The intention of this dissertation was to identify the correlation between professional learning communities and collective teacher efficacy for math data teams in the six Kaua'i Complex Area secondary schools, as measured by…
Neuroanatomical correlates of performance in a state-wide test of math achievement.
Wilkey, Eric D; Cutting, Laurie E; Price, Gavin R
2018-03-01
The development of math skills is a critical component of early education and a strong indicator of later school and economic success. Recent research utilizing population-normed, standardized measures of math achievement suggest that structural and functional integrity of parietal regions, especially the intraparietal sulcus, are closely related to the development of math skills. However, it is unknown how these findings relate to in-school math learning. The present study is the first to address this issue by investigating the relationship between regional differences in grey matter (GM) volume and performance in grade-level mathematics as measured by a state-wide, school-based test of math achievement (TCAP math) in children from 3rd to 8th grade. Results show that increased GM volume in the bilateral hippocampal formation and the right inferior frontal gyrus, regions associated with learning and memory, is associated with higher TCAP math scores. Secondary analyses revealed that GM volume in the left angular gyrus had a stronger relationship to TCAP math in grades 3-4 than in grades 5-8 while the relationship between GM volume in the left inferior frontal gyrus and TCAP math was stronger for grades 5-8. These results suggest that the neuroanatomical architecture related to in-school math achievement differs from that related to math achievement measured by standardized tests, and that the most related neural structures differ as a function of grade level. We suggest, therefore, that the use of school-relevant outcome measures is critical if neuroscience is to bridge the gap to education. © 2017 John Wiley & Sons Ltd.
Mathematics anxiety: separating the math from the anxiety.
Lyons, Ian M; Beilock, Sian L
2012-09-01
Anxiety about math is tied to low math grades and standardized test scores, yet not all math-anxious individuals perform equally poorly in math. We used functional magnetic resonance imaging to separate neural activity during the anticipation of doing math from activity during math performance itself. For higher (but not lower) math-anxious individuals, increased activity in frontoparietal regions when simply anticipating doing math mitigated math-specific performance deficits. This network included bilateral inferior frontal junction, a region involved in cognitive control and reappraisal of negative emotional responses. Furthermore, the relation between frontoparietal anticipatory activity and highly math-anxious individuals' math deficits was fully mediated (or accounted for) by activity in caudate, nucleus accumbens, and hippocampus during math performance. These subcortical regions are important for coordinating task demands and motivational factors during skill execution. Individual differences in how math-anxious individuals recruit cognitive control resources prior to doing math and motivational resources during math performance predict the extent of their math deficits. This work suggests that educational interventions emphasizing control of negative emotional responses to math stimuli (rather than merely additional math training) will be most effective in revealing a population of mathematically competent individuals, who might otherwise go undiscovered.
Shifrer, Dara; Callahan, Rebecca
2010-09-01
Students identified with learning disabilities experience markedly lower levels of science and mathematics achievement than students who are not identified with a learning disability. Seemingly compounding their disadvantage, students with learning disabilities also complete more credits in non-core coursework-traditionally considered non-academic coursework-than students who are not identified with a learning disability. The Education Longitudinal Study of 2002, a large national dataset with both regular and special education high school students, is utilized to determine whether credit accumulation in certain types of non-core coursework, such as Technology and Communications courses, is associated with improved science and math course-taking outcomes for students with learning disabilities. Results show that credit accumulation in Technology and Communications coursework uniquely benefits the science course-taking, and comparably benefits the math course-taking, of students identified with learning disabilities in contrast to students who are not identified with a learning disability.
Shifrer, Dara; Callahan, Rebecca
2016-01-01
Students identified with learning disabilities experience markedly lower levels of science and mathematics achievement than students who are not identified with a learning disability. Seemingly compounding their disadvantage, students with learning disabilities also complete more credits in non-core coursework—traditionally considered non-academic coursework—than students who are not identified with a learning disability. The Education Longitudinal Study of 2002, a large national dataset with both regular and special education high school students, is utilized to determine whether credit accumulation in certain types of non-core coursework, such as Technology and Communications courses, is associated with improved science and math course-taking outcomes for students with learning disabilities. Results show that credit accumulation in Technology and Communications coursework uniquely benefits the science course-taking, and comparably benefits the math course-taking, of students identified with learning disabilities in contrast to students who are not identified with a learning disability. PMID:27695150
Neurocognitive and Behavioral Predictors of Math Performance in Children with and without ADHD
Antonini, Tanya N.; O’Brien, Kathleen M.; Narad, Megan E.; Langberg, Joshua M.; Tamm, Leanne; Epstein, Jeff N.
2014-01-01
Objective: This study examined neurocognitive and behavioral predictors of math performance in children with and without attention-deficit/hyperactivity disorder (ADHD). Method: Neurocognitive and behavioral variables were examined as predictors of 1) standardized mathematics achievement scores,2) productivity on an analog math task, and 3) accuracy on an analog math task. Results: Children with ADHD had lower achievement scores but did not significantly differ from controls on math productivity or accuracy. N-back accuracy and parent-rated attention predicted math achievement. N-back accuracy and observed attention predicted math productivity. Alerting scores on the Attentional Network Task predicted math accuracy. Mediation analyses indicated that n-back accuracy significantly mediated the relationship between diagnostic group and math achievement. Conclusion: Neurocognition, rather than behavior, may account for the deficits in math achievement exhibited by many children with ADHD. PMID:24071774
Neurocognitive and Behavioral Predictors of Math Performance in Children With and Without ADHD.
Antonini, Tanya N; Kingery, Kathleen M; Narad, Megan E; Langberg, Joshua M; Tamm, Leanne; Epstein, Jeffery N
2016-02-01
This study examined neurocognitive and behavioral predictors of math performance in children with and without ADHD. Neurocognitive and behavioral variables were examined as predictors of (a) standardized mathematics achievement scores, (b) productivity on an analog math task, and (c) accuracy on an analog math task. Children with ADHD had lower achievement scores but did not significantly differ from controls on math productivity or accuracy. N-back accuracy and parent-rated attention predicted math achievement. N-back accuracy and observed attention predicted math productivity. Alerting scores on the attentional network task predicted math accuracy. Mediation analyses indicated that n-back accuracy significantly mediated the relationship between diagnostic group and math achievement. Neurocognition, rather than behavior, may account for the deficits in math achievement exhibited by many children with ADHD. © The Author(s) 2013.
Raghubar, Kimberly P.; Barnes, Marcia A.; Dennis, Maureen; Cirino, Paul T.; Taylor, Heather; Landry, Susan
2015-01-01
Objective Math and attention are related in neurobiological and behavioral models of mathematical cognition. This study employed model-driven assessments of attention and math in children with spina bifida myelomeningocele (SBM), who have known math difficulties and specific attentional deficits, to more directly examine putative relations between attention and mathematical processing. The relation of other domain general abilities and math was also investigated. Method Participants were 9.5-year-old children with SBM (N = 44) and typically developing children (N = 50). Participants were administered experimental exact and approximate arithmetic tasks, and standardized measures of math fluency and calculation. Cognitive measures included the Attention Network Test (ANT), and standardized measures of fine motor skills, verbal working memory (WM), and visual-spatial WM. Results Children with SBM performed similarly to peers on exact arithmetic but more poorly on approximate and standardized arithmetic measures. On the ANT, children with SBM differed from controls on orienting attention but not alerting and executive attention. Multiple mediation models showed that: fine motor skills and verbal WM mediated the relation of group to approximate arithmetic; fine motor skills and visual-spatial WM mediated the relation of group to math fluency; and verbal and visual-spatial WM mediated the relation of group to math calculation. Attention was not a significant mediator of the effects of group for any aspect of math in this study. Conclusions Results are discussed with reference to models of attention, WM, and mathematical cognition. PMID:26011113
Raghubar, Kimberly P; Barnes, Marcia A; Dennis, Maureen; Cirino, Paul T; Taylor, Heather; Landry, Susan
2015-11-01
Math and attention are related in neurobiological and behavioral models of mathematical cognition. This study employed model-driven assessments of attention and math in children with spina bifida myelomeningocele (SBM), who have known math difficulties and specific attentional deficits, to more directly examine putative relations between attention and mathematical processing. The relation of other domain general abilities and math was also investigated. Participants were 9.5-year-old children with SBM (n = 44) and typically developing children (n = 50). Participants were administered experimental exact and approximate arithmetic tasks, and standardized measures of math fluency and calculation. Cognitive measures included the Attention Network Test (ANT), and standardized measures of fine motor skills, verbal working memory (WM), and visual-spatial WM. Children with SBM performed similarly to peers on exact arithmetic, but more poorly on approximate and standardized arithmetic measures. On the ANT, children with SBM differed from controls on orienting attention, but not on alerting and executive attention. Multiple mediation models showed that fine motor skills and verbal WM mediated the relation of group to approximate arithmetic; fine motor skills and visual-spatial WM mediated the relation of group to math fluency; and verbal and visual-spatial WM mediated the relation of group to math calculation. Attention was not a significant mediator of the effects of group for any aspect of math in this study. Results are discussed with reference to models of attention, WM, and mathematical cognition. (c) 2015 APA, all rights reserved).
Chattanooga Math Trail: Community Mathematics Modules, Volume 1.
ERIC Educational Resources Information Center
McAllister, Deborah A.; Mealer, Adrian; Moyer, Peggy S.; McDonald, Shirley A.; Peoples, John B.
This collection of community mathematics modules, or "math trail", is appropriate for middle grades and high school students (grades 5-12). Collectively, the modules pay attention to all 10 of the National Council of Teachers of Mathematics (NCTM) standards which include five content standards (Number and Operations, Algebra, Geometry,…
An Indigenous Framework for Science, Technology, Engineering and Mathematics
NASA Astrophysics Data System (ADS)
Monette, G.
2003-12-01
The American Indian Higher Education Consortium, composed of 35 American Indian tribally-controlled Colleges and Universities in the U.S. and Canada, is leading a comprehensive effort to improve American Indian student achievement in STEM. A key component of this effort is the synthesis of indigenous ways of knowing and western education systems. This presentation will provide an overview of culturally responsive, place-based teaching, learning, and research and will discuss potential opportunities and strategies for helping to ensure that education systems and research programs reflect our diversity and respect our cultures. One example to be discussed is the NSF-funded "Tribal College Rural Systemic Initiative." Founded on the belief that all students can learn and should be given the opportunity to reach their full potential, Tribal Colleges are leading this effort to achieve successful and sustainable improvement of science, math, and technology education at the K-14 level in rural, economically disadvantaged, geographically challenged areas. Working with parents, tribal governments, schools and the private sector, the colleges are helping to implement math and science standards-based curriculum for students and standards-based assessment for schools; provide math and science standards-based professional development for teachers, administrators, and community leaders; and integrate local Native culture into math and science standards-based curriculum. The close working relationship between the Tribal Colleges and K-12 is paying off. According to the National Science Foundation, successful systemic reform has resulted in enhanced student achievement and participation in science and math; reductions in the achievement disparities among students that can be attributed to socioeconomic status, race, ethnicity, gender, or learning styles; implementation of a comprehensive, standards-based curriculum aligned with instructions and assessment; development of a coherent, consistent set of policies that supports high quality math and science education for each student; convergence of science and math resource; and broad-based support from parents and the community.
College-Readiness in Math: A Conceptual Analysis of the Literature
ERIC Educational Resources Information Center
Abraham, Reni A.; Slate, John R.; Saxon, D. Patrick; Barnes, Wally
2014-01-01
In this article, we examined the extant literature regarding college-readiness in math for students entering community colleges. Included in this review are the following topics: (a) the role of community colleges between secondary and postsecondary institutions; (b) national initiatives for college-readiness standards in math; (c) Texas…
Mathematics Achievement and Anxiety and Their Relation to Internalizing and Externalizing Behaviors
ERIC Educational Resources Information Center
Wu, Sarah S.; Willcutt, Erik G.; Escovar, Emily; Menon, Vinod
2014-01-01
Although behavioral difficulties are well documented in reading disabilities, little is known about the relationship between math ability and internalizing and externalizing behaviors. Here, we use standardized measures to investigate the relation among early math ability, math anxiety, and internalizing and externalizing behaviors in a group of…
Data Driven Math Intervention: What the Numbers Say
ERIC Educational Resources Information Center
Martin, Anthony W.
2013-01-01
This study was designed to determine whether or not data driven math skills groups would be effective in increasing student academic achievement. From this topic three key questions arose: "Would the implementation of data driven math skills groups improve student academic achievement more than standard instruction as measured by the…
Gameplaying for Maths Learning: Cooperative or Not?
ERIC Educational Resources Information Center
Ke, Fengfeng; Grabowski, Barbara
2007-01-01
This study investigated the effects of gameplaying on fifth-graders' maths performance and attitudes. One hundred twenty five fifth graders were recruited and assigned to a cooperative Teams-Games-Tournament (TGT), interpersonal competitive or no gameplaying condition. A state standards-based maths exam and an inventory on attitudes towards maths…
Saxon Elementary School Math. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2006
2006-01-01
The What Works Clearinghouse (WWC) reviewed seven studies of the "Saxon Elementary School Math program." A distinguishing feature of "Saxon Elementary School Math" is its use of a distributed approach, as opposed to a chapter-based approach, for instruction and assessment. One of these studies met WWC standards with…
Democratizing Access to Core Mathematics across Grades 9-12
ERIC Educational Resources Information Center
Hegedus, Stephen; Dalton, Sara; Brookstein, Arden; Tapper, John; Heller, Eric
2011-01-01
The authors' proposed work builds upon 12+ years of research collectively known as the "SimCalc Projects." SimCalc Connected MathWorlds (SCM) combines two innovative technological ingredients to address core mathematical ideas in deep and sustainable ways for mathematics learners. Software that addresses content issues through dynamic…
Doing the Math: Are Maryland's High School Math Standards Adding Up to College Success?
ERIC Educational Resources Information Center
Martino, Gabrielle
2009-01-01
The educational standards, instruction, and testing of mathematics remain a controversial subject in the United States. Given the significant and growing need for mathematics remediation, it is reasonable to question how well individual states are preparing its high school students to succeed. This evaluation examines the correlation between the…
Accelerated Math®. Secondary Mathematics. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2017
2017-01-01
This intervention report presents findings from a systematic review of "Accelerated Math®" conducted using the WWC Procedures and Standards Handbook (version 3.0) and the Secondary Mathematics review protocol (version 3.1). No studies of "Accelerated Math®" that fall within the scope of the Secondary Mathematics review protocol…
Neuroanatomical Correlates of Performance in a State-Wide Test of Math Achievement
ERIC Educational Resources Information Center
Wilkey, Eric D.; Cutting, Laurie E.; Price, Gavin R.
2018-01-01
The development of math skills is a critical component of early education and a strong indicator of later school and economic success. Recent research utilizing population-normed, standardized measures of math achievement suggest that structural and functional integrity of parietal regions, especially the intraparietal sulcus, are closely related…
Gender Similarities in Math Performance from Middle School through High School
ERIC Educational Resources Information Center
Scafidi, Tony; Bui, Khanh
2010-01-01
Using data from 10 states, Hyde, Lindberg, Linn, Ellis, and Williams (2008) found gender similarities in performance on standardized math tests. The present study attempted to replicate this finding with national data and to extend it by examining whether gender similarities in math performance are moderated by race, socioeconomic status, or math…
ERIC Educational Resources Information Center
Hochweber, Jan; Hosenfeld, Ingmar; Klieme, Eckhard
2014-01-01
The present study examined the extent to which the relationships between student self-reported math grades and different types of student variables (standardized math test scores, interest and effort in math, parental education) are predicted by classroom composition and teachers' classroom management. Based on a representative sample of 31,038…
Idaho Math Initiative. Public School Information. Legislative Report, 2008
ERIC Educational Resources Information Center
Idaho State Department of Education, 2008
2008-01-01
The Idaho Math Initiative has been developed to help raise student achievement in mathematics across all K-12 grades, focusing on three main areas: teacher education, student achievement, and public awareness. This report describes the initial phase of the Math Initiative, including: (1) Assessment; (2) Intervention; (3) Standards; (4) Curriculum;…
Pitchford, Nicola J
2015-01-01
Evaluation of educational interventions is necessary prior to wide-scale rollout. Yet very few rigorous studies have been conducted on the effectiveness of tablet-based interventions, especially in the early years and in developing countries. This study reports a randomized control trial to evaluate the effectiveness of a tablet intervention for supporting the development of early mathematical skills in primary school children in Malawi. A total sample of 318 children, spanning Standards 1-3, attending a medium-sized urban primary school, were randomized to one of three groups: maths tablet intervention, non-maths tablet control, and standard face-to-face practice. Children were pre-tested using tablets at the start of the school year on two tests of mathematical knowledge and a range of basic skills related to scholastic progression. Class teachers then delivered the intervention over an 8-weeks period, for the equivalent of 30-min per day. Technical support was provided from the local Voluntary Service Overseas (VSO). Children were then post-tested on the same assessments as given at pre-test. A final sample of 283 children, from Standards 1-3, present at both pre- and post-test, was analyzed to investigate the effectiveness of the maths tablet intervention. Significant effects of the maths tablet intervention over and above standard face-to-face practice or using tablets without the maths software were found in Standards 2 and 3. In Standard 3 the greater learning gains shown by the maths tablet intervention group compared to both of the control groups on the tablet-based assessments transferred to paper and pencil format, illustrating generalization of knowledge gained. Thus, tablet technology can effectively support early years mathematical skills in developing countries if the software is carefully designed to engage the child in the learning process and the content is grounded in a solid well-constructed curriculum appropriate for the child's developmental stage.
Pitchford, Nicola J.
2015-01-01
Evaluation of educational interventions is necessary prior to wide-scale rollout. Yet very few rigorous studies have been conducted on the effectiveness of tablet-based interventions, especially in the early years and in developing countries. This study reports a randomized control trial to evaluate the effectiveness of a tablet intervention for supporting the development of early mathematical skills in primary school children in Malawi. A total sample of 318 children, spanning Standards 1–3, attending a medium-sized urban primary school, were randomized to one of three groups: maths tablet intervention, non-maths tablet control, and standard face-to-face practice. Children were pre-tested using tablets at the start of the school year on two tests of mathematical knowledge and a range of basic skills related to scholastic progression. Class teachers then delivered the intervention over an 8-weeks period, for the equivalent of 30-min per day. Technical support was provided from the local Voluntary Service Overseas (VSO). Children were then post-tested on the same assessments as given at pre-test. A final sample of 283 children, from Standards 1–3, present at both pre- and post-test, was analyzed to investigate the effectiveness of the maths tablet intervention. Significant effects of the maths tablet intervention over and above standard face-to-face practice or using tablets without the maths software were found in Standards 2 and 3. In Standard 3 the greater learning gains shown by the maths tablet intervention group compared to both of the control groups on the tablet-based assessments transferred to paper and pencil format, illustrating generalization of knowledge gained. Thus, tablet technology can effectively support early years mathematical skills in developing countries if the software is carefully designed to engage the child in the learning process and the content is grounded in a solid well-constructed curriculum appropriate for the child’s developmental stage. PMID:25954236
Highway Maintenance Equipment Operator: Basic Core. Training Materials.
ERIC Educational Resources Information Center
Perky, Sandra Dutreau; And Others
This basic core curriculum is part of a three-part series of instructional guides designed for use in teaching a course in highway maintenance equipment operation. Addressed in the individual units of the curriculum, after an orientation unit, are safety; basic math; basic hand tools; procedures for loading. lashing, and unloading equipment;…
ERIC Educational Resources Information Center
Collins, Belva C.; Hager, Karen L.; Galloway, Carey Creech
2011-01-01
The purpose of this investigation was to add functional content during core content instruction of language arts, science, and math. The investigation involved three middle school students with moderate disabilities who participated in the state's alternate assessment. During instruction using a constant time delay procedure to teach required…
Teaching with Technology in Physical Education
ERIC Educational Resources Information Center
Eberline, Andrew D.; Richards, K. Andrew R.
2013-01-01
Physical education is at a crossroads in the 21st century. With government mandates related to the No Child Left Behind Act (U.S. Department of Education, 2001) emphasizing core subjects, such as math and literacy, non-core subjects have been deemphasized. The most recent "Shape of the Nation Report" (National Association for Sport and…
Using E-mail in a Math/Computer Core Course.
ERIC Educational Resources Information Center
Gurwitz, Chaya
This paper notes the advantages of using e-mail in computer literacy classes, and discusses the results of incorporating an e-mail assignment in the "Introduction to Mathematical Reasoning and Computer Programming" core course at Brooklyn College (New York). The assignment consisted of several steps. The students first read and responded…
Grizenko, Natalie; Cai, Emmy; Jolicoeur, Claude; Ter-Stepanian, Mariam; Joober, Ridha
2013-11-01
Examine the short-term (acute) effects of methylphenidate (MPH) on math performance in children with attention-deficit hyperactivity disorder (ADHD) and what factors predict improvement in math performance. One hundred ninety-eight children with ADHD participated in a double-blind, placebo-controlled, randomized crossover MPH trial. Math response to MPH was determined through administration of math problems adjusted to their academic level during the Restricted Academic Situation Scale (RASS). Student t tests were conducted to assess change in math performance with psychostimulants. Correlation between change on the RASS and change on the math performance was also examined. Linear regression was performed to determine predictor variables. Children with ADHD improved significantly in their math with MPH (P < 0.001). The degree of improvement on the RASS (which evaluates motor activity and orientation to task) and on math performance on MPH was highly correlated. A child's age at baseline and Wechsler Individual Achievement Test (WIAT)-Numerical Operations standard scores at baseline accounted for 15% of variances for acute math improvement. MPH improves acute math performance in children with ADHD. Younger children with lower math scores (as assessed by the WIAT) improved most on math scores when given psychostimulants. NCT00483106.
NAEP Scores Put Spotlight on Standards: Flat Math Results Also Spur Calls for Teaching Reforms
ERIC Educational Resources Information Center
Cavanagh, Sean
2009-01-01
Fourth grade math scores stagnated for the first time in two decades on a prominent nationwide test, prompting calls for new efforts to improve teacher content knowledge and stirring discussion of the potential benefits of setting more-uniform academic standards across states. The results on the National Assessment of Educational Progress,…
ERIC Educational Resources Information Center
Abraham, Reni A.; Slate, John R.; Saxon, D. Patrick; Barnes, Wally
2014-01-01
In this investigation, we examined the college readiness in math of Texas community college students using archival data from the Texas Higher Education Coordinating Board. Data analyzed were the rate of all first-time in college (FTIC) developmental education students who scored below the Texas college readiness standards in math and the rates of…
Developmental Changes in Working Memory, Updating, and Math Achievement
ERIC Educational Resources Information Center
Lee, Kerry; Bull, Rebecca
2016-01-01
Children with higher working memory or updating (WMU) capacity perform better in math. What is less clear is whether and how this relation varies with grade. Children (N = 673, kindergarten to Grade 9) participated in a 4-year cross-sequential study. Data from 3 WMU (Listening Recall, Mr. X, and an updating task) and a standardized math task…
Hardly Rocket Science: Collaboration with Math and Science Teachers Doesn't Need to Be Complicated
ERIC Educational Resources Information Center
Minkel, Walter
2004-01-01
While librarians routinely collaborate with reading and humanities teachers, they rarely partner with teachers of math and science--to the loss of students. With the current emphasis on standardized testing and declining student performance in math and science, media specialists need to remedy this situation. Why don't librarians click with…
NASA Astrophysics Data System (ADS)
Alexander, Lori L.
Math and science is the core of science, technology, engineering and math (STEM) education. It is the staying power of economic growth, job opportunities, new technology, innovation and emerging research on a global spectrum in the 21st century. Data reports that African American women are underrepresented in the STEM career field. The focus of this project was to specifically address African American middle school girls achievement gap, awareness and interests in the STEM pipeline. Data for this research was gathered by using Action Research Methodology approach using journals, questionnaire survey and dialogue. Five parents/educators participated in this empirical research study by sharing their personal, lived and unapologetic experiences through eight weeks of action/reflection inquiry. The finding of this research is that parents need to be engaged about STEM and the importance for girls to do well academically early in school with math and science.
Mathematics achievement and anxiety and their relation to internalizing and externalizing behaviors.
Wu, Sarah S; Willcutt, Erik G; Escovar, Emily; Menon, Vinod
2014-01-01
Although behavioral difficulties are well documented in reading disabilities, little is known about the relationship between math ability and internalizing and externalizing behaviors. Here, we use standardized measures to investigate the relation among early math ability, math anxiety, and internalizing and externalizing behaviors in a group of 366 second and third graders. Math achievement was significantly correlated with attentional difficulties and social problems but not with internalizing symptoms. The relation between math achievement and externalizing behavioral problems was stronger in girls than in boys. Math achievement was not correlated with trait anxiety but was negatively correlated with math anxiety. Critically, math anxiety differed significantly between children classified as math learning disabled (MLD), low achieving (LA), and typically developing (TD), with math anxiety significantly higher in the MLD and LA groups compared to the TD group. Our findings suggest that, even in nonclinical samples, math difficulties at the earliest stages of formal math learning are associated with attentional difficulties and domain-specific anxiety. These findings underscore the need for further examination of the shared cognitive, neural, and genetic influences underlying problem solving and nonverbal learning difficulties and accompanying internalizing and externalizing behaviors. © Hammill Institute on Disabilities 2013.
Mathematics Achievement and Anxiety and Their Relation to Internalizing and Externalizing Behaviors
Wu, Sarah S.; Willcutt, Erik G.; Escovar, Emily; Menon, Vinod
2013-01-01
Although behavioral difficulties are well documented in reading disabilities, little is known about the relationship between math ability and internalizing and externalizing behaviors. Here, we use standardized measures to investigate the relation among early math ability, math anxiety, and internalizing and externalizing behaviors in a group of 366 second and third graders. Math achievement was significantly correlated with attentional difficulties and social problems but not with internalizing symptoms. The relation between math achievement and externalizing behavioral problems was stronger in girls than in boys. Math achievement was not correlated with trait anxiety but was negatively correlated with math anxiety. Critically, math anxiety differed significantly between children classified as math learning disabled (MLD), low achieving (LA), and typically developing (TD), with math anxiety significantly higher in the MLD and LA groups compared to the TD group. Our findings suggest that, even in nonclinical samples, math difficulties at the earliest stages of formal math learning are associated with attentional difficulties and domain-specific anxiety. These findings underscore the need for further examination of the shared cognitive, neural, and genetic influences underlying problem solving and nonverbal learning difficulties and accompanying internalizing and externalizing behaviors. PMID:23313869
ERIC Educational Resources Information Center
Al-Mashaqbeh, Ibtesam; Al Shurman, Muneera
2015-01-01
This study aimed to investigate the effect of using e-textbooks, activities, games, and worksheets that loaded onto students tablets on first grade students' achievement on their core curriculum (science, math, English, Arabic) compared to the use of the traditional teaching method. It also, investigated the school administration reflection toward…
Effective STEM Programs for Adolescent Girls: Three Approaches and Many Lessons Learned
ERIC Educational Resources Information Center
Mosatche, Harriet S.; Matloff-Nieves, Susan; Kekelis, Linda; Lawner, Elizabeth K.
2013-01-01
While women's participation in math and physical science continues to lag to some degree behind that of men, the disparity is much greater in engineering and computer science. Though boys may outperform girls at the highest levels on math and science standardized tests, girls tend to get better course grades in math and science than boys do.…
ERIC Educational Resources Information Center
Hall, Linda De Zell
2009-01-01
Math skills are essential to daily life, impacting a person's ability to function at home, work, and in the community. Although reading has been the focus in recent years, many students struggle in math. The inability to master math calculation and problem solving has contributed to the rising incidence of student failure, referrals for special…
ERIC Educational Resources Information Center
Eliason, Norma Lynn
2014-01-01
The effects of incorporating an online social networking platform, hosted through Wikispace, as a method to potential improve the performance of middle school students on standardized math assessments was investigated in this study. A principal strategy for any educational setting may provide an instructional approach that improves the delivery of…
NASA Technical Reports Server (NTRS)
McComas, David
2013-01-01
The flight software (FSW) math library is a collection of reusable math components that provides typical math utilities required by spacecraft flight software. These utilities are intended to increase flight software quality reusability and maintainability by providing a set of consistent, well-documented, and tested math utilities. This library only has dependencies on ANSI C, so it is easily ported. Prior to this library, each mission typically created its own math utilities using ideas/code from previous missions. Part of the reason for this is that math libraries can be written with different strategies in areas like error handling, parameters orders, naming conventions, etc. Changing the utilities for each mission introduces risks and costs. The obvious risks and costs are that the utilities must be coded and revalidated. The hidden risks and costs arise in miscommunication between engineers. These utilities must be understood by both the flight software engineers and other subsystem engineers (primarily guidance navigation and control). The FSW math library is part of a larger goal to produce a library of reusable Guidance Navigation and Control (GN&C) FSW components. A GN&C FSW library cannot be created unless a standardized math basis is created. This library solves the standardization problem by defining a common feature set and establishing policies for the library s design. This allows the libraries to be maintained with the same strategy used in its initial development, which supports a library of reusable GN&C FSW components. The FSW math library is written for an embedded software environment in C. This places restrictions on the language features that can be used by the library. Another advantage of the FSW math library is that it can be used in the FSW as well as other environments like the GN&C analyst s simulators. This helps communication between the teams because they can use the same utilities with the same feature set and syntax.
ERIC Educational Resources Information Center
Taylor-Cox, Jennifer
2008-01-01
Differentiating is good teaching. As a math intervention tool, it's power packed. And as a math acceleration instrument it's unbeatable. And differentiation doesn't have to be difficult. Not with "Differentiation in Number & Operations and the Other Math Content Standards, PreK-Grade 2". The author's five-volume series shows you easy and effective…
Swanson, Jodi; Valiente, Carlos; Lemery-Chalfant, Kathryn; Bradley, Robert H; Eggum-Wilkens, Natalie D
2014-01-01
Panel mediation models and fixed-effects models were used to explore longitudinal relations among parents' reactions to children's displays of negative emotions, children's effortful control (EC), and children's math achievement (N = 291; M age in fall of kindergarten = 5.66 years, SD = .39 year) across kindergarten through second grade. Parents reported their reactions and children's EC. Math achievement was assessed with a standardized achievement test. First-grade EC mediated the relation between parents' reactions at kindergarten and second-grade math achievement, beyond stability in constructs across study years. Panel mediation model results suggested that socialization of EC may be one method of promoting math achievement in early school; however, when all omitted time-invariant covariates of EC and math achievement were controlled, first-grade EC no longer predicted second-grade math achievement. © 2014 The Authors. Child Development © 2014 Society for Research in Child Development, Inc.
Kable, Julie A; Coles, Claire D; Taddeo, Elles
2007-08-01
Fetal alcohol syndrome (FAS) has been recognized as a disabling condition with a significant impact on the neurobehavioral functioning of affected individuals, including cognition, behavior, and academic functioning, but little research has been performed on targeted interventions for these children. A socio-cognitive habilitative program focused on improving behavior and math functioning in children 3 to 10 years of age (n=61) was developed and evaluated. The intervention provided parental instruction on FAS, advocacy, and behavioral regulation via workshops and interactive math tutoring with children. All families received parental instruction and were then randomly assigned to either the math instruction or standard psychoeducational care groups. Satisfaction with workshops was very high, with over 90% agreeing that trainers were knowledgeable and materials easy to understand and helpful. Significant gains in knowledge were found for information provided in the instructional groups. At posttesting, caregivers reported fewer problem behaviors on the Achenbach Child Behavior Checklist, Internalizing Problem Behavior, Externalizing Problem Behavior, and Total Problem Behavior summary scales. After 5 months, both groups of children demonstrated gains in math knowledge but significantly higher gains were found in the group receiving direct math instruction. The math treatment group was also more likely to demonstrate a gain of over 1 standard deviation on any of the 4 math outcome measures used. These findings suggest that parents of children with fetal alcohol spectrum disorders (FAS(D)) benefit from instruction in understanding their child's alcohol-related neurological damage and strategies to provide positive behavioral supports and that targeted psychoeducational programs may be able to remediate some of the math deficits associated with prenatal alcohol exposure.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-09
... improved student performance on standardized measures of math and literacy achievement (Pearson, Sawyer... skills in context: Testing the value of enhanced math learning in CTE (Final study). St. Paul, Minnesota...
