Perkins Core Performance Measures: Results and Targets, 1999-2000.
ERIC Educational Resources Information Center
McHewitt, Earl R.; Taylor, Garry
This document describes the Virginia Community College System (VCCS) Core Indicators for the Perkins III Core Performance Standards and Measures. Core indicators and measures include: (1) student attainment, measured by academic and technical skills; (2) completion, measured by graduation rate; (3) placement and persistence, measured by placement,…
Perkins Core Performance Measures Results and Targets, 2000-2001.
ERIC Educational Resources Information Center
McHewitt, Earl R.; Taylor, Garry
This is a report on 2000-2001 Perkins III core performance standards and measures for the Virginia Community College System (VCCS). Perkins performance measure definitions for the system were finalized with the Virginia and federal departments of education in fall 2000. Core indicators include: (1) student attainment, which measures academic and…
Reed, Casey A; Ford, Kevin R; Myer, Gregory D; Hewett, Timothy E
2012-08-01
Core stability training, operationally defined as training focused to improve trunk and hip control, is an integral part of athletic development, yet little is known about its direct relation to athletic performance. This systematic review focuses on identification of the association between core stability and sports-related performance measures. A secondary objective was to identify difficulties encountered when trying to train core stability with the goal of improving athletic performance. A systematic search was employed to capture all articles related to athletic performance and core stability training that were identified using the electronic databases MEDLINE, CINAHL and SPORTDiscus™ (1982-June 2011). A systematic approach was used to evaluate 179 articles identified for initial review. Studies that performed an intervention targeted toward the core and measured an outcome related to athletic or sport performances were included, while studies with a participant population aged 65 years or older were excluded. Twenty-four in total met the inclusionary criteria for review. Studies were evaluated using the Physical Therapy Evidence Database (PEDro) scale. The 24 articles were separated into three groups, general performance (n = 8), lower extremity (n = 10) and upper extremity (n = 6), for ease of discussion. In the majority of studies, core stability training was utilized in conjunction with more comprehensive exercise programmes. As such, many studies saw improvements in skills of general strengths such as maximum squat load and vertical leap. Surprisingly, not all studies reported measurable increases in specific core strength and stability measures following training. Additionally, investigations that targeted the core as the primary goal for improved outcome of training had mixed results. Core stability is rarely the sole component of an athletic development programme, making it difficult to directly isolate its affect on athletic performance. The population biases of some studies of athletic performance also confound the results. Targeted core stability training provides marginal benefits to athletic performance. Conflicting findings and the lack of a standardization for measurement of outcomes and training focused to improve core strength and stability pose difficulties. Because of this, further research targeted to determine this relationship is necessary to better understand how core strength and stability affect athletic performance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... and implementing a statewide system of core standards and measures of performance? 403.201 Section 403... a statewide system of core standards and measures of performance? (a)(1) Each State board receiving funds under the Act shall develop and implement a statewide system of core standards and measures of...
The Effects of Isolated and Integrated ‘Core Stability’ Training on Athletic Performance Measures
Reed, Casey A.; Ford, Kevin R.; Myer, Gregory D.; Hewett, Timothy E.
2014-01-01
Background Core stability training, operationally defined as training focused to improve trunk and hip control, is an integral part of athletic development, yet little is known about its direct relation to athletic performance. Objective This systematic review focuses on identification of the association between core stability and sports-related performance measures. A secondary objective was to identify difficulties encountered when trying to train core stability with the goal of improving athletic performance. Data sources A systematic search was employed to capture all articles related to athletic performance and core stability training that were identified using the electronic databases MEDLINE, CINAHL and SPORTDiscus™ (1982-June2011). Study selection A systematic approach was used to evaluate 179 articles identified for initial review. Studies that performed an intervention targeted toward the core and measured an outcome related to athletic or sport performances were included, while studies with a participant population aged 65 years or older were excluded. Twenty-four in total met the inclusionary criteria for review. Study appraisal and synthesis methods Studies were evaluated using the Physical Therapy Evidence Database (PEDro) scale. The 24 articles were separated into three groups, general performance (n = 8), lower extremity (n = 10) and upper extremity (n = 6), for ease of discussion. Results In the majority of studies, core stability training was utilized in conjunction with more comprehensive exercise programmes. As such, many studies saw improvements in skills of general strengths such as maximum squat load and vertical leap. Surprisingly, not all studies reported measurable increases in specific core strength and stability measures following training. Additionally, investigations that targeted the core as the primary goal for improved outcome of training had mixed results. Limitations Core stability is rarely the sole component of an athletic development programme, making it difficult to directly isolate its affect on athletic performance. The population biases of some studies of athletic performance also confound the results. Conclusions Targeted core stability training provides marginal benefits to athletic performance. Conflicting findings and the lack of a standardization for measurement of outcomes and training focused to improve core strength and stability pose difficulties. Because of this, further research targeted to determine this relationship is necessary to better understand how core strength and stability affect athletic performance. PMID:22784233
20 CFR 641.700 - What performance measures/indicators apply to SCSEP grantees?
Code of Federal Regulations, 2010 CFR
2010-04-01
... performance. There are currently eight performance measures, of which six are core indicators and two are additional indicators. Core indicators (defined in § 641.710) are subject to goal-setting and corrective action (described in § 641.720); that is, performance level goals for each core indicator must be agreed...
Code of Federal Regulations, 2011 CFR
2011-04-01
... initially determine and then adjust expected levels of performance for the core performance measures? 641... the core performance measures? (a) Initial agreement. Before the beginning of each Program Year, the Department and each grantee will undertake to agree upon expected levels of performance for each core...
Code of Federal Regulations, 2010 CFR
2010-04-01
... initially determine and then adjust expected levels of performance for the core performance measures? 641... the core performance measures? (a) Initial agreement. Before the beginning of each Program Year, the Department and each grantee will undertake to agree upon expected levels of performance for each core...
A PILOT STUDY OF CORE STABILITY AND ATHLETIC PERFORMANCE: IS THERE A RELATIONSHIP?
Sharrock, Chris; Cropper, Jarrod; Mostad, Joel; Johnson, Matt
2011-01-01
Study Design: Correlation study Objectives: To objectively evaluate the relationship between core stability and athletic performance measures in male and female collegiate athletes. Background: The relationship between core stability and athletic performance has yet to be quantified in the available literature. The current literature does not demonstrate whether or not core strength relates to functional performance. Questions remain regarding the most important components of core stability, the role of sport specificity, and the measurement of core stability in relation to athletic performance. Methods: A sample of 35 volunteer student athletes from Asbury College (NAIA Division II) provided informed consent. Participants performed a series of five tests: double leg lowering (core stability test), the forty yard dash, the T-test, vertical jump, and a medicine ball throw. Participants performed three trials of each test in a randomized order. Results: Correlations between the core stability test and each of the other four performance tests were determined using a General Linear Model. Medicine ball throw negatively correlated to the core stability test (r –0.389, p=0.023). Participants that performed better on the core stability test had a stronger negative correlation to the medicine ball throw (r =–0.527). Gender was the most strongly correlated variable to core strength, males with a mean measurement of double leg lowering of 47.43 degrees compared to females having a mean of 54.75 degrees. Conclusions: There appears to be a link between a core stability test and athletic performance tests; however, more research is needed to provide a definitive answer on the nature of this relationship. Ideally, specific performance tests will be able to better define and to examine relationships to core stability. Future studies should also seek to determine if there are specific sub-categories of core stability which are most important to allow for optimal training and performance for individual sports. PMID:21713228
Watson, Todd; Graning, Jessica; McPherson, Sue; Carter, Elizabeth; Edwards, Joshuah; Melcher, Isaac; Burgess, Taylor
2017-02-01
Dance performance requires not only lower extremity muscle strength and endurance, but also sufficient core stabilization during dynamic dance movements. While previous studies have identified a link between core muscle performance and lower extremity injury risk, what has not been determined is if an extended core stabilization training program will improve specific measures of dance performance. This study examined the impact of a nine-week core stabilization program on indices of dance performance, balance measures, and core muscle performance in competitive collegiate dancers. Within-subject repeated measures design. A convenience sample of 24 female collegiate dance team members (age = 19.7 ± 1.1 years, height = 164.3 ± 5.3 cm, weight 60.3 ± 6.2 kg, BMI = 22.5 ± 3.0) participated. The intervention consisted of a supervised and non-supervised core (trunk musculature) exercise training program designed specifically for dance team participants performed three days/week for nine weeks in addition to routine dance practice. Prior to the program implementation and following initial testing, transversus abdominis (TrA) activation training was completed using the abdominal draw-in maneuver (ADIM) including ultrasound imaging (USI) verification and instructor feedback. Paired t tests were conducted regarding the nine-week core stabilization program on dance performance and balance measures (pirouettes, single leg balance in passe' releve position, and star excursion balance test [SEBT]) and on tests of muscle performance. A repeated measures (RM) ANOVA examined four TrA instruction conditions of activation: resting baseline, self-selected activation, immediately following ADIM training and four days after completion of the core stabilization training program. Alpha was set at 0.05 for all analysis. Statistically significant improvements were seen on single leg balance in passe' releve and bilateral anterior reach for the SEBT (both p ≤ 0.01), number of pirouettes (p = 0.011), and all measures of strength (p ≤ 0.05) except single leg heel raise. The RM ANOVA on mean percentage of change in TrA was significant; post hoc paired t tests demonstrated significant improvements in dancers' TrA activations across the four instruction conditions. This core stabilization training program improves pirouette ability, balance (static and dynamic), and measures of muscle performance. Additionally, ADIM training resulted in immediate and short-term (nine-week) improvements in TrA activation in a functional dance position. 2b.
Graning, Jessica; McPherson, Sue; Carter, Elizabeth; Edwards, Joshuah; Melcher, Isaac; Burgess, Taylor
2017-01-01
Background Dance performance requires not only lower extremity muscle strength and endurance, but also sufficient core stabilization during dynamic dance movements. While previous studies have identified a link between core muscle performance and lower extremity injury risk, what has not been determined is if an extended core stabilization training program will improve specific measures of dance performance. Hypothesis/Purpose This study examined the impact of a nine-week core stabilization program on indices of dance performance, balance measures, and core muscle performance in competitive collegiate dancers. Study Design Within-subject repeated measures design. Methods A convenience sample of 24 female collegiate dance team members (age = 19.7 ± 1.1 years, height = 164.3 ± 5.3 cm, weight 60.3 ± 6.2 kg, BMI = 22.5 ± 3.0) participated. The intervention consisted of a supervised and non-supervised core (trunk musculature) exercise training program designed specifically for dance team participants performed three days/week for nine weeks in addition to routine dance practice. Prior to the program implementation and following initial testing, transversus abdominis (TrA) activation training was completed using the abdominal draw-in maneuver (ADIM) including ultrasound imaging (USI) verification and instructor feedback. Paired t tests were conducted regarding the nine-week core stabilization program on dance performance and balance measures (pirouettes, single leg balance in passe’ releve position, and star excursion balance test [SEBT]) and on tests of muscle performance. A repeated measures (RM) ANOVA examined four TrA instruction conditions of activation: resting baseline, self-selected activation, immediately following ADIM training and four days after completion of the core stabilization training program. Alpha was set at 0.05 for all analysis. Results Statistically significant improvements were seen on single leg balance in passe’ releve and bilateral anterior reach for the SEBT (both p ≤ 0.01), number of pirouettes (p = 0.011), and all measures of strength (p ≤ 0.05) except single leg heel raise. The RM ANOVA on mean percentage of change in TrA was significant; post hoc paired t tests demonstrated significant improvements in dancers’ TrA activations across the four instruction conditions Conclusion This core stabilization training program improves pirouette ability, balance (static and dynamic), and measures of muscle performance. Additionally, ADIM training resulted in immediate and short-term (nine-week) improvements in TrA activation in a functional dance position. Level of Evidence 2b PMID:28217414
Perkins Core Performance Measures: Results and Targets, 2001-2002.
ERIC Educational Resources Information Center
McHewitt, Earl R.; Taylor, Garry
This report addresses the Virginia Community College System's (VCCS) core performance standards and measures for the years 2001-2002. There are four core indicators through which the VCCS is assessed. They are the following: (1) student attainment including academic and technical skills; (2) completion/graduation rate using first time, full-time…
Code of Federal Regulations, 2010 CFR
2010-07-01
... core standards and measures of performance and State rules or regulations? 400.7 Section 400.7... PROVISIONS § 400.7 What are the provisions governing the issuance of State core standards and measures of... draft proposal that the State board develops for a statewide system of core standards and measures of...
Measurement and simulation of thermal neutron flux distribution in the RTP core
NASA Astrophysics Data System (ADS)
Rabir, Mohamad Hairie B.; Jalal Bayar, Abi Muttaqin B.; Hamzah, Na'im Syauqi B.; Mustafa, Muhammad Khairul Ariff B.; Karim, Julia Bt. Abdul; Zin, Muhammad Rawi B. Mohamed; Ismail, Yahya B.; Hussain, Mohd Huzair B.; Mat Husin, Mat Zin B.; Dan, Roslan B. Md; Ismail, Ahmad Razali B.; Husain, Nurfazila Bt.; Jalil Khan, Zareen Khan B. Abdul; Yakin, Shaiful Rizaide B. Mohd; Saad, Mohamad Fauzi B.; Masood, Zarina Bt.
2018-01-01
The in-core thermal neutron flux distribution was determined using measurement and simulation methods for the Malaysian’s PUSPATI TRIGA Reactor (RTP). In this work, online thermal neutron flux measurement using Self Powered Neutron Detector (SPND) has been performed to verify and validate the computational methods for neutron flux calculation in RTP calculations. The experimental results were used as a validation to the calculations performed with Monte Carlo code MCNP. The detail in-core neutron flux distributions were estimated using MCNP mesh tally method. The neutron flux mapping obtained revealed the heterogeneous configuration of the core. Based on the measurement and simulation, the thermal flux profile peaked at the centre of the core and gradually decreased towards the outer side of the core. The results show a good agreement (relatively) between calculation and measurement where both show the same radial thermal flux profile inside the core: MCNP model over estimation with maximum discrepancy around 20% higher compared to SPND measurement. As our model also predicts well the neutron flux distribution in the core it can be used for the characterization of the full core, that is neutron flux and spectra calculation, dose rate calculations, reaction rate calculations, etc.
Schilling, Jim F; Murphy, Jeff C; Bonney, John R; Thich, Jacob L
2013-07-01
Core training continues to be emphasized with the proposed intent of improving athletic performance. The purpose of this investigation was to discover if core isometric endurance exercises were superior to core isotonic strengthening exercises and if either influenced specific endurance, strength, and performance measures. Ten untrained students were randomly assigned to core isometric endurance (n = 5) and core isotonic strength training (n = 5). Each performed three exercises, two times per week for six weeks. A repeated measures ANOVA was used to compare the measurements for the dependent variables and significance by bonferroni post-hoc testing. The training protocols were compared using a 2 × 3 mixed model ANOVA. Improvement in trunk flexor and extensor endurance (p < 0.05) along with squat and bench press strength (p < 0.05) occurred with the strength group. Improvement in trunk flexor and right lateral endurance (p < 0.05) along with strength in the squat (p < 0.05) were found with the endurance group. Neither training protocol claimed superiority and both were ineffective in improving performance. Published by Elsevier Ltd.
Tests of a D vented thrust deflecting nozzle behind a simulated turbofan engine
NASA Technical Reports Server (NTRS)
Watson, T. L.
1982-01-01
A D vented thrust deflecting nozzle applicable to subsonic V/STOL aircraft was tested behind a simulated turbofan engine in the verticle thrust stand. Nozzle thrust, fan operating characteristics, nozzle entrance conditions, and static pressures were measured. Nozzle performance was measured for variations in exit area and thrust deflection angle. Six core nozzle configurations, the effect of core exit axial location, mismatched core and fan stream nozzle pressure ratios, and yaw vane presence were evaluated. Core nozzle configuration affected performance at normal and engine out operating conditions. Highest vectored nozzle performance resulted for a given exit area when core and fan stream pressure were equal. Its is concluded that high nozzle performance can be maintained at both normal and engine out conditions through control of the nozzle entrance Mach number with a variable exit area.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 34 Education 3 2013-07-01 2013-07-01 false What must each State's system of core standards and measures of performance include? 403.202 Section 403.202 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION STATE...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 34 Education 3 2012-07-01 2012-07-01 false What must each State's system of core standards and measures of performance include? 403.202 Section 403.202 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION STATE...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 34 Education 3 2014-07-01 2014-07-01 false What must each State's system of core standards and measures of performance include? 403.202 Section 403.202 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION STATE...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 34 Education 3 2011-07-01 2011-07-01 false What must each State's system of core standards and measures of performance include? 403.202 Section 403.202 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION STATE...
Implementation of kernels on the Maestro processor
NASA Astrophysics Data System (ADS)
Suh, Jinwoo; Kang, D. I. D.; Crago, S. P.
Currently, most microprocessors use multiple cores to increase performance while limiting power usage. Some processors use not just a few cores, but tens of cores or even 100 cores. One such many-core microprocessor is the Maestro processor, which is based on Tilera's TILE64 processor. The Maestro chip is a 49-core, general-purpose, radiation-hardened processor designed for space applications. The Maestro processor, unlike the TILE64, has a floating point unit (FPU) in each core for improved floating point performance. The Maestro processor runs at 342 MHz clock frequency. On the Maestro processor, we implemented several widely used kernels: matrix multiplication, vector add, FIR filter, and FFT. We measured and analyzed the performance of these kernels. The achieved performance was up to 5.7 GFLOPS, and the speedup compared to single tile was up to 49 using 49 tiles.
Optimizing performance by improving core stability and core strength.
Hibbs, Angela E; Thompson, Kevin G; French, Duncan; Wrigley, Allan; Spears, Iain
2008-01-01
Core stability and core strength have been subject to research since the early 1980s. Research has highlighted benefits of training these processes for people with back pain and for carrying out everyday activities. However, less research has been performed on the benefits of core training for elite athletes and how this training should be carried out to optimize sporting performance. Many elite athletes undertake core stability and core strength training as part of their training programme, despite contradictory findings and conclusions as to their efficacy. This is mainly due to the lack of a gold standard method for measuring core stability and strength when performing everyday tasks and sporting movements. A further confounding factor is that because of the differing demands on the core musculature during everyday activities (low load, slow movements) and sporting activities (high load, resisted, dynamic movements), research performed in the rehabilitation sector cannot be applied to the sporting environment and, subsequently, data regarding core training programmes and their effectiveness on sporting performance are lacking. There are many articles in the literature that promote core training programmes and exercises for performance enhancement without providing a strong scientific rationale of their effectiveness, especially in the sporting sector. In the rehabilitation sector, improvements in lower back injuries have been reported by improving core stability. Few studies have observed any performance enhancement in sporting activities despite observing improvements in core stability and core strength following a core training programme. A clearer understanding of the roles that specific muscles have during core stability and core strength exercises would enable more functional training programmes to be implemented, which may result in a more effective transfer of these skills to actual sporting activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khateeb, Siddique; Su, Dong; Guerreo, Sandra
This article presents the performance of palladium-platinum core-shell catalysts (Pt/Pd/C) for oxygen reduction synthesized in gram-scale batches in both liquid cells and polymer-electrolyte membrane fuel cells. Core-shell catalyst synthesis and characterization, ink fabrication, and cell assembly details are discussed. The Pt mass activity of the Pt/Pd core-shell catalyst was 0.95 A mg –1 at 0.9 V measured in liquid cells (0.1 M HClO4), which was 4.8 times higher than a commercial Pt/C catalyst. The performances of Pt/Pd/C and Pt/C in large single cells (315 cm 2) were assessed under various operating conditions. The core-shell catalyst showed consistently higher performance thanmore » commercial Pt/C in fuel cell testing. A 20–60 mV improvement across the whole current density range was observed on air. Sensitivities to temperature, humidity, and gas composition were also investigated and the core-shell catalyst showed a consistent benefit over Pt under all conditions. However, the 4.8 times activity enhancement predicated by liquid cell measurements was not fully realized in fuel cells.« less
Khateeb, Siddique; Su, Dong; Guerreo, Sandra; ...
2016-05-03
This article presents the performance of palladium-platinum core-shell catalysts (Pt/Pd/C) for oxygen reduction synthesized in gram-scale batches in both liquid cells and polymer-electrolyte membrane fuel cells. Core-shell catalyst synthesis and characterization, ink fabrication, and cell assembly details are discussed. The Pt mass activity of the Pt/Pd core-shell catalyst was 0.95 A mg –1 at 0.9 V measured in liquid cells (0.1 M HClO4), which was 4.8 times higher than a commercial Pt/C catalyst. The performances of Pt/Pd/C and Pt/C in large single cells (315 cm 2) were assessed under various operating conditions. The core-shell catalyst showed consistently higher performance thanmore » commercial Pt/C in fuel cell testing. A 20–60 mV improvement across the whole current density range was observed on air. Sensitivities to temperature, humidity, and gas composition were also investigated and the core-shell catalyst showed a consistent benefit over Pt under all conditions. However, the 4.8 times activity enhancement predicated by liquid cell measurements was not fully realized in fuel cells.« less
Non-invasive, transient determination of the core temperature of a heat-generating solid body
Anthony, Dean; Sarkar, Daipayan; Jain, Ankur
2016-01-01
While temperature on the surface of a heat-generating solid body can be easily measured using a variety of methods, very few techniques exist for non-invasively measuring the temperature inside the solid body as a function of time. Measurement of internal temperature is very desirable since measurement of just the surface temperature gives no indication of temperature inside the body, and system performance and safety is governed primarily by the highest temperature, encountered usually at the core of the body. This paper presents a technique to non-invasively determine the internal temperature based on the theoretical relationship between the core temperature and surface temperature distribution on the outside of a heat-generating solid body as functions of time. Experiments using infrared thermography of the outside surface of a thermal test cell in a variety of heating and cooling conditions demonstrate good agreement of the predicted core temperature as a function of time with actual core temperature measurement using an embedded thermocouple. This paper demonstrates a capability to thermally probe inside solid bodies in a non-invasive fashion. This directly benefits the accurate performance prediction and control of a variety of engineering systems where the time-varying core temperature plays a key role. PMID:27804981
Non-invasive, transient determination of the core temperature of a heat-generating solid body
NASA Astrophysics Data System (ADS)
Anthony, Dean; Sarkar, Daipayan; Jain, Ankur
2016-11-01
While temperature on the surface of a heat-generating solid body can be easily measured using a variety of methods, very few techniques exist for non-invasively measuring the temperature inside the solid body as a function of time. Measurement of internal temperature is very desirable since measurement of just the surface temperature gives no indication of temperature inside the body, and system performance and safety is governed primarily by the highest temperature, encountered usually at the core of the body. This paper presents a technique to non-invasively determine the internal temperature based on the theoretical relationship between the core temperature and surface temperature distribution on the outside of a heat-generating solid body as functions of time. Experiments using infrared thermography of the outside surface of a thermal test cell in a variety of heating and cooling conditions demonstrate good agreement of the predicted core temperature as a function of time with actual core temperature measurement using an embedded thermocouple. This paper demonstrates a capability to thermally probe inside solid bodies in a non-invasive fashion. This directly benefits the accurate performance prediction and control of a variety of engineering systems where the time-varying core temperature plays a key role.
20 CFR 641.700 - What performance measures/indicators apply to SCSEP grantees?
Code of Federal Regulations, 2011 CFR
2011-04-01
... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false What performance measures/indicators apply to... Accountability § 641.700 What performance measures/indicators apply to SCSEP grantees? (a) Indicators of performance. There are currently eight performance measures, of which six are core indicators and two are...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lell, R. M.; Morman, J. A.; Schaefer, R.W.
ZPR-6 Assembly 7 (ZPR-6/7) encompasses a series of experiments performed at the ZPR-6 facility at Argonne National Laboratory in 1970 and 1971 as part of the Demonstration Reactor Benchmark Program (Reference 1). Assembly 7 simulated a large sodium-cooled LMFBR with mixed oxide fuel, depleted uranium radial and axial blankets, and a core H/D near unity. ZPR-6/7 was designed to test fast reactor physics data and methods, so configurations in the Assembly 7 program were as simple as possible in terms of geometry and composition. ZPR-6/7 had a very uniform core assembled from small plates of depleted uranium, sodium, iron oxide,more » U{sub 3}O{sub 8} and Pu-U-Mo alloy loaded into stainless steel drawers. The steel drawers were placed in square stainless steel tubes in the two halves of a split table machine. ZPR-6/7 had a simple, symmetric core unit cell whose neutronic characteristics were dominated by plutonium and {sup 238}U. The core was surrounded by thick radial and axial regions of depleted uranium to simulate radial and axial blankets and to isolate the core from the surrounding room. The ZPR-6/7 program encompassed 139 separate core loadings which include the initial approach to critical and all subsequent core loading changes required to perform specific experiments and measurements. In this context a loading refers to a particular configuration of fueled drawers, radial blanket drawers and experimental equipment (if present) in the matrix of steel tubes. Two principal core configurations were established. The uniform core (Loadings 1-84) had a relatively uniform core composition. The high {sup 240}Pu core (Loadings 85-139) was a variant on the uniform core. The plutonium in the Pu-U-Mo fuel plates in the uniform core contains 11% {sup 240}Pu. In the high {sup 240}Pu core, all Pu-U-Mo plates in the inner core region (central 61 matrix locations per half of the split table machine) were replaced by Pu-U-Mo plates containing 27% {sup 240}Pu in the plutonium component to construct a central core zone with a composition closer to that in an LMFBR core with high burnup. The high {sup 240}Pu configuration was constructed for two reasons. First, the composition of the high {sup 240}Pu zone more closely matched the composition of LMFBR cores anticipated in design work in 1970. Second, comparison of measurements in the ZPR-6/7 uniform core with corresponding measurements in the high {sup 240}Pu zone provided an assessment of some of the effects of long-term {sup 240}Pu buildup in LMFBR cores. The uniform core version of ZPR-6/7 is evaluated in ZPR-LMFR-EXP-001. This document only addresses measurements in the high {sup 240}Pu core version of ZPR-6/7. Many types of measurements were performed as part of the ZPR-6/7 program. Measurements of criticality, sodium void worth, control rod worth and reaction rate distributions in the high {sup 240}Pu core configuration are evaluated here. For each category of measurements, the uncertainties are evaluated, and benchmark model data are provided.« less
Tudek, John; Crandall, Dustin; Fuchs, Samantha; ...
2017-01-30
Three techniques to measure and understand the contact angle, θ, of a CO 2/brine/rock system relevant to geologic carbon storage were performed with Mount Simon sandstone. Traditional sessile drop measurements of CO 2/brine on the sample were conducted and a water-wet system was observed, as is expected. A novel series of measurements inside of a Mount Simon core, using a micro X-ray computed tomography imaging system with the ability to scan samples at elevated pressures, was used to examine the θ of residual bubbles of CO 2. Within the sandstone core the matrix appeared to be neutrally wetting, with anmore » average θ around 90°. A large standard deviation of θ (20.8°) within the core was also observed. To resolve this discrepancy between experimental measurements, a series of Lattice Boltzmann model simulations were performed with differing intrinsic θ values. The model results with a θ = 80° were shown to match the core measurements closely, in both magnitude and variation. The small volume and complex geometry of the pore spaces that CO 2 was trapped in is the most likely explanation of this discrepancy between measured values, though further work is warranted.« less
Assessing Outside the Bubble: Performance Assessment for Common Core State Standards
ERIC Educational Resources Information Center
Bishop, Jesica M.; Bristow, Lora J.; Coriell, Bryn P.; Jensen, Mark E.; Johnson, Leif E.; Luring, Sara R.; Lyons-Tinsley, Mary Ann; Mefford, Megan M.; Neu, Gwen L.; Samulski, Emerson T.; Warner, Timothy D.; White, Mathew F.
2011-01-01
The adoption of Common Core State Standards has increased the need for assessments capable of measuring more performance-based outcomes. This monograph brings together the current literature and resources for the development and implementation of performance assessment. The text was written as part of a project-based graduate course and has…
Aircraft Wake Vortex Core Size Measurements
DOT National Transportation Integrated Search
2003-06-23
We have examined data from three aircraft field tests designed, in part, to measure the size of the vortex cores generated by the aircraft. The field tests were performed between 1990 and 1997 at Idaho Falls, ID, Wallops Island, : VA, and John F. Ken...
Full Core TREAT Kinetics Demonstration Using Rattlesnake/BISON Coupling Within MAMMOTH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortensi, Javier; DeHart, Mark D.; Gleicher, Frederick N.
2015-08-01
This report summarizes key aspects of research in evaluation of modeling needs for TREAT transient simulation. Using a measured TREAT critical measurement and a transient for a small, experimentally simplified core, Rattlesnake and MAMMOTH simulations are performed building from simple infinite media to a full core model. Cross sections processing methods are evaluated, various homogenization approaches are assessed and the neutronic behavior of the core studied to determine key modeling aspects. The simulation of the minimum critical core with the diffusion solver shows very good agreement with the reference Monte Carlo simulation and the experiment. The full core transient simulationmore » with thermal feedback shows a significantly lower power peak compared to the documented experimental measurement, which is not unexpected in the early stages of model development.« less
NASA Astrophysics Data System (ADS)
Ross, P.-S.; Bourke, A.
2017-01-01
Physical property measurements are increasingly important in mining exploration. For density determinations on rocks, one method applicable on exploration drill cores relies on gamma ray attenuation. This non-destructive method is ideal because each measurement takes only 10 s, making it suitable for high-resolution logging. However calibration has been problematic. In this paper we present new empirical, site-specific correction equations for whole NQ and BQ cores. The corrections force back the gamma densities to the "true" values established by the immersion method. For the NQ core caliber, the density range extends to high values (massive pyrite, 5 g/cm3) and the correction is thought to be very robust. We also present additional empirical correction factors for cut cores which take into account the missing material. These "cut core correction factors", which are not site-specific, were established by making gamma density measurements on truncated aluminum cylinders of various residual thicknesses. Finally we show two examples of application for the Abitibi Greenstone Belt in Canada. The gamma ray attenuation measurement system is part of a multi-sensor core logger which also determines magnetic susceptibility, geochemistry and mineralogy on rock cores, and performs line-scan imaging.
2013-01-01
Background The primary strategy to interrupt transmission of wild poliovirus in India is to improve supplemental immunization activities (SIAs) and routine immunization coverage in priority districts. The CORE Group, part of the Social Mobilization Network (SM Net), has been successful in improving SIA coverage in high-risk areas of Uttar Pradesh (UP). The SM Net works through community level mobilisers (from the CORE Group and UNICEF) and covers more than 2 million children under the age of five. In this paper, we examine the reasons the CORE Group had been successful through exploration of which social mobilization activities of the CORE Group predicted better performance of SIAs. Methods We carried out a secondary data analysis of routine monitoring information collected by the CORE Group and the Government of India for SIAs. These data included information about vaccination outcomes of SIAs in CORE Group areas and non-CORE Group areas within the districts where the CORE Group operates, along with information about the number of various social mobilization activities carried out for each SIA. We employed Generalized Linear Latent and Mixed Model (GLLAMM) statistical analysis methods to identify which social mobilization activities predicted SIA performance, and to account for the intra-class correlation (ICC) between multiple observations within the same geographic areas over time. Results The number of mosque announcements carried out was the most consistent determinant of improved SIA performance across various performance measures. The number of Bullawa Tollies carried out also appeared to be an important determinant of improved SIA performance. The number of times other social mobilization activities were carried out did not appear to determine better SIA performance. Conclusions Social mobilization activities can improve the performance of mass vaccination campaigns. In the CORE Group areas, the number of mosque announcements and Bullawa Tollies carried out were important determinants of desired SIA outcomes. The CORE Group and SM Net should conduct sufficient numbers of these activities in support of each SIA. It is likely, however, that the quality of social mobilization activities (not studied here) is as or more important than the quantity of activities; quality measures of social mobilization activities should be investigated in the future as to how they determine vaccination performance. PMID:23327427
Pilla, Viviane; Alves, Leandro P; Iwazaki, Adalberto N; Andrade, Acácio A; Antunes, Andrea; Munin, Egberto
2013-09-01
Cadmium selenide/zinc sulfide (CdSe/ZnS) core-shell quantum dots (QDs) embedded in biocompatible materials were thermally and optically characterized with a thermal lens (TL) technique. Transient TL measurements were performed with a mode-mismatched, dual-beam (excitation and probe) configuration. A thermo-optical study of the CdSe/ZnS QDs was performed for different core diameters (3.5, 4.0, 5.2, and 6.6 nm) in aqueous solution and synthetic saliva, and three different core diameters (2.4, 2.9, and 4.1 nm) embedded in restorative dental resin (0.025% by mass). The thermal diffusivity results are characteristic of the biocompatible matrices. The radiative quantum efficiencies for aqueous solution and biofluid materials are dependent on the core size of the CdSe/ZnS core-shell QDs. The results obtained from the fluorescence spectral measurements for the biocompatible materials support the TL results.
Improved method for measuring water imbibition rates on low-permeability porous media
Humphrey, M.D.; Istok, J.D.; Flint, L.E.; Flint, A.L.
1996-01-01
Existing methods for measuring water imbibition rates are inadequate when imbibition rates are small (e.g., clay soils and many igneous rocks). We developed an improved laboratory method for performing imbibition measurements on soil or rock cores with a wide range of hydraulic properties. Core specimens are suspended from an electronic strain gauge (load cell) in a closed chamber while maintaining the lower end of the core in contact with a free water surface in a constant water level reservoir. The upper end of the core is open to the atmosphere. During imbibition, mass increase of the core is recorded continuously by a datalogger that converts the load cell voltage signal into mass units using a calibration curve. Computer automation allows imbibition rate measurement on as many as eight cores simultaneously and independently. Performance of each component of the imbibition apparatus was evaluated using a set of rock cores (2.5 cm in diameter and 2-5 cm in length) from a single lithostratigraphic unit composed of non-to-moderately welded ash-flow tuff (a glass-rich pyroclastic rock partially fused by heat and pressure) with porosities ranging from 0.094 to 0.533 m3 m-3. Reproducibility of sample handling and testing procedures was demonstrated using replicate measurements. Precision and accuracy of load cell measurements were assessed using mass balance calculations and indicated agreement within a few tenths of a percent of total mass. Computed values of sorptivity, S, ranged from 8.83 x 10-6 to 4.55 x 10-4 m s-0.5. The developed method should prove useful for measuring imbibition rates on a wide range of porous materials.
Heinicke, Grant; Matthews, Frank; Schwartz, Joseph B
2005-01-01
Drugs layering experiments were performed in a fluid bed fitted with a rotor granulator insert using diltiazem as a model drug. The drug was applied in various quantities to sugar spheres of different mesh sizes to give a series of drug-layered sugar spheres (cores) of different potency, size, and weight per particle. The drug presence lowered the bulk density of the cores in proportion to the quantity of added drug. Polymer coating of each core lot was performed in a fluid bed fitted with a Wurster insert. A series of polymer-coated cores (pellets) was removed from each coating experiment. The mean diameter of each core and each pellet sample was determined by image analysis. The rate of change of diameter on polymer addition was determined for each starting size of core and compared to calculated values. The core diameter was displaced from the line of best fit through the pellet diameter data. Cores of different potency with the same size distribution were made by layering increasing quantities of drug onto sugar spheres of decreasing mesh size. Equal quantities of polymer were applied to the same-sized core lots and coat thickness was measured. Weight/weight calculations predict equal coat thickness under these conditions, but measurable differences were found. Simple corrections to core charge weight in the Wurster insert were successfully used to manufacture pellets having the same coat thickness. The sensitivity of the image analysis technique in measuring particle size distributions (PSDs) was demonstrated by measuring a displacement in PSD after addition of 0.5% w/w talc to a pellet sample.
NASA Technical Reports Server (NTRS)
Goodyer, M. J.; Britcher, C. P.
1983-01-01
The results of experimental demonstrations of a superconducting solenoid model core in the Southampton University Magnetic Suspension and Balance System are detailed. Technology and techniques relevant to large-scale wind tunnel MSBSs comprise the long term goals. The magnetic moment of solenoids, difficulties peculiar to superconducting solenoid cores, lift force and pitching moment, dynamic lift calibration, and helium boil-off measurements are discussed.
Reliability of an infrared forehead skin thermometer for core temperature measurements.
Kistemaker, J A; Den Hartog, E A; Daanen, H A M
2006-01-01
The SensorTouch thermometer performs an infrared measurement of the skin temperature above the Superficial Temporal Artery (STA). This study evaluates the validity and the accuracy of the SensorTouch thermometer. Two experiments were performed in which the body temperature was measured with a rectal sensor, with an oesophageal sensor and with the SensorTouch. After entering a warm chamber the SensorTouch underestimated the core temperature during the first 10 minutes. After that, the SensorTouch was not significantly different from the core temperature, with an average difference of 0.5 degrees C (SD 0.5 degrees C) in the first study and 0.3 degrees C (SD 0.2 degrees C) in the second study. The largest differences between the SensorTouch and the core temperature existed 15 minutes after the start of the exercise. During this period the SensorTouch was significantly higher than the core temperature. The SensorTouch did not provide reliable values of the body temperature during periods of increasing body temperature, but the SensorTouch might work under stable conditions.
The effect of core configuration on temperature coefficient of reactivity in IRR-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bettan, M.; Silverman, I.; Shapira, M.
1997-08-01
Experiments designed to measure the effect of coolant moderator temperature on core reactivity in an HEU swimming pool type reactor were performed. The moderator temperature coefficient of reactivity ({alpha}{sub {omega}}) was obtained and found to be different in two core loadings. The measured {alpha}{sub {omega}} of one core loading was {minus}13 pcm/{degrees}C at the temperature range of 23-30{degrees}C. This value of {alpha}{sub {omega}} is comparable to the data published by the IAEA. The {alpha}{sub {omega}} measured in the second core loading was found to be {minus}8 pcm/{degrees}C at the same temperature range. Another phenomenon considered in this study is coremore » behavior during reactivity insertion transient. The results were compared to a core simulation using the Dynamic Simulator for Nuclear Power Plants. It was found that in the second core loading factors other than the moderator temperature influence the core reactivity more than expected. These effects proved to be extremely dependent on core configuration and may in certain core loadings render the reactor`s reactivity coefficient undesirable.« less
Tailored Core Shell Cathode Powders for Solid Oxide Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swartz, Scott
2015-03-23
In this Phase I SBIR project, a “core-shell” composite cathode approach was evaluated for improving SOFC performance and reducing degradation of lanthanum strontium cobalt ferrite (LSCF) cathode materials, following previous successful demonstrations of infiltration approaches for achieving the same goals. The intent was to establish core-shell cathode powders that enabled high performance to be obtained with “drop-in” process capability for SOFC manufacturing (i.e., rather than adding an infiltration step to the SOFC manufacturing process). Milling, precipitation and hetero-coagulation methods were evaluated for making core-shell composite cathode powders comprised of coarse LSCF “core” particles and nanoscale “shell” particles of lanthanum strontiummore » manganite (LSM) or praseodymium strontium manganite (PSM). Precipitation and hetero-coagulation methods were successful for obtaining the targeted core-shell morphology, although perfect coverage of the LSCF core particles by the LSM and PSM particles was not obtained. Electrochemical characterization of core-shell cathode powders and conventional (baseline) cathode powders was performed via electrochemical impedance spectroscopy (EIS) half-cell measurements and single-cell SOFC testing. Reliable EIS testing methods were established, which enabled comparative area-specific resistance measurements to be obtained. A single-cell SOFC testing approach also was established that enabled cathode resistance to be separated from overall cell resistance, and for cathode degradation to be separated from overall cell degradation. The results of these EIS and SOFC tests conclusively determined that the core-shell cathode powders resulted in significant lowering of performance, compared to the baseline cathodes. Based on the results of this project, it was concluded that the core-shell cathode approach did not warrant further investigation.« less
Development of coring procedures applied to Si, CdTe, and CIGS solar panels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moutinho, H. R.; Johnston, S.; To, B.
Most of the research on the performance and degradation of photovoltaic modules is based on macroscale measurements of device parameters such as efficiency, fill factor, open-circuit voltage, and short-circuit current. Our goal is to develop the capabilities to allow us to study the degradation of these parameters in the micro- and nanometer scale and to relate our results to performance parameters. To achieve this objective, the first step is to be able to access small samples from specific areas of the solar panels without changing the properties of the material. In this paper, we describe two coring procedures that wemore » developed and applied to Si, CIGS, and CdTe solar panels. In the first procedure, we cored full samples, whereas in the second we performed a partial coring that keeps the tempered glass intact. The cored samples were analyzed by different analytical techniques before and after coring, at the same locations, and no damage during the coring procedure was observed.« less
Development of coring procedures applied to Si, CdTe, and CIGS solar panels
Moutinho, H. R.; Johnston, S.; To, B.; ...
2018-01-04
Most of the research on the performance and degradation of photovoltaic modules is based on macroscale measurements of device parameters such as efficiency, fill factor, open-circuit voltage, and short-circuit current. Our goal is to develop the capabilities to allow us to study the degradation of these parameters in the micro- and nanometer scale and to relate our results to performance parameters. To achieve this objective, the first step is to be able to access small samples from specific areas of the solar panels without changing the properties of the material. In this paper, we describe two coring procedures that wemore » developed and applied to Si, CIGS, and CdTe solar panels. In the first procedure, we cored full samples, whereas in the second we performed a partial coring that keeps the tempered glass intact. The cored samples were analyzed by different analytical techniques before and after coring, at the same locations, and no damage during the coring procedure was observed.« less
The effect of short-term isometric training on core/torso stiffness.
Lee, Benjamin; McGill, Stuart
2017-09-01
"Core" exercise is a basic part of many physical training regimens with goals ranging from rehabilitation of spine and knee injuries to improving athletic performance. Core stiffness has been proposed to perform several functions including reducing pain by minimising joint micro-movements, and enhancing strength and speed performance. This study probes the links between a training approach and immediate but temporary changes in stiffness. Passive and active stiffness was measured on 24 participants; 12 having little to no experience in core training (inexperienced), and the other 12 being athletes experienced to core training methods; before and after a 15 min bout of isometric core exercises. Passive stiffness was assessed on a "frictionless" bending apparatus and active stiffness assessed via a quick release mechanism. Short-term isometric core training increased passive and active stiffness in most directions for both inexperienced and experienced participants, passive left lateral bend among experienced participants being the exception (P < 0.05). There was no difference between the inexperienced and experienced groups. The results confirm that the specific isometric training exercise approach tested here can induce immediate changes in core stiffness, in this case following a single session. This may influence performance and injury resilience for a brief period.
Spuls, P I; Gerbens, L A A; Simpson, E; Apfelbacher, C J; Chalmers, J R; Thomas, K S; Prinsen, C A C; von Kobyletzki, L B; Singh, J A; Williams, H C; Schmitt, J
2017-04-01
The Harmonising Outcome Measures for Eczema (HOME) initiative has defined four core outcome domains for a core outcome set (COS) to be measured in all atopic eczema (AE) trials to ensure cross-trial comparison: clinical signs, symptoms, quality of life and long-term control. The aim of this paper is to report on the consensus process that was used to select the core instrument to consistently assess symptoms in all future AE trials. Following the HOME roadmap, two systematic reviews were performed which identified three instruments that had sufficient evidence of validity, reliability and feasibility to be considered for the final COS. At the fourth international HOME meeting, there was broad consensus among all stakeholders that the Patient-Oriented Eczema Measure (POEM) should be used as the core instrument (87·5% agreed, 9·4% unsure, 3·1% disagreed). All relevant stakeholders are encouraged to use POEM as the chosen instrument to measure the core domain of symptoms in all future AE clinical trials. Other instruments of interest can be used in addition to POEM. © 2016 British Association of Dermatologists.
ERIC Educational Resources Information Center
Hsiung, Chin-Min; Zheng, Xiang-Xiang
2015-01-01
The Measurements for Team Functioning (MTF) database contains a series of student academic performance measurements obtained at a national university in Taiwan. The measurements are acquired from unit tests and homework tests performed during a core mechanical engineering course, and provide an objective means of assessing the functioning of…
3D-Printed Detector Band for Magnetic Off-Plane Flux Measurements in Laminated Machine Cores
Pfützner, Helmut; Palkovits, Martin; Windischhofer, Andreas; Giefing, Markus
2017-01-01
Laminated soft magnetic cores of transformers, rotating machines etc. may exhibit complex 3D flux distributions with pronounced normal fluxes (off-plane fluxes), perpendicular to the plane of magnetization. As recent research activities have shown, detections of off-plane fluxes tend to be essential for the optimization of core performances aiming at a reduction of core losses and of audible noise. Conventional sensors for off-plane flux measurements tend to be either of high thickness, influencing the measured fluxes significantly, or require laborious preparations. In the current work, thin novel detector bands for effective and simple off-plane flux detections in laminated machine cores were manufactured. They are printed in an automatic way by an in-house developed 3D/2D assembler. The latter enables a unique combination of conductive and non-conductive materials. The detector bands were effectively tested in the interior of a two-package, three-phase model transformer core. They proved to be mechanically resilient, even for strong clamping of the core. PMID:29257063
3D-Printed Detector Band for Magnetic Off-Plane Flux Measurements in Laminated Machine Cores.
Shilyashki, Georgi; Pfützner, Helmut; Palkovits, Martin; Windischhofer, Andreas; Giefing, Markus
2017-12-19
Laminated soft magnetic cores of transformers, rotating machines etc. may exhibit complex 3D flux distributions with pronounced normal fluxes (off-plane fluxes), perpendicular to the plane of magnetization. As recent research activities have shown, detections of off-plane fluxes tend to be essential for the optimization of core performances aiming at a reduction of core losses and of audible noise. Conventional sensors for off-plane flux measurements tend to be either of high thickness, influencing the measured fluxes significantly, or require laborious preparations. In the current work, thin novel detector bands for effective and simple off-plane flux detections in laminated machine cores were manufactured. They are printed in an automatic way by an in-house developed 3D/2D assembler. The latter enables a unique combination of conductive and non-conductive materials. The detector bands were effectively tested in the interior of a two-package, three-phase model transformer core. They proved to be mechanically resilient, even for strong clamping of the core.
Bourlai, Thirimachos; Pryor, Riana R; Suyama, Joe; Reis, Steven E; Hostler, David
2012-01-01
Monitoring core body temperature to identify heat stress in first responders and in individuals participating in mass gatherings (e.g., marathons) is difficult. This study utilized high-sensitivity thermal imaging technology to predict the core temperature of human subjects at a distance while performing simulated field operations wearing thermal protective garments. Six male subjects participating in a study of precooling prior to exertion in wildland firefighter thermal protective clothing had thermal images of the face captured with a high-resolution thermal imaging camera concomitant with measures of core and skin temperature before, during, and after treadmill exercise in a heated room. Correlations and measures of agreement between core temperature and thermal imaging-based temperature were performed. The subjects walked an average (± standard deviation) of 42.6 (±5.9) minutes and a distance of 4.2 (±0.6) km on the treadmill. Mean heart rate at the end of exercise was 152 (±33) bpm and core body temperature at the end of exercise was 38.3°C (±0.7°C). A visual relationship and a strong correlation between core temperature and thermal imaging of the face were identified in all subjects, with the closest relationship and best agreement occurring during exercise. The Bland-Altman test of agreement during exercise revealed the majority of measurement pairs to be within two standard deviations of the measured temperature. High-resolution thermal imaging in the middle-wave infrared spectrum (3-5 μm) can be used to accurately estimate core body temperature during exertion in a hot room while participants are wearing wildland firefighting garments. Although this technology is promising, it must be refined. Using alternative measurement sites such as the skin over the carotid artery, using multiple measurement sites, or adding pulse detection may improve the estimation of body temperature by thermal imagery.
Isolated core training improves sprint performance in national-level junior swimmers.
Weston, Matthew; Hibbs, Angela E; Thompson, Kevin G; Spears, Iain R
2015-03-01
To quantify the effects of a 12-wk isolated core-training program on 50-m front-crawl swim time and measures of core musculature functionally relevant to swimming. Twenty national-level junior swimmers (10 male and 10 female, 16±1 y, 171±5 cm, 63±4 kg) participated in the study. Group allocation (intervention [n=10], control [n=10]) was based on 2 preexisting swim-training groups who were part of the same swimming club but trained in different groups. The intervention group completed the core training, incorporating exercises targeting the lumbopelvic complex and upper region extending to the scapula, 3 times/wk for 12 wk. While the training was performed in addition to the normal pool-based swimming program, the control group maintained their usual pool-based swimming program. The authors made probabilistic magnitude-based inferences about the effect of the core training on 50-m swim time and functionally relevant measures of core function. Compared with the control group, the core-training intervention group had a possibly large beneficial effect on 50-m swim time (-2.0%; 90% confidence interval -3.8 to -0.2%). Moreover, it showed small to moderate improvements on a timed prone-bridge test (9.0%; 2.1-16.4%) and asymmetric straight-arm pull-down test (23.1%; 13.7-33.4%), and there were moderate to large increases in peak EMG activity of core musculature during isolated tests of maximal voluntary contraction. This is the first study to demonstrate a clear beneficial effect of isolated core training on 50-m front-crawl swim performance.
TREAT Transient Analysis Benchmarking for the HEU Core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kontogeorgakos, D. C.; Connaway, H. M.; Wright, A. E.
2014-05-01
This work was performed to support the feasibility study on the potential conversion of the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory from the use of high enriched uranium (HEU) fuel to the use of low enriched uranium (LEU) fuel. The analyses were performed by the GTRI Reactor Conversion staff at the Argonne National Laboratory (ANL). The objective of this study was to benchmark the transient calculations against temperature-limited transients performed in the final operating HEU TREAT core configuration. The MCNP code was used to evaluate steady-state neutronics behavior, and the point kinetics code TREKIN was used tomore » determine core power and energy during transients. The first part of the benchmarking process was to calculate with MCNP all the neutronic parameters required by TREKIN to simulate the transients: the transient rod-bank worth, the prompt neutron generation lifetime, the temperature reactivity feedback as a function of total core energy, and the core-average temperature and peak temperature as a functions of total core energy. The results of these calculations were compared against measurements or against reported values as documented in the available TREAT reports. The heating of the fuel was simulated as an adiabatic process. The reported values were extracted from ANL reports, intra-laboratory memos and experiment logsheets and in some cases it was not clear if the values were based on measurements, on calculations or a combination of both. Therefore, it was decided to use the term “reported” values when referring to such data. The methods and results from the HEU core transient analyses will be used for the potential LEU core configurations to predict the converted (LEU) core’s performance.« less
Performance of the NASA Digitizing Core-Loss Instrumentation
NASA Technical Reports Server (NTRS)
Schwarze, Gene E. (Technical Monitor); Niedra, Janis M.
2003-01-01
The standard method of magnetic core loss measurement was implemented on a high frequency digitizing oscilloscope in order to explore the limits to accuracy when characterizing high Q cores at frequencies up to 1 MHz. This method computes core loss from the cycle mean of the product of the exciting current in a primary winding and induced voltage in a separate flux sensing winding. It is pointed out that just 20 percent accuracy for a Q of 100 core material requires a phase angle accuracy of 0.1 between the voltage and current measurements. Experiment shows that at 1 MHz, even high quality, high frequency current sensing transformers can introduce phase errors of a degree or more. Due to the fact that the Q of some quasilinear core materials can exceed 300 at frequencies below 100 kHz, phase angle errors can be a problem even at 50 kHz. Hence great care is necessary with current sensing and ground loops when measuring high Q cores. Best high frequency current sensing accuracy was obtained from a fabricated 0.1-ohm coaxial resistor, differentially sensed. Sample high frequency core loss data taken with the setup for a permeability-14 MPP core is presented.
Van den Bussche, Karen; De Meyer, Dorien; Van Damme, Nele; Kottner, Jan; Beeckman, Dimitri
2017-10-01
This study protocol describes the methodology for the development of a core set of outcomes and a core set of measurements for incontinence-associated dermatitis. Incontinence is a widespread disorder with an important impact on quality of life. One of the most common complications is incontinence-associated dermatitis, resulting from chemical and physical irritation of the skin barrier, triggering inflammation and skin damage. Managing incontinence-associated dermatitis is an important challenge for nurses. Several interventions have been assessed in clinical trials, but heterogeneity in study outcomes complicates the comparability and standardization. To overcome this challenge, the development of a core outcome set, a minimum set of outcomes and measurements to be assessed in clinical research, is needed. A project team, International Steering Committee and panelists will be involved to guide the development of the core outcome set. The framework of the Harmonizing Outcomes Measures for Eczema roadmap endorsed by Cochrane Skin Group Core Outcomes Set Initiative, is used to inform the project design. A systematic literature review, interviews to integrate the patients' perspective and a consensus study with healthcare researchers and providers using the Delphi procedure will be performed. The project was approved by the Ethics review Committee (April 2016). This is the first project that will identify a core outcome set of outcomes and measurements for incontinence-associated dermatitis research. A core outcome set will reduce possible reporting bias, allow results comparisons and statistical pooling across trials and strengthen evidence-based practice and decision-making. This project has been registered in the Core Outcome Measures in Effectiveness Trials (COMET) database and is part of the Cochrane Skin Group Core Outcomes Set Initiative (CSG-COUSIN). © 2016 John Wiley & Sons Ltd.
Johnson, Caleb D; Whitehead, Paul N; Pletcher, Erin R; Faherty, Mallory S; Lovalekar, Mita T; Eagle, Shawn R; Keenan, Karen A
2018-04-01
Johnson, CD, Whitehead, PN, Pletcher, ER, Faherty, MS, Lovalekar, MT, Eagle, SR, and Keenan, KA. The relationship of core strength and activation and performance on three functional movement screens. J Strength Cond Res 32(4): 1166-1173, 2018-Current measures of core stability used by clinicians and researchers suffer from several shortcomings. Three functional movement screens appear, at face-value, to be dependent on the ability to activate and control core musculature. These 3 screens may present a viable alternative to current measures of core stability. Thirty-nine subjects completed a deep squat, trunk stability push-up, and rotary stability screen. Scores on the 3 screens were summed to calculate a composite score (COMP). During the screens, muscle activity was collected to determine the length of time that the bilateral erector spinae, rectus abdominis, external oblique, and gluteus medius muscles were active. Strength was assessed for core muscles (trunk flexion and extension, trunk rotation, and hip abduction and adduction) and accessory muscles (knee flexion and extension and pectoralis major). Two ordinal logistic regression equations were calculated with COMP as the outcome variable, and: (a) core strength and accessory strength, (b) only core strength. The first model was significant in predicting COMP (p = 0.004) (Pearson's Chi-Square = 149.132, p = 0.435; Nagelkerke's R-Squared = 0.369). The second model was significant in predicting COMP (p = 0.001) (Pearson's Chi-Square = 148.837, p = 0.488; Nagelkerke's R-Squared = 0.362). The core muscles were found to be active for most screens, with percentages of "time active" for each muscle ranging from 54-86%. In conclusion, performance on the 3 screens is predicted by core strength, even when accounting for "accessory" strength variables. Furthermore, it seems the screens elicit wide-ranging activation of core muscles. Although more investigation is needed, these screens, collectively, seem to be a good assessment of core strength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2008-07-15
The Meeting papers discuss research and test reactor fuel performance, manufacturing and testing. Some of the main topics are: conversion from HEU to LEU in different reactors and corresponding problems and activities; flux performance and core lifetime analysis with HEU and LEU fuels; physics and safety characteristics; measurement of gamma field parameters in core with LEU fuel; nondestructive analysis of RERTR fuel; thermal hydraulic analysis; fuel interactions; transient analyses and thermal hydraulics for HEU and LEU cores; microstructure research reactor fuels; post irradiation analysis and performance; computer codes and other related problems.
Measuring the Performance and Intelligence of Systems: Proceedings of the 2002 PerMIS Workshop
NASA Technical Reports Server (NTRS)
Messina, E. R.; Meystel, A. M.
2002-01-01
Contents include the following: Performance Metrics; Performance of Multiple Agents; Performance of Mobility Systems; Performance of Planning Systems; General Discussion Panel 1; Uncertainty of Representation I; Performance of Robots in Hazardous Domains; Modeling Intelligence; Modeling of Mind; Measuring Intelligence; Grouping: A Core Procedure of Intelligence; Uncertainty in Representation II; Towards Universal Planning/Control Systems.
Improvements on the interior structure of Mercury expected from geodesy measurements
NASA Astrophysics Data System (ADS)
Rivoldini, A.; van Hoolst, T.; Verhoeven, O.
2008-09-01
ABSTRACT We assess the improvements on the interior structure of Mercury provided by expected data from geodesy experiments to be performed with the MESSENGER and BepiColombo orbiters. The observation of obliquity will allow estimating the moment of inertia, whereas measurements of libration will determine the moment of inertia of the silicate shell (mantle and crust). Tidal measurements will constrain the Love numbers that characterize the response of Mercury to the solar tidal forcing. Here, we construct depth-dependent interior structure models of Mercury for several plausible chemical compositions of the core and of the mantle using recent data on core and mantle materials. In particular we study the core structure for different mantle mineralogies and two different temperature profiles. We investigate the influence of the core light element concentration, temperature, and melting law on core state and inner core size. We compute libration amplitude, obliquity, tidal deformation, and tidal changes in the external potential for our models.
Zhang, Xin-Wei; Qiu, Quan-Fa; Jiang, Hong; Zhang, Fu-Li; Liu, Yan-Lin; Amatore, Christian; Huang, Wei-Hua
2017-10-09
Nanoelectrodes allow precise and quantitative measurements of important biological processes at the single living-cell level in real time. Cylindrical nanowire electrodes (NWEs) required for intracellular measurements create a great challenge for achieving excellent electrochemical and mechanical performances. Herein, we present a facile and robust solution to this problem based on a unique SiC-core-shell design to produce cylindrical NWEs with superior mechanical toughness provided by the SiC nano-core and an excellent electrochemical performance provided by the ultrathin carbon shell that can be used as such or platinized. The use of such NWEs for biological applications is illustrated by the first quantitative measurements of ROS/RNS in individual phagolysosomes of living macrophages. As the shell material can be varied to meet any specific detection purpose, this work opens up new opportunities to monitor quantitatively biological functions occurring inside cells and their organelles. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Antonangeli, Daniele; Siebert, Julien; Badro, James; Farber, Daniel L.; Fiquet, Guillaume; Morard, Guillaume; Ryerson, Frederick J.
2010-06-01
We performed room-temperature sound velocity and density measurements on a polycrystalline alloy, Fe0.89Ni0.04Si0.07, in the hexagonal close-packed (hcp) phase up to 108 GPa. Over the investigated pressure range the aggregate compressional sound velocity is ∼ 9% higher than in pure iron at the same density. The measured aggregate compressional (VP) and shear (VS) sound velocities, extrapolated to core densities and corrected for anharmonic temperature effects, are compared with seismic profiles. Our results provide constraints on the silicon abundance in the core, suggesting a model that simultaneously matches the primary seismic observables, density, P-wave and S-wave velocities, for an inner core containing 4 to 5 wt.% of Ni and 1 to 2 wt.% of Si.
Deployment of a tool for measuring freeway safety performance.
DOT National Transportation Integrated Search
2011-12-01
This project updated and deployed a freeway safety performance measurement tool, building upon a previous project that developed the core methodology. The tool evaluates the cumulative risk over time of an accident or a particular kind of accident. T...
Assisting allied health in performance evaluation: a systematic review.
Lizarondo, Lucylynn; Grimmer, Karen; Kumar, Saravana
2014-11-14
Performance evaluation raises several challenges to allied health practitioners and there is no agreed approach to measuring or monitoring allied health service performance. The aim of this review was to examine the literature on performance evaluation in healthcare to assist in the establishment of a framework that can guide the measurement and evaluation of allied health clinical service performance. This review determined the core elements of a performance evaluation system, tools for evaluating performance, and barriers to the implementation of performance evaluation. A systematic review of the literature was undertaken. Five electronic databases were used to search for relevant articles: MEDLINE, Embase, CINAHL, PsychInfo, and Academic Search Premier. Articles which focussed on any allied health performance evaluation or those which examined performance in health care in general were considered in the review. Content analysis was used to synthesise the findings from individual articles. A total of 37 articles were included in the review. The literature suggests there are core elements involved in performance evaluation which include prioritising clinical areas for measurement, setting goals, selecting performance measures, identifying sources of feedback, undertaking performance measurement, and reporting the results to relevant stakeholders. The literature describes performance evaluation as multi-dimensional, requiring information or data from more than one perspective to provide a rich assessment of performance. A range of tools or instruments are available to capture various perspectives and gather a comprehensive picture of health care quality. Every allied health care delivery system has different performance needs and will therefore require different approaches. However, there are core processes that can be used as a framework to evaluate allied health performance. A careful examination of barriers to performance evaluation and subsequent tailoring of strategies to overcome these barriers should be undertaken to achieve the aims of performance evaluation. The findings of this review should inform the development of a standardised framework that can be used to measure and evaluate allied health performance. Future research should explore the utility and overall impact of such framework in allied health service delivery.
Sato, Kimitake; Mokha, Monique
2009-01-01
Although strong core muscles are believed to help athletic performance, few scientific studies have been conducted to identify the effectiveness of core strength training (CST) on improving athletic performance. The aim of this study was to determine the effects of 6 weeks of CST on ground reaction forces (GRFs), stability of the lower extremity, and overall running performance in recreational and competitive runners. After a screening process, 28 healthy adults (age, 36.9 +/- 9.4 years; height, 168.4 +/- 9.6 cm; mass, 70.1 +/- 15.3 kg) volunteered and were divided randomly into 2 groups (n = 14 in each group). A test-retest design was used to assess the differences between CST (experimental) and no CST (control) on GRF measures, lower-extremity stability scores, and running performance. The GRF variables were determined by calculating peak impact, active vertical GRFs (vGRFs), and duration of the 2 horizontal GRFs (hGRFs), as measured while running across a force plate. Lower-extremity stability was assessed using the Star Excursion Balance Test. Running performance was determined by 5000-m run time measured on outdoor tracks. Six 2 (pre, post) x 2 (CST, control) mixed-design analyses of variance were used to determine the influence of CST on each dependent variable, p < 0.05. Twenty subjects completed the study (nexp = 12 and ncon = 8). A significant interaction occurred, with the CST group showing faster times in the 5000-m run after 6 weeks. However, CST did not significantly influence GRF variables and lower-leg stability. Core strength training may be an effective training method for improving performance in runners.
Keogh, Justin W L; Aickin, Sam E; Oldham, Anthony R H
2010-02-01
The primary purpose of this study was to determine whether a range of static core stability (CS) measures could distinguish shoulder press performance in unstable vs. stable conditions. Thirty resistance-trained men gave informed consent to participate in this study. One-repetition maximum strength (from < 6 repetitions) was predicted in the seated shoulder dumbbell press performed in unstable (Swiss ball[SB]) and stable (back-support bench) environments. Three CS muscle endurance tests were performed, with 4 CS ratios also calculated. The degree of strength decrement, referred to as the instability strength level (ISL), was calculated by dividing the predicted 1RM Unstable score by the 1RM Stable score. All subjects were categorized as high (ISL > 0.90), moderate (0.85 < or = ISL < or = 0.90), or low (ISL < 0.85). Between-group differences for the high- and low-ISL groups were assessed using analysis of variance and effect sizes. Pearson product moment correlations were then performed to examine the relationships between the CS measures and the ISL for the entire group. No significant between-group differences (p = 0.132-0.999) or large effect sizes were observed for any of the CS measures. Trunk flexion endurance was the only CS measure significantly correlated to the ISL (r = 0.477). In line with muscular strength research, these results suggest that CS exhibits relatively high levels of task specificity and that CS performance in static single-joint exercises may not be highly related to that in more dynamic multijoint activities. Core stability training (with or without a SB) may therefore only lead to significant improvements in functional dynamic performance if the postures, mode and velocity of contraction performed in training, are similar to the competitive tasks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsunoda, Hirokazu; Sato, Osamu; Okajima, Shigeaki
2002-07-01
In order to achieve fully automated reactor operation of RAPID-L reactor, innovative reactivity control systems LEM, LIM, and LRM are equipped with lithium-6 as a liquid poison. Because lithium-6 has not been used as a neutron absorbing material of conventional fast reactors, measurements of the reactivity worth of Lithium-6 were performed at the Fast Critical Assembly (FCA) of Japan Atomic Energy Research Institute (JAERI). The FCA core was composed of highly enriched uranium and stainless steel samples so as to simulate the core spectrum of RAPID-L. The samples of 95% enriched lithium-6 were inserted into the core parallel to themore » core axis for the measurement of the reactivity worth at each position. It was found that the measured reactivity worth in the core region well agreed with calculated value by the method for the core designs of RAPID-L. Bias factors for the core design method were obtained by comparing between experimental and calculated results. The factors were used to determine the number of LEM and LIM equipped in the core to achieve fully automated operation of RAPID-L. (authors)« less
Study on micro-bend light transmission performance of novel liquid-core optical fiber
NASA Astrophysics Data System (ADS)
Ma, Junyan; Zhao, Zhimin; Wang, Kaisheng; Guo, Linfeng
2007-01-01
With the increasing development of material technology and electronic integration technology, optical fiber and its using in smart structure have become hot in the field of material research. And liquid-core optical fiber is a special kind of optical fiber, which is made using liquid material as core and polymer material as optical layer and protective covering, and it has the characteristics of large core diameter, high numerical aperture, large-scope and efficient spectrum transmission and long life for using. So the liquid-core optical fiber is very suitable for spectrum cure, ultraviolet solidification, fluorescence detection, criminal investigation and evidence obtainment, etc, and especially as light transfer element in some new structures for the measurement of some signals, such as concentration, voltage, temperature, light intensity and so on. In this paper, the novel liquid-core optical fiber is self-made, and then through the test of its light transmission performance in free state, the relation between axial micro-bend and light-intensity loss are presented. When the liquid-core optical fiber is micro-bent axially, along with the axial displacement's increase, output power of light is reducing increasingly, and approximately has linear relation to micro-displacement in a range. According to the results liquid-core fiber-optic micro-bend sensor can be designed to measure micro-displacement of the tested objects. Experimental data and analysis provide experimental basis for further application of liquid-core optical fiber.
NASA Astrophysics Data System (ADS)
Furukawa, K.; Nio, T.; Oki, R.; Kubota, T.; Iguchi, T.
2017-09-01
The Dual-frequency Precipitation Radar (DPR) on the Global Precipitation Measurement (GPM) core satellite was developed by Japan Aerospace Exploration Agency (JAXA) and National Institute of Information and Communications Technology (NICT). The objective of the GPM mission is to observe global precipitation more frequently and accurately. The GPM core satellite is a joint product of National Aeronautics and Space Administration (NASA), JAXA and NICT. NASA developed the satellite bus and the GPM Microwave Imager (GMI), and JAXA and NICT developed the DPR. The inclination of the GPM core satellite is 65 degrees, and the nominal flight altitude is 407 km. The non-sunsynchronous circular orbit is necessary for measuring the diurnal change of rainfall. The DPR consists of two radars, which are Ku-band precipitation radar (KuPR) and Ka-band precipitation radar (KaPR). GPM core observatory was successfully launched by H2A launch vehicle on Feb. 28, 2014. DPR orbital check out was completed in May 2014. DPR products were released to the public on Sep. 2, 2014 and Normal Observation Operation period was started. JAXA is continuing DPR trend monitoring, calibration and validation operations to confirm that DPR keeps its function and performance on orbit. The results of DPR trend monitoring, calibration and validation show that DPR kept its function and performance on orbit during the 3 years and 2 months prime mission period. The DPR Prime mission period was completed in May 2017. The version 5 GPM products were released to the public in 2017. JAXA confirmed that GPM/DPR total system performance and the GPM version 5 products achieved the success criteria and the performance indicators that were defined for the JAXA GPM/DPR mission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muljadi, Eduard; Hasan, Iftekhar; Husain, Tausif
This research examines the vibration and thermal characteristics of double-sided flux concentrating Transverse Flux Machines (TFM), designed for direct drive application. Two TFM prototypes with different stator cores, one with Quasi U-Core and the other with E-Core, has been used for the study. 3D Finite Element Analysis (FEA) has been carried out to determine the no-load and with load performance of the TFMs along with their fluctuating axial electromagnetic force densities acting on the stator teeth. The deformation response of the stator cores was observed in the static structural analysis. Thermal analysis for the TFM was performed through FEA basedmore » on copper and iron losses in the machine to examine the temperature rise in different parts of the machine structure. Acceleration and noise measurements were experimentally obtained to characterize the vibrational performance of the prototypes.« less
Effect of Fiber Orientation on Dynamic Compressive Properties of an Ultra-High Performance Concrete
2017-08-01
measurements for LSFfiberOrient function for multiple cores. Elapsed time is the total time taken to run ; CPU time is the number of cores times the...Superscripts Maximum value during a test Measured value from a calibration run ...movement left or right. Before cutting, the Cor-Tuf Baseline beam was placed on the table and squared with the blade . The blade was then moved into
Performance of High-frequency High-flux Magnetic Cores at Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Gerber, Scott S.; Hammoud, Ahmad; Elbuluk, Malik E.; Patterson, Richard L.
2002-01-01
Three magnetic powder cores and one ferrite core, which are commonly used in inductor and transformer design for switch mode power supplies, were selected for investigation at cryogenic temperatures. The powder cores are Molypermalloy Core (MPC), High Flux Core (HFC), and Kool Mu Core (KMC). The performance of four inductors utilizing these cores has been evaluated as a function of temperature from 20 C to -180 C. All cores were wound with the same wire type and gauge to obtain equal values of inductance at room temperature. Each inductor was evaluated in terms of its inductance, quality (Q) factor, resistance, and dynamic hysteresis characteristics (B-H loop) as a function of temperature and frequency. Both sinusoidal and square wave excitations were used in these investigations. Measured data obtained on the inductance showed that both the MPC and the HFC cores maintain a constant inductance value, whereas with the KMC and ferrite core hold a steady value in inductance with frequency but decrease as temperature is decreased. All cores exhibited dependency, with varying degrees, in their quality factor and resistance on test frequency and temperature. Except for the ferrite, all cores exhibited good stability in the investigated properties with temperature as well as frequency. Details of the experimental procedures and test results are presented and discussed in the paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, Margaret A.; Bess, John D.
2015-02-01
The critical configuration of the small, compact critical assembly (SCCA) experiments performed at the Oak Ridge Critical Experiments Facility (ORCEF) in 1962-1965 have been evaluated as acceptable benchmark experiments for inclusion in the International Handbook of Evaluated Criticality Safety Benchmark Experiments. The initial intent of these experiments was to support the design of the Medium Power Reactor Experiment (MPRE) program, whose purpose was to study “power plants for the production of electrical power in space vehicles.” The third configuration in this series of experiments was a beryllium-reflected assembly of stainless-steel-clad, highly enriched uranium (HEU)-O 2 fuel mockup of a potassium-cooledmore » space power reactor. Reactivity measurements cadmium ratio spectral measurements and fission rate measurements were measured through the core and top reflector. Fuel effect worth measurements and neutron moderating and absorbing material worths were also measured in the assembly fuel region. The cadmium ratios, fission rate, and worth measurements were evaluated for inclusion in the International Handbook of Evaluated Criticality Safety Benchmark Experiments. The fuel tube effect and neutron moderating and absorbing material worth measurements are the focus of this paper. Additionally, a measurement of the worth of potassium filling the core region was performed but has not yet been evaluated Pellets of 93.15 wt.% enriched uranium dioxide (UO 2) were stacked in 30.48 cm tall stainless steel fuel tubes (0.3 cm tall end caps). Each fuel tube had 26 pellets with a total mass of 295.8 g UO 2 per tube. 253 tubes were arranged in 1.506-cm triangular lattice. An additional 7-tube cluster critical configuration was also measured but not used for any physics measurements. The core was surrounded on all side by a beryllium reflector. The fuel effect worths were measured by removing fuel tubes at various radius. An accident scenario was also simulated by moving outward twenty fuel rods from the periphery of the core so they were touching the core tank. The change in the system reactivity when the fuel tube(s) were removed/moved compared with the base configuration was the worth of the fuel tubes or accident scenario. The worth of neutron absorbing and moderating materials was measured by inserting material rods into the core at regular intervals or placing lids at the top of the core tank. Stainless steel 347, tungsten, niobium, polyethylene, graphite, boron carbide, aluminum and cadmium rods and/or lid worths were all measured. The change in the system reactivity when a material was inserted into the core is the worth of the material.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Y. S.; Joo, H. G.; Yoon, J. I.
The nTRACER direct whole core transport code employing the planar MOC solution based 3-D calculation method, the subgroup method for resonance treatment, the Krylov matrix exponential method for depletion, and a subchannel thermal/hydraulic calculation solver was developed for practical high-fidelity simulation of power reactors. Its accuracy and performance is verified by comparing with the measurement data obtained for three pressurized water reactor cores. It is demonstrated that accurate and detailed multi-physic simulation of power reactors is practically realizable without any prior calculations or adjustments. (authors)
Ergogenic effects of precooling with cold water immersion and ice ingestion: A meta-analysis.
Choo, Hui C; Nosaka, Kazunori; Peiffer, Jeremiah J; Ihsan, Mohammed; Abbiss, Chris R
2018-03-01
This review evaluated the effects of precooling via cold water immersion (CWI) and ingestion of ice slurry/slushy or crushed ice (ICE) on endurance performance measures (e.g. time-to-exhaustion and time trials) and psychophysiological parameters (core [T core ] and skin [T skin ] temperatures, whole body sweat [WBS] response, heart rate [HR], thermal sensation [TS], and perceived exertion [RPE]). Twenty-two studies were included in the meta-analysis based on the following criteria: (i) cooling was performed before exercise with ICE or CWI; (ii) exercise longer than 6 min was performed in ambient temperature ≥26°C; and (iii) crossover study design with a non-cooling passive control condition. CWI improved performance measures (weighted average effect size in Hedges' g [95% confidence interval] + 0.53 [0.28; 0.77]) and resulted in greater increase (ΔEX) in T skin (+4.15 [3.1; 5.21]) during exercise, while lower peak T core (-0.93 [-1.18; -0.67]), WBS (-0.74 [-1.18; -0.3]), and TS (-0.5 [-0.8; -0.19]) were observed without concomitant changes in ΔEX-T core (+0.19 [-0.22; 0.6]), peak T skin (-0.67 [-1.52; 0.18]), peak HR (-0.14 [-0.38; 0.11]), and RPE (-0.14 [-0.39; 0.12]). ICE had no clear effect on performance measures (+0.2 [-0.07; 0.46]) but resulted in greater ΔEX-T core (+1.02 [0.59; 1.45]) and ΔEX-T skin (+0.34 [0.02; 0.67]) without concomitant changes in peak T core (-0.1 [-0.48; 0.28]), peak T skin (+0.1 [-0.22; 0.41]), peak HR (+0.08 [-0.19; 0.35]), WBS (-0.12 [-0.42; 0.18]), TS (-0.2 [-0.49; 0.1]), and RPE (-0.01 [-0.33; 0.31]). From both ergogenic and thermoregulatory perspectives, CWI may be more effective than ICE as a precooling treatment prior to exercise in the heat.
