Sample records for core monsoon zone

  1. Regional Climate Model Performance in Simulating Intra-seasonal and Interannual Variability of Indian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Bhatla, R.; Ghosh, Soumik; Mall, R. K.; Sinha, P.; Sarkar, Abhijit

    2018-05-01

    Establishment of Indian summer monsoon (ISM) rainfall passes through the different phases and is not uniformly distributed over the Indian subcontinent. This enhancement and reduction in daily rainfall anomaly over the Indian core monsoon region during peak monsoon season (i.e., July and August) are commonly termed as `active' and `break' phases of monsoon. The purpose of this study is to analyze REGional Climate Model (RegCM) results obtained using the most suitable convective parameterization scheme (CPS) to determine active/break phases of ISM. The model-simulated daily outgoing longwave radiation (OLR), mean sea level pressure (MSLP), and the wind at 850 hPa of spatial resolution of 0.5°× 0.5° are compared with NOAA, NCEP, and EIN15 data, respectively over the South-Asia Co-Ordinated Regional Climate Downscaling EXperiment (CORDEX) region. 25 years (1986-2010) composites of OLR, MSLP, and the wind at 850 hPa are considered from start to the dates of active/break phase and up to the end dates of active/break spell of monsoon. A negative/positive anomaly of OLR with active/break phase is found in simulations with CPSs Emanuel and Mix99 (Grell over land; Emanuel over ocean) over the core monsoon region as well as over Monsoon Convergence Zone (MCZ) of India. The appearance of monsoon trough during active phase over the core monsoon zone and its shifting towards the Himalayan foothills during break phase are also depicted well. Because of multi-cloud function over oceanic region and single cloud function over the land mass, the Mix99 CPSs perform well in simulating the synoptic features during the phases of monsoon.

  2. The Asian Monsoon Links to Solar Changes and the Intertropical Convergence Zone and 1300 Years of Chinese Human Susceptibility

    NASA Astrophysics Data System (ADS)

    Yu, E.; Hsu, Y.; Lee, T.

    2011-12-01

    Here we present a new paleoclimatic record from a sediment core recovered in Lake Liyutan in central Taiwan over the last 1300 years. The age model is based on 2 AMS 14C dates. Adjustments of age were using the well-dated records from a near by lake sediment core. The Lake Liyutan sediments record the strength of the summer monsoon in two independent ways: (1) the magnetic parameters (ARM/χ, ARM, anhysteresis remenent magnetization; χ, Volume susceptibility) and magnetic susceptibility, and (2) total organic carbon content, organic C/N elemental ratio and δ13Corg of the sediments as a result of changes in different organic matter origins and terrigenous detritus dilution due to precipitation. All the proxy records are 10 to 30- year-resolution. Weaker summer monsoon phases reconstructed from the Lake Liyutan correlate with higher δ18O at Dongge and Hulu caves, which indicates lower summer precipitation rates. Moreover, it is interesting to find that the strong winter monsoon from the Lake Huguang Maar records show a synchronous relationship with weaker summer monsoon from the caves and the Lake Liyutan. From the coincidence in timing, these records were explained by migrations in the intertropical convergence zone. In addition, the weak Asian summer monsoon in the Lake Liyutan corresponds with lowering Northern Hemisphere summer insolation recorded at Dongge cave. Climate variations influenced the agricultural productivity, health risk, and conflict level of preindustrial societies. We note that, on the basis of our new lake record, major changes in Chinese dynasties occurred when the summer monsoon strength was weaker and rainfall was reduced. The Tang dynasty began to ebb in the eighth century, and it fully collapsed in AD907, then the dynastic transitions to the Five Dynasties and Ten Kingdoms period. The weak summer monsoon and reduced rainfall was indicated in the coincidence in timing of the sediment core LYT-3A from Lake Liyutan during 1100 - 1000BP. In the context of major events in the cultural history of China were fruitfully proven from the Lake Huguang Maar paleoclimate records and the Hulu cave records as well. In Taiwan, archaeological research found that early human settlement was the site of Tungpu Hamlet 1 (940~1171 BP) in the central Taiwan and Shihsan culture (500~1800 years BP) in the northern Taiwan during the period of time. Tungpu is currently one of only two surviving settlements of Bunun peoples still located within the territory.

  3. Indian monsoon variations during three contrasting climatic periods: The Holocene, Heinrich Stadial 2 and the last interglacial-glacial transition

    NASA Astrophysics Data System (ADS)

    Zorzi, Coralie; Sanchez Goñi, Maria Fernanda; Anupama, Krishnamurthy; Prasad, Srinivasan; Hanquiez, Vincent; Johnson, Joel; Giosan, Liviu

    2015-10-01

    In contrast to the East Asian and African monsoons the Indian monsoon is still poorly documented throughout the last climatic cycle (last 135,000 years). Pollen analysis from two marine sediment cores (NGHP-01-16A and NGHP-01-19B) collected from the offshore Godavari and Mahanadi basins, both located in the Core Monsoon Zone (CMZ) reveals changes in Indian summer monsoon variability and intensity during three contrasting climatic periods: the Holocene, the Heinrich Stadial (HS) 2 and the Marine Isotopic Stage (MIS) 5/4 during the ice sheet growth transition. During the first part of the Holocene between 11,300 and 4200 cal years BP, characterized by high insolation (minimum precession, maximum obliquity), the maximum extension of the coastal forest and mangrove reflects high monsoon rainfall. This climatic regime contrasts with that of the second phase of the Holocene, from 4200 cal years BP to the present, marked by the development of drier vegetation in a context of low insolation (maximum precession, minimum obliquity). The historical period in India is characterized by an alternation of strong and weak monsoon centennial phases that may reflect the Medieval Climate Anomaly and the Little Ice Age, respectively. During the HS 2, a period of low insolation and extensive iceberg discharge in the North Atlantic Ocean, vegetation was dominated by grassland and dry flora indicating pronounced aridity as the result of a weak Indian summer monsoon. The MIS 5/4 glaciation, also associated with low insolation but moderate freshwater fluxes, was characterized by a weaker reduction of the Indian summer monsoon and a decrease of seasonal contrast as recorded by the expansion of dry vegetation and the development of Artemisia, respectively. Our results support model predictions suggesting that insolation changes control the long term trend of the Indian monsoon precipitation, but its millennial scale variability and intensity are instead modulated by atmospheric teleconnections to remote phenomena in the North Atlantic, Eurasia or the Indian Ocean.

  4. Past, present, and future changes in marine biogeochemistry in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Six, Katharina; Segschneider, Joachim

    2014-05-01

    The work presented here aims at a better understanding of the Asian Monsoon system including the marine biogeochemistry in the Arabian Sea. Changes in the past as recorded in marine sediments, as simulated over the past 1000 years, and under forcing by anthropogenic CO2 emissions by numerical model simulations are investigated. The investigation is based on three columns: a sediment core taken in the Arabian Sea (core SO130-275KL taken off Pakistan), a pre-industrial model run from 850 - 1850 with the Max Planck Institute's Earth System Model (MPI-ESM) including the marine and terrestrial carbon cycle and forced by solar variations and volcanic eruptions, and a continuation of this simulation to 2005 under the historical anthropogenic CO2 forcing which allows a comparison with present day climatology. In a first step we compare model results for a set of biogeochemical tracers within the water column and the sediment mixed with observations in the Arabian Sea. We further analyse correlations between Monsoon forcing (represented by zonal wind speed at 850 hPA, short wave radiation, Indian summer precipitation) and biogeochemical parameters, with particular focus on denitrification rates and fluxes to the sediment. This analysis is focused on three regions: off Somalia and off Oman for the summer monsoon, and the central Arabian Sea for the winter monsoon. For the summer monsoon, the highest correlation is found between zonal wind speed and calcite flux to the sediment off Somalia, for the winter monsoon the correlation is highest for short wave radiation in the central Arabian Sea. Time series of mixed layer depth and integrated primary production within the upper 100 m of the ocean from a CMIP5 historical experiment (1850-2005) show, at the location of the sediment core SO130-275KL, little correlation during the summer monsoon, but good correlation during the winter monsoon. As a result, the sediment core is more likely to document winter monsoon conditions. Moreover, the model simulates denitrification in the oxygen minimum zones of the Indian Ocean as expected. More interesting, when comparing pre-industrial, present, and future states, it is shown that dentrification shows bipolar anomalies in the present state with a positive anomaly in the eastern Arabian Sea, and a negative anomaly in the western Arabian Sea. For 2100, when the model is forced by the RCP8.5 scenario, anomalies of denitrification are negative in the entire Arabian Sea.

  5. Magneto- and litho-stratigraphic records of the Oligocene-Early Miocene climatic changes from deep drilling in the Linxia Basin, Northeast Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wu, Fuli; Fang, Xiaomin; Meng, Qingquan; Zhao, Yan; Tang, Fenjun; Zhang, Tao; Zhang, Weilin; Zan, Jinbo

    2017-11-01

    The East Asian monsoon is generally regarded to have initiated at the transition from the Late Oligocene to the Early Miocene. However, little is known about this process because of a lack of continuous strata across the boundary between the Late Oligocene and the Early Miocene in Asia. Based on previous drilling (core HZ-1) in the Miocene sediments in the southern Linxia Basin in NW China, we drilled a new 620 m core (HZ-2) into the Late Oligocene strata and obtained 206 m of continuous new core. The detailed paleomagnetism of the new core reveals eleven pairs of normal and reversed polarity zones that can be readily correlated with chrons 6Bn-9n of the geomagnetic polarity time scale (GPTS), define an age interval of 21.6-26.5 Ma and indicate continuity from the Late Oligocene to Early Miocene. The core is characterized by the remarkable occurrence of brownish-red paleosols of luvic cambisols (brown to luvic drab soils) above reddish-brown floodplain siltstones and mudstones, which suggest that the East Asian monsoon likely began by 26.5 Ma. In contrast to the siltstone and mudstone of the Late Oligocene strata, the Miocene strata begin with a thick fine sandstone bed, which marks sudden increases in erosion and loading that most likely reflect a response to tectonic uplift. The hematite content and redness index records of the core further demonstrate that the monsoonal climate in the Late Oligocene to Early Miocene in this area was mainly controlled by global temperature trends and events.

  6. An overview of dry-wet climate variability among monsoon-westerly regions and the monsoon northernmost marginal active zone in China

    NASA Astrophysics Data System (ADS)

    Qian, Weihong; Ding, Ting; Hu, Haoran; Lin, Xiang; Qin, Aimin

    2009-07-01

    Climate in mainland China can be divided into the monsoon region in the southeast and the westerly region in the northwest as well as the intercross zone, i.e., the monsoon northernmost marginal active zone that is oriented from Southwest China to the upper Yellow River, North China, and Northeast China. In the three regions, dry-wet climate changes are directly linked to the interaction of the southerly monsoon flow on the east side of the Tibetan Plateau and the westerly flow on the north side of the Plateau from the inter-annual to inter-decadal timescales. Some basic features of climate variability in the three regions for the last half century and the historical hundreds of years are reviewed in this paper. In the last half century, an increasing trend of summer precipitation associated with the enhancing westerly flow is found in the westerly region from Xinjiang to northern parts of North China and Northeast China. On the other hand, an increasing trend of summer precipitation along the Yangtze River and a decreasing trend of summer precipitation along the monsoon northernmost marginal active zone are associated with the weakening monsoon flow in East Asia. Historical documents are widely distributed in the monsoon region for hundreds of years and natural climate proxies are constructed in the non-monsoon region, while two types of climate proxies can be commonly found over the monsoon northernmost marginal active zone. In the monsoon region, dry-wet variation centers are altered among North China, the lower Yangtze River, and South China from one century to another. Dry or wet anomalies are firstly observed along the monsoon northernmost marginal active zone and shifted southward or southeastward to the Yangtze River valley and South China in about a 70-year timescale. Severe drought events are experienced along the monsoon northernmost marginal active zone during the last 5 centuries. Inter-decadal dry-wet variations are depicted by natural proxies for the last 4-5 centuries in several areas over the non-monsoon region. Some questions, such as the impact of global warming on dry-wet regime changes in China, complex interactions between the monsoon and westerly flows in Northeast China, and the integrated multi-proxy analysis throughout all of China, are proposed.

  7. Monsoon control on faunal composition of planktic foraminifera in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Munz, P.; Siccha, M.; Kucera, M.; Schulz, H.

    2013-12-01

    Being among the most productive open ocean basins, sea surface properties in the Arabian Sea are highly influenced by the seasonal reversal of the monsoonal wind system. During boreal summer wind direction from the southwest induces strong upwelling along the coast off Somalia and Oman. Vertical transport of cold and nutrient-rich deep-water masses by Ekman pumping reduces sea surface temperature and triggers primary productivity. Reversed cold and dry winds during boreal winter lead to cooling of the surface- and subsurface-waters and hereby to deep convective mixing, bringing nutrients into the photic zone and enhancing primary productivity especially in the northern part of the Arabian Sea. Here, we study the influence of the different seasonal monsoon systems on the faunal composition of planktic foraminifera, in order to improve our understanding how the faunal community record is influenced by the respective monsoon systems and to provide baseline information for the reconstruction of ancient monsoon conditions. We used published core-top foraminiferal databases, significantly increased in spatial coverage by new contributions. The resulting combined database consists of 413 core-top samples spanning the Arabian Sea and the Northern Indian Ocean to 10° S. The seasonal sea surface properties at these stations could be binned into categories of different monsoon influence, based on satellite-derived chlorophyll-a concentrations. Interpretation of species response to environmental control is based on multivariate statistical analyses of each of the categorical bins. First results show that samples influenced only by winter- and summer monsoon conditions, respectively, feature specifiable faunal composition. Globigerina bulloides is mostly associated with summer upwelling conditions, whereas Globigerina falconensis and Pulleniatina obliquiloculata are typical species of winter conditions. Redundancy analysis reveals preferences of species populations with respect to particular environmental gradients and may help to disentangle winter- from summer monsoon impact on modern and fossil faunas.

  8. Controlling weathering and erosion intensity on the southern slope of the Central Himalaya by the Indian summer monsoon during the last glacial

    NASA Astrophysics Data System (ADS)

    Kuwahara, Yoshihiro; Masudome, Yukiko; Paudel, Mukunda Raj; Fujii, Rie; Hayashi, Tatsuya; Mampuku, Mami; Sakai, Harutaka

    2010-03-01

    This paper reports the results of clay mineral analysis (the amount of clay fraction, clay mineral assemblages, illite crystallinity) of samples collected from a drilled core (Rabibhawan (RB) core) located in the west-central part of the Kathmandu Basin on the southern slope of the Central Himalaya. The amount of clay fraction in the core sediments between 12 m and 45 m depth (corresponding to ca. 17-76 ka), which belong to the Kalimati Formation, is variable and shows three clay-poor zones (19-31 ka, 44-51 ka, and 66-75 ka). The variations correspond with those of illite crystallinity index (Lanson index (LI) and modified Lanson index (MLI)) and kaolinite/illite ratio as well as the fossil pollen and diatom records reported by previous workers. These data reveal the following transformations occurring during the weathering process in this area: micas(mainlymuscovite)→illite(→illite-smectitemixedlayermineral(R=1))→kaolinite The sedimentation rate (~ 50 cm/kyr) of clay-poor zones that correspond to dry climate intervals is only half that of clay-rich zones (~ 120 cm/kyr) that correspond to wet climate intervals, indicating weakened chemical weathering and erosion and low suspended discharge during dry climate intervals. The clay-poor zones commonly show unique laminite beds with very fine, authigenic calcite, which was probably precipitated under calm and high calcite concentration conditions caused by low precipitation and run-off. The variations between dry and wet conditions in this area as deduced from clay minerals appear to follow the Indian Summer Monsoon Index (ISMI) (30°N-30°S, 1 July) and northern hemisphere summer insolation (NHSI) signals (30°N) at 1 July, especially during the dry climate zones, whereas the wet maxima of the wet climate zones somewhat deviate from the strongest NHSI. On the other hand, the dry-wet records lead markedly the SPECMAP stack (by about 5000 years). These results suggest that the Indian summer monsoon precipitation was strongly controlled by the NHSI or summer insolation difference between the Himalayan-Tibetan Plateau and the subtropical Indian Ocean, showing a major fluctuation on the 23,000 years precessional cycle, and that it was not driven by changes in high-latitude ice volume, although the records of clay mineral indices during the wet intervals leave a question that other factors, in addition to insolation forcing, may play important roles in weathering, erosion, and sedimentation processes.

  9. Indian monsoon variations during three contrasting climatic periods: the Holocene, Heinrich Stadial 2 and the last interglacial-glacial transition

    NASA Astrophysics Data System (ADS)

    Zorzi, Coralie; Fernanda Sanchez Goñi, Maria; Anupama, Krishnamurthy; Prasad, Srinivasan; Hanquiez, Vincent; Johnson, Joel; Giosan, Liviu

    2016-04-01

    In contrast to the East Asian and African monsoons the Indian monsoon is still poorly documented throughout the last climatic cycle (last 135,000 years). Pollen analysis from two marine sediment cores (NGHP-01-16A and NGHP-01-19B) collected from the offshore Godavari and Mahanadi basins, both located in the Core Monsoon Zone (CMZ) reveals changes in Indian summer monsoon variability and intensity during three contrasting climatic periods: the Holocene, the Heinrich Stadial (HS) 2 and the Marine Isotopic Stage (MIS) 5/4 during the ice sheet growth transition. During the first part of the Holocene between 11,300 and 4,200 cal years BP, characterized by high insolation (minimum precession, maximum obliquity), the maximum extension of the coastal forest and mangrove reflects high monsoon rainfall. This climatic regime contrasts with that of the second phase of the Holocene, from 4,200 cal years BP to the present, marked by the development of drier vegetation in a context of low insolation (maximum precession, minimum obliquity). The historical period in India is characterized by an alternation of strong and weak monsoon centennial phases that may reflect the Medieval Climate Anomaly and the Little Ice Age, respectively. During the HS 2, a period of low insolation and extensive iceberg discharge in the North Atlantic Ocean, vegetation was dominated by grassland and dry flora indicating pronounced aridity as the result of a weak Indian summer monsoon. The MIS 5/4 glaciation, also associated with low insolation but moderate freshwater fluxes, was characterized by a weaker reduction of the Indian summer monsoon and a decrease of seasonal contrast as recorded by the expansion of dry vegetation and the development of Artemisia, respectively. Our results support model predictions suggesting that insolation changes control the long term trend of the Indian monsoon precipitation, but its millennial scale variability and intensity are instead modulated by atmospheric teleconnections to remote phenomena in the North Atlantic, Eurasia or the Indian Ocean.

  10. Late Holocene SST and primary productivity variations in the northeastern Arabian Sea as a recorder for winter monsoon variability

    NASA Astrophysics Data System (ADS)

    Böll, Anna; Gaye, Birgit; Lückge, Andreas

    2014-05-01

    Variability in the oceanic environment of the Arabian Sea region is strongly influenced by the seasonal monsoon cycle of alternating wind directions. Strong south-westerly winds during the summer monsoon induce upwelling of nutrient rich waters along the coast off Somalia, Oman and southwest India, which result in high rates of primary production. In the northeastern Arabian Sea off Pakistan on the other hand, primary production and sea surface temperatures are linked to northeast monsoonal winds that cool the sea surface and drive convective mixing and high surface ocean productivity during the winter season. In this study, we analyzed alkenone-derived sea surface temperature (SST) variations and proxies of primary productivity (organic carbon and δ15N) in a well-laminated sediment core from the Pakistan continental margin to establish the first high-resolution record of winter monsoon variability for the late Holocene. Over the last 2400 years reconstructed SST in the northeastern Arabian Sea decreased whereas productivity increased, imaging a long-term trend of northeast monsoon strengthening in response to insolation-induced southward migration of the Intertropical Convergence Zone. The comparison of our winter monsoon record with records of summer monsoon intensity suggests that summer and winter monsoon strength was essentially anti-correlated over the late Holocene throughout the Asian monsoon system. In addition, SST variations recorded off Pakistan match very well with Northern Hemisphere temperature records supporting the growing body of evidence that Asian climate is linked to Northern Hemisphere climate change. It reveals a consistent pattern of increased summer monsoon activity in the northeastern Arabian Sea during northern hemispheric warm periods (Medieval Warm Period, Roman Warm Period) and strengthened winter monsoon activity during hemispheric colder periods (Little Ice Age).

  11. Role of Oceanic and Terrestrial Atmospheric Moisture Sources in Intraseasonal Variability of Indian Summer Monsoon Rainfall.

    PubMed

    Pathak, Amey; Ghosh, Subimal; Kumar, Praveen; Murtugudde, Raghu

    2017-10-06

    Summer Monsoon Rainfall over the Indian subcontinent displays a prominent variability at intraseasonal timescales with 10-60 day periods of high and low rainfall, known as active and break periods, respectively. Here, we study moisture transport from the oceanic and terrestrial sources to the Indian landmass at intraseasonal timescales using a dynamic recycling model, based on a Lagrangian trajectory approach applied to the ECMWF-ERA-interim reanalysis data. Intraseasonal variation of monsoon rainfall is associated with both a north-south pattern from the Indian landmass to the Indian Ocean and an east-west pattern from the Core Monsoon Zone (CMZ) to eastern India. We find that the oceanic sources of moisture, namely western and central Indian Oceans (WIO and CIO) contribute to the former, while the major terrestrial source, Ganga basin (GB) contributes to the latter. The formation of the monsoon trough over Indo-Gangetic plain during the active periods results in a high moisture transport from the Bay of Bengal and GB into the CMZ in addition to the existing southwesterly jet from WIO and CIO. Our results indicate the need for the correct representation of both oceanic and terrestrial sources of moisture in models for simulating the intraseasonal variability of the monsoon.

  12. Behavior of predicted convective clouds and precipitation in the high-resolution Unified Model over the Indian summer monsoon region

    NASA Astrophysics Data System (ADS)

    Jayakumar, A.; Sethunadh, Jisesh; Rakhi, R.; Arulalan, T.; Mohandas, Saji; Iyengar, Gopal R.; Rajagopal, E. N.

    2017-05-01

    National Centre for Medium Range Weather Forecasting high-resolution regional convective-scale Unified Model with latest tropical science settings is used to evaluate vertical structure of cloud and precipitation over two prominent monsoon regions: Western Ghats (WG) and Monsoon Core Zone (MCZ). Model radar reflectivity generated using Cloud Feedback Model Intercomparison Project Observation Simulator Package along with CloudSat profiling radar reflectivity is sampled for an active synoptic situation based on a new method using Budyko's index of turbulence (BT). Regime classification based on BT-precipitation relationship is more predominant during the active monsoon period when convective-scale model's resolution increases from 4 km to 1.5 km. Model predicted precipitation and vertical distribution of hydrometeors are found to be generally in agreement with Global Precipitation Measurement products and BT-based CloudSat observation, respectively. Frequency of occurrence of radar reflectivity from model implies that the low-level clouds below freezing level is underestimated compared to the observations over both regions. In addition, high-level clouds in the model predictions are much lesser over WG than MCZ.

  13. On the relationship between the Indian summer monsoon rainfall and the EQUINOO in the CFSv2

    NASA Astrophysics Data System (ADS)

    Vishnu, S.; Francis, P. A.; Ramakrishna, S. S. V. S.; Shenoi, S. S. C.

    2018-03-01

    Several recent studies have shown that positive (negative) phase of Equatorial Indian Ocean Oscillation (EQUINOO) is favourable (unfavourable) to the Indian summer monsoon. However, many ocean-atmosphere global coupled models, including the state-of-the-art Climate Forecast System (CFS) version 2 have difficulty in reproducing this link realistically. In this study, we analyze the retrospective forecasts by the CFS model for the period 1982-2010 with an objective to identify the reasons behind the failure of the model to simulate the observed links between Indian summer monsoon and EQUINOO. It is found that, in the model hindcasts, the rainfall in the core monsoon region was mainly due to westward propagating synoptic scale systems, that originated from the vicinity of the tropical convergence zone (TCZ). Our analysis shows that unlike in observations, in the CFS, majority of positive (negative) EQUINOO events are associated with El Niño (La Niña) events in the Pacific. In addition to this, there is a strong link between EQUINOO and Indian Ocean Dipole (IOD) in the model. We show that, during the negative phase of EQUINOO/IOD, northward propagating TCZs remained stationary over the Bay of Bengal for longer period compared to the positive phase of EQUINOO/IOD. As a result, compared to the positive phase of EQUINOO/IOD, during a negative phase of EQUINOO/IOD, more westward propagating synoptic scale systems originated from the vicinity of TCZ and moved on to the core monsoon region, which resulted in higher rainfall over this region in the CFS. We further show that frequent, though short-lived, westward propagating systems, generated near the vicinity of TCZ over the Bay moved onto the mainland were responsible for less number of break monsoon spells during the negative phase of EQUINOO/IOD in the model hindcasts. This study underlines the necessity for improving the skill of the coupled models, particularly CFS model, to simulate the links between EQUINOO/IOD and the Indian summer monsoon for reliable predictions of seasonal and intraseasonal variation of Indian summer monsoon rainfall.

  14. Holocene moisture variations over the arid central Asia revealed by a comprehensive sand-dune record from the central Tian Shan, NW China

    NASA Astrophysics Data System (ADS)

    Long, Hao; Shen, Ji; Chen, Jianhui; Tsukamoto, Sumiko; Yang, Linhai; Cheng, Hongyi; Frechen, Manfred

    2017-10-01

    Arid central Asia (ACA) is one of the largest arid (desert) areas in the world, and its climate is dominated by the westerlies. In this study, we examined sand dune evolution from the Bayanbulak Basin in the Tian Shan (Xinjiang, NW China), aiming to infer the Holocene moisture history of the ACA. Combined with stratigraphic observation and environmental proxies analysis (grain size, magnetic susceptibility and total organic content), large numbers of luminescence ages from multiple sites (eight sections, 79 samples) were applied to reconstruct the evolution of the sand dune accumulation in the study basin. The overall results imply very dry conditions characterized by sand dune accumulation at ∼12-6.5 ka, a wet interval between ∼6.5 and 0.8 ka when soil formation occurred, and decreased moisture during the last 0.8 ka. This moisture variation pattern is generally consistent with that inferred from many lacustrine records in the core zone of ACA, suggesting a widespread dry period in the early-to-middle Holocene and relatively wet middle-to-late Holocene. Thus, the moisture history derived from the current sand dune system contrasts with that in Asian monsoon areas, which are characterized by a strong monsoon (high precipitation) in the early and mid-Holocene and a weak monsoon (low precipitation and dry climate) during the late Holocene. Our results strongly suggest that the winter solar insolation and the external boundary conditions such as atmospheric CO2 concentration, ice sheets, and meltwater fluxes, have been major influential factors triggering the Holocene moisture evolution in the core zone of ACA.

  15. The abrupt onset of the modern South Asian Monsoon winds.

    PubMed

    Betzler, Christian; Eberli, Gregor P; Kroon, Dick; Wright, James D; Swart, Peter K; Nath, Bejugam Nagender; Alvarez-Zarikian, Carlos A; Alonso-García, Montserrat; Bialik, Or M; Blättler, Clara L; Guo, Junhua Adam; Haffen, Sébastien; Horozal, Senay; Inoue, Mayuri; Jovane, Luigi; Lanci, Luca; Laya, Juan Carlos; Mee, Anna Ling Hui; Lüdmann, Thomas; Nakakuni, Masatoshi; Niino, Kaoru; Petruny, Loren M; Pratiwi, Santi D; Reijmer, John J G; Reolid, Jesús; Slagle, Angela L; Sloss, Craig R; Su, Xiang; Yao, Zhengquan; Young, Jeremy R

    2016-07-20

    The South Asian Monson (SAM) is one of the most intense climatic elements yet its initiation and variations are not well established. Dating the deposits of SAM wind-driven currents in IODP cores from the Maldives yields an age of 12. 9 Ma indicating an abrupt SAM onset, over a short period of 300 kyrs. This coincided with the Indian Ocean Oxygen Minimum Zone expansion as revealed by geochemical tracers and the onset of upwelling reflected by the sediment's content of particulate organic matter. A weaker 'proto-monsoon' existed between 12.9 and 25 Ma, as mirrored by the sedimentary signature of dust influx. Abrupt SAM initiation favors a strong influence of climate in addition to the tectonic control, and we propose that the post Miocene Climate Optimum cooling, together with increased continentalization and establishment of the bipolar ocean circulation, i.e. the beginning of the modern world, shifted the monsoon over a threshold towards the modern system.

  16. Seasonal variations in the sources of natural and anthropogenic lead deposited at the East Rongbuk Glacier in the high-altitude Himalayas.

    PubMed

    Burn-Nunes, Laurie; Vallelonga, Paul; Lee, Khanghyun; Hong, Sungmin; Burton, Graeme; Hou, Shugui; Moy, Andrew; Edwards, Ross; Loss, Robert; Rosman, Kevin

    2014-07-15

    Lead (Pb) isotopic compositions and concentrations, and barium (Ba) and indium (In) concentrations have been analysed at sub-annual resolution in three sections from a <110 m ice core dated to the 18th and 20th centuries, as well as snow pit samples dated to 2004/2005, recovered from the East Rongbuk Glacier in the high-altitude Himalayas. Ice core sections indicate that atmospheric chemistry prior to ~1,953 was controlled by mineral dust inputs, with no discernible volcanic or anthropogenic contributions. Eighteenth century monsoon ice core chemistry is indicative of dominant contributions from local Himalayan sources; non-monsoon ice core chemistry is linked to contributions from local (Himalayan), regional (Indian/Thar Desert) and long-range (North Africa, Central Asia) sources. Twentieth century monsoon and non-monsoon ice core data demonstrate similar seasonal sources of mineral dust, however with a transition to less-radiogenic isotopic signatures that suggests local and regional climate/environmental change. The snow pit record demonstrates natural and anthropogenic contributions during both seasons, with increased anthropogenic influence during non-monsoon times. Monsoon anthropogenic inputs are most likely sourced to South/South-East Asia and/or India, whereas non-monsoon anthropogenic inputs are most likely sourced to India and Central Asia. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Coherent tropical-subtropical Holocene see-saw moisture patterns in the Eastern Hemisphere monsoon systems

    NASA Astrophysics Data System (ADS)

    Wang, Yongbo; Bekeschus, Benjamin; Handorf, Dörthe; Liu, Xingqi; Dallmeyer, Anne; Herzschuh, Ulrike

    2017-08-01

    The concept of a Global Monsoon (GM) has been proposed based on modern precipitation observations, but its application over a wide range of temporal scales is still under debate. Here, we present a synthesis of 268 continental paleo-moisture records collected from monsoonal systems in the Eastern Hemisphere, including the East Asian Monsoon (EAsM), the Indian Monsoon (IM), the East African Monsoon (EAfM), and the Australian Monsoon (AuM) covering the last 18,000 years. The overall pattern of late Glacial to Holocene moisture change is consistent with those inferred from ice cores and marine records. With respect to the last 10,000 years (10 ka), i.e. a period that has high spatial coverage, a Fuzzy c-Means clustering analysis of the moisture index records together with ;Xie-Beni; index reveals four clusters of our data set. The paleoclimatic meaning of each cluster is interpreted considering the temporal evolution and spatial distribution patterns. The major trend in the tropical AuM, EAfM, and IM regions is a gradual decrease in moisture conditions since the early Holocene. Moisture changes in the EAsM regions show maximum index values between 8 and 6 ka. However, records located in nearby subtropical areas, i.e. in regions not influenced by the intertropical convergence zone, show an opposite trend compared to the tropical monsoon regions (AuM, EAfM and IM), i.e. a gradual increase. Analyses of modern meteorological data reveal the same spatial patterns as in the paleoclimate records such that, in times of overall monsoon strengthening, lower precipitation rates are observed in the nearby subtropical areas. We explain this pattern as the effect of a strong monsoon circulation suppressing air uplift in nearby subtropical areas, and hence hindering precipitation. By analogy to the modern system, this would mean that during the early Holocene strong monsoon period, the intensified ascending airflows within the monsoon domains led to relatively weaker ascending or even descending airflows in the adjacent subtropical regions, resulting in a precipitation deficit compared to the late Holocene. Our conceptual model therefore integrates regionally contrasting moisture changes into the Global Monsoon hypothesis.

  18. Two Millennia of South Atlantic Convergence Zone Variability Reconstructed From Isotopic Proxies

    NASA Astrophysics Data System (ADS)

    Novello, V. F.; Cruz, F. W.; Moquet, J. S.; Vuille, M.; de Paula, M. S.; Nunes, D.; Edwards, R. L.; Cheng, H.; Karmann, I.; Utida, G.; Stríkis, N. M.; Campos, J. L. P. S.

    2018-05-01

    Most reconstructions of the South American Monsoon System (SAMS) over the last two millennia are based on δ18O records from locations at high-elevation sites in the Andes, which are not influenced by the South Atlantic Convergence Zone (SACZ). Yet the SACZ is a key driver of SAMS variability over much of Brazil. Here we use two new δ18O records from speleothems sampled in the central and southwestern portions of the SACZ core to show that the SAMS was not varying in phase over the entire tropical continent during the last two millennia. In fact, speleothem records located to the northeast of the SACZ record precipitation variations that are antiphased with similar records on the opposite side of the SACZ, in particular during the Little Ice Age period, while records close to the core of the SACZ axis show no significant departure from the mean state during this period.

  19. Influence of strong monsoon winds on the water quality around a marine cage-culture zone in a shallow and semi-enclosed bay in Taiwan.

    PubMed

    Huang, Yuan-Chao Angelo; Huang, Shou-Chung; Meng, Pei-Jie; Hsieh, Hernyi Justin; Chen, Chaolun Allen

    2012-04-01

    Influences of marine cage culture and monsoonal disturbances, northeasterly (NE) and southwesterly (SW) monsoons on the proximal marine environment were investigated across a gradient of sites in a semi-enclosed bay, Magong Bay (Penghu Islands, Taiwan). Elevated levels of ammonia produced by the cages were the main pollutant and distinguished the cage-culture and intermediary zones (1000 m away from the cages) from the reference zone in the NE monsoon, indicating currents produced by the strong monsoon may have extended the spread of nutrient-enriched waters without necessarily flushing such effluents outside Magong Bay. Moreover, the levels of chlorophyll-a, dissolved oxygen, and turbidity were distinguishable between two seasons, suggesting that resuspension caused by the NE monsoon winds may also influence the water quality across this bay. It indicated that the impacts of marine cage culture vary as a function of distance, and also in response to seasonal movements of water driven by local climatic occurrences. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Centennial-scale solar forcing of the South American Monsoon System recorded in stalagmites.

    PubMed

    Novello, Valdir F; Vuille, Mathias; Cruz, Francisco W; Stríkis, Nicolás M; de Paula, Marcos Saito; Edwards, R Lawrence; Cheng, Hai; Karmann, Ivo; Jaqueto, Plínio F; Trindade, Ricardo I F; Hartmann, Gelvam A; Moquet, Jean S

    2016-04-21

    The South American Monsoon System (SAMS) is generally considered to be highly sensitive to Northern Hemisphere (NH) temperature variations on multi-centennial timescales. The direct influence of solar forcing on moisture convergence in global monsoon systems on the other hand, while well explored in modeling studies, has hitherto not been documented in proxy data from the SAMS region. Hence little is known about the sensitivity of the SAMS to solar forcing over the past millennium and how it might compete or constructively interfere with NH temperature variations that occurred primarily in response to volcanic forcing. Here we present a new annually-resolved oxygen isotope record from a 1500-year long stalagmite recording past changes in precipitation in the hitherto unsampled core region of the SAMS. This record details how solar variability consistently modulated the strength of the SAMS on centennial time scales during the past 1500 years. Solar forcing, besides the previously recognized influence from NH temperature changes and associated Intertropical Convergence Zone (ITCZ) shifts, appears as a major driver affecting SAMS intensity at centennial time scales.

  1. Controls on the East Asian monsoon during the last glacial cycle, based on comparison between Hulu Cave and polar ice-core records

    NASA Astrophysics Data System (ADS)

    Rohling, E. J.; Liu, Q. S.; Roberts, A. P.; Stanford, J. D.; Rasmussen, S. O.; Langen, P. L.; Siddall, M.

    2009-12-01

    Previous studies have suggested a sound chronological correlation between the Hulu Cave record (East Asian monsoon) and Greenland ice-core records, which implies a dominant control of northern hemisphere climate processes on monsoon intensity. We present an objective, straightforward statistical evaluation that challenges this generally accepted paradigm for sub-orbital variability. We propose a more flexible, global interpretation, which takes into account a broad range of variability in the signal structures in the Hulu Cave and polar ice-core records, rather than a limited number of major transitions. Our analysis employs the layer-counted Greenland Ice-Core Chronology 2005 (GICC05), which was developed for Greenland records and has since been applied - via methane synchronisation - to the high-resolution δ 18O ice series from EPICA Dronning Maud Land (EDML). The GICC05 chronology allows these ice-core records to be compared to the U-Th dated Hulu Cave record within relatively narrow (˜3%) bounds of age uncertainty. Following previous suggestions, our proposed interpretation suggests that the East Asian monsoon is influenced by a combination of northern hemisphere 'pull' (which is more intense during boreal warm periods), and southern hemisphere 'push' (which is more intense monsoon during austral cold periods). Our analysis strongly suggests a dominant control on millennial-scale monsoon variability by southern hemisphere climate changes during glacial times when the monsoon is weak overall, and control by northern hemisphere climate changes during deglacial and interglacial times when the monsoon is strong. The deduced temporally variable relationship with southern hemisphere climate records offers a statistically more plausible reason for the apparent coincidence of major East Asian monsoon transitions with northern hemisphere (Dansgaard-Oeschger, DO) climate events during glacial times, than the traditional a priori interpretation of strict northern hemisphere control.

  2. ITCZ and ENSO pacing on East Asian winter monsoon variation during the Holocene: Sedimentological evidence from the Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Zheng, Xufeng; Li, Anchun; Wan, Shiming; Jiang, Fuqing; Kao, Shuh Ji; Johnson, Cody

    2014-07-01

    Deep-sea fan sediments provide an excellent geological archive for paleoenvironment reconstruction. Grain size, clay mineral and elemental (Ti, Fe, Ca) compositions were measured for a core retrieved from a submarine fan in the Okinawa Trough. Varimax-rotated Principal Component Analysis (V-PCA) on time-evolution of grain size spectrum reveals that, since the Holocene, sediment was transported mainly by the benthic nepheloid layer (33%) and upper layers (33%) which is driven by the East Asian winter monsoon (EAWM). The intensification of the Kuroshio Current during the Holocene, masks the fluvial signal of the summer monsoon and obstructs clay minerals derived from the Yellow River, a major contributor prior to 12 ka BP. A new grain size index (GSI), which represents the EAWM well, exhibits a negative correlation with the δ18O record in Dongge Cave, China during the Holocene when sea level was relatively steady. This anticorrelation suggests the southward migration of the Intertropical Convergence Zone (ITCZ). The consistency among our records and rainfall records in Peru, Ti counts in the Cariaco Basin, monsoon records in Oman and the averaged summer insolation pattern at 30°N further support the ITCZ's impact on monsoon systems globally. Cross-Correlation Analyses for GSI and log(Ti/Ca) against δ18O record in Dongge Cave reveal a decoupling between the East Asian winter and summer monsoon during 5500-2500 cal yr BP, with greater complexity in the last 2500 years. This can be attributed to exacerbated ENSO mode fluctuations and possibly anthropogenic interference superimposed on insolation and ITCZ forcing.

  3. ITCZ and ENSO pacing on East Asian winter monsoon variation during the Holocene: Sedimentological evidence from the Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Zheng, Xufeng; Li, Anchun; Wan, Shiming; Kao, Shuhji; Kuhn, Gerhard

    2016-04-01

    Deep-sea fan sediments provide an excellent geological archive for paleoenvironment reconstruction. Grain size, clay mineral and elemental (Ti, Fe, Ca) compositions were measured for a core retrieved from a submarine fan in the Okinawa Trough. Varimax-rotated Principal Component Analysis (V-PCA) on time-evolution of grain size spectrum reveals that, since the Holocene, sediment was transported mainly by the benthic nepheloid layer (33%) and upper layers (33%) which is driven by the East Asian winter monsoon (EAWM). The intensification of the Kuroshio Current during the Holocene, masks the fluvial signal of the summer monsoon and obstructs clay minerals derived from the Yellow River, a major contributor prior to 12 ka BP. A new grain size index (GSI), which represents the EAWM well, exhibits a negative correlation with the δ18O record in Dongge Cave, China during the Holocene when sea level was relatively steady. This anticorrelation suggests the southward migration of the Intertropical Convergence Zone (ITCZ). The consistency among our records and rainfall records in Peru, Ti counts in the Cariaco Basin, monsoon records in Oman and the averaged summer insolation pattern at 30°N further support the ITCZ's impact on monsoon systems globally. Cross-Correlation Analyses for GSI and log(Ti/Ca) against δ18O record in Dongge Cave reveal a decoupling between the East Asian winter and summer monsoon during 5500-2500 cal yr BP, with greater complexity in the last 2500 years. This can be attributed to exacerbated ENSO mode fluctuations and possibly anthropogenic interference superimposed on insolation and ITCZ forcing.

  4. Hydrological Cycle in the Western Equatorial Warm Pool over the Past 220 k years

    NASA Astrophysics Data System (ADS)

    Tachikawa, K.; Cartapanis, O.; Vidal, L.; Beaufort, L.; Bard, E.

    2008-12-01

    The Western Pacific Warm Pool is a major source of heat and moisture to extra-tropical regions, and its condition could have great impact on global climate response to various forcing factors. We reconstructed the rainfall pattern over Papua New Guinea (PNG) for the past 220 kyr using terrigenous elemental contents (Ti, Fe, K and Si) and calcareous productivity (Ca) recorded in a marine sediment core MD05-2920 (2°51.48S, 144°32.04E) from 100 km off the Sepik River mouth in Northern PNG. The core chronostratigraphy is established by 14C dating and benthic foraminiferal oxygen isotopes. The Sepik and Ramu river system forms one of the highest sediment discharge zones in the world because of high rainfall rates, warm and humid climate, steep topography and erodible volcanic rocks in the draining basin. At present, the rainfall over this area is under the influence of both Asia-Australian monsoon and El Niño Southern Oscillation (ENSO). The results obtained by an XRF core scanner indicate that for the whole record major sediment components are of terrigenous river-born nature and biogenic CaCO3. Spectral analysis reveals that dominant peaks for Ti are precession and obliquity periods whereas Ca variability is rather dominated by obliquity. The wet periods appear during maximum local insolation, which is in phase with minimum East Asian summer monsoon strength recorded by Chinese speleothems. Modeled past ENSO activity cannot explain the reconstructed rainfall and productivity patterns. Taken together, the fresh water cycle over New Guinea is better explained by latitudinal shifts of the Intertropical Convergence Zone rather than ENSO-type variability on orbital time scales. The variability of calcareous productivity is likely related to general changes in nutricline depth of the tropical Pacific band.

  5. Seasonal variation of hydrographic and nutrient fields during the US JGOFS Arabian Sea Process Study

    NASA Astrophysics Data System (ADS)

    Morrison, J. M.; Codispoti, L. A.; Gaurin, S.; Jones, B.; Manghnani, V.; Zheng, Z.

    Between September 1994 and December 1995, the US JGOFS Arabian Sea Process Experiment collected extensive, high quality hydrographic data (temperature, salinity, dissolved oxygen and nutrients) during all seasons in the northern Arabian Sea. An analysis of this unique data suite suggests the presence of many features that are described in the canonical literature, but these new data provided the following insights. Although the seasonal evolution of mixed-layer depths was in general agreement with previous descriptions, the deepest mixed-layer depths in our data occurred during the late NE Monsoon instead of the SW Monsoon. The region exhibits considerable mesoscale variability resulting in extremely variable temperature-salinity (TS) distributions in the upper 1000 db. This mesoscale variability is readily observed in satellite imaging, in the high resolution data taken by a companion ONR funded project, and in underway ADCP data. The densest water reaching the sea surface during coastal upwelling appeared to have maximum offshore depths of ˜150 m and σθ's close to the core value (˜25) for the saline Arabian Sea Water (ASW), but salinities in these upwelling waters were relatively low. The densest water found at the sea surface during late NE Monsoon conditions has σθ's>24.8 and relatively high salinities, suggesting that they are a source for the ASW salinity maximum. Persian Gulf Water (PGW) with a core σθ of 26.6 forms a widespread salinity maximum. Despite the considerable extent of this feature, Persian Gulf outflow water, with a salinity (4) of ˜39 at its source, can only be a minor contributor. Within the standard US JGOFS sampling grid, maximum salinities on this surface are ˜36.8 at stations near the Gulf, falling to values as low as ˜35.3 at the stations farthest removed from its influence. Even at our standard stations closest to the Gulf (N-1 and N-2), the high-salinity, low-nutrient Persian Gulf water has only a modest direct effect on nutrient concentrations. This PGW salinity maximum is associated with the suboxic portions of the Arabian Sea's oxygen minimum zone. The salinity maximum associated with Red Sea Water (RSW, core σθ=27.2) in the JGOFS study region is clearly evident at the southermost sampling site at 10'N (S-15). Elsewhere, this signal is weak or absent and salinity on the 27.2 σθ surface tends to increase towards the Persian Gulf, suggesting that the disappearance of this salinity maximum is due, at least in part, to the influence of the Persian Gulf outflow. Inorganic nitrogen-to-phosphate ratios were lower (frequently much lower) than the standard Redfield ratio of 15/1-16/1 (by atoms) at all times and all depths suggesting that inorganic nitrogen was more important than phosphate as a limiting nutrient for phytoplankton growth, and that the effects of denitrification dominated the effects of nitrogen fixation. The water upwelling off the Omani coast during the SW Monsoon has inorganic nitrogen to silicate ratios that were higher (˜2/1) than the ˜1/1 ratio often assumed as the ratio of uptake during diatom growth. The temporal evolution of inorganic nitrogen-to-silicate ratios suggests major alteration by diatom uptake only during the late SW Monsoon cruise (TN050) in August-September 1995. Widespread moderate surface layer nutrient concentrations occurred during the late NE Monsoon. A zone of high offshore nutrient concentrations was encountered during the SW Monsoon, but instead of being associated with offshore upwelling it may represent offshore advection from the coastal upwelling zone, the influence of an eddy, or both. Although our data do not contradict previous suggestions that the volume of subtoxic water may be reduced the SW Monsoon, they suggest a weaker re-oxygenation than indicated by some previous work. Similarly, they do not confirm results suggesting that secondary nitrite maxima may be common in waters with oxygen concentrations >5 μM.

  6. Records from Lake Qinghai: Holocene climate history of Northeastern Tibetan Plateau linking to global change

    NASA Astrophysics Data System (ADS)

    An, Z.; Colman, S.; Zhou, W.; Brown, E.; Li, X.; Jull, T.; Wang, S.; Liu, W.; Sun, Y.; Lu, X.; Song, Y.; Chang, H.; Cai, Y.; Xu, H.; Wang, X.; Liu, X.; Wu, F.; Han, Y.; Cheng, P.; Ai, L.; Wang, Z.; Qiang, X.; Shen, J.; Zhu, Y.; Wu, Z.; Liu, X.

    2008-12-01

    Lake Qinghai (99°36'-100°16'E, 36°32'-37°15'N ) of the north eastern margin of Tibet Plateau is the largest inland lake of China. It sits on the transitional zone of Asian monsoon- arid areas, receives influences of Asian monsoons and Westerlies, thus sensitive to global climate changes. Although previous studies had investigated Holocene climate change of Lake Qinghai area, it is rare to see precise Holocene climatic sequences of Lake Qinghai, nor in-depth discussions on controlling factors of Lake Qinghai climate changes. In Year 2005, with support from ICDP, Chinese Academy of Sciences (CAS), Chinese Ministry of Science and Technology (MOST) and National Science Foundation of China (NSFC), Drilling, Observation and Sampling of the Earths Continental Crust Corporation (DOSECC) and Institute of Earth Environment, Chinese Academy of Sciences (IEECAS) took a series of shallows cores from the southern basin of Lake Qinghai. West sub-basin sediments display Holocene lacustrine feature for the upper 5m, while the 5-18m are interbeded sediments of shallow lake, eolian-lacustrine and eolian loess. Chinese and US scientists with support from NSFC, MOST, CAS and NSF analysed 1F core from west sub-basin depocenter of the south basin with multiple physical, chemical, biological approaches. By comparing with modern process observation records, we obtained proxies that respectfully reflect precipitation, temperature and lake salinity changes, etc., reconstructed high resolution time sequences of magnetic susceptibility, colour scale, grain size, Corg, C/N, δ13Corg, carbonate, δ13C and δ18O of carbonate and ostracodes, elements, char-soot,Uk'37 and %C37:4 as well as pollen of the last 13Ka. They indicate the climatic change history of Lake Qinghai since past 13Ka, and agreeable evidences are found from adjacent tree ring and stalagmite records. Comparison of Lake Qinghai Holocene climate change sequence with those from high altitude ice core, stalagmites and ocean records for East Asian monsoon and Indian monsoon show that, in accordance with Asian monsoon climate changes, at 11-5ka cal. 14C BP Lake Qinghai revealed the warm and humid Optimal climate, while since 5ka cal.14C BP the Lake showed relatively cold and dry climate of New Glaciation, this orbital climate trend resembled northern hemisphere summer solar insolation changes. Lake Qinghai millennial-centennial climate events in Holocene are linked with Westerlies changes, and with East Asian summer monsoon front shift as well as winter monsoon, on centennial-decadal scale Lake Qinghai climate changes are controlled more by solar activities.

  7. Holocene aridification of India

    USGS Publications Warehouse

    Ponton, C.; Giosan, L.; Eglinton, T.I.; Fuller, D.Q.; Johnson, J.E.; Kumar, P.; Collett, T.S.

    2012-01-01

    Spanning a latitudinal range typical for deserts, the Indian peninsula is fertile instead and sustains over a billion people through monsoonal rains. Despite the strong link between climate and society, our knowledge of the long-term monsoon variability is incomplete over the Indian subcontinent. Here we reconstruct the Holocene paleoclimate in the core monsoon zone (CMZ) of the Indian peninsula using a sediment core recovered offshore from the mouth of Godavari River. Carbon isotopes of sedimentary leaf waxes provide an integrated and regionally extensive record of the flora in the CMZ and document a gradual increase in aridity-adapted vegetation from ???4,000 until 1,700 years ago followed by the persistence of aridity-adapted plants after that. The oxygen isotopic composition of planktonic foraminifer Globigerinoides ruber detects unprecedented high salinity events in the Bay of Bengal over the last 3,000 years, and especially after 1,700 years ago, which suggest that the CMZ aridification intensified in the late Holocene through a series of sub-millennial dry episodes. Cultural changes occurred across the Indian subcontinent as the climate became more arid after ???4,000 years. Sedentary agriculture took hold in the drying central and south India, while the urban Harappan civilization collapsed in the already arid Indus basin. The establishment of a more variable hydroclimate over the last ca. 1,700 years may have led to the rapid proliferation of water-conservation technology in south India. Copyright 2012 by the American Geophysical Union.

  8. Oxygen-18 concentrations in recent precipitation and ice cores on the Tibetan Plateau

    USGS Publications Warehouse

    Tian, L.; Yao, T.; Schuster, P.F.; White, J.W.C.; Ichiyanagi, K.; Pendall, Elise; Pu, J.; Yu, W.

    2003-01-01

    A detailed study of the climatic significance of ??18O in precipitation was completed on a 1500 km southwest-northeast transect of the Tibetan Plateau in central Asia. Precipitation samples were collected at four meteorological stations for up to 9 years. This study shows that the gradual impact of monsoon precipitation affects the spatial variation of ??18O-T relationship along the transect. Strong monsoon activity in the southern Tibetan Plateau results in high precipitation rates and more depleted heavy isotopes. This depletion mechanism is described as a precipitation "amount effect" and results in a poor ??18O-T relationship at both seasonal and annual scales. In the middle of the Tibetan Plateau, the effects of the monsoon are diminished but continue to cause a reduced correlation of ??18O and temperature at the annual scale. At the monthly scale, however, a significant ??18O-T relationship does exist. To the north of the Tibetan Plateau beyond the extent of the effects of monsoon precipitation, ??18O in precipitation shows a strong temperature dependence. ??18O records from two shallow ice cores and historic air temperature data were compared to verify the modern ??18O-T relationship. ??18O in Dunde ice core was positively correlated with air temperature from a nearby meteorological station in the north of the plateau. The ??18O variation in an ice core from the southern Plateau, however, was inversely correlated with precipitation amount at a nearby meteorological station and also the accumulation record in the ice core. The long-term variation of ??18O in the ice core record in the monsoon regions of the southern Tibetan Plateau suggest past monsoon seasons were probably more expansive. It is still unclear, however, how changes in large-scale atmosphere circulation might influence summer monsoon precipitation on the Tibetan Plateau.

  9. Pleistocene Indian Monsoon Rainfall Variability

    NASA Astrophysics Data System (ADS)

    Yirgaw, D. G.; Hathorne, E. C.; Giosan, L.; Collett, T. S.; Sijingeo, A. V.; Nath, B. N.; Frank, M.

    2014-12-01

    The past variability of the Indian Monsoon is mostly known from records of wind strength over the Arabian Sea. Here we investigate proxies for fresh water input and runoff in a region of strong monsoon precipitation that is a major moisture source for the east Asian Monsoon. A sediment core obtained by the IODP vessel JOIDES Resolution and a gravity core from the Alcock Seamount complex in the Andaman Sea are used to examine the past monsoon variability on the Indian sub-continent and directly over the ocean. The current dataset covers the last glacial and deglacial but will eventually provide a Pleistocene record. We utilise the ecological habitats of G. sacculifer and N. dutertrei to investigate the freshwater-induced stratification with paired Mg/Ca and δ18O analyses to estimate seawater δ18O (δ18Osw). During the last 60 kyrs, Ba/Ca ratios and δ18Osw values generally agree well between the two cores and suggest the weakest surface runoff and monsoon during the LGM and strongest monsoon during the Holocene. The difference in δ18O between the species, interpreted as a proxy for upper ocean stratification, implies stratification developed around 37 ka and remained relatively constant during the LGM, deglacial and Holocene. To investigate monsoon variability for intervals in the past, single shell Mg/Ca and δ18O analyses have been conducted. Mg/Ca ratios from individual shells of N. dutertrei suggest relatively small changes in temperature. However, individual N. dutertrei δ18O differ greatly between the mid-Holocene and samples from the LGM and a nearby core top. The mid-Holocene individuals have a greater range and large skew towards negative values indicating greater fresh water influence.

  10. Regional simulation of Indian summer monsoon intraseasonal oscillations at gray-zone resolution

    NASA Astrophysics Data System (ADS)

    Chen, Xingchao; Pauluis, Olivier M.; Zhang, Fuqing

    2018-01-01

    Simulations of the Indian summer monsoon by the cloud-permitting Weather Research and Forecasting (WRF) model at gray-zone resolution are described in this study, with a particular emphasis on the model ability to capture the monsoon intraseasonal oscillations (MISOs). Five boreal summers are simulated from 2007 to 2011 using the ERA-Interim reanalysis as the lateral boundary forcing data. Our experimental setup relies on a horizontal grid spacing of 9 km to explicitly simulate deep convection without the use of cumulus parameterizations. When compared to simulations with coarser grid spacing (27 km) and using a cumulus scheme, the 9 km simulations reduce the biases in mean precipitation and produce more realistic low-frequency variability associated with MISOs. Results show that the model at the 9 km gray-zone resolution captures the salient features of the summer monsoon. The spatial distributions and temporal evolutions of monsoon rainfall in the WRF simulations verify qualitatively well against observations from the Tropical Rainfall Measurement Mission (TRMM), with regional maxima located over Western Ghats, central India, Himalaya foothills, and the west coast of Myanmar. The onset, breaks, and withdrawal of the summer monsoon in each year are also realistically captured by the model. The MISO-phase composites of monsoon rainfall, low-level wind, and precipitable water anomalies in the simulations also agree qualitatively with the observations. Both the simulations and observations show a northeastward propagation of the MISOs, with the intensification and weakening of the Somali Jet over the Arabian Sea during the active and break phases of the Indian summer monsoon.

  11. Lake Qinghai Drilling Project: Evolution History of Lake Qinghai and East Asian Monsoon Changes since the Late Miocene

    NASA Astrophysics Data System (ADS)

    An, Z.; Colman, S.

    2007-12-01

    As a closed continental lake on the north-east margin of the Tibetan Plateau, Lake Qinghai is sensitive to climate variations as well as the environmental effects of Plateau growth/uplift. Supported by Chinese funding agencies and ICDP, onshore and offshore lake cores were drilled in 2005. We compare our preliminary chronostratigraphic, sedimentologic, and geochemical results with climatic records from the Loess Plateau, South China Sea, Arctic and global oceans, and we discuss the evolution of Lake Qinghai at different time scales since the late Miocene. Lake Qinghai is shown to have intimate linkages with the warm/moist East Asian summer monsoon, the cold/dry East Asian winter monsoon, and the growth/uplift of the Tibetan Plateau. Magnetostratigraphic studies of the onshore drill cores indicate that thick greenish clays were deposited during Late Miocene, suggesting the initial formation of the Qinghai Lake basin. Consistent with proxies from the Loess Plateau and the South China Sea, they imply summer-monsoon strengthening and inland intrusion. These changes may be related to a growth event of the Tibetan Plateau at 10-8 Ma, which led to the uplift of Qinghai Nanshan, formation of faulted lake basins, and enhanced summer monsoon circulation. From 6 to 4.6Ma eolian red clays in the core indicate lake basin dessication, as Loess Plateau dust flux increased with the strengthening of the winter monsoon and coincident with intense Arctic ice rafting at 6-5 Ma. From 4.6 to 3.5 Ma thick greenish clays were deposited as modern Lake Qinghai formed. Significantly increased fluxes of TOC, C/N and total sediment might be related to uplift of Qinghai Nanshan and basin subsidence at that time, and they are coeval with the increasing strength of East Asian monsoon during early Pliocene. At 3.5-2.6 Ma, continued strengthening of the East Asian summer monsoon, inland aridification, and increases in global ice volume suggest another growth event of the Tibetan Plateau. Shallow-water silty clays were deposited in the lake basin at this time. Since 2.6 Ma, deposition in the basin was characterized by shallow-water silty clays, intercalated with layers of loess- like material, eolian sand, gravel, and sand, indicating multiple lake expansion/dessication cycles, presumably at orbital frequencies, reflecting multiple migrations of the East Asian summer monsoon front driven by solar radiation and global ice volume changes over this region. Several previous studies of cores as much as 7m long from the depositional basins of Lake Qinghai have documented monsoon climate and environmental changes at the lake from the deglacial period through the Holocene, which are generally consistent with northern Hemisphere summer insolation and its seasonality changes. A wide variety of proxies have been used, and some cores have been studied at very high temporal resolution, especially for the last several hundred years. Results suggest that solar activity influences decadal regional temperatures, and that it is the East Asian summer monsoon as opposed to the Indian summer monsoon that acts as the dominate moisture source at the decadal scale within the local region. Offshore GLAD800 drill cores obtained in 2005 sampled fine-grained sediments before encountering thick units of sand. The fine-grained sections are 2-3 times longer than previous cores from similar sites. Paleolimnological proxy studies are underway on these cores to extend the young part of the paleoenvironmental record back to significantly before the last glacial maximum.

  12. Orbital pacing and ocean circulation-induced collapses of the Mesoamerican monsoon over the past 22,000 y.

    PubMed

    Lachniet, Matthew S; Asmerom, Yemane; Bernal, Juan Pablo; Polyak, Victor J; Vazquez-Selem, Lorenzo

    2013-06-04

    The dominant controls on global paleomonsoon strength include summer insolation driven by precession cycles, ocean circulation through its influence on atmospheric circulation, and sea-surface temperatures. However, few records from the summer North American Monsoon system are available to test for a synchronous response with other global monsoons to shared forcings. In particular, the monsoon response to widespread atmospheric reorganizations associated with disruptions of the Atlantic Meridional Overturning Circulation (AMOC) during the deglacial period remains unconstrained. Here, we present a high-resolution and radiometrically dated monsoon rainfall reconstruction over the past 22,000 y from speleothems of tropical southwestern Mexico. The data document an active Last Glacial Maximum (18-24 cal ka B.P.) monsoon with similar δ(18)O values to the modern, and that the monsoon collapsed during periods of weakened AMOC during Heinrich stadial 1 (ca. 17 ka) and the Younger Dryas (12.9-11.5 ka). The Holocene was marked by a trend to a weaker monsoon that was paced by orbital insolation. We conclude that the Mesoamerican monsoon responded in concert with other global monsoon regions, and that monsoon strength was driven by variations in the strength and latitudinal position of the Intertropical Convergence Zone, which was forced by AMOC variations in the North Atlantic Ocean. The surprising observation of an active Last Glacial Maximum monsoon is attributed to an active but shallow AMOC and proximity to the Intertropical Convergence Zone. The emergence of agriculture in southwestern Mexico was likely only possible after monsoon strengthening in the Early Holocene at ca. 11 ka.

  13. Orbital pacing and ocean circulation-induced collapses of the Mesoamerican monsoon over the past 22,000 y

    PubMed Central

    Lachniet, Matthew S.; Asmerom, Yemane; Bernal, Juan Pablo; Polyak, Victor J.; Vazquez-Selem, Lorenzo

    2013-01-01

    The dominant controls on global paleomonsoon strength include summer insolation driven by precession cycles, ocean circulation through its influence on atmospheric circulation, and sea-surface temperatures. However, few records from the summer North American Monsoon system are available to test for a synchronous response with other global monsoons to shared forcings. In particular, the monsoon response to widespread atmospheric reorganizations associated with disruptions of the Atlantic Meridional Overturning Circulation (AMOC) during the deglacial period remains unconstrained. Here, we present a high-resolution and radiometrically dated monsoon rainfall reconstruction over the past 22,000 y from speleothems of tropical southwestern Mexico. The data document an active Last Glacial Maximum (18–24 cal ka B.P.) monsoon with similar δ18O values to the modern, and that the monsoon collapsed during periods of weakened AMOC during Heinrich stadial 1 (ca. 17 ka) and the Younger Dryas (12.9–11.5 ka). The Holocene was marked by a trend to a weaker monsoon that was paced by orbital insolation. We conclude that the Mesoamerican monsoon responded in concert with other global monsoon regions, and that monsoon strength was driven by variations in the strength and latitudinal position of the Intertropical Convergence Zone, which was forced by AMOC variations in the North Atlantic Ocean. The surprising observation of an active Last Glacial Maximum monsoon is attributed to an active but shallow AMOC and proximity to the Intertropical Convergence Zone. The emergence of agriculture in southwestern Mexico was likely only possible after monsoon strengthening in the Early Holocene at ca. 11 ka. PMID:23690596

  14. Oscillations in the Indian summer monsoon during the Holocene inferred from a stable isotope record from pyrogenic carbon from Lake Chenghai, southwest China

    NASA Astrophysics Data System (ADS)

    Sun, Weiwei; Zhang, Enlou; Liu, Enfeng; Ji, Ming; Chen, Rong; Zhao, Cheng; Shen, Ji; Li, Yanling

    2017-02-01

    A robust, well-dated record of centennial-scale abrupt changes in the Asian summer monsoon is crucial for understanding the potential forcing factors and their environmental effects. In this study, we analyzed the stable carbon isotopes of pyrogenic carbon (δ13CPC) in a 556-cm long sediment core retrieved from Lake Chenghai in the Yunnan Plateau, China. The results provide a continuous 7660-year precipitation record of the Indian summer monsoon (ISM). They indicate that from ∼7600 cal yr BP precipitation in the Lake Chenghai catchment gradually increased until 5030 cal yr BP, and then subsequently decreased in the second half of the Holocene. In addition, at least six centennial-scale droughts occurred at about 7300, 6300, 5500, 3400, 2500 and 500 cal yr BP. Our findings suggest that ISM intensity is primary controlled by variations in solar irradiance on a centennial time scale. This external forcing may be amplified by North Atlantic cooling events and El Niño-Southern Oscillation activity in the eastern tropical Pacific, which shift the intertropical convergence zone further southwards.

  15. The Indonesian Throughflow: Oceanographic responses to Holocene changes in the mean Pacific state

    NASA Astrophysics Data System (ADS)

    Jacobel, A. W.; Oppo, D.; Eglinton, T. I.; Gibbons, F. T.; Montlucon, D.; Rosenthal, Y.; Linsley, B. K.

    2009-12-01

    The Indonesian Throughflow (ITF), which transfers upper ocean waters from the Pacific to the Indian Ocean, plays an essential role in global ocean circulation and tropical climate regulation. The flow and mixing regimes of the ITF are affected by changes in temperature, winds and upwelling caused by the Asian Monsoon/Intertropical Convergence Zone (AM/ITCZ) and interannual variations in El Niño (EN). Because the ITF is located in the Western Pacific Warm Pool, an area from which the atmosphere derives a large portion of its heat and water budget, changes in the ITF have the potential to perturb atmospheric circulation globally. Despite the importance of this region to global climate, changes in the ocean-atmosphere climate phenomenon affecting the ITF are still poorly understood. Our study used organic geochemical proxies for upwelling in the Makassar Strait to investigate Holocene oceanographic changes in the ITF in response to EN and the AM/ITCZ. A core-top biomarker survey was performed on multi-core samples from the Makassar Strait and surrounding areas. Concentrations of cholesterol (an indicator of integrated primary productivity) were determined by Gas Chromatography-Mass Spectrometry and were then compared with maps of regional July-August SST and determined to accurately reflect regional upwelling. Based on the findings of the core-top survey, a down-core biomarker record was generated from core BJ8-03-70 GGC taken from the West Sulawesi Margin in the Eastern Makassar Strait, an area that experiences seasonal upwelling associated with the boreal summer Asian monsoon. Cholesterol data show a trend towards increasing concentrations (upwelling or thermocline shoaling) in the late Holocene with a considerable increase approximately 6,000 years before present. Additionally, upwelling intensity appears to show more centennial-millennial variability during the late Holocene. Evidence that the summer monsoon has decreased in strength over the course of the Holocene (e.g. Wang et al., 2005) suggests that the increase in cholesterol is not a response to an increase in monsoon-driven upwelling. Because a shallower thermocline is associated with weak trade winds (El Niño-like conditions in the modern ocean), we interpret these results to represent a mid Holocene transition to a more El Niño-like mean Pacific state. This interpretation is consistent with previous evidence (Moy et al., 2002 and Conroy et al., 2008, yet the timing and reason for this transition is not well constrained. Further work should seek to develop a higher-resolution, multi-proxy dataset to explore and explain this change.

  16. Species Diversity Distribution Patterns of Chinese Endemic Seed Plants Based on Geographical Regions.

    PubMed

    Huang, Jihong; Ma, Keping; Huang, Jianhua

    2017-01-01

    Based on a great number of literatures, we established the database about the Chinese endemic seed plants and analyzed the compositions, growth form, distribution and angiosperm original families of them within three big natural areas and seven natural regions. The results indicate that the above characters of Chinese endemic plants take on relative rule at the different geographical scales. Among the three big natural areas, Eastern Monsoon area has the highest endemic plants richness, whereas Northwest Dryness area is the lowest. For life forms, herbs dominate. In contrast, the proportion of herbs of Eastern Monsoon area is remarkable under other two areas. Correspondingly the proportions of trees and shrubs are substantially higher than other two. For angiosperm original families, the number is the highest in Eastern Monsoon area, and lowest in Northwest Dryness area. On the other hand, among the seven natural regions, the humid and subtropical zone in Central and Southern China has the highest endemic plants richness, whereas the humid, hemi-humid region and temperate zone in Northeast China has the lowest. For life forms, the proportion of herbs tends to decrease from humid, hemi-humid region and temperate zone in Northeast China to humid and tropical zone in Southern China. Comparably, trees, shrubs and vines or lianas increase with the same directions. This fully represents these characters of Chinese endemic plants vary with latitudinal gradients. Furthermore, as to the number of endemic plants belonging to angiosperm original families, the number is the most in humid and subtropical zone in Center and Southern China, and tropical zone in Southern China in the next place. In contrast, the endemic plant of these two regions relatively is richer than that of The Qinghai-Tibet alpine and cold region. All above results sufficiently reflect that the Chinese endemic plants mainly distribute in Eastern Monsoon area, especially humid and subtropical zone in Center and Southern China and tropical zone in Southern China. Furthermore, the flora of Eastern Monsoon area, in particular humid and subtropical zone in Center and Southern China and tropical zone in Southern China, is more ancient and original than that of Northwest Dryness area and Qinghai-Tibet alpine and cold area.

  17. 200,000 years of monsoonal history recorded on the lower Bengal Fan - strong response to insolation forcing

    NASA Astrophysics Data System (ADS)

    Weber, Michael E.; Lantzsch, Hendrik; Dekens, Petra; Das, Supriyo K.; Reilly, Brendan T.; Martos, Yasmina M.; Meyer-Jacob, Carsten; Agrahari, Sandip; Ekblad, Alf; Titschack, Jürgen; Holmes, Beth; Wolfgramm, Philipp

    2018-07-01

    We conducted a multidisciplinary study to provide the stratigraphic and palaeoclimatic context of monsoonal rainfall dynamics and their responses to orbital forcing for the Bay of Bengal. Using sediment lightness we established an age model at orbital resolution for International Ocean Discovery Programme (IODP) Core U1452C-1H that covers the last 200 ka in the lower Bengal Fan. The low-resolution δ18O of G. sacculifer is consistent with global δ18O records, at least for major glacial-to-interglacial transitions. The variability of total organic carbon, total nitrogen, and the δ13C composition of organic matter indicate the marine origin of organic matter. Marine primary productivity likely increased during insolation minima, indicative for an enhanced NE monsoon during glacials and stadials. Pristine insolation forcing is also documented for wet-bulk density, red-green color variability, and grain-size variations, indicating that darker and coarser-grained material deposited at higher sedimentation rates during insolation minima. Stronger NE monsoon likely amplified ocean-atmosphere interactions over the Indian Ocean, leading to stronger upwelling through shoaling the thermocline, and higher delivery of sediment to the Bay of Bengal due to higher soil erosion on land. In addition, lower glacial and stadial sea levels as well as stronger westward surface circulation favored delivery of coarser-grained fluvial material to the lower Bengal Fan. At the same time the stronger NE monsoon might have increased the aeolian supply. Total inorganic carbon, the Ca/Ti ratio, and biogenic silica vary dominantly on obliquity frequencies, suggesting mobilization and transport of lithogenic material primarily during lowered sea levels and/or higher influence of the Northern Hemisphere westerlies on the dust transport from the Tibetan Plateau. The close resemblance of sediment lightness and the climate record of Antarctic ice cores over multiple glacial cycles indicate close relationship between high southern latitude and tropical Asian climate through shifts in position of the Intertropical Convergence Zone. The Bengal Fan monsoonal record shows very clear and strict responses to insolation forcing in the lower part from 200 ka to the Younger Toba Tuff during Marine Isotope Stage (MIS) 7 - 5, and less distinct response patterns after deposition of the ash during MIS 4 - 2, consistent with low-amplitude changes in insolation.

  18. Ecological quality status evaluation of a monsoonal tropical estuary using benthic indices: comparison via a seasonal approach.

    PubMed

    Dias, Heidy Q; Sukumaran, Soniya; Srinivas, Tatiparthi; Mulik, Jyoti

    2018-05-30

    The use of biotic indices has garnered attention during the last decade due to its extensive application in evaluating ecological quality status (EcoQS) of marine waters and estuaries. Three seasonal surveys were conducted in the Kundalika estuary, India to evaluate the ecostatus using five benthic indices and comparing their effectiveness considering the estuarine salinity gradient and seasonality. All indices gave divergent results displaying a wide range of classes (good to bad) across salinity zones and seasons. Comparatively, M-AMBI discriminated the EcoQS suitably than other indices. Hence, a seasonally averaged approach for M-AMBI was proposed to obtain a final mean EcoQS which assigned moderate status to the euhaline and poly-mesohaline zones and poor status to the oligohaline zone. Considering the high degree of spatial heterogeneity and seasonality in the estuary, the monsoon data was found to lower the EcoQS due to natural stress in some cases; the exclusion of the monsoon season resulted in a more valid ecostatus. Therefore, this approach which combines information from the non-monsoon seasons stands out in providing a useful basis for ecological management by scrutinizing responses of macrobenthos. Also, we suggest salinity zone-wise evaluation for more effective classification chiefly in tropical monsoonal estuaries. An effort to establish a final EcoQS was performed; however, future in-depth studies are necessary to ascertain the reliability of the successful biotic index (M-AMBI) in estuaries with different stressors.

  19. Mesopelagic microplankton of the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Gowing, Marcia M.; Garrison, David L.; Wishner, Karen F.; Gelfman, Celia

    2003-10-01

    The Arabian Sea is notable for its dramatic monsoonal effects on euphotic zone biogeochemical processes and the large spatial extent of its mesopelagic oxygen minimum zone. As part of the US Joint Global Ocean Flux Study Arabian Sea project, we sampled microplankton (organisms 20-200 μm including diatoms, dinoflagellates, ciliates, sarcodines and nauplii) at five depths from 250 to 1000 or 1100 m at six stations during four seasonal cruises in 1995. Abundances of groups of organisms at discrete depths averaged 1-2 l -1 seasonally. Mean seasonal integrated biomass of the assemblage was 29 mg C m -2 during the late Northeast Monsoon, 37 mg C m -2 during the Spring Intermonsoon, 47 mg C m -2 during the late Southwest Monsoon and 49 mg C m -2 during the early Northeast Monsoon. Overall, protozoans dominated the mesopelagic microplankton assemblage. Integrated biomass peaked during the late SW Monsoon at two stations as expected if microplankton responded to surface productivity and mesopelagic organic carbon fluxes. At three stations, microplankton biomass peaked during the early NE Monsoon; this may reflect a continuing response to SW Monsoon productivity signals by these larger, slow-growing organisms. Protozooplankton abundance did not appear to be negatively affected by low (<0.1 ml dissolved O 2 l -1) oxygen, whereas naupliar abundance and biomass were higher where oxygen concentration was higher. Total microplankton biomass was highest where oxygen concentrations and also mesozooplankton biomass were lowest, suggesting that predation also played a role in microplankton distributions. Calculations based on allometric relationships indicated that the mesopelagic heterotrophic microplankton assemblage could, on average, respire 9-38% of the particulate carbon flux that entered the system at 100 m and possibly 18-76% of the flux remaining at 250 m. Microplankton may therefore be significant carbon cyclers in the ocean's vast "twilight zone".

  20. Seismological evidence for monsoon induced micro to moderate earthquake sequence beneath the 2011 Talala, Saurashtra earthquake, Gujarat, India

    NASA Astrophysics Data System (ADS)

    Singh, A. P.; Mishra, O. P.

    2015-10-01

    In order to understand the processes involved in the genesis of monsoon induced micro to moderate earthquakes after heavy rainfall during the Indian summer monsoon period beneath the 2011 Talala, Saurashtra earthquake (Mw 5.1) source zone, we assimilated 3-D microstructures of the sub-surface rock materials using a data set recorded by the Seismic Network of Gujarat (SeisNetG), India. Crack attributes in terms of crack density (ε), the saturation rate (ξ) and porosity parameter (ψ) were determined from the estimated 3-D sub-surface velocities (Vp, Vs) and Poisson's ratio (σ) structures of the area at varying depths. We distinctly imaged high-ε, high-ξ and low-ψ anomalies at shallow depths, extending up to 9-15 km. We infer that the existence of sub-surface fractured rock matrix connected to the surface from the source zone may have contributed to the changes in differential strain deep down to the crust due to the infiltration of rainwater, which in turn induced micro to moderate earthquake sequence beneath Talala source zone. Infiltration of rainwater during the Indian summer monsoon might have hastened the failure of the rock by perturbing the crustal volume strain of the causative source rock matrix associated with the changes in the seismic moment release beneath the surface. Analyses of crack attributes suggest that the fractured volume of the rock matrix with high porosity and lowered seismic strength beneath the source zone might have considerable influence on the style of fault displacements due to seismo-hydraulic fluid flows. Localized zone of micro-cracks diagnosed within the causative rock matrix connected to the water table and their association with shallow crustal faults might have acted as a conduit for infiltrating the precipitation down to the shallow crustal layers following the fault suction mechanism of pore pressure diffusion, triggering the monsoon induced earthquake sequence beneath the source zone.

  1. The Joint Aerosol-Monsoon Experiment (JAMEX): A Core Element for the Asian Monsoon Year (2008-2009)

    NASA Technical Reports Server (NTRS)

    Lau, WIlliam K. M.

    2007-01-01

    The objective of the Joint Aerosol-Monsoon Experiment (JAMEX) is to unravel the physical mechanisms and multi-scale interactions associated with aerosol-monsoon water cycle in the Asian Indo-Paczj?c region towards improved prediction of rainfall in land regions of the Asian monsoon. JAMEX will be planned as a five-year (2007-201 1) multi-national aerosol-monsoon research project, aimed at promoting collaboration, partnership and alignment of ongoing and planned national and international programs. Two coordinated special observing periods (SOP), covering the pre-monsoon (April-May) and the monsoon (June-August) periods is tentatively targeted for 2008 and 2009. The major work on validation and reference site coordination will take place in 2007 through the spring of 2008. A major science workshop is planned after SOP-I1 in 2010. Modeling and satellite data utilization studies will continue throughout the entire period to help in design of the observation arrays and measurement platforms for SOPS. The tentative time schedule, including milestones and research activities is shown in Fig. 1. One of the unique aspects of JAMEX is that it stems from grass-root scientific and societal imperatives, and it bridges a gap in existing national and international research programs. Currently we have identified 10 major national and international projects/programs separately for aerosols and monsoon research planned in the next five years in China, India, Japan, Italy, and the US, that could be potential contributors or partners with JAMEX. These include the Asian-Indo- Pacific Ocean (AIPO) Project and Aerosol Research Project from China, Monsoon Asian Hydro- Atmospheric Science Research and predication Initiative (MAHASRI) from Japan, Continental Tropical Convergence Zone (CTCZ) and Severe Thunderstorm: Observations and Regional Modeling (STORM) from India, Share-Asia from Italy, Atmospheric Brown Cloud (ABC), Pacific Aerosol-Cloud-Dust Experiment (PACDEX), East Asia Study of Tropospheric Aerosol: an International Regional Experiment (East-AIRE), and Radiation Aerosol Joint Observations - Monsoon Experiments over the Gangetic Himalayas Area (Rajo-Megha: dust cloud in Sanskrit) from the US, and Monsoon Asia Integrated Regional Study (MAIR) under the Earth Systems Science Partnership (ESSP) and WCRP. For JAMEX to succeed, it is crucial for an international body, such as CEOP or an organization under WCRP to provide the science oversight, data policy and stewardship, and to promote collaboration and partnership among national programs. It makes eminent sense for WCRP to expand the concept and the prototype proposed by JAMEX to include all monsoon countries to expand AMY08-09 into an International Monsoon Era (2008- 2013). Such an establishment followed by establishment of an international body for science oversight, and data stewardship will go a long way in promoting coordination and connection among various existing monsoon research programs within WCRP, and with burgeoning national programs on monsoon and aerosol research.

  2. The Joint Aerosol-Monsoon Experiment (JAMEX): A Core Element for the Asian Monsoon Year (2008-2009)

    NASA Technical Reports Server (NTRS)

    Lau, William K.M.

    2007-01-01

    The objective of the Joint Aerosol-Monsoon Experiment (JAMEX) is to unravel the physical mechanisms and multi-scale interactions associated with aerosol-monsoon water cycle in the Asian Indo-Pacific region towards improved prediction of rainfall in land regions of the Asian monsoon. JAMEX will be planned as a five-year (2007-201 1) multi-national aerosol-monsoon research project, aimed at promoting collaboration, partnership and alignment of ongoing and planned national and international programs. Two coordinated special observing periods (SOP), covering the pre-monsoon (April-May) and the monsoon (June-August) periods is tentatively targeted for 2008 and 2009. The major work on validation and reference site coordination will take place in 2007 through the spring of 2008. A major science workshop is planned after SOP-I1 in 2010. Modeling and satellite data utilization studies will continue throughout the entire period to help in design of the observation arrays and measurement platforms for SOPS. The tentative time schedule, including milestones and research activities is shown in Fig. 1. One of the unique aspects of JAMEX is that it stems from grass-root scientific and societal imperatives, and it bridges a gap in existing national and international research programs. Currently we have identified 10 major national and international projects/programs separately for aerosols and monsoon research planned in the next five years in China, India, Japan, Italy, and the US, that could be potential contributors or partners with JAMEX. These include the Asian-Indo- Pacific Ocean (AIPO) Project and Aerosol Research Project from China, Monsoon Asian Hydro- Atmospheric Science Research and predication Initiative (MAHASRI) from Japan, Continental Tropical Convergence Zone (CTCZ) and Severe Thunderstorm: Observations and Regional Modeling (STORM) from India, Share-Asia from Italy, Atmospheric Brown Cloud (ABC), Pacific Aerosol-Cloud-Dust Experiment (PACDEX), East Asia Study of Tropospheric Aerosol: an International Regional Experiment (East-AIRE), and Radiation Aerosol Joint Observations - Monsoon Experiments over the Gangetic Himalayas Area (Rajo-Megha: dust cloud in Sanskrit) from the US, and Monsoon Asia Integrated Regional Study (MAIR) under the Earth Systems I Science Partnership (ESSP) and WCRP. For JAMEX to succeed, it is crucial for an international body, such as CEOP or an organization under WCRP to provide the science oversight, data policy and stewardship, and to promote collaboration and partnership among national programs. It makes eminent sense for WCRP to expand the concept and the prototype proposed by JAMEX to include all monsoon countries to expand AMY08-09 into an International Monsoon Era (2008- 2013). Such an establishment followed by establishment of an international body for science oversight, and data stewardship will go a long way in promoting coordination and connection among various existing monsoon research programs within WCRP, and with burgeoning national programs on monsoon and aerosol research.

  3. The monsoon system: Land-sea breeze or the ITCZ?

    NASA Astrophysics Data System (ADS)

    Gadgil, Sulochana

    2018-02-01

    For well over 300 years, the monsoon has been considered to be a gigantic land-sea breeze driven by the land-ocean contrast in surface temperature. In this paper, this hypothesis and its implications for the variability of the monsoon are discussed and it is shown that the observations of monsoon variability do not support this popular theory of the monsoon. An alternative hypothesis (whose origins can be traced to Blanford's (1886) remarkably perceptive analysis) in which the basic system responsible for the Indian summer monsoon is considered to be the Intertropical Convergence Zone (ITCZ) or the equatorial trough, is then examined and shown to be consistent with the observations. The implications of considering the monsoon as a manifestation of the seasonal migration of the ITCZ for the variability of the Indian summer monsoon and for identification of the monsoonal regions of the world are briefly discussed.

  4. Bacterioplankton activity in the surface waters of the Arabian Sea during and after the 1994 SW monsoon

    NASA Astrophysics Data System (ADS)

    Pomroy, Alan; Joint, Ian

    1999-03-01

    Bacterial biomass and production were measured on two cruises to the northwestern Arabian Sea in 1994; the first cruise took place towards the end of the SW monsoon in September, and the second cruise during the inter-monsoon period in November and December. Although phytoplankton production was significantly higher during the monsoon, bacterial numbers showed little difference. Bacteria were most abundant in the euphotic zone and highest bacterial numbers were measured during the monsoon period in the Gulf of Oman and the shelf waters off southern Oman; in these regions, numbers ranged from 0.9 to 1.6×10 9 bacteria l -1. On both cruises, bacteria were less abundant in the euphotic zone of the central Arabian Sea and typically ca 0.8×10 9 cells l -1 were present. The majority of bacteria (80-95%) were small cocci that were larger (median diameter 0.40 μm) during the monsoon period than the inter-monsoon, when the cells had a diameter of 0.36 μm; there was no comparable change in cell dimensions of bacteria present as rods. Bacterial production was measured by the incorporation of 3H-thymidine and 3H-leucine. On both cruises, uptake rates were highest on the Omani shelf and decreased offshore. In the central Arabian Sea, thymidine incorporation rates were similar in the monsoon and inter-monsoon periods, but higher rates of leucine incorporation were measured during the monsoon period. Bacterial production was a relatively small proportion of phytoplankton production in both periods sampled; bacterial production was equivalent to between 10 and 30% of the daily primary production in the Arabian Sea.

  5. Numerical Simulation of the Large-Scale North American Monsoon Water Sources

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Sud, Yogesh C.; Schubert, Siegfried D.; Walker, Gregory K.

    2002-01-01

    A general circulation model (GCM) that includes water vapor tracer (WVT) diagnostics is used to delineate the dominant sources of water vapor for precipitation during the North American monsoon. A 15-year model simulation carried out with one-degree horizontal resolution and time varying sea surface temperature is able to produce reasonable large-scale features of the monsoon precipitation. Within the core of the Mexican monsoon, continental sources provide much of the water for precipitation. Away from the Mexican monsoon (eastern Mexico and Texas), continental sources generally decrease with monsoon onset. Tropical Atlantic Ocean sources of water gain influence in the southern Great Plains states where the total precipitation decreases during the monsoon onset. Pacific ocean sources do contribute to the monsoon, but tend to be weaker after onset. Evaluating the development of the monsoons, soil water and surface evaporation prior to monsoon onset do not correlate with the eventual monsoon intensity. However, the most intense monsoons do use more local sources of water than the least intense monsoons, but only after the onset. This suggests that precipitation recycling is an important factor in monsoon intensity.

  6. Mid-late Holocene climate variability in the Indian monsoon: Evidence from continental shelf sediments adjacent to Rushikulya river, eastern India

    NASA Astrophysics Data System (ADS)

    Ankit, Yadav; Kumar, Prem; Anoop, Ambili; Mishra, Praveen K.; Varghese, Saju

    2017-04-01

    We present elemental and grain-size distributions obtained from the sediment core of the continental shelf adjacent to the Rushikulya river mouth, eastern India to quantify the paleoclimatic changes. The retrieved 1.60 m long well-dated core spans the past ca. 6800 cal BP. The modern spatial distribution of grain size and geochemistry of the inner-mid shelf sediments has been carried out to understand the seafloor morphology and sedimentary processes. Based on the mod- ern investigations, the proportion of particle size (clay vs sand) and variation in elemental values (TiO2 vs Al2O3) has been used to interpret the changes in terrigenous supply. The grain-size and elemental distribution data from the core sediments indicates a period of enhanced surface water runoff from 6800 to 3100 cal BP followed by a drier condition (3100 cal BP to present) suggesting weakening of monsoon. The weakening of the monsoonal strength is coeval with other records from the Indian sub-continent and suggests response of Indian monsoon to changing solar insolation during late Holocene.

  7. Holocene monsoon variability inferred from Targo Xian peat bog in the Tangra Yumco basin, central Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Henkel, Karoline; Haberzettl, Torsten; Miehe, Sabine; Frenzel, Peter; Daut, Gerhard; Dietze, Elisabeth; Kasper, Thomas; Ahlborn, Marieke; Mäusbacher, Roland

    2013-04-01

    The Tibetan Plateau is the greatest plateau on Earth with an average altitude of 4,500 m asl. Due to its high elevation, large area and significant role in the formation of the Asian Monsoon Systems (e.g., Indian Ocean and East-Asian Summer Monsoon) it is considered to react very sensitive to climate variations. The numerous lake systems on the Tibetan Plateau represent excellent archives reflecting variations in the strength of the monsoon system in terms of hydrological changes expressed in lake level fluctuations. For example, terraces and lacustrine deposits around the saline lake Tangra Yumco indicate lake level highstands up to ~215 m higher than the present lake level. To study Holocene lake level variations we investigated a 3.6 m long sediment core recovered from a peat bog (near the Targo Xian settlement, 30°46'N, 86°40'E) on a recessional lake level terrace ~150 m above the present shoreline of Tangra Yumco. In particular, our analyses of sedimentological (grain size), geochemical (CNS and ICP-OES) and mineralogical (XRD) data allow a detailed and high-resolution interpretation of the hydrological conditions during the Holocene. The existence of two carbonate layers in the Targo Xian record, separated by a sand layer and intercalated in peat sequences at the bottom and top of the core, provide evidence for two stable lake stages at the coring position. Peat at the bottom of the core, which is radiocarbon-dated to 11,130 +130/-345 cal BP, indicates wetland conditions similar to the Recent situation (Miehe et al., submitted). After a transition zone, a layer of pure aragonitic lake marl gives evidence for a lake stage. During this stage, high values of the total inorganic carbon (TIC) and Ca/Ti ratios as well as low C/N ratios point to a stable lake due to wet climatic conditions. This carbonate layer can be correlated with a 2-3 m thick carbonate layer found in outcrops around the present lake Tangra Yumco presenting a high lake level until approx. 2.3 (+/-0.2) ka BP (OSL age, Long et al. 2012). Results of former investigations of other lakes on the Tibetan Plateau (e.g., lake Nam Co (Kasper et al., 2012)) point to a strong Indian Ocean Summer Monsoon during the Early to Mid Holocene. In the presented record, a falling lake level and a possible desiccation of the coring location is shown by a coarse sand layer including gravel. Another lake marl section above is well delimited from the other sections in its mineralogical composition as it is composed by calcite reflecting an additional lake stage at the coring site. This led to the assumption, that this second lake stage was characterized by a smaller lake with a higher detrital input which existed until approx. 930 +45/-135 cal BP. After an oscillation of dry and wet (peat production) phases a constant peat bog developed and is still present. References: Kasper, T. et al. (2012): doi: 10.1016/j.quascirev.2012.02.011 Long, H. et al. (2012): doi: 10.1016/j.quageo.2011.11.005 Miehe et al. (submitted): JOPL

  8. Future projection of Indian summer monsoon variability under climate change scenario: An assessment from CMIP5 climate models

    NASA Astrophysics Data System (ADS)

    Sharmila, S.; Joseph, S.; Sahai, A. K.; Abhilash, S.; Chattopadhyay, R.

    2015-01-01

    In this study, the impact of enhanced anthropogenic greenhouse gas emissions on the possible future changes in different aspects of daily-to-interannual variability of Indian summer monsoon (ISM) is systematically assessed using 20 coupled models participated in the Coupled Model Inter-comparison Project Phase 5. The historical (1951-1999) and future (2051-2099) simulations under the strongest Representative Concentration Pathway have been analyzed for this purpose. A few reliable models are selected based on their competence in simulating the basic features of present-climate ISM variability. The robust and consistent projections across the selected models suggest substantial changes in the ISM variability by the end of 21st century indicating strong sensitivity of ISM to global warming. On the seasonal scale, the all-India summer monsoon mean rainfall is likely to increase moderately in future, primarily governed by enhanced thermodynamic conditions due to atmospheric warming, but slightly offset by weakened large scale monsoon circulation. It is projected that the rainfall magnitude will increase over core monsoon zone in future climate, along with lengthening of the season due to late withdrawal. On interannual timescales, it is speculated that severity and frequency of both strong monsoon (SM) and weak monsoon (WM) might increase noticeably in future climate. Substantial changes in the daily variability of ISM are also projected, which are largely associated with the increase in heavy rainfall events and decrease in both low rain-rate and number of wet days during future monsoon. On the subseasonal scale, the model projections depict considerable amplification of higher frequency (below 30 day mode) components; although the dominant northward propagating 30-70 day mode of monsoon intraseasonal oscillations may not change appreciably in a warmer climate. It is speculated that the enhanced high frequency mode of monsoon ISOs due to increased GHG induced warming may notably modulate the ISM rainfall in future climate. Both extreme wet and dry episodes are likely to intensify and regionally extend in future climate with enhanced propensity of short active and long break spells. The SM (WM) could also be more wet (dry) in future due to the increment in longer active (break) spells. However, future changes in the spatial pattern during active/break phase of SM and WM are geographically inconsistent among the models. The results point out the growing climate-related vulnerability over Indian subcontinent, and further suggest the requisite of profound adaptation measures and better policy making in future.

  9. Food resources, distribution and seasonal variations in ranging in lion-tailed macaques, Macaca silenus in the Western Ghats, India.

    PubMed

    Erinjery, Joseph J; Kavana, T S; Singh, Mewa

    2015-01-01

    The distribution and availability of food was examined to see how it influenced ranging patterns and sleeping site selection in a group of lion-tailed macaques. The home range and core area were 130.48 ha (95% kernel) and 26.68 ha (50% kernel) respectively. The lion-tailed macaques had a longer day range, had a greater number of sleeping sites and used more core areas in the summer as compared to the monsoon and the post-monsoon seasons. The ranging patterns and sleeping site use were influenced by the major food resources used in a particular season. The ranging was mainly influenced by Artocarpus heterophyllus in monsoon, Cullenia exarillata and Toona ciliata in post- monsoon, and Artocarpus heterophyllus and Ficus amplissima in summer. The distribution of these four plant species is, therefore, critical to ranging, and thus to conservation of the lion-tailed macaque.

  10. Phytoplankton response to the contrasting physical regimes in the eastern Arabian Sea during north east monsoon

    NASA Astrophysics Data System (ADS)

    Chndrasekhararao, A. V.; Kurian, Siby; Vidya, P. J.; Gauns, Mangesh; Shenoy, Damodar M.; Mulla, Amara; Naik, Hema; Reddy, T. Venugopal; Naqvi, S. W. A.

    2018-06-01

    Phytoplankton abundance and composition in two contrasting physical regimes - convective mixing in the northeastern Arabian Sea (NEAS) and Arabian Sea mini warm pool (ASMWP) in the southeastern Arabian Sea (SEAS) - were investigated during the northeast monsoon (NEM) of 2015 and 2017. Observations in 2015 were carried out late during the season, and only one station in the north (at 21°N latitude) fell within the zone of convective mixing where microplankton was dominated by diatoms. In 2017, convective mixing occurred even at 16°N latitude, but the microplankton contribution was low, presumably due to low Si/N ratios. Within the convective mixing regime of the NEAS, chlorophyll (Chl) a concentrations were higher in 2015 (maximum 1080 ng L-1; average 493 ng L-1) than in 2017 (maximum 673 ng L-1; average 263 ng L-1). In contrast, picophytoplankton were dominant in the ASMWP of the SEAS with peak abundance associated with the subsurface chlorophyll maximum. A warm core eddy was present in 2015 in the SEAS where four times higher Prochlorococcus counts were found within the core of the eddy than at its periphery. This study provides the first description of the phytoplankton community in the ASMWP. Our results clearly demonstrate phytoplankton response to the contrasting physical conditions, highlighting the role of bio-physical coupling in the productivity of the Arabian Sea.

  11. Changes in the Indian summer monsoon intensity in Sri Lanka during the last 30 ky - A multiproxy record from a marine sediment core.

    NASA Astrophysics Data System (ADS)

    Ranasinghage, P. N.; Nanayakkara, N. U.; Kodithuwakku, S.; Siriwardana, S.; Luo, C.; Fenghua, Z.

    2016-12-01

    Indian monsoon plays a vital role in determining climate events happening in the Asian region. There is no sufficient work in Sri Lanka to fully understand how the summer monsoonal variability affected Sri Lanka during the quaternary. Sri Lanka is situated at an ideal location with a unique geography to isolate Indian summer monsoon record from iris counterpart, Indian winter monsoon. Therefore, this study was carried out to investigate its variability and understand the forcing factors. For this purpose a 1.82 m long gravity core, extracted from western continental shelf off Colombo, Sri Lanka by Shiyan 1 research vessel, was used. Particle size, chemical composition and colour reflectance were measured using laser particle size analyzer at 2 cm resolution, X-Ray Fluorescence spectrometer (XRF) at 2 cm resolution, and color spectrophotometer at 1 cm resolution respectively. Radio carbon dating of foraminifera tests by gas bench technique yielded the sediment age. Finally, principal component analysis (PCA) of XRF and color reflectance (DSR) data was performed to identify groups of correlating elements and mineralogical composition of sediments. Particle size results indicate that Increasing temperature and strengthening monsoonal rainfall after around 18000 yrs BP, at the end of last glacial period, enhanced chemical weathering over physical weathering. Proxies for terrestrial influx (XRF PC1, DSR PC1) and upwelling and nutrient supply driven marine productivity (XRF PC3 and DSR PC2) indicate that strengthening of summer monsoon started around 15000 yrs BP and maximized around 8000-10000 yrs BP after a short period of weakening during Younger Dryas (around 11000 yrs BP). The 8.2 cold event was recorded as a period of low terrestrial influx indicating weakening of rainfall. After that terrestrial input was low till around 2000 yrs BP indicating decrease in rainfall. However, marine productivity remained increasing throughout the Holocene indicating an increase in monsoonal driven upwelling. Authors recorded similar increase in monsoonal wind strength during the late Holocene, with no increase in rainfall in another sediment core extracted from the western continental shelf of Sri Lanka.

  12. Paleoclimate and Asian monsoon variability inferred from n-alkanes and their stable isotopes at lake Donggi Cona, NE Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Saini, Jeetendra; Guenther, Franziska; Mäusbacher, Roland; Gleixner, Gerd

    2015-04-01

    The Tibetan Plateau is one of the most extensive and sensitive region of elevated topography affecting global climate. The interplay between the Asian summer monsoon and the westerlies greatly influences the lake systems at the Tibetan Plateau. Despite a considerable number of research efforts in last decade, possible environmental reactions to change in monsoon dynamics are still not well understood. Here we present results from a sediment core of lake Donggi Cona, which dates back to late glacial period. Distinct organic geochemical proxies and stable isotopes are used to study the paleoenvironmental and hydrological changes in late glacial and Holocene period. Sedimentary n-alkanes of lake Donggi Cona are used as a proxy for paleoclimatic and monsoonal reconstruction. The hydrogen (δD) and carbon (δ13C) isotopes of n-alkanes are used as proxy for hydrological and phytoplankton productivity, respectively . Qualitative and quantitative analysis were performed for n-alkanes over the sediment core. δD proxy for sedimentary n-alkanes is used to infer lake water and rainfall signal. δD of (n-alkane C23) records the signal of the lake water, whereas δD of (n-alkane C29) record the precipitation signal, hence act as an appropriate proxy to track Asian monsoon. Long chain n-alkanes dominate over the sediment core while unsaturated mid chain n-alkenes have high abundance in some samples. From 18.4-13.8 cal ka BP, sample shows low organic productivity due to cold and arid climate. After 13.8-11.8 cal ka BP, slight increase in phytoplankton productivity indicate onset of weaker monsoon. From 11.8-6.8 cal ka BP, high content of organic matter indicates rise in productivity and strong monsoon with high inflow. After 6.8 cal ka BP, decrease in phytoplankton productivity indicating cooler climate and show terrestrial signal. Our results provide new insight into the variability of east Asian monsoon and changes in phytoplankton productivity for last 18.4 ka. Keywords: n-alkanes; n-alkane C23; n-alkane C29; hydrogen isotopes (δD); carbon isotopes (δ13C); east Asian monsoon; precipitation;

  13. Reconstruction of the Indian monsoon variability and its environmental impacts over the northwestern Arabian Sea and its surrounding continents since the Last Glacial Maximum: Multi-proxy study of a marine core in the Gulf of Aden

    NASA Astrophysics Data System (ADS)

    Wiem, F.; Bassinot, F. C.; Lézine, A. M.

    2016-12-01

    Core MD92-1002 retrieved from the Gulf of Aden provides a unique paleoenvironmental and paleoclimatic record to study the evolution of continental and marine environments since 20 ka. Palynological analyses (pollen grains, spores, dinoflagellate cysts) were performed and data were combined with geochemical (δ18O, X-Ray Fluorescence) and sedimentological parameters (sedimentation rates, Total Organic Carbon (TOC)). Pollen grains reveal regional hyper-arid conditions during the glacial period, characterized by sparse vegetation cover of Saharo-Sindian origin. The abundance of steppic taxa associated with charcoal fragments suggests strong wind activity. Humidity tracers increased from 14.9 ka and reached their maximum between 9 and 7.5 ka. This maximum is characterized by the development of the tropical mangrove Rhizophora in the Gulf of Aden, reflecting tropical conditions with summer monsoon rains. The timing of events deduced from palynological records and continental data such as lacustrine and palustrine deposits and speleothems from Socotra and Oman, reveals a northward and westward shift of the Inter-Tropical Convergence Zone (ITCZ) summer position at the onset of the Holocene Humid Period (HHP). Dinoflagellate cyst assemblages suggest that the glacial period was characterized by weakened upwellings and well-ventilated bottom water. Primary productivity in the Gulf of Aden increased from 14.5 ka and reached its maximum during the glacial/interglacial transition between 12.6 and 10.8 ka. It took place about 3 ka earlier than the peak intensity of upwellings off the Oman margin, which is associated with the maximum of SW monsoonal winds. This singularity could be explained by the landlocked position of the gulf, at the junction between two orthogonal wind regimes during the boreal summer season (SW monsoon winds prevailing to the East of the Gulf, while NW winds blow along the main axis of the Red Sea to the West). TOC analysis reveals a Glacial-Interglacial variability that is largely decoupled from our reconstruction of surface productivity, suggesting that organic content is mainly controlled by preservation at the sea floor.

  14. Record of the North American southwest monsoon from Gulf of Mexico sediment cores

    USGS Publications Warehouse

    Poore, R.Z.; Pavich, M.J.; Grissino-Mayer, H. D.

    2005-01-01

    Summer monsoonal rains (the southwest monsoon) are an important source of moisture for parts of the southwestern United States and northern Mexico. Improved documentation of the variability in the southwest monsoon is needed because changes in the amount and seasonal distribution of precipitation in this semiarid region of North America influence overall water supply and fire severity. Comparison of abundance variations in the planktic foraminifer Globigerinoides sacculifer in marine cores from the western and northern Gulf of Mexico with terrestrial proxy records of precipitation (tree-ring width and packrat-midden occurrences) from the southwestern United States indicate that G. sacculifer abundance is a proxy for the southwest monsoon on millennial and submillennial time scales. The marine record confirms the presence of a severe multicentury drought centered ca. 1600 calendar (cal.) yr B.P. as well as several multidecadal droughts that have been identified in a long tree-ring record spanning the past 2000 cal. yr from westcentral New Mexico. The marine record further suggests that monsoon circulation, and thus summer rainfall, was enhanced in the middle Holocene (ca. 6500-4500 14C yr B.P.; ca. 6980-4710 cal. yr B.P.). The marine proxy provides the potential for constructing a highly resolved, well-dated, and continuous history of the southwest monsoon for the entire Holocene. ?? 2005 Geological Society of America.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virts, Katrina S.; Houze, Robert A.

    Seasonal and intraseasonal differences in mesoscale convective systems (MCSs) over South Asia are examined using A-Train satellites, a ground-based lightning network, and reanalysis fields. Pre-monsoon (April-May) MCSs occur primarily over Bangladesh and the eastern Bay of Bengal. During the monsoon (June-September), small MCSs occur over the Meghalaya Plateau and northeast Himalayan notch, while large and connected MCSs are most widespread over the Bay of Bengal. Monsoon MCSs produce less lightning and exhibit more extensive stratiform and anvil reflectivity structures in CloudSat observations than do pre-monsoon MCSs. During the monsoon season, Bay of Bengal and Meghalaya Plateau MCSs vary with themore » 30-60 day northward-propagating intraseasonal oscillation, while northeast Himalayan notch MCSs are associated with weak large-scale anomalies but locally enhanced CAPE. During intraseasonal active periods, a zone of enhanced large and connected MCSs, precipitation, and lightning extends from the northeastern Arabian Sea southeast over India and the Bay of Bengal, flanked by suppressed anomalies. Spatial variability is observed within this enhancement zone: lightning is most enhanced where MCSs are less enhanced, and vice versa. Reanalysis composites indicate that Bay of Bengal MCSs are associated with monsoon depressions, which are frequent during active monsoon periods, while Meghalaya Plateau MCSs are most frequent at the end of break periods, as anomalous southwesterly winds strengthen moist advection toward the terrain. Over both regions, MCSs exhibit more extensive stratiform and anvil regions and less lightning when the large-scale environment is moister, and vice versa.« less

  16. Regionally heterogeneous paleoenvironmental responses in the West African and South American monsoon systems on glacial to millennial timescales

    NASA Astrophysics Data System (ADS)

    Shanahan, T. M.; Hughen, K. A.; van Mooy, B.; Overpeck, J. T.; Baker, P. A.; Fritz, S.; Peck, J. A.; Scholz, C. A.; King, J. W.