Insecure attachment is associated with math anxiety in middle childhood.
Bosmans, Guy; De Smedt, Bert
2015-01-01
Children's anxiety for situations requiring mathematical problem solving, a concept referred to as math anxiety, has a unique and detrimental impact on concurrent and long-term mathematics achievement and life success. Little is known about the factors that contribute to the emergence of math anxiety. The current study builds on the hypothesis that math anxiety might reflect a maladaptive affect regulation mechanism that is characteristic for insecure attachment relationships. To test this hypothesis, 87 children primary school children (M age = 10.34 years; SD age = 0.63) filled out questionnaires measuring insecure attachment and math anxiety. They all completed a timed and untimed standardized test of mathematics achievement. Our data revealed that individual differences in math anxiety were significantly related to insecure attachment, independent of age, sex, and IQ. Both tests of mathematics achievement were associated with insecure attachment and this effect was mediated by math anxiety. This study is the first to indicate that math anxiety might develop in the context of insecure parent-child attachment relationships.
Insecure attachment is associated with math anxiety in middle childhood
Bosmans, Guy; De Smedt, Bert
2015-01-01
Children’s anxiety for situations requiring mathematical problem solving, a concept referred to as math anxiety, has a unique and detrimental impact on concurrent and long-term mathematics achievement and life success. Little is known about the factors that contribute to the emergence of math anxiety. The current study builds on the hypothesis that math anxiety might reflect a maladaptive affect regulation mechanism that is characteristic for insecure attachment relationships. To test this hypothesis, 87 children primary school children (Mage = 10.34 years; SDage = 0.63) filled out questionnaires measuring insecure attachment and math anxiety. They all completed a timed and untimed standardized test of mathematics achievement. Our data revealed that individual differences in math anxiety were significantly related to insecure attachment, independent of age, sex, and IQ. Both tests of mathematics achievement were associated with insecure attachment and this effect was mediated by math anxiety. This study is the first to indicate that math anxiety might develop in the context of insecure parent–child attachment relationships. PMID:26528233
Lachance, Jennifer A.; Mazzocco, Michèle M.M.
2009-01-01
We report on a longitudinal study designed to assess possible sex differences in math achievement, math ability, and math-related tasks during the primary school age years. Participants included over 200 children from one public school district. Annual assessments included measures of math ability, math calculation achievement scores, rapid naming and decoding tasks, visual perception tests, visual motor tasks, and reading skills. During select years of the study we also administered tests of counting and math facts skills. We examined whether girls or boys were overrepresented among the bottom or top performers on any of these tasks, relative to their peers, and whether growth rates or predictors of math-related skills differed for boys and girls. Our findings support the notion that sex differences in math are minimal or nonexistent on standardized psychometric tests routinely given in assessments of primary school age children. There was no persistent finding suggesting a male or female advantage in math performance overall, during any single year of the study, or in any one area of math or spatial skills. Growth rates for all skills, and early correlates of later math performance, were comparable for boys and girls. The findings fail to support either persistent or emerging sex differences on non-specialized math ability measures during the primary school age years. PMID:20463851
Reactivity to stress and the cognitive components of math disability in grade 1 children.
MacKinnon McQuarrie, Maureen A; Siegel, Linda S; Perry, Nancy E; Weinberg, Joanne
2014-01-01
This study investigated the relationship among working memory, processing speed, math performance, and reactivity to stress in 83 Grade 1 children. Specifically, 39 children with math disability (MD) were compared to 44 children who are typically achieving (TA) in mathematics. It is the first study to use a physiological index of stress (salivary cortisol levels) to measure children's reactivity while completing tasks that assess the core components of MD: working memory for numbers, working memory for words, digits backward, letter number sequence, digit span forward, processing speed for numbers and words, block rotation, and math tasks. Grade 1 children with MD obtained significantly lower scores on the letter number sequence and quantitative concepts tasks. Higher levels of reactivity significantly predicted poorer performance on the working memory for numbers, working memory for words, and quantitative concepts tasks for Grade 1 children, regardless of math ability. Grade 1 children with MD and higher reactivity had significantly lower scores on the letter number sequence task than the children with MD and low reactivity. The findings suggest that high reactivity impairs performance in working memory and math tasks in Grade 1 children, and young children with high reactivity may benefit from interventions aimed at lowering anxiety in stressful situations, which may improve learning. © Hammill Institute on Disabilities 2012.
Reactivity to Stress and the Cognitive Components of Math Disability in Grade 1 Children
MacKinnon McQuarrie, Maureen A.; Siegel, Linda S.; Perry, Nancy E.; Weinberg, Joanne
2016-01-01
This study investigated the relationship among working memory, processing speed, math performance, and reactivity to stress in 83 Grade 1 children. Specifically, 39 children with math disability (MD) were compared to 44 children who are typically achieving (TA) in mathematics. It is the first study to use a physiological index of stress (salivary cortisol levels) to measure children’s reactivity while completing tasks that assess the core components of MD: working memory for numbers, working memory for words, digits backward, letter number sequence, digit span forward, processing speed for numbers and words, block rotation, and math tasks. Grade 1 children with MD obtained significantly lower scores on the letter number sequence and quantitative concepts tasks. Higher levels of reactivity significantly predicted poorer performance on the working memory for numbers, working memory for words, and quantitative concepts tasks for Grade 1 children, regardless of math ability. Grade 1 children with MD and higher reactivity had significantly lower scores on the letter number sequence task than the children with MD and low reactivity. The findings suggest that high reactivity impairs performance in working memory and math tasks in Grade 1 children, and young children with high reactivity may benefit from interventions aimed at lowering anxiety in stressful situations, which may improve learning. PMID:23124381
ERIC Educational Resources Information Center
Burdman, Pamela
2015-01-01
Since the mid-20th century, the standard U.S. high school and college math curriculum has been based on two years of algebra and a year of geometry, preparing students to take classes in pre-calculus followed by calculus. Students' math pursuits have been differentiated primarily by how far or how rapidly they proceed along a clearly defined…
ERIC Educational Resources Information Center
Stephan, Kelly Purdy
2017-01-01
Improving mathematical student performance in K-12 education has been a focus in the U.S. Students in the U.S. score lower on standardized math assessments than students in other countries. Preparing students for a successful future in a global society requires schools to integrate effective digital technologies in math classroom curricula.…
Multidimensional assessment of self-regulated learning with middle school math students.
Callan, Gregory L; Cleary, Timothy J
2018-03-01
This study examined the convergent and predictive validity of self-regulated learning (SRL) measures situated in mathematics. The sample included 100 eighth graders from a diverse, urban school district. Four measurement formats were examined including, 2 broad-based (i.e., self-report questionnaire and teacher ratings) and 2 task-specific measures (i.e., SRL microanalysis and behavioral traces). Convergent validity was examined across task-difficulty, and the predictive validity was examined across 3 mathematics outcomes: 2 measures of mathematical problem solving skill (i.e., practice session math problems, posttest math problems) and a global measure of mathematical skill (i.e., standardized math test). Correlation analyses were used to examine convergent validity and revealed medium correlations between measures within the same category (i.e., broad-based or task-specific). Relations between measurement classes were not statistically significant. Separate regressions examined the predictive validity of the SRL measures. While controlling all other predictors, a SRL microanalysis metacognitive-monitoring measure emerged as a significant predictor of all 3 outcomes and teacher ratings accounted for unique variance on 2 of the outcomes (i.e., posttest math problems and standardized math test). Results suggest that a multidimensional assessment approach should be considered by school psychologists interested in measuring SRL. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Math Anxiety in Second and Third Graders and Its Relation to Mathematics Achievement
Wu, Sarah S.; Barth, Maria; Amin, Hitha; Malcarne, Vanessa; Menon, Vinod
2012-01-01
Although the detrimental effects of math anxiety in adults are well understood, few studies have examined how it affects younger children who are beginning to learn math in a formal academic setting. Here, we examine the relationship between math anxiety and math achievement in second and third graders. In response to the need for a grade-appropriate measure of assessing math anxiety in this group we first describe the development of Scale for Early Mathematics Anxiety (SEMA), a new measure for assessing math anxiety in second and third graders that is based on the Math Anxiety Rating Scale. We demonstrate the construct validity and reliability of the SEMA and use it to characterize the effect of math anxiety on standardized measures of math abilities, as assessed using the Mathematical Reasoning and Numerical Operations subtests of the Wechsler Individual Achievement Test (WIAT-II). Math achievement, as measured by the WIAT-II Math Composite score, was significantly and negatively correlated with SEMA but not with trait anxiety scores. Additional analyses showed that SEMA scores were strongly correlated with Mathematical Reasoning scores, which involves more complex verbal problem solving. SEMA scores were weakly correlated with Numerical Operations which assesses basic computation skills, suggesting that math anxiety has a pronounced effect on more demanding calculations. We also found that math anxiety has an equally detrimental impact on math achievement regardless of whether children have an anxiety related to numbers or to the situational and social experience of doing math. Critically, these effects were unrelated to trait anxiety, providing the first evidence that the specific effects of math anxiety can be detected in the earliest stages of formal math learning in school. Our findings provide new insights into the developmental origins of math anxiety, and further underscore the need to remediate math anxiety and its deleterious effects on math achievement in young children. PMID:22701105
Math anxiety in second and third graders and its relation to mathematics achievement.
Wu, Sarah S; Barth, Maria; Amin, Hitha; Malcarne, Vanessa; Menon, Vinod
2012-01-01
Although the detrimental effects of math anxiety in adults are well understood, few studies have examined how it affects younger children who are beginning to learn math in a formal academic setting. Here, we examine the relationship between math anxiety and math achievement in second and third graders. In response to the need for a grade-appropriate measure of assessing math anxiety in this group we first describe the development of Scale for Early Mathematics Anxiety (SEMA), a new measure for assessing math anxiety in second and third graders that is based on the Math Anxiety Rating Scale. We demonstrate the construct validity and reliability of the SEMA and use it to characterize the effect of math anxiety on standardized measures of math abilities, as assessed using the Mathematical Reasoning and Numerical Operations subtests of the Wechsler Individual Achievement Test (WIAT-II). Math achievement, as measured by the WIAT-II Math Composite score, was significantly and negatively correlated with SEMA but not with trait anxiety scores. Additional analyses showed that SEMA scores were strongly correlated with Mathematical Reasoning scores, which involves more complex verbal problem solving. SEMA scores were weakly correlated with Numerical Operations which assesses basic computation skills, suggesting that math anxiety has a pronounced effect on more demanding calculations. We also found that math anxiety has an equally detrimental impact on math achievement regardless of whether children have an anxiety related to numbers or to the situational and social experience of doing math. Critically, these effects were unrelated to trait anxiety, providing the first evidence that the specific effects of math anxiety can be detected in the earliest stages of formal math learning in school. Our findings provide new insights into the developmental origins of math anxiety, and further underscore the need to remediate math anxiety and its deleterious effects on math achievement in young children.
ERIC Educational Resources Information Center
Clary, Renee; Wandersee, James
2014-01-01
The "Next Generation Science Standards" (NGSS) focus attention on integrating engineering and math in science instruction. The dinosaur trackway project described in this article shows that it is possible to assign engineering applications to students in disciplines other than physics and to integrate math and engineering applications in…
Integrating Security into the Curriculum
1998-12-01
predicate calculus, discrete math , and finite-state machine the- ory. In addition to applying standard mathematical foundations to constructing hardware and...models, specifi- cations, and the use of formal methods for verification and covert channel analysis. The means for analysis is based on discrete math , information
Capodieci, Agnese; Martinussen, Rhonda
2017-01-01
Objective: The aim of this study was to examine the types of errors made by youth with and without a parent-reported diagnosis of attention deficit and hyperactivity disorder (ADHD) on a math fluency task and investigate the association between error types and youths’ performance on measures of processing speed and working memory. Method: Participants included 30 adolescents with ADHD and 39 typically developing peers between 14 and 17 years old matched in age and IQ. All youth completed standardized measures of math calculation and fluency as well as two tests of working memory and processing speed. Math fluency error patterns were examined. Results: Adolescents with ADHD showed less proficient math fluency despite having similar math calculation scores as their peers. Group differences were also observed in error types with youth with ADHD making more switch errors than their peers. Conclusion: This research has important clinical applications for the assessment and intervention on math ability in students with ADHD. PMID:29075227
Capodieci, Agnese; Martinussen, Rhonda
2017-01-01
Objective: The aim of this study was to examine the types of errors made by youth with and without a parent-reported diagnosis of attention deficit and hyperactivity disorder (ADHD) on a math fluency task and investigate the association between error types and youths' performance on measures of processing speed and working memory. Method: Participants included 30 adolescents with ADHD and 39 typically developing peers between 14 and 17 years old matched in age and IQ. All youth completed standardized measures of math calculation and fluency as well as two tests of working memory and processing speed. Math fluency error patterns were examined. Results: Adolescents with ADHD showed less proficient math fluency despite having similar math calculation scores as their peers. Group differences were also observed in error types with youth with ADHD making more switch errors than their peers. Conclusion: This research has important clinical applications for the assessment and intervention on math ability in students with ADHD.
ERIC Educational Resources Information Center
Bombaugh, Ruth; Jefferys, Lynn
2006-01-01
In this article, the authors demonstrate how a simple math lab incorporating monthly height measurements can address multiple science and mathematics standards such as collecting, organizing, and describing data in context; drawing conclusions; and making hypotheses from these data. Although the yearlong math lab can be accomplished in either the…
[German version of the math anxiety questionnaire (FRA) for 6- to 9-year-old children].
Krinzinger, Helga; Kaufmann, Liane; Dowker, Ann; Thomas, Gemma; Graf, Martina; Nuerk, Hans-Christoph; Willmes, Klaus
2007-09-01
Is the FRA a reliable and valid instrument? Are there any gender differences concerning math anxiety? Are there any developmental changes in this regard in the course of the early grades? Together with the dyscalculia test TEDI-MATH, the FRA was presented to a total of 450 children from the first to the third grade of primary school (at least 40 girls and 40 boys per semester). The total scale has an internal consistency (Cronbach's alpha) between 0.83 and 0.91. Correlations between arithmetic skills and the FRA scales were mostly significant. The significantly higher negative scores for girls were taken into account by providing standard scores corrected for gender. No systematic developmental changes could be observed. The FRA is the first German math anxiety questionnaire for primary school children. High reliability, standard scores corrected for gender, and economic handling make it an instrument well suited for use in clinical settings (e.g., dyscalculia diagnostics and intervention).
The influence of math anxiety on symbolic and non-symbolic magnitude processing.
Dietrich, Julia F; Huber, Stefan; Moeller, Korbinian; Klein, Elise
2015-01-01
Deficits in basic numerical abilities have been investigated repeatedly as potential risk factors of math anxiety. Previous research suggested that also a deficient approximate number system (ANS), which is discussed as being the foundation for later math abilities, underlies math anxiety. However, these studies examined this hypothesis by investigating ANS acuity using a symbolic number comparison task. Recent evidence questions the view that ANS acuity can be assessed using a symbolic number comparison task. To investigate whether there is an association between math anxiety and ANS acuity, we employed both a symbolic number comparison task and a non-symbolic dot comparison task, which is currently the standard task to assess ANS acuity. We replicated previous findings regarding the association between math anxiety and the symbolic distance effect for response times. High math anxious individuals showed a larger distance effect than less math anxious individuals. However, our results revealed no association between math anxiety and ANS acuity assessed using a non-symbolic dot comparison task. Thus, our results did not provide evidence for the hypothesis that a deficient ANS underlies math anxiety. Therefore, we propose that a deficient ANS does not constitute a risk factor for the development of math anxiety. Moreover, our results suggest that previous interpretations regarding the interaction of math anxiety and the symbolic distance effect have to be updated. We suggest that impaired number comparison processes in high math anxious individuals might account for the results rather than deficient ANS representations. Finally, impaired number comparison processes might constitute a risk factor for the development of math anxiety. Implications for current models regarding the origins of math anxiety are discussed.
The influence of math anxiety on symbolic and non-symbolic magnitude processing
Dietrich, Julia F.; Huber, Stefan; Moeller, Korbinian; Klein, Elise
2015-01-01
Deficits in basic numerical abilities have been investigated repeatedly as potential risk factors of math anxiety. Previous research suggested that also a deficient approximate number system (ANS), which is discussed as being the foundation for later math abilities, underlies math anxiety. However, these studies examined this hypothesis by investigating ANS acuity using a symbolic number comparison task. Recent evidence questions the view that ANS acuity can be assessed using a symbolic number comparison task. To investigate whether there is an association between math anxiety and ANS acuity, we employed both a symbolic number comparison task and a non-symbolic dot comparison task, which is currently the standard task to assess ANS acuity. We replicated previous findings regarding the association between math anxiety and the symbolic distance effect for response times. High math anxious individuals showed a larger distance effect than less math anxious individuals. However, our results revealed no association between math anxiety and ANS acuity assessed using a non-symbolic dot comparison task. Thus, our results did not provide evidence for the hypothesis that a deficient ANS underlies math anxiety. Therefore, we propose that a deficient ANS does not constitute a risk factor for the development of math anxiety. Moreover, our results suggest that previous interpretations regarding the interaction of math anxiety and the symbolic distance effect have to be updated. We suggest that impaired number comparison processes in high math anxious individuals might account for the results rather than deficient ANS representations. Finally, impaired number comparison processes might constitute a risk factor for the development of math anxiety. Implications for current models regarding the origins of math anxiety are discussed. PMID:26579012
ERIC Educational Resources Information Center
Headen, Renee Ashley
2014-01-01
The purpose of this study was to determine if there is a difference over time on standardized test scores for reading and math between fourth grade students attending Title I and Non-Title I schools in three select school systems within District 8 of North Alabama. In an effort to determine if Title I schools are successfully closing the…
Selected Studies on Math Placement.
ERIC Educational Resources Information Center
Akst, Geoffrey; Hirsch, Lewis
1991-01-01
Drawing from a review of the literature and direct experience, this paper discusses key issues in developmental mathematics placement. First, the controversial practice of mandatory placement is examined, citing research results that support the practice and those that do not. Next, the diversity of developmental math placement standards is…
Gum chewing affects academic performance in adolescents
USDA-ARS?s Scientific Manuscript database
Chewing gum may have an impact on improved memory during specific tasks of recognition and sustained attention. Research objective was to determine the effect of gum chewing on standardized test scores and math class grades of eighth grade students. Four math classes, 108 students, were randomized i...
ERIC Educational Resources Information Center
Clarke, Jacqueline, Ed.
1999-01-01
Presents hand-on, standards-based activities in language arts, math, science, and social studies, including a daily almanac; bookmark buddies; word palettes; bowling for numbers; math thought teasers; plant puzzles; fingerprint fun; a travel bureau; and an end-of-the-year bulletin board of people involved in interesting activities. Reproducible…
Kenney, E L; Gortmaker, S L; Davison, K K; Bryn Austin, S
2015-09-01
Worse educational outcomes for obese children regardless of academic ability may begin early in the life course. This study tested whether an increase in children's relative weight predicted lower teacher- and child-perceived academic ability even after adjusting for standardized test scores. Three thousand three hundred and sixty-two children participating in the Early Childhood Longitudinal Study-Kindergarten Cohort were studied longitudinally from fifth to eighth grade. Heights, weights, standardized test scores in maths and reading, and teacher and self-ratings of ability in maths and reading were measured at each wave. Longitudinal, within-child linear regression models estimated the impact of a change in body mass index (BMI) z-score on change in normalized teacher and student ratings of ability in reading and maths, adjusting for test score. A change in BMI z-score from fifth to eighth grade was not independently associated with a change in standardized test scores. However, adjusting for standardized test scores, an increasing BMI z-score was associated with significant reductions in teacher's perceptions of girls' ability in reading (-0.12, 95% confidence interval (CI): -0.23, -0.03, P=0.03) and boys' ability in math (-0.30, 95% CI: -0.43, -0.17, P<0.001). Among children who were overweight at fifth grade and increased in BMI z-score, there were even larger reductions in teacher ratings for boys' reading ability (-0.37, 95% CI: -0.71, -0.03, P=0.03) and in girls' self-ratings of maths ability (-0.47, 95% CI: -0.83, -0.11, P=0.01). From fifth to eighth grade, increase in BMI z-score was significantly associated with worsening teacher perceptions of academic ability for both boys and girls, regardless of objectively measured ability (standardized test scores). Future research should examine potential interventions to reduce bias and promote positive school climate.
Program Evaluation of Math Factual Operations for Understanding
ERIC Educational Resources Information Center
Rouse, Julie A.
2013-01-01
Deficiencies in mathematics standardized test scores prompted school district policymakers to consider implementing a program designed to increase students' basic multiplication fact skills. This study was an evaluation of the Math Factual Operations for Understanding program. The program, marketed with a martial arts theme, was intended to…
Math Interventions for Students with Autism Spectrum Disorder: A Best-Evidence Synthesis
ERIC Educational Resources Information Center
King, Seth A.; Lemons, Christopher J.; Davidson, Kimberly A.
2016-01-01
Educators need evidence-based practices to assist students with disabilities in meeting increasingly rigorous standards in mathematics. Students with autism spectrum disorder (ASD) are increasingly expected to demonstrate learning of basic and advanced mathematical concepts. This review identifies math intervention studies involving children and…
A Quantitative and Qualitative Study of Math Anxiety among Preservice Teachers
ERIC Educational Resources Information Center
Sloan, Tina Rye
2010-01-01
This project investigated the effects of a standards-based mathematics methods course on the mathematics anxiety levels of preservice teachers. The qualitative portion of the study examined aspects of a math methods course that affected mathematics anxiety levels and the antecedents of mathematics anxiety. Findings revealed a significant…
"Lettuce" Learn Math: Teaching Mathematics with Seeds and Centimeters
ERIC Educational Resources Information Center
Rickard, Laura N.; Wilson, Colette
2006-01-01
"Lettuce Learn Math" is an interdisciplinary program that has effectively linked a small-scale agricultural production system to a sixth-grade mathematics and science curriculum. The mathematical concepts and skills, including measurement and geometry, taught in this project met and often exceeded the standards set by New York state for…
Preschool acuity of the approximate number system correlates with school math ability.
Libertus, Melissa E; Feigenson, Lisa; Halberda, Justin
2011-11-01
Previous research shows a correlation between individual differences in people's school math abilities and the accuracy with which they rapidly and nonverbally approximate how many items are in a scene. This finding is surprising because the Approximate Number System (ANS) underlying numerical estimation is shared with infants and with non-human animals who never acquire formal mathematics. However, it remains unclear whether the link between individual differences in math ability and the ANS depends on formal mathematics instruction. Earlier studies demonstrating this link tested participants only after they had received many years of mathematics education, or assessed participants' ANS acuity using tasks that required additional symbolic or arithmetic processing similar to that required in standardized math tests. To ask whether the ANS and math ability are linked early in life, we measured the ANS acuity of 200 3- to 5-year-old children using a task that did not also require symbol use or arithmetic calculation. We also measured children's math ability and vocabulary size prior to the onset of formal math instruction. We found that children's ANS acuity correlated with their math ability, even when age and verbal skills were controlled for. These findings provide evidence for a relationship between the primitive sense of number and math ability starting early in life. 2011 Blackwell Publishing Ltd.
Preschool Acuity of the Approximate Number System Correlates with School Math Ability
Libertus, Melissa E.; Feigenson, Lisa; Halberda, Justin
2012-01-01
Previous research shows a correlation between individual differences in people’s school math abilities and the accuracy with which they rapidly and nonverbally approximate how many items are in a scene. This finding is surprising because the Approximate Number System (ANS) underlying numerical estimation is shared with infants and non-human animals who never acquire formal mathematics. However, it remains unclear whether the link between individual differences in math ability and the ANS depends on formal mathematics instruction. Earlier studies demonstrating this link tested participants only after they had received many years of mathematics education, or assessed participants’ ANS acuity using tasks that required additional symbolic or arithmetic processing similar to that required in standardized math tests. To ask whether the ANS and math ability are linked early in life, we measured the ANS acuity of 200 3- to 5-year-old children using a task that did not also require symbol use or arithmetic calculation. We also measured children’s math ability and vocabulary size prior to the onset of formal math instruction. We found that children’s ANS acuity correlated with their math ability, even when age and verbal skills were controlled for. These findings provide evidence for a relationship between the primitive sense of number and math ability starting early in life. PMID:22010889
Curriculum that incorporates good physics and good math -- AT THE SAME TIME!
NASA Astrophysics Data System (ADS)
Weisel, Derek
2007-03-01
Anyone with experience in physics education knows there is considerable consternation about how much trouble students can have during their first experience with physics. It is a common opinion that many students struggle in physics because of a weak math background. Recent research has shown that this is not always the case. Many students who have shown a tested proficiency in mathematics still struggle in physics. It is an important question to ask how a student who excels in mathematics can still struggle in physics. If this question can be answered it may open up new methods of instruction to aid all students. After discussion of this question, examples of curriculum that simultaneously meet common standards of physics and common standards of math will be shown.
Cold-Atom Clocks on Earth and in Space
NASA Astrophysics Data System (ADS)
Lemonde, Pierre; Laurent, Philippe; Santarelli, Giorgio; Abgrall, Michel; Sortais, Yvan; Bize, Sebastien; Nicolas, Christophe; Zhang, Shougang; Clairon, Andre; Dimarcq, Noel; Petit, Pierre; Mann, Antony G.; Luiten, Andre N.; Chang, Sheng; Salomon, Christophe
We present recent progress on microwave clocks that make use of laser-cooled atoms. With an ultra-stable cryogenic sapphire oscillator as interrogation oscillator, a cesium fountain operates at the quantum projection noise limit. With 6 x10^5 detected atoms, the relative frequency stability is 4 x10^-14 &1/2circ, where τ is the integration time in seconds. This stability is comparable to that of hydrogen masers. At τ=2 x10^4s, the measured stability reaches 6 x10^-16. A 87Rb fountain has also been constructed and the 87Rb ground-state hyperfine energy has been compared to the Cs primary standard with a relative accuracy of 2.5 x10^-15. The 87Rb collisional shift is found to be at least 30 times below that of cesium. We also describe a transportable cesium fountain, which will be used for frequency comparisons with an accuracy of 10-15 or below. Finally, we present the details of a space mission for a cesium standard which has been selected by the European Space Agency (ESA) to fly on the International Space Station in 2003.
Neutrino-Induced Nucleosynthesis in Helium Shells of Early Core-Collapse Supernovae
NASA Astrophysics Data System (ADS)
Banerjee, Projjwal; Qian, Yong-Zhong; Heger, Alexander; Haxton, Wick
2016-02-01
We summarize our studies on neutrino-driven nucleosynthesis in He shells of early core-collapse supernovae with metallicities of Z ≲ 10-3 Z⊙. We find that for progenitors of ˜ 11-15 M⊙, the neutrons released by 4He(
Saxon Math. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2010
2010-01-01
"Saxon Math" is a textbook series covering grades K-12 based on incremental development and continual review of mathematical concepts to give students time to learn and practice concepts throughout the year. The series is aligned with standards of the National Council of Teachers of Mathematics (NCTM) and various states, and can be…
From Square Dance to Mathematics
ERIC Educational Resources Information Center
Bremer, Zoe
2010-01-01
In this article, the author suggests a cross-curricular idea that can link with PE, dance, music and history. Teacher David Schmitz, a maths teacher in Illinois who was also a square dance caller, had developed a maths course that used the standard square dance syllabus to teach mathematical principles. He presents an intensive, two-week course…
Algebra for All. Research Brief
ERIC Educational Resources Information Center
Bleyaert, Barbara
2009-01-01
The call for "algebra for all" is not a recent phenomenon. Concerns about the inadequacy of math (and science) preparation in America's high schools have been a steady drumbeat since the 1957 launch of Sputnik; a call for raising standards and the number of math (and science) courses required for graduation has been a part of countless…
The Influence of Ability Grouping on Math Achievement in a Rural Middle School
ERIC Educational Resources Information Center
Pritchard, Robert R.
2012-01-01
The researcher examined the academic performance of low-tracked students (n = 156) using standardized math test scores to determine whether there is a statistically significant difference in achievement depending on academic environment, tracked or nontracked. An analysis of variance (ANOVA) was calculated, using a paired samples t-test for a…
Parents' Perspectives on Hmong Students' Academic Challenges in Reading and Math
ERIC Educational Resources Information Center
Lee, Kenneth Kong
2014-01-01
The purpose of this survey study was to investigate the relationship between Hmong students' academic achievements and Hmong parental involvement, home environment, and acculturation adjustment as measured by the Math and English Language Arts sections of the California Standard Test in the United States from parents' perspective regarding student…
Effects of an Intervention on Math Achievement for Students with Learning Disabilities
ERIC Educational Resources Information Center
Kitchens, Vivian D.
2012-01-01
Students with learning disabilities score lower than other at-risk groups on state standardized assessment tests. Educators are searching for intervention strategies to improve math achievement for students with learning disabilities. Using the theoretical framework of behaviorism, the purpose of this quantitative one group pre post test design…
Effects of an Intervention on Math Achievement for Students with Learning Disabilities
ERIC Educational Resources Information Center
Kitchens, Vivian D.; Deris, Aaron R.; Simon, Marilyn K.
2016-01-01
Students with learning disabilities score lower than other at-risk groups on state standardized assessment tests. Educators are searching for intervention strategies to improve math achievement for students with learning disabilities. The study examined the effects of a mathematics intervention known as Cover, Copy, and Compare for learning basic…
Examining Parents' Experiences in a Standards-Based Mathematics Classroom
ERIC Educational Resources Information Center
Blume, Deborah
2012-01-01
Recent efforts to reform mathematics education in the United States have caused confusion for those at home. Parents and caregivers who learned math through traditional approaches are unsure how to help their children with math taught in unfamiliar ways (Peressini, 1998; Remillard & Jackson, 2006). Many educational researchers believe that, in…
The Impact of Graphing Calculators on Math Achievement: A Quantitative, Longevity Analysis
ERIC Educational Resources Information Center
Arbini, Corey
2016-01-01
This study examined the impact of high school students' graphing calculator usage on their math achievement over time. Achievement growth was measured using nationally-recognized standardized test scores from EXPLORE, PLAN, and ACT. Two groups of students were used in this study; one group had graphing calculators integrated beginning in…
Optical Frequency Standards Based on Neutral Atoms and Molecules
NASA Astrophysics Data System (ADS)
Riehle, Fritz; Helmcke, Juergen
The current status and prospects of optical frequency standards based on neutral atomic and molecular absorbers are reviewed. Special attention is given to an optical frequency standard based on cold Ca atoms which are interrogated with a pulsed excitation scheme leading to resolved line structures with a quality factor Q > 10^12. The optical frequency was measured by comparison with PTB's primary clock to be νCa = 455 986 240 494.13 kHz with a total relative uncertainty of 2.5 x10^-13. After a recent recommendation of the International Committee of Weights and Measures (CIPM), this frequency standard now represents one of the most accurate realizations of the length unit.
McCauley, James B; Zajic, Matthew C; Oswald, Tasha M; Swain-Lerro, Lindsey E; McIntyre, Nancy C; Harris, Michelle A; Trzesniewski, Kali; Mundy, Peter C; Solomon, Marjorie
2018-05-01
A typically developing student's perceptions of his or her own capabilities (academic self-concept), is predictive of later academic achievement. However, little is known about academic self-concept in youth with autism spectrum disorder (ASD). To understand whether students math self-concept and reading self-concept predicted their performance, 44 school-aged children and adolescents with ASD and 36 age-matched individuals with typical development (TYP) rated their perceived math and reading abilities and were administered standardized achievement measures. Results showed self-concept was predictive of performance in math and reading in the TYP group. For youth with ASD, there was agreement between self-concept and performance only in math. These findings suggest that educators should be cautious when interpreting the self-assessments of reading ability in students with ASD.