[The relevance of core muscles in ice hockey players: a feasibility study].
Rogan, S; Blasimann, A; Nyffenegger, D; Zimmerli, N; Radlinger, L
2013-12-01
Good core strength is seen as a condition for high performance in sports. In general, especially maximum voluntary contraction (MVC) and strength endurance (SE) measurements of the core muscles are used. In addition, a few studies can be found that examine the core muscles in terms of MVC, rate of force development (RFD) and SE. Primary aims of this feasibility study were to investigate the feasibility regarding recruiting process, compliance and safety of the testing conditions and raise the force capabilities MVC, RFD and SE of the core muscles in amateur ice hockey players. Secondarily, tendencies of correlations between muscle activity and either shot speed and sprint time shall be examined. In this feasibility study the recruitment process has been approved by 29 ice hockey players, their adherence to the study measurements of trunk muscles, and safety of the measurements was evaluated. To determine the MVC, RFD and SE for the ventral, lateral and dorsal core muscles a dynamic force measurement was performed. To determine the correlation between core muscles and shot speed and 40-m sprint, respectively, the rank correlation coefficient (rho) from Spearman was used. The recruited number of eight field players and one goal-keeper was not very high. The compliance with 100 % was excellent. The players reported no adverse symptoms or injuries after the measurements. The results show median values for the ventral core muscles for MVC with 46.5 kg for RFD with 2.23 m/s2 and 96 s for the SE. For lateral core muscle median values of the lateral core muscles for MVC with 71.10 kg, RFD with 2.59 m/s2 and for SE over 66 s were determined. The dorsal core muscles shows values for MVC 69.7 kg, for RFD 3.39 m/s2 and for SE of 75 s. High correlations between MVC of the ventral core muscles (rho = -0.721, p = 0.021), and between the SE of the ventral core muscles (rho = 0.787, p = 0.012), and the shot velocity rate were determined. Another high correlation between SE of the ventral core muscles and sprint over 40 m (rho = 0.717, p = 0.030) could be demonstrated. This feasibility study has shown that the implementation of the selected design is adapted for future studies. Further studies are needed to better understand the relationship between the velocity rate and the MVC, and the SE respectively, as well as between the sprint and the SE. © Georg Thieme Verlag KG Stuttgart · New York.
Rapid core measure improvement through a "business case for quality".
Perlin, Jonathan B; Horner, Stephen J; Englebright, Jane D; Bracken, Richard M
2014-01-01
Incentives to improve performance are emerging as revenue or financial penalties are linked to the measured quality of service provided. The HCA "Getting to Green" program was designed to rapidly increase core measure performance scores. Program components included (1) the "business case for quality"-increased awareness of how quality drives financial performance; (2) continuous communication of clinical and financial performance data; and (3) evidence-based clinical protocols, incentives, and tools for process improvement. Improvement was measured by comparing systemwide rates of adherence to national quality measures for heart failure (HF), acute myocardial infarction (AMI), pneumonia (PN), and surgical care (SCIP) to rates from all facilities reporting to the Centers for Medicare and Medicaid Services (CMS). As of the second quarter of 2011, 70% of HCA total measure set composite scores were at or above the 90th percentile of CMS scores. A test of differences in regression coefficients between the CMS national average and the HCA average revealed significant differences for AMI (p = .001), HF (p = .012), PN (p < .001), and SCIP (p = .015). This program demonstrated that presentation of the financial implications of quality, transparency in performance data, and clearly defined goals could cultivate the desire to use improvement tools and resources to raise performance. © 2012 National Association for Healthcare Quality.
Allen, Brett A; Hannon, James C; Burns, Ryan D; Williams, Skip M
2014-07-01
Trunk and core muscular development has been advocated to increase athletic performance and for maintenance of musculoskeletal health, especially related to the prevention of low back pain (LBP). The purpose of this study was to examine the effects of a simple core conditioning routine on tests of trunk and core muscular endurance in school-aged children. Participants included 164 students (86 girls, 78 boys; mean age, 11.5 ± 2.5 years) recruited from a grade school in a metropolitan area located in the southwestern United States. Students performed an equipment-free, moderate-to-high intensity, dynamic core conditioning warm-up routine once a week for a period of 6 weeks during the start of their physical education classes. The intervention consisted of 10 different dynamic core conditioning exercises performed at a 30-second duration per exercise totaling 5 minutes per session. Pre- and post-assessments of muscular endurance consisted of 5 different trunk and core muscular endurance tests: Parallel Roman Chair Dynamic Back Extension, Prone Plank, Lateral Plank, Dynamic Curl-Up, and Static Curl-up. A generalized estimation equation was used to analyze differences in pre- and post-intervention muscular fitness assessments controlling for gender and grade level. Analysis of the data revealed significant increases in muscular fitness test performance for each of the 5 measured outcomes (p < 0.001). Because risk factors of LBP are thought to commence during childhood, results of this study suggest that it may be desirable for children and adolescents to perform moderate-to-high intensity dynamic core exercises during physical education warm-up to improve trunk and core muscular endurance.
Improved methodologies for continuous-flow analysis of stable water isotopes in ice cores
NASA Astrophysics Data System (ADS)
Jones, Tyler R.; White, James W. C.; Steig, Eric J.; Vaughn, Bruce H.; Morris, Valerie; Gkinis, Vasileios; Markle, Bradley R.; Schoenemann, Spruce W.
2017-02-01
Water isotopes in ice cores are used as a climate proxy for local temperature and regional atmospheric circulation as well as evaporative conditions in moisture source regions. Traditional measurements of water isotopes have been achieved using magnetic sector isotope ratio mass spectrometry (IRMS). However, a number of recent studies have shown that laser absorption spectrometry (LAS) performs as well or better than IRMS. The new LAS technology has been combined with continuous-flow analysis (CFA) to improve data density and sample throughput in numerous prior ice coring projects. Here, we present a comparable semi-automated LAS-CFA system for measuring high-resolution water isotopes of ice cores. We outline new methods for partitioning both system precision and mixing length into liquid and vapor components - useful measures for defining and improving the overall performance of the system. Critically, these methods take into account the uncertainty of depth registration that is not present in IRMS nor fully accounted for in other CFA studies. These analyses are achieved using samples from a South Pole firn core, a Greenland ice core, and the West Antarctic Ice Sheet (WAIS) Divide ice core. The measurement system utilizes a 16-position carousel contained in a freezer to consecutively deliver ˜ 1 m × 1.3 cm2 ice sticks to a temperature-controlled melt head, where the ice is converted to a continuous liquid stream and eventually vaporized using a concentric nebulizer for isotopic analysis. An integrated delivery system for water isotope standards is used for calibration to the Vienna Standard Mean Ocean Water (VSMOW) scale, and depth registration is achieved using a precise overhead laser distance device with an uncertainty of ±0.2 mm. As an added check on the system, we perform inter-lab LAS comparisons using WAIS Divide ice samples, a corroboratory step not taken in prior CFA studies. The overall results are important for substantiating data obtained from LAS-CFA systems, including optimizing liquid and vapor mixing lengths, determining melt rates for ice cores with different accumulation and thinning histories, and removing system-wide mixing effects that are convolved with the natural diffusional signal that results primarily from water molecule diffusion in the firn column.
Validation of SMAP surface soil moisture products with core validation sites
USDA-ARS?s Scientific Manuscript database
The NASA Soil Moisture Active Passive (SMAP) mission has utilized a set of core validation sites as the primary methodology in assessing the soil moisture retrieval algorithm performance. Those sites provide well-calibrated in situ soil moisture measurements within SMAP product grid pixels for diver...
Initial Performance Results on IBM POWER6
NASA Technical Reports Server (NTRS)
Saini, Subbash; Talcott, Dale; Jespersen, Dennis; Djomehri, Jahed; Jin, Haoqiang; Mehrotra, Piysuh
2008-01-01
The POWER5+ processor has a faster memory bus than that of the previous generation POWER5 processor (533 MHz vs. 400 MHz), but the measured per-core memory bandwidth of the latter is better than that of the former (5.7 GB/s vs. 4.3 GB/s). The reason for this is that in the POWER5+, the two cores on the chip share the L2 cache, L3 cache and memory bus. The memory controller is also on the chip and is shared by the two cores. This serializes the path to memory. For consistently good performance on a wide range of applications, the performance of the processor, the memory subsystem, and the interconnects (both latency and bandwidth) should be balanced. Recognizing this, IBM has designed the Power6 processor so as to avoid the bottlenecks due to the L2 cache, memory controller and buffer chips of the POWER5+. Unlike the POWER5+, each core in the POWER6 has its own L2 cache (4 MB - double that of the Power5+), memory controller and buffer chips. Each core in the POWER6 runs at 4.7 GHz instead of 1.9 GHz in POWER5+. In this paper, we evaluate the performance of a dual-core Power6 based IBM p6-570 system, and we compare its performance with that of a dual-core Power5+ based IBM p575+ system. In this evaluation, we have used the High- Performance Computing Challenge (HPCC) benchmarks, NAS Parallel Benchmarks (NPB), and four real-world applications--three from computational fluid dynamics and one from climate modeling.
Sustaining Reliability on Accountability Measures at The Johns Hopkins Hospital.
Pronovost, Peter J; Holzmueller, Christine G; Callender, Tiffany; Demski, Renee; Winner, Laura; Day, Richard; Austin, J Matthew; Berenholtz, Sean M; Miller, Marlene R
2016-02-01
In 2012 Johns Hopkins Medicine leaders challenged their health system to reliably deliver best practice care linked to nationally vetted core measures and achieve The Joint Commission Top Performer on Key Quality Measures ®program recognition and the Delmarva Foundation award. Thus, the Armstrong Institute for Patient Safety and Quality implemented an initiative to ensure that ≥96% of patients received care linked to measures. Nine low-performing process measures were targeted for improvement-eight Joint Commission accountability measures and one Delmarva Foundation core measure. In the initial evaluation at The Johns Hopkins Hospital, all accountability measures for the Top Performer program reached the required ≥95% performance, gaining them recognition by The Joint Commission in 2013. Efforts were made to sustain performance of accountability measures at The Johns Hopkins Hospital. Improvements were sustained through 2014 using the following conceptual framework: declare and communicate goals, create an enabling infrastructure, engage clinicians and connect them in peer learning communities, report transparently, and create accountability systems. One part of the accountability system was for teams to create a sustainability plan, which they presented to senior leaders. To support sustained improvements, Armstrong Institute leaders added a project management office for all externally reported quality measures and concurrent reviewers to audit performance on care processes for certain measure sets. The Johns Hopkins Hospital sustained performance on all accountability measures, and now more than 96% of patients receive recommended care consistent with nationally vetted quality measures. The initiative methods enabled the transition of quality improvement from an isolated project to a way of leading an organization.
A Tissue Propagation Model for Validating Close-Proximity Biomedical Radiometer Measurements
NASA Technical Reports Server (NTRS)
Bonds, Q.; Herzig, P.; Weller, T.
2016-01-01
The propagation of thermally-generated electromagnetic emissions through stratified human tissue is studied herein using a non-coherent mathematical model. The model is developed to complement subsurface body temperature measurements performed using a close proximity microwave radiometer. The model takes into account losses and reflections as thermal emissions propagate through the body, before being emitted at the skin surface. The derivation is presented in four stages and applied to the human core phantom, a physical representation of a stomach volume of skin, muscle, and blood-fatty tissue. A drop in core body temperature is simulated via the human core phantom and the response of the propagation model is correlated to the radiometric measurement. The results are comparable, with differences on the order of 1.5 - 3%. Hence the plausibility of core body temperature extraction via close proximity radiometry is demonstrated, given that the electromagnetic characteristics of the stratified tissue layers are known.
Experimental Evaluation of Tuned Chamber Core Panels for Payload Fairing Noise Control
NASA Technical Reports Server (NTRS)
Schiller, Noah H.; Allen, Albert R.; Herlan, Jonathan W.; Rosenthal, Bruce N.
2015-01-01
Analytical models have been developed to predict the sound absorption and sound transmission loss of tuned chamber core panels. The panels are constructed of two facesheets sandwiching a corrugated core. When ports are introduced through one facesheet, the long chambers within the core can be used as an array of low-frequency acoustic resonators. To evaluate the accuracy of the analytical models, absorption and sound transmission loss tests were performed on flat panels. Measurements show that the acoustic resonators embedded in the panels improve both the absorption and transmission loss of the sandwich structure at frequencies near the natural frequency of the resonators. Analytical predictions for absorption closely match measured data. However, transmission loss predictions miss important features observed in the measurements. This suggests that higher-fidelity analytical or numerical models will be needed to supplement transmission loss predictions in the future.
Air core detectors for Cerenkov-free scintillation dosimetry of brachytherapy β-sources.
Eichmann, Marion; Thomann, Benedikt
2017-09-01
Plastic scintillation detectors are used for dosimetry in small radiation fields with high dose gradients, e.g., provided by β-emitting sources like 106 Ru/ 106 Rh eye plaques. A drawback is a background signal caused by Cerenkov radiation generated by electrons passing the optical fibers (light guides) of this dosimetry system. Common approaches to correct for the Cerenkov signal are influenced by uncertainties resulting from detector positioning and calibration procedures. A different approach to avoid any correction procedure is to suppress the Cerenkov signal by replacing the solid core optical fiber with an air core light guide, previously shown for external beam therapy. In this study, the air core concept is modified and applied to the requirements of dosimetry in brachytherapy, proving its usability for measuring water energy doses in small radiation fields. Three air core detectors with different air core lengths are constructed and their performance in dosimetry for brachytherapy β-sources is compared with a standard two-fiber system, which uses a second fiber for Cerenkov correction. The detector systems are calibrated with a 90 Sr/ 90 Y secondary standard and tested for their angular dependence as well as their performance in depth dose measurements of 106 Ru/ 106 Rh sources. The signal loss relative to the standard detector increases with increasing air core length to a maximum value of 58.3%. At the same time, however, the percentage amount of Cerenkov light in the total signal is reduced from at least 12.1% to a value below 1.1%. There is a linear correlation between induced dose and measured signal current. The air core detectors determine the dose rates for 106 Ru/ 106 Rh sources without any form of correction for the Cerenkov signal. The air core detectors show advantages over the standard two-fiber system especially when measuring in radiation fields with high dose gradients. They can be used as simple one-fiber systems and allow for an almost Cerenkov-free scintillation dosimetry of brachytherapy β-sources. © 2017 American Association of Physicists in Medicine.
Christensen, Anna L; Petersen, Dana M; Burton, Rachel A; Forsberg, Vanessa C; Devers, Kelly J
2017-01-01
Objectives The objective of this study was to describe factors that influence the ability of state Medicaid agencies to report the Centers for Medicare & Medicaid Services' (CMS) core set of children's health care quality measures (Child Core Set). Methods We conducted a multiple-case study of four high-performing states participating in the Children's Health Insurance Program Reauthorization Act (CHIPRA) Quality Demonstration Grant Program: Illinois, Maine, Pennsylvania, and Oregon. Cases were purposively selected for their diverse measurement approaches and used data from 2010 to 2015, including 154 interviews, semiannual grant progress reports, and annual public reports on Child Core Set measures. We followed Yin's multiple-case study methodology to describe how and why each state increased the number of measures reported to CMS. Results All four states increased the number of Child Core Set measures reported to CMS during the grant period. Each took a different approach to reporting, depending on the available technical, organizational, and behavioral inputs in the state. Reporting capacity was influenced by a state's Medicaid data availability, ability to link to other state data systems, past experience with quality measurement, staff time and technical expertise, and demand for the measures. These factors were enhanced by CHIPRA Quality Demonstration grant funding and other federal capacity building activities, as hypothesized in our conceptual framework. These and other states have made progress reporting the Child Core Set since 2010. Conclusion With financial support and investment in state data systems and organizational factors, states can overcome challenges to reporting most of the Child Core Set measures.
Performance implications from sizing a VM on multi-core systems: A Data analytic application s view
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Seung-Hwan; Horey, James L; Begoli, Edmon
In this paper, we present a quantitative performance analysis of data analytics applications running on multi-core virtual machines. Such environments form the core of cloud computing. In addition, data analytics applications, such as Cassandra and Hadoop, are becoming increasingly popular on cloud computing platforms. This convergence necessitates a better understanding of the performance and cost implications of such hybrid systems. For example, the very rst step in hosting applications in virtualized environments, requires the user to con gure the number of virtual processors and the size of memory. To understand performance implications of this step, we benchmarked three Yahoo Cloudmore » Serving Benchmark (YCSB) workloads in a virtualized multi-core environment. Our measurements indicate that the performance of Cassandra for YCSB workloads does not heavily depend on the processing capacity of a system, while the size of the data set is critical to performance relative to allocated memory. We also identi ed a strong relationship between the running time of workloads and various hardware events (last level cache loads, misses, and CPU migrations). From this analysis, we provide several suggestions to improve the performance of data analytics applications running on cloud computing environments.« less
Modelling of magnetostriction of transformer magnetic core for vibration analysis
NASA Astrophysics Data System (ADS)
Marks, Janis; Vitolina, Sandra
2017-12-01
Magnetostriction is a phenomenon occurring in transformer core in normal operation mode. Yet in time, it can cause the delamination of magnetic core resulting in higher level of vibrations that are measured on the surface of transformer tank during diagnostic tests. The aim of this paper is to create a model for evaluating elastic deformations in magnetic core that can be used for power transformers with intensive vibrations in order to eliminate magnetostriction as a their cause. Description of the developed model in Matlab and COMSOL software is provided including restrictions concerning geometry and properties of materials, and the results of performed research on magnetic core anisotropy are provided. As a case study modelling of magnetostriction for 5-legged 200 MVA power transformer with the rated voltage of 13.8/137kV is conducted, based on which comparative analysis of vibration levels and elastic deformations is performed.
Performance potential of gas-core and fusion rockets - A mission applications survey.
NASA Technical Reports Server (NTRS)
Fishbach, L. H.; Willis, E. A., Jr.
1971-01-01
This paper reports an evaluation of the performance potential of five nuclear rocket engines for four mission classes. These engines are: the regeneratively cooled gas-core nuclear rocket; the light bulb gas-core nuclear rocket; the space-radiator cooled gas-core nuclear rocket; the fusion rocket; and an advanced solid-core nuclear rocket which is included for comparison. The missions considered are: earth-to-orbit launch; near-earth space missions; close interplanetary missions; and distant interplanetary missions. For each of these missions, the capabilities of each rocket engine type are compared in terms of payload ratio for the earth launch mission or by the initial vehicle mass in earth orbit for space missions (a measure of initial cost). Other factors which might determine the engine choice are discussed. It is shown that a 60 day manned round trip to Mars is conceivable.-
Permeability of sediment cores from methane hydrate deposit in the Eastern Nankai Trough, Japan
NASA Astrophysics Data System (ADS)
Konno, Y.; Yoneda, J.; Egawa, K.; Ito, T.; Jin, Y.; Kida, M.; Suzuki, K.; Nakatsuka, Y.; Nagao, J.
2013-12-01
Effective and absolute permeability are key parameters for gas production from methane-hydrate-bearing sandy sediments. Effective and/or absolute permeability have been measured using methane-hydrate-bearing sandy cores and clayey and silty cores recovered from Daini Atsumi Knoll in the Eastern Nankai Trough during the 2012 JOGMEC/JAPEX Pressure coring operation. Liquid-nitrogen-immersed cores were prepared by rapid depressurization of pressure cores recovered by a pressure coring system referred to as the Hybrid PCS. Cores were shaped cylindrically on a lathe with spraying of liquid nitrogen to prevent hydrate dissociation. Permeability was measured by a flooding test or a pressure relaxation method under near in-situ pressure and temperature conditions. Measured effective permeability of hydrate-bearing sediments is less than tens of md, which are order of magnitude less than absolute permeability. Absolute permeability of clayey cores is approximately tens of μd, which would perform a sealing function as cap rocks. Permeability reduction due to a swelling effect was observed for a silty core during flooding test of pure water mimicking hydrate-dissociation-water. Swelling effect may cause production formation damage especially at a later stage of gas production from methane hydrate deposits. This study was financially supported by the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) that carries out Japan's Methane Hydrate R&D Program conducted by the Ministry of Economy, Trade and Industry (METI).
The circadian rhythm of core temperature: origin and some implications for exercise performance.
Waterhouse, Jim; Drust, Barry; Weinert, Dietmar; Edwards, Benjamin; Gregson, Warren; Atkinson, Greg; Kao, Shaoyuan; Aizawa, Seika; Reilly, Thomas
2005-01-01
This review first examines reliable and convenient ways of measuring core temperature for studying the circadian rhythm, concluding that measurements of rectal and gut temperature fulfil these requirements, but that insulated axilla temperature does not. The origin of the circadian rhythm of core temperature is mainly due to circadian changes in the rate of loss of heat through the extremities, mediated by vasodilatation of the cutaneous vasculature. Difficulties arise when the rhythm of core temperature is used as a marker of the body clock, since it is also affected by the sleep-wake cycle. This masking effect can be overcome directly by constant routines and indirectly by "purification" methods, several of which are described. Evidence supports the value of purification methods to act as a substitute when constant routines cannot be performed. Since many of the mechanisms that rise to the circadian rhythm of core temperature are the same as those that occur during thermoregulation in exercise, there is an interaction between the two. This interaction is manifest in the initial response to spontaneous activity and to mild exercise, body temperature rising more quickly and thermoregulatory reflexes being recruited less quickly around the trough and rising phase of the resting temperature rhythm, in comparison with the peak and falling phase. There are also implications for athletes, who need to exercise maximally and with minimal risk of muscle injury or heat exhaustion in a variety of ambient temperatures and at different times of the day. Understanding the circadian rhythm of core temperature may reduce potential hazards due to the time of day when exercise is performed.
Durkin, Kevin; Mok, Pearl L H; Conti-Ramsden, Gina
2015-01-01
Background In general, children with specific language impairment (SLI) tend to fall behind their typically developing (TD) peers in educational attainment. Less is known about how children with SLI fare in particular areas of the curriculum and what predicts their levels of performance. Aims To compare the distributions of performance of children with SLI in three core school subjects (English, Mathematics and Science); to test the possibility that performance would vary across the core subjects; and to examine the extent to which language impairment predicts performance. Methods & Procedures This study was conducted in England and reports historical data on educational attainments. Teacher assessment and test scores of 176 eleven-year-old children with SLI were examined in the three core subjects and compared with known national norms. Possible predictors of performance were measured, including language ability at ages 7 and 11, educational placement type, and performance IQ. Outcomes & Results Children with SLI, compared with national norms, were found to be at a disadvantage in core school subjects. Nevertheless, some children attained the levels expected of TD peers. Performance was poorest in English; relative strengths were indicated in Science and, to a lesser extent, in Mathematics. Language skills were significant predictors of performance in all three core subjects. PIQ was the strongest predictor for Mathematics. For Science, both early language skills at 7 years and PIQ made significant contributions. Conclusions & Implications Language impacts on the school performance of children with SLI, but differentially across subjects. English for these children is the most challenging of the core subjects, reflecting the high levels of language demand it incurs. Science is an area of relative strength and mathematics appears to be intermediate, arguably because some tasks in these subjects can be performed with less reliance on verbal processing. Many children with SLI do have the potential to reach or exceed educational targets that are set at national levels for TD children. PMID:25469890
Scattering of 42 MeV alpha particles from copper-65
NASA Technical Reports Server (NTRS)
Stewart, W. M.; Seth, K. K.
1973-01-01
Beams of 42-MeV alpha particles were elastically and inelastically scattered from Cu-65 in an attempt to excite states which may be described in terms of an excited core model. Angular distributions were measured for 17 excited states. Seven of the excited states had angular distributions similar to a core quadrupole excitation and eight of the excited states had angular distributions similar to a core octupole excitation. The excited state at 2.858 MeV had an angular distribution which suggests that it may have results from the particle coupling to a two-phonon core state. An extended particle-core coupling calculation was performed and the predicted energy levels and reduced transition probabilities compared to the experimental data. The low lying levels are described quite well and the wavefunctions of these states explain the large spectroscopic factors measured in stripping reactions. For Cu-65 the coupling of the particle to the core is no larger weak as in the simpler model, and configuration mixing results.
Performance measurement: integrating quality management and activity-based cost management.
McKeon, T
1996-04-01
The development of an activity-based management system provides a framework for developing performance measures integral to quality and cost management. Performance measures that cross operational boundaries and embrace core processes provide a mechanism to evaluate operational results related to strategic intention and internal and external customers. The author discusses this measurement process that allows managers to evaluate where they are and where they want to be, and to set a course of action that closes the gap between the two.
Leppert, Wojciech; Majkowicz, Mikolaj
2013-05-01
Limited data exist on the validation of the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire - Core 15 - Palliative Care in advanced cancer patients. To adapt the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire - Core 15 - Palliative Care to the Polish clinical setting and to evaluate its psychometric properties in advanced cancer patients. Two quality-of-life measurements were performed at baseline and after 7 days. The concurrent validity of the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire - Core 15 - Palliative Care was established by the Pearson correlation coefficients with the modified Edmonton Symptom Assessment System, the Karnofsky Performance Status and the Brief Pain Inventory - Short Form. Reliability was assessed using Cronbach's alpha coefficients and the Spearman correlation coefficients of the baseline and of the second measurement of European Organization for Research and Treatment of Cancer Quality of Life Questionnaire - Core 15 - Palliative Care items. A total of 160 consecutive patients in one academic palliative medicine centre were included. A total of 129 patients completed the study. The concurrent validity revealed significant correlations of the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire - Core 15 - Palliative Care pain scale with the Brief Pain Inventory - Short Form, the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire - Core 15 - Palliative Care symptom items with the modified Edmonton Symptom Assessment System and European Organization for Research and Treatment of Cancer Quality of Life Questionnaire - Core 15 - Palliative Care functional scales with the Karnofsky Performance Status scores. High Cronbach's alpha and standardised Cronbach's alpha values were found in the case of both functional (range: 0.830-0.925; 0.830-0.932) and symptom scales (range: 0.784-0.940; 0.794-0.941) of the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire - Core 15 - Palliative Care, respectively. The Spearman correlation coefficients between the first and the second measurements were significant (p < 0.0001) for all European Organization for Research and Treatment of Cancer Quality of Life Questionnaire - Core 15 - Palliative Care items. Polish version of the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire - Core 15 - Palliative Care is a valid and reliable tool recommended for quality-of-life assessment and monitoring in advanced cancer patients.
A Highly Sensitive Fiber Optic Sensor Based on Two-Core Fiber for Refractive Index Measurement
Guzmán-Sepúlveda, José Rafael; Guzmán-Cabrera, Rafael; Torres-Cisneros, Miguel; Sánchez-Mondragón, José Javier; May-Arrioja, Daniel Alberto
2013-01-01
A simple and compact fiber optic sensor based on a two-core fiber is demonstrated for high-performance measurements of refractive indices (RI) of liquids. In order to demonstrate the suitability of the proposed sensor to perform high-sensitivity sensing in a variety of applications, the sensor has been used to measure the RI of binary liquid mixtures. Such measurements can accurately determine the salinity of salt water solutions, and detect the water content of adulterated alcoholic beverages. The largest sensitivity of the RI sensor that has been experimentally demonstrated is 3,119 nm per Refractive Index Units (RIU) for the RI range from 1.3160 to 1.3943. On the other hand, our results suggest that the sensitivity can be enhanced up to 3485.67 nm/RIU approximately for the same RI range. PMID:24152878
van den Boer, Cindy; Muller, Sara H; Vincent, Andrew D; van den Brekel, Michiel W M; Hilgers, Frans J M
2014-08-01
Breathing through a tracheostoma results in insufficient warming and humidification of the inspired air. This loss of air conditioning, especially humidification, can be partially restored with the application of a heat and moisture exchanger (HME) over the tracheostoma. For medical professionals, it is not easy to judge differences in water exchange performance of various HMEs owing to the lack of universal outcome measures. This study has three aims: assessment of the water exchange performance of commercially available HMEs for laryngectomized patients, validation of these results with absolute humidity outcomes, and assessment of the role of hygroscopic salt present in some of the tested HMEs. Measurements of weight and absolute humidity at end inspiration and end expiration at different breathing volumes of a healthy volunteer were performed using a microbalance and humidity sensor. Twenty-three HMEs from 6 different manufacturers were tested. Associations were determined between core weight, weight change, breathing volume, and absolute humidity, using both linear and nonlinear mixed effects models. Water exchange of the 23 HMEs at a breathing volume of 0.5 L varies between 0.5 and 3.6 mg. Both water exchange and wet core weight correlate strongly with the end-inspiratory absolute humidity values (r2 =0.89/0.87). Hygroscopic salt increases core weight. The 23 tested HMEs for laryngectomized patients show wide variation in water exchange performance. Water exchange correlates well with the end-inspiratory absolute humidity outcome, which validates the ex vivo weight change method. Wet core weight is a predictor of HME performance. Hygroscopic salt increases the weight of the core material. The results of this study can help medical professionals to obtain a more founded opinion about the performance of available HMEs for pulmonary rehabilitation in laryngectomized patients, and allow them to make an informed decision about which HME type to use.
How to apply the ICF and ICF core sets for low back pain.
Stier-Jarmer, Marita; Cieza, Alarcos; Borchers, Michael; Stucki, Gerold
2009-01-01
To introduce the International Classification of Functioning, Disability and Health (ICF) as conceptual model and classification and the ICF Core Sets as a way to specify functioning for a specific health condition such as Low Back Pain, and to illustrate the application of the ICF and ICF Core Sets in the context of clinical practice, the planning and reporting of studies and the comparison of health status measures. A decision-making and consensus process was performed to develop the ICF Core Sets for Low Back Pain, the linking procedure was applied as basis for the content comparison of health-status measures and the Rehab-Cycle was used to exemplify the application of the ICE and ICF Core Sets in clinical practice. Two different ICF Core Sets, namely, a comprehensive and a brief, are presented, three different health-status measures were linked to the ICF and compared and a case example of a patient with Low back Pain was described based on the Rehab-Cycle. The ICF is a promising new framework and classification to assess the impact of Low Back Pain. The ICF and practical tools, such as the ICF Core Sets for Low Back Pain, are useful for clinical practice, outcome and rehabilitation research, education, health statistics, and regulation.
Determination of the core temperature of a Li-ion cell during thermal runaway
NASA Astrophysics Data System (ADS)
Parhizi, M.; Ahmed, M. B.; Jain, A.
2017-12-01
Safety and performance of Li-ion cells is severely affected by thermal runaway where exothermic processes within the cell cause uncontrolled temperature rise, eventually leading to catastrophic failure. Most past experimental papers on thermal runaway only report surface temperature measurement, while the core temperature of the cell remains largely unknown. This paper presents an experimentally validated method based on thermal conduction analysis to determine the core temperature of a Li-ion cell during thermal runaway using surface temperature and chemical kinetics data. Experiments conducted on a thermal test cell show that core temperature computed using this method is in good agreement with independent thermocouple-based measurements in a wide range of experimental conditions. The validated method is used to predict core temperature as a function of time for several previously reported thermal runaway tests. In each case, the predicted peak core temperature is found to be several hundreds of degrees Celsius higher than the measured surface temperature. This shows that surface temperature alone is not sufficient for thermally characterizing the cell during thermal runaway. Besides providing key insights into the fundamental nature of thermal runaway, the ability to determine the core temperature shown here may lead to practical tools for characterizing and mitigating thermal runaway.
Measurement of neutron spectra in the experimental reactor LR-0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prenosil, Vaclav; Mravec, Filip; Veskrna, Martin
2015-07-01
The measurement of fast neutron fluxes is important in many areas of nuclear technology. It affects the stability of the reactor structural components, performance of fuel, and also the fuel manner. The experiments performed at the LR-0 reactor were in the past focused on the measurement of neutron field far from the core, in reactor pressure vessel simulator or in biological shielding simulator. In the present the measurement in closer regions to core became more important, especially measurements in structural components like reactor baffle. This importance increases with both reactor power increase and also long term operation. Other important taskmore » is an increasing need for the measurement close to the fuel. The spectra near the fuel are aimed due to the planned measurements with the FLIBE salt, in FHR / MSR research, where one of the task is the measurement of the neutron spectra in it. In both types of experiments there is strong demand for high working count rate. The high count rate is caused mainly by high gamma background and by high fluxes. The fluxes in core or in its vicinity are relatively high to ensure safe reactor operation. This request is met in the digital spectroscopic apparatus. All experiments were realized in the LR-0 reactor. It is an extremely flexible light water zero-power research reactor, operated by the Research Center Rez (Czech Republic). (authors)« less
Image analysis of the AXAF VETA-I x ray mirror
NASA Technical Reports Server (NTRS)
Freeman, Mark D.; Hughes, John P; Vanspeybroeck, L.; Weisskopf, M.; Bilbro, J.
1992-01-01
Initial core scan data of the VETA-I x-ray mirror proved disappointing, showing considerable unpredicted image structure and poor measured FWHM. 2-D core scans were performed, providing important insight into the nature of the distortion. Image deconvolutions using a ray traced model PSF was performed successfully to reinforce our conclusion regarding the origin of the astigmatism. A mechanical correction was made to the optical structure, and the mirror was tested successfully (FWHM 0.22 arcsec) as a result.
Development and Validation of the Appearance and Performance Enhancing Drug Use Schedule
Langenbucher, James W.; Lai, Justine Karmin; Loeb, Katharine L.; Hollander, Eric
2011-01-01
Appearance-and-performance enhancing drug (APED) use is a form of drug use that includes use of a wide range of substances such as anabolic-androgenic steroids (AASs) and associated behaviors including intense exercise and dietary control. To date, there are no reliable or valid measures of the core features of APED use. The present study describes the development and psychometric evaluation of the Appearance and Performance Enhancing Drug Use Schedule (APEDUS) which is a semi-structured interview designed to assess the spectrum of drug use and related features of APED use. Eighty-five current APED using men and women (having used an illicit APED in the past year and planning to use an illicit APED in the future) completed the APEDUS and measures of convergent and divergent validity. Inter-rater agreement, scale reliability, one-week test-retest reliability, convergent and divergent validity, and construct validity were evaluated for each of the APEDUS scales. The APEDUS is a modular interview with 10 sections designed to assess the core drug and non-drug phenomena associated with APED use. All scales and individual items demonstrated high inter-rater agreement and reliability. Individual scales significantly correlated with convergent measures (DSM-IV diagnoses, aggression, impulsivity, eating disorder pathology) and were uncorrelated with a measure of social desirability. APEDUS subscale scores were also accurate measures of AAS dependence. The APEDUS is a reliable and valid measure of APED phenomena and an accurate measure of the core pathology associated with APED use. Issues with assessing APED use are considered and future research considered. PMID:21640487
Hydraulic Conductivity Measurements Barrow 2014
Katie McKnight; Tim Kneafsey; Craig Ulrich; Jil Geller
2015-02-22
Six individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, in May of 2013 as part of the Next Generation Ecosystem Experiment (NGEE). Each core was drilled from a different location at varying depths. A few days after drilling, the cores were stored in coolers packed with dry ice and flown to Lawrence Berkeley National Laboratory (LBNL) in Berkeley, CA. 3-dimensional images of the cores were constructed using a medical X-ray computed tomography (CT) scanner at 120kV. Hydraulic conductivity samples were extracted from these cores at LBNL Richmond Field Station in Richmond, CA, in February 2014 by cutting 5 to 8 inch segments using a chop saw. Samples were packed individually and stored at freezing temperatures to minimize any changes in structure or loss of ice content prior to analysis. Hydraulic conductivity was determined through falling head tests using a permeameter [ELE International, Model #: K-770B]. After approximately 12 hours of thaw, initial falling head tests were performed. Two to four measurements were collected on each sample and collection stopped when the applied head load exceeded 25% change from the original load. Analyses were performed between 2 to 3 times for each sample. The final hydraulic conductivity calculations were computed using methodology of Das et al., 1985.
Neutronics Analyses of the Minimum Original HEU TREAT Core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kontogeorgakos, D.; Connaway, H.; Yesilyurt, G.
2014-04-01
This work was performed to support the feasibility study on the potential conversion of the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory from the use of high-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by the GTRI Reactor Conversion staff at the Argonne National Laboratory (ANL). The objective of this study was to validate the MCNP model of the TREAT reactor with the well-documented measurements which were taken during the start-up and early operation of TREAT. Furthermore, the effect of carbon graphitization was also addressed. The graphitization level was assumedmore » to be 100% (ANL/GTRI/TM-13/4). For this purpose, a set of experiments was chosen to validate the TREAT MCNP model, involving the approach to criticality procedure, in-core neutron flux measurements with foils, and isothermal temperature coefficient and temperature distribution measurements. The results of this study extended the knowledge base for the TREAT MCNP calculations and established the credibility of the MCNP model to be used in the core conversion feasibility analysis.« less
Ko, Dae-Sik; Jung, Dae-In; Jeong, Mi-Ae
2014-11-01
[Purpose] The aim of the present study was to investigate the effects of core stability exercise (CSE) on the physical and psychological functions of elderly women while negotiating general obstacles. [Subjects and Methods] After allocating 10 elderly women each to the core stability training group and the control group, we carried out Performance-Oriented Mobility Assessment (POMA) and measured crossing velocity (CV), maximum vertical heel clearance (MVHC), and knee flexion angle for assessing physical performances. We evaluated depression and fear of falling for assessing psychological functions. [Results] Relative to the control group, the core stability training group showed statistically significant overall changes after the training session: an increase in POMA scores, faster CV, lower MVHC, and a decrease in knee flexion angle. Furthermore, depression and fear of falling decreased significantly. [Conclusion] CSE can have a positive effect on the improvement of physical and psychological performances of older women who are vulnerable to falls as they negotiate everyday obstacles.
The SIV plasma viral load assay performed by the Quantitative Molecular Diagnostics Core (QMDC) utilizes reagents specifically designed to detect and accurately quantify the full range of SIV/SHIV viral variants and clones in common usage in the rese
Kayen, R.E.; Edwards, B.D.; Lee, H.J.
1999-01-01
High-resolution automated measurement of the geotechnical and geoacoustic properties of soil at the U.S. Geological Survey (USGS) is performed with a state-of-the-art multi-sensor whole-core logging device. The device takes measurements, directly through intact sample-tube wall, of p-wave acoustic velocity, of soil wet bulk density, and magnetic susceptibility. This paper summarizes our methodology for determining soil-sound speed and wet-bulk density for material encased in an unsplit liner. Our methodology for nondestructive measurement allows for rapid, accurate, and high-resolution (1 cm-spaced) mapping of the mass physical properties of soil prior to sample extrusion.
Gerbens, L A A; Prinsen, C A C; Chalmers, J R; Drucker, A M; von Kobyletzki, L B; Limpens, J; Nankervis, H; Svensson, Å; Terwee, C B; Zhang, J; Apfelbacher, C J; Spuls, P I
2017-01-01
Symptoms have been identified as a core outcome domain for atopic eczema (AE) trials. Various instruments exist to measure symptoms in AE, but they vary in quality and there is a lack of standardization between clinical trials. Our objective was to systematically evaluate the quality of the evidence on the measurement properties of AE symptom instruments, thereby informing consensus discussions within the Harmonising Outcome Measures for Eczema (HOME) initiative regarding the most appropriate instruments for the core outcome domain symptoms. Using the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist and predefined criteria for good measurement properties on identified development and validation studies of AE symptom instruments, a best evidence synthesis was performed to draw an overall conclusion on quality of the instruments and to provide recommendations. Eighteen instruments were identified and evaluated. When the quality and results of the studies were considered, only five of these instruments had sufficient validation data to consider them for the core outcome set for the core outcome domain symptoms. These were the paediatric Itch Severity Scale (ISS), Patient-Oriented Eczema Measure (POEM), Patient-Oriented SCOring Atopic Dermatitis (PO-SCORAD), Self-Administered Eczema Area and Severity Index (SA-EASI) and adapted SA-EASI. ISS (paediatric version), POEM, PO-SCORAD, SA-EASI and adapted SA-EASI are currently the most appropriate instruments and therefore have the potential to be recommended as core symptom instrument in future clinical trials. These findings will be utilized for the development of a core outcome set for AE. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Measuring Core/Facesheet Bond Toughness in Honeycomb Sandwich Structures
NASA Technical Reports Server (NTRS)
Nettles, A. T.
2006-01-01
This study examines two test methods to evaluate the peel toughness of the skin to core debond of sandwich panels. The methods tested were the climbing drum (CD) peel test and the double cantilever beam (DCB) test. While the CD peel test is only intended for qualitative measurements, it is shown in this study that qualitative measurements can be performed and compare well with DCB test data. It is also shown that artificially stiffening the facesheets of a DCB specimen can cause the test to behave more like a flatwise tensile test than a peel test.
An Energy-Aware Runtime Management of Multi-Core Sensory Swarms.
Kim, Sungchan; Yang, Hoeseok
2017-08-24
In sensory swarms, minimizing energy consumption under performance constraint is one of the key objectives. One possible approach to this problem is to monitor application workload that is subject to change at runtime, and to adjust system configuration adaptively to satisfy the performance goal. As today's sensory swarms are usually implemented using multi-core processors with adjustable clock frequency, we propose to monitor the CPU workload periodically and adjust the task-to-core allocation or clock frequency in an energy-efficient way in response to the workload variations. In doing so, we present an online heuristic that determines the most energy-efficient adjustment that satisfies the performance requirement. The proposed method is based on a simple yet effective energy model that is built upon performance prediction using IPC (instructions per cycle) measured online and power equation derived empirically. The use of IPC accounts for memory intensities of a given workload, enabling the accurate prediction of execution time. Hence, the model allows us to rapidly and accurately estimate the effect of the two control knobs, clock frequency adjustment and core allocation. The experiments show that the proposed technique delivers considerable energy saving of up to 45%compared to the state-of-the-art multi-core energy management technique.
An Energy-Aware Runtime Management of Multi-Core Sensory Swarms
Kim, Sungchan
2017-01-01
In sensory swarms, minimizing energy consumption under performance constraint is one of the key objectives. One possible approach to this problem is to monitor application workload that is subject to change at runtime, and to adjust system configuration adaptively to satisfy the performance goal. As today’s sensory swarms are usually implemented using multi-core processors with adjustable clock frequency, we propose to monitor the CPU workload periodically and adjust the task-to-core allocation or clock frequency in an energy-efficient way in response to the workload variations. In doing so, we present an online heuristic that determines the most energy-efficient adjustment that satisfies the performance requirement. The proposed method is based on a simple yet effective energy model that is built upon performance prediction using IPC (instructions per cycle) measured online and power equation derived empirically. The use of IPC accounts for memory intensities of a given workload, enabling the accurate prediction of execution time. Hence, the model allows us to rapidly and accurately estimate the effect of the two control knobs, clock frequency adjustment and core allocation. The experiments show that the proposed technique delivers considerable energy saving of up to 45%compared to the state-of-the-art multi-core energy management technique. PMID:28837094
NASA Astrophysics Data System (ADS)
Zhou, Haihan; Han, Gaoyi; Chang, Yunzhen; Fu, Dongying; Xiao, Yaoming
2015-01-01
A facile and feasible electrochemical polymerization method has been used to construct the multi-wall carbon nanotubes@poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (MWCNTs@PEDOT/PSS) core-shell composites with three-dimensional (3D) porous nano-network microstructure. The composites are characterized with Fourier transform infrared spectroscopy, scanning electron microscope, and transmission electron microscopy. This special core-shell nanostructure can significantly reduce the ions diffusion distance and the 3D porous nano-network microstructure effectively enlarges the electrode/electrolyte interface. The electrochemical tests including cyclic voltammetry, galvanostatic charge/discharge measurements, and electrochemical impedance spectroscopy tests are performed, the results manifest the MWCNTs@PEDOT/PSS core-shell composites have superior capacitive behaviors and excellent cyclic stability, and a high areal capacitance of 98.1 mF cm-2 is achieved at 5 mV s-1 cyclic voltammetry scan. Furthermore, the MWCNTs@PEDOT/PSS composites exhibit obviously superior capacitive performance than that of PEDOT/PSS and PEDOT/Cl electrodes, indicating the effective composite of MWCNTs and PEDOT noticeably boosts the capacitive performance of PEDOT-based electrodes for electrochemical energy storage. Such a highly stable core-shell 3D network structural composite is very promising to be used as electrode materials for the high-performance electrochemical capacitors.
Prinsen, Cecilia A C; Vohra, Sunita; Rose, Michael R; King-Jones, Susanne; Ishaque, Sana; Bhaloo, Zafira; Adams, Denise; Terwee, Caroline B
2014-06-25
The Core Outcome Measures in Effectiveness Trials (COMET) initiative aims to facilitate the development and application of 'core outcome sets' (COS). A COS is an agreed minimum set of outcomes that should be measured and reported in all clinical trials of a specific disease or trial population. The overall aim of the Core Outcome Measurement Instrument Selection (COMIS) project is to develop a guideline on how to select outcome measurement instruments for outcomes included in a COS. As part of this project, we describe our current efforts to achieve a consensus on the methods for selecting outcome measurement instruments for outcomes to be included in a COS. A Delphi study is being performed by a panel of international experts representing diverse stakeholders with the intention that this will result in a guideline for outcome measurement instrument selection. Informed by a literature review, a Delphi questionnaire was developed to identify potentially relevant tasks on instrument selection. The Delphi study takes place in a series of rounds. In the first round, panelists were asked to rate the importance of different tasks in the selection of outcome measurement instruments. They were encouraged to justify their choices and to add other relevant tasks. Consensus was reached if at least 70% of the panelists considered a task 'highly recommended' or 'desirable' and if no opposing arguments were provided. These tasks will be included in the guideline. Tasks that at least 50% of the panelists considered 'not relevant' will be excluded from the guideline. Tasks that were indeterminate will be taken to the second round. All responses of the first round are currently being aggregated and will be fed back to panelists in the second round. A third round will only be performed if the results of the second round require it. Since the Delphi method allows a large group of international experts to participate, we consider it to be the preferred consensus-based method for our study. Based upon this consultation process, a guideline will be developed on instrument selection for outcomes to be included in a COS.
NASA Astrophysics Data System (ADS)
Li, Yuanchao; Nguyen, Trung Van
2018-04-01
Synthesis and characterization of high electrochemical active surface area (ECSA) core-shell RhxSy catalysts for hydrogen evolution oxidation (HER)/hydrogen oxidation reaction (HOR) in H2-Br2 fuel cell are discussed. Catalysts with RhxSy as shell and different percentages (5%, 10%, and 20%) of platinum on carbon as core materials are synthesized. Cyclic voltammetry is used to evaluate the Pt-equivalent mass specific ECSA and durability of these catalysts. Transmission electron microscopy (TEM), X-ray Photoelectron spectroscopy (XPS) and Energy-dispersive X-ray spectroscopy (EDX) techniques are utilized to characterize the bulk and surface compositions and to confirm the core-shell structure of the catalysts, respectively. Cycling test and polarization curve measurements in the H2-Br2 fuel cell are used to assess the catalyst stability and performance in a fuel cell. The results show that the catalysts with core-shell structure have higher mass specific ECSA (50 m2 gm-Rh-1) compared to a commercial catalyst (RhxSy/C catalyst from BASF, 6.9 m2 gm-Rh-1). It also shows better HOR/HER performance in the fuel cell. Compared to the platinum catalyst, the core-shell catalysts show more stable performance in the fuel cell cycling test.
Asphalt concrete properties and performance in Alaska : executive summary
DOT National Transportation Integrated Search
1982-01-01
A major study of asphalt concrete properties and performance of Alaska's highways was completed in 1982. The project data base was obtained from 117 statewide pavement sections through numerous core samples and measurements of cracking, patching and ...
Chuter, V H; de Jonge, X A K Janse; Thompson, B M; Callister, R
2015-03-01
Poor core stability is linked to a range of musculoskeletal pathologies and core-strengthening programmes are widely used as treatment. Treatment outcomes, however, are highly variable, which may be related to the method of delivery of core strengthening programmes. We investigated the effect of identical 8 week core strengthening programmes delivered as either supervised or home-based on measures of core stability. Participants with poor core stability were randomised into three groups: supervised (n=26), home-based (n=26) or control (n=26). Primary outcomes were the Sahrmann test and the Star Excursion Balance Test (SEBT) for dynamic core stability and three endurance tests (side-bridge, flexor and Sorensen) for static core stability. The exercise programme was devised and supervised by an exercise physiologist. Analysis of covariance on the change from baseline over the 8 weeks showed that the supervised group performed significantly better on all core stability measures than both the home-based and control group. The home-based group produced significant improvements compared to the control group in all static core stability tests, but not in most of the dynamic core stability tests (Sahrmann test and two out of three directions of the SEBT). Our results support the use of a supervised core-strengthening programme over a home-based programme to maximise improvements in core stability, especially in its dynamic aspects. Based on our findings in healthy individuals with low core stability, further research is recommended on potential therapeutic benefits of supervised core-strengthening programmes for pathologies associated with low core stability. ACTRN12613000233729. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Chalmers, JR; Schmitt, J; Apfelbacher, C; Dohil, M; Eichenfield, LF; Simpson, EL; Singh, J; Spuls, P; Thomas, KS; Admani, S; Aoki, V; Ardeleanu, M; Barbarot, S; Berger, T; Bergman, JN; Block, J; Borok, N; Burton, T; Chamlin, SL; Deckert, S; DeKlotz, CC; Graff, LB; Hanifin, JM; Hebert, AA; Humphreys, R; Katoh, N; Kisa, RM; Margolis, DJ; Merhand, S; Minnillo, R; Mizutani, H; Nankervis, H; Ohya, Y; Rodgers, P; Schram, ME; Stalder, JF; Svensson, A; Takaoka, R; Teper, A; Tom, WL; von Kobyletzki, L; Weisshaar, E; Zelt, S; Williams, HC
2014-01-01
Summary This report provides a summary of the third meeting of the Harmonising Outcome Measures for Eczema (HOME) initiative held in San Diego, CA, U.S.A., 6–7 April 2013 (HOME III). The meeting addressed the four domains that had previously been agreed should be measured in every eczema clinical trial: clinical signs, patient-reported symptoms, long-term control and quality of life. Formal presentations and nominal group techniques were used at this working meeting, attended by 56 voting participants (31 of whom were dermatologists). Significant progress was made on the domain of clinical signs. Without reference to any named scales, it was agreed that the intensity and extent of erythema, excoriation, oedema/papulation and lichenification should be included in the core outcome measure for the scale to have content validity. The group then discussed a systematic review of all scales measuring the clinical signs of eczema and their measurement properties, followed by a consensus vote on which scale to recommend for inclusion in the core outcome set. Research into the remaining three domains was presented, followed by discussions. The symptoms group and quality of life groups need to systematically identify all available tools and rate the quality of the tools. A definition of long-term control is needed before progress can be made towards recommending a core outcome measure. What's already known about this topic? Many different scales have been used to measure eczema, making it difficult to compare trials in meta-analyses and hampering improvements in clinical practice. HOME core outcome measures must pass the OMERACT (Outcome Measures in Rheumatology) filter of truth (validity), discrimination (sensitivity to change and responsiveness) and feasibility (ease of use, costs, time to perform and interpret). It has been previously agreed as part of the consensus process that four domains should be measured by the core outcomes: clinical signs, patient-reported symptoms, long-term control and health-related quality of life. What does this study add? Progress was made towards developing a core outcome set for measuring eczema in clinical trials. The group established the essential items to be included in the outcome measure for the clinical signs of eczema and was able to recommend a scale for the core set. The remaining three domains of patient-reported symptoms, long-term control and health-related quality of life require further work and meetings to determine the core outcome measures. PMID:24980543
Prieske, O; Muehlbauer, T; Borde, R; Gube, M; Bruhn, S; Behm, D G; Granacher, U
2016-01-01
Cross-sectional studies revealed that inclusion of unstable elements in core-strengthening exercises produced increases in trunk muscle activity and thus potential extra stimuli to induce more pronounced performance enhancements in youth athletes. Thus, the purpose of the study was to investigate changes in neuromuscular and athletic performance following core strength training performed on unstable (CSTU) compared with stable surfaces (CSTS) in youth soccer players. Thirty-nine male elite soccer players (age: 17 ± 1 years) were assigned to two groups performing a progressive core strength-training program for 9 weeks (2-3 times/week) in addition to regular in-season soccer training. CSTS group conducted core exercises on stable (i.e., floor, bench) and CSTU group on unstable (e.g., Thera-Band® Stability Trainer, Togu© Swiss ball) surfaces. Measurements included tests for assessing trunk muscle strength/activation, countermovement jump height, sprint time, agility time, and kicking performance. Statistical analysis revealed significant main effects of test (pre vs post) for trunk extensor strength (5%, P < 0.05, d = 0.86), 10-20-m sprint time (3%, P < 0.05, d = 2.56), and kicking performance (1%, P < 0.01, d = 1.28). No significant Group × test interactions were observed for any variable. In conclusion, trunk muscle strength, sprint, and kicking performance improved following CSTU and CSTS when conducted in combination with regular soccer training. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Evaluation of Neutron Radiography Reactor LEU-Core Start-Up Measurements
Bess, John D.; Maddock, Thomas L.; Smolinski, Andrew T.; ...
2014-11-04
Benchmark models were developed to evaluate the cold-critical start-up measurements performed during the fresh core reload of the Neutron Radiography (NRAD) reactor with Low Enriched Uranium (LEU) fuel. Experiments include criticality, control-rod worth measurements, shutdown margin, and excess reactivity for four core loadings with 56, 60, 62, and 64 fuel elements. The worth of four graphite reflector block assemblies and an empty dry tube used for experiment irradiations were also measured and evaluated for the 60-fuel-element core configuration. Dominant uncertainties in the experimental k eff come from uncertainties in the manganese content and impurities in the stainless steel fuel claddingmore » as well as the 236U and erbium poison content in the fuel matrix. Calculations with MCNP5 and ENDF/B-VII.0 neutron nuclear data are approximately 1.4% (9σ) greater than the benchmark model eigenvalues, which is commonly seen in Monte Carlo simulations of other TRIGA reactors. Simulations of the worth measurements are within the 2σ uncertainty for most of the benchmark experiment worth values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments.« less
Evaluation of Neutron Radiography Reactor LEU-Core Start-Up Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, John D.; Maddock, Thomas L.; Smolinski, Andrew T.
Benchmark models were developed to evaluate the cold-critical start-up measurements performed during the fresh core reload of the Neutron Radiography (NRAD) reactor with Low Enriched Uranium (LEU) fuel. Experiments include criticality, control-rod worth measurements, shutdown margin, and excess reactivity for four core loadings with 56, 60, 62, and 64 fuel elements. The worth of four graphite reflector block assemblies and an empty dry tube used for experiment irradiations were also measured and evaluated for the 60-fuel-element core configuration. Dominant uncertainties in the experimental k eff come from uncertainties in the manganese content and impurities in the stainless steel fuel claddingmore » as well as the 236U and erbium poison content in the fuel matrix. Calculations with MCNP5 and ENDF/B-VII.0 neutron nuclear data are approximately 1.4% (9σ) greater than the benchmark model eigenvalues, which is commonly seen in Monte Carlo simulations of other TRIGA reactors. Simulations of the worth measurements are within the 2σ uncertainty for most of the benchmark experiment worth values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments.« less
Virani, Salim S.; Catellier, Diane J.; Pompeii, Lisa A.; Nambi, Vijay; Hoogeveen, Ron C.; Wasserman, Bruce A.; Coresh, Josef; Mosley, Thomas H.; Otvos, James D.; Sharrett, A. Richey; Boerwinkle, Eric; Ballantyne, Christie M.
2011-01-01
Objective There is a paucity of data regarding relations of apolipoproteins (apolipoprotein B [ApoB] and apolipoprotein A-1 [Apo A-1]), lipoprotein particle measures (low-density lipoprotein particle concentration [LDLp] and high-density lipoprotein particle concentration [HDLp]), and lipoprotein cholesterol measures (low-density lipoprotein cholesterol [LDL-C], non–high-density lipoprotein cholesterol [non– HDL-C], and high-density lipoprotein cholesterol [HDL-C]) with atherosclerotic plaque burden, plaque eccentricity, and lipid-rich core presence as a marker of high-risk plaques. Methods Carotid artery magnetic resonance imaging was performed in 1,670 Atherosclerosis Risk in Communities study participants. Vessel wall and lipid cores were measured; normalized wall index (NWI), standard deviation (SD) of wall thickness (measure of plaque eccentricity) were calculated; and lipid cores were detected in vessels with ≥1.5 mm thickness. Fasting concentrations of cholesterol, ApoB and Apo A-1, and LDLp and HDLp were measured. Results Measures of plaque burden (carotid wall volume, wall thickness, and NWI) were positively associated with atherogenic cholesterol and lipoproteins (p<0.05 for total cholesterol, LDL-C, non–HDL-C, ApoB, and LDLp), but not with HDL-C, Apo A-1, or HDLp. SD of wall thickness was associated with total cholesterol (p 0.01) and non-HDL-C (p 0.02). Although measures of atherogenic or anti-atherogenic cholesterol or lipoprotein were not individually associated with detection of a lipid-rich core, their ratios (total cholesterol/HDL-C, non–HDL-C/ HDL-C, and LDLp/HDLp) were associated with lipid-rich core presence (p≤0.05). Conclusion Extent of carotid atherosclerosis is associated with atherogenic cholesterol and lipoproteins. Atherogenic/anti-atherogenic cholesterol or particle ratios were associated with presence of a detectable lipid-rich core. PMID:21868017
Virani, Salim S; Catellier, Diane J; Pompeii, Lisa A; Nambi, Vijay; Hoogeveen, Ron C; Wasserman, Bruce A; Coresh, Josef; Mosley, Thomas H; Otvos, James D; Sharrett, A Richey; Boerwinkle, Eric; Ballantyne, Christie M
2011-12-01
There is a paucity of data regarding relations of apolipoproteins (apolipoprotein B [ApoB] and apolipoprotein A-1 [Apo A-1]), lipoprotein particle measures (low-density lipoprotein particle concentration [LDLp] and high-density lipoprotein particle concentration [HDLp]), and lipoprotein cholesterol measures (low-density lipoprotein cholesterol [LDL-C], non-high-density lipoprotein cholesterol [non-HDL-C], and high-density lipoprotein cholesterol [HDL-C]) with atherosclerotic plaque burden, plaque eccentricity, and lipid-rich core presence as a marker of high-risk plaques. Carotid artery magnetic resonance imaging was performed in 1670 Atherosclerosis Risk in Communities study participants. Vessel wall and lipid cores were measured; normalized wall index (NWI), standard deviation (SD) of wall thickness (measure of plaque eccentricity) were calculated; and lipid cores were detected in vessels with ≥ 1.5mm thickness. Fasting concentrations of cholesterol, ApoB and Apo A-1, and LDLp and HDLp were measured. Measures of plaque burden (carotid wall volume, wall thickness, and NWI) were positively associated with atherogenic cholesterol and lipoproteins (p < 0.05 for total cholesterol, LDL-C, non-HDL-C, ApoB, and LDLp), but not with HDL-C, Apo A-1, or HDLp. SD of wall thickness was associated with total cholesterol (p 0.01) and non-HDL-C (p 0.02). Although measures of atherogenic or anti-atherogenic cholesterol or lipoprotein were not individually associated with detection of a lipid-rich core, their ratios (total cholesterol/HDL-C, non-HDL-C/HDL-C, and LDLp/HDLp) were associated with lipid-rich core presence (p ≤ 0.05). Extent of carotid atherosclerosis is associated with atherogenic cholesterol and lipoproteins. Atherogenic/anti-atherogenic cholesterol or particle ratios were associated with presence of a detectable lipid-rich core. Published by Elsevier Ireland Ltd.
Evaluation of an institutional project to improve venous thromboembolism prevention.
Minami, Christina A; Yang, Anthony D; Ju, Mila; Culver, Eckford; Seifert, Kathryn; Kreutzer, Lindsey; Halverson, Terri; O'Leary, Kevin J; Bilimoria, Karl Y
2016-12-01
Northwestern Memorial Hospital (NMH) was historically a poor performer on the venous thromboembolism (VTE) outcome measure. As this measure has been shown to be flawed by surveillance bias, NMH embraced process-of-care measures to ensure appropriate VTE prophylaxis to assess healthcare-associated VTE prevention efforts. To evaluate the impact of an institution-wide project aimed at improving hospital performance on VTE prophylaxis measures. A retrospective observational study. NMH, an 885-bed academic medical center in Chicago, Illinois PATIENTS: Inpatients admitted to NMH from January 1, 2013 to May 1, 2013 and from October 1, 2014 to April 1, 2015 were eligible for evaluation. Using the define-measure-analyze-improve-control (DMAIC) process-improvement methodology, a multidisciplinary team implemented and iteratively improved 15 data-driven interventions in 4 broad areas: (1) electronic medical record (EMR) alerts, (2) education initiatives, (3) new EMR order sets, and (4) other EMR changes. The Joint Commission's 6 core measures and the Surgical Care Improvement Project (SCIP) SCIP-VTE-2 measure. Based on 3103 observations (1679 from January 1, 2013 to May 1, 2013, and 1424 from October 1, 2014 to April 1, 2015), performance on the core measures improved. Performance on measure 1 (chemoprophylaxis) improved from 82.5% to 90.2% on medicine services, and from 94.4% to 97.6% on surgical services. The largest improvements were seen in measure 4 (platelet monitoring), with a performance increase from 76.7% adherence to 100%, and measure 5 (warfarin discharge instructions), with a performance increase from 27.4% to 88.8%. A systematic hospital-wide DMAIC project improved VTE prophylaxis measure performance. Sustained performance has been observed, and novel control mechanisms for continued performance surveillance have been embedded in the hospital system. Journal of Hospital Medicine 2016;11:S29-S37. © 2016 Society of Hospital Medicine. © 2016 Society of Hospital Medicine.
Design advances of the Core Plasma Thomson Scattering diagnostic for ITER
NASA Astrophysics Data System (ADS)
Scannell, R.; Maslov, M.; Naylor, G.; O'Gorman, T.; Kempenaars, M.; Carr, M.; Bilkova, P.; Bohm, P.; Giudicotti, L.; Pasqualotto, R.; Bassan, M.; Vayakis, G.; Walsh, M.; Huxford, R.
2017-11-01
The Core Plasma Thomson Scattering (CPTS) diagnostic on ITER performs measurements of the electron temperature and density profiles which are critical to the understanding of the ITER plasma. The diagnostic must satisfy the ITER project requirements, which translate to requirements on performance as well as reliability, safety and engineering. The implications are particularly challenging for beam dump lifetime, the need for continuous active alignment of the diagnostic during operation, allowable neutron flux in the interspace and the protection of the first mirror from plasma deposition. The CPTS design has been evolving over a number of years. One recent improvement is that the collection optics have been modified to include freeform surfaces. These freeform surfaces introduce extra complexity to the manufacturing but provide greater flexibility in the design. The greater flexibility introduced allows for example to lower neutron throughput or use fewer surfaces while improving optical performance. Performance assessment has shown that scattering from a 1064 nm laser will be sufficient to meet the measurement requirements, at least for the system at the start of operations. Optical transmission at λ < 600 nm is expected to degrade over the ITER lifetime due to fibre darkening and deposition on the first mirror. For this reason, it is proposed that the diagnostic should additionally include measurements of TS 'depolarised light' and a 1319 nm laser system. These additional techniques have different spectral and polarisation dependencies compared to scattering from a 1064 nm laser and hence provide greater robustness into the inferred measurements of Te and ne in the core.
Durkin, Kevin; Mok, Pearl L H; Conti-Ramsden, Gina
2015-01-01
In general, children with specific language impairment (SLI) tend to fall behind their typically developing (TD) peers in educational attainment. Less is known about how children with SLI fare in particular areas of the curriculum and what predicts their levels of performance. To compare the distributions of performance of children with SLI in three core school subjects (English, Mathematics and Science); to test the possibility that performance would vary across the core subjects; and to examine the extent to which language impairment predicts performance. This study was conducted in England and reports historical data on educational attainments. Teacher assessment and test scores of 176 eleven-year-old children with SLI were examined in the three core subjects and compared with known national norms. Possible predictors of performance were measured, including language ability at ages 7 and 11, educational placement type, and performance IQ. Children with SLI, compared with national norms, were found to be at a disadvantage in core school subjects. Nevertheless, some children attained the levels expected of TD peers. Performance was poorest in English; relative strengths were indicated in Science and, to a lesser extent, in Mathematics. Language skills were significant predictors of performance in all three core subjects. PIQ was the strongest predictor for Mathematics. For Science, both early language skills at 7 years and PIQ made significant contributions. Language impacts on the school performance of children with SLI, but differentially across subjects. English for these children is the most challenging of the core subjects, reflecting the high levels of language demand it incurs. Science is an area of relative strength and mathematics appears to be intermediate, arguably because some tasks in these subjects can be performed with less reliance on verbal processing. Many children with SLI do have the potential to reach or exceed educational targets that are set at national levels for TD children. © 2014 The Authors International Journal of Language & Communication Disorders published by John Wiley & Sons Ltd on behalf of Royal College of Speech and Language Therapists.
Effects of Pelvic and Core Strength Training on High School Cross-Country Race Times.
Clark, Anne W; Goedeke, Maggie K; Cunningham, Saengchoy R; Rockwell, Derek E; Lehecka, Bryan J; Manske, Robert C; Smith, Barbara S
2017-08-01
Clark, AW, Goedeke, MK, Cunningham, SR, Rockwell, DE, Lehecka, BJ, Manske, RC, and Smith, BS. Effects of pelvic and core strength training on high school cross-country race times. J Strength Cond Res 31(8): 2289-2295, 2017-There is only limited research examining the effect of pelvic and core strength training on running performance. Pelvic and core muscle fatigue is believed to contribute to excess motion along frontal and transverse planes which decreases efficiency in normal sagittal plane running motions. The purpose of this study was to determine whether adding a 6-week pelvic and core strengthening program resulted in decreased race times in high school cross-country runners. Thirty-five high school cross-country runners (14-19 years old) from 2 high schools were randomly assigned to a strengthening group (experimental) or a nonstrengthening group (control). All participants completed 4 standardized isometric strength tests for hip abductors, adductors, extensors, and core musculature in a test-retest design. The experimental group performed a 6-week pelvic and core strengthening program along with their normal training. Participants in the control group performed their normal training without additional pelvic and core strengthening. Baseline, 3-week, and 6-week race times were collected using a repeated measures design. No significant interaction between experimental and control groups regarding decreasing race times and increasing pelvic and core musculature strength occurred over the 6-week study period. Both groups increased strength and decreased overall race times. Clinically significant findings reveal a 6-week pelvic and core stability strengthening program 3 times a week in addition to coach led team training may help decrease race times.
Yin, Xinxing; An, Qiaoshi; Yu, Jiangsheng; Guo, Fengning; Geng, Yongliang; Bian, Linyi; Xu, Zhongsheng; Zhou, Baojing; Xie, Linghai; Zhang, Fujun; Tang, Weihua
2016-01-01
Three novel small molecules have been developed by side-chain engineering on benzo[1,2-b:4,5-b’]dithiophene (BDT) core. The typical acceptor-donor-acceptor (A-D-A) structure is adopted with 4,8-functionalized BDT moieties as core, dioctylterthiophene as π bridge and 3-ethylrhodanine as electron-withdrawing end group. Side-chain engineering on BDT core exhibits small but measurable effect on the optoelectronic properties of small molecules. Theoretical simulation and X-ray diffraction study reveal the subtle tuning of interchain distance between conjugated backbones has large effect on the charge transport and thus the photovoltaic performance of these molecules. Bulk-heterojunction solar cells fabricated with a configuration of ITO/PEDOT:PSS/SM:PC71BM/PFN/Al exhibit a highest power conversion efficiency (PCE) of 6.99% after solvent vapor annealing. PMID:27140224
Yin, Xinxing; An, Qiaoshi; Yu, Jiangsheng; Guo, Fengning; Geng, Yongliang; Bian, Linyi; Xu, Zhongsheng; Zhou, Baojing; Xie, Linghai; Zhang, Fujun; Tang, Weihua
2016-05-03
Three novel small molecules have been developed by side-chain engineering on benzo[1,2-b:4,5-b']dithiophene (BDT) core. The typical acceptor-donor-acceptor (A-D-A) structure is adopted with 4,8-functionalized BDT moieties as core, dioctylterthiophene as π bridge and 3-ethylrhodanine as electron-withdrawing end group. Side-chain engineering on BDT core exhibits small but measurable effect on the optoelectronic properties of small molecules. Theoretical simulation and X-ray diffraction study reveal the subtle tuning of interchain distance between conjugated backbones has large effect on the charge transport and thus the photovoltaic performance of these molecules. Bulk-heterojunction solar cells fabricated with a configuration of ITO/PEDOT:PSS/SM:PC71BM/PFN/Al exhibit a highest power conversion efficiency (PCE) of 6.99% after solvent vapor annealing.
Drury, Suzanne; Salter, Janine; Baehner, Frederick L; Shak, Steven; Dowsett, Mitch
2010-06-01
To determine whether 0.6 mm cores of formalin-fixed paraffin-embedded (FFPE) tissue, as commonly used to construct immunohistochemical tissue microarrays, may be a valid alternative to tissue sections as source material for quantitative real-time PCR-based transcriptional profiling of breast cancer. Four matched 0.6 mm cores of invasive breast tumour and two 10 microm whole sections were taken from eight FFPE blocks. RNA was extracted and reverse transcribed, and TaqMan assays were performed on the 21 genes of the Oncotype DX Breast Cancer assay. Expression of the 16 recurrence-related genes was normalised to the set of five reference genes, and the recurrence score (RS) was calculated. RNA yield was lower from 0.6 mm cores than from 10 microm whole sections, but was still more than sufficient to perform the assay. RS and single gene data from cores were highly comparable with those from whole sections (RS p=0.005). Greater variability was seen between cores than between sections. FFPE sections are preferable to 0.6 mm cores for RNA profiling in order to maximise RNA yield and to allow for standard histopathological assessment. However, 0.6 mm cores are sufficient and would be appropriate to use for large cohort studies.
NASA Astrophysics Data System (ADS)
Napoli, Jay
2016-05-01
Precision fiber optic gyroscopes (FOGs) are critical components for an array of platforms and applications ranging from stabilization and pointing orientation of payloads and platforms to navigation and control for unmanned and autonomous systems. In addition, FOG-based inertial systems provide extremely accurate data for geo-referencing systems. Significant improvements in the performance of FOGs and FOG-based inertial systems at KVH are due, in large part, to advancements in the design and manufacture of optical fiber, as well as in manufacturing operations and signal processing. Open loop FOGs, such as those developed and manufactured by KVH Industries, offer tactical-grade performance in a robust, small package. The success of KVH FOGs and FOG-based inertial systems is due to innovations in key fields, including the development of proprietary D-shaped fiber with an elliptical core, and KVH's unique ThinFiber. KVH continually improves its FOG manufacturing processes and signal processing, which result in improved accuracies across its entire FOG product line. KVH acquired its FOG capabilities, including its patented E•Core fiber, when the company purchased Andrew Corporation's Fiber Optic Group in 1997. E•Core fiber is unique in that the light-guiding core - critical to the FOG's performance - is elliptically shaped. The elliptical core produces a fiber that has low loss and high polarization-maintaining ability. In 2010, KVH developed its ThinFiber, a 170-micron diameter fiber that retains the full performance characteristics of E•Core fiber. ThinFiber has enabled the development of very compact, high-performance open-loop FOGs, which are also used in a line of FOG-based inertial measurement units and inertial navigation systems.
Using the Climbing Drum Peel (CDP) Test to Obtain a G(sub IC) value for Core/Facesheet Bonds
NASA Technical Reports Server (NTRS)
Nettles, A. T.; Gregory, Elizabeth D.; Jackson, Justin R.
2006-01-01
A method of measuring the Mode I fracture toughness of core/facesheet bonds in sandwich Structures is desired, particularly with the widespread use of models that need this data as input. This study examined if a critical strain energy release rate, G(sub IC), can be obtained from the climbing drum peel (CDP) test. The CDP test is relatively simple to perform and does not rely on measuring small crack lengths such as required by the double cantilever beam (DCB) test. Simple energy methods were used to calculate G(sub IC) from CDP test data on composite facesheets bonded to a honeycomb core. Facesheet thicknesses from 2 to 5 plies were tested to examine the upper and lower bounds on facesheet thickness requirements. Results from the study suggest that the CDP test, with certain provisions, can be used to find the GIG value of a core/facesheet bond.
Aggarwal, Rohit; Rider, Lisa G; Ruperto, Nicolino; Bayat, Nastaran; Erman, Brian; Feldman, Brian M; Oddis, Chester V; Amato, Anthony A; Chinoy, Hector; Cooper, Robert G; Dastmalchi, Maryam; Fiorentino, David; Isenberg, David; Katz, James D; Mammen, Andrew; de Visser, Marianne; Ytterberg, Steven R; Lundberg, Ingrid E; Chung, Lorinda; Danko, Katalin; García-De la Torre, Ignacio; Song, Yeong Wook; Villa, Luca; Rinaldi, Mariangela; Rockette, Howard; Lachenbruch, Peter A; Miller, Frederick W; Vencovsky, Jiri
2017-05-01
To develop response criteria for adult dermatomyositis (DM) and polymyositis (PM). Expert surveys, logistic regression, and conjoint analysis were used to develop 287 definitions using core set measures. Myositis experts rated greater improvement among multiple pairwise scenarios in conjoint analysis surveys, where different levels of improvement in 2 core set measures were presented. The PAPRIKA (Potentially All Pairwise Rankings of All Possible Alternatives) method determined the relative weights of core set measures and conjoint analysis definitions. The performance characteristics of the definitions were evaluated on patient profiles using expert consensus (gold standard) and were validated using data from a clinical trial. The nominal group technique was used to reach consensus. Consensus was reached for a conjoint analysis-based continuous model using absolute percent change in core set measures (physician, patient, and extramuscular global activity, muscle strength, Health Assessment Questionnaire, and muscle enzyme levels). A total improvement score (range 0-100), determined by summing scores for each core set measure, was based on improvement in and relative weight of each core set measure. Thresholds for minimal, moderate, and major improvement were ≥20, ≥40, and ≥60 points in the total improvement score. The same criteria were chosen for juvenile DM, with different improvement thresholds. Sensitivity and specificity in DM/PM patient cohorts were 85% and 92%, 90% and 96%, and 92% and 98% for minimal, moderate, and major improvement, respectively. Definitions were validated in the clinical trial analysis for differentiating the physician rating of improvement (P < 0.001). The response criteria for adult DM/PM consisted of the conjoint analysis model based on absolute percent change in 6 core set measures, with thresholds for minimal, moderate, and major improvement. © 2017, American College of Rheumatology.