    2008-12-01

    Although millennial-scale paleoenvironmental changes have been well characterized for high latitude sites, short-term climate variability in the tropics is less well understood. While the Intertropical Convergence Zone may act as an integrator of tropical climate changes, regional factors also play an important role in controlling the tropical response to climate forcing. Understanding these influences, and how they modulate the response to global climate forcing under different mean climate states is thus important for assessing how the tropics may respond to future climate change. Here, we examine new centennial-resolution records of paleoenvironmental change from isotopic and relative abundance data from molecular biomarkers in sediment cores from Lake Bosumtwi and Lake Titicaca. We assess the relative response of the West African and South American monsoon systems to millennial and suborbital-scale climate variability over the last ca. 30,000 years. While there is evidence for synchronous climate variability in the two systems, the dominant paleoenvironmental changes appear largely decoupled, highlighting the importance of regional climatology in controlling the response to climate forcing in tropical regions.

  17. Monsoon source shifts during the drying mid-Holocene: Biomarker isotope based evidence from the core 'monsoon zone' (CMZ) of India

    NASA Astrophysics Data System (ADS)

    Sarkar, Saswati; Prasad, Sushma; Wilkes, Heinz; Riedel, Nils; Stebich, Martina; Basavaiah, Nathani; Sachse, Dirk

    2015-09-01

    A better understanding of past variations of the Indian Summer Monsoon (ISM), that plays a vital role for the still largely agro-based economy in India, can lead to a better assessment of its potential impact under global climate change scenarios. However, our knowledge of spatiotemporal patterns of ISM strength is limited due to the lack of high-resolution, continental paleohydrological records. Here, we reconstruct centennial-scale hydrological variability during the Holocene associated to changes in the intensity of the ISM based on a record of lipid biomarker abundances and compound-specific stable isotopic composition of a 10 m long sediment core from saline-alkaline Lonar Lake, situated in the core 'monsoon zone' of central India. We identified three main periods of distinct hydrology during the Holocene in central India. The period between 10.1 and 6 cal ka BP was likely the wettest during the Holocene. Lower average chain length (ACL) index values (29.4-28.6) and negative δ13Cwax values (-34.8‰ to -27.8‰) of leaf wax n-alkanes indicate the dominance of woody C3 vegetation in the catchment, and negative δDwax values (concentration weighted average) (-171‰ to -147‰) suggest a wet period due to an intensified monsoon. After 6 cal ka BP, a gradual shift to less negative δ13Cwax values (particularly for the grass derived n-C31) and appearance of the triterpene lipid tetrahymanol, generally considered as a marker for salinity and water column stratification, mark the onset of drier conditions. At 5.1 cal ka BP an increasing flux of leaf wax n-alkanes along with the highest flux of tetrahymanol indicate a major lowering of the lake level. Between 4.8 and 4 cal ka BP, we find evidence for a transition to arid conditions, indicated by high and strongly variable tetrahymanol flux. In addition, a pronounced shift to less negative δ13Cwax values, in particular for n-C31 (-25.2‰ to -22.8‰), during this period indicates a change of dominant vegetation to C4 grasses. In agreement with other proxy data, such as deposition of evaporite minerals, we interpret this period to reflect the driest conditions in the region during the last 10.1 ka. This transition led to protracted late Holocene arid conditions after 4 ka with the presence of a permanent saline lake, supported by the sustained presence of tetrahymanol and more positive average δDwax values (-122‰ to -141‰). A late Holocene peak of cyanobacterial biomarker input at 1.3 cal ka BP might represent an event of lake eutrophication, possibly due to human impact and the onset of cattle/livestock farming in the catchment. A unique feature of our record is the presence of a distinct transitional period between 4.8 and 4 cal ka BP, which was characterized by some of the most negative δDwax values during the Holocene (up to -180‰), when all other proxy data indicate the driest conditions during the Holocene. These negative δDwax values can as such most reasonably be explained by a shift in moisture source area and/or pathways or rainfall seasonality during this transitional period. We hypothesize that orbital induced weakening of the summer solar insolation and associated reorganization of the general atmospheric circulation, as a possible southward displacement of the tropical rainbelt, led to an unstable hydroclimate in central India between 4.8 and 4 ka. Our findings shed light onto the sequence of changes during mean state changes of the monsoonal system, once an insolation driven threshold has been passed, and show that small changes in solar insolation can be associated with major hydroclimate changes on the continents, a scenario that may be relevant with respect to future changes in the ISM system.

  18. Effects of large-scale deforestation on precipitation in the monsoon regions: remote versus local effects.

    PubMed

    Devaraju, N; Bala, Govindasamy; Modak, Angshuman

    2015-03-17

    In this paper, using idealized climate model simulations, we investigate the biogeophysical effects of large-scale deforestation on monsoon regions. We find that the remote forcing from large-scale deforestation in the northern middle and high latitudes shifts the Intertropical Convergence Zone southward. This results in a significant decrease in precipitation in the Northern Hemisphere monsoon regions (East Asia, North America, North Africa, and South Asia) and moderate precipitation increases in the Southern Hemisphere monsoon regions (South Africa, South America, and Australia). The magnitude of the monsoonal precipitation changes depends on the location of deforestation, with remote effects showing a larger influence than local effects. The South Asian Monsoon region is affected the most, with 18% decline in precipitation over India. Our results indicate that any comprehensive assessment of afforestation/reforestation as climate change mitigation strategies should carefully evaluate the remote effects on monsoonal precipitation alongside the large local impacts on temperatures.

  19. Variations of the Arabian Sea nitrogen cycle: trend or decadal variability?

    NASA Astrophysics Data System (ADS)

    Gaye, Birgit; Tim, Rixen; Böll, Anna; Wiggert, Jerry

    2015-04-01

    Warmer periods of the Holocene have been characterized by a northward shift of the intertropical convergence zone (ITCZ), especially in the South Asian Monsoon sector, thereby increasing the strength and northward extension of monsoon rains. Marine sediments record increased monsoonal upwelling in the Arabian Sea during such warming periods associated with increased denitrification in the oxygen minimum zone. A similar increase can be expected due to anthropogenic warming as it may have a strong impact on Central Asia where feed-back mechanisms of stronger summer warming such as melting of glaciers and reduced albedo may increase summer monsoon strength and thus upwelling and productivity in the Arabian Sea. Models have so far had difficulties to simulate the ITCZ fluctuation in the monsoon area and to make reasonable predictions of its response to global warming. Recent data analyses showed a decrease of oxygen and an increase of nitrite concentrations in the northern part of the Arabian Sea during the last 50 years which could be related to a strengthening of the summer monsoon. To identify whether recent changes in productivity, sea surface temperatures and denitrification are related to decadal fluctuations or global warming trends, we take a comprehensive, multi-disciplinary approach that makes use of the available remote sensing records, nutrient data, and sediment trap as well as high resolution sedimentary records.

  20. Spatio-temporal assessment and trend analysis of surface water salinity in the coastal region of Bangladesh.

    PubMed

    Shammi, Mashura; Rahman, Md Mostafizur; Islam, Md Atikul; Bodrud-Doza, Md; Zahid, Anwar; Akter, Yeasmin; Quaiyum, Samia; Kurasaki, Masaaki

    2017-06-01

    The study was designed to collect water samples over two seasons-wet-monsoon season (n = 96) (March-April) and dry-monsoon season (n = 44) (September-October)-to understand the seasonal variation in anion and cation hydrochemistry of the coastal rivers and estuaries contributing in the spatial trend in salinity. Hydrochemical examination of wet-monsoon season primarily revealed Ca-Mg-HCO 3 type (66%) and followed by Na-Cl type (17.70%) water. In the dry-monsoon season, the scenario reversed with primary water being Na-Cl type (52.27%) followed by Ca-Mg-HCO 3 type (31.81%). Analysis of Cl/Br molar ratio vs. Cl (mg/L) depicted sampling area affected by seawater intrusion (SWI). Spatial analysis by ordinary kriging method confirmed approximately 77% sample in the dry-monsoon, and 34% of the wet-monsoon season had shown SWI. The most saline-intruded areas in the wet-monsoon seasons were extreme south-west coastal zone of Bangladesh, lower Meghna River floodplain and Meghna estuarine floodplain and south-eastern part of Chittagong coastal plains containing the districts of Chittagong and Cox's Bazar adjacent to Bay of Bengal. In addition, mid-south zone is also affected slightly in the dry-monsoon season. From the analyses of data, this study could further help to comprehend seasonal trends in the hydrochemistry and water quality of the coastal and estuarine rivers. In addition, it can help policy makers to obligate some important implications for the future initiatives taken for the management of land, water, fishery, agriculture and environment of coastal rivers and estuaries of Bangladesh.

  1. Multi-decadal Variability of the Indian Monsoon Rainfall for the last 14 kyr

    NASA Astrophysics Data System (ADS)

    Panmei, C.; Pothuri, D.

    2017-12-01

    Precise reconstruction of Indian monsoon fluctuation events and variability trends over the last 14 kyr has great implications for understanding the dynamics and possible forcing/feedback mechanisms associated with it. We have carried out high-resolution Indian monsoon variability studies of multi-decadal to sub-centennial timescales for the past 14 kyr through oxygen isotopes and Mg/Ca-derived sea surface temperatures (SST) from a western Bay of Bengal sediment core MD 161/17, using planktonic foraminifera Globigerinoides ruber. Indian summer monsoon (ISM) intensity was low during the Younger Dryas (YD) as evidenced by enriched δ18Osw coincides with a striking warming of 1.5°C. We observed ISM intensification from 12-9 kyr, followed by a milder period from 9-7.2 kyr. ISM gradually weakened from 7.2-2.5 kyr, after which there were two very prominent shifts in both ISM and SST; abrupt decrease at 2.4 kyr and increase at 1.4 kyr for ISM, while SST exhibited opposite trend. The contrasting trend continued from 1.4 kyr to the present wherein ISM precipitation has been decreasing and SST has been increasing. In addition, spectral analysis was done using Redfit and the ISM precipitation records reveal statistically significant periodicities at 2118, 411, 344, 144, 101 and 90 yrs. Furthermore, we compared our results with other existing records from the Northern Indian Ocean and adjacent regions, and found that the records share similarities suggesting regional dynamics being expressed coherently. Our results suggest that ISM precipitation and warming/cooling of the Northern Indian Ocean is directly associated with the southward/northward shift of the Intertropical Convergence Zone, which in turn is influenced by Atlantic Meridional Overturning Circulation, North Atlantic climate, and solar insolation interplaying differently at different timescales.

  2. Variability of terrigenous input to the Bay of Bengal for the last 80 kyr: Implications on the Indian monsoon variability

    NASA Astrophysics Data System (ADS)

    Panmei, Champoungam; Naidu, Pothuri Divakar; Naik, Sushant Suresh

    2018-06-01

    Oceanographic processes in the Bay of Bengal (BoB) are strongly impacted by south-westerly and north-easterly winds of the Indian monsoon system during the summer and winter respectively. Variations in calcium carbonate (CaCO3) content and magnetic susceptibility (MS), along with Ba, Ti, and Al, were reconstructed for the past 80 kyr using a sediment core (MD 161/28) from the northern BoB in order to understand the changes in calcium carbonate deposition and MS signals associated with the Indian monsoon system. Our records infer monsoon-induced dilution through river discharges from different sediment provenance to be the main controlling factor of the CaCO3 variations at the core location. Generally lower CaCO3 content during stronger-southwest monsoon (SWM) interglacial periods (Marine Isotope Stage (MIS) 5a & 1, except 3) and higher CaCO3 content during weaker-SWM glacial periods (MIS 4 & 2) were documented. High MS correspond to MIS 4 & 2 of weakened SWM and strengthened northeast monsoon (NEM) periods caused due to enhanced sediment supply from the Peninsular Indian regions, whereas lower MS values correspond to MIS 5, 3 & 1 of strengthened SWM and weakened NEM derived through Ganges-Brahmaputra from the Himalaya Region. Thus, our records infer coupling of major rivers' discharges to the BoB with the SWM and NEM strengths, which has implications on the linkage with other climatic variations such as East Asian monsoon and Northern Hemisphere climate.

  3. Influence of Continental Geometry on the Onset and Spatial Distribution of Monsoonal Precipitation

    NASA Astrophysics Data System (ADS)

    Hui, K. L.; Bordoni, S.

    2017-12-01

    Recent studies have shown that the rapid onset of the monsoon is due to a switch between a dynamical regime where the tropical circulation strength is controlled by eddy momentum fluxes, to a monsoon regime where the strength is more directly controlled by energetic constraints, which causes the monsoonal cross-equatorial cell to grow rapidly in strength and extent. While it is now widely accepted that land-sea contrast is not necessary to generate monsoons, the spatial distribution of land can still affect important features of monsoons. This study focuses on the influence of continental geometry on the monsoonal precipitation. We use an idealized aquaplanet model with a slab ocean, where land and ocean differ only by the mixed-layer depth of the slab ocean, which is two orders of magnitude smaller over land than over ocean. The model is run with different zonally symmetric configurations of Northern Hemispheric land that extends poleward from southern boundaries at various latitudes. Simulations with a continent extending to tropical latitudes are able to reproduce the monsoonal precipitation distribution and rapid onset well. For continents with more poleward southern boundaries and weaker hemispheric asymmetry, the main precipitation zone remains over the ocean, moving gradually into the summer hemisphere. A local maximum in precipitation forms over the continent even when the continent does not extend into the deeper tropics, but this is primarily associated with local recycling from the saturated surface rather than moisture flux convergence by a deep and broad monsoonal circulation. Further analysis shows that a decrease in hemispheric asymmetry prevents the establishment of a reversed meridional gradient in lower-level moist static energy and, with it, a poleward displaced convergence zone. This suggests that in order to have the rapid onset of monsoonal precipitation, tropical regions of low thermal inertia may be necessary to facilitate the transition of the tropical circulation to a dynamical regime that restricts the degree to which eddy momentum fluxes influence the circulation strength and allows the cell the grow rapidly in strength and poleward extent. These results provide some useful insights for developing theories to better understand the mechanisms of rapid onset of monsoon systems worldwide.

  4. Surface Nutrient Utilisation and Productivity During Glacial-Interglacial Periods from the Equatorial Indian Ocean

    NASA Astrophysics Data System (ADS)

    R, C. K.; Bhushan, R.; Agnihotri, R.; Sawlani, R.; Jull, A. J. T.

    2016-12-01

    Seawaters and underlying sediments off Sri Lanka provide a unique marine realm affected by both branches of Northern Indian Ocean i.e. Arabian Sea (AS) and Bay of Bengal (BOB). AS and BOB are known for their distinct response to southwest monsoon. AS experiencing mainly winds and upwelling while BOB receives precipitation driven surface runoff from the Indian sub-continent. Multiple proxies were measured on a radiocarbon dated sediment core raised off Sri Lanka; their down core variations were used to understand oceanic history (nutrient utilisation, surface productivity, nature of organic matter) spanning last glacial-interglacial cycle ( 26 to 2.5 ka BP). Variations in CaCO3, biogenic silica (BSi) and δ15N from 26 ka to 12.5 ka BP indicate the region was experiencing high surface productivity with probably reduced surface nutrient utilisation efficiency. Sedimentary δ15N depth profile is decoupled from down core variations of major productivity indices (e.g. CaCO3, OC), hinting plausibly partial utilization of nutrients in the mixed layer (photic zone). δ13C of OC and C/N (wt. ratio) clearly reveal the terrestrial origin of organic matter at 15 ka BP, a period known for witnessing onset of deglaciation in northern hemisphere. δ13C minimum at 9 ka BP indicates intense monsoonal activity during this time coinciding well with solar insolation (June) maximum of the northern hemisphere. With the onset of Holocene ( 11 ka BP), δ15N variations appear to correlate with BSi and Ba/Ti indicating enhanced utilization of available nutrients at surface. Suggesting surface productivity over the region was probably micro-nutrient limited. The increased inventory of terrestrial runoff in Holocene probably demonstrates enhanced carbon sequestration capability of the region.

  5. The impacts of summer monsoons on the ozone budget of the atmospheric boundary layer of the Asia-Pacific region.

    PubMed

    Hou, Xuewei; Zhu, Bin; Fei, Dongdong; Wang, Dongdong

    2015-01-01

    The seasonal and inter-annual variations of ozone (O3) in the atmospheric boundary layer of the Asia-Pacific Ocean were investigated using model simulations (2001-2007) from the Model of Ozone and Related chemical Tracers, version 4 (MOZART-4). The simulated O3 and diagnostic precipitation are in good agreement with the observations. Model results suggest that the Asia-Pacific monsoon significantly influences the seasonal and inter-annual variations of ozone. The differences of anthropogenic emissions and zonal winds in meridional directions cause a pollutants' transition zone at approximately 20°-30°N. The onset of summer monsoons with a northward migration of the rain belt leads the transition zone to drift north, eventually causing a summer minimum of ozone to the north of 30°N. In years with an early onset of summer monsoons, strong inflows of clean oceanic air lead to low ozone at polluted oceanic sites near the continent, while strong outflows from the continent exist, resulting in high levels of O3 over remote portions of the Asia-Pacific Ocean. The reverse is true in years when the summer monsoon onset is late. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Effects of large-scale deforestation on precipitation in the monsoon regions: Remote versus local effects

    PubMed Central

    Devaraju, N.; Bala, Govindasamy; Modak, Angshuman

    2015-01-01

    In this paper, using idealized climate model simulations, we investigate the biogeophysical effects of large-scale deforestation on monsoon regions. We find that the remote forcing from large-scale deforestation in the northern middle and high latitudes shifts the Intertropical Convergence Zone southward. This results in a significant decrease in precipitation in the Northern Hemisphere monsoon regions (East Asia, North America, North Africa, and South Asia) and moderate precipitation increases in the Southern Hemisphere monsoon regions (South Africa, South America, and Australia). The magnitude of the monsoonal precipitation changes depends on the location of deforestation, with remote effects showing a larger influence than local effects. The South Asian Monsoon region is affected the most, with 18% decline in precipitation over India. Our results indicate that any comprehensive assessment of afforestation/reforestation as climate change mitigation strategies should carefully evaluate the remote effects on monsoonal precipitation alongside the large local impacts on temperatures. PMID:25733889

  7. Atmospheric 7Be Concentration Changes as a Possible New Indicator for Early Warning on Indian Monsoon Onset

    NASA Astrophysics Data System (ADS)

    Terzi, L.; Kalinowski, M.; Schoeppner, M.; kusmierczyk-michulec, J.

    2017-12-01

    With 80 radionuclide detector systems worldwide, the International Monitoring System (IMS) offers an unprecedented opportunity to use 7Be as an aerosol tracer for global atmospheric cell dynamics. Meteorological processes such as ENSO onset, ITCZ shift, location and progression of Hadley-Ferrel cell convergence zone (HFCZ) have been reconstructed using long term timeseries of ground based 7Be observations. Cross correlation of 7Be activity concentrations also demonstrated to serve as an early warning indicator for Indian monsoons showing a possible 30-day warning prior to monsoon onset (Terzi and Kalinowski, 2017). Here we present what role phenomena that we can observe with 7Be, namely ITCZ and HFCZ, play in monsoon formation and how the prediction of monsoon onset relates to ENSO prediction. Performance, lead time and reliability of 7Be as monsoon onset indicator are then compared to current meteorological indicators. Near surface 7Be activity concentrations may help address outstanding challenges in monsoon research by integrating a new perspective across disciplines.

  8. Glacial-interglacial changes and Holocene variations in Arabian Sea denitrification

    NASA Astrophysics Data System (ADS)

    Gaye, Birgit; Böll, Anna; Segschneider, Joachim; Burdanowitz, Nicole; Emeis, Kay-Christian; Ramaswamy, Venkitasubramani; Lahajnar, Niko; Lückge, Andreas; Rixen, Tim

    2018-01-01

    At present, the Arabian Sea has a permanent oxygen minimum zone (OMZ) at water depths between about 100 and 1200 m. Active denitrification in the upper part of the OMZ is recorded by enhanced δ15N values in the sediments. Sediment cores show a δ15N increase during the middle and late Holocene, which is contrary to the trend in the other two regions of water column denitrification in the eastern tropical North and South Pacific. We calculated composite sea surface temperature (SST) and δ15N ratios in time slices of 1000 years of the last 25 kyr to better understand the reasons for the establishment of the Arabian Sea OMZ and its response to changes in the Asian monsoon system. Low δ15N values of 4-7 ‰ during the last glacial maximum (LGM) and stadials (Younger Dryas and Heinrich events) suggest that denitrification was inactive or weak during Pleistocene cold phases, while warm interstadials (ISs) had elevated δ15N. Fast changes in upwelling intensities and OMZ ventilation from the Antarctic were responsible for these strong millennial-scale variations during the glacial. During the entire Holocene δ15N values > 6 ‰ indicate a relatively stable OMZ with enhanced denitrification. The OMZ develops parallel to the strengthening of the SW monsoon and monsoonal upwelling after the LGM. Despite the relatively stable climatic conditions of the Holocene, the δ15N records show regionally different trends in the Arabian Sea. In the upwelling areas in the western part of the basin, δ15N values are lower during the mid-Holocene (4.2-8.2 ka BP) compared to the late Holocene ( < 4.2 ka BP) due to stronger ventilation of the OMZ during the period of the most intense southwest monsoonal upwelling. In contrast, δ15N values in the northern and eastern Arabian Sea rose during the last 8 kyr. The displacement of the core of the OMZ from the region of maximum productivity in the western Arabian Sea to its present position in the northeast was established during the middle and late Holocene. This was probably caused by (i) reduced ventilation due to a longer residence time of OMZ waters and (ii) augmented by rising oxygen consumption due to enhanced northeast-monsoon-driven biological productivity. This concurs with the results of the Kiel Climate Model, which show an increase in OMZ volume during the last 9 kyr related to the increasing age of the OMZ water mass.

  9. A Carbonate Platform Record of Neogene Paleoenvironmental Changes in the Indian Ocean (Maldives)

    NASA Astrophysics Data System (ADS)

    Betzler, C.; Kroon, D.; Lindhorst, S.; Reolid, J.; Lüdmann, T.; Eberli, G. P.

    2017-12-01

    The Maldives Inner Sea is a natural sediment trap which preserves a 25 Myrs record of paleoenvironmental changes in the Indian Ocean. This encompasses records of past changes in sea level, productivity, and circulation, but also of the dust influx. As such, the sedimentary succession, which has been cored during IODP Expedition 359, provides the opportunity to study the evolution and the dynamics of the South Asian Monsoon. This amends the reconstruction developed in other, mainly siliciclastic records such as in the Bengal and Indus fan deposits. Seismic-, downhole-, and core data show that windblown dust has been deposited in the Maldives since 22 Ma. However, from 22 to 13 Ma the sedimentation in the Maldives under a weak monsoon was mainly controlled by sea level changes. At 13 Ma this situation changed, and wind driven currents started to control sedimentation, as reflected by the onset of widespread drift deposits. This is interpreted to reflect a more vigorous atmospheric circulation. Linked to the current onset, there was a rise of productivity and a coeval expansion of the oxygen minimum zone. Changes in magnetic susceptibility during the Late Miocene and Pliocene, as imaged in downhole magnetic susceptibility logs are interpreted to reflect fluctuations of the dust influx, mainly from the Indian subcontinent. The combination of XRF data and non-carbonate grain-size data allows a further and detailed reconstruction of variations in the dust influx and bottom-current changes for the last 4 Myrs.

  10. Evolution of Surface Water Conditions in the Gulf of California During the Past 2000 years: Implications for the North American Monsoon

    NASA Astrophysics Data System (ADS)

    Barron, J. A.; Bukry, D.; Addison, J. A.; McGann, M.; Schwartz, V.; McGeehin, J. P.; McClymont, E.

    2015-12-01

    High-resolution analyses of diatoms, silicoflagellates, biogenic silica, and alkenones in laminated sediment cores from the Guaymas Basin (central Gulf of California) reveal pronounced changes in surface water conditions over the past 2000 years. Prior to ~AD 1200, surface waters in the western Guaymas Basin (boxcore MD02-2517c2 at 27.4850° N, 112.0743°W, water depth 887 m) were characterized by high biologic productivity with alternating assemblages of productive diatoms (Thalassionema nitzschioides, Fragilariopsis doliolus) and silicoflagellates (Octactis pulchra, Dictyocha stapedia). Beginning at ~ AD 1200 productivity declined abruptly in two steps (at ~AD 1200 and ~1500) that were marked by increases in the relative abundance of tropical diatoms and silicoflagellates. In contrast, eastern Guaymas Basin Kasten Core BAM80 E-17 (27.920° N, 111.610°W, 620 m of water depth), was dominated by high biosiliceous productivity during the past 2000 years with increases corresponding to solar minima, arguing that an intensification of winter northwest winds drove coastal upwelling. In both Guaymas Basin records silicoflagellate assemblages suggest surface-water cooling during Medieval Climate Anomaly (MCA; ~AD 800-1200) relative to the intervals before and after. Together, these records support a cooler La Niña-like MCA followed by a warmer El Niño-like Little Ice Age, similar to results obtained from the Santa Barbara Basin to the north. During La Niñas, the Intertropical Convergence Zone (ITCZ) occupies a more northerly position in the eastern tropical Pacific, facilitating summertime surges of Pacific tropical moisture up the Gulf and higher monsoonal precipitation in the southwestern US. A modeling study by Song Feng et al. (2008, JGR) of the broader MCA (AD 800-1300) utilizes La Niña-like Pacific sea surface temperatures to argues for an intensified North American Monsoon during the MCA. Limited terrestrial proxy records from Arizona and New Mexico are supportive.

  11. Intensification and deepening of the Arabian Sea Oxygen Minimum Zone in response to increase in Indian monsoon wind intensity

    NASA Astrophysics Data System (ADS)

    Lachkar, Zouhair; Smith, Shafer; Levy, Marina

    2017-04-01

    The decline in oxygen supply to the ocean associated with global warming of sea-surface temperatures is expected to expand the oxygen minimum zones (OMZs). This global trend can be attenuated or amplified by regional processes. In the Arabian Sea, the World's thickest OMZ is highly vulnerable to changes in the Indian monsoon wind. Evidence from paleo records and future climate projections indicate strong variations of the Indian monsoon wind intensity over climatic timescales. Yet, the response of the OMZ to these wind changes remains poorly understood and its amplitude and timescale unexplored. Here, we investigate the impacts of perturbations in Indian monsoon wind intensity (from -50% to +50%) on the size and intensity of the Arabian Sea OMZ, and examine the biogeochemical and ecological implications of these changes. To this end, we conducted a series of eddy-resolving simulations of the Arabian Sea using the Regional Oceanic Modeling System (ROMS) coupled to a nitrogen based Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD) ecosystem model that includes a representation of the O2 cycle. We show that the Arabian Sea productivity increases and its OMZ expands and deepens in response to monsoon wind intensification. These responses are dominated by the perturbation of the summer monsoon wind, whereas the changes in the winter monsoon wind play a secondary role. While the productivity responds quickly and nearly linearly to wind increase (i.e., on a timescale of years), the OMZ response is much slower (i.e., a timescale of decades). Our analysis reveals that the OMZ expansion at depth is driven by increased oxygen biological consumption, whereas its surface weakening is induced by increased lateral ventilation. The enhanced lateral ventilation favors episodic intrusions of oxic waters in the lower epipelagic zone (100-200m) of the western and central Arabian Sea, leading to intermittent expansions of habitats and a more frequent alternation of hypoxic and oxic conditions there. The increased productivity and deepening of the OMZ also lead to a strong intensification of denitrification at depth, resulting in a substantial amplification of fixed nitrogen depletion in the Arabian Sea. We conclude that changes in the Indian monsoon can affect, on longer timescales, the large-scale biogeochemical cycles of nitrogen and carbon, with a positive feedback on climate change in the case of stronger winds.

  12. Evaluation of different rainfall products over India for the summer monsoon

    NASA Astrophysics Data System (ADS)

    Prakash, Satya; Mitra, Ashis; Turner, Andrew; Collins, Mathew; AchutoRao, Krishna

    2015-04-01

    Summer rainfall over India forms an integral part of the Asian monsoon, which plays a key role in the global water cycle and climate system through coupled atmospheric and oceanic processes. Accurate prediction of Indian summer monsoon rainfall and its variability at various spatiotemporal scales are crucial for agriculture, water resources and hydroelectric-power sectors. Reliable rainfall observations are very important for verification of numerical model outputs and model development. However, high spatiotemporal variability of rainfall makes it difficult to measure adequately with ground-based instruments over a large region of various surface types from deserts to oceans. A number of multi-satellite rainfall products are available to users at different spatial and temporal scales. Each rainfall product has some advantages as well as limitations, hence it is essential to find a suitable region-specific data set among these rainfall products for a particular user application, such as water resources, agricultural modelling etc. In this study, we examine seasonal-mean and daily rainfall datasets for monsoon model validation. First, six multi-satellite and gauge-only rainfall products were evaluated over India at seasonal scale for 27 (JJAS 1979-2005) summer monsoon seasons against gridded 0.5-degree IMD gauge-based rainfall. Various skill metrics are computed to assess the potential of these data sets in representation of large-scale monsoon rainfall at all-India and sub-regional scales. Among the gauge-only data sets, APHRODITE and GPCC appear to outperform the others whereas GPCP is better than CMAP in the merged multi-satellite category. However, there are significant differences among these data sets indicating uncertainty in the observed rainfall over this region, with important implications for the evaluation of model simulations. At the daily scale, TRMM TMPA-3B42 is one of the best available products and is widely used for various hydro-meteorological applications. The existing version 6 (V6) products of TRMM underwent major changes and version 7 (V7) products were released in late 2012, and we compare these to the IMD daily gridded data over the 1998-2010 period. We show a clear improvement in V7 over V6 in the South Asian monsoon region using various skill metrics. Over typical monsoon rainfall zones, biases are improved by 5-10% in V7 over higher-rainfall regions. These results will help users to select appropriate rainfall product for their application. With the recent launch of the GPM Core Observatory, the release of a more advanced high-resolution multi-satellite rainfall product is expected soon.

  13. Intensification and deepening of the Arabian Sea oxygen minimum zone in response to increase in Indian monsoon wind intensity

    NASA Astrophysics Data System (ADS)

    Lachkar, Zouhair; Lévy, Marina; Smith, Shafer

    2018-01-01

    The decline in oxygen supply to the ocean associated with global warming is expected to expand oxygen minimum zones (OMZs). This global trend can be attenuated or amplified by regional processes. In the Arabian Sea, the world's thickest OMZ is highly vulnerable to changes in the Indian monsoon wind. Evidence from paleo-records and future climate projections indicates strong variations of the Indian monsoon wind intensity over climatic timescales. Yet, the response of the OMZ to these wind changes remains poorly understood and its amplitude and timescale unexplored. Here, we investigate the impacts of perturbations in Indian monsoon wind intensity (from -50 to +50 %) on the size and intensity of the Arabian Sea OMZ, and examine the biogeochemical and ecological implications of these changes. To this end, we conducted a series of eddy-resolving simulations of the Arabian Sea using the Regional Ocean Modeling System (ROMS) coupled to a nitrogen-based nutrient-phytoplankton-zooplankton-detritus (NPZD) ecosystem model that includes a representation of the O2 cycle. We show that the Arabian Sea productivity increases and its OMZ expands and deepens in response to monsoon wind intensification. These responses are dominated by the perturbation of the summer monsoon wind, whereas the changes in the winter monsoon wind play a secondary role. While the productivity responds quickly and nearly linearly to wind increase (i.e., on a timescale of years), the OMZ response is much slower (i.e., a timescale of decades). Our analysis reveals that the OMZ expansion at depth is driven by increased oxygen biological consumption, whereas its surface weakening is induced by increased ventilation. The enhanced ventilation favors episodic intrusions of oxic waters in the lower epipelagic zone (100-200 m) of the western and central Arabian Sea, leading to intermittent expansions of marine habitats and a more frequent alternation of hypoxic and oxic conditions there. The increased productivity and deepening of the OMZ also lead to a strong intensification of denitrification at depth, resulting in a substantial amplification of fixed nitrogen depletion in the Arabian Sea. We conclude that changes in the Indian monsoon can affect, on longer timescales, the large-scale biogeochemical cycles of nitrogen and carbon, with a positive feedback on climate change in the case of stronger winds. Additional potential changes in large-scale ocean ventilation and stratification may affect the sensitivity of the Arabian Sea OMZ to monsoon intensification.

  14. Indian monsoon variability on millennial-orbital timescales.

    PubMed

    Kathayat, Gayatri; Cheng, Hai; Sinha, Ashish; Spötl, Christoph; Edwards, R Lawrence; Zhang, Haiwei; Li, Xianglei; Yi, Liang; Ning, Youfeng; Cai, Yanjun; Lui, Weiguo Lui; Breitenbach, Sebastian F M

    2016-04-13

    The Indian summer monsoon (ISM) monsoon is critical to billions of people living in the region. Yet, significant debates remain on primary ISM drivers on millennial-orbital timescales. Here, we use speleothem oxygen isotope (δ(18)O) data from Bittoo cave, Northern India to reconstruct ISM variability over the past 280,000 years. We find strong coherence between North Indian and Chinese speleothem δ(18)O records from the East Asian monsoon domain, suggesting that both Asian monsoon subsystems exhibit a coupled response to changes in Northern Hemisphere summer insolation (NHSI) without significant temporal lags, supporting the view that the tropical-subtropical monsoon variability is driven directly by precession-induced changes in NHSI. Comparisons of the North Indian record with both Antarctic ice core and sea-surface temperature records from the southern Indian Ocean over the last glacial period do not suggest a dominant role of Southern Hemisphere climate processes in regulating the ISM variability on millennial-orbital timescales.

  15. Evaluation of groundwater quality and suitability for irrigation and drinking purposes in southwest Punjab, India using hydrochemical approach

    NASA Astrophysics Data System (ADS)

    Sharma, Diana Anoubam; Rishi, Madhuri S.; Keesari, Tirumalesh

    2017-10-01

    Groundwater samples from alluvial aquifers of Bathinda district, southwest Punjab were measured for physicochemical parameters as well as major ion chemistry to evaluate the groundwater suitability for drinking and irrigation purposes and to present the current hydrochemical status of groundwater of this district. Temporal variations were analyzed by comparing the pre- and post-monsoon groundwater chemistry. Most of the samples showed contamination: F- (72 %), Mg2+ (22 %), SO4 2- (28 %), TH (25 %), NO3 - (22 %), HCO3 - (22 %) and TDS (11 %) during pre-monsoon and F- (50 %), Mg2+ (39 %), SO4 2- (22 %), TH (28 %), NO3 - (22 %) and TDS (28 %) during post-monsoon above permissible limits for drinking, while rest of the parameters fall within the limits. Irrigation suitability was checked using sodium absorption ratio (SAR), residual sodium carbonate (RSC), percent sodium (Na%) and permeability index (PI). Most of the samples fall under good to suitable category during pre-monsoon period, but fall under doubtful to unsuitable category during post-monsoon period. Presence of high salt content in groundwater during post-monsoon season reflects leaching of salts present in the unsaturated zone by infiltrating precipitation. Hydrochemical data was interpreted using Piper's trilinear plot and Chadha's plot to understand the various geochemical processes affecting the groundwater quality. The results indicate that the order of cation dominance is Na+ > Mg2+ > Ca2+, while anion dominance is in the order Cl- > HCO3 - > SO4 2-. The geochemistry of groundwater of this district is mainly controlled by the carbonate and silicate mineral dissolution and ion exchange during pre-monsoon and leaching from the salts deposited in vadose zone during post-monsoon. The main sources of contamination are soluble fertilizers and livestock wastes. This study is significant as the surface water resources are limited and the quality and quantity of groundwater are deteriorating with time due to anthropogenic inputs.

  16. Global energetics and local physics as drivers of past, present and future monsoons

    NASA Astrophysics Data System (ADS)

    Biasutti, Michela; Voigt, Aiko; Boos, William R.; Braconnot, Pascale; Hargreaves, Julia C.; Harrison, Sandy P.; Kang, Sarah M.; Mapes, Brian E.; Scheff, Jacob; Schumacher, Courtney; Sobel, Adam H.; Xie, Shang-Ping

    2018-06-01

    Global constraints on momentum and energy govern the variability of the rainfall belt in the intertropical convergence zone and the structure of the zonal mean tropical circulation. The continental-scale monsoon systems are also facets of a momentum- and energy-constrained global circulation, but their modern and palaeo variability deviates substantially from that of the intertropical convergence zone. The mechanisms underlying deviations from expectations based on the longitudinal mean budgets are neither fully understood nor simulated accurately. We argue that a framework grounded in global constraints on energy and momentum yet encompassing the complexities of monsoon dynamics is needed to identify the causes of the mismatch between theory, models and observations, and ultimately to improve regional climate projections. In a first step towards this goal, disparate regional processes must be distilled into gross measures of energy flow in and out of continents and between the surface and the tropopause, so that monsoon dynamics may be coherently diagnosed across modern and palaeo observations and across idealized and comprehensive simulations. Accounting for zonal asymmetries in the circulation, land/ocean differences in surface fluxes, and the character of convective systems, such a monsoon framework would integrate our understanding at all relevant scales: from the fine details of how moisture and energy are lifted in the updrafts of thunderclouds, up to the global circulations.

  17. Reconstructing Holocene hematite and goethite variations in the Indus Canyon to trace changes in the Asian monsoon system

    NASA Astrophysics Data System (ADS)

    Koehler, Cornelia; Clift, Peter; Pressling, Nicola; Limmer, David; Giosan, Liviu; Tabrez, Ali

    2010-05-01

    In order to study Holocene Asian monsoon variations, we reconstructed changes in chemical weathering by examining sediments from the Indus Canyon. During the late Holocene, the Asian monsoon system had periods of high and low intensities that influenced the civilisations living in its realm. For example, the demise of the Harappan civilisation has been linked to a weakened monsoon system around 4 ka. The sediments in the Indus Canyon, which originate from the River Indus and its Himalayan tributaries, provide an ideal, natural environmental archive of the South Asian monsoon system. In order to investigate the alternation between arid and humid monsoonal climatic conditions, variations are traced using the magnetic minerals hematite and goethite, which form under distinct environmental conditions: goethite is stable under humid conditions, whereas hematite forms from the dehydration of goethite under arid conditions. The two minerals are characterised and quantified using environmental magnetic measurements, as well as diffuse reflectance spectrometry. Combining both approaches will enable us to reconstruct variations in chemical weathering over time. Furthermore, because this is governed by temperature and the availability of moisture, our weathering record will allow us to understand monsoon variability during the Holocene and test whether summer rain intensity has been decreasing in SW Asia since 8 ka. In addition, the multi-component analysis of colour reflectance spectra identifies different mineral components including hematite/goethite, clay mineral mixtures, calcite and organics. We will present our results from the multi-sensor core logger equipped with a Minolta spectrometer, measuring both magnetic susceptibility and the optical properties of the split sediment cores. Initial results indicate the presence of hematite and goethite in the sediment. There is an increasing hematite content up the cores, indicating an aridification trend during the Holocene. The sediments are further analysed using the environmental magnetic proxies NRM, ARM and IRM to fully understand the mineral magnetic variations and to quantify hematite and goethite contributions. This work plays an integral part of a larger scale palaeoenvironmental project on Indus Canyon sediments.

  18. Changes in Vegetation Cover over the Indian Peninsula and Implications for the Indian Monsoon System during the Holocene

    NASA Astrophysics Data System (ADS)

    Ponton, C.; Giosan, L.; Eglinton, T. I.; Scientific Team Of Indian National Gas Hydrate Program Expedition 01

    2010-12-01

    The Asian monsoon, composed of the East Asian and Indian systems affects the most densely populated region of the planet. The Indian monsoon is one of the most energetic and dynamic climate processes that occur today on Earth, but we still do not have a detailed understanding of large-scale hydrological variability over the Indian peninsula during the Holocene. Previous studies of the salinity variations in the Bay of Bengal indicate that during the last glacial maximum the Indian monsoon system was weaker and precipitation over the area was lower than today. Here we provide the first high resolution Holocene climate record for central India measured on a sediment core recovered offshore the mouth of the Godavari River, on the eastern Indian shelf. The δ13C composition of leaf waxes preserved in the core shows a large range of variation suggesting a major change in the relative proportions of C3 and C4 plant-derived wax inputs during the Holocene. Using reported values for modern plants, we estimate that C3 plants suffered a reduction in the Godavari basin from ~45% to ~15% over the Holocene. Negative excursions of δ13C leaf wax suggest that short-lived events of C3 plant resurgence (and inferred higher precipitation) punctuated the process of aridification of peninsular India. The vegetation structure and inferred aridity in central India is consistent with reconstructions of Indian monsoon precipitation and wind intensity in the Arabian Sea, salinity in the Bay of Bengal, and precipitation proxy records for the East Asian monsoon, suggesting a coherent behavior of the Asian monsoon system over the Holocene.

  19. Monsoon Related Fluctuations in Terrigenous Sedimentation and Biological Productivity in the Bay of Bengal During the Past 24,500 Years

    NASA Astrophysics Data System (ADS)

    K V, S.; Kurian, J.; Meloth, T.; Rasik, R.

    2011-12-01

    Reconstruction of the Indian monsoon precipitation on a centennial to millennial scale has important relevance on the future climate and hydrologic change over the entire South Asia. Here we present paleo-monsoon records from a AMS 14C dated sediment core from the Bay of Bengal (ABP-24/01; location - 11°15.52' N & 90°21.84' E, water depth - 3206 m) that span the past 24.5 ka BP (calendar age). The array of inorganic and organic geochemical proxy records examined here assist the reconstruction of monsoon associated precipitation/ runoff, oceanic productivity and water column processes during the last glacial maximum (LGM ~21±2 ka BP) to the late Holocene. During the early stages of LGM, terrigenous elemental concentrations (Al, Fe) remained low, with substantial increase towards late LGM stage. Significantly, the substantial LGM increase in the eolian proxy concentrations (Mg, Rb) suggest that with the diminishing strength of the rain bearing SW monsoon during LGM the dry NE monsoon strengthened, leading to increased dust input to the Bay of Bengal. Although the LGM biological productivity (Corg, CaCO3, Ba) at the site remained low due to the relative decrease in runoff-derived nutrients, the ocean bottom seems to have less ventilated (Mn, U, V). The deglacial period is associated with slightly increasing monsoonal runoff increasing trend in terrigenous input, without any increase in biological productivity. Interestingly, the enhanced terrigenous input to the core site occurred during 12.5 - 10 ka BP. The Holocene was characterised by a dramatic increase in biological productivity between 8.5 and 7 ka BP as well as relatively enhanced river influx. While the various proxy records suggest a substantial decrease in monsoonal terrigenous influx after 7 ka BP, the productivity records remained at elevated values with better ventilated bottom waters.

  20. Indian monsoon variability on millennial-orbital timescales

    PubMed Central

    Kathayat, Gayatri; Cheng, Hai; Sinha, Ashish; Spötl, Christoph; Edwards, R. Lawrence; Zhang, Haiwei; Li, Xianglei; Yi, Liang; Ning, Youfeng; Cai, Yanjun; Lui, Weiguo Lui; Breitenbach, Sebastian F. M.

    2016-01-01

    The Indian summer monsoon (ISM) monsoon is critical to billions of people living in the region. Yet, significant debates remain on primary ISM drivers on millennial-orbital timescales. Here, we use speleothem oxygen isotope (δ18O) data from Bittoo cave, Northern India to reconstruct ISM variability over the past 280,000 years. We find strong coherence between North Indian and Chinese speleothem δ18O records from the East Asian monsoon domain, suggesting that both Asian monsoon subsystems exhibit a coupled response to changes in Northern Hemisphere summer insolation (NHSI) without significant temporal lags, supporting the view that the tropical-subtropical monsoon variability is driven directly by precession-induced changes in NHSI. Comparisons of the North Indian record with both Antarctic ice core and sea-surface temperature records from the southern Indian Ocean over the last glacial period do not suggest a dominant role of Southern Hemisphere climate processes in regulating the ISM variability on millennial-orbital timescales. PMID:27071753

  1. Evaluation of Limiting Climatic Factors and Simulation of a Climatically Suitable Habitat for Chinese Sea Buckthorn

    PubMed Central

    Li, Guoqing; Du, Sheng; Guo, Ke

    2015-01-01

    Chinese sea buckthorn (Hippophae rhamnoides subsp. sinensis) has considerable economic potential and plays an important role in reclamation and soil and water conservation. For scientific cultivation of this species across China, we identified the key climatic factors and explored climatically suitable habitat in order to maximize survival of Chinese sea buckthorn using MaxEnt and GIS tools, based on 98 occurrence records from herbarium and publications and 13 climatic factors from Bioclim, Holdridge life zone and Kria' index variables. Our simulation showed that the MaxEnt model performance was significantly better than random, with an average test AUC value of 0.93 with 10-fold cross validation. A jackknife test and the regularized gain change, which were applied to the training algorithm, showed that precipitation of the driest month (PDM), annual precipitation (AP), coldness index (CI) and annual range of temperature (ART) were the most influential climatic factors in limiting the distribution of Chinese sea buckthorn, which explained 70.1% of the variation. The predicted map showed that the core of climatically suitable habitat was distributed from the southwest to northwest of Gansu, Ningxia, Shaanxi and Shanxi provinces, where the most influential climate variables were PDM of 1.0–7.0 mm, AP of 344.0–1089.0 mm, CI of -47.7–0.0°C, and ART of 26.1–45.0°C. We conclude that the distribution patterns of Chinese sea buckthorn are related to the northwest winter monsoon, the southwest summer monsoon and the southeast summer monsoon systems in China. PMID:26177033

  2. Evaluation of Limiting Climatic Factors and Simulation of a Climatically Suitable Habitat for Chinese Sea Buckthorn.

    PubMed

    Li, Guoqing; Du, Sheng; Guo, Ke

    2015-01-01

    Chinese sea buckthorn (Hippophae rhamnoides subsp. sinensis) has considerable economic potential and plays an important role in reclamation and soil and water conservation. For scientific cultivation of this species across China, we identified the key climatic factors and explored climatically suitable habitat in order to maximize survival of Chinese sea buckthorn using MaxEnt and GIS tools, based on 98 occurrence records from herbarium and publications and 13 climatic factors from Bioclim, Holdridge life zone and Kria' index variables. Our simulation showed that the MaxEnt model performance was significantly better than random, with an average test AUC value of 0.93 with 10-fold cross validation. A jackknife test and the regularized gain change, which were applied to the training algorithm, showed that precipitation of the driest month (PDM), annual precipitation (AP), coldness index (CI) and annual range of temperature (ART) were the most influential climatic factors in limiting the distribution of Chinese sea buckthorn, which explained 70.1% of the variation. The predicted map showed that the core of climatically suitable habitat was distributed from the southwest to northwest of Gansu, Ningxia, Shaanxi and Shanxi provinces, where the most influential climate variables were PDM of 1.0-7.0 mm, AP of 344.0-1089.0 mm, CI of -47.7-0.0°C, and ART of 26.1-45.0°C. We conclude that the distribution patterns of Chinese sea buckthorn are related to the northwest winter monsoon, the southwest summer monsoon and the southeast summer monsoon systems in China.

  3. Variations in productivity and eolian fluxes in the northeastern Arabian Sea during the past 110 ka

    NASA Astrophysics Data System (ADS)

    Pourmand, Ali; Marcantonio, Franco; Schulz, Hartmut

    2004-04-01

    High-resolution (one to two samples/ka) radionuclide proxy records from core 93KL in the northeastern Arabian Sea provide evidence for millennial climate variability over the past 110 ka. We interpret 230Th-normalized 232Th fluxes as a proxy for eolian input, and authigenic uranium concentrations as a proxy for past productivity. We attribute orbital and suborbital variations in both proxies to changes in the intensity of the southwest Indian Ocean monsoon. The highest 230Th-normalized 232Th fluxes occur at times that are consistent with the timing of the Younger Dryas, Heinrich events 1-7 and cold Dansgaard-Oeschger stadial events recorded in the GISP2 ice core. Such high dust fluxes may be due to a weakened southwest monsoon in conjunction with strengthened northwesterlies from the Arabian Peninsula and Mesopotamia. Authigenic uranium concentrations, on the other hand, are highest during warm Dansgaard-Oeschger interstadials when the southwest monsoon is intensified relative to the northwesterly winds. Our results also indicate that on orbital timescales maximum average eolian fluxes coincide with the timing of marine isotopic stage (MIS) 2 and 4, while minimum fluxes occur during MIS 1, 3 and 5. Although the forcing mechanism(s) controlling suborbital variabilities in monsoonal intensity is still debated, our findings suggest an atmospheric teleconnection between the low-latitude southwest monsoon and North Atlantic climate.

  4. Denitrification in the Arabian Sea: A 3D ecosystem modelling study

    NASA Astrophysics Data System (ADS)

    Anderson, Thomas R.; Ryabchenko, Vladimir A.; Fasham, Michael J. R.; Gorchakov, Victor A.

    2007-12-01

    A three-dimensional hydrodynamic-ecosystem model was used to examine the factors determining the spatio-temporal distribution of denitrification in the Arabian Sea. The ecosystem model includes carbon and nitrogen as currencies, cycling of organic matter via detritus and dissolved organic matter, and both remineralization and denitrification as sinks for material exported below the euphotic zone. Model results captured the marked seasonality in plankton dynamics of the region, with characteristic blooms of chlorophyll in the coastal upwelling regions and central Arabian Sea during the southwest monsoon, and also in the northern Arabian Sea during the northeast monsoon as the mixed layer shoals. Predicted denitrification was 26.2 Tg N yr -1,the greatest seasonal contribution being during the northeast monsoon when primary production is co-located with the zone of anoxia. Detritus was the primary organic substrate consumed in denitrification (97%), with a small (3%) contribution by dissolved organic matter. Denitrification in the oxygen minimum zone was predicted to be fuelled almost entirely by organic matter supplied by particles sinking vertically from the euphotic zone above (0.73 mmol N m -2 d -1) rather than from lateral transport of organic matter from elsewhere in the Arabian Sea (less than 0.01 mmol N m -2 d -1). Analysis of the carbon budget in the zone of denitrification (north of 10°N and east of 55°E) indicates that the modelled vertical export flux of detritus, which is similar in magnitude to estimates from field data based on the 234Th method, is sufficient to account for measured bacterial production below the euphotic zone in the Arabian Sea.

  5. Measurement of inter- and intra-annual variability of landscape fire activity at a continental scale: the Australian case

    NASA Astrophysics Data System (ADS)

    Williamson, Grant J.; Prior, Lynda D.; Jolly, W. Matt; Cochrane, Mark A.; Murphy, Brett P.; Bowman, David M. J. S.

    2016-03-01

    Climate dynamics at diurnal, seasonal and inter-annual scales shape global fire activity, although difficulties of assembling reliable fire and meteorological data with sufficient spatio-temporal resolution have frustrated quantification of this variability. Using Australia as a case study, we combine data from 4760 meteorological stations with 12 years of satellite-derived active fire detections to determine day and night time fire activity, fire season start and end dates, and inter-annual variability, across 61 objectively defined climate regions in three climate zones (monsoon tropics, arid and temperate). We show that geographic patterns of landscape burning (onset and duration) are related to fire weather, resulting in a latitudinal gradient from the monsoon tropics in winter, through the arid zone in all seasons except winter, and then to the temperate zone in summer and autumn. Peak fire activity precedes maximum lightning activity by several months in all regions, signalling the importance of human ignitions in shaping fire seasons. We determined median daily McArthur forest fire danger index (FFDI50) for days and nights when fires were detected: FFDI50 varied substantially between climate zones, reflecting effects of fire management in the temperate zone, fuel limitation in the arid zone and abundance of flammable grasses in the monsoon tropical zone. We found correlations between the proportion of days when FFDI exceeds FFDI50 and the Southern Oscillation index across the arid zone during spring and summer, and Indian Ocean dipole mode index across south-eastern Australia during summer. Our study demonstrates that Australia has a long fire weather season with high inter-annual variability relative to all other continents, making it difficult to detect long term trends. It also provides a way of establishing robust baselines to track changes to fire seasons, and supports a previous conceptual model highlighting multi-temporal scale effects of climate in shaping continental-scale pyrogeography.

  6. An abrupt centennial-scale drought event and mid-holocene climate change patterns in monsoon marginal zones of East Asia.

    PubMed

    Li, Yu; Wang, Nai'ang; Zhang, Chengqi

    2014-01-01

    The mid-latitudes of East Asia are characterized by the interaction between the Asian summer monsoon and the westerly winds. Understanding long-term climate change in the marginal regions of the Asian monsoon is critical for understanding the millennial-scale interactions between the Asian monsoon and the westerly winds. Abrupt climate events are always associated with changes in large-scale circulation patterns; therefore, investigations into abrupt climate changes provide clues for responses of circulation patterns to extreme climate events. In this paper, we examined the time scale and mid-Holocene climatic background of an abrupt dry mid-Holocene event in the Shiyang River drainage basin in the northwest margin of the Asian monsoon. Mid-Holocene lacustrine records were collected from the middle reaches and the terminal lake of the basin. Using radiocarbon and OSL ages, a centennial-scale drought event, which is characterized by a sand layer in lacustrine sediments both from the middle and lower reaches of the basin, was absolutely dated between 8.0-7.0 cal kyr BP. Grain size data suggest an abrupt decline in lake level and a dry environment in the middle reaches of the basin during the dry interval. Previous studies have shown mid-Holocene drought events in other places of monsoon marginal zones; however, their chronologies are not strong enough to study the mechanism. According to the absolutely dated records, we proposed a new hypothesis that the mid-Holocene dry interval can be related to the weakening Asian summer monsoon and the relatively arid environment in arid Central Asia. Furthermore, abrupt dry climatic events are directly linked to the basin-wide effective moisture change in semi-arid and arid regions. Effective moisture is affected by basin-wide precipitation, evapotranspiration, lake surface evaporation and other geographical settings. As a result, the time scales of the dry interval could vary according to locations due to different geographical features.

  7. An Abrupt Centennial-Scale Drought Event and Mid-Holocene Climate Change Patterns in Monsoon Marginal Zones of East Asia

    PubMed Central

    Li, Yu; Wang, Nai'ang; Zhang, Chengqi

    2014-01-01

    The mid-latitudes of East Asia are characterized by the interaction between the Asian summer monsoon and the westerly winds. Understanding long-term climate change in the marginal regions of the Asian monsoon is critical for understanding the millennial-scale interactions between the Asian monsoon and the westerly winds. Abrupt climate events are always associated with changes in large-scale circulation patterns; therefore, investigations into abrupt climate changes provide clues for responses of circulation patterns to extreme climate events. In this paper, we examined the time scale and mid-Holocene climatic background of an abrupt dry mid-Holocene event in the Shiyang River drainage basin in the northwest margin of the Asian monsoon. Mid-Holocene lacustrine records were collected from the middle reaches and the terminal lake of the basin. Using radiocarbon and OSL ages, a centennial-scale drought event, which is characterized by a sand layer in lacustrine sediments both from the middle and lower reaches of the basin, was absolutely dated between 8.0–7.0 cal kyr BP. Grain size data suggest an abrupt decline in lake level and a dry environment in the middle reaches of the basin during the dry interval. Previous studies have shown mid-Holocene drought events in other places of monsoon marginal zones; however, their chronologies are not strong enough to study the mechanism. According to the absolutely dated records, we proposed a new hypothesis that the mid-Holocene dry interval can be related to the weakening Asian summer monsoon and the relatively arid environment in arid Central Asia. Furthermore, abrupt dry climatic events are directly linked to the basin-wide effective moisture change in semi-arid and arid regions. Effective moisture is affected by basin-wide precipitation, evapotranspiration, lake surface evaporation and other geographical settings. As a result, the time scales of the dry interval could vary according to locations due to different geographical features. PMID:24599259

  8. Indian Monsoon Depression: Climatology and Variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Jin-Ho; Huang, Wan-Ru

    The monsoon climate is traditionally characterized by large seasonal rainfall and reversal of wind direction (e.g., Krishnamurti 1979). Most importantly this rainfall is the major source of fresh water to various human activities such as agriculture. The Indian subcontinent resides at the core of the Southeast Asian summer monsoon system, with the monsoon trough extended from northern India across Indochina to the Western Tropical Pacific (WTP). Large fraction of annual rainfall occurs during the summer monsoon season, i.e., June - August with two distinct maxima. One is located over the Bay of Bengal with rainfall extending northwestward into eastern andmore » central India, and the other along the west coast of India where the lower level moist wind meets the Western Ghat Mountains (Saha and Bavardeckar 1976). The rest of the Indian subcontinent receives relatively less rainfall. Various weather systems such as tropical cyclones and weak disturbances contribute to monsoon rainfall (Ramage 1971). Among these systems, the most efficient rain-producing system is known as the Indian monsoon depression (hereafter MD). This MD is critical for monsoon rainfall because: (i) it occurs about six times during each summer monsoon season, (ii) it propagates deeply into the continent and produces large amounts of rainfall along its track, and (iii) about half of the monsoon rainfall is contributed to by the MDs (e.g., Krishnamurti 1979). Therefore, understanding various properties of the MD is a key towards comprehending the veracity of the Indian summer monsoon and especially its hydrological process.« less

  9. Decoupling of monsoon activity across the northern and southern Indo-Pacific during the Late Glacial

    NASA Astrophysics Data System (ADS)

    Denniston, R. F.; Asmerom, Y.; Polyak, V. J.; Wanamaker, A. D.; Ummenhofer, C. C.; Humphreys, W. F.; Cugley, J.; Woods, D.; Lucker, S.

    2017-11-01

    Recent studies of stalagmites from the Southern Hemisphere tropics of Indonesia reveal two shifts in monsoon activity not apparent in records from the Northern Hemisphere sectors of the Austral-Asian monsoon system: an interval of enhanced rainfall at ∼19 ka, immediately prior to Heinrich Stadial 1, and a sharp increase in precipitation at ∼9 ka. Determining whether these events are site-specific or regional is important for understanding the full range of sensitivities of the Austral-Asian monsoon. We present a discontinuous 40 kyr carbon isotope record of stalagmites from two caves in the Kimberley region of the north-central Australian tropics. Heinrich stadials are represented by pronounced negative carbon isotopic anomalies, indicative of enhanced rainfall associated with a southward shift of the intertropical convergence zone and consistent with hydroclimatic changes observed across Asia and the Indo-Pacific. Between 20 and 8 ka, however, the Kimberley stalagmites, like the Indonesian record, reveal decoupling of monsoon behavior from Southeast Asia, including the early deglacial wet period (which we term the Late Glacial Pluvial) and the abrupt strengthening of early Holocene monsoon rainfall.

  10. Climate, ENSO and 'Black Swans' over the Last Millennium

    NASA Astrophysics Data System (ADS)

    Thompson, L. G.; Mosley-Thompson, E.; Davis, M. E.; Kenny, D. V.; Lin, P. N.

    2014-12-01

    Tropical rainfall patterns influence the lives of billions of people both north and south of the Equator. Evidence of major ENSO events such as droughts is often recorded in the oxygen isotopic ratios and aerosol concentrations in tropical ice cores. Here we examine unusual events recorded in three ice cores, two (Quelccaya and Coropuna) in the Southern Hemisphere on the Peruvian Altiplano and the third (Dasuopu) located 22,000 km away on the southern edge of the Tibetan Plateau at the top of the Himalayas. These records suggest that the unique lower and middle tropospheric air flow over chloride (Cl-) and fluoride (F-) enriched areas upwind of the sites during ENSO events leads to enhanced deposition of these species on these glaciers. Linkages are demonstrated between ice-core chemistry and drought indicators, changes in lake levels, and ENSO and monsoon indices. Two unusual events, in the late 18th and mid-14th Centuries, are marked by abnormally high concentrations of F- and Cl- in at least two of the ice core records. All three records document a drought from 1789 to 1800 CE in which increases in these anionic concentrations reflect the abundance of continental atmospheric dust derived from arid regions upwind of the core sites. The earlier event, apparent only in the Quelccaya and Dasuopu ice cores, begins abruptly in 1343 and tapers off by 1375. The interaction between high frequency El Niños and low frequency shifts in the inter-tropical convergence zone may have resulted in these unusually severe and extended droughts. These "Black Swan" events correspond to historically documented, devastating population disruptions that were in part climate related. The 1789 to 1800 CE event was concurrent with the Doji Bara famine resulting from extended droughts that led to over 600,000 deaths in central India by 1792. Similarly extensive climate disruptions are documented in Central and South America. The mid-14th Century drought is concomitant with major monsoon failures in India, collapse of the Yang Dynasty in China, and the "Black Death" pandemic that eliminated roughly 30% of the global population. Understanding the characteristics and drivers of these historical events is critical for design of adaptive measures for a world with over seven billion people and unprecedented anthropogenic influences on the climate.

  11. Biomarker evidence for increasing aridity in south-central India over the Holocene

    NASA Astrophysics Data System (ADS)

    Sarkar, S.; Wilkes, H.; Prasad, S.; Brauer, A.; Basavaiah, N.; Strecker, M. R.; Sachse, D.

    2012-12-01

    Summer monsoonal rainfall has played an important role in the development and sustenance of the largely agro-based economy in the Indian subcontinent in the recent past. A better understanding of past variations in monsoonal rainfall can therefore lead to an assessment of its potential impact on early human societies. However, our knowledge of spatiotemporal patterns of past monsoon strength, as inferred from proxy records, is limited due to the lack of high-resolution paleo-hydrological records from continental archives. Here, we reconstruct centennial-scale hydrological variability associated with changes in the intensity of the Indian Summer Monsoon based on a record of lipid biomarker abundances and compound-specific stable isotopic composition of a 10-m-long sediment core from saline-alkaline Lonar Lake, situated in the core 'monsoon zone' of south-central India. We identified three periods of distinct hydrology over the Holocene in south-central India. The period between 10.4 and 6.5 ka BP was characterized by a relatively high abundance of land-plant biomarkers, such as long-chain n-alkanes. The composition of these leaf-wax n-alkanes (weighted average of concentration of different chain-length n-alkanes, expressed as the ACL index) and their negative δ13C (-30‰ to -33 ‰) indicate the dominance of woody C3 vegetation in the catchment, and negative δD (-170‰ to -175‰) values argue for a wet period due to an intensified monsoon. Rapid fluctuations in abundance of both terrestrial and aquatic biomarkers between 6.5 and 4 ka BP indicate an unstable lake ecosystem, culminating in a transition to arid conditions. Higher ACL values and a pronounced shift to more positive δ13C values (up to -22‰) of leaf-wax n-alkanes over this period indicate a change of dominant vegetation to C4 grasses. Along with a 40‰ increase in leaf wax n-alkane δD values, which likely resulted from less rainfall and/or higher plant evapotranspiration, we interpret this period to reflect the driest conditions in the region during the last 10 ka. This transition led to protracted late Holocene arid conditions and a permanent saline lake. This is supported by the great abundance of the triterpene lipid tetrahymanol, generally considered as a marker for water-column stratification and salinity. A late Holocene peak of algal/cyanobacterial biomarker input at 1.3 ka BP may represent an event of lake eutrophication, possibly due to human impact and cattle/livestock farming in the catchment. Our record suggests substantial weakening of the monsoon over continental south-central India during the Holocene, placing the onset of aridification at 6.5 ka BP, earlier than observed in marine records throughout the Indian Ocean. Since human colonization in this region, as suggested by archeological evidence, dates back to late Holocene (ca. 3.5/3.2 ka BP) a possible human influence on the observed vegetation change at 6.5 ka BP is unlikely. Despite the prevailing arid conditions in the region since 6.5 ka the availability of freshwater through perennial springs around the lake may have attracted human settlements close to the lake for grazing of animals or small-scale farming.

  12. On the Origin of Monsoon

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.; Chen, Baode; Einaudi, Franco (Technical Monitor)

    2000-01-01

    It is a long-held fundamental belief that the basic cause of a monsoon is land-sea thermal contrast on the continental scale. Through general circulation model experiments we demonstrate that this belief should be changed. The Asian and Australian summer monsoon circulations are largely intact in an experiment in which Asia, maritime continent, and Australia are replaced by ocean. It is also shown that the change resulting from such replacement is in general due more to the removal of topography than to the removal of land-sea contrast. Therefore, land-sea contrast plays only a minor modifying role in Asian and Australian summer monsoons. This also happens to the Central American summer monsoon. However, the same thing cannot be said of the African and South American summer monsoons. In Asian and Australian winter monsoons land-sea contrast also plays only a minor role. Our interpretation for the origin of monsoon is that the summer monsoon is the result of ITCZ's (intertropical convergence zones) peak being substantially (more than 10 degrees) away from the equator. The origin of the ITCZ has been previously interpreted by Chao. The circulation around thus located ITCZ, previously interpreted by Chao and Chen through the modified Gill solution and briefly described in this paper, explains the monsoon circulation. The longitudinal location of the ITCZs is determined by the distribution of surface conditions. ITCZ's favor locations of higher SST as in western Pacific and Indian Ocean, or tropical landmass, due to land-sea contrast, as in tropical Africa and South America. Thus, the role of landmass in the origin of monsoon can be replaced by ocean of sufficiently high SST. Furthermore, the ITCZ circulation extends into the tropics in the other hemisphere to give rise to the winter monsoon circulation there. Also through the equivalence of land-sea contrast and higher SST, it is argued that the basic monsoon onset mechanism proposed by Chao is valid for all monsoons.

  13. Numerical Study of the Influences of a Monsoon Gyre on Intensity Changes of Typhoon Chan-Hom (2015)

    NASA Astrophysics Data System (ADS)

    Liang, Jia; Wu, Liguang; Gu, Guojun

    2018-05-01

    Typhoon Chan-Hom (2015) underwent a weakening in the tropical western North Pacific (WNP) when it interacted with a monsoon gyre, but all operational forecasts failed to predict this intensity change. A recent observational study indicated that it resulted from its interaction with a monsoon gyre on the 15-30-day timescale. In this study, the results of two numerical experiments are presented to investigate the influence of the monsoon gyre on the intensity changes of Typhoon Chan-Hom (2015). The control experiment captures the main observed features of the weakening process of Chan-Hom (2015) during a sharp northward turn in the Philippine Sea, including the enlargement of the eye size, the development of strong convection on the eastern side of the monsoon gyre, and the corresponding strong outer inflow. The sensitivity experiment suggests that intensity changes of Chan-Hom (2015) were mainly associated with its interaction with the monsoon gyre. When Chan-Hom (2015) initially moved westward in the eastern part of the monsoon gyre, the monsoon gyre enhanced the inertial stability for the intensification of the typhoon. With its coalescence with the monsoon gyre, the development of the strong convection on the eastern side of the monsoon gyre prevented moisture and mass entering the inner core of Chan-Hom (2015), resulting in the collapse of the eyewall. Thus, the weakening happened in the deep tropical WNP region. The numerical simulations confirm the important effects of the interaction between tropical cyclones and monsoon gyres on tropical cyclone intensity.

  14. Contrasting influences of aerosols on cloud properties during deficient and abundant monsoon years

    PubMed Central

    Patil, Nitin; Dave, Prashant; Venkataraman, Chandra

    2017-01-01

    Direct aerosol radiative forcing facilitates the onset of Indian monsoon rainfall, based on synoptic scale fast responses acting over timescales of days to a month. Here, we examine relationships between aerosols and coincident clouds over the Indian subcontinent, using observational data from 2000 to 2009, from the core monsoon region. Season mean and daily timescales were considered. The correlation analyses of cloud properties with aerosol optical depth revealed that deficient monsoon years were characterized by more frequent and larger decreases in cloud drop size and ice water path, but increases in cloud top pressure, with increases in aerosol abundance. The opposite was observed during abundant monsoon years. The correlations of greater aerosol abundance, with smaller cloud drop size, lower evidence of ice processes and shallower cloud height, during deficient rainfall years, imply cloud inhibition; while those with larger cloud drop size, greater ice processes and a greater cloud vertical extent, during abundant rainfall years, suggest cloud invigoration. The study establishes that continental aerosols over India alter cloud properties in diametrically opposite ways during contrasting monsoon years. The mechanisms underlying these effects need further analysis. PMID:28337991

  15. Contrasting influences of aerosols on cloud properties during deficient and abundant monsoon years.

    PubMed

    Patil, Nitin; Dave, Prashant; Venkataraman, Chandra

    2017-03-24

    Direct aerosol radiative forcing facilitates the onset of Indian monsoon rainfall, based on synoptic scale fast responses acting over timescales of days to a month. Here, we examine relationships between aerosols and coincident clouds over the Indian subcontinent, using observational data from 2000 to 2009, from the core monsoon region. Season mean and daily timescales were considered. The correlation analyses of cloud properties with aerosol optical depth revealed that deficient monsoon years were characterized by more frequent and larger decreases in cloud drop size and ice water path, but increases in cloud top pressure, with increases in aerosol abundance. The opposite was observed during abundant monsoon years. The correlations of greater aerosol abundance, with smaller cloud drop size, lower evidence of ice processes and shallower cloud height, during deficient rainfall years, imply cloud inhibition; while those with larger cloud drop size, greater ice processes and a greater cloud vertical extent, during abundant rainfall years, suggest cloud invigoration. The study establishes that continental aerosols over India alter cloud properties in diametrically opposite ways during contrasting monsoon years. The mechanisms underlying these effects need further analysis.

  16. Indian Monsoon Rainfall Variability During the Common Era: Implications on the Ancient Civilization

    NASA Astrophysics Data System (ADS)

    Pothuri, D.

    2017-12-01

    Indian monsoon rainfall variability was reconstructed during last two millennia by using the δ18Ow from a sediment core in the Krishna-Godavari Basin. Higher δ18Ow values during Dark Age Cold Period (DACP) (1550 to 1250 years BP) and Little Ice Age (LIA) (700 to 200 years BP) represent less Indian monsoon rainfall. Whereas during Medieval Warm Period (MWP) (1200 to 800 years BP) and major portion of Roman Warm Period (RWP) 2000 to 1550 years BP) document more rainfall in the Indian subcontinent as evident from lower δ18Ow values. A significant correlation exist between the Bay of Bengal (BoB) sea surface temperature (SST) and Indian monsoon proxy (i.e. δ18Ow), which suggests that; (i) the forcing mechanism of the Indian monsoon rainfall variability during last two millennia was controlled by the thermal contrast between the Indian Ocean and Asian Land Mass, and (ii) the evaporation processes in the BoB and associated SST are strongly coupled with the Indian Monsoon variability over the last two millennia.

  17. Climatology of monsoon precipitation over the Tibetan Plateau from 13-year TRMM observations

    NASA Astrophysics Data System (ADS)

    Aijuan, Bai; Guoping, Li

    2016-10-01

    Based on the 13-year data from the Tropical Rainfall Measuring Mission (TRMM) satellite during 2001-2013, the influencing geographical location of the Tibetan Plateau (Plateau) monsoon is determined. It is found that the domain of the Plateau monsoon is bounded by the latitude between 27° N and 37° N and the longitude between 60° E and 103° E. According to the annual relative precipitation, the Plateau monsoon can be divided into three sections: the Plateau winter monsoon (PWM) over Iran and Afghanistan, the Plateau summer monsoon (PSM) over the central Plateau, and the transiting zone of the Plateau monsoon (TPM) over the south, west, and east edges of the Plateau. In PWM and PSM, the monsoon climatology has a shorter rainy season with the mean annual rainfall of less than 800 mm. In TPM, it has a longer rainy season with the mean annual rainfall of more than 1800 mm. PWM experiences a single-peak monthly rainfall with the peak during January to March; PSM usually undergoes a multi-peak pattern with peaks in the warm season; TPM presents a double-peak pattern, with a strong peak in late spring to early summer and a secondary peak in autumn. The Plateau monsoon also characterizes an asymmetrical seasonal advance of the rain belt. In the east of the Plateau, the rain belt migrates in a south-north orientation under the impact of the tropical and subtropical systems' oscillation. In the west of the Plateau, the rain belt advances in an east-west direction, which is mainly controlled by the regional Plateau monsoon.

  18. Possible connection between the East Asian summer monsoon and a swing of the haze-fog-prone area in eastern China

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Cao, Ziqi; Sheng, Lifang; Diao, Yina; Wang, Wencai; Zhou, Yang; Qiu, Jingyi

    2018-05-01

    The summer monsoon has recently been hypothesized to influence haze-fog events over China, but the detailed processes involved have yet to be determined. In the present study, we found that the haze-fog-prone area swings over eastern China during boreal summer (May to September), coinciding with the movement of the subtropical monsoon convergence belt (hereinafter referred to simply as the "convergence belt"). Further investigation showed that the convergence belt modulates the spatial distribution of the haze-fog-prone area by altering the regional atmospheric conditions. When the warm and wet summer monsoon air mass pushes northwards and meets with cold air, a frontal zone (namely, the convergence belt) forms. The ascent of warm and wet air along the front strengthens the atmospheric stability ahead of the frontal zone, while the descent of cold and dry air weakens the vertical diffusion at the same place. These processes result in an asymmetric distribution of haze-fog along the convergence belt. Based on the criterion of absolute stability and downdraft, these atmospheric conditions favorable for haze-fog are able to identify 57-79% of haze-fog-prone stations, and the anticipation accuracy is 61-71%. After considering the influence of air pollutants on haze-fog occurrence, the anticipation accuracy rises to 78-79%. Our study reveals a connection between local haze-fog weather phenomena and regional atmospheric conditions and large-scale circulation, and demonstrates one possible mechanism for how the summer monsoon influences the distribution of haze-fog in eastern China.

  19. Holocene Summer Monsoon Variability- Evidence from Marine Sediment of western Continental Shelf of Sri Lanka

    NASA Astrophysics Data System (ADS)

    Ranasinghage, P. N.; Ratnayake, K. M.; Dassanayake, D. M. K. K.; Mohtadi, M.; Hewawasam, T.; Jinadasa, S. U. P.; Jayawardena, S.; Siriwardana, S.

    2016-12-01

    Understanding long term variability of Indian monsoon system is essential for better climate forecasting which is a prerequisite for agricultural development and disaster management. Yet, it has been a least attended scientific question in Sri Lanka Therefore, this study was carried out to understand the monsoonal variability during the Holocene using multiple proxies on a sediment core, representing unmixed summer monsoonal record. A 390 cm long piston core was obtained from the continental shelf off Negombo by National Aquatic Resources Research and Development Agency , was used for this study. This site mainly receives sediment from rivers fed by summer monsoon. Colour reflectance and chemical composition of the sediments, and δ18O and δ13C of Globigerinoides ruber foraminifera, extracted from the sediments were measured at 0.1-2.0 cm resolutions. Principal component analysis of chemical compositional data and colour reflectance data was performed to extract important components that represent climate variability. Benthic and planktonic foraminifera species that indicate upwelling were counted at 2 cm resolution. Radiocarbon dating was carried out using intact micro-shells. Results indicate that upwelling proxies (δ13C, foraminiferal proxies, and colour reflectance-Chlorophyll) and δ18O, which indicates evaporation-precipitation (E-P), increased during 8000-10000 cal yrs BP, 2000-4000 cal yrs BP and again after 1000 cal yrs BP. This increase in upwelling and E-P indicates strengthening of summer monsoon during these periods. However, terrestrial proxies, (XRF-PC1-Terrestrial, Ti, and DSR-PC3-iron oxides)indicate decrease in terrestrial influx which represents rainfall, from 6000-1000 cal yrs BP followed by an increase after 1000 cal yrs BP. Gradual decrease in precipitation has been observed locally as well as regionally after around 6000 cal yrs BP followed by an increase after 1000 cal yrs BP. The contrast behavior of strengthening monsoonal winds and decreasing precipitation during 2000-4000 cal yrs BP has also been observed in Arabian Sea close to the west coast of India. Although monsoonal wind strength is increased, change in its direction, which decreases orographic effect, or weakening of convergence in the vicinity of Sri Lanka, could be possible reasons for this phenomenon.

  20. Comparison of speleothem δ 18O records from eastern China with solar insolation, ice core and marine records: Similarities and discrepancies on different time scales

    NASA Astrophysics Data System (ADS)

    Wan, Naijung; Chung, Weiling; Li, Hong-Chun; Lin, Huilin; Ku, Teh-Lung; Shen, Chuan-Chou; Yuan, Daoxian; Zhang, Meiliang; Lin, Yushi

    2011-04-01

    Four 230Th-dated δ 18O records in three stalagmites: one from Dragon Spring (stalagmite L12) and two from Golden Lion Caves (stalagmites JSD-01 and JSD-02) located in Libo County, southeast Guizhou, China, are presented. These records cover age ranges of 0.75-2 ka (late Holocene), 9-9.6 ka (early Holocene), 87.9-88.2 ka and 93.8-95.2 ka (late Pleistocene). They fit well with the published Dongge Cave record from the same area, where the climate has been much influenced by the East Asian Monsoon. The agreement reinforces the role of stalagmite δ 18O as a proxy for regional precipitation or monsoon strength. On millennial or longer time scales, the δ 18O record of Dongge Cave resembles those of Sanbao Cave in Hubei and Hulu Cave in Jiangsu of China. The matching of these records with the northern hemisphere solar-insolation variations points to the importance of insolation in affecting the East Asian Summer Monsoon strength on 10 3-10 4-yr scales. While the monsoon variations as depicted by these Chinese speleothem δ 18O records show a strong coupling to insolation's precession component (23-kyr period), other climate records of global significance extracted from oceanic and terrestrial deposits (e.g., deep-sea sediments, polar ice cores, cave deposits from non-monsoonal regions) do not. Although the latter records were thought to be also influenced by the large changes in global ice volume, they show variations modulated chiefly by insolation due to earth's eccentricity change (100-kyr period). It is hypothesized that precession variations control the distribution of solar insolation between the northern and southern hemispheres, the ITCZ position and the modulation of low-latitude summer monsoon variability. Increasing rainfall and/or summer/winter precipitation ratio brought about by strong summer monsoons leads to δ 18O depletion in stalagmites grown in monsoonal regions. One should use caution to compare speleothem δ 18O records with other paleoclimate records reflecting Pleistocene ice ages on 10 4-10 5-yr timescales.

  1. Co-evolution of monsoonal precipitation in East Asia and the tropical Pacific ENSO system since 2.36 Ma: New insights from high-resolution clay mineral records in the West Philippine Sea

    NASA Astrophysics Data System (ADS)

    Yu, Zhaojie; Wan, Shiming; Colin, Christophe; Yan, Hong; Bonneau, Lucile; Liu, Zhifei; Song, Lina; Sun, Hanjie; Xu, Zhaokai; Jiang, Xuejun; Li, Anchun; Li, Tiegang

    2016-07-01

    Clay mineralogical analysis and scanning electron microscope (SEM) analysis were performed on deep-sea sediments cored on the Benham Rise (core MD06-3050) in order to reconstruct long-term evolution of East Asian Summer Monsoon (EASM) rainfall in the period since 2.36 Ma. Clay mineralogical variations are due to changes in the ratios of smectite, which derive from weathering of volcanic rocks in Luzon Island during intervals of intensive monsoon rainfall, and illite- and chlorite-rich dusts, which are transported from East Asia by winds associated with the East Asian Winter Monsoon (EAWM). Since Luzon is the main source of smectite to the Benham Rise, long-term consistent variations in the smectite/(illite + chlorite) ratio in core MD06-3050 as well as ODP site 1146 in the Northern South China Sea suggest that minor contributions of eolian dust played a role in the variability of this mineralogical ratio and indicate strengthening EASM precipitation in SE Asia during time intervals from 2360 to 1900 kyr, 1200 to 600 kyr, and after 200 kyr. The EASM rainfall record displays a 30 kyr periodicity suggesting the influence of El Niño-Southern Oscillation (ENSO). These intervals of rainfall intensification on Luzon Island are coeval with a reduction in precipitation over central China and an increase in zonal SST gradient in the equatorial Pacific Ocean, implying a reinforcement of La Niña-like conditions. In contrast, periods of reduced rainfall on Luzon Island are associated with higher precipitation in central China and a weakening zonal SST gradient in the equatorial Pacific Ocean, thereby suggesting the development of dominant El Niño-like conditions. Our study, therefore, highlights for the first time a long-term temporal and spatial co-evolution of monsoonal precipitation in East Asia and of the tropical Pacific ENSO system over the past 2.36 Ma.

  2. North-East monsoon rainfall extremes over the southern peninsular India and their association with El Niño

    NASA Astrophysics Data System (ADS)

    Singh, Prem; Gnanaseelan, C.; Chowdary, J. S.

    2017-12-01

    The present study investigates the relationship between extreme north-east (NE) monsoon rainfall (NEMR) over the Indian peninsula region and El Niño forcing. This turns out to be a critical science issue especially after the 2015 Chennai flood. The puzzle being while most El Niños favour good NE monsoon, some don't. In fact some El Niño years witnessed deficit NE monsoon. Therefore two different cases (or classes) of El Niños are considered for analysis based on standardized NEMR index and Niño 3.4 index with case-1 being both Niño-3.4 and NEMR indices greater than +1 and case-2 being Niño-3.4 index greater than +1 and NEMR index less than -1. Composite analysis suggests that SST anomalies in the central and eastern Pacific are strong in both cases but large differences are noted in the spatial distribution of SST over the Indo-western Pacific region. This questions our understanding of NEMR as mirror image of El Niño conditions in the Pacific. It is noted that the favourable excess NEMR in case-1 is due to anomalous moisture transport from Bay of Bengal and equatorial Indian Ocean to southern peninsular India. Strong SST gradient between warm western Indian Ocean (and Bay of Bengal) and cool western Pacific induced strong easterly wind anomalies during NE monsoon season favour moisture transport towards the core NE monsoon region. Further anomalous moisture convergence and convection over the core NE monsoon region supported positive rainfall anomalies in case-1. While in case-2, weak SST gradients over the Indo-western Pacific and absence of local low level convergence over NE monsoon region are mainly responsible for deficit rainfall. The ocean dynamics in the Indian Ocean displayed large differences during case-1 and case-2, suggesting the key role of Rossby wave dynamics in the Indian Ocean on NE monsoon extremes. Apart from the large scale circulation differences the number of cyclonic systems land fall for case-1 and case-2 have also contributed for variations in NE monsoon rainfall extremes during El Niño years. This study indicates that despite having strong warming in the central and eastern Pacific, NE monsoon rainfall variations over the southern peninsular India is mostly determined by SST gradient over the Indo-western Pacific region and number of systems formation in the Bay of Bengal and their land fall. The paper concludes that though the favourable large scale circulation induced by Pacific is important in modulating the NE monsoon rainfall the local air sea interaction plays a key role in modulating or driving rainfall extremes associated with El Niño.

  3. Forward Modeling of Oxygen Isotope Variability in Tropical Andean Ice Cores

    NASA Astrophysics Data System (ADS)

    Vuille, M. F.; Hurley, J. V.; Hardy, D. R.

    2016-12-01

    Ice core records from the tropical Andes serve as important archives of past tropical Pacific SST variability and changes in monsoon intensity upstream over the Amazon basin. Yet the interpretation of the oxygen isotopic signal in these ice cores remains controversial. Based on 10 years of continuous on-site glaciologic, meteorologic and isotopic measurements at the summit of the world's largest tropical ice cap, Quelccaya, in southern Peru, we developed a process-based physical forward model (proxy system model), capable of simulating intraseasonal, seasonal and interannual variability in delta-18O as observed in snow pits and short cores. Our results highlight the importance of taking into account post-depositional effects (sublimation and isotopic enrichment) to properly simulate the seasonal cycle. Intraseasonal variability is underestimated in our model unless the effects of cold air incursions, triggering significant monsoonal snowfall and more negative delta-18O values, are included. A number of sensitivity test highlight the influence of changing boundary conditions on the final snow isotopic profile. Such tests also show that our model provides much more realistic data than applying direct model output of precipitation delta-18O from isotope-enabled climate models (SWING ensemble). The forward model was calibrated with and run under present-day conditions, but it can also be driven with past climate forcings to reconstruct paleo-monsoon variability and investigate the influence of changes in radiative forcings (solar, volcanic) on delta-18O variability in Andean snow. The model is transferable and may be used to render a paleoclimatic context at other ice core locations.

  4. Subseasonal forecast skills and biases of global summer monsoons in the NCEP Climate Forecast System version 2

    NASA Astrophysics Data System (ADS)

    Liu, Xiangwen; Yang, Song; Li, Qiaoping; Kumar, Arun; Weaver, Scott; Liu, Shi

    2014-03-01

    Subseasonal forecast skills and biases of global summer monsoons are diagnosed using daily data from the hindcasts of 45-day integrations by the NCEP Climate Forecast System version 2. Predictions for subseasonal variability of zonal wind and precipitation are generally more skillful over the Asian and Australian monsoon regions than other monsoon regions. Climatologically, forecasts for the variations of dynamical monsoon indices have high skills at leads of about 2 weeks. However, apparent interannual differences exist, with high skills up to 5 weeks in exceptional cases. Comparisons for the relationships of monsoon indices with atmospheric circulation and precipitation patterns between skillful and unskillful forecasts indicate that skills for subseasonal variability of a monsoon index depend partially on the degree to which the observed variability of the index attributes to the variation of large-scale circulation. Thus, predictions are often more skillful when the index is closely linked to atmospheric circulation over a broad region than over a regional and narrow range. It is also revealed that, the subseasonal variations of biases of winds, precipitation, and surface temperature over various monsoon regions are captured by a first mode with seasonally independent biases and a second mode with apparent phase transition of biases during summer. The first mode indicates the dominance of overall weaker-than-observed summer monsoons over major monsoon regions. However, at certain stages of monsoon evolution, these underestimations are regionally offset or intensified by the time evolving biases portrayed by the second mode. This feature may be partially related to factors such as the shifts of subtropical highs and intertropical convergence zones, the reversal of biases of surface temperature over some monsoon regions, and the transition of regional circulation system. The significant geographical differences in bias growth with increasing lead time reflect the distinctions of initial memory capability of the climate system over different monsoon regions.

  5. Lifecycle of South America Monsoon System Simulated by the Regional Eta Model

    NASA Astrophysics Data System (ADS)

    Cavalcanti, I. F.; Raia, A.; Chou, S. C.; Silveira, V. P.

    2017-12-01

    The SAMS comprises a set of features over South America that includes the rainy season over large areas of the continent, typical atmospheric circulation and humidity fluxes characteristics and occurrences of the South Atlantic Convergence Zone. The onset and duration of these characteristics are important to several economic sectors, such as Agriculture and Hydropower. Droughts during the summer season, as the 2014 and 2015 cases, or onset delays can affect these sectors. Predictions of the SAMS onset and duration can contribute to management actions. The Eta Regional model represents well the precipitation difference between summer and winter and the related atmospheric circulation differences over South America. Therefore the objective of this study is to analyze the lifecycle of the SAMS simulated by the Eta model to evaluate first the behaviour compared to observations and to further use as a tool to prediction of onset and duration. There are several methods to analyze the lifecycle of the monsoon and here the criterion is based on vertical integrated zonal moisture flux in the monsoon core, which is located at southern Amazonia. The climate simulation was performed with the Eta model using the HadGEM2_ES model, from CMIP5, as lateral boundary condition. The period of analyses is 1980 to 2005. The model results are compared to ERA-Interim reanalysis and GPCP precipitation dataset. The results show the interannual lifecycles and the average for the whole period, as well as the annual cycle of zonal wind, precipitation, temperature and specific humidity. Spatial maps of humidity convergence, atmospheric circulation at low and high levels indicate the changes during the onset and demise.

  6. Hydrological regions in monsoon Asia

    NASA Astrophysics Data System (ADS)

    Kondoh, Akihiko; Budi Harto, Agung; Eleonora, Runtunuwu; Kojiri, Toshiharu

    2004-11-01

    Monsoon Asia is characterized by its diversity of natural and social environments. These environments range from humid tropics to arid regions and there exist associated various hydrological phenomena. This paper attempts to characterize the hydrological regions of monsoon Asia based on the water budget calculated using grid-based global datasets. A map of hydrological regions is created by ranking the value of water surplus and deficit. A humid zone with large water surplus extending from Southeast Asia to the Japanese archipelago, rapid transition from humid to arid environments in eastern China, and an arid region surrounded by a humid region in continental Southeast Asia are the most remarkable features in monsoon Asia. The map reveals that an essential characteristic of monsoon Asia is the proximity of the arid and humid environments. Many water problems and water management practices in a region can be easily understood by plotting them on a map. The boundaries of several large river basins are superimposed on the map, and examined for the water budget and flow regimes. The results are found to explain the regional characteristics of the seasonal runoff regimes satisfactorily. The importance of using a spatial framework for the comparative hydrological study in Monsoon Asia is highlighted.

  7. Freshwater monsoon related inputs in the Japan Sea: a diatom record from IODP core U1427

    NASA Astrophysics Data System (ADS)

    Ventura, C. P. L.; Lopes, C.

    2016-12-01

    Monsoon rainfall is the life-blood of more than half the world's population. Extensive research is being conducted in order to refine projections regarding the impact of anthropogenic climate change on these systems. The East Asian monsoon (EAM) plays a significant role in large-scale climate variability. Due to its importance to global climate and world's population, there is an urgent need for greater understanding of this system, especially during past climate changes. The input of freshwater from the monsoon precipitation brings specific markers, such as freshwater diatoms and specific diatom ecological assemblages that are preserved in marine sediments. Freshwater diatoms are easily identifiable and have been used in the North Pacific to reconstruct environmental conditions (Lopes et al 2006) and flooding episodes (Lopes and Mix, 2009). Here we show preliminary results of freshwater diatoms records that are linked with river discharge due to increase land rainfall that can be derived from Monsoon rainfall. We extend our preliminary study to the past 400ky.

  8. Dune mobility and aridity at the desert margin of northern China at a time of peak monsoon strength

    USGS Publications Warehouse

    Mason, J.A.; Lu, H.; Zhou, Y.; Miao, X.; Swinehart, J.B.; Liu, Z.; Goble, R.J.; Yi, S.

    2009-01-01

    Wind-blown sands were mobile at many sites along the desert margin in northern China during the early Holocene (11.5-8 ka ago), based on extensive new numerical dating. This mobility implies low effective moisture at the desert margin, in contrast to growing evidence for greater than modern monsoon precipitation at the same time in central and southern China. Dry conditions in the early Holocene at the desert margin can be explained through a dynamic link between enhanced diabatic heating in the core region of the strengthened monsoon and increased subsidence in drylands to the north, combined with high evapotranspiration rates due to high summer temperatures. After 8 ka ago, as the monsoon weakened and lower temperatures reduced evapotranspiration, eolian sands were stabilized by vegetation. Aridity and dune mobility at the desert margin and a strengthened monsoon can both be explained as responses to high summer insolation in the early Holocene. ?? 2009 Geological Society of America.

  9. Southern Hemisphere control on Australian monsoon variability during the late deglaciation and Holocene.

    PubMed

    Kuhnt, Wolfgang; Holbourn, Ann; Xu, Jian; Opdyke, Bradley; De Deckker, Patrick; Röhl, Ursula; Mudelsee, Manfred

    2015-01-06

    The evolution of the Australian monsoon in relation to high-latitude temperature fluctuations over the last termination remains highly enigmatic. Here we integrate high-resolution riverine runoff and dust proxy data from X-ray fluorescence scanner measurements in four well-dated sediment cores, forming a NE-SW transect across the Timor Sea. Our records reveal that the development of the Australian monsoon closely followed the deglacial warming history of Antarctica. A minimum in riverine runoff documents dry conditions throughout the region during the Antarctic Cold Reversal (15-12.9 ka). Massive intensification of the monsoon coincided with Southern Hemisphere warming and intensified greenhouse forcing over Australia during the atmospheric CO2 rise at 12.9-10 ka. We relate the earlier onset of the monsoon in the Timor Strait (13.4 ka) to regional changes in landmass exposure during deglacial sea-level rise. A return to dryer conditions occurred between 8.1 and 7.3 ka following the early Holocene runoff maximum.

  10. Southern Hemisphere control on Australian monsoon variability during the late deglaciation and Holocene

    NASA Astrophysics Data System (ADS)

    Kuhnt, Wolfgang; Holbourn, Ann; Xu, Jian; Opdyke, Bradley; de Deckker, Patrick; Röhl, Ursula; Mudelsee, Manfred

    2015-01-01

    The evolution of the Australian monsoon in relation to high-latitude temperature fluctuations over the last termination remains highly enigmatic. Here we integrate high-resolution riverine runoff and dust proxy data from X-ray fluorescence scanner measurements in four well-dated sediment cores, forming a NE-SW transect across the Timor Sea. Our records reveal that the development of the Australian monsoon closely followed the deglacial warming history of Antarctica. A minimum in riverine runoff documents dry conditions throughout the region during the Antarctic Cold Reversal (15-12.9 ka). Massive intensification of the monsoon coincided with Southern Hemisphere warming and intensified greenhouse forcing over Australia during the atmospheric CO2 rise at 12.9-10 ka. We relate the earlier onset of the monsoon in the Timor Strait (13.4 ka) to regional changes in landmass exposure during deglacial sea-level rise. A return to dryer conditions occurred between 8.1 and 7.3 ka following the early Holocene runoff maximum.

  11. Linking Monsoon Activity with River-Derived Sediment Deposition in the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Ge, Q.; Xue, Z. G.; Liu, P.; Chu, F.

    2016-02-01

    Sediments retrieved from a gravity core were analyzed to examine the connection between East Asian Monsoon (EAM) and river-derived sediment deposition on the continental slope in the South China Sea since the Last Glacial Maximum. Combined clay mineralogy and grain size index analysis provided evidence of the sources of fine-grained sediment as well as for rebuilding the history of paleo-EAM. A shift of sediment source from the Pearl River to southwestern Taiwanese rivers was identified during the Holocene. The 4-8μm grain size fraction, as an environmental sensitive component and thus the EAM proxy, indicated the local deposition environment is mainly controlled by sea-level variations. And during the Holocene, the East Asian summer monsoon exhibited an in-phase relationship with East Asian winter monsoon, both following variations of the insolation intensity.

  12. Denitrification activity is closely linked to the total ambient Fe concentration in mangrove sediments of Goa, India

    NASA Astrophysics Data System (ADS)

    Fernandes, Sheryl Oliveira; Gonsalves, Maria-Judith; Michotey, Valérie D.; Bonin, Patricia C.; Loka, A.; Bharathi, P.

    2013-10-01

    Denitrification activity (DNT) and associated environmental parameters were examined in two mangrove ecosystems of Goa, India - the relatively unimpacted Tuvem and the anthropogenically-influenced Divar. Sampling was carried out at every 2 cm interval within the 0-10 cm depth range to determine (1) seasonal (pre-monsoon, monsoon and post-monsoon) down-core variation in DNT (2) assess the environmental factors influencing the DNT and (3) to build predictive models for benthic DNT. Denitrification generally decreased with depth and showed marked seasonal variation at both the locations. Denitrification peaked during the pre-monsoon occurring at a rate of up to 21.00 ± 12.84 nmol N2O g-1 h-1 within 0-4 cm at both the locations. Further, DNT at pre-monsoon was significantly influenced by Fe content at Tuvem and Divar suggesting Fe-mediated nitrate respiration. The influence of other limiting substrates such as NO3- and NO2- was most important during the monsoon and post-monsoon especially at Divar. The multiple regression models developed could predict 67-98% of the observed variability in DNT through the seasons. About 6-9 environmental variables were required to relatively well-predict DNT in these sediments with the complexity governing DNT decreasing from pre-monsoon to post-monsoon. Our results reveal that seasonal dynamics of DNT in tropical mangrove sediments are closely linked to the total Fe at the prevailing ambient concentration in both the systems.

  13. Carbonaceous aerosols recorded in a southeastern Tibetan glacier: analysis of temporal variations and model estimates of sources and radiative forcing

    DOE PAGES

    Wang, Mo; Xu, B.; Cao, J.; ...

    2015-02-02

    High temporal resolution measurements of black carbon (BC) and organic carbon (OC) covering the time period of 1956–2006 in an ice core over the southeastern Tibetan Plateau show a distinct seasonal dependence of BC and OC with higher respective concentrations but a lower OC / BC ratio in the non-monsoon season than during the summer monsoon. We use a global aerosol-climate model, in which BC emitted from different source regions can be explicitly tracked, to quantify BC source–receptor relationships between four Asian source regions and the southeastern Tibetan Plateau as a receptor. The model results show that South Asia hasmore » the largest contribution to the present-day (1996–2005) mean BC deposition at the ice-core drilling site during the non-monsoon season (October to May) (81%) and all year round (74%), followed by East Asia (14% to the non-monsoon mean and 21% to the annual mean). The ice-core record also indicates stable and relatively low BC and OC deposition fluxes from the late 1950s to 1980, followed by an overall increase to recent years. This trend is consistent with the BC and OC emission inventories and the fuel consumption of South Asia (as the primary contributor to annual mean BC deposition). Moreover, the increasing trend of the OC / BC ratio since the early 1990s indicates a growing contribution of coal combustion and/or biomass burning to the emissions. The estimated radiative forcing induced by BC and OC impurities in snow has increased since 1980, suggesting an increasing potential influence of carbonaceous aerosols on the Tibetan glacier melting and the availability of water resources in the surrounding regions. Our study indicates that more attention to OC is merited because of its non-negligible light absorption and the recent rapid increases evident in the ice-core record.« less

  14. Impact of atmospheric blocking events on the decrease of precipitation in the Selenga River basin

    NASA Astrophysics Data System (ADS)

    Antokhina, O.; Antokhin, P.; Devyatova, E.; Vladimir, M.

    2017-12-01

    The periods of prolonged deficiency of hydropower potential (HP) of Angara cascade hydroelectric plant related to low-inflow in Baikal and Angara basins threaten to energy sector of Siberia. Since 1901 was recorded five such periods. Last period began in 1996 and continues today. This period attracts the special attention, because it is the longest and coincided with the observed climate change. In our previous works we found that the reason of observed decrease of HP is low water content of Selenga River (main river in Baikal Basin). We also found that the variations of Selenga water-content almost totally depend of summer atmospheric precipitation. Most dramatic decrease of summer precipitation observed in July. In turn, precipitation in July depends on location and intensity of atmospheric frontal zone which separates mid-latitude circulation and East Asia monsoon system. Recently occur reduction this frontal zone and decrease of East Asia summer monsoon intensity. We need in the understanding of the reasons leading to these changes. In the presented work we investigate the influence of atmospheric blocking over Asia on the East Asian summer monsoon circulation in the period its maximum (July). Based on the analysis of large number of blocking events we identified the main mechanisms of blocking influence on the monsoon and studied the properties of cyclones formed by the interaction of air masses from mid latitude and tropics. It turned out that the atmospheric blockings play a fundamental role in the formation of the East Asia monsoon moisture transport and in the precipitation anomalies redistribution. In the absence of blockings over Asia East Asian monsoon moisture does not extend to the north, and in the presence of blockings their spatial configuration and localization completely determines the precipitation anomalies configuration in the northern part of East Asia. We also found that the weakening monsoon circulation in East Asia is associated with decrease in the frequency of atmospheric blocking events in the longitudinal sector width of about 30° with the center of the lake Baikal. The study was supported by the Russian Scientific Foundation Project No. 17-77-10035.

  15. Relative impacts of insolation changes, meltwater fluxes and ice sheets on African and Asian monsoons during the Holocene

    NASA Astrophysics Data System (ADS)

    Marzin, Charline; Braconnot, Pascale; Kageyama, Masa

    2013-11-01

    In order to better understand the evolution of the Afro-Asian monsoon in the early Holocene, we investigate the impact on boreal summer monsoon characteristics of (1) a freshwater flux in the North Atlantic from the surrounding melting ice sheets and (2) a remnant ice sheet over North America and Europe. Sensitivity experiments run with the IPSL_CM4 model show that both the meltwater flux and the remnant ice sheets induce a cooling of similar amplitude of the North Atlantic leading to a southward shift of the Inter-Tropical Convergence Zone over the tropical Atlantic and to a reduction of the African monsoon. The two perturbations have different impacts in the Asian sector. The meltwater flux results in a weakening of the Indian monsoon and no change in the East Asian monsoon, whereas the remnant ice sheets induce a strengthening of the Indian monsoon and a strong weakening of the East Asian monsoon. Despite the similar coolings in the Atlantic Ocean, the ocean heat transport is reduced only in the meltwater flux experiment, which induces slight differences between the two experiments in the role of the surface latent heat flux in the tropical energetics. In the meltwater experiment, the southward shift of the subtropical jet acts to cool the upper atmosphere over the Tibetan Plateau and hence to weaken the Indian monsoon. In the ice sheet experiment this effect is overwhelmed by the changes in extratropical stationary waves induced by the ice sheets, which are associated with a larger cooling over the Eurasian continent than in the meltwater experiment. However these sensitivity experiments suggest that insolation is the dominant factor explaining the relative changes of the African, Indian and East Asian monsoons from the early to the mid-Holocene.

  16. Asian Eocene monsoons as revealed by leaf architectural signatures

    NASA Astrophysics Data System (ADS)

    Spicer, Robert A.; Yang, Jian; Herman, Alexei B.; Kodrul, Tatiana; Maslova, Natalia; Spicer, Teresa E. V.; Aleksandrova, Galina; Jin, Jianhua

    2016-09-01

    The onset and development of the Asian monsoon systems is a topic that has attracted considerable research effort but proxy data limitations, coupled with a diversity of definitions and metrics characterizing monsoon phenomena, have generated much debate. Failure of geological proxies to yield metrics capable of distinguishing between rainfall seasonality induced by migrations of the Inter-tropical Convergence Zone (ITCZ) from that attributable to topographically modified seasonal pressure reversals has frustrated attempts to understand mechanisms underpinning monsoon development and dynamics. Here we circumvent the use of such single climate parameter metrics in favor of detecting directly the distinctive attributes of different monsoon regimes encoded in leaf fossils. Leaf form adapts to the prevailing climate, particularly under the extreme seasonal stresses imposed by monsoons, so it is likely that fossil leaves carry a unique signature of past monsoon regimes. Leaf form trait spectra obtained from fossils from Eocene basins in southern China were compared with those seen in modern leaves growing under known climate regimes. The fossil leaf trait spectra, including those derived from previously published fossil floras from northwestern India, were most similar to those found in vegetation exposed to the modern Indonesia-Australia Monsoon (I-AM), which is largely a product of seasonal migrations of the ITCZ. The presence of this distinctive leaf physiognomic signature suggests that although a monsoon climate existed in Eocene time across southern Asia the characteristics of the modern topographically-enhanced South Asia Monsoon had yet to develop. By the Eocene leaves in South Asia had become well adapted to an I-AM type regime across many taxa and points to the existence of a pervasive monsoon climate prior to the Eocene. No fossil trait spectra typical of exposure to the modern East Asia monsoon were seen, suggesting the effects of this system in southern China were a much later development.

  17. Distribution of coccolithophores as a potential proxy in paleoceanography: The case of the Oman Sea monsoonal pattern

    NASA Astrophysics Data System (ADS)

    Mojtahedin, Elham; Hadavi, Fatemeh; Lak, Razyeh

    2015-02-01

    High abundances of coccoliths have been observed in surface sediment samples from near the coasts of the Oman Sea in February 2011. At the end of the NE monsoon, the locally observed high Gephyrocapsa oceanica production is hypothesized to respond to local injections of nutrient-rich deep water into the surface water due to sea-surface cooling leading to convection. The most abundant coccolithophore species are G. oceanica followed by Emiliania huxleyi, Helicosphaera carteri, Calcidiscus leptoporus. Some species, such as Gephyrocapsa muellerae, Gephyrocapsa ericsonii, Umbilicosphaera sibogae, Umbellosphaera tenuis and Florisphaera profunda, are rare. The G. oceanica suggested a prevalence of upwelling conditions or high supply of nutrients in the Oman Sea (especially West Jask) at the end of the NE monsoon. E. huxleyi showed low relative abundances at the end of the NE monsoon. Due to the location of the Oman Sea in low latitudes with high temperatures, we have observed low abundances of G. muellerae in the study area. Additionally, we have identified low abundances of G. ericsonii at the end of the NE monsoon. Helicosphaera carteri showed a clear negative response with decreasing amounts (relative abundances) at the end of the NE monsoon. C. leptoporus, U. sibogae and U. tenuis have very low relative abundances in the NE monsoon and declined extremely at the end of the NE monsoon. F. profunda, which is known to inhabit the lower photic zone (<100 m depht) was rarely observed in the samples.

  18. Rainfall trends in the South Asian summer monsoon and its related large-scale dynamics with focus over Pakistan

    NASA Astrophysics Data System (ADS)

    Latif, M.; Syed, F. S.; Hannachi, A.