Spatial ability as a predictor of math achievement: the importance of sex and handedness patterns.
Casey, M B; Pezaris, E; Nuttall, R L
1992-01-01
In accordance with major theories of handedness and brain organization, differential predictors for math achievement were found as a function of sex and handedness subgroups among eighth graders. Although there was no difference in absolute levels of performance as a function of either sex or handedness, predictive structures did differ. Regression analyses showed that spatial ability predicts math achievement for: (1) girls with anomalous dominance (non-right-handers and right-handers with non-right-handed relatives), and (2) all boys (independent of handedness group). In contrast, for the standard dominance girls who are right-handed with all right-handed relatives (considered strongly left-hemisphere dominant for language), spatial ability did not predict for math achievement. These findings occurred, even when scholastic aptitude and verbal achievement factors were controlled. It was concluded that further studies of sex differences in math achievement should consider subgroup differences within the sexes, based on handedness patterns.
Regression Model Optimization for the Analysis of Experimental Data
NASA Technical Reports Server (NTRS)
Ulbrich, N.
2009-01-01
A candidate math model search algorithm was developed at Ames Research Center that determines a recommended math model for the multivariate regression analysis of experimental data. The search algorithm is applicable to classical regression analysis problems as well as wind tunnel strain gage balance calibration analysis applications. The algorithm compares the predictive capability of different regression models using the standard deviation of the PRESS residuals of the responses as a search metric. This search metric is minimized during the search. Singular value decomposition is used during the search to reject math models that lead to a singular solution of the regression analysis problem. Two threshold dependent constraints are also applied. The first constraint rejects math models with insignificant terms. The second constraint rejects math models with near-linear dependencies between terms. The math term hierarchy rule may also be applied as an optional constraint during or after the candidate math model search. The final term selection of the recommended math model depends on the regressor and response values of the data set, the user s function class combination choice, the user s constraint selections, and the result of the search metric minimization. A frequently used regression analysis example from the literature is used to illustrate the application of the search algorithm to experimental data.
ERIC Educational Resources Information Center
Ogden, Michele A.
2012-01-01
Elementary students' math achievement in the United States is mediocre in comparison to that of students in other countries. Students in California perform below the national average on standardized tests. Reform efforts in mathematics education aim at proficiency in fact fluency, procedural knowledge, conceptual knowledge, and application of…
ERIC Educational Resources Information Center
Price, Barbara A.; Randall, Cindy H.; Frederick, Joshua; Gáll, József; Jones, Thomas W.
2012-01-01
In recent decades, Hungary and the United States have embraced new philosophies in their approach to teaching mathematics. Hungary's changes were driven by social and economic shifts, the U.S. by the creation of national standards. In both countries, university faculty members complain about students' poor math skills. Professors from three…
States Raise Proficiency Standards in Math and Reading
ERIC Educational Resources Information Center
Peterson, Paul E.; Ackerman, Matthew
2015-01-01
Since No Child Left Behind (NCLB) was enacted into federal law in 2002, states have been required to test students in grades 3 through 8 and again in high school to assess math and reading achievement. The federal law also asks states to establish the performance level students must reach on the exams in order to be identified as…
ERIC Educational Resources Information Center
Gagnon, Joseph Calvin; Maccini, Paula
2007-01-01
A random sample of 167 secondary special and general educators who taught math to students with emotional and behavioral disorders (EBD) and learning disabilities (LD) responded to a mail survey. The survey examined teacher perceptions of (a) definition of math; (b) familiarity with course topics; (c) effectiveness of methods courses; (d)…
The Effect of Teacher Pedagogical Content Knowledge and the Instruction of Middle School Geometry
ERIC Educational Resources Information Center
Lenhart, Sara Talley
2010-01-01
This study investigated the relationship between middle school math teacher pedagogical content knowledge as gathered from a teacher assessment and student Standards of Learning scores. Nine middle-school math teachers at two rural schools were assessed for their pedagogical content knowledge in geometry and measurement in the specific area of…
Old Math, New Math: Parents' Experiences with Standards-Based Reform
ERIC Educational Resources Information Center
Remillard, Janine T.; Jackson, Kara
2006-01-01
We focus on how African American parents in a low-income neighborhood experience, interpret, and respond to current reform efforts as implemented in their children's school. As part of a larger project on parent-child numeracy connections in an elementary school, we interviewed 10 parents and held 2 focus group meetings, during which parents…
ERIC Educational Resources Information Center
Actuarial Foundation, 2013
2013-01-01
"Solving the Unknown with Algebra" is a new math program aligned with the National Council of Teachers of Mathematics (NCTM) standards and designed to help students practice pre-algebra skills including using formulas, solving for unknowns, and manipulating equations. Developed by The Actuarial Foundation with Scholastic, this program provides…
Patterns of Cognitive Strengths and Weaknesses and Relationships to Math Errors
ERIC Educational Resources Information Center
Koriakin, Taylor; White, Erica; Breaux, Kristina C.; DeBiase, Emily; O'Brien, Rebecca; Howell, Meiko; Costa, Michael; Liu, Xiaochen; Pan, Xingyu; Courville, Troy
2017-01-01
This study investigated cognitive patterns of strengths and weaknesses (PSW) and their relationship to patterns of math errors on the Kaufman Test of Educational Achievement (KTEA-3). Participants, ages 5 to 18, were selected from the KTEA-3 standardization sample if they met one of two PSW profiles: high crystallized ability (Gc) paired with low…
Academic Intervention: Acceleration and Remediation
ERIC Educational Resources Information Center
Franklin, Barbara Gail
2016-01-01
Eighth grade math students must pass a standards based test to be promoted to the next grade. Students who were at risk of failing the state's annual test faced impending retention. The purpose of this quasi-experimental study was to see if an intensive nine-week (55 min per day) remedial Math Connection (MC) class for 67 suburban, eighth grade…
ERIC Educational Resources Information Center
Partnership for 21st Century Skills, 2011
2011-01-01
The Partnership for 21st Century Skills (P21) has forged alliances with key national organizations representing the core academic subjects, including Social Studies, English, Math, Science, Geography, World Languages and the Arts. These collaborations have resulted in the development of 21st Century Skills Maps that illustrate the essential…
Mathematics. Ohio's Competency Analysis Profile.
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Vocational Instructional Materials Lab.
This competency analysis profile contains eight lists of mathematics skills that have been identified by employers and verified by math-certified instructors as being core competencies for eight groups of occupational areas. Each list is organized into subsections dealing with the following: numbers and number relations, measurement, data analysis…
Art Integration and Cognitive Development
ERIC Educational Resources Information Center
Baker, Dawn
2013-01-01
The arts have long been valued for their aesthetic contributions to education, and studies have been conducted to demonstrate their contribution to academic performance in an attempt to justify their inclusion in the curriculum. Art integration involves learning core content subjects (math, reading, language, science, social studies) through the…
Estes, R E; Baum, D L; Bray, N M
1986-04-01
The purpose of this study was to investigate the performance of junior high school learning disabled students on standard and modified administrations of selected subtests from the Iowa Tests of Basic Skills. No significant differences were noted for correlations between types of administration and teachers' ratings on any of the subtest comparisons. Grade placements for Vocabulary and Reading Comprehension using the modified administration were significantly higher than those using the standard administration and more closely aligned with teachers' ratings. Math Concept and Math Problem-solving grade-placement scores did not differ by type of administration; teachers' ratings were higher than those produced by either testing format.
Zigmond, Jessica; Daly, Rich
2012-09-17
As Washington wrestles with looming mandatory cuts forced by a deficit agreement, the AMA, AHA and ANA are warning of massive job cuts. "If I've got a choice of maintaining these beneficial programs or contract them for my core mission, you're going to choose your core mission. And that will cost the community more in terms of health and of dollars," says Rich Morrison, of Adventist Health System.
Physical fitness and academic performance in middle school students.
Bass, Ronald W; Brown, Dale D; Laurson, Kelly R; Coleman, Margaret M
2013-08-01
The purpose of this study was to determine whether physical fitness is linked to academic success in middle school students. The FITNESSGRAM test battery assessed students (n = 838) in the five components of health-related fitness. The Illinois Standardized Achievement Test (ISAT) was used to assess academic achievement in reading and math. The largest correlations were seen for aerobic fitness and muscular endurance (ranging from 0.12 to 0.27, all p < 0.05). Boys in the Healthy Fitness Zone (HFZ) for aerobic fitness or muscular endurance were 2.5-3 times more likely to pass their math or reading exams. Girls in the HFZ for aerobic fitness were approximately 2-4 times as likely to meet or exceed reading and math test standards. Aerobic capacity and muscular endurance seem to positively affect academic achievement in middle school students. ©2013 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
Bieg, Madeleine; Goetz, Thomas; Wolter, Ilka; Hall, Nathan C
2015-01-01
Mathematics is associated with anxiety for many students; an emotion linked to lower well-being and poorer learning outcomes. While findings typically show females to report higher trait math anxiety than males, no gender differences have to date been found in state (i.e., momentary) math anxiety. The present diary study aimed to replicate previous findings in investigating whether levels of academic self-concept was related to this discrepancy in trait vs. state anxiety measures. Additionally, mathematics-related gender stereotype endorsement (mathematics is a male domain) was investigated as an additional predictor of the trait-state discrepancy. The sample included 755 German 9th and 10th graders who completed self-report measures of trait math anxiety, math self-concept, and gender stereotype endorsement, in addition to state measures of anxiety after math classes by use of a standardized diary for 2-3 weeks (N within = 6207). As expected, females reported higher trait math anxiety but no gender differences were found for state math anxiety. Also in line with our assumptions, multilevel analyses showed the discrepancy between trait and state anxiety to be negatively related to students' self-concept (i.e., a lower discrepancy for students with higher self-concepts). Furthermore, gender stereotype endorsement differentially predicted the trait-state discrepancy: When controlling for self-concept in mathematics, females who endorsed the gender stereotype of math being a male domain more strongly overestimated their trait math anxiety as compared to their state anxiety whereas this effect was not significant for males. The present findings suggest that gender stereotype endorsement plays an important role in explaining gender differences in math anxiety above and beyond academic self-concept. Implications for future research and educational practice are discussed.
Bieg, Madeleine; Goetz, Thomas; Wolter, Ilka; Hall, Nathan C.
2015-01-01
Mathematics is associated with anxiety for many students; an emotion linked to lower well-being and poorer learning outcomes. While findings typically show females to report higher trait math anxiety than males, no gender differences have to date been found in state (i.e., momentary) math anxiety. The present diary study aimed to replicate previous findings in investigating whether levels of academic self-concept was related to this discrepancy in trait vs. state anxiety measures. Additionally, mathematics-related gender stereotype endorsement (mathematics is a male domain) was investigated as an additional predictor of the trait-state discrepancy. The sample included 755 German 9th and 10th graders who completed self-report measures of trait math anxiety, math self-concept, and gender stereotype endorsement, in addition to state measures of anxiety after math classes by use of a standardized diary for 2–3 weeks (Nwithin = 6207). As expected, females reported higher trait math anxiety but no gender differences were found for state math anxiety. Also in line with our assumptions, multilevel analyses showed the discrepancy between trait and state anxiety to be negatively related to students' self-concept (i.e., a lower discrepancy for students with higher self-concepts). Furthermore, gender stereotype endorsement differentially predicted the trait-state discrepancy: When controlling for self-concept in mathematics, females who endorsed the gender stereotype of math being a male domain more strongly overestimated their trait math anxiety as compared to their state anxiety whereas this effect was not significant for males. The present findings suggest that gender stereotype endorsement plays an important role in explaining gender differences in math anxiety above and beyond academic self-concept. Implications for future research and educational practice are discussed. PMID:26441778
Kesler, Shelli R.; Sheau, Kristen; Koovakkattu, Della; Reiss, Allan L.
2011-01-01
Number sense is believed to be critical for math development. It is putatively an implicitly learned skill and may therefore have limitations in terms of being explicitly trained, particularly in individuals with altered neurodevelopment. A case series study was conducted using an adaptive, computerized program that focused on number sense and general problem solving skills was designed to investigate training effects on performance as well as brain function in a group of children with Turner syndrome who are at risk for math difficulties and altered development of math-related brain networks. Standardized measurements of math and math-related cognitive skills as well as functional magnetic resonance imaging (fMRI) were used to assess behavioral and neurobiologic outcomes following training. Participants demonstrated significantly increased basic math skills, including number sense, and calculation as well as processing speed, cognitive flexibility and visual-spatial processing skills. With the exception of calculation, increased scores also were clinically significant (i.e. recovered) based on reliable change analysis. Participants additionally demonstrated significantly increased bilateral parietal lobe activation and decreased frontal-striatal and mesial temporal activation following the training program. These findings show proof of concept for an accessible training approach that may be potentially associated with improved number sense, math and related skills, as well as functional changes in math-related neural systems, even among individuals at risk for altered brain development. PMID:21714745
Science Education for Students with Special Needs
ERIC Educational Resources Information Center
Villanueva, Mary Grace; Taylor, Jonte; Therrien, William; Hand, Brian
2012-01-01
Students with special needs tend to show significantly lower achievement in science than their peers. Reasons for this include severe difficulties with academic skills (i.e. reading, math and writing), behaviour problems and limited prior understanding of core concepts background knowledge. Despite this bleak picture, much is known on how to…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quirk, W.J.; Canada, J.; de Vore, L.
1994-04-01
This issue highlights the Lawrence Livermore National Laboratory`s 1993 accomplishments in our mission areas and core programs: economic competitiveness, national security, energy, the environment, lasers, biology and biotechnology, engineering, physics, chemistry, materials science, computers and computing, and science and math education. Secondary topics include: nonproliferation, arms control, international security, environmental remediation, and waste management.
ERIC Educational Resources Information Center
James, Olive
2011-01-01
The purpose of this study was three-fold. First, the study determined the effects of mathematics teaching strategies on the performance of elementary students on a state-standardized test. More specifically, this study was concerned with the influence of the Everyday Math teaching strategies versus the Sharon Wells' teaching strategies on the…
ERIC Educational Resources Information Center
Lane, Dallas Marie
2017-01-01
The purpose of this study was to determine if there is a relationship between the classroom organizational structure and MCT2 test scores of fifth-grade math students. The researcher gained insight regarding which structure teachers believe is most beneficial to them and students, and whether or not their belief of classroom organizational…
ERIC Educational Resources Information Center
Regional Laboratory for Educational Improvement of the Northeast & Islands, Andover, MA.
This packet includes reprints of journal articles and other resources concerning the assessment of science and math in small, rural elementary schools. Articles include: (1) "Standards, Assessment, and Educational Quality" (Lauren B. Resnick); (2) "A True Test: Toward More Authentic and Equitable Assessment" (Grant Wiggins); (3) "How World-Class…
Examining the Response Process of Fifth Grade Students during Social Studies Instruction
ERIC Educational Resources Information Center
Kay, Victoria
2011-01-01
Over the last decade there has been an increased focus on high-stakes standardized tests in reading and math. Social studies has been devalued in the classroom as many teachers and administrators focus their attention on reading and math instruction to avoid the punitive consequences of the No Child Left Behind Act. (2001). Based on this…
The Alignment of easyCBM[R] Math Measures to Curriculum Standards. Technical Report #1002
ERIC Educational Resources Information Center
Nese, Joseph F. T.; Lai, Cheng-Fei; Anderson, Daniel; Park, Bitnara Jasmine; Tindal, Gerald; Alonzo, Julie
2010-01-01
The purpose of this study was to examine the alignment of the easyCBM[R] mathematics benchmark and progress monitoring measures to the National Council of Teachers of Mathematics "Curriculum Focal Points" (NCTM, 2006). Based on Webb's alignment model (1997, 2002), we collected expert judgments on individual math items across a sampling of forms…
The Effects of Two Scheduling Formats on Student Achievement in a Suburban High School Setting
ERIC Educational Resources Information Center
Jackson, Kenyada Morton
2013-01-01
Limited studies have been conducted on the relationship between scheduling formats and academic performance of high school students. At the target high school, students underperform on standardized tests in English language arts (ELA) and math. The purpose of this causal comparative quantitative study was to compare the means of ELA and math test…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-25
... fuel economy standards in our Nation's history--standards that will save families money at the pump... foundation in science, technology, engineering, and math for every student will help ensure our youth have...
MATH77 - A LIBRARY OF MATHEMATICAL SUBPROGRAMS FOR FORTRAN 77, RELEASE 4.0
NASA Technical Reports Server (NTRS)
Lawson, C. L.
1994-01-01
MATH77 is a high quality library of ANSI FORTRAN 77 subprograms implementing contemporary algorithms for the basic computational processes of science and engineering. The portability of MATH77 meets the needs of present-day scientists and engineers who typically use a variety of computing environments. Release 4.0 of MATH77 contains 454 user-callable and 136 lower-level subprograms. Usage of the user-callable subprograms is described in 69 sections of the 416 page users' manual. The topics covered by MATH77 are indicated by the following list of chapter titles in the users' manual: Mathematical Functions, Pseudo-random Number Generation, Linear Systems of Equations and Linear Least Squares, Matrix Eigenvalues and Eigenvectors, Matrix Vector Utilities, Nonlinear Equation Solving, Curve Fitting, Table Look-Up and Interpolation, Definite Integrals (Quadrature), Ordinary Differential Equations, Minimization, Polynomial Rootfinding, Finite Fourier Transforms, Special Arithmetic , Sorting, Library Utilities, Character-based Graphics, and Statistics. Besides subprograms that are adaptations of public domain software, MATH77 contains a number of unique packages developed by the authors of MATH77. Instances of the latter type include (1) adaptive quadrature, allowing for exceptional generality in multidimensional cases, (2) the ordinary differential equations solver used in spacecraft trajectory computation for JPL missions, (3) univariate and multivariate table look-up and interpolation, allowing for "ragged" tables, and providing error estimates, and (4) univariate and multivariate derivative-propagation arithmetic. MATH77 release 4.0 is a subroutine library which has been carefully designed to be usable on any computer system that supports the full ANSI standard FORTRAN 77 language. It has been successfully implemented on a CRAY Y/MP computer running UNICOS, a UNISYS 1100 computer running EXEC 8, a DEC VAX series computer running VMS, a Sun4 series computer running SunOS, a Hewlett-Packard 720 computer running HP-UX, a Macintosh computer running MacOS, and an IBM PC compatible computer running MS-DOS. Accompanying the library is a set of 196 "demo" drivers that exercise all of the user-callable subprograms. The FORTRAN source code for MATH77 comprises 109K lines of code in 375 files with a total size of 4.5Mb. The demo drivers comprise 11K lines of code and 418K. Forty-four percent of the lines of the library code and 29% of those in the demo code are comment lines. The standard distribution medium for MATH77 is a .25 inch streaming magnetic tape cartridge in UNIX tar format. It is also available on a 9track 1600 BPI magnetic tape in VAX BACKUP format and a TK50 tape cartridge in VAX BACKUP format. An electronic copy of the documentation is included on the distribution media. Previous releases of MATH77 have been used over a number of years in a variety of JPL applications. MATH77 Release 4.0 was completed in 1992. MATH77 is a copyrighted work with all copyright vested in NASA.
Inspection of the Math Model Tools for On-Orbit Assessment of Impact Damage Report
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Raju, Ivatury S.; Piascik, Robert S>
2007-01-01
In Spring of 2005, the NASA Engineering Safety Center (NESC) was engaged by the Space Shuttle Program (SSP) to peer review the suite of analytical tools being developed to support the determination of impact and damage tolerance of the Orbiter Thermal Protection Systems (TPS). The NESC formed an independent review team with the core disciplines of materials, flight sciences, structures, mechanical analysis and thermal analysis. The Math Model Tools reviewed included damage prediction and stress analysis, aeroheating analysis, and thermal analysis tools. Some tools are physics-based and other tools are empirically-derived. Each tool was created for a specific use and timeframe, including certification, real-time pre-launch assessments. In addition, the tools are used together in an integrated strategy for assessing the ramifications of impact damage to tile and RCC. The NESC teams conducted a peer review of the engineering data package for each Math Model Tool. This report contains the summary of the team observations and recommendations from these reviews.
ERIC Educational Resources Information Center
Choi, Namyoun
2010-01-01
Educational standards alignment, which matches similar or equivalent concepts of educational standards, is a necessary task for educational resource discovery and retrieval. Automated or semi-automated alignment systems for educational standards have been recently available. However, existing systems frequently result in inconsistency in…
Subitizing and Early Mathematics Standards: A Winning Combination
ERIC Educational Resources Information Center
Conderman, Greg; Jung, Myoungwhon; Hartman, Paula
2014-01-01
In early childhood and primary (PreK-2) grades, subitizing is a critical skill that helps children meet early mathematics standards. Discover ways teachers can infuse this critical skill into their math curriculum.
ERIC Educational Resources Information Center
Baird, Katherine
2012-01-01
This paper investigates achievement gaps between low and high socioeconomic students in 19 high-income countries. On average, math scores of students with indicators of high socioeconomic status (SES) are over one standard deviation above those with low SES indicators. The paper estimates the extent to which these achievement gaps can be…
ERIC Educational Resources Information Center
Gill, Willie Wallicia Allen
2011-01-01
The purpose of this quantitative study was to examine whether a difference existed in the percentage performance of students earning a pass/advanced score on the Standards of Learning (SOL) Test in math and reading in Virginia's Region IV for schools using an A/B block schedule and those using a traditional schedule. The research also examined if…
ERIC Educational Resources Information Center
Northwest Regional Educational Lab., Portland, OR. School Improvement Program.
This document describes the school reform movement at Broadway High School in rural Virginia which has led to great success in mathematics achievement as proven by the Virginia Standards of Learning (SOL) tests. The Onward to Excellence II model provided a way for the faculty to focus on math, especially Algebra I, and to involve the entire school…
ERIC Educational Resources Information Center
What Works Clearinghouse, 2012
2012-01-01
The research described in this report is a randomized controlled trial in which seventh- and eighth-grade students were randomly assigned to complete a set of 25 math questions delivered with either standard language or language that had undergone "linguistic modification" by the research team. The purpose of the study was to assess the…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-30
... levels. B. Purpose: The WANTO Act's purpose is to provide technical assistance to employers and labor... occupation, core industry skills training such as tool identification, industry math/science, and industry... participants to a more achievable level of placement of at least 50 participants annually into apprenticeships...
Identifying Mathematics Content and Integrating It into Science Instruction
ERIC Educational Resources Information Center
Schwols, Amitra; Miller, Kirsten Brush
2012-01-01
Science teachers know that the mathematics concepts taught in the Common Core are critical for students' understanding of science. But what can a teacher do when his/her students lack the necessary mathematics skills to master science content? There may be other reasons besides students not paying attention in their math courses. Maybe the…
Scott Foresman-Addison Wesley Elementary Mathematics. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2010
2010-01-01
"Scott Foresman-Addison Wesley Elementary Mathematics" is a core curriculum for students at all ability levels in prekindergarten through grade 6. The program supports students' understanding of key math concepts and skills and covers a range of mathematical content across grades. The What Works Clearinghouse (WWC) reviewed 12 studies on…
The Social Studies are Essential to a Well-Rounded Education
ERIC Educational Resources Information Center
Duncan, Arne
2011-01-01
Social studies teachers live with the unintended consequences of the No Child Left Behind (NCLB) Act every day. They understand that the law has created flawed incentives for states and school districts to narrow their curricula to English and math. This fundamentally misguided practice leaves out core disciplines that are essential to a…
Teachers' Work: Institutional Isomorphism and Cultural Variation in the U.S., Germany, and Japan.
ERIC Educational Resources Information Center
LeTendre, Gerald K.; Baker, David P.; Akiba, Motoko; Goesling, Brian; Wiseman, Alex
2001-01-01
Used data from the Third International Math-Science Study to examine the working conditions and beliefs of Japanese, German, and United States teachers. Core teaching practices and teacher beliefs showed little national variation, but other aspects of teachers' work showed variation. Models of national cultures of learning may overemphasize…
Curing Provincialism: Why We Educate the Way We Do. A Conversation with Jacques Barzun.
ERIC Educational Resources Information Center
American Educator, 2002
2002-01-01
This interview with author and cultural historian Jacques Barzun discusses the origins of history, science, art, literature, and math, calling them the core of intellectual inheritance. Notes how the frameworks they provide enable people to extend their understanding of the world and reach beyond natural, human parochialism. Discusses the…
Achieving Sustainability through Targeted Curriculum Change. Strategies for Transformative Change
ERIC Educational Resources Information Center
Audant, B.; Kirby, C.
2016-01-01
Integrated academic skills instruction was one of the core elements of the CareerPATH consortium that provided math, reading, writing, and English language skills instruction "contextualized" to occupational training. Its goal was to engage adult learners and accelerate their progress in college and careers. The focus of this brief is…
Changing the Scholarly Sources Landscape with Geomorphology Undergraduate Students
ERIC Educational Resources Information Center
Blackburn, Heidi; Dere, Ashlee
2016-01-01
Science is a core discipline in academia yet the focus of most undergraduate technical writing is generally on the data and results, not the literature review. The Science, Technology, Engineering, and Math (STEM) librarian and a new geology professor at the University of Nebraska at Omaha (UNO) collaborated to develop an information literacy…
Big Ideas at the Center for Innovation in Education at Thomas College
ERIC Educational Resources Information Center
Prawat, Ted
2016-01-01
Schools and teachers are looking for innovative ways to teach the "big ideas" emerging in the core curricula, especially in STEAM fields (science technology, engineering, arts and math). As a result, learning environments that support digital learning and educational technology on various platforms and devices are taking on…
Investigating the Effects of a Math-Enhanced Agricultural Teaching Methods Course
ERIC Educational Resources Information Center
Stripling, Christopher T.; Roberts, T. Grady
2013-01-01
Numerous calls have been made for agricultural education to support core academic subject matter including mathematics. Previous research has shown that the incorporation of mathematics content into a teaching methods course had a positive effect on preservice teachers' mathematics content knowledge. The purpose of this study was to investigate…
What's My Math Course Got to Do with Biology?
ERIC Educational Resources Information Center
Burks, Robert; Lindquist, Joseph; McMurran, Shawnee
2008-01-01
At United States Military Academy, a unit on biological modeling applications forms the culminating component of the first semester core mathematics course for freshmen. The course emphasizes the use of problem-solving strategies and modeling to solve complex and ill-defined problems. Topic areas include functions and their shapes, data fitting,…
ERIC Educational Resources Information Center
O'Donnell, James J.; Zia, Lee L.; Baker, Thomas; Montgomery, Carol Hansen; Granger, Stewart
2000-01-01
Includes five articles: (1) discusses Library of Congress efforts to include digital materials; (2) describes the National Science Foundation (NSF) digital library program to improve science, math, engineering, and technology education; (3) explains Dublin Core grammar; (4) measures the impact of electronic journals on library costs; and (5)…
ERIC Educational Resources Information Center
Lee, Jaekyung; Liu, Xiaoyan; Amo, Laura Casey; Wang, Weichun Leilani
2014-01-01
Drawing on national and state assessment datasets in reading and math, this study tested "external" versus "internal" standards-based education models. The goal was to understand whether and how student performance standards work in multilayered school systems under No Child Left Behind Act of 2001 (NCLB). Under the…
Implementing the Next Generation Science Standards: Impacts on Geoscience Education
NASA Astrophysics Data System (ADS)
Wysession, M. E.
2014-12-01
This is a critical time for the geoscience community. The Next Generation Science Standards (NGSS) have been released and are now being adopted by states (a dozen states and Washington, DC, at the time of writing this), with dramatic implications for national K-12 science education. Curriculum developers and textbook companies are working hard to construct educational materials that match the new standards, which emphasize a hands-on practice-based approach that focuses on working directly with primary data and other forms of evidence. While the set of 8 science and engineering practices of the NGSS lend themselves well to the observation-oriented approach of much of the geosciences, there is currently not a sufficient number of geoscience educational modules and activities geared toward the K-12 levels, and geoscience research organizations need to be mobilizing their education & outreach programs to meet this need. It is a rare opportunity that will not come again in this generation. There are other significant issues surrounding the implementation of the NGSS. The NGSS involves a year of Earth and space science at the high school level, but there does not exist a sufficient workforce is geoscience teachers to meet this need. The form and content of the geoscience standards are also very different from past standards, moving away from a memorization and categorization approach and toward a complex Earth Systems Science approach. Combined with the shift toward practice-based teaching, this means that significant professional development will therefore be required for the existing K-12 geoscience education workforce. How the NGSS are to be assessed is another significant question, with an NRC report providing some guidance but leaving many questions unanswered. There is also an uneasy relationship between the NGSS and the Common Core of math and English, and the recent push-back against the Common Core in many states may impact the implementation of the NGSS.
ERIC Educational Resources Information Center
Herrera, Sarah; Zhou, Chengfu; Petscher, Yaacov
2017-01-01
The 2001 authorization of the No Child Left Behind Act and its standards and accountability requirements generated interest among state education agencies in Florida, Mississippi, and North Carolina, which are served by the Regional Educational Laboratory Southeast, in monitoring changes in student reading and math proficiency at the school level.…
ERIC Educational Resources Information Center
Srikanth, Sudhish; Petrie, Trent A.; Greenleaf, Christy; Martin, Scott B.
2015-01-01
We examined the influence of physical and psychosocial variables on math and reading achievement test scores. Between 1 and 5 months prior to taking annual standardized reading and math tests, a sample of (N = 1,211) sixth through eight graders (53.7% girls; 57.2% White) self-reported levels of physical activity, academic self-beliefs, general…
IBM techexplorer and MathML: Interactive Multimodal Scientific Documents
NASA Astrophysics Data System (ADS)
Diaz, Angel
2001-06-01
The World Wide Web provides a standard publishing platform for disseminating scientific and technical articles, books, journals, courseware, or even homework on the internet; however, the transition from paper to web-based interactive content has brought new opportunities for creating interactive content. Students, scientists, and engineers are now faced with the task of rendering the 2D presentational structure of mathematics, harnessing the wealth of scientific and technical software, and creating truly accessible scientific portals across international boundaries and markets. The recent emergence of World Wide Web Consortium (W3C) standards such as the Mathematical Markup Language (MathML), Language (XSL), and Aural CSS (ACSS) provide a foundation whereby mathematics can be displayed, enlivened, computed, and audio formatted. With interoperability ensured by standards, software applications can be easily brought together to create extensible and interactive scientific content. In this presentation we will provide an overview of the IBM techexplorer Hypermedia Browser, a web browser plug-in and ActiveX control aimed at bringing interactive mathematics to the masses across platforms and applications. We will demonstrate "live" mathematics where documents that contain MathML expressions can be edited and computed right inside your favorite web browser. This demonstration will be generalized as we show how MathML can be used to enliven even PowerPoint presentations. Finally, we will close the loop by demonstrating a novel approach to spoken mathematics based on MathML, DOM, XSL, ACSS, techexplorer, and IBM ViaVoice. By making use of techexplorer as the glue that binds the rendered content to the web browser, the back-end computation software, the Java applets that augment the exposition, and voice-rendering systems such as ViaVoice, authors can indeed create truly extensible and interactive scientific content. For more information see: [http://www.software.ibm.com/techexplorer] [http://www.alphaworks.ibm.com] [http://www.w3.org
In Brief: Improving science education
NASA Astrophysics Data System (ADS)
Showstack, Randy
2010-09-01
Over the course of the next decade, 100,000 science, technology, engineering, and math (STEM) teachers should be recruited in the United States, and 1000 new STEM-focused schools should be created, according to a 16 September report, “Prepare and inspire: K-12 education in science, technology, engineering, and math (STEM) for America's future.” Noting that the United States lags behind other nations in STEM education at the elementary and secondary levels, the report, prepared by the President's Council of Advisors on Science and Technology, also recommends improving federal coordination and leadership on STEM education and supporting a state-led movement for shared standards in math and science. The release of the report coincides with President Barack Obama's announcement of the launch of Change the Equation, an organization that aims to help with math and science education. More information is available at http://www.whitehouse.gov/administration/eop/ostp and http://www.changetheequation.org/.