Mapping edge-based traffic measurements onto the internal links in MPLS network
NASA Astrophysics Data System (ADS)
Zhao, Guofeng; Tang, Hong; Zhang, Yi
2004-09-01
Applying multi-protocol label switching techniques to IP-based backbone for traffic engineering goals has shown advantageous. Obtaining a volume of load on each internal link of the network is crucial for traffic engineering applying. Though collecting can be available for each link, such as applying traditional SNMP scheme, the approach may cause heavy processing load and sharply degrade the throughput of the core routers. Then monitoring merely at the edge of the network and mapping the measurements onto the core provides a good alternative way. In this paper, we explore a scheme for traffic mapping with edge-based measurements in MPLS network. It is supposed that the volume of traffic on each internal link over the domain would be mapped onto by measurements available only at ingress nodes. We apply path-based measurements at ingress nodes without enabling measurements in the core of the network. We propose a method that can infer a path from the ingress to the egress node using label distribution protocol without collecting routing data from core routers. Based on flow theory and queuing theory, we prove that our approach is effective and present the algorithm for traffic mapping. We also show performance simulation results that indicate potential of our approach.
Computed Tomography Scanning and Geophysical Measurements of Core from the Coldstream 1MH Well
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crandall, Dustin M.; Brown, Sarah; Moore, Johnathan E.
The computed tomography (CT) facilities and the Multi-Sensor Core Logger (MSCL) at the National Energy Technology Laboratory (NETL) Morgantown, West Virginia site were used to characterize core of the Marcellus Shale from a vertical well, the Coldstream 1MH Well in Clearfield County, PA. The core is comprised primarily of the Marcellus Shale from a depth of 7,002 to 7,176 ft. The primary impetus of this work is a collaboration between West Virginia University (WVU) and NETL to characterize core from multiple wells to better understand the structure and variation of the Marcellus and Utica shale formations. As part of thismore » effort, bulk scans of core were obtained from the Coldstream 1MH well, provided by the Energy Corporation of America (now Greylock Energy). This report, and the associated scans, provide detailed datasets not typically available from unconventional shales for analysis. The resultant datasets are presented in this report, and can be accessed from NETL's Energy Data eXchange (EDX) online system using the following link: https://edx.netl.doe.gov/dataset/coldstream-1mh-well. All equipment and techniques used were non-destructive, enabling future examinations to be performed on these cores. None of the equipment used was suitable for direct visualization of the shale pore space, although fractures and discontinuities were detectable with the methods tested. Low resolution CT imagery with the NETL medical CT scanner was performed on the entire core. Qualitative analysis of the medical CT images, coupled with x-ray fluorescence (XRF), P-wave, and magnetic susceptibility measurements from the MSCL were useful in identifying zones of interest for more detailed analysis as well as fractured zones. En echelon fractures were observed at 7,100 ft and were CT scanned using NETL’s industrial CT scanner at higher resolution. The ability to quickly identify key areas for more detailed study with higher resolution will save time and resources in future studies. The combination of methods used provided a multi-scale analysis of this core and provides both a macro and micro description of the core that is relevant for many subsurface energy-related examinations that have traditionally been performed at NETL.« less
NASA Astrophysics Data System (ADS)
Lai, Chih-Chung; Chang, Wen-Chih; Hu, Wen-Liang; Wang, Zhiming M.; Lu, Ming-Chang; Chueh, Yu-Lun
2014-04-01
We demonstrated enhanced solar-thermal storage by releasing the latent heat of Sn/SiOx core-shell nanoparticles (NPs) embedded in a eutectic salt. The microstructures and chemical compositions of Sn/SiOx core-shell NPs were characterized. In situ heating XRD provides dynamic crystalline information about the Sn/SiOx core-shell NPs during cyclic heating processes. The latent heat of ~29 J g-1 for Sn/SiOx core-shell NPs was measured, and 30% enhanced heat capacity was achieved from 1.57 to 2.03 J g-1 K-1 for the HITEC solar salt without and with, respectively, a mixture of 5% Sn/SiOx core-shell NPs. In addition, an endurance cycle test was performed to prove a stable operation in practical applications. The approach provides a method to enhance energy storage in solar-thermal power plants.We demonstrated enhanced solar-thermal storage by releasing the latent heat of Sn/SiOx core-shell nanoparticles (NPs) embedded in a eutectic salt. The microstructures and chemical compositions of Sn/SiOx core-shell NPs were characterized. In situ heating XRD provides dynamic crystalline information about the Sn/SiOx core-shell NPs during cyclic heating processes. The latent heat of ~29 J g-1 for Sn/SiOx core-shell NPs was measured, and 30% enhanced heat capacity was achieved from 1.57 to 2.03 J g-1 K-1 for the HITEC solar salt without and with, respectively, a mixture of 5% Sn/SiOx core-shell NPs. In addition, an endurance cycle test was performed to prove a stable operation in practical applications. The approach provides a method to enhance energy storage in solar-thermal power plants. Electronic supplementary information (ESI) available: Detailed experimental results are included for the following: SEM images of the HITEC molten salt with and without a mixture of Sn/SiOx core-shell NPs; statistical diameter distribution of pure Sn and Sn/SiOx core-shell NPs; the HAADF image and EDS linescan profile of a Sn/SiOx core-shell NP; XRD analysis for Sn NPs annealing at different heating temperatures; the XRD spectra of Sn/SiOx core-shell NPs before and after RTA for the shell protection test. See DOI: 10.1039/c3nr06810b
Chiarotto, Alessandro; Terwee, Caroline B; Deyo, Richard A; Boers, Maarten; Lin, Chung-Wei Christine; Buchbinder, Rachelle; Corbin, Terry P; Costa, Leonardo O P; Foster, Nadine E; Grotle, Margreth; Koes, Bart W; Kovacs, Francisco M; Maher, Chris G; Pearson, Adam M; Peul, Wilco C; Schoene, Mark L; Turk, Dennis C; van Tulder, Maurits W; Ostelo, Raymond W
2014-12-26
Low back pain (LBP) is one of the most disabling and costly disorders affecting modern society, and approximately 90% of patients are labelled as having non-specific LBP (NSLBP). Several interventions for patients with NSLBP have been assessed in clinical trials, but heterogeneous reporting of outcomes in these trials has hindered comparison of results and performance of meta-analyses. Moreover, there is a risk of selective outcome reporting bias. To address these issues, the development of a core outcome set (COS) that should be measured in all clinical trials for a specific health condition has been recommended. A standardized set of outcomes for LBP was proposed in 1998, however, with evolution in COS development methodology, new instruments, interventions, and understanding of measurement properties, it is appropriate to update that proposal. This protocol describes the methods used in the initial step in developing a COS for NSLBP, namely, establishing a core domain set that should be measured in all clinical trials. An International Steering Committee including researchers, clinicians, and patient representatives from four continents was formed to guide the development of this COS. The approach of initiatives like Core Outcome Measures in Effectiveness Trials (COMET) and Outcome Measures in Rheumatology (OMERACT) was followed. Participants were invited to participate in a Delphi study aimed at generating a consensus-based core domain set for NSLBP. A list of potential core domains was drafted and presented to the Delphi participants who were asked to judge which domains were core. Participant suggestions about overlap, aggregation, or addition of potential core domains were addressed during the study. The patients' responses were isolated to assess whether there was substantial disagreement with the rest of the Delphi panel. A priori thresholds for consensus were established before each Delphi round. All participants' responses were analysed from a quantitative and qualitative perspective to ascertain that no substantial discrepancies between the two approaches emerged. We present the initial step in developing a COS for NSLBP. The next step will be to determine which measurement instruments adequately cover the domains.
Using Multi-Core Systems for Rover Autonomy
NASA Technical Reports Server (NTRS)
Clement, Brad; Estlin, Tara; Bornstein, Benjamin; Springer, Paul; Anderson, Robert C.
2010-01-01
Task Objectives are: (1) Develop and demonstrate key capabilities for rover long-range science operations using multi-core computing, (a) Adapt three rover technologies to execute on SOA multi-core processor (b) Illustrate performance improvements achieved (c) Demonstrate adapted capabilities with rover hardware, (2) Targeting three high-level autonomy technologies (a) Two for onboard data analysis (b) One for onboard command sequencing/planning, (3) Technologies identified as enabling for future missions, (4)Benefits will be measured along several metrics: (a) Execution time / Power requirements (b) Number of data products processed per unit time (c) Solution quality
Design of a magnetorheological automotive shock absorber
NASA Astrophysics Data System (ADS)
Lindler, Jason E.; Dimock, Glen A.; Wereley, Norman M.
2000-06-01
Double adjustable shock absorbers allow for independent adjustment of the yield force and post-yield damping in the force versus velocity response. To emulate the performance of a conventional double adjustable shock absorber, a magnetorheological (MR) automotive shock absorber was designed and fabricated at the University of Maryland. Located in the piston head, an applied magnetic field between the core and flux return increases the force required for a given piston rod velocity. Between the core and flux return, two different shaped gaps meet the controllable performance requirements of a double adjustable shock. A uniform gap between the core and the flux return primarily adjusts the yield force of the shock absorber, while a non-uniform gap allows for control of the post-yield damping. Force measurements from sinusoidal displacement cycles, recorded on a mechanical damper dynamometer, validate the performance of uniform and non- uniform gaps for adjustment of the yield force and post-yield damping, respectively.
Performance Calculations for the ITER Core Imaging X-Ray Spectrometer (CIXS)
NASA Astrophysics Data System (ADS)
Hill, K. W.; Delgado-Aparicio, L.; Pablant, N.; Johnson, D.; Feder, R.; Klabacha, J.; Stratton, B.; Bitter, M.; Beiersdorfer, P.; Barnsley, R.; Bertschinger, G.; O'Mullane, M.; Lee, S. G.
2013-10-01
The US is providing a 1D imaging x-ray crystal spectrometer system as a primary diagnostic for measuring profiles of ion temperature (Ti) and toroidal flow velocity (v) in the ITER plasma core (r/a = 0-0.85). The diagnostic must provide high spectral resolution (E/ ΔE > 5,000), spatial resolution of 10 cm, and time resolution of 10-100 ms, and must operate and survive in an environment having high neutron and gamma-ray fluxes. This work presents spectral simulations and tomographic inversions for obtaining local Ti and v, comparisons of the expected count rate profiles to the requirements, the degradation of performance due to the nuclear radiation background, and measurements of the rejection of nuclear background by detector pulse-height discrimination. This work was performed under the auspices of the DOE by PPPL under contract DE-AC02-09CH11466 and by LLNL under contract DE-AC52-07NA27344.
Rai, Satish C; Wang, Kai; Ding, Yong; Marmon, Jason K; Bhatt, Manish; Zhang, Yong; Zhou, Weilie; Wang, Zhong Lin
2015-06-23
A high-performance broad band UV/visible photodetector has been successfully fabricated on a fully wide bandgap ZnO/ZnS type-II heterojunction core/shell nanowire array. The device can detect photons with energies significantly smaller (2.2 eV) than the band gap of ZnO (3.2 eV) and ZnS (3.7 eV), which is mainly attributed to spatially indirect type-II transition facilitated by the abrupt interface between the ZnO core and ZnS shell. The performance of the device was further enhanced through the piezo-phototronic effect induced lowering of the barrier height to allow charge carrier transport across the ZnO/ZnS interface, resulting in three orders of relative responsivity change measured at three different excitation wavelengths (385, 465, and 520 nm). This work demonstrates a prototype UV/visible photodetector based on the truly wide band gap semiconducting 3D core/shell nanowire array with enhanced performance through the piezo-phototronic effect.
Identity Crisis: Multiple Measures and the Identification of Schools under ESSA. Policy Memo 16-3
ERIC Educational Resources Information Center
Hough, Heather; Penner, Emily; Witte, Joe
2016-01-01
The Every Student Succeeds Act (ESSA) makes sweeping changes to the way school performance is measured. Using the innovative measurement system developed by the CORE Districts in California, the authors explore how schools can be identified for support and improvement using a multiple measures framework. They show that 1) Different academic…
Wang, Danni; Xu, Xiaoru; Mei, Guangliang; Ma, Ying; Chen, Ren; Qin, Xia; Hu, Zhi
2017-03-01
The purpose of this study was to investigate whether the core members' social capital was associated with individually perceived and externally evaluated prestige and cooperation among the HIV/AIDS-related civil society organizations (CSOs). To accomplish this, a cross-sectional study using multistage sampling was carried out in eight provinces of China. Data were collected from the 327 core members via questionnaires and self-evaluated performance of the respondents were evaluated and measured. The interviews were conducted with all core members and the supervisory staff of the local Centers for Disease Control and Prevention. Multivariate logistic regression analysis indicated that social support (adjusted odds ratio [a OR] = 1.87) and organizational commitment (a OR = 1.57) were significantly associated with a higher odds of prestige performance in self-evaluation. Furthermore, social support (a OR = 1.65), trust (a OR = 1.33), and organizational commitment (a OR = 1.52) were significantly correlated with cooperation performance. Trust was positively associated with the cooperation performance on external evaluation. These findings may provide a new perspective on challenges that the CSOs face in response to a growing HIV/AIDS epidemic in China. Social capital may increase performance and accelerate organizational growth, ultimately improving HIV/AIDS prevention and care.
GenoCore: A simple and fast algorithm for core subset selection from large genotype datasets.
Jeong, Seongmun; Kim, Jae-Yoon; Jeong, Soon-Chun; Kang, Sung-Taeg; Moon, Jung-Kyung; Kim, Namshin
2017-01-01
Selecting core subsets from plant genotype datasets is important for enhancing cost-effectiveness and to shorten the time required for analyses of genome-wide association studies (GWAS), and genomics-assisted breeding of crop species, etc. Recently, a large number of genetic markers (>100,000 single nucleotide polymorphisms) have been identified from high-density single nucleotide polymorphism (SNP) arrays and next-generation sequencing (NGS) data. However, there is no software available for picking out the efficient and consistent core subset from such a huge dataset. It is necessary to develop software that can extract genetically important samples in a population with coherence. We here present a new program, GenoCore, which can find quickly and efficiently the core subset representing the entire population. We introduce simple measures of coverage and diversity scores, which reflect genotype errors and genetic variations, and can help to select a sample rapidly and accurately for crop genotype dataset. Comparison of our method to other core collection software using example datasets are performed to validate the performance according to genetic distance, diversity, coverage, required system resources, and the number of selected samples. GenoCore selects the smallest, most consistent, and most representative core collection from all samples, using less memory with more efficient scores, and shows greater genetic coverage compared to the other software tested. GenoCore was written in R language, and can be accessed online with an example dataset and test results at https://github.com/lovemun/Genocore.
Best Core Stabilization for Anticipatory Postural Adjustment and Falls in Hemiparetic Stroke.
Lee, Nam G; You, Joshua Sung H; Yi, Chung H; Jeon, Hye S; Choi, Bong S; Lee, Dong R; Park, Jae M; Lee, Tae H; Ryu, In T; Yoon, Hyun S
2018-02-21
To compare the effects of conventional core stabilization and dynamic neuromuscular stabilization (DNS) on anticipatory postural adjustment (APA) time, balance performance, and fear of falls in chronic hemiparetic stroke. Two-group randomized controlled trial with pretest-posttest design. Hospital rehabilitation center. Adults with chronic hemiparetic stroke (N=28). Participants were randomly divided into either conventional core stabilization (n=14) or DNS (n=14) groups. Both groups received a total of 20 sessions of conventional core stabilization or DNS training for 30 minutes per session 5 times a week during the 4-week period. Electromyography was used to measure the APA time for bilateral external oblique (EO), transverse abdominis (TrA)/internal oblique (IO), and erector spinae (ES) activation during rapid shoulder flexion. Trunk Impairment Scale (TIS), Berg Balance Scale (BBS), and Falls Efficacy Scale (FES) were used to measure trunk movement control, balance performance, and fear of falling. Baseline APA times were delayed and fear of falling was moderately high in both the conventional core stabilization and DNS groups. After the interventions, the APA times for EO, TrA/IO, and ES were shorter in the DNS group than in the conventional core stabilization group (P<.008). The BBS and TIS scores (P<.008) and the FES score (P<.003) were improved compared with baseline in both groups, but FES remained stable through the 2-year follow-up period only in the DNS group (P<.003). This is the first clinical evidence highlighting the importance of core stabilization exercises for improving APA control, balance, and fear of falls in individuals with hemiparetic stroke. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Hypervelocity Impact Evaluation of Metal Foam Core Sandwich Structures
NASA Technical Reports Server (NTRS)
Yasensky, John; Christiansen, Eric L.
2007-01-01
A series of hypervelocity impact (HVI) tests were conducted by the NASA Johnson Space Center (JSC) Hypervelocity Impact Technology Facility (HITF) [1], building 267 (Houston, Texas) between January 2003 and December 2005 to test the HVI performance of metal foams, as compared to the metal honeycomb panels currently in service. The HITF testing was conducted at the NASA JSC White Sands Testing Facility (WSTF) at Las Cruces, New Mexico. Eric L. Christiansen, Ph.D., and NASA Lead for Micro-Meteoroid Orbital Debris (MMOD) Protection requested these hypervelocity impact tests as part of shielding research conducted for the JSC Center Director Discretionary Fund (CDDF) project. The structure tested is a metal foam sandwich structure; a metal foam core between two metal facesheets. Aluminum and Titanium metals were tested for foam sandwich and honeycomb sandwich structures. Aluminum honeycomb core material is currently used in Orbiter Vehicle (OV) radiator panels and in other places in space structures. It has many desirable characteristics and performs well by many measures, especially when normalized by density. Aluminum honeycomb does not perform well in Hypervelocity Impact (HVI) Testing. This is a concern, as honeycomb panels are often exposed to space environments, and take on the role of Micrometeoroid / Orbital Debris (MMOD) shielding. Therefore, information on possible replacement core materials which perform adequately in all necessary functions of the material would be useful. In this report, HVI data is gathered for these two core materials in certain configurations and compared to gain understanding of the metal foam HVI performance.
Magnetic induction spectroscopy (MIS)-probe design for cervical tissue measurements.
Wang, Jau-Yi; Healey, Timothy; Barker, Anthony; Brown, Brian; Monk, Chris; Anumba, Dilly
2017-05-01
Gradiometers have the advantage of increasing measuring sensitivity, which is particularly useful in magnetic induction spectroscopy (MIS) for bio-impedance measurements. Traditional gradiometers use a pair of field sensing coils equally distant and on opposite sides of a drive coil, which provides high immunity to interference. In this paper, a ferrite-cored coaxial gradiometer probe of 29 mm diameter has been developed for measuring the impedance spectra of cervical tissues in vivo. It consists of a ferrite rod with outer ferrite confinement screening in order to eliminate the signals from surrounding tissue. The magnetic screening efficiency was compared with an air-cored gradiometer probe. For both gradiometer probes, a drive coil and two sensing coils were wound on a borosilicate glass former aligned coaxially with two sensing coils equidistant from the drive coil. The signal sensitivity of those two MIS gradiometers has been measured using saline samples with a conductivity range between 0.1 and 1.1 S m -1 . Finite element methods using COMSOL Multiphysics have been used to simulate the distribution of sensitivity to conductivity over the face of each probe and with depth. The ferrite-cored probe has a sensitivity confined to the volume defined by the gap between the ferrite core and outer tube of ferrite while the air-cored probe without any magnetic shielding had a wide sensitivity over the face and the side of the probe. Four saline samples and one of distilled water with conductivities from 0.1 to 1.1 S m -1 have been used to make conductivity measurements at frequencies of 50 kHz, 100 kHz, and 300 kHz. The measurement accuracy of the air-cored MIS probe was 0.09 S m -1 at 50 kHz, improving to 0.05 S m -1 at 300 kHz. For the ferrite-cored MIS probe, the measurement accuracy was 0.28 S m -1 at 50 kHz, improving to 0.04 S m -1 at 300 kHz. In vivo measurements on human hand have been performed using both types of gradiometers and the conductivity is consistent with reported data.
Multiplexed fibre optic sensing in the distal lung (Conference Presentation)
NASA Astrophysics Data System (ADS)
Choudhary, Tushar R.; Tanner, Michael G.; Megia-Fernandez, Alicia; Harrington, Kerrianne; Wood, Harry A.; Chankeshwara, Sunay; Zhu, Patricia; Choudhury, Debaditya; Yu, Fei; Thomson, Robert R.; Duncan, Rory R.; Dhaliwal, Kevin; Bradley, Mark
2017-02-01
We present a toolkit for a multiplexed pH and oxygen sensing probe in the distal lung using multicore fibres. Measuring physiological relevant parameters like pH and oxygen is of significant importance in understanding changes associated with disease pathology. We present here, a single multicore fibre based pH and oxygen sensing probe which can be used with a standard bronchoscope to perform in vivo measurements in the distal lung. The multiplexed probe consists of fluorescent pH sensors (fluorescein based) and oxygen sensors (Palladium porphyrin complex based) covalently bonded to silica microspheres (10 µm) loaded on the distal facet of a 19 core (10 µm core diameter) multicore fibre (total diameter of 150 µm excluding coating). Pits are formed by selectively etching the cores using hydrofluoric acid, multiplexing is achieved through the self-location of individual probes on differing cores. This architecture can be expanded to include probes for further parameters. Robust measurements are demonstrated of self-referencing fluorophores, not limited by photobleaching, with short (100ms) measurement times at low ( 10µW) illumination powers. We have performed on bench calibration and tests of in vitro tissue models and in an ovine whole lung model to validate our sensors. The pH sensor is demonstrated in the physiologically relevant range of pH 5 to pH 8.5 and with an accuracy of ± 0.05 pH units. The oxygen sensor is demonstrated in gas mixtures downwards from 20% oxygen and in liquid saturated with 20% oxygen mixtures ( 8mg/L) down to full depletion (0mg/L) with 0.5mg/L accuracy.
Lin, Longting; Bivard, Andrew; Kleinig, Timothy; Spratt, Neil J; Levi, Christopher R; Yang, Qing; Parsons, Mark W
2018-04-01
This study aimed to assess how the ischemic core measured by perfusion computed tomography (CTP) was affected by the delay and dispersion effect. Ischemic stroke patients having CTP performed within 6 hours of onset were included. The CTP data were processed twice, generating standard cerebral blood flow (sCBF) and delay- and dispersion-corrected CBF (ddCBF), respectively. Ischemic core measured by the sCBF and ddCBF was then compared at the relative threshold <30% of normal tissue. Two references for ischemic core were used: acute diffusion-weighted imaging or 24-hour diffusion-weighted imaging in patients with complete recanalization. Difference of core volume between CTP and diffusion-weighted imaging was estimated by Mann-Whitney U test and limits of agreement. Patients were also classified into favorable and unfavorable CTP patterns. The imaging pattern classification by sCBF and ddCBF was compared by the χ 2 test; their respective ability to predict good clinical outcome (3-month modified Rankin Scale score) was tested in logistic regression. Fifty-five patients were included in this study. Median sCBF ischemic core volume was 38.5 mL (12.4-61.9 mL), much larger than the median core volume of 17.2 mL measured by ddCBF (interquartile range, 5.5-38.8; P <0.001). Moreover, compared with sCBF <30%, ddCBF <30% measured the ischemic core much closer to diffusion-weighted imaging core references, with the mean volume difference of -0.1 mL (95% limits of agreement, -25.4 to 25.2; P =0.97) and 16.7 mL (95% limits of agreement, -21.7 to 55.2; P <0.001), respectively. Imaging patterns defined by sCBF showed a difference to that defined by ddCBF ( P <0.001), with 12 patients classified as favorable imaging patterns by ddCBF but as unfavorable by sCBF. The favorable imaging pattern classified by ddCBF, compared with sCBF classification, had higher predictive power for good clinical outcome (odds ratio, 7.8 [2-30.5] and 3.1 [0.9-11], respectively). Delay and dispersion correction increases the accuracy of ischemic core measurement on CTP. © 2018 American Heart Association, Inc.
Effects of pre-cooling procedures on intermittent-sprint exercise performance in warm conditions.
Duffield, Rob; Marino, Frank E
2007-08-01
The aim of this study was to determine whether pre-cooling procedures improve both maximal sprint and sub-maximal work during intermittent-sprint exercise. Nine male rugby players performed a familiarisation session and three testing sessions of a 2 x 30-min intermittent sprint protocol, which consisted of a 15-m sprint every min separated by free-paced hard-running, jogging and walking in 32 degrees C and 30% humidity. The three sessions included a control condition, Ice-vest condition and Ice-bath/Ice-vest condition, with respective cooling interventions imposed for 15-min pre-exercise and 10-min at half-time. Performance measures of sprint time and % decline and distance covered during sub-maximal exercise were recorded, while physiological measures of core temperature (T (core)), mean skin temperature (T (skin)), heart rate, heat storage, nude mass, rate of perceived exertion, rate of thermal comfort and capillary blood measures of lactate [La(-)], pH, Sodium (Na(+)) and Potassium (K(+)) were recorded. Results for exercise performance indicated no significant differences between conditions for the time or % decline in 15-m sprint efforts or the distance covered during sub-maximal work bouts; however, large effect size data indicated a greater distance covered during hard running following Ice-bath cooling. Further, lowered T (core), T (skin), heart rate, sweat loss and thermal comfort following Ice-bath cooling than Ice-vest or Control conditions were present, with no differences present in capillary blood measures of [La(-)], pH, K(+) or Na(+). As such, the ergogenic benefits of effective pre-cooling procedures in warm conditions for team-sports may be predominantly evident during sub-maximal bouts of exercise.
Tracking Blade Tip Vortices for Numerical Flow Simulations of Hovering Rotorcraft
NASA Technical Reports Server (NTRS)
Kao, David L.
2016-01-01
Blade tip vortices generated by a helicopter rotor blade are a major source of rotor noise and airframe vibration. This occurs when a vortex passes closely by, and interacts with, a rotor blade. The accurate prediction of Blade Vortex Interaction (BVI) continues to be a challenge for Computational Fluid Dynamics (CFD). Though considerable research has been devoted to BVI noise reduction and experimental techniques for measuring the blade tip vortices in a wind tunnel, there are only a handful of post-processing tools available for extracting vortex core lines from CFD simulation data. In order to calculate the vortex core radius, most of these tools require the user to manually select a vortex core to perform the calculation. Furthermore, none of them provide the capability to track the growth of a vortex core, which is a measure of how quickly the vortex diffuses over time. This paper introduces an automated approach for tracking the core growth of a blade tip vortex from CFD simulations of rotorcraft in hover. The proposed approach offers an effective method for the quantification and visualization of blade tip vortices in helicopter rotor wakes. Keywords: vortex core, feature extraction, CFD, numerical flow visualization
NASA Astrophysics Data System (ADS)
Ammendola, R.; Barbanera, M.; Bizzarri, M.; Bonaiuto, V.; Ceccucci, A.; Checcucci, B.; De Simone, N.; Fantechi, R.; Federici, L.; Fucci, A.; Lupi, M.; Paoluzzi, G.; Papi, A.; Piccini, M.; Ryjov, V.; Salamon, A.; Salina, G.; Sargeni, F.; Venditti, S.
2017-03-01
The NA62 experiment at CERN SPS has started its data-taking. Its aim is to measure the branching ratio of the ultra-rare decay K+ → π+ν ν̅ . In this context, rejecting the background is a crucial topic. One of the main background to the measurement is represented by the K+ → π+π0 decay. In the 1-8.5 mrad decay region this background is rejected by the calorimetric trigger processor (Cal-L0). In this work we present the performance of a soft-core based parallel architecture built on FPGAs for the energy peak reconstruction as an alternative to an implementation completely founded on VHDL language.
Incidence loss for a core turbine rotor blade in a two-dimensional cascade
NASA Technical Reports Server (NTRS)
Stabe, R. G.; Kline, J. F.
1974-01-01
The effect of incidence angle on the aerodynamic performance of an uncooled core turbine rotor blade was investigated experimentally in a two-dimensional cascade. The cascade test covered a range of incidence angles from minus 15 deg to 15 deg in 5-degree increments and a range of pressure ratios corresponding to ideal exit critical velocity ratios of 0.6 to 0.95. The principal measurements were blade-surface static pressures and cross-channel surveys of exit total pressure, static pressure, and flow angle. The results of the investigation include blade-surface velocity distribution and overall performance in terms of weight flow and loss for the range of incidence angles and exit velocity ratios investigated. The measured losses are also compared with two common methods of predicting incidence loss.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlo Parisi; Emanuele Negrenti
2017-02-01
In the framework of the OECD/NEA International Reactor Physics Experiment (IRPHE) Project, an evaluation of core VIII of the Babcock & Wilcox (B&W) Spectral Shift Control Reactor (SSCR) critical experiment program was performed. The SSCR concept, moderated and cooled by a variable mixture of heavy and light water, envisaged changing of the thermal neutron spectrum during the operation to encourage breeding and to sustain the core criticality. Core VIII contained 2188 fuel rods with 93% enriched UO2-ThO2 fuel in a moderator mixture of heavy and light water. The criticality experiment and measurements of the thermal disadvantage factor were evaluated.
A Programming Model Performance Study Using the NAS Parallel Benchmarks
Shan, Hongzhang; Blagojević, Filip; Min, Seung-Jai; ...
2010-01-01
Harnessing the power of multicore platforms is challenging due to the additional levels of parallelism present. In this paper we use the NAS Parallel Benchmarks to study three programming models, MPI, OpenMP and PGAS to understand their performance and memory usage characteristics on current multicore architectures. To understand these characteristics we use the Integrated Performance Monitoring tool and other ways to measure communication versus computation time, as well as the fraction of the run time spent in OpenMP. The benchmarks are run on two different Cray XT5 systems and an Infiniband cluster. Our results show that in general the threemore » programming models exhibit very similar performance characteristics. In a few cases, OpenMP is significantly faster because it explicitly avoids communication. For these particular cases, we were able to re-write the UPC versions and achieve equal performance to OpenMP. Using OpenMP was also the most advantageous in terms of memory usage. Also we compare performance differences between the two Cray systems, which have quad-core and hex-core processors. We show that at scale the performance is almost always slower on the hex-core system because of increased contention for network resources.« less
NASA Astrophysics Data System (ADS)
Tadyszak, Krzysztof; Kertmen, Ahmet; Coy, Emerson; Andruszkiewicz, Ryszard; Milewski, Sławomir; Kardava, Irakli; Scheibe, Błażej; Jurga, Stefan; Chybczyńska, Katarzyna
2017-07-01
Superparamagnetic behavior in aqueously well dispersible magnetite core-shell Fe3O4@SiO2 nanoparticles is presented. The magnetic properties of core-shell nanoparticles were measured with use of the DC, AC magnetometry and EPR spectroscopy. Particles where characterized by HR-TEM and Raman spectroscopy, showing a crystalline magnetic core of 11.5 ± 0.12 nm and an amorphous silica shell of 22 ± 1.5 nm in thickness. The DC, AC magnetic measurements confirmed the superparamagnetic nature of nanoparticles, additionally the EPR studies performed at much higher frequency than DC, AC magnetometry (9 GHz) have confirmed the paramagnetic nature of the nanoparticles. Our results show the excellent magnetic behavior of the particles with a clear magnetite structure, which are desirable properties for environmental remediation and biomedical applications.
Adaptive Core Simulation Employing Discrete Inverse Theory - Part I: Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdel-Khalik, Hany S.; Turinsky, Paul J.
2005-07-15
Use of adaptive simulation is intended to improve the fidelity and robustness of important core attribute predictions such as core power distribution, thermal margins, and core reactivity. Adaptive simulation utilizes a selected set of past and current reactor measurements of reactor observables, i.e., in-core instrumentation readings, to adapt the simulation in a meaningful way. A meaningful adaption will result in high-fidelity and robust adapted core simulator models. To perform adaption, we propose an inverse theory approach in which the multitudes of input data to core simulators, i.e., reactor physics and thermal-hydraulic data, are to be adjusted to improve agreement withmore » measured observables while keeping core simulator models unadapted. At first glance, devising such adaption for typical core simulators with millions of input and observables data would spawn not only several prohibitive challenges but also numerous disparaging concerns. The challenges include the computational burdens of the sensitivity-type calculations required to construct Jacobian operators for the core simulator models. Also, the computational burdens of the uncertainty-type calculations required to estimate the uncertainty information of core simulator input data present a demanding challenge. The concerns however are mainly related to the reliability of the adjusted input data. The methodologies of adaptive simulation are well established in the literature of data adjustment. We adopt the same general framework for data adjustment; however, we refrain from solving the fundamental adjustment equations in a conventional manner. We demonstrate the use of our so-called Efficient Subspace Methods (ESMs) to overcome the computational and storage burdens associated with the core adaption problem. We illustrate the successful use of ESM-based adaptive techniques for a typical boiling water reactor core simulator adaption problem.« less
Materials and Chemical Science and Technology | Research | NREL
Applications and Performance Developing high-efficiency crystalline PV, measuring PV cell/module performance Cells and Hydrogen Program Developing, integrating, and demonstrating hydrogen production/delivery /storage through core programs and EFRCs Point of Contact Bill Tumas MCST Research Advisors/Fellows Senior
Two-Photon Antenna-Core Oxygen Probe with Enhanced Performance
2015-01-01
Recent development of two-photon phosphorescence lifetime microscopy (2PLM) of oxygen enabled first noninvasive high-resolution measurements of tissue oxygenation in vivo in 3D, providing valuable physiological information. The so far developed two-photon-enhanced phosphorescent probes comprise antenna-core constructs, in which two-photon absorbing chromophores (antenna) capture and channel excitation energy to a phosphorescent core (metalloporphyrin) via intramolecular excitation energy transfer (EET). These probes allowed demonstration of the methods’ potential; however, they suffer from a number of limitations, such as partial loss of emissivity to competing triplet state deactivation pathways (e.g., electron transfer) and suboptimal sensitivity to oxygen, thereby limiting spatial and temporal resolution of the method. Here we present a new probe, PtTCHP-C307, designed to overcome these limitations. The key improvements include significant increase in the phosphorescence quantum yield, higher efficiency of the antenna-core energy transfer, minimized quenching of the phosphorescence by electron transfer and increased signal dynamic range. For the same excitation flux, the new probe is able to produce up to 6-fold higher signal output than previously reported molecules. Performance of PtTCHP-C307 was demonstrated in vivo in pO2 measurements through the intact mouse skull into the bone marrow, where all blood cells are made from hematopoietic stem cells. PMID:24848643
Core stability: implications for dance injuries.
Rickman, Ashley M; Ambegaonkar, Jatin P; Cortes, Nelson
2012-09-01
Dancers experience a high incidence of injury due to the extreme physical demands of dancing. The majority of dance injuries are chronic in nature and occur in the lower extremities and low back. Researchers have indicated decreased core stability (CS) as a risk factor for these injuries. Although decreased CS is suggested to negatively affect lower extremity joint motion and lumbar control during activity, this relationship has not been extensively discussed in previous dance literature. Understanding the relationship between CS and injury risk is important to help reduce dance injury incidence and improve performance. The purposes of this review were to discuss: 1. the core and components of CS, 2. the relationship between CS and injury, 3. CS assessment techniques, and 4. future dance CS research areas. CS is the integration of passive (non-contractile), active (contractile), and neural structures to minimize the effects of external forces and maintain stability. CS is maintained by a combination of muscle power, strength, endurance, and sensory-motor control of the lumbopelvic-hip complex. CS assessments include measuring muscle strength and power using maximal voluntary isometric and isokinetic contractions and measuring endurance using the Biering-Sorensen, plank, and lateral plank tests. Measuring sensory-motor control requires specialized equipment (e.g., balance platforms). Overall, limited research has comprehensively examined all components of CS together and their relationships to injury. Rather, previous researchers have separately examined core power, strength, endurance, or sensory-motor control. Future researchers should explore the multifactorial role of CS in reducing injury risk and enhancing performance in dancers.
NASA Astrophysics Data System (ADS)
Carcreff, Hubert; Salmon, Laurent; Bubendorff, Jacques; Lepeltier, Valérie
2016-10-01
Nuclear heating inside a MTR reactor has to be known in order to design and run irradiation experiments which have to fulfill target temperature constraints. This measurement is usually carried out by calorimetry. The innovative calorimetric system, CALMOS, has been studied and built in 2011 for the 70MWth OSIRIS reactor operated by CEA. Thanks to a new type of calorimetric probe, associated to a specific displacement system, it provides measurements along the fissile height and above the core. Calorimeter working modes, measurement procedures, main modeling and experimental results and expected advantages of this new technique have been already presented in previous papers. However, these first in-core measurements were not performed beyond 6 W · g-1, due to an inside temperature limitation imposed by a safety authority requirement. In this paper, we present the first in-core simultaneous measurements of nuclear heating and conventional thermal neutron flux obtained by the CALMOS device at 70 MW nominal reactor power. For the first time, this experimental system was operated in nominal in-core conditions, with nominal neutron flux up to 2.7 1014 n · cm-2 · s-1 and nuclear heating up to 12 W · g-1. After a brief reminder of the calorimetric cell configuration and displacement system specificities, first nuclear heating distributions at nominal power are presented and discussed. In order to reinforce the heating evaluation, a comparison is made between results obtained by the probe calibration coefficient and the zero methods. Thermal neutron flux evaluation from SPND signal processing required a specific TRIPOLI-4 Monte Carlo calculation which has been performed with the precise CALMOS cell geometry. In addition, the Finite Element model for temperatures map prediction inside the calorimetric cell has been upgraded with recent experimental data obtained up to 12 W · g-1. Finally, the experience feedback led us to improvement perspectives. A second device is currently under manufacturing and main technical options are presented.
An evaluation of the performance of concretes containing fly ash and ground slag in bridge decks.
DOT National Transportation Integrated Search
2006-01-01
Cores from 36 bridge decks were evaluated to assess the condition and quality of the concrete by petrographic methods and direct and indirect measures of the transport properties. Transport properties were measured by a rate of absorption test (ASTM ...
Magnetism and Mössbauer study of formation of multi-core γ -Fe2O3 nanoparticles
NASA Astrophysics Data System (ADS)
Kamali, Saeed; Bringas, Eugenio; Hah, Hien-Yoong; Bates, Brian; Johnson, Jacqueline A.; Johnson, Charles E.; Stroeve, Pieter
2018-04-01
A systematic investigation of magnetic nanoparticles and the formation of a core-shell structure, consisting of multiple maghemite (γ -Fe2O3) nanoparticles as the core and silica as the shell, has been performed using various techniques. High-resolution transmission electron microscopy clearly shows isolated maghemite nanoparticles with an average diameter of 13 nm and the formation of a core-shell structure. Low temperature Mössbauer spectroscopy reveals the presence of pure maghemite nanoparticles with all vacancies at the B-sites. Isothermal magnetization and zero-field-cooled and field-cooled measurements are used for investigating the magnetic properties of the nanoparticles. The magnetization results are in good accordance with the contents of the magnetic core and the non-magnetic shell. The multiple-core γ -Fe2O3 nanoparticles show similar behavior to isolated particles of the same size.
Studying the Variation in Gas Permeability of Porous Building Substrates
NASA Astrophysics Data System (ADS)
Townsend, L.; Savidge, C. R.; Hu, L.; Rizzo, D. M.; Hayden, N. J.; Dewoolkar, M.
2009-12-01
Understanding permeability of building materials is important for problems involving studies of contaminant transport. Examples include contamination from fire, acid rain, and chemical and biological weapons. Our research investigates the gas permeability of porous building substrates such as concretes, limestones, sandstones, and bricks. Each sample was cored to produce 70 mm (2.75”) diameter cores approximately 75-130 mm (3-5”) tall. The surface gas permeability was measured on the top surface of these specimens using the AutoScan II device manufactured by New England Research, Inc. The measurements were taken along a 3 mm grid producing a map of surface gas permeability. An example map is shown in Figure 1. The macroscopic measurements were performed along the entire cored specimen. A second set of measurements were made on a 5 mm thick slice cut from the top of each specimen to examine whether these measurements compare better with the surface measurements. The macroscopic gas permeability was measured for all specimens using ASTM D 4525. The results are summarized in Table 1. In general, the surface and macroscopic gas permeability measurements (Table 1) compare reasonably well (within one order of magnitude). The permeability of the 5 mm slices is not significantly different from the entire core for the specimens tested. Figure 1. Results of surface permeability mappingof Ohio Sandstone using the AutoScan II device. a) Map of gas permeability b) Range of gas permeability c) Density function of permeability. Table 1. Gas permeability values (mD)
NASA Astrophysics Data System (ADS)
Laloy, Julie; Haguet, Hélène; Alpan, Lutfiye; Mancier, Valérie; Mejia, Jorge; Levi, Samuel; Dogné, Jean-Michel; Lucas, Stéphane; Rousse, Céline; Fricoteaux, Patrick
2017-08-01
Copper/silver core/shell nanopowders with different metal ratio have been elaborated by electrochemistry (ultrasound-assisted electrolysis followed by a displacement reaction). Characterization was performed by several methods (X-ray diffraction, scanning electron microscope, energy-dispersive X-ray spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, centrifugal liquid sedimentation, and zeta potential measurements). The mean diameter of all nanoparticles is around 10 nm. The impact of each nanopowder on hemolysis, platelet aggregation, and coagulation has been studied on whole human blood. Hemolysis assays were performed with spectrophotometric measurement and platelet aggregation, with light transmission aggregometry and was compared to Cu/Pt core/shell nanoparticles with similar size as negative control. Calibrated thrombin generation test has been used for a coagulation study. They neither impact platelet aggregation nor hemolysis and have a procoagulant effect whatever their composition (i.e., metal ratio). These results highlight that such nanopowders have a potential use in medical applications (e.g., wound dressing).
False Belief Performance of Children Adopted Internationally.
Hwa-Froelich, Deborah A; Matsuo, Hisako; Jacobs, Kristal
2017-02-01
The purpose of this study was to explore relationships among adoption, individual, and family variables on false belief performance of children adopted internationally (CAI). Using a quasiexperimental design, thirty-five 4-year-old children adopted from Asian and Eastern European countries before age 2 years were compared with a U.S. group of 33 nonadopted 4-year-old children on a standardized English-language measure, 3 false belief tasks, and a go/no-go inhibition measure. The adopted group differed significantly from the U.S. nonadopted group in expressive language and false belief performance. For the adopted group, inhibition measures were significantly correlated with core language scores. Core language scores and number of older siblings predicted false belief performance. Similar to children who are not adopted, language competence and living with older siblings positively influenced social understanding in CAI. Because CAI experience interrupted language acquisition and live with fewer older siblings, they are at risk of having weaker language competence and social understanding in their adopted language. When working with CAI, practitioners should assess social communication, language competence, and inhibition skills. They should assist adoptive families in providing socially mentored opportunities for their children to observe and interact with older children.
Clinical performance of a lithia disilicate-based core ceramic for three-unit posterior FPDs.
Esquivel-Upshaw, Josephine F; Anusavice, Kenneth J; Young, Henry; Jones, Jack; Gibbs, Charles
2004-01-01
The purpose of this research project was to determine the clinical success rate of a lithia disilicate-based core ceramic for use in posterior fixed partial dentures (FPD) as a function of bite force, cement type, connector height, and connector width. Thirty ceramic FPD core frameworks were prepared using a heat-pressing technique and a lithia disilicate-based core ceramic. The maximum clenching force was measured for each patient prior to tooth preparation. Connector height and width were measured for each FPD. Patients were recalled yearly after cementation for 2 years and evaluated using 11 clinical criteria. All FPDs were examined by two independent clinicians, and rankings from 1 to 4 were made for each criterion (4 = excellent; 1 = unacceptable). Two of the 30 ceramic FPDs fractured within the 2-year evaluation period, representing a 93% success rate. One fracture was associated with a low occlusal force and short connector height (2.9 mm). The other fracture was associated with the greatest occlusal force (1,031 N) and adequate connector height. All criteria were ranked good to excellent during the 2-year recall for all remaining FPDs. The performance of the experimental core ceramic in posterior FPDs was promising, with only a 7% fracture rate after 2 years. Because of the limited sample size, it is not possible to identify the maximum clenching force that is allowable to prevent fracture caused by interocclusal forces.
NASA Astrophysics Data System (ADS)
McGinnis, M. J.; Pessiki, S.
2006-03-01
The core-drilling method is an emerging technique for evaluating in-situ stress in a concrete structure. A small hole is drilled into the structure, and the deformations in the vicinity of the hole are measured and related via elasticity theory to the stress. The method is similar to the ASTM hole-drilling strain-gauge method excepting that displacements rather than strains are the measured quantities. The technique may be considered nondestructive since the ability of the structure to perform its function is unaffected, and the hole is easily repaired. Displacement measurements in the current work are performed using 3D digital image correlation and industrial photogrammetry. The current paper addresses perturbations in the method caused by steel reinforcement within the concrete. The reinforcement is significantly stiffer than the surrounding concrete, altering the expected displacement field. A numerical investigation performed indicates an under-prediction of stress by as much as 18 percent in a heavily reinforced structure, although the effect is significantly smaller for more common amounts of reinforcement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGinnis, M. J.; Pessiki, S.
2006-03-06
The core-drilling method is an emerging technique for evaluating in-situ stress in a concrete structure. A small hole is drilled into the structure, and the deformations in the vicinity of the hole are measured and related via elasticity theory to the stress. The method is similar to the ASTM hole-drilling strain-gauge method excepting that displacements rather than strains are the measured quantities. The technique may be considered nondestructive since the ability of the structure to perform its function is unaffected, and the hole is easily repaired. Displacement measurements in the current work are performed using 3D digital image correlation andmore » industrial photogrammetry. The current paper addresses perturbations in the method caused by steel reinforcement within the concrete. The reinforcement is significantly stiffer than the surrounding concrete, altering the expected displacement field. A numerical investigation performed indicates an under-prediction of stress by as much as 18 percent in a heavily reinforced structure, although the effect is significantly smaller for more common amounts of reinforcement.« less
A New Measure for Neural Compensation Is Positively Correlated With Working Memory and Gait Speed.
Ji, Lanxin; Pearlson, Godfrey D; Hawkins, Keith A; Steffens, David C; Guo, Hua; Wang, Lihong
2018-01-01
Neuroimaging studies suggest that older adults may compensate for declines in brain function and cognition through reorganization of neural resources. A limitation of prior research is reliance on between-group comparisons of neural activation (e.g., younger vs. older), which cannot be used to assess compensatory ability quantitatively. It is also unclear about the relationship between compensatory ability with cognitive function or how other factors such as physical exercise modulates compensatory ability. Here, we proposed a data-driven method to semi-quantitatively measure neural compensation under a challenging cognitive task, and we then explored connections between neural compensation to cognitive engagement and cognitive reserve (CR). Functional and structural magnetic resonance imaging scans were acquired for 26 healthy older adults during a face-name memory task. Spatial independent component analysis (ICA) identified visual, attentional and left executive as core networks. Results show that the smaller the volumes of the gray matter (GM) structures within core networks, the more networks were needed to conduct the task ( r = -0.408, p = 0.035). Therefore, the number of task-activated networks controlling for the GM volume within core networks was defined as a measure of neural compensatory ability. We found that compensatory ability correlated with working memory performance ( r = 0.528, p = 0.035). Among subjects with good memory task performance, those with higher CR used fewer networks than subjects with lower CR. Among poor-performance subjects, those using more networks had higher CR. Our results indicated that using a high cognitive-demanding task to measure the number of activated neural networks could be a useful and sensitive measure of neural compensation in older adults.
Resolution performance of a 0.60-NA, 364-nm laser direct writer
NASA Astrophysics Data System (ADS)
Allen, Paul C.; Buck, Peter D.
1990-06-01
ATEQ has developed a high resolution laser scanning printing engine based on the 8 beam architecture of the CORE- 2000. This printing engine has been incorporated into two systems: the CORE-2500 for the production of advanced masks and reticles and a prototype system for direct write on wafers. The laser direct writer incorporates a through-the-lens alignment system and a rotary chuck for theta alignment. Its resolution performance is delivered by a 0. 60 NA laser scan lens and a novel air-jet focus system. The short focal length high resolution lens also reduces beam position errors thereby improving overall pattern accuracy. In order to take advantage of the high NA optics a high performance focus servo was developed capable of dynamic focus with a maximum error of 0. 15 tm. The focus system uses a hot wire anemometer to measure air flow through an orifice abutting the wafer providing a direct measurement to the top surface of resist independent of substrate properties. Lens specifications are presented and compared with the previous design. Bench data of spot size vs. entrance pupil filling show spot size performance down to 0. 35 m FWHM. The lens has a linearity specification of 0. 05 m system measurements of lens linearity indicate system performance substantially below this. The aerial image of the scanned beams is measured using resist as a threshold detector. An effective spot size is
Code of Federal Regulations, 2010 CFR
2010-07-01
... academic skills; (2) One or more measures of the following: (i) Student competency attainment. (ii) Job or... skills in the industry the student is preparing to enter. (iii) Retention in school or completion of... appropriate, for consistency with— (1) Standards and measures developed under job opportunities and basic...
Vocational Education: Guam 1991-1992. Annual Performance Report.
ERIC Educational Resources Information Center
Guam Community Coll., Agana. Office of the State Agency for Vocational and Adult Education.
To remain current and provide support for vocational programs, Guam's State Director of Vocational and Adult Education worked closely with mainland agencies and organizations in 1991-92. A committee of practitioners developed a statewide system of core performance measures and standards. Leadership training kept program administrators up-to-date.…
Instability resistance training across the exercise continuum.
Behm, David G; Colado, Juan C; Colado, Juan C
2013-11-01
Instability resistance training (IRT; unstable surfaces and devices to strengthen the core or trunk muscles) is popular in fitness training facilities. To examine contradictory IRT recommendations for health enthusiasts and rehabilitation. A literature search was performed using MEDLINE, SPORT Discus, ScienceDirect, Web of Science, and Google Scholar databases from 1990 to 2012. Databases were searched using key terms, including "balance," "stability," "instability," "resistance training," "core," "trunk," and "functional performance." Additionally, relevant articles were extracted from reference lists. To be included, research questions addressed the effect of balance or IRT on performance, healthy and active participants, and physiologic or performance outcome measures and had to be published in English in a peer-reviewed journal. There is a dichotomy of opinions on the effectiveness and application of instability devices and conditions for health and performance training. Balance training without resistance has been shown to improve not only balance but functional performance as well. IRT studies document similar training adaptations as stable resistance training programs with recreationally active individuals. Similar progressions with lower resistance may improve balance and stability, increase core activation, and improve motor control. IRT is highly recommended for youth, elderly, recreationally active individuals, and highly trained enthusiasts.
Campagna, Raphael; Pessis, Eric; Guerini, Henri; Feydy, Antoine; Drapé, Jean-Luc
2013-02-01
To evaluate the occurrence of coring after needle insertion through the rubber stopper of prednisolone acetate vials. Two-hundred vials of prednisolone acetate were randomly distributed to two radiologists. Prednisolone acetate was drawn up through the rubber bung of the vials with an 18-gauge cutting bevelled needle and aspirated with a 5-ml syringe. The presence of coring was noted visually. We systematically put each core in a syringe refilled with 3 ml prednisolone acetate, and injected the medication through a 20-gauge spine needle. Computed tomography was performed to measure the size of each coring. Coring occurred in 21 out of 200 samples (10.5 %), and was visually detected in the syringe filled up with prednisolone in 11 of the 21 cases. Ten more occult cores were detected only after the syringes and needles were taken apart and rinsed. The core size ranged from 0.6 to 1.1 mm, and 1 of the 21 (4.7 %) cores was ejected through the 20-gauge needle. Coring can occur after the insertion of a needle through the rubber stopper of a vial of prednisolone acetate, and the resultant core can then be aspirated into the syringe.
In vitro evaluation of five core materials.
Gu, Steven; Rasimick, Brian J; Deutsch, Allan S; Musikant, Barry L
2007-01-01
This in vitro study determined the fracture strength of five core materials supported by two different endodontic dowels. Diametral tensile strength and microhardness of the three resin composite core materials used in this study were also tested. The fracture strength study used one lanthanide-reinforced flowable resin composite (Ti-Core Auto E), one titanium- and lanthanide-reinforced composite (Ti-Core), one lanthanide-reinforced composite (Ti-Core Natural), and two metal-reinforced glass ionomer core materials (Ketac Silver and GC Miracle Mix). Two types of dowels were used: a multitiered, split-shank threaded dowel with a flange (#1 Flexi-Flange) and one without a flange design (#1 Flexi-Post). The specimens were divided into ten groups. Each tooth/dowel and core specimen was placed in a special jig at 45 degrees and subjected to a load by a universal testing machine. The diametral tensile strength and the microhardness of the three resin composite core materials were measured by a universal testing machine and Barcol hardness tester, respectively. All test groups contained ten specimens. The fracture strength value of the resin composite core materials was significantly larger ( p < 0.0001) than those for the metal-reinforced glass-ionomer core materials. Analysis of variance (ANOVA) also showed that the Flexi-Flange dowel interacted with Ti-Core and Ti-Core Auto E to significantly ( p < 0.0013) increase the fracture strength relative to the Flexi-Post. One-way ANOVA revealed that there were no significant differences between them in terms of diametral tensile strength. The Barcol hardness values of the composite core materials were statistically different ( p < 0.0001), with the Ti-Core the highest, followed by Ti-Core Natural, then Ti-Core Auto E. Resin composite core material performed better than glass ionomer material in this in vitro study. The flowable composite core material performed about the same in terms of fracture strength and diametral tensile strength compared with nonflowable composites. Combined with certain core materials, the flange design increased the fracture strength of the tooth/dowel and core combination.
Morgan, Esi M; Riebschleger, Meredith P; Horonjeff, Jennifer; Consolaro, Alessandro; Munro, Jane E; Thornhill, Susan; Beukelman, Timothy; Brunner, Hermine I; Creek, Emily L; Harris, Julia G; Horton, Daniel B; Lovell, Daniel J; Mannion, Melissa L; Olson, Judyann C; Rahimi, Homaira; Gallo, Maria Chiara; Calandra, Serena; Ravelli, Angelo; Ringold, Sarah; Shenoi, Susan; Stinson, Jennifer; Toupin-April, Karine; Strand, Vibeke; Bingham, Clifton O
2017-12-01
The current Juvenile Idiopathic Arthritis (JIA) Core Set was developed in 1997 to identify the outcome measures to be used in JIA clinical trials using statistical and consensus-based techniques, but without patient involvement. The importance of patient/parent input into the research process has increasingly been recognized over the years. An Outcome Measures in Rheumatology (OMERACT) JIA Core Set Working Group was formed to determine whether the outcome domains of the current core set are relevant to those involved or whether the core set domains should be revised. Twenty-four people from the United States, Canada, Australia, and Europe, including patient partners, formed the working group. Guided by the OMERACT Filter 2.0 process, we performed (1) a systematic literature review of outcome domains, (2) a Web-based survey (142 patients, 343 parents), (3) an idea-generation study (120 parents), (4) 4 online discussion boards (24 patients, 20 parents), and (5) a Special Interest Group (SIG) activity at the OMERACT 13 (2016) meeting. A MEDLINE search of outcome domains used in studies of JIA yielded 5956 citations, of which 729 citations underwent full-text review, and identified additional domains to those included in the current JIA Core Set. Qualitative studies on the effect of JIA identified multiple additional domains, including pain and participation. Twenty-one participants in the SIG achieved consensus on the need to revise the entire JIA Core Set. The results of qualitative studies and literature review support the need to expand the JIA Core Set, considering, among other things, additional patient/parent-centered outcomes, clinical data, and imaging data.
Aggarwal, Rohit; Rider, Lisa G; Ruperto, Nicolino; Bayat, Nastaran; Erman, Brian; Feldman, Brian M; Oddis, Chester V; Amato, Anthony A; Chinoy, Hector; Cooper, Robert G; Dastmalchi, Maryam; Fiorentino, David; Isenberg, David; Katz, James D; Mammen, Andrew; de Visser, Marianne; Ytterberg, Steven R; Lundberg, Ingrid E; Chung, Lorinda; Danko, Katalin; García-De la Torre, Ignacio; Song, Yeong Wook; Villa, Luca; Rinaldi, Mariangela; Rockette, Howard; Lachenbruch, Peter A; Miller, Frederick W; Vencovsky, Jiri
2017-05-01
To develop response criteria for adult dermatomyositis (DM) and polymyositis (PM). Expert surveys, logistic regression, and conjoint analysis were used to develop 287 definitions using core set measures. Myositis experts rated greater improvement among multiple pairwise scenarios in conjoint analysis surveys, where different levels of improvement in 2 core set measures were presented. The PAPRIKA (Potentially All Pairwise Rankings of All Possible Alternatives) method determined the relative weights of core set measures and conjoint analysis definitions. The performance characteristics of the definitions were evaluated on patient profiles using expert consensus (gold standard) and were validated using data from a clinical trial. The nominal group technique was used to reach consensus. Consensus was reached for a conjoint analysis-based continuous model using absolute per cent change in core set measures (physician, patient, and extramuscular global activity, muscle strength, Health Assessment Questionnaire, and muscle enzyme levels). A total improvement score (range 0-100), determined by summing scores for each core set measure, was based on improvement in and relative weight of each core set measure. Thresholds for minimal, moderate, and major improvement were ≥20, ≥40, and ≥60 points in the total improvement score. The same criteria were chosen for juvenile DM, with different improvement thresholds. Sensitivity and specificity in DM/PM patient cohorts were 85% and 92%, 90% and 96%, and 92% and 98% for minimal, moderate, and major improvement, respectively. Definitions were validated in the clinical trial analysis for differentiating the physician rating of improvement (p<0.001). The response criteria for adult DM/PM consisted of the conjoint analysis model based on absolute per cent change in 6 core set measures, with thresholds for minimal, moderate, and major improvement. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Schlessinger, Daniel I; Iyengar, Sanjana; Yanes, Arianna F; Henley, Jill K; Ashchyan, Hovik J; Kurta, Anastasia O; Patel, Payal M; Sheikh, Umar A; Franklin, Matthew J; Hanna, Courtney C; Chen, Brian R; Chiren, Sarah G; Schmitt, Jochen; Deckert, Stefanie; Furlan, Karina C; Poon, Emily; Maher, Ian A; Cartee, Todd V; Sobanko, Joseph F; Alam, Murad
2017-08-01
Facial aging is a concern for many patients. Wrinkles, loss of volume, and discoloration are common physical manifestations of aging skin. Genetic heritage, prior ultraviolet light exposure, and Fitzpatrick skin type may be associated with the rate and type of facial aging. Although many clinical trials assess the correlates of skin aging, there is heterogeneity in the outcomes assessed, which limits the quality of evaluation and comparison of treatment modalities. To address the inconsistency in outcomes, in this project we will develop a core set of outcomes that are to be evaluated in all clinical trials relevant to facial aging. A long list of measureable outcomes will be created from four sources: (1) systematic medical literature review, (2) patient interviews, (3) other published sources, and (4) stakeholder involvement. Two rounds of Delphi processes with homogeneous groups of physicians and patients will be performed to prioritize and condense the list. At a consensus meeting attended by physicians, patients, and stakeholders, outcomes will be further condensed on the basis of participant scores. By the end of the meeting, members will vote and decide on a final recommended set of core outcomes. Subsequent to this, specific measures will be selected or created to assess these outcomes. The aim of this study is to develop a core outcome set and relevant measures for clinical trials relevant to facial aging. We hope to improve the reliability and consistency of outcome reporting of skin aging, thereby enabling improved evaluation of treatment efficacy and patient satisfaction. Core Outcome Measures in Effectiveness Trials (COMET) Initiative, accessible at http://www.comet-initiative.org/studies/details/737 . Core Outcomes Set Initiative, (CSG-COUSIN) accessible at https://www.uniklinikum-dresden.de/de/das-klinikum/universitaetscentren/zegv/cousin/meet-the-teams/project-groups/core-outcome-set-for-the-appearance-of-facial-aging . Protocol version date is 28 July 2016.
NASA Astrophysics Data System (ADS)
Chang, Chia-Ming; Keefe, Andrew; Carter, William B.; Henry, Christopher P.; McKnight, Geoff P.
2014-04-01
Structural assemblies incorporating negative stiffness elements have been shown to provide both tunable damping properties and simultaneous high stiffness and damping over prescribed displacement regions. In this paper we explore the design space for negative stiffness based assemblies using analytical modeling combined with finite element analysis. A simplified spring model demonstrates the effects of element stiffness, geometry, and preloads on the damping and stiffness performance. Simplified analytical models were validated for realistic structural implementations through finite element analysis. A series of complementary experiments was conducted to compare with modeling and determine the effects of each element on the system response. The measured damping performance follows the theoretical predictions obtained by analytical modeling. We applied these concepts to a novel sandwich core structure that exhibited combined stiffness and damping properties 8 times greater than existing foam core technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepeltier, Valerie; Bubendorff, Jacques; Carcreff, Hubert
2015-07-01
Nuclear heating inside a MTR reactor has to be known in order to design and to run irradiation experiments which have to fulfill target temperature constraints. This measurement is usually carried out by calorimetry. The innovative calorimetric system, CALMOS, has been studied and built in 2011 for the 70 MWth OSIRIS reactor operated by CEA. Thanks to a new type of calorimetric probe, associated to a specific displacement system, it provides measurements along the fissile height and above the core. This development required preliminary modelling and irradiation of mock-ups of the calorimetric probe in the ex-core area, where nuclear heatingmore » rate does not exceed 2 W.g{sup -1}. The calorimeter working modes, the different measurement procedures allowed with such a new probe, the main modeling and experimental results and expected advantages of this new technique have been already presented. However, these first in-core measurements were not performed beyond 6 W.g{sup -1}, due to an inside temperature limitation imposed by a safety authority requirement. In this paper, we present the first in-core simultaneous measurements of nuclear heating and conventional thermal neutron flux obtained by the CALMOS device at the 70 MW nominal reactor power. For the first time, this experimental system was operated in nominal in-core conditions, with nominal neutron flux up to 2.7 10{sup 14} n.cm{sup -2}.s{sup -1} and nuclear heating up to 12 W.g{sup -1}. A comprehensive measurement campaign carried out from 2013 to 2015 inside all accessible irradiation locations of the core, allowed to qualify definitively this new device, not only in terms of measurement ability but also in terms of reliability. After a brief reminder of the calorimetric cell configuration and displacement system specificities, first nuclear heating distributions at nominal power are presented and discussed. In order to reinforce the heating evaluation, a systematic comparison is made between results obtained by different methods, the probe calibration coefficient and the zero method. Thermal neutron flux evaluation from the SPND signal processing required a specific TRIPOLI-4 Monte Carlo calculation which has been performed with the precise CALMOS cell geometry. In addition, the Finite Element model for temperatures map prediction inside the calorimetric cell has been upgraded with the recent experimental data obtained up to 12 W.g{sup -1}. The Kc coefficient, taking into account nonlinearities with regard to the calibration, has been reevaluated so as to make relevant measurements up to the nominal reactor power. Finally, the experience feedback acquired until now with this first CALMOS version led us to improvement perspectives. A second device is currently under manufacturing and main technical options chosen for this second version are presented. (authors)« less
Enhanced linear photonic nanojet generated by core-shell optical microfibers
NASA Astrophysics Data System (ADS)
Liu, Cheng-Yang; Yen, Tzu-Ping; Chen, Chien-Wen
2017-05-01
The generation of linear photonic nanojet using core-shell optical microfiber is demonstrated numerically and experimentally in the visible light region. The power flow patterns for the core-shell optical microfiber are calculated by using the finite-difference time-domain method. The focusing properties of linear photonic nanojet are evaluated in terms of length and width along propagation and transversal directions. In experiment, the silica optical fiber is etched chemically down to 6 μm diameter and coated with metallic thin film by using glancing angle deposition. We show that the linear photonic nanojet is enhanced clearly by metallic shell due to surface plasmon polaritons. The large-area superresolution imaging can be performed by using a core-shell optical microfiber in the far-field system. The potential applications of this core-shell optical microfiber include micro-fluidics and nano-structure measurements.
Volis, S; Ormanbekova, D; Yermekbayev, K; Song, M; Shulgina, I
2014-09-01
The adaptive potential of a population defines its importance for species survival in changing environmental conditions such as global climate change. Very few empirical studies have examined adaptive potential across species' ranges, namely, of edge vs core populations, and we are unaware of a study that has tested adaptive potential (namely, variation in adaptive traits) and measured performance of such populations in conditions not currently experienced by the species but expected in the future. Here we report the results of a Triticum dicoccoides population study that employed transplant experiments and analysis of quantitative trait variation. Two populations at the opposite edges of the species range (1) were locally adapted; (2) had lower adaptive potential (inferred from the extent of genetic quantitative trait variation) than the two core populations; and (3) were outperformed by the plants from the core population in the novel environment. The fact that plants from the species arid edge performed worse than plants from the more mesic core in extreme drought conditions beyond the present climatic envelope of the species implies that usage of peripheral populations for conservation purposes must be based on intensive sampling of among-population variation.
Karuppuchamy, S; Brundha, C
2016-12-01
Core-shell structured TiO 2 /Li 2 CO 3 electrode was successfully synthesized by eco-friendly solution growth technique. TiO 2 /Li 2 CO 3 electrodes were characterized using X-ray Diffractometer (XRD), Scanning electron microscopy (SEM) and photocurrent-voltage measurements. The synthesized core-shell electrode material was sensitized with tetrabutylammonium cis-di(thiocyanato)-N,N'-bis(4-carboxylato-4'-carboxylic acid-2,2'-bipyridine)ruthenate(II) (N-719). The performance of dye-sensitized solar cells (DSCs) based on N719 dye modified TiO 2 /Li 2 CO 3 electrodes was investigated. The effect of various shell thickness on the photovoltaic performance of the core-shell structured electrode is also investigated. We found that Li 2 CO 3 shells of all thicknesses perform as inert barriers which improve open-circuit voltage (V oc ) of the DSCs. The energy conversion efficiency was greatly dependent on the thickness of Li 2 CO 3 on TiO 2 film, and the highest efficiency of 3.7% was achieved at the optimum Li 2 CO 3 shell layer. Copyright © 2015 Elsevier Inc. All rights reserved.
Banda, Sekelani
2016-01-01
Objectives To determine and compare the self-perceived and objectively measured competence in performing 14 core-clinical practical procedures by Final Year Medical Students of the University of Zambia. Methods The study included 56 out of 60 graduating University of Zambia Medical Students of the 2012/2013 academic year. Self-perceived competence: students rated their competence on 14 core- clinical practical procedures using a self-administered questionnaire on a 5-point Likert scale. Objective competence: it was measured by Objective Structured Clinical Examination (OSCE) by faculty using predetermined rating scales. Rank order correlation test was performed for self-perceived and objectively measured competence. Results Two thirds 36 (66.7%) of the participants perceived themselves as moderately competent, 15 (27.8%) rated themselves as highly competent while 3 (5.6%) had low self-perception. With objective competence, the majority 52 (92.8%) were barely competent while 4 (7.2%) were absolutely competent. When overall self-perception was compared to objectively measured competence, there was a discordance which was demonstrated by a negative correlation (Spearman rho -.123). Conclusions Significant numbers of students reported low self-competence in performing procedures such as endotracheal intubation, gastric lavage and cardiopulmonary resuscitation which most never performed during the clinical years of medical education. In addition, the negative correlation between self-perceived and objectively measured competence demonstrated the inability of students to assess and rate themselves objectively due to fear that others may know their weaknesses and realize that they are not as competent as expected at a specific level of training. PMID:27132255
Katowa-Mukwato, Patricia; Banda, Sekelani
2016-04-30
To determine and compare the self-perceived and objectively measured competence in performing 14 core-clinical practical procedures by Final Year Medical Students of the University of Zambia. The study included 56 out of 60 graduating University of Zambia Medical Students of the 2012/2013 academic year. Self-perceived competence: students rated their competence on 14 core- clinical practical procedures using a self-administered questionnaire on a 5-point Likert scale. Objective competence: it was measured by Objective Structured Clinical Examination (OSCE) by faculty using predetermined rating scales. Rank order correlation test was performed for self-perceived and objectively measured competence. Two thirds 36 (66.7%) of the participants perceived themselves as moderately competent, 15 (27.8%) rated themselves as highly competent while 3 (5.6%) had low self-perception. With objective competence, the majority 52 (92.8%) were barely competent while 4 (7.2%) were absolutely competent. When overall self-perception was compared to objectively measured competence, there was a discordance which was demonstrated by a negative correlation (Spearman rho -.123). Significant numbers of students reported low self-competence in performing procedures such as endotracheal intubation, gastric lavage and cardiopulmonary resuscitation which most never performed during the clinical years of medical education. In addition, the negative correlation between self-perceived and objectively measured competence demonstrated the inability of students to assess and rate themselves objectively due to fear that others may know their weaknesses and realize that they are not as competent as expected at a specific level of training.
Liang, Qian; Cui, Sainan; Liu, Changhai; Xu, Song; Yao, Chao; Li, Zhongyu
2018-08-15
A novel class of CdS@UIO-66-NH 2 core shell heterojunction was fabricated by the facile in-situ solvothermal method. Characterizations show that porous UIO-66-NH 2 shell not only allows the visible light to be absorbed on CdS nanorod core, but also provides abundant catalytic active sites as well as an intimate heterojunction interface between UIO-66-NH 2 shell and CdS nanorod core. By taking advantage of this property, the core-shell composite presents highly solar-driven photocatalytic performance compared with pristine UIO-66-NH 2 and CdS nanorod for the degradation of organic dyes including malachite green (MG) and methyl orange (MO), and displays superior photostability after four recycles. Furthermore, the photoelectrochemical performance of CdS@UIO-66-NH 2 can be measured by the UV-vis spectra, Mott-Schottky plots and photocurrent. The remarkably enhanced photocatalytic activity of CdS@UIO-66-NH 2 can be ascribed to high surface areas, intimate interaction on molecular scale and the formation of one-dimensional heterojunction with n-n type. What's more, the core-shell heterostructural CdS@UIO-66-NH 2 can facilitate the effective separation and transfer of the photoinduced interfacial electron-hole pairs and protect CdS nanorod core from photocorrosion. Copyright © 2018 Elsevier Inc. All rights reserved.
Array analyses of SmKS waves and the stratification of Earth's outermost core
NASA Astrophysics Data System (ADS)
Kaneshima, Satoshi
2018-03-01
We perform array analyses of SmKS waves in order to investigate the Vp structure of the Earth's outermost core. For earthquakes recorded by broadband seismometer networks in the world, we measure differential travel times between S3KS and S2KS, between S4KS and S3KS, and between S5KS and S3KS by array techniques. The differential times are well fit by a Vp model of the Earth's outermost core, KHOMC (Kaneshima and Helffrich, 2013). Differential slownesses of S4KS and S2KS relative to S2KS are also measured for the highest quality data. The measured slownesses, with unique sensitivity to the outer core 200-400 km below the CMB, are matched by KHOMC. These observations consolidate the evidence for the presence at the top of the outer core of a layer that has a distinctively steeper Vp gradient than the bulk of the outer core. We invert new SmKS differential time data set by a tau-p method and attempt to refine the Vp profile of KHOMC. The essential features of KHOMC are preserved after the model refinement. However, the newly estimated layer thickness is nearly 450 km, which is thicker than that of KHOMC. The Vp anomalies relative to PREM for the depths 400-800 km below the CMB are less than 0.03 km/s, consistent with the degree of agreement between different Vp models for the depth range.
ERIC Educational Resources Information Center
Bain, Lisa Z.
2012-01-01
There are many different delivery methods used by institutions of higher education. These include traditional, hybrid, and online course offerings. The comparisons of these typically use final grade as the measure of student performance. This research study looks behind the final grade and compares student performance by assessment type, core…
Choi, Hyekyoung; Song, Jung Hoon; Jang, Jihoon; Mai, Xuan Dung; Kim, Sungwoo; Jeong, Sohee
2015-11-07
We fabricated heterojunction solar cells with PbSe/PbS core shell quantum dots and studied the precisely controlled PbS shell thickness dependency in terms of optical properties, electronic structure, and solar cell performances. When the PbS shell thickness increases, the short circuit current density (JSC) increases from 6.4 to 11.8 mA cm(-2) and the fill factor (FF) enhances from 30 to 49% while the open circuit voltage (VOC) remains unchanged at 0.46 V even with the decreased effective band gap. We found that the Fermi level and the valence band maximum level remain unchanged in both the PbSe core and PbSe/PbS core/shell with a less than 1 nm thick PbS shell as probed via ultraviolet photoelectron spectroscopy (UPS). The PbS shell reduces their surface trap density as confirmed by relative quantum yield measurements. Consequently, PbS shell formation on the PbSe core mitigates the trade-off relationship between the open circuit voltage and the short circuit current density. Finally, under the optimized conditions, the PbSe core with a 0.9 nm thick shell yielded a power conversion efficiency of 6.5% under AM 1.5.
Tracking the Magnetization Evolution in γ-Fe2O3 / Metallic Fe Core-Shell Nanoparticle Variants
NASA Astrophysics Data System (ADS)
Kons, C.; Nemati, Z.; Srikanth, H.; Phan, M.-H.; Krycka, K.; Borchers, J.; Keavney, D.; Arena, D. A.
Iron-core magnetic nanoparticles (MNPs) with oxide shells exhibit varying magnetic properties due to the different ordering temperatures of the core and shell spins, as well as the coupling across the metal/oxide interface. While spin coupling across two dimensional interfaces has been well explored, less is known about three dimensional interfaces such as those presented in the MNPs. In this work, MNPs were synthesized with a bcc Fe core and γ-Fe2O3 shell and placed in an oxygen rich environment to encourage the transition from cores shell (CS) to core void shell (CVS) to hollow (H) structures. Static magnetic measurements (MvT) and AC magnetometry were performed to explore the magnetic behavior of the various synthesized structures. To further understand the nature of the spin coupling in the MNPs, TEM and conventional magnetometry as well as variable-temperature small angle neutron scattering (SANS), x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) spectroscopy were performed. Modeling of the x-ray spectra and SANS data will enable us to develop a cohesive picture of spin coupling, freezing and frustration along the three-dimensional metal / oxide interface. Supported by Department of Energy award #DE-FG02-07ER46438; NSF Award #DMR-1508249.
Cadieu, Charles F.; Hong, Ha; Yamins, Daniel L. K.; Pinto, Nicolas; Ardila, Diego; Solomon, Ethan A.; Majaj, Najib J.; DiCarlo, James J.