    2017-06-01

    The study of regional rainfall trends over South Asia is critically important for food security and economy, as both these factors largely depend on the availability of water. In this study, South Asian summer monsoon rainfall trends on seasonal and monthly (June-September) time scales have been investigated using three observational data sets. Our analysis identify a dipole-type structure in rainfall trends over the region north of the Indo-Pak subcontinent, with significant increasing trends over the core monsoon region of Pakistan and significant decreasing trends over the central-north India and adjacent areas. The dipole is also evident in monthly rainfall trend analyses, which is more prominent in July and August. We show, in particular, that the strengthening of northward moisture transport over the Arabian Sea is a likely reason for the significant positive trend of rainfall in the core monsoon region of Pakistan. In contrast, over the central-north India region, the rainfall trends are significantly decreasing due to the weakening of northward moisture transport over the Bay of Bengal. The leading empirical orthogonal functions clearly show the strengthening (weakening) patterns of vertically integrated moisture transport over the Arabian Sea (Bay of Bengal) in seasonal and monthly interannual time scales. The regression analysis between the principal components and rainfall confirm the dipole pattern over the region. Our results also suggest that the extra-tropical phenomena could influence the mean monsoon rainfall trends over Pakistan by enhancing the cross-equatorial flow of moisture into the Arabian Sea.

  19. Quantitative Holocene climatic reconstructions for the lower Yangtze region of China

    NASA Astrophysics Data System (ADS)

    Li, Jianyong; Dodson, John; Yan, Hong; Wang, Weiming; Innes, James B.; Zong, Yongqiang; Zhang, Xiaojian; Xu, Qinghai; Ni, Jian; Lu, Fengyan

    2018-02-01

    Quantitative proxy-based and high-resolution palaeoclimatic datasets are scarce for the lower reaches of the Yangtze River (LYR) basin. This region is in a transitional vegetation zone which is climatologically sensitive; and as a birthplace for prehistorical civilization in China, it is important to understand how palaeoclimatic dynamics played a role in affecting cultural development in the region. We present a pollen-based and regionally-averaged Holocene climatic twin-dataset for mean total annual precipitation (PANN) and mean annual temperature (TANN) covering the last 10,000 years for the LYR region. This is based on the technique of weighted averaging-partial least squares regression to establish robust calibration models for obtaining reliable climatic inferences. The pollen-based reconstructions generally show an early Holocene climatic optimum with both abundant monsoonal rainfall and warm thermal conditions, and a declining pattern of both PANN and TANN values in the middle to late Holocene. The main driving forces behind the Holocene climatic changes in the LYR area are likely summer solar insolation associated with tropical or subtropical macro-scale climatic circulations such as the Intertropical Convergence Zone (ITCZ), Western Pacific Subtropical High (WPSH), and El Niño/Southern Oscillation (ENSO). Regional multi-proxy comparisons indicate that the Holocene variations in precipitation and temperature for the LYR region display an in-phase relationship with other related proxy records from southern monsoonal China and the Indian monsoon-influenced regions, but are inconsistent with the Holocene moisture or temperature records from northern monsoonal China and the westerly-dominated region in northwestern China. Overall, our comprehensive palaeoclimatic dataset and models may be significant tools for understanding the Holocene Asian monsoonal evolution and for anticipating its future dynamics in eastern Asia.

  20. A comparison of East Asian summer monsoon simulations from CAM3.1 with three dynamic cores

    NASA Astrophysics Data System (ADS)

    Wei, Ting; Wang, Lanning; Dong, Wenjie; Dong, Min; Zhang, Jingyong

    2011-12-01

    This paper examines the sensitivity of CAM3.1 simulations of East Asian summer monsoon (EASM) to the choice of dynamic cores using three long-term simulations, one with each of the following cores: the Eulerian spectral transform method (EUL), semi-Lagrangian scheme (SLD) and finite volume approach (FV). Our results indicate that the dynamic cores significantly influence the simulated fields not only through dynamics, such as wind, but also through physical processes, such as precipitation. Generally speaking, SLD is superior to EUL and FV in simulating the climatological features of EASM and its interannual variability. The SLD version of the CAM model partially reduces its known deficiency in simulating the climatological features of East Asian summer precipitation. The strength and position of simulated western Pacific subtropical high (WPSH) and its ridge line compare more favourably with observations in SLD and FV than in EUL. They contribute to the intensification of the south-easterly along the south of WPSH and the vertical motion through the troposphere around 30° N, where the subtropical rain belt exists. Additionally, SLD simulates the scope of the westerly jet core over East Asia more realistically than the other two dynamic cores do. Considerable systematic errors of the seasonal migration of monsoon rain belt and water vapour flux exist in all of the three versions of CAM3.1 model, although it captures the broad northward shift of convection, and the simulated results share similarities. The interannual variation of EASM is found to be more accurate in SLD simulation, which reasonably reproduces the leading combined patterns of precipitation and 850-hPa winds in East Asia, as well as the 2.5- and 10-year periods of Li-Zeng EASM index. These results emphasise the importance of dynamic cores for the EASM simulation as distinct from the simulation's sensitivity to the physical parameterisations.

  1. Potential modulations of pre-monsoon aerosols during El Niño: impact on Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Fadnavis, S.; Roy, Chaitri; Sabin, T. P.; Ayantika, D. C.; Ashok, K.

    2017-10-01

    The potential role of aerosol loading on the Indian summer monsoon rainfall during the El Niño years are examined using satellite-derived observations and a state of the art fully interactive aerosol-chemistry-climate model. The Aerosol Index (AI) from TOMS (1978-2005) and Aerosol Optical Depth (AOD) from MISR spectroradiometer (2000-2010) indicate a higher-than-normal aerosol loading over the Indo-Gangetic plain (IGP) during the pre-monsoon season with a concurrent El Niño. Sensitivity experiments using ECHAM5-HAMMOZ climate model suggests that this enhanced loading of pre-monsoon absorbing aerosols over the Indo-Gangetic plain can reduce the drought during El Niño years by invoking the `Elevated-Heat-Pump' mechanism through an anomalous aerosol-induced warm core in the atmospheric column. This anomalous heating upshot the relative strengthening of the cross-equatorial moisture inflow associated with the monsoon and eventually reduces the severity of drought during El Niño years. The findings are subject to the usual limitations such as the uncertainties in observations, and limited number of El Niño years (during the study period).

  2. Catastrophic drought in East Asian monsoon region during Heinrich event 1

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Sun, Liguang; Chu, Yangxi; Xia, Zehui; Zhou, Xinying; Li, Xiangzhong; Chu, Zhuding; Liu, Xiangjun; Shao, Da; Wang, Yuhong

    2016-06-01

    Heinrich event 1 (H1) is an important millennial climate event during the last deglaciation. The substantial decreasing of monsoon strength in the East Asian monsoon region during the H1, as shown by stalagmite δ18O records, has been attributed to the southward shift of the intertropical convergence zone (ITCZ), which is caused by the slowdown/collapse of the Atlantic meridional overturning circulation (AMOC). However, records from different Asian monsoon regions show various trends in precipitation changes during the H1, and these trends cannot be solely interpreted by the southward shift of the ITCZ. In the present study, we reconstructed time-series of East Asian monsoon precipitation between 25,000 and 10,000 a BP from floodplain sediments in the Huai River Basin. A white sediment layer, distinct from other layers in the profile, contains significantly low TOC, tree pollen and fern spore contents, and more positive δ13Corg, and it is deposited during the H1 event. The determined TOC, pollen and δ13Corg time-series, together with previously reported stalagmite δ18O, indicate a catastrophic (severe) drought in Jianghuai Region, one of the East Asian monsoon regions, during the H1. The La Niña condition in tropical Pacific likely also contributes to the catastrophic drought in Jianghuai Region and the precipitation variations in the Asian monsoon region during the H1.

  3. Latitudinal Gradients in the Stable Carbon and Oxygen Isotopes of Tree-Ring Cellulose Reveal Differential Climate Influences of the North American Monsoon

    NASA Astrophysics Data System (ADS)

    Szejner, P.; Wright, W. E.; Babst, F.; Belmecheri, S.; Trouet, V.; Ehleringer, J. R.; Leavitt, S. W.; Monson, R. K.

    2015-12-01

    Summer rainfall plays an important role sustaining different types of ecosystems in the Southwestern US. The arrival of the monsoon breaks the early summer hyper-arid period in the region providing unique seasonal conditions for these ecosystems to thrive. It is unknown to what extent monsoon rainfall is used by Ponderosa pine forests, which occupy many mountain ecosystems in the Western US. While these forests clearly rely on winter snowpack to drive much of their annual net primary productivity, the extent to which they supplement winter moisture, with summer monsoon moisture needs to be clarified. It is likely that there are north-south gradients in the degree to which forests rely on monsoon moisture, as the summer monsoon system tends to become diminished as it moves progressively northward. We addressed these gaps in our knowledge about the monsoon by studying stable Carbon and Oxygen isotopes in earlywood and latewood α-cellulose from cores taken from trees in eleven sites along a latitudinal gradient extending from Southern Arizona and New Mexico toward Utah. Here we show evidence that Ponderosa pine trees from most of these sites use monsoon water to support growth during the late summer, and the fractional use of monsoon precipitation is strongest in the southernmost sites. This study provides new physiological evidence on the influence of the North American monsoon and winter precipitation on tree growth in montane ecosystems of the Western US. Using these results, we predict differences in the susceptibility of southern and northern montane forests to future climate change. ACKNOWLEDGMENTS: This work was funded by an NSF Macrosystems Grant #1065790

  4. The timing of Mediterranean sapropel deposition relative to insolation, sea-level and African monsoon changes

    NASA Astrophysics Data System (ADS)

    Grant, Katharine; Grimm, Rosina; Mikolajewicz, Uwe; Marino, Gianluca; Rohling, Eelco

    2016-04-01

    The periodic deposition of organic rich layers or 'sapropels' in eastern Mediterranean sediments can be linked to orbital-driven changes in the strength and location of (east) African monsoon precipitation. Sapropels are therefore an extremely useful tool for establishing orbital chronologies, and for providing insights about African monsoon variability on long timescales. However, the link between sapropel formation, insolation variations, and African monsoon 'maxima' is not straightforward because other processes (notably, sea-level rise) may have contributed to their deposition, and because there are uncertainties about monsoon-sapropel phase relationships. For example, different phasings are observed between Holocene and early Pleistocene sapropels, and between proxy records and model simulations. To address these issues, we have established geochemical and ice-volume-corrected planktonic foraminiferal stable isotope records for sapropels S1, S3, S4, and S5 in core LC21 from the southern Aegean Sea. The records have a radiometrically constrained chronology that has already been synchronised with the Red Sea relative sea-level record, and this allows us to examine in detail the timing of sapropel deposition relative to insolation, sea-level, and African monsoon changes. Our records suggest that the onset of sapropel deposition and monsoon run-off was near synchronous, yet insolation-sapropel/monsoon phasings varied, whereby monsoon/sapropel onset was relatively delayed (with respect to insolation maxima) after glacial terminations. We suggest that large meltwater discharges into the North Atlantic modified the timing of sapropel deposition by delaying the timing of peak African monsoon run-off. Hence, the previous assumption of a systematic 3-kyr lag between insolation maxima and sapropel midpoints may lead to overestimated insolation-sapropel phasings. We also surmise that both monsoon run-off and sea-level rise were important buoyancy-forcing mechanisms for the studied sapropels, and their relative influences differed per sapropel case. For instance, sea-level rise was clearly important for sapropel S1, whereas monsoon forcing was likely more important for sapropel S5.

  5. Feeding ecology of the copepod Lucicutia aff. L. grandis near the lower interface of the Arabian Sea oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Gowing, Marcia M.; Wishner, Karen F.

    Feeding ecology of the calanoid copepod Lucicutia aff. L. grandis collected in the Arabian Sea at one station during the Spring Intermonsoon and during the Southwest Monsoon of 1995 was studied with transmission electron microscopy of gut-contents. Highest abundances of these animals occurred from ˜400 to 1100 m, near the lower interface of the oxygen minimum zone and at the inflection point where oxygen starts to increase. We expected that their gut-contents would include particles and cells that had sunk relatively undegraded from surface waters as well as those from within the oxygen minimum zone, and that gut-contents would differ between the Spring Intermonsoon and the more productive SW Monsoon. Overall, in both seasons Lucicutia aff. L. grandis was omnivorous, and consumed a variety of detrital particles, prokaryotic and eukaryotic autotrophs, gram-negative bacteria including metal-precipitating bacteria, aggregates of probable gram-positive bacteria, microheterotrophs, virus-like particles and large virus-like particles, as well as cuticle and cnidarian tissue. Few significant differences in types of food consumed were seen among life stages within or among various depth zones. Amorphous, unidentifiable material was significantly more abundant in guts during the Spring Intermonsoon than during the late SW Monsoon, and recognizable cells made up a significantly higher portion of gut-contents during the late SW Monsoon. This is consistent with the Intermonsoon as a time when organic material is considerably re-worked by the surface water microbial loop before leaving the euphotic zone. In both seasons Lucicutia aff. L. grandis had consumed what appeared to be aggregates of probable gram-positive bacteria, similar to those we had previously found in gut-contents of several species of zooplankton from the oxygen minimum zone in the eastern tropical Pacific. By intercepting sinking material, populations of Lucicutia aff. L. grandis act as a filter for carbon sinking to the sea floor. They also modify sinking carbon in several ways: enhancing pelagic-abyssal coupling of carbon from cyanobacteria, eliminating part of the deep-sea microbial loop by direct consumption of bacterial aggregates, and redistributing particulate manganese and iron from association with suspended cells or aggregates to containment in rapidly sinking fecal pellets. Lucicutia aff. L. grandis can be viewed as representative of deep-dwelling detritivorous mesozooplankton. Assessing the magnitude of the effects of such organisms on carbon flux in the Arabian Sea will require data on feeding rates.

  6. The role of East Asian monsoon system in shaping population divergence and dynamics of a constructive desert shrub Reaumuria soongarica

    PubMed Central

    Yin, Hengxia; Yan, Xia; Shi, Yong; Qian, Chaoju; Li, Zhonghu; Zhang, Wen; Wang, Lirong; Li, Yi; Li, Xiaoze; Chen, Guoxiong; Li, Xinrong; Nevo, Eviatar; Ma, Xiao-Fei

    2015-01-01

    Both of the uplift of Qinghai-Tibet Plateau (QTP) and the development of East Asian monsoon system (EAMS) could have comprehensively impacted the formation and evolution of Arid Central Asia (ACA). To understand how desert plants endemic to ACA responded to these two factors, we profiled the historical population dynamics and distribution range shift of a constructive desert shrub Reaumuria soongarica (Tamaricaceae) based on species wide investigation of sequence variation of chloroplast DNA and nuclear ribosomal ITS. Phylogenetic analysis uncovered a deep divergence occurring at ca. 2.96 Mya between the western and eastern lineages of R. soongarica, and ecological niche modeling analysis strongly supported that the monsoonal climate could have fragmented its habitats in both glacial and interglacial periods and impelled its intraspecific divergence. Additionally, the population from the east monsoonal zone expanded rapidly, suggesting that the local monsoonal climate significantly impacted its population dynamics. The isolation by distance tests supported strong maternal gene flow along the direction of the East Asian winter monsoon, whose intensification induced the genetic admixture along the latitudinal populations of R. soongarica. Our results presented a new case that the development of EAMS had prominently impacted the intraspecific divergence and population dynamics of this desert plant. PMID:26510579

  7. Theoretical model for the control of Pleistocene moisture availability in the Tropics: combining independent movement of north and south boundaries of the ITCZ and precessional forcing.

    NASA Astrophysics Data System (ADS)

    Maslin, M. A.

    2008-12-01

    Paleoclimate records of tropical moisture availability suggest there are complex controls. Using marine and continental records from both South America and Africa it is possible to resolve these influences and start to build a theoretical model explaining variations in both rainfall and moisture availability. The first control is the position of the Intertropical Convergence Zone (ITCZ). Evidence is emerging that the northern and southern boundaries of the ITCZ move independently. The extreme seasonal position of the boundary is controlled by the temperature gradient between the Equator and the relevant Pole. The temperature gradient of each Hemisphere is governed primarily by the prevalent boundary condition i.e., whether it is a glacial or interglacial period. The secondary influence are millennial-scale changes such as the Heinrich events. This idea is important as it moves away from the concept that the ITCZ is a fixed band which moves north and south. The second major control is precession which influences seasonality in the Tropics. This is important as it controls the strength of convection in each Hemisphere and thus the strength of the resultant monsoon. For example Amazonia monsoon is controlled by Southern Hemisphere convection strength, while the Congo and SE Asia monsoons are controlled by the Northern Hemisphere. In terms of tropical rainfall it has been shown by GCMs that precession can have the same scale of affect as switching from a glacial to an interglacial period. In summary the relative position of the northern and southern boundaries of the ITCZ controls the location of rainfall. While precession controls the intensity of the convection within the ITZC and thus the strength of the monsoon. This radical new theoretical framework explains why rainfall and moisture records from the same region e.g., Amazonia can be very different on a millennial and centennial time-scale. New evidence from Amazonia and East Africa combined with ice core data will be presented to support this new theoretical model.

  8. Mechanisms underlying the cooling observed within the TTL during the active spells of organized deep convection of the Indian Summer Monsoon with COSMC RO and In-situ Measurements

    NASA Astrophysics Data System (ADS)

    Rao, Kusuma; Reddy, Narendra

    Climate impact of the Asian monsoon as a tropical phenomena has been studied for decades in the past for its tropospheric component. However, the effort towards assessing the role of the Asian summer monsoon in the climate system with focus on the Upper Troposphere into the Lower Stratosphere (UTLS) is being addressed only in the recent times. Deep convective vertical fluxes of water and other chemical species penetrate and ventilate the TTL for redistribution of species in to stratosphere. However, the mechanisms underlying such convective transports are yet to be understood. Our specific goal here is to investigate the impact of organized deep moist convection of the Indian summer monsoon on thermal structure of UTLS, and to understand the underlying mechanisms. Since active monsoon spells are manifestations of organized deep convection embedded with overshooting convective elements, it becomes absolutely imperative to understand the impact of organized monsoon convection on three time scales, namely, (i) super synoptic scales of convectively intense active monsoon spells, (ii) on synoptic time scales of convectively disturbed conditions, and finally on (iii) cloud scales. Impact of deep convection on UTLS processes is examined here based on analysis of COSMIC RO and the METEOSAT data for the period, 2006-2011 and the in-situ measurements available from the national programme, PRWONAM during 2009-10 over the Indian land region and from the International field programme, JASMINE during 1999 over the Bay of Bengal. On all the three time scales during (i) the active monsoon spells, (ii) the disturbed periods and (iii) during the passage of deep core of MCSs, we inferred that the Coldpoint Tropopause Temperatures (CPT) lower at relatively lower CPT Altitudes (CPTA) unlike in the cases determined by normal temperature lapse rates; these unusual cases are described here as ‘Unlike Normal’ cases. TTL thickness shrinks during the convective conditions. During the passage of deep core of MCSs, cooling observed within the TTL is significantly higher than the cooling occuring on the other two time scales. The result that ‘Unlike Normal cases’ are associated with higher CAPE and higher surface equivalent potential temperatures lead to explain the possible mechanisms underlying the CPT cooling at relatively lower altitudes.

  9. Indications of human activity from amino acid and amino sugar analyses on Holocene sediments from lake Lonar, central India

    NASA Astrophysics Data System (ADS)

    Menzel, P.; Gaye, B.; Wiesner, M.; Prasad, S.; Basavaiah, N.; Stebich, M.; Anoop, A.; Riedel, N.; Brauer, A.

    2012-04-01

    The DFG funded HIMPAC (Himalaya: Modern and Past Climates) programme aims to reconstruct Holocene Indian Monsoon climate using a multi-proxy and multi-archive approach. First investigations made on sediments from a ca. 10 m long core covering the whole Holocene taken from the lake Lonar in central India's state Maharashtra, Buldhana District, serve to identify changes in sedimentation, lake chemistry, local vegetation and regional to supra-regional climate patterns. Lake Lonar occupies the floor of an impact crater that formed on the ~ 65 Ma old basalt flows of the Deccan Traps. It covers an area of ca. 1 km2 and is situated in India's core monsoon area. The modern lake has a maximum depth of about 5 m, is highly alkaline, and hyposaline, grouped in the Na-Cl-CO3 subtype of saline lakes. No out-flowing stream is present and only three small streams feed the lake, resulting in a lake level highly sensitive to precipitation and evaporation. The lake is eutrophic and stratified throughout most of the year with sub- to anoxic waters below 2 m depth. In this study the core sediments were analysed for their total amino acid (AA) and amino sugar (AS) content, the amino acid bound C and N percentage of organic C and total N in the sediment and the distribution of individual amino acids. The results roughly show three zones within the core separated by distinct changes in their AA content and distribution. (i) The bottom part of the core from ca. 12000 cal a BP to 11400 cal a BP with very low AA and AS percentage indicating high lithogenic contribution, most probably related to dry conditions. (ii) From 11400 cal a BP to 1200 cal a BP the sediments show moderate AA and AS percentages and low values for the ratios of proteinogenic AAs to their non-proteinogenic degradation products (e.g. ASP/β-ALA; GLU/γ-ABA). (iii) The top part of the core (< 1200 cal a BP) is characterised by an intense increase in total AA and AS, AA-C/Corg and AA-N/Ntotas well as in the ratio of proteinogenic to non-proteinogenic AAs. This indicates a strong increase in aquatic production which seems to be the result of eutrophication likely caused by human activity like forest clearance and agricultural land use. This hypothesis is corroborated by the dating of more than 10 temple ruins surrounding the lake, which were built in the 12thcentury, indicating early urbanisation.

  10. Enhanced export of carbon by salps during the northeast monsoon period in the northern Arabian Sea

    NASA Astrophysics Data System (ADS)

    Ramaswamy, V.; Sarin, M. M.; Rengarajan, R.

    2005-07-01

    A drifting sediment trap was deployed and 234Th activity in the water column was measured to calculate export flux of carbon at a time-series station in the northern Arabian Sea (lat. 21°30' N; long. 64°00' E) during the winter monsoon, 10-23 February 1997. The sampling period was characterised by an extensive salp swarm, and salp faecal pellets were the dominant contributors to the particulate matter in the sediment traps. Average 234Th flux out of the photic zone was 2300 dpm m -2 d -1 and average POC/ 234Th ratio in trap-derived particles was 0.14 mg/dpm. Average 234Th-derived export flux of carbon was about 332 mg m -2 d -1, representing 36% of the daily primary production (PP) (925 mg C m -2 d -1). Export of about one-third of the daily PP during the end of the winter monsoon could be due to the episodic nature of salp swarms. Salp swarms are frequently observed in the Arabian Sea and may be a significant pathway for rapid export of carbon from the euphotic zone.

  11. Clay mineralogical and geochemical proxies of the East Asian summer monsoon evolution in the South China Sea during Late Quaternary

    PubMed Central

    Chen, Quan; Liu, Zhifei; Kissel, Catherine

    2017-01-01

    The East Asian summer monsoon controls the climatic regime of an extended region through temperature and precipitation changes. As the East Asian summer monsoon is primarily driven by the northern hemisphere summer insolation, such meteorological variables are expected to significantly change on the orbital timescale, influencing the composition of terrestrial sediments in terms of both mineralogy and geochemistry. Here we present clay mineralogy and major element composition of Core MD12-3432 retrieved from the northern South China Sea, and we investigate their relationship with the East Asian summer monsoon evolution over the last 400 ka. The variability of smectite/(illite + chlorite) ratio presents a predominant precession periodicity, synchronous with the northern hemisphere summer insolation changes and therefore with that of the East Asian summer monsoon. Variations in K2O/Al2O3 are characterized by eccentricity cycles, increasing during interglacials when the East Asian summer monsoon is enhanced. Based on the knowledge of sediment provenances, we suggest that these two proxies in the South China Sea are linked to the East Asian summer monsoon evolution with different mechanisms, which are (1) contemporaneous chemical weathering intensity in Luzon for smectite/(illite + chlorite) ratio and (2) river denudation intensity for K2O/Al2O3 ratio of bulk sediment. PMID:28176842

  12. Clay mineralogical and geochemical proxies of the East Asian summer monsoon evolution in the South China Sea during Late Quaternary.

    PubMed

    Chen, Quan; Liu, Zhifei; Kissel, Catherine

    2017-02-08

    The East Asian summer monsoon controls the climatic regime of an extended region through temperature and precipitation changes. As the East Asian summer monsoon is primarily driven by the northern hemisphere summer insolation, such meteorological variables are expected to significantly change on the orbital timescale, influencing the composition of terrestrial sediments in terms of both mineralogy and geochemistry. Here we present clay mineralogy and major element composition of Core MD12-3432 retrieved from the northern South China Sea, and we investigate their relationship with the East Asian summer monsoon evolution over the last 400 ka. The variability of smectite/(illite + chlorite) ratio presents a predominant precession periodicity, synchronous with the northern hemisphere summer insolation changes and therefore with that of the East Asian summer monsoon. Variations in K 2 O/Al 2 O 3 are characterized by eccentricity cycles, increasing during interglacials when the East Asian summer monsoon is enhanced. Based on the knowledge of sediment provenances, we suggest that these two proxies in the South China Sea are linked to the East Asian summer monsoon evolution with different mechanisms, which are (1) contemporaneous chemical weathering intensity in Luzon for smectite/(illite + chlorite) ratio and (2) river denudation intensity for K 2 O/Al 2 O 3 ratio of bulk sediment.

  13. Northern Hemisphere moisture variability during the Last Glacial period

    NASA Astrophysics Data System (ADS)

    Asmerom, Y.; Polyak, V. J.; Lachniet, M. S.

    2013-12-01

    It was previously shown that large oxygen isotope variability related to changing moisture sources in the southwestern United States (SW) match the Greenland ice core temperature record. The variations were attributed to changes in the ratio of winter to summer precipitation delivered to the SW, with lighter winter δ18O values compared to summer monsoon rainfall, due to meridonial shifts in the position of the polar jet stream, which directs winter storm tracks. Cold stadial δ18O excursions are associated with strongly negative values, while interstadials have higher than average δ18O values. Although these data documented moisture source variability to the SW, the question of effective moisture variability remains unanswered. Here we present new high-resolution δ18O and δ13C isotopic data from a precisely dated speleothem, FS-AH1, from Fort Stanton Cave, New Mexico USA. The sample grew continuously between 47.6 and 11.1 kyr. The new chronology is more precise than previous work due to high sample growth rate, new gains in efficiency provided by our upgraded Neptune MC-ICPMS and new more precise determinations of the half-lives of 230Th and 234U. The FS-AH1 δ18O and the Greenland δ18O data (on the GICC05 time scale) show a remarkable match, both with respect to stadials/interstadial amplitudes and variability, and in the overall long-term trend. Our interpretation of the δ18O data remains the same, an indicator of moisture source variability. The δ18O and δ13C isotopic data show no correlation (R2 <0.0001) because the δ18O primarily reflects differences in moisture sources and temperature (at least during large-scale excursions), while δ13C variability reflects the amount of effective moisture in the soil zone overlying the cave, with low δ13C attributed to high soil productivity, high effective moisture, and wet conditions. The stadial and interstadial events are expressed mutely, if at all, in the δ13C data, while the secular variation follows the change in Northern Hemisphere summer insolation (insolation), similar to other Northern Hemisphere data, such as the strength of the East Asian summer monsoon as recorded in the Hulu speleothem, although the match to the East Asian monsoon is inverse. The much diminished expression of stadials and interstadials and secular variations in the effective moisture proxy data that match insolation seem to be hemispherical in scale. In humid settings, such as east Asia monsoon regions, warm temperatures lead to northward shift of the ITCZ and increase in the strength of the Asian monsoon, while in the desert SW any increase in the strength in the North American monsoon is counterbalanced by decrease in winter moisture due to the northward shift of the polar jet stream and more importantly, the onset of more evaporative conditions. In contrast to the large and rapid shifts seen in the Greenland ice core data and the apparent shift in position in air masses, as indicated by our δ18O data, large-scale changes in moisture regimes in the Northern Hemisphere seem to be driven by changes in insolation. Locations that are sensitive to small changes in atmospheric pressure and/or sea surface temperature gradients may be the exception.

  14. High-resolution vegetation dynamics reconstitution in the Zaire/Congo watershed since MIS 6

    NASA Astrophysics Data System (ADS)

    Dalibard, Mathieu; Popescu, Speranta-Maria; Maley, Jean; Pittet, Bernard; Marsset, Tania; Baudin, François; Dennielou, Bernard; Sionneau, Thomas; Escarguel, Gilles; Droz, Laurence

    2010-05-01

    The present-day latitudinal migrations of the Intertropical Convergence Zone (ITCZ) are controlled by ocean/atmosphere dynamics impact seasonality of monsoon influence on the intertropical eastern Atlantic and western Africa. The geographical position of the Zaire/Congo drainage basin spanning the Northern and Southern hemispheres makes it a key area to study variation of the climatic parameters (temperature and monsoon activity) through time. To identify the ITCZ variability during the last 180 ka, a multiproxy analysis (pollen grains, elemental ratio derived from XRF analysis, organic matter content, clay mineralogy) was performed on the core KZAI-02, drilled offshore Angola at 3418 m water depth. Pollen record indicates a very high plant diversity (327 taxa representative of 106 families). They have been grouped as follow with respect to their ecological requirements: (1) mangrove, (2) rain forest, (3) warm-temperate forest, (4) pioneer forest, (5) afromontane forest, (6) savannah, (7) marshes. The relative fluctuation of these ecological groups during the last 180 ka allows us to reconstruct the dynamics of vegetation and its response to global climate forcing. Generally the glacial periods are characterized by the development of the afromontane forest (mainly Podocarpus) on reliefs while in lower altitudes the savannah (Fabaceae Papilionoidae, Poaceae, Zygophyllum, etc.) spreads in response to the relative precipitation decrease. During interglacials our records indicate a progressive development of forest environments, the pioneer forest (Alchornea, Bridelia, Cnestis, etc.) being progressively replaced by the tropical rain forest (Acanthaceae, Fabaceae Caesalpinoideae, Sapotaceae, etc.). This evolution indicates an increase in temperature and humidity. At the stadial/interglacial transitions the development of the mangrove (Rhizophoraceae, Avicenia, Sonneratia, etc.) seems to respond principally to sea level rise. The maximum extension of Cyperaceae marshes contemporaneously with a significant presence of afromontane forest in MIS 6 may be correlated with rainfall increase probably related to changes in the monsoon activity. The information in term of humidity obtained from some other proxies (clay mineralogy, organic carbon, and elemental ratio measured by XRF, such as Br, etc.) shows a similar trend with the pollen record. A spectral analysis has been performed and reveals that the reconstructed climatic parameters from the Zaire/Congo watershed correlated with Milankovitch cycles, including semi-precession cycles (10 kyrs) characteristic of the Equatorial zone.

  15. Precipitation stable isotope records from the northern Hengduan Mountains in China capture signals of the winter India-Burma Trough and the Indian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Yu, Wusheng; Tian, Lide; Yao, Tandong; Xu, Baiqing; Wei, Feili; Ma, Yaoming; Zhu, Haifeng; Luo, Lun; Qu, Dongmei

    2017-11-01

    This project reports results of the first precipitation stable isotope (δ18 O and δD) time series produced for Qamdo in the northern Hengduan Mountains in the southeastern Tibetan Plateau. The data showed that the fluctuations of precipitation stable isotopes at Qamdo during the different seasons revealed various moisture sources. The westerlies and local recycling moisture dominated at the study area before the pre-monsoon and after the post-monsoon seasons, which resulted in similar trends of both precipitation stable isotopes and temperature. The marine moisture was transported to the northern Hengduan Mountains by the winter India-Burma Trough combined with convection. Consequently, stable isotopes in subsequent precipitation were occasionally observed to decrease suddenly. However, δ18 O and δD values of precipitation at Qamdo were lower during the monsoon period and the duration of those low values was longer because of the effects of the Indian Summer Monsoon and the strengthening convection. Our findings indicate that the effects of seasonal precipitation differences caused by various climate systems, including the winter India-Burma Trough and Indian Summer Monsoon, need to be considered when attempting to interpret tree-ring and ice core records for the Hengduan Mountains.

  16. The influence of land cover change in the Asian monsoon region on present-day and mid-Holocene climate

    NASA Astrophysics Data System (ADS)

    Dallmeyer, A.; Claussen, M.

    2011-02-01

    Using the general circulation model ECHAM5/JSBACH, we investigate the biogeophysical effect of large-scale afforestation and deforestation in the Asian monsoon domain on present-day and mid-Holocene climate. We demonstrate that the applied land cover change does not only modify the local climate but also change the climate in North Africa and the Middle East via teleconnections. Deforestation in the Asian monsoon domain enhances the rainfall in North Africa. In parts of the Sahara summer precipitation is more than doubled. In contrast, afforestation strongly decreases summer rainfall in the Middle East and even leads to the cessation of the rainfall-activity in some parts of this region. Regarding the local climate, deforestation results in a reduction of precipitation and a cooler climate as grass mostly has a higher albedo than forests. However, in the core region of the Asian monsoon the decrease of evaporative cooling in the monsoon season overcompensates this signal and results in a net warming. Afforestation has mainly the opposite effect, although the pattern of change is less clear. It leads to more precipitation in most parts of the Asian monsoon domain and a warmer climate except for the southern regions where a stronger evaporation decreases near-surface temperatures in the monsoon season. When prescribing mid-Holocene insolation, the pattern of local precipitation change differs. Afforestation particularly increases monsoon rainfall in the region along the Yellow River which was the settlement area of major prehistoric cultures. In this region, the effect of land cover change on precipitation is half as large as the orbitally-induced precipitation change. Thus, our model results reveal that mid- to late-Holocene land cover change could strongly have contributed to the decreasing Asian monsoon precipitation during the Holocene known from reconstructions.

  17. The influence of land cover change in the Asian monsoon region on present-day and mid-Holocene climate

    NASA Astrophysics Data System (ADS)

    Dallmeyer, A.; Claussen, M.

    2011-06-01

    Using the general circulation model ECHAM5/JSBACH, we investigate the biogeophysical effect of large-scale afforestation and deforestation in the Asian monsoon domain on present-day and mid-Holocene climate. We demonstrate that the applied land cover change does not only modify the local climate but also change the climate in North Africa and the Middle East via teleconnections. Deforestation in the Asian monsoon domain enhances the rainfall in North Africa. In parts of the Sahara summer precipitation is more than doubled. In contrast, afforestation strongly decreases summer rainfall in the Middle East and even leads to the cessation of the rainfall-activity in some parts of this region. Regarding the local climate, deforestation results in a reduction of precipitation and a cooler climate as grass mostly has a higher albedo than forests. However, in the core region of the Asian monsoon the decrease in evaporative cooling in the monsoon season overcompensates this signal and results in a net warming. Afforestation has mainly the opposite effect, although the pattern of change is less clear. It leads to more precipitation in most parts of the Asian monsoon domain and a warmer climate except for the southern regions where a stronger evaporation decreases near-surface temperatures in the monsoon season. When prescribing mid-Holocene insolation, the pattern of local precipitation change differs. Afforestation particularly increases monsoon rainfall in the region along the Yellow River which was the settlement area of major prehistoric cultures. In this region, the effect of land cover change on precipitation is half as large as the orbitally-induced precipitation change. Thus, our model results reveal that mid- to late-Holocene land cover change could strongly have contributed to the decreasing Asian monsoon precipitation during the Holocene known from reconstructions.

  18. Planktic foraminiferal assemblages from laminated sediments of the northeastern Arabian Sea: a high-resolution study over the last two millennia

    NASA Astrophysics Data System (ADS)

    Munz, Philipp; Lückge, Andreas; Siccha, Michael; Kucera, Michal; Schulz, Hartmut

    2014-05-01

    Modern planktic foraminiferal assemblages in the Arabian Sea are largely controlled by seasonal shifts of surface water properties. Boreal summer (June-September) heating of the Asian landmass and Tibetan Plateau leads to northward migration of the ITCZ and develops an intense atmospheric pressure gradient. Strong monsoonal winds from the southwest lead to coastal- and open ocean upwelling, especially in the western Arabian Sea along the coast of Somalia and Oman. Opposite directed dry and cold winds lead to deep convective mixing during boreal winter (January-March) and breakup of the thermal stratification. Deepening of the mixed-layer thus enables nutrient transport into the photic zone with enhanced primary production. Here we study planktic foraminiferal assemblages from the dominantly winter monsoon controlled Pakistan Margin off Karachi. We sampled annually laminated sediments from box core SO90-39KG and ca. 2-m-long piston core SO130-275KL from the same station. High sedimentation rates and varve-like lamination provides a particular record with very precise age control. Box core 39KG offers a record of the last 100 years with 2-year-resolution and 275KL provides a ca. 10-year-resolution during the last 2100 years. We calculated foraminiferal flux rates after photometric identification and subtraction of light-colored event layers, consisting solely of terrigeneous matter to enable comparison with flux rates from sediment trap stations. We identified a total of 28 planktic foraminiferal (PF) species/morphotypes in the fraction >150μm. During the relatively short period of the past two millennia, several species showed comparatively large fluctuations on decadal time scales, not seen in bioturbated records. Globigerina bulloides, a species generally associated with high primary production rates, fluctuates between ca. 10% and 45%. Highest relative share was observed during periods 1593-1413, 1023-923, 483-393, 63- -7 years AD. Average PF accumulation rates follow a general decreasing trend from ca. 30,000 individuals cm-2 kyr-1 at 100 years BC to 9,000 ind. cm-2 kyr-1 at 1890 years AD, suggesting a decrease in absolute PF production.

  19. Examination of the Asian Monsoon: Ongoing Studies from IODP Expedition 346

    NASA Astrophysics Data System (ADS)

    Murray, R. W.; Tada, R.; Alvarez Zarikian, C. A.

    2014-12-01

    IODP Expedition 346 (Asian Monsoon) tested the hypothesis that Plio-Pleistocene uplift of the Himalaya and Tibetan Plateau, and/or emergence and growth of the northern hemisphere ice sheets and establishment of the two discrete modes of Westerly Jet circulation, is the cause of the millennial-scale variability of the East Asian summer monsoon (EASM) and amplification of Dansgaard-Oeschger cycles. We also examined whether the nature and strength of flow through the Tsushima Strait (which is strongly affected by EASM precipitation, sea level changes, and EAWM cooling) influenced surface and deepwater conditions of the Japan, Yamato, and Ulleung Basins. During only six weeks of drilling, Expedition 346 recovered 6135.3 m of core, which established an IODP record for the amount of recovered material. Because of recent advances in drilling technology and newly developed analytical tools, we were able to examine records that were impossible to acquire even a few years ago. The newly engineered half piston core system recovered the deepest piston core in DSDP/ODP/IODP history (490.4 m in Hole U1427A), which was reached by continuous piston coring from the seafloor. These advances delivered new surprises. We recovered pristine dark-light laminae from approximately 8 Ma sediment from 275 m below the seafloor at Site U1425 (Yamato Rise) and from 210 m below the seafloor (10-12 Ma) at Site U1430 in the Ulleung Basin. Aggressive sampling for geochemistry provided important constraints on the diagenetic and chemical environments throughout these marginal seas, and yet did not negatively compromise paleoceanographic objectives. We are extending earlier pioneering results of the Quaternary dark and light layers in these basins and which record variations of EASM precipitation over South China. Drilling in the East China Sea is providing an excellent record of EASM precipitation because its surface water salinity and temperature during summer is significantly influenced by Yangtze River discharge. Ash records are providing calibrated stratigraphic control and improving understanding of arc history. Interpreting these and other results in the context of other IODP drilling expeditions, such as Expedition 349 to the South China Sea, will be critical to develop a holistic understanding of the Asian monsoon system.

  20. Recent 121-year variability of western boundary upwelling in the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Peng, Zicheng; Shen, Chuan-Chou; Zhou, Renjun; Song, Shaohua; Shi, Zhengguo; Chen, Tegu; Wei, Gangjian; Delong, Kristine L.

    2013-06-01

    upwelling is typically related to the eastern boundary upwelling system, whereas the powerful southwest Asian summer monsoon can also generate significant cold, nutrient-rich deep water in western coastal zones. Here we present a sea surface temperature record (A.D. 1876-1996) derived from coral Porites Sr/Ca for an upwelling zone in the northern South China Sea. The upwelling-induced sea surface temperature anomaly record reveals prominent multidecadal variability driven by Asian summer monsoon dynamics with an abrupt transition from warmer to colder conditions in 1930, and a return to warmer conditions after 1960. Previous studies suggest the expected increase in atmospheric CO2 for the coming decades may result in intensification in the eastern boundary upwelling system, which could enhance upwelling of CO2-rich deep water thus exacerbating the impact of acidification in these productive zones. In contrast, the weakening trend since 1961 in the upwelling time series from the northern South China Sea suggests moderate regional ocean acidification from upwelling thus a stress relief for marine life in this region.

  1. A high-resolution Holocene Asian Monsoon record from a Tibetan lake-Peiku Co

    NASA Astrophysics Data System (ADS)

    Du, M.; Ricketts, R. D.; Colman, S.; Werne, J. P.

    2010-12-01

    Recent studies on Tibetan lakes have demonstrated the great potential of lake sediments as archives of climate variations in this region. We present a high-resolution multi-proxy record from a closed-basin Tibetan lake—Peiku Co (4595m a.s.l., 28°55’ N, 85°35’E). A 5.5-meter-long UwiTec core (PC07-1B) provides a record extending back to ~22,000 cal years B.P., based on 14C AMS dating. Multi-proxy analyses, including high-resolution magnetic susceptibility, bulk density, elemental composition (ITRAX X-ray Fluorescence Core Scanner), and carbonate content have been carried out to compare to other paleoenvironmental records from the Tibetan Plateau. Furthermore, microbial lipids have been measured to test the applicability of GDGT-based temperature reconstructions (TEX86 and MBT/CBT). The record from Peiku Co captures the climate transition out of the last glacial period. A significant transition to warmer and wetter condition is indicated around 14,500 cal years B.P., possibly attributed to the strengthening of the summer monsoon, which is consistent with the monsoon records from Lake Qinghai. The switch to colder conditions between 12,500 and 11,500 cal years B.P. could be correlated with the Younger Dryas. The early and mid-Holocene is marked by an increase in monsoon precipitation, yet the overall trend is interrupted by two short periods of decreasing precipitation around 7000 and 5000 cal years B.P., as seen in other published records across the Asian monsoon areas. The GDGT indices are employed for temperature reconstruction. The samples from Peiku Co varied widely in BIT indices with values ranging from 0.23 to 0.88, with an average of 0.65. The high BIT values suggest this lake received significant terrestrial organic matter input, which probably respond to rainfall variations. The MBT/CBT-based temperature from the core-top is -3.2 °C, slightly higher than the measured MAAT (-4°C) on the Tibetan Plateau, but statistically the same within error of the current calibration. The core top sample yields a CBT-derived pH of 8.7, which broadly agrees with soil pH values measured on the Tibetan Plateau. Additional 210Pb and 14C dates and compound-specific isotope analyses will also be used to provide further information on the vegetation history and hydrological conditions in this area.

  2. Recent and possible future variations in the North American Monsoon

    USGS Publications Warehouse

    Hoell, Andrew; Funk, Chris; Barlow, Mathew; Shukla, Shraddhanand

    2016-01-01

    The dynamics and recent and possible future changes of the June–September rainfall associated with the North American Monsoon (NAM) are reviewed in this chapter. Our analysis as well as previous analyses of the trend in June–September precipitation from 1948 until 2010 indicate significant precipitation increases over New Mexico and the core NAM region, and significant precipitation decreases over southwest Mexico. The trends in June–September precipitation have been forced by anomalous cyclonic circulation centered at 15°N latitude over the eastern Pacific Ocean. The anomalous cyclonic circulation is responsible for changes in the flux of moisture and the divergence of moisture flux within the core NAM region. Future climate projections using the Coupled Model Intercomparison Project Phase 5 (CMIP5) models, as part of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5), support the observed analyses of a later shift in the monsoon season in the presence of increased greenhouse gas concentrations in the atmosphere under the RCP8.5 scenario. The CMIP5 models under the RCP8.5 scenario predict significant NAM-related rainfall decreases during June and July and predict significant NAM-related rainfall increases during September and October.

  3. Seasonally-varying mechanical impact of the Tibetan Plateau on the South Asian Monsoon

    NASA Astrophysics Data System (ADS)

    Bordoni, S.; Park, H.

    2011-12-01

    Land-sea thermal contrast and heating of the atmosphere over the Tibetan Plateau have long been considered the main driving of the large-scale South-Asian monsoon circulation. Recent works (e.g., Bordoni and Schneider 2008, Boos and Kuang 2010) have challenged this prevailing view, by suggesting that monsoons can occur even in the absence of zonal inhomogeneities and that the Tibetan Plateau might be acting more as a mechanical obstacle to the circulation than as its main heat source. Elucidating the role of land-sea contrast and of the Tibetan Plateau on the current South Asian climate is the first step to understand how this might have evolved on geological time-scales and how it might respond to changing radiative forcing and land surface conditions in future decades. In this work, we examine the mechanical impact of the Tibetan Plateau on the South Asian monsoon in a hierarchy of atmospheric general circulations models. During the pre-monsoon season and monsoon onset (April-May-June), when westerlies over the southern Tibetan Plateau are still strong, the Tibetan Plateau triggers early monsoon rainfall downstream. The downstream moist convection is accompanied by strong monsoonal low-level winds and subsidence upstream of the Tibetan Plateau. In experiments where the Tibetan Plateau is removed, monsoon onset occurs about one month later, but the circulation becomes progressively stronger and reaches comparable strength during the mature phase. During the mature and decaying phase of the monsoon (July-August-September), when westerlies over the southern Tibetan Plateau almost disappear, the strength of the monsoon circulation is largely unaffected by the presence of the Plateau. A dry dynamical core with east-west oriented narrow mountains in the subtropics consistently simulates downstream convergence with background zonal westerlies over the mountain range. In a moist atmosphere, the mechanically-driven downstream convergence is expected to be associated with significant moisture convergence. We argue that the mechanically-driven downstream convergence in the presence of the Tibetan Plateau is responsible for the zonally asymmetric monsoon onset, particularly over the Bay of Bengal and South China.

  4. Sensitivity of convective precipitation to soil moisture and vegetation during break spell of Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Kutty, Govindan; Sandeep, S.; Vinodkumar; Nhaloor, Sreejith

    2017-07-01

    Indian summer monsoon rainfall is characterized by large intra-seasonal fluctuations in the form of active and break spells in rainfall. This study investigates the role of soil moisture and vegetation on 30-h precipitation forecasts during the break monsoon period using Weather Research and Forecast (WRF) model. The working hypothesis is that reduced rainfall, clear skies, and wet soil condition during the break monsoon period enhance land-atmosphere coupling over central India. Sensitivity experiments are conducted with modified initial soil moisture and vegetation. The results suggest that an increase in antecedent soil moisture would lead to an increase in precipitation, in general. The precipitation over the core monsoon region has increased by enhancing forest cover in the model simulations. Parameters such as Lifting Condensation Level, Level of Free Convection, and Convective Available Potential Energy indicate favorable atmospheric conditions for convection over forests, when wet soil conditions prevail. On spatial scales, the precipitation is more sensitive to soil moisture conditions over northeastern parts of India. Strong horizontal gradient in soil moisture and orographic uplift along the upslopes of Himalaya enhanced rainfall over the east of Indian subcontinent.

  5. Changes in the Asian monsoon climate during 1700-1850 induced by preindustrial cultivation.

    PubMed

    Takata, Kumiko; Saito, Kazuyuki; Yasunari, Tetsuzo

    2009-06-16

    Preindustrial changes in the Asian summer monsoon climate from the 1700s to the 1850s were estimated with an atmospheric general circulation model (AGCM) using historical global land cover/use change data reconstructed for the last 300 years. Extended cultivation resulted in a decrease in monsoon rainfall over the Indian subcontinent and southeastern China and an associated weakening of the Asian summer monsoon circulation. The precipitation decrease in India was marked and was consistent with the observational changes derived from examining the Himalayan ice cores for the concurrent period. Between the 1700s and the 1850s, the anthropogenic increases in greenhouse gases and aerosols were still minor; also, no long-term trends in natural climate variations, such as those caused by the ocean, solar activity, or volcanoes, were reported. Thus, we propose that the land cover/use change was the major source of disturbances to the climate during that period. This report will set forward quantitative examination of the actual impacts of land cover/use changes on Asian monsoons, relative to the impact of greenhouse gases and aerosols, viewed in the context of global warming on the interannual, decadal, and centennial time scales.

  6. Implications of Late Pliocene-Pleistocene Humidity Fluctuations in the Qaidam Paleolake (NE Tibetan Plateau) Deduced from Magnetic Susceptibility Measurements

    NASA Astrophysics Data System (ADS)

    Herb, C.; Appel, E.; Koutsodendris, A.; Zhang, W.; Pross, J.; Fang, X.

    2014-12-01

    The Qaidam Basin (NE Tibetan Plateau) contains a near-continuous, up to 12 km thick sequence of Cenozoic strata that offers a unique opportunity for studying long-term climate change. We investigate the 940-m-long drill core SG-1 from the western Qaidam Basin, which is characterized by a long-term transition from a semi-deep freshwater lake to nearly complete exsiccation of the water body, detected by several studies including geochemical and lithological observations. Based on magnetostratigraphy and optically stimulated luminescence dating, and refined by orbital tuning, the SG-1 core spans the interval from 2.69 to 0.1 Ma. Moisture availability in the western Qaidam Basin deduced from the pollen ratio Artemisia/Chenopodiaceae (A/C), suggests desert to steppe vegetation along core SG-1 as a long-term feature. Magnetic susceptibility (χ) is well suited for the high-resolution investigation of paleohumidity. The meaning of χ as a paleohydrology proxy is shown by comparing χ to other magnetic proxies for checking its relation to magnetic grain sizes and magnetic mineralogy as well as to pollen results. χ variations are analyzed to obtain regional information on the factors leading to the drying process of the Qaidam paleolake as well as potential driving factors for humidity fluctuations (e.g., insolation). An important topic that needs further investigation is the influence of monsoon in the Qaidam Basin. While the southern part of the Tibetan Plateau is directly affected by monsoon precipitation through the topographic barrier, its influence in the past is questionable in the hyper-arid Qaidam Basin. We check a potential coupling to the monsoon system in the western Qaidam Basin by comparing our χ record to reconstructions of the Asian monsoon system from other archives as well as searching evidence from orbital cyclicities found in the χ time series.

  7. Fluctuations in the East Asian monsoon recorded by pollen assemblages in sediments from the Japan Sea off the southwestern coast of Hokkaido, Japan, from 4.3 Ma to the present

    NASA Astrophysics Data System (ADS)

    Igarashi, Yaeko; Irino, Tomohisa; Sawada, Ken; Song, Lu; Furota, Satoshi

    2018-04-01

    We reconstructed fluctuations in the East Asian monsoon and vegetation in the Japan Sea region since the middle Pliocene based on pollen data obtained from sediments collected by the Integrated Ocean Drilling Program off the southwestern coast of northern Japan. Taxodiaceae conifers Metasequoia and Cryptomeria and Sciadopityacere conifer Sciadopitys are excellent indicators of a humid climate during the monsoon. The pollen temperature index (Tp) can be used as a proxy for relative air temperature. Based on changes in vegetation and reconstructed climate over a period of 4.3 Ma, we classified the sediment sequence into six pollen zones. From 4.3 to 3.8 Ma (Zone 1), the climate fluctuated between cool/moist and warm/moist climatic conditions. Vegetation changed between warm temperate mixed forest and cool temperate conifer forest. The Neogene type tree Carya recovered under a warm/moist climate. The period from 3.8 to 2.5 Ma (Zone 2) was characterized by increased Metasequoia pollen concentration. Warm temperate mixed forest vegetation developed under a cool/moist climate. The period from 2.5 to 2.2 Ma (Zone 3) was characterized by an abrupt increase in Metasequoia and/or Cryptomeria pollen and a decrease in warm broadleaf tree pollen, indicating a cool/humid climate. The Zone 4 period (2.2-1.7 Ma) was characterized by a decrease in Metasequoia and/or Cryptomeria pollen and an increase in cool temperate conifer Picea and Tsuga pollen, indicating a cool/moist climate. The period from 1.7 to 0.3 Ma (Zone 5) was characterized by orbital-scale climate fluctuations. Cycles of abrupt increases and decreases in Cryptomeria and Picea pollen and in Tp values indicated changes between warm/humid and cold/dry climates. The alpine fern Selaginella selaginoides appeared as of 1.6 Ma. Vegetation alternated among warm mixed, cool mixed, and cool temperate conifer forests. Zone 6 (0.3 Ma to present) was characterized by a decrease in Cryptomeria pollen. The warm temperate broadleaf forest and cool temperate conifer forest developed alternately under warm/moist and cold/dry climate. Zone 2 corresponded to a weak Tsushima Current breaking through the Tsushima Strait, and the beginning of orbital-scale climatic changes at 1.7 Ma during Zone 5 corresponded to the strong inflow of the Tsushima Current into the Japan Sea during interglacial periods (Gallagher et al., 2015).

  8. Tropical Sumatra Squalls drive stable isotope ratios of precipitation in Singapore

    NASA Astrophysics Data System (ADS)

    He, S.; Niezgoda, K.; Kurita, N.; Wang, X.; Rubin, C. M.; Goodkin, N.

    2016-12-01

    Sumatra Squalls, organized bands of thunderstorms, are the dominant mesoscale convective systems in the study area during the inter-monsoon and southwest monsoon season. Accompanied by gusty winds and heavy rains, the squalls can be very destructive, affecting Sumatra, the Malay Peninsula and Singapore. To understand how they affect precipitation and its stable isotopes, we continuously analyzed real-time δ-values of precipitation during the squalls in 2015 and also obtained δ-values of daily precipitation. We expect the study will improve our knowledge on cloud dynamics, water cycle during the squalls, and the drive of δ-value of precipitation in the region. We found that δ18O values of precipitation during the squalls mainly exhibit a "V" shape pattern or less commonly a "W" shape pattern. Change in the δ18O value during a single event is approximately 1 to 6‰, with the lowest values mostly observed in the stratiform zone. These observations can be largely explained by the mesoscale subsidence and rain re-evaporation in combination with other processes, such as the entrainment of ambient air. In some events, however, the minimum δ-value occurs in the convection core and coincides with 90% of the total event rainfall, implying a control of rain amount and the dominance of condensation mechanism during these events. Daily precipitation is characterized by periodic negative shifts in its δ18O value. Moreover, the shifts are associated with Sumatra Squalls. Compared to 2014, the frequency of the squalls and corresponding negative shifts in δ-values in 2015 is lower probably due to a weak monsoon. During the ENSO event in 2015, the region was generally drier as a result of reduced moisture convergence with the shift of convection in the western Pacific to the central and eastern Pacific. Therefore, Pacific warm/cold events likely affect the formation of the Sumatra Squalls in the region.

  9. Diagenetic effects on magnetic minerals in a Holocene lacustrine sediment core from Huguangyan maar lake, southeast China

    NASA Astrophysics Data System (ADS)

    Wu, Xudong; Wang, Yong; Bian, Liu; Shen, Ji

    2016-09-01

    Post-depositional reductive diagenesis usually results in partial or entire cleansing of the pristine palaeomagnetic signal, therefore, its intensity is important to be assessed for sediments that are in the purpose of retrieving palaeomagnetic information. Grain size, rock magnetic and geochemical studies on the entire core, along with scanning electron microscope observations and X-ray diffraction analyses for representative samples were carried out on a Holocene sediment core retrieved from the deep water part of Huguangyan maar lake (HGY), southeast China. The pristine magnetic mineral assemblage of the studied core is domianted by superparamagnetic (SP) and stable single domain titanomagnetite, and high coercivity minerals are not detectable. Based on down-core variations of the average grain size (MZ), total organic carbon (TOC), detrital elements (Al, Ti, Fe and Mn) and the concentration and mineralogy of magnetic minerals, the studied core could be divided into three subsections. The uppermost subsection is the least affected by diagenesis, with detrital titanomagnetite as the dominant magnetic mineral. This is owing to low TOC contents, but high detrital input generated by weak Asian summer monsoon intensity during the late Holocene. The intermediate subsection shows down-core progressively enhanced dissolution of detrital titanomagnetite, and concomitant formation of authigenic pyrite and siderite, which indicates down-core progressively enhanced diagenesis generated by down-core progressive increasing TOC content, but decreasing detrital input as the result of down-core progressively strengthened Asian summer monsoon intensity. The pristine magnetic mineral assemblage has been profoundly modified in the lowermost subsection. At certain positions of the lowermost subsection, detrital titanomagnetite has been even completely dissolved via diagenesis, giving place to authigenic pyrite and siderite. High TOC content, but low detrital input generated from strong Asian summer monsoon intensity during the early Holocene are accountable for intensive diagenesis in the lowermost subsection. Complete erasing of detrital magnetic input signal at certain positions of the lowermost subsection, and considerable formation of authigenic siderite indicate that palaeomagnetic records of the studied core have been significantly compromised. The studied core has relatively higher TOC content, lower detrital matter content, calmer sedimentary environments, and less DO available at its water-sediment interface than the cores retrieved at relatively shallower water depths, which all contribute to its relatively stronger diagenesis. Progressive thickening of the upper two subsections with increasing water depth is owing to progressive increase in sedimentation rate with increasing water depth, which is the key factor in determining the thickness of each diagenetic subsection of cores from HGY. It would be better that lake sediments for palaeomagnetic investigations collected at a water depth shallower than the depth of its thermocline.

  10. Radiative effects of black carbon aerosols on Indian monsoon: a study using WRF-Chem model

    NASA Astrophysics Data System (ADS)

    Soni, Pramod; Tripathi, Sachchida Nand; Srivastava, Rajesh

    2018-04-01

    The Weather Research and Forecasting model with Chemistry (WRF-Chem) is utilized to examine the radiative effects of black carbon (BC) aerosols on the Indian monsoon, for the year 2010. Five ensemble simulations with different initial conditions (1st to 5th December, 2009) were performed and simulation results between 1st January, 2010 to 31st December, 2010 were used for analysis. Most of the BC which stays near the surface during the pre-monsoon season gets transported to higher altitudes with the northward migration of the Inter Tropical Convergence Zone (ITCZ) during the monsoon season. In both the seasons, strong negative SW anomalies are present at the surface along with positive anomalies in the atmosphere, which results in the surface cooling and lower tropospheric heating, respectively. During the pre-monsoon season, lower troposphere heating causes increased convection and enhanced meridional wind circulation, bringing moist air from Indian Ocean and Bay of Bengal to the North-East India, leading to increased rainfall there. However, during the monsoon season, along with cooling over the land regions, a warming over the Bay of Bengal is simulated. This differential heating results in an increased westerly moisture flux anomaly over central India, leading to increased rainfall over northern parts of India but decreased rainfall over southern parts. Decreased rainfall over southern India is also substantiated by the presence of increased evaporation over Bay of Bengal and decrease over land regions.

  11. A preliminary study on teak tree ring cellulose δ18O from northwestern Thailand: the potential for developing multiproxy records of Thailand summer monsoon variability

    NASA Astrophysics Data System (ADS)

    Muangsong, Chotika; Cai, Binggui; Pumijumnong, Nathsuda; Lei, Guoliang; Wang, Fang

    2018-05-01

    Thailand monsoon is located in the transition zone between the Indian and western North Pacific monsoons. Assuredly, proxy climate data from this area could improve our understanding of the nature of Asian monsoon. Tree rings and stalagmites from this area are two potential materials for high-resolution paleoclimate reconstructions. However, a comprehensive understanding of these multiproxy records is still a challenge. In this study, a 76-year tree ring cellulose oxygen isotope value (δ18O) of a teak tree from northwestern Thailand was developed to test its climatic significance and potential for multiproxy climate reconstruction. The results indicate that the interannual variability of cellulose δ18O can be interpreted as a proxy of rainfall in the early monsoon season (May to July rainfall) as well as a proxy of relative humidity. Comparisons with speleothem proxies from the same locality and tree ring records from wider geographical areas provide a basis for developing a multiproxy approach. The results from a teleconnection analysis reveal that the El Niño-Southern Oscillation (ENSO) is an important climate mode that impacts monsoon rainfall in Thailand. High-quality proxy records covering recent decades are critically important not only to improve proxy data calibrations but also to provide a better understanding of teleconnections within the modern atmosphere. Preliminary findings demonstrated the potential of tree ring stable isotopes from Thai teak to develop multiproxy climate reconstruction.

  12. Reconstructing Sea Surface Conditions in the Bay of Bengal during the Mid-Pleistocene Transition

    NASA Astrophysics Data System (ADS)

    Lagos, A. D.; Dekens, P.; Reilly, B. T.; Selkin, P. A.; Meynadier, L.; Savian, J. F.

    2017-12-01

    During the Mid-Pleistocene Transition (MPT, 0.8-1.2Ma) Earth's glacial cycles transitioned from responding primarily to 41kyr obliquity cycles to responding to 100kyr eccentricity cycles. In the tropics, sea surface temperature (SST) in the eastern tropical Pacific cooled through the MPT, suggesting a strengthening of the equatorial Pacific zonal temperature gradient (Medina-Elizalde & Lea, 2005). The strong SST gradient would have intensified Walker Cell convection during the MPT and built up latent heat in the western Pacific, which could cause cold SST anomalies in the northern Indian Ocean (Liu et al., 2015). Due to a scarcity of records, it is unclear how climate and oceanic conditions evolved in the Indian Ocean during the MPT. A set of recent IODP expeditions, including 353 and 354, cored sediment from the Bay of Bengal. Several sites recovered by expedition 353 will be ideal for reconstructing monsoon intensity through time, while the expedition 354 cores from a longitudinal transect at 8°N are in a region not directly impacted by changes in freshwater input due to direct precipitation or run off. The sites are influenced by the northeastern migration of equatorial Indian Ocean water via the Southwest Monsoon Current, which supplies significant moisture to the monsoon. Expedition 354's southern Bay of Bengal sites are well situated for better understanding the link between the tropical Indian Ocean and the northern Bay of Bengal. We reconstructed sea surface conditions at IODP site 1452 (8°N, 87°E, 3670m water depth) in the distal Bengal Fan. A 3 meter long section of the core has been identified as the MPT using the Bruhnes/Matuyama, Jaramillo, and Cobb Mountain paleomagnetic reversals (France-Lanord et al., 2016). This section of site 1452 was sampled every 2cm ( 2kyr resolution). Approximately 30 G. sacculifer, a surface dwelling planktonic foraminifera, were picked from the 355-425μm size fraction. We measured Mg/Ca and δ18O on splits of the same material to reconstruct SST and δ18OSW. While this study will not reconstruct monsoon intensity, establishing the sea surface conditions for the southern Bay of Bengal will improve our understanding of the connection between the Indian Ocean and the monsoons through the MPT.

  13. Middle Holocene Organic Carbon and Biomarker Records from the South Yellow Sea: Relationship to the East Asian Monsoon

    NASA Astrophysics Data System (ADS)

    Zou, Liang; Hu, Bangqi; Li, Jun; Dou, Yanguang; Xie, Luhua; Dong, Liang

    2018-03-01

    The East Asian monsoon system influences the sedimentation and transport of organic matter in East Asian marginal seas that is derived from both terrestrial and marine sources. In this study, we determined organic carbon (OC) isotope values, concentrations of marine biomarkers, and levels of OC and total nitrogen (TN) in core YSC-1 from the central South Yellow Sea (SYS). Our objectives were to trace the sources of OC and variations in palaeoproductivity since the middle Holocene, and their relationships with the East Asian monsoon system. The relative contributions of terrestrial versus marine organic matter in core sediments were estimated using a two-end-member mixing model of OC isotopes. Results show that marine organic matter has been the main sediment constituent since the middle Holocene. The variation of terrestrial organic carbon concentration (OCter) is similar to the EASM history. However, the variation of marine organic carbon concentration (OCmar) is opposite to that of the EASM curve, suggesting OCmar is distinctly influenced by terrestrial material input. Inputs of terrestrial nutrients into the SYS occur in the form of fluvial and aeolian dust, while concentrations of nutrients in surface water are derived mainly from bottom water via the Yellow Sea circulation system, which is controlled by the East Asian winter monsoon (EAWM). Variations in palaeoproductivity represented by marine organic matter and biomarker records are, in general, consistent with the recent EAWM intensity studies, thus, compared with EASM, EAWM may play the main role to control the marine productivity variations in the SYS.

  14. Inter-linkages of SE Asian, Indian and Indonesian-Australian monsoonal subsystems on orbital and suborbital timescales

    NASA Astrophysics Data System (ADS)

    Holbourn, A. E.; Kuhnt, W.; Tada, R.; Murray, R. W.; Alvarez Zarikian, C. A.; Clemens, S. C.

    2014-12-01

    The SE Asian, Indian and Indonesian-Australian monsoonal subsystems are closely inter-linked, but show substantial differences in the spatial and temporal distribution of precipitation, mainly due to contrasting land-sea distribution and high latitude control. We explore changes in these subsystems in relation to high latitude climate variability on suborbital and orbital timescales, focusing on the last deglaciation and the long-term Miocene evolution. Our main proxies are δ18O and Mg/Ca based salinity and temperature reconstructions in combination with sedimentary and geochemical runoff signatures. Key issues are the synchroneity of monsoonal precipitation changes in relation to northern and southern hemisphere insolation and the response of individual subsystems to atmospheric CO2 and global ice volume variations. In contrast to northern hemisphere monsoonal records, the deglacial intensification of the Australian summer monsoon paralleled southern hemisphere climate evolution. We hypothesize that intensification of the summer heat low over the Australian continent through enhanced greenhouse forcing accentuated the southward pull of the Intertropical Convergence Zone (ITCZ). Additional forcing mechanisms including the variability of the Walker circulation and Indian Ocean Dipole, the heat and moisture transfer from the tropical Indian Ocean and deglacial sea-level changes remain highly debated. High-resolution Miocene records from the South China Sea (ODP Site 1146) indicate that the latitudinal displacement of the ITCZ also impacted the long-term development of the SE Asian summer monsoon. Antarctic ice growth episodes at 14.6, 14.2, 13.9, and 13.1 Ma coincided with surface warming and freshening, implying high sensitivity of tropical rain belts to the inter-hemispheric temperature gradient. However, comparable records of the long-term evolution of the Indian and Indonesian-Australian monsoonal subsystems that would allow testing of this hypothesis are still missing. High-resolution sedimentary archives recently recovered during IODP Expedition 346 (Asian Monsoon) and to be drilled during IODP Exp 353 (Indian Monsoon) will enable direct comparison of the three monsoonal subsystems and reconciliation of linkages between marine and land records.

  15. Towards a Better Understanding of Biomas Burning and Large Scale Climate Dynamics on the West African Monsoon

    NASA Astrophysics Data System (ADS)

    Ajoku, O.; Norris, J. R.; Miller, A. J.

    2017-12-01

    Seasonal biomass burning and resulting black carbon (BC) emissions have been well documented to effect regional weather patterns, especially including low level convection. These effects can be due to the hydrophilic and radiative qualities of the aerosols emitted from such burning. This project focuses on utilizing observation and reanalysis data in order to understand the effects of BC advected from the Southern hemisphere impact the dynamics of the West African Monsoon. Our results show that, of all monsoon months, BC advection has a direct impact on precipitation in July. Early analysis indicates that biomass burning occuring near Angola/Congo advects over the Gulf of Guinea, towards the Intertropical Convergence Zone at around 850mb and stabalizes the atmosphere. For a broader impact, this region is home to more than 200 million people and thus understanding these climate patterns may carry great importance.

  16. The timing of Mediterranean sapropel deposition relative to insolation, sea-level and African monsoon changes

    NASA Astrophysics Data System (ADS)

    Grant, K. M.; Grimm, R.; Mikolajewicz, U.; Marino, G.; Ziegler, M.; Rohling, E. J.

    2016-05-01

    The Mediterranean basin is sensitive to global sea-level changes and African monsoon variability on orbital timescales. Both of these processes are thought to be important to the deposition of organic-rich sediment layers or 'sapropels' throughout the eastern Mediterranean, yet their relative influences remain ambiguous. A related issue is that an assumed 3-kyr lag between boreal insolation maxima and sapropel mid-points remains to be tested. Here we present new geochemical and ice-volume-corrected planktonic foraminiferal stable isotope records for sapropels S1 (Holocene), S3, S4, and S5 (Marine Isotope Stage 5) in core LC21 from the southern Aegean Sea. The records have a radiometrically constrained chronology that has already been synchronised with the Red Sea relative sea-level record, and this allows detailed examination of the timing of sapropel deposition relative to insolation, sea-level, and African monsoon changes. We find that sapropel onset was near-synchronous with monsoon run-off into the eastern Mediterranean, but that insolation-sapropel/monsoon phasings were not systematic through the last glacial cycle. These latter phasings instead appear to relate to sea-level changes. We propose that persistent meltwater discharges into the North Atlantic (e.g., at glacial terminations) modified the timing of sapropel deposition by delaying the timing of peak African monsoon run-off. These observations may reconcile apparent model-data offsets with respect to the orbital pacing of the African monsoon. Our observations also imply that the previous assumption of a systematic 3-kyr lag between insolation maxima and sapropel midpoints may lead to overestimated insolation-sapropel phasings. Finally, we surmise that both sea-level rise and monsoon run-off contributed to surface-water buoyancy changes at times of sapropel deposition, and their relative influences differed per sapropel case, depending on their magnitudes. Sea-level rise was clearly important for sapropel S1, whereas monsoon forcing was more important for sapropels S3, S4, and S5.

  17. Paleoclimate Reconstrcution on the Lower Bengal Fan for the last 200 ka - Implications for Monsoonal Development

    NASA Astrophysics Data System (ADS)

    Weber, M. E.; Lantzsch, H.; Reilly, B. T.; Dekens, P.; Das, S. K.; Martos, Y. M.; Williams, T.

    2017-12-01

    IODP Expedition 354 drilled seven sites along an east west oriented core transect of 320 km length at 8°N in the lower Bengal Fan (France-Lanord et al., 2015). The sites were recovered to reconstruct the Himalayan uplift, the monsoonal development, and the turbiditic depositional mechanisms. Here, we concentrate on the hemipelagic sequences that represent a several meter thick top layer of Late Quaternary age. We studied a number of physical, optical, geochemical, stable isotopic, and grain-size properties of the top layer in order to estimate sedimentary properties, and to assess the climate and monsoonal development of the region during the last glacial cycle. The Toba Ash 1 (74 ka) is a distinct time marker in most physical property data sets. We first derived age models from records of wet-bulk density as well as color reflectance b*. Both show dominant precession cyclicity, which is in good agreement with ^18O records derived from Chinese caves. We then derived age models from the strong correlation of color reflectance L* to the ^18O record of Antarctic ice core EDML. Independent age models originate from ^18O measurements of planktonic foraminifer Globigerinoides sacculifer and from records of relative paleointensity. We will compare the various age models obtained from tuning experiments and discuss their chronologic and paleoclimatic implications for the last 200 ka (MIS1-7). Preliminary results further indicate that grain sizes vary in-phase with monsoonal strength, showing coarser grains for insolation minima. Elemental geochemical ratios indicate higher relative terrigenous input on obliquity time scales, primarily during stadials, whereas total organic carbon and total nitrogen vary stronger on glacial-to-interglacial time scales with lower contents usually for interglacials. We will discuss these preliminary results in the context of the regional monsoon development.

  18. Combined effects of climate, restoration measures and slope position in change in soil chemical properties and nutrient loss across lands affected by the Wenchuan Earthquake in China.

    PubMed

    Lin, Yongming; Deng, Haojun; Du, Kun; Rafay, Loretta; Zhang, Guang-Shuai; Li, Jian; Chen, Can; Wu, Chengzhen; Lin, Han; Yu, Wei; Fan, Hailan; Ge, Yonggang

    2017-10-15

    The MS 8.0Wenchuan Earthquake in 2008 caused huge damage to land cover in the northwest of China's Sichuan province. In order to determine the nutrient loss and short term characteristics of change in soil chemical properties, we established an experiment with three treatments ('undestroyed', 'destroyed and treated', and 'destroyed and untreated'), two climate types (semi-arid hot climate and subtropical monsoon climate), and three slope positions (upslope, mid-slope, and bottom-slope) in 2011. Ten soil properties-including pH, organic carbon, total nitrogen, total phosphorus, total potassium, Ca 2+ , Mg 2+ , alkaline hydrolysable nitrogen, available phosphorus, and available potassium-were measured in surface soil samples in December 2014. Analyses were performed to compare the characteristics of 3-year change in soil chemical properties in two climate zones. This study revealed that soil organic carbon, total nitrogen, Ca 2+ content, alkaline hydrolysable nitrogen, available phosphorus, and available potassium were significantly higher in subtropical monsoon climate zones than in semi-arid hot climate zones. However, subtropical monsoon climate zones had a higher decrease in soil organic carbon, total nitrogen, total phosphorus, total potassium, and alkaline hydrolysable nitrogen in 'destroyed and untreated' sites than in semi-arid hot climate zones. Most soil chemical properties exhibited significant interactions, indicating that they may degrade or develop concomitantly. 'Destroyed and treated' sites in both climate types had lower C:P and N:P ratios than 'destroyed and untreated' sites. Principal component analysis (PCA) showed that the first, second, and third principal components explained 76.53% of the variation and might be interpreted as structural integrity, nutrient supply availability, and efficiency of soil; the difference of soil parent material; as well as weathering and leaching effects. Our study indicated that the characteristics of short term change in soil properties were affected by climate types and treatments, but not slope positions. Our results provide useful information for the selection of restoration countermeasures in different climate types to facilitate ecological restoration and reconstruction strategies in earthquake-affected areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Picophytoplankton variability: Influence of winter convective mixing and advection in the northeastern Arabian Sea

    NASA Astrophysics Data System (ADS)

    Bemal, Suchandan; Anil, Arga Chandrashekar; Shankar, D.; Remya, R.; Roy, Rajdeep

    2018-04-01

    The deepening of mixed layer and ensuing changes in optical and physicochemical properties of euphotic zone can influence phytoplankton community dynamics in the northeastern Arabian Sea during winter monsoon. The response of picophytoplankton community to such changes during winter convective mixing is not well understood. Herein, we have compared variations in the picophytoplankton community structure during early (November-December 2012), peak (end-January 2014) and late (mid-February 2015) winter monsoon from three separate cruises in the southern northeastern Arabian Sea. The higher Synechococcus abundance owing to entrainment of nutrients in mixed layer was observed during peak winter monsoon, while the concomitant changes in nitrate concentration, light and oxygen environment restricted Prochlorococcus growth resulting in lower abundance during the same period. This highlights the diverse responses of picophytoplankton groups to physicochemical changes of water column during winter convective mixing. The divinyl chlorophyll b/a ratio (marker for Prochlorococcus ecotypes) indicated prevalence of one low-light adapted ecotype (sensitive to light shock) in sub-surface water, one high-light adapted ecotype in surface water during early winter monsoon and both disappeared during intense mixing period in peak winter monsoon. Subsequently, a distinct low-light adapted ecotype, capable to tolerate light shock, was noticed during late winter monsoon and we argue that this ecotype is introduced to southern northeastern Arabian Sea through advection from north by sub-surface circulation. The total picophytoplankton biomass available to microbial loop is restored during late winter monsoon, when stratification begins, with a higher abundance of Synechococcus and the re-occurrence of Prochlorococcus population in the region. These inferences indicate that variability in picophytoplankton community structure and their contribution to the microbial loop are driven by convective mixing and advection, which in turn influence ecosystem functioning and trophodynamics of the southern northeastern Arabian Sea.

  20. Model Interpretation of Climate Signals: Application to the Asian Monsoon Climate

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2002-01-01

    This is an invited review paper intended to be published as a Chapter in a book entitled "The Global Climate System: Patterns, Processes and Teleconnections" Cambridge University Press. The author begins with an introduction followed by a primer of climate models, including a description of various modeling strategies and methodologies used for climate diagnostics and predictability studies. Results from the CLIVAR Monsoon Model Intercomparison Project (MMIP) were used to illustrate the application of the strategies to modeling the Asian monsoon. It is shown that state-of-the art atmospheric GCMs have reasonable capability in simulating the seasonal mean large scale monsoon circulation, and response to El Nino. However, most models fail to capture the climatological as well as interannual anomalies of regional scale features of the Asian monsoon. These include in general over-estimating the intensity and/or misplacing the locations of the monsoon convection over the Bay of Bengal, and the zones of heavy rainfall near steep topography of the Indian subcontinent, Indonesia, and Indo-China and the Philippines. The intensity of convection in the equatorial Indian Ocean is generally weaker in models compared to observations. Most important, an endemic problem in all models is the weakness and the lack of definition of the Mei-yu rainbelt of the East Asia, in particular the part of the Mei-yu rainbelt over the East China Sea and southern Japan are under-represented. All models seem to possess certain amount of intraseasonal variability, but the monsoon transitions, such as the onset and breaks are less defined compared with the observed. Evidences are provided that a better simulation of the annual cycle and intraseasonal variability is a pre-requisite for better simulation and better prediction of interannual anomalies.

  1. A potential vorticity-based determination of the transport barrier in the Asian summer monsoon anticyclone

    NASA Astrophysics Data System (ADS)

    Ploeger, F.; Gottschling, C.; Griessbach, S.; Grooß, J.-U.; Guenther, G.; Konopka, P.; Müller, R.; Riese, M.; Stroh, F.; Tao, M.; Ungermann, J.; Vogel, B.; von Hobe, M.

    2015-11-01

    The Asian summer monsoon provides an important pathway of tropospheric source gases and pollution into the lower stratosphere. This transport is characterized by deep convection and steady upwelling, combined with confinement inside a large-scale anticyclonic circulation in the upper troposphere and lower stratosphere (UTLS). In this paper, we show that a barrier to horizontal transport along the 380 K isentrope in the monsoon anticyclone can be determined from a local maximum in the gradient of potential vorticity (PV), following methods developed for the polar vortex (e.g., Nash et al., 1996). The monsoon anticyclone is dynamically highly variable and the maximum in the PV gradient is weak, such that additional constraints are needed (e.g., time averaging). Nevertheless, PV contours in the monsoon anticyclone agree well with contours of trace gas mixing ratios (CO, O3) and mean age from model simulations with a Lagrangian chemistry transport model (CLaMS) and satellite observations from the Microwave Limb Sounder (MLS) instrument. Hence, the PV-based transport barrier reflects the separation between air inside the core of the anticyclone and the background atmosphere well. For the summer season 2011 we find an average PV value of 3.6 PVU for the transport barrier in the anticyclone on the 380 K isentrope.

  2. Short communication: Massive erosion in monsoonal central India linked to late Holocene land cover degradation

    NASA Astrophysics Data System (ADS)

    Giosan, Liviu; Ponton, Camilo; Usman, Muhammed; Blusztajn, Jerzy; Fuller, Dorian Q.; Galy, Valier; Haghipour, Negar; Johnson, Joel E.; McIntyre, Cameron; Wacker, Lukas; Eglinton, Timothy I.

    2017-12-01

    Soil erosion plays a crucial role in transferring sediment and carbon from land to sea, yet little is known about the rhythm and rates of soil erosion prior to the most recent few centuries. Here we reconstruct a Holocene erosional history from central India, as integrated by the Godavari River in a sediment core from the Bay of Bengal. We quantify terrigenous fluxes, fingerprint sources for the lithogenic fraction and assess the age of the exported terrigenous carbon. Taken together, our data show that the monsoon decline in the late Holocene significantly increased soil erosion and the age of exported organic carbon. This acceleration of natural erosion was later exacerbated by the Neolithic adoption and Iron Age extensification of agriculture on the Deccan Plateau. Despite a constantly elevated sea level since the middle Holocene, this erosion acceleration led to a rapid growth of the continental margin. We conclude that in monsoon conditions aridity boosts rather than suppresses sediment and carbon export, acting as a monsoon erosional pump modulated by land cover conditions.

  3. Glacial forcing of central Indonesian hydroclimate since 60,000 y B.P.

    PubMed Central

    Russell, James M.; Vogel, Hendrik; Konecky, Bronwen L.; Bijaksana, Satria; Huang, Yongsong; Melles, Martin; Wattrus, Nigel; Costa, Kassandra; King, John W.

    2014-01-01

    The Indo-Pacific warm pool houses the largest zone of deep atmospheric convection on Earth and plays a critical role in global climate variations. Despite the region’s importance, changes in Indo-Pacific hydroclimate on orbital timescales remain poorly constrained. Here we present high-resolution geochemical records of surface runoff and vegetation from sediment cores from Lake Towuti, on the island of Sulawesi in central Indonesia, that continuously span the past 60,000 y. We show that wet conditions and rainforest ecosystems on Sulawesi present during marine isotope stage 3 (MIS3) and the Holocene were interrupted by severe drying between ∼33,000 and 16,000 y B.P. when Northern Hemisphere ice sheets expanded and global temperatures cooled. Our record reveals little direct influence of precessional orbital forcing on regional climate, and the similarity between MIS3 and Holocene climates observed in Lake Towuti suggests that exposure of the Sunda Shelf has a weaker influence on regional hydroclimate and terrestrial ecosystems than suggested previously. We infer that hydrological variability in this part of Indonesia varies strongly in response to high-latitude climate forcing, likely through reorganizations of the monsoons and the position of the intertropical convergence zone. These findings suggest an important role for the tropical western Pacific in amplifying glacial–interglacial climate variability. PMID:24706841

  4. Simple Indices Provide Insight to Climate Attributes Delineating the Geographic Range of Aedes albopictus (Diptera: Culicidae) Prior to Worldwide Invasion.

    PubMed

    Mogi, Motoyoshi; Armbruster, Peter; Tuno, Nobuko; Campos, Raúl; Eritja, Roger

    2015-07-01

    Aedes albopictus (Skuse) has expanded its distribution worldwide during the past decades. Despite attempts to explain and predict its geographic occurrence, analyses of the distribution of Ae. albopictus in the context of broad climatic regions (biomes) has not been performed. We analyzed climate conditions at its distribution sites in the range before the worldwide invasions (from the easternmost Hawaii through westernmost Madagascar) by using thermal and aridity-humidity indices descriptive of major biomes. A significant advantage of this approach is that it uses simple indices clearly related to the population dynamics of Ae. albopictus. Although Ae. albopictus has been regarded as a forest species preferring humid climate, in areas with significant human habitation, the distribution sites extended from the perhumid, rain forest zone to the semiarid, steppe zone. This pattern was common from the tropics through the temperate zone. Across the distribution range, there was no seasonal discordance between temperature and precipitation; at sites where winter prevents Ae. albopictus reproduction (monthly means<10°C), precipitation was concentrated in warm months (>10°C) under the Asian summer monsoon. Absence of the species in northern and eastern coastal Australia and eastern coastal Africa was not attributable solely to climate conditions. However, Asia west of the summer monsoon range was climatically unsuitable because of low precipitation throughout the year or in warm months favorable to reproduction (concentration of precipitation in winter). We hypothesized that Ae. albopictus originated in continental Asia under the monsoon climate with distinct dry seasons and hot, wet summer, enabling rapid population growth. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Abrupt variations of Indian and East Asian summer monsoons during the last deglacial stadial and interstadial

    NASA Astrophysics Data System (ADS)

    Hong, Bing; Hong, Yetang; Uchida, Masao; Shibata, Yasuyuki; Cai, Cheng; Peng, Haijun; Zhu, Yongxuan; Wang, Yu; Yuan, Linggui

    2014-08-01

    The phase relationship between the Indian summer monsoon (ISM) and the East Asian summer monsoon (EASM) during the last deglaciation remains controversial. Here, we reconstruct a 15,000-year plant cellulose δ13C proxy record for the ISM from the Yuexi peat bog in southwestern China. The record shows that the ISM abruptly decreases during the Younger Dryas (YD) stadial and abruptly increases during the Bølling-Allerød (BA) interstadial. A comparison of the Yuexi record with other related proxy climate records reveals two types of phenomena. First, the strengths of the two Asian monsoons are inversely related during the YD stadial, i.e., the ISM strength decreases and the EASM increases. During this period, the southern Chinese mainland consisted of a wide arid zone while the northern Chinese mainland was much wetter. The arid zone in southern China resulted from two different types of monsoon processes: the abnormal northward extension of the EASM rain belt, leading to less rainfall in southeast China, or an illusion that the EASM weakened. The other process is a real weakening of the ISM. Second, during the BA interstadial, the strengths of both the ISM and EASM clearly increased. However, the maximum strengths appear to have occurred in the Allerød period. During this period, the entire Chinese mainland, both northern and southern, experienced wet conditions. The abnormal climate pattern of wet in the north and dry in the south during the YD stadial occurs because of the combined effects of the strengthened EASM, intensified westerlies, and weakened ISM, which could be attributed to the response to the abrupt cooling in the high northern latitudes and to the El Niño-like activity in the equatorial Pacific. The widespread wet climate during the BA interstadial may be related to an abrupt increase in the greenhouse gases (GHGs) concentrations in the atmosphere and to the La Niña-like activity in the equatorial Pacific. These results contribute to a better understanding of the response of the Asian monsoon to global changes and present a geo-historical scenario for understanding the East Asian hydrological variations in the current global warming phase.

  6. Climatic Signals in Tree Rings of Heritiera fomes Buch.-Ham. in the Sundarbans, Bangladesh

    PubMed Central

    Chowdhury, Md. Qumruzzaman; De Ridder, Maaike; Beeckman, Hans

    2016-01-01

    Mangroves occur along the coastlines throughout the tropics and sub-tropics, supporting a wide variety of resources and services. In order to understand the responses of future climate change on this ecosystem, we need to know how mangrove species have responded to climate changes in the recent past. This study aims at exploring the climatic influences on the radial growth of Heritiera fomes from a local to global scale. A total of 40 stem discs were collected at breast height position from two different zones with contrasting salinity in the Sundarbans, Bangladesh. All specimens showed distinct tree rings and most of the trees (70%) could be visually and statistically crossdated. Successful crossdating enabled the development of two zone-specific chronologies. The mean radial increment was significantly higher at low salinity (eastern) zone compared to higher salinity (western) zone. The two zone-specific chronologies synchronized significantly, allowing for the construction of a regional chronology. The annual and monsoon precipitation mainly influence the tree growth of H. fomes. The growth response to local precipitation is similar in both zones except June and November in the western zone, while the significant influence is lacking. The large-scale climatic drivers such as sea surface temperature (SST) of equatorial Pacific and Indian Ocean as well as the El Niño-Southern Oscillation (ENSO) revealed no teleconnection with tree growth. The tree rings of this species are thus an indicator for monsoon precipitation variations in Bangladesh. The wider distribution of this species from the South to South East Asian coast presents an outstanding opportunity for developing a large-scale tree-ring network of mangroves. PMID:26927229

  7. Stratospheric Influence on Summer Monsoon and Associated Planetary Wave Breaking and Mixing in the Subtropical Tropopause Region

    NASA Astrophysics Data System (ADS)

    Lubis, S. W.; Nakamura, N.

    2017-12-01

    Previous studies have shown that the monsoonal circulation plays an important role in planetary wave breaking (PWB). The highest frequency of breaking events occurs just downstream (east) of the monsoon region in summer. PWB induces mixing of potential vorticity (PV) and hence, alter the horizontal mixing in the atmosphere. Here, the authors hypothesize that the stratospheric easterlies in the boreal summer also play a significant role in the PWB and mixing associated with the summer monsoon. If the stratospheric winds were westerly in boreal summer, the frequency of PWB would be decreased due to more waves penetrating in the stratosphere, resulting in less horizontal PWB and thus reduced mixing in the subtropical tropopause region. The hypothesis is examined by using a set of idealized moist GFDL simulations. The monsoon circulation is produced by adding a land-sea contrast with a Gaussian-shaped mountains positioned in the midlatitudes. Other key ingredients for the monsoon, including albedo, oceanic warm pool, and Q-flux, were also ideally imposed in all simulations. Our control simulation produces a summer monsoon-like circulation similar to the observation. In particular, the thermally forced monsoonal circulation forms a prominent closed upper-level anticyclone that dominates the summertime upper-level flow. Associated with this circulation is an upward-bulging tropopause that forms a large reservoir of anomalously low PV. Consistent with previous studies, the well-defined tropospheric jet lies just poleward of the upper-level anticyclone, and acts as a dynamical barrier between the low-PV reservoir over the monsoonal region and the high-PV reservoir in the extratropics. This barrier disappears just northeast of the monsoon area in the jet exit region, allowing more quasi-planetary waves to break in this region. Repetitive wave breaking further weakens the PV gradient, leading to the formation of the surf zone and stronger mixing in this region. To quantify the role of the stratospheric circulation in the PWB and mixing associated with the summer monsoon, we add an artificial local cooling in the stratosphere and thereby preserve the stratospheric westerlies in summer. The extent to which PWB and mixing are modified by the presence of stratospheric westerlies will be discussed.

  8. Evidence of Himalayan uplift as seen in Neogene records of Indian monsoon variability from ODP Hole 722B, NW Arabian Sea

    NASA Astrophysics Data System (ADS)

    Muthusamy, Prakasam; Gupta, Anil K.; Saini, Naresh K.

    2013-04-01

    The Indian monsoon is one of the most interesting climatic features on Earth impacting most populous countries of South and East Asia. It is marked by seasonal reversals of wind direction with southwesterly winds in summer (June-September) and northeasterly winds in winter (December-February). The monsoon not only impacts socioeconomic conditions of Asia but also brings important changes in fauna and flora, ocean upwelling and primary productivity in the Arabian Sea. The Himalaya has undergone several phases of rapid uplift and exhumation since the early Miocene which led to major intensification of the Indian monsoon. The monsoon is driven by the thermal contrast between land and sea, and is intimately linked with the latitudinal movement of the Inter-Tropical Convergence Zone (ITCZ). The effect of Indian monsoon variability and the Himalayan uplift can be seen in numerous proxy records across the region. In this study we discussed about the Indian monsoon intensification and the Himalayan uplift since the early Miocene based on multi proxy records such as planktic foraminiferal relative abundances (Globigerina bulloides, Globigerinita glutinata and mixed layer species), total organic carbon (TOC), CaCO3 and elemental data from ODP Hole 722B (2028 mbsf), northwestern Arabian Sea. The TOC, CaCO3 and elemental variations of the ODP Hole 722B suggest multi phase of monsoonal intensification and Himalayan uplifts. Our results suggest that in the early Miocene (23.03 Ma) to ~15Ma, the wind strength and productivity were low. A major change is observed at ~15 Ma, during which time numerous proxies show abrupt changes. TOC, CaCO3 and Elemental analyses results reveal that a major change in the productivity, wind strength and chemical weathering starts around 15 Ma and extends up to 10 Ma. This suggests that a major Himalayan uplift occurred during ~15-10 Ma that drove Indian monsoon intensification. A similar change is also observed during 5 to 1 Ma. These long-term paleoclimatic trends correlated to Himalayan uplift. Major peaks in various proxy records correspond with enhanced monsoonal strength and the Himalayan uplift. Keywords: Indian monsoon; Himalayan uplift; Arabian Sea; Productivity; Planktic foraminifera; Total Organic Carbon

  9. Variation in the Asian monsoon intensity and dry-wet conditions since the Little Ice Age in central China revealed by an aragonite stalagmite

    NASA Astrophysics Data System (ADS)

    Yin, J.-J.; Yuan, D.-X.; Li, H.-C.; Cheng, H.; Li, T.-Y.; Edwards, R. L.; Lin, Y.-S.; Qin, J.-M.; Tang, W.; Zhao, Z.-Y.; Mii, H.-S.

    2014-10-01

    This paper focuses on the climate variability in central China since AD 1300, involving: (1) a well-dated, 1.5-year resolution stalagmite δ18O record from Lianhua Cave, central China (2) links of the δ18O record with regional dry-wet conditions, monsoon intensity, and temperature over eastern China (3) correlations among drought events in the Lianhua record, solar irradiation, and ENSO (El Niño-Southern Oscillation) variation. We present a highly precise, 230Th / U-dated, 1.5-year resolution δ18O record of an aragonite stalagmite (LHD1) collected from Lianhua Cave in the Wuling Mountain area of central China. The comparison of the δ18O record with the local instrumental record and historical documents indicates that (1) the stalagmite δ18O record reveals variations in the summer monsoon intensity and dry-wet conditions in the Wuling Mountain area. (2) A stronger East Asian summer monsoon (EASM) enhances the tropical monsoon trough controlled by ITCZ (Intertropical Convergence Zone), which produces higher spring quarter rainfall and isotopically light monsoonal moisture in the central China. (3) The summer quarter/spring quarter rainfall ratio in central China can be a potential indicator of the EASM strength: a lower ratio corresponds to stronger EASM and higher spring rainfall. The ratio changed from <1 to >1 after 1950, reflecting that the summer quarter rainfall of the study area became dominant under stronger influence of the Northwestern Pacific High. Eastern China temperatures varied with the solar activity, showing higher temperatures under stronger solar irradiation, which produced stronger summer monsoons. During Maunder, Dalton and 1900 sunspot minima, more severe drought events occurred, indicating a weakening of the summer monsoon when solar activity decreased on decadal timescales. On an interannual timescale, dry conditions in the study area prevailed under El Niño conditions, which is also supported by the spectrum analysis. Hence, our record illustrates the linkage of Asian summer monsoon precipitation to solar irradiation and ENSO: wetter conditions in the study area under stronger summer monsoon during warm periods, and vice versa. During cold periods, the Walker Circulation will shift toward the central Pacific under El Niño conditions, resulting in a further weakening of Asian summer monsoons.

  10. South Asian summer monsoon variability during the last ˜54 kyrs inferred from surface water salinity and river runoff proxies

    NASA Astrophysics Data System (ADS)

    Gebregiorgis, D.; Hathorne, E. C.; Sijinkumar, A. V.; Nath, B. Nagender; Nürnberg, D.; Frank, M.

    2016-04-01

    The past variability of the South Asian Monsoon is mostly known from records of wind strength over the Arabian Sea while high-resolution paleorecords from regions of strong monsoon precipitation are still lacking. Here, we present records of past monsoon variability obtained from sediment core SK 168/GC-1, which was collected at the Alcock Seamount complex in the Andaman Sea. We utilize the ecological habitats of different planktic foraminiferal species to reconstruct freshwater-induced stratification based on paired Mg/Ca and δ18O analyses and to estimate seawater δ18O (δ18Osw). The difference between surface and thermocline temperatures (ΔT) and δ18Osw (Δδ18Osw) is used to investigate changes in upper ocean stratification. Additionally, Ba/Ca in G. sacculifer tests is used as a direct proxy for riverine runoff and sea surface salinity (SSS) changes related to monsoon precipitation on land. Our Δδ18Osw time series reveals that upper ocean salinity stratification did not change significantly throughout the last glacial suggesting little influence of NH insolation changes. The strongest increase in temperature gradients between the mixed layer and the thermocline is recorded for the mid-Holocene and indicate the presence of a significantly shallower thermocline. In line with previous work, the δ18Osw and Ba/Ca records demonstrate that monsoon climate during the LGM was characterized by a significantly weaker southwest monsoon circulation and strongly reduced runoff. Based on our data the South Asian Summer Monsoon (SAM) over the Irrawaddyy strengthened gradually after the LGM beginning at ∼18 ka. This is some 3 kyrs before an increase of the Ba/Ca record from the Arabian Sea and indicates that South Asian Monsoon climate dynamics are more complex than the simple N-S displacement of the ITCZ as generally described for other regions. Minimum δ18Osw values recorded during the mid-Holocene are in phase with Ba/Ca marking a stronger monsoon precipitation, which is consistent with model simulations.

  11. Identification of tipping elements of the Indian Summer Monsoon using climate network approach

    NASA Astrophysics Data System (ADS)

    Stolbova, Veronika; Surovyatkina, Elena; Kurths, Jurgen

    2015-04-01

    Spatial and temporal variability of the rainfall is a vital question for more than one billion of people inhabiting the Indian subcontinent. Indian Summer Monsoon (ISM) rainfall is crucial for India's economy, social welfare, and environment and large efforts are being put into predicting the Indian Summer Monsoon. For predictability of the ISM, it is crucial to identify tipping elements - regions over the Indian subcontinent which play a key role in the spatial organization of the Indian monsoon system. Here, we use climate network approach for identification of such tipping elements of the ISM. First, we build climate networks of the extreme rainfall, surface air temperature and pressure over the Indian subcontinent for pre-monsoon, monsoon and post-monsoon seasons. We construct network of extreme rainfall event using observational satellite data from 1998 to 2012 from the Tropical Rainfall Measuring Mission (TRMM 3B42V7) and reanalysis gridded daily rainfall data for a time period of 57 years (1951-2007) (Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources, APHRODITE). For the network of surface air temperature and pressure fields, we use re-analysis data provided by the National Center for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR). Second, we filter out data by coarse-graining the network through network measures, and identify tipping regions of the ISM. Finally, we compare obtained results of the network analysis with surface wind fields and show that occurrence of the tipping elements is mostly caused by monsoonal wind circulation, migration of the Intertropical Convergence Zone (ITCZ) and Westerlies. We conclude that climate network approach enables to select the most informative regions for the ISM, providing realistic description of the ISM dynamics with fewer data, and also help to identify tipping regions of the ISM. Obtained tipping elements deserve a special attention for the meteorologists and can be used as markers of the ISM variability.

  12. Climate and hydrology of the last interglaciation (MIS 5) in Owens Basin, California: Isotopic and geochemical evidence from core OL-92

    USGS Publications Warehouse

    Li, H.-C.; Bischoff, J.L.; Ku, T.-L.; Zhu, Z.-Y.

    2004-01-01

    ??18O, ??13C, total organic carbon, total inorganic carbon, and acid-leachable Li, Mg and Sr concentrations on 443 samples from 32 to 83 m depth in Owens Lake core OL-92 were analyzed to study the climatic and hydrological conditions between 60 and 155 ka with a resolution of ???200 a. The multi-proxy data show that Owens Lake overflowed during wet/cold conditions of marine isotope stages (MIS) 4, 5b and 6, and was closed during the dry/warm conditions of MIS 5a, c and e. The lake partially overflowed during MIS 5d. Our age model places the MIS 4/5 boundary at ca 72.5 ka and the MIS 5/6 boundary (Termination II) at ca 140 ka, agreeing with the Devils Hole chronology. The diametrical precipitation intensities between the Great Basin (cold/wet) and eastern China (cold/dry) on Milankovitch time scales imply a climatic teleconnection across the Pacific. It also probably reflects the effect of high-latitude ice sheets on the southward shifts of both the summer monsoon frontal zone in eastern Asia and the polar jet stream in western North America during glacial periods. ?? 2003 Elsevier Ltd. All rights reserved.

  13. Two millennia of Mesoamerican monsoon variability driven by Pacific and Atlantic synergistic forcing

    NASA Astrophysics Data System (ADS)

    Lachniet, Matthew S.; Asmerom, Yemane; Polyak, Victor; Bernal, Juan Pablo

    2017-01-01

    The drivers of Mesoamerican monsoon variability over the last two millennia remain poorly known because of a lack of precisely-dated and climate-calibrated proxy records. Here, we present a new high resolution (∼2 yrs) and precisely-dated (± 4 yr) wet season hydroclimate reconstruction for the Mesoamerican sector of the North American Monsoon over the past 2250 years based on two aragonite stalagmites from southwestern Mexico which replicate oxygen isotope variations over the 950-1950 CE interval. The reconstruction is quantitatively calibrated to instrumental rainfall variations in the Basin of Mexico. Comparisons to proxy indices of ocean-atmosphere circulation show a synergistic forcing by the North Atlantic and El Niño/Southern Oscillations, whereby monsoon strengthening coincided with a La Niña-like mode and a negative North Atlantic Oscillation, and vice versa for droughts. Our data suggest that weak monsoon intervals are associated with a strong North Atlantic subtropical high pressure system and a weak Intertropical convergence zone in the eastern Pacific Ocean. Population expansions at three major highland Mexico civilization of Teotihuacan, Tula, and Aztec Tenochtitlan were all associated with drought to pluvial transitions, suggesting that urban population growth was favored by increasing freshwater availability in the semi-arid Mexican highlands, and that this hydroclimatic change was controlled by Pacific and Atlantic Ocean forcing.

  14. Geochemical provenance of sediments from the northern East China Sea document a gradual migration of the Asian Monsoon belt over the past 400,000 years

    NASA Astrophysics Data System (ADS)

    Beny, François; Toucanne, Samuel; Skonieczny, Charlotte; Bayon, Germain; Ziegler, Martin

    2018-06-01

    The reconstruction of the long-term evolution of the East Asian Monsoon remains controversial. In this study, we aim to give a new outlook on this evolution by studying a 400 kyr long sediment record (U1429) from the northern East China Sea recovered during IODP Expedition 346. Neodymium isotopic ratios and rare earth element concentrations of different grain-size fractions reveal significant provenance changes of the sediments in the East China Sea between East Asian continental sources (mainly Yellow River) and sediment contributions from the Japanese Archipelago. These provenance changes are interpreted as the direct impact of sea level changes, due to the reorganization of East Asian river mouth locations and ocean circulation on the East China Sea shelf, and latitudinal shifts of the intertropical convergence zone (ITCZ) from the interior of Asia to the western North Pacific Ocean. Our data reveal the dominance of winter and summer monsoons during glacial and interglacial periods, respectively, except for glacial MIS 6d (∼150-180 ka) during which unexpected summer monsoon dominated conditions prevailed. Finally, our data suggests a possible strengthening of the interglacial summer monsoon rainfalls over the East Asian continent and Japan throughout the past 400 kyr, and between MIS 11 and MIS 5 in particular. This could result from a gradual northward migration of the ITCZ.

  15. The impact of the Western Ghats on lightning activity on the western coast of India

    NASA Astrophysics Data System (ADS)

    Kamra, A. K.; Nair, A. A.

    2015-06-01

    The effect of the Western Ghats on the lightning activity across the west coast of India around the coastal metropolitan city of Mumbai during the 1998-2012 period is investigated using data from the Lightning Imaging Sensor (LIS) onboard the Tropical Rainfall Measuring Mission (TRMM) satellite. A land-sea contrast of an order of magnitude in the lightning activity is observed even in a small area across the western coast of India. The shape of a zone of high lightning activity formed almost parallel to the Western Ghats during the onset and withdrawal phases of monsoon, strongly suggests the effect of the Western Ghats in its formation. Seasonal variation of the lightning activity in this area and also in each of its four equal sectors (two each over the Arabian Sea and over land) is bi-annual with one peak each in the onset (May/June) and withdrawal months (September/October) of monsoon and a sharp dip to very low values during the monsoon months (July/August) of maximum seasonal rainfall. The lightning activity in each sector is found to increase over the 1998-2012 period. However, the increase in lightning activity over the sector containing Mumbai is found to be greater during the pre- and post-monsoon periods and smaller during the monsoon period as compared to an identical sector immediately south of it.

  16. Seismological evidence for a localized mushy zone at the Earth's inner core boundary.

    PubMed

    Tian, Dongdong; Wen, Lianxing

    2017-08-01

    Although existence of a mushy zone in the Earth's inner core has been hypothesized several decades ago, no seismic evidence has ever been reported. Based on waveform modeling of seismic compressional waves that are reflected off the Earth's inner core boundary, here we present seismic evidence for a localized 4-8 km thick zone across the inner core boundary beneath southwest Okhotsk Sea with seismic properties intermediate between those of the inner and outer core and of a mushy zone. Such a localized mushy zone is found to be surrounded by a sharp inner core boundary nearby. These seismic results suggest that, in the current thermo-compositional state of the Earth's core, the outer core composition is close to eutectic in most regions resulting in a sharp inner core boundary, but deviation from the eutectic composition exists in some localized regions resulting in a mushy zone with a thickness of 4-8 km.The existence of a mushy zone in the Earth's inner core has been suggested, but has remained unproven. Here, the authors have discovered a 4-8 km thick mushy zone at the inner core boundary beneath the Okhotsk Sea, indicating that there may be more localized mushy zones at the inner core boundary.

  17. Climate and environmental change at the end of the Holocene Humid Period: A pollen record off Pakistan

    NASA Astrophysics Data System (ADS)

    Ivory, Sarah J.; Lézine, Anne-Marie

    2009-08-01

    Pollen studies from core SO90-56KA recovered from the Arabian Sea off the Makran Coast (24° 509N, 65° 559E; 695 m depth) show that the end of the Holocene Humid Period, linked to the weakening of Indian monsoon fluxes, took place between 4700 and 4200 BP. Two periods of strong summer monsoon activity are identified between 5400-4200 BP and 2000-1000 BP during which the montane pollen taxa coming from the Himalayas reached the Makran coast due to increased fluvial activity of the Indus River. A contrasting period, dominated by the winter monsoon between 4200 and 2000 BP, is identified based on the presence of pollen taxa from the Baluchistan plateaus. The regional vegetation of the low- and midaltitudes, arid and semiarid, are remarkably stable from 4500 BP to the present.