Abnormal Error Monitoring in Math-Anxious Individuals: Evidence from Error-Related Brain Potentials
Suárez-Pellicioni, Macarena; Núñez-Peña, María Isabel; Colomé, Àngels
2013-01-01
This study used event-related brain potentials to investigate whether math anxiety is related to abnormal error monitoring processing. Seventeen high math-anxious (HMA) and seventeen low math-anxious (LMA) individuals were presented with a numerical and a classical Stroop task. Groups did not differ in terms of trait or state anxiety. We found enhanced error-related negativity (ERN) in the HMA group when subjects committed an error on the numerical Stroop task, but not on the classical Stroop task. Groups did not differ in terms of the correct-related negativity component (CRN), the error positivity component (Pe), classical behavioral measures or post-error measures. The amplitude of the ERN was negatively related to participants’ math anxiety scores, showing a more negative amplitude as the score increased. Moreover, using standardized low resolution electromagnetic tomography (sLORETA) we found greater activation of the insula in errors on a numerical task as compared to errors in a non-numerical task only for the HMA group. The results were interpreted according to the motivational significance theory of the ERN. PMID:24236212
Blackowicz, Michael J; Hryhorczuk, Daniel O; Rankin, Kristin M; Lewis, Dan A; Haider, Danish; Lanphear, Bruce P; Evens, Anne
2016-08-01
Environmental lead exposure detrimentally affects children's educational performance, even at very low blood lead levels (BLLs). Among children in Chicago Public Schools (CPS), the severity of the effects of BLL on reading and math vary by racial subgroup (White vs. Hispanic vs. non-Hispanic Black). We investigated the impact of BLL on standardized test performance by Hispanic subgroup (Mexican, Puerto Rican, and Other Hispanic). We examined 12,319 Hispanic children born in Chicago between 1994 and 1998 who were tested for BLL between birth and 2006 and enrolled in the 3rd grade at a CPS school between 2003 and 2006. We linked the Chicago birth registry, the Chicago Blood Lead Registry, and 3rd grade Illinois Standard Achievement Test (ISAT) scores to examine associations between BLL and school performance. Primary analyses were restricted to children with BLL below 10 µg/dL (0.483 µmol/L). BLLs below 10 µg/dL (0.483 µmol/L) were inversely associated with reading and math scores in all Hispanic subgroups. Adjusted Relative Risks (RRadj) and 95% confidence intervals (CI) for reading and math failure were 1.34 (95% CI = 1.25, 1.63) and 1.53 (95% CI = 1.32, 1.78), respectively, per each additional 5 µg/dL of lead exposure for Hispanic children; RRadj did not differ across subgroups. We estimate that 7.0% (95% CI = 1.8, 11.9) of reading and 13.6% (95% CI = 7.7, 19.2) of math failure among Hispanic children can be attributed to exposure to BLLs of 5-9 µg/dL (0.242 to 0.435 µmol/L) vs. 0-4 µg/dL (0-0.193 µmol/L). The RRadj of math failure for each 5 µg/dL (0.242 µmol/L) increase in BLL was notably (p = 0.074) stronger among black Puerto Rican children (RRadj = 5.14; 95% CI = 1.65-15.94) compared to white Puerto Rican children (RRadj = 1.50; 95% CI = 1.12-2.02). Early childhood lead exposure is associated with poorer achievement on standardized reading and math tests in the 3rd grade for Mexican, Puerto Rican, and Other Hispanic children enrolled in Chicago Public Schools. While we did not see interactions between BLL and ISAT performance by Hispanic subgroup, the stronger association between BLL and math failure for Black Puerto Rican children is intriguing and warrants further study.
Think Scientifically: Hiding Science in a Storybook
NASA Astrophysics Data System (ADS)
Van Norden, W. M.; Wawro, M.
2013-12-01
The pressure to focus on math and reading at the elementary level has increased in recent years. As a result, science education has taken a back seat in elementary classrooms. The Think Scientifically book series provides a way for science to easily integrate with existing math and reading curriculum. This story-based science literature program integrates a classic storybook format with solid solar science, to make an educational product that meets state literacy standards. Each story is accompanied by hands-on labs and activities that teachers can easily conduct in their classrooms with minimal training and materials, as well as math and language arts extensions and assessment questions. These books are being distributed through teacher workshops and conferences.
Summer Center for Climate, Energy, and Environmental Decision Making (SUCCEED)
NASA Astrophysics Data System (ADS)
Klima, K.; Hoss, F.; Welle, P.; Larkin, S.
2013-12-01
Science, Technology, and Math (STEM) fields are responsible for more than half of our sustained economic expansion, and over the past 25 years the science and engineering workforce has remained at over 5% of all U.S. jobs. However, America lags behind other nations when it comes to STEM education; globally, American students rank 23th in math and 31st in science. While our youngest students show an interest in STEM subjects, roughly 40% of college students planning to major in STEM switch to other subjects. Women and minorities, 50% and 43% of school-age children, are disproportionally underrepresented in STEM fields (25% and 15%, respectively). Studies show that improved teacher curriculum combined with annual student-centered learning summer programs can promote and sustain student interest in STEM fields. Many STEM fields appear superficially simple, and yet can be truly complex and controversial topics. Carnegie Mellon University's Center for Climate and Energy Decision Making focuses on two such STEM fields: climate and energy. In 2011, we created SUCCEED: the Summer Center for Climate, Energy, and Environmental Decision Making. SUCCEED consisted of two pilot programs: a 2-day workshop for K-12 teacher professional development and a free 5-day summer school targeted at an age gap in the university's outreach, students entering 10th grade. In addition to teaching lessons climate, energy, and environment, the program aimed to highlight different STEM careers so students could better understand the breadth of choices available. SUCCEED, repeated in 2012, was wildly successful. A pre/post test demonstrated a significant increase in understanding of STEM topics. Furthermore, SUCCEED raised excitement for STEM; teachers were enthusiastic about accurate student-centered learning plans and students wanted to know more. To grow these efforts, an additional component has been added to the SUCCEED 2013 effort: online publicly available curricula. Using the curricula form 2011-2013 as base material, we have been developing online publically available Pennsylvania lesson plans meeting Next Generation Science Standards or Common Core Math Standards. The teacher curricula database will greatly increase our ability to correct misconceptions and fill gaps in lessons taught to thousands of students. This talk will share more about the SUCCEED program and the teacher curricula database efforts.
ERIC Educational Resources Information Center
Callaghan, M. N.; Long, J. J.; van Es, E. A.; Reich, S. M.; Rutherford, T.
2018-01-01
As more attention is placed on designing digital educational games to align with schools' academic aims (e.g., Common Core), questions arise regarding how professional development (PD) may support teachers' using games for instruction and how such integration might impact students' achievement. This study seeks to (a) understand how teachers use…
ERIC Educational Resources Information Center
Velez, Jonathan J.; Lambert, Misty D.; Elliott, Kristopher M.
2015-01-01
The purpose of this study was to begin examining the impact of the Curriculum for Agricultural Science Education (CASE). Under development since 2008, the curriculum is intended to integrate core academics and Science, Technology, Engineering, and Math (STEM) into agricultural education programs. This longitudinal descriptive correlational study…
Changes in Math Proficiency between 8th and 10th Grades. Statistics in Brief.
ERIC Educational Resources Information Center
Rock, Don; And Others
Between 8th and 10th grades, many students are asked to make curriculum-related decisions that may ultimately influence their achievement in core academic subjects such as mathematics. While past achievement often limits the level of courses available to a student, aspirations for postsecondary education ultimately determine the level of…
ERIC Educational Resources Information Center
Kaczorowski, Tara; Raimondi, Sharon
2014-01-01
In this paper, we describe a small case study exploring how four elementary students with mathematics learning disabilities utilized mobile technology (the eWorkbook) during core math instruction in a general education setting. The lead author designed the eWorkbook intervention to provide a flexible learning experience optimized for diverse…
Ed Schools: The Real Shame of the Nation
ERIC Educational Resources Information Center
Stotsky, Sandra
2005-01-01
There are English, math, science, and other core subjects, and there are young minds. Schools of education are supposed to prepare and furnish the guides who bring the former into the latter, but the bankrupt ideology they impart to educators obstructs that transfer. Sandra Stotsky says that if we give the job of training teachers to the…
"They're Not Keeping a Journal of Feelings": Literacy Initiatives and Career and Technical Education
ERIC Educational Resources Information Center
Kohnen, Angela M.
2015-01-01
Career and Technical Education (CTE) centers offer an opportunity for students to engage in authentic reading and writing activities. In many states, "embedding" English and math credits (i.e., allowing students to earn traditional core subject credits in the context of their CTE programs) has become a popular trend. This article reports…
Preparing English as a Second Language Students for College Level Math
ERIC Educational Resources Information Center
Valenzuela, Hector
2014-01-01
In a diverse classroom, there are students who are in need of both mathematics and English as a second language instruction. One of the challenges faced at Lake Washington Institute of Technology (LWIT) was the development of a pathway for English language learners into core academic courses at the college. In addition, English language learners…
The Impact of Music on Student Achievement in the Third and Fifth Grade Math Curriculum
ERIC Educational Resources Information Center
Albright, Ruth E.
2012-01-01
Research indicates students who engage in music exhibit improved cognitive development. The quantitative study was conducted in a large suburban school district in Southeast Georgia. This study investigated the impact of music on student achievement when music is incorporated with the core academic subject of mathematics at the elementary level.…
ERIC Educational Resources Information Center
Toppin, Ian N.; Chitsonga, Shadreck
2016-01-01
The QEP that was implemented in this study focused on enhancing students' critical thinking skills. A pretest/posttest approach was used to assess students' critical thinking progress in freshman level core English and Math courses. An intervention was performed involving intensive instruction and assignments relating to a set of reasoning…
Carter, Megan Ann; Dubois, Lise; Ramsay, Tim
2010-10-01
To determine whether obesity during the pre-school to primary school years was related to math performance, independently of other factors, in a large representative sample of Canadian children. Our main hypothesis was that obese children would obtain lower overall math scores than their non-obese peers. Participants of the National Longitudinal Survey of Children and Youth comprised the sample for our analysis (n = 4 664). Obesity was based on mother-reported height and weight and IOTF age- and sex-specific body mass index cut-offs, and was assessed when the cohort was aged 2-5 years and 8-11 years. Children were classified as 'never obese', 'grew out of obesity', 'developed obesity' or 'always obese', depending on their obesity status at these two time points. The outcome was performance on a standardized math test that was administered when the cohort was aged 8-11 years. Statistical analysis was conducted using multivariate linear regression methods. Children who 'grew out of obesity' scored on average 11 points higher on the math test (p<0.0001) than children who were 'never obese.' Children who were 'always obese' and those that 'developed obesity' performed no differently on the math test than children who were 'never obese'. No interactions between sex and obesity status were found. Childhood obesity in this study did not lead to poor math performance. Being obese in the pre-school years and normal weight in primary school, however, was associated with improved math performance. This finding points to a potential nutritional window for early child development.
NASA Astrophysics Data System (ADS)
Szereszewski, A.; Sym, A.
2015-09-01
The standard method of separation of variables in PDEs called the Stäckel-Robertson-Eisenhart (SRE) approach originated in the papers by Robertson (1928 Math. Ann. 98 749-52) and Eisenhart (1934 Ann. Math. 35 284-305) on separability of variables in the Schrödinger equation defined on a pseudo-Riemannian space equipped with orthogonal coordinates, which in turn were based on the purely classical mechanics results by Paul Stäckel (1891, Habilitation Thesis, Halle). These still fundamental results have been further extended in diverse directions by e.g. Havas (1975 J. Math. Phys. 16 1461-8 J. Math. Phys. 16 2476-89) or Koornwinder (1980 Lecture Notes in Mathematics 810 (Berlin: Springer) pp 240-63). The involved separability is always ordinary (factor R = 1) and regular (maximum number of independent parameters in separation equations). A different approach to separation of variables was initiated by Gaston Darboux (1878 Ann. Sci. E.N.S. 7 275-348) which has been almost completely forgotten in today’s research on the subject. Darboux’s paper was devoted to the so-called R-separability of variables in the standard Laplace equation. At the outset he did not make any specific assumption about the separation equations (this is in sharp contrast to the SRE approach). After impressive calculations Darboux obtained a complete solution of the problem. He found not only eleven cases of ordinary separability Eisenhart (1934 Ann. Math. 35 284-305) but also Darboux-Moutard-cyclidic metrics (Bôcher 1894 Ueber die Reihenentwickelungen der Potentialtheorie (Leipzig: Teubner)) and non-regularly separable Dupin-cyclidic metrics as well. In our previous paper Darboux’s approach was extended to the case of the stationary Schrödinger equation on Riemannian spaces admitting orthogonal coordinates. In particular the class of isothermic metrics was defined (isothermicity of the metric is a necessary condition for its R-separability). An important sub-class of isothermic metrics are binary metrics. In this paper we solve the following problem: to classify all conformally flat (of arbitrary signature) 4-dimensional binary metrics. Among them there are 1) those that are separable in the sense of SRE metrics Kalnins-Miller (1978 Trans. Am. Math. Soc. 244 241-61 1982 J. Phys. A: Math. Gen. 15 2699-709 1984 Adv. Math. 51 91-106 1983 SIAM J. Math. Anal. 14 126-37) and 2) new examples of non-Stäckel R-separability in 4 dimensions.
Approximate number sense correlates with math performance in gifted adolescents.
Wang, Jinjing Jenny; Halberda, Justin; Feigenson, Lisa
2017-05-01
Nonhuman animals, human infants, and human adults all share an Approximate Number System (ANS) that allows them to imprecisely represent number without counting. Among humans, people differ in the precision of their ANS representations, and these individual differences have been shown to correlate with symbolic mathematics performance in both children and adults. For example, children with specific math impairment (dyscalculia) have notably poor ANS precision. However, it remains unknown whether ANS precision contributes to individual differences only in populations of people with lower or average mathematical abilities, or whether this link also is present in people who excel in math. Here we tested non-symbolic numerical approximation in 13- to 16-year old gifted children enrolled in a program for talented adolescents (the Center for Talented Youth). We found that in this high achieving population, ANS precision significantly correlated with performance on the symbolic math portion of two common standardized tests (SAT and ACT) that typically are administered to much older students. This relationship was robust even when controlling for age, verbal performance, and reaction times in the approximate number task. These results suggest that the Approximate Number System is linked to symbolic math performance even at the top levels of math performance. Copyright © 2017 Elsevier B.V. All rights reserved.
Inspection of the Math Model Tools for On-Orbit Assessment of Impact Damage Report. Version 1.0
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Raju, Ivatury S.; Piascik, Robert S.; Kramer White, Julie; Labbe, Steve G.; Rotter, Hank A.
2005-01-01
In Spring of 2005, the NASA Engineering Safety Center (NESC) was engaged by the Space Shuttle Program (SSP) to peer review the suite of analytical tools being developed to support the determination of impact and damage tolerance of the Orbiter Thermal Protection Systems (TPS). The NESC formed an independent review team with the core disciplines of materials, flight sciences, structures, mechanical analysis and thermal analysis. The Math Model Tools reviewed included damage prediction and stress analysis, aeroheating analysis, and thermal analysis tools. Some tools are physics-based and other tools are empirically-derived. Each tool was created for a specific use and timeframe, including certification, real-time pre-launch assessments, and real-time on-orbit assessments. The tools are used together in an integrated strategy for assessing the ramifications of impact damage to tile and RCC. The NESC teams conducted a peer review of the engineering data package for each Math Model Tool. This report contains the summary of the team observations and recommendations from these reviews.
Instruction, Teacher–Student Relations, and Math Achievement Trajectories in Elementary School
Crosnoe, Robert; Morrison, Fred; Burchinal, Margaret; Pianta, Robert; Keating, Daniel; Friedman, Sarah L.; Clarke-Stewart, K. Alison
2010-01-01
Children enter elementary school with widely different skill levels in core subjects. Whether because of differences in aptitude or in preparedness, these initial skill differences often translate into systematic disparities in achievement over time. How can teachers reduce these disparities? Three possibilities are to offer basic skills training, to expose students to higher order instruction, or to provide socioemotional support. Repeated measures analyses of longitudinal data from the Eunice Kennedy Shriver National Institute of Child Health and Human Development Study of Early Child Care and Youth Development revealed that children with low, average, or high math skills prior to elementary school followed different but parallel trajectories of math achievement up through fifth grade. When enrolled in classes with inference-based instruction, however, the initially least skilled children narrowed the achievement gap as long as they did not have conflictual relations with their teachers. They did not make this kind of progress if they were in classes focused exclusively on basic skills instruction or if they were in inference-focused classes but had conflictual relations with teachers. PMID:20657743
Oswald, Tasha M; Beck, Jonathan S; Iosif, Ana-Maria; McCauley, James B; Gilhooly, Leslie J; Matter, John C; Solomon, Marjorie
2016-04-01
Mathematics achievement in autism spectrum disorder (ASD) has been understudied. However, the ability to solve applied math problems is associated with academic achievement, everyday problem-solving abilities, and vocational outcomes. The paucity of research on math achievement in ASD may be partly explained by the widely-held belief that most individuals with ASD are mathematically gifted, despite emerging evidence to the contrary. The purpose of the study was twofold: to assess the relative proportions of youth with ASD who demonstrate giftedness versus disability on applied math problems, and to examine which cognitive (i.e., perceptual reasoning, verbal ability, working memory) and clinical (i.e., test anxiety) characteristics best predict achievement on applied math problems in ASD relative to typically developing peers. Twenty-seven high-functioning adolescents with ASD and 27 age- and Full Scale IQ-matched typically developing controls were assessed on standardized measures of math problem solving, perceptual reasoning, verbal ability, and test anxiety. Results indicated that 22% of the ASD sample evidenced a mathematics learning disability, while only 4% exhibited mathematical giftedness. The parsimonious linear regression model revealed that the strongest predictor of math problem solving was perceptual reasoning, followed by verbal ability and test anxiety, then diagnosis of ASD. These results inform our theories of math ability in ASD and highlight possible targets of intervention for students with ASD struggling with mathematics. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.
State Standards Rise in Reading, Fall in Math
ERIC Educational Resources Information Center
Peterson, Paul E.; Lastra-Anadon, Carlos Xabel
2010-01-01
Much ado has been made about setting high standards over the past year. Current conversations about creating a common national standard largely focus on the substantive curriculum to be taught at various grade levels. Even more important is each state's expectations for student performance with respect to the curriculum, as expressed through its…
ERIC Educational Resources Information Center
Actuarial Foundation, 2013
2013-01-01
"Setting the Stage with Geometry" is a new math program aligned with the National Council of Teachers of Mathematics (NCTM) standards that is designed to help students in grades 6-8 build and reinforce basic geometry skills for measuring 2D and 3D shapes. Developed by The Actuarial Foundation, this program seeks to provide skill-building math…
NASA Astrophysics Data System (ADS)
Hancock, Tira K.
A qualitative descriptive case study explored courses of action for educators and leaders of math and science educators to implement to help students achieve state assessment standard and postsecondary success. The problem focused on two demographically similar rural high schools in Southwest Washington that demonstrated inadequate rates of student achievement in mathematics and science. The research question investigated courses of action that may assist educators and leaders of secondary math and science educators to help students achieve WASL standards and postsecondary success in compliance with the No Child Left Behind (NCLB) Act of 2001. Senge's learning organization theory (1990, 2006) and Fullan's (2001) contributions to leading and learning in times of change provided the theoretical framework for the study. Twenty study participant responses analyzed with qualitative analysis software QSR NVivo 7 revealed six themes. Triangulation of responses with secondary data from WASL assessment scores and case study school assessment data identified 14 courses of action and three recommendations for educators and leaders of math and science educators to help students meet state standards and postsecondary success. Critical factors identified in the study as needed to assist educators to help students succeed included professional development, collaboration, teaching practices, funding, student accountability, and parental involvement.
Think Scientifically: The NASA Solar Dynamics Observatory's Elementary Science Literacy Program
NASA Astrophysics Data System (ADS)
Van Norden, Wendy; Wawro, Martha
2013-03-01
The pressure to focus on math and reading at the elementary level has increased in recent years. As a result, science education has taken a back seat in elementary classrooms. The Think Scientifically book series provides a way for science to easily integrate with existing math and reading curriculum. This story-based science literature program integrates a classic storybook format with solid solar science, to make an educational product that meets state literacy standards. Each story is accompanied by hands-on labs and activities that teachers can easily conduct in their classrooms with minimal training and materials, as well as math and language arts extensions and assessment questions. These books are being distributed through teacher workshops and conferences.
Think Scientifically: The Solar Dynamics Observatory's Elementary Science Literacy Program
NASA Astrophysics Data System (ADS)
Van Norden, Wendy; Wawro; Martha
2012-03-01
The pressure to focus on math and reading at the elementary level has increased in recent years. As a result, science education has taken a back seat in elementary classrooms. The Think Scientifically book series provides a way for science to easily integrate with existing math and reading curriculum. This story-based science literature program integrates a classic storybook format with solid solar science, to make an educational product that meets state literacy standards. Each story is accompanied by hands-on labs and activities that teachers can easily conduct in their classrooms with minimal training and materials, as well as math and language arts extensions and assessment questions. These books are being distributed through teacher workshops and conferences.
ERIC Educational Resources Information Center
Mohr, Cory
2008-01-01
With approximately 2,500 students dropping out of U.S. high schools every day, there exists a need to align classroom instruction with corresponding "real world" applications. In order to keep students' motivation high and help ensure high levels of validity in instruction, core curriculum instructors and career and technical education (CTE)…
Improving Mastery of Fractions by Blending Video Games into the Math Classroom
ERIC Educational Resources Information Center
Masek, M.; Boston, J.; Lam, C. P.; Corcoran, S.
2017-01-01
Concepts from the Australian mathematics curriculum on fractions were used as core elements to design three computer games. In each game, the concepts were presented in the form of tangible puzzles, customized to a difficulty level based on student capability. The games were integrated into a single virtual game world, and a fantasy story was used…
ERIC Educational Resources Information Center
Lu, Xuejin; Shen, Jianping; Poppink, Sue
2007-01-01
In this study we inquired into the qualifications of public secondary school teachers by examining whether or not teachers met the No Child Left Behind Act's ([NCLB] 2002) definition of "highly qualified" immediately prior to the law's enactment. We examined this by core academic subjects (English, social studies, math, and science) and,…
Getting at-Risk Teens to Graduation: Blended Learning Offers a Second Chance
ERIC Educational Resources Information Center
Kronholz, June
2011-01-01
Online K-12 education made its appearance in the mid-1990s, largely as a resource for bright students who had no access to accelerated classes. It moved next into core high-school courses where districts found themselves with teacher shortages--math, science, foreign languages--and has been growing bumptiously, and in a dozen directions, ever…
ERIC Educational Resources Information Center
Davis, Andrew
2015-01-01
PISA claims that it can extend its reach from its current core subjects of Reading, Science, Maths and problem-solving. Yet given the requirement for high levels of reliability for PISA, especially in the light of its current high stakes character, proposed widening of its subject coverage cannot embrace some important aspects of the social and…
ERIC Educational Resources Information Center
Watt, Sarah Jean
2013-01-01
Research to identify validated instructional approaches to teach math to students with LD and those at-risk for failure in both core and supplemental instructional settings is necessary to assist teachers in closing the achievement gaps that exist across the country. The concrete-to-representational-to-abstract instructional sequence (CRA) has…
ERIC Educational Resources Information Center
Giedt, Todd; Gokcek, Gigi; Ghosh, Jayati
2015-01-01
This paper argues for a reimagining of education abroad that fuses short-term programming with some kind of experiential research component led by home campus disciplinary faculty, especially those in the sciences, technology, engineering, and math (STEM) fields, in order to better integrate the study abroad program into the core undergraduate…
ERIC Educational Resources Information Center
Marttila, Katie L.
2017-01-01
For the realm of this study, the researcher reviewed two separate mathematics programs that have been implemented within the school district to address both the needs of the students with learning disabilities and the requirements of the local and state assessments. The mathematics programs are designed with two different methods to meet the…
ERIC Educational Resources Information Center
Yamamoto, Kentaro; He, Qiwei; Shin, Hyo Jeong; von Davier, Mattias
2017-01-01
Approximately a third of the Programme for International Student Assessment (PISA) items in the core domains (math, reading, and science) are constructed-response items and require human coding (scoring). This process is time-consuming, expensive, and prone to error as often (a) humans code inconsistently, and (b) coding reliability in…
Nothing Will Leave No Child Behind
ERIC Educational Resources Information Center
Gleibermann, Erik
2007-01-01
The goal of No Child Left Behind appears admirable: by 2014 every child in the nation will test to proficiency in core math and literacy skills. However, as we investigate what schools need to reach these goals, we expose what teachers have long experienced one arduous day at a time: our school system is based on a 19th-century factory model that…
ERIC Educational Resources Information Center
Li, Jennifer J.; Steele, Jennifer L.; Slater, Robert; Bacon, Michael; Miller, Trey
2016-01-01
Dual-language immersion programs--in which students learn core subjects (language arts, math, science, and social studies) in both English and a "partner" language--have been gaining in popularity across the United States. Such programs may use a "two-way model," in which roughly half the students are native speakers of the…
Time to Proficiency for Hispanic English Learner Students in Texas. REL 2018-280
ERIC Educational Resources Information Center
Slama, Rachel; Molefe, Ayrin; Gerdeman, Dean; Herrera, Angelica; Brodziak de los Reyes, Iliana; August, Diane; Cavazos, Linda
2017-01-01
English learner students are challenged by the difficult task of learning English concurrently with learning content in areas such as reading and math. English learner students who have not attained proficiency in English or learned core course content by the middle and upper grades may not have the requisite skills to enroll in courses required…
Eshkuvatov, Z K; Zulkarnain, F S; Nik Long, N M A; Muminov, Z
2016-01-01
Modified homotopy perturbation method (HPM) was used to solve the hypersingular integral equations (HSIEs) of the first kind on the interval [-1,1] with the assumption that the kernel of the hypersingular integral is constant on the diagonal of the domain. Existence of inverse of hypersingular integral operator leads to the convergence of HPM in certain cases. Modified HPM and its norm convergence are obtained in Hilbert space. Comparisons between modified HPM, standard HPM, Bernstein polynomials approach Mandal and Bhattacharya (Appl Math Comput 190:1707-1716, 2007), Chebyshev expansion method Mahiub et al. (Int J Pure Appl Math 69(3):265-274, 2011) and reproducing kernel Chen and Zhou (Appl Math Lett 24:636-641, 2011) are made by solving five examples. Theoretical and practical examples revealed that the modified HPM dominates the standard HPM and others. Finally, it is found that the modified HPM is exact, if the solution of the problem is a product of weights and polynomial functions. For rational solution the absolute error decreases very fast by increasing the number of collocation points.
Balsamo, Lyn M; Sint, Kyaw J; Neglia, Joseph P; Brouwers, Pim; Kadan-Lottick, Nina S
2016-04-01
Assess the association between fine motor (FM) and visual-motor integration (VMI) skills and academic achievement in pediatric acute lymphoblastic leukemia (ALL) survivors. In this 28-site cross-sectional study of 256 children in first remission, a mean of 8.9 ± 2.2 years after treatment for standard-risk precursor-B ALL, validated measures of FM, VMI, reading, math, and intelligence were administered at mean follow-up age of 12.8 ± 2.5 years. VMI was significantly associated with written math calculation ability (p < .0069) after adjusting for intelligence (p < .0001). VMI was more strongly associated with math in those with lower intelligence (p = .0141). Word decoding was also significantly associated with VMI but with no effect modification by intelligence. FM skills were not associated with either reading or math achievement. These findings suggest that VMI is associated with aspects of math and reading achievement in leukemia survivors. These skills may be amenable to intervention. © The Author 2015. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Early Math Achievement and Functional Connectivity in the Fronto-Parietal Network
Emerson, Robert W.; Cantlon, Jessica F.
2011-01-01
In this study we test the hypothesis that the functional connectivity of the frontal and parietal regions that children recruit during a basic numerical task (matching Arabic numerals to arrays of dots) is predictive of their math test scores (TEMA-3; Ginsburg 2003). Specifically, we tested 4- to 11-year-old children on a matching task during fMRI to localize a fronto-parietal network that responds more strongly during numerical matching than matching faces, words, or shapes. We then tested the functional connectivity between those regions during an independent task: natural viewing of an educational video that included math topics. Using this novel natural viewing method, we found that the connectivity between frontal and parietal regions during task-independent free-viewing of educational material is correlated with children's basic number matching ability, as well as their scores on the standardized test of mathematical ability (the TEMA). The correlation between children's mathematics scores and fronto-parietal connectivity is math-specific in the sense that it is independent of children's verbal IQ scores. Moreover, a control network, selective for faces, showed no correlation with mathematics performance. Finally, brain regions that correlate with subjects’ overall response times in the matching task do not account for our number- and math-related effects. We suggest that the functional intersection of number-related frontal and parietal regions is math-specific. PMID:22682903
The Effects of Using Space to Teach Standard Elementary School Curriculum
NASA Technical Reports Server (NTRS)
Ewell, Robert N.
1996-01-01
This brief report and recommendation for further research brings to a formal close this effort, the original purpose of which is described in detail in The effects of using space to teach standard elementary school curriculum, Volume 1, included here as the Appendix. Volume 1 describes the project as a 3-year research program to determine the effectiveness of using space to teach. The research design is quasi experimental using standardized test data on students from Aldrin Elementary School and a District-identified 'control' school, which shall be referred to as 'School B.' Students now in fourth through sixth grades will be compared now (after one year at Aldrin) and tracked at least until the present sixth graders are through the eighth grade. Appropriate statistical tests will be applied to standardized test scores to see if Aldrin students are 'better' than School B students in areas such as: Overall academic performance; Performance in math/science; and Enrollments in math/science in middle school.
Enhancing Parent Involvement in NC-CCSS for K-2 Mathematics
NASA Astrophysics Data System (ADS)
Johnson, D.
2014-12-01
Key Terms:Parent Involvement, Common Core State Standards, Homework, K - 2 Mathematics In this study, the 2014 REU math team developed and provided a workshop that assisted parents in understanding the North Carolina Common Core State Standards for K-2 Mathematics to assist with student homework assignments. Parent involvement is defined as parent participating in the educational processes and experiences of their children. A chi-square analysis was used to analyze data collected from the pre survey and the post survey administered to participants in the workshop. The study revealed all of the individual components of parent involvement were positively and significantly related to educational goals. The study identified various aspects of parent involvement that yielded statistically significant results in affirming that parent involvement attributed to urban student achievement. These findings were particularly helpful for indicating which kinds of parent involvement influenced academic success. Most notably, parent expectations and styles demonstrated a strong relationship with scholastic outcomes. Parent expectations and styles created an educationally oriented ambience that established an understanding of the certain level of support the child needed to succeed academically. The REU mathematics team focused on three essential questions in this study: (1) What practices will increase parent awareness of K-2 NC-CCSS for mathematics at P. W. Moore Elementary School? (2) What methods can be used to strengthen parent skills in assisting with mathematics homework assignments at P. W. Moore Elementary School? (3) What actions can be taken to motivate parent involvement in the school improvement process focusing on mathematics at P. W. Moore Elementary School?