2014-01-01
The primate visual system achieves remarkable visual object recognition performance even in brief presentations, and under changes to object exemplar, geometric transformations, and background variation (a.k.a. core visual object recognition). This remarkable performance is mediated by the representation formed in inferior temporal (IT) cortex. In parallel, recent advances in machine learning have led to ever higher performing models of object recognition using artificial deep neural networks (DNNs). It remains unclear, however, whether the representational performance of DNNs rivals that of the brain. To accurately produce such a comparison, a major difficulty has been a unifying metric that accounts for experimental limitations, such as the amount of noise, the number of neural recording sites, and the number of trials, and computational limitations, such as the complexity of the decoding classifier and the number of classifier training examples. In this work, we perform a direct comparison that corrects for these experimental limitations and computational considerations. As part of our methodology, we propose an extension of “kernel analysis” that measures the generalization accuracy as a function of representational complexity. Our evaluations show that, unlike previous bio-inspired models, the latest DNNs rival the representational performance of IT cortex on this visual object recognition task. Furthermore, we show that models that perform well on measures of representational performance also perform well on measures of representational similarity to IT, and on measures of predicting individual IT multi-unit responses. Whether these DNNs rely on computational mechanisms similar to the primate visual system is yet to be determined, but, unlike all previous bio-inspired models, that possibility cannot be ruled out merely on representational performance grounds. PMID:25521294
Vibration mode and vibration shape under excitation of a three phase model transformer core
NASA Astrophysics Data System (ADS)
Okabe, Seiji; Ishigaki, Yusuke; Omura, Takeshi
2018-04-01
Structural vibration characteristics and vibration shapes under three-phase excitation of a archetype transformer core were investigated to consider their influences on transformer noise. Acoustic noise and vibration behavior were measured in a three-limb model transformer core. Experimental modal analysis by impact test was performed. The vibration shapes were measured by a laser scanning vibrometer at different exciting frequencies. Vibration amplitude of the core in out-of-plane direction were relatively larger than those in other two in-plane directions. It was consistent with the result that the frequency response function of the core in out-of-plane direction was larger by about 20 dB or more than those in in-plane directions. There were many vibration modes having bending deformation of limbs in out-of-plane direction. The vibration shapes of the core when excited at 50 Hz and 60 Hz were almost the same because the fundamental frequencies of the vibration were not close to the resonance frequencies. When excitation frequency was 69 Hz which was half of one of the resonance frequencies, the vibration shape changed to the one similar to the resonance vibration mode. Existence of many vibration modes in out-of-plane direction of the core was presumed to be a reason why frequency characteristics of magnetostriction and transformer noise do not coincide.
NASA Astrophysics Data System (ADS)
Boaga, J.; Sauermilch, I.; Mateo, Z. R. P.
2017-12-01
Time-depth relationships (TDR) are crucial in correlating drillhole and core information to seismic reflection profiles, for accurate resource estimation, scientific interpretation and to guide drilling operations. Conventional seismic time-depth domain conversion utilizes downhole sonic logs (DSI), calibrated using available checkshot data, which are local travel times from the surface to a particular depth. Scientific drilling programs (ODP and IODP) also measure P-wave velocity (PWL or C) on recovered core samples. Only three percent of all ODP and IODP sites record all three velocity measurements, however this information can be instructive as sometimes these data input show dissimilar TDR. These representative sites provide us with an opportunity to perform a comparative analysis highlighting the differences and similarities of TDRs derived from checkshot, downhole, and laboratory measurements. We then discuss the impact of lithology, stratigraphy, water column and other petrophysical properties in the predictive accuracy of TDR calculations, in an effort to provide guidance for future drilling and coring expeditions.
Game-based, portable, upper extremity rehabilitation in chronic stroke.
Schuck, Sarah O; Whetstone, Amy; Hill, Valerie; Levine, Peter; Page, Stephen J
2011-01-01
This case series pilot study evaluates the efficacy of the Core:Tx gaming device on 2 chronic stroke survivors. Intervention was provided 3 times a week for 3 weeks. Outcome measures, administered 1 week before and 1 week after intervention, included the Stroke Impact Scale (SIS), the Canadian Occupational Performance Measure (COPM), the Fugl-Meyer Assessment of Motor Recovery (Fugl-Meyer [FM]), and the Box and Block Test (BB). Participant A exhibited an 11-point increase on the SIS, a 1.2-point change on each of the performance and satisfaction scores of the COPM, a 1-point increase on the FM, and no change on the BB. Participant B exhibited a 3-point increase on the SIS and no change on the COPM, FM, or BB. The participants experienced increased quality of life, a greater propensity to use their affected arm, and enhanced task performance without exhibiting motor changes. Additionally, the Core:Tx gaming device was reported by the participants to be a motivating modality in the therapy setting.
Code of Federal Regulations, 2010 CFR
2010-04-01
... included in the core indicators of performance? 666.140 Section 666.140 Employees' Benefits EMPLOYMENT AND... the core indicators of performance? (a)(1) The core indicators of performance apply to all individuals... informational activities. (WIA sec. 136(b)(2)(A).) (2) Self-service and informational activities are those core...
Quality control of measurements made on fixed-area sample plots
Ola Lindgren
2000-01-01
The paper describes results from a large program for quality control of forest measurements. The performance of 87 surveyors was evaluated. Tree heights were usually measured well, whereas the counting of tree-rings on increment cores was a source of considerable bias for many surveyors. During tree count on sample plots, many surveyors had a tendency to forget trees,...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bitter, M.; von Goeler, S.; Horton, R.
1979-01-29
Ion-temperature results are deduced from Doppler-broadening measurements of the K..cap alpha.. (1s-2p) resonance line emitted from heliumlike iron impurity ions in the hot central core of PLT (Princeton Large Torus) tokamak discharges. The measurements were performed using a high-resolution Bragg-crystal spectrometer with a multiwire proportional counter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huml, O.
The objective of this work was to determine the neutron flux density distribution in various places of the training reactor VR-1 Sparrow. This experiment was performed on the new core design C1, composed of the new low-enriched uranium fuel cells IRT-4M (19.7 %). This fuel replaced the old high-enriched uranium fuel IRT-3M (36 %) within the framework of the RERTR Program in September 2005. The measurement used the neutron activation analysis method with gold wires. The principle of this method consists in neutron capture in a nucleus of the material forming the activation detector. This capture can change the nucleusmore » in a radioisotope, whose activity can be measured. The absorption cross-section values were evaluated by MCNP computer code. The gold wires were irradiated in seven different positions in the core C1. All irradiations were performed at reactor power level 1E8 (1 kW{sub therm}). The activity of segments of irradiated wires was measured by special automatic device called 'Drat' (Wire in English). (author)« less
Waite, W.F.; Kneafsey, T.J.; Winters, W.J.; Mason, D.H.
2008-01-01
Physical property measurements of sediment cores containing natural gas hydrate are typically performed on material exposed, at least briefly, to non-in situ conditions during recovery. To examine the effects of a brief excursion from the gas-hydrate stability field, as can occur when pressure cores are transferred to pressurized storage vessels, we measured physical properties on laboratory-formed sand packs containing methane hydrate and methane pore gas. After depressurizing samples to atmospheric pressure, we repressurized them into the methane-hydrate stability field and remeasured their physical properties. Thermal conductivity, shear strength, acoustic compressional and shear wave amplitudes, and speeds of the original and depressurized/repressurized samples are compared. X– ray computed tomography images track how the gas-hydrate distribution changes in the hydrate-cemented sands owing to the depressurizaton/repressurization process. Because depressurization-induced property changes can be substantial and are not easily predicted, particularly in water-saturated, hydrate-bearing sediment, maintaining pressure and temperature conditions throughout the core recovery and measurement process is critical for using laboratory measurements to estimate in situ properties.
Waite, W.F.; Kneafsey, T.J.; Winters, W.J.; Mason, D.H.
2008-01-01
Physical property measurements of sediment cores containing natural gas hydrate are typically performed on material exposed, at least briefly, to non-in situ conditions during recovery. To examine the effects of a brief excursion from the gas-hydrate stability field, as can occur when pressure cores are transferred to pressurized storage vessels, we measured physical properties on laboratory-formed sand packs containing methane hydrate and methane pore gas. After depressurizing samples to atmospheric pressure, we repressurized them into the methane-hydrate stability field and remeasured their physical properties. Thermal conductivity, shear strength, acoustic compressional and shear wave amplitudes, and speeds of the original and depressurized/repressurized samples are compared. X-ray computed tomography images track how the gas-hydrate distribution changes in the hydrate-cemented sands owing to the depressurizaton/repressurization process. Because depressurization-induced property changes can be substantial and are not easily predicted, particularly in water-saturated, hydrate-bearing sediment, maintaining pressure and temperature conditions throughout the core recovery and measurement process is critical for using laboratory measurements to estimate in situ properties.
Neutron-gamma flux and dose calculations in a Pressurized Water Reactor (PWR)
NASA Astrophysics Data System (ADS)
Brovchenko, Mariya; Dechenaux, Benjamin; Burn, Kenneth W.; Console Camprini, Patrizio; Duhamel, Isabelle; Peron, Arthur
2017-09-01
The present work deals with Monte Carlo simulations, aiming to determine the neutron and gamma responses outside the vessel and in the basemat of a Pressurized Water Reactor (PWR). The model is based on the Tihange-I Belgian nuclear reactor. With a large set of information and measurements available, this reactor has the advantage to be easily modelled and allows validation based on the experimental measurements. Power distribution calculations were therefore performed with the MCNP code at IRSN and compared to the available in-core measurements. Results showed a good agreement between calculated and measured values over the whole core. In this paper, the methods and hypotheses used for the particle transport simulation from the fission distribution in the core to the detectors outside the vessel of the reactor are also summarized. The results of the simulations are presented including the neutron and gamma doses and flux energy spectra. MCNP6 computational results comparing JEFF3.1 and ENDF-B/VII.1 nuclear data evaluations and sensitivity of the results to some model parameters are presented.
Saito, Y; Mishima, K; Tobita, Y; Suzuki, T; Matsubayashi, M
2004-10-01
To establish reasonable safety concepts for the realization of commercial liquid-metal fast breeder reactors, it is indispensable to demonstrate that the release of excessive energy due to re-criticality of molten core could be prevented even if a severe core damage accident took place. Two-phase flow due to the boiling of fuel-steel mixture in the molten core pool has a larger liquid-to-gas density ratio and higher surface tension in comparison with those of ordinary two-phase flows such as air-water flow. In this study, to investigate the effect of the recirculation flow on the bubble behavior, visualization and measurement of nitrogen gas-molten lead bismuth in a rectangular tank was performed by using neutron radiography and particle image velocimetry techniques. Measured flow parameters include flow regime, two-dimensional void distribution, and liquid velocity field in the tank. The present technique is applicable to the measurement of velocity fields and void fraction, and the basic characteristics of gas-liquid metal two-phase mixture were clarified.
Competency Assessment in Senior Emergency Medicine Residents for Core Ultrasound Skills.
Schmidt, Jessica N; Kendall, John; Smalley, Courtney
2015-11-01
Quality resident education in point-of-care ultrasound (POC US) is becoming increasingly important in emergency medicine (EM); however, the best methods to evaluate competency in graduating residents has not been established. We sought to design and implement a rigorous assessment of image acquisition and interpretation in POC US in a cohort of graduating residents at our institution. We evaluated nine senior residents in both image acquisition and image interpretation for five core US skills (focused assessment with sonography for trauma (FAST), aorta, echocardiogram (ECHO), pelvic, central line placement). Image acquisition, using an observed clinical skills exam (OSCE) directed assessment with a standardized patient model. Image interpretation was measured with a multiple-choice exam including normal and pathologic images. Residents performed well on image acquisition for core skills with an average score of 85.7% for core skills and 74% including advanced skills (ovaries, advanced ECHO, advanced aorta). Residents scored well but slightly lower on image interpretation with an average score of 76%. Senior residents performed well on core POC US skills as evaluated with a rigorous assessment tool. This tool may be developed further for other EM programs to use for graduating resident evaluation.
Testing to the Top: Everything But the Kitchen Sink?
ERIC Educational Resources Information Center
Dietel, Ron
2011-01-01
Two tests intended to measure student achievement of the Common Core State Standards will face intense scrutiny, but the test makers say they will include performance assessments and other items that are not multiple-choice questions. Incorporating performance items on this tests will bring up issues over scoring, costs, and validity.
School Accountability: Mathematics Teachers Struggling with Change
ERIC Educational Resources Information Center
Obara, Samuel
2011-01-01
In this period of accountability advocated by the No Child Left Behind Act of 2001, testing has been selected as a primary means of measuring the performance of schools. The State of Georgia is in the process of replacing its old curriculum--Georgia's Quality Core Curriculum (QCC) with a new curriculum--Georgia Performance Standards (GPS) to…
NASA Technical Reports Server (NTRS)
Mcardle, J. G.; Homyak, L.; Moore, A. S.
1979-01-01
The performance of a YF-102 turbofan engine was measured in an outdoor test stand with a bellmouth inlet and seven exhaust-system configurations. The configurations consisted of three separate-flow systems of various fan and core nozzle sizes and four confluent-flow systems of various nozzle sizes and shapes. A computer program provided good estimates of the engine performance and of thrust at maximum rating for each exhaust configuration. The internal performance of two different-shaped core nozzles for confluent-flow configurations was determined to be satisfactory. Pressure and temperature surveys were made with a traversing probe in the exhaust-nozzle flow for some confluent-flow configurations. The survey data at the mixing plane, plus the measured flow rates, were used to calculate the static-pressure variation along the exhaust nozzle length. The computed pressures compared well with experimental wall static-pressure data. External-flow surveys were made, for some confluent-flow configurations, with a large fixed rake at various locations in the exhaust plume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stinson-Bagby, Kelly L.; Fielder, Robert S.; Van Dyke, Melissa K.
2004-02-04
The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. Distributed high temperature measurements were made with 20 FBG temperature sensors installed in the SAFE-100 thermal simulator at the NASA Marshal Space Flight Center. Experiments were performed at temperatures approaching 800 deg. C and 1150 deg. C for characterization studies of the SAFE-100 core. Temperature profiles were successfully generated for the core during temperature increases and decreases. Related tests in the SAFE-100 successfully provided strain measurement data.
Wide-range structurally optimized channel for monitoring the certified power of small-core reactors
NASA Astrophysics Data System (ADS)
Koshelev, A. S.; Kovshov, K. N.; Ovchinnikov, M. A.; Pikulina, G. N.; Sokolov, A. B.
2016-12-01
The results of tests of a prototype version of a channel for monitoring the certified power of small-core reactors performed at the BR-K1 reactor at the All-Russian Scientific Research Institute of Experimental Physics are reported. An SNM-11 counter and commercial KNK-4 and KNK-3 compensated ion chambers were used as neutron detectors in the tested channel, and certified NCMM and CCMM measurement modules controlled by a PC with specialized software were used as measuring instruments. The specifics of metrological assurance of calibration of the channel in the framework of reactor power monitoring are discussed.
GPM Avionics Module Heat Pipes Design and Performance Test Results
NASA Technical Reports Server (NTRS)
Ottenstein, Laura; DeChristopher, Mike
2012-01-01
GPM is a satellite constellation to study precipitation formed from a partnership between NASA and the Japanese Aerospace Exploration Agency (JAXA). The GPM Core Observatory, being developed and tested at GSFC, serves as a reference standard to unify precipitation measurements from the GPM satellite constellation. The Core Observatory carries an advanced radar/radiometer system to measure precipitation from space. The scientific data gained from GPM will benefit both NASA and JAXA by advancing our understanding of Earth's water and energy cycle, improving forecasts of extreme weather events, and extending our current capabilities in using accurate and timely precipitation information to benefit society.
Wide-range structurally optimized channel for monitoring the certified power of small-core reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koshelev, A. S., E-mail: alexsander.coshelev@yandex.ru; Kovshov, K. N.; Ovchinnikov, M. A.
The results of tests of a prototype version of a channel for monitoring the certified power of small-core reactors performed at the BR-K1 reactor at the All-Russian Scientific Research Institute of Experimental Physics are reported. An SNM-11 counter and commercial KNK-4 and KNK-3 compensated ion chambers were used as neutron detectors in the tested channel, and certified NCMM and CCMM measurement modules controlled by a PC with specialized software were used as measuring instruments. The specifics of metrological assurance of calibration of the channel in the framework of reactor power monitoring are discussed.
The JCMT Gould Belt Survey: first results from SCUBA-2 observations of the Cepheus Flare region
NASA Astrophysics Data System (ADS)
Pattle, K.; Ward-Thompson, D.; Kirk, J. M.; Di Francesco, J.; Kirk, H.; Mottram, J. C.; Keown, J.; Buckle, J.; Beaulieu, S. F.; Berry, D. S.; Broekhoven-Fiene, H.; Currie, M. J.; Fich, M.; Hatchell, J.; Jenness, T.; Johnstone, D.; Nutter, D.; Pineda, J. E.; Quinn, C.; Salji, C.; Tisi, S.; Walker-Smith, S.; Hogerheijde, M. R.; Bastien, P.; Bresnahan, D.; Butner, H.; Chen, M.; Chrysostomou, A.; Coudé, S.; Davis, C. J.; Drabek-Maunder, E.; Duarte-Cabral, A.; Fiege, J.; Friberg, P.; Friesen, R.; Fuller, G. A.; Graves, S.; Greaves, J.; Gregson, J.; Holland, W.; Joncas, G.; Knee, L. B. G.; Mairs, S.; Marsh, K.; Matthews, B. C.; Moriarty-Schieven, G.; Mowat, C.; Rawlings, J.; Richer, J.; Robertson, D.; Rosolowsky, E.; Rumble, D.; Sadavoy, S.; Thomas, H.; Tothill, N.; Viti, S.; White, G. J.; Wouterloot, J.; Yates, J.; Zhu, M.
2017-02-01
We present observations of the Cepheus Flare obtained as part of the James Clerk Maxwell Telescope (JCMT) Gould Belt Legacy Survey (GBLS) with the SCUBA-2 instrument. We produce a catalogue of sources found by SCUBA-2, and separate these into starless cores and protostars. We determine masses and densities for each of our sources, using source temperatures determined by the Herschel Gould Belt Survey. We compare the properties of starless cores in four different molecular clouds: L1147/58, L1172/74, L1251 and L1228. We find that the core mass functions for each region typically show shallower-than-Salpeter behaviour. We find that L1147/58 and L1228 have a high ratio of starless cores to Class II protostars, while L1251 and L1174 have a low ratio, consistent with the latter regions being more active sites of current star formation, while the former are forming stars less actively. We determine that if modelled as thermally supported Bonnor-Ebert spheres, most of our cores have stable configurations accessible to them. We estimate the external pressures on our cores using archival 13CO velocity dispersion measurements and find that our cores are typically pressure confined, rather than gravitationally bound. We perform a virial analysis on our cores, and find that they typically cannot be supported against collapse by internal thermal energy alone, due primarily to the measured external pressures. This suggests that the dominant mode of internal support in starless cores in the Cepheus Flare is either non-thermal motions or internal magnetic fields.
Multiple Experimental Efforts to Understand the Structure and Dynamics of Earth's Core
NASA Astrophysics Data System (ADS)
Fei, Y.; Han, L.; Bennett, N.; Hou, M.; Kuwayama, Y.; Huang, H.
2014-12-01
It requires integration of data from different types of high-pressure experiments to understand the structure and dynamics of Earth's core. In particular, measurements of physical properties and element partitioning in systems relevant to the core provide complementary data to narrow down the range of possible core compositions. We have performed both static and dynamic compression experiments and combined results from these with literature data to establish a reliable thermal equation of state of iron. This allows us to precisely determine the density deficit in the solid inner core. The combination of density and sound velocity measurements for both solid and liquid iron and its alloys provide tight constraints on the density deficit in the liquid outer core and the amount of sulphur required to match the geophysical observations. We then conducted element-partitioning experiments between solid and liquid iron in both multi-anvil apparatus and the laser-heated diamond-anvil cell to determine the sulphur, silicon, and oxygen partitioning between the liquid outer core and solid inner core. We present newly developed high-pressure experimental and nano-scale analytical techniques that allow us to simulate the conditions of the inner core boundary (ICB) and analyze the chemical compositions of coexisting phases in the recovered samples. We have established protocols to obtain high-quality partitioning data in the laser-heating diamond-anvil cell combined with FIB/SEM crossbeam technology. The partitioning data obtained up to at least 200 GPa provide additional criteria to explain the observed density and velocity jumps at the ICB.
NASA Astrophysics Data System (ADS)
Geng, Ying; Li, Shenping; Li, Ming-Jun; Sutton, Clifford G.; McCollum, Robert L.; McClure, Randy L.; Koklyushkin, Alexander V.; Matthews, Karen I.; Luther, James P.; Butler, Douglas L.
2015-03-01
A complete single mode dual-core fiber system for short-reach optical interconnects is fabricated and tested for high-speed data transmission. It includes dual-core fibers capable of bi-directional data transmission, dual-core simplex LC connectors, and fan-outs. The transmission system offers simplified bi-directional traffic engineering with integrated bidirectional transceivers and compact system design, utilizing simplex dual-core LC connectors that use half the space while increasing the bandwidth density by a factor of two. The fiber has two cores that are compatible with single mode fiber and conforms to the industry standard outer diameter of 125 μm. This reduces operational complexity by reducing the size and number of fibers, cables and connectors. Measured OTDR loss for both cores was 0.34 dB/km at 1310 nm and 0.19 dB/km at 1550 nm. Crosstalk for a piece of 5.8 km long dual-core fiber was measured to be below -75 dB at 1310 nm, and below -40 dB at 1550 nm. Both free-space optics fan-outs and tapered-fiber-coupler based MCF fan-outs were evaluated for the transmission system. Error-free and penalty-free 25 Gb/s bi-directional transmission performance was demonstrated for three different fiber lengths, 200 m, 2 km and 10 km, using the complete all-fiber-based system including connectors and fan-outs. This single mode, dual-core fiber transmission system adds complementary value to systems where additional increases in bandwidth density can come from wavelength division multiplexing and multiple bits per symbol.
NASA Astrophysics Data System (ADS)
Kaiba, Tanja; Radulović, Vladimir; Žerovnik, Gašper; Snoj, Luka; Fourmentel, Damien; Barbot, LoÏc; Destouches, Christophe AE(; )
2018-01-01
Preliminary calculations were performed with the aim to establish optimal experimental conditions for the measurement campaign within the collaboration between the Jožef Stefan Institute (JSI) and Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA Cadarache). The goal of the project is to additionally characterize the neutron spectruminside the JSI TRIGA reactor core with focus on the measurement epi-thermal and fast part of the spectrum. Measurements will be performed with fission chambers containing different fissile materials (235U, 237Np and 242Pu) covered with thermal neutron filters (Cd and Gd). The changes in the detected signal and neutron flux spectrum with and without transmission filter were studied. Additional effort was put into evaluation of the effect of the filter geometry (e.g. opening on the top end of the filter) on the detector signal. After the analysis of the scoping calculations it was concluded to position the experiment in the outside core ring inside one of the empty fuel element positions.
NASA Astrophysics Data System (ADS)
Capron, E.; Landais, A.; Buiron, D.; Cauquoin, A.; Chappellaz, J.; Debret, M.; Jouzel, J.; Leuenberger, M.; Martinerie, P.; Masson-Delmotte, V.; Mulvaney, R.; Parrenin, F.; Prié, F.
2012-12-01
Correct estimate of the firn lock-in depth is essential for correctly linking gas and ice chronologies in ice cores studies. Here, two approaches to constrain the firn depth evolution in Antarctica are presented over the last deglaciation: output of a firn densification model and measurements of δ15N of N2 in air trapped in ice core. Since the firn densification process is largely governed by surface temperature and accumulation rate, we have investigated four ice cores drilled in coastal (Berkner Island, BI, and James Ross Island, JRI) and semi coastal (TALDICE and EPICA Dronning Maud Land, EDML) Antarctic regions. Combined with available δ15N measurements performed from the EPICA Dome C (EDC) site, the studied regions encompass a large range of surface accumulation rate and temperature conditions. While firn densification simulations are able to correctly represent most of the δ15N trends over the last deglaciation measured in the EDC, BI, TALDICE and EDML ice cores, they systematically fail to capture BI and EDML δ15N glacial levels, a mismatch previously seen for Central East Antarctic ice cores. Using empirical constraints of the EDML gas-ice depth offset during the Laschamp event (~ 41 ka), we can rule out the existence of a large convective zone as the explanation of the glacial firn model-δ15N data mismatch for this site. The good match between modelled and measured δ15N at TALDICE as well as the lack of any clear correlation between insoluble dust concentration in snow and δ15N records in the different ice cores suggest that past changes in loads of impurities are not the only main driver of glacial-interglacial changes in firn lock-in depth. We conclude that firn densification dynamics may instead be driven mostly by accumulation rate changes. The mismatch between modelled and measured δ15N may be due to inaccurate reconstruction of past accumulation rate or underestimated influence of accumulation rate in firnification models.
Applications of Ferro-Nanofluid on a Micro-Transformer
Tsai, Tsung-Han; Kuo, Long-Sheng; Chen, Ping-Hei; Lee, Da-sheng; Yang, Chin-Ting
2010-01-01
An on-chip transformer with a ferrofluid magnetic core has been developed and tested. The transformer consists of solenoid-type coil and a magnetic core of ferrofluid, with the former fabricated by MEMS technology and the latter by a chemical co-precipitation method. The performance of the MEMS transformer with a ferrofluid magnetic core was measured and simulated with frequencies ranging from 100 kHz to 100 MHz. Experimental results reveal that the presence of the ferrofluid increases the inductance of coils and the coupling coefficient of transformer; however, it also increases the resistance owing to the lag between the external magnetic field and the magnetization of the material. PMID:22163647
Applications of ferro-nanofluid on a micro-transformer.
Tsai, Tsung-Han; Kuo, Long-Sheng; Chen, Ping-Hei; Lee, Da-Sheng; Yang, Chin-Ting
2010-01-01
An on-chip transformer with a ferrofluid magnetic core has been developed and tested. The transformer consists of solenoid-type coil and a magnetic core of ferrofluid, with the former fabricated by MEMS technology and the latter by a chemical co-precipitation method. The performance of the MEMS transformer with a ferrofluid magnetic core was measured and simulated with frequencies ranging from 100 kHz to 100 MHz. Experimental results reveal that the presence of the ferrofluid increases the inductance of coils and the coupling coefficient of transformer; however, it also increases the resistance owing to the lag between the external magnetic field and the magnetization of the material.
Benchmark Evaluation of HTR-PROTEUS Pebble Bed Experimental Program
Bess, John D.; Montierth, Leland; Köberl, Oliver; ...
2014-10-09
Benchmark models were developed to evaluate 11 critical core configurations of the HTR-PROTEUS pebble bed experimental program. Various additional reactor physics measurements were performed as part of this program; currently only a total of 37 absorber rod worth measurements have been evaluated as acceptable benchmark experiments for Cores 4, 9, and 10. Dominant uncertainties in the experimental keff for all core configurations come from uncertainties in the ²³⁵U enrichment of the fuel, impurities in the moderator pebbles, and the density and impurity content of the radial reflector. Calculations of k eff with MCNP5 and ENDF/B-VII.0 neutron nuclear data aremore » greater than the benchmark values but within 1% and also within the 3σ uncertainty, except for Core 4, which is the only randomly packed pebble configuration. Repeated calculations of k eff with MCNP6.1 and ENDF/B-VII.1 are lower than the benchmark values and within 1% (~3σ) except for Cores 5 and 9, which calculate lower than the benchmark eigenvalues within 4σ. The primary difference between the two nuclear data libraries is the adjustment of the absorption cross section of graphite. Simulations of the absorber rod worth measurements are within 3σ of the benchmark experiment values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benoit, J. C.; Bourdot, P.; Eschbach, R.
2012-07-01
A Decay Heat (DH) experiment on the whole core of the French Sodium-Cooled Fast Reactor PHENIX has been conducted in May 2008. The measurements began an hour and a half after the shutdown of the reactor and lasted twelve days. It is one of the experiments used for the experimental validation of the depletion code DARWIN thereby confirming the excellent performance of the aforementioned code. Discrepancies between measured and calculated decay heat do not exceed 8%. (authors)
Adaptive Core Simulation Employing Discrete Inverse Theory - Part II: Numerical Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdel-Khalik, Hany S.; Turinsky, Paul J.
2005-07-15
Use of adaptive simulation is intended to improve the fidelity and robustness of important core attribute predictions such as core power distribution, thermal margins, and core reactivity. Adaptive simulation utilizes a selected set of past and current reactor measurements of reactor observables, i.e., in-core instrumentation readings, to adapt the simulation in a meaningful way. The companion paper, ''Adaptive Core Simulation Employing Discrete Inverse Theory - Part I: Theory,'' describes in detail the theoretical background of the proposed adaptive techniques. This paper, Part II, demonstrates several computational experiments conducted to assess the fidelity and robustness of the proposed techniques. The intentmore » is to check the ability of the adapted core simulator model to predict future core observables that are not included in the adaption or core observables that are recorded at core conditions that differ from those at which adaption is completed. Also, this paper demonstrates successful utilization of an efficient sensitivity analysis approach to calculate the sensitivity information required to perform the adaption for millions of input core parameters. Finally, this paper illustrates a useful application for adaptive simulation - reducing the inconsistencies between two different core simulator code systems, where the multitudes of input data to one code are adjusted to enhance the agreement between both codes for important core attributes, i.e., core reactivity and power distribution. Also demonstrated is the robustness of such an application.« less
Silicon Nanophotonics for Many-Core On-Chip Networks
NASA Astrophysics Data System (ADS)
Mohamed, Moustafa
Number of cores in many-core architectures are scaling to unprecedented levels requiring ever increasing communication capacity. Traditionally, architects follow the path of higher throughput at the expense of latency. This trend has evolved into being problematic for performance in many-core architectures. Moreover, the trends of power consumption is increasing with system scaling mandating nontraditional solutions. Nanophotonics can address these problems, offering benefits in the three frontiers of many-core processor design: Latency, bandwidth, and power. Nanophotonics leverage circuit-switching flow control allowing low latency; in addition, the power consumption of optical links is significantly lower compared to their electrical counterparts at intermediate and long links. Finally, through wave division multiplexing, we can keep the high bandwidth trends without sacrificing the throughput. This thesis focuses on realizing nanophotonics for communication in many-core architectures at different design levels considering reliability challenges that our fabrication and measurements reveal. First, we study how to design on-chip networks for low latency, low power, and high bandwidth by exploiting the full potential of nanophotonics. The design process considers device level limitations and capabilities on one hand, and system level demands in terms of power and performance on the other hand. The design involves the choice of devices, designing the optical link, the topology, the arbitration technique, and the routing mechanism. Next, we address the problem of reliability in on-chip networks. Reliability not only degrades performance but can block communication. Hence, we propose a reliability-aware design flow and present a reliability management technique based on this flow to address reliability in the system. In the proposed flow reliability is modeled and analyzed for at the device, architecture, and system level. Our reliability management technique is superior to existing solutions in terms of power and performance. In fact, our solution can scale to thousand core with low overhead.
Thermo-electrochemical instrumentation of cylindrical Li-ion cells
NASA Astrophysics Data System (ADS)
McTurk, Euan; Amietszajew, Tazdin; Fleming, Joe; Bhagat, Rohit
2018-03-01
The performance evaluation and optimisation of commercially available lithium-ion cells is typically based upon their full cell potential and surface temperature measurements, despite these parameters not being fully representative of the electrochemical processes taking place in the core of the cell or at each electrode. Several methods were devised to obtain the cell core temperature and electrode-specific potential profiles of cylindrical Li-ion cells. Optical fibres with Bragg Gratings were found to produce reliable core temperature data, while their small mechanical profile allowed for low-impact instrumentation method. A pure metallic lithium reference electrode insertion method was identified, avoiding interference with other elements of the cell while ensuring good contact, enabling in-situ observations of the per-electrode electrochemical responses. Our thermo-electrochemical instrumentation technique has enabled us to collect unprecedented cell data, and has subsequently been used in advanced studies exploring the real-world performance limits of commercial cells.
Hiding the Disk and Network Latency of Out-of-Core Visualization
NASA Technical Reports Server (NTRS)
Ellsworth, David
2001-01-01
This paper describes an algorithm that improves the performance of application-controlled demand paging for out-of-core visualization by hiding the latency of reading data from both local disks or disks on remote servers. The performance improvements come from better overlapping the computation with the page reading process, and by performing multiple page reads in parallel. The paper includes measurements that show that the new multithreaded paging algorithm decreases the time needed to compute visualizations by one third when using one processor and reading data from local disk. The time needed when using one processor and reading data from remote disk decreased by two thirds. Visualization runs using data from remote disk actually ran faster than ones using data from local disk because the remote runs were able to make use of the remote server's high performance disk array.
New constant-temperature operating mode for graphite calorimeter at LNE-LNHB.
Daures, J; Ostrowsky, A
2005-09-07
The realization of the unit of absorbed dose at LNE-LNHB is based on calorimetry with the present GR8 graphite calorimeter. For this reason the calorimetric technique must be maintained, developed and improved in the laboratory. The usual quasi-adiabatic operating mode at LNHB is based on the thermal feedback between the core (sensitive element) and the jacket (adjacent body). When a core-jacket temperature difference is detected, a commercially available analogue PID (Proportional, Integral, Derivative) controller sends to the jacket an amount of electrical power to reduce this difference. Nevertheless, the core and jacket temperatures increase with irradiations and electrical calibrations whereas the surrounding is maintained at a fixed temperature to shield against the room temperature variations. At radiotherapy dose rates, fewer than ten measurements, or electrical calibrations, per day can be performed. This paper describes the new constant-temperature operating mode which has been implemented recently to improve flexibility in use and, to some extent, accuracy. The core and the jacket temperatures are maintained at fixed temperatures. A steady state is achieved without irradiation. Then, under irradiation, the electrical power needed to maintain the assigned temperature in the core is reduced by the amount of heat generated by ionizing radiation. The difference between these electrical powers, without and with irradiation, gives the mean absorbed dose rate to the core. The quality of this electrical power substitution measurement is strongly dependent upon the quality of the core and jacket thermal control. The core temperature is maintained at the set value using a digital PID regulator developed at the laboratory with LabView software on PC for this purpose. This regulator is versatile and particularly well suited for calorimetry purposes. Measurements in a cobalt-60 beam have shown no significant difference (<0.09%) between the two operating modes, with an equivalent reproducibility (1sigma < 0.06%). These results corroborate the negligible difference of heat transfer between steady and irradiation periods when working in quasi-adiabatic mode with thermal feedback between the core and the jacket. The new constant-temperature mode allows numerous and fully automated measurements. The electrical calibration is an integral part of the measurement; no extra runs are needed. It also allows faster thermal equilibrium before starting runs. Moreover the quality of vacuum within the gaps between the bodies is less important.
Schlessinger, Daniel I; Iyengar, Sanjana; Yanes, Arianna F; Chiren, Sarah G; Godinez-Puig, Victoria; Chen, Brian R; Kurta, Anastasia O; Schmitt, Jochen; Deckert, Stefanie; Furlan, Karina C; Poon, Emily; Cartee, Todd V; Maher, Ian A; Alam, Murad; Sobanko, Joseph F
2017-07-12
Squamous cell carcinoma (SCC) is a common skin cancer that poses a risk of metastasis. Clinical investigations into SCC treatment are common, but the outcomes reported are highly variable, omitted, or clinically irrelevant. The outcome heterogeneity and reporting bias of these studies leave clinicians unable to accurately compare studies. Core outcome sets (COSs) are an agreed minimum set of outcomes recommended to be measured and reported in all clinical trials of a given condition or disease. Although COSs are under development for several dermatologic conditions, work has yet to be done to identify core outcomes specific for SCC. Outcome extraction for COS generation will occur via four methods: (1) systematic literature review; (2) patient interviews; (3) other published sources; and (4) input from stakeholders in medicine, pharmacy, and other relevant industries. The list of outcomes will be revaluated by the Measuring PRiority Outcome Variables via Excellence in Dermatologic surgery (IMPROVED) Steering Committee. Delphi processes will be performed separately by expert clinicians and patients to condense the list of outcomes generated. A consensus meeting with relevant stakeholders will be conducted after the Delphi exercise to further select outcomes, taking into account participant scores. At the end of the meeting, members will vote and decide on a final recommended set of core outcomes. The Core Outcome Measures in Effectiveness Trials (COMET) organization and the Cochrane Skin Group - Core Outcome Set Initiative (CSG-COUSIN) will serve as advisers throughout the COS generation process. Comparison of clinical trials via systematic reviews and meta-analyses is facilitated when investigators study outcomes that are relevant and similar. The aim of this project is to develop a COS to guide use for future clinical trials.
Quantitative degassing of gas hydrate-bearing pressure cores from Green Canyon 955, Gulf of Mexico
NASA Astrophysics Data System (ADS)
Phillips, S. C.; Holland, M. E.; Flemings, P. B.; Schultheiss, P. J.; Waite, W. F.; Petrou, E. G.; Jang, J.; Polito, P. J.; O'Connell, J.; Dong, T.; Meazell, K.
2017-12-01
We present results from 20 quantitative degassing experiments of pressure-core sections collected during Expedition UT-GOM2-1 from Green Canyon 955 in the northern Gulf of Mexico. These experiments highlight an average pore-space methane hydrate saturation, Sh, of 59% (min: 12%; max 87%) in sediments between 413 and 440 mbsf in 2032 m water depth. There is a strong lithofacies control of hydrate saturation within the reservoir, with a high saturation sandy silt facies (Sh of 65 to 87%) interbedded with a low saturation clayey silt facies (Sh of 12 to 30%). Bedding occurs on the scale of tens of centimeters. Outside of the main hydrate reservoir, methane hydrate occurs in low saturations (Sh of 0.8 to 3%). Hydrate saturations exhibit a strong correlation (R2=0.89) with the average P-wave velocity measured through the degassed sections. These preliminary hydrate saturations were calculated assuming a porosity of 40% with core filling the full internal diameter of the core liner. Gas recovered during these experiments is composed of almost entirely methane, with an average of 94 ppm ethane and detectable, but not quantifiable, propane. Degassed pressure cores were depressurized through a manifold by the stepwise release of fluid, and the volumes of produced gas and water were monitored. The core's hydrostatic pressure was measured and recorded continuously at the manifold. Pressure and temperature were also measured by data storage tags within the sample chambers. Two slow, multi-day degassing experiments were performed to estimate the in situ salinity within core sections. Based on temperature and pressure observations at the point of the initial pressure rebound due to hydrate dissociation, we estimate the salinity within these samples to be between 33 and 42 g kg-1.
The MVAD pump: motor stator core loss characterization.
Mesa, Kelly J; Ferreira, Antonio; Castillo, Samir; Reyes, Carlos; Wolman, Justin; Casas, Fernando
2015-01-01
Investigation of the miniature ventricular assist device (MVAD) pump motor stator core loss behavior was conducted. During operation, the ferromagnetic core in the pump's motor is magnetized by alternating magnetic fields, which, in turn, create intrinsic energy losses in the core material; these losses are known as core losses. A core loss fixture and a method to characterize the magnetic behavior of the MVAD pump stator over a range of frequencies were developed. The MVAD pump motor design features a three phase brushless DC stator with ferromagnetic laminations and copper wire windings arranged in a six slot configuration. The stator's magnetic behavior is important because its core magnetic losses impact pump system efficiency. A system to measure the core loss of MVAD pump stators was developed using a custom core loss fixture consisting of 16 copper wire turns wound in a closed loop geometry bundle; the stator under test was then placed within this bundle. The instrumentation consisted of a signal generator, a power amplifier, and a power analyzer. Power analyzer parameters of current, voltage, and power were collected for several runs with a sinusoidal frequency sweep of 0 to 50 kHz; data were collected for the fixture with and without stators. The magnetic losses inherent to the fixture were characterized independently as a baseline presenting a flat frequency response. The core loss power measurements of individual stators yielded a characteristic bandpass frequency response morphology with a peak core loss found around 2.3 to 2.5 kHz. In conclusion, this method could be used to describe the transfer function of the stator's core magnetic behavior. It also has the potential to be used for future motor evaluation and for investigation of core loss performance variability between different stators during manufacturing operations. Investigational device. Limited by United States law to investigational use.
a Dosimetry Assessment for the Core Restraint of AN Advanced Gas Cooled Reactor
NASA Astrophysics Data System (ADS)
Thornton, D. A.; Allen, D. A.; Tyrrell, R. J.; Meese, T. C.; Huggon, A. P.; Whiley, G. S.; Mossop, J. R.
2009-08-01
This paper describes calculations of neutron damage rates within the core restraint structures of Advanced Gas Cooled Reactors (AGRs). Using advanced features of the Monte Carlo radiation transport code MCBEND, and neutron source data from core follow calculations performed with the reactor physics code PANTHER, a detailed model of the reactor cores of two of British Energy's AGR power plants has been developed for this purpose. Because there are no relevant neutron fluence measurements directly supporting this assessment, results of benchmark comparisons and successful validation of MCBEND for Magnox reactors have been used to estimate systematic and random uncertainties on the predictions. In particular, it has been necessary to address the known under-prediction of lower energy fast neutron responses associated with the penetration of large thicknesses of graphite.
NASA Astrophysics Data System (ADS)
Enomoto, Yuji; Ito, Motoya; Masaki, Ryozo; Yamazaki, Katsuyuki; Asaka, Kazuo; Ishihara, Chio; Ohiwa, Syoji
A magnetic characteristic measurement, a motor characteristic forecast, and an experimental evaluation of various powder magnetic cores were performed aiming at a fixed quantity grasp when the powder magnetic core was applied to the motor core as the magnetic material. The manufacturing conditions were changed, and magnetic characteristic compares a direct current magnetization characteristic and an iron disadvantageous characteristic with the silicon steel board for a different powder magnetic core. Therefore, though some permeabilities are low, characteristics almost equal to those of a silicon steel board were obtained in the maximum saturation magnetic induction, which confirms that the powder magnetic core in disadvantageous iron in a certain frequency domain, and to confirm disadvantageous iron lowers. Moreover, it has been shown to obtain characteristics almost equal to the silicon steel board when compared in terms of motor efficiency, though some disadvantageous iron increases since the effect when applying to the motor is verified the silicon steel board and the comparison evaluation for the surface type permanent magnet motor.
Lai, Chih-Chung; Chang, Wen-Chih; Hu, Wen-Liang; Wang, Zhiming M; Lu, Ming-Chang; Chueh, Yu-Lun
2014-05-07
We demonstrated enhanced solar-thermal storage by releasing the latent heat of Sn/SiO(x) core-shell nanoparticles (NPs) embedded in a eutectic salt. The microstructures and chemical compositions of Sn/SiO(x) core-shell NPs were characterized. In situ heating XRD provides dynamic crystalline information about the Sn/SiO(x) core-shell NPs during cyclic heating processes. The latent heat of ∼29 J g(-1) for Sn/SiO(x) core-shell NPs was measured, and 30% enhanced heat capacity was achieved from 1.57 to 2.03 J g(-1) K(-1) for the HITEC solar salt without and with, respectively, a mixture of 5% Sn/SiO(x) core-shell NPs. In addition, an endurance cycle test was performed to prove a stable operation in practical applications. The approach provides a method to enhance energy storage in solar-thermal power plants.
Individualized estimation of human core body temperature using noninvasive measurements.
Laxminarayan, Srinivas; Rakesh, Vineet; Oyama, Tatsuya; Kazman, Josh B; Yanovich, Ran; Ketko, Itay; Epstein, Yoram; Morrison, Shawnda; Reifman, Jaques
2018-06-01
A rising core body temperature (T c ) during strenuous physical activity is a leading indicator of heat-injury risk. Hence, a system that can estimate T c in real time and provide early warning of an impending temperature rise may enable proactive interventions to reduce the risk of heat injuries. However, real-time field assessment of T c requires impractical invasive technologies. To address this problem, we developed a mathematical model that describes the relationships between T c and noninvasive measurements of an individual's physical activity, heart rate, and skin temperature, and two environmental variables (ambient temperature and relative humidity). A Kalman filter adapts the model parameters to each individual and provides real-time personalized T c estimates. Using data from three distinct studies, comprising 166 subjects who performed treadmill and cycle ergometer tasks under different experimental conditions, we assessed model performance via the root mean squared error (RMSE). The individualized model yielded an overall average RMSE of 0.33 (SD = 0.18)°C, allowing us to reach the same conclusions in each study as those obtained using the T c measurements. Furthermore, for 22 unique subjects whose T c exceeded 38.5°C, a potential lower T c limit of clinical relevance, the average RMSE decreased to 0.25 (SD = 0.20)°C. Importantly, these results remained robust in the presence of simulated real-world operational conditions, yielding no more than 16% worse RMSEs when measurements were missing (40%) or laden with added noise. Hence, the individualized model provides a practical means to develop an early warning system for reducing heat-injury risk. NEW & NOTEWORTHY A model that uses an individual's noninvasive measurements and environmental variables can continually "learn" the individual's heat-stress response by automatically adapting the model parameters on the fly to provide real-time individualized core body temperature estimates. This individualized model can replace impractical invasive sensors, serving as a practical and effective surrogate for core temperature monitoring.
Asphalt concrete properties and performance in Alaska : final report
DOT National Transportation Integrated Search
1981-07-01
This report examines asphalt pavement properties of 117 older highway sections within the State of Alaska. Principal research objectives included: 1) documentation of commonly measured physical properties of the asphalt concrete cores and extracted a...
Steady-state, lumped-parameter model for capacitor-run, single-phase induction motors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umans, S.D.
1996-01-01
This paper documents a technique for deriving a steady-state, lumped-parameter model for capacitor-run, single-phase induction motors. The objective of this model is to predict motor performance parameters such as torque, loss distribution, and efficiency as a function of applied voltage and motor speed as well as the temperatures of the stator windings and of the rotor. The model includes representations of both the main and auxiliary windings (including arbitrary external impedances) and also the effects of core and rotational losses. The technique can be easily implemented and the resultant model can be used in a wide variety of analyses tomore » investigate motor performance as a function of load, speed, and winding and rotor temperatures. The technique is based upon a coupled-circuit representation of the induction motor. A notable feature of the model is the technique used for representing core loss. In equivalent-circuit representations of transformers and induction motors, core loss is typically represented by a core-loss resistance in shunt with the magnetizing inductance. In order to maintain the coupled-circuit viewpoint adopted in this paper, this technique was modified slightly; core loss is represented by a set of core-loss resistances connected to the ``secondaries`` of a set of windings which perfectly couple to the air-gap flux of the motor. An example of the technique is presented based upon a 3.5 kW, single-phase, capacitor-run motor and the validity of the technique is demonstrated by comparing predicted and measured motor performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holcomb, David Eugene
2015-01-01
Fluoride salt-cooled High temperature Reactors (FHRs) are entering into early phase engineering development. Initial candidate technologies have been identified to measure all of the required process variables. The purpose of this paper is to describe the proposed measurement techniques in sufficient detail to enable assessment of the proposed instrumentation suite and to support development of the component technologies. This paper builds upon the instrumentation chapter of the recently published FHR technology development roadmap. Locating instruments outside of the intense core radiation and high-temperature fluoride salt environment significantly decreases their environmental tolerance requirements. Under operating conditions, FHR primary coolant salt ismore » a transparent, low-vapor-pressure liquid. Consequently, FHRs can employ standoff optical measurements from above the salt pool to assess in-vessel conditions. For example, the core outlet temperature can be measured by observing the fuel s blackbody emission. Similarly, the intensity of the core s Cerenkov glow indicates the fission power level. Short-lived activation of the primary coolant provides another means for standoff measurements of process variables. The primary coolant flow and neutron flux can be measured using gamma spectroscopy along the primary coolant piping. FHR operation entails a number of process measurements. Reactor thermal power and core reactivity are the most significant variables for process control. Thermal power can be determined by measuring the primary coolant mass flow rate and temperature rise across the core. The leading candidate technologies for primary coolant temperature measurement are Au-Pt thermocouples and Johnson noise thermometry. Clamp-on ultrasonic flow measurement, that includes high-temperature tolerant standoffs, is a potential coolant flow measurement technique. Also, the salt redox condition will be monitored as an indicator of its corrosiveness. Both electrochemical techniques and optical spectroscopy are candidate fluoride salt redox measurement methods. Coolant level measurement can be performed using radar-level gauges located in standpipes above the reactor vessel. While substantial technical development remains for most of the instruments, industrially compatible instruments based upon proven technology can be reasonably extrapolated from the current state of the art.« less
Bitton, Asaf; Ratcliffe, Hannah L; Veillard, Jeremy H; Kress, Daniel H; Barkley, Shannon; Kimball, Meredith; Secci, Federica; Wong, Ethan; Basu, Lopa; Taylor, Chelsea; Bayona, Jaime; Wang, Hong; Lagomarsino, Gina; Hirschhorn, Lisa R
2017-05-01
Primary health care (PHC) has been recognized as a core component of effective health systems since the early part of the twentieth century. However, despite notable progress, there remains a large gap between what individuals and communities need, and the quality and effectiveness of care delivered. The Primary Health Care Performance Initiative (PHCPI) was established by an international consortium to catalyze improvements in PHC delivery and outcomes in low- and middle-income countries through better measurement and sharing of effective models and practices. PHCPI has developed a framework to illustrate the relationship between key financing, workforce, and supply inputs, and core primary health care functions of first-contact accessibility, comprehensiveness, coordination, continuity, and person-centeredness. The framework provides guidance for more effective assessment of current strengths and gaps in PHC delivery through a core set of 25 key indicators ("Vital Signs"). Emerging best practices that foster high-performing PHC system development are being codified and shared around low- and high-income countries. These measurement and improvement approaches provide countries and implementers with tools to assess the current state of their PHC delivery system and to identify where cross-country learning can accelerate improvements in PHC quality and effectiveness.
Hail detection algorithm for the Global Precipitation Measuring mission core satellite sensors
NASA Astrophysics Data System (ADS)
Mroz, Kamil; Battaglia, Alessandro; Lang, Timothy J.; Tanelli, Simone; Cecil, Daniel J.; Tridon, Frederic
2017-04-01
By exploiting an abundant number of extreme storms observed simultaneously by the Global Precipitation Measurement (GPM) mission core satellite's suite of sensors and by the ground-based S-band Next-Generation Radar (NEXRAD) network over continental US, proxies for the identification of hail are developed based on the GPM core satellite observables. The full capabilities of the GPM observatory are tested by analyzing more than twenty observables and adopting the hydrometeor classification based on ground-based polarimetric measurements as truth. The proxies have been tested using the Critical Success Index (CSI) as a verification measure. The hail detection algorithm based on the mean Ku reflectivity in the mixed-phase layer performs the best, out of all considered proxies (CSI of 45%). Outside the Dual frequency Precipitation Radar (DPR) swath, the Polarization Corrected Temperature at 18.7 GHz shows the greatest potential for hail detection among all GMI channels (CSI of 26% at a threshold value of 261 K). When dual variable proxies are considered, the combination involving the mixed-phase reflectivity values at both Ku and Ka-bands outperforms all the other proxies, with a CSI of 49%. The best-performing radar-radiometer algorithm is based on the mixed-phase reflectivity at Ku-band and on the brightness temperature (TB) at 10.7 GHz (CSI of 46%). When only radiometric data are available, the algorithm based on the TBs at 36.6 and 166 GHz is the most efficient, with a CSI of 27.5%.
The effect of isolated core training on selected measures of golf swing performance.
Weston, Matthew; Coleman, Neil J; Spears, Iain R
2013-12-01
This study aimed to quantify the effect of an 8-wk isolated core training program on selected ball and club parameters during the golf swing and also the variability of these measures. Thirty-six club-level golfers were randomly assigned to an exercise (n = 18) or control (n =18) group. The exercise group participated in an 8-wk core training program, which included eight basic exercises. Both groups continued with their normal activity levels including golf. Baseline and postintervention measurements included club-head speed, backspin, sidespin, and timed core endurance. Baseline measures for club-head speed, backspin, sidespin, and core endurance test were 79.9 ± 8.4 mph, 3930 ± 780 rpm, 1410 ± 610 rpm, and 91 ± 56 s for the intervention group and 77.6 ± 8.8 mph, 3740 ± 910 rpm, 1290 ± 730 rpm, and 69 ± 55 s for the control group (mean ± SD). The effect of our core training, when compared with control, was a likely small improvement in club-head speed (3.6%; 90% confidence limits = ±2.7%) and a very likely small improvement in muscular endurance (61%; ±33%). The effect on backspin (5%; ±10%) and sidespin (-6%; ±20%) was unclear. Baseline variability for club-head speed, backspin, and sidespin (based on 10 swings per golfer) was 5.7% ± 5.3%, 43% ± 19%, and 140% ± 180% for the intervention group and 6.5% ± 5.3%, 53% ± 53%, and 170% ± 130% for control group. The effect of the intervention on within-subject variability was a moderate decrease for club-head speed, a small decrease for backspin, and a small increase for sidespin when compared with control. The benefits achieved from our isolated core training program are comparable with those from other studies.
NASA Astrophysics Data System (ADS)
Jetté, Maurice; Quenneville, Josée; Thoden, James; Livingstone, Sydney
1992-09-01
The effects of inspiratory resistance on prolonged work in a hot environment wearing a nuclear, bacteriological and chemical warfare (NBCW) mask and overgarment were assessed in 10 males. Subjects walked on a treadmill at 5 km/hr, 2% gradient, until their core temperature reached 39° C or for a duration of 90 min. Rectal temperature, heart rate, ventilation, oxygen consumption and rate of perceived breathing were measured. There were no differences between break-point time without the canister (62.2 ± 21 min) and with the canister (58.9 ± 17 min). Regression analysis indicated that the mean core temperature increased by 0.02° C for every minute of work performed and heart rate by 6 beats/min for every increase of 0.2° C in core temperature. Reduction in heat transfer brought about by wearing the protective overgarment and mask with or without the canister will significantly increase core temperature and limit the performance of moderate work to approximately 1 h in a moderately fit individual.
NASA Technical Reports Server (NTRS)
Saha, C. P.; Bryson, C. E.; Sarrazin, P.; Blake, D. F.
2005-01-01
Many Mars in situ instruments require fine-grained high-fidelity samples of rocks or soil. Included are instruments for the determination of mineralogy as well as organic and isotopic chemistry. Powder can be obtained as a primary objective of a sample collection system (e.g., by collecting powder as a surface is abraded by a rotary abrasion tool (RAT)), or as a secondary objective (e.g, by collecting drill powder as a core is drilled). In the latter case, a properly designed system could be used to monitor drilling in real time as well as to deliver powder to analytical instruments which would perform complementary analyses to those later performed on the intact core. In addition, once a core or other sample is collected, a system that could transfer intelligently collected subsamples of power from the intact core to a suite of analytical instruments would be highly desirable. We have conceptualized, developed and tested a breadboard Powder Delivery System (PoDS) intended to satisfy the collection, processing and distribution requirements of powder samples for Mars in-situ mineralogic, organic and isotopic measurement instruments.
Estimation of relative permeability and capillary pressure from mass imbibition experiments
NASA Astrophysics Data System (ADS)
Alyafei, Nayef; Blunt, Martin J.
2018-05-01
We perform spontaneous imbibition experiments on three carbonates - Estaillades, Ketton, and Portland - which are three quarry limestones that have very different pore structures and span wide range of permeability. We measure the mass of water imbibed in air saturated cores as a function of time under strongly water-wet conditions. Specifically, we perform co-current spontaneous experiments using a highly sensitive balance to measure the mass imbibed as a function of time for the three rocks. We use cores measuring 37 mm in diameter and three lengths of approximately 76 mm, 204 mm, and 290 mm. We show that the amount imbibed scales as the square root of time and find the parameter C, where the volume imbibed per unit cross-sectional area at time t is Ct1/2. We find higher C values for higher permeability rocks. Employing semi-analytical solutions for one-dimensional flow and using reasonable estimates of relative permeability and capillary pressure, we can match the experimental data. We finally discuss how, in combination with conventional measurements, we can use theoretical solutions and imbibition measurements to find or constrain relative permeability and capillary pressure.
Fan, Yu; Zhang, Qing; Lu, Congxiang; Xiao, Qizhen; Wang, Xinghui; Tay, Beng Kang
2013-02-21
Core-shell Si nanowires are very promising anode materials. Here, we synthesize vertically aligned carbon nanotubes (CNTs) with relatively large diameters and large inter-wire spacing as core wires and demonstrate a CNT-Si core-shell wire composite as a lithium ion battery (LIB) anode. Owing to the rationally engineered core structure, the composite shows good capacity retention and rate performance. The excellent performance is superior to most core-shell nanowires previously reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luther, Erik; Rooyen, Isabella van; Leckie, Rafael
2015-03-01
In an effort to explore fuel systems that are more robust under accident scenarios, the DOE-NE has identified the need to resume transient testing. The Transient Reactor Test (TREAT) facility has been identified as the preferred option for the resumption of transient testing of nuclear fuel in the United States. In parallel, NNSA’s Global Threat Reduction Initiative (GTRI) Convert program is exploring the needs to replace the existing highly enriched uranium (HEU) core with low enriched uranium (LEU) core. In order to construct a new LEU core, materials and fabrication processes similar to those used in the initial core fabricationmore » must be identified, developed and characterized. In this research, graphite matrix fuel blocks were extruded and materials properties of were measured. Initially the extrusion process followed the historic route; however, the project was expanded to explore methods to increase the graphite content of the fuel blocks and explore modern resins. Materials properties relevant to fuel performance including density, heat capacity and thermal diffusivity were measured. The relationship between process defects and materials properties will be discussed.« less
Garg, Amit; Biello, Katie; Hoot, Joyce W; Reddy, Shalini B; Wilson, Lindsay; George, Paul; Robinson-Bostom, Leslie; Belazarian, Leah; Domingues, Erik; Powers, Jennifer; Jacob, Reza; Powers, Michael; Besen, Justin; Geller, Alan C
2015-12-01
Assessing medical students on core skills related to melanoma detection is challenging in the absence of a well-developed instrument. We sought to develop an objective structured clinical examination for the detection and evaluation of melanoma among medical students. This was a prospective cohort analysis of student and objective rater agreement on performance of clinical skills and assessment of differences in performance across 3 schools. Kappa coefficients indicated excellent agreement for 3 of 5 core skills including commenting on the presence of the moulage (k = 0.87, 95% confidence interval 0.77-0.96), obtaining a history for the moulage (k = 0.84, 95% confidence interval 0.74-0.94), and making a clinical impression (k = 0.80, 95% confidence interval 0.68-0.92). There were no differences in performance across schools with respect to 3 of 5 core skills: commenting on the presence of the moulage (P = .15), initiating a history (P = .53), and managing the suspicious lesion (P value range .07-.17). Overall, 54.2% and 44.7% of students commented on the presence of the moulage and achieved maximum performance of core skills, respectively, with no difference in performance across schools. Limitations include overall sample size of students and schools. The Skin Cancer Objective Structured Clinical Examination represents a potentially important instrument to measure students' performance on the optimal step-by-step evaluation of a melanoma. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Breton, D. J.; Koffman, B. G.; Kreutz, K. J.; Hamilton, G. S.
2010-12-01
Paleoclimate data are often extracted from ice cores by careful geochemical analysis of meltwater samples. The analysis of the microparticles found in ice cores can also yield unique clues about atmospheric dust loading and transport, dust provenance and past environmental conditions. Determination of microparticle concentration, size distribution and chemical makeup as a function of depth is especially difficult because the particle size measurement either consumes or contaminates the meltwater, preventing further geochemical analysis. Here we describe a microcontroller-based ice core melting system which allows the collection of separate microparticle and chemistry samples from the same depth intervals in the ice core, while logging and accurately depth-tagging real-time electrical conductivity and particle size distribution data. This system was designed specifically to support microparticle analysis of the WAIS Divide WDC06A deep ice core, but many of the subsystems are applicable to more general ice core melting operations. Major system components include: a rotary encoder to measure ice core melt displacement with 0.1 millimeter accuracy, a meltwater tracking system to assign core depths to conductivity, particle and sample vial data, an optical debubbler level control system to protect the Abakus laser particle counter from damage due to air bubbles, a Rabbit 3700 microcontroller which communicates with a host PC, collects encoder and optical sensor data and autonomously operates Gilson peristaltic pumps and fraction collectors to provide automatic sample handling, melt monitor control software operating on a standard PC allowing the user to control and view the status of the system, data logging software operating on the same PC to collect data from the melting, electrical conductivity and microparticle measurement systems. Because microparticle samples can easily be contaminated, we use optical air bubble sensors and high resolution ice core density profiles to guide the melting process. The combination of these data allow us to analyze melt head performance, minimize outer-to-inner fraction contamination and avoid melt head flooding. The WAIS Melt Monitor system allows the collection of real-time, sub-annual microparticle and electrical conductivity data while producing and storing enough sample for traditional Coulter-Counter particle measurements as well long term acid leaching of bioactive metals (e.g., Fe, Co, Cd, Cu, Zn) prior to chemical analysis.
NASA Astrophysics Data System (ADS)
Shastry, Karthik; Joglekar, Prasad; Weiss, A. H.; Fazleev, N. G.
2013-04-01
A few percent of positrons bound to a solid surface annihilate with core electrons resulting in highly excited atoms containing core holes. These core holes may be filled in an auto-ionizing process in which a less tightly bound electron drops into the hole and the energy difference transferred to an outgoing "Auger electron." Because the core holes are created by annihilation and not impact it is possible to use very low energy positron beams to obtain annihilation induced Auger signals. The Auger signals so obtained have little or none of the large impact induced secondary electron background that interferes with measurements of the low energy Auger spectra obtained using the much higher incident energies necessary when using electron or photon beams. Here we present the results of measurements of the energy spectrum of low energy electrons emitted as a result of Positron Annihilation Induce Auger Electron Emission [1] from a clean Ag (100) surface. The measurements were performed using the University of Texas Arlington Time of Flight Positron Annihilation induced Auger Electron Spectrometer (T-O-F-PAES) System [2]. A strong double peak was observed at ˜35eV corresponding to the N2VV and N3VV Auger transitions in agreement with previous PAES studies [3].
ERIC Educational Resources Information Center
Albein-Urios, Natalia; Youssef, George J.; Kirkovski, Melissa; Enticott, Peter G.
2018-01-01
Deficits in cognitive flexibility are thought to underpin the core symptom of repetitive and restricted patterns of behaviour in autism spectrum disorder (ASD). Studies investigating this relationship, however, report inconsistent results. This is partly due to the variable nature of measures used to assess the construct of flexibility. The main…
Energy Efficient Engine core design and performance report
NASA Technical Reports Server (NTRS)
Stearns, E. Marshall
1982-01-01
The Energy Efficient Engine (E3) is a NASA program to develop fuel saving technology for future large transport aircraft engines. Testing of the General Electric E3 core showed that the core component performance and core system performance necessary to meet the program goals can be achieved. The E3 core design and test results are described.
Efficient Multicriteria Protein Structure Comparison on Modern Processor Architectures
Manolakos, Elias S.
2015-01-01
Fast increasing computational demand for all-to-all protein structures comparison (PSC) is a result of three confounding factors: rapidly expanding structural proteomics databases, high computational complexity of pairwise protein comparison algorithms, and the trend in the domain towards using multiple criteria for protein structures comparison (MCPSC) and combining results. We have developed a software framework that exploits many-core and multicore CPUs to implement efficient parallel MCPSC in modern processors based on three popular PSC methods, namely, TMalign, CE, and USM. We evaluate and compare the performance and efficiency of the two parallel MCPSC implementations using Intel's experimental many-core Single-Chip Cloud Computer (SCC) as well as Intel's Core i7 multicore processor. We show that the 48-core SCC is more efficient than the latest generation Core i7, achieving a speedup factor of 42 (efficiency of 0.9), making many-core processors an exciting emerging technology for large-scale structural proteomics. We compare and contrast the performance of the two processors on several datasets and also show that MCPSC outperforms its component methods in grouping related domains, achieving a high F-measure of 0.91 on the benchmark CK34 dataset. The software implementation for protein structure comparison using the three methods and combined MCPSC, along with the developed underlying rckskel algorithmic skeletons library, is available via GitHub. PMID:26605332
Efficient Multicriteria Protein Structure Comparison on Modern Processor Architectures.
Sharma, Anuj; Manolakos, Elias S
2015-01-01
Fast increasing computational demand for all-to-all protein structures comparison (PSC) is a result of three confounding factors: rapidly expanding structural proteomics databases, high computational complexity of pairwise protein comparison algorithms, and the trend in the domain towards using multiple criteria for protein structures comparison (MCPSC) and combining results. We have developed a software framework that exploits many-core and multicore CPUs to implement efficient parallel MCPSC in modern processors based on three popular PSC methods, namely, TMalign, CE, and USM. We evaluate and compare the performance and efficiency of the two parallel MCPSC implementations using Intel's experimental many-core Single-Chip Cloud Computer (SCC) as well as Intel's Core i7 multicore processor. We show that the 48-core SCC is more efficient than the latest generation Core i7, achieving a speedup factor of 42 (efficiency of 0.9), making many-core processors an exciting emerging technology for large-scale structural proteomics. We compare and contrast the performance of the two processors on several datasets and also show that MCPSC outperforms its component methods in grouping related domains, achieving a high F-measure of 0.91 on the benchmark CK34 dataset. The software implementation for protein structure comparison using the three methods and combined MCPSC, along with the developed underlying rckskel algorithmic skeletons library, is available via GitHub.
Effects of Cooling During Exercise on Thermoregulatory Responses of Men With Paraplegia.
Bongers, Coen C W G; Eijsvogels, Thijs M H; van Nes, Ilse J W; Hopman, Maria T E; Thijssen, Dick H J
2016-05-01
People with spinal cord injury (SCI) have an altered afferent input to the thermoregulatory center, resulting in a reduced efferent response (vasomotor control and sweating capacity) below the level of the lesion. Consequently, core body temperature rises more rapidly during exercise in individuals with SCI compared with people who are able-bodied. Cooling strategies may reduce the thermophysiological strain in SCI. The aim of this study was to examine the effects of a cooling vest on the core body temperature response of people with a thoracic SCI during submaximal exercise. Ten men (mean age=44 years, SD=11) with a thoracic lesion (T4-T5 or below) participated in this randomized crossover study. Participants performed two 45-minute exercise bouts at 50% maximal workload (ambient temperature 25°C), with participants randomized to a group wearing a cooling vest or a group wearing no vest (separate days). Core body temperature and skin temperature were continuously measured, and thermal sensation was assessed every 3 minutes. Exercise resulted in an increased core body temperature, skin temperature, and thermal sensation, whereas cooling did not affect core body temperature. The cooling vest effectively decreased skin temperature, increased the core-to-trunk skin temperature gradient, and tended to lower thermal sensation compared with the control condition. The lack of differences in core body temperature among conditions may be a result of the relative moderate ambient temperature in which the exercise was performed. Despite effectively lowering skin temperature and increasing the core-to-trunk skin temperature gradient, there was no impact of the cooling vest on the exercise-induced increase in core body temperature in men with low thoracic SCI. © 2016 American Physical Therapy Association.
Evaluation of a Hospital-Based Pneumonia Nurse Navigator Program.
Seldon, Lisa E; McDonough, Kelly; Turner, Barbara; Simmons, Leigh Ann
2016-12-01
The aim of this study is to evaluate the effectiveness of a hospital-based pneumonia nurse navigator program. This study used a retrospective, formative evaluation. Data of patients admitted from January 2012 through December 2014 to a large community hospital with a primary or secondary diagnosis of pneumonia, excluding aspiration pneumonia, were used. Data included patient demographics, diagnoses, insurance coverage, core measures, average length of stay (ALOS), disposition, readmission rate, financial outcomes, and patient barriers to care were collected. Descriptive statistics and parametric testing were used to analyze data. Core measure performance was sustained at the 90th percentile 2 years after the implementation of the navigator program. The ALOS did not decrease to established benchmarks; however, the SD for ALOS decreased by nearly half after implementation of the navigator program, suggesting the program decreased the number and length of extended stays. Charges per case decreased by 21% from 2012 to 2014. Variable costs decreased by 4% over a 2-year period, which increased net profit per case by 5%. Average readmission payments increased by 8% from 2012 to 2014, and the net revenue per case increased by 8.3%. The pneumonia nurse navigator program may improve core measures, reduce ALOS, and increase net revenue. Future evaluations are necessary to substantiate these findings and optimize the cost and quality performance of navigator programs.
Hong, Ha; Solomon, Ethan A.; DiCarlo, James J.
2015-01-01
To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT (“face patches”) did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of ∼60,000 IT neurons and is executed as a simple weighted sum of those firing rates. SIGNIFICANCE STATEMENT We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior. PMID:26424887
NASA Technical Reports Server (NTRS)
Doty, Michael J.; Henerson, Brenda S.; Kinzie, Kevin W.
2004-01-01
Particle Image Velocimetry (PIV) measurements for six separate flow bypass ratio five nozzle configurations have recently been obtained in the NASA Langley Jet Noise Laboratory. The six configurations include a baseline configuration with round core and fan nozzles, an eight-chevron core nozzle at two different clocking positions, and repeats of these configurations with a pylon included. One run condition representative of takeoff was investigated for all cases with the core nozzle pressure ratio set to 1.56 and the total temperature to 828 K. The fan nozzle pressure ratio was set to 1.75 with a total temperature of 350 K, and the freestream Mach number was M = 0.28. The unsteady flow field measurements provided by PIV complement recent computational, acoustic, and mean flow field studies performed at NASA Langley for the same nozzle configurations and run condition. The PIV baseline configuration measurements show good agreement with mean flow field data as well as existing PIV data acquired at NASA Glenn. Nonetheless, the baseline configuration turbulence profile indicates an asymmetric flow field, despite careful attention to concentricity. The presence of the pylon increases the upper shear layer turbulence levels while simultaneously decreasing the turbulence levels in the lower shear layer. In addition, a slightly shorter potential core length is observed with the addition of the pylon. Finally, comparisons of computational results with PIV measurements are favorable for mean flow, slightly over-predicted for Reynolds shear stress, and underpredicted for Reynolds normal stress components.
Yang, Lei; Zhou, Weihua; Xue, Kaihua; Wei, Rupeng; Ling, Zheng
2018-05-01
The enormous potential as an alternative energy resource has made natural gas hydrates a material of intense research interest. Their exploration and sample characterization require a quick and effective analysis of the hydrate-bearing cores recovered under in situ pressures. Here a novel Pressure Core Ultrasonic Test System (PCUTS) for on-board analysis of sediment cores containing gas hydrates at in situ pressures is presented. The PCUTS is designed to be compatible with an on-board pressure core transfer device and a long gravity-piston pressure-retained corer. It provides several advantages over laboratory core analysis including quick and non-destructive detection, in situ and successive acoustic property acquisition, and remission of sample storage and transportation. The design of the unique assembly units to ensure the in situ detection is demonstrated, involving the U-type protecting jackets, transducer precession device, and pressure stabilization system. The in situ P-wave velocity measurements make the detection of gas hydrate existence in the sediments possible on-board. Performance tests have verified the feasibility and sensitivity of the ultrasonic test unit, showing the dependence of P-wave velocity on gas hydrate saturation. The PCUTS has been successfully applied for analysis of natural samples containing gas hydrates recovered from the South China Sea. It is indicated that on-board P-wave measurements could provide a quick and effective understanding of the hydrate occurrence in natural samples, which can assist further resource exploration, assessment, and subsequent detailed core analysis.
NASA Astrophysics Data System (ADS)
Yang, Lei; Zhou, Weihua; Xue, Kaihua; Wei, Rupeng; Ling, Zheng
2018-05-01
The enormous potential as an alternative energy resource has made natural gas hydrates a material of intense research interest. Their exploration and sample characterization require a quick and effective analysis of the hydrate-bearing cores recovered under in situ pressures. Here a novel Pressure Core Ultrasonic Test System (PCUTS) for on-board analysis of sediment cores containing gas hydrates at in situ pressures is presented. The PCUTS is designed to be compatible with an on-board pressure core transfer device and a long gravity-piston pressure-retained corer. It provides several advantages over laboratory core analysis including quick and non-destructive detection, in situ and successive acoustic property acquisition, and remission of sample storage and transportation. The design of the unique assembly units to ensure the in situ detection is demonstrated, involving the U-type protecting jackets, transducer precession device, and pressure stabilization system. The in situ P-wave velocity measurements make the detection of gas hydrate existence in the sediments possible on-board. Performance tests have verified the feasibility and sensitivity of the ultrasonic test unit, showing the dependence of P-wave velocity on gas hydrate saturation. The PCUTS has been successfully applied for analysis of natural samples containing gas hydrates recovered from the South China Sea. It is indicated that on-board P-wave measurements could provide a quick and effective understanding of the hydrate occurrence in natural samples, which can assist further resource exploration, assessment, and subsequent detailed core analysis.
Water isotopic ratios from a continuously melted ice core sample
NASA Astrophysics Data System (ADS)
Gkinis, V.; Popp, T. J.; Blunier, T.; Bigler, M.; Schüpbach, S.; Johnsen, S. J.
2011-06-01
A new technique for on-line high resolution isotopic analysis of liquid water, tailored for ice core studies is presented. We build an interface between an Infra Red Cavity Ring Down Spectrometer (IR-CRDS) and a Continuous Flow Analysis (CFA) system. The system offers the possibility to perform simultaneuous water isotopic analysis of δ18O and δD on a continuous stream of liquid water as generated from a continuously melted ice rod. Injection of sub μl amounts of liquid water is achieved by pumping sample through a fused silica capillary and instantaneously vaporizing it with 100 % efficiency in a home made oven at a temperature of 170 °C. A calibration procedure allows for proper reporting of the data on the VSMOW scale. We apply the necessary corrections based on the assessed performance of the system regarding instrumental drifts and dependance on humidity levels. The melt rates are monitored in order to assign a depth scale to the measured isotopic profiles. Application of spectral methods yields the combined uncertainty of the system at below 0.1 ‰ and 0.5 ‰ for δ18O and δD, respectively. This performance is comparable to that achieved with mass spectrometry. Dispersion of the sample in the transfer lines limits the resolution of the technique. In this work we investigate and assess these dispersion effects. By using an optimal filtering method we show how the measured profiles can be corrected for the smoothing effects resulting from the sample dispersion. Considering the significant advantages the technique offers, i.e. simultaneuous measurement of δ18O and δD, potentially in combination with chemical components that are traditionally measured on CFA systems, notable reduction on analysis time and power consumption, we consider it as an alternative to traditional isotope ratio mass spectrometry with the possibility to be deployed for field ice core studies. We present data acquired in the framework of the NEEM deep ice core drilling project in Greenland, during the 2010 field season.
Water isotopic ratios from a continuously melted ice core sample
NASA Astrophysics Data System (ADS)
Gkinis, V.; Popp, T. J.; Blunier, T.; Bigler, M.; Schüpbach, S.; Kettner, E.; Johnsen, S. J.