  18. Orbital- to millennial-scale abrupt hydrologic change in central Indonesia during the past 60,000 years

    NASA Astrophysics Data System (ADS)

    Russell, J. M.; Vogel, H.; Konecky, B.; Bijaksana, S.; King, J. W.; Cahyarini, S. Y.; Tamuntuan, G. H.; Noren, A. J.; Wattrus, N. J.

    2011-12-01

    Indonesia sits at the western edge of the tropical Pacific warm pool, and its climate responds to the Australasian monsoon and the intertropical convergence zone (ITCZ). Despite Indonesia's climatological significance, we have very few records of the region's hydrology. To fill this gap, in 2010 we collected long sediment piston cores and seismic reflection data from Lake Towuti, Sulawesi (2.5 S, 121 E), the largest lake in Indonesia. We are building new reconstructions of regional hydrology based upon sedimentological, geochemical, magnetic, core-scanning x-ray fluorescence, and compound-specific stable isotopic data to develop the first continuous record of rainfall and drought over the last 60,000 years from the maritime continent. Our record shows that, at the orbital scale, the boreal winter monsoon-dominated climate of central Indonesia responds to both precessional forcing of the Australasian monsoon and high latitude glacial processes. We observe relatively dry conditions at 60 kyr BP, wet conditions during much of Marine Isotope Stage 3 (MIS3), and a dry early/wet late Holocene. This is antiphased with speleothem 18O/16O records from China (e.g. Wang et al., 2008, Nature 451: 1090-1093), and is consistent with southward migration of the ITCZ over Indonesia and Australia during precession maxima. However, we observe the driest conditions of the last 60 kyr during the last glacial maximum (LGM), when southern hemisphere summer insolation was low. Previous studies (e.g. Griffiths et al., 2009, Nature Geosciences 2: 636-639) have suggested that exposure of the Sunda Shelf during the LGM reduces central Indonesian convection. However, we observe little effect of Sunda Shelf exposure on Indonesian hydrology during MIS3, and the deglacial rise in precipitation appears rapid in our data relative to sea level rise. We suggest that cool sea surface temperatures in the maritime continent, driven by greenhouse gas minima and associated glacial processes, reduced LGM convection over Indonesia. We observe substantial millennial-scale variability during MIS3 as well as the last glacial termination. For instance, Heinrich event 1 is a prominent arid event, as is the Younger Dryas. Aridity in central Indonesia during these North Atlantic stadials indicates that the "northern mode" of millennial climate variability observed in mainland Asia propagates south of the equator over maritime Indonesia, despite clear evidence for southward migration of the ITCZ. This suggests that water vapor content and convection within the ITCZ controls central Indonesian hydrology more than ITCZ position.

  19. Structured teleconnections reveal the South American monsoon onset: A network approach

    NASA Astrophysics Data System (ADS)

    Ciemer, Catrin; Ekhtiari, Nikoo; Barbosa, Henrique; Boers, Niklas; Donner, Reik; Kurths, Jürgen; Rammig, Anja; Winkelmann, Ricarda

    2017-04-01

    The regional onset dates of the global monsoon systems are, to first order, determined by the seasonal shift of the intertropical convergence zone. However, precise onset dates vary substantially from year to year due to the complexity of the involved mechanisms. In this study, we investigate processes determining the onset of the South American monsoon system (SAMS). In recent years, a trend towards later onset dates of the SAMS has been observed. A later onset of the monsoon can have severe impacts on agriculture and infrastructure such as farming, water transport routes, and the stability of the Amazon rainforest in the long term. Possible reasons for this shift involve a multitude of climatic phenomena and variables relevant for the SAMS. To account for the highly interactive nature of the SAMS, we here investigate it with the help of complex networks. By studying the temporal changes of the correlation structure in spatial rainfall networks, we are able to determine coherent areas of similar precipitation patterns, spot teleconnections in terms of strongly correlated areas, detect key regions for precipitation correlations, and finally reveal the monsoon onset by an abrupt shift from an unordered to an ordered correlation structure of the network. To further evaluate the shift in the monsoon onset, we couple our rainfall network to a network of climate networks using sea surface temperature as a second variable. We are thereby able to emphasize oceanic regions that are particularly important for the SAMS and anticipate the influence of future changes of sea-surface temperature on the SAMS.

  20. Late Holocene monsoon climate of northeastern Taiwan inferred from elemental (C, N) and isotopic (δ13C, δ15N) data in lake sediments

    NASA Astrophysics Data System (ADS)

    Selvaraj, Kandasamy; Wei, Kuo-Yen; Liu, Kon-Kee; Kao, Shuh-Ji

    2012-03-01

    Little information exists about centennial-scale climate variability on oceanic islands in the western Pacific where the East Asian monsoon (EAM) strongly influences the climate, mountain ecosystem and the society. In this study, we investigate a 168 cm long sediment core recovered from Emerald Peak Lake in subalpine NE Taiwan for the contents of grain size, total organic carbon (TOC), C/N ratio, and stable isotopes (δ13C and δ15N) to reconstruct the monsoon climate and vegetation density during the late Holocene. Six radiocarbon (14C) ages obtained on plant remains used for the chronology indicate that the sediment core has been accumulated since ˜3770 cal BP with a mean sedimentation rate of 44.6 cm/ka. The sub-centennial resolution of our proxy records reveals strong fluctuations of the EAM and vegetation density for the past ˜3770 cal BP. The greater contents of coarse and medium sediments with overall decreasing trends from 3770 to 2000 cal BP suggest an increasing fine sediment influx from the catchment likely due to an increasing lake water level. Although low TOC content, C/N ratio, and enriched δ13C values in bulk and fine sediments during this interval suggest a sparsely vegetated catchment, increasing trends of TOC content and C/N ratio together with decreasing trends of δ13C and δ15N values indicate a strengthening pattern of summer monsoon. This is in contrast to a decreasing monsoon strength inferred from Dongge Cave δ18O record at that time, supporting the idea of anti-phasing of summer EAM and Indian summer monsoon. Since 2000 cal BP, higher content of fine sediments with high TOC content and C/N ratio but relatively depleted δ13C and low δ15N values suggest a high but stable lake water level and dense C3 plants, consistent with a stronger summer monsoon in a wet climate. Within this general trend, we interpret a prominent change of proxy parameters in sediments from ˜560 to 150 cal BP, as subtropical evidence for the Little Ice Age in NE Taiwan. By comparing our proxy records with other diverse land and marine records from southern China and adjoining marine realm, we demonstrate that the centennial to millennial-scale fluctuations of the summer EAM over the northeastern Taiwan during the late Holocene have been largely modulated by the tropical Pacific forcing through El Niño along with solar forcing.

  1. Couplings between the seasonal cycles of surface thermodynamics and radiative fluxes in the semi-arid Sahel

    NASA Astrophysics Data System (ADS)

    Guichard, F.; Kergoat, L.; Mougin, E.; Timouk, F.; Bock, O.; Hiernaux, P.

    2009-04-01

    A good knowledge of surface fluxes and atmospheric low levels is central to improving our understanding of the West African monsoon. This study provides a quantitative analysis of the peculiar seasonal and diurnal cycles of surface thermodynamics and radiative fluxes encountered in Central Sahel. It is based on a multi-year dataset collected in the Malian Gourma over a sandy soil at 1.5°W-15.3°N (a site referred to as Agoufou) with an automated weather station and a sunphotometer (AERONET), complemented by observations from the AMMA field campaign. The seasonal cycle of this Tropical region is characterized by a broad maximum of temperature in May, following the first minimum of the solar zenith angle by a few weeks, when Agoufou lies within the West African Heat-Low, and a late summer maximum of equivalent potential temperature within the core of the monsoon season, around the second yearly maximum of solar zenith angle, as the temperature reaches its Summer minimum. More broadly, subtle balances between surface air temperature and moisture fields are found on a range of scales. For instance, during the monsoon, apart from August, their opposite daytime fluctuations (warming, drying) lead to an almost flat diurnal cycle of the equivalent potential temperature at the surface. This feature stands out in contrast to other more humid continental regions. Here, the strong dynamics associated with the transition from a drier hot Spring to a brief cooler wet tropical Summer climate involves very large transformations of the diurnal cycles. The Summer increase of surface net radiation, Rnet, is also strong; typically 10-day mean Rnet reaches about 5 times its Winter minimum (~30 W.m-2) in August (~150 W.m-2). A major feature revealed by observations is that this increase is mostly driven by modifications of the surface upwelling fluxes shaped by rainfall events and vegetation phenology (surface cooling and darkening), while the direct impact of atmospheric changes on the total incoming radiation is limited to shorter time scales in Summer over this Central Sahelian location. However, observations also reveal astonishing radiative signatures of the monsoon on the surface incoming radiative flux. The incoming longwave flux does not reach its maximum during the monsoon season when the atmosphere is the most cloudy and humid, but earlier, prior to the onset of rainfall, as the dry and warmer atmosphere suddenly becomes moist. This feature points to the significance of the atmospheric cooling during the monsoon season and of the aerosol amounts in Spring. It also reveals that prior to the rainfall onset, the monsoon flow plays a major role on the diurnal cycle of the low-level temperature, due to its radiative properties. Conversely, the incoming solar radiation at the surface increases slightly from late Spring to the core monsoon season even though the atmosphere becomes moister and cloudier; this again involves the high aerosol optical thickness prevailing in late Spring and early Summer against a weaker shortwave forcing by monsoon clouds. The climatological combination of thermodynamic and radiative variations taking place during the monsoon eventually leads to a positive correlation between the equivalent potential temperature and Rnet. This correlation is, in turn, broadly consistent with an overall positive soil moisture rainfall feedback at this scale. Beyond these Sahelian-specific features, and in agreement with some previous studies, strong links are found between the atmospheric humidity and the net longwave flux, LWnet at the surface all year long, even across the much lower humidity ranges encountered in this region. They point to, and locally quantify the major control of water vapour and water-related processes on the surface-atmosphere thermal coupling as measured by LWnet. Namely, they are found to be more tightly coupled (LWnet closer to 0) when the atmosphere is moister and cloudier. Observational results such as presented here provide valuable ground truth for assessing models over a continental area displaying a challenging variety of surface-atmosphere regimes throughout the year, from a desert-like to a rainy tropical-like climate during the core of the monsoon. Indeed, the mechanisms emphasized by these data do not all comply to existing conceptual schemes.

  2. Nutrient stoichiometry and freshwater flow in shaping of phytoplankton population in a tropical monsoonal estuary (Kundalika Estuary)

    NASA Astrophysics Data System (ADS)

    Chowdhury, Mintu; Hardikar, Revati; Chanjaplackal Kesavan, Haridevi; Thomas, Jubin; Mitra, Aditi; Rokade, M. A.; Naidu, V. S.; Sukumaran, Soniya

    2017-11-01

    The present study aimed to understand the role of freshwater flow and physico-chemical parameters in influencing the phytoplankton community shift and thereby helping in balancing the ecosystem. The Kundalika estuary (KE) is a semi-diurnal tropical monsoonal estuary. Strong upstream currents during monsoon as assessed through a 2D numerical model influenced the succession of marine, estuarine and freshwater phytoplankton species depending on the extent of freshwater influx and its distribution in the estuary. Nitrogen and phosphorus played a pivotal role in regulating the phytoplankton growth and their proliferation. Distribution of different phytoplankton species in accordance to salinity and nutrient content was clearly observed. Among the four major classes (Diatoms, Dinoflagellates, Chlorophytes and Phytoflagellates) occurring in the KE, diatoms occupied a wide salinity range. Large-scale shifts in phytoplankton biomass and composition were associated with river run-off during monsoon. Phytoflagellates and Chlorophytes restricted their abundance to relatively high nitrogen level zones. Canonical Correspondence Analysis (CCA) between environmental variables and dominant taxa of phytoplankton indicated the influence of salinity on phytoplankton distribution in the estuarine precinct. Thus the freshwater influx in the KE played a major role on phytoplankton species diversity and its bloom potential.

  3. Dead Sea drawdown and monsoonal impacts in the Levant during the last interglacial

    NASA Astrophysics Data System (ADS)

    Torfstein, Adi; Goldstein, Steven L.; Kushnir, Yochanan; Enzel, Yehouda; Haug, Gerald; Stein, Mordechai

    2015-02-01

    Sediment cores recovered by the Dead Sea Deep Drilling Project (DSDDP) from the deepest basin of the hypersaline, terminal Dead Sea (lake floor at ∼725 m below mean sea level) reveal the detailed climate history of the lake's watershed during the last interglacial period (Marine Isotope Stage 5; MIS5). The results document both a more intense aridity during MIS5 than during the Holocene, and the moderating impacts derived from the intense MIS5e African Monsoon. Early MIS5e (∼133-128 ka) was dominated by hyperarid conditions in the Eastern Mediterranean-Levant, indicated by thick halite deposition triggered by a lake-level drop. Halite deposition was interrupted however, during the MIS5e peak (∼128-122 ka) by sequences of flood deposits, which are coeval with the timing of the intense precession-forced African monsoon that generated Mediterranean sapropel S5. A subsequent weakening of this humidity source triggered extreme aridity in the Dead Sea watershed and resulting in the biggest known lake level drawdown in its history, reflected by the deposition of thick salt layers, and a capping pebble layer corresponding to a hiatus at ∼116-110 ka. The DSDDP core provides the first evidence for a direct association of the African monsoon with mid subtropical latitude climate systems effecting the Dead Sea watershed. Combined with coeval deposition of Arabia and southern Negev speleothems, Arava travertines, and calcification of Red Sea corals, the evidence points to a climatically wet corridor that could have facilitated homo sapiens migration "out of Africa" during the MIS5e peak. The hyperaridity documented during MIS5e may provide an important analogue for future warming of arid regions of the Eastern Mediterranean-Levant.

  4. Near-surface Density Currents Observed in the Southeast Pacific Stratocumulus-topped Marine Boundary Layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilbanks, Matt C.; Yuter, S. E.; de Szoeke, S.

    2015-09-01

    Density currents (i.e. cold pools or outflows) beneath marine stratocumulus clouds are characterized using a 30-d data set of ship-based observations obtained during the 2008 Variability of American Monsoon Systems (VAMOS) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) in the southeast Pacific. An objective method identifies 71 density current fronts using an air density criterion and isolates each density current’s core (peak density) and tail (dissipating) zone. Compared to front and core zones, most density current tails exhibited weaker density gradients and wind anomalies elongated about the axis of the mean wind. The mean cloud-level advection relative to the surface layer windmore » (1.9 m s-1) nearly matches the mean density current propagation speed (1.8 m s-1). The similarity in speeds allows drizzle cells to deposit tails in their wakes. Based on high-resolution scanning Doppler lidar data, prefrontal updrafts had a mean intensity of 0.91 m s-1, reached an average altitude of 800 m, and were often surmounted by low-lying shelf clouds not connected to the overlying stratocumulus cloud. Nearly 90% of density currents were identified when C-band radar estimated 30-km diameter areal average rain rates exceeded 1 mm d-1. Rather than peaking when rain rates are highest overnight, density current occurrence peaks between 0600 and 0800 local solar time when enhanced local drizzle co-occurs with shallow subcloud dry and stable layers. The dry layers may contribute to density current formation by enhancing subcloud evaporation of drizzle. Density currents preferentially occur in regions of open cells but also occur in regions of closed cells.« less

  5. Pleistocene Indian Monsoon rainfall variability dominated by obliquity

    NASA Astrophysics Data System (ADS)

    Gebregiorgis, D.; Hathorne, E. C.; Giosan, L.; Collett, T. S.; Nuernberg, D.; Frank, M.

    2015-12-01

    The past variability of the Indian Monsoon is mostly known from records of wind strength over the Arabian Sea while Quaternary proxy records of Indian monsoon precipitation are still lacking. Here we utilize scanning x-ray fluorescence (XRF) data from a sediment core obtained by the IODP vessel JOIDES Resolution in the Andaman Sea (Site 17) to investigate changes in sediment supply from the peak monsoon precipitation regions to the core site. We use Ti/Ca and K/Rb ratios to trace changes in terrigenous flux and weathering regime, respectively, while Zr/Rb ratios suggest grain size variations. The age model of Site 17 is based on correlation of benthic C. wuellerstorfi/C. mundulus δ18O data to the LR04 global benthic δ18O stack at a resolution of ~3 kyr (Lisiecki and Raymo, 2005) for the last 2 Myrs. In its youngest part the age model is supported by five 14C ages on planktic foraminifera and the youngest Toba ash layer (Ali et al., 2015) resulting in a nearly constant sedimentation rate of ~6.5 cm/kyr. Frequency analysis of the 4 mm resolution Ti/Ca, K/Rb, and Zr/Rb time series using the REDFIT program (Schulz and Mudelsee, 2002), reveals the three main Milankovitch orbital cycles above the 90% confidence level. Depth domain spectral analysis reveals the presence of significant cyclicity at wavelengths of 28.5 and 2.8 m corresponding to the ~400 kyr and ~41 kyr cycles, respectively, during the last 2 Myr. These records suggest that Indian monsoon variability has varied in the obliquity and eccentricity bands, the latter in particular after the mid Pleistocene transition (MPT), while strong precession forcing is lacking in this super-high resolution record. Northern summer insolation and Southern Hemisphere latent heat export are out of phase during precessional cycles, but in phase in the obliquity band, which indicates that Indian monsoon precipitation has likely been more sensitive to both NH pull and SH push mechanisms (Clemens and Prell, 2003). References Ali, S., et al., 2015. Geochem., Geophy., Geosys., 16, 505-521. Clemens, S.C. and Prell, W.L., 2003. Marine Geology, 201(1): 35-51. Lisiecki, L. E. and M. E. Raymo ,2005. Paleoceanography, 20, PA1003. Schulz, M., and Mudelsee, M., 2002. Computers & Geosciences, v. 28, p. 421-426.

  6. Synchronicity of the East Asian Summer Monsoon variability and Northern Hemisphere climate change since the last deglaciation

    NASA Astrophysics Data System (ADS)

    Shinozaki, T.; Uchida, M.; Minoura, K.; Kondo, M.; Rella, S. F.; Shibata, Y.

    2011-06-01

    Understanding of the mechanism of the East Asian Summer Monsoon (EASM) is required for the prediction of climate change in East Asia in a scenario of modern global warming. In this study, we present high-resolution climate records from peat sediments in Northeast Japan to reconstruct the EASM variability based on peat bulk cellulose δ13C since the last deglaciation. We used a 8.8 m long peat sediment core collected from the Tashiro Bog, Northeast Japan. Based on 42 14C measurements, the core bottom reaches ~15.5 ka. δ13C, accumulation rate and accumulation flux time-series correlate well to Greenland ice core δ18O variability, suggesting that the climate record in Northeast Japan is linked to global climate changes. The δ13C record at Tashiro Bog and other paleo-EASM records at Northeast and Southern China consistently demonstrate that hydrological environments were spatially different in mid-high and mid-low latitude regions over the last 15.5 kyr. During global cooling (warming) periods, mid-high and mid-low latitude regions were characterized by wet (dry) and dry (wet) environments, respectively. We suggest that these climatic patterns are related to the migration of the EASM-related rain belt during global climate changes, as a consequence of variations in intensity and location of both the Intertropical Convergence Zone (ITCZ) and the Western Pacific Subtropical High (STH). The location of the rain belt largely influences the East Asian hydrological environment. Our δ13C time-series are characterized by a 1230 yr throughout the Holocene and a 680 yr periodicity during the early Holocene. The 1230 yr periodicity is in agreement with North Atlantic ice-rafted debris (IRD) events, suggesting a teleconnection between the Northeast Japan and the North Atlantic during the Holocene. In addition, it is the first evidence that the Bond events were recorded in terrestrial sediment in Japan. On the other hand, the 680 yr periodicity between 10.0 and 8.0 kyr is consistent with a prominent 649 yr solar activity cycle, suggesting that solar activity affected EASM precipitation during the Hypsithermal, when orbital-scale solar insolation was at a maximum in the Northern Hemisphere.

  7. The middle Holocene climatic records from Arabia: Reassessing lacustrine environments, shift of ITCZ in Arabian Sea, and impacts of the southwest Indian and African monsoons

    NASA Astrophysics Data System (ADS)

    Enzel, Yehouda; Kushnir, Yochanan; Quade, Jay

    2015-06-01

    A dramatic increase in regional summer rainfall amount has been proposed for the Arabian Peninsula during the middle Holocene (ca. 9-5 ka BP) based on lacustrine sediments, inferred lake levels, speleothems, and pollen. This rainfall increase is considered primarily the result of an intensified Indian summer monsoon as part of the insolation-driven, northward shift of the boreal summer position of the Inter-Tropical Convergence Zone (ITCZ) to over the deserts of North Africa, Arabia, and northwest India. We examine the basis for the proposed drastic climate change in Arabia and the shifts in the summer monsoon rains, by reviewing paleohydrologic lacustrine records from Arabia. We evaluate and reinterpret individual lake-basin status regarding their lacustrine-like deposits, physiography, shorelines, fauna and flora, and conclude that these basins were not occupied by lakes, but by shallow marsh environments. Rainfall increase required to support such restricted wetlands is much smaller than needed to form and maintain highly evaporating lakes and we suggest that rainfall changes occurred primarily at the elevated edges of southwestern, southern, and southeastern Arabian Peninsula. These relatively small changes in rainfall amounts and local are also supported by pollen and speleothems from the region. The changes do not require a northward shift of the Northern Hemisphere summer ITCZ and intensification of the Indian monsoon rainfall. We propose that (a) latitudinal and slight inland expansion of the North African summer monsoon rains across the Red Sea, and (b) uplifted moist air of this monsoon to southwestern Arabia highlands, rather than rains associated with intensification of Indian summer monsoon, as proposed before, increased rains in that region; these African monsoon rains produced the modest paleo-wetlands in downstream hyperarid basins. Furthermore, we postulate that as in present-day, the ITCZ in the Indian Ocean remained at or near the equator all year round, and the Indian summer monsoon, through dynamically induced air subsidence, can reduce rather than enhance summer rainfall in the Levant and neighboring deserts, including Arabia. Our summary suggests a widening to the north of the latitudinal range of the rainfall associated with the North African summer monsoon moisture crossing the Red Sea to the east. We discuss other mechanisms that could have potentially contributed to the formation and maintaining of the modest paleo-wetlands.

  8. Distributional pattern of planktonic foraminifers and pteropods in surface waters and top core sediments of the Red Sea, and adjacent areas controlled by the monsoonal regime and other ecological factors

    NASA Astrophysics Data System (ADS)

    Auras-Schudnagies, Anabelle; Kroon, Dick; Ganssen, Gerald; Hemleben, Christoph; Van Hinte, Jan E.

    1989-10-01

    Living planktonic foraminiferal and pteropod distribution patterns in the western Arabian Sea, Gulf of Aden and Red Sea, collected during two summer cruises (1984, 1985), reflect the hydrographical system that is mainly controlled by a combination of monsoonal winds and evaporation rates. Spinose species constitute the majority of the planktonic foraminiferal assemblages in the Red Sea during both monsoonal seasons. The non-spinose species Globorotalia menardii, Neogloboquadrina dutertrei and Pulleniatina obliquiloculata, which are always abundant in the Arabian Sea, are present only during winter inflow. The intensity and duration of these inflowing surface currents control their distribution pattern. Stable oxygen isotope ratios show that G. menardii survives but ceases to grow north of Bab el Mandeb, while N. dutertrei continues to grow. Trends in the foraminiferal distribution in surface waters compare well with those of the sea floor, as far as larger specimens (>250 μm) are concerned, but differ for the small ones. Surface distribution patterns of small-sized specimens and juvenile/neanic stages of large-sized fully grown species do not correspond to those in the core top samples. The distribution pattern of living pteropods in the Red Sea is closely related to distinct water masses and corresponds to the distribution in top core sediments. Pteropods are absent in the sediments of the Gulf of Aden and the western Arabian Sea due to dissolution. Peak abundances of various pteropods and foraminifers indicate the presence of local upwelling processes in the Bab el Mandeb area. Determining these dynamics allows for the reconstruction of ancient oceanic environments and climatic interactions in the area.

  9. The Low-Level Flow Along the Gulf of California During the North American Monsoon.

    NASA Astrophysics Data System (ADS)

    Bordoni, S.; Stevens, B.

    2007-05-01

    Six-years (1999-2004) of QuikSCAT near-surface ocean winds are used to study the flow over the northeast Pacific and the Gulf of California (GoC) during the North American Monsoon season. The wind data show that the onset of the summer season is accompanied by a reversal of the flow along the GoC, with the establishment of a mean southerly wind throughout the gulf. This reversal occurs in late spring and precedes the onset of the monsoonal rains. In the heart of the monsoon season, the time-mean flow is found to be composed of periods of enhanced southerly winds associated with gulf surges. The role that gulf surges play in modulating the GoC mean southerly flow is further explored by performing an EOF analysis of the summertime daily wind anomalies. A gulf surge mode emerges from this analysis as the leading EOF, with the corresponding principal component time series interpretable as an objective index for gulf surge occurrence. This index is used as a reference time series for regression analysis, to explore the relationship between gulf surges and precipitation over the core and marginal regions of the monsoon, as well as the manifestation of these transient events in the large-scale circulation. It is found that, although seemingly mesoscale features confined over the GoC, gulf surges are intimately linked to patterns of large-scale variability of the eastern Pacific ITCZ and greatly contribute to the definition of the northward extent of the monsoonal rains.

  10. Ice core records of climate variability on the Third Pole with emphasis on the Guliya ice cap, western Kunlun Mountains

    NASA Astrophysics Data System (ADS)

    Thompson, Lonnie G.; Yao, Tandong; Davis, Mary E.; Mosley-Thompson, Ellen; Wu, Guangjian; Porter, Stacy E.; Xu, Baiqing; Lin, Ping-Nan; Wang, Ninglian; Beaudon, Emilie; Duan, Keqin; Sierra-Hernández, M. Roxana; Kenny, Donald V.

    2018-05-01

    Records of recent climate from ice cores drilled in 2015 on the Guliya ice cap in the western Kunlun Mountains of the Tibetan Plateau, which with the Himalaya comprises the Third Pole (TP), demonstrate that this region has become warmer and moister since at least the middle of the 19th century. Decadal-scale linkages are suggested between ice core temperature and snowfall proxies, North Atlantic oceanic and atmospheric processes, Arctic temperatures, and Indian summer monsoon intensity. Correlations between annual-scale oxygen isotopic ratios (δ18O) and tropical western Pacific and Indian Ocean sea surface temperatures are also demonstrated. Comparisons of climate records during the last millennium from ice cores acquired throughout the TP illustrate centennial-scale differences between monsoon and westerlies dominated regions. Among these records, Guliya shows the highest rate of warming since the end of the Little Ice Age, but δ18O data over the last millennium from TP ice cores support findings that elevation-dependent warming is most pronounced in the Himalaya. This, along with the decreasing precipitation rates in the Himalaya region, is having detrimental effects on the cryosphere. Although satellite monitoring of glaciers on the TP indicates changes in surface area, only a few have been directly monitored for mass balance and ablation from the surface. This type of ground-based study is essential to obtain a better understanding of the rate of ice shrinkage on the TP.

  11. Interannual variability in phytoplankton blooms observed in the northwestern Arabian Sea during the southwest monsoon

    NASA Technical Reports Server (NTRS)

    Brock, John C.; Mcclain, Charles R.

    1992-01-01

    Interannual changes in the strength and seasonal evolution of the 1979 through 1982 surface-level southwest monsoon winds are related to variations in the summer phytoplankton bloom of the northwestern Arabian Sea by synthesis of satellite ocean-color remote sensing with analysis of in-situ hydrographic and meteorological data sets. The 1979-1981 southwest monsoon phytoplankton blooms in the northwest Arabian Sea peaked during August-September, extended from the Omani coast to about 6 E, and appeared to lag the development of open-sea upwelling by at least 1 month. In all 3 years the bloom was driven by spatially distinct upward nutrient fluxes to the euphotic zone forced by the physical processes of coastal upwelling and offshore Ekman pumping. Coastal upwelling was evident from May through September, yielded the most extreme concentrations of phytoplankton biomass, and along the Omani coast was limited in its impact on upper ocean biological variability to the continental shelf. Ekman pumping stimulated the development of a broad open-ocean component of the southwest monsoon phytoplankton bloom oceanward of the Omani shelf. Phytoplankton biomass on the Omani continental shelf was increased during both the early and late phases of the 1980 southwest monsoon due to stronger coastal upwelling under the most intense southwesterly winds of the four summers investigated. Diminished coastal upwelling during the early phase of the weak 1982 southwest monsoon resulted in a coastal bloom that reached a mean phytoplankton-pigment concentration that was 28 percent of that seen in 1980. The lack of a strong regional northwestern Arabian Sea bloom in late summer 1982 is attributed to the development of persistent, shallow temperature stratification that rendered Ekman pumping less effective in driving upward nutrient fluxes.

  12. Early-Holocene intensified Indian summer monsoon and its impact on vegetation: study based on hydrogen and carbon isotope values in long chain alkane from relict lake sediments in the Central Himalaya

    NASA Astrophysics Data System (ADS)

    Sanyal, P.; Ghosh, S.; Bhushan, R.; Juyal, N.

    2017-12-01

    The early Holocene was characterized by intensified monsoon, however none of the paleoclimatic records showed the magnitude required to shape the observed landform in the Ganges plain and sediment discharge in the Bay of Bengal. The Tropical Rainfall Measurement Mission data suggests that the Central Himalaya ( 2 km altitude) is characterized by high rainfall and hence paleoclimate proxies from this region would provide excellent opportunity to reconstruct the Holocene monsoon. An attempt has been made, for the first time, to reconstruct the Holocene monsoon using n-alkane δDC29 values of lake sediments from Benital area in the Central Himalaya which receives ca. 80% of the mean annual rainfall during summer monsoon. The n-alkane δDC29 values indicated that early Holocene (ca. 9 ka) was characterised by a wet phase with 70% increase in the rainfall followed by the dry middle-late Holocene which is in agreement with existing continental records. However, the change in intensity as inferred in the present study is maximum compared to the existing records. The comparison of δDC29values and the solar insolation data at 30 °N latitude suggested that migration of the Inter Tropical Convergence Zone controlled the variation in monsoonal rainfall. Comparison with the modern plants, the δ13CC29 values indicated that during ca. pre and post 7 ka the lake catchment was dominated by woody and non-woody plants, respectively. The cross plot between δDC29 and δ13CC29 indicated that at higher rainfall, the δ13CC29 values of catchment vegetation were less-responsive.

  13. Drying projection over western maritime continent during Southwest and Northeast monsoon seasons

    NASA Astrophysics Data System (ADS)

    Kartika Lestari, R.

    2017-04-01

    In the maritime continent, the precipitation variability is large and recently, this region experiences longer dry season and more number of severe drought events that are threatening the human life, such as, water supply for daily life and agriculture, and unhealthy air quality due to the increased number of wildfires. Global warming has been known to contribute to the rainfall anomalies around the world, and present study investigate the extent to which the drying conditions are going to be happened in 21st century over western part of the maritime continent (WMC), where the population is much larger than the eastern part, during both active Southwest (SW) and Northeast (NE) monsoon seasons. A future change in the precipitation over WMC is suggested from our analyses of the Coupled Model Intercomparison Project Phase 5 (CMIP5) models. In addition to CMIP5, we analyse the downscaled data of nine selected CMIP5 models to examine if there is modification in the drying projection when higher resolution data are used. While the north and south of equator show out of phase in the precipitation change, the region around equator shows decreased precipitation during both the SW monsoon in June-July-August-September (JJAS) and the peak of NE monsoon in February (FEB). The drying projection is robustly shown in FEB when Intertropical Convergence Zone (ITCZ) shift to the southern hemisphere, but the same robustness is not shown in JJAS when the monsoon over South China Sea is active. The detail results, including the mechanisms and the impacts of tropical climate features (such as, warming Pacific Ocean, monsoon, ITCZ) that drive the drying projection, and the possible reasons causing different degree in the robustness between two seasons, will be shown in the presentation.

  14. Wetlands sediment record from the upper Yarlung Tsangpo valley, southwest Tibetan Plateau, reveals mid-Holocene Epipaleolithic human occupation coincident with increased early and mid-Holocene wetness driven by enhanced Indian Monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Hudson, A. M.; Olsen, J. W.; Quade, J.; Lei, G.; Huth, T.; Zhang, H.; Perreault, C.

    2016-12-01

    The headwaters of the Yarlung Tsangpo river valley, located in the southwestern Tibetan Plateau, are characterized by a cold and dry climate, but contain abundant river-marginal wetlands environments, which fluctuate in extent in response to changes in local water table elevation. This region receives 80% of precipitation from the Indian Monsoon, which forms the dominant control on moisture availability, and hence wetlands extent. Our paleowetlands record, based on 14C dating of organic-rich paleowetlands deposits, provides a novel record of Holocene monsoon intensity. The wetlands deposits consist of four sedimentary units that indicate decreasing wetlands extent and monsoon intensity since 10.4 ka BP. Wet conditions occurred at ˜10.4 ka BP, ˜9.6 ka BP and ˜7.9-4.8 ka BP, with similar-to-modern conditions from ˜4.6-2.0 ka BP, and drier-than-modern conditions from ˜2.0 ka BP to present. Wetland changes correlate with monsoon intensity changes identified in nearby records, with weak monsoon intervals corresponding to desiccation and erosion of wetlands deposits. Dating of in situ ceramic and microlithic artifacts in wetlands sediments at multiple sites indicates Epipaleolithic human occupation of the YT valley after 6.6 ka BP. Artifact typology study reveals a similar microlithic technology was employed across the high plateau interior, but XRF obsidian provenance reveals separate northeast and southwest lithic conveyance zones. This indicates widespread colonization of the high, arid Tibetan Plateau interior by one or more highly mobile human populations during the early and mid-Holocene, coincident with favorable warm, wet climate conditions.

  15. Mid-Holocene climates of the Americas: A dynamical response to changed seasonality

    USGS Publications Warehouse

    Harrison, S.P.; Kutzbach, J.-E.; Liu, Z.; Bartlein, P.J.; Otto-Bliesner, B.; Muhs, D.; Prentice, I.C.; Thompson, R.S.

    2003-01-01

    Simulations of the climatic response to mid-Holocene (6 ka BP) orbital forcing with two coupled ocean-atmosphere models (FOAM and CSM) show enhancement of monsoonal precipitation in parts of the American Southwest, Central America and northern-most South America during Northern Hemisphere summer. The enhanced onshore flow that brings precipitation into Central America is caused by a northward displacement of the inter-tropical convergence zone, driven by cooling of the equatorial and warming of the northern subtropical and mid-latitude ocean. Ocean feedbacks also enhance precipitation over the American Southwest, although the increase in monsoon precipitation there is largely driven by increases in land-surface temperature. The northward shift in the equatorial precipitation band that causes enhanced precipitation in Central America and the American Southwest has a negative feedback effect on monsoonal precipitation in northern South America. The simulations demonstrate that mid-Holocene aridity in the mid-continent of North America is dynamically linked to the orbitally induced enhancement of the summer monsoon in the American Southwest, with a spatial structure (wet in the Southwest and dry in the mid-continent) similar to that found in strong monsoon years today. Changes in winter precipitation along the west coast of North America, in Central America and along the Gulf Coast, caused by southward-displacement of the westerly storm tracks, indicate that changes in the Northern Hemisphere winter monsoon also play a role in regional climate changes during the mid-Holocene. Although the simulations with FOAM and CSM differ in detail, the general mechanisms and patterns are common to both. The model results thus provide a coherent dynamical explanation for regional patterns of increased or decreased aridity shown by vegetation, lake status and aeolian data from the Americas.

  16. Living (Rose Bengal stained) benthic foraminiferal faunas along a strong bottom-water oxygen gradient on the Indian margin (Arabian Sea)

    NASA Astrophysics Data System (ADS)

    Caulle, C.; Mojtahid, M.; Gooday, A. J.; Jorissen, F. J.; Kitazato, H.

    2015-02-01

    Rose Bengal stained foraminiferal assemblages were analysed along a five-station bathymetric transect across the core and the lower part of the oxygen minimum zone (OMZ) on the Indian margin of the Arabian Sea. Sediment cores were collected using the manned submersible Shinkai 6500 during RV Yokosuka cruise YK08-11 in the post-monsoon season (October 2008) at water depths ranging from 535 to 2000 m, along a gradient from almost anoxic to well-oxygenated (0.3 to 108 μM) bottom waters. Stained foraminiferal densities were very high in the OMZ core (535 m) and decreased with depth. The faunas were dominated (40-80%) by non-calcareous taxa at all stations. These were mainly species of Reophax and Lagenammina but also included delicate monothalamous taxa (organic-walled "allogromiids", agglutinated saccamminids, psammosphaerids and tubular forms). These new data from the Indian margin are compared to previous studies from the Murray Ridge, the Pakistan margin and the Oman margin. The fact that similar species were found at sites with comparable bottom-water oxygen concentrations but with very different surface water productivity suggests that, within the strongly developed Arabian Sea OMZ, bottom-water oxygen concentration, and not the organic flux to the sea floor, is the main factor controlling the species composition of the foraminiferal communities. Several foraminiferal species (e.g. Praeglobobulimina sp. 1, Ammodiscus sp. 1, Bolivina aff. dilatata) were confined to the core of the OMZ and are presently known only from the Arabian Sea. Because of their association with extremely low-oxygen concentration, these species may prove to be good indicators of past OMZ variability in the Arabian Sea.

  17. Investigating extreme flood response to Holocene palaeoclimate in the Chinese monsoonal zone: A palaeoflood case study from the Hanjiang River

    NASA Astrophysics Data System (ADS)

    Guo, Yongqiang; Huang, Chun Chang; Pang, Jiangli; Zha, Xiaochun; Zhou, Yali; Wang, Longsheng; Zhang, Yuzhu; Hu, Guiming

    2015-06-01

    Palaeoflood events recorded by slackwater deposits (SWDs) were investigated extensively by sedimentological criteria of palaeohydrology along the upper Hanjiang River valley. Modern flood SWDs were collected for comparison with palaeoflood SWD in the same reaches. Three typical palaeoflood SWDs were observed within Holocene loess-soil blanket on the first river terrace land. The grain size distributions of palaeoflood SWDs are similar to modern flood SWDs, whereas they are different from eolian loess and soil. Palaeoflood SWD lies in three major pedo-stratigraphic boundaries (TS/L0, L0/S0, and S0/Lt) in the Holocene loess-soil profiles. The chronology of three palaeoflood episodes was established by OSL dating and pedo-stratigraphic correlation with the well-dated Holocene loess-soil profiles in the upper Hanjiang River basin. Holocene palaeoflood events were dated to 9500-8500, 3200-2800, and 1800-1700 a B.P., respectively. Palaeoflood discharges were estimated by the palaeoflood model (i.e., slope-area method and step-backwater method). The highest discharges are 51,680-53,950 m3 s- 1 at the 11,500-time scale in the Xunyang reach of the upper Hanjiang River valley. Holocene extraordinary hydroclimatic events in the Hanjiang River often result from abnormal atmospheric circulations from Southwest monsoons in the Chinese monsoonal zone. These results provide a regional expression of extreme flood response to Holocene palaeoclimate to understand the effects of global climatic variations on the river system dynamics.

  18. Heterotrophic bacterioplankton in the Arabian Sea:. Basinwide response to year-round high primary productivity

    NASA Astrophysics Data System (ADS)

    Ducklow, H. W.; Smith, D. C.; Campbell, L.; Landry, M. R.; Quinby, H. L.; Steward, G. F.; Azam, F.

    Heterotrophic bacterial abundance and productivity were measured during five and four cruises, respectively, in the northwest Arabian Sea as part of the US JGOFS Process Study, which provided a new view of seasonal bacterial dynamics in that part of the basin influenced by monsoonal forcing. In this paper, surface layer data are used to address two questions concerning the influence of the monsoon cycle on bacterial dynamics: (1) Is there a bacterial bloom in the SW Monsoon? and (2) Is bacterial production low during the oligotrophic Spring Intermonsoon? An extensive comparison of epifluorescence microscopy and flow cytometry, unprecedented at this scale, detected essentially the same heterotrophic bacterial populations and distributions, with some between-cruise differences. Use of the two methods allowed us to extend our observations in space and time. Bacterial productivity, both in the surface layer and integrated over the euphotic zone, was elevated less than 2-fold during the Southwest Monsoon. Levels of bacterial abundance and production were low during the Northeast Monsoon, then increased in March during the Spring Intermonsoon. There was some stimulation of abundance or production inshore in response to coastal upwelling. In general, the basin was enriched in bacterial biomass >5×10 8 cells l -1 throughout the year, relative to other tropical regimes, presumably in response to overall high PP and DOC levels. Seasonally uniform DOC levels may be regulated in part by intense bacterial utilization rates, but also reflect seasonal consistency in PP.

  19. Thermal Properties and Energy Fluxes in Pre-monsoon Season of 2016 at the Ponkar Debris-Covered Glacier, Manang, Nepal Himalaya

    NASA Astrophysics Data System (ADS)

    Chand, M. B.; Kayastha, R. B.; Armstrong, R. L.

    2016-12-01

    Himalayan glaciers are characterized by the presence of extensive debris cover in ablation areas. It is essential to understand the thermal properties and assess the effect of debris in glacier ice melt rate in debris-covered glaciers. Meteorological conditions are recorded on the lower ablation zone of the debris-covered Ponkar Glacier, Bhimthang, Manang, Nepal during pre-monsoon season of 2016. Debris temperature at different depths is monitored for winter and pre-monsoon season to estimate the effective heat conduction. Similarly, melt under the debris is also measured for pre-monsoon season. The incoming and outgoing shortwave radiations are measured at 2 m above the surface and other variables including air temperature, humidity, wind speed, and precipitation are used to estimate surface energy balance. Energy flux is dominated by net shortwave radiation as the foremost source of melting, where contribution of net longwave radiation, sensible, latent, and conductive heat flux is low. The daily average temperature gradients of the debris layer from surface to 30 cm below for winter and pre-monsoon seasons are 0.04 oC cm-1 and 0.23 oC cm-1, respectively. Debris thermal conductivities are 0.30 W m-1 K-1 and 1.69 W m-1 K-1 for the winter and pre-monsoon season, respectively. The higher value of conductivity during pre-monsoon season is due to the higher air temperature and increased precipitation compared to the winter months. The daily mean measured ice melt under a debris layer of 11-20 cm ranges from 0.6 to 1.1 cm. Estimation of melt at a few points can be used to estimate the general melting pattern for the glacier surface, which can be improved by using the spatial distribution of debris thickness and surface temperature.

  20. Integrated Assessments of the Impact of Climate Change on Agriculture: An Overview of AgMIP Regional Research in South Asia

    NASA Technical Reports Server (NTRS)

    McDermid, Sonali P.; Dileepkumar, Guntuku; Murthy, K. M. Dakshina; Nedumaran, S.; Singh, Piara; Srinivasa, Chukka; Gangwar, B.; Subash, N.; Ahmad, Ashfaq; Zubair, Lareef; hide

    2015-01-01

    South Asia encompasses a wide and highly varied geographic region, and includes climate zones ranging from the mountainous Himalayan territory to the tropical lowland and coastal zones along alluvial floodplains. The region's climate is dominated by a monsoonal circulation that heralds the arrival of seasonal rainfall, upon which much of the regional agriculture relies. The spatial and temporal distribution of this rainfall is, however, not uniform over the region. Northern South Asia, central India, and the west coast receive much of their rainfall during the southwest monsoon season, between June and September. These rains partly result from the moisture transport accompanying the monsoonal winds, which move in the southwesterly direction from the equatorial Indian Ocean. Regions further south, such as south/southeast India and Sri Lanka, may receive rains from both the southwest monsoon, and also during the northeast monsoon season between October and December (with northeasterly monsoon wind flow and moisture flux), which results in a bi- or multi-modal rainfall distribution. In addition, rainfall across South Asia displays a large amount of intraseasonal and interannual variability. Interannual variability is influenced by many drivers, both natural (e.g., El Ni-Southern Oscillation; ENSO) and man-made (e.g., rising temperatures due to increasing greenhouse gas concentrations), and it is challenging to obtaining accurate time-series of annual rainfall, even amongst various observed data products, which display inconsistencies amongst themselves. These climatic and rainfall variations can further complicate South Asia's agricultural and water management. Agriculture employs at least 65 of the workforce in most South Asian countries, and nearly 80 of South Asia's poor inhabit rural areas. Understanding the response of current agricultural production to climate variability and future climate change is of utmost importance in securing food and livelihoods for South Asia's growing population. In order to assess the future of food and livelihood security across South Asia, the Agricultural Model Intercomparison and Improvement Project (AgMIP) has undertaken integrated climate-crop-economic assessments of the impact of climate change on food security and poverty in South Asia, encompassing Bangladesh, India, Nepal, Pakistan, and Sri Lanka. AgMIP has funded, on a competitive basis, four South Asian regional research teams (RRTs) and one South Asian coordination team (CT) to undertake climate-crop-economic integrated assessments of food security for many districts in each of these countries, with the goal of characterizing the state of food security and poverty across the region, and projecting how these are subject to change under future climate change conditions.

  1. Effects of large scale deforestation on precipitation in the monsoon regions: Remote versus local effects

    NASA Astrophysics Data System (ADS)

    Bala, G.; N, D.; Modak, A.

    2015-12-01

    In this study, we investigate the bio-geophysical effects of large-scale deforestation on monsoon regions using idealized deforestation simulations. The simulations are performed using the NCAR CAM5 atmospheric model coupled to a mixed layer ocean model. The four deforestation experiments are named Global, Boreal, Temperate and Tropical, respectively. In these deforestation experiments, trees are replaced by grasses around the globe, between 20oS and 20oN, between 20oN and 50oN and poleward of 50oN, respectively. We find that the remote forcing from large-scale deforestation in the Temperate and Boreal cases shift the Inter-tropical Convergence Zone (ITCZ) southward. This results in a significant decrease in precipitation in the Northern Hemisphere monsoon regions (East Asia, North America, North Africa, South Asia) and moderate precipitation increases in the Southern Hemisphere monsoon regions (South Africa, South America and Australia). The magnitude of the monsoonal precipitation changes depend on the location of deforestation with remote effects showing a larger influence than local effects. The South Asian Monsoon region is affected the most with 18% decline in precipitation over India in the Global deforestation case. Our results indicate that any comprehensive assessment of afforestation/reforestation as climate change mitigation strategies should carefully evaluate the remote effects on monsoonal precipitation besides the large local impacts on temperatures and carbon sequestration benefits. Our results also demonstrate the linkages between any large scale forcing that causes large warming/cooling in the high latitudes and rainfall changes in tropical monsoonal regions via ITCZ shifts. Figure Caption: Changes in annual mean precipitation (mm/day) between the deforestation experiments and the control simulation. Hatched areas are regions where changes are statistically significant at the 95% confidence level. Shading in line plots represents the ±1 standard deviation estimated from the control simulation. Comparison of (b) with (d) clearly indicates that the remote effect has a larger influence on tropical precipitation than local effect.The location of the precipitation centroid in the ITCZ region in the CTL case and the shifts in the experiments are shown above the panels.

  2. A satellite-based 13-year climatology of net cloud radiative forcing over the Indian monsoon region

    NASA Astrophysics Data System (ADS)

    Saud, Trailokya; Dey, Sagnik; Das, Sushant; Dutta, Soumi

    2016-12-01

    We present a satellite-based 13-year (Mar. 2000-Feb. 2013) climatology of net cloud radiative forcing (CRF) over the Indian monsoon region (0-40°N, 60-100°E) using the Clouds and Earth's Radiant Energy System (CERES) radiation data and explained the net CRF variability in terms of cloud properties retrieved by Moderate Resolution Imaging Spectroradiometer (MODIS). Mean (± 1σ) seasonal shortwave (SW) CRF values averaged over the region are - 82.7 ± 24.5, - 32.1 ± 12.1, - 17.2 ± 5.3 and - 30.2 ± 16.2 W m- 2 respectively for the monsoon (JJAS), post-monsoon (ON), winter (DJF) and pre-monsoon (MAM) seasons; while the corresponding longwave (LW) CRF values are 53.7 ± 14.2, 27.9 ± 10.0, 15.8 ± 7.0 and 25.2 ± 9.1 W m- 2. Regional analysis reveals the largest (least) negative net CRF over the northeast (northwest) rainfall homogeneous zone throughout the year due to the dominance of optically thick high clouds (low cloud fraction, fc). Mean JJAS fc is found to increase (by > 0.01 per year) over large parts of the Arabian Sea, Bay of Bengal and the northwest region. Mean annual net CRF values for cumulus, stratocumulus and stratus (low level), altocumulus, altostratus and nimbostratus (mid-level clouds) and cirrus, cirrostratus and deep-convective (high level) clouds over the Indian monsoon region are estimated to be - 0.8, - 4.7, - 6.9, + 3.3, - 6.3, - 23.3, + 5.4, - 23.3 and - 42.1 W m- 2 respectively. Across a wide range of cloud optical depth (COD) and fc < 0.6, near cancellation of SW cooling by LW warming, is observed for low clouds. Net CRF drops below - 15 W m- 2 for clouds evolving above 400 hPa, mainly in the monsoon season. Our results demonstrate that net CRF variability in the Indian monsoon region can be explained by variability in Cloud Top Pressure (CTP), COD and fc. The study highlights the need for resolving a multi-layer cloud field in the future.

  3. A high-resolved record of the Asian Summer Monsoon from Dongge Cave, China for the past 1200 years

    NASA Astrophysics Data System (ADS)

    Zhao, Kan; Wang, Yongjin; Edwards, R. Lawrence; Cheng, Hai; Liu, Dianbing; Kong, Xinggong

    2015-08-01

    Two annually-laminated and 230Th-dated stalagmite oxygen isotope (δ18O) records from Dongge Cave, China, provided a high-resolution Asian Summer Monsoon (ASM) history for the past 1200 years. A close similarity between annual band thickness and stable isotope analyses (δ13C and δ18O) suggests the calcite δ18O is most likely a proxy associated with ASM precipitation. The two duplicated stalagmite δ18O records show that the ASM varies at a periodicity of ∼220 years, concordant with a dominant cycle of solar activity. A period of strong ASM activity occurred during the Spörer Minimum (1450-1550 A.D.), followed by a striking drop circa 1580 A.D., potentially consistent with the social unrest in the final decades of China's Ming Dynasty (1368-1644 A.D.). Centennial-scale changes in ASM precipitation over the last millennium match well with changes in tropical Atlantic sea surface temperatures (SSTs) and South American summer monsoon precipitation. Our findings suggest that variations in low-latitude monsoon precipitation are probably driven by shifts in the mean position of the intertropical convergence zone (ITCZ), which is further mediated by solar activity and tropical SSTs.

  4. Short-Range Prediction of Monsoon Precipitation by NCMRWF Regional Unified Model with Explicit Convection

    NASA Astrophysics Data System (ADS)

    Mamgain, Ashu; Rajagopal, E. N.; Mitra, A. K.; Webster, S.

    2018-03-01

    There are increasing efforts towards the prediction of high-impact weather systems and understanding of related dynamical and physical processes. High-resolution numerical model simulations can be used directly to model the impact at fine-scale details. Improvement in forecast accuracy can help in disaster management planning and execution. National Centre for Medium Range Weather Forecasting (NCMRWF) has implemented high-resolution regional unified modeling system with explicit convection embedded within coarser resolution global model with parameterized convection. The models configurations are based on UK Met Office unified seamless modeling system. Recent land use/land cover data (2012-2013) obtained from Indian Space Research Organisation (ISRO) are also used in model simulations. Results based on short-range forecast of both the global and regional models over India for a month indicate that convection-permitting simulations by the high-resolution regional model is able to reduce the dry bias over southern parts of West Coast and monsoon trough zone with more intense rainfall mainly towards northern parts of monsoon trough zone. Regional model with explicit convection has significantly improved the phase of the diurnal cycle of rainfall as compared to the global model. Results from two monsoon depression cases during study period show substantial improvement in details of rainfall pattern. Many categories in rainfall defined for operational forecast purposes by Indian forecasters are also well represented in case of convection-permitting high-resolution simulations. For the statistics of number of days within a range of rain categories between `No-Rain' and `Heavy Rain', the regional model is outperforming the global model in all the ranges. In the very heavy and extremely heavy categories, the regional simulations show overestimation of rainfall days. Global model with parameterized convection have tendency to overestimate the light rainfall days and underestimate the heavy rain days compared to the observation data.

  5. Indonesian Throughflow variability over the last glacial cycle (Invited)

    NASA Astrophysics Data System (ADS)

    Holbourn, A. E.; Kuhnt, W.; Regenberg, M.; Xu, J.; Hendrizan, M.; Schröder, J.

    2013-12-01

    The transfer of surface and intermediate waters from the Pacific Ocean to the Indian Ocean through the Indonesian archipelago (Indonesian Throughflow: ITF) strongly influences the heat and freshwater budgets of tropical water masses, in turn affecting global climate. Key areas for monitoring past ITF variations through this critical gateway are the narrow passages through the Makassar Strait and Flores Sea and the main outflow area within the Timor Sea. Here, we integrate high-resolution sea surface temperature and salinity reconstructions (based on paired planktic foraminiferal Mg/Ca and δ18O) with X-ray fluorescence runoff data and benthic isotopes from marine sediment cores retrieved in these regions during several cruises with RV'Sonne' and RV'Marion Dufresne'. Our results show that high latitude climate variability strongly influenced ITF intensity on millennial to centennial timescales as well as on longer glacial-interglacial timescales. Marked declines in ITF strength occurred during Heinrich events and the Younger Dryas, most likely related to slowdown of the global thermohaline circulation during colder northern hemisphere climate spells, when deep water production decreased and the deep ocean became more stratified. Additionally, the surface component of the ITF strongly reflects regional windstress and rainfall patterns, and thus the spatial extent and intensity of the tropical convection over the Indonesian archipelago. Our runoff and salinity estimates reveal that the development of the tropical convection was intricately linked to the latitudinal migration of the Inter Tropical Convergence Zone (ITCZ). In particular, our data show that the Australian monsoon intensified during the major deglacial atmospheric CO2 rise through the Younger Dryas and earliest Holocene (12.9-10 ka). This massive intensification of the Australian monsoon coincided with a southward shift of the ITCZ, linked to southern hemisphere warming and enhanced greenhouse forcing over the Australian continent. However, the development of the monsoon was asynchronous over the region, which we relate to changes in landmass exposure during deglacial sea-level rise. Thus, we find that sea-level exerted a major control on ITF properties through the last glacial termination by altering gateway configuration and precipitation-evaporation budgets over the Indonesian archipelago.

  6. Spatial and temporal variation in the stable isotope composition (δ18O and δ2H) of rain across the tropical island of Sri Lanka.

    PubMed

    Edirisinghe, E A N V; Pitawala, H M T G A; Dharmagunawardhane, H A; Wijayawardane, R L

    2017-12-01

    Seasonal and spatial variation in δ 18 O and δ 2 H in rainwater was determined in three selected transects across Sri Lanka, the tropical island in the Indian Ocean. Local meteoric water lines (LMWLs) for three distinguished climatic zones; wet, dry and intermediate were constructed. LMWLs show slight variations in their gradients and respective d-excess values, depending on the air moisture origin, circulation and environmental conditions of each climatic zone. The elevation effect and amount effect could be identified but the continental effect is not significantly seen in the isotope composition of rain in the concerned areas. The results reasonably revealed that the distinct rainfall regimes; two monsoonal rains and two convectional (inter-monsoon) rains have characteristic isotopic signatures. Also the impact of (i) terrestrial and oceanic moisture sources, (ii) depression and cyclonic conditions of the Bay of Bengal, and (iii) topography of the country on the variation of the isotopic composition of rain in Sri Lanka could be satisfactorily identified.

  7. Interaction of Convective Organization and Monsoon Precipitation, Atmosphere, Surface and Sea (INCOMPASS)

    NASA Astrophysics Data System (ADS)

    Turner, Andrew; Bhat, Gs; Evans, Jonathan; Marsham, John; Martin, Gill; Parker, Douglas; Taylor, Chris; Bhattacharya, Bimal; Madan, Ranju; Mitra, Ashis; Mrudula, Gm; Muddu, Sekhar; Pattnaik, Sandeep; Rajagopal, En; Tripathi, Sachida

    2015-04-01

    The monsoon supplies the majority of water in South Asia, making understanding and predicting its rainfall vital for the growing population and economy. However, modelling and forecasting the monsoon from days to the season ahead is limited by large model errors that develop quickly, with significant inter-model differences pointing to errors in physical parametrizations such as convection, the boundary layer and land surface. These errors persist into climate projections and many of these errors persist even when increasing resolution. At the same time, a lack of detailed observations is preventing a more thorough understanding of monsoon circulation and its interaction with the land surface: a process governed by the boundary layer and convective cloud dynamics. The INCOMPASS project will support and develop modelling capability in Indo-UK monsoon research, including test development of a new Met Office Unified Model 100m-resolution domain over India. The first UK detachment of the FAAM research aircraft to India, in combination with an intensive ground-based observation campaign, will gather new observations of the surface, boundary layer structure and atmospheric profiles to go with detailed information on the timing of monsoon rainfall. Observations will be focused on transects in the northern plains of India (covering a range of surface types from irrigated to rain-fed agriculture, and wet to dry climatic zones) and across the Western Ghats and rain shadow in southern India (including transitions from land to ocean and across orography). A pilot observational campaign is planned for summer 2015, with the main field campaign to take place during spring/summer 2016. This project will advance our ability to forecast the monsoon, through a programme of measurements and modelling that aims to capture the key surface-atmosphere feedback processes in models. The observational analysis will allow a unique and unprecedented characterization of monsoon processes that will feed directly into model development at the UK Met Office and Indian NCMRWF, through model evaluation at a range of scales and leading to model improvement by working directly with parametrization developers. The project will institute a new long-term series of measurements of land surface fluxes, a particularly unconstrained observation for India, through eddy covariance flux towers. Combined with detailed land surface modelling using the Joint UK Land Environment Simulator (JULES) model, this will allow testing of land surface initialization in monsoon forecasts and improved land-atmosphere coupling.

  8. Non-linear intensification of Sahel rainfall as a possible dynamic response to future warming

    NASA Astrophysics Data System (ADS)

    Schewe, Jacob; Levermann, Anders

    2017-07-01

    Projections of the response of Sahel rainfall to future global warming diverge significantly. Meanwhile, paleoclimatic records suggest that Sahel rainfall is capable of abrupt transitions in response to gradual forcing. Here we present climate modeling evidence for the possibility of an abrupt intensification of Sahel rainfall under future climate change. Analyzing 30 coupled global climate model simulations, we identify seven models where central Sahel rainfall increases by 40 to 300 % over the 21st century, owing to a northward expansion of the West African monsoon domain. Rainfall in these models is non-linearly related to sea surface temperature (SST) in the tropical Atlantic and Mediterranean moisture source regions, intensifying abruptly beyond a certain SST warming level. We argue that this behavior is consistent with a self-amplifying dynamic-thermodynamical feedback, implying that the gradual increase in oceanic moisture availability under warming could trigger a sudden intensification of monsoon rainfall far inland of today's core monsoon region.

  9. Most probable mixing state of aerosols in Delhi NCR, northern India

    NASA Astrophysics Data System (ADS)

    Srivastava, Parul; Dey, Sagnik; Srivastava, Atul Kumar; Singh, Sachchidanand; Tiwari, Suresh

    2018-02-01

    Unknown mixing state is one of the major sources of uncertainty in estimating aerosol direct radiative forcing (DRF). Aerosol DRF in India is usually reported for external mixing and any deviation from this would lead to high bias and error. Limited information on aerosol composition hinders in resolving this issue in India. Here we use two years of aerosol chemical composition data measured at megacity Delhi to examine the most probable aerosol mixing state by comparing the simulated clear-sky downward surface flux with the measured flux. We consider external, internal, and four combinations of core-shell (black carbon, BC over dust; water-soluble, WS over dust; WS over water-insoluble, WINS and BC over WINS) mixing. Our analysis reveals that choice of external mixing (usually considered in satellite retrievals and climate models) seems reasonable in Delhi only in the pre-monsoon (Mar-Jun) season. During the winter (Dec-Feb) and monsoon (Jul-Sep) seasons, 'WS coating over dust' externally mixed with BC and WINS appears to be the most probable mixing state; while 'WS coating over WINS' externally mixed with BC and dust seems to be the most probable mixing state in the post-monsoon (Oct-Nov) season. Mean seasonal TOA (surface) aerosol DRF for the most probable mixing states are 4.4 ± 3.9 (- 25.9 ± 3.9), - 16.3 ± 5.7 (- 42.4 ± 10.5), 13.6 ± 11.4 (- 76.6 ± 16.6) and - 5.4 ± 7.7 (- 80.0 ± 7.2) W m- 2 respectively in the pre-monsoon, monsoon, post-monsoon and winter seasons. Our results highlight the importance of realistic mixing state treatment in estimating aerosol DRF to aid in policy making to combat climate change.

  10. Diurnal Cycle of Surface Flows During NAME and Comparison to Model Reanalysis

    NASA Astrophysics Data System (ADS)

    Ciesielski, P. E.; Johnson, R. H.

    2007-05-01

    During the North American Monsoon Experiment (NAME) an unprecedented surface data set of winds and thermodynamic variables was collected over the core monsoon region. The surface network included 63 automated sites with 1-30 min resolution data, 27 SMN operational sites (1-3 hourly data), and 56 US operational sites (1-3 hourly data) along the northern fringe of the monsoon region. These data, along with twice daily QuikSCAT oceanic surface winds, were quality controlled and objectively analyzed on to a uniform grid with quarter-degree, 1-h resolution for the period from 1 July - 15 August. An important application of the gridded winds is their use in diagnosing surface vertical motion due to slope flows over the Sierra Madre Occidental (SMO) terrain. With this dataset we examine the diurnal characteristics of surface fields as the monsoon evolves and compare these analyses to similar surface products from the special North American Regional Reanalysis (NARR) for NAME. Observed surface fields indicate that a robust land-sea breeze circulation is present over most of Gulf of California (GOC) region in response to the strong diurnal heating of land masses on both sides of the gulf. For reasons unclear at this time, many features of this land-sea breeze circulation are missing in the NARR. Evolution of the diurnal cycle of temperature and the land- sea breeze circulation as the monsoon progresses through the season shows a strong sensitivity to rainfall over the SMO and the coastal plains. Such a relationship likely reflects changes in land surface characteristics, such as evapotranspiration and albedo, as the forests of the SMO respond to monsoonal rains.

  11. Past variability of the North American Monsoon: ultrahigh resolution records from the lower Gulf of California for the last 6 Ka

    NASA Astrophysics Data System (ADS)

    Herguera, J. C.; Nava Fernandez, C.; Bernal, G.; Paull, C. K.

    2015-12-01

    The North American Monsoon regime results from an interplay between the ocean, atmosphere and continental topography though there is an ongoing debate as to the relative importance of sea surface temperatures (SSTs) in the NE tropical Pacific warm water lens region, solar radiation variability, land snow cover and soil moisture over the Western North America mountain ranges and the strength and spatial patterns of the dominant winds. The links between these factors and the monsoonal variability appear to be of variable importance during the short instrumental record, and hampers any prediction on the future evolution of this climatic regime in a warming climate. The terrigenous component in very-high sedimentation rate sediments on the margins of the Gulf of California links monsoonal precipitation patterns on land with the varying importance of the lithogenic component in these margin sediments. Here we use the elemental composition of Si and Fe in these margin sediments, as a proxy for the lithogenic component in a collection of box and kasten cores from the eastern and western margins of the lower Gulf of California. This region shows a strong tropical influence during the summer, as part of the northernmost extension of the eastern tropical Pacific warm water lens region. A period when the southwestern winds bring moist air masses inland enhancing the monsoonal rains on the eastern reaches of Sierra Madre Occidental. High resolution XRF results allow us to explore the relationships between different elemental ratios in these sediments and the available instrumental record and several paleo-reconstructions to evaluate the possible links between external forcings and internal feedback effects, to help to understand the controls on the evolution of the monsoonal regime in this region.

  12. Measuring Holocene Indian Summer Monsoon Precipitation through Lake Sedimentary Proxies, Eastern Tibet

    NASA Astrophysics Data System (ADS)

    Perello, M. M.; Bird, B. W.; Lei, Y.; Polissar, P. J.; Thompson, L. G.; Yao, T.

    2017-12-01

    The Tibetan Plateau is the headwaters of several major river systems in South Asia, which serve as essential water resources for more than 40% of the world's population. The majority of regional precipitation that sustains these water resources is from the Indian summer monsoon (ISM), which can experience considerably variability in response to local and remote forcings and teleconnections. Despite the ISM's importance, its sensitivity to long term and abrupt changes in climatic boundary conditions is not well established with the modern instrumental record or the available body of paleoclimate data. Here, we present results from an ongoing study that utilizes lake sediment records to provide a longer record of relative levels of precipitation and lake level during the monsoon season. The sediments cores used in this study were collected from five lakes along an east-west transect in the Eastern Tibetan Plateau (87-95°E). Using these records, we assess temporal and spatial variability in the intensity of the ISM throughout the Holocene on decadal frequencies. Multiple proxies, including sedimentology, grain size, geochemistry, terrestrial and aquatic leaf wax isotopes, and diatom community assemblages, are used to assess paleo-precipitation and lake level. Preliminary records from our lakes indicate regional trends in monsoon strength, with higher lake levels in the Early Holocene, but with greater variability in the Late Holocene than in other regional paleoclimate records. We have also observed weak responses in our lakes to the Late Holocene events, the Medieval Climate Anomaly and the Little Ice Age. These paleoclimate reconstructions furthers our understanding of strong versus weak monsoon intensities and can be incorporated in climate models for predicting future monsoon conditions.

  13. South Asian monsoon history over the past 60 kyr recorded by radiogenic isotopes and clay mineral assemblages in the Andaman Sea

    NASA Astrophysics Data System (ADS)

    Ali, Sajid; Hathorne, Ed C.; Frank, Martin; Gebregiorgis, Daniel; Stattegger, Karl; Stumpf, Roland; Kutterolf, Steffen; Johnson, Joel E.; Giosan, Liviu

    2015-02-01

    The Late Quaternary variability of the South Asian (or Indian) monsoon has been linked with glacial-interglacial and millennial scale climatic changes but past rainfall intensity in the river catchments draining into the Andaman Sea remains poorly constrained. Here we use radiogenic Sr, Nd, and Pb isotope compositions of the detrital clay-size fraction and clay mineral assemblages obtained from sediment core NGHP Site 17 in the Andaman Sea to reconstruct the variability of the South Asian monsoon during the past 60 kyr. Over this time interval ɛNd values changed little, generally oscillating between -7.3 and -5.3 and the Pb isotope signatures are essentially invariable, which is in contrast to a record located further northeast in the Andaman Sea. This indicates that the source of the detrital clays did not change significantly during the last glacial and deglaciation suggesting the monsoon was spatially stable. The most likely source region is the Irrawaddy river catchment including the Indo-Burman Ranges with a possible minor contribution from the Andaman Islands. High smectite/(illite + chlorite) ratios (up to 14), as well as low 87Sr/86Sr ratios (0.711) for the Holocene period indicate enhanced chemical weathering and a stronger South Asian monsoon compared to marine oxygen isotope stages 2 and 3. Short, smectite-poor intervals exhibit markedly radiogenic Sr isotope compositions and document weakening of the South Asian monsoon, which may have been linked to short-term northern Atlantic climate variability on millennial time scales. This article was corrected on 18 MAR 2015. See the end of the full text for details.

  14. Nong Thale Pron - a key site from southern Thailand for studying monsoon variability during the past 15000 years

    NASA Astrophysics Data System (ADS)

    Bredberg, Camilla; Chawchai, Sakonvan; Chabangborn, Akkaneewut; Kylander, Malin; Fritz, Sherilyn; Reimer, Paula J.; Wohlfarth, Barbara

    2014-05-01

    Studies of marine sediments, cave speleothemes, annually laminated corals, and tree rings from Asian monsoon regions have added knowledge to our understanding of the factors that control inter-annual to millennial monsoon variability in the past and have provided important constraints for climate modeling scenarios. In contrast, the spatial and temporal pattern of sub-millennial scale monsoon variability and its impact on land cover in SE Asia are still unresolved. This shortcoming stems from the fact that temporally well-resolved paleo-environmental studies are missing from large parts of SE Asia, especially from Thailand. Given that global and regional climate models are increasingly using terrestrial paleo- data to test their performance, past changes in land cover are therefore important variables to better understand feedbacks between different Earth systems. We obtained sediments from Lake Nong Thale Pron, in southern Thailand (8º 10`N, 99 º23`E; 380 m.asl). The aim of our study is to reconstruct lake status changes and to evaluate whether the extent of these changes are linked to known shifts in monsoon intensity and variability. Preliminary results show that lake infilling started more than 15,000 years ago and that the sediments cover the last deglaciation and the Holocene. Current analyses include Itrax XRF core scanning, loss-on-ignition (LOI at 950 and 550ºC), CN elemental and isotopic composition. We expect that our results will be able to give a picture of how the lake's status has changed over time and whether the extent of these changes is linked to known shifts in monsoon intensity and variability.

  15. Past variability of the Mexican Monsoon from ultrahigh resolution records in the Gulf of California for the last 6 Ka

    NASA Astrophysics Data System (ADS)

    Herguera, J.; Nava, C.; Hangsterfer, A.

    2013-05-01

    The Mexican monsoon is part of the larger North American Monsoon regime results from an interplay between the ocean, atmosphere and continental topography though there is an ongoing debate as to the relative importance of sea surface temperatures (SSTs) in the NE tropical Pacific warm water lens region, solar radiation variability, land snow cover and soil moisture over the Western North America mountain ranges and the strength and spatial patterns of the dominant winds. The links between these factors and the monsoonal variability appear to be of variable importance during the short instrumental record. This hampers any prediction on the future evolution of the climatic regime in a warming climate. The terrigenous component in very-high sedimentation rate sediments on the margin of the Gulf of California links monsoonal precipitation patterns on land with the varying importance of the lithogenic component in this margin sediments. The relatively high importance of the lithogenic component (>80%) of these sediments attests to the fidelity of this repository to the terrigenous input to this margin environment. Here we use the elemental composition of these margin sediments, as a proxy for the lithogenic component in a collection of box and kasten cores from Pescadero basin. This basin located in the southeastern region of the Gulf of California (24N, 108W) shows a strong tropical influence during the summer, as part of the northernmost extension of the eastern tropical Pacific warm water lens region. A period when the southwestern winds bring moist air masses inland enhancing the monsoonal rains on the eastern reaches of Sierra Madre Occidental. Here we present some new XRF results where we explore the relationships between different elemental ratios in these sediments and the available historical record and several paleo-reconstructions to evaluate the possible links between external forcings and internal feedback effects, to explain the evolution of the monsoon in this region.

  16. Assessing response of local moisture conditions in central Brazil to variability in regional monsoon intensity using speleothem 87Sr/86Sr values

    NASA Astrophysics Data System (ADS)

    Wortham, Barbara E.; Wong, Corinne I.; Silva, Lucas C. R.; McGee, David; Montañez, Isabel P.; Troy Rasbury, E.; Cooper, Kari M.; Sharp, Warren D.; Glessner, Justin J. G.; Santos, Roberto V.

    2017-04-01

    Delineating the controls on hydroclimate throughout Brazil is essential to assessing potential impact of global climate change on water resources and biogeography. An increasing number of monsoon reconstructions from δ18O records provide insight into variations in regional monsoon intensity over the last millennium. The strength, however, of δ18O as a proxy of regional climate limits its ability to reflect local conditions, highlighting the need for comparable reconstructions of local moisture conditions. Here, speleothem 87Sr/86Sr values are developed as a paleo-moisture proxy in central Brazil to complement existing δ18O-based reconstructions of regional monsoon intensity. Speleothem 87Sr/86Sr values are resolved using laser ablation and conventional solution mass spectrometry at high resolution relative to existing (non-δ18O-based) paleo-moisture reconstructions to allow comparisons of centennial variability in paleo-monsoon intensity and paleo-moisture conditions. Variations in speleothem 87Sr/86Sr values from Tamboril Cave are interpreted to reflect varying extents of water interaction with the carbonate host rock, with more interaction resulting in greater evolution of water isotope values from those initially acquired from the soil to those of the carbonate bedrock. Increasing speleothem 87Sr/86Sr values over the last millennium suggest progressively less interaction with the carbonate host rock likely resulting from higher infiltration rates, expected under wetter conditions. Increasingly wetter conditions over the last millennium are consistent with an overall trend of increasing monsoon intensity (decreasing δ18O values) preserved in many existing δ18O records from the region. Such a trend, however, is absent in δ18O records from our site (central Brazil) and Cristal Cave (southeast Brazil), suggesting the existence of divergent (relevant to δ18Oprecip) shifts in the climate patterns within and outside the core monsoon region.

  17. Past climates primary productivity changes in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Le Mézo, P. K.; Kageyama, M.; Bopp, L.; Beaufort, L.; Braconnot, P.; Bassinot, F. C.

    2016-02-01

    Organic climate recorders, e.g., coccolithophorids and foraminifera, are widely used to reconstruct past climate conditions, such as the Indian monsoon intensity and variability, since they are sensitive to climate-induced fluctuations of their environment. In the Indian Ocean, it is commonly accepted that a stronger summer monsoon will enhance productivity in the Arabian Sea and therefore the amount of organisms in a sediment core should reflect monsoon intensity. In this study, we use the coupled Earth System Model IPSLCM5A, which has a biogeochemical component PISCES that simulates primary production. We use 8 climate simulations of the IPSL-CM5A model, from -72kyr BP climate conditions to a preindustrial state. Our simulations have different orbital forcing (precession, obliquity and eccentricity), greenhouse gas concentrations as well as different ice sheet covers. The objective of this work is to characterize the mechanisms behind the changes in primary productivity between the different time periods. Our model shows that in climates where monsoon is enhanced (due to changes in precession) we do not necessarily see an increase in summer productivity in the Arabian Sea, and inversely. It seems that the glacial-interglacial state of the simulation is important in driving productivity changes in this region of the world. We try to explain the changes in productivity in the Arabian Sea with the local climate and then to link the changes in local climate to large scale atmospheric forcing and commonly used Indian monsoon definitions.

  18. The Effect of Rotation Rate on Seasonally Migrating Tropical Precipitation Zones on Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Faulk, Sean P.; Mitchell, Jonathan L.; Bordoni, Simona

    2014-11-01

    In the Earth’s atmosphere, tropical precipitation zones migrate seasonally but never extend beyond 30N, even in regions of large-scale monsoons. On Titan, however, seasonal, monsoon-like weather patterns regularly pump liquid methane to the poles. In this study, we argue that rotation rate is the main control on the seasonal extent of planetary monsoons, while surface thermal inertia plays a secondary role: i.e. the control is primarily dynamic rather than thermodynamic. Factors controlling the position and the sensitivity to energetic perturbations of the intertropical convergence zone (ITCZ) on Earth, a narrow latitudinal band where tropical precipitation is concentrated, have been widely investigated in the literature. Interestingly, while on Earth the ITCZ is limited to low latitudes, on Mars and Titan the ITCZ can migrate significantly off the equator into the summer hemisphere. Previous explanations for the ITCZ’s larger migration on Mars and Titan compared to Earth emphasize the lower surface thermal inertias of those planets. Here, we study a wide range of atmospheric circulations with an idealized General Circulation Model (GCM), in which an atmospheric model with idealized physics is coupled to an aquaplanet slab ocean of fixed depth and the top-of-atmosphere insolation is varied seasonally. A broad range of circulation regimes is studied by changing the thermal inertia of the slab ocean and the planetary rotation, while keeping the seasonal cycle of insolation fixed and all other parameters Earth-like. We find that for rotation rates 1/8 that of Earth's and slower, essentially Titan-like rotation rates, Earth’s ITCZ reaches the summer pole. At odds with previous explanations, we also find that decreasing the surface thermal inertia, to Titan’s surface thermal inertia and smaller, does little to extend the ITCZ’s summer migration off the equator. These results suggest that the ITCZ may be more controlled by dynamical mechanisms than previously thought. We explore such mechanisms within the framework of the momentum budget.

  19. First measurements of ambient aerosol over an ecologically sensitive zone in Central India: Relationships between PM2.5 mass, its optical properties, and meteorology.

    PubMed

    Sunder Raman, Ramya; Kumar, Samresh

    2016-04-15

    PM2.5 mass and its optical properties were measured over an ecologically sensitive zone in Central India between January and December, 2012. Meteorological parameters including temperature, relative humidity, wind speed, wind direction, and barometric pressure were also monitored. During the study period, the PM2.5 (fine PM) concentration ranged between 3.2μgm(-3) and 193.9μgm(-3) with a median concentration of 31.4μgm(-3). The attenuation coefficients, βATN at 370nm, 550nm, and 880nm had median values of 104.5Mm(-1), 79.2Mm(-1), and 59.8Mm(-1), respectively. Further, the dry scattering coefficient, βSCAT at 550nm had a median value of 17.1Mm(-1) while the absorption coefficient βABS at 550nm had a median value of 61.2Mm(-1). The relationship between fine PM mass and attenuation coefficients showed pronounced seasonality. Scattering, absorption, and attenuation coefficient at different wavelengths were all well correlated with fine PM mass only during the post-monsoon season (October, November, and December). The highest correlation (r(2)=0.81) was between fine PM mass and βSCAT at 550nm during post-monsoon season. During this season, the mass scattering efficiency (σSCAT) was 1.44m(2)g(-1). Thus, monitoring optical properties all year round, as a surrogate for fine PM mass was found unsuitable for the study location. In order to assess the relationships between fine PM mass and its optical properties and meteorological parameters, multiple linear regression (MLR) models were fitted for each season, with fine PM mass as the dependent variable. Such a model fitted for the post-monsoon season explained over 88% of the variability in fine PM mass. However, the MLR models were able to explain only 31 and 32% of the variability in fine PM during pre-monsoon (March, April, and May) and monsoon (June, July, August, and September) seasons, respectively. During the winter (January and February) season, the MLR model explained 54% of the PM2.5 variability. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Impact of monsoonal rainfall on specific mass balance in ablation zone of Chhota Shigri Glacier in 2008, Himachal Pradesh, India

    NASA Astrophysics Data System (ADS)

    Sharma, P.; Ramanathan, A.; Linda, A.; Wagnon, P.; Arnod, Y.; Jose, P. G.; Chevallier, P.

    2009-04-01

    The Mass Balance of the Chhota Shigri glacier (32.2°N, 77.5°E; 15.7 km2, 4050 to 6263m a.m.s.l., 9 km long) located in Lahaul and Spiti valley, Himachal Pradesh, India has been monitored from 2002 to 2008 using glaciological method. In 2008, an additional field survey during 3- 10th August was undertaken to understand the impact of monsoonal rainfall on specific mass balance at various points on the ablation zone of this glacier that is alternatively influenced by the Indian monsoon and the mid-latitude westerlies. Specific Annual Mass Balance is negative (0.93 mweq), Equilibrium Line Altitude (ELA) is 5120m and Accumulation Area Ratio (AAR) is 38% in the 2007-08 hydrological year. In 2008 data obtained from nearest Weather station at Keylong show that the monsoon hit the Spiti valley in the middle of June (15 days earlier than normal date ) .The results reveal that 70% of total specific mass balance occurred by the first week of August indicating that most of the melting occurred in the first half of ablation season, dominated by monsoonal rainfall. The rainfall may accelerate ablation rate by supplying ( heat ) energy even it is very low and exposing bare dirty ice thereby decreasing albedo. In part A of the glacier, the mean vertical gradient of ablation up to August 08 is 0.67 m w.e. 100 m-1 between 4350 and 4850 m a.s.l., (area free of debris) and for part B, it is 0.41 m w.e. 100 m-1 between 4600m a.s.l. and 5000m a.s.l. From August 08 up to 1st week of October, mean vertical gradient of the ablation for part A is 0.54m w.e. 100 m-1 and it is 0.61 m w.e. 100 m-1 in part B for the same altitude ranges. Below 4350m a.s.l. the whole glacier is covered by debris and the melting rate is significantly reduced. Overall, ablation rate is influenced by rainfall, incoming solar radiation and debris cover.

  1. The Sensitivity of the North American Monsoon to Deglacial Climate Change in Proxies and Models

    NASA Astrophysics Data System (ADS)

    Bhattacharya, T.; Tierney, J. E.

    2017-12-01

    The North American Monsoon (NAM), which brings summer rainfall to the arid US Southwest and northwestern Mexico, remains one of the least understood monsoon systems. Model simulations produce divergent NAM responses to future anthropogenic warming, and many paleoclimatic records from the NAM region are more sensitive to winter rainfall than the summertime circulation. As a result, we have an incomplete understanding of NAM sensitivity to past and future global climate change. Our work seeks to improve understanding of NAM dynamics using new proxy records and model simulations. We have developed quantitative reconstructions of NAM strength since the LGM ( 21 ka BP) using leaf wax biomarkers (e.g. dD of n-acids) from marine sediment cores in the Gulf of California. We contrast these proxy records with idealized GCM simulations (i.e. CESM1.2) to diagnose the mechanisms behind NAM responses to LGM boundary conditions and abrupt deglacial climate events. Our results suggest that ice-sheet induced changes in atmospheric circulation acted in concert with local changes in Gulf of California SSTs to modulate the late glacial NAM. This work has important implications for our understanding of NAM dynamics, its relationship with other monsoon systems, and its sensitivity to past and future global climate change.

  2. Landslides Induced by 2015 Gorkha Earthquake and Their Continuous Evolution Post 2015 and 2016-Monsoon

    NASA Astrophysics Data System (ADS)

    Spear, B.; Haritashya, U. K.; Kargel, J. S.

    2017-12-01

    Gorkha Nepal has been a hot bed of landslide activity since the 7.8 magnitude earthquake that occurred on April 25th 2015. Even though previous studies have mapped and analyzed the landslides that were directly related to the earthquake, this research maps and analyzes the landslides that occurred during monsoon or after monsoon season in 2015 and 2016. Specifically, our objectives included monitoring post-earthquake landslide evolution and reactivation. We also observed landslides which occurred in the steep side slopes of various small rivers and threatened to block the flow of river. Consequently, we used Landsat, Sentinel, ASTER and images available at Google Earth Engine to locate, map, and analyze these landslides. Our preliminary result indicates 5,270 landslides, however 957 of these landslides occurred significantly after the earthquake. Of the 957 landslides, 508 of them occurred during the monsoon season of 2015 and 48 in the 2016 monsoon season. As well as locating and mapping these landslides, we were able to identify that there were 22 landslides blocking rivers and 24 were reactivated. Our result and landslide density maps clearly identifies zones that are prone to landslides. For example, the steepest areas, such as the Helambu or Langtang region, have a very high concentration of landslides since the earthquake. Furthermore, landslides with the largest area were often nearby each other in very steep regions. This research can be used to determine which areas in the Gorkha Nepal region are safe to use and which areas are high risk.

  3. Late Glacial-Holocene record of benthic foraminiferal morphogroups from the eastern Arabian Sea OMZ: Paleoenvironmental implications

    NASA Astrophysics Data System (ADS)

    Verma, K.; Bharti, S. K.; Singh, A. D.

    2018-03-01

    The Arabian Sea is characterized today by a well-developed and perennial oxygen minimum zone (OMZ) at mid-water depths. The Indian margin where the OMZ impinges provides sediment records ideal to study past changes in the OMZ intensity and its vertical extent in response to the changes of monsoon-driven primary productivity and intermediate water ventilation. Benthic foraminifera, depending upon their adaptation capabilities to variation in sea floor environment and microhabitat preferences, develop various functional morphologies that can be potentially used in paleoenvironmental reconstruction. In this study, we analysed benthic foraminiferal morphogroups in assemblage records of the last 30 ka in a sediment core collected from the lower OMZ of the Indian margin (off Goa). In total, nine morphogroups within two broadly classified epifaunal and infaunal microhabitat categories are identified. The abundance of morphogroups varies significantly during the late Glacial, Deglacial and Holocene. It appears that monsoon wind driven organic matter flux, and water column ventilation governing the OMZ intensity and sea-bottom oxygen condition, have profound influence on structuring the benthic foraminiferal morphogroups. We found a few morphogroups showing major changes in their abundances during the periods corresponding to the northern hemisphere climatic events. Benthic foraminifera with planoconvex tests are abundant during the cold Heinrich events, when the sea bottom was oxygenated due to a better ventilated, weak OMZ; whereas, those having tapered/cylindrical tests dominate during the last glacial maximum and the Holocene between 5 and 8 ka BP, when the OMZ was intensified and poorly ventilated, leading to oxygen-depleted benthic environment. Characteristically, increased abundance of taxa with milioline tests during the Heinrich 1 further suggests enhanced ventilation attributed probably to the influence of oxygen-rich Antarctic Intermediate Water (AAIW).

  4. Regional environment and hydrology changes documented by lake sediments from Lake Dalianhai, northeastern Tibetan Plateau since the last glacial maximum and their relationship with Asian summer monsoon variability

    NASA Astrophysics Data System (ADS)

    Wu, D.; Chen, F.; Zhou, A.; Abbott, M. B.

    2016-12-01

    Variability of the Asian summer monsoon (ASM) significantly affects environment and hydrology conditions within its area of influence, as well as economic and social development. Thus it is important to investigate the variability of the ASM on various time-scales and to explore its underlying forcing mechanisms, in order to improve our ability to predict the long-term trends of regional and global climate. Northeastern Tibetan Plateau, a margin area of modern ASM, is sensitive to summer monsoon changes. Existing paleoclimate records from this region contain conflicting evidence for the timing of summer monsoon advance into this region: an early arrival pre-Younger Dryas or a late arrival at the beginning of the Holocene. In addition, it is also debated that whether the Holocene ASM maximum in this region occurred during the early Holocene or the middle Holocene. Here we present a high-resolution record of a 52-m drilling core from Lake Dalianhai in this region. Multiply geochemistry indexes were obtained from the sediment core. 22 AMS 14C data from plant remains and bulk organic matters illustrate that the upper 52 m core covered the whole period since the last glacial maximum (LGM). The results generally indicate that the Lake Dalianhai was occupied by very shallow water body with eolian sand surrounding the lake from 20 to 15 ka BP (1ka=1000 cal yr). With the beginning of the B/A warm period, the sedimentary sequence changed to grey lacustrine clay abruptly. The sedimentary environment was relatively stable under a high lake level state during the B/A period which was marked with fine mean grain size, and high exogenous detrital element content (such as Al, K, Ti and Rb), but with low organic matter content. This perhaps was caused by the increasing of ASM precipitation. Increased contents of element Ca, Sr, and Br, as well as TOC and TN, highlight the increase of ASM during the Holocene. However, reddish lacustrine clay with lower magnetic susceptibility and low TOC and TN content during the early Holocene may indicate lower lake level. The contents of Sr, Br, TOC and TN reached a higher status and carbonate carbon isotope decreased sharply and maintained low values since around 7ka BP, thus indicating the lake changed to another status.

  5. Hydrological changes in the tropics: an Holocene perspective

    NASA Astrophysics Data System (ADS)

    Braconnot, Pascale

    2015-04-01

    Past climates offer a large set of natural experiences that can be used to better understand the relative role of different climate feedbacks arising from changes in the Earth's global energetics, Earth's hydrological cycle or from the coupling between climate and biogeochemical cycles. In addition, the numerous climate reconstructions from different and independent ice, marine and terrestrial climate archives allow to test how climate models reproduce past changes and to assess their credibility when used for future climate projections. The presentation will review some of the mechanisms affecting the long term trend in the location of the intertropical convergence zone and the Afro-Asian monsoon. Using simulations of the PMIP project, as well as sensitivity experiments with the IPSL model, I'll discuss the role of monsoon changes in the global Earth's energetics and the different feedbacks from ocean and land-surface. The presentation will contrast the conditions in the Early, the mid and late Holocene and show how robust features of monsoon changes can be used to better assess future changes in regions where model results are uncertain, such as West Africa.

  6. Hydroclimatic contrasts over Asian monsoon areas and linkages to tropical Pacific SSTs

    PubMed Central

    Xu, Hai; Lan, Jianghu; Sheng, Enguo; Liu, Bin; Yu, Keke; Ye, Yuanda; Shi, Zhengguo; Cheng, Peng; Wang, Xulong; Zhou, Xinying; Yeager, Kevin M.

    2016-01-01

    Knowledge of spatial and temporal hydroclimatic differences is critical in understanding climatic mechanisms. Here we show striking hydroclimatic contrasts between northern and southern parts of the eastern margin of the Tibetan Plateau (ETP), and those between East Asian summer monsoon (EASM) and Indian summer monsoon (ISM) areas during the past ~2,000 years. During the Medieval Period, and the last 100 to 200 years, the southern ETP (S-ETP) area was generally dry (on average), while the northern ETP (N-ETP) area was wet. During the Little Ice Age (LIA), hydroclimate over S-ETP areas was wet, while that over N-ETP area was dry (on average). Such hydroclimatic contrasts can be broadly extended to ISM and EASM areas. We contend that changes in sea surface temperatures (SSTs) of the tropical Pacific Ocean could have played important roles in producing these hydroclimatic contrasts, by forcing the north-south movement of the Intertropical Convergence Zone (ITCZ) and intensification/slowdown of Walker circulation. The results of sensitivity experiments also support such a proposition. PMID:27609356

  7. Identification and future description of warming signatures over Pakistan with special emphasis on evolution of CO2 levels and temperature during the first decade of the twenty-first century.

    PubMed

    Haider, Khadija; Khokhar, Muhammad Fahim; Chishtie, Farrukh; RazzaqKhan, Waseem; Hakeem, Khalid Rehman

    2017-03-01

    Like other developing countries, Pakistan is also facing changes in temperature per decade and other climatic abnormalities like droughts and torrential rains. In order to assess and identify the extent of temperature change over Pakistan, the whole Pakistan was divided into five climatic zones ranging from very cold to hot and dry climates. Similarly, seasons in Pakistan are defined on the basis of monsoon variability as winter, pre-monsoon, monsoon, and post-monsoon. This study primarily focuses on the comparison of surface temperature observations from Pakistan Meteorological Department (PMD) network with PRECIS (Providing Regional Climates for Impacts Studies) model simulations. Results indicate that PRECIS underestimates the temperature in Northern Pakistan and during the winter season. However, there exists a fair agreement between PRECIS output and observed datasets in the lower plain and hot areas of the country. An absolute increase of 0.07 °C is observed in the mean temperature over Pakistan during the time period of 1951-2010. Especially, the increase is more significant (0.7 °C) during the last 14 years (1997-2010). Moreover, SCIAMACHY observations were used to explore the evolution of atmospheric CO 2 levels in comparison to temperature over Pakistan. CO 2 levels have shown an increasing trend during the first decade of the twenty-first century.

  8. Simulation of monsoon intraseasonal oscillations in a coarse-resolution aquaplanet GCM

    NASA Astrophysics Data System (ADS)

    Ajayamohan, R. S.; Khouider, Boualem; Majda, Andrew J.

    2014-08-01

    The skill of the global climate models (GCMs) to realistically simulate the monsoon intraseasonal oscillations (MISOs) is related to the sensitivity of their convective parameterization schemes. Here we show that by coupling a simple multicloud parameterization to a coarse-resolution aquaplanet GCM, realistic MISOs can be simulated. We conduct three different simulations with a fixed nonhomogeneous sea surface temperature mimicking the Indian Ocean/western Pacific warm pool (WP) centered at the three latitudes 5°N, 10°N, and 15°N, respectively, to replicate the seasonal migration of the Tropical Convergence Zone (TCZ). This results in the generation of mean circulation resembling the monsoonal flow pattern in boreal summer. Succession of eastward propagating Madden-Julian Oscillation (MJO) disturbances with phase speed, amplitude, and structure similar to summer MJOs are simulated when the WP is at 5°N. When the WP is located over 10°N, northward and eastward propagating MISOs are simulated. This case captures the meridional seesaw of convection between continental and oceanic TCZ observed during boreal summer over South Asia. Westward propagating Rossby wave-like disturbances are simulated when the WP is over 15°N congruous with the synoptic disturbances seen over the monsoon trough. The initiation of intraseasonal oscillations in the model can occur internally through organization of convective events above the WP associated with internal dynamics.

  9. On the Origin of Monsoon

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.; Chen, Baode

    2000-01-01

    The notion that the continental-scale land-sea contrast is the main reason that monsoon circulation exists has been a long-held belief. The purpose of this paper is to point out that this notion should be substantially modified. The central idea of this notion states that in summer, radiative heating of the continent, say Asia, gives rise to a continental-scale thermal low and surrounding the thermal low in its southeast direction the low level wind flows in from south-west. This low-level inflow creates a convergence of moisture, which maintains the cumulus convection. And in winter, radiative cooling of continent gives rise to a thermal high and to its southeast the low-level wind is from northeast. The mechanism in this interpretation does undoubtedly exist. However, this mechanism, though believed to be the main driving force of monsoon, has not been tested in numerical experiments. There has been an increasing recognition in the recent years that monsoon is inextricably tied to the heating in the intertropical convergence zone (ITCZ). We propose that the main cause of monsoon is ITCZ's being substantially away from the equator. A brief qualitative explanation of why the ITCZ can be a source of monsoon circulation can be offered based on the circulation field forced by the ITCZ heating. The existence of the ITCZ's does not always have to rely on land-sea contrast on the continental scale. This is hinted in the fact that in February the ITCZ close to Australia (and its associated monsoon circulation) covers a longitudinal range several times as long as that of Australia and thus cannot possibly be caused mainly by the land-sea contrast associated with Australia. Yet, this cannot be used as a proof that the ITCZ in the Asian summer monsoon is not mainly due to land-sea contrast. One of the purposes of this work is to provide a convincing proof. In this work the role of land-sea contrast in the origin of monsoon is examined through numerical simulation with the Goddard general circulation model. The Asian and Australian monsoon circulations are obtained in a four-year integration and then the integration is repeated with Asia, the maritime continent, and Australia replaced by ocean. The sea surface temperature (SST) at each affected grid is specified as the SST at the first grid to the east that is an ocean grid in the first experiment. The latter integration shows that the monsoon circulation pattern over where south Asia and Australia were and the surrounding region has largely remained. The results discount land-sea contrast as the main cause of Asian monsoon. A third experiment is the same as the first except that the topography of Asia, the maritime continent, and Australia is reduced to zero. This experiment reveals that the difference between the first two experiments is due more to the removal of topography than to the removal of land-sea contrast. August precipitation is shown averaged over the last three years of each of the three experiments. They show that the Asian monsoon rainy region is largely intact in the second experiment and the difference between the second and the third experiment is mainly in the longitudinal location of the maximum precipitation. Additionally, in Asian and Australian winter monsoons land-sea contrast also plays only a modifying role. Although land-sea contrast plays only a modifying role in Asian and Australian (and Central American including Mexican) monsoons, it is the main reason that ITCZ (and thus monsoon) exists in Africa and South America. Thus, monsoons can be classified into two groups depending on whether land-sea contrast plays a major role.

  10. Reconstructing Oceanographic Conditions From the Holocene to the Last Glacial Maximum in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Miller, J.; Dekens, P. S.; Weber, M. E.; Spiess, V.; France-Lanord, C.

    2015-12-01

    The International Ocean Discovery Program (IODP) Expedition 354 drilled 7 sites in the Bay of Bengal, providing a unique opportunity to improve our understanding of the link between glacial cycles, tropical oceanographic changes, and monsoon strength. Deep-sea sediment cores of the Bengal Fan fluctuate between sand, hemipelagic and terrestrial sediment layers. All but one of the sites (U1454) contain a layer of calcareous clay in the uppermost part of the core that is late Pleistocene in age. During Expedition 354 site U1452C was sampled at high resolution (every 2cm) by a broad group of collaborators with the goal of reconstructing monsoon strength and oceanographic conditions using a variety of proxies. The top 480 cm of site U1452C (8ºN, 87ºE, 3671m water depth) contains primarily nannofossil rich calcareous clay. The relatively high abundance of foraminifera will allow us to generate a high resolution record of sea surface temperature (SST) and sea surface salinity (SSS) using standard foraminifera proxies. We will present oxygen isotopes (δ18O) and Mg/Ca data of mixed layer planktonic foraminifera from the top 70cm of the core, representing the Holocene to the last glacial maximum. δ18O of planktonic foraminifera records global ice volume and local SST and SSS, while Mg/Ca of foraminifera is a proxy for SST. The paired Mg/Ca and δ18O measurements on the same samples of foraminifera, together with published estimates with global ocean δ18O, can be used to reconstruct both SST and local δ18O of seawater, which is a function of the evaporation/precipitation balance. In future work, the local SSS and SST during the LGM will be paired with terrestrial and other oceanic proxies to increase our understanding of how global climate is connected to monsoon strength.

  11. Assessment of two versions of regional climate model in simulating the Indian Summer Monsoon over South Asia CORDEX domain

    NASA Astrophysics Data System (ADS)

    Pattnayak, K. C.; Panda, S. K.; Saraswat, Vaishali; Dash, S. K.

    2018-04-01

    This study assess the performance of two versions of Regional Climate Model (RegCM) in simulating the Indian summer monsoon over South Asia for the period 1998 to 2003 with an aim of conducting future climate change simulations. Two sets of experiments were carried out with two different versions of RegCM (viz. RegCM4.2 and RegCM4.3) with the lateral boundary forcings provided from European Center for Medium Range Weather Forecast Reanalysis (ERA-interim) at 50 km horizontal resolution. The major updates in RegCM4.3 in comparison to the older version RegCM4.2 are the inclusion of measured solar irradiance in place of hardcoded solar constant and additional layers in the stratosphere. The analysis shows that the Indian summer monsoon rainfall, moisture flux and surface net downward shortwave flux are better represented in RegCM4.3 than that in the RegCM4.2 simulations. Excessive moisture flux in the RegCM4.2 simulation over the northern Arabian Sea and Peninsular India resulted in an overestimation of rainfall over the Western Ghats, Peninsular region as a result of which the all India rainfall has been overestimated. RegCM4.3 has performed well over India as a whole as well as its four rainfall homogenous zones in reproducing the mean monsoon rainfall and inter-annual variation of rainfall. Further, the monsoon onset, low-level Somali Jet and the upper level tropical easterly jet are better represented in the RegCM4.3 than RegCM4.2. Thus, RegCM4.3 has performed better in simulating the mean summer monsoon circulation over the South Asia. Hence, RegCM4.3 may be used to study the future climate change over the South Asia.

  12. Assessment of Land Surface Models in a High-Resolution Atmospheric Model during Indian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Attada, Raju; Kumar, Prashant; Dasari, Hari Prasad

    2018-04-01

    Assessment of the land surface models (LSMs) on monsoon studies over the Indian summer monsoon (ISM) region is essential. In this study, we evaluate the skill of LSMs at 10 km spatial resolution in simulating the 2010 monsoon season. The thermal diffusion scheme (TDS), rapid update cycle (RUC), and Noah and Noah with multi-parameterization (Noah-MP) LSMs are chosen based on nature of complexity, that is, from simple slab model to multi-parameterization options coupled with the Weather Research and Forecasting (WRF) model. Model results are compared with the available in situ observations and reanalysis fields. The sensitivity of monsoon elements, surface characteristics, and vertical structures to different LSMs is discussed. Our results reveal that the monsoon features are reproduced by WRF model with all LSMs, but with some regional discrepancies. The model simulations with selected LSMs are able to reproduce the broad rainfall patterns, orography-induced rainfall over the Himalayan region, and dry zone over the southern tip of India. The unrealistic precipitation pattern over the equatorial western Indian Ocean is simulated by WRF-LSM-based experiments. The spatial and temporal distributions of top 2-m soil characteristics (soil temperature and soil moisture) are well represented in RUC and Noah-MP LSM-based experiments during the ISM. Results show that the WRF simulations with RUC, Noah, and Noah-MP LSM-based experiments significantly improved the skill of 2-m temperature and moisture compared to TDS (chosen as a base) LSM-based experiments. Furthermore, the simulations with Noah, RUC, and Noah-MP LSMs exhibit minimum error in thermodynamics fields. In case of surface wind speed, TDS LSM performed better compared to other LSM experiments. A significant improvement is noticeable in simulating rainfall by WRF model with Noah, RUC, and Noah-MP LSMs over TDS LSM. Thus, this study emphasis the importance of choosing/improving LSMs for simulating the ISM phenomena in a regional model.

  13. HSDP II Drill Core: Preliminary Rock Strength Results and Implications to Flank Stability, Mauna Kea Volcano

    NASA Astrophysics Data System (ADS)

    Thompson, N.; Watters, R. J.; Schiffman, P.

    2004-12-01

    Selected portions of the 3-km HSDP II core were tested to provide unconfined rock strength data from hyaloclastite alteration zones and pillow lavas. Though the drilling project was not originally intended for strength purpose, it is believed the core can provide unique rock strength insights into the flank stability of the Hawaiian Islands. The testing showed that very weak rock exists in the hyaloclastite abundant zones in the lower 2-km of the core with strength dependent on the degree of consolidation and type of alteration. Walton and Schiffman identified three zones of alteration, an upper incipient alteration zone (1080-1335m), a smectitic zone (1405-1573m) and a lower palagonitic zone from about 1573 m to the base of the core. These three zones were sampled and tested together with pillow lava horizons for comparison. Traditional cylindrical core was not available as a consequence of the entire core having been split lengthwise for archival purposes. Hence, point load strength testing was utilized which provides the unconfined compressive strength on irregular shaped samples. The lowest unconfined strengths were recorded from incipient alteration zones with a mean value of 9.5 MPa. Smectitic alteration zones yielded mean values of 16.4 MPa, with the highest measured alteration strengths from the palagonite zones with a mean value of 32.1 MPa. As anticipated, the highest strengths were from essentially unaltered lavas with a mean value of 173 MPa. Strength variations of between one to two orders of magnitude were identified in comparing the submarine hyaloclastite with the intercalated submarine lavas. The weakest zones within the hyaloclastites may provide horizons for assisting flank collapse by serving as potential thrust zones and landslide surfaces.

  14. Toxic Metals Enrichment in the Surficial Sediments of a Eutrophic Tropical Estuary (Cochin Backwaters, Southwest Coast of India)

    PubMed Central

    Martin, G. D.; George, Rejomon; Shaiju, P.; Muraleedharan, K. R.; Nair, S. M.; Chandramohanakumar, N.

    2012-01-01

    Concentrations and distributions of trace metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in surficial sediments of the Cochin backwaters were studied during both monsoon and pre-monsoon periods. Spatial variations were in accordance with textural charaterstics and organic matter content. A principal component analysis distinguished three zones with different metal accumulation capacity: (i) highest levels in north estuary, (ii) moderate levels in central zone, and (iii) lowest levels in southern part. Trace metal enrichments are mainly due to anthropogenic contribution of industrial, domestic, and agricultural effluents, whose effect is enhanced by settling of metals due to organic flocculation and inorganic precipitation associated with salinity changes. Enrichments factors using Fe as a normalizer showed that metal contamination was the product of anthropogenic activities. An assessment of degree of pollution-categorized sediments as moderately polluted with Cu and Pb, moderately-to-heavily polluted with Zn, and heavily-to-extremely polluted with Cd. Concentrations at many sites largely exceed NOAA ERL (e.g., Cu, Cr, and Pb) or ERM (e.g., Cd, Ni, and Zn). This means that adverse effects for benthic organisms are possible or even highly probable. PMID:22645488

  15. Millennial-Scale Variability in the Indian Monsoon and Links to Ocean Circulation

    NASA Astrophysics Data System (ADS)

    DeLong, K. A.; Came, R. E.; Johnson, J. E.; Giosan, L.

    2014-12-01

    Millennial-scale variability in the Indian monsoon was temporally linked to changes in global ocean circulation during the last glacial period, as evidenced by planktic-benthic foraminiferal stable isotope and trace element results from an intermediate depth sediment core from the northwestern Bay of Bengal. Paired planktic foraminiferal Mg/Ca and δ18Oc constrain sea surface temperatures and isolate millennial-scale variations in the δ18O of surface waters (δ18Osw), which resulted from changes in river runoff in the northwestern Bay. Concurrently with low δ18Osw events, benthic foraminiferal δ13C decreased, suggesting an increased influence of an aged water mass at this intermediate depth site during the low salinity events. Benthic foraminiferal Cd/Ca results support the identification of this water mass as aged Glacial Antarctic Intermediate Water (GAAIW). Lagged correlation analysis (r= 0.41) indicates that changes in subsurface properties led changes in surface properties by an average of 380 years. The implication is that Southern Hemisphere climate exerted a controlling influence on the Indian monsoon during the last glacial period.