Friedman-Krauss, Allison H; Raver, C Cybele
2015-12-01
Children growing up in poverty have a higher likelihood of exposure to multiple forms of adversity that jeopardize their chances of academic success. The current paper identifies school mobility, or changing schools, as 1 such poverty-related risk. Using a sample of low-income, predominantly ethnic-minority children (n = 381) in Chicago, this study tests the hypothesis that repeatedly changing schools during the 5-year period between Head Start (preschool) and third grade is a potent predictor of children's math achievement in fourth grade and that children's cognitive dysregulation serves as a mechanism through which school mobility may negatively affect children's math achievement. Hierarchical linear models controlling for baseline child and family characteristics (including children's early math and dysregulation measured during Head Start) revealed an inverse relation between the number of times low-income children changed schools between preschool and third grade and children's math achievement on state standardized tests in fourth grade. Furthermore, frequently changing schools (3 or 4 school changes over the same time period) was positively associated with teacher-reported cognitive dysregulation in third grade and negatively associated with children's math achievement in fourth grade. Evidence for the role of children's cognitive dysregulation as a partial statistical mediator was found for the relation between frequently changing schools and math achievement, even after accounting for baseline risk. Results are discussed in terms of school policies, practices, and intervention strategies to prevent the disruptive and potentially stressful experiences of school mobility for young, low-income children. (c) 2015 APA, all rights reserved).
Friedman-Krauss, Allison H.; Raver, C. Cybele
2015-01-01
Children growing up in poverty have a higher likelihood of exposure to multiple forms of adversity that jeopardize their chances of academic success. The current paper identifies school mobility, or changing schools, as 1 such poverty-related risk. Using a sample of low-income, predominantly ethnic-minority children (n = 381) in Chicago, this study tests the hypothesis that repeatedly changing schools during the 5-year period between Head Start (preschool) and third grade is a potent predictor of children’s math achievement in fourth grade and that children’s cognitive dysregulation serves as a mechanism through which school mobility may negatively affect children’s math achievement. Hierarchical linear models controlling for baseline child and family characteristics (including children’s early math and dysregulation measured during Head Start) revealed an inverse relation between the number of times low-income children changed schools between preschool and third grade and children’s math achievement on state standardized tests in fourth grade. Furthermore, frequently changing schools (3 or 4 school changes over the same time period) was positively associated with teacher-reported cognitive dysregulation in third grade and negatively associated with children’s math achievement in fourth grade. Evidence for the role of children’s cognitive dysregulation as a partial statistical mediator was found for the relation between frequently changing schools and math achievement, even after accounting for baseline risk. Results are discussed in terms of school policies, practices, and intervention strategies to prevent the disruptive and potentially stressful experiences of school mobility for young, low-income children. PMID:26436870
Performance in complex motor tasks deteriorates in hyperthermic humans.
Piil, Jacob F; Lundbye-Jensen, Jesper; Trangmar, Steven J; Nybo, Lars
2017-01-01
Heat stress, leading to elevations in whole-body temperature, has a marked impact on both physical performance and cognition in ecological settings. Lab experiments confirm this for physically demanding activities, whereas observations are inconsistent for tasks involving cognitive processing of information or decision-making prior to responding. We hypothesized that divergences could relate to task complexity and developed a protocol consisting of 1) simple motor task [TARGET_pinch], 2) complex motor task [Visuo-motor tracking], 3) simple math task [MATH_type], 4) combined motor-math task [MATH_pinch]. Furthermore, visuo-motor tracking performance was assessed both in a separate- and a multipart protocol (complex motor tasks alternating with the three other tasks). Following familiarization, each of the 10 male subjects completed separate and multipart protocols in randomized order in the heat (40°C) or control condition (20°C) with testing at baseline (seated rest) and similar seated position, following exercise-induced hyperthermia (core temperature ∼ 39.5°C in the heat and 38.2°C in control condition). All task scores were unaffected by control exercise or passive heat exposure, but visuo-motor tracking performance was reduced by 10.7 ± 6.5% following exercise-induced hyperthermia when integrated in the multipart protocol and 4.4 ± 5.7% when tested separately (both P < 0.05 ). TARGET_pinch precision declined by 2.6 ± 1.3% ( P < 0.05 ), while no significant changes were observed for the math tasks. These results indicate that heat per se has little impact on simple motor or cognitive test performance, but complex motor performance is impaired by hyperthermia and especially so when multiple tasks are combined.
Standards, Title I Link Scrutinized
ERIC Educational Resources Information Center
Klein, Alyson
2010-01-01
The Obama administration's proposal to make federal funding for disadvantaged students contingent on states' adoption of reading and math standards intended to prepare students for college or a career has drawn sharp criticism from groups representing grassroots educators and state lawmakers, even as some governors and members of Congress appear…
ERIC Educational Resources Information Center
Nelson, Catherine J.
2012-01-01
The author is a strong proponent of incorporating the Content and Process Standards (NCTM 2000) into the teaching of mathematics. For candidates in her methods course, she models research-based best practices anchored in the Standards. Her students use manipulatives, engage in problem-solving activities, listen to children's literature, and use…
Think Scientifically: The NASA Solar Dynamics Observatory's Elementary Science Literacy Program
NASA Astrophysics Data System (ADS)
Van Norden, Wendy M.
2013-07-01
The pressure to focus on math and reading at the elementary level has increased in recent years. As a result, science education has taken a back seat in elementary classrooms. The Think Scientifically book series provides a way for science to easily integrate with existing math and reading curriculum. This story-based science literature program integrates a classic storybook format with solar science concepts, to make an educational product that meets state literacy standards. Each story is accompanied by hands-on labs and activities that teachers can easily conduct in their classrooms with minimal training and materials, as well as math and language arts extensions. These books are being distributed through teacher workshops and conferences, and are available free at http://sdo.gsfc.nasa.gov/epo/educators/thinkscientifically.php.
ERIC Educational Resources Information Center
Ford, James; Harrison, Lynn; Mokher, Christine; Franceschini, Louis; Zoblotsky, Todd
2012-01-01
The supplemental educational services program is a core provision of the No Child Left Behind (NCLB) Act of 2001. The program offers free tutoring in reading/language arts and math from state-approved providers outside of regular school hours. This report explores differences across states and school urban and rural locales in providing…
ERIC Educational Resources Information Center
Bruno, Michael A.
2016-01-01
As school districts nationwide struggle to raise academic achievement of students, an emphasis is made to increase the rigor of core subjects such as math, language arts, reading and writing. To balance the school day, courses such as physical education, health, and fine arts are given less prominence in scheduling. For physical education (PE), a…
ERIC Educational Resources Information Center
Weisblat, Gina; McClellan, Jeffrey
2013-01-01
MC Squared STEM High School is part of the Cleveland Metropolitan School District. It has a project-based curriculum that focuses on the core stem skills: science, technology, engineering, and math. As the school celebrated its first graduating class in 2012, administrators felt it was the right time to look back and evaluate the school's…
ERIC Educational Resources Information Center
Doren, Andrew T.
2013-01-01
Community colleges have multiple missions and one of them is to provide open access services to those seeking to further their education. Community colleges provide remedial courses in math, reading, and writing because many of their students do not meet entrance requirements in these core subjects. However, the usual developmental education track…
ERIC Educational Resources Information Center
Ehm, Jan-Henning; Lindberg, Sven; Hasselhorn, Marcus
2014-01-01
The internal/external (I/E) frame of reference model (Marsh, "Am Educ Res J" 23:129-149, 1986) conceptualizes students' self-concepts as being formed by dimensional as well as social comparison processes. In the present study, the I/E model was tested and extended in a sample of elementary school children. Core academic skills of…
Improving Basic Skills in the Workplace. A Core Course for the Catering and Hospitality Industries.
ERIC Educational Resources Information Center
Collins, Lorraine
This training pack is designed for use with employees in the catering and hospitality industries. The material takes common workplace procedures and terminology and uses these as the basis for improving reading, writing, oral communication, and math skills. The pack is designed as a complete course of 13 modules over a period of 32-48 hours, but…
ERIC Educational Resources Information Center
Mukembo, Stephen C.; Edwards, M. Craig
2015-01-01
Professional development (PD) on approaches to curriculum integration (CI) continues to be essential for teachers to stay abreast of developments to improve student performance in their courses while also supporting learning and achievement in core subjects. We aimed to explore and derive meaning from the shared experiences of six agriculture…
ERIC Educational Resources Information Center
Vafiadi, Polixeni
2010-01-01
Data published on the official website of the NYC DOE indicated that slightly less than half (42%) of NYC students in grades three through eight are not proficient in ELA, and one quarter of them (25%) are not proficient in Math. School reform based on Hirsch's Cultural Literacy provided an additional dimension to exploring school reform and…
ERIC Educational Resources Information Center
Ruddock, Graham; Sainsbury, Marian
2008-01-01
This study looks at the curricula for mathematics, science and literacy, comparing England's curricula with those of other countries based on performance in international comparative surveys. The main objective was to answer the question: How does the content of the Primary Curriculum in England at Key stage 2 compare in literacy, math and science…
Project VISION (Very Intensive Scientific Intercurricular On-Site Education
NASA Technical Reports Server (NTRS)
Roig, Gustavo A.
1999-01-01
Project VISION (Very Intensive Scientific Intercurricular On-Site Education) is a joint effort among NASA/John F. Kennedy Space Center, Florida International University, Universidad del Turabo, Miami-Dade County Public Schools and the Caguas/Gurabo Public Schools in Puerto Rico. The project's main mission is to institutionalize change among the elementary and middle school science and math teachers at participating schools so that their students receive continuously enriched instruction in the principles of science and math through the use of hands-on and minds-on experiments called learning modules. These leaming modules incorporate the national science and math education standards provided by the National Committee on Science Education Standards and Assessments and the National Council of Teachers of Mathematics, respectively. The use of learning modules that require hands-on and minds-on activities in a classroom setting garners great enthusiasm and motivation on the part of the target students for the understanding of the lesson's underlying math and science principles. With this enthusiasm and motivation, comes acceptance, attention, participation, discipline, acquiescence, and collaboration. Additionally, the use of hands-on activities may also require learning through a gamut of senses. Not only can the student use his/her eyes and ears during these activities, but most times, they can also use their senses of touch, smell, and taste, as well as intuition. Learning is, therefore, achieved using most or all the human senses. The combination of motivation/enthusiasm and the use of multiple senses creates an ideal environment conducive to leaming at a profound level.
Experts Question California's Algebra Edict
ERIC Educational Resources Information Center
Cavanagh, Sean
2008-01-01
Business leaders from important sectors of the American economy have been urging schools to set higher standards in math and science--and California officials, in mandating that 8th graders be tested in introductory algebra, have responded with one of the highest such standards in the land. Still, many California educators and school…
ERIC Educational Resources Information Center
Christy, Donna; Lambe, Karen; Payson, Christine; Carnevale, Patricia
2011-01-01
The crucial need for a mathematically literate society, coupled with a sustained focus on mathematics standards, continues its center-stage presence. At the same time, "Principles and Standards" states that it is imperative to offer "all students high-quality programs that include significant mathematics presented in a manner that respects both…
ERIC Educational Resources Information Center
Dondlinger, Mary Jo; McLeod, Julie; Vasinda, Sheri
2016-01-01
This article explores links between student experiences with technology-rich mathematics instruction and the ISTE Standards for Students. Research methods applied constructivist grounded theory to analyze data from student interviews against the ISTE Standards for Students to identify which elements of the design of this learning environment…
ERIC Educational Resources Information Center
Kent State Univ., OH. Ohio Literacy Resource Center.
This document is intended to show the relationship between Ohio's Standards and Competencies, Equipped for the Future's (EFF's) Standards and Components of Performance, and Ohio's Revised Benchmarks. The document is divided into three parts, with Part 1 covering mathematics instruction, Part 2 covering reading instruction, and Part 3 covering…
ERIC Educational Resources Information Center
Wiggins, Annette Marie
2010-01-01
The purpose of this study was to explore Idaho Region IV fourth-grade teachers' perceptions regarding the educational influence of Idaho State Achievement Standards and the Idaho Standards Achievement Tests (ISAT) in language usage, reading, and math. Differences between subgroups based on teacher/school demographics, specifically, teachers'…
Litt, Jonathan S; Minich, Nori; Taylor, H Gerry; Hack, Maureen
2017-12-01
Extremely low birth weight (ELBW; <1kg) adolescents are at risk for special health care needs (SHCN) and poor math achievement compared to normal birth weight (NBW) peers. SHCN are associated with poor academic achievement among NBW children. We hypothesize that SHCN explain the effect of ELBW on math achievement. We compared age 14 Woodcock-Johnson Calculation standard scores between 181 ELBW infants and 115 NBW controls. Persistent SHCN included: 1) prescription medication or equipment use, 2) subspecialty or therapeutic service use, or 3) hospitalization. We used nonlinear marginal effects models to decompose the total effect of ELBW on math into the following 4 components: the effect of ELBW controlling for SHCN, the effect of SHCN controlling for ELBW, effect modification by SHCN, and mediated interaction where SHCN is both causal mediator and effect modifier. Models were adjusted for sociodemographic factors. ELBW adolescents had lower mean math scores than NBW peers (81.3 vs. 96.4). SHCN were more common among ELBW adolescents (54.1% vs. 27%). The total effect of ELBW on math scores was -15.7 points (95% CI -21.0, -10.5). The effect of birth weight alone was -7.6 points (95% CI -13.7, -1.4); the effect of SHCN alone was negligible. SHCN interaction and mediated interaction effects each accounted for 25% of the total effect. Birth weight alone explains only half of the effect of ELBW on math achievement. We found evidence of effect modification and mediation by SHCN. Understanding these explanatory pathways may lead to targeted interventions for improved outcomes. Copyright © 2017. Published by Elsevier B.V.
Extreme value problems without calculus: a good link with geometry and elementary maths
NASA Astrophysics Data System (ADS)
Ganci, Salvatore
2016-11-01
Some classical examples of problem solving, where an extreme value condition is required, are here considered and/or revisited. The search for non-calculus solutions appears pedagogically useful and intriguing as shown through a rich literature. A teacher, who teaches both maths and physics, (as happens in Italian High schools) can find in these kinds of problems a mind stimulating exercise compared with the standard solution obtained by the differential calculus. A good link between the geometric and analytical explanations is so established.
Putting the spark into physical science and algebra
NASA Astrophysics Data System (ADS)
Pill, Bruce; Dagenais, Andre
2007-06-01
The presenters will describe a number of laboratory activities developed in collaboration with the Department of Electrical Engineering at the University of Delaware as part of their outreach program to help make math and science more authentic on the pre-college level. Lessons relating to electrical topics are often abstract and appropriate only for advanced students in math and science. We have devised lessons that rely on simple equipment. They promote skills that are included in National and State Standards. They emphasize the connections between math and science; they are appropriate for an algebra course, a physical science course, a PhysicsFirst course or a traditional physics course. Students benefit from seeing that what they learn in math and science courses can lead to cutting-edge work in areas such as passive wave imaging, photonics, wireless communication and high performance computing. The collaboration has been meaningful because it has motivated us to tailor our lessons to reflect what is happening in the research lab of our local university. Written materials for use in teacher training workshops will also be available.
Studying Advanced Mathematics in England: Findings from a Survey of Student Choices and Attitudes
ERIC Educational Resources Information Center
Noyes, Andrew; Adkins, Michael
2016-01-01
The UK Government has set a goal that the "vast majority" of students in England will be studying mathematics to the age of 18 by the end of the decade. The policy levers for achieving this goal include new Core Maths qualifications, designed for over 200,000 students who have achieved good grades at the age of 16 but then opt out of…
JPRS Report, Science & Technology China: Energy
1992-09-23
combined actual models and math - ematical models to conduct the research and established a total of nine actual models with boundary conditions supplied...10,000 ton-grade flotillas after the Three Gorges project is completed. Simulation experiments of actual passage of 10,000 ton-grade flotillas at...excavate the deep trench for the core wall of the weir for the second phase. Concrete tank cars, spreaders, and other equipment were also devel- oped
On the Existence of a Free Boundary for a Class of Reaction-Diffusion Systems.
1982-02-01
I. Diaz. "Soluciones con soporte compacto para alguno. problemas semilineales". Collect. Math. 30 (1979), 141-179. -26- [121 J. I. Diaz. Tecnica de ...supersoluciones locales para problemas estacionarios no lineales: applicacion al estudio de flujoe subsonicos. Memory of the Real Academia de Ciencias...nonlinearity, nonlinear boundary conditions, dead core set, chemical reactions Work Unit Number I - Applied Analysis (1) Seccion de Matematicas
ERIC Educational Resources Information Center
Zinth, Jennifer Dounay
2012-01-01
Multiple catalysts are fueling states' increased urgency to establish a definition of "college readiness". Some states are creating a "college readiness" definition that describes what a student will know and be able to do in such core academic courses as English language arts and math, and that identifies items or benchmarks on state assessments…
Unifying K-12 Learning Processes: Integrating Curricula through Learning
ERIC Educational Resources Information Center
Bosse, Michael J.; Fogarty, Elizabeth A.
2011-01-01
This study was designed to examine whether a set of cross-curricular learning processes could be found in the respective K-12 US national standards for math, language arts, foreign language, science, social studies, fine arts, and technology. Using a qualitative research methodology, the standards from the national associations for these content…
Testing Trends: Considerations for Choosing and Using Assessments
ERIC Educational Resources Information Center
Woods, Julie Rowland
2015-01-01
While federal law requires students to be tested in math, English-language arts and science in particular grades, states are still struggling to mount the resources and expertise necessary to fully implement college and career readiness standards, let alone new assessments aligned to these higher standards. New assessments are not only more…
Grading Standards and Student Performance in Community College and University Courses
ERIC Educational Resources Information Center
Friedl, John; Pittenger, David J.; Sherman, Michael
2012-01-01
Research was undertaken to determine whether comparable grading standards are used in evaluating student performance at two-year community colleges and four-year universities. Examination of academic records of 417 students who took college level math at the University of Tennessee at Chattanooga in fall 2009 compared the performance of those who…
An Analysis of Grade 4 Teachers' Mathematical Instructional Strategies
ERIC Educational Resources Information Center
Wilson-Patrick, Dedra
2016-01-01
The standardized math test scores of approximately 48 African American and Hispanic students from 4 different classes at a rural Title I elementary school located in the southern United States decreased by 10 points on the Palmetto Assessment of State Standards Test. For this qualitative case study, purposive sampling was used to recruit four…
Education and the Environment: Creating Standards-Based Programs in Schools and Districts
ERIC Educational Resources Information Center
Lieberman, Gerald A.
2013-01-01
In this timely book, curriculum expert Gerald A. Lieberman provides an innovative guide to creating and implementing a new type of environmental education that combines standards-based lessons on English language arts, math, history, and science with community investigations and service learning projects. By connecting academic content with local…
Mathematics Awareness through Technology, Teamwork, Engagement, and Rigor
ERIC Educational Resources Information Center
James, Laurie
2016-01-01
The purpose of this two-year observational study was to determine if the use of technology and intervention groups affected fourth-grade math scores. Specifically, the desire was to identify the percentage of students who met or exceeded grade-level standards on the state standardized test. This study indicated possible reasons that enhanced…
A Revision of Technical Mathematics Based on the NCTM Standards. Final Report.
ERIC Educational Resources Information Center
Near, Barbara
Between 1993 and 1996, Henry Ford Community College (Michigan) worked with business, industry, and technical instructors to revise their Technical Mathematics program in accordance with the National Council of Teachers of Mathematics (NCTM) Standards. The purpose of the project was to restructure the technical math curriculum and create a context…
The State of State MATH Standards, 2005
ERIC Educational Resources Information Center
Klein, David; Braams, Bastiaan J.; Parker,Thomas; Quirk, William; Schmid, Wilfried; Wilson, W. Stephen
2005-01-01
Two decades after the United States was diagnosed as "a nation at risk," academic standards for our primary and secondary schools are more important than ever?and their quality matters enormously. In 1983, as nearly every American knows, the National Commission on Excellence in Education declared that "The educational foundations of our society…
Teacher perceptions of high school students underachievement in science
NASA Astrophysics Data System (ADS)
Gopalsingh, Bhagyalakshmi
Low high school graduation rates continue to be a challenge in American public education. The pressure to meet the demands of adequate yearly progress (AYP) under the No Child Left behind Act of 2001 has led to an achievement gap in student performance between science and other core subjects, namely English, math, and social studies, on the Georgia High School Graduation Test (GHSGT). GHSGT statistics have consistently reflected a lower science pass percentage compared with other core subjects on the test. The objective of this nonexperimental, quantitative study was to analyze teacher perceptions on reasons for student science underachievement on the GHSGT. A self-developed questionnaire based on Bloom's taxonomy model was administered to 115 high school core subject teachers of a single school district. Analyses of variance (ANOVA) and chi-square tests were used to test hypotheses. Results confirmed that teachers perceived that (a) students demonstrated a low rate of proficiency in science because science demands higher cognitive skills, (b) less emphasis was placed on science because it is a non-AYP indicator, and (c) making science an AYP indicator will optimize student science achievement. Based on results, recommendations were made to promote the integration of English, math, and social studies curriculum with science curriculum to enable students to transfer learned skills and information across subjects. The potential benefits of outcome of this study include (a) providing critical insight for policy makers and educational practitioners to understand the impact of science underachievement on graduation rates, and (b) raising student science achievement to improve graduation rates.
NASA Astrophysics Data System (ADS)
Garrett-Rainey, Syrena
The purpose of this study was to compare the achievement of general education students within regular education classes to the achievement of general education students in inclusion/co-teach classes to determine whether there was a significant difference in the achievement between the two groups. The school district's inclusion/co-teach model included ongoing professional development support for teachers and administrators. General education teachers, special education teachers, and teacher assistants collaborated to develop instructional strategies to provide additional remediation to help students to acquire the skills needed to master course content. This quantitative study reviewed the end-of course test (EoCT) scores of Grade 10 physical science and math students within an urban school district. It is not known whether general education students in an inclusive/co-teach science or math course will demonstrate a higher achievement on the EoCT in math or science than students not in an inclusive/co-teach classroom setting. In addition, this study sought to determine if students classified as low socioeconomic status benefited from participating in co-teaching classrooms as evidenced by standardized tests. Inferential statistics were used to determine whether there was a significant difference between the achievements of the treatment group (inclusion/co-teach) and the control group (non-inclusion/co-teach). The findings can be used to provide school districts with optional instructional strategies to implement in the diverse classroom setting in the modern classroom to increase academic performance on state standardized tests.
ERIC Educational Resources Information Center
Tobiason, Glory; Heritage, Margaret; Chang, Sandy; Jones, Barbara; Herman, Joan
2014-01-01
This resource is part of a series produced by the Center for Standards and Assessment Implementation (CSAI) to assist teachers and those who support teachers to plan teaching and learning from College and Career Ready Standards (CCRS) for all students, including students with disabilities, English learners, academically at-risk students, students…
Fast 2D FWI on a multi and many-cores workstation.
NASA Astrophysics Data System (ADS)
Thierry, Philippe; Donno, Daniela; Noble, Mark
2014-05-01
Following the introduction of x86 co-processors (Xeon Phi) and the performance increase of standard 2-socket workstations using the latest 12 cores E5-v2 x86-64 CPU, we present here a MPI + OpenMP implementation of an acoustic 2D FWI (full waveform inversion) code which simultaneously runs on the CPUs and on the co-processors installed in a workstation. The main advantage of running a 2D FWI on a workstation is to be able to quickly evaluate new features such as more complicated wave equations, new cost functions, finite-difference stencils or boundary conditions. Since the co-processor is made of 61 in-order x86 cores, each of them having up to 4 threads, this many-core can be seen as a shared memory SMP (symmetric multiprocessing) machine with its own IP address. Depending on the vendor, a single workstation can handle several co-processors making the workstation as a personal cluster under the desk. The original Fortran 90 CPU version of the 2D FWI code is just recompiled to get a Xeon Phi x86 binary. This multi and many-core configuration uses standard compilers and associated MPI as well as math libraries under Linux; therefore, the cost of code development remains constant, while improving computation time. We choose to implement the code with the so-called symmetric mode to fully use the capacity of the workstation, but we also evaluate the scalability of the code in native mode (i.e running only on the co-processor) thanks to the Linux ssh and NFS capabilities. Usual care of optimization and SIMD vectorization is used to ensure optimal performances, and to analyze the application performances and bottlenecks on both platforms. The 2D FWI implementation uses finite-difference time-domain forward modeling and a quasi-Newton (with L-BFGS algorithm) optimization scheme for the model parameters update. Parallelization is achieved through standard MPI shot gathers distribution and OpenMP for domain decomposition within the co-processor. Taking advantage of the 16 GB of memory available on the co-processor we are able to keep wavefields in memory to achieve the gradient computation by cross-correlation of forward and back-propagated wavefields needed by our time-domain FWI scheme, without heavy traffic on the i/o subsystem and PCIe bus. In this presentation we will also review some simple methodologies to determine performance expectation compared to real performances in order to get optimization effort estimation before starting any huge modification or rewriting of research codes. The key message is the ease of use and development of this hybrid configuration to reach not the absolute peak performance value but the optimal one that ensures the best balance between geophysical and computer developments.
Revising the economic imperative for US STEM education.
Donovan, Brian M; Moreno Mateos, David; Osborne, Jonathan F; Bisaccio, Daniel J
2014-01-01
Over the last decade macroeconomic studies have established a clear link between student achievement on science and math tests and per capita gross domestic product (GDP) growth, supporting the widely held belief that science, technology, engineering, and math(STEM) education are important factors in the production of economic prosperity. We critique studies that use science and math tests to predict GDP growth, arguing that estimates of the future economic value of STEM education involve substantial speculation because they ignore the impacts of economic growth on biodiversity and ecosystem functionality, which, in the long-term, limit the potential for future economic growth. Furthermore, we argue that such ecological impacts can be enabled by STEM education. Therefore, we contend that the real economic imperative for the STEM pipeline is not just raising standardized test scores, but also empowering students to assess, preserve, and restore ecosystems in order to reduce ecological degradation and increase economic welfare.
Equity in Standards-Based Elementary Mathematics Classrooms. Weaving Gender Equity into Math Reform.
ERIC Educational Resources Information Center
Perez, Christina
This article discusses the issue of equity in standards-based elementary mathematics classrooms. It is argued that while some of the gaps in mathematics achievement have slowly diminished (e.g., differences in mathematics grades and participation rates between girls and boys in K-12 education have decreased), others remain intractable. Other…
Problematizing Religious Truth: Implications for Public Education
ERIC Educational Resources Information Center
Rosenblith, Suzanne; Priestman, Scott
2004-01-01
The question motivating this paper is whether or not there can be standards governing the evaluation of truth claims in religion. In other areas of study such as physics, math, history, and even value-laden realms like morality there is some widespread agreement as to what constitutes good thinking. If such a standard existed in religion, then our…
Social Studies Fresh Frontier for Standards
ERIC Educational Resources Information Center
Gewertz, Catherine
2011-01-01
Feeling that social studies has been sidelined by a test-driven focus on math and English/language arts, subject-matter specialists from more than a dozen states met last week with representatives of content-area groups to brainstorm ways to improve academic standards in that subject. The two-day gathering in Charlotte, N.C., is the third convened…
Standards and Mastery Learning: Aligning Teaching and Assessment So All Children Can Learn.
ERIC Educational Resources Information Center
Gentile, J. Ronald; Lalley, James P.
This book describes the concept of mastery learning in the classroom and the various foundations upon which it is built. Five chapters discuss: (1) "Understanding Mastery Learning" (e.g., the learning/memory base, the measurement base, theoretical bases, and the brain base); (2) "Examining the Standards: Math, Science, Social Studies, and English…
ERIC Educational Resources Information Center
Colvin, Richard Lee
2012-01-01
California's Academic Performance Index (API) is the state's main accountability metric. Authorized by the Legislature in 1999, around the time California was implementing rigorous new standards in math, science, social studies, and English language arts, the API relies heavily on the results of standardized tests designed to align with those…
Closing the Minority Achievement Gap in Math
ERIC Educational Resources Information Center
Holloway, John H.
2004-01-01
Minority students face numerous academic barriers for achievement in the classroom as well as outside the school. The National Council of Teachers of Mathematics (NCTM) suggests six principles for maintaining the standard of school mathematics.
NASA Astrophysics Data System (ADS)
Saad, Marissa Elizabeth
The United States must provide quality science, technology, engineering, and math (STEM) education in order to maintain a leading role in the global economy. Numerous initiatives have been established across the United States that promote and encourage STEM education within the middle school curriculum. Integrating active learning pedagogy into instructors' lesson plans will prepare the students to think critically - a necessary skill for the twenty first century. This study integrated a three-week long Near Space Balloon project into six eighth grade Earth Science classes from Valley Middle School in Grand Forks, North Dakota. It was hypothesized that after the students designed, constructed, launched, and analyzed their payload experiments, they would have an increased affinity for high school science and math classes. A pre- and post-survey was distributed to the students (n=124), before and after the project to analyze how effective this engineering and space mission was regarding high school STEM interests. The surveys were statistically analyzed, comparing means by the Student's t-Test, specifically the Welch-Satterthwaite test. Female students displayed a 57.1% increase in math and a 63.6% increase in science; male students displayed a 46.6% increase in science and 0% increase in math. Most Likert-scale survey questions experienced no statistically significant change, supporting the null hypothesis. The only survey question that supported the hypothesis was, "I Think Engineers Work Alone," which experienced a 0.24% decrease in student understanding. The results suggest that integrating a three-week long Near Space Balloon project into middle school curricula will not directly influence the students' excitement to pursue STEM subjects and careers. An extensive, yearlong ballooning mission is recommended so that it can be integrated with multiple core subjects. Using such an innovative pedagogy method as with this balloon launch will help students master the scientific process and experience real team collaboration, as they did in this successful mission.
Correlation of Wissler Human Thermal Model Blood Flow and Shiver Algorithms
NASA Technical Reports Server (NTRS)
Bue, Grant; Makinen, Janice; Cognata, Thomas
2010-01-01
The Wissler Human Thermal Model (WHTM) is a thermal math model of the human body that has been widely used to predict the human thermoregulatory response to a variety of cold and hot environments. The model has been shown to predict core temperature and skin temperatures higher and lower, respectively, than in tests of subjects in crew escape suit working in a controlled hot environments. Conversely the model predicts core temperature and skin temperatures lower and higher, respectively, than in tests of lightly clad subjects immersed in cold water conditions. The blood flow algorithms of the model has been investigated to allow for more and less flow, respectively, for the cold and hot case. These changes in the model have yielded better correlation of skin and core temperatures in the cold and hot cases. The algorithm for onset of shiver did not need to be modified to achieve good agreement in cold immersion simulations
Putting the “Spark” into Physical Science and Algebra
NASA Astrophysics Data System (ADS)
Dagenais, Andre; Pill, B.