2011-11-01
A new technique for on-line high resolution isotopic analysis of liquid water, tailored for ice core studies is presented. We built an interface between a Wavelength Scanned Cavity Ring Down Spectrometer (WS-CRDS) purchased from Picarro Inc. and a Continuous Flow Analysis (CFA) system. The system offers the possibility to perform simultaneuous water isotopic analysis of δ18O and δD on a continuous stream of liquid water as generated from a continuously melted ice rod. Injection of sub μl amounts of liquid water is achieved by pumping sample through a fused silica capillary and instantaneously vaporizing it with 100% efficiency in a~home made oven at a temperature of 170 °C. A calibration procedure allows for proper reporting of the data on the VSMOW-SLAP scale. We apply the necessary corrections based on the assessed performance of the system regarding instrumental drifts and dependance on the water concentration in the optical cavity. The melt rates are monitored in order to assign a depth scale to the measured isotopic profiles. Application of spectral methods yields the combined uncertainty of the system at below 0.1‰ and 0.5‰ for δ18O and δD, respectively. This performance is comparable to that achieved with mass spectrometry. Dispersion of the sample in the transfer lines limits the temporal resolution of the technique. In this work we investigate and assess these dispersion effects. By using an optimal filtering method we show how the measured profiles can be corrected for the smoothing effects resulting from the sample dispersion. Considering the significant advantages the technique offers, i.e. simultaneuous measurement of δ18O and δD, potentially in combination with chemical components that are traditionally measured on CFA systems, notable reduction on analysis time and power consumption, we consider it as an alternative to traditional isotope ratio mass spectrometry with the possibility to be deployed for field ice core studies. We present data acquired in the field during the 2010 season as part of the NEEM deep ice core drilling project in North Greenland.
Effect of long-term isometric training on core/torso stiffness.
Lee, Benjamin C Y; McGill, Stuart M
2015-06-01
Although core stiffness enhances athletic performance traits, controversy exists regarding the effectiveness of isometric vs. dynamic core training methods. This study aimed to determine whether long-term changes in stiffness can be trained, and if so, what is the most effective method. Twenty-four healthy male subjects (23 ± 3 years; 1.8 ± 0.06 m; 77.5 ± 10.8 kg) were recruited for passive and active stiffness measurements before and after a 6-week core training intervention. Twelve subjects (22 ± 2 years; 1.8 ± 0.08 m; 78.3 ± 12.3 kg) were considered naive to physical and core exercise. The other 12 subjects (24 ± 3 years; 1.8 ± 0.05 m; 76.8 ± 9.7 kg) were Muay Thai athletes (savvy). A repeated-measures design compared core training methods (isometric vs. dynamic, with a control group) and subject training experience (naive vs. savvy) before and after a 6-week training period. Passive stiffness was assessed on a "frictionless" bending apparatus and active stiffness assessed through a quick release mechanism. Passive stiffness increased after the isometric training protocol. Dynamic training produced a smaller effect, and as expected, there was no change in the control group. Active stiffness did not change in any group. Comparisons between subject and training groups did not reveal any interactions. Thus, an isometric training approach was superior in terms of enhancing core stiffness. This is important since increased core stiffness enhances load bearing ability, arrests painful vertebral micromovements, and enhances ballistic distal limb movement. This may explain the efficacy reported for back and knee injury reduction.
Prinsen, Cecilia A C; Vohra, Sunita; Rose, Michael R; Boers, Maarten; Tugwell, Peter; Clarke, Mike; Williamson, Paula R; Terwee, Caroline B
2016-09-13
In cooperation with the Core Outcome Measures in Effectiveness Trials (COMET) initiative, the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) initiative aimed to develop a guideline on how to select outcome measurement instruments for outcomes (i.e., constructs or domains) included in a "Core Outcome Set" (COS). A COS is an agreed minimum set of outcomes that should be measured and reported in all clinical trials of a specific disease or trial population. Informed by a literature review to identify potentially relevant tasks on outcome measurement instrument selection, a Delphi study was performed among a panel of international experts, representing diverse stakeholders. In three consecutive rounds, panelists were asked to rate the importance of different tasks in the selection of outcome measurement instruments, to justify their choices, and to add other relevant tasks. Consensus was defined as being achieved when 70 % or more of the panelists agreed and when fewer than 15 % of the panelists disagreed. Of the 481 invited experts, 120 agreed to participate of whom 95 (79 %) completed the first Delphi questionnaire. We reached consensus on four main steps in the selection of outcome measurement instruments for COS: Step 1, conceptual considerations; Step 2, finding existing outcome measurement instruments, by means of a systematic review and/or a literature search; Step 3, quality assessment of outcome measurement instruments, by means of the evaluation of the measurement properties and feasibility aspects of outcome measurement instruments; and Step 4, generic recommendations on the selection of outcome measurement instruments for outcomes included in a COS (consensus ranged from 70 to 99 %). This study resulted in a consensus-based guideline on the methods for selecting outcome measurement instruments for outcomes included in a COS. This guideline can be used by COS developers in defining how to measure core outcomes.
Impact of positive psychological capital on employee well-being over time.
Avey, James B; Luthans, Fred; Smith, Ronda M; Palmer, Noel F
2010-01-01
The recently recognized core construct of psychological capital or PsyCap (consisting of the positive psychological resources of efficacy, hope, optimism, and resilience) has been demonstrated to be related to various employee attitudinal, behavioral, and performance outcomes. However, to date, the impact of this positive core construct over time and on important employee well-being outcomes has not been tested. This study meets this need by analyzing the relationship between a broad cross-section of employees' (N = 280) level of PsyCap and two measures of psychological well-being over time. The results indicated that employees' PsyCap was related to both measures of well-being and, importantly, that PsyCap explained additional variance in these well-being measures over time. The limitations, needed future research, and practical implications conclude the article.
Multisector Health Policy Networks in 15 Large US Cities
Leider, J. P.; Carothers, Bobbi J.; Castrucci, Brian C.; Hearne, Shelley
2016-01-01
Context: Local health departments (LHDs) have historically not prioritized policy development, although it is one of the 3 core areas they address. One strategy that may influence policy in LHD jurisdictions is the formation of partnerships across sectors to work together on local public health policy. Design: We used a network approach to examine LHD local health policy partnerships across 15 large cities from the Big Cities Health Coalition. Setting/Participants: We surveyed the health departments and their partners about their working relationships in 5 policy areas: core local funding, tobacco control, obesity and chronic disease, violence and injury prevention, and infant mortality. Outcome Measures: Drawing on prior literature linking network structures with performance, we examined network density, transitivity, centralization and centrality, member diversity, and assortativity of ties. Results: Networks included an average of 21.8 organizations. Nonprofits and government agencies made up the largest proportions of the networks, with 28.8% and 21.7% of network members, whereas for-profits and foundations made up the smallest proportions in all of the networks, with just 1.2% and 2.4% on average. Mean values of density, transitivity, diversity, assortativity, centralization, and centrality showed similarity across policy areas and most LHDs. The tobacco control and obesity/chronic disease networks were densest and most diverse, whereas the infant mortality policy networks were the most centralized and had the highest assortativity. Core local funding policy networks had lower scores than other policy area networks by most network measures. Conclusion: Urban LHDs partner with organizations from diverse sectors to conduct local public health policy work. Network structures are similar across policy areas jurisdictions. Obesity and chronic disease, tobacco control, and infant mortality networks had structures consistent with higher performing networks, whereas core local funding networks had structures consistent with lower performing networks. PMID:26910868
Benchmark Evaluation of the HTR-PROTEUS Absorber Rod Worths (Core 4)
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess; Leland M. Montierth
2014-06-01
PROTEUS was a zero-power research reactor at the Paul Scherrer Institute (PSI) in Switzerland. The critical assembly was constructed from a large graphite annulus surrounding a central cylindrical cavity. Various experimental programs were investigated in PROTEUS; during the years 1992 through 1996, it was configured as a pebble-bed reactor and designated HTR-PROTEUS. Various critical configurations were assembled with each accompanied by an assortment of reactor physics experiments including differential and integral absorber rod measurements, kinetics, reaction rate distributions, water ingress effects, and small sample reactivity effects [1]. Four benchmark reports were previously prepared and included in the March 2013 editionmore » of the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook) [2] evaluating eleven critical configurations. A summary of that effort was previously provided [3] and an analysis of absorber rod worth measurements for Cores 9 and 10 have been performed prior to this analysis and included in PROTEUS-GCR-EXP-004 [4]. In the current benchmark effort, absorber rod worths measured for Core Configuration 4, which was the only core with a randomly-packed pebble loading, have been evaluated for inclusion as a revision to the HTR-PROTEUS benchmark report PROTEUS-GCR-EXP-002.« less
Nucleation mode particles with a nonvolatile core in the exhaust of a heavy duty diesel vehicle.
Rönkkö, Topi; Virtanen, Annele; Kannosto, Jonna; Keskinen, Jorma; Lappi, Maija; Pirjola, Liisa
2007-09-15
The characteristics of the nucleation mode particles of a Euro IV heavy-duty diesel vehicle exhaust were studied. The NOx and PM emissions of the vehicle were controlled through the use of cooled EGR and high-pressure fuel injection techniques; no exhaust gas after-treatment was used. Particle measurements were performed in vehicle laboratory and on road. Nucleation mode dominated the particle number size distribution in all the tested driving conditions. According to the on-road measurements, the nucleation mode was already formed after 0.7 s residence time in the atmosphere and no significant changes were observed for longer residence times. The nucleation mode was insensitive to the fuel sulfur content, dilution air temperature, and relative humidity. An increase in the dilution ratio decreased the size of the nucleation mode particles. This behavior was observed to be linked to the total hydrocarbon concentration in the diluted sample. In volatility measurements, the nucleation mode particles were observed to have a nonvolatile core with volatile species condensed on it. The results indicate that the nucleation mode particles have a nonvolatile core formed before the dilution process. The core particles have grown because of the condensation of semivolatile material, mainly hydrocarbons, during the dilution.
Scalable Performance Measurement and Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamblin, Todd
2009-01-01
Concurrency levels in large-scale, distributed-memory supercomputers are rising exponentially. Modern machines may contain 100,000 or more microprocessor cores, and the largest of these, IBM's Blue Gene/L, contains over 200,000 cores. Future systems are expected to support millions of concurrent tasks. In this dissertation, we focus on efficient techniques for measuring and analyzing the performance of applications running on very large parallel machines. Tuning the performance of large-scale applications can be a subtle and time-consuming task because application developers must measure and interpret data from many independent processes. While the volume of the raw data scales linearly with the number ofmore » tasks in the running system, the number of tasks is growing exponentially, and data for even small systems quickly becomes unmanageable. Transporting performance data from so many processes over a network can perturb application performance and make measurements inaccurate, and storing such data would require a prohibitive amount of space. Moreover, even if it were stored, analyzing the data would be extremely time-consuming. In this dissertation, we present novel methods for reducing performance data volume. The first draws on multi-scale wavelet techniques from signal processing to compress systemwide, time-varying load-balance data. The second uses statistical sampling to select a small subset of running processes to generate low-volume traces. A third approach combines sampling and wavelet compression to stratify performance data adaptively at run-time and to reduce further the cost of sampled tracing. We have integrated these approaches into Libra, a toolset for scalable load-balance analysis. We present Libra and show how it can be used to analyze data from large scientific applications scalably.« less
Semiempirical studies of atomic structure. Progress report, 1 July 1984-1 January 1985
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, L.J.
1985-01-01
Through the acquisition and systematization of empirical data, remarkably precise methods for predicting excitation energies, transition wavelengths, transition probabilities, level lifetimes, ionization potentials, core polarizabilities, and core penetrabilities have been and are being developed and applied. Although the data base for heavy, highly ionized atoms is still sparse, much new information has become available since this program was begun in 1980. The purpose of the project is to perform needed measurements and to utilize the available data through parametrized extrapolations and interpolations along isoelectronic, homologous, and Rydberg sequences to provide predictions for large classes of quantities with a precision thatmore » is sharpened by subsequent measurements.« less
The microwave properties of composites including lightweight core-shell ellipsoids
NASA Astrophysics Data System (ADS)
Yuan, Liming; Xu, Yonggang; Dai, Fei; Liao, Yi; Zhang, Deyuan
2016-12-01
In order to study the microwave properties of suspensions including lightweight core-shell ellipsoids, the calculation formula was obtained by substituting an equivalent ellipsoid for the original core-shell ellipsoid. Simulations for Fe-coated diatomite/paraffin suspensions were performed. Results reveal that the calculated results fitted the measured results very well when the inclusion concentration was no more than 15 vol%, but there was an obvious deviation when the inclusion concentration reached 24 vol%. By comparisons, the formula for less diluted suspensions was more suitable for calculating the electromagnetic parameter of suspensions especially when the ratio was smaller between the electromagnetic parameter of the inclusion and that of the host medium.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Which individuals receiving services are included in the core indicators of performance? 666.140 Section 666.140 Employees' Benefits EMPLOYMENT AND... the core indicators of performance? (a)(1) The core indicators of performance apply to all individuals...
New technique for the direct measurement of core noise from aircraft engines
NASA Technical Reports Server (NTRS)
Krejsa, E. A.
1981-01-01
A new technique is presented for directly measuring the core noise levels from gas turbine aircraft engines. The technique requires that fluctuating pressures be measured in the far-field and at two locations within the engine core. The cross-spectra of these measurements are used to determine the levels of the far-field noise that propagated from the engine core. The technique makes it possible to measure core noise levels even when other noise sources dominate. The technique was applied to signals measured from an AVCO Lycoming YF102 turbofan engine. Core noise levels as a function of frequency and radiation angle were measured and are presented over a range of power settings.
NASA Astrophysics Data System (ADS)
Bonnelye, Audrey; David, Christian; Schubnel, Alexandre; Wassermann, Jérôme; Lefèvre, Mélody; Henry, Pierre; Guglielmi, Yves; Castilla, Raymi; Dick, Pierre
2017-04-01
Faults in general, and in clay materials in particular, have complex structures that can be linked to both a polyphased tectonic history and the anisotropic nature of the material. Drilling through faults in shaly materials allows one to measure properties such as the structure, the mineralogical composition, the stress orientation or physical properties. These relations can be investigated in the laboratory in order to have a better understanding on in-situ mechanisms. In this study we used shales of Toarcian age from the Tournemire underground research laboratory (France). We decided to couple different petrophysical measurements on core samples retrieved from a borehole drilled perpendicularly to a fault plane, and the fault size is of the order of tens of meters. This 25m long borehole was sampled in order to perform several types of measurements: density, porosity, saturation directly in the field, and velocity of elastic waves and magnetic susceptibility anisotropy in the laboratory. For all these measurements, special protocols were developed in order to preserve as much as possible the saturation state of the samples. All these measurements were carried out in three zones that intersects the borehole: the intact zone , the damaged zone and the fault core zone. From our measurements, we were able to associate specific properties to each zone of the fault. We then calculated Thomsen's parameters in order to quantify the elastic anisotropy across the fault. Our results show strong variations of the elastic anisotropy with the distance to the fault core as well as the occurrence of anisotropy reversal.
Heterothermy in large mammals: inevitable or implemented?
Hetem, Robyn S; Maloney, Shane K; Fuller, Andrea; Mitchell, Duncan
2016-02-01
Advances in biologging techniques over the past 20 years have allowed for the remote and continuous measurement of body temperatures in free-living mammals. While there is an abundance of literature on heterothermy in small mammals, fewer studies have investigated the daily variability of body core temperature in larger mammals. Here we review measures of heterothermy and the factors that influence heterothermy in large mammals in their natural habitats, focussing on large mammalian herbivores. The mean 24 h body core temperatures for 17 species of large mammalian herbivores (>10 kg) decreased by ∼1.3°C for each 10-fold increase in body mass, a relationship that remained significant following phylogenetic correction. The degree of heterothermy, as measured by the 24 h amplitude of body core temperature rhythm, was independent of body mass and appeared to be driven primarily by energy and water limitations. When faced with the competing demands of osmoregulation, energy acquisition and water or energy use for thermoregulation, large mammalian herbivores appear to relax the precision of thermoregulation thereby conserving body water and energy. Such relaxation may entail a cost in that an animal moves closer to its thermal limits for performance. Maintaining homeostasis requires trade-offs between regulated systems, and homeothermy apparently is not accorded the highest priority; large mammals are able to maintain optimal homeothermy only if they are well nourished, hydrated, and not compromised energetically. We propose that the amplitude of the 24 h rhythm of body core temperature provides a useful index of any compromise experienced by a free-living large mammal and may predict the performance and fitness of an animal. © 2014 Cambridge Philosophical Society.
Curtright, J W; Stolp-Smith, S C; Edell, E S
2000-01-01
Managing and measuring performance become exceedingly complex as healthcare institutions evolve into integrated health systems comprised of hospitals, outpatient clinics and surgery centers, nursing homes, and home health services. Leaders of integrated health systems need to develop a methodology and system that align organizational strategies with performance measurement and management. To meet this end, multiple healthcare organizations embrace the performance-indicators reporting system known as a "balanced scorecard" or a "dashboard report." This discrete set of macrolevel indicators gives senior management a fast but comprehensive glimpse of the organization's performance in meeting its quality, operational, and financial goals. The leadership of outpatient operations for Mayo Clinic in Rochester, Minnesota built on this concept by creating a performance management and measurement system that monitors and reports how well the organization achieves its performance goals. Internal stakeholders identified metrics to measure performance in each key category. Through these metrics, the organization links Mayo Clinic's vision, primary value, core principles, and day-to-day operations by monitoring key performance indicators on a weekly, monthly, or quarterly basis.
Chen, Renjie; Nguyen, Binh-Minh; Tang, Wei; ...
2017-05-22
The metal-semiconductor interface in self-aligned contact formation can determine the overall performance of nanoscale devices. This interfacial morphology is predicted and well researched in homogenous semiconductor nanowires (NWs) but was not pursued in heterostructured core/shell nanowires. Here, we found here that the solid-state reactions between Ni and Ge/Si core/shell nanowires resulted in a protruded and a leading NiSiy segment into the channel. A single Ni 2Ge/NiSi y to Ge/Si core/shell interface was achieved by the selective shell removal near the Ni source/drain contact areas. In using in situ transmission electron microscopy, we measured the growth rate and anisotropic strain evolutionmore » in ultra-short channels. We also found elevated compressive strains near the interface between the compound contact and the NW and relatively lower strains near the center of the channel which increased exponentially below the 10 nm channel length to exceed 10% strain at ~3 nm lengths. These compressive strains are expected to result in a non-homogeneous energy band structure in Ge/Si core/shell NWs below 10 nm and potentially benefit their transistor performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Renjie; Nguyen, Binh-Minh; Tang, Wei
The metal-semiconductor interface in self-aligned contact formation can determine the overall performance of nanoscale devices. This interfacial morphology is predicted and well researched in homogenous semiconductor nanowires (NWs) but was not pursued in heterostructured core/shell nanowires. Here, we found here that the solid-state reactions between Ni and Ge/Si core/shell nanowires resulted in a protruded and a leading NiSiy segment into the channel. A single Ni 2Ge/NiSi y to Ge/Si core/shell interface was achieved by the selective shell removal near the Ni source/drain contact areas. In using in situ transmission electron microscopy, we measured the growth rate and anisotropic strain evolutionmore » in ultra-short channels. We also found elevated compressive strains near the interface between the compound contact and the NW and relatively lower strains near the center of the channel which increased exponentially below the 10 nm channel length to exceed 10% strain at ~3 nm lengths. These compressive strains are expected to result in a non-homogeneous energy band structure in Ge/Si core/shell NWs below 10 nm and potentially benefit their transistor performance.« less
Stockman, Ida J; Newkirk-Turner, Brandi L; Swartzlander, Elaina; Morris, Lekeitha R
2016-02-01
This study is a response to the need for evidence-based measures of spontaneous oral language to assess African American children under the age of 4 years. We determined if pass/fail status on a minimal competence core for morphosyntax (MCC-MS) was more highly related to scores on the Index of Productive Syntax (IPSyn)-the measure of convergent criterion validity-than to scores on 3 measures of divergent validity: number of different words (Watkins, Kelly, Harbers, & Hollis, 1995), Percentage of Consonants Correct-Revised (Shriberg, Austin, Lewis, McSweeney, & Wilson, 1997), and the Leiter International Performance Scale-Revised (Roid & Miller, 1997). Archival language samples for 68 African American 3-year-olds were analyzed to determine MCC-MS pass/fail status and the scores on measures of convergent and divergent validity. Higher IPSyn scores were observed for 60 children who passed the MCC-MS than for 8 children who did not. A significant positive correlation, rpb = .73, between MCC-MS pass/fail status and IPSyn scores was observed. This coefficient was higher than MCC-MS correlations with measures of divergent validity: rpb = .13 (Leiter International Performance Scale-Revised), rpb = .42 (number of different words in 100 utterances), and rpb = .46 (Percentage of Consonants Correct-Revised). The MCC-MS has convergent criterion validity with the IPSyn. Although more research is warranted, both measures can be potentially used in oral language assessments of African American 3-year-olds.
NASA Astrophysics Data System (ADS)
Ma, Haipeng; Zhang, Jing; Liu, Zhifeng
2017-11-01
The novel WO3 nanorods (NRs)/BiOI core/shell structure composite is used as an efficient photoanode applied in photoelectrochemical (PEC) water splitting for the first time. It is synthesized via facile hydrothermal method and, successive ionic layer adsorption and reaction (SILAR) process. This facile synthesis route can achieve uniform WO3/BiOI core/shell composite nanostructures and obtain varied BiOI morphologies simultaneously. The WO3 NRs/BiOI-20 composite exhibits enhanced PEC activity compared to pristine WO3 with a photocurrent density of 0.79 mA cm-2 measured at 0.8 V vs. RHE under AM 1.5G. This excellent performance benefits from the broader absorption spectrum and suppressed electron-hole recombination. This novel core/shell composite may provide insight in developing more efficient solar driven photoelectrodes.
Surge Pressure Mitigation in the Global Precipitation Measurement Mission Core Propulsion System
NASA Technical Reports Server (NTRS)
Scroggins, Ashley R.; Fiebig, Mark D.
2014-01-01
The Global Precipitation Measurement (GPM) mission is an international partnership between NASA and JAXA whose Core spacecraft performs cutting-edge measurements of rainfall and snowfall worldwide and unifies data gathered by a network of precipitation measurement satellites. The Core spacecraft's propulsion system is a blowdown monopropellant system with an initial hydrazine load of 545 kg in a single composite overwrapped propellant tank. At launch, the propulsion system contained propellant in the tank and manifold tubes upstream of the latch valves, with low-pressure helium gas in the manifold tubes downstream of the latch valves. The system had a relatively high beginning-of- life pressure and long downstream manifold lines; these factors created conditions that were conducive to high surge pressures. This paper discusses the GPM project's approach to surge mitigation in the propulsion system design. The paper describes the surge testing program and results, with discussions of specific difficulties encountered. Based on the results of surge testing and pressure drop analyses, a unique configuration of cavitating venturis was chosen to mitigate surge while minimizing pressure losses during thruster maneuvers. This paper concludes with a discussion of overall lessons learned with surge pressure testing for NASA Goddard spacecraft programs.
Chamber-core structures for fairing acoustic mitigation
NASA Astrophysics Data System (ADS)
Ardelean, Emil; Williams, Andrew; Korshin, Nicholas; Henderson, Kyle; Lane, Steven; Richard, Robert
2005-05-01
Extreme noise and vibration levels at lift-off and during ascent can damage sensitive payload components. Recently, the Air Force Research Laboratory, Space Vehicles Directorate has investigated a composite structure fabrication approach, called chamber-core, for building payload fairings. Chamber-core offers a strong, lightweight structure with inherent noise attenuation characteristics. It uses one-inch square axial tubes that are sandwiched between inner and outer face-sheets to form a cylindrical fairing structure. These hollow tubes can be used as acoustic dampers to attenuate the amplitude response of low frequency acoustic resonances within the fairing"s volume. A cylindrical, graphite-epoxy chamber-core structure was built to study noise transmission characteristics and to quantify the achievable performance improvement. The cylinder was tested in a semi-reverberant acoustics laboratory using bandlimited random noise at sound pressure levels up to 110 dB. The performance was measured using external and internal microphones. The noise reduction was computed as the ratio of the spatially averaged external response to the spatially averaged interior response. The noise reduction provided by the chamber-core cylinder was measured over three bandwidths, 20 Hz to 500 Hz, 20 Hz to 2000 Hz, and 20 Hz to 5000 Hz. For the bare cylinder with no acoustic resonators, the structure provided approximately 13 dB of attenuation over the 20 Hz to 500 Hz bandwidth. With the axial tubes acting as acoustic resonators at various frequencies over the bandwidth, the noise reduction provided by the cylinder increased to 18.2 dB, an overall increase of 4.8 dB over the bandwidth. Narrow-band reductions greater than 10 dB were observed at specific low frequency acoustic resonances. This was accomplished with virtually no added mass to the composite cylinder.
Kéri, Albert; Kálomista, Ildikó; Ungor, Ditta; Bélteki, Ádám; Csapó, Edit; Dékány, Imre; Prohaska, Thomas; Galbács, Gábor
2018-03-01
In this study, the information that can be obtained by combining normal and high resolution single particle ICP-MS (spICP-MS) measurements for spherical bimetallic nanoparticles (BNPs) was assessed. One commercial certified core-shell Au-Ag nanoparticle and three newly synthesized and fully characterized homogenous alloy Au-Ag nanoparticle batches of different composition were used in the experiments as BNP samples. By scrutinizing the high resolution spICP-MS signal time profiles, it was revealed that the width of the signal peak linearly correlates with the diameter of nanoparticles. It was also observed that the width of the peak for same-size nanoparticles is always significantly larger for Au than for Ag. It was also found that it can be reliably determined whether a BNP is of homogeneus alloy or core-shell structure and that, in the case of the latter, the core comprises of which element. We also assessed the performance of several ICP-MS based analytical methods in the analysis of the quantitative composition of bimetallic nanoparticles. Out of the three methods (normal resolution spICP-MS, direct NP nebulization with solution-mode ICP-MS, and solution-mode ICP-MS after the acid dissolution of the nanoparticles), the best accuracy and precision was achieved by spICP-MS. This method allows the determination of the composition with less than 10% relative inaccuracy and better than 3% precision. The analysis is fast and only requires the usual standard colloids for size calibration. Combining the results from both quantitative and structural analyses, the core diameter and shell thickness of core-shell particles can also be calculated. Copyright © 2017 Elsevier B.V. All rights reserved.
DEEM, a versatile platform of FRD measurement for highly multiplexed fibre systems in astronomy
NASA Astrophysics Data System (ADS)
Yan, Yunxiang; Yan, Qi; Wang, Gang; Sun, Weimin; Luo, A.-Li; Ma, Zhenyu; Zhang, Qiong; Li, Jian; Wang, Shuqing
2018-06-01
We present a new method of DEEM, the direct energy encircling method, for characterizing the performance of fibres in most astronomical spectroscopic applications. It is a versatile platform to measure focal ratio degradation (FRD), throughput, and point spread function. The principle of DEEM and the relation between the encircled energy and the spot size were derived and simulated based on the power distribution model (PDM). We analysed the errors of DEEM and pointed out the major error source for better understanding and optimization. The validation of DEEM has been confirmed by comparing the results with conventional method which shows that DEEM has good robustness with high accuracy in both stable and complex experiment environments. Applications on the integral field unit (IFU) show that the FRD of 50 μm core fibre is substandard for the requirement which requires the output focal ratio to be slower than 4.5. The homogeneity of throughput is acceptable and higher than 85 per cent. The prototype IFU of the first generation helps to find out the imperfections to optimize the new design of the next generation based on the staggered structure with 35 μm core fibres of N.A. = 0.12, which can improve the FRD performance. The FRD dependence on wavelength and core size is revealed that higher output focal ratio occurs at shorter wavelengths for large core fibres, which is in agreement with the prediction of PDM. But the dependence of the observed data is weaker than the prediction.
McNabb, Scott J N; Chungong, Stella; Ryan, Mike; Wuhib, Tadesse; Nsubuga, Peter; Alemu, Wondi; Carande-Kulis, Vilma; Rodier, Guenael
2002-01-01
Because both public health surveillance and action are crucial, the authors initiated meetings at regional and national levels to assess and reform surveillance and action systems. These meetings emphasized improved epidemic preparedness, epidemic response, and highlighted standardized assessment and reform. To standardize assessments, the authors designed a conceptual framework for surveillance and action that categorized the framework into eight core and four support activities, measured with indicators. In application, country-level reformers measure both the presence and performance of the six core activities comprising public health surveillance (detection, registration, reporting, confirmation, analyses, and feedback) and acute (epidemic-type) and planned (management-type) responses composing the two core activities of public health action. Four support activities - communications, supervision, training, and resource provision - enable these eight core processes. National, multiple systems can then be concurrently assessed at each level for effectiveness, technical efficiency, and cost. This approach permits a cost analysis, highlights areas amenable to integration, and provides focused intervention. The final public health model becomes a district-focused, action-oriented integration of core and support activities with enhanced effectiveness, technical efficiency, and cost savings. This reform approach leads to sustained capacity development by an empowerment strategy defined as facilitated, process-oriented action steps transforming staff and the system.
The performance of cable braids and terminations to lightning induced transients
NASA Technical Reports Server (NTRS)
Crofts, David
1991-01-01
The latest specification detailing the test waveforms for indirect lightning transients as applied to aircraft wiring systems specify very high voltages and currents. Although considerable data exists for measuring cable screen leakage using such methods as surface transfer impedance and bulk cable injection, there is little data on the likely core transient level that is likely to be induced from these threats. In particular, the new Waveform 5 at very high current levels (10 kA) is reputed to cause severe cable damage. A range of representative cables were made with various screen termination techniques and screening levels. These were tested first to determine their relative screening performance and then they were subjected to lightning transient testing to all the specified waveforms. Core voltages were measured for each test. Tests were also performed on bundles with fewer wires to determine the failure criteria with Waveform 5 and these tests also include flat conductor cables. The test showed that correctly terminated cable bundles performed well in all the tests and would provide a high level of protection to the electronic systems. The use of overbraides, provided the individual screens are well terminated, appears to be unnecessary.
Vinstrup, Jonas; Sundstrup, Emil; Brandt, Mikkel; Jakobsen, Markus D; Calatayud, Joaquin; Andersen, Lars L
2015-01-01
Objectives. To investigate core muscle activity, exercise preferences, and perceived exertion during two selected core exercises performed with elastic resistance versus a conventional training machine. Methods. 17 untrained men aged 26-67 years participated in surface electromyography (EMG) measurements of five core muscles during torso-twists performed from left to right with elastic resistance and in the machine, respectively. The order of the exercises was randomized and each exercise consisted of 3 repetitions performed at a 10 RM load. EMG amplitude was normalized (nEMG) to maximum voluntary isometric contraction (MVC). Results. A higher right erector spinae activity in the elastic exercise compared with the machine exercise (50% [95% CI 36-64] versus 32% [95% CI 18-46] nEMG) was found. By contrast, the machine exercise, compared with the elastic exercise, showed higher left external oblique activity (77% [95% CI 64-90] versus 54% [95% CI 40-67] nEMG). For the rectus abdominis, right external oblique, and left erector spinae muscles there were no significant differences. Furthermore, 76% preferred the torso-twist with elastic resistance over the machine exercise. Perceived exertion (Borg CR10) was not significantly different between machine (5.8 [95% CI 4.88-6.72]) and elastic exercise (5.7 [95% CI 4.81-6.59]). Conclusion. Torso-twists using elastic resistance showed higher activity of the erector spinae, whereas torso-twist in the machine resulted in higher activity of the external oblique. For the remaining core muscles the two training modalities induced similar muscular activation. In spite of similar perceived exertion the majority of the participants preferred the exercise using elastic resistance.
Measurements of Supersonic Wing Tip Vortices
NASA Technical Reports Server (NTRS)
Smart, Michael K.; Kalkhoran, Iraj M.; Benston, James
1994-01-01
An experimental survey of supersonic wing tip vortices has been conducted at Mach 2.5 using small performed 2.25 chords down-stream of a semi-span rectangular wing at angle of attack of 5 and 10 degrees. The main objective of the experiments was to determine the Mach number, flow angularity and total pressure distribution in the core region of supersonic wing tip vortices. A secondary aim was to demonstrate the feasibility of using cone probes calibrated with a numerical flow solver to measure flow characteristics at supersonic speeds. Results showed that the numerically generated calibration curves can be used for 4-hole cone probes, but were not sufficiently accurate for conventional 5-hole probes due to nose bluntness effects. Combination of 4-hole cone probe measurements with independent pitot pressure measurements indicated a significant Mach number and total pressure deficit in the core regions of supersonic wing tip vortices, combined with an asymmetric 'Burger like' swirl distribution.
Validation of SMAP Surface Soil Moisture Products with Core Validation Sites
NASA Technical Reports Server (NTRS)
Colliander, A.; Jackson, T. J.; Bindlish, R.; Chan, S.; Das, N.; Kim, S. B.; Cosh, M. H.; Dunbar, R. S.; Dang, L.; Pashaian, L.;
2017-01-01
The NASA Soil Moisture Active Passive (SMAP) mission has utilized a set of core validation sites as the primary methodology in assessing the soil moisture retrieval algorithm performance. Those sites provide well calibrated in situ soil moisture measurements within SMAP product grid pixels for diverse conditions and locations.The estimation of the average soil moisture within the SMAP product grid pixels based on in situ measurements is more reliable when location specific calibration of the sensors has been performed and there is adequate replication over the spatial domain, with an up-scaling function based on analysis using independent estimates of the soil moisture distribution. SMAP fulfilled these requirements through a collaborative CalVal Partner program.This paper presents the results from 34 candidate core validation sites for the first eleven months of the SMAP mission. As a result of the screening of the sites prior to the availability of SMAP data, out of the 34 candidate sites 18 sites fulfilled all the requirements at one of the resolution scales (at least). The rest of the sites are used as secondary information in algorithm evaluation. The results indicate that the SMAP radiometer-based soil moisture data product meets its expected performance of 0.04 cu m/cu m volumetric soil moisture (unbiased root mean square error); the combined radar-radiometer product is close to its expected performance of 0.04 cu m/cu m, and the radar-based product meets its target accuracy of 0.06 cu m/cu m (the lengths of the combined and radar-based products are truncated to about 10 weeks because of the SMAP radar failure). Upon completing the intensive CalVal phase of the mission the SMAP project will continue to enhance the products in the primary and extended geographic domains, in co-operation with the CalVal Partners, by continuing the comparisons over the existing core validation sites and inclusion of candidate sites that can address shortcomings.
Core executive functions are associated with success in young elite soccer players.
Vestberg, Torbjörn; Reinebo, Gustaf; Maurex, Liselotte; Ingvar, Martin; Petrovic, Predrag
2017-01-01
Physical capacity and coordination cannot alone predict success in team sports such as soccer. Instead, more focus has been directed towards the importance of cognitive abilities, and it has been suggested that executive functions (EF) are fundamentally important for success in soccer. However, executive functions are going through a steep development from adolescence to adulthood. Moreover, more complex EF involving manipulation of information (higher level EF) develop later than simple executive functions such as those linked to simple working memory capacity (Core EF). The link between EF and success in young soccer players is therefore not obvious. In the present study we investigated whether EF are associated with success in soccer in young elite soccer players. We performed tests measuring core EF (a demanding working memory task involving a variable n-back task; dWM) and higher level EF (Design Fluency test; DF). Color-Word Interference Test and Trail Making Test were performed on an exploratory level as they contain a linguistic element. The lower level EF test (dWM) was taken from CogStateSport computerized concussion testing and the higher level EF test (DF) was from Delis-Kaplan Executive Function System test battery (D-KEFS). In a group of young elite soccer players (n = 30; aged 12-19 years) we show that they perform better than the norm in both the dWM (+0.49 SD) and DF (+0.86 SD). Moreover, we could show that both dWM and DF correlate with the number of goals the players perform during the season. The effect was more prominent for dWM (r = 0.437) than for DF (r = 0.349), but strongest for a combined measurement (r = 0.550). The effect was still present when we controlled for intelligence, length and age in a partial correlation analysis. Thus, our study suggests that both core and higher level EF may predict success in soccer also in young players.
Core executive functions are associated with success in young elite soccer players
Reinebo, Gustaf; Maurex, Liselotte; Ingvar, Martin; Petrovic, Predrag
2017-01-01
Physical capacity and coordination cannot alone predict success in team sports such as soccer. Instead, more focus has been directed towards the importance of cognitive abilities, and it has been suggested that executive functions (EF) are fundamentally important for success in soccer. However, executive functions are going through a steep development from adolescence to adulthood. Moreover, more complex EF involving manipulation of information (higher level EF) develop later than simple executive functions such as those linked to simple working memory capacity (Core EF). The link between EF and success in young soccer players is therefore not obvious. In the present study we investigated whether EF are associated with success in soccer in young elite soccer players. We performed tests measuring core EF (a demanding working memory task involving a variable n-back task; dWM) and higher level EF (Design Fluency test; DF). Color-Word Interference Test and Trail Making Test were performed on an exploratory level as they contain a linguistic element. The lower level EF test (dWM) was taken from CogStateSport computerized concussion testing and the higher level EF test (DF) was from Delis-Kaplan Executive Function System test battery (D-KEFS). In a group of young elite soccer players (n = 30; aged 12–19 years) we show that they perform better than the norm in both the dWM (+0.49 SD) and DF (+0.86 SD). Moreover, we could show that both dWM and DF correlate with the number of goals the players perform during the season. The effect was more prominent for dWM (r = 0.437) than for DF (r = 0.349), but strongest for a combined measurement (r = 0.550). The effect was still present when we controlled for intelligence, length and age in a partial correlation analysis. Thus, our study suggests that both core and higher level EF may predict success in soccer also in young players. PMID:28178738
Wasson, A P; Rebetzke, G J; Kirkegaard, J A; Christopher, J; Richards, R A; Watt, M
2014-11-01
We aim to incorporate deep root traits into future wheat varieties to increase access to stored soil water during grain development, which is twice as valuable for yield as water captured at younger stages. Most root phenotyping efforts have been indirect studies in the laboratory, at young plant stages, or using indirect shoot measures. Here, soil coring to 2 m depth was used across three field environments to directly phenotype deep root traits on grain development (depth, descent rate, density, length, and distribution). Shoot phenotypes at coring included canopy temperature depression, chlorophyll reflectance, and green leaf scoring, with developmental stage, biomass, and yield. Current varieties, and genotypes with breeding histories and plant architectures expected to promote deep roots, were used to maximize identification of variation due to genetics. Variation was observed for deep root traits (e.g. 111.4-178.5cm (60%) for depth; 0.09-0.22cm/°C day (144%) for descent rate) using soil coring in the field environments. There was significant variation for root traits between sites, and variation in the relative performance of genotypes between sites. However, genotypes were identified that performed consistently well or poorly at both sites. Furthermore, high-performing genotypes were statistically superior in root traits than low-performing genotypes or commercial varieties. There was a weak but significant negative correlation between green leaf score (-0.5), CTD (0.45), and rooting depth and a positive correlation for chlorophyll reflectance (0.32). Shoot phenotypes did not predict other root traits. This study suggests that field coring can directly identify variation in deep root traits to speed up selection of genotypes for breeding programmes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
A Large number of fast cosmological simulations
NASA Astrophysics Data System (ADS)
Koda, Jun; Kazin, E.; Blake, C.
2014-01-01
Mock galaxy catalogs are essential tools to analyze large-scale structure data. Many independent realizations of mock catalogs are necessary to evaluate the uncertainties in the measurements. We perform 3600 cosmological simulations for the WiggleZ Dark Energy Survey to obtain the new improved Baron Acoustic Oscillation (BAO) cosmic distance measurements using the density field "reconstruction" technique. We use 1296^3 particles in a periodic box of 600/h Mpc on a side, which is the minimum requirement from the survey volume and observed galaxies. In order to perform such large number of simulations, we developed a parallel code using the COmoving Lagrangian Acceleration (COLA) method, which can simulate cosmological large-scale structure reasonably well with only 10 time steps. Our simulation is more than 100 times faster than conventional N-body simulations; one COLA simulation takes only 15 minutes with 216 computing cores. We have completed the 3600 simulations with a reasonable computation time of 200k core hours. We also present the results of the revised WiggleZ BAO distance measurement, which are significantly improved by the reconstruction technique.
Oto, Tatsuki; Yasuda, Genta; Tsubota, Keishi; Kurokawa, Hiroyasu; Miyazaki, Masashi; Platt, Jeffrey A
2009-01-01
This study examined the influence of power density on dentin bond strength and polymerization behavior of dual-cured direct core foundation resin systems. Two commercially available dual-cured direct core foundation resin systems, Clearfil DC Core Automix with Clearfil DC Bond and UniFil Core with Self-Etching Bond, were studied. Bovine mandibular incisors were mounted in autopolymerizing resin and the facial dentin surfaces were ground wet on 600-grit SiC paper. Dentin surfaces were treated according to manufacturer's recommendations. The resin pastes were condensed into the mold and cured with the power densities of 0 (no irradiation), 100, 200, 400 and 600 mW/cm2. Ten specimens per group were stored in 37 degrees C water for 24 hours, then shear tested at a crosshead speed of 1.0 mm/minute in a universal testing machine. An ultrasonic measurement device was used to measure the ultrasonic velocities through the core foundation resins. The power densities selected were 0 (no irradiation), 200, and 600 mW/cm2, and ultrasonic velocity was calculated. ANOVA and Tukey HSD tests were performed at a level of 0.05. The highest bond strengths were obtained when the resin pastes were cured with the highest power density for both core foundation systems (16.8 +/- 1.9 MPa for Clearfil DC Core Automix, 15.6 +/- 2.9 MPa for UniFil Core). When polymerized with the power densities under 200 mW/cm2, significantly lower bond strengths were observed compared to those obtained with the power density of 600 mW/cm2. As the core foundation resins hardened, the sonic velocities increased and this tendency differed among the power density of the curing unit. When the sonic velocities at three minutes after the start of measurements were compared, there were no significant differences among different irradiation modes for UniFil Core, while a significant decrease in sonic velocity was obtained when the resin paste was chemically polymerized compared with dual-polymerization for Clearfil DC Core Automix. The data suggests that the dentin bond strengths and polymerization behavior of the dual-cured, direct core foundation systems are still affected by the power density of the curing unit. With a careful choice of the core foundation systems and power density of the curing unit, the benefit of using resin composites to endodontically-treated teeth might be acceptable.
Fernandes, Alex Andrade; Moreira, Danilo Gomes; Brito, Ciro José; da Silva, Cristiano Diniz; Sillero-Quintana, Manuel; Pimenta, Eduardo Mendonça; Bach, Aaron J E; Garcia, Emerson Silami; Bouzas Marins, João Carlos
2016-12-01
Research into obtaining a fast, valid, reliable and non-invasive measure of core temperature is of interest in many disciplinary fields. Occupational and sports medicine research has attempted to determine a non-invasive proxy for core temperature particularly when access to participants is limited and thermal safety is of a concern due to protective encapsulating clothing, hot ambient environments and/or high endogenous heat production during athletic competition. This investigation aimed to determine the validity of inner canthus of the eye temperature (T EC ) as an alternate non-invasive measure of intestinal core temperature (T C ) during rest, exercise and post-exercise conditions. Twelve physically active males rested for 30min prior to exercise, performed 60min of aerobic exercise at 60% V̇O 2max and passively recovered a further 60min post-exercise. T EC and T C were measured at 5min intervals during each condition. Mean differences between T EC and T C were 0.61°C during pre-exercise, -1.78°C during exercise and -1.00°C during post-exercise. The reliability between the methods was low in the pre-exercise (ICC=0.49 [-0.09 to 0.82]), exercise (ICC=-0.14 [-0.65 to 0.44]) and post-exercise (ICC=-0.25 [-0.70 to 0.35]) conditions. In conclusion, poor agreement was observed between the T EC values measured through IRT and T C measured through a gastrointestinal telemetry pill. Therefore, T EC is not a valid substitute measurement to gastrointestinal telemetry pill in sports and exercise science settings. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Marsh, Julie; Bush-Mecenas, Susan; Hough, Heather
2016-01-01
California and the nation are at the crossroads of a major shift in school accountability policy. At the state level, California's Local Control and Accountability Plan (LCAP) encourages the use of multiple measures of school performance used locally to support continuous improvement and strategic resource allocation. Similarly, the federal Every…
Multi-scale gyrokinetic simulations of an Alcator C-Mod, ELM-y H-mode plasma
NASA Astrophysics Data System (ADS)
Howard, N. T.; Holland, C.; White, A. E.; Greenwald, M.; Rodriguez-Fernandez, P.; Candy, J.; Creely, A. J.
2018-01-01
High fidelity, multi-scale gyrokinetic simulations capable of capturing both ion ({k}θ {ρ }s∼ { O }(1.0)) and electron-scale ({k}θ {ρ }e∼ { O }(1.0)) turbulence were performed in the core of an Alcator C-Mod ELM-y H-mode discharge which exhibits reactor-relevant characteristics. These simulations, performed with all experimental inputs and realistic ion to electron mass ratio ({({m}i/{m}e)}1/2=60.0) provide insight into the physics fidelity that may be needed for accurate simulation of the core of fusion reactor discharges. Three multi-scale simulations and series of separate ion and electron-scale simulations performed using the GYRO code (Candy and Waltz 2003 J. Comput. Phys. 186 545) are presented. As with earlier multi-scale results in L-mode conditions (Howard et al 2016 Nucl. Fusion 56 014004), both ion and multi-scale simulations results are compared with experimentally inferred ion and electron heat fluxes, as well as the measured values of electron incremental thermal diffusivities—indicative of the experimental electron temperature profile stiffness. Consistent with the L-mode results, cross-scale coupling is found to play an important role in the simulation of these H-mode conditions. Extremely stiff ion-scale transport is observed in these high-performance conditions which is shown to likely play and important role in the reproduction of measurements of perturbative transport. These results provide important insight into the role of multi-scale plasma turbulence in the core of reactor-relevant plasmas and establish important constraints on the the fidelity of models needed for predictive simulations.
Modeling and testing of ethernet transformers
NASA Astrophysics Data System (ADS)
Bowen, David
2011-12-01
Twisted-pair Ethernet is now the standard home and office last-mile network technology. For decades, the IEEE standard that defines Ethernet has required electrical isolation between the twisted pair cable and the Ethernet device. So, for decades, every Ethernet interface has used magnetic core Ethernet transformers to isolate Ethernet devices and keep users safe in the event of a potentially dangerous fault on the network media. The current state-of-the-art Ethernet transformers are miniature (<5mm diameter) ferrite-core toroids wrapped with approximately 10 to 30 turns of wire. As small as current Ethernet transformers are, they still limit further Ethernet device miniaturization and require a separate bulky package or jack housing. New coupler designs must be explored which are capable of exceptional miniaturization or on-chip fabrication. This dissertation thoroughly explores the performance of the current commercial Ethernet transformers to both increase understanding of the device's behavior and outline performance parameters for replacement devices. Lumped element and distributed circuit models are derived; testing schemes are developed and used to extract model parameters from commercial Ethernet devices. Transfer relation measurements of the commercial Ethernet transformers are compared against the model's behavior and it is found that the tuned, distributed models produce the best transfer relation match to the measured data. Process descriptions and testing results on fabricated thin-film dielectric-core toroid transformers are presented. The best results were found for a 32-turn transformer loaded with 100Ω, the impedance of twisted pair cable. This transformer gave a flat response from about 10MHz to 40MHz with a height of approximately 0.45. For the fabricated transformer structures, theoretical methods to determine resistance, capacitance and inductance are presented. A special analytical and numerical analysis of the fabricated transformer inductance is presented. Planar cuts of magnetic slope fields around the dielectric-core toroid are shown that describe the effect of core height and winding density on flux uniformity without a magnetic core.
Evaluation of hydraulic conductivities calculated from multi-port permeameter measurements
Wolf, Steven H.; Celia, Michael A.; Hess, Kathryn M.
1991-01-01
A multiport permeameter was developed for use in estimating hydraulic conductivity over intact sections of aquifer core using the core liner as the permeameter body. Six cores obtained from one borehole through the upper 9 m of a stratified glacial-outwash aquifer were used to evaluate the reliability of the permeameter. Radiographs of the cores were used to assess core integrity and to locate 5- to 10-cm sections of similar grain size for estimation of hydraulic conductivity. After extensive testing of the permeameter, hydraulic conductivities were determined for 83 sections of the six cores. Other measurement techniques included permeameter measurements on repacked sections of core, estimates based on grain-size analyses, and estimates based on borehole flowmeter measurements. Permeameter measurements of 33 sections of core that had been extruded, homogenized, and repacked did not differ significantly from the original measurements. Hydraulic conductivities estimated from grain-size distributions were slightly higher than those calculated from permeameter measurements; the significance of the difference depended on the estimating equation used. Hydraulic conductivities calculated from field measurements, using a borehole flowmeter in the borehole from which the cores were extracted, were significantly higher than those calculated from laboratory measurements and more closely agreed with independent estimates of hydraulic conductivity based on tracer movement near the borehole. This indicates that hydraulic conductivities based on laboratory measurements of core samples may underestimate actual field hydraulic conductivities in this type of stratified glacial-outwash aquifer.
Changes in Black Carbon Deposition to Antarctica from Two Ice Core Records, A.D. 1850-2000
NASA Technical Reports Server (NTRS)
Bisiaux, Marion M.; Edward, Ross; McConnell, Joseph R.; Curran, Mark A. J.; VanOmmen, Tas D.; Smith, Andrew M.; Neumann, Thomas A.; Pasteris, Daniel R.; Penner, Joyce E.; Taylor, Kendrick
2012-01-01
Continuous flow analysis was based on a steady sample flow and in-line detection of BC and other chemical substances as described in McConnell et al. (2007). In the cold room, previously cut one meter ice core sticks of 3x3cm, are melted continuously on a heated melter head specifically designed to eliminate contamination from the atmosphere or by the external parts of the ice. The melted ice from the most inner part of the ice stick is continuously pumped by a peristaltic pump and carried to a clean lab by Teflon lines. The recorded signal is continuous, integrating a sample volume of about 0.05 mL, for which the temporal resolution depends on the speed of melting, ice density and snow accumulation rate at the ice core drilling site. For annual accumulation derived from the WAIS and Law Dome ice cores, we assumed 3.1 cm water equivalent uncertainty in each year's accumulation from short scale spatial variability (glaciological noise) which was determined from several measurements of annual accumulation in multiple parallel ice cores notably from the WAIS Divide ice core site (Banta et al., 2008) and from South Pole site (McConnell et al., 1997; McConnell et al., 2000). Refractory black carbon (rBC) concentrations were determined using the same method as in (Bisiaux et al., 2011) and adapted to continuous flow measurements as described by (McConnell et al., 2007). The technique uses a single particle intracavity laser induced incandescence photometer (SP2, Droplet Measurement Technologies, Boulder, Colorado) coupled to an ultrasonic nebulizer/desolvation (CETAC UT5000) Flow Injection Analysis (FIA). All analyses, sample preparation etc, were performed in a class 100 cleanroom using anti contamination "clean techniques". The samples were not acidified.
Kim, Hyeyoung; Lee, Youngsun; Shin, Insik; Kim, Kitae; Moon, Jeheon
2014-01-01
[Purpose] For maximum efficiency and to prevent injury during javelin throwing, it is critical to maintain muscle balance and coordination of the rotator cuff and the glenohumeral joint. In this study, we investigated the change in the rotator cuff muscle strength, throw distance and technique of javelin throwers after they had performed a specific physical training that combined elements of weight training, function movement screen training, and core training. [Subjects] Ten javelin throwers participated in this study: six university athletes in the experimental group and four national-level athletes in the control group. [Methods] The experimental group performed 8 weeks of the specific physical training. To evaluate the effects of the training, measurements were performed before and after the training for the experimental group. Measurements comprised anthropometry, isokinetic muscle strength measurements, the function movement screen test, and movement analysis. [Results] After the specific physical training, the function movement screen score and external and internal rotator muscle strength showed statistically significant increases. Among kinematic factors, only pull distance showed improvement after training. [Conclusion] Eight weeks of specific physical training for dynamic stabilizer muscles enhanced the rotator cuff muscle strength, core stability, throw distance, and flexibility of javelin throwers. These results suggest that specific physical training can be useful for preventing shoulder injuries and improving the performance for javelin throwers. PMID:25364111
Kim, Hyeyoung; Lee, Youngsun; Shin, Insik; Kim, Kitae; Moon, Jeheon
2014-10-01
[Purpose] For maximum efficiency and to prevent injury during javelin throwing, it is critical to maintain muscle balance and coordination of the rotator cuff and the glenohumeral joint. In this study, we investigated the change in the rotator cuff muscle strength, throw distance and technique of javelin throwers after they had performed a specific physical training that combined elements of weight training, function movement screen training, and core training. [Subjects] Ten javelin throwers participated in this study: six university athletes in the experimental group and four national-level athletes in the control group. [Methods] The experimental group performed 8 weeks of the specific physical training. To evaluate the effects of the training, measurements were performed before and after the training for the experimental group. Measurements comprised anthropometry, isokinetic muscle strength measurements, the function movement screen test, and movement analysis. [Results] After the specific physical training, the function movement screen score and external and internal rotator muscle strength showed statistically significant increases. Among kinematic factors, only pull distance showed improvement after training. [Conclusion] Eight weeks of specific physical training for dynamic stabilizer muscles enhanced the rotator cuff muscle strength, core stability, throw distance, and flexibility of javelin throwers. These results suggest that specific physical training can be useful for preventing shoulder injuries and improving the performance for javelin throwers.
Jo, Myung Hyun; Song, Ji-Joon; Hohng, Sungchul
2015-12-01
In eukaryotes, small RNAs play important roles in both gene regulation and resistance to viral infection. Argonaute proteins have been identified as a key component of the effector complexes of various RNA-silencing pathways, but the mechanistic roles of Argonaute proteins in these pathways are not clearly understood. To address this question, we performed single-molecule fluorescence experiments using an RNA-induced silencing complex (core-RISC) composed of a small RNA and human Argonaute 2. We found that target binding of core-RISC starts at the seed region of the guide RNA. After target binding, four distinct reactions followed: target cleavage, transient binding, stable binding, and Argonaute unloading. Target cleavage required extensive sequence complementarity and accelerated core-RISC dissociation for recycling. In contrast, the stable binding of core-RISC to target RNAs required seed-match only, suggesting a potential explanation for the seed-match rule of microRNA (miRNA) target selection.
Analysis of Radionuclide Releases from the Fukushima Dai-Ichi Nuclear Power Plant Accident Part I
NASA Astrophysics Data System (ADS)
Le Petit, G.; Douysset, G.; Ducros, G.; Gross, P.; Achim, P.; Monfort, M.; Raymond, P.; Pontillon, Y.; Jutier, C.; Blanchard, X.; Taffary, T.; Moulin, C.
2014-03-01
Part I of this publication deals with the analysis of fission product releases consecutive to the Fukushima Dai-ichi accident. Reactor core damages are assessed relying on radionuclide detections performed by the CTBTO radionuclide network, especially at the particulate station located at Takasaki, 210 km away from the nuclear power plant. On the basis of a comparison between the reactor core inventory at the time of reactor shutdowns and the fission product activities measured in air at Takasaki, especially 95Nb and 103Ru, it was possible to show that the reactor cores were exposed to high temperature for a prolonged time. This diagnosis was confirmed by the presence of 113Sn in air at Takasaki. The 133Xe assessed release at the time of reactor shutdown (8 × 1018 Bq) turned out to be in the order of 80 % of the amount deduced from the reactor core inventories. This strongly suggests a broad meltdown of reactor cores.
NASA Astrophysics Data System (ADS)
Marcelli, A.; Maggi, V.; Cibin, G.; Sala, M.; Marino, F.; Delmonte, B.
2006-12-01
We present the first x-ray absorption spectroscopy (XAS) data at the Fe K-edge collected on insoluble mineral dust from Talos Dome firn core (TDC, 159°04'E, 72°46'S, 2316 m a.s.l., mean accumulation rate 8 g cm-2 yr- 1), drilled in the framework of the International Trans Antarctic Scientific Expedition (ITASE), and from a Colle del Lys 2003 firn core (CDL03, 45°92'N, 7°86'E, 4248m a.s.l., mean accumulation rate 134 g cm-2 yr-1, Lys Glacier, Mt. Rosa, Italy). The low concentration of mineral particles, obtained by filtering each firn core melted samples on Nuclepore membranes in a 1000 class clean room, required a specific procedure to prepare the samples necessary to the successful collection of the XAS data. The firn samples were decontaminated in clean room under laminar flow bench by means of a ceramic knife and discarding the external part of the cores. Analyses of the insoluble particle content were performed by particle counter Beckman CounterãMultisizer III in order to defined concentration and size distribution of particles in each samples. A dedicated HV experimental chamber, devoted to the realization of XAS experiments on very low absorber concentration samples, was developed and realized in the framework of the CryoAlp collaboration at IMONT, the Italian National Institute for Mountains. The original experimental setup, thanks to the presence of an in-vacuum sample micromanipulator and special sample alignment and docking system installed for these experiments at the Stanford Synchrotron Radiation Laboratory at the beamline 6-2, allows both normal-incidence X-ray Fluorescence detection using a Ketek SDD detector having an energy resolution of about 150 eV and extremely low energy detection limit, and Total X-ray Reflection Fluorescence and Absorption Spectroscopy measurements. The high quality of the XANES experiments performed, using both normal incidence and Total Reflection XAS measurements, allowed recognizing iron-inclusion mineral fractions. Samples for Total Reflection XAS measurements were prepared just for this kind of measurements by depositing the insoluble mineral dust on clean Si wafer substrates. In addition, the XANES spectra show clear differences, corresponding to different samples mineral iron hosts, demonstrating that with this fully non-distructive technique, new information about the dust mineralogy at very low concentration can be performed. The analysis is then complementary to other well established techniques like XRD and PIXE.
Experimental and Theoretical Investigations on Viscosity of Fe-Ni-C Liquids at High Pressures
NASA Astrophysics Data System (ADS)
Chen, B.; Lai, X.; Wang, J.; Zhu, F.; Liu, J.; Kono, Y.
2016-12-01
Understanding and modeling of Earth's core processes such as geodynamo and heat flow via convection in liquid outer cores hinges on the viscosity of candidate liquid iron alloys under core conditions. Viscosity estimates from various methods of the metallic liquid of the outer core, however, span up to 12 orders of magnitude. Due to experimental challenges, viscosity measurements of iron liquids alloyed with lighter elements are scarce and conducted at conditions far below those expected for the outer core. In this study, we adopt a synergistic approach by integrating experiments at experimentally-achievable conditions with computations up to core conditions. We performed viscosity measurements based on the modified Stokes' floating sphere viscometry method for the Fe-Ni-C liquids at high pressures in a Paris-Edinburgh press at Sector 16 of the Advanced Photon Source, Argonne National Laboratory. Our results show that the addition of 3-5 wt.% carbon to iron-nickel liquids has negligible effect on its viscosity at pressures lower than 5 GPa. The viscosity of the Fe-Ni-C liquids, however, becomes notably higher and increases by a factor of 3 at 5-8 GPa. Similarly, our first-principles molecular dynamics calculations up to Earth's core pressures show a viscosity change in Fe-Ni-C liquids at 5 GPa. The significant change in the viscosity is likely due to a liquid structural transition of the Fe-Ni-C liquids as revealed by our X-ray diffraction measurements and first-principles molecular dynamics calculations. The observed correlation between structure and physical properties of liquids permit stringent benchmark test of the computational liquid models and contribute to a more comprehensive understanding of liquid properties under high pressures. The interplay between experiments and first-principles based modeling is shown to be a practical and effective methodology for studying liquid properties under outer core conditions that are difficult to reach with the current static high-pressure capabilities. The new viscosity data from experiments and computations would provide new insights into the internal dynamics of the outer core.
Tar sand extraction by steam stimulation and steam drive: measurement of physical properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linberg, W.R.
The measurement of the following thermophysical properties of Utah tar sands is in progress: thermal conductivity, specific heat relative permeability, and viscosity (of the recovered bitumen). During the report period (October 1, 1978 to November 1, 1979), experimental procedures have been developed and a basic data set has been measured. Additionally, standard core analysis has been performed for four drill sites in the Asphalt Ridge, Utah area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surkov, A. V., E-mail: surkov.andrew@gmail.com; Kochkin, V. N.; Pesnya, Yu. E.
2015-12-15
A comparison of measured and calculated neutronic characteristics (fast neutron flux and fission rate of {sup 235}U) in the core and reflector of the IR-8 reactor is presented. The irradiation devices equipped with neutron activation detectors were prepared. The determination of fast neutron flux was performed using the {sup 54}Fe (n, p) and {sup 58}Ni (n, p) reactions. The {sup 235}U fission rate was measured using uranium dioxide with 10% enrichment in {sup 235}U. The determination of specific activities of detectors was carried out by measuring the intensity of characteristic gamma peaks using the ORTEC gamma spectrometer. Neutron fields inmore » the core and reflector of the IR-8 reactor were calculated using the MCU-PTR code.« less
NASA Astrophysics Data System (ADS)
Tiyapun, K.; Chimtin, M.; Munsorn, S.; Somchit, S.
2015-05-01
The objective of this work is to demonstrate the method for validating the predication of the calculation methods for neutron flux distribution in the irradiation tubes of TRIGA research reactor (TRR-1/M1) using the MCNP computer code model. The reaction rate using in the experiment includes 27Al(n, α)24Na and 197Au(n, γ)198Au reactions. Aluminium (99.9 wt%) and gold (0.1 wt%) foils and the gold foils covered with cadmium were irradiated in 9 locations in the core referred to as CT, C8, C12, F3, F12, F22, F29, G5, and G33. The experimental results were compared to the calculations performed using MCNP which consisted of the detailed geometrical model of the reactor core. The results from the experimental and calculated normalized reaction rates in the reactor core are in good agreement for both reactions showing that the material and geometrical properties of the reactor core are modelled very well. The results indicated that the difference between the experimental measurements and the calculation of the reactor core using the MCNP geometrical model was below 10%. In conclusion the MCNP computational model which was used to calculate the neutron flux and reaction rate distribution in the reactor core can be used for others reactor core parameters including neutron spectra calculation, dose rate calculation, power peaking factors calculation and optimization of research reactor utilization in the future with the confidence in the accuracy and reliability of the calculation.
Performing an allreduce operation on a plurality of compute nodes of a parallel computer
Faraj, Ahmad
2013-02-12
Methods, apparatus, and products are disclosed for performing an allreduce operation on a plurality of compute nodes of a parallel computer, each node including at least two processing cores, that include: performing, for each node, a local reduction operation using allreduce contribution data for the cores of that node, yielding, for each node, a local reduction result for one or more representative cores for that node; establishing one or more logical rings among the nodes, each logical ring including only one of the representative cores from each node; performing, for each logical ring, a global allreduce operation using the local reduction result for the representative cores included in that logical ring, yielding a global allreduce result for each representative core included in that logical ring; and performing, for each node, a local broadcast operation using the global allreduce results for each representative core on that node.
NASA Astrophysics Data System (ADS)
Yu, Wei; Jiang, Xinbing; Ding, Shujiang; Li, Ben Q.
2014-06-01
Porous hollow nanospheres (or spherical shells) made of NiO nanosheets are synthesized and tested for the electrochemical performance of the electrodes made of these materials for supercapacitors. Preparation of the NiO sheet hollow spheres starts with synthesis of polystyrene nanospheres with carboxyl groups (CPS), followed by a two-step activation procedure and the subsequent nucleation and growth by electroless deposition of Ni on the CPS core to obtain CPS@Ni core-shell nanoparticles. The CPS core is eliminated and metallic Ni nanoshell is converted into NiO by calcinations at high temperatures. The material properties of as-prepared hollow NiO nanospheres are characterized by TEM, XRD and N2-absorption measurements. The electrochemical characteristics of the electrodes made of these nanostructured NiO materials are determined by the CV and galvanostatic measurements. These electrochemical tests indicate that electrodes made of the NiO nanosheet hollow spheres exhibit an improved reversible capacitance of 600 F g-1 after 1000 cycles at a high current density of 10 A g-1. It is believed that the good electrochemical performance of these electrodes is attributed to the improved OH- transport in the porous network structures associated with the hollow spheres of randomly oriented NiO nanosheets.
Overview of recent physics results from MAST
NASA Astrophysics Data System (ADS)
Kirk, A.; Adamek, J.; Akers, R. J.; Allan, S.; Appel, L.; Arese Lucini, F.; Barnes, M.; Barrett, T.; Ben Ayed, N.; Boeglin, W.; Bradley, J.; Browning, P. K.; Brunner, J.; Cahyna, P.; Cardnell, S.; Carr, M.; Casson, F.; Cecconello, M.; Challis, C.; Chapman, I. T.; Chapman, S.; Chorley, J.; Conroy, S.; Conway, N.; Cooper, W. A.; Cox, M.; Crocker, N.; Crowley, B.; Cunningham, G.; Danilov, A.; Darrow, D.; Dendy, R.; Dickinson, D.; Dorland, W.; Dudson, B.; Dunai, D.; Easy, L.; Elmore, S.; Evans, M.; Farley, T.; Fedorczak, N.; Field, A.; Fishpool, G.; Fitzgerald, I.; Fox, M.; Freethy, S.; Garzotti, L.; Ghim, Y. C.; Gi, K.; Gibson, K.; Gorelenkova, M.; Gracias, W.; Gurl, C.; Guttenfelder, W.; Ham, C.; Harrison, J.; Harting, D.; Havlickova, E.; Hawkes, N.; Hender, T.; Henderson, S.; Highcock, E.; Hillesheim, J.; Hnat, B.; Horacek, J.; Howard, J.; Howell, D.; Huang, B.; Imada, K.; Inomoto, M.; Imazawa, R.; Jones, O.; Kadowaki, K.; Kaye, S.; Keeling, D.; Klimek, I.; Kocan, M.; Kogan, L.; Komm, M.; Lai, W.; Leddy, J.; Leggate, H.; Hollocombe, J.; Lipschultz, B.; Lisgo, S.; Liu, Y. Q.; Lloyd, B.; Lomanowski, B.; Lukin, V.; Lupelli, I.; Maddison, G.; Madsen, J.; Mailloux, J.; Martin, R.; McArdle, G.; McClements, K.; McMillan, B.; Meakins, A.; Meyer, H.; Michael, C.; Militello, F.; Milnes, J.; Morris, A. W.; Motojima, G.; Muir, D.; Naylor, G.; Nielsen, A.; O'Brien, M.; O'Gorman, T.; O'Mullane, M.; Olsen, J.; Omotani, J.; Ono, Y.; Pamela, S.; Pangione, L.; Parra, F.; Patel, A.; Peebles, W.; Perez, R.; Pinches, S.; Piron, L.; Price, M.; Reinke, M.; Ricci, P.; Riva, F.; Roach, C.; Romanelli, M.; Ryan, D.; Saarelma, S.; Saveliev, A.; Scannell, R.; Schekochihin, A.; Sharapov, S.; Sharples, R.; Shevchenko, V.; Shinohara, K.; Silburn, S.; Simpson, J.; Stanier, A.; Storrs, J.; Summers, H.; Takase, Y.; Tamain, P.; Tanabe, H.; Tanaka, H.; Tani, K.; Taylor, D.; Thomas, D.; Thomas-Davies, N.; Thornton, A.; Turnyanskiy, M.; Valovic, M.; Vann, R.; Van Wyk, F.; Walkden, N.; Watanabe, T.; Wilson, H.; Wischmeier, M.; Yamada, T.; Young, J.; Zoletnik, S.; the MAST Team; the EUROfusion MST1 Team
2017-10-01
New results from MAST are presented that focus on validating models in order to extrapolate to future devices. Measurements during start-up experiments have shown how the bulk ion temperature rise scales with the square of the reconnecting field. During the current ramp-up, models are not able to correctly predict the current diffusion. Experiments have been performed looking at edge and core turbulence. At the edge, detailed studies have revealed how filament characteristics are responsible for determining the near and far scrape off layer density profiles. In the core the intrinsic rotation and electron scale turbulence have been measured. The role that the fast ion gradient has on redistributing fast ions through fishbone modes has led to a redesign of the neutral beam injector on MAST Upgrade. In H-mode the turbulence at the pedestal top has been shown to be consistent with being due to electron temperature gradient modes. A reconnection process appears to occur during edge localized modes (ELMs) and the number of filaments released determines the power profile at the divertor. Resonant magnetic perturbations can mitigate ELMs provided the edge peeling response is maximised and the core kink response minimised. The mitigation of intrinsic error fields with toroidal mode number n > 1 has been shown to be important for plasma performance.
Quantum funneling in blended multi-band gap core/shell colloidal quantum dot solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neo, Darren C. J.; Assender, Hazel E.; Watt, Andrew A. R., E-mail: Andrew.watt@materials.ox.ac.uk
2015-09-07
Multi-band gap heterojunction solar cells fabricated from a blend of 1.2 eV and 1.4 eV PbS colloidal quantum dots (CQDs) show poor device performance due to non-radiative recombination. To overcome this, a CdS shell is epitaxially formed around the PbS core using cation exchange. From steady state and transient photoluminescence measurements, we understand the nature of charge transfer between these quantum dots. Photoluminescence decay lifetimes are much longer in the PbS/CdS core/shell blend compared to PbS only, explained by a reduction in non-radiative recombination resulting from CdS surface passivation. PbS/CdS heterojunction devices sustain a higher open-circuit voltage and lower reverse saturation currentmore » as compared to PbS-only devices, implying lower recombination rates. Further device performance enhancement is attained by modifying the composition profile of the CQD species in the absorbing layer resulting in a three dimensional quantum cascade structure.« less
Cummins, Dustin R.; Martinez, Ulises; Sherehiy, Andriy; Kappera, Rajesh; Martinez-Garcia, Alejandro; Schulze, Roland K.; Jasinski, Jacek; Zhang, Jing; Gupta, Ram K.; Lou, Jun; Chhowalla, Manish; Sumanasekera, Gamini; Mohite, Aditya D.; Sunkara, Mahendra K.; Gupta, Gautam
2016-01-01
Hydrogen evolution reaction is catalysed efficiently with precious metals, such as platinum; however, transition metal dichalcogenides have recently emerged as a promising class of materials for electrocatalysis, but these materials still have low activity and durability when compared with precious metals. Here we report a simple one-step scalable approach, where MoOx/MoS2 core-shell nanowires and molybdenum disulfide sheets are exposed to dilute aqueous hydrazine at room temperature, which results in marked improvement in electrocatalytic performance. The nanowires exhibit ∼100 mV improvement in overpotential following exposure to dilute hydrazine, while also showing a 10-fold increase in current density and a significant change in Tafel slope. In situ electrical, gate-dependent measurements and spectroscopic investigations reveal that hydrazine acts as an electron dopant in molybdenum disulfide, increasing its conductivity, while also reducing the MoOx core in the core-shell nanowires, which leads to improved electrocatalytic performance. PMID:27282871
Cummins, Dustin R; Martinez, Ulises; Sherehiy, Andriy; Kappera, Rajesh; Martinez-Garcia, Alejandro; Schulze, Roland K; Jasinski, Jacek; Zhang, Jing; Gupta, Ram K; Lou, Jun; Chhowalla, Manish; Sumanasekera, Gamini; Mohite, Aditya D; Sunkara, Mahendra K; Gupta, Gautam
2016-06-10
Hydrogen evolution reaction is catalysed efficiently with precious metals, such as platinum; however, transition metal dichalcogenides have recently emerged as a promising class of materials for electrocatalysis, but these materials still have low activity and durability when compared with precious metals. Here we report a simple one-step scalable approach, where MoOx/MoS2 core-shell nanowires and molybdenum disulfide sheets are exposed to dilute aqueous hydrazine at room temperature, which results in marked improvement in electrocatalytic performance. The nanowires exhibit ∼100 mV improvement in overpotential following exposure to dilute hydrazine, while also showing a 10-fold increase in current density and a significant change in Tafel slope. In situ electrical, gate-dependent measurements and spectroscopic investigations reveal that hydrazine acts as an electron dopant in molybdenum disulfide, increasing its conductivity, while also reducing the MoOx core in the core-shell nanowires, which leads to improved electrocatalytic performance.
Cummins, Dustin R.; Martinez, Ulises; Sherehiy, Andriy; ...
2016-06-10
In this study, hydrogen evolution reaction is catalyzed efficiently with precious metals, such as platinum; however, transition metal dichalcogenides have recently emerged as a promising class of materials for electrocatalysis, but these materials still have low activity and durability when compared with precious metals. Here we report a simple one-step scalable approach, where MoO x/MoS 2 core-shell nanowires and molybdenum disulfide sheets are exposed to dilute aqueous hydrazine at room temperature, which results in marked improvement in electrocatalytic performance. The nanowires exhibit ~100 mV improvement in over potential following exposure to dilute hydrazine, while also showing a 10-fold increase inmore » current density and a significant change in Tafel slope. In situ electrical, gate-dependent measurements and spectroscopic investigations reveal that hydrazine acts as an electron dopant in molybdenum disulfide, increasing its conductivity, while also reducing the MoO x core in the core-shell nanowires, which leads to improved electrocatalytic performance.« less
NASA Technical Reports Server (NTRS)
Pun, A.; Papike, J. J.
1994-01-01
We are evaluating the trace-element concentrations in the pyroxenes of Pasamonte. Pasamonte is a characteristic member of the main group eucrites, and has recently been redescribed as a polymict eucrite. Our Pasamonte sample contained eucritic clasts with textures ranging from subophitic to moderately coarse-grained. This study concentrates on pyroxenes from an unequilibrated, coarse-grained eucrite clast. Major-, minor-, and trace-element analyses were measured for zoned pyroxenes in the eucritic clast of Pasamonte. The major- and minor-element zoning traverses were measured using the JEOL 733 electron probe with an Oxford-Link imaging/analysis system. Complemenatry trace elements were then measured for the core and rim of each of the grains by SIMS. The trace elements analyzed consisted of eight REE, Sr, Y, and Zr. These analyses were performed on a Cameca 4f ion probe. The results of the CI chondrite normalized (average CI trace-element analyses for several grains and the major- and minor-element zoning patterns from a single pyroxene grain are given. The Eu abundance in the cores of the pyroxenes represents the detection limit and therefore the (-Eu) anomaly is a minimum. Major- and minor-element patterns are typical for igneous zoning. Pyroxene cores are Mg enriched, whereas the rims are enriched in Fe and Ca. Also, Ti and Mn are found to increase, while Cr and Al generally decrease in core-to-rim traverses. The cores of the pyroxenes are more depleted in the Rare Earth Elements (REE) than the rims. Using the minor- and trace-element concentrations of bulk Pasamonte and the minor- and trace-element concentrations from the cores of the pyroxenes in Pasamonte measured in this study, we calculated partition coefficients between pyroxene and melt. This calculation assumes that bulk Pasamonte is representative of a melt composition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Epstein, R.; Goncharov, V. N.; Marshall, F. J.