  16. Prominent Midlatitude Circulation Signature in High Asia's Surface Climate During Monsoon

    NASA Astrophysics Data System (ADS)

    Mölg, Thomas; Maussion, Fabien; Collier, Emily; Chiang, John C. H.; Scherer, Dieter

    2017-12-01

    High Asia has experienced strong environmental changes in recent decades, as evident in records of glaciers, lakes, tree rings, and vegetation. The multiscale understanding of the climatic drivers, however, is still incomplete. In particular, few systematic assessments have evaluated to what degree, if at all, the midlatitude westerly circulation modifies local surface climates in the reach of the Indian Summer Monsoon. This paper shows that a southward shift of the upper-tropospheric westerlies contributes significantly to climate variability in the core monsoon season (July-September) by two prominent dipole patterns at the surface: cooling in the west of High Asia contrasts with warming in the east, while moist anomalies in the east and northwest occur with drying along the southwestern margins. Circulation anomalies help to understand the dipoles and coincide with shifts in both the westerly wave train and the South Asian High, which imprint on air mass advection and local energy budgets. The relation of the variabilities to a well-established index of midlatitude climate dynamics allows future research on climate proxies to include a fresh hypothesis for the interpretation of environmental changes.

  17. Does Antarctic Glaciation Cause an Intensification of the Indo-Asian Monsoon Near the Eocene-Oligocene Transition?

    NASA Astrophysics Data System (ADS)

    Goldner, A. P.; Huber, M.; Caballero, R.

    2011-12-01

    High latitude ice volume changes has been suggested to have profound effects on the position of the Intertropical Convergence Zone (ITCZ). Here we simulate the atmospheric impacts that an Antarctica ice sheet of modern size has on the hydrologic cycle and atmospheric circulation using the community earth system model (CESM1.0) from the National Center for Atmospheric Research (NCAR) in Eocene simulations. Results show that the placement of an ice sheet in Antarctica in a late Eocene climate simulation cools the planet around ~2 Kelvin and causes a poleward displacement of the ITCZ in both hemispheres. Because the ITCZ is linked to the global monsoonal circulation. The shift results in an intensification of precipitation over prominent monsoon regions like Asia, Africa, and Australia. Aridification occurs in central Asia and western North America in agreement with many of the proxy records for the Eocene-Oligocene transition. The shift in atmospheric circulation and precipitation anomalies are robust in further sensitivity studies where we remove the ice sheet, but keep topography high over Antarctica and under different CO2 levels (560 and 1120 ppmv). We hypothesize that the height of the initial ice growth on Antarctica could be a significant factor in shifting the hydrologic cycle and matching proxy records over important regions like the Indo-Asian Monsoon region during the Eocene-Oligocene transition. These modeling results show that other factors besides declining atmospheric CO2, changes in orbital cycles, and the height of the Tibetan Plateau can have significant impacts on the tropical circulation and the global hydrologic cycle, especially the Indo-Asian Monsoon in past climate periods where significant changes in ice sheet growth occurred.

  18. Multiproxy Reduced-Dimension Reconstruction of Holocene Tropical Pacific SST Fields and Indian Monsoon Variability

    NASA Astrophysics Data System (ADS)

    Gill, E.; Rajagopalan, B.; Molnar, P. H.; Marchitto, T. M., Jr.; Kushnir, Y.

    2016-12-01

    We develop a multiproxy reduced-dimension methodology that blends magnesium calcium (Mg/Ca) and alkenone (UK'37) paleo sea surface temperature (SST) records from the eastern and western equatorial Pacific to recreate snapshots of full field SSTs and zonal wind anomalies from 10 to 2 ka BP in 2000-year increments. In the reconstruction, the zonal SST difference (average west Pacific SST minus average east Pacific SST) is largest at 10 ka (0.26°C), with coldest SST anomalies of -0.9°C in the eastern equatorial Pacific and concurrent easterly maximum zonal wind anomalies of 7 m s-1 throughout the central Pacific. From 10 to 2 ka, the entire equatorial Pacific warms, but at a faster rate in the east than in the west. These patterns are broadly consistent with previous inferences of reduced El Niño-Southern Oscillation variability associated with a cooler and/or "La Niña-like" state during the early to middle Holocene. At present there is a strong negative correlation between tropical pacific SSTs and Indian summer monsoon strength. Assuming ENSO-monsoon teleconnections were the same during early Holocene, we would expect a cooler tropical Pacific to enhance the summer Indian monsoon. To test this idea, we used the same tropical Pacific SST proxy records and a similar reduced-dimension technique to reconstruct fields of Arabian Sea wind-stress curl and Indian summer monsoon precipitation. Reconstructions for 10 ka reveal wind-stress curl anomalies of 30% greater than present day off the coastlines of Oman and Yemen, which suggest greater coastal upwelling and an enhanced monsoon jet during this time. Spatial rainfall reconstructions reveal the greatest difference in precipitation at 10 ka over the core monsoon region ( 20-60% greater than present day). Specifically, reconstructions from 10 ka reveal 40-60% greater rainfall over North West India, a region home to abundant paleo-lake records spanning the Holocene but is at present remarkably dry ( 200-450 mm of annual rainfall). These findings advance the hypothesis that teleconnections from the tropical Pacific contributed to, if not accounted for, greater early to middle Holocene wetness over India as recorded by various (e.g., cave, lacustrine, river discharge) paleoclimate proxies throughout the monsoon region.

  19. A palaeo-ecological assessment of the resilience of south-east Asian dry forests to monsoon extremes

    NASA Astrophysics Data System (ADS)

    Hamilton, R. J.; Penny, D.; Maxwell, A.

    2014-12-01

    Predictions that the frequency and intensity of monsoon extremes will rise in coming decades are being made with increasing confidence. There is concern that these climatic changes may drive tropical monsoon forests across critical thresholds, triggering ecological regime shifts. The global consequences of such shifts, coupled with knowledge gaps around the nature and intensity of drivers needed to instigate ecosystem reorganization, highlights the need for research that analyses the resilience of these seasonal forest to future climatic change. While work has indicated that these forests may be susceptible to reorganization to savanna under changing precipitation regimes, the interactions between climatic drivers and ecosystem response is still poorly understood, particularly in the seasonal forests outside of the neo- and afro-tropics. This study presents results on the threshold dynamics of the extensive south-east Asian seasonally dry tropical forest ecoregion (SASDTF) through analysis of plant microfossils and charcoal archived in sediment cores extracted from two tropical crater lakes in Cambodia. These data are compared with regional paleoclimatic reconstructions to gauge past forest response to monsoon extremes, and provide insight into the magnitude and duration of climatic events most likely to result in the breaching of critical thresholds. Our results suggest that, at a biome level, the SASDTF appears resilient to low-amplitude climatic variations over millennia, despite instrumental observations of strong precipitation-tree cover coupling in global dry forest resilience models.

  20. Climate change impacts on rainfall and temperature in sugarcane growing Upper Gangetic Plains of India

    NASA Astrophysics Data System (ADS)

    Verma, Ram Ratan; Srivastava, Tapendra Kumar; Singh, Pushpa

    2018-01-01

    Assessment of variability in climate extremes is crucial for managing their aftermath on crops. Sugarcane (Saccharum officinarum L.), a major C4 crop, dominates the Upper Gangetic Plain (UGP) in India and is vulnerable to both direct and indirect effects of changes in temperature and rainfall. The present study was taken up to assess the weekly, monthly, seasonal, and annual trends of rainfall and temperature variability during the period 1956-2015 (60 years) for envisaging the probabilities of different levels of rainfall suitable for sugarcane in UGP in the present climate scenario. The analysis revealed that 87% of total annual rainfall was received during southwest monsoon months (June-September) while post-monsoon (October to February) and pre-monsoon months (March-May) accounted for only 9.4 and 3.6%, respectively. There was a decline in both monthly and annual normal rainfall during the period 1986-2015 as compared to 1956-1985, and an annual rainfall deficiency of 205.3 mm was recorded. Maximum monthly normal rainfall deficiencies of 52.8, 84.2, and 54.0 mm were recorded during the months of July, August, and September, respectively, while a minimum rainfall deficiency of 2.2 mm was observed in November. There was a decline by 196.3 mm in seasonal normal rainfall during June-September (kharif). The initial probability of a week going dry was higher (> 70%) from the 1st to the 25th week; however, standard meteorological weeks (SMW) 26 to 37 had more than 50% probability of going wet. The normal annual maximum temperature (Tmax) decreased by 0.4 °C while normal annual minimum temperatures (Tmin) increased by 0.21 °C. Analysis showed that there was an increase in frequency of drought from 1986 onwards in the zone and a monsoon rainfall deficit by about 21.25% during June-September which coincided with tillering and grand growth stage of sugarcane. The imposed drought during the growth and elongation phase is emerging as a major constraint in realizing high cane productivity in the zone. Strategies for mitigating the negative impacts of rainfall and temperature variability on sugarcane productivity through improvement in existing adaptation strategies are proposed.

  1. Live (Rose Bengal stained) foraminiferal faunas from the northern Arabian Sea: faunal succession within and below the OMZ

    NASA Astrophysics Data System (ADS)

    Caulle, Clemence; Koho, Karoliina; Mojtahid, Meryem; Reichart, Gert-Jan; Jorissen, Frans

    2014-05-01

    Live (Rose Bengal stained) benthic foraminifera from the Murray Ridge, within and below the northern Arabian Sea Oxygen Minimum Zone (OMZ), were studied in order to determine the relationship between faunal composition, bottom-water oxygenation (BWO), pore-water chemistry and organic matter (organic carbon and phytopigment) distribution. A series of multicores were recovered from a ten-station oxygen (BWO: 2µM - 78µM) and bathymetric (885 - 3010m depth) transect during the winter monsoon in January 2009. Foraminifera were investigated from three different size fractions (63-125µm, 125-150µm and >150µm). The larger foraminifera (>125µm) were strongly dominated by agglutinated species (e.g. Reophax spp.). In contrast, in the 63-125µm fraction, calcareous taxa were more abundant, especially in the core of the OMZ. On the basis of a Principal Components Analysis, three foraminiferal groups were identified and correlated to the environmental parameters by Canonical Correspondence Analysis. The faunas from the shallowest stations, in the core of the OMZ (BWO: 2µM), were composed of "low oxygen" species, typical of the Arabian Sea OMZ (e.g., Rotaliatinopsis semiinvoluta, Praeglobobulimina sp., Bulimina exilis, Uvigerina peregrina type parva). These taxa are adapted to the very low BWO conditions and to high phytodetritus supplies. The transitional group, typical for the lower part of the OMZ (BWO: 5-16µM), is composed of species, which are tolerant as well to low-oxygen concentrations, but may be less critical with respect to organic supplies (e.g. Globocassidulina subglobosa, Ehrenbergina trigona). Below the OMZ (BWO: 26-78µM), where food availability is more limited and becomes increasingly restricted to surficial sediments, cosmopolitan calcareous taxa were present, such as Bulimina aculeata, Melonis barleeanus, Uvigerina peregrina and Epistominella exigua. Miliolids were uniquely observed in this last zone, reflecting the higher BWO and/or lower organic input.

  2. Spatial and temporal variations of thunderstorm activities over Sri Lanka

    NASA Astrophysics Data System (ADS)

    Sonnadara, Upul

    2016-05-01

    Spatial and temporal variation of frequencies of thunderstorms over Sri Lanka using thunder day data is presented. A thunder day is simply a calendar day in which thunder is heard at least once at a given location. Two sets of data were collected and analyzed: annual totals for 10 climatological stations for a period of 50 years and monthly totals for 20 climatological stations for a period of 20 years. The average annual thunder days over Sri Lanka was found to be 76. Among the climatological stations considered, a high number of annual thunder days was recorded in Ratnapura (150 days/year), followed by Colombo (108 days/year) and Bandarawela (106 days/year). It appears that there are no widespread long-term increasing or decreasing trends in thunderstorm frequencies. However, Colombo, the capital of Sri Lanka which has over two million people shows an increasing trend of 0.8 thunder days per year. Although there is a high variability between stations reporting the number of thunder days, the overall pattern within a year is clear. Thunderstorm frequencies are high during two periods: March-May and September-November, which coincide with the first inter-monsoon and second inter-monsoon periods. Compared to the dry zone, the wet zone, especially the southwestern region, has high thunderstorm activity. There is a clear spatial difference in thunderstorm activities during the southwest and northeast monsoon seasons. During both these seasons, enhanced thunderstorm activities are reported on the leeward side of the mountain range. A slight reduction in the thunderstorm activities was found in the high elevation areas of the hill country compared to the surrounding areas. A lightning ground flash density map derived using annual thunder days is also presented.

  3. Probing for suitable climatology to estimate the predictability of monsoon onset over Kerala (MOK), India

    NASA Astrophysics Data System (ADS)

    Pal, J.; Chaudhuri, S.; Mukherjee, S.; Chowdhury, A. Roy

    2017-10-01

    Inter-annual variability in the onset of monsoon over Kerala (MOK), India, is investigated using daily temperature; mean sea level pressure; winds at 850, 500 and 200 hPa pressure levels; outgoing longwave radiation (OLR); sea surface temperature (SST) and vertically integrated moisture content anomaly with 32 years (1981-2013) observation. The MOK is classified as early, delayed, or normal by considering the mean monsoon onset date over Kerala to be the 1st of June with a standard deviation of 8 days. The objective of the study is to identify the synoptic setup during MOK and comparison with climatology to estimate the predictability of the onset type (early, normal, or delayed) with 5, 10, and 15 days lead time. The study reveals that an enhanced convection observed over the Bay of Bengal during early MOK is found to shift over the Arabian Sea during delayed MOK. An intense high-pressure zone observed over the western south Indian Ocean during early MOK shifts to the east during delayed MOK. Higher tropospheric temperature (TT) over the western Equatorial Ocean during early MOK and lower TT over the Indian subcontinent intensify the land-ocean thermal contrast that leads to early MOK. The sea surface temperature (SST) over the Arabian Sea is observed to be warmer during delayed than early MOK. During early MOK, the source of 850 hPa southwesterly wind shifts to the west equatorial zone while a COL region has been found during delayed MOK at that level. The study further reveals that the wind speed anomaly at the 200-hPa pressure level coincides inversely with the anomaly of tropospheric temperature.

  4. AMS 14 C dating controlled records of monsoon and Indonesian throughflow variability from the eastern Indian Ocean of the past 32,000 years

    NASA Astrophysics Data System (ADS)

    Li, Z. Y.; Chen, M. T.; Shi, X.; Liu, S.; Wang, H.

    2015-12-01

    Zi-Ye Li a, Min-Te Chen b, Hou-Jie Wang a, Sheng-Fa Liu c, Xue-Fa Shi ca College of Marine Geosciences, Ocean University of China, Qingdao 266100, P.R. Chinab Institute of Applied Geosciences, National Taiwan Ocean University, Keelung, Taiwan 20224, ROCc First Institute of Oceanography, SOA, Qingdao 266100, P.R. China Indonesian throughflow (ITF) is one of the most important currents responsible for transporting heat and moisture from the western Pacific to the Indian Oceans. The ITF is also well-known as effectively in modulating the global climate change with the interactions among ENSO and Asian monsoons. Here we present an AMS 14C dating controlled sea surface temperature (SST) record from core SO184-10043 (07°18.57'S, 105°03.53'E), which was retrieved from 2171m water depth at a north-south depression located at the southeastern offshore area of Sumatera in the eastern Indian Ocean. Based on our high-resolution SST using Mg/Ca analyses based on planktonic foraminifera shells of Globigerinoides ruber and alkenone index, U k'37-SST, oxygen isotope stratigraphy, and AMC 14C age-controls, our records show that, during the past 32,000 years, the SSTs were decreased which imply weaker ITF during Marine Isotope Stage (MIS) 2 and 3. The weaker UTF may respond to strengthened northeast monsoon during the boreal winter. During 21 to 15ka, the southeast monsoon had been stronger and the northeast monsoon was relatively weaker. During 15 to 8ka, rapid sea level rising may allow the opening of the gateways in the Makassar Strait and Lombok Strait that may have further strengthened the ITF. During the early Holocene, the northeast and southeast monsoons seem to be both strengthened. We will discuss the implications of the hydrographic variability and their age uncertainties in this paper during the meeting.

  5. Tracing the hydrological cycle by water stable isotopes on the Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Tian, L.; Yao, T.; Yu, W.

    2013-05-01

    A network of precipitation, river, lake water, ice core and atmospheric vapor sampling was set up on the Tibetan Plateau to trance the moisture origins supplied to the plateau, the inland hydrological cycle process and land surface evaporation processes. This work shows different moisture from Indian Ocean monsoon and the westerlies dominate the precipitation δ18O in the south and north of the plateau respectively, which can cause a difference in precipitation δ18O of about 5‰ in average. Precipitation δ18O bears "temperature effect" in the northern Tibetan Plateau, whereas the seasonal precipitation δ18O shows precipitation "amount effect" in the south. This relation is also held in the ice core records on the plateau. An instance is the δ18O record from shallow ice cores in Muztagata Glacier, Dunde ice cap and Naimona'Nyi Glacier. The ice core δ18O record from monsoon region in south Tibet, such as Dasuopu glacier in Xixiabangma, shows a precipitation "amount effect" at least in the annual scale. Further isotope enrichment can be found in the land surface evaporation processes. A simple case is in the close lake system in Yamdruk-tso catchment, southern part of Tibetan Plateau. Both observation and simulation work shows the enrichment of heavy isotope in lake water can be over 10‰ for δ18O, which is much linked to the local climatic condition. Simulation work also shows that atmospheric vapor isotope is also very important to capture the lake water δD value. However, vapor isotopes data are usually less available on the plateau.

  6. Variations of the Indian summer monsoon over the Mio-Pliocene recorded in the Bengal Fan (IODP Exp354): implications for the evolution of the terrestrial biosphere.

    NASA Astrophysics Data System (ADS)

    Galy, Valier; Feakins, Sarah; Karkabi, Elias; Ponton, Camilo; Galy, Albert; France-Lanord, Christian

    2017-04-01

    A pressing challenge in climate research is understanding the temporal evolution of the Indian monsoon system; its response to global and regional climatic controls (including warming); as well as implications in terms of vegetation (C4 expansion), erosion of the Himalaya and carbon sequestration in the Bengal Fan. Studies on climate dynamics have recently offered new insights into the mechanistic controls on the monsoon: the tectonic boundary of the Himalaya is implicated as the major control on Indian summer monsoon dynamics today. Since this region has been uplifted since at least the late Oligocene, it is possible to test the response of monsoon precipitation to global and regional climate change, and also understand feedbacks on the climate system via carbon sequestration in the Bengal Fan. The evidence for monsoon intensity changes across the Miocene and Pliocene is currently incomplete given temporal uncertainty and diagenesis in terrestrial records; biases in the records reconstructed from the distal fan; and conflicting evidence from wind speed and aridity metrics for a stronger or weaker monsoon. Our alternative approach is therefore to study the basin-wide hydrological changes recorded in a multi-proxy, multi-site study of the marine sediments of the Bengal Fan recovered during IODP expedition 354. In turbiditic sediments of Himalayan origin, the late Miocene C4 expansion was found in all three long records recovered during expedition 354 (i.e. at sites U1451, U1450 and U1455, from East to West) based on stable carbon isotope composition of terrestrial leaf-wax compounds. Cores from sites U1455 (a reoccupation of DSDP Leg 22 Site 218) provide the highest resolution record of the C4 transition, which appears to occur abruptly within a relatively continuous series of turbiditic sequences. Bio- and magneto-stratigraphic dating of these records by members of Expedition 354 science party is underway and will provide the best stratigraphic constraint of the C4 expansion in the Himalayan system. Hemipelagic sediments generally carry 13C enriched signatures indicative of C4-dominated source areas, and based on a combination of the wind field climatology and the wetness and ecosystems of source regions today, we suggest that these would likely represent wind transport, likely from peninsular India. Interestingly we found hemipelagic horizons carrying this enriched 13C character prior to the C4 expansion recorded in turbiditic sediments, likely revealing an earlier C4 colonization of peninsular India. Based on our preliminary data we thus propose that C4 plants colonized peninsular India around 9-10 Ma. The hydrogen isotopic composition of the same leaf-wax compounds reveals a surprisingly small (on the order of 10 ‰) isotopic shift associated with the late Miocene C4 expansion. In contrast, the hydrogen isotope composition shift observed across the last deglaciation is far greater (ca. 40‰; Hein et al., in prep.). Cores from site U1451, provide a low resolution record across at least the last 26 Myr and appear to indicate a long term hydrological change from ca. 11Ma to ca. 7Ma, as inferred from progressive D enrichment in the biomarker records. These compound specific hydrogen isotope data will be discussed in the context of changing erosion patterns and attendant variations in the strength of the Indian summer monsoon as well as with respect to the mechanisms that led to the C4 expansion.

  7. Similar speleothem δ18O signals indicating diverging climate variations in inland central Asia and monsoonal south Asia during the Holocene

    NASA Astrophysics Data System (ADS)

    Jin, Liya; Zhang, Xiaojian

    2017-04-01

    High-resolution and precisely dated speleothem oxygen isotope (δ18O) records from Asia have provided key evidence for past monsoonal changes. It is found that δ18O records of stalagmites from Kesang Cave (42°52'N, 81°45'E, Xinjiang, China) in inland central Asia were very similar to those from Qunf Cave (17°10'N, 54°18'E, southern Oman) in South Asia, shifting from light to heavy throughout the Holocene, which was regarded as a signal that strong Asian summer monsoon (ASM) may have intruded into the Kesang Cave site and/or adjacent areas in inland central Asia to produce heavy rainfall during the high insolation times (e.g. the early Holocene). However, this is in contrast to conclusions based on other Holocene proxy records and modeling simulations, showing a persistent wetting trend in arid central Asia during the Holocene with a dryer condition in the early Holocene and the wettest condition in the late Holocene. With an analysis of model-proxy data comparison, we revealed a possible physical mechanism responsible for the Holocene evolution of moisture/precipitation in Asian summer monsoon (ASM)-dominated regions and that in the inland central Asia. It is revealed that a recurrent circumglobal teleconnection (CGT) pattern in the summertime mid-latitude circulation of the Northern Hemisphere was closely related to the ASM and the climate of inland central Asia, acting as a bridge linking the ASM to insolation, high-latitude forcing (North Atlantic sea surface temperature (SST)), and low-latitude forcing (tropical Ocean SST). Also, the CGT influence speleothem δ18O values in South Asia via its effect on the amount of precipitation. In addition, the moisture source from the Indian Ocean is associated with relatively high δ18O values compared with that from the North Atlantic Ocean, leading to increased precipitation δ18O values. Hence, the CGT has probably been the key factor responsible for the in-phase relationship in speleothem δ18O values (Kesang Cave and Qunf Cave), but out-of-phase relationship in moisture/precipitation evolutions between inland central Asia and the ASM region during the Holocene. In addition, since boreal winter (December-January-February, DJF) precipitation in northwestern China (a part of the core zone in inland central Asia) during the Holocene has been revealed to contribute a great deal to moisture evolution in inland central Asia, and the changes in the seasonal cycle of incoming solar radiation driven by Earth's orbital changes have probably played an important role in the out-of-phase relationship in the moisture evolution between the inland central Asia and ASM regions during the Holocene.

  8. Changes in monsoon-driven upwelling in the South China Sea over glacial Terminations I and II: a multi-proxy record

    NASA Astrophysics Data System (ADS)

    Sadatzki, Henrik; Sarnthein, Michael; Andersen, Nils

    2016-06-01

    Upwelling intensity in the South China Sea has changed over glacial-interglacial cycles in response to orbital-scale changes in the East Asian Monsoon. Here, we evaluate new multi-proxy records of two sediment cores from the north-eastern South China Sea to uncover millennial-scale changes in winter monsoon-driven upwelling over glacial Terminations I and II. On the basis of U/Th-based speleothem chronology, we compare these changes with sediment records of summer monsoon-driven upwelling east of South Vietnam. Ocean upwelling is traced by reduced (UK'37-based) temperature and increased nutrient and productivity estimates of sea surface waters (δ13C on planktic foraminifera, accumulation rates of alkenones, chlorins, and total organic carbon). Accordingly, strong winter upwelling occurred north-west of Luzon (Philippines) during late Marine Isotope Stage 6.2, Heinrich (HS) and Greenland stadials (GS) HS-11, GS-26, GS-25, HS-1, and the Younger Dryas. During these stadials, summer upwelling decreased off South Vietnam and sea surface salinity reached a maximum suggesting a drop in monsoon rains, concurrent with speleothem records of aridity in China. In harmony with a stadial-to-interstadial see-saw pattern, winter upwelling off Luzon in turn was weak during interstadials, in particular those of glacial Terminations I and II, when summer upwelling culminated east of South Vietnam. Most likely, this upwelling terminated widespread deep-water stratification, coeval with the deglacial rise in atmospheric CO2. Yet, a synchronous maximum in precipitation fostered estuarine overturning circulation in the South China Sea, in particular as long as the Borneo Strait was closed when sea level dropped below -40 m.

  9. Link between Indian monsoon rainfall and physical erosion in the Himalayan system during the Holocene

    NASA Astrophysics Data System (ADS)

    Joussain, Ronan; Liu, Zhifei; Colin, Christophe; Duchamp-Alphonse, Stéphanie; Yu, Zhaojie; Moréno, Eva; Fournier, Léa.; Zaragosi, Sébastien; Dapoigny, Arnaud; Meynadier, Laure; Bassinot, Franck

    2017-09-01

    Mineralogical and geochemical analyses conducted on cores located on the active channel-levee system of the northern Bengal Fan are used to establish changes in the weathering pattern and the sediment transport of the Himalayan system, and evaluate the effect of Indian summer monsoon rainfall during the Holocene. Our data indicate that during the Holocene, sediments from the northern Bengal Fan originate mainly from the G-B river system without any significant changes in the relative contribution of these rivers. From 9.8 to around 6 ka, relatively low smectite/(illite+chlorite) ratios and relatively high K/Si* ratios indicate high physical denudation rates of the Himalayan highlands together with a rapid transfer of the detrital material to the Bengal Fan. The period between 9.2 and 7 ka is associated to lower values of K/Si* and corresponds to the maximum of Indian monsoon rainfall which indicates a more important chemical weathering material that rapidly transits by the G-B river system without a long storage in the Indo-Gangetic plain. From 6.0 ka to present day, higher smectite/(illite+chlorite) ratio and lower K/Si* ratio document a gradual increase of sediments originated from the Indo-Gangetic plain, characterized by higher degree of chemical weathering. During the last 2.5 ka, the drastic increase in the smectite/(illite+chlorite) ratio could be associated to enhanced alteration of the plain soils due to anthropogenic activity. The comparison of mineralogical and geochemical data with previous reconstructions of the Indian monsoon dynamic indicates a rapid response of erosion and sediment transfer of the G-B river system to changes of monsoon rainfall intensity.

  10. Impacts of polar ice sheets on the East Asian monsoon during the MIS-13 interglacial

    NASA Astrophysics Data System (ADS)

    Shi, Feng; Yin, Qiuzhen; Nikolova, Irina; Guo, Zhengtang; Berger, Andre

    2017-04-01

    Among all the interglacials of the last one million years, Marine Isotope Stage (MIS) 13 has the highest δ18O value over the past 800 ka in the deep-sea sediments. This would indicate that MIS-13 is the coolest interglacial if assuming δ18O mainly represents global ice volume. The Antarctic ice core records show also that MIS-13 is the coolest interglacial over Antarctica with almost the lowest greenhouse gases concentrations (GHG). However, many proxy records from the northern hemisphere (NH) indicate that MIS-13 is at least as warm as or even warmer than the recent interglacials, with extremely strong summer monsoon and a possible melting of Greenland ice sheet. In this study, based on proxy reconstructions, different scenarios regarding the size of the Greenland and Antarctic ice sheets are made, and the response of the East Asian summer monsoon to these scenarios are tested by using the models HadCM3 and LOVECLIM as well as factor separation analysis and under the astronomical and GHG configurations of MIS-13. The results show that the influence of the disappearance of Greenland ice sheet on the surface temperature is quite localized, mainly over the northern high latitudinal regions, however, the influence of the bigger southern Hemisphere (SH) ice sheet on the surface temperature is very global, especially in the southern hemisphere. This ice sheet condition has an impact on the precipitation pattern over tropical-subtropical regions. It causes much more summer precipitation over all the East Asian monsoon region, in consistent with the paleosol record from southern China. The scenario of melted Greenland ice sheet and of larger SH ice sheets provides one of the explanations of the strong monsoon rainfall documented by the proxy data.

  11. First evidence of denitrification vis-à-vis monsoon in the Arabian Sea since Late Miocene.

    PubMed

    Tripathi, Shubham; Tiwari, Manish; Lee, Jongmin; Khim, Boo-Keun

    2017-02-21

    In the Arabian Sea, South Asian monsoon (SAM)-induced high surface water productivity coupled with poor ventilation of intermediate water results in strong denitrification within the oxygen minimum zone (OMZ). Despite the significance of denitrification in the Arabian Sea, we have no long-term record of its evolution spanning the past several million years. Here, we present the first record of denitrification evolution since Late Miocene (~10.2 Ma) in the Eastern Arabian Sea, where the SAM generates moderate surface water productivity, based on the samples retrieved during the International Ocean Discovery Program (IODP) Expedition 355. We find that (i) the SAM was persistently weaker from ~10.2 to 3.1 Ma; it did not intensify at ~8 Ma in contrast to a few previous studies, (ii) on tectonic timescale, both the SAM and the East Asian Monsoon (EAM) varied synchronously, (iii) the first evidence of denitrification and productivity/SAM intensification was at ~3.2-2.8 Ma that coincided with Mid-Pliocene Warm Period (MPWP), and (iv) the modern strength of the OMZ where denitrification is a permanent feature was attained at ~1.0 Ma.

  12. First evidence of denitrification vis-à-vis monsoon in the Arabian Sea since Late Miocene

    NASA Astrophysics Data System (ADS)

    Tripathi, Shubham; Tiwari, Manish; Lee, Jongmin; Khim, Boo-Keun; Pandey, Dhananjai K.; Clift, Peter D.; Kulhanek, Denise K.; Andò, Sergio; Bendle, James A. P.; Aharonovich, Sophia; Griffith, Elizabeth M.; Gurumurthy, Gundiga P.; Hahn, Annette; Iwai, Masao; Kumar, Anil; Kumar, A. Ganesh; Liddy, Hannah M.; Lu, Huayu; Lyle, Mitchell W.; Mishra, Ravi; Radhakrishna, Tallavajhala; Routledge, Claire M.; Saraswat, Rajeev; Saxena, Rakesh; Scardia, Giancarlo; Sharma, Girish K.; Singh, Arun D.; Steinke, Stephan; Suzuki, Kenta; Tauxe, Lisa; Xu, Zhaokai; Yu, Zhaojie

    2017-02-01

    In the Arabian Sea, South Asian monsoon (SAM)-induced high surface water productivity coupled with poor ventilation of intermediate water results in strong denitrification within the oxygen minimum zone (OMZ). Despite the significance of denitrification in the Arabian Sea, we have no long-term record of its evolution spanning the past several million years. Here, we present the first record of denitrification evolution since Late Miocene (~10.2 Ma) in the Eastern Arabian Sea, where the SAM generates moderate surface water productivity, based on the samples retrieved during the International Ocean Discovery Program (IODP) Expedition 355. We find that (i) the SAM was persistently weaker from ~10.2 to 3.1 Ma it did not intensify at ~8 Ma in contrast to a few previous studies, (ii) on tectonic timescale, both the SAM and the East Asian Monsoon (EAM) varied synchronously, (iii) the first evidence of denitrification and productivity/SAM intensification was at ~3.2-2.8 Ma that coincided with Mid-Pliocene Warm Period (MPWP), and (iv) the modern strength of the OMZ where denitrification is a permanent feature was attained at ~1.0 Ma.

  13. Teleconnections of ENSO and IOD to summer monsoon and rice production potential of India

    NASA Astrophysics Data System (ADS)

    Jha, Somnath; Sehgal, Vinay Kumar; Raghava, Ramesh; Sinha, Mourani

    2016-12-01

    Regional trend of summer monsoon precipitation has been analyzed for broad physical regions of India namely, (i) Indo-Gangetic plain, (ii) Central and East India, (iii) Coastal and Peninsular India and (iv) Western India. A significantly drying trend has been found in the two regions namely, Indo-Gangetic plain and Central and East India with comparative seasonal rate of drying higher in the latter region. A complex relation between the regional trend of summer monsoon precipitation, global teleconnection parameters and rice production of the regions have been studied. El Niño-Southern Oscillation (ENSO) and Indian Ocean dipole (IOD) have a significant role in the precipitation anomaly of Indo-Gangetic plain unlike Central and East India where the ENSO only plays role as global teleconnection parameter. Rice production of Central and East India has been found to be affected adversely during the El Nino years. Central and East India is found to be the worst affected region compared to the Indo-Gangetic plain with respect to its fragile rainfed rice production potential and strong adverse teleconnection of El Nino on the rice production in this zone.

  14. Intraseasonal Variability of the Indian Monsoon as Simulated by a Global Model

    NASA Astrophysics Data System (ADS)

    Joshi, Sneh; Kar, S. C.

    2018-01-01

    This study uses the global forecast system (GFS) model at T126 horizontal resolution to carry out seasonal simulations with prescribed sea-surface temperatures. Main objectives of the study are to evaluate the simulated Indian monsoon variability in intraseasonal timescales. The GFS model has been integrated for 29 monsoon seasons with 15 member ensembles forced with observed sea-surface temperatures (SSTs) and additional 16-member ensemble runs have been carried out using climatological SSTs. Northward propagation of intraseasonal rainfall anomalies over the Indian region from the model simulations has been examined. It is found that the model is unable to simulate the observed moisture pattern when the active zone of convection is over central India. However, the model simulates the observed pattern of specific humidity during the life cycle of northward propagation on day - 10 and day + 10 of maximum convection over central India. The space-time spectral analysis of the simulated equatorial waves shows that the ensemble members have varying amount of power in each band of wavenumbers and frequencies. However, variations among ensemble members are more in the antisymmetric component of westward moving waves and maximum difference in power is seen in the 8-20 day mode among ensemble members.

  15. Abrupt hydroclimate disruption across the Australian arid zone 50 ka coincident with human colonization

    NASA Astrophysics Data System (ADS)

    Miller, G. H.; Fogel, M. L.; Magee, J. W.; Gagan, M. K.

    2016-12-01

    Although many studies focus on how climate change impacted ancient societies, in Australia a growing body of evidence indicates that activities of the earliest human colonizers in turn altered the Australian climate. We utilize the stable isotopes of carbon and oxygen preserved in near-continuous 100 ka time series of avian eggshell from five regions across the Australian arid zone to reconstruct ecosystem status (d13C) and effective moisture (d18O). Training sets of sub-modern samples provide the basis for the reconstructions. Together, d13C and d18O provide independent estimates of ecosystem status and climate over the past 100 ka from the same dated sample, reducing correlation uncertainties between proxies. Changes in eggshell d13C document a dramatic reduction of palatable summer-wet C4 grasses in all regions between 50 and 45 ka, that has persisted through to modern times. Continuous 100 ka records of effective moisture derived from eggshell d18O show moist conditions from 100 to 60 ka, with variable drying after 60 ka, but the strong shift toward greatest aridity is coincident with the onset of the last glacial maximum 30 ka ago, 15 ka after the observed ecosystem restructuring. Combining the d13C and d18O time-series shows that an abrupt and permanent restructuring of the moisture/ecosystem balance occurred between 50 and 45 ka. Additional studies show that most large monsoon-fed inland arid-zone lakes carried permanent water at least intermittently between 120 and 50 ka, but never experienced permanent deep-water status after 45 ka, despite a wide range of global climate states, including the early Holocene when most other monsoon systems were reinvigorated. The lack of exceptional climate shifts either locally or globally between 60 and 40 ka eliminates climate as the cause of the ecosystem restructuring and persistent lake desiccation. Collectively these data suggest the wave of human colonization across Australia in altered land surface characteristics in a way that reduced the efficiency of the climate system to deliver monsoon moisture to the continental interior. This explanation will now be tested with climate modeling.

  16. Catastrophic Drought in the Afro-Asian Monsoon Region During Heinrich Event 1

    NASA Astrophysics Data System (ADS)

    Stager, J. Curt; Ryves, David B.; Chase, Brian M.; Pausata, Francesco S. R.

    2011-03-01

    Between 15,000 and 18,000 years ago, large amounts of ice and meltwater entered the North Atlantic during Heinrich stadial 1. This caused substantial regional cooling, but major climatic impacts also occurred in the tropics. Here, we demonstrate that the height of this stadial, about 16,000 to 17,000 years ago (Heinrich event 1), coincided with one of the most extreme and widespread megadroughts of the past 50,000 years or more in the Afro-Asian monsoon region, with potentially serious consequences for Paleolithic cultures. Late Quaternary tropical drying commonly is attributed to southward drift of the intertropical convergence zone, but the broad geographic range of the Heinrich event 1 megadrought suggests that severe, systemic weakening of Afro-Asian rainfall systems also occurred, probably in response to sea surface cooling.

  17. Living (Rose-Bengal-stained) benthic foraminiferal faunas along a strong bottom-water oxygen gradient on the Indian margin (Arabian Sea)

    NASA Astrophysics Data System (ADS)

    Caulle, C.; Mojtahid, M.; Gooday, A. J.; Jorissen, F. J.; Kitazato, H.

    2015-08-01

    Rose-Bengal-stained foraminiferal assemblages (> 150 μm) were analysed along a five-station bathymetric transect across the core and the lower part of the oxygen minimum zone (OMZ) on the Indian margin of the Arabian Sea. Sediment cores were collected using the manned submersible Shinkai 6500 during the RV Yokosuka cruise YK08-11 in the post-monsoon season (October 2008) at water depths ranging from 535 to 2000 m, along a gradient from almost anoxic to well-oxygenated (0.3 to 108 μM) bottom waters. Stained benthic foraminifera were investigated from two different size fractions (150-300 μm and > 300 μm). Stained foraminiferal densities were very high in the core of the OMZ (at 535 and 649 m) and decreased at deeper sites. The faunas (> 150 μm) were dominated (40-80 %) by non-calcareous taxa at all stations. These were mainly species of Reophax and Lagenammina but also included delicate monothalamous taxa (organic-walled "allogromiids", agglutinated saccamminids, psammosphaerids and tubular forms). These new data from the Indian margin are compared to previous studies from the Murray Ridge, the Pakistan margin and the Oman margin. The fact that similar species were found at sites with comparable bottom-water oxygen concentrations but with very different surface water productivity suggests that, within the strongly developed Arabian Sea OMZ, bottom-water oxygen concentration, and not the organic flux to the sea floor, is the main factor controlling the species composition of the foraminiferal communities. Several foraminiferal species (e.g. Praeglobobulimina sp. 1, Ammodiscus sp. 1, Bolivina aff. dilatata) were confined to the core of the OMZ. These species are presently known only from the Arabian Sea. Because of their association with extremely low oxygen concentrations, these species may be good markers for very low oxygen concentrations, and could be used to reconstruct past OMZ variability in the Arabian Sea.

  18. Assessing the Effects of Climate on Global Fluvial Discharge Variability

    NASA Astrophysics Data System (ADS)

    Hansford, M. R.; Plink-Bjorklund, P.

    2017-12-01

    Plink-Bjorklund (2015) established the link between precipitation seasonality and river discharge variability in the monsoon domain and subtropical rivers (see also Leier et al, 2005; Fielding et al., 2009), resulting in distinct morphodynamic processes and a sedimentary record distinct from perennial precipitation zone in tropical rainforest zone and mid latitudes. This study further develops our understanding of discharge variability using a modern global river database created with data from the Global Runoff Data Centre (GRDC). The database consists of daily discharge for 595 river stations and examines them using a series of discharge variability indexes (DVI) on different temporal scales to examine how discharge variability occurs in river systems around the globe. These indexes examine discharge of individual days and monthly averages that allows for comparison of river systems against each other, regardless of size of the river. Comparing river discharge patterns in seven climate zones (arid, cold, humid subtropics, monsoonal, polar, rainforest, and temperate) based off the Koppen-Geiger climate classifications reveals a first order climatic control on discharge patterns and correspondingly sediment transport. Four groupings of discharge patterns emerge when coming climate zones and DVI: persistent, moderate, seasonal, and erratic. This dataset has incredible predictive power about the nature of discharge in fluvial systems around the world. These seasonal effects on surface water supply affects river morphodynamics and sedimentation on a wide timeframe, ranging from large single events to an inter-annual or even decadal timeframe. The resulting sedimentary deposits lead to differences in fluvial architecture on a range of depositional scales from sedimentary structures and bedforms to channel complex systems. These differences are important to accurately model for several reasons, ranging from stratigraphic and paleoenviromental reconstructions to more economic reasons, such as predicting reservoir presence, distribution, and connectivity in continental basins. The ultimate objective of this research is to develop differentiated fluvial facies and architecture based on the observed discharge patterns in the different climate zones.

  19. A last glacial and deglacial pollen record from the northern South China Sea: New insight into coastal-shelf paleoenvironment

    NASA Astrophysics Data System (ADS)

    Yu, Shaohua; Zheng, Zhuo; Chen, Fang; Jing, Xia; Kershaw, Peter; Moss, Patrick; Peng, Xuechao; Zhang, Xin; Chen, Chixin; Zhou, Yang; Huang, Kangyou; Gan, Huayang

    2017-02-01

    This study presents a marine palynological record of the Asian summer monsoon and sea level change in the Last Glacial Maximum (LGM) and the deglacial period in the northern South China Sea (SCS). A fossil core STD 235 (855 cm in length) and 273 surface sediment samples from the northern SCS were pollen analysed to reconstruct the paleoenvironment of the continental shelf during the last glacial period. Results from fossil pollen show that the main pollen source region fundamentally changed from the LGM to the deglacial period as sea level rapidly rose. The modern marine surface samples show that pollen concentrations in the estuary of the Pearl River are extremely high, and modern pollen assemblages are in good agreement with the regional vegetation. However, wind transport becomes more important in the deeper ocean as the percentages of Pinus, a taxon with very high pollen production and dispersal capacity, is highest in these sediments, which otherwise have very low pollen concentrations. The concentration of total pollen between surface and fossil pollen samples is compared in order to determine the possible vegetation sources areas for the marine core. Pollen concentration as high as >100 grains/g at the LGM suggested that the paleo-shoreline was located within 80 km of the core. Consequently, pollen would mostly have derived from the exposed continental shelf in the northern SCS. By contrast, pollen concentrations were very low due to a much greater transport distance (318 km at present, core STD 235) under higher sea levels, and windblown pollen played a more important role because of the limitation of riverine input into the deep ocean during this highstand period. Such alternation of pollen flux and source distance should be repeated during all glacial-interglacial cycles, reflecting closely sea level and climate dynamics. According to fossil pollen assemblages from Core STD 235, we conclude that wetland and/or grassland communities with sparse subtropical trees dominated most of the exposed shelf during the LGM rather than forest that characterizes the region today. The existence of a predominantly open landscape on the exposed continental shelf suggests lower precipitation during the LGM, which in turn indicates a weaker Asian summer monsoon. This finding is supported by other records from the Okinawa Trough and the East China Sea, suggesting that a weaker summer monsoon was a key characteristic of the LGM in East Asia.

  20. The Damage and Geochemical Signature of a Crustal Scale Strike-Slip Fault Zone

    NASA Astrophysics Data System (ADS)

    Gomila, R.; Mitchell, T. M.; Arancibia, G.; Jensen Siles, E.; Rempe, M.; Cembrano, J. M.; Faulkner, D. R.

    2013-12-01

    Fluid-flow migration in the upper crust is strongly controlled by fracture network permeability and connectivity within fault zones, which can lead to fluid-rock chemical interaction represented as mineral precipitation in mesh veins and/or mineralogical changes (alteration) of the host rock. While the dimensions of fault damage zones defined by fracture intensity is beginning to be better understood, how such dimensions compare to the size of alteration zones is less well known. Here, we show quantitative structural and chemical analyses as a function of distance from a crustal-scale strike-slip fault in the Atacama Fault System, Northern Chile, to compare fault damage zone characteristics with its geochemical signature. The Jorgillo Fault (JF) is a ca. 18 km long NNW striking strike-slip fault cutting Mesozoic rocks with sinistral displacement of ca. 4 km. In the study area, the JF cuts through orthogranulitic and gabbroic rocks at the west (JFW) and the east side (JFE), respectively. A 200 m fault perpendicular transect was mapped and sampled for structural and XRF analyses of the core, damage zone and protolith. The core zone consists of a ca. 1 m wide cataclasite zone bounded by two fault gouge zones ca. 40 cm. The damage zone width defined by fracture density is ca. 50 m wide each side of the core. The damage zone in JFW is characterized by NW-striking subvertical 2 cm wide cataclastic rocks and NE-striking milimetric open fractures. In JFE, 1-20 mm wide chlorite, quartz-epidote and quartz-calcite veins, cut the gabbro. Microfracture analysis in JFW reveal mm-wide cataclasitic/ultracataclasitic bands with clasts of protolith and chlorite orientated subparallel to the JF in the matrix, calcite veins in a T-fractures orientation, and minor polidirectional chlorite veins. In JFE, chlorite filled conjugate fractures with syntaxial growth textures and evidence for dilational fracturing processes are seen. Closest to the core, calcite veins crosscut chlorite veins. Whole-rock XRF analyses show Al and Ca content decrease with increasing Si, whereas Na increases towards the core. This can be interpreted as compositional changes of plagioclase to albite-rich ones due to chloritic-propylitic alteration. In the damage zone, LOI increases towards the core but decreases inside of it. This is explained by H2O-rich clays and gypsum in the fault core boundary represented as fault gouge zones whereas in the cataclastic core zone, the decrease in LOI is explained by epidote. Our results show the JF had an evolving permeability structure where a cataclasite-rich core is formed at an early stage, and then a gouge-bounded core is developed which acted as a barrier to fluid from east to west of the fault.

  1. Wetland evolution in the Qinghai Lake area, China, in response to hydrodynamic and eolian processes during the past 1100 years

    NASA Astrophysics Data System (ADS)

    Yan, Dada; Wünnemann, Bernd; Hu, Yanbo; Frenzel, Peter; Zhang, Yongzhan; Chen, Kelong

    2017-04-01

    The Daotanghe riverine wetland in close proximity to the Qinghai Lake was investigated to demonstrate the interrelationships between Qinghai Lake hydrodynamic processes, eolian mobility and ecological conditions during the past 1100 years in response to climate change. We used ostracod assemblages from various sites east of Qinghai Lake and from the sediment core QW15 of Daotanghe Pond and combined them with grain size and geochemical data from the same core. The statistical extraction of grain size endmembers (EM) revealed three different transportation processes responsible for pond-related fluvio-lacustrine, pure fluvial and eolian deposits. Identified seasonal effects (eolian mobility phase) and timing of ice cover are possible tracers for the competing influence between the Asian summer monsoon and the Westerlies in the Daotanghe Wetland and surrounding area. Our results show that ostracod associations and sediment properties are evidence of a fluvio-lacustrine fresh water environment without ingression of Qinghai Lake into the wetland. Hydrodynamic variations coupled with phases of eolian input indicate highly variable water budgets in response to climate-induced effective moisture supply. The Medieval Warm Period (MWP) until about 1270 CE displays generally moist and warm climate conditions with minor fluctuations, likely in response to variations in summer monsoon intensity. The three-partite period of the Little Ice Age (LIA), shows hydrologically unstable conditions between 1350 and 1530 CE with remarkably colder periods, assigned to a prolonged seasonal ice cover. Pond desiccation and replacement by fluvial deposits occurred between 1530 and 1750 CE, superimposed by eolian deposits. The phase 1730-1900 CE is recorded by the re-occurrence of a pond environment with reduced eolian input. Principal Component Analysis (PCA) on ostracod abundances shows similar trends. All three phases of the LIA developed during a weak summer monsoon influence, favoring westerly-derived climate conditions until ca. 1850 CE, in accordance with records from the adjacent regions. Seasonal freezing periods in excess of the average time of frozen water bodies also occurred in periods of the well-known grand solar minima and indicate stronger seasonality, possibly independent from variations in summer monsoon strength but with links to global northern hemispheric climate.

  2. Differences in quantitative assessment of myocardial scar and gray zone by LGE-CMR imaging using established gray zone protocols.

    PubMed

    Mesubi, Olurotimi; Ego-Osuala, Kelechi; Jeudy, Jean; Purtilo, James; Synowski, Stephen; Abutaleb, Ameer; Niekoop, Michelle; Abdulghani, Mohammed; Asoglu, Ramazan; See, Vincent; Saliaris, Anastasios; Shorofsky, Stephen; Dickfeld, Timm

    2015-02-01

    Late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) imaging is the gold standard for myocardial scar evaluation. Heterogeneous areas of scar ('gray zone'), may serve as arrhythmogenic substrate. Various gray zone protocols have been correlated to clinical outcomes and ventricular tachycardia channels. This study assessed the quantitative differences in gray zone and scar core sizes as defined by previously validated signal intensity (SI) threshold algorithms. High quality LGE-CMR images performed in 41 cardiomyopathy patients [ischemic (33) or non-ischemic (8)] were analyzed using previously validated SI threshold methods [Full Width at Half Maximum (FWHM), n-standard deviation (NSD) and modified-FWHM]. Myocardial scar was defined as scar core and gray zone using SI thresholds based on these methods. Scar core, gray zone and total scar sizes were then computed and compared among these models. The median gray zone mass was 2-3 times larger with FWHM (15 g, IQR: 8-26 g) compared to NSD or modified-FWHM (5 g, IQR: 3-9 g; and 8 g. IQR: 6-12 g respectively, p < 0.001). Conversely, infarct core mass was 2.3 times larger with NSD (30 g, IQR: 17-53 g) versus FWHM and modified-FWHM (13 g, IQR: 7-23 g, p < 0.001). The gray zone extent (percentage of total scar that was gray zone) also varied significantly among the three methods, 51 % (IQR: 42-61 %), 17 % (IQR: 11-21 %) versus 38 % (IQR: 33-43 %) for FWHM, NSD and modified-FWHM respectively (p < 0.001). Considerable variability exists among the current methods for MRI defined gray zone and scar core. Infarct core and total myocardial scar mass also differ using these methods. Further evaluation of the most accurate quantification method is needed.

  3. Effects of Arctic geoengineering on precipitation in the tropical monsoon regions

    NASA Astrophysics Data System (ADS)

    Nalam, Aditya; Bala, Govindasamy; Modak, Angshuman

    2017-07-01

    Arctic geoengineering wherein sunlight absorption is reduced only in the Arctic has been suggested as a remedial measure to counteract the on-going rapid climate change in the Arctic. Several modeling studies have shown that Arctic geoengineering can minimize Arctic warming but will shift the Inter-tropical Convergence Zone (ITCZ) southward, unless offset by comparable geoengineering in the Southern Hemisphere. In this study, we investigate and quantify the implications of this ITCZ shift due to Arctic geoengineering for the global monsoon regions using the Community Atmosphere Model version 4 coupled to a slab ocean model. A doubling of CO2 from pre-industrial levels leads to a warming of 6 K in the Arctic region and precipitation in the monsoon regions increases by up to 15%. In our Arctic geoengineering simulation which illustrates a plausible latitudinal distribution of the reduction in sunlight, an addition of sulfate aerosols (11 Mt) in the Arctic stratosphere nearly offsets the Arctic warming due to CO2 doubling but this shifts the ITCZ southward by 1.5° relative to the pre-industrial climate. The combined effect from this shift and the residual CO2-induced climate change in the tropics is a decrease/increase in annual mean precipitation in the Northern Hemisphere/Southern Hemisphere monsoon regions by up to -12/+17%. Polar geoengineering where sulfate aerosols are prescribed in both the Arctic (10 Mt) and Antarctic (8 Mt) nearly offsets the ITCZ shift due to Arctic geoengineering, but there is still a residual precipitation increase (up to 7%) in most monsoon regions associated with the residual CO2 induced warming in the tropics. The ITCZ shift due to our Global geoengineering simulation, where aerosols (20 Mt) are prescribed uniformly around the globe, is much smaller and the precipitation changes in most monsoon regions are within ±2% as the residual CO2-induced warming in the tropics is also much less than in Arctic and Polar geoengineering. Further, global geoengineering nearly offsets the Arctic warming. Based on our results we infer that Arctic geoengineering leads to ITCZ shift and leaves residual CO2 induced warming in the tropics resulting in substantial precipitation decreases (increases) in the Northern (Southern) hemisphere monsoon regions.

  4. A world-class target for ICDP drilling at Lake Nam Co, Tibetan Plateau, China: progresses and perspectives

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Wang, J.; Daut, G.; Spiess, V.; Haberzettl, T.; Schulze, N.; Ju, J.; Lü, X.; Bergmann, F.; Haberkern, J.; Schwalb, A.; Mäusbacher, R.

    2017-12-01

    Lake Nam Co (ca. 2000 km2, 4718 m a.s.l., maximum depth: 100 m) is located at the interaction zone of the Westerlies and the Indian monsoon on the central Tibetan Plateau. It was part of a mega-lake during Marine Isotope Stage (MIS) 3 before the Last Glacial Maximum. A long term sedimentary record from Nam Co could therefore provide an excellent paleo-environmental sequence for regional and global comparative studies. This will to deepen our understanding of large scale atmospheric circulation shifts and the environmental links between the Tibetan Plateau at low latitudes and the North Atlantic region at high latitudes. A Nam Co deep drilling will fill the gap in two large scale ICDP/IODP drilling transects (N-S: Lake Baikal, Lake Qinghai, Bay of Bengal; W-E: Lake Van, Lake Issyk-Kul, South China Sea, Lake Towuti), which will show the great significance of monsoon dynamics on a long-term scale. Multidisciplinary researches have been conducted since 2005 by a Sino-German cooperative team. The progresses during the last decade are: 1) Detailed bathymetric surveying, including a shallow sediment profiler investigation (Innomar SES 2000 light, ca. 30 m sediment penetration); 2) Paleo-environmental reconstructions covering the past 24 ka; 3) Modern sediment distribution covering the entire lake; 4) Monitoring including water temperature profiles, sediment traps, seasonal airborne pollen collection; 5) Deep seismic survey penetrating up to 800 meters of lake sediments. Based on sediment rates from reference core NC08/01, seismic results show that an age of 500 ka may be reached at 500 m, and >1 Ma at the observed base. Faulting can be clearly detected in the seismic profiles, especially from MIS 5 to early Holocene, and shows the characteristics of normal faults or strike-slip faults. Both rotation of the layers and the close spacing, along with negative and positive offsets of the faults make a transtensional origin of the basin likely. An ICDP workshop proposal was approved this year (ID: ICDP-2017/10, http://www.icdp-online.org/projects/world/asia/lake-nam-co/). The workshop will likely be held in May 2018 in Beijing, where future scientific objectives, potential coring locations and logistics of a drilling campaign will be intensively discussed to ensure a successful drilling campaign in the near future.

  5. Sediment Buffering and Transport in the Holocene Indus River System

    NASA Astrophysics Data System (ADS)

    Clift, P. D.; Giosan, L.; Henstock, T.; Tabrez, A. R.; Vanlaningham, S.; Alizai, A. H.; Limmer, D. R.; Danish, M.

    2009-12-01

    Submarine fans are the largest sediment bodies on Earth and potentially hold records of erosion that could be used to assess the response of continents to changing climate in terms of both physical erosion and chemical weathering. However, buffering between the mountain sources and the abyssal plain may make detailed correlation of climate and erosion records difficult. We investigated the nature of sediment transport in the Indus drainage in SW Asia. Through trenching in the flood plain, drilling in the delta and new seismic and coring data from the shelf and canyon we can now constrain sediment transport from source to sink since the Last Glacial Maximum (LGM). The Indus was affected by intensification of the summer monsoon during the Early Holocene and subsequent weakening since ca. 8 ka. Sediment delivery to the delta was very rapid at 12-8 ka, but slowed along with the weakening monsoon. At the LGM erosion in the Karakoram dominated the supply of sandy material, while the proportion of Lesser Himalayan flux increased with strengthening summer rainfall after 12 ka. Total load also increased at that time. Since 5 ka incision of rivers into the upper parts of the flood plain has reworked Lower Holocene sediments, although the total flux slowed. Coring in the Indus canyon shows that sediment has not reached the lower canyon since ca. 7 ka, but that sedimentation has recently been very rapid in the head of the canyon. We conclude that variations in sealevel and terrestrial climate have introduced a lag of at least 7 k.y. into the deep sea fan record and that monsoon strength is a primary control on whether sediment is stored or released in the flood plain.

  6. North-African paleodrainage discharges to the central Mediterranean during the last 18,000 years: A multiproxy characterization

    NASA Astrophysics Data System (ADS)

    Wu, Jiawang; Liu, Zhifei; Stuut, Jan-Berend W.; Zhao, Yulong; Schirone, Antonio; de Lange, Gert J.

    2017-05-01

    Using elemental geochemistry, clay mineralogy, grain size end-member modeling, and planktonic foraminiferal δ18O, we characterize the provenance of central-Mediterranean sediments over the past 18 ka. The provenance is dust-dominated before and after the African Humid Period (AHP). By contrast, during the AHP (∼11-5 ka), largely concurrent with organic-rich sapropel S1 formation, it is predominantly riverine from North-African sources. Such fluvial supply is suggested to come from paleodrainage networks that were reactivated by intensified monsoon precipitation during the AHP. The supply is characterized by high Mg/Al and smectite contents, and has been accompanied by considerable freshwater influx, as indicated by the enhanced grain size and lighter foraminiferal δ18O. The clay-mineral assemblages in our core and in nearby cores correspond with a provenance from the Libyan-Tunisian margin, mainly via the paleo-river Irharhar. The inferred fluvial discharge is strongest during the late-AHP (∼8-5.5 ka), coinciding with reported enhanced fluvial dynamics and wettest conditions over western Libya and Tunisia/Algeria. This period is not only synchronous with the largest extension of open-water bodies in North Africa and lowest Saharan dust inputs, but also consistent with precipitation records of the West-African monsoon. Moreover, our records show a remarkable correspondence with that of a paleodrainage system towards the Atlantic West-African margin, inferring a common headwater region in the central Saharan mountains, and a similar climate mechanism. Taken together, we suggest a dominant control of North-African humid surfaces on the paleodrainage delivery, modulated by groundwater level, in response to the insolation-driven West-African monsoon precipitation.

  7. A long-term vegetation history of the Mojave-Colorado Desert ecotone at Joshua Tree National Park

    USGS Publications Warehouse

    Holmgren, Camille A.; Betancourt, Julio L.; Rylander, Kate A.

    2010-01-01

    Thirty-eight dated packrat middens were collected from upper desert (930–1357 m) elevations within Joshua Tree National Park near the ecotone between the Mojave Desert and Colorado Desert, providing a 30 ka record of vegetation change with remarkably even coverage for the last 15 ka. This record indicates that vegetation was relatively stable, which may reflect the lack of invasion by extralocal species during the late glacial and the early establishment and persistence of many desert scrub elements. Many of the species found in the modern vegetation assemblages were present by the early Holocene, as indicated by increasing Sørenson's Similarity Index values. C4 grasses and summer-flowering annuals arrived later at Joshua Tree National Park in the early Holocene, suggesting a delayed onset of warm-season monsoonal precipitation compared to other Sonoran Desert and Chihuahuan Desert localities to the east, where summer rains and C4 grasses persisted through the last glacial–interglacial cycle. This would suggest that contemporary flow of monsoonal moisture into eastern California is secondary to the core processes of the North American Monsoon, which remained intact throughout the late Quaternary. In the Holocene, northward displacement of the jet stream, in both summer and winter, allowed migration of the subtropical ridge as far north as southern Idaho and the advection of monsoonal moisture both westward into eastern California and northward into the southern Great Basin and Colorado Plateau.

  8. Sedimentary record on the Indian Summer Monsoon since the Last Glacial Maximum: Evidence from the southeastern Andaman Sea

    NASA Astrophysics Data System (ADS)

    Shi, Xuefa; Liu, Shengfa; Cao, Peng; Khokiattiwong, Somkiat; Kornkanitnan, Narumol

    2016-04-01

    The Indian Summer Monsoon (ISM) generated by across-equatorial pressure gradient between the Asian continent and the southern Indian Ocean is a major component of the Asian monsoon system and establishes interactions among the ocean, land and atmosphere. Provenance and paleoclimate changes in the Andaman Sea during the last 26 ka were reconstructed from high-resolution records of grain-size, major elements and Sr-Nd isotopes in core ADM-9. The values of ɛNd(0) and 87Sr/86Sr were in good agreement with those of Irrawaddy River sediments, indicating a common source of origin. Two sensitive grain-size intervals (3.4-7.5 and 16.8-21.2 μm) were identified; the former was controlled primarily by sea-level change, whereas the latter was related to Irrawaddy River discharge and South-west Current transport driven by the ISM. Proxies of chemical weathering (K/Al) and terrigenous input (Ti/Ca) coupled with sensitive grain-size interval (16.8-21.2 μm population) revealed that the ISM was weak during ~15-26 ka BP and then strengthened gradually to a maximum during ~7-9 ka BP; subsequently, the ISM exhibited a generally declining trend to ~2 ka BP. The variation of the ISM recorded in this work is consistent with ISM variations observed in an open area in the northern Indian Ocean and in adjacent continents, implying the evolution of the Asia summer monsoon since 26 ka.

  9. Possible impacts of the pre-monsoon dry line and sea breeze front on nocturnal rainfall over northeast Bangladesh

    NASA Astrophysics Data System (ADS)

    Stiller-Reeve, Mathew; Toniazzo, Thomas; Kolstad, Erik; Spengler, Thomas

    2017-04-01

    The northeast region of Bangladesh receives a large amount of rainfall before the large-scale monsoon circulation begins. For example, in April (a "pre-monsoon" month) 2010, 804 mm of rain fell in the regional capital Sylhet. It was the second wettest month of the entire year. From our conversations with the local people, we know that this pre-monsoon rainfall is extremely important to their livelihoods. We therefore need to understand it's triggering mechanisms. Several theories have been published, all of which are likely to be at play. However, in this work we look more closely at how the sea breeze front and prominent pre-monsoonal dry line in this region may play a role. If these mechanisms play a role in the convection, then it is likely that they trigger convection further afield, and then the resulting systems then propagate towards northeast Bangladesh. We believe this because rainfall associated with dry line/sea-breeze front convection often occurs during the late afternoon, but the rainfall over northeast Bangladesh shows a clear late-night/early-morning maxima. At present, the temporal and spatial resolution of the regional observations is inappropriate for examining these possible mechanisms. We therefore use a numerical model (WRF) to investigate the possible links between the convection and the sea breeze front and dry line. We use April 2010 as a case study since it was such a wet pre-monsoon month. The simulation shows that a sea breeze circulation often develops during the day in the coastal zone of Bangladesh and northeast India. After sunset the sea breeze front propagates inland pushing back the hot, dry air over India. On several days during the simulation, convection is triggered along the sea breeze front, which then propagates towards northeast Bangladesh and intensifies across the topography surrounding the Sylhet region. From our simulations, it appears that nocturnal convection over northeast Bangladesh is triggered by several mechanisms, but that the dry line and sea breeze front could also be an active contributor.

  10. Indian Monsoon and denitrification change in the Laxmi Basin (IODP Exp. 355 Site U1456) of the Eastern Arabian Sea during the last 800 kyrs

    NASA Astrophysics Data System (ADS)

    Kim, J. E.; Khim, B. K.; Ikehara, M.; Lee, J.

    2017-12-01

    The Arabian Sea is a famous site for the basin-wide denitrification in the globe. The Western Arabian Sea has been acknowledged by its upwelling-induced denitrification related to the Indian Monsoon system (Altabet et al., 1999). It was recently reported that the denitrification in the Eastern Arabian Sea (IODP Exp. 355 Site U1456) has been persistent and consistent during the mid-Pleistocene as reflected in the bulk sediment δ15N values (Tripathi et al., 2017). Based on the age model reconstructed by δ18O stratigraphy of planktonic foraminifera (Globigerinoides ruber) together with shipboard biostratigraphic and paleomagnetic data at Site U1456 drilled in the Laxmi Basin of the Eastern Arabian Sea, the glacial-interglacial fluctuations of denitrification in association with the development of oxygen minimum zone (OMZ) were resolved in the context of Indian Monsoon activity. One of striking features in the Eastern Arabian Sea is that the δ15N values of bulk sediment show clear and consistent denitrification with minimum δ15N values exceeding 6‰ even during glacial periods, when its western counterpart experienced a temporal collapse of OMZ and denitrification. The Eastern Arabian Sea is fed not only by the upwelling-induced productivity in the western margin during the summer monsoon but also by the high productivity during the winter monsoon, both of which maintain the increased productivity affecting the OMZ through the consumption of dissolved oxygen by the degradation of sinking organic particles. The Eastern Arabian Sea is further influenced by the clockwise surface currents, intermediate water ventilation change by the blockage of Antarctic Intermediate Water, limited inflow from the Red Sea/Persian Gulf, and the freshwater salinity stratification due to nearby riverine discharges, all of which make the denitrification process more complicated than the Western Arabian Sea. Nonetheless, the glacial-interglacial denitrification change in the Eastern Arabian Sea is interpreted to be linked strongly with the intensity of Indian Monsoon.

  11. Decadal record of monsoon dynamics across the Himalayas using tree ring data

    NASA Astrophysics Data System (ADS)

    Brunello, Camilla Francesca; Andermann, Christoff; Helle, Gerhard; Comiti, Francesco; Tonon, Giustino; Ventura, Maurizio; Hovius, Niels

    2017-04-01

    The temporal variability of the Indian monsoon penetrating through the Himalayan range and into the southern Tibetan Plateau is poorly understood. Intermittent ingress of wet monsoon air masses into the otherwise arid and deserted landscapes beyond the orographic barrier can have consequences for erosion and flooding, as well as for water availability. Furthermore, the latitudinal rainfall distribution across the mountain range is crucial to better understand the hydrological cycles of rivers originating there. Because instrumental measurements are rare in the High Himalayas and on the Plateau, hydro-climatic sensitive proxies, such as oxygen stable isotope ratios in cellulose of tree-rings, are a valuable source of data covering decades to centuries. Here we present new findings on how often and how far the Indian monsoon penetrated into trans-Himalayan region over the last century. To cope with the lack of direct measurements, we strive to reconstruct a record of intense monsoon years based on tree-ring width chronologies along a latitudinal gradient. Thus, we need to answer whether water availability is the main driver of tree growth in the trans-Himalayan region and how dendro-isotopic data relate to seasonal precipitation inputs and sources. In order to study the monsoon dynamics, we selected four sites along the Kali Gandaki River valley in the central Himalayas (Nepal). This valley connects the very wet, monsoon dominated south Himalayan front with the arid trans-Himalayan region and the southern Tibetan Plateau. Our study area covers the sensitive northern end of the precipitation gradient, located in the upper part of the catchment. Water availability, which drastically varies at each site, was explored by using the climate signal- and isotope-transfer within arboreal systems composed of Juniperus sp., Cupressus sp. and Pinus sp. Results from continuous dendrometer measurements for the entire growing season (Mar-Oct) allowed us to assess the link between tree growth and precipitation, confirming the sensitivity of the trees to water availability. A set of cores from at least 20 individual trees was collected at each site. Dating revealed records with lengths from 80 to 500 years. Tree-ring width measurements were detrended to minimize the ecological influence on growth, and analyzed against local climate parameters such as temperature and precipitation. The site chronologies were compared to highlight the propagation of the monsoonal events along the latitudinal transect. Additionally, 80-year tree-ring oxygen isotope records from the lowest site (Lete, 2500 m a.s.l.) of the transect were compared with precipitation patterns derived from historical rain gauge and satellite data. This study provides first insights into the relationship among tree-ring width, cellulose isotopes and monsoon signature, shedding light on decadal variations of precipitation in the high-elevated arid area of the High Himalayas.

  12. Process to make core-shell structured nanoparticles

    DOEpatents

    Luhrs, Claudia; Phillips, Jonathan; Richard, Monique N

    2014-01-07

    Disclosed is a process for making a composite material that contains core-shell structured nanoparticles. The process includes providing a precursor in the form of a powder a liquid and/or a vapor of a liquid that contains a core material and a shell material, and suspending the precursor in an aerosol gas to produce an aerosol containing the precursor. In addition, the process includes providing a plasma that has a hot zone and passing the aerosol through the hot zone of the plasma. As the aerosol passes through the hot zone of the plasma, at least part of the core material and at least part of the shell material in the aerosol is vaporized. Vapor that contains the core material and the shell material that has been vaporized is removed from the hot zone of the plasma and allowed to condense into core-shell structured nanoparticles.

  13. Comparison of the timings between abrupt climate changes in Greenland, Antarctica, China and Japan based on robust correlation using Lake Suigetsu as a template.

    NASA Astrophysics Data System (ADS)

    Nakagawa, T.

    2014-12-01

    High-resolution pollen-derived climate records from Lake Suigetsu varved sediment core were compared with climate archives from other regions and revealed a particular spatio-temporal structure of the monsoon climate change during so-called D-O events. Leads and lags of the climate change between different regions hold the key to understand the climate system. However, robust assessment of the relative timing of the climate change is often very challenging because correlation of the climatic archives from different regions often has inevitable uncertainties. Greenland and Cariaco basin, for example, provide two of the most frequently sited palaeoclimatic proxy data representative of the high- and low-latitudinal Atlantic regions. However, robust correlation of the records from those regions is difficult because of the uncertainties in layer countings, lack of the radiocarbon age control from ice cores, marine reservoir age of the Cariaco sediments, and the absence of the tephra layers shared by both cites. Similarly, Speleothem and ice core records are not robustly correlated to each other, either for the dead carbon fraction in the speleothems and lack of reliable correlation markers. The generally accepted hypothesis of synchronous climate change between China and the Greenland is, therefore, essentially hypothetical. Lake Suigetsu provides solution to this problem. The lake Suigetsu chronology is supposed to be coherent to the speleothems' U-Th age scale. Suigetsu's semi-continuous radiocarbon dataset, which constitutes major component of the IntCal13 radiocarbon calibration model, also provides opportunity to correlate lake Suigetsu and the Greenland and Antarctic ice cores using cosmogenic isotopes as the correlation key. Results of the correlation and timing comparison, which cast new lights to the mechanism of the monsoon change, will be presented.

  14. Recent sedimentary records from the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Somayajulu, B. L. K.; Yadav, D. N.; Sarin, M. M.

    1994-06-01

    An attempt is made to understand the redox conditions that prevailed in the north eastern continental margins of the Arabian Sea and in the nearby deep water regions during the past few centuries using short undisturbed sediment cores. The geochronology is accomplished using210Pb excess method and the proxy indicators chosen for productivity and associated redox changes are CaCO3, organic matter (OM), Mn and U along with major elements Fe and Al. Such changes in principle are related to high productivity in the overlying waters which in turn depend on monsoonal intensity that causes upwelling responsible for increase in productivity. Alongwith the published data on gravity cores from the same region, our measurements suggest the following: At ˜ 300 m water depth, south of 21°N, the sediment-water interface at depths of ˜ 300 m had been anoxic during the time span represented by the presently studied cores for approximately ˜ 700y as evidenced by low Mn/Al (< 0.7 × 10-2) and high U/Al (> 10-4) weight ratios. In some adjacent deeper regions, however, the environment turned oxic around ˜ 200 y BP. Whereas both Mn and Ra were lost to the overlying waters in the anoxic regions (depth ˜340m), the Mn that diffused from deeper sections appears to have mineralized at the sediment-water-interface. Studies of this type on long undisturbed cores from the margins of the Arabian Sea and the Bay of Bengal, involving several proxies and geochronology by more than one method are needed to understand short term environmental (and monsoonal intensity) changes of the recent past with high resolution.

  15. The phytoplankton bloom in the northwestern Arabian Sea during the southwest monsoon of 1979

    NASA Technical Reports Server (NTRS)

    Brock, John C.; Mcclain, Charles R.; Luther, Mark E.; Hay, William W.

    1991-01-01

    The present study investigates the biological variability of the northwestern Arabian Sea during the 1979 southwest monsoon by the synthesis of satellite ocean color remote sensing with an analysis of in situ hydrographic and meteorological data sets and the results of wind-driven modeling of upper-ocean circulation. The phytoplankton bloom peaked during August-September, extended from the Oman coast to about 65 deg E, and lagged behind the development of open-sea upwelling by at least 1 mo. The pigment distributions, hydrographic data, and model results all suggest that the boom was driven by spatially distinct upward nutrient fluxes to the euphotic zone forced by the physical processes of coastal upwelling and offshore Ekman pumping. Coastal upwelling was evident from May through September, yielded the most extreme concentrations of phytoplankton biomass, and, along the Arabian coast, was limited to the continental shelf in the promotion of high concentrations of phytoplankton.

  16. Source of the Organic Matter and Land-Marine Interaction Phases in Great Rann of Kachch Basin, India

    NASA Astrophysics Data System (ADS)

    Khonde, N. N.; Bhushan, R.; Agnihotri, R.; Maurya, D. M.; Chamyal, L. S.

    2017-12-01

    Using δ13C and C/N ratio of sedimentary organic matter (OM) in 14C AMS dated sediment core from central Great Rann of Kachchh (GRK) basin, we track sediment dispositional history since 18 ka BP. Temporal changes in the δ13C and C/N ratios were inferred in terms of OM source, which could be function of river discharge, relative sea level changes, and also due to land-cover changes in the catchment area. The down core variations in TOC vs TC doesn't show significant correlation suggesting diverse origin of the OM in GRK sediments. Between 18-13 ka BP, pulses of high C/N ratio (18-34) and depleted δ13C (average -23‰; with respect to typical marine -21‰) values hint terrestrially derived OM in rather overall marine environment. High terrestrial OM input from riverine inputs in post glacial period could be relatable to intense monsoonal conditions. Later to this phase, between 14-10 ka BP, C/N ratios show large fluctuations indicating rapidly fluctuating environment, albeit δ13C remains relatively stable at -21‰ typical of marine OM. A significant positive incursion in C/N ratio (45-60) is seen during early-mid Holocene time ( 10-6 ka BP) with and highly depleted δ13C ( -25‰) values indicating enhanced terrestrial OM input. This could be owing to increased riverine fluxes to the basin under intensified monsoonal climate. Between 6-2.5 ka BP during mid-Holocene, C/N ratios shows declining trend with enriched δ13C values, suggesting presence of marine OM source at the core-site. This overlaps with the weaker monsoonal conditions prevailing in the northwest India. Lake records from Rajasthan also support this contention. After 2.5 ka BP, C/N ratios indicate marine OM values, whereas δ13C fluctuates from marine to terrestrial values indicating `mixed-source' of the OM during this period, most likely due to unstable land-marine conditions and large-scale reworking of sediments.

  17. Fault zone structure and fluid-rock interaction of a high angle normal fault in Carrara marble (NW Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Molli, G.; Cortecci, G.; Vaselli, L.; Ottria, G.; Cortopassi, A.; Dinelli, E.; Mussi, M.; Barbieri, M.

    2010-09-01

    We studied the geometry, intensity of deformation and fluid-rock interaction of a high angle normal fault within Carrara marble in the Alpi Apuane NW Tuscany, Italy. The fault is comprised of a core bounded by two major, non-parallel slip surfaces. The fault core, marked by crush breccia and cataclasites, asymmetrically grades to the host protolith through a damage zone, which is well developed only in the footwall block. On the contrary, the transition from the fault core to the hangingwall protolith is sharply defined by the upper main slip surface. Faulting was associated with fluid-rock interaction, as evidenced by kinematically related veins observable in the damage zone and fluid channelling within the fault core, where an orange-brownish cataclasite matrix can be observed. A chemical and isotopic study of veins and different structural elements of the fault zone (protolith, damage zone and fault core), including a mathematical model, was performed to document type, role, and activity of fluid-rock interactions during deformation. The results of our studies suggested that deformation pattern was mainly controlled by processes associated with a linking-damage zone at a fault tip, development of a fault core, localization and channelling of fluids within the fault zone. Syn-kinematic microstructural modification of calcite microfabric possibly played a role in confining fluid percolation.

  18. Holocene moisture and East Asian summer monsoon evolution in the northeastern Tibetan Plateau recorded by Lake Qinghai and its environs: A review of conflicting proxies

    NASA Astrophysics Data System (ADS)

    Chen, Fahu; Wu, Duo; Chen, Jianhui; Zhou, Aifeng; Yu, Junqing; Shen, Ji; Wang, Sumin; Huang, Xiaozhong

    2016-12-01

    Climatic and environmental changes in the northeastern Tibetan Plateau are controlled by the Asian summer monsoon (ASM) and the westerlies, two key circulation components of the global climate system which directly affect a large human population and associated ecosystems in eastern Asia. During the past few decades, a series of Holocene palaeoclimatic records have been obtained from sediment cores from Lake Qinghai and from various other geological archives in the surrounding area of the northeastern Tibetan Plateau. However, because of uncertainties regarding the sediment chronologies and the climatic significance of the proxies used, the nature of Holocene climatic changes in the region remains unclear and even controversial. Here we review all major classes of the published data from drilled cores from Lake Qinghai, as well as other evidence from lakes and aeolian deposits from surrounding areas, in order to reconstruct changes in moisture patterns and possible summer monsoon evolution in the area during the Holocene. Combining the results of moisture and precipitation proxies such as vegetation history, pollen-based precipitation reconstruction, aeolian activity, lake water depth/lake level changes, salinity and sediment redness, we conclude that moisture and precipitation began to increase in the early Holocene, reached their maximum during the middle Holocene, and decreased during the late Holocene - similar to the pattern of the East Asian summer monsoon (EASM) in northern China. It is clear that the region experienced a relatively dry climate and weak EASM during the early Holocene, as indicated by relatively low tree pollen percentages and fluctuating pollen concentrations; generally low lake levels of Lake Qinghai and the adjacent Lake Hurleg and Lake Toson in the Qaidam Basin; and widely distributed aeolian sand deposition in the Lake Qinghai Basin and the nearby Gonghe Basin to the south, and in the eastern Qaidam Basin to the west. We argue that the ostracod δ18O record, which is widely used as a proxy of effective moisture and summer monsoon intensity in lake sediments, at least in Lake Qinghai, and which exhibits light values in the early Holocene and heavier values thereafter, cannot be used to reflect the strength of the EASM or the intensity of monsoon precipitation - as is also the case for leaf wax δ2H records. Rather, we argue that as is the case of the Chinese speleothem δ18O record, which also is often interpreted as an EASM proxy, it reflects variation in the δ18O of precipitation. Overall, we suggest that the EASM significantly affected precipitation in the northeastern Tibetan Plateau during the Holocene; and that it increased in strength during the early Holocene, reached a maximum during the middle Holocene and decreased during the late Holocene.

  19. Wet Little Ice Age in tropical Vietnam consistent with amplification of Pacific Walker Circulation

    NASA Astrophysics Data System (ADS)

    Stevens, Lora; Doiron, Kelsey

    2017-04-01

    Mean climate of tropical mainland SE Asia (MSEA) results from complex interactions of the ITCZ and related monsoon, Pacific Walker Circulation (PWC) and ENSO. Although millennial and centennial-scale climate variability for MSEA is most frequently attributed to variations in summer monsoon strength, MSEA is "sandwiched" between two monsoonal branches, the Indian summer monsoon and the East Asian monsoon, which may not behave synchronously. In addition to longer climatic trends, abrupt, short-lived droughts in MSEA have been linked to societal instability and food shortages. Specific triggers for, and spatial extent of, the droughts are not well understood. To explore causes and refine the spatial distribution of these droughts, as well as to place them within the mean climate state, a high-resolution oxygen-isotopic record of lacustrine carbonates was constructed from a sediment core from Ao Tiên (Fairy Pond), NW Vietnam (22° 26.9' N, 105° 37.03'E). Ao Tiên is a small sinkhole in the karst region of Bac Kạn Province. It is hydrologically connected via fractured limestone to a larger lake, Ba Be, and the Năng River. The lake is currently anoxic below 4 m depth, and the carbonate-rich sediment preserves alternating homogeneous and laminated sediment packets. We sampled the 1.3 m core in contiguous 5 mm increments for a record with 2-3 yr resolution. High/low isotopic values are interpreted as drier/wetter as a function of moisture balance (inputs minus evaporation) of the lake. Overall dry conditions prevailed during the period AD 1390-1520. A steady increase in effective moisture occurred from AD 1520 to 1645 with peak effective moisture from AD 1645 to 1750, during the heart of the Little Ice Age (LIA). This pattern of hydroclimate is consistent with records from the South China Sea and Indonesia, but opposite to speleothem records from Central China. Thus climatic shifts at Ao Tiên are not consistent with a simple weakening of the summer monsoon or southward shift of the ITCZ during the LIA. More likely, a strengthening of the PWC and shift in the position of the rising limb is the reason for climatic pattern seen in northern Vietnam. Superimposed on these centennial climate variations are several drought events. The duration and age of these events, within the errors of the radiocarbon chronology, identify them as the Angkor II, Ming Dynasty, Strange Parallels, and Bengali famine droughts, documented across China and SE Asia from tree-ring and historical records. The intense Angkor I drought (AD 1345-1374) was not captured but may have triggered the collapse of the karst that formed the lake. A prominent fifth drought (AD 1560-1582) in the Ao Tiên record has not been identified in the tree-ring records for MSEA.

  20. Examining cross-equatorial precipitation variability in the western Indian Ocean using stalagmites from Madagascar

    NASA Astrophysics Data System (ADS)

    Scroxton, N.; Burns, S. J.; McGee, D.; Hardt, B. F.; Godfrey, L.; Ranivoharimanana, L.; Faina, P.

    2017-12-01

    The behavior of the world's monsoon systems and the position of the Inter Tropical Convergence Zone (ITCZ) resulting from large global climatic changes is reasonably well understood at orbital and millennial timescales. However, under the boundary conditions and relatively modest forcing of the last 2000 years it is not yet clear how tropical monsoon systems changed and why. The traditional schema of north-south translation of the ITCZ is being challenged by new theories relating to meridional expansion and contraction of the tropical rain belt, and/or to changes in zonal circulation patterns resembling modern El-Niño Southern Oscillation end members. Located at a hotspot of zonal and meridional climate forcing, stalagmites from the western Indian Ocean can provide new insights into past rainfall variability and uncover the driving mechanisms. Here, we present results from a new southern hemisphere speleothem record from Anjohibe cave, northwestern Madagascar, covering the last 1,700 years. We demonstrate that our quasi-annual, precisely dated, stable oxygen isotope record serves as a proxy for the strength of the northwestern Madagascan monsoon. The record shows a multi-decadal, in-phase relationship with its northern hemisphere monsoon counterpart from Oman - contrary to the expected antiphase relationship that would result from north-south ITCZ translation. At the centennial scale, the Madagascan record correlates well with precipitation records from Eastern Africa. We discuss the potential causes of western Indian Ocean precipitation coherency, and how it relates to either symmetrical changes in continental sensible heating, or to a low frequency zonal sea-surface temperature mode.

  1. Iron snow in the Martian core?

    NASA Astrophysics Data System (ADS)

    Davies, Christopher J.; Pommier, Anne

    2018-01-01

    The decline of Mars' global magnetic field some 3.8-4.1 billion years ago is thought to reflect the demise of the dynamo that operated in its liquid core. The dynamo was probably powered by planetary cooling and so its termination is intimately tied to the thermochemical evolution and present-day physical state of the Martian core. Bottom-up growth of a solid inner core, the crystallization regime for Earth's core, has been found to produce a long-lived dynamo leading to the suggestion that the Martian core remains entirely liquid to this day. Motivated by the experimentally-determined increase in the Fe-S liquidus temperature with decreasing pressure at Martian core conditions, we investigate whether Mars' core could crystallize from the top down. We focus on the "iron snow" regime, where newly-formed solid consists of pure Fe and is therefore heavier than the liquid. We derive global energy and entropy equations that describe the long-timescale thermal and magnetic history of the core from a general theory for two-phase, two-component liquid mixtures, assuming that the snow zone is in phase equilibrium and that all solid falls out of the layer and remelts at each timestep. Formation of snow zones occurs for a wide range of interior and thermal properties and depends critically on the initial sulfur concentration, ξ0. Release of gravitational energy and latent heat during growth of the snow zone do not generate sufficient entropy to restart the dynamo unless the snow zone occupies at least 400 km of the core. Snow zones can be 1.5-2 Gyrs old, though thermal stratification of the uppermost core, not included in our model, likely delays onset. Models that match the available magnetic and geodetic constraints have ξ0 ≈ 10% and snow zones that occupy approximately the top 100 km of the present-day Martian core.

  2. The Abrupt Onset of the Modern South Asian Monsoon Winds (iodp Exp. 359)

    NASA Astrophysics Data System (ADS)

    Betzler, C.; Eberli, G. P.; Kroon, D.; Wright, J. D.; Swart, P. K.; Nath, B. N.; Reijmer, J.; Alvarez Zarikian, C. A.

    2016-12-01

    The South Asian Monson (SAM) is one of the most extreme features in Earth's climate system, yet its initiation and variations are not well established. The SAM is a seasonal reversal of winds accompanied by changes in precipitation with heavy rain during the summer monsoon. It is one of the most intense annually recurring climatic elements and of immense importance in supplying moisture to the Indian subcontinent thus affecting human population and vegetation, as well as marine biota in the surrounding seas. The seasonal precipitation change is one of the SAM elements most noticed on land, whereas the reversal of the wind regime is the dominating driver of circulation in the central and northern Indian Ocean realm. New data acquired during International Ocean Discovery Program Expedition 359 from the Inner Sea of the Maldives provide a previously unread archive that reveals an abrupt onset of the SAM-linked ocean circulation pattern and its relationship to the long term Neogene climate cooling. In particular it registers ocean current fluctuations and changes of intermediate water mass properties for the last 25 myrs that are directly related to the monsoon. Dating the deposits of SAM wind-driven currents yields an age of 12.9 Ma indicating an abrupt SAM onset, over a short period of 300 kyrs. This coincided with the Indian Ocean Oxygen Minimum Zone expansion as revealed by geochemical tracers and the onset of upwelling reflected by the sediment's content of sedimentary organic matter. A weaker `proto-monsoon' existed between 12.9 and 25 Ma, as mirrored by the sedimentary signature of dust influx. Abrupt SAM initiation favors a strong influence of climate in addition to the tectonic control, and we propose that the post Miocene Climate Optimum cooling, together with increased continentalization and establishment of the bipolar ocean circulation, i.e. the beginning of the modern world, shifted the monsoon over a threshold towards the modern system.

  3. Observed Oceanic and Terrestrial Drivers of North African Climate

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Notaro, M.; Wang, F.; Mao, J.; Shi, X.; Wei, Y.

    2015-12-01

    Hydrologic variability can pose a serious threat to the poverty-stricken regions of North Africa. Yet, the current understanding of oceanic versus terrestrial drivers of North African droughts/pluvials is largely model-based, with vast disagreement among models. In order to identify the observed drivers of North African climate and develop a benchmark for model evaluations, the multivariate Generalized Equilibrium Feedback Assessment (GEFA) is applied to observations, remotely sensed data, and reanalysis products. The identified primary oceanic drivers of North African rainfall variability are the Atlantic, tropical Indian, and tropical Pacific Oceans and Mediterranean Sea. During the summer monsoon, positive tropical eastern Atlantic sea-surface temperature (SST) anomalies are associated with a southward shift of the Inter-Tropical Convergence Zone, enhanced ocean evaporation, and greater precipitable water across coastal West Africa, leading to increased West African monsoon (WAM) rainfall and decreased Sahel rainfall. During the short rains, positive SST anomalies in the western tropical Indian Ocean and negative anomalies in the eastern tropical Indian Ocean support greater easterly oceanic flow, evaporation over the western ocean, and moisture advection to East Africa, thereby enhancing rainfall. The sign, magnitude, and timing of observed vegetation forcing on rainfall vary across North Africa. The positive feedback of leaf area index (LAI) on rainfall is greatest during DJF for the Horn of Africa, while it peaks in autumn and is weakest during the summer monsoon for the Sahel. Across the WAM region, a positive LAI anomaly supports an earlier monsoon onset, increased rainfall during the pre-monsoon, and decreased rainfall during the wet season. Through unique mechanisms, positive LAI anomalies favor enhanced transpiration, precipitable water, and rainfall across the Sahel and Horn of Africa, and increased roughness, ascent, and rainfall across the WAM region. The current study represents the first attempt to separate the observed roles of oceanic and vegetation feedbacks across North Africa, and provides observational benchmark for model evaluation.

  4. Tropical Indo-Pacific hydroclimate response to North Atlantic forcing during the last deglaciation as recorded by a speleothem from Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Wurtzel, Jennifer B.; Abram, Nerilie J.; Lewis, Sophie C.; Bajo, Petra; Hellstrom, John C.; Troitzsch, Ulrike; Heslop, David

    2018-06-01

    Abrupt changes in Atlantic Meridional Overturning Circulation are known to have affected the strength of the Indian and Asian Monsoons during glacial and deglacial climate states. However, there is still much uncertainty around the hydroclimate response of the Indo-Pacific Warm Pool (IPWP) region to abrupt climate changes in the North Atlantic. Many studies suggest a mean southward shift in the intertropical convergence zone (ITCZ) in the IPWP region during phases of reduced Atlantic meridional overturning, however, existing proxies have seasonal biases and conflicting responses, making it difficult to determine the true extent of North Atlantic forcing in this climatically important region. Here we present a precisely-dated, high-resolution record of eastern Indian Ocean hydroclimate variability spanning the last 16 ky (thousand years) from δ18O measurements in an aragonite-calcite speleothem from central Sumatra. This represents the western-most speleothem record from the IPWP region. Precipitation arrives year-round at this site, with the majority sourced from the local tropical eastern Indian Ocean and two additional long-range seasonal sources associated with the boreal and austral summer monsoons. The Sumatran speleothem demonstrates a clear deglacial structure that includes 18O enrichment during the Younger Dryas and 18O depletion during the Bølling-Allerød, similar to the pattern seen in speleothems of the Asian and Indian monsoon realms. The speleothem δ18O changes at this site are best explained by changes in rainfall amount and changes in the contributions from different moisture pathways. Reduced rainfall in Sumatra during the Younger Dryas is most likely driven by reductions in moisture transport along the northern or southern monsoon transport pathways to Sumatra. Considered with other regional proxies, the record from Sumatra suggests the response of the IPWP to North Atlantic freshwater forcing is not solely driven by southward shifts of the ITCZ, but also a reduction in moisture transport along both monsoon pathways.

  5. Predominant terminal electron accepting processes during organic matter degradation: Spatio-temporal changes in Ashtamudi estuary, Kerala, India

    NASA Astrophysics Data System (ADS)

    Vincent, Salom Gnana Thanga; Reshmi, R. R.; Hassan, S. Junaid; Nair, K. Deepa; Varma, Ajayakumar

    2017-11-01

    Anaerobic microbial communities in the anoxic zones degrade organic matter in estuarine sediments. Thermodynamic energy yield for the oxidation reactions with various electron acceptors decreases in the order of O2> NO3- > Mn4+> Fe3+> SO42- > CO2. The predominant terminal electron accepting (TEA) process has an influence on the biogeochemical cycles of nutrients as well as the production of important greenhouse gases such as nitrous oxide and methane from estuarine sediments. The research questions of this study were (1) what are the environmental factors (pH, salinity, organic carbon, sulphate, redox potential) explaining variability in TEA activities such as nitrate reduction rate (NRR), iron reduction rate (IRR), sulphate reduction rate (SRR) and methane production rate (MPR) and (2) which is the predominant TEA process during degradation of organic matter. To determine the TEA activities, sediment samples collected from 13 sampling stations of Ashtamudi estuary during monsoon 2014 and summer 2015 were incubated with sulphate depleted artificial seawater, under anaerobic conditions for 72 h, in microcosms. Spatial variations dominated temporal variations for environmental variables. Nevertheless, biogeochemical processes showed a distinct seasonal variation. Total TEA activity was higher during summer than monsoon, indicating the higher heterotrophic microbial activity favored by high temperature. Individually, SRR was the maximum during summer, while NRR, IRR and MPR were the maximum during monsoon. Sulphate reduction was observed to be the predominant electron accepting process in all sampling stations with cumulative values of 3125.79 and 4046.07 nmol cm-3 day-1 during monsoon and summer respectively. This was followed by NRR, IRR and MPR. Although thermodynamically more favorable, NRR could not predominate due to scarcity of nitrate in sediments. Nevertheless, two-fold and five-fold increase in methanogenesis and denitrification were observed respectively during monsoon in sampling stations, which cannot be ignored, owing to the importance of methane and nitrous oxide as a potent greenhouse gas.

  6. Asynchronous Patterns of East Asian Monsoon Climate Proxies during the Past 28 000 Years

    NASA Astrophysics Data System (ADS)

    Ruan, Y.; Li, L.; Jia, G.; He, J.; Dong, L.; Ma, X.; Shi, J.; Wang, H.

    2015-12-01

    The monsoon system serves as a "bridge" in the atmosphere; it connects the circulation between high and low latitudes, influencing the most densely populated regions on Earth. However, what role it played in the geological history is still elusive despite its significance. The climate of South China Sea and the ambient land masses are dominated by the East Asian monsoon, composed of the temperature-cooling East Asian winter monsoon (EAWM) and the rain-bearing East Asian summer monsoon (EASM). In this study, high-resolution sea surface temperature (SST), terrestrial input and humidity changes since ~28 ka were reconstructed based on alkenones and long chain n-alkanes records in core MD12-3428 in northern South China Sea. Our results demonstrated complex and dynamic paleoclimatic situations since the last glacial superimposed on the overall glacial-interglacial trend. During the last deglacial, the rising of the sea level can be dated back to 17 ka and ended at ~12 ka, according to the gradual decrease of long chain n-alkanes concentrations. However, the SST warming began at ~15 ka (~2 000 years after the initial sea level uplift) and achieved a relatively stable state in mid-Holocene (~6 000 years after the sea level stablization). The humidity varibility linked with EASM based on C31/C27 and ACL record indicated highly humid conditions within the Bølling/Allerød (B/A) period, followed by a rapid drying towards the glacial level during Younger Dryas (YD). EASM gradually strengthened after YD when the sea level had run up to almost the present state, and weakened after ~6 ka when sea level and SST both reached the plateau. These large fluctuations of C31/C27 and ACL implied that humidity was more sensitive to climate events since the last deglacial when compared with SST and sea level. The asynchronous patterns of East Asian monsoon climate proxies in the present work indicated the complex heat transport and atmospheric circulation between low and high latitudes.

  7. Geometry of the Nojima fault at Nojima-Hirabayashi, Japan - I. A simple damage structure inferred from borehole core permeability

    USGS Publications Warehouse

    Lockner, David A.; Tanaka, Hidemi; Ito, Hisao; Ikeda, Ryuji; Omura, Kentaro; Naka, Hisanobu

    2009-01-01

    The 1995 Kobe (Hyogo-ken Nanbu) earthquake, M = 7.2, ruptured the Nojima fault in southwest Japan. We have studied core samples taken from two scientific drillholes that crossed the fault zone SW of the epicentral region on Awaji Island. The shallower hole, drilled by the Geological Survey of Japan (GSJ), was started 75 m to the SE of the surface trace of the Nojima fault and crossed the fault at a depth of 624 m. A deeper hole, drilled by the National Research Institute for Earth Science and Disaster Prevention (NIED) was started 302 m to the SE of the fault and crossed fault strands below a depth of 1140 m. We have measured strength and matrix permeability of core samples taken from these two drillholes. We find a strong correlation between permeability and proximity to the fault zone shear axes. The half-width of the high permeability zone (approximately 15 to 25 m) is in good agreement with the fault zone width inferred from trapped seismic wave analysis and other evidence. The fault zone core or shear axis contains clays with permeabilities of approximately 0.1 to 1 microdarcy at 50 MPa effective confining pressure (10 to 30 microdarcy at in situ pressures). Within a few meters of the fault zone core, the rock is highly fractured but has sustained little net shear. Matrix permeability of this zone is approximately 30 to 60 microdarcy at 50 MPa effective confining pressure (300 to 1000 microdarcy at in situ pressures). Outside this damage zone, matrix permeability drops below 0.01 microdarcy. The clay-rich core material has the lowest strength with a coefficient of friction of approximately 0.55. Shear strength increases with distance from the shear axis. These permeability and strength observations reveal a simple fault zone structure with a relatively weak fine-grained core surrounded by a damage zone of fractured rock. In this case, the damage zone will act as a high-permeability conduit for vertical and horizontal flow in the plane of the fault. The fine-grained core region, however, will impede fluid flow across the fault.

  8. Long-term study of aerosol-cloud-precipitation interaction over the eastern part of India using satellite observations during pre-monsoon season

    NASA Astrophysics Data System (ADS)

    Kant, Sunny; Panda, Jagabandhu; Pani, Shantanu Kumar; Wang, Pao K.

    2018-05-01

    This study attempts to analyze possible aerosol-cloud-precipitation interaction over the eastern part of India including Bhubaneswar city and the whole Odisha region primarily using a long-term satellite-based dataset from 2000 to 2016 during pre-monsoon period. Relationship between aerosol optical depth (AOD), rainfall, and cloud properties is examined by taking convectively driven rain events. The two-sample student's t test is used to compute "p" value of datasets that are statically significant. Role of aerosols in governing cloud properties is analyzed through the variation of COD (cloud optical depth) and CER (cloud effective radius) in the AOD ranges 0.2-0.8. A relatively stronger and affirmative AOD-CER relationship is observed over Bhubaneswar city compared to Odisha region though the aerosols still play an appreciable role for the later too. The AOD-COD relationship is weak over both the regions. For Odisha, relationships between aerosol and cloud parameters are insignificant irrespective of rainfall regimes. Fostering of heavy rainfall over these regions takes place due to invigoration and microphysical effect during pre-monsoon months, depending upon meteorological conditions. Liquid water content and presence of a mixed-phase zone, both seem to be quite important in the convectively driven precipitation over Odisha region including Bhubaneswar city.

  9. Orbital-scale denitrification changes in the Eastern Arabian Sea during the last 800 kyrs.

    PubMed

    Kim, Ji-Eun; Khim, Boo-Keun; Ikehara, Minoru; Lee, Jongmin

    2018-05-04

    Denitrification in the Arabian Sea is closely related to the monsoon-induced upwelling and subsequent phytoplankton production in the surface water. The δ 15 N values of bulk sediments collected at Site U1456 of the International Ocean Discovery Program (IODP) Expedition 355 reveal the orbital-scale denitrification history in response to the Indian Monsoon. Age reconstruction based on the correlation of planktonic foraminifera (Globigerinoides ruber) δ 18 O values with the LR04 stack together with the shipboard biostratigraphic and paleomagnetic data assigns the study interval to be 1.2 Ma. Comparison of δ 15 N values during the last 800 kyrs between Site U1456 (Eastern Arabian Sea) and Site 722B (Western Arabian Sea) showed that δ 15 N values were high during interglacial periods, indicating intensified denitrification, while the opposite was observed during glacial periods. Taking 6‰ as the empirical threshold of denitrification, the Eastern Arabian Sea has experienced a persistent oxygen minimum zone (OMZ) to maintain strong denitrification whereas the Western Arabian Sea has undergone OMZ breakdown during some glacial periods. The results of this study also suggests that five principal oceanographic conditions were changed in response to the Indian Monsoon following the interglacial and glacial cycles, which controls the degree of denitrification in the Arabian Sea.

  10. Asian monsoons and aridification response to Paleogene sea retreat and Neogene westerly shielding indicated by seasonality in Paratethys oysters

    NASA Astrophysics Data System (ADS)

    Bougeois, Laurie; Dupont-Nivet, Guillaume; de Rafélis, Marc; Tindall, Julia C.; Proust, Jean-Noël; Reichart, Gert-Jan; de Nooijer, Lennart J.; Guo, Zhaojie; Ormukov, Cholponbelk

    2018-03-01

    Asian climate patterns, characterised by highly seasonal monsoons and continentality, are thought to originate in the Eocene epoch (56 to 34 million years ago - Ma) in response to global climate, Tibetan Plateau uplift and the disappearance of the giant Proto-Paratethys sea formerly extending over Eurasia. The influence of this sea on Asian climate has hitherto not been constrained by proxy records despite being recognised as a major driver by climate models. We report here strongly seasonal records preserved in annual lamina of Eocene oysters from the Proto-Paratethys with sedimentological and numerical data showing that monsoons were not dampened by the sea and that aridification was modulated by westerly moisture sourced from the sea. Hot and arid summers despite the presence of the sea suggest a strong anticyclonic zone at Central Asian latitudes and an orographic effect from the emerging Tibetan Plateau. Westerly moisture precipitating during cold and wetter winters appear to have decreased in two steps. First in response to the late Eocene (34-37 Ma) sea retreat; second by the orogeny of the Tian Shan and Pamir ranges shielding the westerlies after 25 Ma. Paleogene sea retreat and Neogene westerly shielding thus provide two successive mechanisms forcing coeval Asian desertification and biotic crises.

  11. Key characteristics of the Fe-snow regime in Ganymede's core

    NASA Astrophysics Data System (ADS)

    Rückriemen, Tina; Breuer, Doris; Spohn, Tilman

    2014-05-01

    Ganymede shows signs of an internally produced dipolar magnetic field (|Bdip|≡719 nT) [1]. For small planetary bodies such as Ganymede the Fe-snow regime, i.e. the top-down solidification of iron, has been suggested to play an important role in the core cooling history [2,3]. In that regime, iron crystals form first at the core-mantle boundary (CMB) due to shallow or negative slopes of the melting temperature [2,3]. The solid iron particles are heavier than the surrounding Fe-FeS fluid, i.e. a snow zone forms, settle to deeper core regions, where the core temperature is higher than the melting temperature, and remelt again. As a consequence, a stable chemical gradient in the Fe-FeS fluid arises within the snow zone. We speculate this style of convection via sedimentation to be small scale, therefore it lacks an important criterion necessary for dynamo action [4]. Below this zone, whose thickness increases with time, the process of remelting of iron creates a gravitationally unstable situation. We propose that this could be the driving mechanism for a potential dynamo. However, dynamo action would be restricted to the time period the snow zone needs to grow across the core. With a 1D thermo-chemical evolution model, we investigate key characteristics of the Fe-snow regime within Ganymede's core: the compositional density gradient of the fluid Fe-FeS within the snow zone and the time period necessary to grow the snow zone across the core. Additionally, we determine the dipolar magnetic field strength associated with a dynamo in Ganymede's deeper fluid core. We vary important input paramters such as the initial sulfur concentration (7-19 wt.%), the core heat flux (2-6 mW/m2) and the thermal conductivity (20-60 W/mK) with the nominal model being: xs=10 wt.%, qcmb=4 mW/m2, kc=32 W/mK. We find, that heat fluxes higher than 6 or 22 mW/m2 are required for double-diffusive or overturning convection to overcome the compositional density gradient within the snow zone, respectively. Since Ganymede's core heat flux does not exceed values of 4 mW/m2 [2], we consider the snow zone to be stable against thermal convection. The time necessary to grow the snow zone across the core is between 230-1900 Myr. For representative models we calculate the temporal evolution of the surface dipolar magnetic field strength according to [5]. All models show surface dipolar magnetic field strengths during the evolution of the snow zone that match the observed value of |Bdip|≡719 nT. In conclusion, we find that the Fe-snow regime produces a stably-stratified liquid layer in the snow zone below which a magnetic field of observed strength can be generated. Such a chemical dynamo is restricted in time and stops as soon as an inner solid core starts to grow suggesting the absence of such an inner core in Ganymede. The present model further suggests a core with high initial sulfur concentration, because this leads to a late start and a long duration of the dynamo necessary to explain the present magnetic field. References [1] Kivelson, M et al. (1996), Nature, 384(6609), [2] Hauck II, S. et al. (2006), JGR, 111(E9), [3] Williams, Q. (2009), EPSL, 284(3), [4] Christensen, U. and J. Wicht (2007), Treatise of Geophysics, Elsevier, [5] Christensen, U., and J. Aubert (2006), GJI, 166(1)

  12. Regular transition zone biopsy during active surveillance for prostate cancer may improve detection of pathological progression.