2006-12-01
The presenters will describe a number of laboratory activities developed in collaboration with the Department of Electrical Engineering at the University of Delaware as part of their outreach program to help make math and science more authentic on the pre-college level. Lessons relating to electrical topics are often abstract and appropriate only for advanced students in math and science. We have devised lessons that rely on simple equipment. They promote skills that are included in National and State Standards. They emphasize the connections between math and science; they are appropriate for an algebra course, a physical science course, a PhysicsFirst course or a traditional physics course. Students benefit from seeing that what they learn in math and science courses can lead to cutting-edge work in areas such as passive wave imaging, photonics, wireless communication and high performance computing. The collaboration has been meaningful because it has motivated us to tailor our lessons to reflect what is happening in the research lab of our local university. Written materials for use in teacher training workshops will also be available. Funded by NSF Research Experience for Teachers(RET #0322633) program under the direction of Dr. Dennis Prather, University of Delaware Electrical Engineering
ERIC Educational Resources Information Center
Tobiason, Glory; Chang, Sandy; Heritage, Margaret; Jones, Barbara; Herman, Joan
2014-01-01
This resource is part of a series produced by the Center for Standards and Assessment Implementation (CSAI) to assist teachers and those who support teachers to plan teaching and learning from College and Career Ready Standards (CCRS) for all students, including students with disabilities, English learners, academically at-risk students, students…
Have, Mona; Nielsen, Jacob Have; Gejl, Anne Kær; Thomsen Ernst, Martin; Fredens, Kjeld; Støckel, Jan Toftegaard; Wedderkopp, Niels; Domazet, Sidsel Louise; Gudex, Claire; Grøntved, Anders; Kristensen, Peter Lund
2016-04-11
Integration of physical activity (PA) into the classroom may be an effective way of promoting the learning and academic achievement of children at elementary school. This paper describes the research design and methodology of an intervention study examining the effect of classroom-based PA on mathematical achievement, creativity, executive function, body mass index and aerobic fitness. The study was designed as a school-based cluster-randomized controlled trial targeting schoolchildren in 1st grade, and was carried out between August 2012 and June 2013. Eligible schools in two municipalities in the Region of Southern Denmark were invited to participate in the study. After stratification by municipality, twelve schools were randomized to either an intervention group or a control group, comprising a total of 505 children with mean age 7.2 ± 0.3 years. The intervention was a 9-month classroom-based PA program that involved integration of PA into the math lessons delivered by the schools' math teachers. The primary study outcome was change in math achievement, measured by a 45-minute standardized math test. Secondary outcomes were change in executive function (using a modified Eriksen flanker task and the Behavior Rating Inventory of Executive Function (BRIEF) questionnaire filled out by the parents), creativity (using the Torrance Tests of Creative Thinking, TTCT), aerobic fitness (by the Andersen intermittent shuttle-run test) and body mass index. PA during math lessons and total PA (including time spent outside school) were assessed using accelerometry. Math teachers used Short Message Service (SMS)-tracking to report on compliance with the PA intervention and on their motivation for implementing PA in math lessons. Parents used SMS-tracking to register their children's PA behavior in leisure time. The results of this randomized controlled trial are expected to provide schools and policy-makers with significant new insights into the potential of classroom-based PA to improve cognition and academic achievement in children. Clinicaltrials.gov: NCT02488460 (06/29/2015).
Curricular Controversy in the Math Wars: A Battle Without Winners.
ERIC Educational Resources Information Center
Reys, Robert E.
2001-01-01
Discusses the state of the mathematics textbook market and the debate surrounding the efforts to improve mathematics instruction, including the standards-based mathematics curriculum supported by the National Science Foundation. (Contains 12 references.) (PKP)
ERIC Educational Resources Information Center
Cross, Tina R.
2002-01-01
Presents an activity in which race cars are designed and constructed out of edible materials. Students explore relationships between speed, distance, and time using both math and science. Includes a chart that shows alignment with the National Science Education Standards. (DDR)
Motor-Enriched Learning Activities Can Improve Mathematical Performance in Preadolescent Children.
Beck, Mikkel M; Lind, Rune R; Geertsen, Svend S; Ritz, Christian; Lundbye-Jensen, Jesper; Wienecke, Jacob
2016-01-01
Objective: An emerging field of research indicates that physical activity can benefit cognitive functions and academic achievements in children. However, less is known about how academic achievements can benefit from specific types of motor activities (e.g., fine and gross) integrated into learning activities. Thus, the aim of this study was to investigate whether fine or gross motor activity integrated into math lessons (i.e., motor-enrichment) could improve children's mathematical performance. Methods: A 6-week within school cluster-randomized intervention study investigated the effects of motor-enriched mathematical teaching in Danish preadolescent children ( n = 165, age = 7.5 ± 0.02 years). Three groups were included: a control group (CON), which received non-motor enriched conventional mathematical teaching, a fine motor math group (FMM) and a gross motor math group (GMM), which received mathematical teaching enriched with fine and gross motor activity, respectively. The children were tested before (T0), immediately after (T1) and 8 weeks after the intervention (T2). A standardized mathematical test (50 tasks) was used to evaluate mathematical performance. Furthermore, it was investigated whether motor-enriched math was accompanied by different effects in low and normal math performers. Additionally, the study investigated the potential contribution of cognitive functions and motor skills on mathematical performance. Results: All groups improved their mathematical performance from T0 to T1. However, from T0 to T1, the improvement was significantly greater in GMM compared to FMM (1.87 ± 0.71 correct answers) ( p = 0.02). At T2 no significant differences in mathematical performance were observed. A subgroup analysis revealed that normal math-performers benefitted from GMM compared to both CON 1.78 ± 0.73 correct answers ( p = 0.04) and FMM 2.14 ± 0.72 correct answers ( p = 0.008). These effects were not observed in low math-performers. The effects were partly accounted for by visuo-spatial short-term memory and gross motor skills. Conclusion: The study demonstrates that motor enriched learning activities can improve mathematical performance. In normal math performers GMM led to larger improvements than FMM and CON. This was not the case for the low math performers. Future studies should further elucidate the neurophysiological mechanisms underlying the observed behavioral effects.
NASA Astrophysics Data System (ADS)
Garza, Jennifer M.
The purpose of this study is to inform and further the discussion of academic (i.e. teachers and school counselors) and non-academic (i.e. parents, family, friends, etc.) validating agents on Latina students' mathematics and science self-concepts. This study found a relationship between Latina students' interactions with academic and non-academic validating agents and their math and science self-concept at the K-12 level. Through the review of the literature the researcher addresses identifiable factors and strategies that inform the field of education in the areas of validation theory, family characteristics, and access to STEM fields for Latina students. The researcher used an established instrument designed, administered, and validated through the National Center for Education Statistics (NCES). For purposes of this study, a categorical subset of participants who self-identified as being a Latina student was used. As a result, the total subset number in this study was N=1,882. To determine if academic and non-academic validating agents had an observable statistically significant relationship with Latina students' math and science self-concept, a series of one-way ANOVAs were calculated to compare differences in students' math and science self-concept based on academic and non-academic validating agents for the weighted sample of Latinas for the HLS:09 survey. A path analysis was also employed to assess the factors involved in Latina students' math and science self-concepts. The findings are consistent with previous research involving the influence that academic and non-academic validating agents have on the math and science self-concept of Latina students. The results indicated that students who had teachers that believed in the students, regardless of family background, social economic status or home environment influences had higher math and science self concepts than those who did not. Similarly, it was found that students who had counselors that set high standards of learning and believed that all students could do well had higher math and science self concept than those who did not. Students who had parents that encouraged and discussed taking more math and science courses had higher math and science self concepts than those who did not.
Motor-Enriched Learning Activities Can Improve Mathematical Performance in Preadolescent Children
Beck, Mikkel M.; Lind, Rune R.; Geertsen, Svend S.; Ritz, Christian; Lundbye-Jensen, Jesper; Wienecke, Jacob
2016-01-01
Objective: An emerging field of research indicates that physical activity can benefit cognitive functions and academic achievements in children. However, less is known about how academic achievements can benefit from specific types of motor activities (e.g., fine and gross) integrated into learning activities. Thus, the aim of this study was to investigate whether fine or gross motor activity integrated into math lessons (i.e., motor-enrichment) could improve children's mathematical performance. Methods: A 6-week within school cluster-randomized intervention study investigated the effects of motor-enriched mathematical teaching in Danish preadolescent children (n = 165, age = 7.5 ± 0.02 years). Three groups were included: a control group (CON), which received non-motor enriched conventional mathematical teaching, a fine motor math group (FMM) and a gross motor math group (GMM), which received mathematical teaching enriched with fine and gross motor activity, respectively. The children were tested before (T0), immediately after (T1) and 8 weeks after the intervention (T2). A standardized mathematical test (50 tasks) was used to evaluate mathematical performance. Furthermore, it was investigated whether motor-enriched math was accompanied by different effects in low and normal math performers. Additionally, the study investigated the potential contribution of cognitive functions and motor skills on mathematical performance. Results: All groups improved their mathematical performance from T0 to T1. However, from T0 to T1, the improvement was significantly greater in GMM compared to FMM (1.87 ± 0.71 correct answers) (p = 0.02). At T2 no significant differences in mathematical performance were observed. A subgroup analysis revealed that normal math-performers benefitted from GMM compared to both CON 1.78 ± 0.73 correct answers (p = 0.04) and FMM 2.14 ± 0.72 correct answers (p = 0.008). These effects were not observed in low math-performers. The effects were partly accounted for by visuo-spatial short-term memory and gross motor skills. Conclusion: The study demonstrates that motor enriched learning activities can improve mathematical performance. In normal math performers GMM led to larger improvements than FMM and CON. This was not the case for the low math performers. Future studies should further elucidate the neurophysiological mechanisms underlying the observed behavioral effects. PMID:28066215
Generation of Custom DSP Transform IP Cores: Case Study Walsh-Hadamard Transform
2002-09-01
mathematics and hardware design What I know: Finite state machine Pipelining Systolic array … What I know: Linear algebra Digital signal processing...state machine Pipelining Systolic array … What I know: Linear algebra Digital signal processing Adaptive filter theory … A math guy A hardware engineer...Synthesis Technology Libary Bit-width (8) HF factor (1,2,3,6) VF factor (1,2,4, ... 32) Xilinx FPGA Place&Route Xilinx FPGA Place&Route Performance
ERIC Educational Resources Information Center
Phillips, Daniel M.
2015-01-01
The purpose of this study was to investigate the relationship between teacher efficacy levels and fifth grade Virginia SOL Mathematic achievement. This study sought to determine the extent to which personal efficacy, general efficacy, and total efficacy account for fifth grade Virginia Standards of Learning Mathematic achievement over and above…
ERIC Educational Resources Information Center
Clark, Tanner
2017-01-01
The underachievement of students in the US is a growing and significant problem. When guided by the K-12 Service-Learning Standards for Quality Practice, research has shown service-learning results in increased academic achievement among middle and high school students. This study focused on identifying the impact of service learning interventions…
The Sound of Steam: Acoustics as the Integrator Between Arts and STEM
NASA Astrophysics Data System (ADS)
Goates, Caleb; Whiting, Jenny; Berardi, Mark; Gee, Kent L.; Neilsen, Tracianne B.
2016-03-01
This paper describes the development and presentation of a Science, Technology, Engineering, Arts, and Math (STEAM) workshop for elementary school teachers designed to provide ideas and tools for using acoustics in the classroom. The abundant hands-on activities and concepts in acoustics naturally link science and music in an intuitive way that can assist teachers moving forward on the STEAM initiative. Our workshop gave teachers an introduction to acoustics principles and demonstrations that can be used to tie STEAM techniques with Utah State Education Core standards. These hands-on demonstrations and real-world applications provide an avenue to engage students and support learning outcomes. Feedback indicated that the participants learned from and enjoyed the initial implementation of this workshop, though many elementary school teachers did not immediately see how they could integrate it into their curriculum. While additional efforts might be made to better focus the training workshop for the K-6 level, curriculum developers need to appreciate how acoustics could be used more broadly at the elementary school level if the emphasis changes from STEM to STEAM. ?
How to improve essential skills in introductory physics through brief, spaced, online practice.
NASA Astrophysics Data System (ADS)
Heckler, Andrew; Mikula, Brendon
2017-01-01
We developed and implemented a set of online ``essential skills'' tasks to help students achieve and retain a core level of mastery and fluency in basic skills necessary for their coursework. The task design is based on our research on student understanding and difficulties as well as three well-established cognitive principles: 1) spaced practice, to promote retention, 2) interleaved practice, to promote the ability to recognize when the learned skill is needed, and 3) mastery practice mastery practice, to promote a base level of performance. We report on training on a variety of skills with vector math. Students spent a relatively small amount of time, 10-20 minutes in practice each week, answering relevant questions online until a mastery level was achieved. Results indicate significant and often dramatic gains, often with average gains of over one standard deviation. Notably, these large gains are retained at least several months after the final practice session, including for less-prepared students. Funding for this research was provided by the Center for Emergent Materials: an NSF MRSEC under Award Number DMR-1420451.
ERIC Educational Resources Information Center
Ochterski, Joseph; Lupacchino-Gilson, Lisa
2016-01-01
This article describes how the authors began a science, technology, engineering, art, and math (STEAM) collaboration and completed three projects of varying complexity in their art and chemistry classrooms. The projects align with the Next Generation Science Standards (NGSS Lead States 2013).
Necka, Elizabeth A.; Sokolowski, H. Moriah; Lyons, Ian M.
2015-01-01
Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap) to assess individuals’ self-math overlap. This non-verbal single-item measure showed that identifying oneself with math (having higher self-math overlap) was strongly associated with lower math anxiety (r = -0.610). We also expected that having higher self-math overlap would leave one especially susceptible to the threat of poor math performance to the self. We identified two competing hypotheses regarding how this plays out in terms of math anxiety. Those higher in self-math overlap might be more likely to worry about poor math performance, exacerbating the negative relation between math anxiety and math ability. Alternatively, those higher in self-math overlap might exhibit self-serving biases regarding their math ability, which would instead predict a decoupling of the relation between their perceived and actual math ability, and in turn the relation between their math ability and math anxiety. Results clearly favored the latter hypothesis: those higher in self-math overlap exhibited almost no relation between math anxiety and math ability, whereas those lower in self-math overlap showed a strong negative relation between math anxiety and math ability. This was partially explained by greater self-serving biases among those higher in self-math overlap. In sum, these results reveal that the degree to which one integrates math into one’s self – self-math overlap – may provide insight into how the pernicious negative relation between math anxiety and math ability may be ameliorated. PMID:26528210
Necka, Elizabeth A; Sokolowski, H Moriah; Lyons, Ian M
2015-01-01
Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap) to assess individuals' self-math overlap. This non-verbal single-item measure showed that identifying oneself with math (having higher self-math overlap) was strongly associated with lower math anxiety (r = -0.610). We also expected that having higher self-math overlap would leave one especially susceptible to the threat of poor math performance to the self. We identified two competing hypotheses regarding how this plays out in terms of math anxiety. Those higher in self-math overlap might be more likely to worry about poor math performance, exacerbating the negative relation between math anxiety and math ability. Alternatively, those higher in self-math overlap might exhibit self-serving biases regarding their math ability, which would instead predict a decoupling of the relation between their perceived and actual math ability, and in turn the relation between their math ability and math anxiety. Results clearly favored the latter hypothesis: those higher in self-math overlap exhibited almost no relation between math anxiety and math ability, whereas those lower in self-math overlap showed a strong negative relation between math anxiety and math ability. This was partially explained by greater self-serving biases among those higher in self-math overlap. In sum, these results reveal that the degree to which one integrates math into one's self - self-math overlap - may provide insight into how the pernicious negative relation between math anxiety and math ability may be ameliorated.
Evens, Anne; Hryhorczuk, Daniel; Lanphear, Bruce P; Rankin, Kristin M; Lewis, Dan A; Forst, Linda; Rosenberg, Deborah
2015-04-07
Environmental lead exposure poses a risk to educational performance, especially among poor, urban children. Previous studies found low-level lead exposure was a risk factor for diminished academic abilities, however, this study is distinct because of the very large sample size and because it controlled for very low birth weight and early preterm birth-two factors closely associated with lower academic performance. In this study we examined the association between lead concentration in whole blood (B-Pb) of Chicago Public School (CPS) children and their performance on the 3(rd) grade Illinois Standard Achievement Tests (ISAT) reading and math scores. We examined 58,650 children born in Chicago between 1994 and 1998 who were tested for blood lead concentration between birth and 2006 and enrolled in the 3(rd) grade at a CPS school between 2003 and 2006. We linked the Chicago birth registry, the Chicago Blood Lead Registry, and 3(rd) grade ISAT scores to examine associations between B-Pb and school performance. After adjusting for other predictors of school performance including poverty, race/ethnicity, gender, maternal education and very low birth weight or preterm-birth, we found that B-Pbs below 10 μg/dL were inversely associated with reading and math scores in 3(rd) grade children. For a 5 μg/dL increase in B-Pb, the risk of failing increased by 32% for reading (RR = 1.32, 95%CI = 1.26, 1.39) and math (RR = 1.32, 95%CI = 1.26, 1.39). The effect of lead on reading was non-linear with steeper failure rates at lower B-Pbs. We estimated that 13% of reading failure and 14.8% of math failure can be attributed to exposure to blood lead concentrations of 5 to 9 vs. 0 to 4 μg/dL in Chicago school children. Early childhood lead exposure is associated with poorer achievement on standardized reading and math tests in the third grade, even at very low B-Pbs. Preventing lead exposure in early childhood is critical to improving school performance.
NASA Astrophysics Data System (ADS)
Banerjee, Banmali
Methods and procedures for successfully solving math word problems have been, and continue to be a mystery to many U.S. high school students. Previous studies suggest that the contextual and mathematical understanding of a word problem, along with the development of schemas and their related external representations, positively contribute to students' accomplishments when solving word problems. Some studies have examined the effects of diagramming on students' abilities to solve word problems that only involved basic arithmetic operations. Other studies have investigated how instructional models that used technology influenced students' problem solving achievements. Still other studies have used schema-based instruction involving students with learning disabilities. No study has evaluated regular high school students' achievements in solving standard math word problems using a diagramming technique without technological aid. This study evaluated students' achievement in solving math word problems using a diagramming technique. Using a quasi-experimental experimental pretest-posttest research design, quantitative data were collected from 172 grade 11 Hispanic English language learners (ELLS) and African American learners whose first language is English (EFLLs) in 18 classes at an inner city high school in Northern New Jersey. There were 88 control and 84 experimental students. The pretest and posttest of each participating student and samples of the experimental students' class assignments provided the qualitative data for the study. The data from this study exhibited that the diagramming method of solving math word problems significantly improved student achievement in the experimental group (p<.01) compared to the control group. The study demonstrated that urban, high school, ELLs benefited from instruction that placed emphasis on the mathematical vocabulary and symbols used in word problems and that both ELLs and EFLLs improved their problem solving success through careful attention to the creation and labeling of diagrams to represent the mathematics involved in standard word problems. Although Learnertype (ELL, EFLL), Classtype (Bilingual and Mixed), and Gender (Female, Male) were not significant indicators of student achievement, there was significant interaction between Treatment and Classtype at the level of the Bilingual students ( p<.01) and between Treatment and Learnertype at the level of the ELLs (p<.01).
Intergenerational Effects of Parents' Math Anxiety on Children's Math Achievement and Anxiety.
Maloney, Erin A; Ramirez, Gerardo; Gunderson, Elizabeth A; Levine, Susan C; Beilock, Sian L
2015-09-01
A large field study of children in first and second grade explored how parents' anxiety about math relates to their children's math achievement. The goal of the study was to better understand why some students perform worse in math than others. We tested whether parents' math anxiety predicts their children's math achievement across the school year. We found that when parents are more math anxious, their children learn significantly less math over the school year and have more math anxiety by the school year's end-but only if math-anxious parents report providing frequent help with math homework. Notably, when parents reported helping with math homework less often, children's math achievement and attitudes were not related to parents' math anxiety. Parents' math anxiety did not predict children's reading achievement, which suggests that the effects of parents' math anxiety are specific to children's math achievement. These findings provide evidence of a mechanism for intergenerational transmission of low math achievement and high math anxiety. © The Author(s) 2015.
The Influence of Foreign Language Learning during Early Childhood on Standardized Test Scores
ERIC Educational Resources Information Center
Shaw, Tommetta
2010-01-01
Increasing standardized test scores in reading and math is of high importance to the California Department of Education to meet requirements mandated by the No Child Left Behind (NCLB) act of 2001. More research is needed to understand the best ways to improve tests scores to meet concerns of the NCLB act. The purpose of the study was to evaluate…
ERIC Educational Resources Information Center
Office of Financial Education (Dept. of Treasury), Washington, DC.
This report presents a distinguished panel's findings on financial education in the U.S. In May 2002, the Secretaries of the Departments of Treasury and Education invited representatives from national youth education groups to consider the opportunities and challenges that arise when financial education is integrated into core curricula.…
ERIC Educational Resources Information Center
Louisiana State Dept. of Education, Baton Rouge. Bureau of Adult and Community Education.
This booklet along with six others comprises a curriculum guide developed for adult education supervisors and teachers of undereducated workers or job seekers whose inability to develop the skills and obtain the knowledge necessary to meet the requirements of the working world are primarily due to a lack of competence in reading and math skills.…
ERIC Educational Resources Information Center
San Mateo County Office of Education, Redwood City, CA. Career Preparation Centers.
This seventh of fifteen sets of Adult Competency Education (ACE) Competency Based Job Descriptions in the ACE kit contains job descriptions for Salesperson, Automotive Parts; Sales Clerk, Retail; Salesperson, Garden and Housewares; and Salesperson, Women's Garments. Each begins with a fact sheet that includes this information: occupational title,…
ERIC Educational Resources Information Center
San Mateo County Office of Education, Redwood City, CA. Career Preparation Centers.
This tenth of fifteen sets of Adult Competency Education (ACE) Competency Based Job Descriptions in the ACE kit contains job descriptions for Food Assembler, Injection Molder-Machine Operator, Data Entry Typist, Institutional Cook, and Clerk Typist. Each begins with a fact sheet that includes this information: occupational title, D.O.T. code, ACE…
ERIC Educational Resources Information Center
San Mateo County Office of Education, Redwood City, CA. Career Preparation Centers.
This thirteenth of fifteen sets of Adult Competency Education (ACE) Competency Based Job Descriptions in the ACE kit contains job descriptions for Secretary, Keypunch Operator, Electronics Assembler, Printed Circuit Assembler, Micro Electronincs Assembler, Chassis Assembler, and Machinist Apprentice. Each begins with a fact sheet that includes…
ERIC Educational Resources Information Center
Bureau of Occupational and Adult Education (DHEW/OE), Washington, DC. Div. of Adult Education.
This booklet along with six others comprises a curriculum guide developed for adult education supervisors and teachers of undereducated workers or job seekers whose inability to develop the skills and obtain the knowledge necessary to meet the requirements of the working world are primarily due to a lack of competence in reading and math skills.…
ERIC Educational Resources Information Center
Louisiana State Dept. of Education, Baton Rouge. Bureau of Adult and Community Education.
This booklet along with six others comprises a curriculum guide developed for adult education supervisors and teachers of undereducated workers or job seekers whose inability to develop the skills and obtain the knowledge necessary to meet the requirements of the working world are primarily due to a lack of competence in reading and math skills.…
Parent-child math anxiety and math-gender stereotypes predict adolescents' math education outcomes
Casad, Bettina J.; Hale, Patricia; Wachs, Faye L.
2015-01-01
Two studies examined social determinants of adolescents' math anxiety including parents' own math anxiety and children's endorsement of math-gender stereotypes. In Study 1, parent-child dyads were surveyed and the interaction between parent and child math anxiety was examined, with an eye to same- and other-gender dyads. Results indicate that parent's math anxiety interacts with daughters' and sons' anxiety to predict math self-efficacy, GPA, behavioral intentions, math attitudes, and math devaluing. Parents with lower math anxiety showed a positive relationship to children's math outcomes when children also had lower anxiety. The strongest relationships were found with same-gender dyads, particularly Mother-Daughter dyads. Study 2 showed that endorsement of math-gender stereotypes predicts math anxiety (and not vice versa) for performance beliefs and outcomes (self-efficacy and GPA). Further, math anxiety fully mediated the relationship between gender stereotypes and math self-efficacy for girls and boys, and for boys with GPA. These findings address gaps in the literature on the role of parents' math anxiety in the effects of children's math anxiety and math anxiety as a mechanism affecting performance. Results have implications for interventions on parents' math anxiety and dispelling gender stereotypes in math classrooms. PMID:26579000
Parent-child math anxiety and math-gender stereotypes predict adolescents' math education outcomes.
Casad, Bettina J; Hale, Patricia; Wachs, Faye L
2015-01-01
Two studies examined social determinants of adolescents' math anxiety including parents' own math anxiety and children's endorsement of math-gender stereotypes. In Study 1, parent-child dyads were surveyed and the interaction between parent and child math anxiety was examined, with an eye to same- and other-gender dyads. Results indicate that parent's math anxiety interacts with daughters' and sons' anxiety to predict math self-efficacy, GPA, behavioral intentions, math attitudes, and math devaluing. Parents with lower math anxiety showed a positive relationship to children's math outcomes when children also had lower anxiety. The strongest relationships were found with same-gender dyads, particularly Mother-Daughter dyads. Study 2 showed that endorsement of math-gender stereotypes predicts math anxiety (and not vice versa) for performance beliefs and outcomes (self-efficacy and GPA). Further, math anxiety fully mediated the relationship between gender stereotypes and math self-efficacy for girls and boys, and for boys with GPA. These findings address gaps in the literature on the role of parents' math anxiety in the effects of children's math anxiety and math anxiety as a mechanism affecting performance. Results have implications for interventions on parents' math anxiety and dispelling gender stereotypes in math classrooms.
Using assessment to individualize early mathematics instruction.
Connor, Carol McDonald; Mazzocco, Michèle M M; Kurz, Terri; Crowe, Elizabeth C; Tighe, Elizabeth L; Wood, Taffeta S; Morrison, Frederick J
2018-02-01
Accumulating evidence suggests that assessment-informed personalized instruction, tailored to students' individual skills and abilities, is more effective than more one-size-fits-all approaches. In this study, we evaluate the efficacy of Individualizing Student Instruction in Mathematics (ISI-Math) compared to Reading (ISI-Reading) where classrooms were randomly assigned to ISI-Math or ISI-Reading. The literature on child characteristics X instruction or skill X treatment interaction effects point to the complexities of tailoring instruction for individual students who present with constellations of skills. Second graders received mathematics instruction in small flexible learning groups based on their assessed learning needs. Results of the study (n=32 teachers, 370 students) revealed significant treatment effects on standardized mathematics assessments. With effect sizes (d) of 0.41-0.60, we show that we can significantly improve 2nd graders' mathematics achievement, including for children living in poverty, by using assessment data to individualize the mathematics instruction they receive. The instructional regime, ISI-Math, was implemented by regular classroom teachers and it led to about a 4-month achievement advantage on standardized mathematics tests when compared to students in control classrooms. These results were realized within one school year. Moreover, treatment effects were the same regardless of school-level poverty and students' gender, initial mathematics or vocabulary scores. Copyright © 2017 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tate, Stephen James
2013-10-01
In the 1960s, the technique of using cluster expansion bounds in order to achieve bounds on the virial expansion was developed by Lebowitz and Penrose (J. Math. Phys. 5:841, 1964) and Ruelle (Statistical Mechanics: Rigorous Results. Benjamin, Elmsford, 1969). This technique is generalised to more recent cluster expansion bounds by Poghosyan and Ueltschi (J. Math. Phys. 50:053509, 2009), which are related to the work of Procacci (J. Stat. Phys. 129:171, 2007) and the tree-graph identity, detailed by Brydges (Phénomènes Critiques, Systèmes Aléatoires, Théories de Jauge. Les Houches 1984, pp. 129-183, 1986). The bounds achieved by Lebowitz and Penrose can also be sharpened by doing the actual optimisation and achieving expressions in terms of the Lambert W-function. The different bound from the cluster expansion shows some improvements for bounds on the convergence of the virial expansion in the case of positive potentials, which are allowed to have a hard core.
NASA Astrophysics Data System (ADS)
Tazaz, A.; Wilson, R. M.; Schoen, R.; Blumsack, S.; King, L.; Dyehouse, M.
2013-12-01
'The Integrating STEM Project' engaged 6-8 grade teachers through activities incorporating mathematics, science and technology incorporating both Next Generation Science Standards (NGSS) and Common Core State Standards-Mathematics (CCSS-Math). A group of researchers from Oceanography, Mathematics, and Education set out to provide middle school teachers with a 2 year intensive STEM integration professional development with a focus on environmental topics and to monitor the achievement outcomes in their students. Over the course of 2 years the researchers created challenging professional development sessions to expand teacher knowledge and teachers were tasked to transform the information gained during the professional development sessions for classroom use. One lesson resource kit presented to the teachers, which was directly applicable to the classroom, included Model Eliciting Activities (MEA's) to explore the positive and negative effects land development has on climate and the environment, and how land development impacts storm water management. MEA's were developed to encourage students to create models to solve complex problems and to allow teachers to investigate students thinking. MEA's are a great curriculum technique used in engineering fields to help engage students by providing hands on activities using real world data and problems. We wish to present the Storm Water Management Resource toolkit including the MEA and present the outcomes observed from student engagement in this activity.
Assessment, Autonomy, and Elementary Social Studies Time
ERIC Educational Resources Information Center
Fitchett, Paul G.; Heafner, Tina L.; Lambert, Richard
2014-01-01
Background/context: In an era of accountability and standardization, elementary social studies is consistently losing its curricular foothold to English/language arts, math, and science instruction. Purpose: This article examines the relationship between elementary teachers' perceptions of instructional autonomy, teaching context, state testing…
ERIC Educational Resources Information Center
Hestenes, David
2013-01-01
Radical reform in science and mathematics education is needed to prepare citizens for challenges of the emerging knowledge-based global economy. We consider definite proposals to establish: (1) "Standards of science and math literacy" for all students. (2) "Integration of the science curriculum" with structure of matter,…
What Are the Signs of Alzheimer's Disease? | NIH MedlinePlus the Magazine
... in behavior and personality Conduct tests of memory, problem solving, attention, counting, and language Carry out standard medical ... over and over having trouble paying bills or solving simple math problems getting lost losing things or putting them in ...
Jansen, Brenda R. J.; Schmitz, Eva A.; van der Maas, Han L. J.
2016-01-01
This study focused on the use of math in everyday life (the propensity to recognize and solve quantitative issues in real life situations). Data from a Dutch nation-wide research on math among adults (N = 521) were used to investigate the question whether math anxiety and perceived math competence mediated the relationship between math skills and use of math in everyday life, taken gender differences into account. Results showed that women reported higher math anxiety, lower perceived math competence, and lower use of math in everyday life, compared to men. Women's skills were estimated at a lower level than men's. For both women and men, higher skills were associated with higher perceived math competence, which in turn was associated with more use of math in everyday life. Only for women, math anxiety also mediated the relation between math skills and use of math in everyday life. PMID:27148122
Individual differences in non-verbal number acuity correlate with maths achievement.
Halberda, Justin; Mazzocco, Michèle M M; Feigenson, Lisa
2008-10-02
Human mathematical competence emerges from two representational systems. Competence in some domains of mathematics, such as calculus, relies on symbolic representations that are unique to humans who have undergone explicit teaching. More basic numerical intuitions are supported by an evolutionarily ancient approximate number system that is shared by adults, infants and non-human animals-these groups can all represent the approximate number of items in visual or auditory arrays without verbally counting, and use this capacity to guide everyday behaviour such as foraging. Despite the widespread nature of the approximate number system both across species and across development, it is not known whether some individuals have a more precise non-verbal 'number sense' than others. Furthermore, the extent to which this system interfaces with the formal, symbolic maths abilities that humans acquire by explicit instruction remains unknown. Here we show that there are large individual differences in the non-verbal approximation abilities of 14-year-old children, and that these individual differences in the present correlate with children's past scores on standardized maths achievement tests, extending all the way back to kindergarten. Moreover, this correlation remains significant when controlling for individual differences in other cognitive and performance factors. Our results show that individual differences in achievement in school mathematics are related to individual differences in the acuity of an evolutionarily ancient, unlearned approximate number sense. Further research will determine whether early differences in number sense acuity affect later maths learning, whether maths education enhances number sense acuity, and the extent to which tertiary factors can affect both.
ERIC Educational Resources Information Center
Fahle, Erin M.; Reardon, Sean F.
2017-01-01
This paper provides the first population-based evidence on how much standardized test scores vary among public school districts within each state and how segregation explains that variation. Using roughly 300 million standardized test score records in math and ELA for grades 3 through 8 from every U.S. public school district during the 2008-09 to…
Academic status and progress of deaf and hard-of-hearing students in general education classrooms.
Antia, Shirin D; Jones, Patricia B; Reed, Susanne; Kreimeyer, Kathryn H
2009-01-01
The study participants were 197 deaf or hard-of-hearing students with mild to profound hearing loss who attended general education classes for 2 or more hours per day. We obtained scores on standardized achievement tests of math, reading, and language/writing, and standardized teacher's ratings of academic competence annually, for 5 years, together with other demographic and communication data. Results on standardized achievement tests indicated that, over the 5-year period, 63%-79% of students scored in the average or above-average range in math, 48%-68% in reading, and 55%-76% in language/writing. The standardized test scores for the group were, on average, half an SD below hearing norms. Average student progress in each subject area was consistent with or better than that made by the norm group of hearing students, and 79%-81% of students made one or more year's progress annually. Teachers rated 69%-81% of students as average or above average in academic competence over the 5 years. The teacher's ratings also indicated that 89% of students made average or above-average progress. Students' expressive and receptive communication, classroom participation, communication mode, and parental participation in school were significantly, but moderately, related to academic outcomes.