Pressure, by definition, characterizes the conditions within an isobaric implosion core at peak compression [Gus'kov et al., Nucl. Fusion 16, 957 (1976); Betti et al., Phys. Plasmas 8, 5257 (2001)] and is a key parameter in quantifying its near-ignition performance [Lawson, Proc. Phys. Soc. London, B 70, 6 (1957); Betti et al., Phys. Plasmas 17, 058102 (2010); Goncharov et al., Phys. Plasmas 21, 056315 (2014); and Glenzer et al., Phys. Plasmas 19, 056318 (2012)]. At high spectral energy, where the x-ray emission from an imploded hydrogen core is optically thin, the emissivity profile can be inferred from the spatially resolvedmore » core emission. This emissivity, which can be modeled accurately under hot-core conditions, is dependent almost entirely on the pressure when measured within a restricted spectral range matched to the temperature range anticipated for the emitting volume. In this way, the hot core pressure at the time of peak emission can be inferred from the measured free-free emissivity profile. The pressure and temperature dependences of the x-ray emissivity and the neutron-production rate explain a simple scaling of the total filtered x-ray emission as a constant power of the total neutron yield for implosions of targets of similar design over a broad range of shell implosion isentropes. This scaling behavior has been seen in implosion simulations and is confirmed by measurements of high-isentrope implosions [Sangster et al., Phys. Plasmas 20, 056317 (2013)] on the OMEGA laser system [Boehly et al., Opt. Commun. 133, 495 (1997)]. Attributing the excess emission from less-stable, low-isentrope implosions, above the level expected from this neutron-yield scaling, to the higher emissivity of shell carbon mixed into the implosion's central hot spot, the hot-spot “fuel–shell” mix mass can be inferred.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Epstein, R.; Goncharov, V. N.; Marshall, F. J.
Pressure, by definition, characterizes the conditions within an isobaric implosion core at peak compression [Gus’kov et al., Nucl. Fusion 16, 957 (1976); Betti et al., Phys. Plasmas 8, 5257 (2001)] and is a key parameter in quantifying its near-ignition performance [Lawson, Proc. Phys. Soc. London, B 70, 6 (1957); Betti et al., Phys. Plasmas 17, 058102 (2010); Goncharov et al., Phys. Plasmas 21, 056315 (2014); and Glenzer et al., Phys. Plasmas 19, 056318 (2012)]. At high spectral energy, where the x-ray emission from an imploded hydrogen core is optically thin, the emissivity profile can be inferred from the spatially resolvedmore » core emission. This emissivity, which can be modeled accurately under hot-core conditions, is dependent almost entirely on the pressure when measured within a restricted spectral range matched to the temperature range anticipated for the emitting volume. In this way, the hot core pressure at the time of peak emission can be inferred from the measured free-free emissivity profile. The pressure and temperature dependences of the x-ray emissivity and the neutron-production rate explain a simple scaling of the total filtered x-ray emission as a constant power of the total neutron yield for implosions of targets of similar design over a broad range of shell implosion isentropes. This scaling behavior has been seen in implosion simulations and is confirmed by measurements of high-isentrope implosions [Sangster et al., Phys. Plasmas 20, 056317 (2013)] on the OMEGA laser system [Boehly et al., Opt. Commun. 133, 495 (1997)]. Attributing the excess emission from less-stable, low-isentrope implosions, above the level expected from this neutron-yield scaling, to the higher emissivity of shell carbon mixed into the implosion’s central hot spot, the hot-spot “fuel–shell” mix mass can be inferred.« less
Grace, Nicci; Enticott, Peter Gregory; Johnson, Beth Patricia; Rinehart, Nicole Joan
2017-04-01
Handwriting is commonly identified as an area of weakness in children with autism spectrum disorder (ASD), but precise deficits have not been fully characterised. Boys with ASD (n = 23) and matched controls (n = 20) aged 8-12 years completed a simple, digitised task to objectively assess handwriting performance using advanced descriptive measures. Moderate to large associations were identified between handwriting performance and attention, ASD symptoms and motor proficiency. The ASD group demonstrated significantly less smooth movements and significantly greater sizing variability and peak velocity relative to controls. These findings provide a clearer indication of the specific nature of handwriting impairments in children with ASD, and suggest a relationship with core clinical symptom severity, attention and motor behaviours.
Thin grain oriented electrical steel for PWM voltages fed magnetic cores
NASA Astrophysics Data System (ADS)
Belgrand, Thierry; Lemaître, Régis; Benabou, Abdelkader; Blaszkowski, Jonathan; Wang, Chaoyong
2018-04-01
This paper reports on performances of high permeability grain oriented electrical steel when used in association with power electronic switching devices. Loss measurement results obtained from the Epstein test, using sinusoidal or various PWM voltages in medium frequency range, show that for both studied thicknesses (HGO 0.23mm and HGO 0.18mm), comparing performances at a fixed induction level between the various situations may not be the most convenient method. The effect of magnetic domain refinement has been investigated. After having shown the interest of lowering the thickness, an alternative way of looking at losses is proposed that may help to design the magnetic core when it comes to the matter of reducing size in considering frequency and magnetization levels.
Exact diagonalization of quantum lattice models on coprocessors
NASA Astrophysics Data System (ADS)
Siro, T.; Harju, A.
2016-10-01
We implement the Lanczos algorithm on an Intel Xeon Phi coprocessor and compare its performance to a multi-core Intel Xeon CPU and an NVIDIA graphics processor. The Xeon and the Xeon Phi are parallelized with OpenMP and the graphics processor is programmed with CUDA. The performance is evaluated by measuring the execution time of a single step in the Lanczos algorithm. We study two quantum lattice models with different particle numbers, and conclude that for small systems, the multi-core CPU is the fastest platform, while for large systems, the graphics processor is the clear winner, reaching speedups of up to 7.6 compared to the CPU. The Xeon Phi outperforms the CPU with sufficiently large particle number, reaching a speedup of 2.5.
Design of a family of ring-core fibers for OAM transmission studies.
Brunet, Charles; Ung, Bora; Wang, Lixian; Messaddeq, Younès; LaRochelle, Sophie; Rusch, Leslie A
2015-04-20
We propose a family of ring-core fibers, designed for the transmission of OAM modes, that can be fabricated by drawing five different fibers from a single preform. This novel technique allows us to experimentally sweep design parameters and speed up the fiber design optimization process. Such a family of fibers could be used to examine system performance, but also facilitate understanding of parameter impact in the transition from design to fabrication. We present design parameters characterizing our fiber, and enumerate criteria to be satisfied. We determine targeted fiber dimensions and explain our strategy for examining a design family rather than a single fiber design. We simulate modal properties of the designed fibers, and compare the results with measurements performed on fabricated fibers.
Chalmers, J R; Thomas, K S; Apfelbacher, C; Williams, H C; Prinsen, C A; Spuls, P I; Simpson, E; Gerbens, L A A; Boers, M; Barbarot, S; Stalder, J F; Abuabara, K; Aoki, V; Ardeleanu, M; Armstrong, J; Bang, B; Berents, T L; Burton, T; Butler, L; Chubachi, T; Cresswell-Melville, A; DeLozier, A; Eckert, L; Eichenfield, L; Flohr, C; Futamura, M; Gadkari, A; Gjerde, E S; van Halewijn, K F; Hawkes, C; Howells, L; Howie, L; Humphreys, R; Ishii, H A; Kataoka, Y; Katayama, I; Kouwenhoven, W; Langan, S M; Leshem, Y A; Merhand, S; Mina-Osorio, P; Murota, H; Nakahara, T; Nunes, F P; Nygaard, U; Nygårdas, M; Ohya, Y; Ono, E; Rehbinder, E; Rogers, N K; Romeijn, G L E; Schuttelaar, M L A; Sears, A V; Simpson, M A; Singh, J A; Srour, J; Stuart, B; Svensson, Å; Talmo, G; Talmo, H; Teixeira, H D; Thyssen, J P; Todd, G; Torchet, F; Volke, A; von Kobyletzki, L; Weisshaar, E; Wollenberg, A; Zaniboni, M
2018-05-01
This is the report from the fifth meeting of the Harmonising Outcome Measures for Eczema initiative (HOME V). The meeting was held on 12-14 June 2017 in Nantes, France, with 81 participants. The main aims of the meeting were (i) to achieve consensus over the definition of the core domain of long-term control and how to measure it and (ii) to prioritize future areas of research for the measurement of the core domain of quality of life (QoL) in children. Moderated whole-group and small-group consensus discussions were informed by presentations of qualitative studies, systematic reviews and validation studies. Small-group allocations were performed a priori to ensure that each group included different stakeholders from a variety of geographical regions. Anonymous whole-group voting was carried out using handheld electronic voting pads according to predefined consensus rules. It was agreed by consensus that the long-term control domain should include signs, symptoms, quality of life and a patient global instrument. The group agreed that itch intensity should be measured when assessing long-term control of eczema in addition to the frequency of itch captured by the symptoms domain. There was no recommendation of an instrument for the core outcome domain of quality of life in children, but existing instruments were assessed for face validity and feasibility, and future work that will facilitate the recommendation of an instrument was agreed upon. © 2018 The Authors. British Journal of Dermatology published by John Wiley & Sons Ltd on behalf of British Association of Dermatologists.
Nitric Oxide PLIF Measurements in the Hypersonic Materials Environmental Test System (HYMETS)
NASA Technical Reports Server (NTRS)
Inman, Jennifer A.; Bathel, Brett F.; Johansen, Craig T.; Danehy, Paul M.; Jones, Stephen B.; Gragg, Jeffrey G.; Splinter, Scott C.
2011-01-01
A nonintrusive laser-based measurement system has been applied for the first time in the HYMETS (Hypersonic Materials Environmental Test System) 400 kW arc-heated wind tunnel at NASA Langley Research Center. Planar laser-induced fluorescence of naturally occurring nitric oxide (NO) has been used to obtain instantaneous flow visualization images, and to make both radial and axial velocity measurements. Results are presented at selected facility run conditions, including some in simulated Earth atmosphere (75% nitrogen, 20% oxygen, 5% argon) and others in simulated Martian atmosphere (71% carbon dioxide, 24% nitrogen, 5% argon), for bulk enthalpies ranging from 6.5 MJ/kg to 18.4 MJ/kg. Flow visualization images reveal the presence of large scale unsteady flow structures, and indicate nitric oxide fluorescence signal over more than 70% of the core flow for bulk enthalpies below about 11 MJ/kg, but over less than 10% of the core flow for bulk enthalpies above about 16 MJ/kg. Axial velocimetry was performed using molecular tagging velocimetry (MTV). Axial velocities of about 3 km/s were measured along the centerline. Radial velocimetry was performed by scanning the wavelength of the narrowband laser and analyzing the resulting Doppler shift. Radial velocities of 0.5km/s were measured.
Oryspayev, Dossay; Aktulga, Hasan Metin; Sosonkina, Masha; ...
2015-07-14
In this article, sparse matrix vector multiply (SpMVM) is an important kernel that frequently arises in high performance computing applications. Due to its low arithmetic intensity, several approaches have been proposed in literature to improve its scalability and efficiency in large scale computations. In this paper, our target systems are high end multi-core architectures and we use messaging passing interface + open multiprocessing hybrid programming model for parallelism. We analyze the performance of recently proposed implementation of the distributed symmetric SpMVM, originally developed for large sparse symmetric matrices arising in ab initio nuclear structure calculations. We also study important featuresmore » of this implementation and compare with previously reported implementations that do not exploit underlying symmetry. Our SpMVM implementations leverage the hybrid paradigm to efficiently overlap expensive communications with computations. Our main comparison criterion is the "CPU core hours" metric, which is the main measure of resource usage on supercomputers. We analyze the effects of topology-aware mapping heuristic using simplified network load model. Furthermore, we have tested the different SpMVM implementations on two large clusters with 3D Torus and Dragonfly topology. Our results show that the distributed SpMVM implementation that exploits matrix symmetry and hides communication yields the best value for the "CPU core hours" metric and significantly reduces data movement overheads.« less
Occupational heat strain in a hot underground metal mine.
Lutz, Eric A; Reed, Rustin J; Turner, Dylan; Littau, Sally R
2014-04-01
In a hot underground metal mine, this study evaluated the relationship between job task, physical body type, work shift, and heat strain. Thirty-one miners were evaluated during 98 shifts while performing deep shaft-sinking tasks. Continuous core body temperature, heart rate, pre- and postshift urine specific gravity (USG), and body mass index were measured. Cutting and welding tasks were associated with significantly (P < 0.05) increased core body temperature, maximum heart rate, and increased postshift urine specific gravity. Miners in the obese level II and III body mass index categories, as well as those working night shift, had lower core body temperatures (P < 0.05). This study confirms that job task, body type, and shift are risk factors for heat strain.
NASA Technical Reports Server (NTRS)
Bever, R. S.
1976-01-01
Internal embedment stress measurements were performed, using tiny ferrite core transformers, whose voltage output was calibrated versus pressure by the manufacturer. Comparative internal strain measurements were made by attaching conventional strain gages to the same type of resistors and encapsulating these in various potting compounds. Both types of determinations were carried out while temperature cycling from 77 C to -50 C.
Fassett, William E
2011-10-10
As colleges and schools of pharmacy develop core courses related to patient safety, course-level outcomes will need to include both knowledge and performance measures. Three key performance outcomes for patient safety coursework, measured at the course level, are the ability to perform root cause analyses and healthcare failure mode effects analyses, and the ability to generate effective safety communications using structured formats such as the Situation-Background-Assessment-Recommendation (SBAR) situational briefing model. Each of these skills is widely used in patient safety work and competence in their use is essential for a pharmacist's ability to contribute as a member of a patient safety team.
NASA Astrophysics Data System (ADS)
Syvorotka, Ihor I.; Pavlyk, Lyubomyr P.; Ubizskii, Sergii B.; Buryy, Oleg A.; Savytskyy, Hrygoriy V.; Mitina, Nataliya Y.; Zaichenko, Oleksandr S.
2017-04-01
Method of determining of magnetic moment and size from measurements of dependence of the nonlinear magnetic susceptibility upon magnetic field is proposed, substantiated and tested for superparamagnetic nanoparticles (SPNP) of the "magnetic core-polymer shell" type which are widely used in biomedical technologies. The model of the induction response of the SPNP ensemble on the combined action of the magnetic harmonic excitation field and permanent bias field is built, and the analysis of possible ways to determine the magnetic moment and size of the nanoparticles as well as the parameters of the distribution of these variables is performed. Experimental verification of the proposed method was implemented on samples of SPNP with maghemite core in dry form as well as in colloidal systems. The results have been compared with the data obtained by other methods. Advantages of the proposed method are analyzed and discussed, particularly in terms of its suitability for routine express testing of SPNP for biomedical technology.
Valence-band and core-level photoemission study of single-crystal Bi2CaSr2Cu2O8 superconductors
NASA Astrophysics Data System (ADS)
Shen, Z.-X.; Lindberg, P. A. P.; Wells, B. O.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.
1988-12-01
High-quality single crystals of Bi2CaSr2Cu2O8 superconductors have been prepared and cleaved in ultrahigh vacuum. Low-energy electron diffraction measurements show that the surface structure is consistent with the bulk crystal structure. Ultraviolet photoemission and x-ray photoemission experiments were performed on these well-characterized sample surfaces. The valence-band and the core-level spectra obtained from the single-crystal surfaces are in agreement with spectra recorded from polycrystalline samples, justifying earlier results from polycrystalline samples. Cu satellites are observed both in the valence band and Cu 2p core level, signaling the strong correlation among the Cu 3d electrons. The O 1s core-level data exhibit a sharp, single peak at 529-eV binding energy without any clear satellite structures.
Gas-phase study on uridine: Conformation and X-ray photofragmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Itälä, Eero, E-mail: ersita@utu.fi; Kooser, Kuno; Levola, Helena
2015-05-21
Fragmentation of RNA nucleoside uridine, induced by carbon 1s core ionization, has been studied. The measurements by combined electron and ion spectroscopy have been performed in gas phase utilizing synchrotron radiation. As uridine is a combination of d-ribose and uracil, which have been studied earlier with the same method, this study also considers the effect of chemical environment and the relevant functional groups. Furthermore, since in core ionization the initial core hole is always highly localized, charge migration prior to fragmentation has been studied here. This study also demonstrates the destructive nature of core ionization as in most cases themore » C 1s ionization of uridine leads to concerted explosions producing only small fragments with masses ≤43 amu. In addition to fragmentation patterns, we found out that upon evaporation the sugar part of the uridine molecule attains hexagonal form.« less
NASA Astrophysics Data System (ADS)
Victor, Rodolfo A.; Prodanović, Maša.; Torres-Verdín, Carlos
2017-12-01
We develop a new Monte Carlo-based inversion method for estimating electron density and effective atomic number from 3-D dual-energy computed tomography (CT) core scans. The method accounts for uncertainties in X-ray attenuation coefficients resulting from the polychromatic nature of X-ray beam sources of medical and industrial scanners, in addition to delivering uncertainty estimates of inversion products. Estimation of electron density and effective atomic number from CT core scans enables direct deterministic or statistical correlations with salient rock properties for improved petrophysical evaluation; this condition is specifically important in media such as vuggy carbonates where CT resolution better captures core heterogeneity that dominates fluid flow properties. Verification tests of the inversion method performed on a set of highly heterogeneous carbonate cores yield very good agreement with in situ borehole measurements of density and photoelectric factor.
Depositional history of the Apollo 16 deep drill core
NASA Technical Reports Server (NTRS)
Gose, W. A.; Morris, R. V.
1977-01-01
Ferromagnetic resonance and magnetic hysteresis loop measurements were performed on 212 samples from the Apollo 16 deep drill core. The total iron content is generally uniform with a mean value of 5.7 plus or minus 0.9 wt%. The soils range in maturity from immature to mature. Two major contacts were observed. The contact at 13 cm depth represents a fossil surface whereas the contact at 190 cm depth has no time-stratigraphic significance. The data suggest that the core section below 13 cm depth was deposited in a single impact event and subjected to meteoritic gardening for about 450 m.y. However, our data do not preclude deposition by a series of closely spaced events. About 50 m.y. ago, the top 13 cm were added. Comparison with the Apollo 16 double drive tube 60009/60010 does not yield any evidence for a stratigraphic correlation with the deep drill core.
EFFECT OF PILOT HOLE TAPPING ON PULLOUT STRENGTH AND INSERTION TORQUE OF DUAL CORE PEDICLE SCREWS.
Rosa, Rodrigo César; Silva, Patrícia; Falcai, Maurício José; Shimano, Antônio Carlos; Defino, Helton Luiz Aparecido
2010-01-01
To evaluate the influence of pilot hole tapping on pullout resistance and insertion torque of pedicle screws with a conical core. Mechanical tests using a universal testing machine were performed on pedicle screws with a conical core that were inserted into pedicles in the fifth lumbar vertebra of calves. The insertion torque was measured using a torque meter with a capacity of 10 Nm, which was considered to be the highest torque value. The pilot holes were prepared using a probe of external diameter 3.8 mm and tapping of the same dimensions and thread characteristics as the screw. Decreased insertion torque and pullout resistance were observed in the group with prior tapping of the pilot hole. Pilot hole tapping reduced the insertion torque and pullout resistance of pedicle screws with a conical core that had been inserted into the pedicle of the fifth lumbar vertebra of calves.
MC21 analysis of the MIT PWR benchmark: Hot zero power results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly Iii, D. J.; Aviles, B. N.; Herman, B. R.
2013-07-01
MC21 Monte Carlo results have been compared with hot zero power measurements from an operating pressurized water reactor (PWR), as specified in a new full core PWR performance benchmark from the MIT Computational Reactor Physics Group. Included in the comparisons are axially integrated full core detector measurements, axial detector profiles, control rod bank worths, and temperature coefficients. Power depressions from grid spacers are seen clearly in the MC21 results. Application of Coarse Mesh Finite Difference (CMFD) acceleration within MC21 has been accomplished, resulting in a significant reduction of inactive batches necessary to converge the fission source. CMFD acceleration has alsomore » been shown to work seamlessly with the Uniform Fission Site (UFS) variance reduction method. (authors)« less
Shift Verification and Validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandya, Tara M.; Evans, Thomas M.; Davidson, Gregory G
2016-09-07
This documentation outlines the verification and validation of Shift for the Consortium for Advanced Simulation of Light Water Reactors (CASL). Five main types of problems were used for validation: small criticality benchmark problems; full-core reactor benchmarks for light water reactors; fixed-source coupled neutron-photon dosimetry benchmarks; depletion/burnup benchmarks; and full-core reactor performance benchmarks. We compared Shift results to measured data and other simulated Monte Carlo radiation transport code results, and found very good agreement in a variety of comparison measures. These include prediction of critical eigenvalue, radial and axial pin power distributions, rod worth, leakage spectra, and nuclide inventories over amore » burn cycle. Based on this validation of Shift, we are confident in Shift to provide reference results for CASL benchmarking.« less
Core stability training: applications to sports conditioning programs.
Willardson, Jeffrey M
2007-08-01
In recent years, fitness practitioners have increasingly recommended core stability exercises in sports conditioning programs. Greater core stability may benefit sports performance by providing a foundation for greater force production in the upper and lower extremities. Traditional resistance exercises have been modified to emphasize core stability. Such modifications have included performing exercises on unstable rather than stable surfaces, performing exercises while standing rather than seated, performing exercises with free weights rather than machines, and performing exercises unilaterally rather than bilaterally. Despite the popularity of core stability training, relatively little scientific research has been conducted to demonstrate the benefits for healthy athletes. Therefore, the purpose of this review was to critically examine core stability training and other issues related to this topic to determine useful applications for sports conditioning programs. Based on the current literature, prescription of core stability exercises should vary based on the phase of training and the health status of the athlete. During preseason and in-season mesocycles, free weight exercises performed while standing on a stable surface are recommended for increases in core strength and power. Free weight exercises performed in this manner are specific to the core stability requirements of sports-related skills due to moderate levels of instability and high levels of force production. Conversely, during postseason and off-season mesocycles, Swiss ball exercises involving isometric muscle actions, small loads, and long tension times are recommended for increases in core endurance. Furthermore, balance board and stability disc exercises, performed in conjunction with plyometric exercises, are recommended to improve proprioceptive and reactive capabilities, which may reduce the likelihood of lower extremity injuries.
ERIC Educational Resources Information Center
Khaola, Peter P.
2014-01-01
As one of the most important dependent variables in education and work research, performance has been operationalised either as the proficiency with which core tasks are performed (task performance), or as extra-role behaviours that support core activities (organisational citizenship behaviours). Relative to academic performance (core academic…
Measurement of the shell decompression in direct-drive inertial-confinement-fusion implosions
Michel, D. T.; Hu, S. X.; Davis, A. K.; ...
2017-05-10
Measurement of the effect of adiabat (α) on the shell thickness were performed in direct-drive implosions. When reducing the adiabat of the shell from α = 6 to α = 4:5, the shell thickness was measured to decrease from 75 μm to 60 μm, but when decreasing the adiabat further (α = 1:8), the shell thickness was measured to increase to 75 μm. The measured shell thickness, shell trajectories, neutron bang time, and neutron yield were reproduced by two dimensional simulations that include laser imprint, nonlocal thermal transport, cross-beam energy transfer, and first-principles equation-of-state models. The minimum core size wasmore » measured to decrease from 40 μm to 30 μm, consistent with the reduction of the adiabat from α = 6 to α = 1:8. Simulations that neglected imprint reproduced the measured core size of the entire adiabat scan, but signi cantly underestimate the shell thickness for adiabat below ~3. These results show that the decompression of the shell measured for low-adiabat implosions was a result of laser imprint.« less
Measurement of the shell decompression in direct-drive inertial-confinement-fusion implosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michel, D. T.; Hu, S. X.; Davis, A. K.
Measurement of the effect of adiabat (α) on the shell thickness were performed in direct-drive implosions. When reducing the adiabat of the shell from α = 6 to α = 4:5, the shell thickness was measured to decrease from 75 μm to 60 μm, but when decreasing the adiabat further (α = 1:8), the shell thickness was measured to increase to 75 μm. The measured shell thickness, shell trajectories, neutron bang time, and neutron yield were reproduced by two dimensional simulations that include laser imprint, nonlocal thermal transport, cross-beam energy transfer, and first-principles equation-of-state models. The minimum core size wasmore » measured to decrease from 40 μm to 30 μm, consistent with the reduction of the adiabat from α = 6 to α = 1:8. Simulations that neglected imprint reproduced the measured core size of the entire adiabat scan, but signi cantly underestimate the shell thickness for adiabat below ~3. These results show that the decompression of the shell measured for low-adiabat implosions was a result of laser imprint.« less
Vanderheyden, Yoachim; Cabooter, Deirdre; Desmet, Gert; Broeckhoven, Ken
2013-10-18
The intrinsic kinetic performance of three recently commercialized large size (≥4μm) core-shell particles packed in columns with different lengths has been measured and compared with that of standard fully porous particles of similar and smaller size (5 and 3.5μm, respectively). The kinetic performance is compared in both absolute (plot of t0 versus the plate count N or the peak capacity np for isocratic and gradient elution, respectively) and dimensionless units. The latter is realized by switching to so-called impedance plots, a format which has been previously introduced (as a plot of t0/N(2) or E0 versus Nopt/N) and has in the present study been extended from isocratic to gradient elution (where the impedance plot corresponds to a plot of t0/np(4) versus np,opt(2)/np(2)). Both the isocratic and gradient impedance plot yielded a very similar picture: the clustered impedance plot curves divide into two distinct groups, one for the core-shell particles (lowest values, i.e. best performance) and one for the fully porous particles (highest values), confirming the clear intrinsic kinetic advantage of core-shell particles. If used around their optimal flow rate, the core-shell particles displayed a minimal separation impedance that is about 40% lower than the fully porous particles. Even larger gains in separation speed can be achieved in the C-term regime. Copyright © 2013 Elsevier B.V. All rights reserved.
Optimization of image processing algorithms on mobile platforms
NASA Astrophysics Data System (ADS)
Poudel, Pramod; Shirvaikar, Mukul
2011-03-01
This work presents a technique to optimize popular image processing algorithms on mobile platforms such as cell phones, net-books and personal digital assistants (PDAs). The increasing demand for video applications like context-aware computing on mobile embedded systems requires the use of computationally intensive image processing algorithms. The system engineer has a mandate to optimize them so as to meet real-time deadlines. A methodology to take advantage of the asymmetric dual-core processor, which includes an ARM and a DSP core supported by shared memory, is presented with implementation details. The target platform chosen is the popular OMAP 3530 processor for embedded media systems. It has an asymmetric dual-core architecture with an ARM Cortex-A8 and a TMS320C64x Digital Signal Processor (DSP). The development platform was the BeagleBoard with 256 MB of NAND RAM and 256 MB SDRAM memory. The basic image correlation algorithm is chosen for benchmarking as it finds widespread application for various template matching tasks such as face-recognition. The basic algorithm prototypes conform to OpenCV, a popular computer vision library. OpenCV algorithms can be easily ported to the ARM core which runs a popular operating system such as Linux or Windows CE. However, the DSP is architecturally more efficient at handling DFT algorithms. The algorithms are tested on a variety of images and performance results are presented measuring the speedup obtained due to dual-core implementation. A major advantage of this approach is that it allows the ARM processor to perform important real-time tasks, while the DSP addresses performance-hungry algorithms.
Metadata: Pure and Simple, or Is It?
ERIC Educational Resources Information Center
Chalmers, Marilyn
2002-01-01
Discusses issues concerning metadata in Web pages based on experiences in a vocational education center library in Queensland (Australia). Highlights include Dublin Core elements; search engines; controlled vocabulary; performance measurement to assess usage patterns and provide quality control over the vocabulary; and considerations given the…
Heat exchange studies on coconut oil cells as thermal energy storage for room thermal conditioning
NASA Astrophysics Data System (ADS)
Sutjahja, I. M.; Putri, Widya A.; Fahmi, Z.; Wonorahardjo, S.; Kurnia, D.
2017-07-01
As reported by many thermal environment experts, room air conditioning might be controlled by thermal mass system. In this paper we discuss the performance of coconut oil cells as room thermal energy storage. The heat exchange mechanism of coconut oil (CO) which is one of potential organic Phase Change Material (PCM) is studied based on the results of temperature measurements in the perimeter and core parts of cells. We found that the heat exchange performance, i.e. heat absorption and heat release processes of CO cells are dominated by heat conduction in the sensible solid from the higher temperature perimeter part to the lower temperature core part and heat convection during the solid-liquid phase transition and sensible liquid phase. The capability of heat absorption as measured by the reduction of air temperature is not influenced by CO cell size. Besides that, the application of CO as the thermal mass has to be accompanied by air circulation to get the cool sensation of the room’s occupants.
In-core flux sensor evaluations at the ATR critical facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troy Unruh; Benjamin Chase; Joy Rempe
2014-09-01
Flux detector evaluations were completed as part of a joint Idaho State University (ISU) / Idaho National Laboratory (INL) / French Atomic Energy commission (CEA) ATR National Scientific User Facility (ATR NSUF) project to compare the accuracy, response time, and long duration performance of several flux detectors. Special fixturing developed by INL allows real-time flux detectors to be inserted into various ATRC core positions and perform lobe power measurements, axial flux profile measurements, and detector cross-calibrations. Detectors initially evaluated in this program include the French Atomic Energy Commission (CEA)-developed miniature fission chambers; specialized self-powered neutron detectors (SPNDs) developed by themore » Argentinean National Energy Commission (CNEA); specially developed commercial SPNDs from Argonne National Laboratory. As shown in this article, data obtained from this program provides important insights related to flux detector accuracy and resolution for subsequent ATR and CEA experiments and flux data required for bench-marking models in the ATR V&V Upgrade Initiative.« less
NASA Astrophysics Data System (ADS)
Popov, Evgeny; Popov, Yury; Spasennykh, Mikhail; Kozlova, Elena; Chekhonin, Evgeny; Zagranovskaya, Dzhuliya; Belenkaya, Irina; Alekseev, Aleksey
2016-04-01
A practical method of organic-rich intervals identifying within the low-permeable dispersive rocks based on thermal conductivity measurements along the core is presented. Non-destructive non-contact thermal core logging was performed with optical scanning technique on 4 685 full size core samples from 7 wells drilled in four low-permeable zones of the Bazhen formation (B.fm.) in the Western Siberia (Russia). The method employs continuous simultaneous measurements of rock anisotropy, volumetric heat capacity, thermal anisotropy coefficient and thermal heterogeneity factor along the cores allowing the high vertical resolution (of up to 1-2 mm). B.fm. rock matrix thermal conductivity was observed to be essentially stable within the range of 2.5-2.7 W/(m*K). However, stable matrix thermal conductivity along with the high thermal anisotropy coefficient is characteristic for B.fm. sediments due to the low rock porosity values. It is shown experimentally that thermal parameters measured relate linearly to organic richness rather than to porosity coefficient deviations. Thus, a new technique employing the transformation of the thermal conductivity profiles into continuous profiles of total organic carbon (TOC) values along the core was developed. Comparison of TOC values, estimated from the thermal conductivity values, with experimental pyrolytic TOC estimations of 665 samples from the cores using the Rock-Eval and HAWK instruments demonstrated high efficiency of the new technique for the organic rich intervals separation. The data obtained with the new technique are essential for the SR hydrocarbon generation potential, for basin and petroleum system modeling application, and estimation of hydrocarbon reserves. The method allows for the TOC richness to be accurately assessed using the thermal well logs. The research work was done with financial support of the Russian Ministry of Education and Science (unique identification number RFMEFI58114X0008).
ERIC Educational Resources Information Center
Carrero, Jacqueline
2015-01-01
The author discusses how teachers can measure their effectiveness and discusses three frameworks they can use to do so: the National Board for Professional Teaching Standards's Core Propositions, Robert J. Marzano's Teacher Evaluation Model, and John Hattie's eight mind frames. She also gives examples from her own experience to show how she…
The sound insulations of studio doors. Part 2: Door seals
NASA Astrophysics Data System (ADS)
Plumb, G. D.; Clark, R.
The acoustic performances of a range of proprietary acoustic door seals were measured in the Transmission Suite. The seals were fitted to a standard BBC lead-cored door hung in a purpose-built blockwork wall. As a result of the work, suitable plant-on magnetic perimeter seals and drop-down threshold seals are recommended. The use of these seals will simplify the existing door frame design and should reduce costs without compromising the acoustic performances. The sound insulations were also measured of a range of door blanks with the intention of improving the performances. This work is documented in a companion Report (BBC RD 1994/14).
NASA Technical Reports Server (NTRS)
Estes, Robert H.; Moore, N. R.
2007-01-01
NASA's Global Precipitation Measurement (GPM) mission is an ongoing Goddard Space Flight Center (GSFC) project whose basic objective is to improve global precipitation measurements. It has been decided that the GPM spacecraft is to be a "design for demise" spacecraft. This requirement resulted in the need for a propellant tank that would also demise or ablate to an appropriate degree upon re-entry. This paper will describe GSFC-performed spacecraft and tankage demise analyses, vendor conceptual design studies, and vendor performed hydrazine compatibility and wettability tests performed on 6061 and 2219 aluminum alloys.
Alviar, Maria Jenelyn; Olver, John; Pallant, Julie F; Brand, Caroline; de Steiger, Richard; Pirpiris, Marinis; Bucknill, Andrew; Khan, Fary
2012-11-01
To determine the dimensionality, reliability, model fit, adequacy of the qualifier levels, response patterns across different factors, and targeting of the International Classification of Functioning, Disability and Health (ICF) osteoarthritis core set categories in people with osteoarthritis undergoing hip and knee arthroplasty. The osteoarthritis core set was rated in 316 persons with osteoarthritis who were either in the pre-operative or within one year post-operative stage. Rasch analyses were performed using the RUMM 2030 program. Twelve of the 13 body functions categories and 13 of the 19 activity and participation categories had good model fit. The qualifiers displayed disordered thresholds necessitating rescoring. There was uneven spread of ICF categories across the full range of the patients' scores indicating off--targeting. Subtest analysis of the reduced ICF categories of body functions and activity and participation showed that the two components could be integrated to form one measure. The results suggest that it is possible to measure functioning using a unidimensional construct based on ICF osteoarthritis core set categories of body functions and activity and participation in this population. However, omission of some categories and reduction in qualifier levels are necessary. Further studies are needed to determine whether better targeting is achieved, particularly during the pre-operative and during the sub-acute care period.
Li, Hongbo; Yang, Yanye; Zhang, Meimei; Yin, Liping; Tu, Juan; Guo, Xiasheng; Zhang, Dong
2018-05-01
A long-circulating lipid-coated ultrasound (US) contrast agent was fabricated to achieve a longer wash-out time and gain more resistance against higher-mechanical index sonication. Systemic physical, acoustic, and in vivo imaging experiments were performed to better understand the underlying mechanism enabling the improvement of contrast agent performance by adjusting the physical and acoustic properties of contrast agent microbubbles. By simply altering the gas core, a kind of US contrast agent microbubble was synthesized with a similar lipid-coating shell as SonoVue microbubbles (Bracco SpA, Milan, Italy) to achieve a longer wash-out time and higher inertial cavitation threshold. To bridge the structure-performance relationship of the synthesized microbubbles, the imaging performance of the microbubbles was assessed in vivo with SonoVue as a control group. The size distribution and inertial cavitation threshold of the synthesized microbubbles were characterized, and the shell parameters of the microbubbles were determined by acoustic attenuation measurements. All of the measurements were compared with SonoVue microbubbles. The synthesized microbubbles had a spherical shape, a smooth, consistent membrane, and a uniform distribution, with an average diameter of 1.484 μm. According to the measured attenuation curve, the synthesized microbubbles resonated at around 2.8 MHz. Although the bubble's shell elasticity (0.2 ± 0.09 N/m) was comparable with SonoVue, it had relatively greater viscosity and inertial cavitation because of the different gas core. Imaging studies showed that the synthesized microbubbles had a longer circulation time and a better chance of fighting against rapid collapse than SonoVue. Nano/micrometer long-circulating lipid-coated microbubbles could be fabricated by simply altering the core composition of SonoVue microbubbles with a higher-molecular weight gas. The smaller diameter and higher inertial cavitation threshold of the synthesized microbubbles might make it easier to access deep-seated organs and give prolonged imaging enhancement in the liver. © 2017 by the American Institute of Ultrasound in Medicine.
NASA Technical Reports Server (NTRS)
Prahst, Patricia S.; Kulkarni, Sameer; Sohn, Ki H.
2015-01-01
NASA's Environmentally Responsible Aviation (ERA) Program calls for investigation of the technology barriers associated with improved fuel efficiency for large gas turbine engines. Under ERA, the highly loaded core compressor technology program attempts to realize the fuel burn reduction goal by increasing overall pressure ratio of the compressor to increase thermal efficiency of the engine. Study engines with overall pressure ratio of 60 to 70 are now being investigated. This means that the high pressure compressor would have to almost double in pressure ratio while keeping a high level of efficiency. NASA and GE teamed to address this challenge by testing the first two stages of an advanced GE compressor designed to meet the requirements of a very high pressure ratio core compressor. Previous test experience of a compressor which included these front two stages indicated a performance deficit relative to design intent. Therefore, the current rig was designed to run in 1-stage and 2-stage configurations in two separate tests to assess whether the bow shock of the second rotor interacting with the upstream stage contributed to the unpredicted performance deficit, or if the culprit was due to interaction of rotor 1 and stator 1. Thus, the goal was to fully understand the stage 1 performance under isolated and multi-stage conditions, and additionally to provide a detailed aerodynamic data set for CFD validation. Full use was made of steady and unsteady measurement methods to understand fluid dynamics loss source mechanisms due to rotor shock interaction and endwall losses. This paper will present the description of the compressor test article and its measured performance and operability, for both the single stage and two stage configurations. We focus the paper on measurements at 97% corrected speed with design intent vane setting angles.
Assessment of the core learning objectives curriculum for the urology clerkship.
Rapp, David E; Gong, Edward M; Reynolds, W Stuart; Lucioni, Alvaro; Zagaja, Gregory P
2007-11-01
The traditional approach to the surgical clerkship has limitations, including variability of clinical exposure. To optimize student education we developed and introduced the core learning objectives curriculum, which is designed to allow students freedom to direct their learning and focus on core concepts. We performed a prospective, randomized, controlled study to compare the efficacy of core learning objectives vs traditional curricula through objective and subjective measures. Medical students were randomly assigned to the core learning objectives or traditional curricula during the 2-week urology clerkship. Faculty was blinded to student assignment. Upon rotation completion all students were given a 20-question multiple choice examination covering basic urology concepts. In addition, students completed a questionnaire addressing subjective clerkship satisfaction, comprising 15 questions. Between June 2005 and January 2007, 10 core learning objectives students and 10 traditional students completed the urology clerkship. The average +/- SEM multiple choice examination score was 12.1 +/- 0.87 and 9.8 +/- 0.59 for students assigned to the core learning objectives and traditional curricula, respectively (p <0.05). Subjective scores were higher in the core learning objectives cohort, although this result did not attain statistical significance (124.9 +/- 3.72 vs 114.3 +/- 4.96, p = 0.1). Core learning objectives students reported higher satisfaction in all 15 assessed subjective end points. Our experience suggests that the core learning objectives model may be an effective educational tool to help students achieve a broad and directed exposure to the core urological concepts.
NASA Astrophysics Data System (ADS)
Nakagawa, S.; Kneafsey, T. J.; Daley, T. M.; Freifeld, B. M.
2010-12-01
Geological sequestration of CO2 requires accurate monitoring of the spatial distribution and pore-level saturation of super-critical (sc-) CO2 for both optimizing reservoir performance and satisfying regulatory requirements. Fortunately, thanks to the high compliance of sc-CO2 compared to brine under in-situ temperatures and pressures, injection of sc-CO2 into initially brine-saturated rock will lead to significant reductions in seismic velocity and increased attenuation of seismic waves. Because of the frequency-dependent nature of this relationship, its determination requires testing at low frequencies (10 Hz-10 kHz) that are not usually employed in the laboratory. In this paper, we present the changes in seismic wave velocities and attenuation in sandstone cores during sc-CO2 core flooding and during subsequent brine re-injection and CO2 removal via convection and dissolution. The experiments were conducted at frequencies near 1 kHz using a variation of the acoustic resonant bar technique, called the Split Hopkinson Resonant Bar (SHRB) method, which allows measurements under elevated temperatures and pressures (up to 120°C, 35 MPa), using a short (several cm long) core. Concurrent x-ray CT scanning reveals sc-CO2 saturation and distribution within the cores. The injection experiments revealed different CO2 patch size distributions within the cores between the injection phase and the convection/dissolution phase of the tests. The difference was reflected particularly in the P-wave velocities and attenuation. Also, compared to seismic responses, which were separately measured during a gas CO2 injection/drainage test, the seismic responses from the sc-CO2 test showed measurable changes over a wider range of brine saturation. Considering the proximity of the frequency band employed by our measurement to the field seismic measurements, this result implies that seismic monitoring of sc-CO2, if constrained by laboratory data and interpreted using a proper petrophysical model, can be conducted with greater accuracy for determining the sc-CO2 saturation and distribution within reservoir rock, than typically predicted by the Gassmann model and/or by a natural gas reservoir analogue.
Performing an allreduce operation on a plurality of compute nodes of a parallel computer
Faraj, Ahmad [Rochester, MN
2012-04-17
Methods, apparatus, and products are disclosed for performing an allreduce operation on a plurality of compute nodes of a parallel computer. Each compute node includes at least two processing cores. Each processing core has contribution data for the allreduce operation. Performing an allreduce operation on a plurality of compute nodes of a parallel computer includes: establishing one or more logical rings among the compute nodes, each logical ring including at least one processing core from each compute node; performing, for each logical ring, a global allreduce operation using the contribution data for the processing cores included in that logical ring, yielding a global allreduce result for each processing core included in that logical ring; and performing, for each compute node, a local allreduce operation using the global allreduce results for each processing core on that compute node.
Majaj, Najib J; Hong, Ha; Solomon, Ethan A; DiCarlo, James J
2015-09-30
To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT ("face patches") did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of ∼60,000 IT neurons and is executed as a simple weighted sum of those firing rates. Significance statement: We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior. Copyright © 2015 the authors 0270-6474/15/3513402-17$15.00/0.
NASA Technical Reports Server (NTRS)
Chirivella, J. E.
1975-01-01
Instrumentation for the measurement of plume exhaust specie deposition rates were developed and demonstrated. The instruments, two sets of quartz crystal microbalances, were designed for low temperature operation in the back flow and variable temperature operation in the core flow regions of an exhaust plume. These quartz crystal microbalances performed nominally, and measurements of exhaust specie deposition rates for 8400 number of pulses for a 0.1-lb monopropellant thruster are reported.
An evaluation of MPI message rate on hybrid-core processors
Barrett, Brian W.; Brightwell, Ron; Grant, Ryan; ...
2014-11-01
Power and energy concerns are motivating chip manufacturers to consider future hybrid-core processor designs that may combine a small number of traditional cores optimized for single-thread performance with a large number of simpler cores optimized for throughput performance. This trend is likely to impact the way in which compute resources for network protocol processing functions are allocated and managed. In particular, the performance of MPI match processing is critical to achieving high message throughput. In this paper, we analyze the ability of simple and more complex cores to perform MPI matching operations for various scenarios in order to gain insightmore » into how MPI implementations for future hybrid-core processors should be designed.« less
High resolution remanent magnetization scanner for long cores
NASA Astrophysics Data System (ADS)
Demory, François; Quesnel, Yoann; Uehara, Minoru; Rochette, Pierre; Zylberman, William; Romey, Carole; Pignol, Laure; Andrieu-Ponel, Valérie
2017-04-01
Superconducting rock magnetometer reaches saturation when measuring magnetic moments higher than 5 10-5 Am2. Due to the distance of the sensor from the measurement zone, the spatial resolution is low for continuous measurements led on U channel or cores. To solve these problems, we designed a core logger dedicated to the measurement of remanent magnetizations. Based on a fluxgate sensor located very close to the sample, the spatial resolution of the core logger is infra-centimetric. The fluxgate sensor is also able to detect magnetic fields of few nT produced by magnetic moments of the order of few 10-8 Am2. As the equipment does not reach saturation, we measured isothermal remanent magnetization of highly magnetic samples. This magnetization was acquired perpendicularly to the long axis of U-channels from Cassis paleo-lake (Romey et al., 2015) and of cores from Haughton impact structure (Zylberman et al., submitted) using Halbach cylinders (Rochette et al., 2001). To interpret local magnetic fields in terms of magnetic moments, we performed an inter-calibration with the superconducting rock magnetometer and signal inversion. This development led to the filing of a patent (FR.16/53142) and is funded by the ECCOREV project MESENVIMAG. References: Rochette, P., Vadeboin, F., Clochard, L., 2001. Rock magnetic applications of Halbach cylinders. Physics of the Earth and Planetary Interiors 126, 109-117. Romey, C., Vella, C., Rochette, P., Andrieu-Ponel, V., Magnin, F., Veron, A., Talon, B., Landure, C., D'Ovidio, A.M., Delanghe, D., Ghilardi, M., Angeletti, B., 2015. Environmental imprints of landscape evolution and human activities during the Holocene in a small catchment of the Calanques Massif (Cassis, southern France). Holocene 25 (9), 1454-1469. Zylberman W., Quesnel Y., Rochette P., Osinski G. R., Marion C., Gattacceca J. (submitted to MAPS) Hydrothermally-enhanced magnetization at the center of the Haughton impact structure? (Nunavut, Canada).
International consensus on preliminary definitions of improvement in adult and juvenile myositis.
Rider, Lisa G; Giannini, Edward H; Brunner, Hermine I; Ruperto, Nicola; James-Newton, Laura; Reed, Ann M; Lachenbruch, Peter A; Miller, Frederick W
2004-07-01
To use a core set of outcome measures to develop preliminary definitions of improvement for adult and juvenile myositis as composite end points for therapeutic trials. Twenty-nine experts in the assessment of myositis achieved consensus on 102 adult and 102 juvenile paper patient profiles as clinically improved or not improved. Two hundred twenty-seven candidate definitions of improvement were developed using the experts' consensus ratings as a gold standard and their judgment of clinically meaningful change in the core set of measures. Seventeen additional candidate definitions of improvement were developed from classification and regression tree analysis, a data-mining decision tree tool analysis. Six candidate definitions specifying percentage change or raw change in the core set of measures were developed using logistic regression analysis. Adult and pediatric working groups ranked the 13 top-performing candidate definitions for face validity, clinical sensibility, and ease of use, in which the sensitivity and specificity were >/=75% in adult, pediatric, and combined data sets. Nominal group technique was used to facilitate consensus formation. The definition of improvement (common to the adult and pediatric working groups) that ranked highest was 3 of any 6 of the core set measures improved by >/=20%, with no more than 2 worse by >/=25% (which could not include manual muscle testing to assess strength). Five and 4 additional preliminary definitions of improvement for adult and juvenile myositis, respectively, were also developed, with several definitions common to both groups. Participants also agreed to prospectively test 6 logistic regression definitions of improvement in clinical trials. Consensus preliminary definitions of improvement were developed for adult and juvenile myositis, and these incorporate clinically meaningful change in all myositis core set measures in a composite end point. These definitions require prospective validation, but they are now proposed for use as end points in all myositis trials.
Firefighter feedback during active cooling: a useful tool for heat stress management?
Savage, Robbie J; Lord, Cara; Larsen, Brianna L; Knight, Teagan L; Langridge, Peter D; Aisbett, Brad
2014-12-01
Monitoring an individual's thermic state in the workplace requires reliable feedback of their core temperature. However, core temperature measurement technology is expensive, invasive and often impractical in operational environments, warranting investigation of surrogate measures which could be used to predict core temperature. This study examines an alternative measure of an individual's thermic state, thermal sensation, which presents a more manageable and practical solution for Australian firefighters operating on the fireground. Across three environmental conditions (cold, warm, hot & humid), 49 Australian volunteer firefighters performed a 20-min fire suppression activity, immediately followed by 20 min of active cooling using hand and forearm immersion techniques. Core temperature (Tc) and thermal sensation (TS) were measured across the rehabilitation period at five minute intervals. Despite the decline in Tc and TS throughout the rehabilitation period, there was little similarity in the magnitude or rate of decline between each measure in any of the ambient conditions. Moderate to strong correlations existed between Tc and TS in the cool (0.41, p<0.05) and hot & humid (0.57, p<0.05) conditions, however this was resultant in strong correlation during the earlier stages of rehabilitation (first five minutes), which were not evident in the latter stages. Linear regression revealed TS to be a poor predictor of Tc in all conditions (SEE=0.45-0.54°C) with a strong trend for TS to over-predict Tc (77-80% of the time). There is minimal evidence to suggest that ratings of thermal sensation, which represent a psychophysical assessment of an individual's thermal comfort, are an accurate reflection of the response of an individual's core temperature. Ratings of thermal sensation can be highly variable amongst individuals, likely moderated by local skin temperature. In account of these findings, fire managers require a more reliable source of information to guide decisions of heat stress management. Copyright © 2014 Elsevier Ltd. All rights reserved.
Heavy Equipment Operator Instructional Materials. Basic Core. Volume I.
ERIC Educational Resources Information Center
Hendrix, Laborn J.; Sawatzky, Joyce
Developed through close coordination between contractors, construction workers, and vocational educators, this instructor's manual is designed to help heavy equipment instructors present materials in a systematic format. The instructional materials in the manual are written in terms of student performance, using measurable behavioral objectives.…
Core decompression of the equine navicular bone: an in vivo study in healthy horses.
Jenner, Florien; Kirker-Head, Carl
2011-02-01
To determine the physiologic response of the equine navicular bone to core decompression surgery in healthy horses. Experimental in vivo study. Healthy adult horses (n=6). Core decompression was completed by creating three 2.5-mm-diameter drill channels into the navicular bone under arthroscopic control. The venous (P(V)), arterial (P(A)), articular (P(DIPJ)), and intraosseous pressures (IOP) were recorded before and after decompression drilling. Each IOP measurement consisted of a baseline (IOP(B)) and a stress test (intramedullary injection of saline solution, IOP(S)) recording. Lameness was assessed subjectively and using force plate gait analysis. Fluorochrome bone labeling was performed. Horses were euthanatized at 12 weeks. Navicular bone mineral density (BMD) was measured, and bone histology evaluated. Peak IOP (IOP(max)) after stress testing was significantly (P<.05) reduced immediately after core decompression; however, the magnitude of these effects was decreased at 3 and 6 weeks after decompression. A significant (P<.05) correlation existed between IOP(max) and BMD. No lameness was observed beyond the first week after surgery. Substantial remodeling and neovascularization was evident adjacent the surgery sites. Navicular bone core decompression surgery reduced IOP(max), and, with the exception of a mild short-lived lameness, caused no other adverse effects in healthy horses during the 12-week study period. © Copyright 2011 by The American College of Veterinary Surgeons.
Ghaghada, Ketan; Hawley, Catherine; Kawaji, Keigo; Annapragada, Ananth; Mukundan, Srinivasan
2008-10-01
Long circulating core-encapsulated gadolinium (CE-Gd) liposomal nanoparticles that have surface conjugated polyethylene glycol are a promising platform technology for use as blood pool T1-based magnetic resonance (MR) contrast agents. The objective of this study was to investigate the effect of liposome size and internal (core) Gd concentration on the T1 relaxivity of CE-Gd liposomes. Twelve different liposomal formulations were synthesized and characterized, resulting in a size (50, 100, 200, and 400 nm) and core Gd-concentration (200, 350, and 500 mM) "matrix" of test samples. Subsequently, CE-Gd liposomes were diluted in deionized water (four diluted samples) and molar T1 relaxivity (r1) measurements were performed at 2- and 7-T MR field strengths. The r1 of CE-Gd liposomes was inversely related to the liposome size. The largest change in r1 was observed between liposomes that were extruded through 50- and 100-nm filter membranes. At both field strengths, the variation in internal gadolinium concentration did not show any significant correlation (alpha < or = 0.05) with r1. The size of CE-Gd liposomal nanoparticles significantly affects the T1 relaxivity. An inverse relation was observed between liposome size and T1 relaxivity. The T1 relaxivity did not change significantly with core Gd concentration over the measured concentration range.
NASA Astrophysics Data System (ADS)
Susilo, J.; Suparlina, L.; Deswandri; Sunaryo, G. R.
2018-02-01
The using of a computer program for the PWR type core neutronic design parameters analysis has been carried out in some previous studies. These studies included a computer code validation on the neutronic parameters data values resulted from measurements and benchmarking calculation. In this study, the AP1000 first cycle core radial power peaking factor validation and analysis were performed using CITATION module of the SRAC2006 computer code. The computer code has been also validated with a good result to the criticality values of VERA benchmark core. The AP1000 core power distribution calculation has been done in two-dimensional X-Y geometry through ¼ section modeling. The purpose of this research is to determine the accuracy of the SRAC2006 code, and also the safety performance of the AP1000 core first cycle operating. The core calculations were carried out with the several conditions, those are without Rod Cluster Control Assembly (RCCA), by insertion of a single RCCA (AO, M1, M2, MA, MB, MC, MD) and multiple insertion RCCA (MA + MB, MA + MB + MC, MA + MB + MC + MD, and MA + MB + MC + MD + M1). The maximum power factor of the fuel rods value in the fuel assembly assumedapproximately 1.406. The calculation results analysis showed that the 2-dimensional CITATION module of SRAC2006 code is accurate in AP1000 power distribution calculation without RCCA and with MA+MB RCCA insertion.The power peaking factor on the first operating cycle of the AP1000 core without RCCA, as well as with single and multiple RCCA are still below in the safety limit values (less then about 1.798). So in terms of thermal power generated by the fuel assembly, then it can be considered that the AP100 core at the first operating cycle is safe.
NASA Astrophysics Data System (ADS)
Bourret, S.; Coelho, J. A. B.; Kaminski, E. C.; Van Elewyck, V.
2017-12-01
The difference between PREM density and seismic profiles in the Earth's core and the values for pure iron and iron-nickel alloys inferred from high pressure/high temperature experiments and ab initio calculations requires the presence of a few wt% of light elements. The nature and amount of these light elements (O, Si, S, H, C...) remains controversial. Recent studies have renewed the interest in H. It is the most abundant element in the nebula and can be easily dissolved in iron in the early stages of Earth's evolution. 1 to 2 wt% of H could explain the difference between PREM and pure iron. However, current geophysical methods alone cannot settle the debate between H and the other candidate elements. Neutrino oscillation tomography using atmospheric neutrinos opens an avenue to collect independent data on Earth's core composition. This method exploits the quantum phenomenon of neutrino flavour oscillations, which depends on the electron density along the path of the neutrino through the Earth. The combination of a neutrino-based measurement of the electron density with the PREM mass density profile constrains the average proton-to-nucleon ratio of the medium (Z/A). Since this parameter varies among chemical elements, e.g. 0.466 for Fe and 1 for H, this technique has the potential to provide unprecedented insights into the chemical composition of the core, and in particular its hydrogen content. Performing such a measurement requires large-size detectors with good efficiency in the relevant energy range and precise determination of the neutrino energy, arrival direction, and flavour. Considering a generic but realistic model of detector response, we quantify the influence of various detector performance indicators on the sensitivity to the average Z/A in the core. We further evaluate the impact of systematic uncertainties, such as those related to the physical model for neutrino oscillations and the incoming flux of atmospheric neutrinos. We consider specific examples of the next-generation detectors planned to start operating within the decade: ORCA, PINGU, Hyper-Kamiokande, and DUNE. We also identify the most crucial improvements required to reach a measurement of the H content of the core with a precision better than 1 wt%.
Multi-Core Processor Memory Contention Benchmark Analysis Case Study
NASA Technical Reports Server (NTRS)
Simon, Tyler; McGalliard, James
2009-01-01
Multi-core processors dominate current mainframe, server, and high performance computing (HPC) systems. This paper provides synthetic kernel and natural benchmark results from an HPC system at the NASA Goddard Space Flight Center that illustrate the performance impacts of multi-core (dual- and quad-core) vs. single core processor systems. Analysis of processor design, application source code, and synthetic and natural test results all indicate that multi-core processors can suffer from significant memory subsystem contention compared to similar single-core processors.
NASA Astrophysics Data System (ADS)
Gkinis, Vasileios; Holme, Christian; Morris, Valerie; Thayer, Abigail Grace; Vaughn, Bruce; Kjaer, Helle Astrid; Vallelonga, Paul; Simonsen, Marius; Jensen, Camilla Marie; Svensson, Anders; Maffrezzoli, Niccolo; Vinther, Bo; Dallmayr, Remi
2017-04-01
We present a performance comparison study between two state of the art Cavity Ring Down Spectrometers (Picarro L2310-i, L2140-i). The comparison took place during the Continuous Flow Analysis (CFA) campaign for the measurement of the Renland ice core, over a period of three months. Instant and complete vaporisation of the ice core melt stream, as well as of in-house water reference materials is achieved by accurate control of microflows of liquid into a homemade calibration system by following simple principles of the Hagen-Poiseuille law. Both instruments share the same vaporisation unit in a configuration that minimises sample preparation discrepancies between the two analyses. We describe our SMOW-SLAP calibration and measurement protocols for such a CFA application and present quality control metrics acquired during the full period of the campaign on a daily basis. The results indicate an unprecedented performance for all 3 isotopic ratios (δ2H, δ17O, δ18O ) in terms of precision, accuracy and resolution. We also comment on the precision and accuracy of the second order excess parameters of HD16O and H217O over H218O (Dxs, Δ17O ). To our knowledge these are the first reported CFA measurements at this level of precision and accuracy for all three isotopic ratios. Differences on the performance of the two instruments are carefully assessed during the measurement and reported here. Our quality control protocols extend to the area of low water mixing ratios, a regime in which often atmospheric vapour measurements take place and Cavity Ring Down Analysers show a poorer performance due to the lower signal to noise ratios. We address such issues and propose calibration protocols from which water vapour isotopic analyses can benefit from.
Kilfedder, Catherine; Power, Kevin; Karatzias, Thanos; McCafferty, Aileen; Niven, Karen; Chouliara, Zoë; Galloway, Lisa; Sharp, Stephen
2010-09-01
The aim of the present study was to compare the effectiveness and acceptability of three interventions for occupational stress. A total of 90 National Health Service employees were randomized to face-to-face counselling or telephone counselling or bibliotherapy. Outcomes were assessed at post-intervention and 4-month follow-up. Clinical Outcomes in Routine Evaluation (CORE), General Health Questionnaire (GHQ-12), and Perceived Stress Scale (PSS-10) were used to evaluate intervention outcomes. An intention-to-treat analyses was performed. Repeated measures analysis revealed significant time effects on all measures with the exception of CORE Risk. No significant group effects were detected on all outcome measures. No time by group significant interaction effects were detected on any of the outcome measures with the exception of CORE Functioning and GHQ total. With regard to acceptability of interventions, participants expressed a preference for face-to-face counselling over the other two modalities. Overall, it was concluded that the three intervention groups are equally effective. Given that bibliotherapy is the least costly of the three, results from the present study might be considered in relation to a stepped care approach to occupational stress management with bibliotherapy as the first line of intervention, followed by telephone and face-to-face counselling as required.
NASA Technical Reports Server (NTRS)
Draper, David W.; Newell, David A.; Wentz, Frank J.; Krimchansky, Sergey; Jackson, Gail
2015-01-01
The Global Precipitation Measurement (GPM) mission is an international satellite mission that uses measurements from an advanced radar/radiometer system on a core observatory as reference standards to unify and advance precipitation estimates made by a constellation of research and operational microwave sensors. The GPM core observatory was launched on February 27, 2014 at 18:37 UT in a 65? inclination nonsun-synchronous orbit. GPM focuses on precipitation as a key component of the Earth's water and energy cycle, and has the capability to provide near-real-time observations for tracking severe weather events, monitoring freshwater resources, and other societal applications. The GPM microwave imager (GMI) on the core observatory provides the direct link to the constellation radiometer sensors, which fly mainly in polar orbits. The GMI sensitivity, accuracy, and stability play a crucial role in unifying the measurements from the GPM constellation of satellites. The instrument has exhibited highly stable operations through the duration of the calibration/validation period. This paper provides an overview of the GMI instrument and a report of early on-orbit commissioning activities. It discusses the on-orbit radiometric sensitivity, absolute calibration accuracy, and stability for each radiometric channel. Index Terms-Calibration accuracy, passive microwave remote sensing, radiometric sensitivity.
GPM Microwave Imager Design, Predicted Performance and Status
NASA Technical Reports Server (NTRS)
Krimchansky, Sergey; Newell, David
2010-01-01
The Global Precipitation Measurement (GPM) Microwave Imager (GMI) Instrument is being developed by Ball Aerospace and Technology Corporation (BATC) for the GPM program at NASA Goddard. The Global Precipitation Measurement (GPM) mission is an international effort managed by the National Aeronautics and Space Administration (t.JASA) to improve climate, weather, and hydro-meteorological predictions through more accurate and more frequent precipitation measurements. The GPM Microwave Imager (GMI) will be used to make calibrated, radiometric measurements from space at multiple microwave frequencies and polarizations. GMI will be placed on the GPM Core Spacecraft together with the Dual-frequency Precipitation Radar (DPR). The DPR is two-frequency precipitation measurement radar, which will operate in the Ku-band and Ka-band of the microwave spectrum. The Core Spacecraft will make radiometric and radar measurements of clouds and precipitation and will be the central element of GPM's space segment. The data products from GPM will provide information concerning global precipitation on a frequent, near-global basis to meteorologists and scientists making weather forecasts and performing research on the global energy and water cycle, precipitation, hydrology, and related disciplines. In addition, radiometric measurements from GMI and radar measurements from the DPR will be used together to develop a retrieval transfer standard for the purpose of calibrating precipitation retrieval algorithms. This calibration standard will establish a reference against which other retrieval algorithms using only microwave radiometers (and without the benefit of the DPR) on other satellites in the GPM constellation will be compared.
Evaluating firms' R&D performance using best worst method.
Salimi, Negin; Rezaei, Jafar
2018-02-01
Since research and development (R&D) is the most critical determinant of the productivity, growth and competitive advantage of firms, measuring R&D performance has become the core of attention of R&D managers, and an extensive body of literature has examined and identified different R&D measurements and determinants of R&D performance. However, measuring R&D performance and assigning the same level of importance to different R&D measures, which is the common approach in existing studies, can oversimplify the R&D measuring process, which may result in misinterpretation of the performance and consequently fallacy R&D strategies. The aim of this study is to measure R&D performance taking into account the different levels of importance of R&D measures, using a multi-criteria decision-making method called Best Worst Method (BWM) to identify the weights (importance) of R&D measures and measure the R&D performance of 50 high-tech SMEs in the Netherlands using the data gathered in a survey among SMEs and from R&D experts. The results show how assigning different weights to different R&D measures (in contrast to simple mean) results in a different ranking of the firms and allow R&D managers to formulate more effective strategies to improve their firm's R&D performance by applying knowledge regarding the importance of different R&D measures. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Variations in clinical nurse leaders' confidence with performing the core role functions.
Gilmartin, Mattia J
2014-01-01
Clinical nurse leader (CNL) practice, by definition, requires individuals to make career transitions. CNLs must adjust to their new work role and responsibilities and doing so also entails individual adjustment. Prior work has not examined the role of individual-level factors in effective CNL role transition. This study contributes to CNL implementation efforts by developing understanding of personal and contextual factors that explain variation in individuals' levels of self-confidence with performing the key functions of the CNL role. Data were gathered using a cross-sectional survey from a national sample of registered nurses (RNs) certified as CNLs. Respondents' perceptions of their confidence in performing CNL role competencies were measured with the Clinical Nurse Leader Self-Efficacy Scale (CNLSES; Gilmartin MJ, Nokes, K. (in press). The Clinical Nurse Leader Self Efficacy Scale: Results of a pilot study. Nursing Economic$). The CNLSES is a 35-item state-specific self-efficacy scale with established measurement properties that assesses nurses' perceptions of their ability to function effectively as a CNL. Demographic data were also collected. Data were analyzed using a general linear regression model. One hundred forty-seven certified CNLs participated in the survey. Results indicate that respondents vary in their confidence with performing the nine role competencies associated with CNL practice. Results from regression analyses also show that respondents' confidence in their abilities to carry out the core functions associated with the CNL role varied significantly across geographic region, organizational type, and by CNL graduate program model. The results of this study show important differences in CNLs' levels of self-confidence with the core competencies of their role. As a result, it may be important to develop targeted career transition interventions to gain the full benefit of CNL practice. Copyright © 2014 Elsevier Inc. All rights reserved.
Melting of Fe-Si-O alloys: the Fate of Coexisting Si and O in the Core
NASA Astrophysics Data System (ADS)
Arveson, S. M.; Lee, K. K. M.
2017-12-01
The light element budget of Earth's core plays an integral role in sustaining outer core convection, which powers the geodynamo. Many experiments have been performed on binary iron compounds, but the results do not robustly agree with seismological observations and geochemical constraints. Earth's core is almost certainly made up of multiple light elements, so the future of core composition studies lies in ternary (or higher order) systems in order to examine interactions between light elements. We perform melting experiments on Fe-Si-O alloys in a laser-heated diamond-anvil cell to 80 GPa and 4000 K. Using 2D multi- wavelength imaging radiometry together with textural and chemical analysis of quenched samples, we measure the high-pressure melting curves and determine partitioning of light elements between the melt and the coexisting solid. Quenched samples are analyzed both in map view and in cross section using scanning electron microscopy (SEM) and electron microprobe analysis (EPMA) to examine the 3D melt structure and composition. Partitioning of light elements between molten and solid alloys dictates (1) the density contrast at the ICB, which drives compositional convection in the outer core and (2) the temperature of the CMB, an integral parameter for understanding the deep Earth. Our experiments suggest silicon and oxygen do not simply coexist in the melt and instead show complex solubility based on temperature. Additionally, we do not find evidence of crystallization of SiO2 at low oxygen content as was recently reported.11 Hirose, K., et al., Crystallization of silicon dioxide and compositional evolution of the Earth's core. Nature, 2017. 543(7643): p. 99-102.
Controlled Formation of Radial Core-Shell Si/Metal Silicide Crystalline Heterostructures.
Kosloff, Alon; Granot, Eran; Barkay, Zahava; Patolsky, Fernando
2018-01-10
The highly controlled formation of "radial" silicon/NiSi core-shell nanowire heterostructures has been demonstrated for the first time. Here, we investigated the "radial" diffusion of nickel atoms into crystalline nanoscale silicon pillar 11 cores, followed by nickel silicide phase formation and the creation of a well-defined shell structure. The described approach is based on a two-step thermal process, which involves metal diffusion at low temperatures in the range of 200-400 °C, followed by a thermal curing step at a higher temperature of 400 °C. In-depth crystallographic analysis was performed by nanosectioning the resulting silicide-shelled silicon nanopillar heterostructures, giving us the ability to study in detail the newly formed silicide shells. Remarkably, it was observed that the resulting silicide shell thickness has a self-limiting behavior, and can be tightly controlled by the modulation of the initial diffusion-step temperature. In addition, electrical measurements of the core-shell structures revealed that the resulting shells can serve as an embedded conductive layer in future optoelectronic applications. This research provides a broad insight into the Ni silicide "radial" diffusion process at the nanoscale regime, and offers a simple approach to form thickness-controlled metal silicide shells in the range of 5-100 nm around semiconductor nanowire core structures, regardless the diameter of the nanowire cores. These high quality Si/NiSi core-shell nanowire structures will be applied in the near future as building blocks for the creation of utrathin highly conductive optically transparent top electrodes, over vertical nanopillars-based solar cell devices, which may subsequently lead to significant performance improvements of these devices in terms of charge collection and reduced recombination.
Observation of the Earth Liquid Core Resonance by Extensometers
NASA Astrophysics Data System (ADS)
Bán, Dóra; Mentes, Gyula; Kis, Márta; Koppán, András
2018-05-01
We performed Earth tidal measurements by quartz tube extensometers of the same type at several observatories (Budapest, Pécs, Sopronbánfalva in Hungary and Vyhne in Slovakia). In this paper, the first attempts to reveal the effect of the Free Core Nutation (FCN) from strain measurements are described. The effect of the FCN on the P1, K1, Ψ1 and Φ1 tidal waves were studied on the basis of tidal results obtained in four observatories. Effectiveness of the correction of tidal data for temperature, barometric pressure and ocean load was also investigated. The obtained K1/O1 ratios are close to the theoretical values with exception of the Pécs station. We found a discrepancy between the observed and theoretical P1/O1 values for all stations with exception of the Budapest station. It was found that the difference between the measured and theoretical Ψ1/O1 and Φ1/O1 ratios was very large independently of correction of the strain data. These discrepancies need further investigations. According to our results, fluid core resonance effects can also be detected by our quartz tube extensometers but correction of strain data for local effects is necessary.
Zhang, Yihui; Webb, Richard Chad; Luo, Hongying; Xue, Yeguang; Kurniawan, Jonas; Cho, Nam Heon; Krishnan, Siddharth; Li, Yuhang; Huang, Yonggang
2016-01-01
Long-term, continuous measurement of core body temperature is of high interest, due to the widespread use of this parameter as a key biomedical signal for clinical judgment and patient management. Traditional approaches rely on devices or instruments in rigid and planar forms, not readily amenable to intimate or conformable integration with soft, curvilinear, time-dynamic, surfaces of the skin. Here, materials and mechanics designs for differential temperature sensors are presented which can attach softly and reversibly onto the skin surface, and also sustain high levels of deformation (e.g., bending, twisting, and stretching). A theoretical approach, together with a modeling algorithm, yields core body temperature from multiple differential measurements from temperature sensors separated by different effective distances from the skin. The sensitivity, accuracy, and response time are analyzed by finite element analyses (FEA) to provide guidelines for relationships between sensor design and performance. Four sets of experiments on multiple devices with different dimensions and under different convection conditions illustrate the key features of the technology and the analysis approach. Finally, results indicate that thermally insulating materials with cellular structures offer advantages in reducing the response time and increasing the accuracy, while improving the mechanics and breathability. PMID:25953120
Multiple Days of Heat Exposure on Firefighters' Work Performance and Physiology.
Larsen, Brianna; Snow, Rod; Vincent, Grace; Tran, Jacqueline; Wolkow, Alexander; Aisbett, Brad
2015-01-01
This study assessed the accumulated effect of ambient heat on the performance of, and physiological and perceptual responses to, intermittent, simulated wildfire fighting tasks over three consecutive days. Firefighters (n = 36) were matched and allocated to either the CON (19°C) or HOT (33°C) condition. They performed three days of intermittent, self-paced simulated firefighting work, interspersed with physiological testing. Task repetitions were counted (and converted to distance or area) to determine work performance. Participants were asked to rate their perceived exertion and thermal sensation after each task. Heart rate, core temperature (Tc), and skin temperature (Tsk) were recorded continuously throughout the simulation. Fluids were consumed ad libitum. Urine volume was measured throughout, and urine specific gravity (USG) analysed, to estimate hydration. All food and fluid consumption was recorded. There was no difference in work output between experimental conditions. However, significant variation in performance responses between individuals was observed. All measures of thermal stress were elevated in the HOT, with core and skin temperature reaching, on average, 0.24 ± 0.08°C and 2.81 ± 0.20°C higher than the CON group. Participants' doubled their fluid intake in the HOT condition, and this was reflected in the USG scores, where the HOT participants reported significantly lower values. Heart rate was comparable between conditions at nearly all time points, however the peak heart rate reached each circuit was 7 ± 3% higher in the CON trial. Likewise, RPE was slightly elevated in the CON trial for the majority of tasks. Participants' work output was comparable between the CON and HOT conditions, however the performance change over time varied significantly between individuals. It is likely that the increased fluid replacement in the heat, in concert with frequent rest breaks and task rotation, assisted with the regulation of physiological responses (e.g., heart rate, core temperature).
Multiple Days of Heat Exposure on Firefighters’ Work Performance and Physiology
Larsen, Brianna; Snow, Rod; Vincent, Grace; Tran, Jacqueline; Wolkow, Alexander; Aisbett, Brad
2015-01-01
This study assessed the accumulated effect of ambient heat on the performance of, and physiological and perceptual responses to, intermittent, simulated wildfire fighting tasks over three consecutive days. Firefighters (n = 36) were matched and allocated to either the CON (19°C) or HOT (33°C) condition. They performed three days of intermittent, self-paced simulated firefighting work, interspersed with physiological testing. Task repetitions were counted (and converted to distance or area) to determine work performance. Participants were asked to rate their perceived exertion and thermal sensation after each task. Heart rate, core temperature (Tc), and skin temperature (Tsk) were recorded continuously throughout the simulation. Fluids were consumed ad libitum. Urine volume was measured throughout, and urine specific gravity (USG) analysed, to estimate hydration. All food and fluid consumption was recorded. There was no difference in work output between experimental conditions. However, significant variation in performance responses between individuals was observed. All measures of thermal stress were elevated in the HOT, with core and skin temperature reaching, on average, 0.24 ± 0.08°C and 2.81 ± 0.20°C higher than the CON group. Participants’ doubled their fluid intake in the HOT condition, and this was reflected in the USG scores, where the HOT participants reported significantly lower values. Heart rate was comparable between conditions at nearly all time points, however the peak heart rate reached each circuit was 7 ± 3% higher in the CON trial. Likewise, RPE was slightly elevated in the CON trial for the majority of tasks. Participants’ work output was comparable between the CON and HOT conditions, however the performance change over time varied significantly between individuals. It is likely that the increased fluid replacement in the heat, in concert with frequent rest breaks and task rotation, assisted with the regulation of physiological responses (e.g., heart rate, core temperature). PMID:26379284
Accelerating Demand Paging for Local and Remote Out-of-Core Visualization
NASA Technical Reports Server (NTRS)
Ellsworth, David
2001-01-01
This paper describes a new algorithm that improves the performance of application-controlled demand paging for the out-of-core visualization of data sets that are on either local disks or disks on remote servers. The performance improvements come from better overlapping the computation with the page reading process, and by performing multiple page reads in parallel. The new algorithm can be applied to many different visualization algorithms since application-controlled demand paging is not specific to any visualization algorithm. The paper includes measurements that show that the new multi-threaded paging algorithm decreases the time needed to compute visualizations by one third when using one processor and reading data from local disk. The time needed when using one processor and reading data from remote disk decreased by up to 60%. Visualization runs using data from remote disk ran about as fast as ones using data from local disk because the remote runs were able to make use of the remote server's high performance disk array.
Performing an allreduce operation on a plurality of compute nodes of a parallel computer
Faraj, Ahmad
2013-07-09
Methods, apparatus, and products are disclosed for performing an allreduce operation on a plurality of compute nodes of a parallel computer, each node including at least two processing cores, that include: establishing, for each node, a plurality of logical rings, each ring including a different set of at least one core on that node, each ring including the cores on at least two of the nodes; iteratively for each node: assigning each core of that node to one of the rings established for that node to which the core has not previously been assigned, and performing, for each ring for that node, a global allreduce operation using contribution data for the cores assigned to that ring or any global allreduce results from previous global allreduce operations, yielding current global allreduce results for each core; and performing, for each node, a local allreduce operation using the global allreduce results.