    PubMed

    Wong, Lih-Ming; Toi, Ants; Van der Kwast, Theodorus; Trottier, Greg; Alibhai, Shabbir M H; Timilshina, Narhari; Evans, Andrew; Zlotta, Alexandre; Fleshner, Neil; Finelli, Antonio

    2014-10-01

    We investigated the frequency of cancer and pathological progression in transition zone biopsies in men undergoing multiple rebiopsies while on active surveillance. Eligibility criteria of the active surveillance prostate cancer database (1997 to 2012) at our tertiary center includes prostate specific antigen 10 ng/ml or less, cT2 or less, no Gleason grade 4 or 5, 3 or fewer positive cores, no core with greater than 50% involvement, patient age 75 years or less and 1 or more biopsies after initial diagnostic biopsy. We excluded from analysis men with fewer than 10 cores at diagnostic biopsy and/or confirmatory biopsy greater than 24 months after diagnostic biopsy. Multiparametric magnetic resonance imaging was performed selectively to investigate incongruity between prostate specific antigen and biopsy findings. Pathological progression was defined by grade and/or volume (greater than 50% of core involved). Transition zone progression was subdivided into exclusively transition zone and combined transition zone (transition and peripheral zones). A multivariate Cox proportional hazards model was used to determine predictors of transition zone progression. A total of 392 men were considered in analysis. Median followup was 45.5 months. At each biopsy during active surveillance (confirmatory biopsy to biopsy 5+) there were transition zone positive cores in 18.6% to 26.7% of cases, all transition zone progression in 5.9% to 11.1% and exclusively transition zone progression in 2.7% to 6.7%. Volume related progression was noted more frequently than grade related progression (24 vs 9 cases). Predictors of only transition zone progression were the maximum percent in a single core (HR 1.99, 95% CI 1.30-3.04, p = 0.002) and cancer on magnetic resonance imaging (HR 3.19, 95% CI 1.23-8.27, p = 0.02). Across multiple active surveillance biopsies 2.7% to 6.7% of men had only transition zone progression. We recommend that transition zone biopsy be considered in all men at confirmatory biopsy. Positive magnetic resonance imaging findings or a high percent of core involvement may subsequently be useful to identify patients at risk. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  13. Branched GDGT-based paleotemperature reconstruction of the last 30,000 years in humid monsoon region of Southeast China

    NASA Astrophysics Data System (ADS)

    Wang, M.

    2017-12-01

    The use of bacterial branched glycerol dialkyl glycerol tetraethers (brGDGTs) to reconstruct mean annual air temperatures (MAATs) and environmental pH from soils has sparked significant interest in the terrestrial paleoclimate community. However, the reconstruction of these climate proxies from peat bogs is rare in monsoonal regions of the East Asia. This research was carried out on a core from the Shuizhuyang (SZY) peat bog located in Fujian Province. Branched GDGT (brGDGT) indexes were used for reconstructing the paleoclimate of the last 30 cal ka. The aim was to evaluate quantitatively the MAAT and pH values since the Last Glacial Maximum (LGM) in the subtropical zone of China. Results show that the CBT-MBT'-derived MAAT at MIS 3 is about 15.6 °C on average, which is followed by a significant fall at the LGM (11.7-12.1 °C). The temperature difference between the LGM and the present-day value is as high as 5.8 °C. The synchronous variation of biomarker and pollen proxies indicates that replacement of subtropical evergreen broadleaved forests by coldtolerant, deciduous broadleaved forests was driven by the significant drop in air temperature. Our results also indicate that the Younger Dryas event lasted from about 12.9 to about 11.3 cal ka, and cooling event at 3.2 cal ka in the late Holocene was detected, showing the sensitivity of peat bogs to rapid cooling. Our pH reconstructions indicate that the pH of the bog rose during Heinrich 1 and Bølling-Allerød periods, probably due to low precipitation, and were lowest in the Holocene thermal maximum between 8 ka and 2.5 ka, probably due to higher precipitation. The decoupling of reconstructed MAAT and pH during particularly deglaciation and YD periods supports the hypothesis that the variations in temperature and precipitation are not always synchronous.

  14. Mid-late Holocene changes in sedimentary organic matter on the inner shelf of the East China Sea

    NASA Astrophysics Data System (ADS)

    Wu, Xiuning; Xing, Lei; Zhang, Ting; Xiang, Rong

    2018-04-01

    Marginal seas are important transitional zones for the delivery of terrestrial organic matter (TOM) from land to the open sea, and they play an important role in the carbon cycle. Tracing the source of sedimentary organic matter (SOM) deposited in marginal seas is fundamental to our understanding of the dispersal, degradation, migration, and conversion of organic matter. This paper presents high-resolution records of bulk organic matter and biomarker proxies from Core T08 that was recovered from the inner shelf of the East China Sea (ECS), and aims to identify the contributions of marine and terrestrial organic matter over the past 3725 yrs. Total organic carbon (TOC) values were low (0.50%) and showed no significant change between 3725 and 1800 yr BP (Period I), and increased continuously from 0.40% to 0.86% after 1800 yr BP (Period II: 1800-750 yr BP; Period III: 750 yr BP-present). The TMBR‧ (ratio of terrestrial to marine biomarkers) and δ13CTOC (δ13C of TOC) values showed steady TOM contribution during Period I and higher TOM contribution driven by the increased Changjiang River (CR)-derived TOM under strong East Asian Summer Monsoon (EASM) and El Niño during Period II. During Period III, the increase in marine organic matter (MOM) contribution was indicated by the TMBR‧, and this was caused by enhanced marine productivity related to intensified vertical mixture that was driven by the strengthened East Asian Winter Monsoon (EAWM). δ13CTOC shows a contrary trend to the TMBR‧ during Period III, probably influenced by variations in the C3 vegetation type during this period. Spectral analysis of the TMBR‧ series for the last 1200 yrs shows cycles with periods of 119, 75-85, and 54 yrs, confirming that climate-related events influenced the variation in SOM under the modulation of solar activity and solar irradiance at the centennial scale.

  15. Burnable absorber arrangement for fuel bundle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, R.L.; Townsend, D.B.

    1986-12-16

    This patent describes a boiling water reactor core whose operation is characterized by a substantial proportion of steam voids with concomitantly reduced moderation toward the top of the core when the reactor is in its hot operating condition. The reduced moderation leads to slower burnup and greater conversion ratio in an upper core region so that when the reactor is in its cold shut down condition the resulting relatively increased moderation in the upper core region is accompanied by a reactivity profile that peaks in the upper core region. A fuel assembly is described comprising; a component of fissile materialmore » distributed over a substantial axial extent of the fuel assembly; and a component of neutron absorbing material having an axial distribution characterized by an enhancement in an axial zone of the fuel assembly, designated the cold shutdown control zone, corresponding to at least a portion of the axial region of the core when the cold shutdown reactivity peaks. The aggregate amount of neutron absorbing material in the cold shutdown zone of the fuel assembly is greater than the aggregate amount of neutron absorbing material in the axial zones of the fuel assembly immediately above and immediately below the cold shutdown control zone whereby the cold shutdown reactivity peak is reduced relative to the cold shutdown reactivity in the zones immediately above and immediately below the cold shutdown control zone. The cold shutdown zone has an axial extent measured from the bottom of the fuel assembly in the range between 68-88 percent of the height of the fissile material in the fuel assembly.« less

  16. Permeability and seismic velocity anisotropy across a ductile-brittle fault zone in crystalline rock

    NASA Astrophysics Data System (ADS)

    Wenning, Quinn C.; Madonna, Claudio; de Haller, Antoine; Burg, Jean-Pierre

    2018-05-01

    This study characterizes the elastic and fluid flow properties systematically across a ductile-brittle fault zone in crystalline rock at the Grimsel Test Site underground research laboratory. Anisotropic seismic velocities and permeability measured every 0.1 m in the 0.7 m across the transition zone from the host Grimsel granodiorite to the mylonitic core show that foliation-parallel P- and S-wave velocities systematically increase from the host rock towards the mylonitic core, while permeability is reduced nearest to the mylonitic core. The results suggest that although brittle deformation has persisted in the recent evolution, antecedent ductile fabric continues to control the matrix elastic and fluid flow properties outside the mylonitic core. The juxtaposition of the ductile strain zone next to the brittle zone, which is bounded inside the two mylonitic cores, causes a significant elastic, mechanical, and fluid flow heterogeneity, which has important implications for crustal deformation and fluid flow and for the exploitation and use of geothermal energy and geologic waste storage. The results illustrate how physical characteristics of faults in crystalline rocks change in fault zones during the ductile to brittle transitions.

  17. Fault zone architecture within Miocene-Pliocene syn-rift sediments, Northwestern Red Sea, Egypt

    NASA Astrophysics Data System (ADS)

    Zaky, Khairy S.

    2017-04-01

    The present study focusses on field description of small normal fault zones in Upper Miocene-Pliocene sedimentary rocks on the northwestern side of the Red Sea, Egypt. The trend of these fault zones is mainly NW-SE. Paleostress analysis of 17 fault planes and slickenlines indicate that the tension direction is NE-SW. The minimum ( σ3) and intermediate ( σ2) paleostress axes are generally sub-horizontal and the maximum paleostress axis ( σ1) is sub-vertical. The fault zones are composed of damage zones and fault core. The damage zone is characterized by subsidiary faults and fractures that are asymmetrically developed on the hanging wall and footwall of the main fault. The width of the damage zone varies for each fault depending on the lithology, amount of displacement and irregularity of the fault trace. The average ratio between the hanging wall and the footwall damage zones width is about 3:1. The fault core consists of fault gouge and breccia. It is generally concentrated in a narrow zone of ˜0.5 to ˜8 cm width. The overall pattern of the fault core indicates that the width increases with increasing displacement. The faults with displacement < 1 m have fault cores ranging from 0.5 to 4.0 cm, while the faults with displacements of > 2 m have fault cores ranging from 4.0 to 8.0 cm. The fault zones are associated with sliver fault blocks, clay smear, segmented faults and fault lenses' structural features. These features are mechanically related to the growth and linkage of the fault arrays. The structural features may represent a neotectonic and indicate that the architecture of the fault zones is developed as several tectonic phases.

  18. Simulated sensitivity of tropical cyclone track to the moisture in an idealized monsoon gyre

    NASA Astrophysics Data System (ADS)

    Yan, Ziyu; Ge, Xuyang; Guo, Bingyao

    2017-12-01

    In this study, the sensitivity of tropical cyclone (TC) track to the moisture condition in a nearby monsoon gyre (MG) is investigated. Numerical simulations reveal that TC track is highly sensitive to the spatial distribution of relative humidity (RH). In an experiment conducted with higher (lower) RH in the eastern (western) semicircle of an MG, the TC experiences a sharp northward turning. In contrast, when the RH pattern is reversed, the simulated TC does not show a sharp northward turning. The RH distribution modulates the intensity and structure of both the TC and MG, so that when the TC is initially embedded in a moister environment, convection is enhanced in the outer core, which favors an expansion of the outer core size. A TC with a larger outer size has greater beta-effect propagation, favoring a faster westward translational speed. Meanwhile, higher RH enhances the vorticity gradient within the MG and promotes a quicker attraction between the TC and MG centers through vorticity segregation process. These cumulative effects cause the TC to collocate with the MG center. Once the coalescence process takes place, the energy dispersion associated with the TC and MG is enhanced, which rapidly strengthens southwesterly flows on the eastern flanks. The resulting steering flow leads the TC to take a sharp northward track.

  19. Response of the North American monsoon to regional changes in ocean surface temperature

    USGS Publications Warehouse

    Barron, John A.; Metcalfe, Sarah E.; Addison, Jason A.

    2012-01-01

    The North American monsoon (NAM), an onshore wind shift occurring between July and September, has evolved in character during the Holocene largely due to changes in Northern Hemisphere insolation. Published paleoproxy and modeling studies suggest that prior to ∼8000 cal years BP, the NAM affected a broader region than today, extending westward into the Mojave Desert of California. Holocene proxy SST records from the Gulf of California (GoC) and the adjacent Pacific provide constraints for this changing NAM climatology. Prior to ∼8000 cal years BP, lower GoC SSTs would not have fueled northward surges of tropical moisture up the GoC, which presently contribute most of the monsoon precipitation to the western NAM region. During the early Holocene, the North Pacific High was further north and SSTs in the California Current off Baja California were warmer, allowing monsoonal moisture flow from the subtropical Pacific to take a more direct, northwesterly trajectory into an expanded area of the southwestern U.S. west of 114°W. A new upwelling record off southwest Baja California reveals that enhanced upwelling in the California Current beginning at ∼7500 cal year BP may have triggered a change in NAM climatology, focusing the geographic expression of NAM in the southwest USA into its modern core region east of ∼114°W, in Arizona and New Mexico. Holocene proxy precipitation records from the southwestern U.S. and northwestern Mexico, including lakes, vegetation/pollen, and caves are reviewed and found to be largely supportive of this hypothesis of changing Holocene NAM climatology.

  20. Performance of Regional Climate Model in Simulating Monsoon Onset Over Indian Subcontinent

    NASA Astrophysics Data System (ADS)

    Bhatla, R.; Mandal, B.; Verma, Shruti; Ghosh, Soumik; Mall, R. K.

    2018-06-01

    The performance of various Convective Parameterization Schemes (CPSs) of Regional Climate Model version 4.3 (RegCM-4.3) for simulation of onset phase of Indian summer monsoon (ISM) over Kerala was studied for the period of 2001-2010. The onset date and its associated spatial variation were simulated using RegCM-4.3 four core CPS, namely Kuo, Tiedtke, Emanuel and Grell; and with two mixed convection schemes Mix98 (Emanuel over land and Grell over ocean) and Mix99 (Grell over land and Emanuel over ocean) on the basis of criteria given by the India Meteorological Department (IMD) (Pai and Rajeevan in Indian summer monsoon onset: variability and prediction. National Climate Centre, India Meteorological Department, 2007). It has been found that out of six CPS, two schemes, namely Tiedtke and Mix99 simulated the onset date properly. The onset phase is characterized with several transition phases of atmosphere. Therefore, to study the thermal response or the effect of different sea surface temperature (SST), namely ERA interim (ERSST) and weekly optimal interpolation (OI_WK SST) on Indian summer monsoon, the role of two different types of SST has been used to investigate the simulated onset date. In addition, spatial atmospheric circulation pattern during onset phase were analyzed using reanalyze dataset of ERA Interim (EIN15) and National Oceanic and Atmospheric Administration (NOAA), respectively, for wind and outgoing long-wave radiation (OLR) pattern. Among the six convective schemes of RegCM-4.3 model, Tiedtke is in good agreement with actual onset dates and OI_WK SST forcing is better for simulating onset of ISM over Kerala.

  1. Nitrogen fluxes across hydrogeomorphic zones in coastal deltaic floodplain using flow-through technique

    NASA Astrophysics Data System (ADS)

    Li, S.; Twilley, R.; Christensen, A.

    2017-12-01

    Coastal floodplain deltas are the region of continental margins of major river basins that can remove excess nitrogen before entering the coastal ocean. We propose that the processing of nitrogen in active deltaic wetlands varies with soil organic content in response to different hydrogeomorphic zones. Continuous flow-through core system was used to incubate sediment cores from supratidal, intertidal, and subtidal hydrogeomorphic zones along a chronosequence in Wax Lake Delta during summer of 2017. Ambient water from Wax Lake Outlet was continuously pumped through sealed cores to estimate fluxes of inorganic nitrogen and phosphorus across the sediment-water interface by calculating the difference between inflow and outflow concentrations. The average respiration rate of sediment cores from intertidal zone was about 1.5 g m-2 d-1 while the rate in supratidal zone was more than doubled to 3.7 g m-2 d-1. Under the constant inflow concentration of nitrate (about 107.1 umol/L), sediment cores in supratidal zone exhibited greater NO3- uptake (1329.7 umol m-2 h-1) and N2 release (499.0 umol N m-2 h-1) than that in intertidal zone (421.5 umol m-2 h-1 of NO3- uptake and 67.6 umol N m-2 h-1 of N2 flux respectively). These results indicate greater rate of net denitrification in supratidal zone than intertidal zone in the older chronosequence of the active delta (which formed approximately in 1980). Also, lower NH4 flux (mean 70.0 umol m-2 h-1) from sediment to water column in supratidal zone together with higher NO2- flux (mean 94.2 umol m-2 h-1) illustrated strong signal of nitrification. In conclusion, sediment cores at the intertidal zone helped to remove 12% of NO3- from the water column while cores at supratidal zone removed 35% of NO3-. Based on the correlation between NO3- and N2 fluxes, about 60% of NO3- removed could be converted to N2 under sediment organic concentrations of about 12%. Comparisons of NO3 removal and conversion to N2 by denitrification will be compared along the chronosequence to test the effects of shifts from mineral to organic soils as active deltas develop at the mouths of major river basins.

  2. Holocene biome shifts in the East Asian monsoon margin region

    NASA Astrophysics Data System (ADS)

    Dallmeyer, Anne; Claussen, Martin; Ni, Jian; Wang, Yongbo; Cao, Xianyong; Herzschuh, Ulrike

    2013-04-01

    East Asia is affected by three major atmospheric circulation systems determining the regional climate and vegetation distribution: The moisture advected by the Indian and East Asian monsoon support the growing of forest in large parts of Eastern China. The influence of the monsoon gets weaker further on the continent yielding a transition of forest to steppe and of steppe to desert in Central East Asia (e.g. Inner Mongolia) where the dry westerly winds prevail. Particularly in these transition zones, vegetation is supposed to be very sensitive to climate change and strong feedbacks are expected in case of climate and vegetation shifts due to large environmental changes (Feng et al., 2006). During mid-Holocene, cyclic variations in the Earth's orbit around the sun led to an enhancement of the Asian monsoon system probably causing strong shifts in the biome distribution. According to reconstructions, the steppe-forest margin moved to the northwest by about 500km (Yu et al., 2000) and the desert area in China and Inner Mongolia was substantially reduced compared to today (Feng et al., 2006). However, in the complex environment of Asia, the locally limited reconstructions may not portray the general vegetation change. To get a systematic overview on the spatial pattern of biome shifts in the Asian monsoon - westerly wind transition zone since mid-Holocene, we use the diagnostic vegetation model BIOME4 and force this model with climate anomalies from different transient Holocene climate simulations performed in coupled atmosphere-ocean-vegetation models. The main aims of this study are to a) get a consistent ensemble of possible changes in biome distribution since the mid-Holocene b) test the robustness of the simulated vegetation changes and quantify the differences between the models, and c) allow for a better comparison of simulated and reconstructed vegetation changes. Preliminary results confirm the general trend seen in the reconstructions. The simulations reveal an expansion of forest for most models and a substantially reduced desert fraction in the transition zone during mid-Holocene. However, the amplitude of the signal and the trend varies for the different climate models. At mid-Holocene, the desert-steppe margin is located further west by approx. 6° in the ensemble mean ranging from 1° to 10° in the different simulations. The forest biomes extend further north-westward by approx. 2° in the ensemble mean ranging from 0° to 4°. In some simulations, the biome distribution shows a strong variability during the last 6000 years and a strong increase of desert starting 500 years before present. In other simulations the biome distribution stays relatively constant until 4500 years before present, afterwards the desert border gradually moves eastward to its present-day position. References: Feng, Z.-D., An, C.B., and Wang, H.B.: Holocene climatic and environmental changes in the arid and semi-arid areas of China: a review. The Holocene 16(1), 119-130, 2006. Yu, G., Chen, X., Ni, J., Cheddadi, R., Guiot, J., Han, H., Harrison, S.P., Huang, C., Ke, M., Kong, Z., Li, S., Li, W., Liew, P., Liu, G., Liu, J., Liu, Q., Liu, K.-B., Prentice, I.C., Qui, W., Ren, G., Song, C., Sugita, S., Sun, X., Tang, L., Van Campo, E., Xia, Y., Xu, Q., Yan, S., Yang, X., Zhao, J., and Zheng, Z.: Palaeovegetation of China: a pollen date-based synthesis for the mid-Holocene and last glacial maximum. J. Biogeogr., 27, 635-664, 2000.

  3. Computation of groundwater resources and recharge in Chithar River Basin, South India.

    PubMed

    Subramani, T; Babu, Savithri; Elango, L

    2013-01-01

    Groundwater recharge and available groundwater resources in Chithar River basin, Tamil Nadu, India spread over an area of 1,722 km(2) have been estimated by considering various hydrological, geological, and hydrogeological parameters, such as rainfall infiltration, drainage, geomorphic units, land use, rock types, depth of weathered and fractured zones, nature of soil, water level fluctuation, saturated thickness of aquifer, and groundwater abstraction. The digital ground elevation models indicate that the regional slope of the basin is towards east. The Proterozoic (Post-Archaean) basement of the study area consists of quartzite, calc-granulite, crystalline limestone, charnockite, and biotite gneiss with or without garnet. Three major soil types were identified namely, black cotton, deep red, and red sandy soils. The rainfall intensity gradually decreases from west to east. Groundwater occurs under water table conditions in the weathered zone and fluctuates between 0 and 25 m. The water table gains maximum during January after northeast monsoon and attains low during October. Groundwater abstraction for domestic/stock and irrigational needs in Chithar River basin has been estimated as 148.84 MCM (million m(3)). Groundwater recharge due to monsoon rainfall infiltration has been estimated as 170.05 MCM based on the water level rise during monsoon period. It is also estimated as 173.9 MCM using rainfall infiltration factor. An amount of 53.8 MCM of water is contributed to groundwater from surface water bodies. Recharge of groundwater due to return flow from irrigation has been computed as 147.6 MCM. The static groundwater reserve in Chithar River basin is estimated as 466.66 MCM and the dynamic reserve is about 187.7 MCM. In the present scenario, the aquifer is under safe condition for extraction of groundwater for domestic and irrigation purposes. If the existing water bodies are maintained properly, the extraction rate can be increased in future about 10% to 15%.

  4. A ~25 ka Indian Ocean monsoon variability record from the Andaman Sea

    USGS Publications Warehouse

    Rashid, H.; Flower, B.P.; Poore, R.Z.; Quinn, T.M.

    2007-01-01

    Recent paleoclimatic work on terrestrial and marine deposits from Asia and the Indian Ocean has indicated abrupt changes in the strength of the Asian monsoon during the last deglaciation. Comparison of marine paleoclimate records that track salinity changes from Asian rivers can help evaluate the coherence of the Indian Ocean monsoon (IOM) with the larger Asian monsoon. Here we present paired Mg/Ca and δ18O data on the planktic foraminifer Globigerinoides ruber (white) from Andaman Sea core RC12-344 that provide records of sea-surface temperature (SST) and δ18O of seawater (δ18Osw) over the past 25,000 years (ka) before present (BP). Age control is based on nine accelerator mass spectrometry (AMS) dates on mixed planktic foraminifera. Mg/Ca-SST data indicate that SST was ∼3 °C cooler during the last glacial maximum (LGM) than the late Holocene. Andaman Sea δ18Osw exhibited higher than present values during the Lateglacial interval ca 19–15 ka BP and briefly during the Younger Dryas ca 12 ka BP. Lower than present δ18Osw values during the BØlling/AllerØd ca 14.5–12.6 ka BP and during the early Holocene ca 10.8–5.5 ka BP are interpreted to indicate lower salinity, reflect some combination of decreased evaporation–precipitation (E–P) over the Andaman Sea and increased Irrawaddy River outflow. Our results are consistent with the suggestion that IOM intensity was stronger than present during the BØlling/AllerØd and early Holocene, and weaker during the late glaciation, Younger Dryas, and the late Holocene. These findings support the hypothesis that rapid climate change during the last deglaciation and Holocene included substantial hydrologic changes in the IOM system that were coherent with the larger Asian monsoon.

  5. Source to Sink Transport of Terrestrial Biomarkers in a Monsoon-driven Fluvial System

    NASA Astrophysics Data System (ADS)

    Kirkels, F.; Zwart, H. M.; Usman, M.; Basu, S.; Martes, C.; Eglinton, T. I.; Peterse, F.

    2016-12-01

    Rivers are an important link in global organic carbon (OC) cycling by connecting soils and marine sediments. Whereas deposition of terrestrial carbon in marine settings may form a large OC sink, the extent of OC loss during river transport by CO2 outgassing is highly uncertain. In this context, it is crucial to better constrain the composition and sources of OC in rivers. The Godavari River in Central India is very dynamic with intense rainfall and high soil erosion rates during the monsoon and low transport during the dry period, representative of low frequency, high-impact erosion events expected worldwide due to climate change. In this study, we did a high-resolution sampling of soils, river sediments (bulk and < 63 um) and suspended particulate matter (SPM) during the monsoon and dry season. Source-to-sink tracing of concentration and compositional variations in branched glycerol dialkyl glycerol tetraethers (brGDGTs) as soil-specific biomarkers allowed us to follow soil OC transport through the river basin. Spatial trends in weight-normalized GDGT patterns reveal marked changes during the monsoon and dry season from upstream tributaries towards the delta. Evolution of GDGT signatures along the course of the river shows that SPM during the monsoon carries a primarily soil-derived signal contributed by the northern headwaters. Dominance of the recently discovered 6-methyl isomer indicates a year-round aquatic contribution from the western tributaries. River water isotopic composition and GDGT signatures show that northern tributaries dominate modern OC export from the Godavari basin, providing new information for the interpretation of paleorecords derived from cores taken in the Bay of Bengal. More detailed insights in OC sources in the Godavari basin will derive from (bulk) δ13C and ultimately 14C analyses of soils and river sediments. Further research into provenance of the mineral fraction will reveal if sediment and OC transport is (de)coupled.

  6. Early-Holocene decoupled summer temperature and monsoon precipitation in southwest China

    NASA Astrophysics Data System (ADS)

    Wu, D.; Chen, F.; Chen, X.; Lv, F.; Zhou, A.; Chen, J.; Abbott, M. B.; Yu, J.

    2017-12-01

    Proxy based reconstructions of Holocene temperature have shown that both the timing and magnitude of the thermal maximum vary substantially between different regions; the simulations results from climate models also show that summers were substantially cooler over regions directly influenced by the presence of the Laurentide ice sheet during the early Holocene, whereas other regions of the Northern Hemisphere were dominated by orbital forcing. However, for lack of summer temperature reconstruction in the low latitude regions like southwestern China dominated by the Indian summer monsoon, the Holocene summer temperature variations and it underlying forcing mechanism are ambiguous. Here we present a well-dated record of pollen-based quantitative summer temperature (mean July; MJT) over the last 14000 years from Xingyun Lake, Yunnan Province, southwest China. It was found that MJT decreased during the YD event, then increased slowly until 7400 yr BP, and decreased thereafter. The MJT shows a pattern with middle Holocene maximum of MJT, indicating a different changing pattern with the carbonate oxygen isotope record (d18O) from the same core during the early Holocene (11500-7400 yr BP), which has the similar variation with speleothem d18O record from Dongge cave, both indicate the variation of monsoon precipitation with the highest precipitation occurred during the early Holocene. Therefore, we propose that the variation of summer temperature and precipitation in southwest China was decoupled during the early Holocene. However, both MJT and monsoon precipitation decreased after the middle Holocene following the boreal summer insolation. We suggest that the high precipitation with strong summer monsoon and hence higher cloud cover may depress the temperature increasing forced by increasing summer insolation during the early Holocene; while melting ice-sheet in the high latitude regions had strongly influenced the summer temperature increase during the deglacial period, which weakened northward heat transport by the ocean. In addition, the high concentration of atmospheric aerosol during the early Holocene may also have partly contribution to the cool summer temperature by weakening solar insolation.

  7. Microstructural investigations on carbonate fault core rocks in active extensional fault zones from the central Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Cortinovis, Silvia; Balsamo, Fabrizio; Storti, Fabrizio

    2017-04-01

    The study of the microstructural and petrophysical evolution of cataclasites and gouges has a fundamental impact on both hydraulic and frictional properties of fault zones. In the last decades, growing attention has been payed to the characterization of carbonate fault core rocks due to the nucleation and propagation of coseismic ruptures in carbonate successions (e.g., Umbria-Marche 1997, L'Aquila 2009, Amatrice 2016 earthquakes in Central Apennines, Italy). Among several physical parameters, grain size and shape in fault core rocks are expected to control the way of sliding along the slip surfaces in active fault zones, thus influencing the propagation of coseismic ruptures during earthquakes. Nevertheless, the role of grain size and shape distribution evolution in controlling the weakening or strengthening behavior in seismogenic fault zones is still not fully understood also because a comprehensive database from natural fault cores is still missing. In this contribution, we present a preliminary study of seismogenic extensional fault zones in Central Apennines by combining detailed filed mapping with grain size and microstructural analysis of fault core rocks. Field mapping was aimed to describe the structural architecture of fault systems and the along-strike fault rock distribution and fracturing variations. In the laboratory we used a Malvern Mastersizer 3000 granulometer to obtain a precise grain size characterization of loose fault rocks combined with sieving for coarser size classes. In addition, we employed image analysis on thin sections to quantify the grain shape and size in cemented fault core rocks. The studied fault zones consist of an up to 5-10 m-thick fault core where most of slip is accommodated, surrounded by a tens-of-meters wide fractured damage zone. Fault core rocks consist of (1) loose to partially cemented breccias characterized by different grain size (from several cm up to mm) and variable grain shape (from very angular to sub-rounded), and (2) very fine-grained gouges (< 1 mm) localized along major and minor mirror-like slip surfaces. Damage zones mostly consist of fractured rocks and, locally, pulverized rocks. Collectively, field observations and laboratory analyses indicate that within the fault cores of the studied fault zones, grain size progressively decreases approaching the master slip surfaces. Furthermore, grain shape changes from very angular to sub-rounded clasts moving toward the master slip surfaces. These features suggest that the progressive evolution of grain size and shape distributions within fault cores may have determined the development of strain localization by the softening and cushioning effects of smaller particles in loose fault rocks.

  8. Strong coupling of Asian Monsoon and Antarctic climates on sub-orbital timescales

    PubMed Central

    Chen, Shitao; Wang, Yongjin; Cheng, Hai; Edwards, R. Lawrence; Wang, Xianfeng; Kong, Xinggong; Liu, Dianbing

    2016-01-01

    There is increasing evidence that millennial-scale climate variability played an active role on orbital-scale climate changes, but the mechanism for this remains unclear. A 230Th-dated stalagmite δ18O record between 88 and 22 thousand years (ka) ago from Yongxing Cave in central China characterizes changes in Asian monsoon (AM) strength. After removing the 65°N insolation signal from our record, the δ18O residue is strongly anti-phased with Antarctic temperature variability on sub-orbital timescales during the Marine Isotope Stage (MIS) 3. Furthermore, once the ice volume signal from Antarctic ice core records were removed and extrapolated back to the last two glacial-interglacial cycles, we observe a linear relationship for both short- and long-duration events between Asian and Antarctic climate changes. This provides the robust evidence of a link between northern and southern hemisphere climates that operates through changes in atmospheric circulation. We find that the weakest monsoon closely associated with the warmest Antarctic event always occurred during the Terminations. This finding, along with similar shifts in the opal flux record, suggests that millennial-scale events play a key role in driving the deglaciation through positive feedbacks associated with enhanced upwelling and increasing CO2. PMID:27605015

  9. Water pH and temperature in Lake Biwa from MBT'/CBT indices during the last 282 000 years

    NASA Astrophysics Data System (ADS)

    Ajioka, T.; Yamamoto, M.; Takemura, K.; Hayashida, A.

    2014-03-01

    We generated a 282 000-year record of water pH and temperature in Lake Biwa, central Japan, by analysing the methylation index (MBT') and cyclisation ratio (CBT) of branched tetraethers in sediments from piston and borehole cores to understand the responses of precipitation and air temperature in central Japan to the East Asian monsoon variability on the orbital timescale. Because water pH in Lake Biwa is determined by phosphorus input driven by precipitation, the record of water pH should indicate changes in summer precipitation in central Japan. The estimated pH showed significant periodicity at 19 and 23 ka (precession) and at 41 ka (obliquity). The variation in the estimated pH agrees with variation in the pollen temperature index. This indicates synchronous variation in summer air temperature and precipitation in central Japan, which contradicts the conclusions of previous studies. The variation in estimated pH was also synchronous with the variation of oxygen isotopes in stalagmites in China, suggesting that East Asian summer monsoon precipitation was governed by Northern Hemisphere summer insolation on orbital timescales. However, the estimated winter temperatures were higher during interglacials and lower during glacials, showing an eccentricity cycle. This suggests that the temperature variation reflected winter monsoon variability.

  10. Asian Monsoons: Variability, Predictability, and Sensitivity to External Forcing

    NASA Technical Reports Server (NTRS)

    Yang, Song; Lau, K.-M.

    1999-01-01

    In this study, we have addressed the interannual variations of Asian monsoons including both broad-scale and regional monsoon components. Particular attention is devoted to the identities of the South China Sea monsoon and Indian monsoon. We use CPC Merged Analysis of Precipitation and NCEP reanalyses to define regional monsoon indices and to depict the various monsoons. Parallel modeling studies have also been carried out to assess the role of boundary forcing and the potential predictability of the monsoons. Each monsoon is characterized by its unique features. While the South Asian monsoon represents a classical monsoon in which anomalous circulation is governed by Rossby-wave dynamics, the Southeast Asian monsoon symbolizes a "hybrid" monsoon that features multi-cellular meridional circulation over eastern Asia. The broad-scale Asian monsoon links to the basin-wide atmospheric circulation over the Indian-Pacific oceans. Both SST and land surface processes are important for determining the variations of all monsoons. For the broad-scale monsoon, SST anomalies are more important than land surface processes. For regional monsoons, however, land surface processes may become equally important. Both observation and model shows that the broad-scale monsoon is potentially more predictable than regional monsoons, and that the Southeast Asian monsoon may possess higher predictability than the South Asian monsoon.

  11. Asian Monsoons: Variability, Predictability, and Sensitivity to External Forcing

    NASA Technical Reports Server (NTRS)

    Yang, Song; Lau, K.-M.; Kim, K.-M.

    1999-01-01

    In this study, we have addressed the interannual variations of Asian monsoons including both broad-scale and regional monsoon components. Particular attention is devoted to the identities of the South China Sea monsoon and Indian monsoon. We use CPC Merged Analysis of Precipitation and NCEP reanalyses to define regional monsoon indices and to depict the various monsoons. Parallel modeling studies have also been carried out to assess the potential predictability of the broad-scale and regional monsoons. Each monsoon is characterized by its unique features. While the South Asian monsoon represents a classical monsoon in which anomalous circulation is governed by Rossby-wave dynamics, the Southeast Asian monsoon symbolizes a "hybrid" monsoon that features multi-cellular meridional circulation over eastern Asia. The broad-scale Asian monsoon links to the basin-wide atmospheric circulation over the Indian-Pacific oceans. Both Sea Surface Temperatures (SST) and land surface processes are important for determining the variations of all monsoons. For the broad-scale monsoon, SST anomalies are more important than land surface processes. However, for regional monsoons, land surface processes may become equally important. Both observation and model shows that the broad-scale monsoon is potentially more predictable than regional monsoons, and that the Southeast Asian monsoon may possess higher predictability than the South Asian monsoon.

  12. Three-dimensional characterization of microporosity and permeability in fault zones hosted in heterolithic succession

    NASA Astrophysics Data System (ADS)

    Riegel, H. B.; Zambrano, M.; Jablonska, D.; Emanuele, T.; Agosta, F.; Mattioni, L.; Rustichelli, A.

    2017-12-01

    The hydraulic properties of fault zones depend upon the individual contributions of the damage zone and the fault core. In the case of the damage zone, it is generally characterized by means of fracture analysis and modelling implementing multiple approaches, for instance the discrete fracture network model, the continuum model, and the channel network model. Conversely, the fault core is more difficult to characterize because it is normally composed of fine grain material generated by friction and wear. If the dimensions of the fault core allows it, the porosity and permeability are normally studied by means of laboratory analysis or in the other case by two dimensional microporosity analysis and in situ measurements of permeability (e.g. micro-permeameter). In this study, a combined approach consisting of fracture modeling, three-dimensional microporosity analysis, and computational fluid dynamics was applied to characterize the hydraulic properties of fault zones. The studied fault zones crosscut a well-cemented heterolithic succession (sandstone and mudstones) and may vary in terms of fault core thickness and composition, fracture properties, kinematics (normal or strike-slip), and displacement. These characteristics produce various splay and fault core behavior. The alternation of sandstone and mudstone layers is responsible for the concurrent occurrence of brittle (fractures) and ductile (clay smearing) deformation. When these alternating layers are faulted, they produce corresponding fault cores which act as conduits or barriers for fluid migration. When analyzing damage zones, accurate field and data acquisition and stochastic modeling was used to determine the hydraulic properties of the rock volume, in relation to the surrounding, undamaged host rock. In the fault cores, the three-dimensional pore network quantitative analysis based on X-ray microtomography images includes porosity, pore connectivity, and specific surface area. In addition, images were used to perform computational fluid simulation (Lattice-Boltzmann multi relaxation time method) and estimate the permeability. These results will be useful for understanding the deformation process and hydraulic properties across meter-scale damage zones.

  13. Process-level improvements in CMIP5 models and their impact on tropical variability, the Southern Ocean, and monsoons

    NASA Astrophysics Data System (ADS)

    Lauer, Axel; Jones, Colin; Eyring, Veronika; Evaldsson, Martin; Hagemann, Stefan; Mäkelä, Jarmo; Martin, Gill; Roehrig, Romain; Wang, Shiyu

    2018-01-01

    The performance of updated versions of the four earth system models (ESMs) CNRM, EC-Earth, HadGEM, and MPI-ESM is assessed in comparison to their predecessor versions used in Phase 5 of the Coupled Model Intercomparison Project. The Earth System Model Evaluation Tool (ESMValTool) is applied to evaluate selected climate phenomena in the models against observations. This is the first systematic application of the ESMValTool to assess and document the progress made during an extensive model development and improvement project. This study focuses on the South Asian monsoon (SAM) and the West African monsoon (WAM), the coupled equatorial climate, and Southern Ocean clouds and radiation, which are known to exhibit systematic biases in present-day ESMs. The analysis shows that the tropical precipitation in three out of four models is clearly improved. Two of three updated coupled models show an improved representation of tropical sea surface temperatures with one coupled model not exhibiting a double Intertropical Convergence Zone (ITCZ). Simulated cloud amounts and cloud-radiation interactions are improved over the Southern Ocean. Improvements are also seen in the simulation of the SAM and WAM, although systematic biases remain in regional details and the timing of monsoon rainfall. Analysis of simulations with EC-Earth at different horizontal resolutions from T159 up to T1279 shows that the synoptic-scale variability in precipitation over the SAM and WAM regions improves with higher model resolution. The results suggest that the reasonably good agreement of modeled and observed mean WAM and SAM rainfall in lower-resolution models may be a result of unrealistic intensity distributions.

  14. An 8,600 year lacustrine record of summer monsoon variability from Yunnan, China

    NASA Astrophysics Data System (ADS)

    Hillman, Aubrey L.; Abbott, Mark B.; Finkenbinder, Matthew S.; Yu, JunQing

    2017-10-01

    Interactions between the Indian Summer Monsoon (ISM) and East Asian Summer Monsoon (EASM) are complex, yet needed to provide a long-term perspective of precipitation patterns in southeast Asia. Here we present an 8600-year sediment record from Xingyun Lake in Yunnan, China, a transitional zone that receives inputs of precipitation from both the ISM and EASM. Analysis of stable oxygen isotopes (δ18O) from authigenic calcite yields a semi-quantitative estimate of the timing and magnitude of lake level change that reflects changes in effective moisture from monsoon variability. Between 8600 and 6900 years BP, δ18O values are stable and low, indicating high lake levels and overflowing conditions resulting from a strong ISM. After 6900 years BP, δ18O values shift to higher values, which we suggest reflects a weakening of the ISM caused by declining summer insolation. The most substantial positive shift in isotopes occurs from 5000 to 4300 years BP and is coincident with aridity in India and the Tibetan Plateau. Other proxy records indicate increased ENSO variability and a southward shift in the ITCZ, which has an effect on the strength and onset of the ISM and may account for this change in hydrologic balance. After 4300 years BP, δ18O values continue to increase reflecting a gradual drying trend, but increases are smaller than prior periods, in part due to lake bathymetry that limits the potential for isotopic enrichment driven by evaporation. The relative influence of the ISM and EASM in the Yunnan Province of China during the Holocene remains a topic for future study, but our results suggest the predominance of the ISM and a possible connection to ENSO patterns on centennial to millennial timescales.

  15. Synergy of Satellite-Surface Observations for Studying the Properties of Absorbing Aerosols in Asia

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee

    2010-01-01

    Through interaction with clouds and alteration of the Earth's radiation budget, atmospheric aerosols significantly influence our weather and climate. Monsoon rainfalls, for example, sustain the livelihood of more than half of the world's population. Thus, understanding the mechanism that drives the water cycle and freshwater distribution is high-lighted as one of the major near-term goals in NASA's Earth Science Enterprise Strategy. Every cloud droplet/ice-crystal that serves as an essential element in portraying water cycle and distributing freshwater contains atmospheric aerosols at its core. In addition, the spatial and temporal variability of atmospheric aerosol properties is complex due to their dynamic nature. In fact, the predictability of the tropical climate system is much reduced during the boreal spring, which is associated with the peak season of biomass burning activities and regional/long-range transport of dust aerosols. Therefore, to accurately assess the impact of absorbing aerosols on regional-to-global climate requires not only modeling efforts but also continuous observations from satellites, aircraft, networks of ground-based instruments and dedicated field experiments. Since 1997 NASA has been successfully launching a series of satellites the Earth Observing System - to intensively study, and gain a better understanding of, the Earth as an integrated system. Through participation in many satellite remote-sensing/retrieval and validation projects over the years, we have gradually developed and refined the SMART (Surface-sensing Measurements for Atmospheric Radiative Transfer) and COMMIT (Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile observatories, a suite of surface remote sensing and in-situ instruments that proved to be vital in providing high temporal measurements, which complement the satellite observations. In this talk, we will present SMART-COMMIT which has played key roles, serving as network or supersite, in major international research projects such as the Joint Aerosol Monsoon Experiment (JAM EX), a core element of the Asian Monsoon Years (AMY, 2008-2012). SMART-COMMIT deployments during 2008 AMY/JAMEX were conducted in northwestern China to characterize the properties of dust-laden aerosols and in the vicinity of Beijing for mega-city aerosols. In 2009, SMART-COMMIT also participated in the JAMEX/RAJO-MEGHA (Radiation, Aerosol Joint Observations-Monsoon Experiment in the Gangetic-Himalayan Area; Sanskrit for Dust-Cloud) to study the aerosol properties, solar absorption and the associated atmospheric warming, and the climatic impact of elevated aerosols during the pre-monsoon season in South Asia. We will show results from these field experiments, as well as discuss a new initiative of 7-SEAS (7 South East Asian Studies) to study the interaction of anthropogenic aerosols with regional meteorology, particularly with clouds.

  16. Significance of pre-Quaternary climate change for montane species diversity: insights from Asian salamanders (Salamandridae: Pachytriton).

    PubMed

    Wu, Yunke; Wang, Yuezhao; Jiang, Ke; Hanken, James

    2013-01-01

    Despite extensive focus on the genetic legacy of Pleistocene glaciation, impacts of earlier climatic change on biodiversity are poorly understood. Because amphibians are highly sensitive to variations in precipitation and temperature, we use a genus of Chinese montane salamanders (Salamandridae: Pachytriton) to study paleoclimatic change in East Asia, which experienced intensification of its monsoon circulation in the late Miocene associated with subsequent Pliocene warming. Using both nuclear and mitochondrial DNA sequences, we reconstruct the species tree under a coalescent model and demonstrate that all major lineages originated before the Quaternary. Initial speciation within the genus occurred after the summer monsoon entered a stage of substantial intensification. Heavy summer precipitation established temporary water connectivity through overflows between adjacent stream systems, which may facilitate geographic range expansion by aquatic species such as Pachytriton. Species were formed in allopatry likely through vicariant isolation during or after range expansion. To evaluate the influence of Pliocene warming on these cold-adapted salamanders, we construct a novel temperature buffer-zone model, which suggests widespread physiological stress or even extinction during the warming period. A significant deceleration of species accumulation rate is consistent with Pliocene range contraction, which affected P. granulosus and P. archospotus the most because they lack large temperature buffer zones. In contrast, demographic growth occurred in species for which refugia persist. The buffer-zone model reveals the Huangshan Mountain as a potential climatic refugium, which is similar to that found for other East Asian organisms. Our approach can incorporate future climatic data to evaluate the potential impact of ongoing global warming on montane species (particularly amphibians) and to predict possible population declines. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Basalt-flow imaging using a high-resolution directional borehole radar

    USGS Publications Warehouse

    Moulton, C.W.; Wright, D.L.; Hutton, S.R.; Smith, D.V.G.; Abraham, J.D.

    2002-01-01

    A new high-resolution directional borehole radar-logging tool (DBOR tool) was used to log three wells at the Idaho National Engineering and Environmental Laboratory (INEEL). The radar system uses identical directional cavity-backed monopole transmitting and receiving antennas that can be mechanically rotated while the tool is stationary or moving slowly in a borehole. Faster reconnaissance logging with no antenna rotation was also done to find zones of interest. The microprocessor-controlled motor/encoder in the tool can rotate the antennas azimuthally, to a commanded angle, accurate to a within few degrees. The three logged wells in the unsaturated zone at the INEEL had been cored with good core recovery through most zones. After coring, PVC casing was installed in the wells. The unsaturated zone consists of layered basalt flows that are interbedded with thin layers of coarse-to-fine grained sediments. Several zones were found that show distinctive signatures consistent with fractures in the basalt. These zones may correspond to suspected preferential flow paths. The DBOR data were compared to core, and other borehole log information to help provide better understanding of hydraulic flow and transport in preferential flow paths in the unsaturated zone basalts at the INEEL.

  18. Microbial diversity in Cenozoic sediments recovered from the Lomonosov Ridge in the Central Arctic basin.

    PubMed

    Forschner, Stephanie R; Sheffer, Roberta; Rowley, David C; Smith, David C

    2009-03-01

    The current understanding of microbes inhabiting deeply buried marine sediments is based largely on samples collected from continental shelves in tropical and temperate latitudes. The geographical range of marine subsurface coring was expanded during the Integrated Ocean Drilling Program Arctic Coring Expedition (IODP ACEX). This expedition to the ice-covered central Arctic Ocean successfully cored the entire 428 m sediment stack on the Lomonosov Ridge during August and September 2004. The recovered cores vary from siliciclastic sediment low in organic carbon (< 0.2%) to organic rich ( approximately 3%) black sediments that rapidly accumulated in the early middle Eocene. Three geochemical environments were characterized based on chemical analyses of porewater: an upper ammonium oxidation zone, a carbonate dissolution zone and a deep (> 200 m below sea floor) sulfate reduction zone. The diversity of microbes within each zone was assessed using 16S rRNA phylogenetic markers. Bacterial 16S rRNA genes were successfully amplified from each of the biogeochemical zones, while archaea was only amplified from the deep sulfate reduction zone. The microbial communities at each zone are phylogenetically different and are most closely related to those from other deep subsurface environments.

  19. Nondestructive continuous physical property measurements of core samples recovered from hole B, Taiwan Chelungpu-Fault Drilling Project

    NASA Astrophysics Data System (ADS)

    Hirono, Tetsuro; Yeh, En-Chao; Lin, Weiren; Sone, Hiroki; Mishima, Toshiaki; Soh, Wonn; Hashimoto, Yoshitaka; Matsubayashi, Osamu; Aoike, Kan; Ito, Hisao; Kinoshita, Masataka; Murayama, Masafumi; Song, Sheng-Rong; Ma, Kuo-Fong; Hung, Jih-Hao; Wang, Chien-Ying; Tsai, Yi-Ben; Kondo, Tomomi; Nishimura, Masahiro; Moriya, Soichi; Tanaka, Tomoyuki; Fujiki, Toru; Maeda, Lena; Muraki, Hiroaki; Kuramoto, Toshikatsu; Sugiyama, Kazuhiro; Sugawara, Toshikatsu

    2007-07-01

    The Taiwan Chelungpu-Fault Drilling Project was undertaken in 2002 to investigate the faulting mechanism of the 1999 Mw 7.6 Taiwan Chi-Chi earthquake. Hole B penetrated the Chelungpu fault, and core samples were recovered from between 948.42- and 1352.60-m depth. Three major zones, designated FZB1136 (fault zone at 1136-m depth in hole B), FZB1194, and FZB1243, were recognized in the core samples as active fault zones within the Chelungpu fault. Nondestructive continuous physical property measurements, conducted on all core samples, revealed that the three major fault zones were characterized by low gamma ray attenuation (GRA) densities and high magnetic susceptibilities. Extensive fracturing and cracks within the fault zones and/or loss of atoms with high atomic number, but not a measurement artifact, might have caused the low GRA densities, whereas the high magnetic susceptibility values might have resulted from the formation of magnetic minerals from paramagnetic minerals by frictional heating. Minor fault zones were characterized by low GRA densities and no change in magnetic susceptibility, and the latter may indicate that these minor zones experienced relatively low frictional heating. Magnetic susceptibility in a fault zone may be key to the determination that frictional heating occurred during an earthquake on the fault.

  20. The structure of melting mushy zones, with implications for Earth's inner core (Invited)

    NASA Astrophysics Data System (ADS)

    Bergman, M. I.; Huguet, L.; Alboussiere, T.

    2013-12-01

    Seismologists have inferred hemispherical differences in the isotropic wavespeed, the elastic anisotropy, the attenuation, and the attenuation anisotropy of Earth's inner core. One hypothesis for these hemispherical differences involves an east-west translation of the inner core, with enhanced solidification on one side and melting on the other. Another hypothesis is that long term mantle control over outer core convection can lead to hemispherical variations in solidification that could even result in melting in some regions of the inner core boundary. It has also been hypothesized that the inner core is growing dendritically, resulting in an inner core that has the structure of a mushy zone (albeit one with a high solid fraction). It would therefore be helpful to understand how the structure of a melting mushy zone might look in comparison with one that is solidifying, in an effort to help interpret the seismic inferences. We have carried out experiments on the solidification of ammonium chloride from an aqueous solution, yielding a mushy zone. The experiments run in a centrifuge, in order to reach a more realistic ratio of convective velocity to phase change rate, expected to be very large at the boundary of the inner core. Hypergravity thus increases the experimental solid fraction of the mush. So far the maximum gravity we have achieved is 200 g. A Peltier cell provides cooling at one end of the cell, and after the mushy zone has grown we turn on a heater at the other end. Probes monitor the temperature along the height of the cell. As ammonium chloride in the mushy zone melts it produces more dense fluid, which results in convection in the mushy zone, a greater ammonium chloride concentration deeper in the mushy zone, and hence enhanced solidification there. This thus changes the solid fraction profile from that during solidification, which may be observable in the lab experiments using ultrasonic transducers and post-mortem under a microscope. The melting may also change the propagation of chimney convection. It remains unclear whether these changes will be observable seismically.

  1. Quantification of tidally-influenced seasonal groundwater discharge to the Bay of Bengal by seepage meter study

    NASA Astrophysics Data System (ADS)

    Debnath, Palash; Mukherjee, Abhijit

    2016-06-01

    Submarine groundwater discharges (SGD) play a major role in solute transport and nutrient flux to the ocean. We have conducted a spatio-temporal high-resolution lunar-tidal cycle-scale seepage meter experiment during pre-monsoon and post-monsoon seasons, to quantify the spatio-temporal patterns and variability of SGD, its terrestrial (T-SGD) and marine components (M-SGD). The measured daily average SGD rates range from no discharge to 3.6 m3 m-2 d-1 during pre-monsoon season and 0.08-5.9 m3 m-2 d-1 during post-monsoon seasons, depending on the tidal pattern. The uncertainty for SGD measurement is calculated as ±0.8% to ±11% for pre-monsoon and ±1.8% to ±17% for post-monsoon respectively. A linear, inverse relationship was observed between the calculated T-SGD and M-SGD components, which varied along the distance from the coast and position in the tidal-cycle, spatial and temporal (daily) variations of seepage rates within the lunar tidal cycle period distinctly demonstrate the influence of tides on groundwater seepage rate. As an instance, for the identification of the bulk discharge location, the centroid of the integrated SGD rate has been calculated and found to be near 20 m offshore area. The average discharge rate per unit area further extrapolated to total SGD fluxes to the Bay of Bengal from eastern Indian coast by extrapolation of the annual and seasonal fluxes observed in the study area, which are first direct/experimental estimate of SGD to the Bay of Bengal. Approximations suggest that in present-day condition, total average annual SGD to the Bay of Bengal is about 8.98 ± 0.6 × 108 m3/y. This is suggested that the SGD input to the ocean through the Bay of Bengal is approximately 0.9% of the global input from the inter-tidal zone and that has an implication on the mass balance of discharging solutes/nutrients to the global oceans. High T-SGD input is observed for all season, which is largest toward landward direction from the delineated saltwater-freshwater interface. The high magnitude of T-SGD could play an important role in mass balance of fresh water discharge and solute transport to the global ocean, thereby influence coastal ecohydrological systems.

  2. Live (Rose Bengal stained) foraminiferal faunas from the northern Arabian Sea: faunal succession within and below the OMZ

    NASA Astrophysics Data System (ADS)

    Caulle, C.; Koho, K. A.; Mojtahid, M.; Reichart, G. J.; Jorissen, F. J.

    2014-02-01

    Live (Rose Bengal stained) benthic foraminifera from the Murray Ridge, within and below the northern Arabian Sea oxygen minimum zone (OMZ), were studied in order to determine the relationship between faunal composition, bottom water oxygenation (BWO), pore water chemistry and organic matter (organic carbon and phytopigment) distribution. A series of multicores were recovered from a ten-station oxygen (BWO: 2-78 μM) and bathymetric (885-3010 m depth) transect during the winter monsoon in January 2009. Foraminifera were investigated from three different size fractions (63-125 μm, 125-150 μm and >150 μm). The larger foraminifera (>125 μm) were strongly dominated by agglutinated species (e.g. Reophax spp.). In contrast, in the 63-125 μm fraction, calcareous taxa were more abundant, especially in the core of the OMZ. On the basis of a principal components analysis, three foraminiferal groups were identified and correlated to the environmental parameters by canonical correspondence analysis. The faunas from the shallowest stations, in the core of the OMZ (BWO: 2 μM), were composed of "low oxygen" species, typical of the Arabian Sea OMZ (e.g. Rotaliatinopsis semiinvoluta, Praeglobobulimina sp., Bulimina exilis, Uvigerina peregrina type parva). These taxa are adapted to the very low BWO conditions and to high phytodetritus supplies. The transitional group, typical for the lower part of the OMZ (BWO: 5-16 μM), is composed of species that are tolerant as well to low-oxygen concentrations, but may be less critical with respect to organic supplies (e.g. Globocassidulina subglobosa, Ehrenbergina trigona). Below the OMZ (BWO: 26-78 μM), where food availability is more limited and becomes increasingly restricted to surficial sediments, cosmopolitan calcareous taxa were present, such as Bulimina aculeata, Melonis barleeanus, Uvigerina peregrina and Epistominella exigua. Miliolids were uniquely observed in this last zone, reflecting the higher BWO and/or lower organic input. At these deeper sites, the faunas exhibit a clear succession of superficial, intermediate and deep infaunal microhabitats, which can be linked to the deeper oxygen and nitrate penetration into the sediment.

  3. Possibility study of gasifier with axial circulating flue gas for reducing Tar

    NASA Astrophysics Data System (ADS)

    Poowadin, T.; Polsongkram, M.; Khantikomol, P.

    2018-01-01

    This present research article aims to study the possibility of gasification by axial core flue gas circulating kiln and find the efficiency of syngas production. An axial core flue gas circulating tube was installed in the center of the updraft gasifier in purposing of tar reducing. In the present study, the eucalyptus wood chip 4, 8, and 10 kg with the moisture content 16% were examined. Several type-K thermocouples were employed to measure the temperatures at preheat, combustion, reduction, pyrolysis, drying, and gas outlet zone. The results showed that the temperatures in the combustion and the reduction zone of the kiln with the axial core flue gas recirculating were lower than the kiln without the core owing to installing the core would reduce the combustion zone area in biomass burning. Obviously, the temperature in the pyrolysis and drying zone were nearly the same as both with and without the core. In consideration of syngas components, it was found that CO production from the gasifier with the core was higher than the gasifier without the core about 25%. Other gases, however, were almost same. The syngas production efficiency obtained from the gasifier with the core decreased with increasing the mass of biomass. It showed that the highest efficiency was 30% at 4 kg supplying biomass. In comparison, the efficiencies of both the kilns with and without the core were not different. For liquid product, the amount of liquid decreased about 47.23% comparing with the gasifier without the core.

  4. Toward an improved understanding of the role of transpiration in critical zone dynamics

    NASA Astrophysics Data System (ADS)

    Mitra, B.; Papuga, S. A.

    2012-12-01

    Evapotranspiration (ET) is an important component of the total water balance across any ecosystem. In subalpine mixed-conifer ecosystems, transpiration (T) often dominates the total water flux and therefore improved understanding of T is critical for accurate assessment of catchment water balance and for understanding of the processes that governs the complex dynamics across critical zone (CZ). The interaction between T and plant vegetation not only modulates soil water balance but also influences water transit time and hydrochemical flux - key factors in our understanding of how the CZ evolves and responds. Unlike an eddy covariance system which provides only an integrated ET flux from an ecosystem, a sap flow system can provide an estimate of the T flux from the ecosystem. By isolating T, the ecohydrological drivers of this major water loss from the CZ can be identified. Still, the species composition of mixed-conifer ecosystems vary and the drivers of T associated with each species are expected to be different. Therefore, accurate quantification of T from a mixed-conifer requires knowledge of the unique transpiration dynamics of each of the tree species. Here, we installed a sap flow system within two mixed-conifer study sites of the Jemez River Basin - Santa Catalina Mountains Critical Zone Observatory (JRB - SCM CZO). At both sites, we identified the dominant tree species and installed sap flow sensors on healthy representatives for each of those species. At the JRB CZO site, sap sensors were installed in fir (4) and spruce (4) trees; at the SCM CZO site, sap sensors were installed at white fir (4) and maple (4) and one dead tree. Meteorological data as well as soil temperature (Ts) and soil moisture (θ) at multiple depths were also collected from each of the two sites. Preliminary analysis of two years of sap flux rate at JRB - SCM CZO shows that the environmental drivers of fir, spruce, and maple are different and also vary throughout the year. For JRB fir, during the snowmelt period, Ts across multiple depths was the primary control on the sap flux rate (R2 ≈ 0.7). During the dry and monsoon periods only net radiation (Rn) was found to be a driver of the flux rate (R2 ≈ 0.4). For JRB spruce, a combination of Ts across multiple depths as well as air temperature (R2 ≈ 0.5) were the dominant drivers of sap flux rate during the snowmelt period. During the monsoon period, Rn (R2 ≈ 0.4) was the dominant driver. For SCM maple, during the dry period, θ across multiple depths was the primary driver of the sap flux rate (R2 ≈ 0.8); the strength of the correlation with the control of θ on sap flux rate drastically dropping (R2 ≈ 0.2) during the monsoon period. For SCM white fir, θ across multiple depths was a weak driver of sap flux rate during the dry (R2 ≈ 0.1) and monsoon periods (R2 ≈ 0.2). This study highlights the importance of species-specific information for understanding the role of transpiration in critical zone processes. Specifically, unique environmental drivers that vary throughout the year for different vegetation types complicate the assessment of both catchment-scale water and carbon balances and for understanding of the processes that govern the complex dynamics across the CZ.

  5. Freeze core sampling to validate time-lapse resistivity monitoring of the hyporheic zone.

    PubMed

    Toran, Laura; Hughes, Brian; Nyquist, Jonathan; Ryan, Robert

    2013-01-01

    A freeze core sampler was used to characterize hyporheic zone storage during a stream tracer test. The pore water from the frozen core showed tracer lingered in the hyporheic zone after the tracer had returned to background concentration in collocated well samples. These results confirmed evidence of lingering subsurface tracer seen in time-lapse electrical resistivity tomographs. The pore water exhibited brine exclusion (ion concentrations in ice lower than source water) in a sediment matrix, despite the fast freezing time. Although freeze core sampling provided qualitative evidence of lingering tracer, it proved difficult to quantify tracer concentration because the amount of brine exclusion during freezing could not be accurately determined. Nonetheless, the additional evidence for lingering tracer supports using time-lapse resistivity to detect regions of low fluid mobility within the hyporheic zone that can act as chemically reactive zones of importance in stream health. © 2012, The Author(s). GroundWater © 2012, National Ground Water Association.

  6. Orthopyroxene oikocrysts in the MG1 chromitite layer of the Bushveld Complex: implications for cumulate formation and recrystallisation

    NASA Astrophysics Data System (ADS)

    Kaufmann, Felix E. D.; Vukmanovic, Zoja; Holness, Marian B.; Hecht, Lutz

    2018-02-01

    Two typical mineral textures of the MG 1 chromitite of the Bushveld Complex, South Africa, were observed; one characterised by abundant orthopyroxene oikocrysts, and the other by coarse-grained granular chromitite with only minor amounts of interstitial material. Oikocrysts form elongate clusters of several crystals aligned parallel to the layering, and typically have subhedral, almost chromite-free, core zones containing remnants of olivine. The core zones are surrounded by poikilitic aureoles overgrowing euhedral to subhedral chromite chadacrysts. Chromite grains show no preferred crystal orientation, whereas orthopyroxene grains forming clusters commonly share the same crystallographic orientation. Oikocryst core zones have lower Mg# and higher concentrations of incompatible trace elements compared to their poikilitic aureoles. Core zones are relatively enriched in REE compared to a postulated parental magma (B1) and did not crystallise in equilibrium with the surrounding minerals, whereas the composition of the poikilitic orthopyroxene is consistent with growth from the B1 magma. These observations cannot be explained by the classic cumulus and post-cumulus models of oikocryst formation. Instead, we suggest that the oikocryst core zones in the MG1 chromitite layer formed by peritectic replacement of olivine primocrysts by reaction with an upwards-percolating melt enriched in incompatible trace elements. Poikilitic overgrowth on oikocryst core zones occurred in equilibrium with a basaltic melt of B1 composition near the magma-crystal mush interface. Finally, adcumulus crystallisation followed by grain growth resulted in the surrounding granular chromitite.

  7. Trace Element Determination from the Guliya Ice Core to Characterize Aerosol Deposition over the Western Tibetan Plateau during the Last 500 Years

    NASA Astrophysics Data System (ADS)

    Sierra Hernandez, R.; Gabrielli, P.; Beaudon, E.; Wegner, A.; Thompson, L. G.

    2014-12-01

    The Tibetan Plateau or Third Pole covers over 5 million km2, and has ~46,000 glaciers that collectively contain one of the Earth's largest stores of fresh water. The Guliya ice cap located in the western Kunlun Shan on the Qinghai-Tibetan Plateau, China, is the largest (> 200 km2) ice cap in the subtropical zone. In 1992, a 308.6 m ice core to bedrock was recovered from the Guliya ice cap. The deepest 20 meters yielded the first record extending back through the last glacial cycle found outside of the Polar Regions. Because of its continental location on the northwestern side of the Tibetan Plateau, the atmospheric circulation over the Guliya ice cap is dominated by westerly air flow from the Eurasian region. Therefore the site is expected to be unaffected by the fallout of anthropogenic trace metals originating from the inner Asian continent and rather may serve to characterize trace metal emissions from the western countries. Here we present preliminary results of the determination of 29 trace elements, Rb, Sr, Nb, Mo, Ag, Cd, Sn, Sb, Cs, Ba, Ta, Tl, Pb, Bi, U, Li, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, and As, from Guliya ice core samples spanning the period 1500 - 1992 AD at seasonal (1750-1992 AD) and annual (1500-1750 AD) resolution. This Guliya trace element record will complement the developing records from the Dasuopu glacier, central Himalaya, and from the Puruogangri ice cap in the western Tanggula Shan in central Tibetan Plateau, which in contrast to Guliya are influenced by the monsoon. We investigate the possible sources both natural and anthropogenic of atmospheric trace elements and their fluxes over the Tibetan Plateau during the last 500 years.

  8. Characterization of the Fault Core and Damage Zone of the Borrego Fault, 2010 M7.2 Rupture

    NASA Astrophysics Data System (ADS)

    Dorsey, M. T.; Rockwell, T. K.; Girty, G.; Ostermeijer, G.; Mitchell, T. M.; Fletcher, J. M.

    2017-12-01

    We collected a continuous sample of the fault core and 23 samples of the damage zone out to 52 m across the rupture trace of the 2010 M7.2 El Mayor-Cucapa earthquake to characterize the physical damage and chemical transformations associated with this active seismic source. In addition to quantifying fracture intensity from macroscopic analysis, we cut a continuous thin section through the fault core and from various samples in the damage zone, and ran each sample for XRD analyses for clay mineralogy, XRF for bulk geochemical analyses, and bulk and grain density from which porosity and volumetric strain were derived. The parent rock is a hydrothermally-altered biotite tonalite, with biotite partially altered to chlorite. The presence of epidote with chlorite suggests that these rocks were subjected to relatively high temperatures of 300-400° C. Adjacent to the outermost damage zone is a chaotic breccia zone with distinct chemical and physical characteristics, indicating possible connection to an ancestral fault to the southwest. The damage zone consists of an outer zone of protocataclasite, which grades inward towards mesocataclasite with seams of ultracataclasite. The fault core is anomalous in that it is largely composed of a sliver of marble that has been translated along the fault, so direct comparison with the damage zone is impaired. From collected data, we observe that chloritization increases into the breccia and damage zones, as does the presence of illite. Porosity reaches maximum values in the damage zone adjacent to the core, and closely follows trends in fracture intensity. Statistically significant gains in Mg, Na, K, Mn, and total bulk mass occurred within the inner damage zone, with losses of Ca and P mass, which led to the formation of chlorite and albite. The outer damage zone displays gains in Mg and Na mass with losses in Ca and P mass. The breccia zone shows gains in mass of Mg and Mn and loss in total bulk mass. A gain in LOI in both the breccia and damage zones is attributed to formation of clay. Volumetric strain tracks porosity, as expected, and increases towards the core. Notably, damage appears to be superposed on chemical alterations, which supports the idea that much of the hydrothermal alteration occurred at depth followed by brecciation and cataclasis once the fault zone rocks were exhumed closer to the surface.

  9. An annual cycle of phytoplankton biomass in the Arabian Sea, 1994 1995, as determined by moored optical sensors

    NASA Astrophysics Data System (ADS)

    Kinkade, C. S.; Marra, J.; Dickey, T. D.; Weller, R.

    A surface-to-bottom mooring in the central Arabian Sea (15.5°N, 61.5°E) deployed from October 1994 to October 1995, included fluorometers, PAR irradiance sensors, Lu 683 sensors, and a spectral radiometer. An annual cycle of phytoplankton biomass was determined by transforming signals from the optical sensors into chlorophyll a (chl a). Half-yearly phytoplankton blooms with water-column stratification were observed near the end of each monsoon, as well as biomass increases in response to mesoscale flow features. During the Northeast Monsoon, the integrate water-column chl a rose from 15 to 25 mg m -2, while during the Southwest Monsoon, chl a increased from 15 to a maximum >40 mg m -2. We present an empirical relationship between the ratio of downwelling Ed443/ Ed550 (blue to green wavelength ratio) and integral euphotic zone chl a determined by moored fluorometers ( r2=0.73). There is a more significant relationship between Ed443/ Ed550 measured at one depth in the water column (65 m) and the average vertical attenuation coefficient for PAR (K PAR) between 0 and 65 m ( r2=0.845). Because biofouling was a significant problem at times, data return from any one sensor was incomplete. However, optical sensor/data intercomparison helped fill gaps while permitting investigation of the temporal variability in observed phytoplankton biomass.

  10. Human used upper montane ecosystem in the Horton Plains, central Sri Lanka - a link to Lateglacial and early Holocene climate and environmental changes

    NASA Astrophysics Data System (ADS)

    Premathilake, Rathnasiri

    2012-09-01

    This study utilizes radiocarbon-dated pollen, spores, Sphagnum spp. macrofossils and total organic carbon proxies to examine variability of past climate, environment and human activity in montane rainforest, grassland and wetland of the Horton Plains (HP), central Sri Lanka since the Last Glacial Maximum (LGM). The LGM is largely characterized by grasslands and xerophytic herbs dominated open habitats. Arid-LGM punctuated climatic ameliorations, which took place in short episodes. Humans appear to have reached the HP ecosystem after 18,000 cal yrs BP occasionally. The first Intertropical Convergence Zone (ITCZ) induced changes in South West Monsoon (SWM) rains occurred at low latitudes between 16,200 and 15,900 cal yrs BP suggesting an onset of monsoon rains. After this event, monsoon rains weakened for several millennia except the period 13,700-13,000 cal yrs BP, but human activity seems to have continued with biomass burning and clearances by slash and burn. Very large size grass pollen grains, which are morphologically similar to pollen from closer forms of Oryza nivara, were found after 13,800 cal yrs BP. Early Holocene extreme and abrupt climate changes seem to have promoted the forms of O. nivara populations in association with humans. New data from the HP would therefore be most interesting to investigate the dispersal and use of domesticated rice in South Asia.

  11. Variations of trace gases over the Bay of Bengal during the summer monsoon

    NASA Astrophysics Data System (ADS)

    Girach, I. A.; Ojha, Narendra; Nair, Prabha R.; Tiwari, Yogesh K.; Kumar, K. Ravi

    2018-02-01

    In situ measurements of near-surface ozone (O3), carbon monoxide (CO), and methane (CH4) were carried out over the Bay of Bengal (BoB) as a part of the Continental Tropical Convergence Zone (CTCZ) campaign during the summer monsoon season of 2009. O3, CO and CH4 mixing ratios varied in the ranges of 8-54 ppbv, 50-200 ppbv and 1.57-2.15 ppmv, respectively during 16 July-17 August 2009. The spatial distribution of mean tropospheric O3 from satellite retrievals is found to be similar to that in surface O3 observations, with higher levels over coastal and northern BoB as compared to central BoB. The comparison of in situ measurements with the Monitoring Atmospheric Composition & Climate (MACC) global reanalysis shows that MACC simulations reproduce the observations with small mean biases of 1.6 ppbv, -2.6 ppbv and 0.07 ppmv for O3, CO and CH4, respectively. The analysis of diurnal variation of O3 based on observations and the simulations from Weather Research and Forecasting coupled with Chemistry (WRF-Chem) at a stationary point over the BoB did not show a net photochemical build up during daytime. Satellite retrievals show limitations in capturing CH4 variations as measured by in situ sample analysis highlighting the need of more shipborne in situ measurements of trace gases over this region during monsoon.

  12. Aridification driven diversification of fan-throated lizards from the Indian subcontinent.

    PubMed

    Deepak, V; Karanth, Praveen

    2018-03-01

    The establishment of monsoon climate and the consequent aridification has been one of the most important climate change episodes in the Indian subcontinent. However, little is known about how these events might have shaped the diversification patterns among the widely distributed taxa. Fan-throated lizards (FTL) (Genus: Sitana, Sarada) are widespread, diurnal and restricted to the semi-arid zones of the Indian subcontinent. We sampled FTL in 107 localities across its range. We used molecular species delimitation method and delineated 15 species including six putative species. Thirteen of them were distinguishable based on morphology but two sister species were indistinguishable and have minor overlaps in distribution. Five fossils were used to calibrate and date the phylogeny. Diversification of fan-throated lizards lineage started ~18 mya and higher lineage diversification was observed after 11 my. The initial diversification corresponds to the time when monsoon climate was established and the latter was a period of intensification of monsoon and initiation of aridification. Thirteen out of the fifteen FTL species delimited are from Peninsular India; this is probably due to the landscape heterogeneity in this region. The species poor sister genus Otocryptis is paraphyletic and probably represents relict lineages which are now confined to forested areas. Thus, the seasonality led changes in habitat, from forests to open habitats appear to have driven diversification of fan-throated lizards. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The Last Interglacial in the Levant: Perspective from the ICDP Dead Sea Deep Drill Core

    NASA Astrophysics Data System (ADS)

    Goldstein, S. L.; Torfstein, A.; Stein, M.; Kushnir, Y.; Enzel, Y.; Haug, G. H.

    2014-12-01

    Sediments recovered by the ICDP Dead Sea Deep Drilling Project provide a new perspective on the climate history of the Levant during the last interglacial period MIS5. They record the extreme impacts of an intense interglacial characterized by stronger insolation, warmer mean global temperatures, and higher sea-levels than the Holocene. Results show both extreme hyper-aridity during MIS5e, including an unprecedented drawdown of Dead Sea water levels, and the impacts of a strong precession-driven African monsoon responsible for a major sapropel event (S5) in the eastern Mediterranean. Hyper-arid conditions at the beginning of MIS5e prior to S5 (~132-128 ka) are evidenced by halite deposition, indicating declining Dead Sea lake levels. Surprisingly, the hyper-arid phase is interrupted during the MIS5e peak (~128-120 ka), coinciding with the S5 sapropel, which is characterized by a thick (23 m) section of silty detritus (without any halite) whose provenance indicates southern-sourced wetness in the watershed. Upon weakening of the S5 monsoon (~120-115 ka), the return of extreme aridity resulted in an unprecedented lake level drawdown, reflected by massive salt deposition, and followed by a sediment hiatus (~115-100 ka) indicating prolonged low lake level. The resumption of section follows classic Levant patterns with more wetness during cooler MIS5b and hyper-aridity during warmer MIS5a. The ICDP core provides the first evidence for a direct linkage between an intense precession-driven African monsoon and wetness at the high subtropical latitude (~30N) of the Dead Sea watershed. Combined with coeval deposition of Negev speleothems and travertines, and calcitification of Red Sea corals, the evidence indicates a wet climatic corridor that could facilitate homo sapiens migration out of Africa during the MIS5e peak. In addition, the MIS 5e hyper-arid intervals may provide an important cautionary analogue for the impact of future warming on regional water resources.

  14. Response of benthic foraminifera to phytodetritus in the eastern Arabian Sea under low oxygen conditions

    NASA Astrophysics Data System (ADS)

    Enge, Annekatrin; Wukovits, Julia; Wanek, Wolfgang; Watzka, Margarete; Witte, Ursula; Hunter, William; Heinz, Petra

    2016-04-01

    At water depths between 100 and 1500 m a permanent Oxygen Minimum Zone (OMZ) impinges on the sea floor in the eastern Arabian Sea, exposing benthic organisms to anoxic to suboxic conditions. The flux of organic matter to the sea floor is relatively high at these depths but displays seasonal variation. Deposition of relatively fresh phytodetrital material (phytoplankton remains) can occur within a short period of time after monsoon periods. Several organism groups including foraminifera are involved to different extent in the processing of phytodetritus in the OMZs of the northern Arabian Sea. A series of in situ feeding experiments were performed to study the short-term processing (< 11 days) of organic carbon, nitrogen and nutritional demands of foraminifera at different oxygen concentrations on the continental margin in the eastern Arabian Sea. For the experiments, a single pulse of isotopically labeled phytodetritus was added to the sediment along a depth transect (540-1100 m) on the Indian Margin, covering the OMZ core and the lower OMZ boundary region. Uptake of phytodetritus within 4 days shows the relevance of phytodetritus as food source for foraminifera. Lower content of phytodetrital carbon recorded in foraminifera from more oxygenated depths shows greater food uptake by foraminifera in the OMZ core than in the OMZ boundary region. The foraminiferal assemblage living under almost anoxic conditions in the OMZ core is dominated by species typically found in eutroph environments (such as Uvigerinids) that are adapted to high flux of organic matter. The elevated carbon uptake can also result from missing food competition by macrofauna or from greater energy demand in foraminifera to sustain metabolic processes under hypoxic stress. Variable levels and ratios of phytodetrital carbon and nitrogen indicate specific nutritional demands and storage of food-derived nitrogen in some foraminifera species under near anoxia where the mean phytodetrital nitrogen content in foraminifera was elevated. In summary, foraminifera dominate the short-term processing of phytodetritus by fauna in the OMZ core but are less important in the lower OMZ boundary region of the Indian margin as a result of biological interactions and changes in the distribution of individual foraminiferal species.

  15. Beyond the classic thermoneutral zone

    PubMed Central

    Kingma, Boris RM; Frijns, Arjan JH; Schellen, Lisje; van Marken Lichtenbelt, Wouter D

    2014-01-01

    The thermoneutral zone is defined as the range of ambient temperatures where the body can maintain its core temperature solely through regulating dry heat loss, i.e., skin blood flow. A living body can only maintain its core temperature when heat production and heat loss are balanced. That means that heat transport from body core to skin must equal heat transport from skin to the environment. This study focuses on what combinations of core and skin temperature satisfy the biophysical requirements of being in the thermoneutral zone for humans. Moreover, consequences are considered of changes in insulation and adding restrictions such as thermal comfort (i.e. driver for thermal behavior). A biophysical model was developed that calculates heat transport within a body, taking into account metabolic heat production, tissue insulation, and heat distribution by blood flow and equates that to heat loss to the environment, considering skin temperature, ambient temperature and other physical parameters. The biophysical analysis shows that the steady-state ambient temperature range associated with the thermoneutral zone does not guarantee that the body is in thermal balance at basal metabolic rate per se. Instead, depending on the combination of core temperature, mean skin temperature and ambient temperature, the body may require significant increases in heat production or heat loss to maintain stable core temperature. Therefore, the definition of the thermoneutral zone might need to be reformulated. Furthermore, after adding restrictions on skin temperature for thermal comfort, the ambient temperature range associated with thermal comfort is smaller than the thermoneutral zone. This, assuming animals seek thermal comfort, suggests that thermal behavior may be initiated already before the boundaries of the thermoneutral zone are reached. PMID:27583296

  16. Beyond the classic thermoneutral zone: Including thermal comfort.

    PubMed

    Kingma, Boris Rm; Frijns, Arjan Jh; Schellen, Lisje; van Marken Lichtenbelt, Wouter D

    2014-01-01

    The thermoneutral zone is defined as the range of ambient temperatures where the body can maintain its core temperature solely through regulating dry heat loss, i.e., skin blood flow. A living body can only maintain its core temperature when heat production and heat loss are balanced. That means that heat transport from body core to skin must equal heat transport from skin to the environment. This study focuses on what combinations of core and skin temperature satisfy the biophysical requirements of being in the thermoneutral zone for humans. Moreover, consequences are considered of changes in insulation and adding restrictions such as thermal comfort (i.e. driver for thermal behavior). A biophysical model was developed that calculates heat transport within a body, taking into account metabolic heat production, tissue insulation, and heat distribution by blood flow and equates that to heat loss to the environment, considering skin temperature, ambient temperature and other physical parameters. The biophysical analysis shows that the steady-state ambient temperature range associated with the thermoneutral zone does not guarantee that the body is in thermal balance at basal metabolic rate per se. Instead, depending on the combination of core temperature, mean skin temperature and ambient temperature, the body may require significant increases in heat production or heat loss to maintain stable core temperature. Therefore, the definition of the thermoneutral zone might need to be reformulated. Furthermore, after adding restrictions on skin temperature for thermal comfort, the ambient temperature range associated with thermal comfort is smaller than the thermoneutral zone. This, assuming animals seek thermal comfort, suggests that thermal behavior may be initiated already before the boundaries of the thermoneutral zone are reached.

  17. Fire history and climate characteristics during the last millennium of the Great Hinggan Mountains at the monsoon margin in northeastern China

    NASA Astrophysics Data System (ADS)

    Gao, Chuanyu; He, Jiabao; Zhang, Yan; Cong, Jinxin; Han, Dongxue; Wang, Guoping

    2018-03-01

    The northeastern region of China, at the limit of the summer monsoon, is characterized by the presence of mountains that influenced by the Asian summer monsoon on one side and the westerlies on the other; however, few studies have compared the environmental characteristics on the two sides of these mountains. In this study, two peatland cores from the western and eastern sides of the Great Hinggan Mountains were investigated to better understand the climatic and environmental conditions and the measurements of black carbon (BC) and δ13C-BC were used to reconstruct the fire history and environmental characteristics during the last millennium. Our results showed that the variations in the δ13C-BC values are more sensitive to climate changes than the BC fluxes, and the climate forcing mechanisms differed between the two sides of the mountains. Lower δ13C-BC values around 500 cal yr BP on the western side of the mountains indicated climate conditions were wetter than that on the eastern side, and were influenced by low sea surface temperatures in the North Atlantic Ocean. The region east of the mountains was mainly influenced by the strong Asian summer monsoon, and the decreasing of δ13C-BC values indicated climate conditions became wetter from 250 cal yr BP to the present and were wetter than that on the western side after 150 cal yr BP. Moreover, when one of these two forcing factors weakened and the other strengthened (e.g. from 400 to 150 cal yr BP), climate conditions in these two sides were similar.

  18. Late Holocene vegetation and climate change on the southeastern Tibetan Plateau: Implications for the Indian Summer Monsoon and links to the Indian Ocean Dipole

    NASA Astrophysics Data System (ADS)

    Li, Kai; Liu, Xingqi; Wang, Yongbo; Herzschuh, Ulrike; Ni, Jian; Liao, Mengna; Xiao, Xiayun

    2017-12-01

    The Indian Summer Monsoon (ISM) is one of the most important climate systems, whose variability and driving mechanisms are of broad interest for academic and societal communities. Here, we present a well-dated high-resolution pollen analysis from a 4.82-m long sediment core taken from Basomtso, in the southeastern Tibetan Plateau (TP), which depicts the regional climate changes of the past millennium. Our results show that subalpine coniferous forest was dominant around Basomtso from ca. 867 to ca. 750 cal. yr BP, indicating a warm and semi-humid climate. The timberline in the study area significantly decreased from ca. 750 to ca. 100 cal. yr BP, and a cold climate, corresponding to the Little Ice Age (LIA) prevailed. Since ca. 100 cal. yr BP, the vegetation type changed to forest-meadow with rising temperatures and moisture. Ordination analysis reveals that the migration of vegetation was dominated by regional temperatures and then by moisture. Further comparisons between the Basomtso pollen record and the regional temperature reconstructions underscore the relevance of the Basomtso record from the southeastern TP for regional and global climatologies. Our pollen based moisture reconstruction demonstrates the strong multicentennial-scale link to ISM variability, providing solid evidence for the increase of monsoonal strengths over the past four centuries. Spectral analysis indicates the potential influence of solar forcing. However, a closer relationship has been observed between multicentennial ISM variations and Indian Ocean sea surface temperature anomalies (SSTs), suggesting that the variations in monsoonal precipitation over the southeastern TP are probably driven by the Indian Ocean Dipole on the multicentennial scale.

  19. Spatial Variability of Climate Signatures Recorded in an Array of Shallow Firn Cores from the Western Greenland Percolation Zone

    NASA Astrophysics Data System (ADS)

    Thundercloud, Z. R.; Osterberg, E. C.; Ferris, D. G.; Graeter, K.; Lewis, G.; Hawley, R. L.; Marshall, H. P.

    2016-12-01

    Greenland ice cores provide seasonally to annually resolved proxy records of past temperature, accumulation and atmospheric circulation. Most Greenland ice cores have been collected from the dry snow zone at elevations greater than 2500 m to produce records of North Atlantic paleoclimate over the last full glacial cycle. Ice cores collected from more costal regions, however, provide the opportunity to develop regional-scale records of climate conditions along ice sheet margins where recent temperature and precipitation changes have been larger than those in the ice sheet interior. These cores are more readily comparable to lake sediment and landscape (i.e. moraine) records from the ice sheet margin, and are potentially more sensitive to sea-ice variability due to the proximity to the coast. Here we present major ion and stable isotope records from an array of firn cores (40-55 year records) collected in the western Greenland percolation zone, and assess the spatial variability of ice core statistical relationships with the North Atlantic Oscillation (NAO) and Baffin Bay sea ice extent. Seven cores were collected from elevations of 2100-2500 m along a 400-km segment of the ice sheet from Dye-2 to Milcent as part of the Greenland Traverse for Accumulation and Climate Studies (GreenTrACS) project from May-June 2016. They were sampled by a continuous melter system at Dartmouth College, and analyzed using Dionex ion chromatographs and a Picarro L2130-i laser ring-down spectrometer. We focus on the signature of the NAO and Baffin Bay sea ice extent in the sea-salt, dust, deuterium excess (d-excess), and methanesulfonic acid (MSA) firn core records, and assess the special variability of these climate-ice core relationships across the study area. Climate reanalysis data indicate that NAO-ice core correlations should be stronger at lower elevation in the percolation zone than high in the dry snow zone. Our results will provide valuable insight into the sensitivity of Greenland ice core paleoclimate reconstructions to the specific ice core location, and thereby aid in site selection for deeper ice cores that could span the Holocene.

  20. A review of the South American monsoon history as recorded in stable isotopic proxies over the past two millennia

    NASA Astrophysics Data System (ADS)

    Vuille, M.; Burns, S. J.; Taylor, B. L.; Cruz, F. W.; Bird, B. W.; Abbott, M. B.; Kanner, L. C.; Cheng, H.; Novello, V. F.

    2012-08-01

    We review the history of the South American summer monsoon (SASM) over the past ~2000 yr based on high-resolution stable isotope proxies from speleothems, ice cores and lake sediments. Our review is complemented by an analysis of an isotope-enabled atmospheric general circulation model (GCM) for the past 130 yr. Proxy records from the monsoon belt in the tropical Andes and SE Brazil show a very coherent behavior over the past 2 millennia with significant decadal to multidecadal variability superimposed on large excursions during three key periods: the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA) and the current warm period (CWP). We interpret these three periods as times when the SASM's mean state was significantly weakened (MCA and CWP) and strengthened (LIA), respectively. During the LIA each of the proxy archives considered contains the most negative δ18O values recorded during the entire record length. On the other hand, the monsoon strength is currently rather weak in a 2000-yr historical perspective, rivaled only by the low intensity during the MCA. Our climatic interpretation of these archives is consistent with our isotope-based GCM analysis, which suggests that these sites are sensitive recorders of large-scale monsoon variations. We hypothesize that these centennial-scale climate anomalies were at least partially driven by temperature changes in the Northern Hemisphere and in particular over the North Atlantic, leading to a latitudinal displacement of the ITCZ and a change in monsoon intensity (amount of rainfall upstream over the Amazon Basin). This interpretation is supported by several independent records from different proxy archives and modeling studies. Although ENSO is the main forcing for δ18O variability over tropical South America on interannual time scales, our results suggest that its influence may be significantly modulated by North Atlantic climate variability on longer time scales. Finally, our analyses indicate that isotopic proxies, because of their ability to integrate climatic information on large spatial scales, could complement more traditional proxies such as tree rings or documentary evidence. Future climate reconstruction efforts could potentially benefit from including isotopic proxies as large-scale predictors in order to better constrain past changes in the atmospheric circulation.

  1. Cement Distribution and Diagenetic Pathway of the Miocene Sediments on Kardiva Platform, Maldives.

    NASA Astrophysics Data System (ADS)

    Laya, J. C.; Prince, K.; Betzler, C.; Eberli, G. P.; Blättler, C. L.; Swart, P. K.; Reolid, J.; Alvarez Zarikian, C. A.; Reijmer, J.

    2017-12-01

    The Maldives archipelago is an ideal example for understanding the dynamics of isolated carbonate platforms. While previous sedimentological studies have focused on oceanographic and climatic controls on deposition, there have been limited studies on the diagenetic evolution of the Maldives archipelago. This project seeks to establish a relationship between the facies, cement distribution, and diagenetic evolution of the Kardiva Platform and associated diagenetic fluids. Samples from cores of IODP Expedition 359 at Sites U1645, U1469, and U1470 were analyzed for stable isotope geochemistry and detailed petrography including SEM, confocal and CL microscopy to investigate variations in facies, cements, porosity and diagenetic products. The facies analyzed consist mainly of planktonic and benthic foraminifers, red coralline algae, echinoderm, coral and skeletal fragments. The main facies include foraminifera grain/packstone, red algae rich grain/packstone, algal floatstone and coral floatstone. Those facies present a cyclic and general shallowing upwards trend. These facies are interpreted as shallow platform deposits on proximal areas to the margin associated with the oligophotic zone. Cement volume varies between 5% and 48%, and they have been classified as isopachous, bladed to fibrous (dog tooth), drusy and equant. Equant and drusy show recognizable growth bands with CL and confocal. Evidence of intense dissolution is shown by extensive moldic porosity within phreatic and limited vadose zones. In addition, dolomite appears as a replacement phase associated with red-algae-rich horizons and as cement on pore walls and voids. These deposits experienced a variety of diagenetic processes driven by the evolution of diagenetic fluid chemistry and by the nature of the skeletal components. Those processes can be tied to external controls such as climate (monsoonal effects), sea-level and currents.

  2. Strike-slip linked core complexes: A new kinematic model of basement rock exhumation in a crustal-scale fault system

    NASA Astrophysics Data System (ADS)

    Meyer, Sven Erik; Passchier, Cees; Abu-Alam, Tamer; Stüwe, Kurt

    2014-05-01

    Metamorphic core complexes usually develop as extensional features during continental crustal thinning, such as the Basin and Range and the Aegean Terrane. The Najd fault system in Saudi Arabia is a 2000 km-long and 400 km-wide complex network of crustal-scale strike-slip shear zones in a Neoproterozoic collision zone. Locally, the anastomosing shear zones lead to exhumation of lower crustal segments and represent a new kinematic model for the development of core complexes. We report on two such structures: the Qazaz complex in Saudi Arabia and the Hafafit complex in Egypt. The 15 km-wide Qazaz complex is a triangular dome of gently dipping mylonitic foliations within the 140 km-long sinistral strike-slip Qazaz mylonite zone. The gneissic dome consists of high-grade rocks, surrounded by low-grade metasediments and metavolcanics. The main SE-trending strike-slip Qazaz shear zone splits southwards into two branches around the gneiss dome: the western branch is continuous with the shallow dipping mylonites of the dome core, without overprinting, and changes by more than 90 degrees from a NS-trending strike-slip zone to an EW-trending 40 degree south-dipping detachment that bounds the gneiss dome to the south. The eastern SE-trending sinistral strike-slip shear zone branch is slightly younger and transects the central dome fabrics. The gneiss dome appears to have formed along a jog in the strike-slip shear zone during 40 km of horizontal strike-slip motion, which caused local exhumation of lower crustal rocks by 25 km along the detachment. The eastern shear zone branch formed later during exhumation, transacted the gneiss dome and offset the two parts by another 70 km. The Hafafit core complex in Egypt is of similar shape and size to the Qazaz structure, but forms the northern termination of a sinistral strike-slip zone that is at least 100 km in length. This zone may continue into Saudi Arabia as the Ajjaj shear zone for another 100 km. The NW trending strike slip mylonite zone grades into a gently N-dipping detachment to the west which accommodated strike slip by exhumation of high-grade lower crustal rocks. The Qazaz and the Hafafit Domes are similar, mirror-image structures with small differences in the accommodating shear zones. It is likely that these types of strike-slip related oblique core complexes are common in the Arabian Nubian shield, and possibly elsewhere.

  3. Tectonic uplift-influenced monsoonal changes promoted hominin occupation of the Luonan Basin: Insights from a loess-paleosol sequence, eastern Qinling Mountains, central China

    NASA Astrophysics Data System (ADS)

    Fang, Qian; Hong, Hanlie; Zhao, Lulu; Furnes, Harald; Lu, Huayu; Han, Wen; Liu, Yao; Jia, Zhuoyue; Wang, Chaowen; Yin, Ke; Algeo, Thomas J.

    2017-08-01

    Quaternary soil deposits from northern and southern China are distinctly different, reflecting variability of the East Asian monsoon north and south of the Qinling Mountains. Coeval sediments from the transitional climatic zone of central China, which are little studied to date, have the potential to improve our understanding of Quaternary monsoon changes and associated influences on hominin occupation of this region. Here, we investigate in detail a well-preserved and continuous Quaternary loess-paleosol sequence (Shangbaichuan) from the Luonan Basin, using a variety of weathering indices including major and trace element ratios, clay mineralogy, and Fe-oxide mineralogy. The whole-rock samples display similar rare earth element patterns characterized by upper continental crustal ratios: (La/Yb)N ≈ 9.5 and Eu/Eu* ≈ 0.65. Elemental data such as (La/Yb)N, La/Th and Eu/Eu* ratios show a high degree of homogeneity, suggesting that dust in the source region may have been thoroughly mixed and recycled, resulting in all samples having a uniform initial composition. Indices for pedogenic weathering such as Na/K, Ba/Sr, Rb/Sr, CIA, CIW, CPA, PIA, kaolinite/illite, (kaolinite + smectite)/illite, and hematite/(hematite + goethite) exhibit similar secular trends and reveal a four-stage accumulation history. The indices also indicate that the climate was warmer and wetter during the most recent interglacial stage, compared with coeval environments of the Chinese Loess Plateau. Secular changes in weathering intensity can be related to stepwise uplift of the Qinling Mountains and variation in East Asian monsoon intensity, both of which played significant roles in controlling climate evolution in the Luonan Basin. Furthermore, intensified aridity and winter monsoon strength in dust source areas, as evidenced by mineralogic and geochemical changes, may have been due to the mid-Pleistocene climate transition. Based on temporal correlation of warmer and wetter climatic conditions with more frequent hominin occupation, we infer that the paleoclimate in the eastern Qinling Mountains remained mild and favorable during glacial stages of the Late Quaternary, thus promoting early human settlement.

  4. Greigite formed in early Pleistocene lacustrine sediments from the Heqing Basin, southwest China, and its paleoenvironmental implications

    NASA Astrophysics Data System (ADS)

    Qiang, Xiaoke; Xu, Xinwen; Zhao, Hui; Fu, Chaofeng

    2018-05-01

    The ferrimagnetic iron sulfide greigite (Fe3S4) occurs widely in sulfidic lacustrine and marine sedimentary environments. Knowledge of its formation and persistence is important for both magnetostratigraphic and paleoenvironmental studies. Although the formation mechanism of greigite has been widely demonstrated, the sedimentary environments associated with greigite formation in lakes, especially on relatively long timescales, are poorly understood. A long and continuous sequence of Pleistocene lacustrine sediments was recovered in the Heqing drill core from southwestern China, which provides an outstanding record of continental climate and environment. Integrated magnetic, geochemical, and paleoclimatic analysis of the lacustrine sequence provides an opportunity to improve our understanding of the environmental controls on greigite formation. Rock magnetic and scanning electron microscope analyses of selected samples from the core reveal that greigite is present in the lower part of the core (part 1, 665.8-372.5 m). Greigite occurs throughout this interval and is the dominant magnetic mineral, irrespective of the climatic state. The magnetic susceptibility (χ) record, which is mainly controlled by the concentration of greigite, matches well with variations in the Indian Summer Monsoon (ISM) index and total organic carbon (TOC) content, with no significant time lag. This indicates that the greigite formed during early diagenesis. In greigite-bearing intervals, with the χ increase, Bc value increase and tends to be stable at about 50 mT. Therefore, we suggest that χ values could estimate the variation of greigite concentration approximately in the Heqing core. Greigite favored more abundant in terrigenous-rich and organic-poor layers associated with weak summer monsoon which are characterized by high χ values, high Fe content, high Rb/Sr ratio and low TOC content. Greigite enhancement can be explained by variations in terrigenous inputs. Our studies demonstrate that, not only the greigite formation, but also its concentration changes could be useful for studying climatic and environmental variability in sulfidic environments.

  5. Spatial and seasonal variations of elemental composition in Mt. Everest (Qomolangma) snow/firn

    NASA Astrophysics Data System (ADS)

    Kang, Shichang; Zhang, Qianggong; Kaspari, Susan; Qin, Dahe; Cong, Zhiyuan; Ren, Jiawen; Mayewski, Paul A.

    In May 2005, a total of 14 surface snow (0-10 cm) samples were collected along the climbing route from the advanced base camp to the summit (6500-8844 m a.s.l.) on the northern slope of Mt. Everest (Qomolangma). A 108 m firn/ice core was retrieved from the col of the East Rongbuk Glacier (28.03°N, 86.96°E, 6518 m a.s.l.) on the north eastern saddle of Mt. Everest in September 2002. Surface snow and the upper 3.5 m firn samples from the core were analyzed for major and trace elements by inductively coupled plasma mass spectroscopy (ICP-MS). Measurements show that crustal elements dominated both surface snow and the firn core, suggesting that Everest snow chemistry is mainly influenced by crustal aerosols from local rock or prevalent spring dust storms over southern/central Asia. There are no clear trends for element variations with elevation due to local crustal aerosol inputs or redistribution of surface snow by strong winds during the spring. Seasonal variability in snow/firn elements show that high elemental concentrations occur during the non-monsoon season and low values during the monsoon season. Ca, Cr, Cs, and Sr display the most distinct seasonal variations. Elemental concentrations (especially for heavy metals) at Mt. Everest are comparable with polar sites, generally lower than in suburban areas, and far lower than in large cities. This indicates that anthropogenic activities and heavy metal pollution have little effect on the Mt. Everest atmospheric environment. Everest firn core REE concentrations are the first reported in the region and seem to be comparable with those measured in modern and Last Glacial Maximum snow/ice samples from Greenland and Antarctica, and with precipitation samples from Japan and the East China Sea. This suggests that REE concentrations measured at Everest are representative of the background atmospheric environment.

  6. Western Pacific Tropical Cyclone Adaptive Observing of Inner Core Life-cycle Structure and Intensity Change

    DTIC Science & Technology

    2009-09-30

    airborne radar images; develop an analysis scheme for the monsoon and storm- scale circulation features that would: a. Define large-scale context...Doppler radar observations of TC mesoscale observations. The TCS-08 field program provided unique aircraft reconnaissance (recon) data that will be...system for WC-130J, as well as developed new system for recording airborne radar video for the first time. 3. Created an archive of all WC-130J

  7. Recuperator construction for a gas turbine engine

    DOEpatents

    Kang, Yungmo; McKeirnan, Jr., Robert D.

    2006-12-12

    A counter-flow recuperator formed from annular arrays of recuperator core segments. The recuperator core segments are formed from two opposing sheets of fin fold material coined to form a primary surface zone disposed between two flattened manifold zones. Each primary surface zone has undulating corrugations including a uniform, full height central portion and a transition zone disposed between the central portion and one of the manifold zones. Corrugations of the transition zone rise from zero adjacent to the manifold zone and increase along a transition length to full crest height at the central portion. The transition lengths increase in a direction away from an inner edge containing the air inlet so as to equalize air flow to the distal regions of the primary surface zone.

  8. Environmental status of the Jilantai Basin, North China, on the northwestern margin of the modern Asian summer monsoon domain during Marine Isotope Stage 3

    NASA Astrophysics Data System (ADS)

    Fan, Yuxin; Wang, Yongda; Mou, Xuesong; Zhao, Hui; Zhang, Fu; Zhang, Fan; Liu, Wenhao; Hui, Zhengchuang; Huang, Xiaozhong; Ma, Jun

    2017-10-01

    Two drill cores were obtained from the Jilantai sub-depression (JLT(d)) and the neighboring Dengkou sub-uplift (DK(u)), within a huge, former lake basin in northern China. From an analysis of the lithology and pollen assemblages, combined with radiocarbon dating of extracted pollen and OSL dating of extracted quartz, we concluded the following: JLT(d) was continuously occupied by lakes since 85 ka; however, DK(u), the neighboring sub-uplift, was covered by lakes during 80-74 ka, 50-44 ka, 32.5-27.5 ka and <13 ka, and covered by sand during 44-32.5 ka and 27.5-13 ka. The evidence from lithology and dating results supports the occurrence of lakes on DK(u) during Marine Isotope Stage (MIS) 3. Evidence from shorelines, previously published cores, and the sedimentary and chronological evidence presented in this paper indicate the occurrence of a sub-humid environment, characterized by the occurrence of lakes separated by dunes, in the Jilantai Basin during MIS 3. However, further work is needed to understand the environmental significance of the co-existence of lakes and dunes during MIS 3, although a sub-humid climate background during MIS 3 is supported by well-dated geological archives along the western front of the present-day Asian Summer Monsoon domain and its eastern extensional area.

  9. A 60,000-year record of hydrologic variability in the Central Andes from the hydrogen isotopic composition of leaf waxes in Lake Titicaca sediments

    NASA Astrophysics Data System (ADS)

    Fornace, Kyrstin L.; Hughen, Konrad A.; Shanahan, Timothy M.; Fritz, Sherilyn C.; Baker, Paul A.; Sylva, Sean P.

    2014-12-01

    A record of the hydrogen isotopic composition of terrestrial leaf waxes (δDwax) in sediment cores from Lake Titicaca provides new insight into the precipitation history of the Central Andes and controls of South American Summer Monsoon (SASM) variability since the last glacial period. Comparison of the δDwax record with a 19-kyr δD record from the nearby Illimani ice core supports the interpretation that precipitation δD is the primary control on δDwax with a lesser but significant role for local evapotranspiration and other secondary influences on δDwax. The Titicaca δDwax record confirms overall wetter conditions in the Central Andes during the last glacial period relative to a drier Holocene. During the last deglaciation, abrupt δDwax shifts correspond to millennial-scale events observed in the high-latitude North Atlantic, with dry conditions corresponding to the Bølling-Allerød and early Holocene periods and wetter conditions during late glacial and Younger Dryas intervals. We observe a trend of increasing monsoonal precipitation from the early to the late Holocene, consistent with summer insolation forcing of the SASM, but similar hydrologic variability on precessional timescales is not apparent during the last glacial period. Overall, this study demonstrates the relative importance of high-latitude versus tropical forcing as a dominant control on glacial SASM precipitation variability.

  10. Geometry of the Nojima fault at Nojima-Hirabayashi, Japan - II. Microstructures and their implications for permeability and strength

    USGS Publications Warehouse

    Moore, Diane E.; Lockner, D.A.; Ito, H.; Ikeda, R.; Tanaka, H.; Omura, K.

    2009-01-01

    Samples of damage-zone granodiorite and fault core from two drillholes into the active, strike-slip Nojima fault zone display microstructures and alteration features that explain their measured present-day strengths and permeabilities and provide insight on the evolution of these properties in the fault zone. The least deformed damage-zone rocks contain two sets of nearly perpendicular (60-90?? angles), roughly vertical fractures that are concentrated in quartz-rich areas, with one set typically dominating over the other. With increasing intensity of deformation, which corresponds generally to increasing proximity to the core, zones of heavily fragmented rock, termed microbreccia zones, develop between prominent fractures of both sets. Granodiorite adjoining intersecting microbreccia zones in the active fault strands has been repeatedly fractured and locally brecciated, accompanied by the generation of millimeter-scale voids that are partly filled with secondary minerals. Minor shear bands overprint some of the heavily deformed areas, and small-scale shear zones form from the pairing of closely spaced shear bands. Strength and permeability measurements were made on core collected from the fault within a year after a major (Kobe) earthquake. Measured strengths of the samples decrease regularly with increasing fracturing and fragmentation, such that the gouge of the fault core and completely brecciated samples from the damage zone are the weakest. Permeability increases with increasing disruption, generally reaching a peak in heavily fractured but still more or less cohesive rock at the scale of the laboratory samples. Complete loss of cohesion, as in the gouge or the interiors of large microbreccia zones, is accompanied by a reduction of permeability by 1-2 orders of magnitude below the peak values. The core samples show abundant evidence of hydrothermal alteration and mineral precipitation. Permeability is thus expected to decrease and strength to increase somewhat in active fault strands between earthquakes, as mineral deposits progressively seal fractures and fill pore spaces. ?? Birkh??user Verlag, Basel 2009.

  11. Elemental concentration variations in Plio-Pleistocene sediments from ODP Site 1143 (southern South China Sea) obtained by XRF analyses

    NASA Astrophysics Data System (ADS)

    Tian, J.; Xie, X.; Jin, H.; Wang, P.; Jian, Z.