Female teachers' math anxiety affects girls' math achievement.
Beilock, Sian L; Gunderson, Elizabeth A; Ramirez, Gerardo; Levine, Susan C
2010-02-02
People's fear and anxiety about doing math--over and above actual math ability--can be an impediment to their math achievement. We show that when the math-anxious individuals are female elementary school teachers, their math anxiety carries negative consequences for the math achievement of their female students. Early elementary school teachers in the United States are almost exclusively female (>90%), and we provide evidence that these female teachers' anxieties relate to girls' math achievement via girls' beliefs about who is good at math. First- and second-grade female teachers completed measures of math anxiety. The math achievement of the students in these teachers' classrooms was also assessed. There was no relation between a teacher's math anxiety and her students' math achievement at the beginning of the school year. By the school year's end, however, the more anxious teachers were about math, the more likely girls (but not boys) were to endorse the commonly held stereotype that "boys are good at math, and girls are good at reading" and the lower these girls' math achievement. Indeed, by the end of the school year, girls who endorsed this stereotype had significantly worse math achievement than girls who did not and than boys overall. In early elementary school, where the teachers are almost all female, teachers' math anxiety carries consequences for girls' math achievement by influencing girls' beliefs about who is good at math.
Cawley, J F; Miller, J H
1989-04-01
This study examines the mathematical performance of 220 children from 8 years through 17 years of age diagnosed as having learning disabilities. Student records were searched for data indicating performance on standardized test instruments relating to mathematics. Data for the Woodcock-Johnson Psycho-Educational Achievement Battery math subtests and for the IQ scores from the Wechsler Intelligence Scale for Children-Revised were obtained. Comparisons were made among children at different ages and among specific age clusters. Primary attention was directed toward calculations and applications of math concepts and principles. Developmental patterns across the ages studied were discovered. Implications for long-term comprehensive programming are presented.
Encouraging Equitable Enrollment.
ERIC Educational Resources Information Center
Hill, Stan
1997-01-01
Describes Project JUST (Join Underrepresented in Science and Technology), an initiative whose goal is to create an atmosphere of systemic change within an urban school district that results in minority students excelling in upper level math and science courses. Discusses leadership, governance, and management; a standards-based curriculum;…
A Literature Approach to Middle Grade Math.
ERIC Educational Resources Information Center
Greenlaw, M. Jean; Tipps, Steve
1997-01-01
Suggests ways that teachers can use picture books, chapter books, poems, newspapers, and reference materials to fulfill the National Council of Teachers of Mathematics 1989 curriculum standards which state that problem solving, reasoning, communications, and connections should be part of every mathematics learning experience. Discusses number…
ERIC Educational Resources Information Center
Kritzer, Karen L.
2011-01-01
In their overview for the prekindergarten-grade 2 Standards, the National Council for Teachers of Mathematics (NCTM) documents the value of early mathematical environments. During these early years, young children are building beliefs about what mathematics is and learning about themselves as early mathematicians. What young children learn about…
Classroom Correlates of Neurological "Soft Signs".
ERIC Educational Resources Information Center
Hartlage, Patricia L.; Hartlage, Lawrence C.
This study investigated the relationships between 19 neurological abnormalities in school children and measures of school performance in reading, math, and nonacademic classroom behaviors. The sample of 45 children was given a standardized achievement test and the Draw-a-Person instrument to obtain academic variables. Nonacademic behaviors…
NASA Astrophysics Data System (ADS)
Kiekebusch, Mario J.; Di Lieto, Nicola; Sandrock, Stefan; Popovic, Dan; Chiozzi, Gianluca
2014-07-01
ESO is in the process of implementing a new development platform, based on PLCs, for upcoming VLT control systems (new instruments and refurbishing of existing systems to manage obsolescence issues). In this context, we have evaluated the integration and reuse of existing C++ libraries and Simulink models into the real-time environment of BECKHOFF Embedded PCs using the capabilities of the latest version of TwinCAT software and MathWorks Embedded Coder. While doing so the aim was to minimize the impact of the new platform by adopting fully tested solutions implemented in C++. This allows us to reuse the in house expertise, as well as extending the normal capabilities of the traditional PLC programming environments. We present the progress of this work and its application in two concrete cases: 1) field rotation compensation for instrument tracking devices like derotators, 2) the ESO standard axis controller (ESTAC), a generic model-based controller implemented in Simulink and used for the control of telescope main axes.
ERIC Educational Resources Information Center
Lee, Jihyun
2009-01-01
The overarching goal of the present study is to investigate the factorial structure of three closely related constructs: math self-concept, math self-efficacy, and math anxiety. The factorial structure consisting of three factors, each representing math self-concept, math self-efficacy, and math anxiety, is supported in all 41 countries employed…
Santos, Carlos E; Collins, Mary Ann
2016-07-01
The aim of this study was to investigate the association between school connectedness and performance in standardized test scores and whether this association was moderated by ethnic private regard. The study combines self-report data with school district reported data on standardized test scores in reading and math and free and reduced lunch status. Participants included 436 Mexican-origin youth attending a middle school in a southwestern U.S. state. Participants were on average 12.34 years of age (SD = .95) and 51.8% female and 48.2% male. After controlling for age, gender, free and reduced lunch status, and generational status, school connectedness and ethnic private regard were both positive predictors of standardized test scores in reading and math. Results also revealed a significant interaction between school connectedness and ethnic private regard in predicting standardized test scores in reading, such that participants who were low on ethnic private regard and low on school connectedness reported lower levels of achievement compared to participants who were low on ethnic private regard but high on school connectedness. At high levels of ethnic private regard, high or low levels of school connectedness were not associated with higher or lower standardized test scores in reading. The findings in this study provide support for the protective role that ethnic private regard plays in the educational experiences of Mexican-origin youth and highlights how the local school context may play a role in shaping this finding. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Designing Innovative Lessons Plans to Support the Next Generation Science Standards (NGSS)
NASA Astrophysics Data System (ADS)
Passow, M. J.
2013-12-01
The Next Generation Science Standards (NGSS) issued earlier in 2013 provide the opportunity to enhance pre-college curricula through a new focus on the ';Big Ideas' in Science, more attention to reading and writing skills needed for college and career readiness, and incorporation of engineering and technology. We introduce a set of lesson plans about scientific ocean drilling which can serve as a exemplars for developing curricula to meet NGSS approaches. Designed for middle and high school students, these can also be utilized in undergraduate courses. Development of these lessons was supported through a grant from the Deep Earth Academy of the Consortium for Ocean Leadership. They will be disseminated through websites of the Deep Earth Academy (http://www.oceanleadership.org/education/deep-earth-academy/) and Earth2Class Workshops for Teachers (http://www.earth2class.org), as well as through workshops at science education conferences sponsored by the National Earth Science Teachers Association (www.nestanet.org) and other organizations. Topics include 'Downhole Logging,' 'Age of the Ocean Floors,' 'Tales of the Resolution,' and 'Continental Shelf Sediments and Climate Change Patterns.' 'Downhole Logging' focuses on the engineering and technology utilized to obtain more information about sediments and rocks cored by the JOIDES Resolution scientific drilling vessel. 'Age of the Ocean Floor' incorporates the GeoMap App visualization tools (http://www.geomapapp.org/) to compare sea bottom materials in various parts of the world. 'Tales of the Resolution' is a series of ';graphic novels' created to describe the scientific discoveries, refitting of the JOIDES Resolution, and variety of careers available in the marine sciences (http://www.ldeo.columbia.edu/BRG/outreach/media/tales/). The fourth lesson focuses on discoveries made during Integrated Ocean Drilling Program Expedition 313, which investigated patterns in the sediments beneath the continental shelf off New Jersey with respect to climate changes. The lesson plans include examples of addressing new demands to incorporate more English Language Arts and Math Common Core Standards, engineering design, and cutting-edge scientific investigations.
Using a flipped classroom in an algebra-based physics course
NASA Astrophysics Data System (ADS)
Smith, Leigh
2013-03-01
The algebra-based physics course is taken by Biology students, Pre-Pharmacy, Pre-Medical, and other health related majors such as medical imaging, physical therapy, and so on. Nearly 500 students take the course each Semester. Student learning is adversely impacted by poor math backgrounds as well as extensive work schedules outside of the classroom. We have been researching the use of an intensive flipped-classroom approach where students spend one to two hours each week preparing for class by reading the book, completing a series of conceptual problems, and viewing videos which describe the material. In class, the new response system Learning Catalytics is used which allows much richer problems to be posed in class and includes sketching figures, numerical or symbolic entries, short answers, highlighting text, etc in addition to the standard multiple choice questions. We make direct comparison of student learning for 1200 sudents who have taken the same tests, 25% of which used the flipped classroom approach, and 75% who took a more standard lecture. There is significant evidence of improvements in student learning for students taking the flipped classroom approach over standard lectures. These benefits appear to impact students at all math backgrounds.
Ramirez, Gerardo; Chang, Hyesang; Maloney, Erin A; Levine, Susan C; Beilock, Sian L
2016-01-01
Even at young ages, children self-report experiencing math anxiety, which negatively relates to their math achievement. Leveraging a large dataset of first and second grade students' math achievement scores, math problem solving strategies, and math attitudes, we explored the possibility that children's math anxiety (i.e., a fear or apprehension about math) negatively relates to their use of more advanced problem solving strategies, which in turn relates to their math achievement. Our results confirm our hypothesis and, moreover, demonstrate that the relation between math anxiety and math problem solving strategies is strongest in children with the highest working memory capacity. Ironically, children who have the highest cognitive capacity avoid using advanced problem solving strategies when they are high in math anxiety and, as a result, underperform in math compared with their lower working memory peers. Copyright © 2015 Elsevier Inc. All rights reserved.
Is Math Anxiety Always Bad for Math Learning? The Role of Math Motivation.
Wang, Zhe; Lukowski, Sarah L; Hart, Sara A; Lyons, Ian M; Thompson, Lee A; Kovas, Yulia; Mazzocco, Michèle M M; Plomin, Robert; Petrill, Stephen A
2015-12-01
The linear relations between math anxiety and math cognition have been frequently studied. However, the relations between anxiety and performance on complex cognitive tasks have been repeatedly demonstrated to follow a curvilinear fashion. In the current studies, we aimed to address the lack of attention given to the possibility of such complex interplay between emotion and cognition in the math-learning literature by exploring the relations among math anxiety, math motivation, and math cognition. In two samples-young adolescent twins and adult college students-results showed inverted-U relations between math anxiety and math performance in participants with high intrinsic math motivation and modest negative associations between math anxiety and math performance in participants with low intrinsic math motivation. However, this pattern was not observed in tasks assessing participants' nonsymbolic and symbolic number-estimation ability. These findings may help advance the understanding of mathematics-learning processes and provide important insights for treatment programs that target improving mathematics-learning experiences and mathematical skills. © The Author(s) 2015.
Principals in Partnership with Math Coaches
ERIC Educational Resources Information Center
Grant, Catherine Miles; Davenport, Linda Ruiz
2009-01-01
One of the most promising developments in math education is the fact that many districts are hiring math coaches--also called math resource teachers, math facilitators, math lead teachers, or math specialists--to assist elementary-level teachers with math instruction. What must not be lost, however, is that principals play an essential role in…
When math hurts: math anxiety predicts pain network activation in anticipation of doing math.
Lyons, Ian M; Beilock, Sian L
2012-01-01
Math can be difficult, and for those with high levels of mathematics-anxiety (HMAs), math is associated with tension, apprehension, and fear. But what underlies the feelings of dread effected by math anxiety? Are HMAs' feelings about math merely psychological epiphenomena, or is their anxiety grounded in simulation of a concrete, visceral sensation - such as pain - about which they have every right to feel anxious? We show that, when anticipating an upcoming math-task, the higher one's math anxiety, the more one increases activity in regions associated with visceral threat detection, and often the experience of pain itself (bilateral dorso-posterior insula). Interestingly, this relation was not seen during math performance, suggesting that it is not that math itself hurts; rather, the anticipation of math is painful. Our data suggest that pain network activation underlies the intuition that simply anticipating a dreaded event can feel painful. These results may also provide a potential neural mechanism to explain why HMAs tend to avoid math and math-related situations, which in turn can bias HMAs away from taking math classes or even entire math-related career paths.
Is Mathematical Anxiety Always Bad for Math Learning: The Role of Math Motivation
Wang, Zhe; Lukowski, Sarah L.; Hart, Sara Ann; Lyons, Ian M.; Thompson, Lee A.; Kovas, Yulia; Mazzocco, Michèle M.; Plomin, Robert; Petrill, Stephen A.
2015-01-01
The linear relations between math anxiety and math cognition have been frequently studied. However, the relations between anxiety and performance on complex cognitive tasks have been repeatedly demonstrated to follow a curvilinear fashion. Given the lack of attention to the possibility of such complex interplay between emotion and cognition in the math learning literature, the current study aimed to address this gap via exploring the relations between math anxiety, math motivation, and math cognition. The current study consisted of two samples. One sample included 262 pairs of young adolescent twins and the other included 237 adult college students. Participants self-reported their math anxiety and math motivation. Math cognition was assessed using a comprehensive battery of mathematics tasks. In both samples, results showed inverted-U relations between math anxiety and math performance in students with high intrinsic math motivation, and modest negative associations between math anxiety and math performance in students with low intrinsic math motivation. However, this pattern was not observed in tasks assessing student’s nonsymbolic and symbolic number estimation. These findings may help advance our understanding of mathematics learning processes and may provide important insights for treatment programs that target improving mathematics learning experiences and mathematical skills. PMID:26518438
When approximate number acuity predicts math performance: The moderating role of math anxiety
Libertus, Melissa E.
2018-01-01
Separate lines of research suggest that people who are better at estimating numerical quantities using the approximate number system (ANS) have better math performance, and that people with high levels of math anxiety have worse math performance. Only a handful of studies have examined both ANS acuity and math anxiety in the same participants and those studies report contradictory results. To address these inconsistencies, in the current study 87 undergraduate students completed assessments of ANS acuity, math anxiety, and three different measures of math. We considered moderation models to examine the interplay of ANS acuity and math anxiety on different aspects of math performance. Math anxiety and ANS acuity were both unique significant predictors of the ability to automatically recall basic number facts. ANS acuity was also a unique significant predictor of the ability to solve applied math problems, and this relation was further qualified by a significant interaction with math anxiety: the positive association between ANS acuity and applied problem solving was only present in students with high math anxiety. Our findings suggest that ANS acuity and math anxiety are differentially related to various aspects of math and should be considered together when examining their respective influences on math ability. Our findings also raise the possibility that good ANS acuity serves as a protective factor for highly math-anxious students on certain types of math assessments. PMID:29718939
Justicia-Galiano, M José; Martín-Puga, M Eva; Linares, Rocío; Pelegrina, Santiago
2017-12-01
Numerous studies, most of them involving adolescents and adults, have evidenced a moderate negative relationship between math anxiety and math performance. There are, however, a limited number of studies that have addressed the mechanisms underlying this relation. This study aimed to investigate the role of two possible mediational mechanisms between math anxiety and math performance. Specifically, we sought to test the simultaneous mediating role of working memory and math self-concept. A total of 167 children aged 8-12 years participated in this study. Children completed a set of questionnaires used to assess math and trait anxiety, math self-concept as well as measures of math fluency and math problem-solving. Teachers were asked to rate each student's math achievement. As measures of working memory, two backward span tasks were administered to the children. A series of multiple mediation analyses were conducted. Results indicated that both mediators (working memory and math self-concept) contributed to explaining the relationship between math anxiety and math achievement. Results suggest that working memory and self-concept could be worth considering when designing interventions aimed at helping students with math anxiety. Longitudinal designs could also be used to better understand the mediational mechanisms that may explain the relationship between math anxiety and math performance. © 2017 The British Psychological Society.
When approximate number acuity predicts math performance: The moderating role of math anxiety.
Braham, Emily J; Libertus, Melissa E
2018-01-01
Separate lines of research suggest that people who are better at estimating numerical quantities using the approximate number system (ANS) have better math performance, and that people with high levels of math anxiety have worse math performance. Only a handful of studies have examined both ANS acuity and math anxiety in the same participants and those studies report contradictory results. To address these inconsistencies, in the current study 87 undergraduate students completed assessments of ANS acuity, math anxiety, and three different measures of math. We considered moderation models to examine the interplay of ANS acuity and math anxiety on different aspects of math performance. Math anxiety and ANS acuity were both unique significant predictors of the ability to automatically recall basic number facts. ANS acuity was also a unique significant predictor of the ability to solve applied math problems, and this relation was further qualified by a significant interaction with math anxiety: the positive association between ANS acuity and applied problem solving was only present in students with high math anxiety. Our findings suggest that ANS acuity and math anxiety are differentially related to various aspects of math and should be considered together when examining their respective influences on math ability. Our findings also raise the possibility that good ANS acuity serves as a protective factor for highly math-anxious students on certain types of math assessments.
Interdisciplinary Lessons in Musical Acoustics: The Science-Math-Music Connection
ERIC Educational Resources Information Center
Rogers, George L.
2004-01-01
The National Standards for Arts Education encourages teachers to help students make connections between music and other disciplines. Many state curriculum guides likewise encourage educators to integrate curricula and find common ground between different subjects. Music--particularly vocal music--offers ample opportunities to find relationships…
Assessing Admission Interviews at Residential STEM Schools
ERIC Educational Resources Information Center
Jones, Brent M.
2011-01-01
Seventeen state-sponsored residential math and science schools have been created across the country to direct talented teens toward STEM careers. Admission is selective, based on competitive grades, standardized test scores, and references. Most of the schools also require preadmission interviews. However, selection interviews may be challenged as…
Characteristics of High-Quality Teachers
ERIC Educational Resources Information Center
Jones, Jason E.; Gulek, James C.
2010-01-01
The purpose of this study was to examine the characteristics of high-quality teachers who used a structured mathematics program for teaching, namely the Math Achievement Program (MAP[superscript 2]D), which demonstrated significant gains on student achievement as measured by California's Standards Test (CST) in mathematics. Specifically, the…
Does High School Performance Predict College Math Placement?
ERIC Educational Resources Information Center
Kowski, Lynne E.
2013-01-01
Predicting student success has long been a question of interest for postsecondary admission counselors throughout the United States. Past research has examined the validity of several methods designed for predicting undergraduate success. High school record, standardized test scores, extracurricular activities, and combinations of all three have…
Authentic Research in the Classroom: NITARP Teachers Connect Astronomy with NGSS.
NASA Astrophysics Data System (ADS)
Pruett, Lee; Gibbs, John; Palmer, Robert; Young, Diedre; Gorjian, Varoujan
2016-01-01
The NASA/IPAC Teacher Archive Research Program (NITARP) uses authentic astronomical research to bring the Next Generation Science Standards (NGSS) into the classroom. The creation of the NGSS was a collaborative effort between teams composed of teachers, scientists and other professionals from twenty-six states. These standards provide a framework for the change in how science is taught at all levels from kindergarten to twelfth grade in participating states. Scientific concepts are grouped into broad categories (physical, biological and earth sciences), and call for an interdisciplinary approach to content, along with the integration of engineering practices into the curriculum. This approach to the teaching of science has led educators to place more emphasis on authentic learning and problem-solving in their curricula. Project-based learning is a strategy that can effectively allow students to learn core scientific concepts within the context of a focused and complex scientific problem.The NASA/IPAC Teacher Archive Research Program (NITARP) pairs teams of teachers and students with NASA astronomers. These teams are immersed in an astronomy research project over the course of the year, and are responsible for writing a project proposal, doing original research and presenting that research at a professional conference. The students who are involved in the NITARP research are provided with a rich hands-on experience that both exposes them to a deep understanding of an astronomical problem (and the core physics and math behind it), as well as the process of doing real science. The NITARP program offers a unique opportunity to bring project-based learning into K-12 science classrooms. We will highlight the ways in which this program has been implemented in classrooms across the country, as well as the connections to the NGSS.This research was made possible through the NASA/IPAC Teacher Archive Research Program (NITARP) and was funded by NASA Astrophysics Data Program.
Bull, Rebecca; Espy, Kimberly Andrews; Wiebe, Sandra A.
2009-01-01
This study examined whether measures of short-term memory, working memory, and executive functioning in preschool children predict later proficiency in academic achievement at 7 years of age (third year of primary school). Children were tested in preschool (M age = 4 years, 6 months) on a battery of cognitive measures, and mathematics and reading outcomes (from standardized, norm-referenced school-based assessments) were taken on entry to primary school, and at the end of the first and third year of primary school. Growth curve analyses examined predictors of math and reading achievement across the duration of the study and revealed that better digit span and executive function skills provided children with an immediate head start in math and reading that they maintained throughout the first three years of primary school. Visual-spatial short-term memory span was found to be a predictor specifically of math ability. Correlational and regression analyses revealed that visual short-term and working memory were found to specifically predict math achievement at each time point, while executive function skills predicted learning in general rather than learning in one specific domain. The implications of the findings are discussed in relation to further understanding the role of cognitive skills in different mathematical tasks, and in relation to the impact of limited cognitive skills in the classroom environment. PMID:18473197
Measurement of math beliefs and their associations with math behaviors in college students.
Hendy, Helen M; Schorschinsky, Nancy; Wade, Barbara
2014-12-01
Our purpose in the present study was to expand understanding of math beliefs in college students by developing 3 new psychometrically tested scales as guided by expectancy-value theory, self-efficacy theory, and health belief model. Additionally, we identified which math beliefs (and which theory) best explained variance in math behaviors and performance by college students and which students were most likely to have problematic math beliefs. Study participants included 368 college math students who completed questionnaires to report math behaviors (attending class, doing homework, reading textbooks, asking for help) and used a 5-point rating scale to indicate a variety of math beliefs. For a subset of 84 students, math professors provided final math grades. Factor analyses produced a 10-item Math Value Scale with 2 subscales (Class Devaluation, No Future Value), a 7-item single-dimension Math Confidence Scale, and an 11-item Math Barriers Scale with 2 subscales (Math Anxiety, Discouraging Words). Hierarchical multiple regression revealed that high levels of the newly discovered class devaluation belief (guided by expectancy-value theory) were most consistently associated with poor math behaviors in college students, with high math anxiety (guided by health belief model) and low math confidence (guided by self-efficacy theory) also found to be significant. Analyses of covariance revealed that younger and male students were at increased risk for class devaluation and older students were at increased risk for poor math confidence. (c) 2014 APA, all rights reserved.
When Math Hurts: Math Anxiety Predicts Pain Network Activation in Anticipation of Doing Math
Lyons, Ian M.; Beilock, Sian L.
2012-01-01
Math can be difficult, and for those with high levels of mathematics-anxiety (HMAs), math is associated with tension, apprehension, and fear. But what underlies the feelings of dread effected by math anxiety? Are HMAs’ feelings about math merely psychological epiphenomena, or is their anxiety grounded in simulation of a concrete, visceral sensation – such as pain – about which they have every right to feel anxious? We show that, when anticipating an upcoming math-task, the higher one’s math anxiety, the more one increases activity in regions associated with visceral threat detection, and often the experience of pain itself (bilateral dorso-posterior insula). Interestingly, this relation was not seen during math performance, suggesting that it is not that math itself hurts; rather, the anticipation of math is painful. Our data suggest that pain network activation underlies the intuition that simply anticipating a dreaded event can feel painful. These results may also provide a potential neural mechanism to explain why HMAs tend to avoid math and math-related situations, which in turn can bias HMAs away from taking math classes or even entire math-related career paths. PMID:23118929
A latent profile analysis of math achievement, numerosity, and math anxiety in twins
Hart, Sara A.; Logan, Jessica A.R.; Thompson, Lee; Kovas, Yulia; McLoughlin, Gráinne; Petrill, Stephen A.
2015-01-01
Underperformance in math is a problem with increasing prevalence, complex etiology, and severe repercussions. This study examined the etiological heterogeneity of math performance in a sample of 264 pairs of 12-year-old twins assessed on measures of math achievement, numerosity and math anxiety. Latent profile analysis indicated five groupings of individuals representing different patterns of math achievement, numerosity and math anxiety, coupled with differing degrees of familial transmission. These results suggest that there may be distinct profiles of math achievement, numerosity and anxiety; particularly for students who struggle in math. PMID:26957650
A latent profile analysis of math achievement, numerosity, and math anxiety in twins.
Hart, Sara A; Logan, Jessica A R; Thompson, Lee; Kovas, Yulia; McLoughlin, Gráinne; Petrill, Stephen A
2016-02-01
Underperformance in math is a problem with increasing prevalence, complex etiology, and severe repercussions. This study examined the etiological heterogeneity of math performance in a sample of 264 pairs of 12-year-old twins assessed on measures of math achievement, numerosity and math anxiety. Latent profile analysis indicated five groupings of individuals representing different patterns of math achievement, numerosity and math anxiety, coupled with differing degrees of familial transmission. These results suggest that there may be distinct profiles of math achievement, numerosity and anxiety; particularly for students who struggle in math.
Merkley, Rebecca; Thompson, Jodie; Scerif, Gaia
2016-01-01
The cognitive mechanisms underpinning the well-established relationship between inhibitory control and early maths skills remain unclear. We hypothesized that a specific aspect of inhibitory control drives its association with distinct math skills in very young children: the ability to ignore stimulus dimensions that are in conflict with task-relevant representations. We used an Animal Size Stroop task in which 3- to 6-year-olds were required to ignore the physical size of animal pictures to compare their real-life dimensions. In Experiment 1 (N = 58), performance on this task correlated with standardized early mathematics achievement. In Experiment 2 (N = 48), performance on the Animal Size Stroop task related to the accuracy of magnitude comparison, specifically for trials on which the physical size of dot arrays was incongruent with their numerosity. This highlights a process-oriented relationship between interference control and resolving conflict between discrete and continuous quantity, and in turn calls for further detailed empirical investigations of whether, how and why inhibitory processes matter to emerging numerical cognition. PMID:26779057
Merkley, Rebecca; Thompson, Jodie; Scerif, Gaia
2015-01-01
The cognitive mechanisms underpinning the well-established relationship between inhibitory control and early maths skills remain unclear. We hypothesized that a specific aspect of inhibitory control drives its association with distinct math skills in very young children: the ability to ignore stimulus dimensions that are in conflict with task-relevant representations. We used an Animal Size Stroop task in which 3- to 6-year-olds were required to ignore the physical size of animal pictures to compare their real-life dimensions. In Experiment 1 (N = 58), performance on this task correlated with standardized early mathematics achievement. In Experiment 2 (N = 48), performance on the Animal Size Stroop task related to the accuracy of magnitude comparison, specifically for trials on which the physical size of dot arrays was incongruent with their numerosity. This highlights a process-oriented relationship between interference control and resolving conflict between discrete and continuous quantity, and in turn calls for further detailed empirical investigations of whether, how and why inhibitory processes matter to emerging numerical cognition.
NASA Astrophysics Data System (ADS)
Hayden, L. B.; Johnson, D.
2012-12-01
In 1995, the Virginia Department of Education approved a federal mandate for No Child Left Behind 2001 Education Act implementing the Standards of Learning (SOL) in four content areas: Mathematics, Science, English, and History and Social Sciences. These new guidelines set forth learning and achievement expectations for content areas for grades K-12 in Virginia's Public Schools. Given the SOL mandates, Virginia's elementary teachers and school leaders utilized research for specific teaching methods intended to encourage score improvements on end of year mathematics tests. In 2001, the concept of the Math Sprint Competition was introduced to Camelot Elementary School in Chesapeake Virginia, by researchers at Elizabeth City State University of Elizabeth City, North Carolina. Camelot Elementary, a K-5 school, is a Title I school nestled in a lower middle class neighborhood and houses a high number of minority students. On average, these students achieve lower test score gains than students in higher socioeconomic status district schools. Defined as a test-review based in relay format that utilizes released SOL test items, Math Sprint promotes mathematical skills outlined in Virginia SOL's and encourages competition among students that motivated them to quickly pick up on new material and retain the old material in order to out-do the others. Research identified was based on specific relationships between student competition and statewide testing results in mathematics for grades three, four, and five at Camelot Elementary. Data was compiled from results of the Math Sprint Competition and research focused on methods for motivating students encouraged by the use of a math sprint competition. Individual Pearson Product Moment Correlations were conducted to determine which variables possess strong and statistically significant relationships. Significantly, positive results came from 2005 to 2010 math sprints data from which students participated.
ERIC Educational Resources Information Center
Snipes, Jason; Huang, Chun-Wei; Jaquet, Karina; Finkelstein, Neal
2015-01-01
The Effects of the Elevate Math summer program on math achievement and algebra readiness: This randomized trial examined the effects of the Elevate Math summer program on math achievement and algebra readiness, as well as math interest and self-efficacy, among rising 8th grade students in California's Silicon Valley. The Elevate Math summer math…
Code of Federal Regulations, 2010 CFR
2010-07-01
... core standards and measures of performance and State rules or regulations? 400.7 Section 400.7... PROVISIONS § 400.7 What are the provisions governing the issuance of State core standards and measures of... draft proposal that the State board develops for a statewide system of core standards and measures of...
Gingerich, Derek J.; Hanada, Kousuke; Shiu, Shin-Han; Vierstra, Richard D.
2007-01-01
Selective ubiquitination of proteins is directed by diverse families of ubiquitin-protein ligases (or E3s) in plants. One important type uses Cullin-3 as a scaffold to assemble multisubunit E3 complexes containing one of a multitude of bric-a-brac/tramtrack/broad complex (BTB) proteins that function as substrate recognition factors. We previously described the 80-member BTB gene superfamily in Arabidopsis thaliana. Here, we describe the complete BTB superfamily in rice (Oryza sativa spp japonica cv Nipponbare) that contains 149 BTB domain–encoding genes and 43 putative pseudogenes. Amino acid sequence comparisons of the rice and Arabidopsis superfamilies revealed a near equal repertoire of putative substrate recognition module types. However, phylogenetic comparisons detected numerous gene duplication and/or loss events since the rice and Arabidopsis BTB lineages split, suggesting possible functional specialization within individual BTB families. In particular, a major expansion and diversification of a subset of BTB proteins containing Meprin and TRAF homology (MATH) substrate recognition sites was evident in rice and other monocots that likely occurred following the monocot/dicot split. The MATH domain of a subset appears to have evolved significantly faster than those in a smaller core subset that predates flowering plants, suggesting that the substrate recognition module in many monocot MATH-BTB E3s are diversifying to ubiquitinate a set of substrates that are themselves rapidly changing. Intriguing possibilities include pathogen proteins attempting to avoid inactivation by the monocot host. PMID:17720868
Changing State Policy in Texas for Remedial/Developmental Education.
ERIC Educational Resources Information Center
Cook, Charles M.
The Texas Academic Skills Program (TASP), implemented in 1989, requires student assessment in reading, writing, and math prior to regular college course work. Students undergo continuous remediation until they are able to pass the assessment test. Though TASP advocates argue that the program helps maintain academic standards and provides students…
ERIC Educational Resources Information Center
Cavanagh, Sean
2009-01-01
This article reports that in 1996, Alabama officials approved the "4 x 4" plan, which made their state the first in the country to require students to complete four years, or four credits each, of math and science for high school graduation. Other states have since followed suit, with policymakers arguing that higher standards are…
P-16 Partnership to Improve Students' Postsecondary Mathematics Achievement
ERIC Educational Resources Information Center
Hartman, Jenifer J.