ERIC Educational Resources Information Center
Kelly, Dana; Nord, Christine Winquist; Jenkins, Frank; Chan, Jessica Ying; Kastberg, David
2013-01-01
The Program for International Student Assessment (PISA) is a system of international assessments that allows countries to compare outcomes of learning as students near the end of compulsory schooling. PISA core assessments measure the performance of 15-year-old students in mathematics, science, and reading literacy every 3 years. Coordinated by…
Developing core outcome measurement sets for clinical trials: OMERACT filter 2.0.
Boers, Maarten; Kirwan, John R; Wells, George; Beaton, Dorcas; Gossec, Laure; d'Agostino, Maria-Antonietta; Conaghan, Philip G; Bingham, Clifton O; Brooks, Peter; Landewé, Robert; March, Lyn; Simon, Lee S; Singh, Jasvinder A; Strand, Vibeke; Tugwell, Peter
2014-07-01
Lack of standardization of outcome measures limits the usefulness of clinical trial evidence to inform health care decisions. This can be addressed by agreeing on a minimum core set of outcome measures per health condition, containing measures relevant to patients and decision makers. Since 1992, the Outcome Measures in Rheumatology (OMERACT) consensus initiative has successfully developed core sets for many rheumatologic conditions, actively involving patients since 2002. Its expanding scope required an explicit formulation of its underlying conceptual framework and process. Literature searches and iterative consensus process (surveys and group meetings) of stakeholders including patients, health professionals, and methodologists within and outside rheumatology. To comprehensively sample patient-centered and intervention-specific outcomes, a framework emerged that comprises three core "Areas," namely Death, Life Impact, and Pathophysiological Manifestations; and one strongly recommended Resource Use. Through literature review and consensus process, core set development for any specific health condition starts by identifying at least one core "Domain" within each of the Areas to formulate the "Core Domain Set." Next, at least one applicable measurement instrument for each core Domain is identified to formulate a "Core Outcome Measurement Set." Each instrument must prove to be truthful (valid), discriminative, and feasible. In 2012, 96% of the voting participants (n=125) at the OMERACT 11 consensus conference endorsed this model and process. The OMERACT Filter 2.0 explicitly describes a comprehensive conceptual framework and a recommended process to develop core outcome measurement sets for rheumatology likely to be useful as a template in other areas of health care. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
The NetLander mission: a geophysical network on the surface of Mars
NASA Astrophysics Data System (ADS)
Ferri, F.; Counil, J. L.; Marsal, O.; Rocard, F.; Bonneville, R.; NetLander Team
2001-12-01
The NetLander mission aims at deploying on the surface of Mars a network of four identical landers which will perform simultaneous measurements in order to study the internal structure of Mars, its subsurface, surface, atmosphere and ionosphere. Seismic measurements will evidence the main transitions (lithosphere-mantle-core) as well as mantle discontinuities and crustal structure. The geodetic measurements will allow to determine the state of the core, liquid or not, and to retrieve the density of the core and mantle. The magnetic experiment will retrieve the conductivity profile down to several hundred of kilometers depth, gathering information on temperature gradient and phase transitions. The search for ground water, liquid or solid, will be performed locally by three experiments: seismometers, magnetometers and a ground penetrating radar. Local geology and surface mineralogy will be investigated through a multispectral stereo panoramic camera. A dedicated package will study the thermal properties of the soil at the landing sites. The NetLander will investigate the atmospheric vertical structure at the entry sites, complementing the existing three profiles. The network's ability to measure spatial and seasonal variations of pressure and the near-surface relative humidity will provide an unprecedented opportunity to characterize the H2O cycle. The meteorological package will also provide data relevant to the initiation and evolution of dust processes. Ionospheric investigations, coming along mainly with radio science, radar and electromagnetic sounding, will allow studying ionization processes and monitoring both the large-scale and small-scale plasma variations. The NetLander is a CNES led European mission to be launched in 2007. The nine instruments forming the payload will be provided by space agencies and research laboratories from more than ten European countries and USA.
On similarity of various reactor spectra and 235U prompt fission neutron spectrum.
Košťál, Michal; Matěj, Zdeněk; Losa, Evžen; Huml, Ondřej; Štefánik, Milan; Cvachovec, František; Schulc, Martin; Jánský, Bohumil; Novák, Evžen; Harutyunyan, Davit; Rypar, Vojtěch
2018-05-01
A well-defined neutron spectrum is an essential tool not only for calibration and testing of neutron detectors used in dosimetry and spectroscopy but also for validation and verification of evaluated cross sections. A new evaluation of thermal-neutron induced 235 U PFNS was performed by the International Atomic Energy Agency (IAEA) in the CIELO (Collaborative International Evaluated Library Organisation Project) project; new measurements of Spectral Averaged Cross sections averaged in the evaluated spectrum are to be obtained. In general, a neutron spectrum in the core is not identical to the pure fission one because fission neutrons undergo many scattering reactions, but it can be shown that PFNS and reactor spectra become undistinguishable from a certain energy boundary. This limit is important for experiments, because when the studied reaction threshold is over this limit, the spectral averaged cross sections in PFNS can be derived from the measured reactions in the reactor core. The evaluation of the neutron spectrum measurements in three different thermal-reactor cores shows that this lower limit is around the energy of 5.5 - 6 MeV. Above this energy the reactor spectra becomes identical with the 235 U PFNS. IAEA CIELO PFNS is within 5% of the measured PFNS from 10 to 14 MeV in a LR-0 reactor, while ENDF/B-VII evaluated PFNS underestimated measured neutron spectra. Copyright © 2018 Elsevier Ltd. All rights reserved.
Towards a new common Greenland Ice Core Chronology for the last 5000 years
NASA Astrophysics Data System (ADS)
Winstrup, Mai; Olander Rasmussen, Sune; Møllesøe Vinther, Bo; Cook, Eliza; Svensson, Anders; McConnell, Joe; Steffensen, Jørgen Peder
2017-04-01
Since the development of the Greenland Ice Core Chronology 2005 (GICC05), it has been widely used as a reference chronology in paleoclimate research. However, recent research (Sigl et al, 2015) demonstrated that this timescale has small, but significant, issues over historical time. These discrepancies was found by counting annual layers in high-resolution chemistry records from the NEEM S1 shallow core, and confirmed by linking via 10Be marker horizons to the layer-counted WAIS Divide ice core, Antarctica, and accurately-dated tree-ring series. This work showed that a revision of GICC05 is required prior to 1250AD. We here refine and extend this work. Layer-counting in a single core will always involve some uncertainty, and we hence use data from multiple Greenland ice cores, for which high-resolution impurity records recently have been measured. These ice cores have been synchronized using volcanic marker horizons, and the layer-counting is performed automatically using the StratiCounter algorithm (Winstrup et al, 2012), while ensuring that the number of layers between volcanic horizons are the same in all cores. Based on this extended multiple-core data set, we are further able to extend the new Greenland timescale another few thousand years back in time. This will, among others, provide a new ice-core date for the catastrophic volcanic eruption ( 1600 BC) that destroyed the Greek Minoan culture, an important time marker in Greek history.
Exploiting MIC architectures for the simulation of channeling of charged particles in crystals
NASA Astrophysics Data System (ADS)
Bagli, Enrico; Karpusenko, Vadim
2016-08-01
Coherent effects of ultra-relativistic particles in crystals is an area of science under development. DYNECHARM + + is a toolkit for the simulation of coherent interactions between high-energy charged particles and complex crystal structures. The particle trajectory in a crystal is computed through numerical integration of the equation of motion. The code was revised and improved in order to exploit parallelization on multi-cores and vectorization of single instructions on multiple data. An Intel Xeon Phi card was adopted for the performance measurements. The computation time was proved to scale linearly as a function of the number of physical and virtual cores. By enabling the auto-vectorization flag of the compiler a three time speedup was obtained. The performances of the card were compared to the Dual Xeon ones.
Thermal Equation of State of Iron: Constraint on the Density Deficit of Earth's Core
NASA Astrophysics Data System (ADS)
Fei, Y.; Murphy, C. A.; Shibazaki, Y.; Huang, H.
2013-12-01
The seismically inferred densities of Earth's solid inner core and the liquid outer core are smaller than the measured densities of solid hcp-iron and liquid iron, respectively. The inner core density deficit is significantly smaller than the outer core density deficit, implying different amounts and/or identities of light-elements incorporated in the inner and outer cores. Accurate measurements of the thermal equation-of-state of iron over a wide pressure and temperature range are required to precisely quantify the core density deficits, which are essential for developing a quantitative composition model for the core. The challenge has been evaluating the experimental uncertainties related to the choice of pressure scales and the sample environment, such as hydrostaticity at multi-megabar pressures and extreme temperatures. We have conducted high-pressure experiments on iron in MgO, NaCl, and Ne pressure media and obtained in-situ X-ray diffraction data up to 200 GPa at room temperature. Using inter-calibrated pressure scales including the MgO, NaCl, Ne, and Pt scales, we have produced a consistent compression curve of hcp-Fe at room temperature. We have also performed laser-heated diamond-anvil cell experiments on both Fe and Pt in a Ne pressure medium. The experiment was designed to quantitatively compare the thermal expansion of Fe and Pt in the same sample environment using Ne as the pressure medium. The thermal expansion data of hcp-Fe at high pressure were derived based on the thermal equation of state of Pt. Using the 300-K isothermal compression curve of iron derived from our static experiments as a constraint, we have developed a thermal equation of state of hcp-Fe that is consistent with the static P-V-T data of iron and also reproduces the shock wave Hugoniot data for pure iron. The thermodynamic model, based on both static and dynamic data, is further used to calculate the density and bulk sound velocity of liquid iron. Our results define the solid inner core and liquid outer core density deficits, which can serve as the basis for any core composition models.
Nitric Oxide PLIF Measurements in the Hypersonic Materials Environmental Test System (HYMETS)
NASA Technical Reports Server (NTRS)
Inman, Jennifer A.; Bathel, Brett F.; Johansen, Craig T.; Danehy, Paul M.; Jones, Stephen B.; Gragg, Jeffrey G.; Splinter, Scott C.; McRae, Colin D.
2013-01-01
Planar laser-induced fluorescence (PLIF) of naturally occurring nitric oxide (NO) has been used to obtain instantaneous flow visualization images, and to make both radial and axial velocity measurements in the HYMETS (Hypersonic Materials Environmental Test System) 400 kW arc-heated wind tunnel at NASA Langley Research Center. This represents the first application of NO PLIF flow visualization in HYMETS. Results are presented at selected facility run conditions, including some in a simulated Earth atmosphere (75% nitrogen, 20% oxygen, 5% argon) and others in a simulated Martian atmosphere (71% carbon dioxide, 24% nitrogen, 5% argon), for specific bulk enthalpies ranging from 6.5 MJ/kg to 18.4 MJ/kg. Flow visualization images reveal the presence of large scale unsteady flow structures, and indicate nitric oxide fluorescence signal over more than 70% of the core flow for specific bulk enthalpies below about 11 MJ/kg, but over less than 10% of the core flow for specific bulk enthalpies above about 16 MJ/kg. Axial velocimetry was performed using molecular tagging velocimetry (MTV). Axial velocities of about 3 km/s were measured along the centerline. Radial velocimetry was performed by scanning the wavelength of the narrowband laser and analyzing the resulting Doppler shift. Radial velocities of +/- 0.5 km/s were measured.
Computer Science Concept Inventories: Past and Future
ERIC Educational Resources Information Center
Taylor, C.; Zingaro, D.; Porter, L.; Webb, K. C.; Lee, C. B.; Clancy, M.
2014-01-01
Concept Inventories (CIs) are assessments designed to measure student learning of core concepts. CIs have become well known for their major impact on pedagogical techniques in other sciences, especially physics. Presently, there are no widely used, validated CIs for computer science. However, considerable groundwork has been performed in the form…
This testing is available only after mandatory prior consultation with Dr. Jeff Lifson (lifsonj@mail.nih.gov) of the Quantitative Molecular Diagnostics Core (QMDC). This assay is performed by the QMDC for measuring levels of cell- or t
Wingard, G. Lynn; Cronin, Thomas M.; Holmes, Charles W.; Willard, Debra A.; Budet, Carlos A.; Ortiz, Ruth E.
2005-01-01
Sediment cores were collected from five locations in the southwest coastal area of Everglades National Park, Florida, in May 2004 for the purpose of determining the ecosystem history of the area and the impacts of changes in flow through the Shark River Slough. An understanding of natural cycles of change prior to significant human disturbance allows land managers to set realistic performance measures and targets for salinity and other water quality and quantity quality measures. Preliminary examination of the cores indicates significant changes have taken place over the last 1000-2000 years. The cores collected from the inner bays - the most landward bays - are distinctly different from other estuarine sediment cores examined in Florida Bay and Biscayne Bay. Peats in the inner-bay cores from Big Lostmans Bay, Broad River Bay, and Tarpon Bay were deposited at least 1000 years before present (BP) based on radiocarbon analyses. The peats are overlain by poorly sorted organic muds and sands containing species indicative of deposition in a freshwater to very low salinity environment. The Alligator Bay core, the most northern inner-bay core, is almost entirely sand; no detailed faunal analyses or radiometric dating has been completed on this core. The Roberts River core, taken from the mouth of the River where it empties into Whitewater Bay, is lithologically and faunally similar to previously examined cores from Biscayne and Florida Bays; however, the basal unit was deposited ~2000 years before the present based on radiocarbon analyses. A definite trend of increasing salinity over time is seen in the Roberts River core, from sediments representing a terrestrially dominated freshwater environment at the bottom of the core to those representing an estuarine environment with a strong freshwater influence at the top. The changes seen at Roberts River could represent a combination of factors including rising sea-level and changes in freshwater supply, but the timing and extent of the changes needs to be determined. The preliminary information on the cores collected in 2004 will be combined with data from cores collected in July 2005. The 2005 cores were collected along transects moving from the inner bays out towards the coast. These transects, combining information from the 2004 and 2005 cores, will allow us to examine long term trends in freshwater supply, sea-level rise, and potentially the impact of storms on the coastal ecosystem.
Mesoporous activated carbon from corn stalk core for lithium ion batteries
NASA Astrophysics Data System (ADS)
Li, Yi; Li, Chun; Qi, Hui; Yu, Kaifeng; Liang, Ce
2018-04-01
A novel mesoporous activated carbon (AC) derived from corn stalk core is prepared via a facile and effective method which including the decomposition and carbonization of corn stalk core under an inert gas atmosphere and further activation process with KOH solution. The mesoporous activated carbon (AC) is characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) measurements. These biomass waste derived from activated carbon is proved to be promising anode materials for high specific capacity lithium ion batteries. The activated carbon anode possesses excellent reversible capacity of 504 mAh g-1 after 100 cycles at 0.2C. Compared with the unactivated carbon (UAC), the electrochemical performance of activated carbon is significantly improved due to its mesoporous structure.
A theoretical and experimental benchmark study of core-excited states in nitrogen
NASA Astrophysics Data System (ADS)
Myhre, Rolf H.; Wolf, Thomas J. A.; Cheng, Lan; Nandi, Saikat; Coriani, Sonia; Gühr, Markus; Koch, Henrik
2018-02-01
The high resolution near edge X-ray absorption fine structure spectrum of nitrogen displays the vibrational structure of the core-excited states. This makes nitrogen well suited for assessing the accuracy of different electronic structure methods for core excitations. We report high resolution experimental measurements performed at the SOLEIL synchrotron facility. These are compared with theoretical spectra calculated using coupled cluster theory and algebraic diagrammatic construction theory. The coupled cluster singles and doubles with perturbative triples model known as CC3 is shown to accurately reproduce the experimental excitation energies as well as the spacing of the vibrational transitions. The computational results are also shown to be systematically improved within the coupled cluster hierarchy, with the coupled cluster singles, doubles, triples, and quadruples method faithfully reproducing the experimental vibrational structure.
Using OpenMP vs. Threading Building Blocks for Medical Imaging on Multi-cores
NASA Astrophysics Data System (ADS)
Kegel, Philipp; Schellmann, Maraike; Gorlatch, Sergei
We compare two parallel programming approaches for multi-core systems: the well-known OpenMP and the recently introduced Threading Building Blocks (TBB) library by Intel®. The comparison is made using the parallelization of a real-world numerical algorithm for medical imaging. We develop several parallel implementations, and compare them w.r.t. programming effort, programming style and abstraction, and runtime performance. We show that TBB requires a considerable program re-design, whereas with OpenMP simple compiler directives are sufficient. While TBB appears to be less appropriate for parallelizing existing implementations, it fosters a good programming style and higher abstraction level for newly developed parallel programs. Our experimental measurements on a dual quad-core system demonstrate that OpenMP slightly outperforms TBB in our implementation.
NASA Astrophysics Data System (ADS)
Kiaalhosseini, Saeed
In modern contaminant hydrology, management of contaminated sites requires a holistic characterization of subsurface conditions. Delineation of contaminant distribution in all phases (i.e., aqueous, non-aqueous liquid, sorbed, and gas), as well as associated biogeochemical processes in a complex heterogeneous subsurface, is central to selecting effective remedies. Arguably, a factor contributing to the lack of success of managing contaminated sites effectively has been the limitations of site characterization methods that rely on monitoring wells and grab sediment samples. The overarching objective of this research is to advance a set of third-generation (3G) site characterization methods to overcome shortcomings of current site characterization techniques. 3G methods include 1) cryogenic core collection (C3) from unconsolidated geological subsurface to improve recovery of sediments and preserving key attributes, 2) high-throughput analysis (HTA) of frozen core in the laboratory to provide high-resolution, depth discrete data of subsurface conditions and processes, 3) resolution of non-aqueous phase liquid (NAPL) distribution within the porous media using a nuclear magnetic resonance (NMR) method, and 4) application of a complex resistivity method to track NAPL depletion in shallow geological formation over time. A series of controlled experiments were conducted to develop the C 3 tools and methods. The critical aspects of C3 are downhole circulation of liquid nitrogen via a cooling system, the strategic use of thermal insulation to focus cooling into the core, and the use of back pressure to optimize cooling. The C3 methods were applied at two contaminated sites: 1) F.E. Warren (FEW) Air Force Base near Cheyenne, WY and 2) a former refinery in the western U.S. The results indicated that the rate of core collection using the C3 methods is on the order of 30 foot/day. The C3 methods also improve core recovery and limits potential biases associated with flowing sands. HTA of frozen core was employed at the former refinery and FEW. Porosity and fluid saturations (i.e., aqueous, non-aqueous liquid, and gas) from the former refinery indicate that given in situ freezing, the results are not biased by drainage of pore fluids from the core during sample collection. At FEW, a comparison between the results of HTA of the frozen core collected in 2014 and the results of site characterization using unfrozen core, (second-generation (2G) methods) at the same locations (performed in 2010) indicate consistently higher contaminant concentrations using C 3. Many factors contribute to the higher quantification of contaminant concentrations using C3. The most significant factor is the preservation of the sediment attributes, in particular, pore fluids and volatile organic compounds (VOCs) in comparison to the unfrozen conventional sediment core. The NMR study was performed on laboratory-fabricated sediment core to resolve NAPL distribution within the porous media qualitatively and quantitatively. The fabricated core consisted of Colorado silica sand saturated with deionized water and trichloroethylene (TCE). The cores were scanned with a BRUKER small-animal scanner (2.3 Tesla, 100 MHz) at 20 °C and while the core was frozen at -25 °C. The acquired images indicated that freezing the water within the core suppressed the NMR signals of water-bound hydrogen. The hydrogen associated with TCE was still detectable since the TCE was in its liquid state (melting point of TCE is -73 °C). Therefore, qualitative detection of TCE within the sediment core was performed via the NMR scanning by freezing the water. A one-dimensional NMR scanning method was used for quantification of TCE mass distribution within the frozen core. However, the results indicated inconsistency in estimating the total TCE mass within the porous media. Downhole NMR logging was performed at the former refinery in the western U.S. to detect NAPL and to discriminate NAPL from water in the formation. The results indicated that detection of NMR signals to discriminate NAPL from water is compromised by the noise stemming from the active facilities and/or power lines passing over the site. A laboratory experiment was performed to evaluate the electrical response of unconsolidated porous media through time (30 days) while NAPL was being depleted. Sand columns (Colorado silica sand) contaminated with methyl tert-butyl ether (MTBE, a light non-aqueous phase liquid (LNAPL)) were studied. A multilevel electrode system was used to measure electrical resistivity of impacted sand by imposing alternative current. The trend of reduction in resistivity through the depth of columns over time followed depletion of LNAPL by volatilization. Finally, a field experiment was performed at the former refinery in the western U.S. to track natural losses of LNAPL over time. Multilevel systems consisting of water samplers, thermocouples, and electrodes were installed at a clean zone (background zone) and an LNAPL-impacted zone. In situ measurements of complex resistivity and temperature were taken and water sampling was performed for each depth (from 3 to 14 feet below the ground surface at one-foot spacing) within almost a year. At both locations, the results indicated decreases in apparent resistivity below the water table over time. This trend was supported by the geochemistry of the pore fluids. Overall, results indicate that application of the electrical resistivity method to track LNAPL depletion at field sites is difficult due to multiple conflicting factors affecting the geoelectrical response of LNAPL-impacted zones over time.
Influence of PBL with open-book tests on knowledge retention measured with progress tests.
Heijne-Penninga, M; Kuks, J B M; Hofman, W H A; Muijtjens, A M M; Cohen-Schotanus, J
2013-08-01
The influence of problem-based learning (PBL) and open-book tests on long-term knowledge retention is unclear and subject of discussion. Hypotheses were that PBL as well as open-book tests positively affect long-term knowledge retention. Four progress test results of fifth and sixth-year medical students (n = 1,648) of three medical schools were analyzed. Two schools had PBL driven curricula, and the third one had a traditional curriculum (TC). One of the PBL schools (PBLob) used a combination of open-book (assessing backup knowledge) and closed-book tests (assessing core knowledge); the other two schools (TC and PBLcb) only used closed-book tests. The items of the progress tests were divided into core and backup knowledge. T tests (with Bonferroni correction) were used to analyze differences between curricula. PBL students performed significantly better than TC students on core knowledge (average effect size (av ES) = 0.37-0.74) and PBL students tested with open-book tests scored somewhat higher than PBL students tested without such tests (av ES = 0.23-0.30). Concerning backup knowledge, no differences were found between the scores of the three curricula. Students of the two PBL curricula showed a substantially better long-term knowledge retention than TC students. PBLob students performed somewhat better on core knowledge than PBLcb students. These outcomes suggest that a problem-based instructional approach in particular can stimulate long-term knowledge retention. Distinguishing knowledge into core and backup knowledge and using open-book tests alongside closed-book tests could enhance long-term core knowledge retention.
Re-visiting the tympanic membrane vicinity as core body temperature measurement site
Gan, Chee Wee; Liang, Wenyu
2017-01-01
Core body temperature (CBT) is an important and commonly used indicator of human health and endurance performance. A rise in baseline CBT can be attributed to an onset of flu, infection or even thermoregulatory failure when it becomes excessive. Sites which have been used for measurement of CBT include the pulmonary artery, the esophagus, the rectum and the tympanic membrane. Among them, the tympanic membrane is an attractive measurement site for CBT due to its unobtrusive nature and ease of measurement facilitated, especially when continuous CBT measurements are needed for monitoring such as during military, occupational and sporting settings. However, to-date, there are still polarizing views on the suitability of tympanic membrane as a CBT site. This paper will revisit a number of key unresolved issues in the literature and also presents, for the first time, a benchmark of the middle ear temperature against temperature measurements from other sites. Results from experiments carried out on human and primate subjects will be presented to draw a fresh set of insights against the backdrop of hypotheses and controversies. PMID:28414722
Re-visiting the tympanic membrane vicinity as core body temperature measurement site.
Yeoh, Wui Keat; Lee, Jason Kai Wei; Lim, Hsueh Yee; Gan, Chee Wee; Liang, Wenyu; Tan, Kok Kiong
2017-01-01
Core body temperature (CBT) is an important and commonly used indicator of human health and endurance performance. A rise in baseline CBT can be attributed to an onset of flu, infection or even thermoregulatory failure when it becomes excessive. Sites which have been used for measurement of CBT include the pulmonary artery, the esophagus, the rectum and the tympanic membrane. Among them, the tympanic membrane is an attractive measurement site for CBT due to its unobtrusive nature and ease of measurement facilitated, especially when continuous CBT measurements are needed for monitoring such as during military, occupational and sporting settings. However, to-date, there are still polarizing views on the suitability of tympanic membrane as a CBT site. This paper will revisit a number of key unresolved issues in the literature and also presents, for the first time, a benchmark of the middle ear temperature against temperature measurements from other sites. Results from experiments carried out on human and primate subjects will be presented to draw a fresh set of insights against the backdrop of hypotheses and controversies.
NASA Astrophysics Data System (ADS)
Gran, M.; Zahasky, C.; Garing, C.; Pollyea, R. M.; Benson, S. M.
2017-12-01
One way to reduce CO2 emissions is to capture CO2 generated in power plants and other industrial sources to inject it into a geological formation. Sedimentary basins are the ones traditionally used to store CO2 but the emission sources are not always close to these type of basins. In this case, basalt rocks present a good storage alternative due their extent and also their potential for mineral trapping. Flow through basaltic rocks is governed by the permeable paths provided by rock fractures. Hence, knowing the behavior of the multiphase flow in these fractures becomes crucial. With the aim to describe how aperture and liquid-gas interface changes in the fracture affect relative permeability and what are the implications of permeability stress dependency, a series of core experiments were conducted. To calculate fracture apertures and fluid saturations, core flooding experiments combined with medical X-Ray CT scanner and micro-PET imaging (Micro Positron Emission Tomography) were performed. Capillary pressure and relative permeability drainage curves were simultaneously measured in a fractured basalt core under typical storage reservoir pressures and temperatures. The X-Ray scanner allows fracture apertures to be measured quite accurately even for fractures as small as 30 µ, but obtaining fluid saturations is not straightforward. The micro-PET imaging provides dynamic measurements of tracer distributions which can be used to calculate saturation. Here new experimental data is presented and the challenges associated with measuring fluid saturations using both X-Rays and micro-PET are discussed.
Inferring Core Tungsten Behavior Using SPRED During the DIII-D Metal Rings Campaign
NASA Astrophysics Data System (ADS)
Thomas, D. M.; Kaplan, D.; Groebner, R.; Grierson, B.; Unterberg, Z.; Victor, B.
2016-10-01
The GA SPRED EUV spectrometer was used to study core emission of highly charged tungsten ions (W40+-W45+) in the 120-135Å region during the recent Metal Rings Campaign. These experiments used two 5-cm wide toroidal rings of W-coated metal inserts exposed to a variety of DIII-D discharges to study effects of high-Z divertor erosion, migration, core uptake, and effects on advanced tokamak performance. For the proper core temperature range (2-4 keV), the measured multistate W emission forms a well defined spectral pattern that can be used to study the relative importance of strike point location, flux expansion, injected power, ELM characteristics and magnetic drift direction for high-Z core contamination in DIII-D. The spectra are fit using simple Gaussians to estimate concentrations using the historical SPRED intensity calibration. Calibration shots using known core dosages of pellet injected W are used to help infer the relative response of the instrument. Supported by US DOE under DE-FC02-04ER54698, DE-AC02-09CH11466, DE-AC05-00OR22725, DE-AC52-07NA27344.
Hydration and Thermoregulation During a Half-Ironman Performed in Tropical Climate
Baillot, Michelle; Hue, Olivier
2015-01-01
The aim of this study was to compare the core temperature (TC) and markers of hydration status in athletes performing a half Ironman triathlon race in hot and humid conditions (27.2 ± 0.5°C, relative humidity was 80 ± 2%). Before and immediately after the 2012 Guadeloupe half Ironman triathlon, body mass and urine osmolarity (mean ± SD) were measured in 19 well-trained male triathletes. TC was measured before and after the race, and at each transition during the event, using an ingestible pill telemetry system. Ambient temperature and heart rate (HR) were measured throughout the race. Mean ± SD performance time was 331 ± 36 minutes and HR was 147 ± 16 beats·min-1. Wet bulb globe temperature (WBGT) averaged 25.4 ± 1.0°C and ocean temperature was 29.5°C. The average TC at the beginning of the race (TC1) was 37.1 ± 0.7°C; it was 37.8 ± 0.9°C after swimming (TC2), 37.8 ± 1.0°C after cycling (TC3), and (TC4) 38.4 ± 0.7°C after running. Body mass significantly declined during the race by 3.7 ± 1.9 kg (4.8 ± 2.4%; p < 0.05), whereas urine osmolarity significantly increased from 491.6 ± 300.6 to 557.9 ± 207.9 mosm·L-1 (p < 0.05). Changes in body mass were not related to finishing TC or urine osmolarity. Ad libitum fluid intake appears applicable to athletes acclimatized to tropical climate, when performing a half Ironman triathlon in a warm and humid environment. Key points Ad libitum fluid intake appears applicable to athletes acclimatized to tropical climate when performing a half Ironman triathlon in a warm and humid environment. The final core temperature average was 38.8 ± 0.7ºC after the event in these triathletes and the athletes showed no evidence of heat illness while competing in a warm and humid environment. Core temperature was dependent on both activity and anthropometry. PMID:25983573
NASA Technical Reports Server (NTRS)
Fournelle, John; Carpenter, Paul
2006-01-01
Modem electron microprobe systems have become increasingly sophisticated. These systems utilize either UNIX or PC computer systems for measurement, automation, and data reduction. These systems have undergone major improvements in processing, storage, display, and communications, due to increased capabilities of hardware and software. Instrument specifications are typically utilized at the time of purchase and concentrate on hardware performance. The microanalysis community includes analysts, researchers, software developers, and manufacturers, who could benefit from exchange of ideas and the ultimate development of core community specifications (CCS) for hardware and software components of microprobe instrumentation and operating systems.
Summary of Two Independent Performance Measurements of the ONR Axial Waterjet 2 (AxWJ-2)
2011-03-01
From the shaft centerline to rlR = 0.1, there is a velocity defect caused by the wake of the stator hub. The flow along the stator hub is quick to...centered about the shaft centerline. The inner core rotates opposite in direction to the rotor and radiates out to rlR = 0.15. From there to rlR = 0.40 is...centroid of the inner core, rlR = 0.00. This problem may be traced to the large sensing volume of the RRNMI 3-hole pitot probe or misalignment of the probe
High-contrast grating hollow-core waveguide splitter applied to optical phased array
NASA Astrophysics Data System (ADS)
Zhao, Che; Xue, Ping; Zhang, Hanxing; Chen, Te; Peng, Chao; Hu, Weiwei
2014-11-01
A novel hollow-core (HW) Y-branch waveguide splitter based on high-contrast grating (HCG) is presented. We calculated and designed the HCG-HW splitter using Rigorous Coupled Wave Analysis (RCWA). Finite-different timedomain (FDTD) simulation shows that the splitter has a broad bandwidth and the branching loss is as low as 0.23 dB. Fabrication is accomplished with standard Silicon-On-Insulator (SOI) process. The experimental measurement results indicate its good performance on beam splitting near the central wavelength λ = 1550 nm with a total insertion loss of 7.0 dB.
Arrival of the ULA Delta IV Heavy Common Booster Cores for the P
2017-07-26
The United Launch Alliance (ULA) Mariner arrives at Port Canaveral in Florida carrying two of the three Delta IV Heavy Common Booster Cores for NASA's upcoming Parker Solar Probe mission. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Liftoff atop the Delta IV rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 37 in summer 2018.
ULA Delta IV Heavy Second Stage & Port Common Booster Core for t
2017-08-30
The United Launch Alliance Mariner arrives at Port Canaveral's Army Warf carrying the third Delta IV Heavy common booster core and second stage for NASA's upcoming Parker Solar Probe spacecraft. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Liftoff atop the Delta IV Heavy rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 37 in summer 2018.
ULA Delta IV Heavy Common Booster Cores for the Parker Solar Pro
2017-07-27
The United Launch Alliance Delta IV Heavy common booster core arrives aboard the company's Mariner ship at Port Canaveral in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Liftoff atop the Delta IV Heavy rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 37 in summer 2018.
Arrival of the ULA Delta IV Heavy Common Booster Cores for the P
2017-07-26
The United Launch Alliance (ULA) Mariner docks at Port Canaveral in Florida carrying two of the three Delta IV Heavy Common Booster Cores for NASA's upcoming Parker Solar Probe mission. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Liftoff atop the Delta IV rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 37 in summer 2018.
ULA Delta IV Heavy Second Stage & Port Common Booster Core for t
2017-08-26
The United Launch Alliance Mariner arrives at Port Canaveral's Army Warf carrying the third Delta IV Heavy common booster core and second stage for NASA's upcoming Parker Solar Probe spacecraft. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Liftoff atop the Delta IV Heavy rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 37 in summer 2018.
ULA Delta IV Heavy Common Booster Cores for the Parker Solar Pro
2017-08-01
A United Launch Alliance Delta IV Heavy common booster core is offloaded from the company's Mariner ship at Port Canaveral in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Liftoff atop the Delta IV Heavy rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 37 in summer 2018.
Miura, Yousuke; Momotake, Atsuya; Takeuchi, Keiichirou; Arai, Tatsuo
2011-01-01
A series of stilbene-cored poly(benzyl ether) dendrimers with benzophenone peripheries were synthesized and their photophysical and photochemical properties were studied. Fluorescence studies revealed that singlet-singlet energy transfer (SSET) from the stilbene core to the benzophenone units took place efficiently in dendrimers of all generations. Similarly, phosphorescence and time-resolved spectroscopic measurements indicated efficient triplet-triplet energy transfer (TTET) from the benzophenone periphery to the stilbene core. Upon excitation at 310 nm, the stilbene core isomerizes via an energy round trip within the dendrimer shell. The quantum yields for the energy round trip (Φ(ERT)), defined as the product of the quantum yields of SSET, intersystem crossing, and TTET (Φ(ERT) = Φ(SS)Φ(isc)Φ(TT)), were extremely high for all generations--99%, 95% and 94% for G1, G2, and G3, respectively--which means that the excitation energy of the dendrimer core was transferred to the dendrimer periphery and back to the core almost quantitatively. The quantum yield for photoisomerization of G1-G3 via an energy round trip was higher than for other stilbene-cored dendrimers, which mainly isomerize from the excited singlet state. Photostability in the dendrimers was also demonstrated and discussed.
NASA Astrophysics Data System (ADS)
Salvador, R.; Miranda, P. C.; Roth, Y.; Zangen, A.
2009-05-01
Efficient stimulation of deeply located brain regions with transcranial magnetic stimulation (TMS) poses many challenges, arising from the fact that the induced field decays rapidly and becomes less focal with depth. We propose a new method to improve the efficiency of TMS of deep brain regions that combines high permeability cores, to increase focality and field intensity, with a coil specifically designed to induce a field that decays slowly with increasing depth. The performance of the proposed design was investigated using the finite element method to determine the total electric field induced by this coil/core arrangement on a realistically shaped homogeneous head model. The calculations show that the inclusion of the cores increases the field's magnitude by as much as 25% while also decreasing the field's decay with depth along specific directions. The focality, as measured by the area where the field's norm is greater than 1/\\sqrt 2 of its maximum value, is also improved by as much as 15% with some core arrangements. The coil's inductance is not significantly increased by the cores. These results show that the presence of the cores might make this specially designed coil even more suited for the effective stimulation of deep brain regions.
Dang, Yunli; Zhao, Zhiyong; Tang, Ming; Zhao, Can; Gan, Lin; Fu, Songnian; Liu, Tongqing; Tong, Weijun; Shum, Perry Ping; Liu, Deming
2017-08-21
Featuring a dependence of Brillouin frequency shift (BFS) on temperature and strain changes over a wide range, Brillouin distributed optical fiber sensors are however essentially subjected to the relatively poor temperature/strain measurement resolution. On the other hand, phase-sensitive optical time-domain reflectometry (Φ-OTDR) offers ultrahigh temperature/strain measurement resolution, but the available frequency scanning range is normally narrow thereby severely restricts its measurement dynamic range. In order to achieve large dynamic range and high measurement resolution simultaneously, we propose to employ both the Brillouin optical time domain analysis (BOTDA) and Φ-OTDR through space-division multiplexed (SDM) configuration based on the multicore fiber (MCF), in which the two sensors are spatially separately implemented in the central core and a side core, respectively. As a proof of concept, the temperature sensing has been performed for validation with 2.5 m spatial resolution over 1.565 km MCF. Large temperature range (10 °C) has been measured by BOTDA and the 0.1 °C small temperature variation is successfully identified by Φ-OTDR with ~0.001 °C resolution. Moreover, the temperature changing process has been recorded by continuously performing the measurement of Φ-OTDR with 80 s frequency scanning period, showing about 0.02 °C temperature spacing at the monitored profile. The proposed system enables the capability to see finer and/or farther upon requirement in distributed optical fiber sensing.
McCleskey, Patrick E
2013-08-01
Dermatology instruction for primary care learners is limited, and the American Academy of Dermatology (AAD) has developed a new core curriculum for dermatology. This study sought to prospectively evaluate short-term knowledge acquisition and long-term knowledge retention after using the AAD core curriculum during a clinical dermatology clerkship. Resident physicians and physician assistant students performing clerkships at military dermatology clinics were given access to the AAD core curriculum teaching modules before their public availability. Knowledge acquisition was measured with pretests and posttests, and a follow-up quiz was given up to a year after the dermatology rotation to assess knowledge retention. In all, 82 primary care learners met inclusion criteria. Knowledge improved significantly from pretest to posttest (60.1 vs 77.4, P < .01). Of the 10 factors evaluated, only high use of the World Wide Web site was significantly associated with improved posttest scores (70.8 vs 82.2, P = .003). Long-term follow-up scores available from 38 participants were only slightly lower than their posttest scores (70.5 vs 78.9, P < .01) at a median time of 6.8 months after the clerkship. Students found the online modules clear, engaging, and worth their time and preferred them to other teaching methods such as textbook reading and lectures. The nonrandomized study was voluntary, so individual performance may be influenced by selection bias. The more learners used the online curriculum, the better they scored on the posttest. This demonstrates the efficacy of the AAD core curriculum in teaching its goals and objectives for primary care learners performing a dermatology clerkship. Copyright © 2012 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.
West, Daniel J; Cook, Christian J; Beaven, Martyn C; Kilduff, Liam P
2014-06-01
Core temperature typically displays a low circadian in the morning before peaking later in the day, and these changes occur within small physiological ranges. Body temperature plays an important role in physical performance, and some athletes may be required to train and compete in both the morning and evening. However, the influence of the circadian change in body temperature and its influence on physical performance in elite athletes are unclear. This study examined the effects of the time of day on core temperature and lower body power output in elite rugby union sevens players. Sixteen elite rugby union sevens players completed morning (in AM) countermovement jump and core temperature (Tcore) measurement, which were then repeated later the same day (in PM). Countermovement jump was processed for peak power output (PPO). Data were analyzed using paired samples t-test and Pearson's product moment correlation and are presented in mean ± SD. Tcore significantly increased from AM to PM (AM, 36.92 ± 0.23 vs. PM, 37.18 ± 0.18° C; P < 0.001) with PPO significantly increasing from AM to PM in all 16 players (AM, 5248 ± 366 vs. PM, 5413 ± 361 W; P < 0.001). The delta change in Tcore (0.26 ± 0.13° C) and PPO (164 ± 78 W) was significantly related (r = 0.781; P < 0.001). In conclusion, small circadian changes in core temperature can influence physical performance in elite athletes. Coaches should seek to use strategies, which may raise morning body temperature to offset the circadian low in the morning.
Park, Soohyun
2018-02-01
To foster nursing professionals, nursing education requires the integration of knowledge and practice. Nursing students in their senior year experience considerable stress in performing the core nursing skills because, typically, they have limited opportunities to practice these skills in their clinical practicum. Therefore, nurse educators should revise the nursing curricula to focus on core nursing skills. To identify the effect of an intensive clinical skills course for senior nursing students on their self-confidence and clinical competence. A quasi-experimental post-test study. A university in South Korea during the 2015-2016 academic year. A convenience sample of 162 senior nursing students. The experimental group (n=79) underwent the intensive clinical skills course, whereas the control group (n=83) did not. During the course, students repeatedly practiced the 20 items that make up the core basic nursing skills using clinical scenarios. Participants' self-confidence in the core clinical nursing skills was measured using a 10-point scale, while their clinical competence with these skills was measured using the core clinical nursing skills checklist. Independent t-test and chi-square tests were used to analyze the data. The mean scores in self-confidence and clinical competence were higher in the experimental group than in the control group. This intensive clinical skills courses had a positive effect on senior nursing students' self-confidence and clinical competence for the core clinical nursing skills. This study emphasizes the importance of reeducation using a clinical skills course during the transition from student to nursing professional. Copyright © 2017. Published by Elsevier Ltd.
Physical properties of self-, dual-, and light-cured direct core materials.
Rüttermann, Stefan; Alberts, Ian; Raab, Wolfgang H M; Janda, Ralf R
2011-08-01
The objective of this study is to evaluate flexural strength, flexural modulus, compressive strength, curing temperature, curing depth, volumetric shrinkage, water sorption, and hygroscopic expansion of two self-, three dual-, and three light-curing resin-based core materials. Flexural strength and water sorption were measured according to ISO 4049, flexural modulus, compressive strength, curing temperature, and curing depth according to well-proven, literature-known methods, and the volumetric behavior was determined by the Archimedes' principle. ANOVA was calculated to find differences between the materials' properties, and correlation of water sorption and hygroscopic expansion was analysed according to Pearson (p < 0.05). Clearfil Photo Core demonstrated the highest flexural strength (125 ± 12 MPa) and curing depth (15.2 ± 0.1 mm) and had the highest flexural modulus (≈12.6 ± 1.2 GPa) concertedly with Multicore HB. The best compressive strength was measured for Voco Rebilda SC and Clearfil DC Core Auto (≈260 ± 10 MPa). Encore SuperCure Contrast had the lowest water sorption (11.8 ± 3.3 µg mm(-3)) and hygroscopic expansion (0.0 ± 0.2 vol.%). Clearfil Photo Core and Encore SuperCure Contrast demonstrated the lowest shrinkage (≈2.1 ± 0.1 vol.%). Water sorption and hygroscopic expansion had a very strong positive correlation. The investigated core materials significantly differed in the tested properties. The performance of the materials depended on their formulation, as well as on the respective curing process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Eun J.; Oh, Sang Youp; Kim, Ho Y.
2010-11-15
Because of thermal fluid-property dependence, atomization stability (or flow regime) can change even at fixed operating conditions when subject to temperature change. Particularly at low temperatures, fuel's high viscosity can prevent a pressure-swirl (or simplex) atomizer from sustaining a centrifugal-driven air core within the fuel injector. During disruption of the air core inside an injector, spray characteristics outside the nozzle reflect a highly unstable, nonlinear mode where air core length, Sauter mean diameter (SMD), cone angle, and discharge coefficient variability. To better understand injector performance, these characteristics of the pressure-swirl atomizer were experimentally investigated and data were correlated to Reynoldsmore » numbers (Re). Using a transparent acrylic nozzle, the air core length, SMD, cone angle, and discharge coefficient are observed as a function of Re. The critical Reynolds numbers that distinguish the transition from unstable mode to transitional mode and eventually to a stable mode are reported. The working fluids are diesel and a kerosene-based fuel, referred to as bunker-A. (author)« less
Vapor-phase exchange of perchloroethene between soil and plants
Struckhoff, G.C.; Burken, J.G.; Schumacher, J.G.
2005-01-01
Tree core concentrations of tetrachloroethylene (perchloroethene, PCE) at the Riverfront Superfund Site in New Haven, MO, were found to mimic the profile of soil phase concentrations. The observed soil-tree core relationship was stronger than that of groundwater PCE to tree core concentrations at the same site. Earlier research has shown a direct, linear relationship between tree core and groundwater concentrations of chlorinated solvents and other organics. Laboratory-scale experiments were performed to elucidate this phenomenon, including determining partitioning coefficients of PCE between plant tissues and air and between plant tissues and water, measured to be 8.1 and 49 L/kg, respectively. The direct relationship of soil to tree core PCE concentrations was hypothesized to be caused by diffusion between tree roots and the soil vapor phase in the subsurface. The central findings of this research are discovering the importance of subsurface vapor-phase transfer for VOCs and uncovering a direct relationship between soil vapor-phase chlorinated solvents and uptake rates that impact contaminant translocation from the subsurface and transfer into the atmosphere. ?? 2005 American Chemical Society.
Transmission Loss and Absorption of Corrugated Core Sandwich Panels With Embedded Resonators
NASA Technical Reports Server (NTRS)
Allen, Albert R.; Schiller, Noah H.; Zalewski, Bart F.; Rosenthal, Bruce N.
2014-01-01
The effect of embedded resonators on the diffuse field sound transmission loss and absorption of composite corrugated core sandwich panels has been evaluated experimentally. Two 1.219 m × 2.438 m panels with embedded resonator arrangements targeting frequencies near 100 Hz were evaluated using non-standard processing of ASTM E90-09 acoustic transmission loss and ASTM C423-09a room absorption test measurements. Each panel is comprised of two composite face sheets sandwiching a corrugated core with a trapezoidal cross section. When inlet openings are introduced in one face sheet, the chambers within the core can be used as embedded acoustic resonators. Changes to the inlet and chamber partition locations allow this type of structure to be tuned for targeted spectrum passive noise control. Because the core chambers are aligned with the plane of the panel, the resonators can be tuned for low frequencies without compromising the sandwich panel construction, which is typically sized to meet static load requirements. Absorption and transmission loss performance improvements attributed to opening the inlets were apparent for some configurations and inconclusive for others.
Reference breast temperature: proposal of an equation.
Souza, Gladis Aparecida Galindo Reisemberger de; Brioschi, Marcos Leal; Vargas, José Viriato Coelho; Morais, Keli Cristiane Correia; Dalmaso Neto, Carlos; Neves, Eduardo Borba
2015-01-01
To develop an equation to estimate the breast reference temperature according to the variation of room and core body temperatures. Four asymptomatic women were evaluated for three consecutive menstrual cycles. Using thermography, the temperature of breasts and eyes was measured as indirect reference of core body and room temperatures. To analyze the thermal behavior of the breasts during the cycle, the core body and room temperatures were normalized by means of a mathematical equation. We performed 180 observations and the core temperature had the highest correlation with the breast temperature, followed by room temperature. The proposed prediction model could explain 45.3% of the breast temperature variation, with variable room temperature variable; it can be accepted as a way to estimate the reference breast temperature at different room temperatures. The average breast temperature in healthy women had a direct relation with the core and room temperature and can be estimated mathematically. It is suggested that an equation could be used in clinical practice to estimate the normal breast reference temperature in young women, regardless of the day of the cycle, therefore assisting in evaluation of anatomical studies.
Effect of core stability training on throwing velocity in female handball players.
Saeterbakken, Atle H; van den Tillaar, Roland; Seiler, Stephen
2011-03-01
The purpose was to study the effect of a sling exercise training (SET)-based core stability program on maximal throwing velocity among female handball players. Twenty-four female high-school handball players (16.6 ± 0.3 years, 63 ± 6 kg, and 169 ± 7 cm) participated and were initially divided into a SET training group (n = 14) and a control group (CON, n = 10). Both groups performed their regular handball training for 6 weeks. In addition, twice a week, the SET group performed a progressive core stability-training program consisting of 6 unstable closed kinetic chain exercises. Maximal throwing velocity was measured before and after the training period using photocells. Maximal throwing velocity significantly increased 4.9% from 17.9 ± 0.5 to 18.8 ± 0.4 m·s in the SET group after the training period (p < 0.01), but was unchanged in the control group (17.1 ± 0.4 vs. 16.9 ± 0.4 m·s). These results suggest that core stability training using unstable, closed kinetic chain movements can significantly improve maximal throwing velocity. A stronger and more stable lumbopelvic-hip complex may contribute to higher rotational velocity in multisegmental movements. Strength coaches can incorporate exercises exposing the joints for destabilization force during training in closed kinetic chain exercises. This may encourage an effective neuromuscular pattern and increase force production and can improve a highly specific performance task such as throwing.
NASA Astrophysics Data System (ADS)
Phipps, Jennifer E.; Bec, Julien; Vela, Deborah; Buja, L. Maximilian; Southard, Jeffrey A.; Margulies, Kenneth B.; Marcu, Laura
2017-02-01
FL-IVUS combines intravascular ultrasound with fluorescence lifetime imaging to obtain morphologic and biochemical details from the arterial wall. Ultrasound measurements alone provide morphologic information (plaque burden, remodeling index and presence of calcium). Fluorescence lifetime can determine the presence of a thick fibrous cap, macrophage infiltration, and lipid cores beneath thin fibrous caps. These details are important to assess plaque vulnerability. In this study, we focused on the ability of FL-IVUS to differentiate between early and advanced lipid cores-advanced cores are vulnerable to rupture. We imaged N=12 ex vivo human coronary arteries and performed hematoxylin and eosin, Movat's pentachrome and CD68 immunohistochemistry at 500 micron intervals throughout the length of the vessels. We found only N=1 thin-capped fibroatheroma (TCFA) with an advanced necrotic core and N=7 cases of foam cell infiltration, early lipid cores or deep necrotic cores. IVUS was able to observe the increased plaque burden and calcification of the advanced and deep necrotic cores, but could not identify early lipid cores, foam cell infiltration or discriminate between deep necrotic cores and TCFA. The addition of FLIm to IVUS allowed the TCFA to be discriminated from early lipid accumulation, particularly at 542+/-50 nm (355 nm pulsed excitation): 7.6 +/- 0.5 ns compared to 6.6 +/- 0.4 ns, respectively (P<0.001 by ANOVA analysis). These differences need to be validated in a larger cohort, but exist due to specific lipid content in the necrotic core as well as increased extracellular matrix in early lesions.
openBEB: open biological experiment browser for correlative measurements
2014-01-01
Background New experimental methods must be developed to study interaction networks in systems biology. To reduce biological noise, individual subjects, such as single cells, should be analyzed using high throughput approaches. The measurement of several correlative physical properties would further improve data consistency. Accordingly, a considerable quantity of data must be acquired, correlated, catalogued and stored in a database for subsequent analysis. Results We have developed openBEB (open Biological Experiment Browser), a software framework for data acquisition, coordination, annotation and synchronization with database solutions such as openBIS. OpenBEB consists of two main parts: A core program and a plug-in manager. Whereas the data-type independent core of openBEB maintains a local container of raw-data and metadata and provides annotation and data management tools, all data-specific tasks are performed by plug-ins. The open architecture of openBEB enables the fast integration of plug-ins, e.g., for data acquisition or visualization. A macro-interpreter allows the automation and coordination of the different modules. An update and deployment mechanism keeps the core program, the plug-ins and the metadata definition files in sync with a central repository. Conclusions The versatility, the simple deployment and update mechanism, and the scalability in terms of module integration offered by openBEB make this software interesting for a large scientific community. OpenBEB targets three types of researcher, ideally working closely together: (i) Engineers and scientists developing new methods and instruments, e.g., for systems-biology, (ii) scientists performing biological experiments, (iii) theoreticians and mathematicians analyzing data. The design of openBEB enables the rapid development of plug-ins, which will inherently benefit from the “house keeping” abilities of the core program. We report the use of openBEB to combine live cell microscopy, microfluidic control and visual proteomics. In this example, measurements from diverse complementary techniques are combined and correlated. PMID:24666611
NASA Astrophysics Data System (ADS)
Bundke, Ulrich; Berg, Marcel; Franke, Harald; Zahn, Andreas; Boenisch, Harald; Perim de Faria, Julia; Berkes, Florian; Petzold, Andreas
2017-04-01
The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in-situ observational data by using commercial passenger aircraft as measurement platforms. The infrastructure is built from two complementary approaches: The "CORE" component comprises the implementation and operation of autonomous instruments installed on up to 20 long-range aircraft of international airlines for continuous measurements of important reactive gases and greenhouse gases, as well as aerosol particles, dust and cloud particles. The fully automated instruments are designed for operation aboard the aircraft in unattended mode for several months and the data are transmitted automatically. The complementary "CARIBIC" component consists of the monthly deployment of a cargo container equipped with instrumentation for a larger suite of components. The CARIBIC container has equipment for measuring ozone, carbon monoxide, nitrogen oxides, water vapor and airborne particles. Furthermore the container is equipped with a system for collecting air samples. These air samples are analyzed in the laboratory. For each sample measurements for more than 40 trace gases including CFC's prohibited by the Montreal protocol, and all greenhouse gases are performed. The Interface described in this work is designed to host one of IAGOS CORE (Package2) instruments. Available are: P2a, P2b, measuring { NO_y} and {NO_x} em P2c, measuring the aerosol size-distribution (0.25
The thermal evolution and dynamo generation of Mercury with an Fe-Si core
NASA Astrophysics Data System (ADS)
Knibbe, Jurrien
2017-04-01
The present day partially liquid (as opposed to fully solidified) Fe-rich core of Mercury is traditionally explained by assuming a substantial amount of S to be present in the core (e.g. Grott et al., 2011), because S lowers the core's melting temperature. However, this assumption has problematic implications: Mercury's large Fe-rich core and measured low FeO surface content are indicative of an oxygen poor bulk composition, which is consistent with the volatile-poor material that is expected to have condensed from the solar nebula close to the Sun. In contrast, S is a moderately volatile element. Combined with the high S content of Mercury's crust and (likely) mantle, as indicated by the measured high S/Si surface fraction, the resulting high planetary S abundance is difficult to reconcile with a volatile poor origin of the planet. Additionally, the observed low magnetic field strength is most easily explained if compositional buoyancy fluxes are absent [Manglik et al., 2010], yet such fluxes are produced upon solidifying a pure Fe inner core from Fe-S liquid. Alternatively, both Mercury's high S/Si and Mg/Si surface ratios (Nittler et al., 2011) may indicate that a siderophile fractionation of Si and lithophile fractionation of S took place during Mercury's core-mantle differentiation. This fractionation behaviour of these elements is supported by metal/silicate partitioning experiments that have been performed at the low oxygen conditions inferred for Mercury [e.g. Chabot et al., 2014]. Mercury's bulk composition, in terms of S/Si and Fe/Si ratios, would also approach that of meteorites that are considered as potential building blocks of the planet if the core is Si-rich and S-poor. Here we simulate the thermal evolution of Mercury with an Fe-Si core. Results show that an Fe-Si core can remain largely molten until present, without the need for S. An Fe-Si core also has interesting implications for Mercury's core-convection regime and magnetic field generation. The non-preferential Si fractionation between solid and liquid metal does not produce a compositional gradient, such that compositional buoyancy fluxes are negligible. Additionally, thermally driven core convection is more efficient as a result of a high latent heat release upon solidifying Si-rich metal. Implications of this scenario for Mercury's magnetic field strength and geometry need to be further examined.
Ambegaonkar, Jatin P; Cortes, Nelson; Caswell, Shane V; Ambegaonkar, Gautam P; Wyon, Matthew
2016-04-01
Dance is a physically demanding activity, with almost 70% of all injuries in dancers occurring in the lower extremity (LE). Prior researchers report that muscle function (e.g. muscle endurance) and anatomical factors (e.g. hypermobility) affect physical performance (e.g. balance) and can subsequently influence LE injury risk. Specifically, lesser core muscle endurance, balance deficits, and greater hypermobility are related to increased LE injury risk. However, the potentials interrelationships among these factors in dancers remain unclear. The purposes of this study were to examine the relationships among core muscle endurance, balance, and LE hypermobility, and determine the relative contributions of core muscle endurance and LE hypermobility as predictors of balance in female collegiate dancers. Cross-sectional. Core muscle endurance was evaluated using the combined average anterior, left, and right lateral plank test time scores(s). LE hypermobility was measured using the LE-specific Beighton hypermobility measure, defining hypermobility if both legs had greater than 10 ° knee hyperextension. Balance was measured via the composite anterior, posterolateral, and posteromedial Star Excursion Balance Test (SEBT) reach distances (normalized to leg length) in 15 female healthy collegiate dancers (18.3 + 0.5yrs, 165.5 + 6.9cm, 63.7 + 12.1kg). Point-biserial-correlation-coefficients examined relationships and a linear regression examined whether core endurance and hypermobility predicted balance (p<.05). LE hypermobility (Yes; n = 3, No; n = 12) and balance (87.2 + 8.3% leg length) were positively correlated r(14)=.67, (p=.01). However, core endurance (103.9 + 50.6 s) and balance were not correlated r(14)=.32, (p=.26). LE hypermobility status predicted 36.9% of the variance in balance scores (p=.01). LE hypermobility, but not core muscle endurance may be related to balance in female collegiate dancers. While LE hypermobility status influenced balance in the female collegiate dancers, how this LE hypermobility status affects their longitudinal injury risk as their careers progress needs further study. Overall, the current findings suggest that rather than using isolated core endurance-centric training, clinicians may encourage dancers to use training programs that incorporate multiple muscles - in order to improve their balance, and possibly reduce their LE injury risk. 2b.
Cortes, Nelson; Caswell, Shane V.; Ambegaonkar, Gautam P.; Wyon, Matthew
2016-01-01
Background Dance is a physically demanding activity, with almost 70% of all injuries in dancers occurring in the lower extremity (LE). Prior researchers report that muscle function (e.g. muscle endurance) and anatomical factors (e.g. hypermobility) affect physical performance (e.g. balance) and can subsequently influence LE injury risk. Specifically, lesser core muscle endurance, balance deficits, and greater hypermobility are related to increased LE injury risk. However, the potentials interrelationships among these factors in dancers remain unclear. Purpose The purposes of this study were to examine the relationships among core muscle endurance, balance, and LE hypermobility, and determine the relative contributions of core muscle endurance and LE hypermobility as predictors of balance in female collegiate dancers. Study Design Cross-sectional Methods Core muscle endurance was evaluated using the combined average anterior, left, and right lateral plank test time scores(s). LE hypermobility was measured using the LE-specific Beighton hypermobility measure, defining hypermobility if both legs had greater than 10 ° knee hyperextension. Balance was measured via the composite anterior, posterolateral, and posteromedial Star Excursion Balance Test (SEBT) reach distances (normalized to leg length) in 15 female healthy collegiate dancers (18.3 + 0.5yrs, 165.5 + 6.9cm, 63.7 + 12.1kg). Point-biserial-correlation-coefficients examined relationships and a linear regression examined whether core endurance and hypermobility predicted balance (p<.05). Results LE hypermobility (Yes; n = 3, No; n = 12) and balance (87.2 + 8.3% leg length) were positively correlated r(14)=.67, (p=.01). However, core endurance (103.9 + 50.6 s) and balance were not correlated r(14)=.32, (p=.26). LE hypermobility status predicted 36.9% of the variance in balance scores (p=.01). Conclusion LE hypermobility, but not core muscle endurance may be related to balance in female collegiate dancers. While LE hypermobility status influenced balance in the female collegiate dancers, how this LE hypermobility status affects their longitudinal injury risk as their careers progress needs further study. Overall, the current findings suggest that rather than using isolated core endurance-centric training, clinicians may encourage dancers to use training programs that incorporate multiple muscles - in order to improve their balance, and possibly reduce their LE injury risk. Level of Evidence 2b PMID:27104055
Physiological Responses and Physical Performance during Football in the Heat
Mohr, Magni; Nybo, Lars; Grantham, Justin; Racinais, Sebastien
2012-01-01
Purpose To examine the impact of hot ambient conditions on physical performance and physiological responses during football match-play. Methods Two experimental games were completed in temperate (∼21°C; CON) and hot ambient conditions (∼43°C; HOT). Physical performance was assessed by match analysis in 17 male elite players during the games and a repeated sprint test was conducted after the two game trials. Core and muscle temperature were measured and blood samples were obtained, before and after the games. Results Muscle and core temperatures were ∼1°C higher (P<0.05) in HOT (40.3±0.1 and 39.5±0.1°C, respectively) compared to CON (39.2±0.1 and 38.3±0.1°C). Average heart rate, plasma lactate concentration, body weight loss as well as post-game sprint performance were similar between the two conditions. Total game distance declined (P<0.05) by 7% and high intensity running (>14 km⋅h−1) by 26% in HOT compared to CON), but peak sprint speed was 4% higher (P<0.05) in HOT than in CON, while there were no differences in the quantity or length of sprints (>24 km⋅h−1) between CON and HOT. In HOT, success rates for passes and crosses were 8 and 9% higher (P<0.05), respectively, compared to CON. Delta increase in core temperature and absolute core temperature in HOT were correlated to total game distance in the heat (r = 0.85 and r = 0.53, respectively; P<0.05), whereas, total and high intensity distance deficit between CON and HOT were not correlated to absolute or delta changes in muscle or core temperature. Conclusion Total game distance and especially high intensity running were lower during a football game in the heat, but these changes were not directly related to the absolute or relative changes in core or muscle temperature. However, peak sprinting speed and execution of successful passes and crosses were improved in the HOT condition. PMID:22723963
The total hemispheric emissivity of painted aluminum honeycomb at cryogenic temperatures
NASA Astrophysics Data System (ADS)
Tuttle, J.; Canavan, E.; DiPirro, M.; Li, X.; Knollenberg, P.
2014-01-01
NASA uses high-emissivity surfaces on deep-space radiators and thermal radiation absorbers in test chambers. Aluminum honeycomb core material, when coated with a high-emissivity paint, provides a lightweight, mechanically robust, and relatively inexpensive black surface that retains its high emissivity down to low temperatures. At temperatures below about 100 Kelvin, this material performs much better than the paint itself. We measured the total hemispheric emissivity of various painted honeycomb configurations using an adaptation of an innovative technique developed for characterizing thin black coatings. These measurements were performed from room temperature down to 30 Kelvin. We describe the measurement technique and compare the results with predictions from a detailed thermal model of each honeycomb configuration.
The Total Hemispheric Emissivity of Painted Aluminum Honeycomb at Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Tuttle, J.; Canavan, E.; DiPirro, M.; Li, X.; Knollenberg, K.
2013-01-01
NASA uses high-emissivity surfaces on deep-space radiators or thermal radiation absorbers in test chambers. Aluminum honeycomb core material, when coated with a high-emissivity paint, provides a lightweight, mechanically robust, and relatively inexpensive black surface that retains its high emissivity down to low temperatures. At temperatures below about 100 Kelvin, this material performs much better than the paint itself. We measured the total hemispheric emissivity of various painted honeycomb configurations using an adaptation of an innovative technique developed for characterizing thin black coatings. These measurements were performed from room temperature down to 30 Kelvin. We describe the measurement technique and compare the results with predictions from a detailed thermal model of each honeycomb configuration.
Hadziyannis, Emilia; Minopetrou, Martha; Georgiou, Anastasia; Spanou, Fotini; Koskinas, John
2013-01-01
Background Hepatitis C viral (HCV) load detection and quantification is routinely accomplished by HCV RNA measurement, an expensive but essential test, both for the diagnosis and treatment of chronic hepatitis C (CHC). HCV core antigen (Ag) testing has been suggested as an attractive alternative to molecular diagnostics. The aim of the study was to evaluate an automated chemiluminescent immunoassay (CLIA) for HCV core Ag measurement in comparison to quantitative HCV RNA determination. Methods HCV Ag was measured in 105 anti-HCV positive patients, from which 89 were HCV RNA positive with CHC and 16 HCV RNA negative after spontaneous HCV clearance. Viral load was quantified with branched DNA (bDNA, Versant, Siemens). Sera were stored at -70°C and then tested with the Architect HCV Ag test (Abbott Laboratories), a two-step CLIA assay, with high throughput and minimal handling of the specimens. Statistical analysis was performed on logarithmically transformed values. Results HCV-Ag was detectable and quantifiable in 83/89 and in grey zone in 4/89 HCV RNA positive sera. HCV-Ag was undetectable in all 16 HCV RNA negative samples. The sample with the lowest viral load that tested positive for HCV-Ag contained 1200 IU/mL HCV RNA. There was a positive correlation between HCV RNA and HCV-Ag (r=0.89). The HCV RNA/ HCV Ag ratio varied from 1.5 to 3.25. Conclusion The HCV core Ag is an easy test with comparable sensitivity (>90%) and satisfactory correlation with the HCV RNA bDNA assay. Its role in diagnostics and other clinical applications has to be determined based on cost effectiveness. PMID:24714621
Three-phase inductive-coupled structures for contactless PHEV charging system
NASA Astrophysics Data System (ADS)
Lee, Jia-You; Shen, Hung-Yu; Li, Cheng-Bin
2016-07-01
In this article, a new-type three-phase inductive-coupled structure is proposed for the contactless plug-in hybrid electric vehicle (PHEV) charging system regarding with SAE J-1773. Four possible three-phase core structures are presented and subsequently investigated by the finite element analysis. To study the correlation between the core geometric parameter and the coupling coefficient, the magnetic equivalent circuit model of each structure is also established. In accordance with the simulation results, the low reluctance and the sharing of flux path in the core material are achieved by the proposed inductive-coupled structure with an arc-shape and three-phase symmetrical core material. It results in a compensation of the magnetic flux between each phase and a continuous flow of the output power in the inductive-coupled structure. Higher coupling coefficient between inductive-coupled structures is achieved. A comparison of coupling coefficient, mutual inductance, and self-inductance between theoretical and measured results is also performed to verify the proposed model. A 1 kW laboratory scale prototype of the contactless PHEV charging system with the proposed arc-shape three-phase inductive-coupled structure is implemented and tested. An overall system efficiency of 88% is measured when two series lithium iron phosphate battery packs of 25.6 V/8.4 Ah are charged.
NASA Astrophysics Data System (ADS)
Uglietti, C.; Gabrielli, P.; Lutton, A.; Olesik, J.; Thompson, L. G.
2012-12-01
Trace elements in micro-particles entrapped in ice cores are a valuable proxy of past climate and environmental variations. Inductively coupled plasma sector field mass spectrometry (ICP-SFMS) is generally recognized as a sensitive and accurate technique for the quantification of ultra-trace element concentrations in ice cores. Usually, ICP-SFMS analyses of ice core samples are performed by melting and acidifying aliquots. Acidification is important to transfer trace elements from particles into solution by partial and/or complete dissolution. Only elements in solution and in sufficiently small particles will be vaporized and converted to elemental ions in the plasma for detection by ICP-SFMS. However, experimental results indicate that differences in acidified sample storage time at room temperature may lead to the recovery of different trace element fractions. Moreover, different lithologies of the relatively abundant crustal material entrapped in the ice matrix could also influence the fraction of trace elements that are converted into elemental ions in the plasma. These factors might affect the determination of trace elements concentrations in ice core samples and hamper the comparison of results obtained from ice cores from different locations and/or epochs. In order to monitor the transfer of elements from particles into solution in acidified melted ice core samples during storage, a test was performed on sections from nine ice cores retrieved from low latitude drilling sites around the world. When compared to ice cores from polar regions, these samples are characterized by a relative high content of micro-particles that may leach trace elements into solution differently. Of the nine ice cores, five are from the Tibetan Plateau (Dasuopu, Guliya, Naimonanyi, Puruogangri and Dunde), two from the Andes (Quelccaya and Huascaran), one from Africa (Kilimanjaro) and one from the Eastern Alps (Ortles). These samples were decontaminated by triple rinsing, melted and stored in pre-cleaned low-density polyethylene bottles, and kept frozen until acidification (2% v/v ultra-pure HNO3). Determination of twenty trace elements (Ag, Al, As, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Pb, Rb, Sb, Sn, Ti, Tl, U, V, and Zn) was repeated at different times after acidification using the same aliquot. Analyses show a mean increase of 40-50% in trace element concentration in all the samples during the first 15 days of storage after acidification, except Al, Fe, V and Cr, which show a larger increase (90-100%). After 15 days the trace element concentrations reach generally stable values (with small increases within measurement uncertainty), except for the Naimonanyi and Kilimanjaro samples which continue to increase. In contrast, Ag concentration decreases after one week, likely due to its low stability in the acidified solution that may depend on the Cl- concentration. We froze the samples 43 days after the acidification. After two weeks the samples were melted and re-analyzed by ICP-SFMS in two different laboratories as an inter-calibration exercise. The results show a good correspondence between the measured concentrations determined by the two instruments and a consistent additional increase of 20-30% of measured trace element concentrations in almost all samples.
Feuerstein, Joseph D; Castillo, Natalia E; Siddique, Sana S; Lewandowski, Jeffrey J; Geissler, Kathy; Martinez-Vazquez, Manuel; Thukral, Chandrashekhar; Leffler, Daniel A; Cheifetz, Adam S
2016-03-01
Quality measures are used to standardize health care and monitor quality of care. In 2011, the American Gastroenterological Association established quality measures for inflammatory bowel disease (IBD), but there has been limited documentation of compliance from different practice settings. We reviewed charts from 367 consecutive patients with IBD seen at academic practices, 217 patients seen at community practices, and 199 patients seen at private practices for compliance with 8 outpatient measures. Records were assessed for IBD history, medications, comorbidities, and hospitalizations. We also determined the number of patient visits to gastroenterologists in the past year, whether patients had a primary care physician at the same institution, and whether they were seen by a specialist in IBD or in conjunction with a trainee, and reviewed physician demographics. A univariate and multivariate statistical analysis was performed to determine which factors were associated with compliance of all core measures. Screening for tobacco abuse was the most frequently assessed core measure (89.6% of patients; n = 701 of 783), followed by location of IBD (80.3%; n = 629 of 783), and assessment for corticosteroid-sparing therapy (70.8%; n = 275 of 388). The least-frequently evaluated measures were pneumococcal immunization (16.7% of patients; n = 131 of 783), bone loss (25%; n = 126 of 505), and influenza immunization (28.7%; n = 225 of 783). Only 5.8% of patients (46 of 783) had all applicable core measures documented (24 in academic practice, none in clinical practice, and 22 in private practice). In the multivariate model, year of graduation from fellowship (odds ratio [OR], 2.184; 95% confidence interval [CI], 1.522-3.134; P < .001), year of graduation from medical school (OR, 0.500; 95% CI, 0.352-0.709; P < .001), and total number of comorbidities (OR, 1.089; 95% CI, 1.016-1.168; P = .016) were associated with compliance with all core measures. We found poor documentation of IBD quality measures in academic, clinical, and private gastroenterology practices. Interventions are necessary to improve reporting of quality measures. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.
Metrics for Success: Strategies for Enabling Core Facility Performance and Assessing Outcomes
Hockberger, Philip E.; Meyn, Susan M.; Nicklin, Connie; Tabarini, Diane; Auger, Julie A.
2016-01-01
Core Facilities are key elements in the research portfolio of academic and private research institutions. Administrators overseeing core facilities (core administrators) require assessment tools for evaluating the need and effectiveness of these facilities at their institutions. This article discusses ways to promote best practices in core facilities as well as ways to evaluate their performance across 8 of the following categories: general management, research and technical staff, financial management, customer base and satisfaction, resource management, communications, institutional impact, and strategic planning. For each category, we provide lessons learned that we believe contribute to the effective and efficient overall management of core facilities. If done well, we believe that encouraging best practices and evaluating performance in core facilities will demonstrate and reinforce the importance of core facilities in the research and educational mission of institutions. It will also increase job satisfaction of those working in core facilities and improve the likelihood of sustainability of both facilities and personnel. PMID:26848284
Metrics for Success: Strategies for Enabling Core Facility Performance and Assessing Outcomes.
Turpen, Paula B; Hockberger, Philip E; Meyn, Susan M; Nicklin, Connie; Tabarini, Diane; Auger, Julie A
2016-04-01
Core Facilities are key elements in the research portfolio of academic and private research institutions. Administrators overseeing core facilities (core administrators) require assessment tools for evaluating the need and effectiveness of these facilities at their institutions. This article discusses ways to promote best practices in core facilities as well as ways to evaluate their performance across 8 of the following categories: general management, research and technical staff, financial management, customer base and satisfaction, resource management, communications, institutional impact, and strategic planning. For each category, we provide lessons learned that we believe contribute to the effective and efficient overall management of core facilities. If done well, we believe that encouraging best practices and evaluating performance in core facilities will demonstrate and reinforce the importance of core facilities in the research and educational mission of institutions. It will also increase job satisfaction of those working in core facilities and improve the likelihood of sustainability of both facilities and personnel.
A review of training research and virtual reality simulators for the da Vinci surgical system.
Liu, May; Curet, Myriam
2015-01-01
PHENOMENON: Virtual reality simulators are the subject of several recent studies of skills training for robot-assisted surgery. Yet no consensus exists regarding what a core skill set comprises or how to measure skill performance. Defining a core skill set and relevant metrics would help surgical educators evaluate different simulators. This review draws from published research to propose a core technical skill set for using the da Vinci surgeon console. Publications on three commercial simulators were used to evaluate the simulators' content addressing these skills and associated metrics. An analysis of published research suggests that a core technical skill set for operating the surgeon console includes bimanual wristed manipulation, camera control, master clutching to manage hand position, use of third instrument arm, activating energy sources, appropriate depth perception, and awareness of forces applied by instruments. Validity studies of three commercial virtual reality simulators for robot-assisted surgery suggest that all three have comparable content and metrics. However, none have comprehensive content and metrics for all core skills. INSIGHTS: Virtual reality simulation remains a promising tool to support skill training for robot-assisted surgery, yet existing commercial simulator content is inadequate for performing and assessing a comprehensive basic skill set. The results of this evaluation help identify opportunities and challenges that exist for future developments in virtual reality simulation for robot-assisted surgery. Specifically, the inclusion of educational experts in the development cycle alongside clinical and technological experts is recommended.
Many-core computing for space-based stereoscopic imaging
NASA Astrophysics Data System (ADS)
McCall, Paul; Torres, Gildo; LeGrand, Keith; Adjouadi, Malek; Liu, Chen; Darling, Jacob; Pernicka, Henry
The potential benefits of using parallel computing in real-time visual-based satellite proximity operations missions are investigated. Improvements in performance and relative navigation solutions over single thread systems can be achieved through multi- and many-core computing. Stochastic relative orbit determination methods benefit from the higher measurement frequencies, allowing them to more accurately determine the associated statistical properties of the relative orbital elements. More accurate orbit determination can lead to reduced fuel consumption and extended mission capabilities and duration. Inherent to the process of stereoscopic image processing is the difficulty of loading, managing, parsing, and evaluating large amounts of data efficiently, which may result in delays or highly time consuming processes for single (or few) processor systems or platforms. In this research we utilize the Single-Chip Cloud Computer (SCC), a fully programmable 48-core experimental processor, created by Intel Labs as a platform for many-core software research, provided with a high-speed on-chip network for sharing information along with advanced power management technologies and support for message-passing. The results from utilizing the SCC platform for the stereoscopic image processing application are presented in the form of Performance, Power, Energy, and Energy-Delay-Product (EDP) metrics. Also, a comparison between the SCC results and those obtained from executing the same application on a commercial PC are presented, showing the potential benefits of utilizing the SCC in particular, and any many-core platforms in general for real-time processing of visual-based satellite proximity operations missions.