    2009-12-01

    Energy dispersive X-ray fluorescence (XRF) scanning technology provides the most accurate and most economic analytical methods for the determination of major and minor elements of the deep-sea sediment ranging from sodium (11) to uranium (92). Scanning on the smooth core surface by XRF Core scanner is reliable and non-destructive to the sediment, requiring little or no time to prepare the core. This method overcomes the drawback of the traditional analytical method by ICP-AES or ICP-MS which requires long time for sample preparation. Thus, it makes it viable to reconstruct long and high-resolution elemental time series from sediment cores. We have performed relatively elemental concentration analyses on the deep sea sediment cores from ODP site 1143 (southern SCS) down to 190.77 mcd (meters composite depth) by XRF core scanner. The depth resolution of the scanning is 1 cm, equivalent to a time resolution of ~250 years. The age model is based on tuning the benthic foraminiferal d18O at Site 1143 to obliquity and precession (Tian et al., 2002) which indicates that the 190.77 meters long sediment spans the past 5 Myr. We compared the records between 99.5 and 136.46 mcd with the elemental records from the same site obtained by Philips PW 2400 X-ray spectrometer (Wehausen et al., online publication). Comparison reveals, regardless of the absolute changes of the elements, that the elemental records (Si, Ti, Al, Fe, Mn, Ca, K, P, Ba, Rb, Sr) obtained by two methods are nearly the same. Results show that the relative concentration variations of the productivity related elements such as Ba and Ca display distinctive glacial-interglacial cycles for the past 5 Myr. These productivity cycles recorded show one-on-one relationship with the glacial-interglacial cycles of the global ice volume change recorded in the benthic foraminiferal d18O. The glacial-interglacial cycles in productivity and global ice volume changes are consistent with each other not only in amplitude but also in secular variations. The benthic d18O implies the final formation of the northern hemisphere glaciation between ~2.5 Ma and ~3.3 Ma, as indicated by gradually increased values of d18O. During this period, both Ba and Ca show gradually increased values of relative concentration, indicating increased productivity which was probably caused by intensified East Asia summer monsoon. The close relationship of the productivity related elemental variations with benthic foraminiferal d18O reveals that the Plio-Pleistocene variations of the East Asian monsoon have been greatly dominated by global ice volume change. Although the elements related to terrigenous detrital matter composition of site 1143 such as Ti, Fe, As, Co and Ni display distinct glacial-interglacial cycles for the past 5 Myr, they display different patterns in secular variation with that of the benthic foraminiferal d18O. The mismatch indicates that besides northern hemisphere glaciation other multiple processes including changes in provenance and weathering intensity caused by monsoonal climate variability and sea level fluctuations could have affected the terrigenous detrital matter composition of site 1143.

  12. Climate and Provenance Evolution Recorded in the Sub-aqueous Indus Delta since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Limmer, D. R.; Clift, P. D.; Koehler, C.; Giosan, L.; Ponton, C.; Henstock, T.; Tabrez, A.

    2010-12-01

    Source to sink processes in large fluvial systems are complicated by large transport distances and the potential to store and rework material on route to the submarine fan. We target the Indus river system and assess how climate change since the Last Glacial Maximum (LGM) may have affected the storage and deposition of sediment in the nearshore shelf setting. While sediment reworking within the floodplain appears to have been strong during the Holocene, it is unclear whether this can be observed in the deep sea or in the submarine delta. We present a multi-proxy record of mineralogical and geochemical change from two cores obtained from the Indus Shelf during Winter 2008/9, one located close to the modern river and one located in the north-west shelf. Results show a strong contrast in the geochemistry, reflectance spectroscopy and clay mineralogy between Holocene sediments from the two cores. We propose that these differences are caused by both local variations in sediment source and transport mechanisms. Trends common in both cores could be related to climatic processes, such as low values in the chemical alteration index (CIA) and low 87Sr/86Sr that rise between 11 and 8ka suggests more intense chemical weathering at that time. This period coincides with presumed warmer, wet conditions and a stronger summer monsoon. A small decline in chemical weathering after 8ka could be caused by an apparent weakening of the monsoon since that time. These data suggest that sediment weathered in the floodplains is transported quickly to the submarine delta during the Holocene, but that this material has not yet been re-deposited into the deep water via the Indus Canyon.

  13. Miocene burial and exhumation of the India-Asia collision zone in southern Tibet: response to slab dynamics and erosion

    USGS Publications Warehouse

    Carrapa, Barbara; Orme, D.A.; DeCelles, Peter G.; Kapp, Paul; Cosca, Michael A.; Waldrip, R.

    2014-01-01

    The India-Asia collision zone in southern Tibet preserves a record of geodynamic and erosional processes following intercontinental collision. Apatite fission-track and zircon and apatite (U-Th)/He data from the Oligocene–Miocene Kailas Formation, within the India-Asia collision zone, show a synchronous cooling signal at 17 ± 1 Ma, which is younger than the ca. 26–21 Ma depositional age of the Kailas Formation, constrained by U-Pb and 40Ar/39Ar geochronology, and requires heating (burial) after ca. 21 Ma and subsequent rapid exhumation. Data from the Gangdese batholith underlying the Kailas Formation also indicate Miocene exhumation. The thermal history of the Kailas Formation is consistent with rapid subsidence during a short-lived phase of early Miocene extension followed by uplift and exhumation driven by rollback and northward underthrusting of the Indian plate, respectively. Significant removal of material from the India-Asia collision zone was likely facilitated by efficient incision of the paleo–Indus River and paleo–Yarlung River in response to drainage reorganization and/or intensification of the Asian monsoon.

  14. Abrupt intensification of the SW Indian Ocean monsoon during the last deglaciation: constraints from Th, Pa, and He isotopes

    NASA Astrophysics Data System (ADS)

    Marcantonio, Franco; Anderson, Robert F.; Higgins, Sean; Fleisher, Martin Q.; Stute, Martin; Schlosser, Peter

    2001-01-01

    Sediments from western Arabian Sea core 74KL representing the last 23 ka were analyzed for helium, thorium, and protactinium isotopes. Assuming global average fluxes of extraterrestrial 3He and 230Th, the average 3He-derived sediment mass accumulation rate (MAR) is a factor of 1.8 higher than the average 230Th-derived MAR. 3He- and 230Th-derived MARs converge, however, during the Younger Dryas (YD) and during the peak of the early Holocene humid interval. These features, not seen anywhere else in the world, probably reflect a combination of climate-driven changes in the flux of 230Th and 3He. Ratios of xs 231Pa/xs 230Th, proxies of paleoproductivity, are lowest during the last glacial maximum (LGM), and increase abruptly during the Bolling-Allerod. Later, following a sudden decrease to near-LGM values during the YD, they rise abruptly to maximum values for the entire record in the early Holocene. We hypothesize that low xs 231Pa/xs 230Th ratios reflect low productivity due to the decreased intensity of the SW monsoon, whereas the opposite is true for high ratios. The correlation between Arabian Sea productivity and monsoonal upwelling, on the one hand, and North Atlantic climate variability, on the other, suggests a linkage between high- and low-latitude climates caused by changing patterns of atmospheric circulation.

  15. Structural, mechanical and corrosion studies of Cr-rich inclusions in 152 cladding of dissimilar metal weld joint

    NASA Astrophysics Data System (ADS)

    Li, Yifeng; Wang, Jianqiu; Han, En-Hou; Yang, Chengdong

    2018-01-01

    Cr-rich inclusions were discovered in 152 cladding at the inner wall of domestic dissimilar metal weld joint, and their morphologies, microstructures, mechanical properties and corrosion behaviors were systematically characterized by SEM, TEM, nanoindentation and FIB. The results indicate that the Cr-rich inclusions originate from large-size Cr particles in 152 welding electrode flux, and they are 50-150 μm in size in most cases, and there is a continuous transition zone of 2-5 μm in width between the Cr inclusion core and 152 cladding matrix, and the transition zone consists of Ni & Fe-rich dendritic austenite and Cr23C6 and Cr matrix. The transition zone has the highest nanoindentation hardness (7.66 GPa), which is much harder than the inclusion core (5.14 GPa) and 152 cladding (3.71 GPa). In-situ microscopic tensile tests show that cracks initialize preferentially in transition zone, and then propagate into the inclusion core, and creep further into 152 cladding after penetrating the core area. The inclusion core and its transition zone both share similar oxide film structure with nickel-base 152 cladding matrix in simulated primary water, while those two parts present better general corrosion resistance than 152 cladding matrix due to higher Cr concentration.

  16. Iron snow in the Martian Core?

    NASA Astrophysics Data System (ADS)

    Davies, C. J.; Pommier, A.

    2017-12-01

    The decline of Mars' global magnetic field some 3.8-4.1 billion years ago is thought to reflect the demise of the dynamo that operated in its liquid core. The termination of the dynamo is intimately tied to the thermochemical evolution of the core-mantle system and therefore to the present-day physical state of the Martian core. The standard model predicts that the Martian dynamo failed because thermal convection stopped and the core remained entirely liquid until the present. Here we consider an alternative hypothesis that the Martian core crystallized from the top down in the so-called iron snow regime. We derive energy-entropy equations describing the long-timescale thermal and magnetic evolution of the core that incorporate the self-consistent formation of a snow layer that freezes out pure iron and is assumed to be on the liquidus; the iron sinks and remelts in the deeper core, acting as a possible source for magnetic field generation. Compositions are in the FeS system, with a sulfur content up to 16 wt%. The values of the different parameters (core radius, density and CMB pressure) are varied within bounds set by recent internal structure models that satisfy existing geodetic constraints (planetary mass, moment of inertia and tidal Love number). The melting curve and adiabat, CMB heat flow and thermal conductivity were also varied, based on previous experimental and numerical works. We observe that the formation of snow zones occurs for a wide range of interior and thermal structure properties and depends critically on the initial sulfur concentration. Gravitational energy release and latent heat effects arising during growth of the snow zone do not generate sufficient entropy to restart the dynamo unless the snow zone occupies a significant fraction of the core. Our results suggest that snow zones can be 1.5-2 Gyrs old, though thermal stratification of the uppermost core, not included in our model, likely delays onset. Models that match the available magnetic and geodetic constraints have an initial S concentration of about 10wt.% and snow zones that occupy approximately the top 100 km of the present-day Martian core.

  17. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka

    PubMed Central

    An, Zhisheng; Colman, Steven M.; Zhou, Weijian; Li, Xiaoqiang; Brown, Eric T.; Jull, A. J. Timothy; Cai, Yanjun; Huang, Yongsong; Lu, Xuefeng; Chang, Hong; Song, Yougui; Sun, Youbin; Xu, Hai; Liu, Weiguo; Jin, Zhangdong; Liu, Xiaodong; Cheng, Peng; Liu, Yu; Ai, Li; Li, Xiangzhong; Liu, Xiuju; Yan, Libin; Shi, Zhengguo; Wang, Xulong; Wu, Feng; Qiang, Xiaoke; Dong, Jibao; Lu, Fengyan; Xu, Xinwen

    2012-01-01

    Two atmospheric circulation systems, the mid-latitude Westerlies and the Asian summer monsoon (ASM), play key roles in northern-hemisphere climatic changes. However, the variability of the Westerlies in Asia and their relationship to the ASM remain unclear. Here, we present the longest and highest-resolution drill core from Lake Qinghai on the northeastern Tibetan Plateau (TP), which uniquely records the variability of both the Westerlies and the ASM since 32 ka, reflecting the interplay of these two systems. These records document the anti-phase relationship of the Westerlies and the ASM for both glacial-interglacial and glacial millennial timescales. During the last glaciation, the influence of the Westerlies dominated; prominent dust-rich intervals, correlated with Heinrich events, reflect intensified Westerlies linked to northern high-latitude climate. During the Holocene, the dominant ASM circulation, punctuated by weak events, indicates linkages of the ASM to orbital forcing, North Atlantic abrupt events, and perhaps solar activity changes. PMID:22943005

  18. Vegetation history and salinity gradient during the last 3700 years in Pichavaram estuary, India

    NASA Astrophysics Data System (ADS)

    Srivastava, Jyoti; Farooqui, Anjum; Hussain, S. M.

    2012-10-01

    Palaeoclimate, palaeoecological and palaeoshoreline studies were carried out for a 2.5 m deep sediment core deposited since ˜3700 yrs BP in the central part of Pichavaram mangrove wetland, Cauvery river delta. Presently, the study area is dominated by Avicennia officinalis, A. marina and Suaeda sp. with fringes of Rhizophora sp. along the backwater channel. Based on sedimentology, palynological and thecamoebian analysis, it is inferred that since 2100 yrs BP the climate amelioration took place from warm and humid with strengthened monsoon to a dry and arid climate coupled with weakened monsoon condition inducing changes in ecology vulnerable for mangroves. Consequently, the vegetation too evolved from moist deciduous/evergreen forest to mixed deciduous forest and a reduction in mangrove diversity. The qualitative and quantitative study show a decline in the mangroves since the last millennium which may be attributed to the increased salinity along with enhanced anthropogenic activities in Pichavaram estuary. This is reflected by the dominance of salt tolerant mangrove associates since the last millennium.

  19. Preliminary Results of a Modern Watershed Study from Lake Junín, Peru: Biomarker Assemblages in Terrestrial and Aquatic Plants and Surface Sediments

    NASA Astrophysics Data System (ADS)

    Woods, A.; Werne, J. P.; Rodbell, D. T.; Abbott, M. B.

    2016-12-01

    Lake Junín is a large, evaporatively-enriched lake in the central Peruvian Andes that is ideally situated to record variability in the South American Summer Monsoon, and sediment cores recovered by the Lake Junín Deep Drilling Project in 2015 span several glacial/interglacial cycles. Compound-specific stable hydrogen isotopes from leaf waxes offer the potential to reconstruct changes in monsoon strength and evapotranspiration for the entire sediment record, and can be compared with the carbonate-derived oxygen isotope record that is preserved only during interglacials. To characterize the modern proxy system, leaf samples were collected from terrestrial and aquatic species that are representative of the vegetation in the watershed. The compound distributions, concentrations, and D/H ratios of n-alkanes and n-alkanoic acids from plants and surface sediments were analyzed to develop site-specific calibrations of both terrestrial and aquatic isotopic signals, for application to downcore biomarker analyses.

  20. Interfacial waves generated by gravity currents in two-layer fluid.

    NASA Astrophysics Data System (ADS)

    O'Leary, A.; Parker, D.; Peakall, J.; Ross, A.; Knippertz, P.; Marsham, J.

    2012-04-01

    The mesoscale convective systems of the West African Monsoon have a huge energetic impact on the surrounding environment. Energy is radiated away from these systems by internal waves formed by the vigorous movements of air mass at their core, propagating over long range in the existence of a suitable waveguide. Gravity currents formed by convective downdrafts are an exceedlingly common phenomenon around the monsoon, covering significant distances on the continental scale. The initiation of solitary waves and bores by gravity currents incident on a marine or nocturnal inversion is well documented, the Morning Glory of Northern Australia being a well known and spectacular example. The interior of the African continent exhibits a further mechanism for the propagation of wave energy, with the environment of the Sahara often characterised by a deep convective boundary layer topped by a well mixed residual layer. This suggests a simple laboratory analogy for the idealised study of deep moist convection at the edge of the monsoon; that of a gravity current generated by lock release into a two layer fluid. This work looks specifically at the waves generated on the interface, especially with regard to their amplitude and propagation speed relative to the current. A series of simple experiments have been performed in the laboratory and combined with data from previous work. In addition to improving the basic dynamical understanding of the idealised problem the aim of these experiments is to examine whether there exist regions in the bulk parameter space in which waves are generated that are fast and of large amplitude. That is, were this an appropriate analog for the atmosphere, under which conditions are waves produced that would favour the initiation of subsequent convection? Ultimately this work aims to bring together research from fluid dynamics, field observations and numerical modelling to explore the phenomena of the convective environment of the Sahel. This fundamental work is a small part of efforts initiated in the AMMA* project to further understand the West African Monsoon. * African Monsoon and Multidisciplinary Analyses

  1. Parallelization of combinatorial search when solving knapsack optimization problem on computing systems based on multicore processors

    NASA Astrophysics Data System (ADS)

    Rahman, P. A.

    2018-05-01

    This scientific paper deals with the model of the knapsack optimization problem and method of its solving based on directed combinatorial search in the boolean space. The offered by the author specialized mathematical model of decomposition of the search-zone to the separate search-spheres and the algorithm of distribution of the search-spheres to the different cores of the multi-core processor are also discussed. The paper also provides an example of decomposition of the search-zone to the several search-spheres and distribution of the search-spheres to the different cores of the quad-core processor. Finally, an offered by the author formula for estimation of the theoretical maximum of the computational acceleration, which can be achieved due to the parallelization of the search-zone to the search-spheres on the unlimited number of the processor cores, is also given.

  2. Climate Changes Documented in Ice Core Records from Third Pole Glaciers, with Emphasis on the Guliya Ice Cap in the Western Kunlun Mountains over the Last 100 Years

    NASA Astrophysics Data System (ADS)

    Thompson, L. G.; Yao, T.; Beaudon, E.; Mosley-Thompson, E.; Davis, M. E.; Kenny, D. V.; Lin, P. N.

    2016-12-01

    The Third Pole (TP) is a rapidly warming region containing 100,000 km2 of ice cover that collectively holds one of Earth's largest stores of freshwater that feeds Asia's largest rivers and helps sustain 1.5 billion people. Information on the accelerating warming in the region, its impact on the glaciers and subsequently on future water resources is urgently needed to guide mitigation and adaptation policies. Ice core histories collected over the last three decades across the TP demonstrate its climatic complexity and diversity. Here we present preliminary results from the flagship project of the Third Pole Environment Program, the 2015 Sino-American cooperative ice core drilling of the Guliya ice cap in the Kunlun Mountains in the western TP near the northern limit of the region influenced by the southwest monsoon. Three ice cores, each 51 meters in length, were recovered from the summit ( 6700 masl) while two deeper cores, one to bedrock ( 310 meters), were recovered from the plateau ( 6200 masl). Across the ice cap the net balance (accumulation) has increased annually by 2.3 cm of water equivalent from 1963-1992 to 1992-2015, and average oxygen isotopic ratios (δ18O) have enriched by 2‰. This contrasts with the recent ablation on the Naimona'nyi glacier located 540 km south of Guliya in the western Himalaya. Borehole temperatures in 2015 on the Guliya plateau have warmed substantially in the upper 30 meters of the ice compared to temperatures in 1992, when the first deep-drilling of the Guliya plateau was conducted. Compared with glaciers in the northern and western TP, the Himalayan ice fields are more sensitive to both fluctuations in the South Asian Monsoon and rising temperatures in the region. We examine the climatic changes of the last century preserved in ice core records from sites throughout the TP and compare them with those reconstructed for earlier warm epochs, such as the Medieval Climate Anomaly ( 950-1250 AD), the early Holocene "Hypsithermal" ( 5 to 9 kyr BP) and the Eemian (present only in Guliya). The latter epoch is the latest period when Earth may have been as warm as today and thus serves as an analog for the developing greenhouse world.

  3. Climatic Variability of Precipitation from the Seasonal Cycle to ENSO Using GPCP's Merged Data Product and SSM/I-Based Microwave Estimates

    NASA Technical Reports Server (NTRS)

    Curtis, Scott; Huffman, George; Nelkin, Eric

    1999-01-01

    Satellite estimates and gauge observations of precipitation are useful in understanding the water cycle, analyzing climatic variability, and validating climate models. The Global Precipitation Climatology Project (GPCP) released a community merged precipitation data set for the period July 1987 through the present, and has recently extended that data set back to 1986. One objective of this study is to use GPCP estimates to describe and quantify the seasonal variation of precipitation, with emphasis on the Asian summer monsoon. Another focus is the 1997-98 El Nino Southern Oscillation (ENSO) and associated extreme precipitation events. The summer monsoon tends to be drier than normal in El Nino ears. This was not observed for 1997 or 1998, while for 1997 the NCEP model produced the largest summer rain rates over India in years. This inconsistency will be examined. The average annual global precipitation rate is 2.7 mm day as estimated by GPCP, which is similar to values computed from long-term climatologies. From 30 deg N to 30 deg S the average precipitation rate is 2.7 mm day over land with a maximum in the annual cycle occurring in February-March, when the Amazon basin receives abundant rainfall. The average precipitation rate is 3.1 mm day over the tropical oceans, with a peak earlier in the season (November-December), corresponding with the transition from a strong Pacific Intertropical Convergence Zone (ITCZ) from June to November to a strong South Pacific Convergence Zone (SPCZ) from December to March. The seasonal evolution of C, C, the Asian summer monsoon stands out with rains in excess of 15 mm day off the coast of Burma in June. The GPROF pentad data also captures the onset of the tropical Pacific rainfall patterns associated with the 1997-98 ENSO. From February to October 1997 at least four rain-producing systems traveled from West to East in the equatorial corridor. A rapid transition from El Nino to La Nina conditions occurred in May-June 1998. GPCP and GPROF were used to construct precipitation-based ENSO indices to monitor El Ninos (EL) and La Ninas and (LI).

  4. Tracing the factors responsible for arsenic enrichment in groundwater of the middle Gangetic Plain, India: a source identification perspective.

    PubMed

    Kumar, Pankaj; Kumar, Manish; Ramanathan, A L; Tsujimura, Maki

    2010-04-01

    Arsenic contamination in groundwater is of increasing concern because of its high toxicity and widespread occurrence. This study is an effort to trace the factors responsible for arsenic enrichment in groundwater of the middle Gangetic Plain of India through major ion chemistry, arsenic speciation, sediment grain-size analyses, and multivariate statistical techniques. The study focuses on the distinction between the contributions of natural weathering and anthropogenic inputs of arsenic with its spatial distribution and seasonal variations in the plain of the state Bihar of India. Thirty-six groundwater and one sediment core samples were collected in the pre-monsoon and post-monsoon seasons. Various graphical plots and statistical analysis were carried out using chemical data to enable hydrochemical evaluation of the aquifer system based on the ionic constituents, water types, hydrochemical facies, and factors controlling groundwater quality. Results suggest that the groundwater is characterized by slightly alkaline pH with moderate to strong reducing nature. The general trend of various ions was found to be Ca(2+) > Na(+) > Mg(2+) > K(+) > NH(4) (+); and HCO(3) (-) > Cl(-) > SO(4) (2-) > NO(3) (-) > PO(4) (3-) > F(-) in both seasons. Spatial and temporal variations showed a slightly higher arsenic concentration in the pre-monsoon period (118 microg/L) than in the post-monsoon period (114 microg/L). Results of correlation analyses indicate that arsenic contamination is strongly associated with high concentrations of Fe, PO(4) (3-), and NH(4) (+) but relatively low Mn concentrations. Further, the enrichment of arsenic is more prevalent in the proximity of the Ganges River, indicating that fluvial input is the main source of arsenic. Grain size analyses of sediment core samples revealed clay (fine-grained) strata between 4.5 and 7.5 m deep that govern the vertical distribution of arsenic. The weathering of carbonate and silicate minerals along with surface-groundwater interactions, ion exchange, and anthropogenic activities seem to be the processes governing groundwater contamination, including with arsenic. Although the percentage of wells exceeding the permissible limit (50 microg/L) was less (47%) than that reported in Bangladesh and West Bengal, the percentage contribution of toxic As(III) to total arsenic concentration is quite high (66%). This study is vital considering that groundwater is the exclusive source of drinking water in the region and not only makes situation alarming but also calls for immediate attention.

  5. A sharp and flat section of the core-mantle boundary

    USGS Publications Warehouse

    Vidale, J.E.; Benz, H.M.

    1992-01-01

    THE transition zone between the Earth's core and mantle plays an important role as a boundary layer for mantle and core convection1. This zone conducts a large amount of heat from the core to the mantle, and contains at least one thermal boundary layer2,3; the proximity of reactive silicates and molten iron leads to the possibility of zones of intermediate composition4. Here we investigate one region of the core-mantle boundary using seismic waves that are converted from shear to compressional waves by reflection at the boundary. The use of this phase (known as ScP), the large number of receiving stations, and the large aperture of our array all provide higher resolution than has previously been possible5-7. For the 350-km-long section of the core-mantle boundary under the northeast Pacific sampled by the reflections, the local boundary topography has an amplitude of less than 500 m, no sharp radial gradients exist in the 400 km above the boundary, and the mantle-lo-core transition occurs over less than 1 km. The simplicity of the structure near and above the core-mantle boundary argues against chemical heterogeneity at the base of the mantle in this location.

  6. Distribution, abundance, and feeding ecology of decapods in the Arabian Sea, with implications for vertical flux

    NASA Astrophysics Data System (ADS)

    Mincks, Sarah L.; Bollens, Stephen M.; Madin, Laurence P.; Horgan, Erich; Butler, Mari; Kremer, Patricia M.; Craddock, James E.

    Macrozooplankton and micronekton samples were collected on two cruises in the Arabian Sea conducted during the Spring Intermonsoon period (May) and the SW Monsoon period (August) of 1995. Discrete depth samples were collected down to depths of 1000-1500 m. Quantitative gut content analyses were performed on four species of decapod shrimps, Gennadas sordidus, Sergia filictum, Sergia creber, and Eupasiphae gilesii, as well as on the pelagic crab Charybdis smithii. Of the shrimps, only S. filictum and S. creber increased significantly in abundance between the Spring Intermonsoon and SW Monsoon seasons. These four species were found at all depths sampled, and most did not appear to be strong vertical migrators. G. sordidus and S. filictum did appear to spread upward at night, especially during the SW Monsoon, but this movement did not include the entire population. S. creber showed signs of diel vertical migration only in some areas. All four shrimp species except, to some degree, S. creber lived almost exclusively within the oxygen minimum zone (150-1000 m), and are likely to have respiratory adaptations that allow them to persist under such conditions. Feeding occurred at all depths throughout these species' ranges, but only modest feeding occurred in the surface layer (0-150 m). G. sordidus appeared to feed continuously throughout the day and night. Estimated contribution of fecal material to vertical flux ranged from <0.01-2.1% of particulate flux at 1000 m for the shrimps and 1.8-3.0% for C. smithii.

  7. Transport of sulfonamide antibiotics in small fields during monsoon season

    NASA Astrophysics Data System (ADS)

    Park, J. Y.; Huwe, B.; Kolb, A.; Tenhunen, J.

    2012-04-01

    Transport and fate of 3 sulfonamide antibiotics (sulfamethoxazole, sulfadimethoxine and sulfamethazine) were studied in small agricultural land during monsoon period. The experiment has been conducted in 2 typical sandy loam potato fields of South Korea after application of the veterinary antibiotics and bromide. Precipitation was measured by AWS (Automatic Weather Station) near the fields during the whole monsoon season. Runoff generation was estimated by multislot divisors in combination with pressure sensor. Concentration of the target antibiotics and the conservative tracer in runoff, soil-water and soil was determined using HPLC-MS-MS and Br selected electrode. Transport simulation has been performed with Hydrus-2D program which can consider soil characteristics, climate condition, adsorption/desorption and degradation. Results from the measurements and modeling focus on the role of heavy rainfall, of related the ratio of runoff and infiltration in terms of the selected antibiotics distribution and fate. Bromide on topsoil was moved into soil as increasing rainfall loading. On the contrary, the sulfonamides were relatively retarded in upper soil layer owing to adsorption onto soil particles. Different patterns of runoff were observed, and slope and rain intensity was representative factor in this study. Distribution of target pharmaceuticals was strongly dependent on constitution of furrow and ridge in the agricultural fields. Modeling results positively matched with background studies that describe physico-chemical properties of the sulfonamides, interaction between soil and the antibiotic group, solute transport through vadose zone and runoff induction by storm events.

  8. The evolution of sub-monsoon systems in the Afro-Asian monsoon region during the Holocene - comparison of different transient climate model simulations

    NASA Astrophysics Data System (ADS)

    Dallmeyer, A.; Claussen, M.; Fischer, N.; Haberkorn, K.; Wagner, S.; Pfeiffer, M.; Jin, L.; Khon, V.; Wang, Y.; Herzschuh, U.

    2014-05-01

    The recently proposed global monsoon hypothesis interprets monsoon systems as part of one global-scale atmospheric overturning circulation, implying a connection between the regional monsoon systems and an in-phase behaviour of all northern hemispheric monsoons on annual timescales (Trenberth et al., 2000). Whether this concept can be applied to past climates and variability on longer timescales is still under debate, because the monsoon systems exhibit different regional characteristics such as different seasonality (i.e. onset, peak, and withdrawal). To investigate the interconnection of different monsoon systems during the pre-industrial Holocene, five transient global climate model simulations have been analysed with respect to the rainfall trend and variability in different sub-domains of the Afro-Asian monsoon region. Our analysis suggests that on millennial timescales with varying orbital forcing, the monsoons do not behave as a tightly connected global system. According to the models, the Indian and North African monsoons are coupled, showing similar rainfall trend and moderate correlation in rainfall variability in all models. The East Asian monsoon changes independently during the Holocene. The dissimilarities in the seasonality of the monsoon sub-systems lead to a stronger response of the North African and Indian monsoon systems to the Holocene insolation forcing than of the East Asian monsoon and affect the seasonal distribution of Holocene rainfall variations. Within the Indian and North African monsoon domain, precipitation solely changes during the summer months, showing a decreasing Holocene precipitation trend. In the East Asian monsoon region, the precipitation signal is determined by an increasing precipitation trend during spring and a decreasing precipitation change during summer, partly balancing each other. A synthesis of reconstructions and the model results do not reveal an impact of the different seasonality on the timing of the Holocene rainfall optimum in the different sub-monsoon systems. They rather indicate locally inhomogeneous rainfall changes and show, that single palaeo-records should not be used to characterise the rainfall change and monsoon evolution for entire monsoon sub-systems.

  9. The evolution of sub-monsoon systems in the Afro-Asian monsoon region during the Holocene- comparison of different transient climate model simulations

    NASA Astrophysics Data System (ADS)

    Dallmeyer, A.; Claussen, M.; Fischer, N.; Haberkorn, K.; Wagner, S.; Pfeiffer, M.; Jin, L.; Khon, V.; Wang, Y.; Herzschuh, U.

    2015-02-01

    The recently proposed global monsoon hypothesis interprets monsoon systems as part of one global-scale atmospheric overturning circulation, implying a connection between the regional monsoon systems and an in-phase behaviour of all northern hemispheric monsoons on annual timescales (Trenberth et al., 2000). Whether this concept can be applied to past climates and variability on longer timescales is still under debate, because the monsoon systems exhibit different regional characteristics such as different seasonality (i.e. onset, peak and withdrawal). To investigate the interconnection of different monsoon systems during the pre-industrial Holocene, five transient global climate model simulations have been analysed with respect to the rainfall trend and variability in different sub-domains of the Afro-Asian monsoon region. Our analysis suggests that on millennial timescales with varying orbital forcing, the monsoons do not behave as a tightly connected global system. According to the models, the Indian and North African monsoons are coupled, showing similar rainfall trend and moderate correlation in centennial rainfall variability in all models. The East Asian monsoon changes independently during the Holocene. The dissimilarities in the seasonality of the monsoon sub-systems lead to a stronger response of the North African and Indian monsoon systems to the Holocene insolation forcing than of the East Asian monsoon and affect the seasonal distribution of Holocene rainfall variations. Within the Indian and North African monsoon domain, precipitation solely changes during the summer months, showing a decreasing Holocene precipitation trend. In the East Asian monsoon region, the precipitation signal is determined by an increasing precipitation trend during spring and a decreasing precipitation change during summer, partly balancing each other. A synthesis of reconstructions and the model results do not reveal an impact of the different seasonality on the timing of the Holocene rainfall optimum in the different sub-monsoon systems. Rather they indicate locally inhomogeneous rainfall changes and show that single palaeo-records should not be used to characterise the rainfall change and monsoon evolution for entire monsoon sub-systems.

  10. National Centers for Environmental Prediction

    Science.gov Websites

    : Monsoon progress image (Link) IITM : 2017 Monsoon (Link) SW Monsoon, 2016 IMD : Daily rainfall report (30th September, 2016) (Link) IMD : End of season Monsoon Report (2016) (Link) SW Monsoon, 2015 IMD : Daily rainfall report (30th September, 2015) (Link) IMD : End of season Monsoon Report (2015) (Link

  11. Geothermal alteration of basaltic core from the Snake River Plain, Idaho

    NASA Astrophysics Data System (ADS)

    Sant, Christopher J.

    The Snake River Plain is located in the southern part of the state of Idaho. The eastern plain, on which this study focuses, is a trail of volcanics from the Yellowstone hotspot. Three exploratory geothermal wells were drilled on the Snake River Plain. This project analyzes basaltic core from the first well at Kimama, north of Burley, Idaho. The objectives of this project are to establish zones of geothermal alteration and analyze the potential for geothermal power production using sub-aquifer resources on the axial volcanic zone of the Snake River Plain. Thirty samples from 1,912 m of core were sampled and analyzed for clay content and composition using X-ray diffraction. Observations from core samples and geophysical logs are also used to establish alteration zones. Mineralogical data, geophysical log data and physical characteristics of the core suggest that the base of the Snake River Plain aquifer at the axial zone is located 960 m below the surface, much deeper than previously suspected. Swelling smectite clay clogs pore spaces and reduces porosity and permeability to create a natural base to the aquifer. Increased temperatures favor the formation of smectite clay and other secondary minerals to the bottom of the hole. Below 960 m the core shows signs of alteration including color change, formation of clay, and filling of other secondary minerals in vesicles and fractured zones of the core. The smectite clay observed is Fe-rich clay that is authigenic in some places. Geothermal power generation may be feasible using a low temperature hot water geothermal system if thermal fluids can be attained near the bottom of the Kimama well.

  12. The Varved Sediments of Lake Bosumtwi, Ghana and Implications for a new Chronology of West African Hydrologic Change During the Late Quaternary

    NASA Astrophysics Data System (ADS)

    Wheeler, C. W.; Overpeck, J. T.; Beck, J. W.; Arko, J.; Sharp, W. E.

    2002-12-01

    Lake Bosumtwi is a small (8-km diameter), deep (78-m) crater lake in the lowland forest of southern Ghana (West Africa) that offers tremendous potential for high-resolution environmental reconstruction. Lying in the path of the seasonal Intertropical Convergence Zone (ITCZ) monsoonal precipitation procession, as well as the dry Harmattan winds of the Sahel in winter, this lake is uniquely located to provide potential proxy records of these dominate climatic phenomena effecting West Africa's hydrologic cycle. The lake exhibits excellent sediment preservation, with finely laminated sediments through most of the ca. 24,000 years of core material recovered thus far. We present a detailed chronological analysis of the uppermost 1.1 meters of laminated sediment, obtained via a recently collected suite of freeze- and piston-cores. Utilizing digital images and petrographic thin-section transects of six freeze-cores and two piston cores, we identified 400 diagnostic marker laminations common among the cores, thus enabling cross correlation of the cores to a sub-centimeter scale. The marker laminations also serve as anchor points for counts of organic-rich fine-laminations that were hypothesized to be annual. Excellent agreement between our lamination counts and independent radiometric sediment age models (lead-210 and bomb radiocarbon) verify that these counted laminations are in fact annual (i.e. varves). Thus, we are able to present an annual chronology for the last 800 years of sedimentation (prior to 2000 AD)ñ ~4%. Though anthroprogenic changes have probably effected the local environment within the last 100 years, as we interpret anomalous increases in %organic carbon, %inorganic carbon and %nitrogen to indicate, the varve appearance does not seem to change across the 1.1 m section analyzed. Pre-nuclear weapon testing radiocarbon values, derived from bulk organic carbon, were examined in relation to the varve and lead-210 age-models to assess radiocarbon age offset due to reservoir effects and the redeposition of old-carbon; the data suggest that anomalously old radiocarbon ages ranging from ~430 to 3000 years are possible. The size of the radiocarbon bias may vary with lake status, indicating the role of old-carbon redeposition from ancient lake sediments currently at shallow depths or above current lake level in the crater catchment. Our study shows that 1) varves have excellent potential for creating a high-resolution chronology for Lake Bosumtwi, and 2) caution must be taken in using radiocarbon results to date the sediments of Lake Bosumtwi

  13. Did opening of the South China Sea impact development of the Asian Monsoon? Results from Oligocene microfossils, IODP Site U1435, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Kulhanek, Denise K.; Su, Xin; Li, Qianyu; Gregory, Mitch; Warny, Sophie; Clift, Peter D.

    2016-04-01

    Development of the Asian Monsoon is linked to uplift of the Himalayas and Tibetan Plateau in the Cenozoic, with good evidence for a strong monsoon system by the late Oligocene to early Miocene (e.g., Guo et al., 2002; Clift et al., 2008). However, Licht et al. (2014) suggested the presence of an Asian Monsoon in the late Eocene. Recent scientific ocean drilling in the Indian Ocean and surrounding marginal seas gives us the opportunity to test this hypothesis with newly recovered Paleogene sediment cores. International Ocean Discovery Program Expedition 349 to the South China Sea recovered a 30 m section of primarily lower Oligocene nannofossil-rich claystone at Site U1435, located near the northern continent/ocean boundary. A thick sandstone unit devoid of typical marine microfossils underlies the marine claystone. The sandstone is interpreted as a deltaic or restricted marine deposit and is dated to the Eocene based on the presence of organic-walled palynomorphs, suggesting that a hiatus of several million years likely separates the sandstone below from the Oligocene marine claystone. This hiatus is interpreted as the breakup unconformity, with paleodepths in the South China Sea increasing during the Oligocene. Thus, this claystone should record if opening of the South China Sea during the early Oligocene influenced development of the Asian Monsoon. Combined calcareous nannofossil and planktonic foraminifer biostratigraphy indicates that the 30 m section is primarily early Oligocene in age (~33.5-30 Ma) and was deposited on the middle slope, with paleodepths >500 m. Stable oxygen isotopes from planktonic foraminifers become heavier up-hole, suggestive of cooling/deepening in the region, whereas carbon isotopes record variable conditions with no distinct maxima or minima. Calcareous nannoplankton primarily live in the upper 50 m of the ocean and are sensitive to sea-surface temperature and nutrient conditions, thus making them useful recorders of paleoceanographic conditions. Warm-water indicators such as Discoaster and Sphenolithus are relatively common throughout the interval, with a small increase in abundance near the top of the section. On the other hand, species sensitive to nutrient and/or salinity conditions, such as Helicosphaera and Braarudosphaera, vary in abundance throughout the section. These variations may be linked to changes in rainfall intensity and runoff/nutrient input from the adjacent continent, reflecting variations in the monsoon. These records, together with other Oligocene records from the northern South China Sea, should help to shed light on variations in the Asian Monsoon during the transition from Greenhouse to Icehouse conditions in the Oligocene. References: Clift, P.D., Hodges, K.V., Heslop, D., Hannigan, R., Van Long, H., and Calves, G., 2008. Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nature Geoscience, 1: 875-880. Guo, Z.T., Ruddiman, W.F., Hao, Q.Z., Wu, H.B., Qiao, Y.S., Zhu, R.X., Peng, S.Z., Wei, J.J., Yuan, B.Y., and Liu, T.S., 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416: 159-163. Licht, A., van Cappelle, M., Abels, H.A., Ladant, J.-B., Trabucho-Alexandre, J., France-Lanord, C., Donnadieu, Y., Vandenberghe, J., Rigaudier, T., Lécuyer, C., Terry Jr., D., Adriaens, R., Boura, A., Guo, Z., Aung Naing Soe, Quade, J., Dupont-Nivet, and Jaeger, J.-J., 2014. Asian monsoons in a late Eocene greenhouse world. Nature, 513: 501-506.

  14. Marine protected areas increase temporal stability of community structure, but not density or diversity, of tropical seagrass fish communities

    PubMed Central

    Jiddawi, Narriman S.; Eklöf, Johan S.

    2017-01-01

    Marine protected areas (MPAs) have been shown to increase long-term temporal stability of fish communities and enhance ecosystem resilience to anthropogenic disturbance. Yet, the potential ability of MPAs to buffer effects of environmental variability at shorter time scales remains widely unknown. In the tropics, the yearly monsoon cycle is a major natural force affecting marine organisms in tropical regions, and its timing and severity are predicted to change over the coming century, with potentially severe effects on marine organisms, ecosystems and ecosystem services. Here, we assessed the ability of MPAs to buffer effects of monsoon seasonality on seagrass-associated fish communities, using a field survey in two MPAs (no-take zones) and two unprotected (open-access) sites around Zanzibar (Tanzania). We assessed the temporal stability of fish density and community structure within and outside MPAs during three monsoon seasons in 2014–2015, and investigated several possible mechanisms that could regulate temporal stability. Our results show that MPAs did not affect fish density and diversity, but that juvenile fish densities were temporally more stable within MPAs. Second, fish community structure was more stable within MPAs for juvenile and adult fish, but not for subadult fish or the total fish community. Third, the observed effects may be due to a combination of direct and indirect (seagrass-mediated) effects of seasonality and, potentially, fluctuating fishing pressure outside MPAs. In summary, these MPAs may not have the ability to enhance fish density and diversity and to buffer effects of monsoon seasonality on the whole fish community. However, they may increase the temporal stability of certain groups, such as juvenile fish. Consequently, our results question whether MPAs play a general role in the maintenance of biodiversity and ecosystem functioning under changing environmental conditions in tropical seagrass fish communities. PMID:28854231

  15. El Niño, Climate and Societies

    NASA Astrophysics Data System (ADS)

    Haug, G. H.; Peterson, L. C.; Yancheva, G.

    2010-03-01

    One tropical climate archive with an appropriate memory for the societal most relevant sub-centennial to sub-decadal scale climate swings is the anoxic Cariaco Basin off northern Venezuela. Millimeter to micrometer-scale geochemical data in the laminated sediments of the Cariaco Basin have been interpreted to reflect variations in the hydrological cycle and the mean annual position of the Intertropical Convergence Zone (ITCZ) over tropical South America during the past millennia. These data with decadal to (sub)annual resolution show that the Terminal Collapse of the Classic Maya civilization occurred during an extended dry period. In detail, the Cariaco record reveals evidence for three separate droughts during the period of Maya downfall, each lasting a decade or less. These data suggest that climate change was potentially one immediate cause of the demise of Mayan civilization, with a century-scale decline in rainfall putting a general strain on resources and several multi-year events of more intense drought pushing Mayan society over the edge. An archive of comparable quality and resolution are sediments of lake Huguang Maar in coastal southeast China. The titanium content and redox-sensitive magnetic properties record the strength of winter monsoon winds at subdecadal resolution over the last 16 thousand years. The record indicates a stronger winter monsoon prior to the Bølling Allerød warming, during the Younger Dryas, and during the middle and late Holocene, when cave stalagmite oxygen isotope data indicate a weaker summer monsoon. The anti-correlation between winter and summer monsoon strength is best explained by migrations in the ITCZ that occurred simultaneously in central America and Africa. Drought associated with southward ITCZ migration may have played a role in the termination of several Chinese dynasties. A remarkable similarity of ITCZ migration in east Asia and the Americas from 700 to 900 AD raises the possibility that the coincident declines of the important Tang Dynasty in China and the Classic Maya in Central America were catalyzed by the same ITCZ migrations.

  16. GIS development to monitor climate change and its geohydrological consequences on non-monsoon crop pattern in Himalaya

    NASA Astrophysics Data System (ADS)

    Rawat, Pradeep K.

    2014-09-01

    The main objective of the study was to assess climate change and its geohydrological impacts on non-monsoon crop pattern at watershed level through GIS development on climate informatics, land use informatics, hydro-informatics and agro-informatics. The Dabka watershed constitutes a part of the Kosi Basin in densely populated Lesser Himalaya, India in district Nainital has been selected for the case illustration. This reconnaissance study analyzed the climatic database for last three decades (1982-2012) and estimates that the average temperature and evaporation loss have been rising with the rate of 0.07 °C/yr and 4.03 mm/yr respectively whereas the average rainfall has been decreasing with the rate of 0.60 mm/yr. These rates of climate change increasing with mounting elevations. Consequently the existing microclimatic zones (sub-tropical, temperate and moist temperate) shifting towards higher altitudes and affecting the favorable conditions of the land use pattern and decreased the eco-friendly forest and vegetation cover. The land use degradation and high rate of deforestation (0.22 km2 or 1.5%/yr) leads to accelerate several hydrological problems during non-monsoon period (i.e. decreasing infiltration capacity of land surface, declining underground water level, drying up natural perennial springs and streams, decreasing irrigation water availability etc.). In order to that the non-monsoon crops yield has been decreasing with the rate of 0.60% each year as the results suggest that the average crop yield is just about 58 q/ha whereas twenty five to thirty year back it was recorded about 66 q/ha which is about 12% higher (8 q/ha) than existing yield. On the other hand the population increasing with the growth rate of 2% each year. Therefore, decreasing crop yield and increasing population raised food deficiency problem and the people adopting other occupations which ultimately affecting rural livelihood of the Himalaya.

  17. Tohono O'odham Monsoon Climatology

    NASA Astrophysics Data System (ADS)

    Ackerman, G.

    2006-12-01

    The North American monsoon is a summertime weather phenomenon that develops over the southwestern North America. For thousands of years the Tohono O'odham people of this area have depended on the associated rainy season (Jukiabig Masad) to grow traditional crops using runoff agriculture. Today, the high incidence of Type II diabetes among native people has prompted many to return to their traditional agricultural diets. Local monsoon onset dates and the North American Regional Reanalysis dataset were used to develop a 24-year Tohono O'odham Nation (TON) monsoon and pre-monsoon climatology that can be used as a tool for planning runoff agriculture. Using monsoon composite datasets, temporal and spatial correlations between antecedent period meteorological variables, monsoon onset dates and total monsoon precipitation were examined to identify variables that could be useful in predicting the onset and intensity of the monsoon. The results suggest additional research is needed to identify variables related to monsoon onset and intensity.

  18. Core-Log-Seismic Integrative Study of a Subduction Zone Megasplay Fault -An Example from the Nobeoka Thrust, Shimanto Belt, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Hamahashi, M.; Tsuji, T.; Saito, S.; Tanikawa, W.; Hamada, Y.; Hashimoto, Y.; Kimura, G.

    2016-12-01

    Investigating the mechanical properties and deformation patterns of megathrusts in subduction zones is important to understand the generation of large earthquakes. The Nobeoka Thrust, a fossilized megasplay fault in Kyushu Shimanto Belt, southwest Japan, exposes foliated fault rocks that were formed under the temperature range of 180-350° (Kondo et al., 2005). During the Nobeoka Thrust Drilling Project (2011), core samples and geophysical logging data were obtained recovering a continuous distribution of multiple fault zones, which provide the opportunity to examine their structure and physical properties in various scales (Hamahashi et al., 2013; 2015). By performing logging data analysis, discrete sample physical property measurements, and synthetic modeling of seismic reflections along the Nobeoka Thrust, we conducted core-log-seismic integrative study to characterize the effects of damage zone architecture and structural anisotropy towards the physical properties of the megasplay. A clear contrast in physical properties across the main fault core and surrounding damage zones were identified, where the fault rocks preserve the porosity of 4.8% in the hanging wall and 7.6% in the footwall, and P-wave velocity of 4.8 km/s and 4.2 km/s, respectively. Multiple sandstone-rich- and shale-rich damage zones were found from the drilled cores, in which velocity decreases significantly in the brecciated zones. The internal structure of these foliated fault rocks consist of heterogeneous lithology and texture, and velocity anisotropy ranges 1-18% (P-wave) and 1.5-80% (S-wave), affected by structural dip angle, foliation density, and sandstone/mudstone ratio. To evaluate the fault properties at the seismogenic depth, we developed velocity/earth models and synthetic modeling of seismic reflection using acoustic logs across the thrust and parameterized lithological and structural elements in the identified multiple damage zones.

  19. Role of Madden-Julian Oscillation in Modulating Monsoon Retreat

    NASA Astrophysics Data System (ADS)

    Singh, Madhu; Bhatla, R.

    2018-01-01

    The Madden-Julian oscillation (MJO) is the major fluctuation in tropical weather on a seasonal scale. The impact of MJO on different epochs, viz., onset, advance and active break is well known. There can be several MJO events in a season and it may enhance/suppress the retreat process. The present study aims to find the MJO-modulated retreat of monsoon. The results suggest that the fastest retreat of monsoon occurred in the years 2007 and 2008, while slowest retreat of monsoon occurred in the year 1979. The retreat features of the Indian summer monsoon (ISM) are investigated with the MJO phase and amplitude variations. The daily MJO indices for the retreat period 1979-2016 are used. The results reveal that the MJO strength decreases during the transition phase (i.e., summer monsoon to winter monsoon transition). The monsoon retreat is most favored by strong MJO phase 4 and phase 5. The fastest retreat of monsoon occurred in the years 2007 and 2008, while the slowest retreat of monsoon occurred in the year 1979. There exists a weak positive correlation between the MJO amplitude and the retreat period of monsoon. The monsoon retreat is most favored by strong MJO phase 4 and phase 5. The MJO amplitude variations during MJO phases 1-8 suggest that the MJO amplitude decreases with increase in retreat period. The MJO-modulated retreat results in slow retreat of monsoon, whereas fast and normal retreat of monsoon is seen on rare occasions. Weak MJO events lead to normal retreat of monsoon.

  20. Temporal evolution of the spatial covariability of rainfall in South America

    NASA Astrophysics Data System (ADS)

    Ciemer, Catrin; Boers, Niklas; Barbosa, Henrique M. J.; Kurths, Jürgen; Rammig, Anja

    2017-10-01

    The climate of South America exhibits pronounced differences between rainy and dry seasons, associated with specific synoptic features such as the establishment of the South Atlantic convergence zone. Here, we analyze the spatiotemporal correlation structure and in particular teleconnections of daily rainfall associated with these features by means of evolving complex networks. A modification of Pearson's correlation coefficient is introduced to handle the intricate statistical properties of daily rainfall. On this basis, spatial correlation networks are constructed, and new appropriate network measures are introduced in order to analyze the temporal evolution of the networks' characteristics. We particularly focus on the identification of coherent areas of similar rainfall patterns and previously unknown teleconnection structures between remote areas. We show that the monsoon onset is characterized by an abrupt transition from erratic to organized regional connectivity that prevails during the monsoon season, while only the onset times themselves exhibit anomalous large-scale organization of teleconnections. Furthermore, we reveal that the two mega-droughts in the Amazon basin were already announced in the previous year by an anomalous behavior of the connectivity structure.

  1. Influences of large-scale convection and moisture source on monthly precipitation isotope ratios observed in Thailand, Southeast Asia

    NASA Astrophysics Data System (ADS)

    Wei, Zhongwang; Lee, Xuhui; Liu, Zhongfang; Seeboonruang, Uma; Koike, Masahiro; Yoshimura, Kei

    2018-04-01

    Many paleoclimatic records in Southeast Asia rely on rainfall isotope ratios as proxies for past hydroclimatic variability. However, the physical processes controlling modern rainfall isotopic behaviors in the region is poorly constrained. Here, we combined isotopic measurements at six sites across Thailand with an isotope-incorporated atmospheric circulation model (IsoGSM) and the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to investigate the factors that govern the variability of precipitation isotope ratios in this region. Results show that rainfall isotope ratios are both correlated with local rainfall amount and regional outgoing longwave radiation, suggesting that rainfall isotope ratios in this region are controlled not only by local rain amount (amount effect) but also by large-scale convection. As a transition zone between the Indian monsoon and the western North Pacific monsoon, the spatial difference of observed precipitation isotope among different sites are associated with moisture source. These results highlight the importance of regional processes in determining rainfall isotope ratios in the tropics and provide constraints on the interpretation of paleo-precipitation isotope records in the context of regional climate dynamics.

  2. How can fluid overpressures be developed and maintained in crustal fault zones ?

    NASA Astrophysics Data System (ADS)

    LECLÈRE, H.; Cappa, F.; Faulkner, D. R.; Armitage, P. J.; Blake, O. O.; Fabbri, O.

    2013-12-01

    The presence of fluid overpressure in crustal fault zones is known to play a key role on the stability of faults and it has often been invoked to explain the triggering of earthquakes and the apparent weakness of misoriented faults. However, the mechanisms allowing the development and maintenance of fluid overpressures in fault remain unresolved. We investigate how fluid overpressures can be developed and maintained in complex fault zones with hydraulic and elastic heterogeneities. Here we address this question combining geological observations, laboratory experiments and hydromechanical models of an active crustal fault zone in the Ubaye-Argentera area (southeastern France). The fault zone studied is located in the Argentera external crystalline massif and is connected to regional NW-SE steeply-dipping dextral strike-slip faults with an offset of several kilometers. The fault zone cuts through migmatitic gneisses composed of quartz, K-feldspar, plagioclase, biotite and muscovite. It exposes several anastomosing core zones surrounded by damage zones with a pluri-decametric total width. The core zones are made up of centimetric to pluridecimetric phyllosilicate-rich gouge layers while the damage zones are composed of pluri-metric phyllonitic rock derived from mylonite. The determination of fault structure in the field and its hydraulic and mechanical properties in the lab are key aspects to improve our understanding of the role of fluids in fault mechanics and earthquake triggering. Here, the permeability and elastic moduli of the host rock, damage zone and fault core were measured from natural plugs with a diameter of 20 mm and lengths between 26 to 51 mm, using a high-pressure hydrostatic fluid-flow apparatus. Measurements were made with confining pressures ranging from 30 to 210 MPa and using argon pore fluid pressure of 20 MPa. Data show a reduction of the permeability values of one order of magnitude between host rock and fault damage zone and a decrease of 50% of the elastic properties between host rock and core zone. Data also show a higher dependence of the permeability on the effective pressure for the host rock compared with the damage zone and core zone. This heterogeneity of properties is related to the development of different microstructures such as microcracks, S-C structures and microbreccia across the fault zone achieved during the tectonic history of the fault. From these physical property values and the fault zone architecture, we then analyzed the effects of sudden mechanical loading approximating to static normal-stress transfer following an earthquake on a neighbouring fault, on the development of fluid overpressures. A series of 1-D hydromechanical numerical models was used to show that sudden normal stress increase is a viable mechanism for fluid overpressuring in the studied fault-zone. The models also showed that fluid overpressures can be temporarily maintained in the studied fault zone and that the maintenance of fluid overpressures is controlled by the structure and fluid-flow properties of the fault zone.

  3. Climate change and tectonic activity during the early Pliocene Warm Period from the ostracod record at Lake Qinghai, northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Lu, Fengyan; An, Zhisheng; Chang, Hong; Dodson, John; Qiang, Xiaoke; Yan, Hong; Dong, Jibao; Song, Yougui; Fu, Chaofeng; Li, Xiangzhong

    2017-05-01

    The Early Pliocene Warm Period (EPWP, 5-3 Ma) is sometimes thought to be a useful analogue for a future warmer world, and thus the boundary conditions and drivers of climate in the EPWP may provide valuable lessons for understanding how a future warmer world might unfold. Lake Qinghai is located on the northeastern margin of the Tibetan Plateau (TP) and is affected by both Monsoon climate and Westerlies circulation. It is sensitive to the climate drivers of these systems. Its sediments, accumulated over the Cenozoic period, are a rich source of information for climate, tectonics and environmental changes of the period. We present a high-resolution ostracod record from a Lake Qinghai sediment core with a record of the period 5.10-2.60 Ma, thus covering the EPWP. Ostracods appear at 4.63 Ma and are most abundant until 3.58 Ma, while a body of water was present at the core site. This suggests a phase of humid climate and an intensified Asian Summer Monsoon (ASM), which is consistent with a warmer and wetter climate in the early Pliocene. Within this period the ostracod record shows some variabilities in lake level with deeper periods suggesting more intense ASM compared to those with shallower water. The disappearance of ostracods at 3.58 Ma may provide evidence for the uplift of Qinghai Nanshan (south of Qinghai Lake) since this is when the ASM intensified.

  4. On convection and static stability during the AMMA SOP3 campaign

    NASA Astrophysics Data System (ADS)

    Embolo Embolo, G. B.; Lenouo, André; Nzeukou, Armand T.; Vondou, Derbetini A.; Kamga, F. Mkankam

    2017-01-01

    Using radiosonde dataset from 15 weather stations over West Africa, this paper investigates the contribution of the couple convection-static stability in the framework of the African monsoon multidisciplinary analyses Special Observing Period 3 (AMMA SOP3) experiment. Within this 31-day period, the boundary layer-winds depictions have revealed the West African monsoon's (WAM) depth (around 1500 m) is not thick enough to trigger intense convection. However, the midlevel winds distribution (700-600 hPa) has shown the average African easterly jet core strength (15 m s-1) is sufficient to allow the development of African easterly waves (AEWs) necessary for squall lines activities. In return, in the upper levels (200-100 hPa), the speed (below 18 m s-1) of the mean Tropical easterly jet (TEJ) core cannot favor midlevel updrafts. The free tropospheric humidity (FTH) depiction has indicated convective events are more likely in the western Sahel where the highest FTH (FTH >50 %) are recorded. The static stability analysis has testified that convection is stronger in the semi-arid (SA) area during night time (0000 GMT). However, convective activities are inhibited in the wet equatorial (WE) region due to mean low-level stability. We used METEOSAT Second Generation (MSG) infrared (IR10.8) imagery of the 8th September 2006 to confirm that result. Furthermore, a maximum midtropospheric static stability combined with maximum relative humidity (RH) was found on the fringe of the Saharan air layer's (SAL) top (altitude around 5.3 km) in the WE region.

  5. Frequency changes of tropical cyclones during the last century recorded in a canyon of the northern Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Kudrass, Hermann; Machalett, Björn; Palamenghi, Luisa; Meyer, Inka

    2017-04-01

    Frequent cyclones originating in the Bay of Bengal and landfall to the southern delta of the Ganges and Brahmaputra are well recorded in sediment cores from a canyon which deeply incises into the shelf and ends at the foreset beds of the submarine Ganges Brahmaputra delta. The large sediment supply by the two rivers during the monsoonal floods forms temporary deposits on the inner shelf, which are mobilized by waves and currents during the passage of cyclones. The resulting sand-silt-clay suspension forms high-density water masses, which plunge from the inner shelf into the shelf canyon, where they deposit graded beds evenly draping the broad canyon floor. A simple model was used to rank the historical known cyclones according to their capacity to transfer sediment from the submarine delta into the canyon. In a 362 cm-long sediment core ranging from the year 1985 to 2006, 48 graded beds can be correlated with the observed 41 cyclones. The cyclonic impact on the sediment transport has decreased by a factor of three during the last decade. The highest cyclonic impact occurred during the seventies. Compared to the sediment transfer by cyclones, the input by tidal currents and monsoonal floods is negligible. Thus cyclones are the dominating process for mobilizing and distributing sediment on the Bangladesh shelf and probably also on all shelf areas, which lie in the track of tropical cyclones.

  6. On the Origin of the Bolivian High and Related Circulation Features of the South American Climate.

    NASA Astrophysics Data System (ADS)

    Lenters, J. D.; Cook, K. H.

    1997-03-01

    The climatological structure in the upper-tropospheric summertime circulation over South America is diagnosed using a GCM (with and without South American topography), a linear model, and observational data. Emphasis is placed on understanding the origin of observed features such as the Bolivian high and the accompanying `Nordeste low' to the east. Results from the linear model indicate that these two features are generated in response to precipitation over the Amazon basin, central Andes, and South Atlantic convergence zone, with African precipitation also playing a crucial role in the formation of the Nordeste low. The direct mechanical and sensible heating effects of the Andes are minimal, acting only to induce a weak lee trough in midlatitudes and a shallow monsoonal circulation over the central Andes. In the GCM, the effects of the Andes include a strengthening of the Bolivian high and northward shift of the Nordeste low, primarily through changes in the precipitation field. The position of the Bolivian high is primarily determined by Amazonian precipitation and is little affected by the removal of the Andes. Strong subsidence to the west of the high is found to be important for the maintenance of the high's warm core, while large-scale convective overshooting to the east is responsible for a layer of cold air above the high.

  7. Effects of storm runoff on the thermal regime and water quality of a deep, stratified reservoir in a temperate monsoon zone, in Northwest China.

    PubMed

    Huang, Tinglin; Li, Xuan; Rijnaarts, Huub; Grotenhuis, Tim; Ma, Weixing; Sun, Xin; Xu, Jinlan

    2014-07-01

    Jinpen Reservoir is a deep, stratified reservoir in Shaanxi province, located in a warm temperate zone of Northwest China. Influenced by a temperate monsoon climate, more than 60% of the annual precipitation is concentrated from late summer to autumn (July-September). In recent years, extreme rainfall events occurred more frequently and strongly affected the thermal structure, mixing layer depth and evolution of stratification of Jinpen Reservoir. The reservoir's inflow volume increased sharply after heavy rainfall during the flooding season. Large volumes of inflow induced mixing of stratified water zones in early autumn and disturbed the stratification significantly. A temporary positive effect of such disturbance was the oxygenation of the water close to the bottom of the reservoir, leading to inhibition of the release of nutrients from sediments, especially phosphate. However, the massive inflow induced by storm runoff with increased oxygen-consuming substances led to an increase of the oxygen consumption rate. After the bottom water became anaerobic again, the bottom water quality would deteriorate due to the release of pollutants from sediments. Heavy rainfall events could lead to very high nutrient input into the reservoir due to massive erosion from the surrounding uninhabited steep mountains, and the particulate matter contributed to most nutrient inputs. Reasonably releasing density flow is an effective way to reduce the amounts of particulate associated pollutants entering the reservoir. Significant turbid density flow always followed high rainfall events in Jinpen Reservoir, which not only affected the reservoir water quality but also increased costs of the drinking water treatment plant. Understanding the effects of the storm runoff on the vertical distributions of water quality indicators could help water managers to select the proper position of the intake for the water plant in order to avoid high turbidity outflow. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Infrastructure and mechanical properties of a fault zone in sandstone as an outcrop analogue of a potential geothermal reservoir

    NASA Astrophysics Data System (ADS)

    Bauer, J. F.; Meier, S.; Philipp, S. L.

    2013-12-01

    Due to high drilling costs of geothermal projects, it is economically sensible to assess the potential suitability of a reservoir prior to drilling. Fault zones are of particular importance, because they may enhance fluid flow, or be flow barriers, respectively, depending on their particular infrastructure. Outcrop analogue studies are useful to analyze the fault zone infrastructure and thereby increase the predictability of fluid flow behavior across fault zones in the corresponding deep reservoir. The main aims of the present study are to 1) analyze the infrastructure and the differences of fracture system parameters in fault zones and 2) determine the mechanical properties of the faulted rocks. We measure fracture frequencies as well as orientations, lengths and apertures and take representative rock samples for each facies to obtain Young's modulus, compressive and tensile strengths in the laboratory. Since fractures reduce the stiffnesses of in situ rock masses we use an inverse correlation of the number of discontinuities to calculate effective (in situ) Young's moduli to investigate the variation of mechanical properties in fault zones. In addition we determine the rebound hardness, which correlates with the compressive strength measured in the laboratory, with a 'Schmidt-Hammer' in the field because this allows detailed maps of mechanical property variations within fault zones. Here we present the first results for a fault zone in the Triassic Lower Bunter of the Upper Rhine Graben in France. The outcrop at Cleebourg exposes the damage zone of the footwall and a clear developed fault core of a NNW-SSE-striking normal fault. The approximately 15 m wide fault core consists of fault gouge, slip zones, deformation bands and host rock lenses. Intensive deformation close to the core led to the formation of a distal fault core, a 5 m wide zone with disturbed layering and high fracture frequency. The damage zone also contains more fractures than the host rock. Fracture frequency and connectivity clearly increase near the fault core where the reservoir permeability may thus be higher, the effective Young's modulus lower. Similarly the Schmidt-Hammer measurements show that the rebound hardness, or the compressive strength, respectively, decreases near the fault core. This Project is part of the Research- and Development Project 'AuGE' (Outcrop Analogue Studies in Geothermal Exploration). Project partners are the companies Geothermal Engeneering GmbH as well as the Universities of Heidelberg and Erlangen. We thank the German Federal Ministry for the Environment, Nature Conversation and Nuclear Safty (BMU) for funding the project in the framework of the 5th Energy Research Program (FKZ: 0325302). Also thanks to the owner of the quarry for the permission to perform our field studies.

  9. IODP Expedition 362: Initial results from drilling the Sumatra subduction zone - the role of input materials in shallow seismogenic slip and forearc plateau development

    NASA Astrophysics Data System (ADS)

    McNeill, L. C.; Dugan, B.; Petronotis, K. E.; Expedition 362 Scientists, I.

    2016-12-01

    IODP Expedition 362, August-October, 2016, plans to drill two boreholes within the input section of the Indian oceanic plate entering the North Sumatran subduction zone. In 2004, a Mw 9.2 earthquake ruptured the Sunda subduction zone from North Sumatra to the Andaman Islands, a length of 1500 km. The earthquake and tsunami devastated coastal communities around the Indian Ocean. This earthquake and the 2011 Tohoku-Oki Mw 9.0 earthquake showed unexpectedly shallow megathrust slip. In the case of North Sumatra, this shallow slip was focused beneath a distinctive plateau of the accretionary prism. This intriguing seismogenic behavior and forearc structure are not explained by existing models or by observations at other margins where seismogenic slip typically occurs farther landward. Expedition 362 will use core and log data in conjunction with in situ temperature and pressure measurements to document the lithology, structures, and physical and chemical properties of the input sediments. The input materials of the North Sumatran subduction zone are a distinctive, thick (up to 4-5 km) sequence of primarily Bengal-Nicobar Fan-related sediments. This sequence geophysically shows strong evidence for induration and dewatering and has probably reached the temperatures required for sediment-strengthening diagenetic reactions, and input materials may be key to driving the distinctive slip behavior and long-term forearc structure. The plate boundary fault (décollement) originates within the lower pelagic and submarine fan sediments so sampling this interval will help determine what controls décollement development and how its properties evolve. Initial results from the Expedition and plans for post-expedition experiments and modeling will be presented. These methods will be used to predict physical, thermal, fluid, and mechanical properties and diagenetic evolution of the sediments as stresses and temperatures increase due to burial and subduction. Results will be used to test the role of sediment properties in shallow earthquake slip and in the unusual forearc structure. In addition, the results will contribute to our understanding of a) Bengal-Nicobar fan history and records of Himalayan uplift, erosion and monsoon development, and b) stress conditions in a complexly deforming region of the Indian plate.

  10. A northern Australian coral record of seasonal rainfall and terrestrial runoff (1775-1986)

    NASA Astrophysics Data System (ADS)

    Patterson, E. W.; Cole, J. E.; Vetter, L.; Lough, J.

    2017-12-01

    Northern Australia is a climatically dynamic region influenced by both the El Niño-Southern Oscillation (ENSO) and the Australian monsoon. However, this region is largely devoid of long climate records with sub-annual resolution. Understanding long-term climate variations is essential to assess how the storm-prone coasts and rainfall-reliant rangelands of northern Australia have been impacted in the past and may be in the future. In this study, we present a continuous multicentury (1775-1986) coral reconstruction of rainfall and hydroclimate in northern Australia, developed from a Porites spp. coral core collected off the coast of Darwin, Northern Territory, Australia. We combined Ba/Ca measurements with luminescence data as tracers of terrestrial erosion and river discharge respectively. Our results show a strong seasonal cycle in Ba/Ca linked to wet austral summers driven by the Australian monsoon. The Ba/Ca record is corroborated by oxygen isotope data from the same coral and indices of regional river discharge and rainfall. Consistently high levels of Ba measured throughout the record further attest to the importance of river influence on this coral. Our record also shows changes in variability and the baseline level of Ba in coastal waters through time, which may be driven in part by historical land-use change, such as damming or agricultural practices. We will additionally use these records to examine decadal to centennial-scale variability in monsoonal precipitation and regional ENSO signals.

  11. Summer moisture changes in the Lake Qinghai area on the northeastern Tibetan Plateau recorded from a meadow section over the past 8400 yrs

    NASA Astrophysics Data System (ADS)

    Li, Xiangzhong; Liu, Xiangjun; He, Yuxin; Liu, Weiguo; Zhou, Xin; Wang, Zheng

    2018-02-01

    Holocene climatic and environmental changes on the northeastern Tibetan Plateau (TP) have been widely discussed based on the climatic records from sedimentary cores. However, differences in the reconstructed climatic history from various studies in this region still exist, probably due to influence of climatic proxies from multiple factors and the chronological uncertainties in lacustrine sediments. Here we present records of terrestrial plant δ13C, soil color and total organic carbon content over the past 8400 years from a well-dated meadow section on the northeastern TP. The terrestrial plant δ13C value serves as a good summer precipitation/moisture indicator in the studied region. Soil color property and TOC content are also able to disentangle the moisture evolution history. All the data show much wet climates at 8400-7400 cal yr BP, dry climates at 7400-6000 cal yr BP and then wet conditions with fluctuation at 6000-3200 cal yr BP. Late Holocene moisture appears to be comparable with moist conditions from 6000 to 3200 cal yr BP. By further comparing the climatic variations in the Lake Qinghai area with records of the reconstructed summer temperature and the Asian Monsoon precipitation, we believe that the pattern of moisture/precipitation evolution in the Lake Qinghai area was not completely consistent with regions around Lake Qinghai, probably due to complicated interaction between the East Asian Summer Monsoon and the Indian Summer Monsoon.

  12. Changes in mid to late Holocene monsoon strength in eastern Mexico inferred from high-resolution maar lake sediments

    NASA Astrophysics Data System (ADS)

    Bhattacharya, T.; Byrne, R.; Wogau, K.; Bohnel, H.

    2013-12-01

    Understanding the Holocene variation in central Mexico's summer precipitation can help identify the processes responsible for climatic change and clarify the role of climate in Mesoamerican cultural change. We present proxy results from Aljojuca, a maar lake in the Oriental-Serdan Basin in Mexico's Trans-Mexican Volcanic Belt. The 12 m sediment core from Aljojuca features a laminated, high-resolution proxy archive. A chronology established via radiocarbon dating shows a basal date of 6,200 cal. years B.P. We use fluctuations in pollen, elemental geochemistry, and the stable isotope ratios of authigenic carbonates to reconstruct the timing and duration of mid to late Holocene droughts in central Mexico. We compare these results with geochemical analyses of maar wall rocks and palynological analyses of modern moss polsters to strengthen our interpretations of proxy results. We interpret periods of aridity as periods of reduced summer precipitation and therefore decreased summer monsoon strength. Our results reveal evidence of a gradual decrease in monsoon strength from the mid to late Holocene. We also identify a multi-century dry period between 1,150 and 800 cal yr. BP, coinciding with the abandonment of the nearby fortified city of Cantona. Spatiotemporal analysis of this and other paleoclimatic records reveals region-wide evidence of this ';Terminal Classic' drought, although its timing is spatially heterogeneous. Our results represent one of the only high-resolution mid-Holocene records from the eastern Trans-Mexican Volcanic Belt.

  13. An Assessment of the Impact of the 1997-98 El Nino on the Asian-Australian Monsoon

    NASA Technical Reports Server (NTRS)

    Lau, K.-M.; Wu, H.-T.

    1999-01-01

    Using state-of-the-art satellite-gauge monthly rainfall estimate and optimally interpolated sea surface temperature (SST) data, we have assessed the 1997-98 AA-monsoon anomalies in terms of three basic causal factors: basin-scale SST, regional coupling, and internal variability. Singular Value Decomposition analyses of rainfall and SST are carried out globally over the entire tropics and regionally over the AA-monsoon domain. Contributions to monsoon rainfall predictability by various factors are evaluated from cumulative anomaly correlation with dominant regional SVD modes. Results reveal a dominant, large-scale monsoon-El Nino coupled mode with well-defined centers of action in the near-equatorial monsoon regions during the boreal summer and winter respectively. The observed 1997-98 AA-monsoon anomalies are found to be very complex with approximately 34% of the anomalies of the Asian (boreal) summer monsoon and 74% of the Australia (austral) monsoon attributable to basin-scale SST influence associated with El Nino. Regional coupled processes contribute an additional 19% and 10%, leaving about 47% and 16% due to internal dynamics for the boreal and austral monsoon respectively. For the boreal summer monsoon, it is noted that the highest monsoon predictability is not necessary associated with major El Nino events (e.g. 1997, 1982) but rather in non-El Nino years (e.g. 1980, 1988) when contributions from the regional coupled modes far exceed those from the basin-scale SST. The results suggest that in order to improve monsoon seasonal-to-interannual predictability, there is a need to exploit not only monsoon-El Nino relationship, but also intrinsic monsoon regional coupled processes.

  14. Architecture of buried reverse fault zone in the sedimentary basin: A case study from the Hong-Che Fault Zone of the Junggar Basin

    NASA Astrophysics Data System (ADS)

    Liu, Yin; Wu, Kongyou; Wang, Xi; Liu, Bo; Guo, Jianxun; Du, Yannan

    2017-12-01

    It is widely accepted that the faults can act as the conduits or the barrier for oil and gas migration. Years of studies suggested that the internal architecture of a fault zone is complicated and composed of distinct components with different physical features, which can highly influence the migration of oil and gas along the fault. The field observation is the most useful methods of observing the fault zone architecture, however, in the petroleum exploration, what should be concerned is the buried faults in the sedimentary basin. Meanwhile, most of the studies put more attention on the strike-slip or normal faults, but the architecture of the reverse faults attracts less attention. In order to solve these questions, the Hong-Che Fault Zone in the northwest margin of the Junggar Basin, Xinjiang Province, is chosen for an example. Combining with the seismic data, well logs and drill core data, we put forward a comprehensive method to recognize the internal architectures of buried faults. High-precision seismic data reflect that the fault zone shows up as a disturbed seismic reflection belt. Four types of well logs, which are sensitive to the fractures, and a comprehensive discriminated parameter, named fault zone index are used in identifying the fault zone architecture. Drill core provides a direct way to identify different components of the fault zone, the fault core is composed of breccia, gouge, and serpentinized or foliated fault rocks and the damage zone develops multiphase of fractures, which are usually cemented. Based on the recognition results, we found that there is an obvious positive relationship between the width of the fault zone and the displacement, and the power-law relationship also exists between the width of the fault core and damage zone. The width of the damage zone in the hanging wall is not apparently larger than that in the footwall in the reverse fault, showing different characteristics with the normal fault. This study provides a comprehensive method in identifying the architecture of buried faults in the sedimentary basin and would be helpful in evaluating the fault sealing behavior.

  15. Predicting onset and withdrawal of Indian Summer Monsoon in 2016: results of Tipping elements approach

    NASA Astrophysics Data System (ADS)

    Surovyatkina, Elena; Stolbova, Veronika; Kurths, Jurgen

    2017-04-01

    The monsoon is the season of rain caused by a global seasonal reverse in winds direction and a change in pressure distribution. The Southwest winds bring summer monsoon to India. The economy of India is able to maintain its GDP in the wake of a good monsoon. However, if monsoon gets delayed by even two weeks, it can spell disaster because the high population depending on agriculture - 70% of its people directly related to farming. Agriculture, in turn, is dependent on the monsoon. Although the rainy season happens annually between June and September, the time of monsoon season's onset and withdrawal varies within a month from year to year. The important feature of the monsoon is that it starts and ends suddenly. Hence, despite enormous progress having been made in predicting monsoon since 1886, it remains a significant scientific challenge. To make predictions of monsoon timing in 2016, we applied our recently developed method [1]. Our approach is based on a teleconnection between the Eastern Ghats (EG) and North Pakistan (NP) - Tipping Elements of Indian Summer Monsoon. Both our predictions - for monsoon onset and withdrawal - were made for the Eastern Ghats region (EG-20N,80E) in the central part of India, while the Indian Meteorological Department forecasts monsoon over Kerala - a state at the southern tip of the Indian subcontinent. Our prediction for monsoon onset was published on May 6-th, 2016 [2]. We predicted the monsoon arrival to the EG on the 13th of June with a deviation of +/-4 days. In fact, monsoon onset was on June 17-th, that was confirmed by information from meteorological stations located around the EG-region. Hence, our prediction of monsoon onset (made 40 days in advance) was correct. We delivered the prediction of monsoon withdrawal on July 27, 2016 [3], announcing the monsoon withdrawal from the EG on October 5-th with a deviation of +/-5 days. The actual monsoon withdrawal started on October 10-th when the relative humidity in the region started to decrease, and after two days meteorological stations reported 'No rain' in the EG and also in areas located across the subcontinent in the direction from the North Pakistan to the Bay of Bengal. Hence, the date of monsoon withdrawal - October 10-th, predicted 70 days in advance, lies within our prediction interval. Our results show that our method allows predicting a future monsoon, and not only retrospectively or hindcast. In 2016 we predicted of the onset and withdrawal dates of the Southwest monsoon over the Eastern Ghats region in Central India for 40 and 70 days in advance respectively. Our general framework for predicting spatial-temporal critical transitions is applicable for systems of different nature. It allows predicting future from observational data only, when the model of a transition does not exist yet. [1] Stolbova, V., E. Surovyatkina, B. Bookhagen, and J. Kurths (2016): Tipping elements of the Indian monsoon: Prediction of onset and withdrawal. Geophys. Res. Lett., 43, 1-9. [2]https://www.pik-potsdam.de/news/press-releases/indian-monsoon-novel-approach-allows-early-forecasting?set_language=en [3] https://www.pik-potsdam.de/kontakt/pressebuero/fotos/monsoon-withdrawal/view

  16. Observations of fault zone heterogeneity effects on stress alteration and slip nucleation during a fault reactivation experiment in the Mont Terri rock laboratory, Switzerland

    NASA Astrophysics Data System (ADS)

    Nussbaum, C.; Guglielmi, Y.

    2016-12-01

    The FS experiment at the Mont Terri underground research laboratory consists of a series of controlled field stimulation tests conducted in a fault zone intersecting a shale formation. The Main Fault is a secondary order reverse fault that formed during the creation of the Jura fold-and-thrust belt, associated to a large décollement. The fault zone is up to 6 m wide, with micron-thick shear zones, calcite veins, scaly clay and clay gouge. We conducted fluid injection tests in 4 packed-off borehole intervals across the Main Fault using mHPP probes that allow to monitor 3D displacement between two points anchored to the borehole walls at the same time as fluid pressure and flow rate. While pressurizing the intervals above injection pressures of 3.9 to 5.3 MPa, there is an irreversible change in the displacements magnitude and orientation associated to the hydraulic opening of natural shear planes oriented N59 to N69 and dipping 39 to 58°. Displacements of 0.01 mm to larger than 0.1 mm were captured, the highest value being observed at the interface between the low permeable fault core and the damage zone. Contrasted fault movements were observed, mainly dilatant in the fault core, highly dilatant-normal slip at the fault core-damage zone interface and low dilatant-strike-slip-reverse in the damage-to-intact zones. First using a slip-tendency approach based on Coulomb reactivation potential of fault planes, we computed a stress tensor orientation for each test. The input parameters are the measured displacement vectors above the hydraulic opening pressure and the detailed fault geometry of each intervals. All measurements from the damage zone can be explained by a stress tensor in strike-slip regime. Fault movements measured at the core-damage zone interface and within the fault core are in agreement with the same stress orientations but changed as normal faulting, explaining the significant dilatant movements. We then conducted dynamic hydromechanical simulations of the Coulomb stress variations on discrete fault planes, considering the injection pressure variations with time in the packed-off sections as the source parameters. Results suggest that the fault architecture and heterogeneity play an important role on the local stress variation at the core-damage zone interface, favouring slip activation below sigma 3.

  17. Large-scale control of the Arabian Sea monsoon inversion in August

    NASA Astrophysics Data System (ADS)

    Wu, Chi-Hua; Wang, S.-Y. Simon; Hsu, Huang-Hsiung

    2017-12-01

    The summer monsoon inversion in the Arabian Sea is characterized by a large amount of low clouds and August as the peak season. Atmospheric stratification associated with the monsoon inversion has been considered a local system influenced by the advancement of the India-Pakistan monsoon. Empirical and numerical evidence from this study suggests that the Arabian Sea monsoon inversion is linked to a broader-scale monsoon evolution across the African Sahel, South Asia, and East Asia-Western North Pacific (WNP), rather than being a mere byproduct of the India-Pakistan monsoon progression. In August, the upper-tropospheric anticyclone in South Asia extends sideways corresponding with the enhanced precipitation in the subtropical WNP, equatorial Indian Ocean, and African Sahel while the middle part of this anticyclone weakens over the Arabian Sea. The increased heating in the adjacent monsoon systems creates a suppression effect on the Arabian Sea, suggesting an apparent competition among the Africa-Asia-WNP monsoon subsystems. The peak Sahel rainfall in August, together with enhanced heating in the equatorial Indian Ocean, produces a critical effect on strengthening the Arabian Sea thermal inversion. By contrast, the WNP monsoon onset which signifies the eastward expansion of the subtropical Asian monsoon heating might play a secondary or opposite role in the Arabian Sea monsoon inversion.

  18. Changes in Indonesian Outflow in relation to East Asian Monsoon and ENSO Activities since the Last Glacial

    NASA Astrophysics Data System (ADS)

    Xu, J.

    2013-12-01

    The Indonesian Throughflow (ITF) links upper ocean waters of the west Pacific and Indian Ocean, modulates heat and fresh water budgets between these oceans and in turn plays an important role in global climate change. It was suggested that East Asian monsoon and El Niño-Southern Oscillation (ENSO) exert a strong influence on flux, water properties and vertical stratification of the modern ITF. Possible link of the ITF to ENSO is also supported by significant linear correlation (R2=0.43) between thermocline temperature (TT) of the ITF outflow and NINO3.4 index over the past 50 years. In this work, seawater temperatures and salinity and vertical thermal structure of the ITF outflow since the last glacial were reconstructed from Core SO18462 that was retrieved from exit of the ITF to the Timor Sea (TS) (Holbourn et al., 2011). The records of Core SO18462 were then compared with records of Core 3cBX that were considered to reveal ENSO-like conditions in the center of the western Pacific warm pool (WPWP) (Sagawa et al., 2012). The results show that surface waters were comparable in the TS and the WPWP prior to ~16ka, and then diverged with much freshening in the TS. On the contrary, thermocline waters were largely diverged, warmer and more saline in the TS than in the WPWP, and then started to converge from ~16ka. Sea surface temperature (SST) remained over 28°C (the temperature defining range of modern WPWP) in both of the regions during 11.5-6ka. SST then slightly decreased below 28°C in the TS when it kept all the way above 28°C in the WPWP towards the late Holocene. In contrast, TT and thermocline depth remained overall unchanged in the WPWP, concurring with decreasing of TT and shoaling of thermocline in the TS during 11.5-6ka. After 6ka, thermocline continued shoaling in the TS, when TT remained decreasing and thermocline salinity approached to be similar in both of the regions. Comparison of TS and WPWP records conspicuously disclose two categories of mechanisms in controlling changes of the ITF outflow after the ITF recovered during ~16-11.5ka. It is speculated that intensified precipitation due to prevailed East Asian summer monsoon and possible ENSO-like cold phase during the early Holocene (11.5-6ka) significantly freshened surface waters over the Indonesian Seas, impeding ITF surface flow and in turn enhanced thermocline flow. Continuous cooling of ITF thermocline waters and shoaling of thermocline depth in the TS after 6ka were partially related to impedance of ITF surface flow, which is however very likely caused by fresh surface water plug driven by winter monsoon, as it operates today (Gordon, 2005). More frequent ENSO-like events during the mid-to-late Holocene may play an additional role, as eastward movement of the warm pool is concomitant with shoaling and cooling of thermocline in the WPWP during modern ENSO events.

  19. Dynamics of a lightning corona sheath—A constant field approach using the generalized traveling current source return stroke model

    NASA Astrophysics Data System (ADS)

    Cvetic, Jovan; Heidler, Fridolin; Markovic, Slavoljub; Radosavljevic, Radovan; Osmokrovic, Predrag

    2012-11-01

    A generalized lightning traveling current source return stroke model has been used to examine the characteristics of the lightning channel corona sheath surrounding a thin channel core. A model of the lightning channel consisting of a charged corona sheath and a narrow, highly conducting central core that conducts the main current flow is assumed. Strong electric field, with a predominant radial direction, has been created during the return stroke between the channel core and the outer channel sheath containing the negative charge. The return stroke process is modeled with the positive charge coming from the channel core discharging the negative leader charge in the corona sheath. The corona sheath model that predicts the charge motion in the sheath is used to derive the expressions of the sheath radius vs. time during the return stroke. According to the corona sheath model proposed earlier by Maslowski and Rakov (2006) and Maslowski et al. (2009), it consists of three zones, zone 1 (surrounding channel core with net positive charge), zone 2 (surrounding zone 1 with negative charge) and zone 3 (outer zone representing the virgin air without charges). We adopted the assumption of a constant electric field inside zone 1 of the corona sheath observed in the experimental research of corona discharges in a coaxial geometry by Cooray (2000). This assumption seems to be more realistic than the assumption of a uniform corona space charge density used previously in the study of Maslowski and Rakov (2006), Marjanovic and Cvetic (2009), and Tausanovic et al. (2010). Applying the Gauss' law on the infinitesimally small cylindrical section of the channel the expressions for time-dependence of the radii of zones 1 and 2 during the return stroke are derived. The calculations have shown that the overall channel dynamics concerning electrical discharge is roughly 50% slower and the maximum radius of zone 1 is about 33% smaller compared to the corresponding values calculated in the study of Tausanovic et al. (2010).

  20. A 3 million year index for North African humidity/aridity and the implication of potential pan-African Humid periods

    NASA Astrophysics Data System (ADS)

    Grant, Katharine M.; Rohling, Eelco J.; Westerhold, Thomas; Zabel, Matthias; Heslop, David; Konijnendijk, Tiuri; Lourens, Lucas

    2017-09-01

    Mediterranean sediments are valuable archives of both African monsoon variability and higher-latitude climate processes, and can also be used to provide an environmental context for early human migrations and settlements. However, the long history of Mediterranean palaeoclimate studies largely pre-dates the advent of widespread x-ray fluorescence (XRF) core-scanning, so there are few continuous and high-resolution geochemical records from this key region that extend beyond the last glacial cycle. Here we present XRF core-scanning results for ODP Site 967 (Eastern Mediterranean) that have been fully-calibrated into element concentrations spanning the last 3 million years (My). Comparison with independent geochemical data from conventional XRF highlights disparities for certain element/element ratios, thus suggesting the need for caution when taking ratios of scanning XRF data. Principal component analysis of the calibrated XRF dataset reveals two dominant components: detrital inputs (PC1) and a 'sapropel' (≈monsoon run-off) signal (PC2), which we use to establish a new orbitally-tuned chronology. We observe inverse covariation between PC2 and a previously published aeolian dust record from ODP Site 967 (Larrasoaña et al., 2003), and combine these records to produce a composite index of humidity and aridity for the wider North African region over the past 3 My. We propose that by combining run-off and dust signals in a single metric, our index captures the effects of both strengthening/northward migration (increased run-off) and weakening/southward retreat (increased dust) of the North African monsoon. Comparison of the index with published records of Northwest and East African palaeohumidity suggests that it tracks the timing of ;Green Sahara Periods; throughout the Plio-Pleistocene, and that at least 30 of these intervals coincided with increased humidity across East Africa. We tentatively suggest that these specific episodes may be termed ;pan-African Humid Periods;, as a means to highlight large-scale climate trends and to provide an environmental framework for palaeo-anthropological research.

  1. The biogeochemistry of Arabian Sea surficial sediments: A review of recent studies

    NASA Astrophysics Data System (ADS)

    Cowie, Greg

    2005-05-01

    The Arabian Sea’s unusual features have drawn attention from oceanographers and other scientists since the late 1800s. Water-column processes, including the seasonally reversing monsoon-driven circulation and the associated upwelling and productivity, as well as a basin-wide, mid-water layer of intense oxygen depletion have been the foci of many studies. However, the importance of benthic processes in the Arabian Sea has also been recognized. Both the abyssal region and the continental margins have been sites of major studies focused on the biology and geochemistry of surficial sediments and key biogeochemical processes that occur across the benthic boundary layer, especially in the last decade. A summary of benthic studies carried out up to the 1990s is followed by descriptions and syntheses of biological and geochemical studies conducted since that time. The results highlight that the benthic system of the Arabian Sea is highly dynamic, with evidence of strong benthic-pelagic coupling displayed as a cross-basin trophic gradient and in benthic response to seasonal variability in productivity and C flux. Benthic biogeochemical processes, especially on the upper slope and within the oxygen minimum zone, including denitrification, phosphogenesis, and fluxes of trace metals, nutrients and dissolved organic matter, may be of global significance but remain poorly quantified. Sedimentary organic matter distributions across the Arabian Sea have served to fuel an ongoing debate over the controlling environmental factors. Recent studies have illustrated that factors including the supply of reactive organic matter, oxygen exposure, digestion and mixing by the benthos, sorptive preservation, and sediment dilution, winnowing and down-slope transport, all interact in a complex fashion and with varied impact to determine distributions of sedimentary organic matter across the different margins of this basin. Notable features include the facts that it is only at the core of the oxygen minimum zone on the Indian and Pakistan margins where laminated sediments occur and oxygen concentrations appear to fall below the threshold required for macrobenthos, and that sulfate reduction is surprisingly suppressed when compared to rates observed on other upwelling margins with oxygen minimum zones. The review is completed by suggestions for future benthic research in the Arabian Sea.

  2. Real-Time Monitoring of Mountain Conifer Growth Response to Seasonal Climate and the Summer Monsoon in the Great Basin of North America

    NASA Astrophysics Data System (ADS)

    Strachan, S.; Biondi, F.

    2013-12-01

    Tree rings in the American intermountain west are often used for palaeoclimatic purposes, including reconstructions of precipitation, temperature, and drought. Specific seasonal phenomena such as the North American Monsoon (NAM) are also being identified in tree-ring studies as being related to certain growth features in the rings (such as early-onset 'false' latewood). These relationships have historically been developed using statistical relationships between tree-ring chronologies and regional weather observations. In zones near the periphery of the NAM, summertime precipitation may be more sporadic, yet localized vegetation assemblages in the northern Mojave desert and Great Basin regions indicate that these events are still important for some ecosystems which have established in areas where NAM activity is present. Major shifts in NAM behavior in the past may have been recorded by tree rings, and identifying the specific mechanisms/circumstances by which this occurs is critical for efforts seeking to model ecosystem response to climate changes. By establishing in-situ monitoring of climate/weather, soils, and tree-growth variables in Pinus ponderosa scopulorum and Pinus monophylla zones at study sites in eastern/southern Nevada, we are able to address these issues at very fine spatial and temporal scales. Data from two seasons of monitoring precipitation, solar radiation, air temperature, soil temperature, soil water content, tree sap flow, tree radial distance increment, and hourly imagery are presented. Point dendrometers along with sap flow sensors monitor growth in these ponderosa pine around the clock to help researchers understand tree-ring/climate relationships.

  3. Stable Isotopes of Precipitation During Tropical Sumatra Squalls in Singapore

    NASA Astrophysics Data System (ADS)

    He, Shaoneng; Goodkin, Nathalie F.; Kurita, Naoyuki; Wang, Xianfeng; Rubin, Charles Martin

    2018-04-01

    Sumatra Squalls, organized bands of thunderstorms, are the dominant mesoscale convective systems during the intermonsoon and southwest monsoon seasons in Singapore. To understand how they affect precipitation isotopes, we monitored the δ value of precipitation daily and continuously (every second and integrated over 30 s) during all squalls in 2015. We found that precipitation δ18O values mainly exhibit a "V"-shape pattern and less commonly a "W"-shape pattern. Variation in δ18O values during a single event is about 1 to 6‰ with the lowest values mostly observed in the stratiform zone, which agrees with previous observations and modeling simulations. Reevaporation can significantly affect δ values, especially in the last stage of the stratiform zone. Daily precipitation is characterized by periodic negative shifts in δ value, largely associated with the squalls rather than moisture source change. The shifts can be more than 10‰, larger than intraevent variation. Initial δ18O values of events are highly variable, and those with the lowest values also have the lowest initial values. Therefore, past convective activities in the upwind area can significantly affect the δ18O, and convection at the sampling site has limited contribution to isotopic variability. A significant correlation between precipitation δ18O value and regional outgoing longwave radiation and rainfall in the Asian monsoon region and western Pacific suggests that regional organized convection probably drives stable isotopic compositions of precipitation. A drop in the frequency of the squalls in 2015 is related to weak organized convection in the region caused by El Niño.

  4. A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region

    NASA Astrophysics Data System (ADS)

    Prakash, Satya; Mitra, Ashis K.; AghaKouchak, Amir; Liu, Zhong; Norouzi, Hamidreza; Pai, D. S.

    2018-01-01

    Following the launch of the Global Precipitation Measurement (GPM) Core Observatory, two advanced high resolution multi-satellite precipitation products namely, Integrated Multi-satellitE Retrievals for GPM (IMERG) and Global Satellite Mapping of Precipitation (GSMaP) version 6 are released. A critical evaluation of these newly released precipitation data sets is very important for both the end users and data developers. This study provides a comprehensive assessment of IMERG research product and GSMaP estimates over India at a daily scale for the southwest monsoon season (June to September 2014). The GPM-based precipitation products are inter-compared with widely used TRMM Multi-satellite Precipitation Analysis (TMPA), and gauge-based observations over India. Results show that the IMERG estimates represent the mean monsoon rainfall and its variability more realistically than the gauge-adjusted TMPA and GSMaP data. However, GSMaP has relatively smaller root-mean-square error than IMERG and TMPA, especially over the low mean rainfall regimes and along the west coast of India. An entropy-based approach is employed to evaluate the distributions of the selected precipitation products. The results indicate that the distribution of precipitation in IMERG and GSMaP has been improved markedly, especially for low precipitation rates. IMERG shows a clear improvement in missed and false precipitation bias over India. However, all the three satellite-based rainfall estimates show exceptionally smaller correlation coefficient, larger RMSE, larger negative total bias and hit bias over the northeast India where precipitation is dominated by orographic effects. Similarly, the three satellite-based estimates show larger false precipitation over the southeast peninsular India which is a rain-shadow region. The categorical verification confirms that these satellite-based rainfall estimates have difficulties in detection of rain over the southeast peninsula and northeast India. These preliminary results need to be confirmed in other monsoon seasons in future studies when the fully GPM-based IMERG retrospectively processed data prior to 2014 are available.

  5. Holocene Asian monsoon evolution revealed by a pollen record from an alpine lake on the southeastern margin of the Qinghai-Tibetan Plateau, China

    NASA Astrophysics Data System (ADS)

    Zhang, Enlou; Wang, Yongbo; Sun, Weiwei; Shen, Ji

    2016-02-01

    We present the results of pollen analyses from a 1105 cm long sediment core from Wuxu Lake in southwestern China, which depict the variations of the East Asian winter monsoon (EAWM) and the Indian summer monsoon (ISM) during the last 12.3 ka. During the period of 12.3 to 11.3 cal ka BP, the dominance of Betula forest and open alpine shrub and meadow around Wuxu Lake indicates a climate with relatively cold winters and dry summers, corresponding to the Younger Dryas event. Between 11.3 and 10.4 cal ka BP, further expansion of Betula forest and the retreat of alpine shrubs and meadows reflect a greater seasonality with cold winters and gradually increasing summer precipitation. From 10.4 to 4.9 cal ka BP, the dense forest understory, together with the gradual decrease in Betula forest and increase in Tsuga forest, suggest that the winters became warmer and summer precipitation was at a maximum, corresponding to the Holocene climatic optimum. Between 4.9 and 2.6 cal ka BP, Tsuga forest and alpine shrubs and meadows expanded significantly, reflecting relatively warm winters and decreased summer precipitation. Since 2.6 cal ka BP, reforestation around Wuxu Lake indicates a renewed humid period in the late Holocene; however, the vegetation in the catchment may also have been affected by grazing activity during this period. The results of our study are generally consistent with previous findings; however, the timing and duration of the Holocene climatic optimum from different records are inconsistent, reflecting real contrast in local rainfall response to the ISM. Overall, the EAWM is broadly in-phase with the ISM on the orbital timescale, and both monsoons exhibit a trend of decreasing strength from the early to late Holocene, reflecting the interplay of solar insolation receipt between the winter and summer seasons and El Niño-Southern Oscillation strength in the tropical Pacific.

  6. Holocene Asian monsoon evolution revealed by a pollen record from an alpine lake on the southeastern margin of the Qinghai-Tibetan Plateau, China

    NASA Astrophysics Data System (ADS)

    Zhang, E.; Wang, Y.; Sun, W.; Shen, J.

    2015-10-01

    We present the results of pollen analyses from a 1105-cm-long sediment core from Wuxu Lake in southwestern China, which depict the variations of the East Asian winter monsoon (EAWM) and the Indian summer monsoon (ISM) during the last 12.3 ka. During the period of 12.3 to 11.3 cal ka BP, the dominance of Betula forest and open alpine shrub and meadow around Wuxu Lake indicates a climate with relatively cold winters and dry summers, corresponding to the Younger Dryas event. Between 11.3 and 10.4 cal ka BP, further expansion of Betula forest and the retreat of alpine shrubs and meadows reflect a greater seasonality with cold winters and gradually increasing summer precipitation. From 10.4 to 4.9 cal ka BP, the dense forest understory, together with the gradual decrease in Betula forest and increase in Tsuga forest, suggest that the winters became warmer and summer precipitation was at a maximum, corresponding to the Holocene climatic optimum. Between 4.9 and 2.6 cal ka BP, Tsuga forest and alpine shrubs and meadows expanded significantly, reflecting relatively warm winters and decreased summer precipitation. Since 2.6 cal ka BP, reforestation around Wuxu Lake indicates a renewed strengthening of the ISM in the late Holocene; however, the vegetation in the catchment may also have been affected by grazing activity during this period. The results of our study are generally consistent with previous findings; however, the timing and duration of the Holocene climatic optimum from different records are inconsistent, reflecting real contrast in local rainfall response to the ISM. Overall, the EAWM is broadly in-phase with the ISM on the orbital timescale, and both monsoons exhibit a trend of decreasing strength from the early to late Holocene, reflecting the interplay of solar insolation receipt between the winter and summer seasons and El Niño Southern Oscillation strength in the tropical Pacific.

  7. Surface Melt and Firn Density Evolution in the Western Greenland Percolation Zone Over the Past 50 Years

    NASA Astrophysics Data System (ADS)

    Graeter, K.; Osterberg, E. C.; Hawley, R. L.; Thundercloud, Z. R.; Marshall, H. P.; Ferris, D. G.; Lewis, G.

    2016-12-01

    Predictions of the Greenland Ice Sheet's (GIS) contribution to sea-level rise in a warming climate depend on our ability to model the surface mass balance (SMB) processes occurring across the ice sheet. These processes are poorly constrained in the percolation zone, the region of the ice sheet where surface melt refreezes in the firn, thus preventing that melt from directly contributing to GIS mass loss. In this way, the percolation zone serves as a buffer to higher temperatures increasing mass loss. However, it is unknown how the percolation zone is evolving in a changing climate and to what extent the region will continue to serve as a buffer to future runoff. We collected seven shallow ( 22-30 m) firn cores from the Western Greenland percolation zone in May-June 2016 as part of the Greenland Traverse for Accumulation and Climate Studies (GreenTrACS) project. Here we present data on melt layer stratigraphy, density, and annual accumulation for each core to determine: (1) the temporal and spatial accumulation and melt refreeze patterns in the percolation zone of W. Greenland over the past 40 - 55 years, and (2) the impacts of changing melt and refreeze patterns on the near-surface density profile of the percolation zone. Three of the GreenTrACS firn cores re-occupy firn core sites collected in the 1970's-1990's, allowing us to more accurately quantify the evolution of the percolation zone surface melt and firn density during the most recent decades of summertime warming. This work is the basis for broader investigations into how changes in W. Greenland summertime climate are impacting the SMB of the Greenland Ice Sheet.

  8. Compositional and mineralogical zoning by inward crystallization of mafic magma: evidence from the Guwoon hornblende gabbro-diorite Complex, Hwacheon, Korea.

    NASA Astrophysics Data System (ADS)

    Park, Y.-R.; Kim, G.-Y.

    2009-04-01

    The small body, ca. 1.3 by 1.6km, of a hot-air ballon shape hornblende gabbro - diorite Complex, in Gowoonri, Hwacheon, Korea consists of marginal diorite and central hornblende gabbro. The volumetrically dominant hornblende gabbro in the core of the Complex shows a zoned distribution with three layers distinguished by different dominant mafic mineral phases. From the margin toward the core of the hornblende gabbro body, the domintant mafic minerals change from amphibole phenocryst of nearly rounded shape in cross section with pyroxene pseudomorph through prismatic shape of amphibole to polycrystalline biotite aggregates. Systematic variations in geochemical characteristics among three distinct zones of hornblende gabbro body are also observed. From the outer zone toward the core, major oxides such as MnO, MgO, and CaO show a decreasing tendency, whereas total FeO/(total FeO + MgO) value shows an increasing tendency. Concentrations of trace elements also show systematic variations. Where incompatible elements such as Ba and Th increase, compatible elements like Cr and Sc decrease from the margin toward the core. The zonal distribution divided by change in dominant mafic mineral phase from pyroxene through amphibole to biotite, and systematic compositional changes in both major and trace elements from the outer zone toward the core of the hornblende gabbro body suggest that an inward crystallization mechanism played a major role in the formation of the hornblende gabbro in Guwoonri, Hwacheon, Korea.

  9. An 80-year summer temperature history from the Xiao Dongkemadi ice core in the central Tibetan Plateau and its association with atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Li, Xiangying; Ding, Yongjian; Yu, Zhongbo; Mika, Sillanpää; Liu, Shiyin; Shangguan, Donghui; Lu, Chengyang

    2015-02-01

    The climate significance of oxygen isotopes from the central Tibetan Plateau (cTP) ice cores is a debated issue because of large scale atmospheric circulation. A high-resolution δ18O record was recovered from the Xiao Dongkemadi (XD) ice core, which expanded the spatial coverage of δ18O data in this region. Annual average δ18O correlated significantly with nearby MJJAS air temperatures, suggesting the δ18O can be used as a proxy to reconstruct regional climate change. The reconstructed temperature anomaly is related to the regional and global warming trends, and the greater warming amplitude since 1970s is related to the elevation dependency of the warming signal. The close relationship of the warming to variations in glacier mass balances and discharge reveal that recent warming has led to obvious glacier shrinkage and runoff increase. Correlation analysis suggests that monsoon and westerly moisture substantially influence the cTP ice core records, along with an increase in their level of contribution to the XD core accumulation in recent decades, and confirms a teleconnection of regional climate of the cTP ice cores with climate parameters in the Indian and North Atlantic Oceans.

  10. Maintenance of Summer Monsoon Circulations: A Planetary-Scale Perspective.

    NASA Astrophysics Data System (ADS)

    Chen, Tsing-Chang

    2003-06-01

    The monsoon circulation, which is generally considered to be driven by the landmass-ocean thermal contrast, like a gigantic land-sea breeze circulation, exhibits a phase reversal in its vertical structure; a monsoon high aloft over a continental thermal low is juxtaposed with a midoceanic trough underlaid by an oceanic anticyclone. This classic monsoon circulation model is well matched by the monsoon circulation depicted with the observational data prior to the First Global Atmospheric Research Program (GARP) Global Experiment (FGGE). However, synthesizing findings of the global circulation portrayed with the post-FGGE data, it was found that some basic features of major monsoon circulations in Asia, North America, South America, and Australia differ from those of the classic monsoon circulation model. Therefore, a revision of the classic monsoon theory is suggested. With four different wave regimes selected to fit the horizontal dimensions of these monsoon circulations, basic features common to all four major monsoons are illustrated in terms of diagnostic analyses of the velocity potential maintenance equation (which relates diabatic heating and velocity potential) and the streamfunction budget (which links velocity potential and streamfunction) in these wave regimes. It is shown that a monsoon circulation is actually driven by the east-west differential heating and maintained dynamically by a balance between a vorticity source and advection. This dynamic balance is reflected by a spatial quadrature relationship between the monsoon divergent circulation and the monsoon high (low) at upper (lower) levels.

  11. Regional influence of monsoons in the current and a warming climate

    NASA Astrophysics Data System (ADS)

    Saini, Roop

    Monsoon rainfall is of critical societal importance and monsoon circulations comprise an important part of global climate. Here, the thermodynamics of monsoon onsets in India and North America are considered both for observed data and for model projections with increasing greenhouse gases, in order to better understand the regional influence of monsoons in the current and warming climate. The regional influence of the monsoon onsets is analyzed in terms of the thermodynamic energy equation, regional circulation, and precipitation. For the Indian Monsoon, a Rossby-like response to the monsoon onset is clear in the observational data and is associated with horizontal temperature advection at midlevels as the westerlies intersect the warm temperature anomalies of the Rossby wave. The horizontal temperature advection is balanced by subsidence over areas of North Africa, the Mediterranean, and the Middle East, with an associated decrease in precipitation over those regions. The same processes that favor subsidence to the west of the monsoon also force rising motion over northern India and appear to be an important factor for the inland development of the monsoon. For the smaller spatial scales of the North American Monsoon, the descent to the northwest of the primary onset in Northwest Mexico is much more local and occurs directly in the path of monsoon development, apparently providing a self-limiting mechanism. For both monsoon onsets, simple Gill-Matsuno dynamics provide some qualitative understanding of the onset circulation, but do not reproduce the large spatial scales of the upper-level flow, which appear to be related to interactions with the mean westerly jets. The monsoon onsets for both regions were also analyzed for 5 models with available data from the CMIP5 project for runs with 1% per year CO2 increases. For the models considered, there is little consensus regarding changes to the strength of the monsoon onset in a warmer climate in terms of precipitation, although the upper level circulation is somewhat stronger in a warmer climate for both the monsoons, perhaps as a result of changes to the westerly jets. There is a large range in pattern and magnitude of the monsoon onsets between different models, even without greenhouse gas changes.