2017-01-01
Increasing students' academic success in postsecondary endeavors is an important goal for both high school and college institutions today. However, the standards for high school graduation and college readiness are not well aligned, and successful transition from high school to college is problematic for many students, particularly in math. This…
Sally Ride Women in Science Panel
2013-05-17
Rene McCormick, director of standards and quality, National Math and Science Initiative, talks during a program titled "Sally Ride: How Her Historic Space Mission Opened Doors for Women in Science" held on Friday, May 17, 2013 at the National Air and Space Museum in Washington. Photo Credit: (NASA/Bill Ingalls)
Measuring Music Education: Music Education Assessment in Illinois
ERIC Educational Resources Information Center
Cangro, Richard M.
2014-01-01
There are many assessment initiatives and policy changes happening in Illinois concerning learning and teaching expectations that involve K-12 students, teacher candidates, and current teachers. The Illinois State Board of Education has adopted new Math and English Language Arts standards for K-12 education known as the "New Illinois State…
Effects of Blended Instructional Models on Math Performance
ERIC Educational Resources Information Center
Bottge, Brian A.; Ma, Xin; Gassaway, Linda; Toland, Michael D.; Butler, Mark; Cho, Sun-Joo
2014-01-01
A pretest-posttest cluster-randomized trial involving 31 middle schools and 335 students with disabilities tested the effects of combining explicit and anchored instruction on fraction computation and problem solving. Results of standardized and researcher-developed tests showed that students who were taught with the blended units outscored…
Math Organization Attempts to Bring Focus to Subject
ERIC Educational Resources Information Center
Cavanagh, Sean
2006-01-01
More than 15 years after its publication of influential national standards in mathematics, a leading professional organization has unveiled new and more focused guidelines that describe the crucial skills and content students should master in that subject in elementary and middle school. The National Council of Teachers of Mathematics released…
Empirical Performance of Covariates in Education Observational Studies
ERIC Educational Resources Information Center
Wong, Vivian C.; Valentine, Jeffrey C.; Miller-Bains, Kate
2017-01-01
This article summarizes results from 12 empirical evaluations of observational methods in education contexts. We look at the performance of three common covariate-types in observational studies where the outcome is a standardized reading or math test. They are: pretest measures, local geographic matching, and rich covariate sets with a strong…
Improving Procedural Knowledge and Transfer by Teaching a Shortcut Strategy First
ERIC Educational Resources Information Center
DeCaro, Marci S.
2015-01-01
Students often memorize and apply procedures to solve mathematics problems without understanding why these procedures work. In turn, students demonstrate limited ability to transfer strategies to new problem types. Math curriculum reform standards underscore the importance of procedural flexibility and transfer, emphasizing that students need to…
Instructional and Learning Modes in Math. Module CMM:006:02.
ERIC Educational Resources Information Center
Rexroat, Melvin E.
This is the second module in a series on mathematics methods and materials for preservice elementary teachers. This module focuses on three instructional and learning modes: expository, guided discovery, and inquiry (pure discovery). Objectives for the module are listed, the prerequisites are stated, pre- and post-assessment standards are…
Accounting for the Whole Child
ERIC Educational Resources Information Center
Krachman, Sara Bartolino; LaRocca, Robert; Gabrieli, Christopher
2018-01-01
In addition to excelling in subjects such as science, math, arts, and social studies, students must also develop skills like resiliency, adaptability, and collaboration in order to truly succeed in the world. But how do schools effectively measure those skills when they so often rely on standardized assessments? This article provides a thorough…
ERIC Educational Resources Information Center
Stapp, Alicia; Chessin, Debby; Deason, Rebecca
2018-01-01
The authors represent the life cycle of the butterfly through writing, drawing, dance, and math. The Next Generation Science Standards (NGSS) (NGSS Lead States 2013) emphasize college and career readiness as well as critical thinking and problem-solving skills. Students must develop a deep understanding of science concepts and engage in scientific…
The Geometric Mean Value Theorem
ERIC Educational Resources Information Center
de Camargo, André Pierro
2018-01-01
In a previous article published in the "American Mathematical Monthly," Tucker ("Amer Math Monthly." 1997; 104(3): 231-240) made severe criticism on the Mean Value Theorem and, unfortunately, the majority of calculus textbooks also do not help to improve its reputation. The standard argument for proving it seems to be applying…
Identifying Maths Anxiety in Student Nurses and Focusing Remedial Work
ERIC Educational Resources Information Center
Bull, Heather
2009-01-01
Maths anxiety interferes with maths cognition and thereby increases the risk of maths errors. To initiate strategies for preventing anxiety-related errors progressing into nursing practice, this study explored the hypothesis that student nurses experience high maths anxiety in association with poor maths performance, and that high maths anxiety is…
Math anxiety differentially affects WAIS-IV arithmetic performance in undergraduates.
Buelow, Melissa T; Frakey, Laura L
2013-06-01
Previous research has shown that math anxiety can influence the math performance level; however, to date, it is unknown whether math anxiety influences performance on working memory tasks during neuropsychological evaluation. In the present study, 172 undergraduate students completed measures of math achievement (the Math Computation subtest from the Wide Range Achievement Test-IV), math anxiety (the Math Anxiety Rating Scale-Revised), general test anxiety (from the Adult Manifest Anxiety Scale-College version), and the three Working Memory Index tasks from the Wechsler Adult Intelligence Scale-IV Edition (WAIS-IV; Digit Span [DS], Arithmetic, Letter-Number Sequencing [LNS]). Results indicated that math anxiety predicted performance on Arithmetic, but not DS or LNS, above and beyond the effects of gender, general test anxiety, and math performance level. Our findings suggest that math anxiety can negatively influence WAIS-IV working memory subtest scores. Implications for clinical practice include the utilization of LNS in individuals expressing high math anxiety.
Mroz, Edmund A; Tward, Aaron D; Tward, Aaron M; Hammon, Rebecca J; Ren, Yin; Rocco, James W
2015-02-01
Although the involvement of intra-tumor genetic heterogeneity in tumor progression, treatment resistance, and metastasis is established, genetic heterogeneity is seldom examined in clinical trials or practice. Many studies of heterogeneity have had prespecified markers for tumor subpopulations, limiting their generalizability, or have involved massive efforts such as separate analysis of hundreds of individual cells, limiting their clinical use. We recently developed a general measure of intra-tumor genetic heterogeneity based on whole-exome sequencing (WES) of bulk tumor DNA, called mutant-allele tumor heterogeneity (MATH). Here, we examine data collected as part of a large, multi-institutional study to validate this measure and determine whether intra-tumor heterogeneity is itself related to mortality. Clinical and WES data were obtained from The Cancer Genome Atlas in October 2013 for 305 patients with head and neck squamous cell carcinoma (HNSCC), from 14 institutions. Initial pathologic diagnoses were between 1992 and 2011 (median, 2008). Median time to death for 131 deceased patients was 14 mo; median follow-up of living patients was 22 mo. Tumor MATH values were calculated from WES results. Despite the multiple head and neck tumor subsites and the variety of treatments, we found in this retrospective analysis a substantial relation of high MATH values to decreased overall survival (Cox proportional hazards analysis: hazard ratio for high/low heterogeneity, 2.2; 95% CI 1.4 to 3.3). This relation of intra-tumor heterogeneity to survival was not due to intra-tumor heterogeneity's associations with other clinical or molecular characteristics, including age, human papillomavirus status, tumor grade and TP53 mutation, and N classification. MATH improved prognostication over that provided by traditional clinical and molecular characteristics, maintained a significant relation to survival in multivariate analyses, and distinguished outcomes among patients having oral-cavity or laryngeal cancers even when standard disease staging was taken into account. Prospective studies, however, will be required before MATH can be used prognostically in clinical trials or practice. Such studies will need to examine homogeneously treated HNSCC at specific head and neck subsites, and determine the influence of cancer therapy on MATH values. Analysis of MATH and outcome in human-papillomavirus-positive oropharyngeal squamous cell carcinoma is particularly needed. To our knowledge this study is the first to combine data from hundreds of patients, treated at multiple institutions, to document a relation between intra-tumor heterogeneity and overall survival in any type of cancer. We suggest applying the simply calculated MATH metric of heterogeneity to prospective studies of HNSCC and other tumor types.
ERIC Educational Resources Information Center
Otts, Cynthia D.
2010-01-01
The purpose of the study was to investigate the relationship among math attitudes, self-regulated learning, and course outcomes in developmental math. Math attitudes involved perceived usefulness of math and math anxiety. Self-regulated learning represented the ability of students to control cognitive, metacognitive, and behavioral aspects of…
College Math Assessment: SAT Scores vs. College Math Placement Scores
ERIC Educational Resources Information Center
Foley-Peres, Kathleen; Poirier, Dawn
2008-01-01
Many colleges and university's use SAT math scores or math placement tests to place students in the appropriate math course. This study compares the use of math placement scores and SAT scores for 188 freshman students. The student's grades and faculty observations were analyzed to determine if the SAT scores and/or college math assessment scores…
NASA Astrophysics Data System (ADS)
Lee, Ahlam
2011-12-01
Using the Educational Longitudinal Study of 2002/06, this study examined the effects of the selected mathematical learning and teacher motivation factors on graduates' science, technology, engineering, and math (STEM) related major choices in 4-year colleges and universities, as mediated by math performance and math self-efficacy. Using multilevel structural equation modeling, I analyzed: (1) the association between mathematical learning instruction factors (i.e., computer, individual, and lecture-based learning activities in mathematics) and students' STEM major choices in 4-year colleges and universities as mediated by math performance and math self-efficacy and (2) the association between school factor, teacher motivation and students' STEM major choices in 4-year colleges and universities via mediators of math performance and math self-efficacy. The results revealed that among the selected learning experience factors, computer-based learning activities in math classrooms yielded the most positive effects on math self-efficacy, which significantly predicted the increase in the proportion of students' STEM major choice as mediated by math self-efficacy. Further, when controlling for base-year math Item Response Theory (IRT) scores, a positive relationship between individual-based learning activities in math classrooms and the first follow-up math IRT scores emerged, which related to the high proportion of students' STEM major choices. The results also indicated that individual and lecture-based learning activities in math yielded positive effects on math self-efficacy, which related to STEM major choice. Concerning between-school levels, teacher motivation yielded positive effects on the first follow up math IRT score, when controlling for base year IRT score. The results from this study inform educators, parents, and policy makers on how mathematics instruction can improve student math performance and encourage more students to prepare for STEM careers. Students should receive all possible opportunities to use computers to enhance their math self-efficacy, be encouraged to review math materials, and concentrate on listening to math teachers' lectures. While all selected math-learning activities should be embraced in math instruction, computer and individual-based learning activities, which reflect student-driven learning, should be emphasized in the high school instruction. Likewise, students should be encouraged to frequently engage in individual-based learning activities to improve their math performance.
Designing for Compressive Sensing: Compressive Art, Camouflage, Fonts, and Quick Response Codes
2018-01-01
an example where the signal is non-sparse in the standard basis, but sparse in the discrete cosine basis . The top plot shows the signal from the...previous example, now used as sparse discrete cosine transform (DCT) coefficients . The next plot shows the non-sparse signal in the standard...Romberg JK, Tao T. Stable signal recovery from incomplete and inaccurate measurements. Commun Pure Appl Math . 2006;59(8):1207–1223. 3. Donoho DL
Rubinsten, Orly
2015-01-01
In recent years, cognitive neuroscience research has identified several biological and cognitive features of number processing deficits that may now make it possible to diagnose mental or educational impairments in arithmetic, even earlier and more precisely than is possible using traditional assessment tools. We provide two sets of recommendations for improving cognitive assessment tools, using the important case of mathematics as an example. (1) neurocognitive tests would benefit substantially from incorporating assessments (based on findings from cognitive neuroscience) that entail systematic manipulation of fundamental aspects of number processing. Tests that focus on evaluating networks of core neurocognitive deficits have considerable potential to lead to more precise diagnosis and to provide the basis for designing specific intervention programs tailored to the deficits exhibited by the individual child. (2) implicit knowledge, derived from inspection of variables that are irrelevant to the task at hand, can also provide a useful assessment tool. Implicit knowledge is powerful and plays an important role in human development, especially in cases of psychiatric or neurological deficiencies (such as math learning disabilities or math anxiety).
Jansen, Brenda R J; De Lange, Eva; Van der Molen, Mariët J
2013-05-01
Adolescents with mild to borderline intellectual disability (MBID) often complete schooling without mastering basic math skills, even though basic math is essential for math-related challenges in everyday life. Limited attention to cognitive skills and low executive functioning (EF) may cause this delay. We aimed to improve math skills in an MBID-sample using computerized math training. Also, it was investigated whether EF and math performance were related and whether computerized math training had beneficial effects on EF. The sample consisted of a total of 58 adolescents (12-15 years) from special education. Participants were randomly assigned to either the experimental group or a treatment as usual (TAU) group. In the experimental condition, participants received 5 weeks of training. Math performance and EF were assessed before and after the training period. Math performance improved equally in both groups. However, frequently practicing participants improved more than participants in the control group. Visuo-spatial memory skills were positively related to addition and subtraction skills. Transfer effects from math training to EF were absent. It is concluded that math skills may increase if a reasonable effort in practicing math skills is made. The relation between visuo-spatial memory skills provides opportunities for improving math performance. Copyright © 2013 Elsevier Ltd. All rights reserved.
Math anxiety in Thai early adolescents: a cognitive-behavioral perspective.
Wangsiriwech, Tawatchai; Pisitsungkagarn, Kullaya; Jarukasemthawee, Somboon
2017-08-29
With its high prevalence and debilitating impact on students, math anxiety is well studied within the educational context. However, the problem has yet to be examined from the psychological perspective, which is necessary in order to produce a more comprehensive perspective and to pave the way for therapeutic intervention. The current study, therefore, was conducted to identify cognitive and behavioral factors relevant to the occurrence and maintenance of math anxiety. Data were collected from 300 grade 9 students (150 females and 150 males) from public and private schools in Bangkok, Thailand. Participants responded to the measures of math anxiety, negative math beliefs, negative math appraisals and math avoidance. Structural equation modeling was conducted. Model fit indices obtained consistently suggested the good fitness of the model to the data [e.g. χ2/df = 0.42, root mean square error of approximation (RMSEA) = 0.00]. Negative math beliefs, negative math appraisals and math avoidance had a significant direct effect on math anxiety. Additionally, the indirect effect of negative math appraisal was observed between negative math beliefs and math anxiety. In summary, the proposed model accounted for 84.5% of the variance in the anxiety. The findings are discussed with particular focus on implications for therapeutic intervention for math anxiety.
The role of expressive writing in math anxiety.
Park, Daeun; Ramirez, Gerardo; Beilock, Sian L
2014-06-01
Math anxiety is a negative affective reaction to situations involving math. Previous work demonstrates that math anxiety can negatively impact math problem solving by creating performance-related worries that disrupt the working memory needed for the task at hand. By leveraging knowledge about the mechanism underlying the math anxiety-performance relationship, we tested the effectiveness of a short expressive writing intervention that has been shown to reduce intrusive thoughts and improve working memory availability. Students (N = 80) varying in math anxiety were asked to sit quietly (control group) prior to completing difficulty-matched math and word problems or to write about their thoughts and feelings regarding the exam they were about to take (expressive writing group). For the control group, high math-anxious individuals (HMAs) performed significantly worse on the math problems than low math-anxious students (LMAs). In the expressive writing group, however, this difference in math performance across HMAs and LMAs was significantly reduced. Among HMAs, the use of words related to anxiety, cause, and insight in their writing was positively related to math performance. Expressive writing boosts the performance of anxious students in math-testing situations. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Minimal ensemble based on subset selection using ECG to diagnose categories of CAN.
Abawajy, Jemal; Kelarev, Andrei; Yi, Xun; Jelinek, Herbert F
2018-07-01
Early diagnosis of cardiac autonomic neuropathy (CAN) is critical for reversing or decreasing its progression and prevent complications. Diagnostic accuracy or precision is one of the core requirements of CAN detection. As the standard Ewing battery tests suffer from a number of shortcomings, research in automating and improving the early detection of CAN has recently received serious attention in identifying additional clinical variables and designing advanced ensembles of classifiers to improve the accuracy or precision of CAN diagnostics. Although large ensembles are commonly proposed for the automated diagnosis of CAN, large ensembles are characterized by slow processing speed and computational complexity. This paper applies ECG features and proposes a new ensemble-based approach for diagnosis of CAN progression. We introduce a Minimal Ensemble Based On Subset Selection (MEBOSS) for the diagnosis of all categories of CAN including early, definite and atypical CAN. MEBOSS is based on a novel multi-tier architecture applying classifier subset selection as well as the training subset selection during several steps of its operation. Our experiments determined the diagnostic accuracy or precision obtained in 5 × 2 cross-validation for various options employed in MEBOSS and other classification systems. The experiments demonstrate the operation of the MEBOSS procedure invoking the most effective classifiers available in the open source software environment SageMath. The results of our experiments show that for the large DiabHealth database of CAN related parameters MEBOSS outperformed other classification systems available in SageMath and achieved 94% to 97% precision in 5 × 2 cross-validation correctly distinguishing any two CAN categories to a maximum of five categorizations including control, early, definite, severe and atypical CAN. These results show that MEBOSS architecture is effective and can be recommended for practical implementations in systems for the diagnosis of CAN progression. Copyright © 2018 Elsevier B.V. All rights reserved.
von Kármán swirling flow between a rotating and a stationary smooth disk: Experiment
NASA Astrophysics Data System (ADS)
Mukherjee, Aryesh; Steinberg, Victor
2018-01-01
Precise measurements of the torque in a von Kármán swirling flow between a rotating and a stationary smooth disk in three Newtonian fluids with different dynamic viscosities are reported. From these measurements the dependence of the normalized torque, called the friction coefficient, on Re is found to be of the form Cf=1.17 (±0.03 ) Re-0.46±0.003 where the scaling exponent and coefficient are close to that predicted theoretically for an infinite, unshrouded, and smooth rotating disk which follows from an exact similarity solution of the Navier-Stokes equations, obtained by von Kármán. An error analysis shows that deviations from the theory can be partially caused by background errors. Measurements of the azimuthal Vθ and axial velocity profiles along radial and axial directions reveal that the flow core rotates at Vθ/r Ω ≃0.22 (up to z ≈4 cm from the rotating disk and up to r0/R ≃0.25 in the radial direction) in spite of the small aspect ratio of the vessel. Thus the friction coefficient shows scaling close to that obtained from the von Kármán exact similarity solution, but the observed rotating core provides evidence of the Batchelor-like solution [Q. J. Mech. Appl. Math. 4, 29 (1951), 10.1093/qjmam/4.1.29] different from the von Kármán [Z. Angew. Math. Mech. 1, 233 (1921), 10.1002/zamm.19210010401] or Stewartson [Proc. Camb. Philos. Soc. 49, 333 (1953), 10.1017/S0305004100028437] one.
Deglacial temperature history of West Antarctica
NASA Astrophysics Data System (ADS)
Cuffey, Kurt M.; Clow, Gary D.; Steig, Eric J.; Buizert, Christo; Fudge, T. J.; Koutnik, Michelle; Waddington, Edwin D.; Alley, Richard B.; Severinghaus, Jeffrey P.
2016-12-01
The most recent glacial to interglacial transition constitutes a remarkable natural experiment for learning how Earth’s climate responds to various forcings, including a rise in atmospheric CO2. This transition has left a direct thermal remnant in the polar ice sheets, where the exceptional purity and continual accumulation of ice permit analyses not possible in other settings. For Antarctica, the deglacial warming has previously been constrained only by the water isotopic composition in ice cores, without an absolute thermometric assessment of the isotopes’ sensitivity to temperature. To overcome this limitation, we measured temperatures in a deep borehole and analyzed them together with ice-core data to reconstruct the surface temperature history of West Antarctica. The deglacial warming was
Advocacy: Emphasizing the Uncommon about the Common Core State Standards
ERIC Educational Resources Information Center
Kaplan, Sandra N.
2014-01-01
The author describes key issues and uncommon concerns about the Common Core State Standards that fit within two categories: philosophical and pedagogical. Philosophically, Common Core State K-12 Standards should not be expected to be mastered at a specific grade level but based on developmental readiness. Pedagogically, Common Core State Standards…
Hart, Sara A; Ganley, Colleen M; Purpura, David J
2016-01-01
There is a growing literature concerning the role of the home math environment in children's math development. In this study, we examined the relation between these constructs by specifically addressing three goals. The first goal was to identify the measurement structure of the home math environment through a series of confirmatory factor analyses. The second goal was to examine the role of the home math environment in predicting parent report of children's math skills. The third goal was to test a series of potential alternative explanations for the relation between the home math environment and parent report of children's skills, specifically the direct and indirect role of household income, parent math anxiety, and parent math ability as measured by their approximate number system performance. A final sample of 339 parents of children aged 3 through 8 drawn from Mechanical Turk answered a questionnaire online. The best fitting model of the home math environment was a bifactor model with a general factor representing the general home math environment, and three specific factors representing the direct numeracy environment, the indirect numeracy environment, and the spatial environment. When examining the association of the home math environment factors to parent report of child skills, the general home math environment factor and the spatial environment were the only significant predictors. Parents who reported doing more general math activities in the home reported having children with higher math skills, whereas parents who reported doing more spatial activities reported having children with lower math skills.
Math anxiety and its relationship with basic arithmetic skills among primary school children.
Sorvo, Riikka; Koponen, Tuire; Viholainen, Helena; Aro, Tuija; Räikkönen, Eija; Peura, Pilvi; Dowker, Ann; Aro, Mikko
2017-09-01
Children have been found to report and demonstrate math anxiety as early as the first grade. However, previous results concerning the relationship between math anxiety and performance are contradictory, with some studies establishing a correlation between them while others do not. These contradictory results might be related to varying operationalizations of math anxiety. In this study, we aimed to examine the prevalence of math anxiety and its relationship with basic arithmetic skills in primary school children, with explicit focus on two aspects of math anxiety: anxiety about failure in mathematics and anxiety in math-related situations. The participants comprised 1,327 children at grades 2-5. Math anxiety was assessed using six items, and basic arithmetic skills were assessed using three assessment tasks. Around one-third of the participants reported anxiety about being unable to do math, one-fifth about having to answer teachers' questions, and one tenth about having to do math. Confirmatory factor analysis indicated that anxiety about math-related situations and anxiety about failure in mathematics are separable aspects of math anxiety. Structural equation modelling suggested that anxiety about math-related situations was more strongly associated with arithmetic fluency than anxiety about failure. Anxiety about math-related situations was most common among second graders and least common among fifth graders. As math anxiety, particularly about math-related situations, was related to arithmetic fluency even as early as the second grade, children's negative feelings and math anxiety should be identified and addressed from the early primary school years. © 2017 The British Psychological Society.
Ganley, Colleen M.; Purpura, David J.
2016-01-01
There is a growing literature concerning the role of the home math environment in children’s math development. In this study, we examined the relation between these constructs by specifically addressing three goals. The first goal was to identify the measurement structure of the home math environment through a series of confirmatory factor analyses. The second goal was to examine the role of the home math environment in predicting parent report of children’s math skills. The third goal was to test a series of potential alternative explanations for the relation between the home math environment and parent report of children’s skills, specifically the direct and indirect role of household income, parent math anxiety, and parent math ability as measured by their approximate number system performance. A final sample of 339 parents of children aged 3 through 8 drawn from Mechanical Turk answered a questionnaire online. The best fitting model of the home math environment was a bifactor model with a general factor representing the general home math environment, and three specific factors representing the direct numeracy environment, the indirect numeracy environment, and the spatial environment. When examining the association of the home math environment factors to parent report of child skills, the general home math environment factor and the spatial environment were the only significant predictors. Parents who reported doing more general math activities in the home reported having children with higher math skills, whereas parents who reported doing more spatial activities reported having children with lower math skills. PMID:28005925
Pinxten, Maarten; Marsh, Herbert W; De Fraine, Bieke; Van Den Noortgate, Wim; Van Damme, Jan
2014-03-01
The multidimensionality of the academic self-concept in terms of domain specificity has been well established in previous studies, whereas its multidimensionality in terms of motivational functions (the so-called affect-competence separation) needs further examination. This study aims at exploring differential effects of enjoyment and competence beliefs on two external validity criteria in the field of mathematics. Data analysed in this study were part of a large-scale longitudinal research project. Following a five-wave design, math enjoyment, math competence beliefs, math achievement, and perceived math effort expenditure measures were repeatedly collected from a cohort of 4,724 pupils in Grades 3-7. Confirmatory factor analysis (CFA) was used to test the internal factor structure of the math self-concept. Additionally, a series of nested models was tested using structural equation modelling to examine longitudinal reciprocal interrelations between math competence beliefs and math enjoyment on the one hand and math achievement and perceived math effort expenditure on the other. Our results showed that CFA models with separate factors for math enjoyment and math competence beliefs fit the data substantially better than models without it. Furthermore, differential relationships between both constructs and the two educational outcomes were observed. Math competence beliefs had positive effects on math achievement and negative effects on perceived math effort expenditure. Math enjoyment had (mild) positive effects on subsequent perceived effort expenditure and math competence beliefs. This study provides further support for the affect-competence separation. Theoretical issues regarding adequate conceptualization and practical consequences for practitioners are discussed. © 2013 The British Psychological Society.
ERIC Educational Resources Information Center
Wisconsin Department of Public Instruction, 2011
2011-01-01
Wisconsin's adoption of the Common Core State Standards provides an excellent opportunity for Wisconsin school districts and communities to define expectations from birth through preparation for college and work. By aligning the existing Wisconsin Model Early Learning Standards with the Wisconsin Common Core State Standards, expectations can be…
Neural correlates of math anxiety - an overview and implications.
Artemenko, Christina; Daroczy, Gabriella; Nuerk, Hans-Christoph
2015-01-01
Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that processing efficiency is already affected in basic number processing. Overall, the neurocognitive literature suggests that (i) math anxiety elicits emotion- and pain-related activation during and before math activities, (ii) that the negative emotional response to math anxiety impairs processing efficiency, and (iii) that math deficits triggered by math anxiety may be compensated for by modulating the cognitive control or emotional regulation network. However, activation differs strongly between studies, depending on tasks, paradigms, and samples. We conclude that neural correlates can help to understand and explore the processes underlying math anxiety, but the data are not very consistent yet.
Neural correlates of math anxiety – an overview and implications
Artemenko, Christina; Daroczy, Gabriella; Nuerk, Hans-Christoph
2015-01-01
Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that processing efficiency is already affected in basic number processing. Overall, the neurocognitive literature suggests that (i) math anxiety elicits emotion- and pain-related activation during and before math activities, (ii) that the negative emotional response to math anxiety impairs processing efficiency, and (iii) that math deficits triggered by math anxiety may be compensated for by modulating the cognitive control or emotional regulation network. However, activation differs strongly between studies, depending on tasks, paradigms, and samples. We conclude that neural correlates can help to understand and explore the processes underlying math anxiety, but the data are not very consistent yet. PMID:26388824
ERIC Educational Resources Information Center
Ruff, Sarah E.; Boes, Susan R.
2014-01-01
Low math achievement is a recurring weakness in many students. Math anxiety is a persistent and significant theme to math avoidance and low achievement. Causes for math anxiety include social, cognitive, and academic factors. Interventions to reduce math anxiety are limited as they exclude the expert skills of professional school counselors to…
A Study of Perceptions of Math Mindset, Math Anxiety, and View of Math by Young Adults
ERIC Educational Resources Information Center
Hocker, Tami
2017-01-01
This study's purpose was to determine whether instruction in growth math mindset led to change in perceptions of 18-22-year-old at-risk students in math mindset, math anxiety, and view of math. The experimental curriculum was created by the researcher with the guidance of experts in mathematics and education and focused on the impact of brain…
Errors in Multi-Digit Arithmetic and Behavioral Inattention in Children With Math Difficulties
Raghubar, Kimberly; Cirino, Paul; Barnes, Marcia; Ewing-Cobbs, Linda; Fletcher, Jack; Fuchs, Lynn
2009-01-01
Errors in written multi-digit computation were investigated in children with math difficulties. Third-and fourth-grade children (n = 291) with coexisting math and reading difficulties, math difficulties, reading difficulties, or no learning difficulties were compared. A second analysis compared those with severe math learning difficulties, low average achievement in math, and no learning difficulties. Math fact errors were related to the severity of the math difficulties, not to reading status. Contrary to predictions, children with poorer reading, regardless of math achievement, committed more visually based errors. Operation switch errors were not systematically related to group membership. Teacher ratings of behavioral inattention were related to accuracy, math fact errors, and procedural bugs. The findings are discussed with respect to hypotheses about the cognitive origins of arithmetic errors and in relation to current discussions about how to conceptualize math disabilities. PMID:19380494
NASA Astrophysics Data System (ADS)
Madadi, Vahid; Tavakoli, Touraj; Rahimi, Amir
2015-03-01
This study undertakes the experimental and theoretical investigation of heat losses from a cylindrical cavity receiver employed in a solar parabolic dish collector. Simultaneous energy and exergy equations are used for a thermal performance analysis of the system. The effects of wind speed and its direction on convection loss has also been investigated. The effects of operational parameters, such as heat transfer fluid mass flow rate and wind speed, and structural parameters, such as receiver geometry and inclination, are investigated. The portion of radiative heat loss is less than 10%. An empirical and simplified correlation for estimating the dimensionless convective heat transfer coefficient in terms of the
Creating a Third Space for Authentic Biculturalism: Examples from Math in a Cultural Context
ERIC Educational Resources Information Center
Lipka, Jerry; Sharp, Nancy; Adams, Barbara; Sharp, Ferdinand
2007-01-01
"Tumaqcat" in the Yupiaq language literally means putting the pieces together. This case demonstrates how Ms. Nancy Sharp, a Yupiaq immersion teacher, seamlessly creates a classroom space that honors and adapts her home culture while she simultaneously meets school-based mathematical standards. Ms. Sharp's Yupiaq immersion class makes patterns…
More than Just Four Letters: NBCT
ERIC Educational Resources Information Center
Crowley, Ali
2012-01-01
When the author had been teaching middle school and high school math for six years, she had just completed her master's degree and was itching to find other opportunities for professional growth. That's when she came across a flyer about certification by the National Board for Professional Teaching Standards (www.nbpts.org). National Board…
ERIC Educational Resources Information Center
Lesar, Peter V.
2013-01-01
With changing academic standards, more rigorous state assessments, growing diversity among student populations, decreased school funding, and high achievement expectations from the state and federal government, teachers have a very challenging and demanding job. Fully aware of these high expectations from the education community, school leaders…
Between Me and the World: Teaching Poetry to English Language Learners
ERIC Educational Resources Information Center
Saito, Andrew
2008-01-01
Many people may question the value of teaching poetry in public schools, particularly when it yields no "marketable" skills, and standardized testing and the government funding connected to test scores increasingly determine classroom curriculum. While poetry may seem like "fluff" next to math and history, poetry actually serves as a very…
Do States Have the Capacity to Meet the NCLB Mandates?
ERIC Educational Resources Information Center
Sunderman, Gail L.; Orfield, Gary
2007-01-01
The states have always been central to the American public school systems, and they have been sharply expanding their authority over local school districts since the 1980s, when they adopted education reforms that increased course requirements (especially in science and math), mandated uniform testing, and put in place higher teaching standards. A…
Impact of Private Secondary Schooling on Cognitive Skills: Evidence from India
ERIC Educational Resources Information Center
Azam, Mehtabul; Kingdon, Geeta; Wu, Kin Bing
2016-01-01
We examine the effect of attending private secondary school on educational achievement, as measured by students' scores in a comprehensive standardized math test, in two Indian states: Orissa and Rajasthan. We use propensity score matching (PSM) to control for any systematic differences between students attending private secondary schools and…
ERIC Educational Resources Information Center
Griffin, Linda; Ward, David
2015-01-01
One day a teacher writes 12 = ___ + ___ on the board. "You wrote it wrong," says one of the 1st graders. "You can't write the answer first!" exclaims another. As teachers in classrooms across the United States put the new mathematics standards into practice, they'll face countless examples like this one. When teachers…