NASA Astrophysics Data System (ADS)
Morant, Maria; Llorente, Roberto
2017-01-01
In this work we propose and evaluate experimentally the performance of IEEE 802.11ac WLAN standard signals in radio-over-fiber (RoF) distributed-antenna systems based on multicore fiber (MCF) for in-building WLAN connectivity. The RoF performance of WLAN signals with different bandwidth is investigated considering up to IEEE 802.11ac maximum of 160 MHz per user. We evaluate experimentally the performance of WLAN signals employing different modulation and coding schemes achieving bitrates from 78 Mbps to 1404 Mbps per user in distances up to 300 m in a 4-core MCF. The performance of the wireless standard multiple-input multiple-output (MIMO) processing algorithms included in WLAN signals applied to the RoF transmission in MCF optical systems is also evaluated. The impact on the quality of the signal from one of the cores in the MIMO processing is investigated and compared with the results achieved with single-input single-output (SISO) transmission in each core. We measured the error vector magnitude (EVM) and the OFDM data burst information of the received WLAN signals after RoF transmission for different distributed-antenna systems with uni- and bi-directional MCF communication. Finally, we compare the received EVM of a single-antenna system (SISO arrangement) with WLAN systems using two antennas (2×2 MIMO) and four antennas (4×4 MIMO).
NASA Astrophysics Data System (ADS)
Yoshioka, Mayumi; Takakura, Shinichi; Uchida, Youhei
2018-05-01
To estimate the groundwater flow around a borehole heat exchanger (BHE), thermal properties of geological core samples were measured and a thermal response test (TRT) was performed in the Tsukuba upland, Japan. The thermal properties were measured at 57 points along a 50-m-long geological core, consisting predominantly of sand, silt, and clay, drilled near the BHE. In this TRT, the vertical temperature in the BHE was also monitored during and after the test. Results for the thermal properties of the core samples and from the monitoring indicated that groundwater flow enhanced thermal transfers, especially at shallow depths. The groundwater velocities around the BHE were estimated using a two-dimensional numerical model with monitoring data on temperature changes. According to the results, the estimated groundwater velocity was generally consistent with hydrogeological data from previous studies, except for the data collected at shallow depths consisting of a clay layer. The reasons for this discrepancy at shallow depths were predicted to be preferential flow and the occurrence of vertical flow through the BHE grout, induced by the hydrogeological conditions.
Observations and model predictions of water skin temperatures at MTI core site lakes and reservoirs
NASA Astrophysics Data System (ADS)
Garrett, Alfred J.; Kurzeja, Robert J.; O'Steen, Byron L.; Parker, Matthew J.; Pendergast, Malcolm M.; Villa-Aleman, Eliel; Pagnutti, Mary A.
2001-08-01
The Savannah River Technology Center (SRTC) measured water skin temperatures at four of the Multi-spectral Thermal Imager (MTI) core sites. The depression of the skin temperature relative to the bulk water temperature ((Delta) T) a few centimeters below the surface is a complex function of the weather conditions, turbulent mixing in the water and the bulk water temperature. Observed skin temperature depressions range from near zero to more than 1.0 degree(s)C. Skin temperature depressions tend to be larger when the bulk water temperature is high, but large depressions were also observed in cool bodies of water in calm conditions at night. We compared (Delta) T predictions from three models (SRTC, Schlussel and Wick) against measured (Delta) T's from 15 data sets taken at the MTI core sites. The SRTC and Wick models performed somewhat better than the Schlussel model, with RMSE and average absolute errors of about 0.2 degree(s)C, relative to 0.4 degree(s)C for the Schlussel model. The average observed (Delta) T for all 15 databases was -0.7 degree(s)C.
Electrical Conductivity of Ferritin Proteins by Conductive AFM
NASA Technical Reports Server (NTRS)
Xu, Degao; Watt, Gerald D.; Harb, John N.; Davis, Robert C.
2005-01-01
Electrical conductivity measurements were performed on single apoferritin and holoferritin molecules by conductive atomic force microscopy. Conductivity of self-assembled monolayer films of ferritin molecules on gold surfaces was also measured. Holoferritin was 5-25 times more conductive than apoferritin, indicating that for holoferritin most electron-transfer goes through the ferrihydrite core. With 1 V applied, the average electrical currents through single holoferritin and apoferritin molecules were 2.6 PA and 0.19 PA, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roseberry, R.J.
The experimental measurements and nuclear analysis of a uniformly loaded, unpoisoned slab core with a partially inserted hafnium rod and/or a partially inserted water gap are described. Comparisons of experimental data with calculated results of the UFO core and flux synthesis techniques are given. It is concluded that one of the flux synthesis techniques and the UFO code are able to predict flux distributions to within approximately -5% of experiment for most cases, with a maximum error of approximately -10% for a channel at the core- reflector boundary. The second synthesis technique failed to give comparable agreement with experiment evenmore » when various refinements were used, e.g. increasing the number of mesh points, performing the flux synthesis technique of iteration, and spectrum-weighting the appropriate calculated fluxes through the use of the SWAKRAUM code. These results are comparable to those reported in Part I of this study. (auth)« less
Brünnich's guillemots (Uria lomvia) maintain high temperature in the body core during dives.
Niizuma, Yasuaki; Gabrielsen, Geir W; Sato, Katsufumi; Watanuki, Yutaka; Naito, Yasuhiko
2007-06-01
A major challenge for diving birds, reptiles, and mammals is regulating body temperature while conserving oxygen through a reduction in metabolic processes. To gain insight into how these needs are met, we measured dive depth and body temperatures at the core or periphery between the skin and abdominal muscles simultaneously in freely diving Brünnich's guillemots (Uria lomvia), an arctic seabird, using an implantable data logger (16-mm diameter, 50-mm length, 14-g mass, Little Leonardo Ltd., Tokyo). Guillemots exhibited increased body core temperatures, but decreased peripheral temperatures, during diving. Heat conservation within the body core appeared to result from the combined effect of peripheral vasoconstriction and a high wing beat frequency that generates heat. Conversely, the observed tissue hypothermia in the periphery should reduce metabolic processes as well as heat loss to the water. These physiological effects are likely one of the key physiological adaptations that makes guillemots to perform as an efficient predator in arctic waters.
NASA Astrophysics Data System (ADS)
Shibazaki, Y.; Ohtani, E.; Fukui, H.; Sakai, T.; Kamada, S.; Baron, A. Q.; Nishitani, N.; Hirao, N.; Takemura, K.
2011-12-01
The Earth's interior has been directly investigated by seismic wave propagation and normal mode oscillation. In particular, the distributions of density and sound velocity are available to study the Earth's core (e.g. PREM). The inner core, which is solid state, is approximately 3 % less dense than pure iron (a core density deficit), and it is considered that the core consists of iron and light elements, such as hydrogen, carbon, oxygen, silicon, and sulfur. In this work, in order to constrain the abundance of hydrogen in the Earth's core by matching the density and sound velocity of FeHx to those of PREM, we determined the compressional sound velocity of iron hydride at high pressure using inelastic X-ray scattering (IXS). The IXS experiments and in situ X-ray diffraction (XRD) experiments were conducted up to 70 GPa and room temperature. High-pressure conditions were generated using a symmetric diamond anvil cell (DAC) with tungsten gaskets. Hydrogen initially pressurized to 0.18 GPa was loaded to the sample chamber. The IXS experiments were performed at BL35XU of the SPring-8 facility in Japan. The XRD experiments at high pressure were carried out by the angle dispersive method at BL10XU of the SPring-8 facility in Japan. The each XRD pattern of FeHx was collected after each IXS measurement in order to obtain directly the density of FeHx. Over the range of pressure studied, the diffraction lines of double-hexagonal close-packed (dhcp)-FeHx were observed and there were no diffraction lines of iron. We show that FeHx follows Birch's law for Vp above 37 GPa, namely a linear dependence between velocity and density. The estimated Vp, extrapolated to core conditions, is compared with PREM. Our results provide that the Earth's inner core could contain about 0.2 wt% hydrogen.
Enhanced Microfluidic Electromagnetic Measurements
NASA Technical Reports Server (NTRS)
Ricco, Antonio J. (Inventor); Kovacs, Gregory (Inventor); Giovangrandi, Laurent (Inventor)
2015-01-01
Techniques for enhanced microfluidic impedance spectroscopy include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. Flow in the channel is laminar. A dielectric constant of a fluid constituting either sheath flow is much less than a dielectric constant of the core fluid. Electrical impedance is measured in the channel between at least a first pair of electrodes. In some embodiments, enhanced optical measurements include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. An optical index of refraction of a fluid constituting either sheath flow is much less than an optical index of refraction of the core fluid. An optical property is measured in the channel.
Numerical evaluation of gas core length in free surface vortices
NASA Astrophysics Data System (ADS)
Cristofano, L.; Nobili, M.; Caruso, G.
2014-11-01
The formation and evolution of free surface vortices represent an important topic in many hydraulic intakes, since strong whirlpools introduce swirl flow at the intake, and could cause entrainment of floating matters and gas. In particular, gas entrainment phenomena are an important safety issue for Sodium cooled Fast Reactors, because the introduction of gas bubbles within the core causes dangerous reactivity fluctuation. In this paper, a numerical evaluation of the gas core length in free surface vortices is presented, according to two different approaches. In the first one, a prediction method, developed by the Japanese researcher Sakai and his team, has been applied. This method is based on the Burgers vortex model, and it is able to estimate the gas core length of a free surface vortex starting from two parameters calculated with single-phase CFD simulations. The two parameters are the circulation and the downward velocity gradient. The other approach consists in performing a two-phase CFD simulation of a free surface vortex, in order to numerically reproduce the gas- liquid interface deformation. Mapped convergent mesh is used to reduce numerical error and a VOF (Volume Of Fluid) method was selected to track the gas-liquid interface. Two different turbulence models have been tested and analyzed. Experimental measurements of free surface vortices gas core length have been executed, using optical methods, and numerical results have been compared with experimental measurements. The computational domain and the boundary conditions of the CFD simulations were set consistently with the experimental test conditions.
NASA Astrophysics Data System (ADS)
Chen, Huilin; Paul, Dipayan; Meijer, Harro; Miller, John; Kivi, Rigel; Krol, Maarten
2016-04-01
Radiocarbon (14C) plays an important role in the carbon cycle studies to understand both natural and anthropogenic carbon fluxes, but also in atmospheric chemistry to constrain hydroxyl radical (OH) concentrations in the atmosphere. Apart from the enormous 14C emissions from nuclear bomb testing in the 1950s and 1960s, radiocarbon is primarily produced in the stratosphere due to the cosmogenic production. To this end, better understanding the stratospheric radiocarbon source is very useful to advance the use of radiocarbon for these applications. However, stratospheric 14C observations have been very limited so that there are large uncertainties on the magnitude and the location of the 14C production as well as the transport of radiocarbon from the stratosphere to the troposphere. Recently we have successfully made stratospheric 14C measurements using AirCore samples from Sodankylä, Northern Finland. AirCore is an innovative atmospheric sampling system, which passively collects atmospheric air samples into a long piece of coiled stainless steel tubing during the descent of a balloon flight. Due to the relatively low cost of the consumables, there is a potential to make such AirCore profiling in other parts of the world on a regular basis. In this study, we simulate the 14C in the atmosphere and assess the stratosphere-troposphere exchange of radiocarbon using the TM5 model. The Sodankylä radiocarbon measurements will be used to verify the performance of the model at high latitude. Besides this, we will also evaluate the influence of different cosmogenic 14C production scenarios and the uncertainties in the OH field on the seasonal cycles of radiocarbon and on the stratosphere-troposphere exchange, and based on the results design a strategy to set up a 14C measurement program using AirCore.
Sampling Approaches for Multi-Domain Internet Performance Measurement Infrastructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calyam, Prasad
2014-09-15
The next-generation of high-performance networks being developed in DOE communities are critical for supporting current and emerging data-intensive science applications. The goal of this project is to investigate multi-domain network status sampling techniques and tools to measure/analyze performance, and thereby provide “network awareness” to end-users and network operators in DOE communities. We leverage the infrastructure and datasets available through perfSONAR, which is a multi-domain measurement framework that has been widely deployed in high-performance computing and networking communities; the DOE community is a core developer and the largest adopter of perfSONAR. Our investigations include development of semantic scheduling algorithms, measurement federationmore » policies, and tools to sample multi-domain and multi-layer network status within perfSONAR deployments. We validate our algorithms and policies with end-to-end measurement analysis tools for various monitoring objectives such as network weather forecasting, anomaly detection, and fault-diagnosis. In addition, we develop a multi-domain architecture for an enterprise-specific perfSONAR deployment that can implement monitoring-objective based sampling and that adheres to any domain-specific measurement policies.« less
Relating Aspects of Motivation to Facets of Mathematical Competence Varying in Cognitive Demand
ERIC Educational Resources Information Center
Gilbert, Melissa C.
2016-01-01
The author investigated the relationship between aspects of student motivation and performance on mathematical tasks varying in cognitive demand relevant to meeting the expectations of the Common Core State Standards for Mathematics (CCSS-M). A sample of 479 primarily Latino middle school students completed established survey measures of…
Design of 9.271-pressure-ratio 5-stage core compressor and overall performance for first 3 stages
NASA Technical Reports Server (NTRS)
Steinke, Ronald J.
1986-01-01
Overall aerodynamic design information is given for all five stages of an axial flow core compressor (74A) having a 9.271 pressure ratio and 29.710 kg/sec flow. For the inlet stage group (first three stages), detailed blade element design information and experimental overall performance are given. At rotor 1 inlet tip speed was 430.291 m/sec, and hub to tip radius ratio was 0.488. A low number of blades per row was achieved by the use of low-aspect-ratio blading of moderate solidity. The high reaction stages have about equal energy addition. Radial energy varied to give constant total pressure at the rotor exit. The blade element profile and shock losses and the incidence and deviation angles were based on relevant experimental data. Blade shapes are mostly double circular arc. Analysis by a three-dimensional Euler code verified the experimentally measured high flow at design speed and IGV-stator setting angles. An optimization code gave an optimal IGV-stator reset schedule for higher measured efficiency at all speeds.
Performance of a scintillation detector array operated with LHAASO-KM2A electronics
NASA Astrophysics Data System (ADS)
Wang, Zhen; Guo, Yiqing; Cai, Hui; Chang, Jinfan; Chen, Tianlu; Danzengluobu; Feng, Youliang; Gao, Qi; Gou, Quanbu; Guo, Yingying; Hou, Chao; Hu, Hongbo; Labaciren; Liu, Cheng; Li, Haijin; Liu, Jia; Liu, Maoyuan; Qiao, Bingqiang; Qian, Xiangli; Sheng, Xiangdong; Tian, Zhen; Wang, Qun; Xue, Liang; Yao, Yuhua; Zhang, Shaoru; Zhang, Xueyao; Zhang, Yi
2018-04-01
A scintillation detector array composed of 115 detectors and covering an area of about 20000 m2 was installed at the end of 2016 at the Yangbajing international cosmic ray observatory and has been taking data since then. The array is equipped with electronics from Large High Altitude Air Shower Observatory Square Kilometer Complex Array (LHAASO-KM2A) and, in turn, currently serves as the largest debugging and testing platform for the LHAASO-KM2A. Furthermore, the array was used to study the performance of a wide field-of-view air Cherenkov telescope by providing accurate information on the shower core, direction and energy, etc. This work is mainly dealing with the scintillation detector array. The experimental setup and the offline calibration are described in detail. Then, a thorough comparison between the data and Monte Carlo (MC) simulations is presented and a good agreement is obtained. With the even-odd method, the resolutions of the shower direction and core are measured. Finally, successful observations of the expected Moon's and Sun's shadows of cosmic rays (CRs) verify the measured angular resolution.
Space Station Furnace Facility. Volume 2: Appendix 1: Contract End Item specification (CEI), part 1
NASA Technical Reports Server (NTRS)
Seabrook, Craig
1992-01-01
This specification establishes the performance, design, development, and verification requirements for the Space Station Furnace Facility (SSFF) Core. The definition of the SSFF Core and its interfaces, specifies requirements for the SSFF Core performance, specifies requirements for the SSFF Core design, and construction are presented, and the verification requirements are established.
Multi-cored vortices support function of slotted wing tips of birds in gliding and flapping flight
2017-01-01
Slotted wing tips of birds are commonly considered an adaptation to improve soaring performance, despite their presence in species that neither soar nor glide. We used particle image velocimetry to measure the airflow around the slotted wing tip of a jackdaw (Corvus monedula) as well as in its wake during unrestrained flight in a wind tunnel. The separated primary feathers produce individual wakes, confirming a multi-slotted function, in both gliding and flapping flight. The resulting multi-cored wingtip vortex represents a spreading of vorticity, which has previously been suggested as indicative of increased aerodynamic efficiency. Considering benefits of the slotted wing tips that are specific to flapping flight combined with the wide phylogenetic occurrence of this configuration, we propose the hypothesis that slotted wings evolved initially to improve performance in powered flight. PMID:28539482
Palmieri, Gaspare; Evans, Chris; Hansen, Vidje; Brancaleoni, Greta; Ferrari, Silvia; Porcelli, Piero; Reitano, Francesco; Rigatelli, Marco
2009-01-01
The Clinical Outcomes in Routine Evaluation--Outcome Measure (CORE-OM) was translated into Italian and tested in non-clinical (n = 263) and clinical (n = 647) samples. The translation showed good acceptability, internal consistency and convergent validity in both samples. There were large and statistically significant differences between clinical and non-clinical datasets on all scores. The reliable change criteria were similar to those for the UK referential data. Some of the clinically significant change criteria, particularly for the men, were moderately different from the UK cutting points. The Italian version of the CORE-OM showed respectable psychometric parameters. However, it seemed plausible that non-clinical and clinical distributions of self-report scores on psychopathology and functioning measures may differ by language and culture. *A good quality Italian translation of the CORE-OM, and hence the GP-CORE, CORE-10 and CORE-5 measures also, is now available for use by practitioners and anyone surveying or exploring general psychological state. The measures can be obtained from CORE-IMS or yourself and practitioners are encouraged to share anonymised data so that good clinical and non-clinical referential databases can be established for Italy.
A theoretical and experimental benchmark study of core-excited states in nitrogen
Myhre, Rolf H.; Wolf, Thomas J. A.; Cheng, Lan; ...
2018-02-14
The high resolution near edge X-ray absorption fine structure spectrum of nitrogen displays the vibrational structure of the core-excited states. This makes nitrogen well suited for assessing the accuracy of different electronic structure methods for core excitations. We report high resolution experimental measurements performed at the SOLEIL synchrotron facility. These are compared with theoretical spectra calculated using coupled cluster theory and algebraic diagrammatic construction theory. The coupled cluster singles and doubles with perturbative triples model known as CC3 is shown to accurately reproduce the experimental excitation energies as well as the spacing of the vibrational transitions. In conclusion, the computationalmore » results are also shown to be systematically improved within the coupled cluster hierarchy, with the coupled cluster singles, doubles, triples, and quadruples method faithfully reproducing the experimental vibrational structure.« less
Hingerl, Ferdinand F.; Yang, Feifei; Pini, Ronny; ...
2016-02-02
In this paper we present the results of an extensive multiscale characterization of the flow properties and structural and capillary heterogeneities of the Heletz sandstone. We performed petrographic, porosity and capillary pressure measurements on several subsamples. We quantified mm-scale heterogeneity in saturation distributions in a rock core during multi-phase flow using conventional X-ray CT scanning. Core-flooding experiments were conducted under reservoirs conditions (9 MPa, 50 °C) to obtain primary drainage and secondary imbibition relative permeabilities and residual trapping was analyzed and quantified. We provide parameters for relative permeability, capillary pressure and trapping models for further modeling studies. A synchrotron-based microtomographymore » study complements our cm- to mm-scale investigation by providing links between the micromorphology and mm-scale saturation heterogeneities.« less
Development of As-Se tapered suspended-core fibers for ultra-broadband mid-IR wavelength conversion
NASA Astrophysics Data System (ADS)
Anashkina, E. A.; Shiryaev, V. S.; Koptev, M. Y.; Stepanov, B. S.; Muravyev, S. V.
2018-01-01
We designed and developed tapered suspended-core fibers of high-purity As39Se61 glass for supercontinuum generation in the mid-IR with a standard fiber laser pump source at 2 ${\\mu}$m. It was shown that microstructuring allows shifting a zero dispersion wavelength to the range shorter than 2 ${\\mu}$m in the fiber waist with a core diameter of about 1 ${\\mu}$m. In this case, supercontinuum generation in the 1-10 ${\\mu}$m range was obtained numerically with 150-fs 100-pJ pump pulses at 2 ${\\mu}$m. We also performed experiments on wavelength conversion of ultrashort optical pulses at 1.57 ${\\mu}$m from Er: fiber laser system in the manufactured As-Se tapered fibers. The measured broadening spectra were in a good agreement with the ones simulated numerically.
A theoretical and experimental benchmark study of core-excited states in nitrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myhre, Rolf H.; Wolf, Thomas J. A.; Cheng, Lan
The high resolution near edge X-ray absorption fine structure spectrum of nitrogen displays the vibrational structure of the core-excited states. This makes nitrogen well suited for assessing the accuracy of different electronic structure methods for core excitations. We report high resolution experimental measurements performed at the SOLEIL synchrotron facility. These are compared with theoretical spectra calculated using coupled cluster theory and algebraic diagrammatic construction theory. The coupled cluster singles and doubles with perturbative triples model known as CC3 is shown to accurately reproduce the experimental excitation energies as well as the spacing of the vibrational transitions. In conclusion, the computationalmore » results are also shown to be systematically improved within the coupled cluster hierarchy, with the coupled cluster singles, doubles, triples, and quadruples method faithfully reproducing the experimental vibrational structure.« less
Developing a theory of the strategic core of teams: a role composition model of team performance.
Humphrey, Stephen E; Morgeson, Frederick P; Mannor, Michael J
2009-01-01
Although numerous models of team performance have been articulated over the past 20 years, these models have primarily focused on the individual attribute approach to team composition. The authors utilized a role composition approach, which investigates how the characteristics of a set of role holders impact team effectiveness, to develop a theory of the strategic core of teams. Their theory suggests that certain team roles are most important for team performance and that the characteristics of the role holders in the "core" of the team are more important for overall team performance. This theory was tested in 778 teams drawn from 29 years of major league baseball (1974'-2002). Results demonstrate that although high levels of experience and job-related skill are important predictors of team performance, the relationships between these constructs and team performance are significantly stronger when the characteristics are possessed by core role holders (as opposed to non-core role holders). Further, teams that invest more of their financial resources in these core roles are able to leverage such investments into significantly improved performance. These results have implications for team composition models, as they suggest a new method for considering individual contributions to a team's success that shifts the focus onto core roles. (PsycINFO Database Record (c) 2009 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Blot, R.; Nedelec, P.; Petetin, H.; Thouret, V.; Cohen, Y.
2017-12-01
The In-Service Aircraft for a Global Observing System (IAGOS; http://www.iagos.org) is an European Research Infrastructure that provides cost-effective global atmospheric composition measurements at high resolution using commercial passenger aircraft. It is the continuation of the MOZAIC (1994-2014) and the CARIBIC (since 1997) programs that has provided a unique scientific database using 6 aircraft operated by European airlines over two decades. Thanks to growing interests of several international Airlines to contribute to the academic climate research, the IAGOS aircraft fleet (started in 2011), with the IAGOS-CORE basic instrumentation, has expanded to 9 Airbus A340/A330 aircraft up to now. Here, we present this IAGOS-CORE instrumentation that continuously sample carbon monoxide, ozone, water vapor and cloud droplets. We focus on carbon monoxide and ozone measurements which are performed by optimized, but well known, methods such as UV absorption and IR correlation. We describe the data processing/validation and the data quality control. With already more than 20 and 15 years of continuous ozone and carbon monoxide measurements, respectively, the IAGOS/MOZAIC data are particularly suitable for climatologies and trends. Also, since commercial aircraft are daily operated, the near-real time IAGOS-CORE data are also used to observe pollution plumes and to validate air-quality models as well as satellite products.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false How will the Department assist grantees in the transition to the new core performance indicators? 641.730 Section 641.730 Employees' Benefits... transition to the new core performance indicators? (a) General transition provision. As soon as practicable...
Code of Federal Regulations, 2011 CFR
2011-04-01
... the transition to the new core performance indicators? 641.730 Section 641.730 Employees' Benefits... transition to the new core performance indicators? (a) General transition provision. As soon as practicable...-need indicator so that the grantees and the Department may collect sufficient data to set a meaningful...
Core Noise: Overview of Upcoming LDI Combustor Test
NASA Technical Reports Server (NTRS)
Hultgren, Lennart S.
2012-01-01
This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Fixed Wing Project. The presentation covers: the emerging importance of core noise due to turbofan design trends and its relevance to the NASA N+3 noise-reduction goal; the core noise components and the rationale for the current emphasis on combustor noise; and the current and planned research activities in the combustor-noise area. Two NASA-sponsored research programs, with particular emphasis on indirect combustor noise, "Acoustic Database for Core Noise Sources", Honeywell Aerospace (NNC11TA40T) and "Measurement and Modeling of Entropic Noise Sources in a Single-Stage Low-Pressure Turbine", U. Illinois/U. Notre Dame (NNX11AI74A) are briefly described. Recent progress in the development of CMC-based acoustic liners for broadband noise reduction suitable for turbofan-core application is outlined. Combustor-design trends and the potential impacts on combustor acoustics are discussed. A NASA GRC developed nine-point lean-direct-injection (LDI) fuel injector is briefly described. The modification of an upcoming thermo-acoustic instability evaluation of the GRC injector in a combustor rig to also provide acoustic information relevant to community noise is presented. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. The Quiet Performance Research Theme of the Fixed Wing Project aims to develop concepts and technologies to dramatically reduce the perceived community noise attributable to aircraft with minimal impact on weight and performance.
Design and characterization of an irradiation facility with real-time monitoring
NASA Astrophysics Data System (ADS)
Braisted, Jonathan David
Radiation causes performance degradation in electronics by inducing atomic displacements and ionizations. While radiation hardened components are available, non-radiation hardened electronics can be preferable because they are generally more compact, require less power, and less expensive than radiation tolerant equivalents. It is therefore important to characterize the performance of electronics, both hardened and non-hardened, to prevent costly system or mission failures. Radiation effects tests for electronics generally involve a handful of step irradiations, leading to poorly-resolved data. Step irradiations also introduce uncertainties in electrical measurements due to temperature annealing effects. This effect may be intensified if the time between exposure and measurement is significant. Induced activity in test samples also complicates data collection of step irradiated test samples. The University of Texas at Austin operates a 1.1 MW Mark II TRIGA research reactor. An in-core irradiation facility for radiation effects testing with a real-time monitoring capability has been designed for the UT TRIGA reactor. The facility is larger than any currently available non-central location in a TRIGA, supporting testing of larger electronic components as well as other in-core irradiation applications requiring significant volume such as isotope production or neutron transmutation doping of silicon. This dissertation describes the design and testing of the large in-core irradiation facility and the experimental campaign developed to test the real-time monitoring capability. This irradiation campaign was performed to test the real-time monitoring capability at various reactor power levels. The device chosen for characterization was the 4N25 general-purpose optocoupler. The current transfer ratio, which is an important electrical parameter for optocouplers, was calculated as a function of neutron fluence and gamma dose from the real-time voltage measurements. The resultant radiation effects data was seen to be repeatable and exceptionally finely-resolved. Therefore, the capability at UT TRIGA has been proven competitive with world-class effects characterization facilities.
Performing an allreduce operation using shared memory
Archer, Charles J [Rochester, MN; Dozsa, Gabor [Ardsley, NY; Ratterman, Joseph D [Rochester, MN; Smith, Brian E [Rochester, MN
2012-04-17
Methods, apparatus, and products are disclosed for performing an allreduce operation using shared memory that include: receiving, by at least one of a plurality of processing cores on a compute node, an instruction to perform an allreduce operation; establishing, by the core that received the instruction, a job status object for specifying a plurality of shared memory allreduce work units, the plurality of shared memory allreduce work units together performing the allreduce operation on the compute node; determining, by an available core on the compute node, a next shared memory allreduce work unit in the job status object; and performing, by that available core on the compute node, that next shared memory allreduce work unit.
Performing an allreduce operation using shared memory
Archer, Charles J; Dozsa, Gabor; Ratterman, Joseph D; Smith, Brian E
2014-06-10
Methods, apparatus, and products are disclosed for performing an allreduce operation using shared memory that include: receiving, by at least one of a plurality of processing cores on a compute node, an instruction to perform an allreduce operation; establishing, by the core that received the instruction, a job status object for specifying a plurality of shared memory allreduce work units, the plurality of shared memory allreduce work units together performing the allreduce operation on the compute node; determining, by an available core on the compute node, a next shared memory allreduce work unit in the job status object; and performing, by that available core on the compute node, that next shared memory allreduce work unit.
Transient pressure-pulse decay permeability measurements in the Barnett shale
NASA Astrophysics Data System (ADS)
Bhandari, A. R.; Reece, J.; Cronin, M. B.; Flemings, P. B.; Polito, P. J.
2012-12-01
We conducted transient pressure-pulse decay permeability measurements on core plugs of the Barnett shale using a hydrostatic pressure cell. Core plugs, 3.8 cm in diameter and less than 2.5 cm in length, were prepared from a core obtained at a depth of approximately 2330 m from the Mitchel Energy 2 T. P. Sims well in the Mississippian Barnett Formation (Loucks and Ruppel, 2007). We performed permeability measurements of the core plugs using argon at varying confining pressures in two different directions (perpendicular and parallel to bedding planes). We calculate gas permeability from changes in pressure with time using the analytical solution of the pressure diffusion equation with appropriate boundary conditions for our test setup (Dicker and Smits, 1988). Based on our limited results, we interpret 2 × 10-18 m2 for vertical permeability and 156 × 10-18 m2 for horizontal permeability. We demonstrate an extreme stress dependence of the horizontal flow permeability where permeability decreases from 156 × 10-18 m2 to 2.5 × 10-18 m2 as the confining stress is increased from 3.5 to 35 MPa. These permeability measurements are at the high side of other pulsed permeability measurements in the Barnett shale (Bustin et al. 2008; Vermylen, 2011). Permeabilities calculated from mercury injection capillary pressure curves, using theoretically derived permeability-capillary pressure models based on parallel tubes assumption, are orders of magnitude less than our transient pressure-pulse decay permeability measurements (for example, 3.7×10-21 m2 (this study), 10-21 -10-20 m2 (Sigal, 2007), 10-20 -10-17 m2 (Prince et al., 2010)). We interpret that the high measured permeabilities are due to microfractures in the sample. At this point, we do not know if the microfractures are due to sampling disturbance (stress-relief induced) or represent an in-situ fracture network. Our study illustrates the importance of characterization of microfractures at the core scale to understand better the transport behavior in shale matrix and sealing efficiency of cap rocks. References Bustin et al. (2008), Impact of shale properties on pore structure and storage characteristics, SPE 119892. Dicker and Smits (1988), A practical method for determining permeability from laboratory pressure-pulse decay measurements, SPE 17578. Loucks and Ruppel (2007), Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale gas succession in the Fort Worth Basin, Texas, AAPG 2007. Sigal (2007), Mercury capillary pressure measurements on Barnett core. (http://shale.ou.edu/Home/Publication) Prince et al. (2010), Shale diagenesis and permeability: examples from the Barnett shale and the Marcellus formation, AAPG 2010. Vermylen, J.P. (2011), Geomechanical studies of the Barnett Shale, Texas, USA, PhD thesis, Stanford University.
Collecting, preparing, crossdating, and measuring tree increment cores
Phipps, R.L.
1985-01-01
Techniques for collecting and handling increment tree cores are described. Procedures include those for cleaning and caring for increment borers, extracting the sample from a tree, core surfacing, crossdating, and measuring. (USGS)
Telemetric measurement of body core temperature in exercising unconditioned Labrador retrievers.
Angle, T Craig; Gillette, Robert L
2011-04-01
This project evaluated the use of an ingestible temperature sensor to measure body core temperature (Tc) in exercising dogs. Twenty-five healthy, unconditioned Labrador retrievers participated in an outdoor 3.5-km run, completed in 20 min on a level, 400-m grass track. Core temperature was measured continuously with a telemetric monitoring system before, during, and after the run. Data were successfully collected with no missing data points during the exercise. Core temperature elevated in the dogs from 38.7 ± 0.3°C at pre-exercise to 40.4 ± 0.6°C post-exercise. While rectal temperatures are still the standard of measurement, telemetric core temperature monitors may offer an easier and more comfortable means of sampling core temperature with minimal human and mechanical interference with the exercising dog.
Telemetric measurement of body core temperature in exercising unconditioned Labrador retrievers
Angle, T. Craig; Gillette, Robert L.
2011-01-01
This project evaluated the use of an ingestible temperature sensor to measure body core temperature (Tc) in exercising dogs. Twenty-five healthy, unconditioned Labrador retrievers participated in an outdoor 3.5-km run, completed in 20 min on a level, 400-m grass track. Core temperature was measured continuously with a telemetric monitoring system before, during, and after the run. Data were successfully collected with no missing data points during the exercise. Core temperature elevated in the dogs from 38.7 ± 0.3°C at pre-exercise to 40.4 ± 0.6°C post-exercise. While rectal temperatures are still the standard of measurement, telemetric core temperature monitors may offer an easier and more comfortable means of sampling core temperature with minimal human and mechanical interference with the exercising dog. PMID:21731189
High skin temperature and hypohydration impair aerobic performance.
Sawka, Michael N; Cheuvront, Samuel N; Kenefick, Robert W
2012-03-01
This paper reviews the roles of hot skin (>35°C) and body water deficits (>2% body mass; hypohydration) in impairing submaximal aerobic performance. Hot skin is associated with high skin blood flow requirements and hypohydration is associated with reduced cardiac filling, both of which act to reduce aerobic reserve. In euhydrated subjects, hot skin alone (with a modest core temperature elevation) impairs submaximal aerobic performance. Conversely, aerobic performance is sustained with core temperatures >40°C if skin temperatures are cool-warm when euhydrated. No study has demonstrated that high core temperature (∼40°C) alone, without coexisting hot skin, will impair aerobic performance. In hypohydrated subjects, aerobic performance begins to be impaired when skin temperatures exceed 27°C, and even warmer skin exacerbates the aerobic performance impairment (-1.5% for each 1°C skin temperature). We conclude that hot skin (high skin blood flow requirements from narrow skin temperature to core temperature gradients), not high core temperature, is the 'primary' factor impairing aerobic exercise performance when euhydrated and that hypohydration exacerbates this effect.
Zhang, Yihui; Webb, Richard Chad; Luo, Hongying; Xue, Yeguang; Kurniawan, Jonas; Cho, Nam Heon; Krishnan, Siddharth; Li, Yuhang; Huang, Yonggang; Rogers, John A
2016-01-07
Long-term, continuous measurement of core body temperature is of high interest, due to the widespread use of this parameter as a key biomedical signal for clinical judgment and patient management. Traditional approaches rely on devices or instruments in rigid and planar forms, not readily amenable to intimate or conformable integration with soft, curvilinear, time-dynamic, surfaces of the skin. Here, materials and mechanics designs for differential temperature sensors are presented which can attach softly and reversibly onto the skin surface, and also sustain high levels of deformation (e.g., bending, twisting, and stretching). A theoretical approach, together with a modeling algorithm, yields core body temperature from multiple differential measurements from temperature sensors separated by different effective distances from the skin. The sensitivity, accuracy, and response time are analyzed by finite element analyses (FEA) to provide guidelines for relationships between sensor design and performance. Four sets of experiments on multiple devices with different dimensions and under different convection conditions illustrate the key features of the technology and the analysis approach. Finally, results indicate that thermally insulating materials with cellular structures offer advantages in reducing the response time and increasing the accuracy, while improving the mechanics and breathability. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baek, M. H.; Kim, S. J.; Yoo, J.
The major roles of a prototype SFR are to provide irradiation test capability for the fuel and structure materials, and to obtain operational experiences of systems. Due to a compromise between the irradiation capability and construction costs, the power level should be properly determined. In this paper, a trade-off study on the power level of the prototype SFR was performed from a neutronics viewpoint. To select candidate cores, the parametric study of pin diameters was estimated using 20 wt.% uranium fuel. The candidate cores of different power levels, 125 MWt, 250 MWt, 400 MWt, and 500 MWt, were compared withmore » the 1500 MWt reference core. The resulting core performance and economic efficiency indices became insensitive to the power at about 400-500 MWt and sharply deteriorated at about 125-250 MWt with decreasing core sizes. Fuel management scheme, TRU core performance comparing with uranium core, and sodium void reactivity were also evaluated with increasing power levels. It is found that increasing the number of batches showed higher burnup performance and economic efficiency. However, increasing the cycle length showed the trends in lower economic efficiency. Irradiation performance of TRU and enriched TRU cores was improved about 20 % and 50 %, respectively. The maximum sodium void reactivity of 5.2$ was confirmed less than the design limit of 7.5$. As a result, the power capacity of the prototype SFR should not be less than 250 MWt and would be appropriate at {approx} 500 MWt considering the performance and economic efficiency. (authors)« less
ERIC Educational Resources Information Center
Texas Education Agency, Austin.
Approximately 1 million individuals in Texas participated in career and technical programs, services, and activities offered at the secondary, postsecondary, and adult levels of education by public schools and community colleges in program year 1994. Secondary core standards and measures of performance were adopted in 1993. Sixty-nine federally…
Multi-core processing and scheduling performance in CMS
NASA Astrophysics Data System (ADS)
Hernández, J. M.; Evans, D.; Foulkes, S.
2012-12-01
Commodity hardware is going many-core. We might soon not be able to satisfy the job memory needs per core in the current single-core processing model in High Energy Physics. In addition, an ever increasing number of independent and incoherent jobs running on the same physical hardware not sharing resources might significantly affect processing performance. It will be essential to effectively utilize the multi-core architecture. CMS has incorporated support for multi-core processing in the event processing framework and the workload management system. Multi-core processing jobs share common data in memory, such us the code libraries, detector geometry and conditions data, resulting in a much lower memory usage than standard single-core independent jobs. Exploiting this new processing model requires a new model in computing resource allocation, departing from the standard single-core allocation for a job. The experiment job management system needs to have control over a larger quantum of resource since multi-core aware jobs require the scheduling of multiples cores simultaneously. CMS is exploring the approach of using whole nodes as unit in the workload management system where all cores of a node are allocated to a multi-core job. Whole-node scheduling allows for optimization of the data/workflow management (e.g. I/O caching, local merging) but efficient utilization of all scheduled cores is challenging. Dedicated whole-node queues have been setup at all Tier-1 centers for exploring multi-core processing workflows in CMS. We present the evaluation of the performance scheduling and executing multi-core workflows in whole-node queues compared to the standard single-core processing workflows.
McCorry, F; Garnick, D W; Bartlett, J; Cotter, F; Chalk, M
2000-11-01
Monitoring the quality and availability of alcohol and other drug (AOD) services must be a central tenet of any health-related performance measurement system. The Washington Circle Group (WCG), which was convened by the Center for Substance Abuse Treatment Office of Managed Care in March 1998, has developed a core set of performance measures for AOD services for public- and private-sector health plans. It is also collaborating with a broad range of stakeholders to ensure widespread adoption of these performance measures by health plans, private employers, public payers, and accrediting organizations. Four domains were identified, with specific measures developed for each domain: (1) prevention/education, (2) recognition, (3) treatment (including initiation of alcohol and other plan services, linkage of detoxification and AOD plan services, treatment engagement, and interventions for family members/significant others), and (4) maintenance of treatment effects. Four measures that are based on administrative information from health plans and two measures that require a consumer survey of behavioral health care are undergoing extensive pilot testing. The WCG has reached out to a broad range of stakeholders in performance measurement and managed care to acquaint them with the measures and to promote their investigation and adoption. As results of pilot testing become available, these outreach efforts will continue. Performance measures for AOD services need to become an integral part of a comprehensive set of behavioral and physical health performance measures for managed care plans.
EVLA observations of radio-loud quasars selected to study radio orientation
NASA Astrophysics Data System (ADS)
Maithil, Jaya; Brotherton, Michael S.; Runnoe, Jessie; Wardle, John F. C.; DiPompeo, Michael; De Breuck, Carlos; Wills, Beverley J.
2018-06-01
We present preliminary work to develop an unbiased sample of radio-loud quasars to test orientation indicators. We have obtained radio data of 147 radio-loud quasars using EVLA at 10 GHz and with the A-array. With this high-resolution data we have measured the uncontaminated core flux density to determine orientation indicators based on radio core dominance. The radio cores of quasars have a flat spectrum over a broad range of frequencies, so we expect that the core flux density at the FIRST and the observed frequencies should be the same in the absence of variability. Jackson & Brown (2012) pointed out that the survey measurements of core flux density, like FIRST, often doesn't have the spatial resolution to distinguish cores from extended emission. Our measurements show that at FIRST spatial resolution, core flux measurements are indeed systematically high. Our results establish that orientation studies need high-resolution radio data as compared to survey data, and that the optical emission is a better normalization than the extended radio emission for a core dominance parameter to track orientation.
ULA Delta IV Heavy Common Booster Cores for the Parker Solar Pro
2017-07-28
A United Launch Alliance Delta IV Heavy common booster core arrives by truck at Cape Canaveral Air Force Station's Launch Complex 37 Horizontal Processing Facility. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Liftoff atop the Delta IV Heavy rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 37 in summer 2018.
ULA Delta IV Heavy Common Booster Cores for the Parker Solar Pro
2017-07-27
The United Launch Alliance Delta IV Heavy common booster core arrives aboard the company's Mariner ship and prepared for offload at Port Canaveral in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Liftoff atop the Delta IV Heavy rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 37 in summer 2018.
ULA Delta IV Heavy Common Booster Cores for the Parker Solar Pro
2017-07-28
A United Launch Alliance Delta IV Heavy common booster core is transported by truck inside Cape Canaveral Air Force Station's Launch Complex 37 Horizontal Processing Facility. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Liftoff atop the Delta IV Heavy rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 37 in summer 2018.
ULA Delta IV Heavy Second Stage & Port Common Booster Core for t
2017-08-30
A United Launch Alliance Delta IV Heavy common booster core arrives at the Horizontal Integration Facility at Cape Canaveral Air Force Station for preflight processing. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Liftoff atop the Delta IV Heavy rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 37 in summer 2018.
Gyromagnetic ratios of excited states and nuclear structure near {sup 132}Sn
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stuchbery, Andrew E.
2014-11-11
Several g-factor measurements have been performed recently on nuclei near the neutron-rich, double-magic nucleus {sup 132}Sn. The focus here is on {sup 134}Te, the N = 82 isotone which has two protons added to {sup 132}Sn. The electromagnetic properties of {sup 134}Te are examined. Comparisons are made with other nuclei that have two protons outside a double-magic core. The extent to which {sup 132}Sn is an inert core is discussed based on these comparisons. The electromagnetic properties of the N = 82 isotones from {sup 132}Sn to {sup 146}Gd are also discussed.
Plastic reorganization of neural systems for perception of others in the congenitally blind.
Fairhall, S L; Porter, K B; Bellucci, C; Mazzetti, M; Cipolli, C; Gobbini, M I
2017-09-01
Recent evidence suggests that the function of the core system for face perception might extend beyond visual face-perception to a broader role in person perception. To critically test the broader role of core face-system in person perception, we examined the role of the core system during the perception of others in 7 congenitally blind individuals and 15 sighted subjects by measuring their neural responses using fMRI while they listened to voices and performed identity and emotion recognition tasks. We hypothesised that in people who have had no visual experience of faces, core face-system areas may assume a role in the perception of others via voices. Results showed that emotions conveyed by voices can be decoded in homologues of the core face system only in the blind. Moreover, there was a specific enhancement of response to verbal as compared to non-verbal stimuli in bilateral fusiform face areas and the right posterior superior temporal sulcus showing that the core system also assumes some language-related functions in the blind. These results indicate that, in individuals with no history of visual experience, areas of the core system for face perception may assume a role in aspects of voice perception that are relevant to social cognition and perception of others' emotions. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Takai, Erica; Mauck, Robert L; Hung, Clark T; Guo, X Edward
2004-09-01
A new trabecular bone explant model was used to examine osteocyte-osteoblast interactions under DHP loading. DHP loading enhanced osteocyte viability as well as osteoblast function measured by osteoid formation. However, live osteocytes were necessary for osteoblasts to form osteoids in response to DHP, which directly show osteoblast-osteocyte interactions in this in vitro culture. A trabecular bone explant model was characterized and used to examine the effect of osteocyte and osteoblast interactions and dynamic hydrostatic pressure (DHP) loading on osteocyte viability and osteoblast function in long-term culture. Trabecular bone cores obtained from metacarpals of calves were cleaned of bone marrow and trabecular surface cells and divided into six groups, (1) live cores + dynamic hydrostatic pressure (DHP), (2) live cores + sham, (3) live cores + osteoblast + DHP, (4) live cores + osteoblast + sham, (5) devitalized cores + osteoblast + DHP, and (6) devitalized cores + osteoblast + sham, with four culture durations (2, 8, 15, and 22 days; n = 4/group). Cores from groups 3-6 were seeded with osteoblasts, and cores from groups 5 and 6 were devitalized before seeding. Groups 1, 3, and 5 were subjected to daily DHP loading. Bone histomorphometry was performed to quantify osteocyte viability based on morphology and to assess osteoblast function based on osteoid surface per bone surface (Os/Bs). TUNEL staining was performed to evaluate the mode of osteocyte death under various conditions. A portion of osteocytes remained viable for the duration of culture. DHP loading significantly enhanced osteocyte viability up to day 8, whereas the presence of seeded osteoblasts significantly decreased osteocyte viability. Cores with live osteocytes showed higher Os/Bs compared with devitalized cores, which reached significant levels over a greater range of time-points when combined with DHP loading. DHP loading did not increase Os/Bs in the absence of live osteocytes. The percentage of apoptotic cells remained the same regardless of treatment or culture duration. Enhanced osteocyte viability with DHP suggests the necessity of mechanical stimulation for osteocyte survival in vitro. Furthermore, osteocytes play a critical role in the transmission of signals from DHP loading to modulate osteoblast function. This explant culture model may be used for mechanotransduction studies in long-term cultures.
Behavioral Health and Performance Laboratory Standard Measures (BHP-SM)
NASA Technical Reports Server (NTRS)
Williams, Thomas J.; Cromwell, Ronita
2017-01-01
The Spaceflight Standard Measures is a NASA Johnson Space Center Human Research Project (HRP) project that proposes to collect a set of core measurements, representative of many of the human spaceflight risks, from astronauts before, during and after long-duration International Space Station (ISS) missions. The term "standard measures" is defined as a set of core measurements, including physiological, biochemical, psychosocial, cognitive, and functional, that are reliable, valid, and accepted in terrestrial science, are associated with a specific and measurable outcome known to occur as a consequence of spaceflight, that will be collected in a standardized fashion from all (or most) crewmembers. While such measures might be used to define standards of health and performance or readiness for flight, the prime intent in their collection is to allow longitudinal analysis of multiple parameters in order to answer a variety of operational, occupational, and research-based questions. These questions are generally at a high level, and the approach for this project is to populate the standard measures database with the smallest set of data necessary to indicate further detailed research is required. Also included as standard measures are parameters that are not outcome-based in and of-themselves, but provide ancillary information that supports interpretation of the outcome measures, e.g., nutritional assessment, vehicle environmental parameters, crew debriefs, etc. The project's main aim is to ensure that an optimized minimal set of measures is consistently captured from all ISS crewmembers until the end of Station in order to characterize the human in space. -This allows the HRP to identify, establish, and evaluate a common set of measures for use in spaceflight and analog research to: develop baselines, systematically characterize risk likelihood and consequences, and assess effectiveness of countermeasures that work for behavioral health and performance risk factors. -By standardizing the battery of measures on all crewmembers, it will allow the HRP to evaluate countermeasures that work for one physiological system and ensure another system is not negatively affected. -These measures, named "Standard Measures," will serve as a data repository and be available to other studies under data sharing agreements.
NASA Astrophysics Data System (ADS)
Luo, Mingchuan; Wei, Lingli; Wang, Fanghui; Han, Kefei; Zhu, Hong
2014-12-01
Over the past decade, Pt based core-shell structured alloys have been studied extensively as oxygen reduction reaction (ORR) catalysts for proton exchange membrane fuel cells (PEMFCs) because of their distinctive electrochemical performance and low Pt loading. In this paper, a facile route based on microwave-assisted polyol method and chemical dealloying process is proposed to synthesize carbon supported core-shell structured nanoparticles (NPs) in gram-level for ORR electrocatalysis in PEMFCs. The obtained samples are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), inductively coupled plasma atomic emission spectroscopy (ICP-AES), and X-ray photoelectron spectroscopy (XPS). These physical characterization indicate that the final synthesized NPs are highly dispersed on the carbon support, and in a core-shell structure with CuPt alloy as the core and Pt as the shell. Electrochemical measurements, conducted by cyclic voltammetry (CV) and rotating disk electrode (RDE) tests, show the core-shell structured catalyst exhibit a 3× increase in mass activity and a 2× increase in specific activity over the commercial Pt/C catalyst, respectively. These results demonstrate that this route can be a reliable way to synthesize low-Pt catalyst in large-scale for PEMFCs.
Performance Measurements for the Microsoft Kinect Skeleton
2012-03-01
Information Inter- faces and Presentation]: User Interfaces—Input devices and strate- gies; 1 INTRODUCTION The Microsoft Kinect for Xbox 360 (“Kinect...these values. 2 MEASUREMENTS We conducted our tests on a machine configured with Windows 7 Ultimate (Service Pack 1) equipped with two Intel Core2...test. We tested with one , two, and three users present, although only two skeletons may be tracked. 2.1 Range We need to know how close and how far a
New infrastructure for studies of transmutation and fast systems concepts
NASA Astrophysics Data System (ADS)
Panza, Fabio; Firpo, Gabriele; Lomonaco, Guglielmo; Osipenko, Mikhail; Ricco, Giovanni; Ripani, Marco; Saracco, Paolo; Viberti, Carlo Maria
2017-09-01
In this work we report initial studies on a low power Accelerator-Driven System as a possible experimental facility for the measurement of relevant integral nuclear quantities. In particular, we performed Monte Carlo simulations of minor actinides and fission products irradiation and estimated the fission rate within fission chambers in the reactor core and the reflector, in order to evaluate the transmutation rates and the measurement sensitivity. We also performed a photo-peak analysis of available experimental data from a research reactor, in order to estimate the expected sensitivity of this analysis method on the irradiation of samples in the ADS considered.
A low power ADS for transmutation studies in fast systems
NASA Astrophysics Data System (ADS)
Panza, Fabio; Firpo, Gabriele; Lomonaco, Guglielmo; Osipenko, Mikhail; Ricco, Giovanni; Ripani, Marco; Saracco, Paolo; Viberti, Carlo Maria
2017-12-01
In this work, we report studies on a fast low power accelerator driven system model as a possible experimental facility, focusing on its capabilities in terms of measurement of relevant integral nuclear quantities. In particular, we performed Monte Carlo simulations of minor actinides and fission products irradiation and estimated the fission rate within fission chambers in the reactor core and the reflector, in order to evaluate the transmutation rates and the measurement sensitivity. We also performed a photo-peak analysis of available experimental data from a research reactor, in order to estimate the expected sensitivity of this analysis method on the irradiation of samples in the ADS considered.
Hoglund, Lisa T; Pontiggia, Laura; Kelly, John D
2018-01-01
Patellofemoral joint (PFJ) osteoarthritis (OA) is prevalent in middle-aged and older adults. Despite this, there are minimal studies which have examined conservative interventions for PFJ OA. Weakness of proximal lower extremity muscles is associated with PFJ OA. It is unknown if a hip muscle strengthening and lumbopelvic-hip core stabilization program will improve symptoms and function in persons with PFJ OA. This study examined the feasibility and impact of a 6-week hip muscle strengthening and core stabilization program on pain, symptoms, physical performance, peak muscle torques, and quality of life in persons with PFJ OA. Ten females with PFJ OA and ten age- and sex-matched controls participated in baseline tests. PFJ OA participants attended ten twice-a-week hip strengthening and core stabilization exercise sessions. Outcome measures included questionnaires, the Timed-Up-and-Go, and peak isometric torque of hip and quadriceps muscles. Data were tested for normality; parametric and non-parametric tests were used as appropriate. At baseline, the PFJ OA group had significantly worse symptoms, slower Timed-Up-and-Go performance, and lower muscle torques than control participants. PFJ OA group adherence to supervised exercise sessions was adequate. All PFJ OA participants attended at least nine exercise sessions. Five PFJ OA participants returned 6-month follow-up questionnaires, which was considered fair retention. The PFJ OA participants' self-reported pain, symptoms, function in daily living, function in sport, and quality of life all improved at 6 weeks ( P < 0.05). Timed-Up-and-Go time score improved at 6 weeks ( P = 0.005). Peak hip external rotator torque increased ( P = 0.01). Improvements in pain and self-reported function were no longer significant 6 months following completion of the intervention. PFJ OA participants were adherent to the supervised sessions of the intervention. Improvement in symptoms, physical performance, and muscle torque were found after 6 weeks. Participant retention at 6 months was fair, and significant changes were no longer present. Our findings suggest that a hip strengthening and core stabilization program may be beneficial to improve symptoms, function, and physical performance in persons with PFJ OA. Future studies are needed, and additional measures should be taken to improve long-term adherence to exercise. ClinicalTrials.gov NCT02825238. Registered 6 July 2016 (retrospectively registered).
Enhancing Image Processing Performance for PCID in a Heterogeneous Network of Multi-code Processors
NASA Astrophysics Data System (ADS)
Linderman, R.; Spetka, S.; Fitzgerald, D.; Emeny, S.
The Physically-Constrained Iterative Deconvolution (PCID) image deblurring code is being ported to heterogeneous networks of multi-core systems, including Intel Xeons and IBM Cell Broadband Engines. This paper reports results from experiments using the JAWS supercomputer at MHPCC (60 TFLOPS of dual-dual Xeon nodes linked with Infiniband) and the Cell Cluster at AFRL in Rome, NY. The Cell Cluster has 52 TFLOPS of Playstation 3 (PS3) nodes with IBM Cell Broadband Engine multi-cores and 15 dual-quad Xeon head nodes. The interconnect fabric includes Infiniband, 10 Gigabit Ethernet and 1 Gigabit Ethernet to each of the 336 PS3s. The results compare approaches to parallelizing FFT executions across the Xeons and the Cell's Synergistic Processing Elements (SPEs) for frame-level image processing. The experiments included Intel's Performance Primitives and Math Kernel Library, FFTW3.2, and Carnegie Mellon's SPIRAL. Optimization of FFTs in the PCID code led to a decrease in relative processing time for FFTs. Profiling PCID version 6.2, about one year ago, showed the 13 functions that accounted for the highest percentage of processing were all FFT processing functions. They accounted for over 88% of processing time in one run on Xeons. FFT optimizations led to improvement in the current PCID version 8.0. A recent profile showed that only two of the 19 functions with the highest processing time were FFT processing functions. Timing measurements showed that FFT processing for PCID version 8.0 has been reduced to less than 19% of overall processing time. We are working toward a goal of scaling to 200-400 cores per job (1-2 imagery frames/core). Running a pair of cores on each set of frames reduces latency by implementing parallel FFT processing. Our current results show scaling well out to 100 pairs of cores. These results support the next higher level of parallelism in PCID, where groups of several hundred frames each producing one resolved image are sent to cliques of several hundred cores in a round robin fashion. Current efforts toward further performance enhancement for PCID are shifting toward using the Playstations in conjunction with the Xeons to take advantage of outstanding price/performance as well as the Flops/Watt cost advantage. We are fine-tuning the PCID parallization strategy to balance processing over Xeons and Cell BEs to find an optimal partitioning of PCID over the heterogeneous processors. A high performance information management system that exploits native Infiniband multicast is used to improve latency among the head nodes. Using a publication/subscription oriented information management system to implement a unified communications platform makes runs on large HPCs with thousands of intercommunicating cores more flexible and more fault tolerant. It features a loose couplingof publishers to subscribers through intervening brokers. We are also working on enhancing performance for both Xeons and Cell BEs, buy moving selected operations to single precision. Techniques for adapting the code to single precision and performance results are reported.
Updating the OMERACT filter: core areas as a basis for defining core outcome sets.
Kirwan, John R; Boers, Maarten; Hewlett, Sarah; Beaton, Dorcas; Bingham, Clifton O; Choy, Ernest; Conaghan, Philip G; D'Agostino, Maria-Antonietta; Dougados, Maxime; Furst, Daniel E; Guillemin, Francis; Gossec, Laure; van der Heijde, Désirée M; Kloppenburg, Margreet; Kvien, Tore K; Landewé, Robert B M; Mackie, Sarah L; Matteson, Eric L; Mease, Philip J; Merkel, Peter A; Ostergaard, Mikkel; Saketkoo, Lesley Ann; Simon, Lee; Singh, Jasvinder A; Strand, Vibeke; Tugwell, Peter
2014-05-01
The Outcome Measures in Rheumatology (OMERACT) Filter provides guidelines for the development and validation of outcome measures for use in clinical research. The "Truth" section of the OMERACT Filter presupposes an explicit framework for identifying the relevant core outcomes that are universal to all studies of the effects of intervention effects. There is no published outline for instrument choice or development that is aimed at measuring outcome, was derived from broad consensus over its underlying philosophy, or includes a structured and documented critique. Therefore, a new proposal for defining core areas of measurement ("Filter 2.0 Core Areas of Measurement") was presented at OMERACT 11 to explore areas of consensus and to consider whether already endorsed core outcome sets fit into this newly proposed framework. Discussion groups critically reviewed the extent to which case studies of current OMERACT Working Groups complied with or negated the proposed framework, whether these observations had a more general application, and what issues remained to be resolved. Although there was broad acceptance of the framework in general, several important areas of construction, presentation, and clarity of the framework were questioned. The discussion groups and subsequent feedback highlighted 20 such issues. These issues will require resolution to reach consensus on accepting the proposed Filter 2.0 framework of Core Areas as the basis for the selection of Core Outcome Domains and hence appropriate Core Outcome Sets for clinical trials.
Singh, Jasvinder A; Dowsey, Michelle M; Dohm, Michael; Goodman, Susan M; Leong, Amye L; Scholte Voshaar, Marieke M J H; Choong, Peter F
2017-11-01
Discussion and endorsement of the OMERACT total joint replacement (TJR) core domain set for total hip replacement (THR) and total knee replacement (TKR) for endstage arthritis; and next steps for selection of instruments. The OMERACT TJR working group met at the 2016 meeting at Whistler, British Columbia, Canada. We summarized the previous systematic reviews, the preliminary OMERACT TJR core domain set and results from previous surveys. We discussed preliminary core domains for TJR clinical trials, made modifications, and identified challenges with domain measurement. Working group participants (n = 26) reviewed, clarified, and endorsed each of the inner and middle circle domains and added a range of motion domain to the research agenda. TJR were limited to THR and TKR but included all endstage hip and knee arthritis refractory to medical treatment. Participants overwhelmingly endorsed identification and evaluation of top instruments mapping to the core domains (100%) and use of subscales of validated multidimensional instruments to measure core domains for the TJR clinical trial core measurement set (92%). An OMERACT core domain set for hip/knee TJR trials has been defined and we are selecting instruments to develop the TJR clinical trial core measurement set to serve as a common foundation for harmonizing measures in TJR clinical trials.
Detecting the supernova breakout burst in terrestrial neutrino detectors
Wallace, Joshua; Burrows, Adam; Dolence, Joshua C.
2016-02-01
Here, we calculate the distance-dependent performance of a few representative terrestrial neutrino detectors in detecting and measuring the properties of the ν e breakout burst light curve in a Galactic core-collapse supernova. The breakout burst is a signature phenomenon of core collapse and offers a probe into the stellar core through collapse and bounce. We also examine cases of no neutrino oscillations and oscillations due to normal and inverted neutrino-mass hierarchies. For the normal hierarchy, other neutrino flavors emitted by the supernova overwhelm the νe signal, making a detection of the breakout burst difficult. Furthermore, for the inverted hierarchy (IH),more » some detectors at some distances should be able to see the ν e breakout burst peak and measure its properties. For the IH, the maximum luminosity of the breakout burst can be measured at 10 kpc to accuracies of ~30% for Hyper-Kamiokande (Hyper-K) and ~60% for the Deep Underground Neutrino Experiment (DUNE). Super-Kamiokande (Super-K) and Jiangmen Underground Neutrino Observatory (JUNO) lack the mass needed to make an accurate measurement. For the IH, the time of the maximum luminosity of the breakout burst can be measured in Hyper-K to an accuracy of ~3 ms at 7 kpc, in DUNE to ~2 ms at 4 kpc, and JUNO and Super-K can measure the time of maximum luminosity to an accuracy of ~2 ms at 1 kpc. Detector backgrounds in IceCube render a measurement of the νe breakout burst unlikely. For the IH, a measurement of the maximum luminosity of the breakout burst could be used to differentiate between nuclear equations of state.« less
Effective Wettability Measurements of CO2-Brine-Sandstone System at Different Reservoir Conditions
NASA Astrophysics Data System (ADS)
Al-Menhali, Ali; Krevor, Samuel
2014-05-01
The wetting properties of CO2-brine-rock systems will have a major impact on the management of CO2 injection processes. The wettability of a system controls the flow and trapping efficiency during the storage of CO2 in geological formations as well as the efficiency of enhanced oil recovery operations. Despite its utility in EOR and the continued development of CCS, little is currently known about the wetting properties of the CO2-brine system on reservoir rocks, and no investigations have been performed assessing the impact of these properties on CO2 flooding for CO2 storage or EOR. The wetting properties of multiphase fluid systems in porous media have major impacts on the multiphase flow properties such as the capillary pressure and relative permeability. While recent studies have shown CO2 to generally act as a non-wetting phase in siliciclastic rocks, some observations report that the contact angle varies with pressure, temperature and water salinity. Additionally, there is a wide range of reported contact angles for this system, from strongly to weakly water-wet. In the case of some minerals, intermediate wet contact angles have been observed. Uncertainty with regard to the wetting properties of CO2-brine systems is currently one of the remaining major unresolved issues with regards to reservoir management of CO2 storage. In this study, we make semi-dynamic capillary pressure measurements of supercritical CO2 and brine at reservoir conditions to observe shifts in the wetting properties. We utilize a novel core analysis technique recently developed by Pini et al in 2012 to evaluate a core-scale effective contact angle. Carbon dioxide is injected at constant flow rate into a core that is initially fully saturated with water, while maintaining a constant outlet pressure. In this scenario, the pressure drop across the core corresponds to the capillary pressure at the inlet face of the core. When compared with mercury intrusion capillary pressure measurements, core-scale effective contact angle can be determined. In addition to providing a quantitative measure of the core-averaged wetting properties, the technique allows for the observation of shifts in contact angle with changing conditions. We examine the wettability changes of the CO2-brine system in Berea sandstone with variations in reservoir conditions including supercritical, gaseous and liquid CO2injection. We evaluate wettability variation within a single rock with temperature, pressure, and salinity across a range of conditions relevant to subsurface CO2 storage. This study will include results of measurements in a Berea sandstone sample across a wide range of conditions representative of subsurface reservoirs suitable for CO2 storage (5-20 MPa, 25-90 oC, 0-5 mol kg-1). The measurement uses X-ray CT imaging in a state of the art core flooding laboratory designed to operate at high temperature, pressure, and concentrated brines.
Universal route to optimal few- to single-cycle pulse generation in hollow-core fiber compressors.
Conejero Jarque, E; San Roman, J; Silva, F; Romero, R; Holgado, W; Gonzalez-Galicia, M A; Alonso, B; Sola, I J; Crespo, H
2018-02-02
Gas-filled hollow-core fiber (HCF) pulse post-compressors generating few- to single-cycle pulses are a key enabling tool for attosecond science and ultrafast spectroscopy. Achieving optimum performance in this regime can be extremely challenging due to the ultra-broad bandwidth of the pulses and the need of an adequate temporal diagnostic. These difficulties have hindered the full exploitation of HCF post-compressors, namely the generation of stable and high-quality near-Fourier-transform-limited pulses. Here we show that, independently of conditions such as the type of gas or the laser system used, there is a universal route to obtain the shortest stable output pulse down to the single-cycle regime. Numerical simulations and experimental measurements performed with the dispersion-scan technique reveal that, in quite general conditions, post-compressed pulses exhibit a residual third-order dispersion intrinsic to optimum nonlinear propagation within the fiber, in agreement with measurements independently performed in several laboratories around the world. The understanding of this effect and its adequate correction, e.g. using simple transparent optical media, enables achieving high-quality post-compressed pulses with only minor changes in existing setups. These optimized sources have impact in many fields of science and technology and should enable new and exciting applications in the few- to single-cycle pulse regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tommasi, J.; Ruggieri, J. M.; Lebrat, J. F.
The latest release (2.1) of the ERANOS code system, using JEF-2.2, JEFF-3.1 and ENDF/B-VI r8 multigroup cross-section libraries is currently being validated on fast reactor critical experiments at CEA-Cadarache (France). This paper briefly presents the library effect studies and the detailed best-estimate validation studies performed up to now as part of the validation process. The library effect studies are performed over a wide range of experimental configurations, using simple model and method options. They yield global trends about the shift from JEF-2.2 to JEFF-3.1 cross-section libraries, that can be related to individual sensitivities and cross-section changes. The more detailed, best-estimate,more » calculations have been performed up to now over three experimental configurations carried out in the MASURCA critical facility at CEA-Cadarache: two cores with a softened spectrum due to large amounts of graphite (MAS1A' and MAS1B), and a core representative of sodium-cooled fast reactors (CIRANO ZONA2A). Calculated values have been compared to measurements, and discrepancies analyzed in detail using perturbation theory. Values calculated with JEFF-3.1 were found to be within 3 standard deviations of the measured values, and at least of the same quality as the JEF-2.2 based results. (authors)« less
Improving core surgical training in a major trauma centre.
Morris, Daniel L J; Bryson, David J; Ollivere, Ben J; Forward, Daren P
2016-06-01
English Major Trauma Centres (MTCs) were established in April 2012. Increased case volume and complexity has influenced trauma and orthopaedic (T&O) core surgical training in these centres. To determine if T&O core surgical training in MTCs meets Joint Committee on Surgical Training (JCST) quality indicators including performance of T&O operative procedures and consultant supervised session attendance. An audit cycle assessing the impact of a weekly departmental core surgical trainee rota. The rota included allocated timetabled sessions that optimised clinical and surgical learning opportunities. Intercollegiate Surgical Curriculum Programme (ISCP) records for T&O core surgical trainees at a single MTC were analysed for 8 months pre and post rota introduction. Outcome measures were electronic surgical logbook evidence of leading T&O operative procedures and consultant validated work-based assessments (WBAs). Nine core surgical trainees completed a 4 month MTC placement pre and post introduction of the core surgical trainee rota. Introduction of core surgical trainee rota significantly increased the mean number of T&O operative procedures led by a core surgical trainee during a 4 month MTC placement from 20.2 to 34.0 (p<0.05). The mean number of hip hemiarthroplasty procedures led by a core surgical trainee during a 4 month MTC placement was significantly increased (0.3 vs 2.4 [p=0.04]). Those of dynamic hip screw fixation (2.3 vs 3.6) and ankle fracture fixation (0.7 vs 1.6) were not. Introduction of a core surgical trainee rota significantly increased the mean number of consultant validated WBAs completed by a core surgical trainee during a 4 month MTC placement from 1.7 to 6.6 (p<0.0001). Introduction of a departmental core surgical trainee rota utilising a 'problem-based' model can significantly improve T&O core surgical training in MTCs. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swaminarayan, Sriram; Germann, Timothy C; Kadau, Kai
2008-01-01
The authors present timing and performance numbers for a short-range parallel molecular dynamics (MD) code, SPaSM, that has been rewritten for the heterogeneous Roadrunner supercomputer. Each Roadrunner compute node consists of two AMD Opteron dual-core microprocessors and four PowerXCell 8i enhanced Cell microprocessors, so that there are four MPI ranks per node, each with one Opteron and one Cell. The interatomic forces are computed on the Cells (each with one PPU and eight SPU cores), while the Opterons are used to direct inter-rank communication and perform I/O-heavy periodic analysis, visualization, and checkpointing tasks. The performance measured for our initial implementationmore » of a standard Lennard-Jones pair potential benchmark reached a peak of 369 Tflop/s double-precision floating-point performance on the full Roadrunner system (27.7% of peak), corresponding to 124 MFlop/Watt/s at a price of approximately 3.69 MFlops/dollar. They demonstrate an initial target application, the jetting and ejection of material from a shocked surface.« less
Performance evaluation of nursing students following competency-based education.
Fan, Jun-Yu; Wang, Yu Hsin; Chao, Li Fen; Jane, Sui-Whi; Hsu, Li-Ling
2015-01-01
Competency-based education is known to improve the match between educational performance and employment opportunities. This study examined the effects of competency-based education on the learning outcomes of undergraduate nursing students. The study used a quasi-experimental design. A convenience sample of 312 second-year undergraduate nursing students from northern and southern Taiwan participated in the study. The experimental group (n=163) received competency-based education and the control group received traditional instruction (n=149) in a medical-surgical nursing course. Outcome measures included students' scores on the Objective Structured Clinical Examination, Self-Evaluated Core Competencies Scale, Metacognitive Inventory for Nursing Students questionnaire, and academic performance. Students who received competency-based education had significantly higher academic performance in the medical-surgical nursing course and practicum than did the control group. Required core competencies and metacognitive abilities improved significantly in the competency-based education group as compared to the control group after adjusting for covariates. Competency-based education is worth implementing and may close the gap between education and the ever-changing work environment. Copyright © 2014 Elsevier Ltd. All rights reserved.
The total hemispheric emissivity of painted aluminum honeycomb at cryogenic temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuttle, J.; Canavan, E.; DiPirro, M.
NASA uses high-emissivity surfaces on deep-space radiators and thermal radiation absorbers in test chambers. Aluminum honeycomb core material, when coated with a high-emissivity paint, provides a lightweight, mechanically robust, and relatively inexpensive black surface that retains its high emissivity down to low temperatures. At temperatures below about 100 Kelvin, this material performs much better than the paint itself. We measured the total hemispheric emissivity of various painted honeycomb configurations using an adaptation of an innovative technique developed for characterizing thin black coatings. These measurements were performed from room temperature down to 30 Kelvin. We describe the measurement technique and comparemore » the results with predictions from a detailed thermal model of each honeycomb configuration.« less
Benchmarking the ATLAS software through the Kit Validation engine
NASA Astrophysics Data System (ADS)
De Salvo, Alessandro; Brasolin, Franco
2010-04-01
The measurement of the experiment software performance is a very important metric in order to choose the most effective resources to be used and to discover the bottlenecks of the code implementation. In this work we present the benchmark techniques used to measure the ATLAS software performance through the ATLAS offline testing engine Kit Validation and the online portal Global Kit Validation. The performance measurements, the data collection, the online analysis and display of the results will be presented. The results of the measurement on different platforms and architectures will be shown, giving a full report on the CPU power and memory consumption of the Monte Carlo generation, simulation, digitization and reconstruction of the most CPU-intensive channels. The impact of the multi-core computing on the ATLAS software performance will also be presented, comparing the behavior of different architectures when increasing the number of concurrent processes. The benchmark techniques described in this paper have been used in the HEPiX group since the beginning of 2008 to help defining the performance metrics for the High Energy Physics applications, based on the real experiment software.
Benchmarking NWP Kernels on Multi- and Many-core Processors
NASA Astrophysics Data System (ADS)
Michalakes, J.; Vachharajani, M.
2008-12-01
Increased computing power for weather, climate, and atmospheric science has provided direct benefits for defense, agriculture, the economy, the environment, and public welfare and convenience. Today, very large clusters with many thousands of processors are allowing scientists to move forward with simulations of unprecedented size. But time-critical applications such as real-time forecasting or climate prediction need strong scaling: faster nodes and processors, not more of them. Moreover, the need for good cost- performance has never been greater, both in terms of performance per watt and per dollar. For these reasons, the new generations of multi- and many-core processors being mass produced for commercial IT and "graphical computing" (video games) are being scrutinized for their ability to exploit the abundant fine- grain parallelism in atmospheric models. We present results of our work to date identifying key computational kernels within the dynamics and physics of a large community NWP model, the Weather Research and Forecast (WRF) model. We benchmark and optimize these kernels on several different multi- and many-core processors. The goals are to (1) characterize and model performance of the kernels in terms of computational intensity, data parallelism, memory bandwidth pressure, memory footprint, etc. (2) enumerate and classify effective strategies for coding and optimizing for these new processors, (3) assess difficulties and opportunities for tool or higher-level language support, and (4) establish a continuing set of kernel benchmarks that can be used to measure and compare effectiveness of current and future designs of multi- and many-core processors for weather and climate applications.
Microbiology of the lower ocean crust - Preliminary results from IODP Expedition 360, Atlantis Bank
NASA Astrophysics Data System (ADS)
Sylvan, J. B.; Edgcomb, V. P.; Burgaud, G.; Klein, F.; Schubotz, F.; Expedition 360 Scientists, I.
2016-12-01
International Ocean Discovery Program (IODP) Expedition 360 represents the first leg of a multi-phase drilling program, SloMo, aimed at investigating the nature of the lower crust and Moho at slow spreading ridges. The goal of Expedition 360 was to recover a representative transect of the lower oceanic crust formed at Atlantis Bank, an oceanic core complex on the SW Indian Ridge. We present here preliminary analysis of microbial communities sampled from Hole U1473A, drilled to 789.7 m below seafloor during Expedition 360. Sub-sampling of core sections was conducted in a newly designed plexiglass enclosure with positive air pressure and HEPA filtered air, providing a clean environment for microbiology sampling aboard the JOIDES Resolution. Adenosine triphosphoate, an indicator of microbial biomass, was quantified above detection in 23 of 66 samples analyzed. We measured exoenzyme activity for alkaline phosphatase (AP), leucine aminopeptidase and arginine aminopeptidase in 16 samples and found AP to be very low but above background for 14 of the samples, with highest activities measured between 10 and 70 m below seafloor (mbsf) and peaks again at 158 and 307 mbsf, while both peptidase enzymes were above detection for only one sample at 715 mbsf. Isolates of fungi obtained from core samples as well as analyses of lipid and DNA biomarkers, and Raman spectra for a few of our rock core samples provide initial insights into microbial communities in the lower oceanic crust. Finally, a new tracer of seawater and drilling mud contamination, perfluoromethyl decaline (PFMD), was tested for the first time and its performance compared with the commonly used tracer perfluoromethylcyclohexane (PMCH). PFMD was run during coring operations for ten samples and was routinely detected in the drilling fluids, usually detected on the outside of uncleaned cores, and rarely above detection on the cleaned outside of cores. It was below detection on the inside of cores, indicating penetration of drill fluids to the interior of whole round drill cores, where we collected our samples, is unlikely.