  12. Monsoon-Enso Relationships: A New Paradigm

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    This article is partly a review and partly a new research paper on monsoon-ENSO relationship. The paper begins with a discussion of the basic relationship between the Indian monsoon and ENSO dating back to the work of Sir Gilbert Walker up to research results in more recent years. Various factors that may affect the monsoon-ENSO, relationship, including regional coupled ocean-atmosphere processes, Eurasian snow cover, land-atmosphere hydrologic feedback, intraseasonal oscillation, biennial variability and inter-decadal variations, are discussed. The extreme complex and highly nonlinear nature of the monsoon-ENSO relationship is stressed. We find that for regional impacts on the monsoon, El Nino and La Nina are far from simply mirror images of each other. These two polarities of ENSO can have strong or no impacts on monsoon anomalies depending on the strength of the intraseasonal oscillations and the phases of the inter-decadal variations. For the Asian-Australian monsoon (AAM) as a whole, the ENSO impact is effected through a east-west shift in the Walker Circulation. For rainfall anomalies over specific monsoon areas, regional processes play important roles in addition to the shift in the Walker Circulation. One of the key regional processes identified for the boreal summer monsoon is the anomalous West Pacific Anticyclone (WPA). This regional feature has similar signatures in interannual and intraseasonal time scales and appears to determine whether the monsoon-ENSO relationship is strong or weak in a given year. Another important regional feature includes a rainfall and SST dipole across the Indian Ocean, which may have strong impact on the austral summer monsoon. Results are shown indicating that monsoon surface wind forcings may induce a strong biennial signal in ENSO and that strong monsoon-ENSO coupling may translate into pronounced biennial variability in ENSO. Finally, a new paradigm is proposed for the study of monsoon variability. This paradigm provides a unified framework in which monsoon predictability, the role of regional vs. basin-scale processes, its relationship with different climate subsystems, and causes of secular changes in monsoon-ENSO relationship can be investigated.

  13. Stratigraphy and depositional history of the Apollo 17 drill core

    NASA Technical Reports Server (NTRS)

    Taylor, G. J.; Warner, R. D.; Keil, K.

    1979-01-01

    Lithologic abundances obtained from modal analyses of a continuous string of polished thin sections indicate that the Apollo 17 deep drill core can be divided into three main zones: An upper zone (0-19 cm depth) characterized by high abundances of agglutinates (30%) and a high ratio of mare to non-mare lithic fragments (less than 0.8); a coarse-grained layer (24-56 cm) rich in fragments of high-Ti mare basalts and mineral fragments derived from them, and poor in agglutinates (6%); and a lower zone (56-285 cm) characterized by variable but generally high agglutinate abundances (25%) and a low ratio of mare to nonmare lithic fragments (0.6). Using observations of the geology of the landing site, the principles of cratering dynamics, and the vast amount of data collected on the core, the following depositional history for the section of regolith sampled by the Apollo 17 drill core: was devised.

  14. Effects of volcanic eruptions on China's monsoon precipitation over the past 700 years

    NASA Astrophysics Data System (ADS)

    Zhuo, Z.; Gao, C.

    2013-12-01

    Tropical volcanic eruptions were found to affect precipitation especially in Asia and Africa monsoon region. However, studies with different types of eruptions suggested different impacts as well as the spatial patterns. In this study, we combined the Monsoon Asia Drought Atlas (MADA, [Cook et al., 2010]) and the Chinese Historical Drought Disaster Index (CHDDI) compiled from the historic meteorological records to study the effect of volcanic eruptions on China's monsoon precipitation over the past 700 years. Histories of past volcanism were compiled from the IVI2[Gao et al., 2008] and Crowley2013[Crowley and Unterman, 2013] reconstructions. Volcanic events were classified into 2×Pinatubo, 1×Pinatubo , ≥5 Tg sulfate aerosols injection in the northern hemisphere (NH) stratosphere for IVI2; and NH sulfate flux more than 20/15/10/5 kg km-2 for Crowley2013. In both cases, average MADA show a drying trend over mainland China from year zero(0) to year three(+3) after the eruption; and the more sulfate aerosol injected into the NH stratosphere or the larger the sulfate flux, the more severe this drying trend seem to reveal. In comparison, a wetting trend was found in the eruption year with Southern Hemisphere (SH) only injections. Superposed epoch analysis with a 10,000 Monte Carlo resampling procedure showed that 97.9% (96.9%) of the observed MADA values are statistically significant at the 95% (99%) confidence level. The drying is probably caused by a reduction of the latent heat flux due to volcanic aerosol' cooling effect, leading to the weakening of south Asian monsoon and decrease of moisture vapor over tropical oceans, which contribute to a reduced moisture flux over china. Spatial distribution of the average MADA show a southward movement of the driest areas in eastern China from year zero to year three after the 1×Pinatubo and 2×Pinatubo eruptions, whereas part of north china experienced unusual wetting condition. This is in good agreement with CHDDI, which illustrates the effectiveness of MADA in reflecting China's hydrological condition during the summer monsoon season. On the other hand, with only SH injection, north and east china turn to wet in the eruption year and show a southward movement of the wettest areas, when compared to NH injection more than 2×Pinatubo. This spatial difference may shed some light on the possible effects stratospheric geoengineering may have on China's precipitation. References: Cook, E. R., et al. (2010), Asian Monsoon Failure and Megadrought During the Last Millennium, Science, 328(5977), 486-489. Crowley, T. J., and M. B. Unterman (2013), Technical details concerning development of a 1200 yr proxy index for global volcanism, Earth System Science Data, 5(1), 187-197. Gao, C. C., et al. (2008), Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models, J Geophys Res, 113(D23111D23).

  15. Quantitative Characterisation of Fracturing Around the Damage Zone Surrounding New Zealand's Alpine Fault Using X-ray CT Scans of DFDP-1 Core

    NASA Astrophysics Data System (ADS)

    Williams, J. N.; Toy, V.; Massiot, C.; Mcnamara, D. D.; Wang, T.

    2015-12-01

    X-ray computer tomography (CT) scans of core recovered from the first phase of the Deep Fault Drilling Project (DFDP-1) through the Alpine Fault provide an excellent opportunity to analyse brittle deformation around the fault. In particular, assessment can be made of the heavily fractured protolith constituting the damage zone. Damage zone structures are divided into two types that result from two distinct processes: (1) "off fault damage" formed by stress changes induced by the passage of a seismic rupture and (2) "off fault deformation" that represent structures, which accommodate strain around the fault that was not localised on the principal slip zone (PSZ). The distribution of these damage zones structures within CT scans of the recovered core was measured along a scanline parallel to the core axis and assessed using a weighted moving average technique to account for orientation bias. The results of this analysis reveal that within the part of the fault rocks sampled by DFDP-1 there is no increase in density of these structures towards the PSZ. This is in agreement with independent analysis using Borehole Televiewer Data of the DFDP-1B borehole. Instead, we consider the density of these structures to be controlled to the first order by lithology, which modulates the mechanical properties of the fault rocks such as its frictional strength and cohesion. Comparisons of fracture density to p-wave velocities obtained from wireline logs indicate they are independent of each other, therefore, for the cores sampled in this study fractures impart no influence on the elastic properties of the rock. This is consistent with the observation from core that the majority of fractures are cemented. We consider how this might influence future rupture dynamics.

  16. Risk Assessment of Maize Drought Disaster in Agro-Pastoral Transitional Zone in North China

    NASA Astrophysics Data System (ADS)

    Jia, H.; Pan, D.

    2017-12-01

    Agricultural drought is one of the focuses of global concern and one of the natural disasters that affect the agriculture production mostly in China. Farming-pastoral zones in China are located in the monsoon fringe area, precipitation of which is extremely unstable, and drought occurs frequently. The agro-pastoral transitional zone in North China is one of the main producing areas of northern spring maize in northern China, and maize is the second largest grain crop in the region. An assessment of the risk of drought disaster in this region is therefore important in ensuring a reduction in such disasters and an increase in food security. A risk assessment model, EPIC (Environmental Policy Integrated Climate) model, for maize drought disasters based on the Erosion Productivity Impact Calculator crop model is proposed for areas with the topographic characteristics of agro-pastoral transitional zone in North China. The results showed that the hazard risk level for the maize zone of agro-pastoral transitional zone in North China is generally high. Most hazard index values were between 0.4 and 0.5, accounting for 48.77% of total study area. The high-risk areas were mainly distributed in Ordos Plateau (South of Inner Mongolia Autonomous region), South of Ningxia Hui Autonomous Region and Center of Gansu Province. These results provide a scientific basis and support for the reduction of agricultural drought disasters and an increase in food security in the agro-pastoral transitional zone in North China.

  17. Low grade metamorphism fluid circulation in a sedimentary environment thrust fault zone: properties and modeling

    NASA Astrophysics Data System (ADS)

    Trincal, Vincent; Lacroix, Brice; Buatier, Martine D.; Charpentier, Delphine; Labaume, Pierre; Lahfid, Abdeltif

    2014-05-01

    In fold-and-thrust belts, shortening is mainly accommodated by thrust faults that can constitute preferential pathways for fluid circulation. The present study focuses on the Pic de Port Vieux thrust, a second-order thrust related to major Gavarnie thrust in the Axial Zone of the Pyrenees. The fault juxtaposes lower Triassic red siltstones and sandstones in the hanging-wall and Upper Cretaceous limestone in the footwall. A dense network of synkinematic quartz-chlorite veins is present in outcrop and allows to unravel the nature of the fluid that circulated in the fault zone. The hanging wall part of fault zone comprises a core which consists of intensely foliated phyllonite; the green color of this shear zone is related to the presence of abundant newly-formed chlorite. Above, the damage zone consists of red pelites and sandstones. Both domains feature kinematic markers like S-C type shear structures associated with shear and extension quartz-chlorite veins and indicate a top to the south displacement. In the footwall, the limestone display increasing mylonitization and marmorization when getting close to the contact. In order to investigate the mineralogical and geochemical changes induced by deformation and subsequent fluid flow, sampling was conducted along a complete transect of the fault zone, from the footwall limestone to the red pelites of the hanging wall. In the footwall limestone, stable isotope and Raman spectroscopy analyzes were performed. The strain gradient is strongly correlated with a high decrease in δ18OV PDB values (from -5.5 to -14) when approaching the thrust (i.e. passing from limestone to marble) while the deformation temperatures estimated with Raman spectroscopy on carbon remain constant around 300° C. These results suggest that deformation is associated to a dynamic calcite recrystallization of carbonate in a fluid-open system. In the hanging wall, SEM observations, bulk chemical XRF analyses and mineral quantification from XRD analyses were conducted in order to compare the green phyllonites from the fault core zone with the red pelites from the damage zone. Quartz, muscovite 2M1, chlorite (clinochlore), calcite and rutile are present in all samples. Hematite occurs in the damage zone but is absent in the core zone. Synkinematic chlorites are abundant in the core and damage zones and are mainly located in veins, sometimes in association with quartz. The temperature of formation of these newly-formed chlorites is 300-350° C according to Inoue (2009) geothermometer. Mössbauer spectroscopic analyses were performed on bulk rock samples. In the damage zone, Fe3+/Fetotal vary between 0.7 and 0.8, whereas in the core zone Fe3+/Fetotal is about 0.35. This decrease in Fe3+ from the damage zone to the core zone can be related to the dissolution of hematite. In contrast, Fe3+/Fetotal in phyllosilicates is clearly related to the chlorite content relative to mica, as Fe2+ increases with chlorite content. All these data allow us to propose a model of fluid circulation in relation with the Pic de Port Vieux thrust activity. The origin of the fluid, its interactions with host-rock and the consequences on fault zone mineralizations will be discussed. Inoue, A., Meunier, A., Patrier-Mas, P., Rigault, C., Beaufort, D., Vieillard, P., 2009. Application of chemical geothermometry to low-temperature trioctahedral chlorites. Clay Clay Min. 57, 371-382.

  18. Abrupt change of Antarctic moisture origin at the end of Termination II

    PubMed Central

    Masson-Delmotte, V.; Stenni, B.; Blunier, T.; Cattani, O.; Chappellaz, J.; Cheng, H.; Dreyfus, G.; Edwards, R. L.; Falourd, S.; Govin, A.; Kawamura, K.; Johnsen, S. J.; Jouzel, J.; Landais, A.; Lemieux-Dudon, B.; Lourantou, A.; Marshall, G.; Minster, B.; Mudelsee, M.; Pol, K.; Röthlisberger, R.; Selmo, E.; Waelbroeck, C.

    2010-01-01

    The deuterium excess of polar ice cores documents past changes in evaporation conditions and moisture origin. New data obtained from the European Project for Ice Coring in Antarctica Dome C East Antarctic ice core provide new insights on the sequence of events involved in Termination II, the transition between the penultimate glacial and interglacial periods. This termination is marked by a north–south seesaw behavior, with first a slow methane concentration rise associated with a strong Antarctic temperature warming and a slow deuterium excess rise. This first step is followed by an abrupt north Atlantic warming, an abrupt resumption of the East Asian summer monsoon, a sharp methane rise, and a CO2 overshoot, which coincide within dating uncertainties with the end of Antarctic optimum. Here, we show that this second phase is marked by a very sharp Dome C centennial deuterium excess rise, revealing abrupt reorganization of atmospheric circulation in the southern Indian Ocean sector. PMID:20566887

  19. Origin and fate of sedimentary organic matter in the northern Bay of Bengal during the last 18 ka

    NASA Astrophysics Data System (ADS)

    Contreras-Rosales, L. A.; Schefuß, E.; Meyer, V.; Palamenghi, L.; Lückge, A.; Jennerjahn, T. C.

    2016-11-01

    The Northern Bay of Bengal (NBoB) is a globally important region for deep-sea organic matter (OM) deposition due to massive fluvial discharge from the Ganges-Brahmaputra-Meghna (G-B-M) rivers and moderate to high surface productivity. Previous studies have focused on carbon burial in turbiditic sediments of the Bengal Fan. However, little is known about the storage of carbon in pelagic and hemipelagic sediments of the Bay of Bengal over millennial time scales. This study presents a comprehensive history of OM origin and fate as well as a quantification of carbon sediment storage in the Eastern Bengal Slope (EBS) during the last 18 ka. Bulk organic proxies (TOC, TIC, TN, δ13CTOC, δ15NTN) and content and composition of total hydrolysable amino acids (THAA) in a sediment core (SO188-342KL) from the EBS were analyzed. Three periods of high OM accumulation were identified: the Late Glacial (LG), the Bölling/Alleröd (B/A), and the Early Holocene Climatic Optimum (EHCO). Lower eustatic sea level before 15 ka BP allowed a closer connection between the EBS and the fluvial debouch, favoring high terrestrial OM input to the core site. This connection was progressively lost between 15 and 7 ka BP as sea level rose to its present height and terrestrial OM input decreased considerably. Export and preservation of marine OM was stimulated during periods of summer monsoon intensification (B/A and EHCO) as a consequence of higher surface productivity enhanced by cyclonic-eddy nutrient pumping and fluvial nutrient delivery into the photic zone. Changes in the THAA composition indicate that the marine plankton community structure shifted from calcareous-dominated before 13 ka BP to siliceous-dominated afterwards. They also indicate that the relative proportion of marine versus terrestrial OM deposited at site 342KL was primarily driven by relative sea level and enlarged during the Holocene. The ballasting effect of lithogenic particles during periods of high coastal proximity and/or enhanced fluvial discharge promoted the export and preservation of OM. The high organic carbon accumulation rates in the EBS during the LG (18-17 ka BP) were 5-fold higher than at present and comparable to those of glacial upwelling areas. Despite the differences in sediment and OM transport and storage among the Western and Eastern sectors of the NBoB, this region remains important for global carbon sequestration during sea level low-stands. In addition, the summer monsoon was a key promotor of terrestrial and marine OM export to the deep-ocean, highlighting its relevance as regulator of the global carbon budget.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grandey, Benjamin S.; Cheng, Haiwen; Wang, Chien

    Fuel usage is an important driver of anthropogenic aerosol emissions. In Asia, it is possible that aerosol emissions may increase if business continues as usual, with economic growth driving an increase in coal burning. But it is also possible that emissions may decrease rapidly as a result of the widespread adoption of cleaner technologies or a shift toward noncoal fuels, such as natural gas. In this study, the transient climate impacts of two aerosol emissions scenarios are investigated: a representative concentration pathway 4.5 (RCP4.5) control, which projects a decrease in anthropogenic aerosol emissions, and a scenario with enhanced anthropogenic aerosolmore » emissions from Asia. A coupled atmosphere–ocean configuration of the Community Earth System Model (CESM), including the Community Atmosphere Model, version 5 (CAM5), is used. Three sets of initial conditions are used to produce a three-member ensemble for each scenario. Enhanced Asian aerosol emissions are found to exert a large cooling effect across the Northern Hemisphere, partially offsetting greenhouse gas–induced warming. Aerosol-induced suppression of the East Asian and South Asian summer monsoon precipitation occurs. The enhanced Asian aerosol emissions also remotely impact precipitation in other parts of the world. Over Australia, austral summer monsoon precipitation is enhanced, an effect associated with a southward shift of the intertropical convergence zone, driven by the aerosol-induced cooling of the Northern Hemisphere. Over the Sahel, West African monsoon precipitation is suppressed, likely via a weakening of the West African westerly jet. These results indicate that fuel usage in Asia, through the consequent aerosol emissions and associated radiative effects, might significantly influence future climate both locally and globally.« less

  1. Primary production in the tropical continental shelf seas bordering northern Australia

    NASA Astrophysics Data System (ADS)

    Furnas, Miles J.; Carpenter, Edward J.

    2016-10-01

    Pelagic primary production (14C uptake) was measured 81 times between 1990 and 2013 at sites spanning the broad, shallow Northern Australian Shelf (NAS; 120-145°E) which borders the Australian continent. The mean of all areal production measurements was 1048±109 mg C m-2 d-1 (mean±95% CI). Estimates of areal primary production were correlated with integral upper-euphotic zone chlorophyll stocks (above the 50% and 20% light penetration depths) accessible to ocean color remote sensing and total water column chlorophyll standing crop, but not surface (0-2 m) chlorophyll concentrations. While the NAS is subject to a well characterized monsoonal climate regime (austral summer-NW monsoon -wet: austral winter- SE monsoon -dry), most seasonal differences in means of regional-scale chlorophyll standing crop (11-33 mg Chl m-2 for 12 of 15 season-region combinations) and areal primary production (700-1850 mg C m- day-1 for 12 of 15 season-region combinations) fell within a 3-fold range. Apart from the shallow waters of the Torres Strait and northern Great Barrier Reef, picoplankton (<2 μm size fraction) dominated chlorophyll standing crop and primary production with regional means of picoplankton contributions ranging from 45 to >80%. While the range of our post-1990 areal production estimates overlaps the range of production estimates made in NAS waters during 1960-62, the mean of post-1990 estimates is over 2-fold greater. We regard the difference to be due to improvements in production measurement techniques, particularly regarding the reduction of potential metal toxicity and incubations in more realistic light regimes.

  2. Inter- and under-canopy soil water, leaf-level and whole-plant gas exchange dynamics of a semi-arid perennial C4 grass.

    PubMed

    Hamerlynck, Erik P; Scott, Russell L; Susan Moran, M; Schwander, Andrea M; Connor, Erin; Huxman, Travis E

    2011-01-01

    It is not clear if tree canopies in savanna ecosystems exert positive or negative effects on soil moisture, and how these might affect understory plant carbon balance. To address this, we quantified rooting-zone volumetric soil moisture (θ(25 cm)), plant size, leaf-level and whole-plant gas exchange of the bunchgrass, bush muhly (Muhlenbergia porteri), growing under and between mesquite (Prosopis velutina) in a southwestern US savanna. Across two contrasting monsoon seasons, bare soil θ(25 cm) was 1.0-2.5% lower in understory than in the intercanopy, and was consistently higher than in soils under grasses, where θ(25 cm) was similar between locations. Understory plants had smaller canopy areas and volumes with larger basal diameters than intercanopy plants. During an above-average monsoon, intercanopy and understory plants had similar seasonal light-saturated leaf-level photosynthesis (A(net-sat)), stomatal conductance (g(s-sat)), and whole-plant aboveground respiration (R(auto)), but with higher whole-plant photosynthesis (GEP(plant)) and transpiration (T(plant)) in intercanopy plants. During a below-average monsoon, intercanopy plants had higher diurnally integrated GEP(plant), R(auto), and T(plant). These findings showed little evidence of strong, direct positive canopy effects to soil moisture and attendant plant performance. Rather, it seems understory conditions foster competitive dominance by drought-tolerant species, and that positive and negative canopy effects on soil moisture and community and ecosystem processes depends on a suite of interacting biotic and abiotic factors.

  3. Light-Water Breeder Reactor

    DOEpatents

    Beaudoin, B. R.; Cohen, J. D.; Jones, D. H.; Marier, Jr, L. J.; Raab, H. F.

    1972-06-20

    Described is a light-water-moderated and -cooled nuclear breeder reactor of the seed-blanket type characterized by core modules comprising loosely packed blanket zones enriched with fissile fuel and axial zoning in the seed and blanket regions within each core module. Reactivity control over lifetime is achieved by axial displacement of movable seed zones without the use of poison rods in the embodiment illustrated. The seed is further characterized by a hydrogen-to-uranium-233 atom ratio in the range 10 to 200 and a uranium-233-to-thorium-232 atom ratio ranging from 0.012 to 0.200. The seed occupies from 10 to 35 percent of the core volume in the form of one or more individual islands or annuli. (NSA 26: 55130)

  4. Light-water breeder reactor (LWBR Development Program)

    DOEpatents

    Beaudoin, B.R.; Cohen, J.D.; Jones, D.H.; Marier, L.J. Jr.; Raab, H.F.

    1972-06-20

    Described is a light-water-moderated and -cooled nuclear breeder reactor of the seed-blanket type characterized by core modules comprising loosely packed blanket zones enriched with fissile fuel and axial zoning in the seed and blanket regions within each core module. Reactivity control over lifetime is achieved by axial displacement of movable seed zones without the use of poison rods in the embodiment illustrated. The seed is further characterized by a hydrogen-to-uranium-233 atom ratio in the range 10 to 200 and a uranium-233-to-thorium-232 atom ratio ranging from 0.012 to 0.200. The seed occupies from 10 to 35 percent of the core volume in the form of one or more individual islands or annuli. (NSA 26: 55130)

  5. On the association between pre-monsoon aerosol and all-India summer monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Patil, S. D.; Preethi, B.; Bansod, S. D.; Singh, H. N.; Revadekar, J. V.; Munot, A. A.

    2013-09-01

    Summer monsoon rainfall which gives 75-90% of the annual rainfall plays vital role in Indian economy as the food grain production in India is very much dependent on the summer monsoon rainfall. It has been suggested by recent studies that aerosol loading over the Indian region plays significant role in modulating the monsoon circulation and consequent rainfall distribution over the Indian sub-continent. Increased industrialization and the increasing deforestation over past few decades probably cause a gradual increase in the aerosol concentration. A significant negative relationship between pre-monsoon (March-May i.e. MAM) aerosol loading over BOB and IGP regions and the forthcoming monsoon rainfall have been observed from the thorough analysis of the fifteen years (1997-2011) monthly Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI) and All-India Summer Monsoon Rainfall (AISMR) data. Composite analysis revealed that AI anomalies during pre-monsoon season are negative for excess year and positive for deficient monsoon years over the Indian subcontinent, with strong variation over Bay of Bengal (BOB) and Indo-Gangetic Plain (IGP) regions from the month of March onwards. The correlation coefficients between AISMR and pre-monsoon AI over BOB and IGP regions are found to be negative and significant at 5% level. The study clearly brings out that the pre-monsoon aerosol loading over the BOB and IGP regions has a significant correlational link with the forthcoming monsoon intensity; however a further study of the aerosol properties and their feedback to the cloud microphysical properties is asked for establishing their causal linkage.

  6. Shifting covariability of North American summer monsoon precipitation with antecedent winter precipitation

    USGS Publications Warehouse

    McCabe, G.J.; Clark, M.P.

    2006-01-01

    Previous research has suggested that a general inverse relation exists between winter precipitation in the southwestern United states (US) and summer monsoon precipitation. In addition, it has been suggested that this inverse relation between winter precipitation and the magnitude of the southwestern US monsoon breaks down under certain climatic conditions that override the regional winter/monsoon precipitation relations. Results from this new study indicate that the winter/monsoon precipitation relations do not break down, but rather shift location through time. The strength of winter/monsoon precipitation relations, as indexed by 20-year moving correlations between winter precipitation and monsoon precipitation, decreased in Arizona after about 1970, but increased in New Mexico. The changes in these correlations appear to be related to an eastward shift in the location of monsoon precipitation in the southwestern US. This eastward shift in monsoon precipitation and the changes in correlations with winter precipitation also appear to be related to an eastward shift in July/August atmospheric circulation over the southwestern US that resulted in increased monsoon precipitation in New Mexico. Results also indicate that decreases in sea-surface temperatures (SSTs) in the central North Pacific Ocean also may be associated with th changes in correlations between winter and monsoon precipitation. Copyright ?? 2006 Royal Meteorological Society.

  7. A microstructural study of fault rocks from the SAFOD: Implications for the deformation mechanisms and strength of the creeping segment of the San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Hadizadeh, Jafar; Mittempergher, Silvia; Gratier, Jean-Pierre; Renard, Francois; Di Toro, Giulio; Richard, Julie; Babaie, Hassan A.

    2012-09-01

    The San Andreas Fault zone in central California accommodates tectonic strain by stable slip and microseismic activity. We study microstructural controls of strength and deformation in the fault using core samples provided by the San Andreas Fault Observatory at Depth (SAFOD) including gouge corresponding to presently active shearing intervals in the main borehole. The methods of study include high-resolution optical and electron microscopy, X-ray fluorescence mapping, X-ray powder diffraction, energy dispersive X-ray spectroscopy, white light interferometry, and image processing. The fault zone at the SAFOD site consists of a strongly deformed and foliated core zone that includes 2-3 m thick active shear zones, surrounded by less deformed rocks. Results suggest deformation and foliation of the core zone outside the active shear zones by alternating cataclasis and pressure solution mechanisms. The active shear zones, considered zones of large-scale shear localization, appear to be associated with an abundance of weak phases including smectite clays, serpentinite alteration products, and amorphous material. We suggest that deformation along the active shear zones is by a granular-type flow mechanism that involves frictional sliding of microlithons along phyllosilicate-rich Riedel shear surfaces as well as stress-driven diffusive mass transfer. The microstructural data may be interpreted to suggest that deformation in the active shear zones is strongly displacement-weakening. The fault creeps because the velocity strengthening weak gouge in the active shear zones is being sheared without strong restrengthening mechanisms such as cementation or fracture sealing. Possible mechanisms for the observed microseismicity in the creeping segment of the SAF include local high fluid pressure build-ups, hard asperity development by fracture-and-seal cycles, and stress build-up due to slip zone undulations.

  8. Sulfur isotope geochemistry of the central Japan Sea sediments (IODP Exp. 346) 20 150 kyr ago: Implications for the evolution of Asian Monsoon climate system

    NASA Astrophysics Data System (ADS)

    Oshio, S.; Yamaguchi, K. E.; Takahashi, S.; Naraoka, H.; Ikehara, M.

    2016-12-01

    Asian monsoon climate system has started about 50 Ma, after the collision of the Indian and Eurasian continents followed by uplift of the Himalaya and Tibetan Plateau. It has influenced sediments in the Japan Sea, where cm-scale alternation of Corg-rich dark layers and Corg-poor light layers occurs. This is most likely due to temporal changes in the nutrient status and/or oceanic redox conditions, which are likely caused by the fluctuations in the intensity of continental weathering and ocean currents, both of which were ultimately caused by the variable monsoon system. In order to obtain insights into the evolving oceanic redox state and the monsoon system, we conducted sulfur speciation and isotope study for the marine sediment core samples recovered in the central Japan Sea by IODP Exp. 346. The light layers have lower Spy (0.03-0.25 wt.%) contents when compared to the dark layers (0.26-1.49 wt.%). The Corg contents have similar distribution (0.34-1.10 wt.% for light layers and 1.16-3.38 wt.% for dark layers). However, the SSO4 contents (0.02-.64 wt.%) and the δ34S values (-34 to -38‰) did not show such light-dark distinction. Elevated Spy/Corg ratios (0.03-1.00) in the dark layers are interpreted to represent sulfide formation in the anoxic water column by bacterial sulfate reduction. During deposition of light layers, oxidation of sulfide minerals could have resulted in formation of sulfate minerals without significant isotope fractionation, as observed in this study. Regardless of the type of the sediments (dark vs. light), sulfate was not limiting during bacterial sulfate reduction, as reflected in the sulfur isotope compositions. We speculate that, during deposition of dark layers, enhanced summer monsoon activity caused heavy rainfall and increased source-rock weathering, runoff of the Yangtze River, and nutrient input into the East China Sea and the Tsushima Warm Current. Inflow of nutrient-rich and less salty water into the Japan Sea triggered enhanced biological activity, water-column density stratification, transport of organic matter into deeper ocean and consumption of dissolved oxygen, and ultimately the creation of anoxic water body to allow bacterial sulfate reduction. (syngenetic sulfide formation)

  9. See–saw relationship of the Holocene East Asian–Australian summer monsoon

    PubMed Central

    Eroglu, Deniz; McRobie, Fiona H.; Ozken, Ibrahim; Stemler, Thomas; Wyrwoll, Karl-Heinz; Breitenbach, Sebastian F. M.; Marwan, Norbert; Kurths, Jürgen

    2016-01-01

    The East Asian–Indonesian–Australian summer monsoon (EAIASM) links the Earth's hemispheres and provides a heat source that drives global circulation. At seasonal and inter-seasonal timescales, the summer monsoon of one hemisphere is linked via outflows from the winter monsoon of the opposing hemisphere. Long-term phase relationships between the East Asian summer monsoon (EASM) and the Indonesian–Australian summer monsoon (IASM) are poorly understood, raising questions of long-term adjustments to future greenhouse-triggered climate change and whether these changes could ‘lock in' possible IASM and EASM phase relationships in a region dependent on monsoonal rainfall. Here we show that a newly developed nonlinear time series analysis technique allows confident identification of strong versus weak monsoon phases at millennial to sub-centennial timescales. We find a see–saw relationship over the last 9,000 years—with strong and weak monsoons opposingly phased and triggered by solar variations. Our results provide insights into centennial- to millennial-scale relationships within the wider EAIASM regime. PMID:27666662

  10. See-saw relationship of the Holocene East Asian-Australian summer monsoon.

    PubMed

    Eroglu, Deniz; McRobie, Fiona H; Ozken, Ibrahim; Stemler, Thomas; Wyrwoll, Karl-Heinz; Breitenbach, Sebastian F M; Marwan, Norbert; Kurths, Jürgen

    2016-09-26

    The East Asian-Indonesian-Australian summer monsoon (EAIASM) links the Earth's hemispheres and provides a heat source that drives global circulation. At seasonal and inter-seasonal timescales, the summer monsoon of one hemisphere is linked via outflows from the winter monsoon of the opposing hemisphere. Long-term phase relationships between the East Asian summer monsoon (EASM) and the Indonesian-Australian summer monsoon (IASM) are poorly understood, raising questions of long-term adjustments to future greenhouse-triggered climate change and whether these changes could 'lock in' possible IASM and EASM phase relationships in a region dependent on monsoonal rainfall. Here we show that a newly developed nonlinear time series analysis technique allows confident identification of strong versus weak monsoon phases at millennial to sub-centennial timescales. We find a see-saw relationship over the last 9,000 years-with strong and weak monsoons opposingly phased and triggered by solar variations. Our results provide insights into centennial- to millennial-scale relationships within the wider EAIASM regime.

  11. Early forecasting of Indian Summer Monsoon: case study 2016

    NASA Astrophysics Data System (ADS)

    Surovyatkina, Elena; Stolbova, Veronika; Kurths, Jurgen

    2017-04-01

    The prior knowledge of dates of onset and withdrawal of monsoon is of vital importance for the population of the Indian subcontinent. In May 2016 before monsoon season, India recorded its highest-ever temperature of 51C. Hot waves have decimated crops, killed livestock and left 330 million people without enough water. At the end of monsoon season the floods in Indian this year have also broken previous records. Severe and devastating rainfall poured down, triggering dams spilling and floods. Such extreme conditions pose the vital questions such as: When will the monsoon come? When will the monsoon withdraw? More lead time in monsoon forecast warning is crucial for taking appropriate decisions at various levels - from the farmer's field (e.g. plowing day, seeding) to the central government (e.g. managing water and energy resources, food procurement policies). The Indian Meteorological Department issues forecasts of onset of monsoon for Kerala state in South India on May 15-th. It does not give such predictions for the other 28 states of the country. Our study concerns the central part of India. We made the monsoon forecast using our recently developed method which focuses on Tipping elements of the Indian monsoon [1]. Our prediction relies on observations of near-surface air temperature and relative humidity from both the ERA-40 and NCEP/NCAR reanalyses. We performed both of our forecasts for the onset and withdrawal of monsoon for the central part of India, the Eastern Ghats (20N,80E). We predicted the monsoon arrival to the Eastern Ghats (20N,80E) on the 13th of June with a deviation of +/-4 days. The prediction was made on May 6-th, 2016 [2], that is 40 days in advance of the date of the forecast. The actual monsoon arrival was June 17-th. In this day near-surface air temperature and relative humidity overcame the critical values and the monsoon season started, that was confirmed by observations of meteorological stations located around the EG-region. We forecasted the monsoon withdrawal from the Eastern Ghats on the 5th of October with a deviation of +/-5 days. We delivered this prediction on July 27-th, 2016 [3], namely 70 days in advance. The date of the actual start of monsoon withdrawal was October 10th. In this day relative humidity began to decrease. Then it passed the 80 percent threshold, and a transition back to a monsoon became impossible, meteorological stations registered it also. We emphasize that our forecasts of the monsoon onset and withdrawal were delivered for 40 and 70 days in advance respectively, and both of our forecasts lie within our prediction interval. Hence, this year we proved that such early prediction of the monsoon timing is possible. [1] Stolbova, V., E. Surovyatkina, B. Bookhagen, and J. Kurths (2016): Tipping elements of the Indian monsoon: Prediction of onset and withdrawal. Geophys. Res. Lett., 43, 1-9 [doi:10.1002/2016GL068392] [2]https://www.pik-potsdam.de/news/press-releases/indian-monsoon-novel-approach-allows-early-forecasting?set_language=en [3] https://www.pik-potsdam.de/kontakt/pressebuero/fotos/monsoon-withdrawal/view

  12. Temperature and precipitation in the context of the annual cycle over Asia: Model evaluation and future change

    NASA Astrophysics Data System (ADS)

    Moon, Suyeon; Ha, Kyung-Ja

    2017-05-01

    Since the early or late arrival of monsoon rainfall can be devastating to agriculture and economy, the prediction of the onset of monsoon is a very important issue. The Asian monsoon is characterized by a strong annual cycle with rainy summer and dry winter. Nevertheless, most of monsoon studies have focused on the seasonal-mean of temperature and precipitation. The present study aims to evaluate a total of 27 coupled models that participated in phase 5 of the Coupled Model Intercomparison Project (CMIP5) for projection of the time evolution and the intensity of Asian monsoon on the basis of the annual cycle of temperature and precipitation. And future changes of onset, retreat, and intensity of monsoon are analyzed. Four models for good seasonal-mean (GSM) and good harmonic (GH) groups, respectively, are selected. GSM is based on the seasonal-mean of temperature and precipitation in summer and winter, and GH is based on the annual cycle of temperature and precipitation which represents a characteristic of the monsoon. To compare how well the time evolution of the monsoon is simulated in each group, the onset, retreat, and duration of Asian monsoon are examined. The highest pattern correlation coefficient (PCC) of onset, retreat, and duration between the reanalysis data and model outputs demonstrates that GH models' MME predicts time evolution of monsoon most precisely, with PCC values of 0.80, 0.52, and 0.63, respectively. To predict future changes of the monsoon, the representative concentration pathway 4.5 (RCP 4.5) experiments for the period of 2073-2099 are compared with historical simulations for the period of 1979-2005 from CMIP5 using GH models' MME. The Asian monsoon domain is expanded by 22.6% in the future projection. The onset date in the future is advanced over most parts of Asian monsoon region. The duration of summer Asian monsoon in the future projection will be lengthened by up to 2 pentads over the Asian monsoon region, as a result of advanced onset. The Asian monsoon intensity becomes stronger with the passage of time. This study has important implication for assessment of CMIP5 models in terms of the prediction of time evolution and intensity of Asian monsoon based on the annual cycle of temperature and precipitation.

  13. Bradford's law: identification of the core journals for neurosurgery and its subspecialties.

    PubMed

    Venable, Garrett T; Shepherd, Brandon A; Loftis, Christopher M; McClatchy, S Gray; Roberts, Mallory L; Fillinger, Meghan E; Tansey, James B; Klimo, Paul

    2016-02-01

    Bradford's law describes the scatter of citations for a given subject or field. It can be used to identify the most highly cited journals for a field or subject. The objective of this study was to use currently accepted formulations of Bradford's law to identify core journals of neurosurgery and neurosurgical subspecialties. All original research publications from 2009 to 2013 were analyzed for the top 25 North American academic neurosurgeons from each subspecialty. The top 25 were chosen from a ranked career h-index list identified from previous studies. Egghe's formulation and the verbal formulation of Bradford's law were applied to create specific citation density zones and identify the core journals for each subspecialty. The databases were then combined to identify the core journals for all of academic neurosurgery. Using Bradford's verbal law with 4 zone models, the authors were able to identify the core journals of neurosurgery and its subspecialties. The journals found in the most highly cited first zone are presented here as the core journals. For neurosurgery as a whole, the core included the following journals: Journal of Neurosurgery, Neurosurgery, Spine, Stroke, Neurology, American Journal of Neuroradiology, International Journal of Radiation Oncology Biology Physics, and New England Journal of Medicine. The core journals for each subspecialty are presented in the manuscript. Bradford's law can be used to identify the core journals of neurosurgery and its subspecialties. The core journals vary for each neurosurgical subspecialty, but Journal of Neurosurgery and Neurosurgery are among the core journals for each neurosurgical subspecialty.

  14. First Record of Porpita porpita (Cnidaria: Hydrozoa) from the coral reef ecosystem, Bangladesh

    NASA Astrophysics Data System (ADS)

    Chowdhury, M. Shah Nawaz; Sharifuzzaman, S. M.; Chowdhury, Sayedur Rahman; Rashed-Un-Nabi, Md.; Hossain, M. Shahadat

    2016-03-01

    The occurrence of Porpita porpita is reported, for the first time, in the coral island of St. Martin's located in the southeastern coastal region of Bangladesh. P. porpita was found to occur in the lower littoral zone and beach rock pools, together with molluscan species, and collected during the pre-monsoon season when both water temperature (> 30°C) and salinity (> 30‰) tend to reach a maximum. This study recounts some details on the discovery and description of the species, and thus extends the global distribution and range limits of the genus Porpita.

  15. Western Pacific hydroclimate linked to global climate variability over the past two millennia

    NASA Astrophysics Data System (ADS)

    Griffiths, Michael L.; Kimbrough, Alena K.; Gagan, Michael K.; Drysdale, Russell N.; Cole, Julia E.; Johnson, Kathleen R.; Zhao, Jian-Xin; Cook, Benjamin I.; Hellstrom, John C.; Hantoro, Wahyoe S.

    2016-06-01

    Interdecadal modes of tropical Pacific ocean-atmosphere circulation have a strong influence on global temperature, yet the extent to which these phenomena influence global climate on multicentury timescales is still poorly known. Here we present a 2,000-year, multiproxy reconstruction of western Pacific hydroclimate from two speleothem records for southeastern Indonesia. The composite record shows pronounced shifts in monsoon rainfall that are antiphased with precipitation records for East Asia and the central-eastern equatorial Pacific. These meridional and zonal patterns are best explained by a poleward expansion of the Australasian Intertropical Convergence Zone and weakening of the Pacific Walker circulation (PWC) between ~1000 and 1500 CE Conversely, an equatorward contraction of the Intertropical Convergence Zone and strengthened PWC occurred between ~1500 and 1900 CE. Our findings, together with climate model simulations, highlight the likelihood that century-scale variations in tropical Pacific climate modes can significantly modulate radiatively forced shifts in global temperature.

  16. Structural architecture and petrophysical properties of the Rocca di Neto extensional fault zone developed in the shallow marine sediments of the Crotone Basin (Southern Apennines, Italy).

    NASA Astrophysics Data System (ADS)

    Pizzati, Mattia; Balsamo, Fabrizio; Iacumin, Paola; Swennen, Rudy; Storti, Fabrizio

    2017-04-01

    In this contribution we describe the architecture and petrophysical properties of the Rocca di Neto extensional fault zone in loose and poorly lithified sediments, located in the Crotone forearc basin (south Italy). To this end, we combined fieldwork with microstructural observations, grain size analysis, and in situ permeability measurements. The studied fault zone has an estimated maximum displacement of 80-90 m and separates early Pleistocene age (Gelasian) sands in the footwall from middle Pleistocene (Calabrian) silty clay in the hangingwall. The analysed outcrop consists of about 70 m section through the fault zone mostly developed in the footwall block. Fault zone consists of four different structural domains characterized by distinctive features: (1) <1 m-thick fault core (where the majority of the displacement is accommodated) in which bedding is transposed into foliation imparted by grain preferential orientation and some black gouges decorate the main slip surfaces; (2) zone of tectonic mixing characterized by a set of closely spaced and anastomosed deformation bands parallel to the main slip surface; (3) about 8 m-thick footwall damage zone characterized by synthetic and antithetic sets of deformation bands; (4) zone of background deformation with a few, widely-spaced conjugate minor faults and deformation bands. The boundary between the relatively undeformed sediments and the damage zone is not sharp and it is characterized by a progressive decrease in deformation intensity. The silty clay in the hangingwall damage zone is characterized by minor faults. Grain size and microstructural data indicate that particulate flow with little amount of cataclasis is the dominant deformation mechanism in both fault core rocks and deformation bands. Permeability of undeformed sediments is about 70000 mD, whereas the permeability in deformation bands ranges from 1000 to 18000 mD; within the fault core rocks permeability is reduced up to 3-4 orders of magnitude respect to the undeformed domains. Structural and petrophysical data suggest that the Rocca di Neto fault zone may compartmentalize the footwall block due to both juxtaposition of clay-rich lithology in the hangingwall and the development of low permeability fault core rocks.

  17. The poleward shift of South Atlantic Convergence Zone in recent decades

    NASA Astrophysics Data System (ADS)

    Zilli, Marcia T.; Carvalho, Leila M. V.; Lintner, Benjamin R.

    2018-05-01

    During austral summer (December-January-February or DJF), intense precipitation over central-eastern Brazil is modulated by the South American Monsoon System and the South Atlantic Convergence Zone (SACZ). Previous studies identified spatial variability in precipitation trends over this region, suggestive of a poleward shift of the SACZ in recent years. To identify underlying mechanisms associated with changes in the precipitation intensity and position of the SACZ, decadal averages of observed precipitation and the mean state of the atmosphere and ocean during three different periods from 1979 to 2014 are compared. Results show evidence of decreasing (increasing) average daily precipitation along the equatorward (poleward) margin of the climatological SACZ, likely related to a poleward shift of the convergence zone. Precipitation reduction along the equatorward margin of the SACZ is associated with weakening of the poleward winds along the eastern Brazilian coast and drying of low-to-mid troposphere (700 hPa) over the tropical Atlantic. These changes in circulation and moisture are likely related to the poleward expansion of the South Atlantic Subtropical High.

  18. Simulation of South-Asian Summer Monsoon in a GCM

    NASA Astrophysics Data System (ADS)

    Ajayamohan, R. S.

    2007-10-01

    Major characteristics of Indian summer monsoon climate are analyzed using simulations from the upgraded version of Florida State University Global Spectral Model (FSUGSM). The Indian monsoon has been studied in terms of mean precipitation and low-level and upper-level circulation patterns and compared with observations. In addition, the model's fidelity in simulating observed monsoon intraseasonal variability, interannual variability and teleconnection patterns is examined. The model is successful in simulating the major rainbelts over the Indian monsoon region. However, the model exhibits bias in simulating the precipitation bands over the South China Sea and the West Pacific region. Seasonal mean circulation patterns of low-level and upper-level winds are consistent with the model's precipitation pattern. Basic features like onset and peak phase of monsoon are realistically simulated. However, model simulation indicates an early withdrawal of monsoon. Northward propagation of rainbelts over the Indian continent is simulated fairly well, but the propagation is weak over the ocean. The model simulates the meridional dipole structure associated with the monsoon intraseasonal variability realistically. The model is unable to capture the observed interannual variability of monsoon and its teleconnection patterns. Estimate of potential predictability of the model reveals the dominating influence of internal variability over the Indian monsoon region.

  19. Interannual Variability of Asian Tropopause Aerosol Layer (ATAL) and Asian Summer Monsoon Evolution

    NASA Astrophysics Data System (ADS)

    Yuan, C.; Lau, W. K. M.; Li, Z.

    2017-12-01

    The Asian Tropopause Aerosol Layer (ATAL), recently discovered from satellite observations, has drawn much attention on the need to study and better understand processes of atmospheric constituents' transportation in the upper troposphere and lower stratosphere (UTLS) and the variability of the Asian Monsoon Anticyclone (AMA). In this paper, based on analysis of 15 years (2001 - 2015) MERRA2 reanalysis data, we have investigated the interaction between the ATAL and monsoon dynamics and aerosol transport processes with respect to the variability of the AMA on interannual and intraseasonal time scales. Here, we present results showing that: (1) during pre- monsoon season, carbonaceous aerosols (CA), dust and carbon monoxide (CO)) accumulate along the southern slope of Tibetan Plateau (TP) and the Sichuan Basin of southwestern China. Surface pollutants are lofted up to UTLS by strong vertical convection, advected by the anticyclonic flow within the AMA forming ATAL during peak monsoon season, (2) during strong monsoon years (2001, 2005, 2007, 2010, 2012, 2014, 2015) the AMA peaks later, with stronger heating over TP and stronger ATAL, compared to weak monsoon years (2002, 2003, 2004, 2008, 2009, 2011, 2013). Enhanced vertical transport was also found over the top of TP during strong monsoon years, in conjunction with an enlarged and northward-shifted AMA, while near surface region was suppressed because of heavy rainout, (3) inspite of stronger precipitation wash out more dust and are transported to Indo-Gangetic Plain, and from the top of the TP to the UTLS, during peak monsoon season due to the stronger westerlies. (4) spectral analysis of aerosol and monsoon winds, shows that the ATAL can be modulated by UTLS transport processes on monsoon intraseasonal oscillations with strong quasi- biweekly time scales during strong monsoon, and strong 20-30 day quasi-periodicity during weak monsoon years.

  20. The classification of PM10 concentrations in Johor Based on Seasonal Monsoons

    NASA Astrophysics Data System (ADS)

    Hamid, Hazrul Abdul; Hanafi Rahmat, Muhamad; Aisyah Sapani, Siti

    2018-04-01

    Air is the most important living resource in life. Contaminated air could adversely affect human health and the environment, especially during the monsoon season. Contamination occurs as a result of human action and haze. There are several pollutants present in the air where one of them is PM10. Secondary data was obtained from the Department of Environment from 2010 until 2014 and was analyzed using the hourly average of PM10 concentrations. This paper examined the relation between PM10 concentrations and the monsoon seasons (Northeast Monsoon and Southwest Monsoon) in Larkin and Pasir Gudang. It was expected that the concentration of PM10 would be higher during the Southwest Monsoon as it is a dry season. The data revealed that the highest PM10 concentrations were recorded between 2010 to 2014 during this particular monsoon season. The characteristics of PM10 concentration were compared using descriptive statistics based on the monsoon seasons and classified using the hierarchical cluster analysis (Ward Methods). The annual average of PM10 concentration during the Southwest Monsoon had exceeded the standard set by the Malaysia Ambient Air Quality Guidelines (50 μg/m3) while the PM10 concentration during the Northeast Monsoon was below the acceptable level for both stations. The dendrogram displayed showed two clusters for each monsoon season for both stations excepted for the PM10 concentration during the Northeast Monsoon in Larkin which was classified into three clusters due to the haze in 2010. Overall, the concentration of PM10 in 2013 was higher based on the clustering shown for every monsoon season at both stations according to the characteristics in the descriptive statistics.

  1. Seasonal variability in the South Asian monsoon dynamics

    NASA Astrophysics Data System (ADS)

    Bordoni, S.; Walker, J. M.

    2017-12-01

    Here, we analyze seasonal changes in the dynamics and thermodynamics of the South Asian summer monsoon (SASM) in atmospheric reanalysis data using a threshold-independent index of monsoon onset we have recently introduced (Walker and Bordoni 2016). We seek to evaluate the extent to which emerging theoretical frameworks are consistent with the observed monsoon. Climatological composites reveal that at monsoon onset, an abrupt strengthening and northward migration of the maximum in sub-cloud equivalent potential temperature accompany the rapid northward movement of the monsoon rainbelt. These changes are driven by changes in near-surface specific humidity, rather than changes in near-surface temperature, whose gradient actually decreases at monsoon onset. These findings are inconsistent with the traditional paradigm of the monsoon as a sea breeze circulation and confirm the convectively coupled view of the SASM circulation as an energetically-direct overturning circulation as more fundamental for the understanding of monsoon dynamics. Providing further support to this emerging view, we show that the SASM sector mean circulation at monsoon onset undergoes a rapid transition from an equinox circulation with a pair of tropical overturning cells, to a solstice circulation dominated by a strong cross-equatorial monsoonal cell and negligible overturning cell in the northern hemisphere.This transition corresponds to a transition in the leading order momentum budget, from an eddy-dominated equinox regime to a highly nonlinear monsoon regime which approaches conservation of angular momentum. These transitions are similar to those seen in idealized zonally symmetric studies of aquaplanet monsoons, suggesting that eddy-mean flow feedbacks identified in those studies may be acting in the SASM sector, and may contribute to the abruptness of the SASM onset. Our findings highlight the importance of nonlinear dynamics in the seasonal evolution of the SASM circulation and suggest that some fundamental aspects of the observed monsoon can be understood in the absence of land-sea contrast or other zonal asymmetries.

  2. Hydrocarbon Degradation in Caspian Sea Sediment Cores Subjected to Simulated Petroleum Seepage in a Newly Designed Sediment-Oil-Flow-Through System.

    PubMed

    Mishra, Sonakshi; Wefers, Peggy; Schmidt, Mark; Knittel, Katrin; Krüger, Martin; Stagars, Marion H; Treude, Tina

    2017-01-01

    The microbial community response to petroleum seepage was investigated in a whole round sediment core (16 cm length) collected nearby natural hydrocarbon seepage structures in the Caspian Sea, using a newly developed Sediment-Oil-Flow-Through (SOFT) system. Distinct redox zones established and migrated vertically in the core during the 190 days-long simulated petroleum seepage. Methanogenic petroleum degradation was indicated by an increase in methane concentration from 8 μM in an untreated core compared to 2300 μM in the lower sulfate-free zone of the SOFT core at the end of the experiment, accompanied by a respective decrease in the δ 13 C signal of methane from -33.7 to -49.5‰. The involvement of methanogens in petroleum degradation was further confirmed by methane production in enrichment cultures from SOFT sediment after the addition of hexadecane, methylnapthalene, toluene, and ethylbenzene. Petroleum degradation coupled to sulfate reduction was indicated by the increase of integrated sulfate reduction rates from 2.8 SO 4 2- m -2 day -1 in untreated cores to 5.7 mmol SO 4 2- m -2 day -1 in the SOFT core at the end of the experiment, accompanied by a respective accumulation of sulfide from 30 to 447 μM. Volatile hydrocarbons (C2-C6 n -alkanes) passed through the methanogenic zone mostly unchanged and were depleted within the sulfate-reducing zone. The amount of heavier n -alkanes (C10-C38) decreased step-wise toward the top of the sediment core and a preferential degradation of shorter (C30) was seen during the seepage. This study illustrates, to the best of our knowledge, for the first time the development of methanogenic petroleum degradation and the succession of benthic microbial processes during petroleum passage in a whole round sediment core.

  3. Hydrocarbon Degradation in Caspian Sea Sediment Cores Subjected to Simulated Petroleum Seepage in a Newly Designed Sediment-Oil-Flow-Through System

    PubMed Central

    Mishra, Sonakshi; Wefers, Peggy; Schmidt, Mark; Knittel, Katrin; Krüger, Martin; Stagars, Marion H.; Treude, Tina

    2017-01-01

    The microbial community response to petroleum seepage was investigated in a whole round sediment core (16 cm length) collected nearby natural hydrocarbon seepage structures in the Caspian Sea, using a newly developed Sediment-Oil-Flow-Through (SOFT) system. Distinct redox zones established and migrated vertically in the core during the 190 days-long simulated petroleum seepage. Methanogenic petroleum degradation was indicated by an increase in methane concentration from 8 μM in an untreated core compared to 2300 μM in the lower sulfate-free zone of the SOFT core at the end of the experiment, accompanied by a respective decrease in the δ13C signal of methane from -33.7 to -49.5‰. The involvement of methanogens in petroleum degradation was further confirmed by methane production in enrichment cultures from SOFT sediment after the addition of hexadecane, methylnapthalene, toluene, and ethylbenzene. Petroleum degradation coupled to sulfate reduction was indicated by the increase of integrated sulfate reduction rates from 2.8 SO42-m-2 day-1 in untreated cores to 5.7 mmol SO42-m-2 day-1 in the SOFT core at the end of the experiment, accompanied by a respective accumulation of sulfide from 30 to 447 μM. Volatile hydrocarbons (C2–C6 n-alkanes) passed through the methanogenic zone mostly unchanged and were depleted within the sulfate-reducing zone. The amount of heavier n-alkanes (C10–C38) decreased step-wise toward the top of the sediment core and a preferential degradation of shorter (C30) was seen during the seepage. This study illustrates, to the best of our knowledge, for the first time the development of methanogenic petroleum degradation and the succession of benthic microbial processes during petroleum passage in a whole round sediment core. PMID:28503172

  4. The Monsoon Erosion Pump and the Indian Monsoon since Eocene

    NASA Astrophysics Data System (ADS)

    Giosan, L.

    2017-12-01

    Lack of consensus on the Neogene establishment and evolution of the Indian Monsoon is remarkable after half a century of research. Conflicting interpretations point toward the possibility of periodic decoupling between monsoon winds and monsoon precipitation. Here I introduce the concept of a monsoon erosion pump based on terrestrial and oceanic records reconstructed from recent NGHP and IODP drilling and spanning the last 34 million years in the Bay of Bengal, Arabian and Andaman Seas. From millennial to orbital to tectonic timescales, these records suggest that vegetation land cover interacts and modulates the regime of erosion and weathering under perennial but variable monsoonal rain conditions. Under this new proposed paradigm the Indian monsoon exhibits two distinct flavours during the Neogene that can be largely explained by its heartbeat, or astronomical forcing, mediated by the global glacial state and interacting with the paleogeography of South Asia.

  5. Highly Improved Predictability in the Forecasting of the East Asian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Lee, E.; Chase, T. N.; Rajagopalan, B.

    2007-12-01

    The East Asian summer monsoon greatly influences the lives and property of about a quarter of all the people in the world. However, the predictability of the monsoon is very low in comparison with that of Indian summer monsoon because of the complexity of the system which involves both tropical and sub-tropical climates. Previous monsoon prediction models emphasized ocean factors as the primary monsoon forcing. Here we show that pre-season land surface cover is at least as important as ocean indices. A new statistical forecast model of the East Asian summer monsoon using land cover conditions in addition to ocean heat sources doubles the predictability relative to a model using ocean factors alone. This work highlights the, as yet, undocumented importance of seasonal land cover in monsoon prediction and the role of the biosphere in the climate system as a whole. We also detail the physical mechanisms involved in these land surface forcings.

  6. The mechanics and three-dimensional internal structure of active magmatic systems: Kilauea volcano, Hawaii.

    USGS Publications Warehouse

    Ryan, M.P.

    1988-01-01

    Interpretation of abundant seismic data suggest that Kilauea's primary conduit within the upper mantle is concentrically zoned to about 34-km depth. This zoned structure is inferred to contain a central core region of relatively higher permeability, surrounded by numerous dikes that are in intermittent hydraulic communication with each other and with the central core. During periods of relatively high magma transport, the entire cross section of the conduit is utilized. During periods of relatively low to moderate transport, however, only the central core is active.-from Author

  7. Hydrogeochemical characterization of groundwater of peninsular Indian region using multivariate statistical techniques

    NASA Astrophysics Data System (ADS)

    Jacintha, T. German Amali; Rawat, Kishan Singh; Mishra, Anoop; Singh, Sudhir Kumar

    2017-10-01

    Groundwater quality of Chennai, Tamil Nadu (India) has been assessed during different seasons of year 2012. Three physical (pH, EC, and TDS) and four chemical parameters (Ca2+, Cl-, TH, Mg2+ and SO4 2-) from 18 bore wells were assessed. The results showed that pH of majority of groundwater samples indicates a slightly basic condition (7.99post-monsoon and 8.35pre-monsoon). TH was slightly hard [322.11 mg/lpre-monsoon, 299.37 mg/lpost-monsoon but lies under World Health Organization (WHO) upper limit]. EC, TDS, Ca2+ and Mg2+ concentrations were under WHO permissible limit during post-monsoon (1503.42 μS/cm, 1009.37, 66.58 and 32.42 mg/l respectively) and pre-monsoon (1371.58 μS/cm, 946.84, 71.79 and 34.79 mg/l, respectively). EC shows a good correlation with SO4 2- ( R 2 = 0.59pre-monsoon, 0.77post-monsoon) which indicates that SO4 2- plays a major role in EC of ground water of bore wells. SO4 2- has also showed positive correlations with TDS ( R 2 = 0.84pre-monsoon, 0.95post-monsoon) and TH ( R 2 = 0.70pre-monsoon, 0.75post-monsoon). The principal component analysis (PCA)/factor analysis (FA) was carried out; Factor1 explains 59.154 and 69.278 % of the total variance during pre- and post-monsoon, respectively, with a strong positive loading on Ca2+, Mg2+, SO4 2-, TDS and a negative loading on pH. Factor2 accounts for 13.94 and 14.22 % of the total variance during pre- and post-monsoon, respectively, and was characterized by strong positive loading of only pH and poor/negative loading of EC, Ca2+, Mg2+, SO4 2-, TDS and TH during pre- and post-monsoon. We recommend routine monitoring and thorough treatment before consumption. Further, this study has demonstrated the effectiveness of PCA/FA to assess the hydrogeochemical processes governing the groundwater chemistry in the area.

  8. Aerosol and monsoon climate interactions over Asia

    NASA Astrophysics Data System (ADS)

    Li, Zhanqing; Lau, W. K.-M.; Ramanathan, V.; Wu, G.; Ding, Y.; Manoj, M. G.; Liu, J.; Qian, Y.; Li, J.; Zhou, T.; Fan, J.; Rosenfeld, D.; Ming, Y.; Wang, Y.; Huang, J.; Wang, B.; Xu, X.; Lee, S.-S.; Cribb, M.; Zhang, F.; Yang, X.; Zhao, C.; Takemura, T.; Wang, K.; Xia, X.; Yin, Y.; Zhang, H.; Guo, J.; Zhai, P. M.; Sugimoto, N.; Babu, S. S.; Brasseur, G. P.

    2016-12-01

    The increasing severity of droughts/floods and worsening air quality from increasing aerosols in Asia monsoon regions are the two gravest threats facing over 60% of the world population living in Asian monsoon regions. These dual threats have fueled a large body of research in the last decade on the roles of aerosols in impacting Asian monsoon weather and climate. This paper provides a comprehensive review of studies on Asian aerosols, monsoons, and their interactions. The Asian monsoon region is a primary source of emissions of diverse species of aerosols from both anthropogenic and natural origins. The distributions of aerosol loading are strongly influenced by distinct weather and climatic regimes, which are, in turn, modulated by aerosol effects. On a continental scale, aerosols reduce surface insolation and weaken the land-ocean thermal contrast, thus inhibiting the development of monsoons. Locally, aerosol radiative effects alter the thermodynamic stability and convective potential of the lower atmosphere leading to reduced temperatures, increased atmospheric stability, and weakened wind and atmospheric circulations. The atmospheric thermodynamic state, which determines the formation of clouds, convection, and precipitation, may also be altered by aerosols serving as cloud condensation nuclei or ice nuclei. Absorbing aerosols such as black carbon and desert dust in Asian monsoon regions may also induce dynamical feedback processes, leading to a strengthening of the early monsoon and affecting the subsequent evolution of the monsoon. Many mechanisms have been put forth regarding how aerosols modulate the amplitude, frequency, intensity, and phase of different monsoon climate variables. A wide range of theoretical, observational, and modeling findings on the Asian monsoon, aerosols, and their interactions are synthesized. A new paradigm is proposed on investigating aerosol-monsoon interactions, in which natural aerosols such as desert dust, black carbon from biomass burning, and biogenic aerosols from vegetation are considered integral components of an intrinsic aerosol-monsoon climate system, subject to external forcing of global warming, anthropogenic aerosols, and land use and change. Future research on aerosol-monsoon interactions calls for an integrated approach and international collaborations based on long-term sustained observations, process measurements, and improved models, as well as using observations to constrain model simulations and projections.

  9. The contribution of CEOP data to the understanding and modeling of monsoon systems

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2005-01-01

    CEOP has contributed and will continue to provide integrated data sets from diverse platforms for better understanding of the water and energy cycles, and for validating models. In this talk, I will show examples of how CEOP has contributed to the formulation of a strategy for the study of the monsoon as a system. The CEOP data concept has led to the development of the CEOP Inter-Monsoon Studies (CIMS), which focuses on the identification of model bias, and improvement of model physics such as the diurnal and annual cycles. A multi-model validation project focusing on diurnal variability of the East Asian monsoon, and using CEOP reference site data, as well as CEOP integrated satellite data is now ongoing. Similar validation projects in other monsoon regions are being started. Preliminary studies show that climate models have difficulties in simulating the diurnal signals of total rainfall, rainfall intensity and frequency of occurrence, which have different peak hours, depending on locations. Further more model diurnal cycle of rainfall in monsoon regions tend to lead the observed by about 2-3 hours. These model bias offer insight into lack of, or poor representation of key components of the convective,and stratiform rainfall. The CEOP data also stimulated studies to compare and contrasts monsoon variability in different parts of the world. It was found that seasonal wind reversal, orographic effects, monsoon depressions, meso-scale convective complexes, SST and land surface land influences are common features in all monsoon regions. Strong intraseasonal variability is present in all monsoon regions. While there is a clear demarcation of onset, breaks and withdrawal in the Asian and Australian monsoon region associated with climatological intraseasonal variability, it is less clear in the American and Africa monsoon regions. The examination of satellite and reference site data in monsoon has led to preliminary model experiments to study the impact of aerosol on monsoon variability. I will show examples of how the study of the dynamics of aerosol-water cycle interactions in the monsoon region, can be best achieved using the CEOP data and modeling strategy.

  10. Tropical cyclone influence on the long-term variability of Philippine summer monsoon onset

    NASA Astrophysics Data System (ADS)

    Kubota, Hisayuki; Shirooka, Ryuichi; Matsumoto, Jun; Cayanan, Esperanza O.; Hilario, Flaviana D.

    2017-12-01

    The long-term variability of Philippine summer monsoon onset from 1903 to 2013 was investigated. The onset date is defined by daily rainfall data at eight stations in the northwestern Philippines. Summer monsoons tended to start earlier in May after the mid-1990s. Other early onset periods were found during the 1900s, 1920s, and 1930s, and an interdecadal variability of summer monsoon onset was identified. Independent surface wind data observed by ships in the South China Sea (SCS) revealed prevailing westerly wind in May during the early monsoon onset period. To identify atmospheric structures that trigger Philippine summer monsoon onset, we focused on the year 2013, conducting intensive upper-air observations. Tropical cyclone (TC) Yagi traveled northward in the Philippine Sea (PS) in 2013 and triggered the Philippine monsoon onset by intensifying moist low-level southwesterly wind in the southwestern Philippines and intensifying low-level southerly wind after the monsoon onset in the northwestern Philippines. The influence of TC was analyzed by the probability of the existence of TC in the PS and the SCS since 1951, which was found to be significantly correlated with the Philippine summer monsoon onset date. After the mid-1990s, early monsoon onset was influenced by active TC formation in the PS and the SCS. However, the role of TC activity decreased during the late summer monsoon periods. In general, it was found that TC activity in the PS and the SCS plays a key role in initiating Philippine summer monsoon onset. [Figure not available: see fulltext.

  11. South American Monsoon variability during the past 2,000 years from stable isotopic proxies and model simulations

    NASA Astrophysics Data System (ADS)

    Vuille, M.; Cruz, F. W.; Abbott, M.; Bird, B. W.; Burns, S. J.; Cheng, H.; Colose, C. M.; Kanner, L. C.; LeGrande, A. N.; Novello, V. F.; Taylor, B. L.

    2012-12-01

    The rapidly growing number of high-resolution stable isotopic proxies from speleothems, ice cores and lake sediments, located in the South American summer monsoon (SASM) belt, will soon allow for a comprehensive analysis of climate variability in the South American tropics and subtropics over the past ~ 2000 years. In combination with isotope-enabled General Circulation Models (GCMs) this offers new prospects for better understanding the spatiotemporal dynamics of the South American monsoon system and for diagnosing its sensitivities to external forcing mechanisms (solar, volcanic) and modes of ocean-atmosphere variability (e.g. ENSO and AMO). In this presentation we will discuss the rationale for interpreting isotopic excursions recorded in various proxies from the Andes, northeastern and southeastern Brazil as indicative of changes in monsoon intensity. We will focus on the past 2 millenia when isotopic proxies from the SASM region show a very coherent behavior regardless of the type of archive or their location. All proxies exhibit significant decadal to multidecadal variability, superimposed on large excursions during three key periods, the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA) and the Current Warm Period (CWP). We interpret these three periods as times when the SASM mean state was significantly weakened (MCA and CWP) and strengthened (LIA), respectively. During the LIA each of the proxy archives considered contains the most negative delta-18O values recorded during the entire record length. On the other hand the monsoon strength is currently rather weak in a 2000- year historical perspective, rivaled only by the low intensity during the MCA. One interpretation of these centennial-scale climate anomalies suggests that they were at least partially driven by temperature changes in the northern hemisphere and in particular over the North Atlantic, leading to a latitudinal displacement of the ITCZ and a change in monsoon intensity and degree of rainout upstream of the proxy locations, over the tropical continent. This interpretation is supported by several independent proxy archives and modeling studies. One question that remains, however, is how ENSO, arguably the main forcing factor for delta-18O variability over tropical South America on interannual time scales, interacts with and may be modulated by low-frequency North Atlantic forcing. Our analysis also implies that isotopic proxies, because of their ability to integrate climatic information on large spatial scales, are complementary to more traditional proxies such as tree rings or historical archives, which record in-situ climate variations. Future climate reconstructions therefore should make an effort to include isotopic proxies as large-scale predictors in order to better constrain past changes in the atmospheric circulation.

  12. Ice Core Reconnaissance in Siberian Altai for Mid-Latitudes Paleo-Climatic and Environmental Reconstruction

    NASA Astrophysics Data System (ADS)

    Aizen, V.; Aizen, E.; Kreutz, K.; Nikitin, S.; Fujita, K.; Cecil, D.

    2001-12-01

    Investigations in Siberian Altai permits to expand our scope from Tibet, Himalayas, Tien Shan and Pamir to the area located at the northeastern edge of the Central Asia Mountain System. Altai forms a natural barrier to the northern and western air masses and therefore affords an opportunity to develop modern paleo-climate records relating to the westerly jet stream, the Siberian High and Pacific monsoon. Moreover, Altai alpine snowice accumulation areas are appropriative for studying air pollution dynamics at the center of Eurasia, eastward from the major Former USSR air pollutants in Kazakhstan, South Siberia and Ural Mountains. During the last century Altai Mountains became extremely contaminated region by heavy metal mining, metallurgy, nuclear test in Semipalatinsk polygon and Baikonur rocket site. Our first field reconnaissance on the West Belukha snow/firn plateau at the Central Altai was carried out in July 2001. Dispute of the large Alatai Mountains glaciation, the West Belukha Plateau (49o48' N, 86o32'E, 4000-4100 m a.s.l.) is only one suitable snow accumulation site in Altai to recover ice-core paleo-climatic and environmental records that is not affected by meltwater percolation. The objective of our first reconnaissance was to find an appropriate deep drilling site by radio-echo sounding survey, to recover shallow ice-core, to identify the annual snow accumulation rate, major ions, heavy metals, radio nuclides and oxygen isotopes level distribution. During 6 days of work on the Plateau, a 22 m shallow firn/ice core has been recovered by PICO hand auger at elevation 4050 m where the results of radio-echo sounding suggests about 150 m ice thickness. In addition to the firn/ice core recovery, five 2.5 meter snow pits were sampled for physical statigraphy, major ions, trace element, and heavy metals analysis to assess spatial variability of the environmental impact in this region. Four automatic snow gauges were installed near proposed deep ice coring site for year around records. The seasonal accumulation at the drilling site was ranged from 250 to 300 ?? with density of 0.34 - 0.40 g cm-3. The ice-core stratigraphy analysis has shown that accumulation area seems to lie in the cold infiltration-recrystallization zone. Geochemical analysis of the shallow ice core, snow pit samples collecting during the 2001 field research will be discussed along with meteorological and synoptic data collected at the nearest to Belukha Plateau Akkem, (2050 m) and Kara -Tyurek (3600 ?) stations. A preliminary result has revealed that variability of elementary synoptic processes over the region impact on the amount of precipitation. North Atlantic Oscillation and West Pacific Oscillation indices have inverse associations with average amount of precipitation in Siberia where Altai is located. >http://www.icess.ucsb.edu/%7eaizen/aizen.html

  13. Hydrogeologic data from a 2,000-foot deep core hole at Polk City, Green Swamp area, central Florida

    USGS Publications Warehouse

    Navoy, A.S.

    1986-01-01

    Two core holes were drilled to depths of 906 and 1,996 feet, respectively, within the Tertiary limestone (Floridan) aquifers, at Polk City, central Florida. Data from the two holes revealed that the bottom of the zone of vigorous groundwater circulation is confined by carbonate rocks at a depth of about 1,000 feet (863 feet below sea level). The zone of circulation is divided into two high-permeability zones. The dissolved solids of the water within the high-permeability zones is approximately 150 milligrams per liter. Within the carbonate rocks, the dissolved solids content of the water reaches about 2,000 milligrams per liter at the bottom of the core hole. Water levels in the core holes declined a total of about 16 feet as the hole was drilled; most of the head loss occurred at depths below 1,800 feet. The porosities of selected cores ranged from 1.6 to 45.3 percent; the hydraulic conductivities ranged from less than 0.000024 to 19.0786 feet per day in the horizontal direction and from less than 0.000024 to 2.99 feet per day in the vertical direction; and the ratio of vertical to horizontal permeability ranged from 0.03 to 1.98. Due to drilling problems, packer tests and geophysical logging could not be accomplished. (USGS)

  14. Modelling Suspended Sediment Transport in Monsoon Season: A Case Study of Pahang River Estuary, Pahang, Malaysia

    NASA Astrophysics Data System (ADS)

    Zakariya, Razak; Ahmad, Zuhairi; Saad, Shahbudin; Yaakop, Rosnan

    2013-04-01

    Sediment transport based on 2-dimensional real time model was applied to Pahang River estuary, Pahang, Malaysia and has been evaluated and verified with time series of tidal elevation, flow and suspended sediment load. Period of modelling was during highest high tide and lowest low tide in Northeast Monsoon (NE) which happened in December 2010 and Southwest Monsoon (SW) in July 2011. Simulated model outputs has been verify using Pearson's coefficient and has showed high accuracy. The validated model was used to simulate hydrodynamic and sediment transport of extreme conditions during both monsoon seasons. Based on field measurement and model simulation, tidal elevation and flow velocity, freshwater discharge of Pahang River were found to be higher during NE Monsoon. Based on the fluxes, the estuary also showed 'ebb-dominant' characteristic during highest high tide and lowest low tide in NE monsoon and normal ebbing-flooding characteristics during SW monsoon. In the Pahang River estuary, inflow and outflow patterns were perpendicular to the open boundary with circular flow formed at the shallow area in the middle of estuary during both monsoons. Referring to sea water intrusion from the river mouth, both seasons show penetration of more than 9 km (upstream input boundary) during higher high water tide. During higher lower water tide, the water intrusion stated varies which 5.6km during NE monsoon and 7.8km during SW monsoon. Regarding to the times lap during high tide, the sea water takes 2.8 hours to reach 9km upstream during NE monsoon compared to 1.9 hour during SW monsoon. The averages of suspended sediment concentration and suspended sediment load were higher during Northeast monsoon which increased the sedimentation potentials.Total of suspended sediment load discharged to the South China Sea yearly from Pahang River is approximately 96727.5 tonnes/day or 3.33 tonnes/km2/day which 442.6 tonnes/day during Northeast Monsoon and 25.3 tonnes/day during Southwest Monsoon. Thus, Pahang River estuary found to be directly affected by the monsoon factors especially due to high amount of river discharge and surface erosion from catchment areas. This study provides several useful understanding on the hydrodynamic and sediment transport of Pahang River estuary and catchment area. Keywords: Pahang River Estuary, hydrodynamic, sediment transport, MIKE21 MT

  15. The Response of the North American Monsoon to Increased Greenhouse Gas Forcing

    NASA Technical Reports Server (NTRS)

    Cook, B. I.; Seager, R.

    2013-01-01

    [1] We analyze the response of the North American Monsoon (NAM) to increased greenhouse gas (GHG) forcing (emissions scenario RCP 8.5) using new simulations available through the Coupled Model Intercomparison Project version 5 (CMIP5). Changes in total monsoon season rainfall with GHG warming are small and insignificant. The models do, however, show significant declines in early monsoon season precipitation (June-July) and increases in late monsoon season (September-October) precipitation, indicating a shift in seasonality toward delayed onset and withdrawal of the monsoon. Early in the monsoon season, tropospheric warming increases vertical stability, reinforced by reductions in available surface moisture, inhibiting precipitation and delaying the onset of the monsoon. By the end of the monsoon season, moisture convergence is sufficient to overcome the warming induced stability increases, and precipitation is enhanced. Even with no change in total NAM rainfall, shifts in the seasonal distribution of precipitation within the NAM region are still likely to have significant societal and ecological consequences, reinforcing the need to not only understand the magnitude, but also the timing, of future precipitation changes.

  16. The Plio-Pleistocene Evolution of the Indian Ocean Monsoonal System: Evidence from the Arabian Sea and East Africa

    NASA Astrophysics Data System (ADS)

    Wilson, K. E.; Maslin, M. A.; Mackay, A. W.; Leng, M. J.; Kingston, J.; Deino, A.

    2011-12-01

    It is important to identify the teleconnections between high latitude forcing and tropical monsoonal circulation in order to understand climate change in East Africa during the Plio-Pleistocene. Here we present a record of aeolian dust transport to the Arabian Sea between approximately 2.9 and 2.3 million years ago (Ma), constructed from the high-resolution XRF scanning of sediment cores from ODP Sites 721 and 722. Variations in the delivery of aeolian dust to the Arabian Sea, reflected in normalised flux of titanium, show that monsoonal circulation prior to 2.6 Ma, and after 2.5 Ma, was highly variable and primarily driven by orbitally-forced changes in tropical summer insolation, strongly modulated by the 400,000 year cycle of orbital eccentricity. This is confirmed by the presence of lakes in the East African Rift Valley during key eccentricity maxima. The dust record is coupled with the analysis of a well-dated series of diatomite units from the Baringo-Bogoria Basin which document the rhythmic cycling of large, precessionally-driven freshwater lakes which periodically occupied the Central Kenyan Rift Valley between 2.7 and 2.58 Ma. Analysis of one of these lake sequences using stable oxygen isotope measurements of diatom silica, combined with the XRF analysis of whole-sample geochemistry, reveals that the deep lake phase was characterised by fluctuations in rainfall and lake depth over cycles lasting, on average, 1,400 years. The presence of these millennial-scale fluctuations is confirmed by evidence of abrupt climate cycles in the oceanic dust record from the Arabian Sea.

  17. An oxygen isotope record from Lake Xiarinur in Inner Mongolia since the last deglaciation and its implication for tropical monsoon change

    NASA Astrophysics Data System (ADS)

    Sun, Qing; Chu, Guoqiang; Xie, Manman; Zhu, Qingzeng; Su, Youliang; Wang, Xisheng

    2018-04-01

    We present a high-resolution oxygen isotope record from authigenic carbonate (δ18Ocarb) from Lake Xiarinur (Inner Mongolia) since the last deglaciation. The lake is located at the modern northern limit of the monsoon, and is therefore sensitive to the extension of the East Asian summer monsoon. Based on calibration against the instrumental record, the δ18Ocar variation has been interpreted as changes in atmospheric circulation pattern on decadal time scales. On longer time scales, the δ18Ocarb in lake sediments could be mainly regulated by the relative contribution of nearby (remote) water-vapor sources associated with subtropical (tropical) monsoon through changes in the distance from sources to the site of precipitation. Increased remote water vapors from tropical monsoon would lead to lighter isotope value in our study site. Through time the δ18Ocarb record in Lake Xiarinur indicate a notable weak tropical monsoon during the Younger Dryas, a gradual increasing monsoon from the early Holocene and weakening monsoon after the middle Holocene. Oxygen isotope records from lakes and stalagmite in the Asian monsoon region across different localities show a general similar temporal pattern since the last deglaciation, and highlight a fundamental role of the tropical monsoon.

  18. Low resistivity and permeability in actively deforming shear zones on the San Andreas Fault at SAFOD

    USGS Publications Warehouse

    Morrow, Carolyn A.; Lockner, David A.; Hickman, Stephen H.

    2015-01-01

    The San Andreas Fault Observatory at Depth (SAFOD) scientific drillhole near Parkfield, California crosses the San Andreas Fault at a depth of 2.7 km. Downhole measurements and analysis of core retrieved from Phase 3 drilling reveal two narrow, actively deforming zones of smectite-clay gouge within a roughly 200 m-wide fault damage zone of sandstones, siltstones and mudstones. Here we report electrical resistivity and permeability measurements on core samples from all of these structural units at effective confining pressures up to 120 MPa. Electrical resistivity (~10 ohm-m) and permeability (10-21 to 10-22 m2) in the actively deforming zones were one to two orders of magnitude lower than the surrounding damage zone material, consistent with broader-scale observations from the downhole resistivity and seismic velocity logs. The higher porosity of the clay gouge, 2 to 8 times greater than that in the damage zone rocks, along with surface conduction were the principal factors contributing to the observed low resistivities. The high percentage of fine-grained clay in the deforming zones also greatly reduced permeability to values low enough to create a barrier to fluid flow across the fault. Together, resistivity and permeability data can be used to assess the hydrogeologic characteristics of the fault, key to understanding fault structure and strength. The low resistivities and strength measurements of the SAFOD core are consistent with observations of low resistivity clays that are often found in the principal slip zones of other active faults making resistivity logs a valuable tool for identifying these zones.

  19. Eastward shift and maintenance of Arabian Sea oxygen minimum zone: Understanding the paradox

    NASA Astrophysics Data System (ADS)

    Acharya, Shiba Shankar; Panigrahi, Mruganka K.

    2016-09-01

    The dominance of Oxygen Minimum Zone in the eastern part of the Arabian Sea (ASOMZ) instead of the more bio-productive and likely more oxygen consuming western part is the first part of the paradox. The sources of oxygen to the ASOMZ were evaluated through the distributions of different water masses using the extended optimum multiparameter (eOMP) analysis, whereas the sinks of oxygen were evaluated through the organic matter remineralization, using the apparent oxygen utilization (AOU). The contributions of major source waters to the Arabian Sea viz. Indian Deep water (dIDW), Indian Central water (ICW), Persian Gulf Water (PGW) and Red Sea Water (RSW) have been quantified through the eOMP analysis which shows that the PGW and RSW are significant for the eastward shift of ASOMZ instead of voluminous ICW and dIDW. The distribution of Net Primary Production (NPP) and AOU clearly suggest the transport of organic detritus from the highly productive western Arabian Sea to its eastern counterpart which adds to the eastward shifting of ASOMZ. A revised estimate of the seasonal variation of areal extent and volume occupied by ASOMZ through analysis of latest available data reveals a distinct intensification of ASOMZ by 30% and increase in its volume by 5% during the spring-summer transition. However, during this seasonal transition the productivity in the Arabian Sea shows 100% increase in mean NPP. This disparity between ASOMZ and monsoonal variation of productivity is the other part of the paradox, which has been constrained through apparent oxygen utilization, Net Primary Production along with a variation of core depths of source waters. This study reveals a subtle balance between the circulation of marginal oxygen-rich water masses from the western Arabian Sea and organic matter remineralization in the eastern Arabian Sea in different seasons that explains the maintenance of ASOMZ throughout the year.

  20. The Arabian Sea as a high-nutrient, low-chlorophyll region during the late Southwest Monsoon

    NASA Astrophysics Data System (ADS)

    Naqvi, S. W. A.; Moffett, J. W.; Gauns, M. U.; Narvekar, P. V.; Pratihary, A. K.; Naik, H.; Shenoy, D. M.; Jayakumar, D. A.; Goepfert, T. J.; Patra, P. K.; Al-Azri, A.; Ahmed, S. I.

    2010-01-01

    Extensive observations during the late Southwest Monsoon of 2004 over the Indian and Omani shelves, and along an east-west transect reveal a mosaic of biogeochemical provinces including an unexpected high-nutrient, low-chlorophyll condition off the southern Omani coast. This feature, coupled with other characteristics of the system, suggest a close similarity between the Omani upwelling system and the Peruvian and California upwelling systems, where primary production (PP) is limited by iron. An intensification of upwelling, reported to have been caused by the decline in the winter/spring Eurasian snow cover since 1997, is not supported by in situ hydrographic and chlorophyll measurements as well as a reanalysis of ocean colour data extending to 2009. Iron limitation of PP may complicate simple relationship between upwelling and PP assumed by previous workers, and contribute to the anomalous offshore occurrence of the most severe oxygen (O2) depletion in the region. Over the Indian shelf, affected by very shallow O2-deficient zone, high PP is restricted to a thin, oxygenated surface layer probably due to unsuitability of the O2-depleted environment for the growth of oxygenic photosynthesizers.

  1. Independent Transitions between Monsoonal and Arid Biomes Revealed by Systematic Revison of a Complex of Australian Geckos (Diplodactylus; Diplodactylidae)

    PubMed Central

    Oliver, Paul M.; Couper, Patrick J.; Pepper, Mitzy

    2014-01-01

    How the widespread expansion and intensification of aridity through the Neogene has shaped the Austral biota is a major question in Antipodean biogeography. Lineages distributed across wide aridity gradients provide opportunities to examine the timing, frequency, and direction of transitions between arid and mesic regions. Here, we use molecular genetics and morphological data to investigate the systematics and biogeography of a nominal Australian gecko species (Diplodactylus conspicillatus sensu lato) with a wide distribution spanning most of the Australian Arid Zone (AAZ) and Monsoonal Tropics (AMT). Our data support a minimum of seven genetically distinct and morphologically diagnosable taxa; we thus redefine the type species, ressurrect three names from synonymy, and describe three new species. Our inferred phylogeny suggests the history and diversification of lineages in the AAZ and AMT are intimately linked, with evidence of multiple independent interchanges since the late Miocene. However, despite this shared history, related lineages in these two regions also show evidence of broadly contrasting intra-regional responses to aridification; vicarance and speciation in older and increasingly attenuated mesic regions, versus a more dynamic history including independent colonisations and recent range expansions in the younger AAZ. PMID:25493936

  2. Potential new production in two upwelling regions of the western Arabian Sea: Estimation and comparison

    NASA Astrophysics Data System (ADS)

    Liao, Xiaomei; Zhan, Haigang; Du, Yan

    2016-07-01

    Using satellite-derived and in situ data, the wind-driven potential new production (nitrate supply) for the 300 km wide coastal band in two upwelling regions of the western Arabian Sea (AS) during the southwest monsoon is estimated. The upward nitrate flux to the euphotic zone is generally based on the physical processes of coastal transport (Ekman transport and geostrophic transport) and offshore Ekman pumping. The coastal geostrophic current in the western AS influences the upwelling intensity and latitudinal distributions of nitrate supply. The Oman and Somalia upwelling regions have similar level of potential new production (nitrate supply) during the summer monsoon, while the satellite estimates of primary production off Oman are 2 times greater than those off Somalia. The much higher potential f-ratio in the Somalia upwelling region indicates that the primary production could be limited by availability of other macronutrients (e.g., silicate). The correlation analysis of the primary production and the aerosol optical thickness shows that the Oman upwelling region displays a stronger coupling between the atmospheric deposition and the phytoplankton abundance. The high summertime dust levels in the atmosphere are suggested to contribute to the high primary production in the Oman upwelling region.

  3. The Origin of Monsoon Onset. Part 2; Rotational ITCZ Attractors

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.; Chen, Baode; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Through various specially designed numerical experiments with an aqua-planet general circulation model and theoretical arguments. Chao showed the existence of multiple quasi-equilibria of the intertropical convergence zone (ITCZ). He also showed that monsoon onset could be interpreted as an abrupt transition between the quasi-equilibria of the ITCZ. He further showed that the origin of these quasi-equilibria is related to two different types of attraction pulling the ITCZ in opposite directions. One type of attraction on the ITCZ is due to earth's rotation, which pulls the ITCZ toward the equator or two equatorial latitudes symmetric with respect to the equator depending on the choice of convection scheme, and the other due to the peak of the sea surface temperature (SST, which is given in the experiments a Gaussian profile in latitude and is uniform in longitude), which pulls the ITCZ toward a latitude just poleward of the SST peak. The strength of the attraction due to the earth's rotation has a highly nonlinear dependence on the latitude and that due to the SST peak has a linear (at least in a relative sense) dependence on the latitude.

  4. Climatic Forecasting of Net Infiltration at Yucca Montain Using Analogue Meteororological Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B. Faybishenko

    At Yucca Mountain, Nevada, future changes in climatic conditions will most likely alter net infiltration, or the drainage below the bottom of the evapotranspiration zone within the soil profile or flow across the interface between soil and the densely welded part of the Tiva Canyon Tuff. The objectives of this paper are to: (a) develop a semi-empirical model and forecast average net infiltration rates, using the limited meteorological data from analogue meteorological stations, for interglacial (present day), and future monsoon, glacial transition, and glacial climates over the Yucca Mountain region, and (b) corroborate the computed net-infiltration rates by comparing themmore » with the empirically and numerically determined groundwater recharge and percolation rates through the unsaturated zone from published data. In this paper, the author presents an approach for calculations of net infiltration, aridity, and precipitation-effectiveness indices, using a modified Budyko's water-balance model, with reference-surface potential evapotranspiration determined from the radiation-based Penman (1948) formula. Results of calculations show that net infiltration rates are expected to generally increase from the present-day climate to monsoon climate, to glacial transition climate, and then to the glacial climate. The forecasting results indicate the overlap between the ranges of net infiltration for different climates. For example, the mean glacial net-infiltration rate corresponds to the upper-bound glacial transition net infiltration, and the lower-bound glacial net infiltration corresponds to the glacial transition mean net infiltration. Forecasting of net infiltration for different climate states is subject to numerous uncertainties-associated with selecting climate analogue sites, using relatively short analogue meteorological records, neglecting the effects of vegetation and surface runoff and runon on a local scale, as well as possible anthropogenic climate changes.« less

  5. Pleistocene Thermocline Reconstruction and Oxygen Minimum Zone Evolution in the Maldives

    NASA Astrophysics Data System (ADS)

    Yu, S. M.; Wright, J.

    2017-12-01

    Drift deposits of the southern flank the Kardiva Channel in the eastern Inner Sea of the Maldives provide a complete record of Pleistocene water column changes in conjunction with monsoon cyclicity and fluctuations in the current system. We sampled IODP Site 359-U1467 to reconstruct water column using foraminiferal stable isotope records. This unlithified lithostratigraphic unit is rich in well-preserved microfossils and has an average sedimentation rate of 3.4 cm/yr. Marine Isotope Stages 1-6 were identified and show higher sedimentation rates during the interglacial sections approaching 6 cm/kyr. We present the δ13C and δ18O record of planktonic and benthic foraminiferal species taken at intervals of 3 cm. Globigerinoides ruber was used to constrain surface conditions. The thermocline dwelling species, Globorotalia menardii, was chosen to monitor fluctuations in the thermocline compared to the mixed layer. Lastly, the δ13C of the benthic species, Cibicidoides subhaidingerii and Planulina renzi, reveal changes to the bottom water ventilation and expansion of oxygen minimum zones over time. All three taxa recorded similar changes in δ18O over the glacial/interglacial cycles which is remarkable given the large sea level change ( 120 m) and the relatively shallow water depth ( 450 m). There is a small increase in the δ13C gradient during the glacial intervals which might reflect less ventilated bottom waters in the Inner Sea. This multispecies approach allows us to better constrain the thermocline hydrography and suggests that changes in the OMZ thickness are driven by the intensification of the monsoon cycles while painting a more cohesive picture to the changes in the water column structure.

  6. Stable Isotopes as Indicators of Groundwater Recharge Mechanisms in Arid and Semi-arid Australia

    NASA Astrophysics Data System (ADS)

    Harrington, G. A.; Herczeg, A. L.

    2001-05-01

    The isotopic compositions of soil water and groundwaters in arid and semi-arid zones are always different from the mean composition of rainfall. Although evaporative processes always remove the lighter isotopes (1H and 16O) to the vapour phase, arid zone groundwaters are invariably depleted in the heavy isotopes (2H and 18O) relative to mean present day rainfall. We compare two sites, one in semi-arid South Australia and the other in arid Central Australia that have a similar mean annual rainfall (250 to 300 mm/a), very high potential evapotranspiration (2500 and 3500 mm/a respectively) but very different rainfall patterns (winter dominated versus summer monsoonal). We aim to evaluate whether inferences from groundwater \\delta2H and \\delta18O reveal information about palaeorecharge, or recharge mechanisms or a combination of both. Recharge to the unconfined limestone aquifer in the Mallee area of South Australia occurs annually via widespread (diffuse) infiltration of winter dominant rainfall. This process is reflected in soil and groundwater isotopic compositions that plot relatively close to both the Local Meteoric Water Line and the volume-weighted mean composition of winter rainfall, and have a deuterium excess (\\delta2H-8.\\delta18O) of between +2 and +8 for the freshest samples. Groundwater recharge to the arid Ti-Tree Basin occurs predominantly by inputs of partially-evaporated surface water from ephemeral rivers and flood-plains following rare, high-intensity storms that are derived from monsoonal activity to the north of Australia. These extreme events result in groundwater and soil water stable isotope compositions being significantly depleted in the heavy isotopes relative to the mean composition of rainfall and a deuterium excess of between minus 8 and +3 in the freshest groundwaters.

  7. CLIVAR Asian-Australian Monsoon Panel Report to Scientific Steering Group-18

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sperber, Ken R.; Hendon, Harry H.

    2011-05-04

    These are a set of slides on CLIVAR Asian-Australian Monsoon Panel Report to Scientific Steering Group-18. These are the major topics covered within: major activities over the past year, AAMP Monsoon Diagnostics/Metrics Task Team, Boreal Summer Asian Monsoon, Workshop on Modelling Monsoon Intraseasonal Variability, Workshop on Interdecadal Variability and Predictability of the Asian-Australian Monsoon, Evidence of Interdecadal Variability of the Asian-Australian Monsoon, Development of MJO metrics/process-oriented diagnostics/model evaluation/prediction with MJOTF and GCSS, YOTC MJOTF, GEWEX GCSS, AAMP MJO Diabatic Heating Experiment, Hindcast Experiment for Intraseasonal Prediction, Support and Coordination for CINDY2011/DYNAMO, Outreach to CORDEX, Interaction with FOCRAII, WWRP/WCRP Multi-Week Predictionmore » Project, Major Future Plans/Activities, Revised AAMP Terms of Reference, Issues and Challenges.« less

  8. Assessment of the 1997-1998 Asian Monsoon Anomalies

    NASA Technical Reports Server (NTRS)

    Lau, William K.-M.; Wu, H.-T.

    1999-01-01

    Using State-of-the-art satellite-gauge monthly rainfall estimate and optimally interpolated sea surface temperature (SST) data, we have assessed the 1997-98 Asian monsoon anomalies in terms of three basic causal factors: basin-scale SST, regional coupling, and internal variability. Singular Value Decomposition analysis of rainfall and SST are carried out globally over the entire tropics and regionally over the Asian monsoon domain. Contributions to monsoon rainfall predictability by various factors are evaluated from cumulative anomaly correlation with dominant regional SVD modes. Results reveal a dominant, large-scale monsoon-El Nino coupled mode with well-defined centers of action in the near-equatorial monsoon regions. it is noted that some subcontinental regions such as all-India, or arbitrarily chosen land regions over East Asia, while important socio-economically, are not near the centers of influence from El Nino, hence are not necessarily representative of the response of the entire monsoon region to El Nino. The observed 1997-98 Asian monsoon anomalies are found to be very complex with approximately 34% of the anomalies attributable to basin- scale SST influence associated with El Nino. Regional coupled processes contribute an additional 19%, leaving about 47% due to internal dynamics. Also noted is that the highest monsoon predictability is not necessary associated with major El Nino events (e.g. 1997, 1982) but rather in non-El Nino years (e.g. 1980, 1988) when contributions from the regional coupled modes far exceed those from the basin-scale SST. The results suggest that in order to improve monsoon seasonal-to-interannual predictability, there is a need to exploit not only monsoon-El Nino relationship, but also monsoon regional coupled processes and their modulation by long-term climate change.

  9. The Joint Aerosol-Monsoon Experiment: A New Challenge to Monsoon Climate Research

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2008-01-01

    Aerosol and monsoon related droughts and floods are two of the most serious environmental hazards confronting more than 60% of the population of the world living in the Asian monsoon countries. In recent years, thanks to improved satellite and in-situ observations, and better models, great strides have been made in aerosol, and monsoon research respectively. There is now a growing body of evidence suggesting that interaction of aerosol forcing with water cycle dynamics in monsoon regions may substantially alter the redistribution of energy at the earth surface and in the atmosphere, and therefore significantly impact monsoon rainfall variability and long term trends. In this talk, I will describe issues related to societal needs, scientific background, and challenges in studies of aerosol-water cycle interaction in Asian monsoon regions. As a first step towards addressing these issues, the authors call for an integrated observation and modeling research approach aimed at the interactions between aerosol chemistry and radiative effects and monsoon dynamics of the coupled ocean-atmosphere-land system. A Joint Aerosol-Monsoon Experiment (JAMEX) is proposed for 2007-2011, with an enhanced observation period during 2008-09, encompassing diverse arrays of observations from surface, aircraft, unmanned aerial vehicles, and satellites of physical and chemical properties of aerosols, long range aerosol transport as well as meteorological and oceanographic parameters in the Indo-Pacific Asian monsoon region. JAMEX will leverage on coordination among many ongoing and planned national programs on aerosols and monsoon research in China, India, Japan, Nepal, Italy, US, as well as international research programs of the World Climate Research Program (WCRP) and the World Meteorological Organization (WMO).

  10. Spatio-temporal characteristics of PM10 concentration across Malaysia

    NASA Astrophysics Data System (ADS)

    Juneng, Liew; Latif, Mohd Talib; Tangang, Fredolin T.; Mansor, Haslina

    The recurrence of forest fires in Southeast Asia and associated biomass burning, has contributed markedly to the problem of trans-boundary haze and the long-range movement of pollutants in the region. Air pollutants, specifically particulate matter in the atmosphere, have received extensive attention, mainly because of their adverse effect on people's health. In this study, the spatial and temporal variability of the PM10 concentration across Malaysia was analyzed by means of the rotated principal component analysis. The results suggest that the variability of the PM10 concentration can be decomposed into four dominant modes, each characterizing different spatial and temporal variations. The first mode characterizes the southwest coastal region of the Malaysian Peninsular with the PM10 showing a peak concentration during the summer monsoon i.e. when the winds are predominantly southerlies or southwesterlies, and a minimal concentration during the winter monsoon. The second mode features the region of western Borneo with the PM10 exhibiting a concentration surge in August-September, which is likely to be the result of the northward shift of the Inter Tropical Convergence Zone (ITCZ) and the subsequent rapid arrival of the rainy season. The third mode delineates the northern region of the Malaysian Peninsular with strong bimodality in the PM10 concentration. Seasonally, this component exhibits two concentration maxima during the late winter and summer monsoons, as well as two minima during the inter-monsoon periods. The fourth dominant mode characterizes the northern Borneo region which exhibits weaker seasonality of the PM10 concentration. Generally, the seasonal fluctuation of the PM10 concentration is largely associated with the seasonal variation of rainfall in the country. However, in addition to this, the PM10 concentration also fluctuates markedly in two timescale bands i.e. 10-20 days quasi-biweekly (QBW) and 30-60 days lower frequency (LF) band of the intra-seasonal timescales. These intra-seasonal fluctuations show strong seasonality with the largest fraction of variance occurring during the boreal summer and the weakest variance during the winter. Generally, the LF intra-seasonal oscillation is stronger compared to the QBW intra-seasonal band.

  11. Variations in the width of the Indo-Pacific tropical rain belt over the last millennium: synthesis of stalagmite proxy records and climate model simulations

    NASA Astrophysics Data System (ADS)

    Ummenhofer, Caroline; Denniston, Rhawn

    2017-04-01

    The seasonal north-south migration of the intertropical convergence zone defines the tropical rain belt (TRB), a region of enormous terrestrial biodiversity and home to 40% of the world's population. The TRB is dynamic and has been shown to shift south as a coherent system during periods of Northern Hemisphere cooling. However, recent studies of Indo-Pacific hydroclimate suggest that during the Little Ice Age (AD 1400-1850), the TRB in this region contracted rather than being displaced uniformly southward. This behaviour is not well understood, particularly during climatic fluctuations less pronounced than those of the Little Ice Age, the largest centennial-scale cool period of the last millennium. Using state-of-the-art climate model simulations conducted as part of the Last Millennium Ensemble with the Community Earth System Model (CESM), we evaluate variations in the width of the Indo-Pacific TRB, as well as movements in the position of its northward and southward edges, across a range of timescales over the pre-Industrial portion of the last millennium (AD 850-1850). The climate model results complement a recent reconstruction of late Holocene variability of the Indo-Pacific TRB, based on a precisely-dated, monsoon-sensitive stalagmite reconstruction from northern Australia (cave KNI-51), located at the southern edge of the TRB and thus highly sensitive to variations at its southern edge. Integrating KNI-51 with a record from Dongge Cave in southern China allows a stalagmite-based TRB reconstruction. Our results reveal that rather than shifting meridionally, the Indo-Pacific TRB expanded and contracted over multidecadal/centennial time scales during the late Holocene, with symmetric weakening/strengthening of summer monsoons in the Northern and Southern Hemispheres of the Indo-Pacific (the East Asian summer monsoon in China and the Australian summer monsoon in northern Australia). Links to large-scale climatic conditions across the Indo-Pacific region, including its leading modes of variability, are made in the climate model simulations to elucidate the dynamics of TRB variations during periods of expansion and contraction over the last millennium.

  12. Wetting and greening Tibetan Plateau in early summer since the late 1970s due to advanced Asian summer monsoon onset

    NASA Astrophysics Data System (ADS)

    Zhang, Wenxia; Zhou, Tianjun; Zhang, Lixia

    2016-04-01

    Known as the "the world water tower", the Tibetan Plateau (TP) is the origin of the ten largest rivers in Asia, breeding more than 1.4 billion people, and exerts substantial influences on water resources, agriculture, and ecosystems in downstream countries. This region is one of the most susceptible areas around the world to changing climate due to the high elevation. Observed evidence have shown significant climate changes over the TP, including surface air warming and moistening, glaciers shrinking, winds stilling, solar dimming, and atmospheric heat source weakening. However, as an essential part of the hydrological cycle, precipitation changes on the TP remain an ambiguous picture. Changes in precipitation vary largely with different seasons, time periods and climate zones considered. This study shows a robust increase in precipitation amount over the TP in May, when the rainy season starts, over the period 1979-2014 (31% relative to the climatology). The wetting trend is spatially consistent over the south-eastern TP, to which both precipitation frequency and intensity contribute. Circulation trends show that the wetting TP in May is resulted from the advanced onset of Asian summer monsoon, which onsets 1~2 pentads earlier since 1979. It intensified water vapor transport from the Bay of Bengal (BOB) to south of the TP in May and local anomalous convection. This relationship is further validated by the significant correlation coefficient (0.47) between the onset dates of Asian summer monsoon (particularly the BOB summer monsoon, 0.68) and precipitation over the south-eastern TP in May. The wetting TP in May has further exerted profound impacts on the hydrological cycle and ecosystem, such as moistening the soil and animating vegetation activities throughout early summer. Both decadal variations of soil moisture (from May to June) and Normalized Difference Vegetation Index (NDVI) (from May to July) coincide well with that of precipitation over the south-eastern TP, significant at 99% confidence level by Mann-Kendall test. This implies that the increasing precipitation in May is favoring a greening TP throughout early summer, benefitting a more favorable ecological environment in the semi-humid region there.

  13. The Holocene Indian Summer Monsoon Variability Recorded in a Stalagmite From NE India.

    NASA Astrophysics Data System (ADS)

    Breitenbach, S.; Plessen, B.; Oberhänsli, H.; Marwan, N.; Lund, D.; Adkins, J.; Günther, D.; Fricker, M.; Haug, G.

    2007-12-01

    South Asian economies depend on the timely onset of the Indian Summer Monsoon (ISM), but understanding of the ISM variability is incomplete, due to lack of information on past ISM. Our stalagmite is the first well-dated climate record from the heart of the ISM region spanning the past 11,000 years. The speleothem was collected from Krem Umsynrang Cave, located 825 m above sea level in NE India. This region is influenced by the ISM, with more than 75% of annual rainfall falling during the monsoon season. The chronology of the stalagmite is based on 36 U/Th multi-collector ICP MS dates. Our data reveal profound changes in ISM rainfall and moisture balance. A strong increase of the ISM between 11.4 and 9.3 kyr BP is followed by a gradual decline over the course of the Holocene. This may be best explained by a strong coupling between ISM and the Intertropical Convergence Zone (ITCZ), with a stronger ISM during a more northerly position of the ITCZ. This long-term trend is punctuated by centennial to multi- to sub-decadal events of a weaker ISM. The most pronounced events occurred at 10.7, 8.5-8.1, 7.4, 4.4-4.0, 3.5, 1.4, 0.3 kyr BP. The δ13C record is interpreted to reflect centennial to decadal changes in the drip rate of the stalagmite. δ13C fractionation during periods of higher drip rates (i.e. times of longer residence time of percolating water) correspond with periods of a weaker ISM as inferred from our δ18O record. Our record shows in great detail periods of weaker ISM. They provide new insights on the sensitivity of terrestrial climate archives on the Indian subcontinent. Drought events recorded in our stalagmite correspond well with intervals of severe aridity known from other regions of the Asian monsoon. Moreover, our 11,000 year climate record shows that NE India experienced its driest conditions during the last three millennia.

  14. The Contribution of CEOP Data to the Understanding and Modeling of Monsoon Systems

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2005-01-01

    CEOP has contributed and will continue to provide integrated data sets from diverse platforms for better understanding of the water and energy cycles, and for validaintg models. In this talk, I will show examples of how CEOP has contributed to the formulation of a strategy for the study of the monsoon as a system. The CEOP data concept has led to the development of the CEOP Inter-Monsoon Studies (CIMS), which focuses on the identification of model bias, and improvement of model physics such as the diurnal and annual cycles. A multi-model validation project focusing on diurnal variability of the East Asian monsoon, and using CEOP reference site data, as well as CEOP integrated satellite data is now ongoing. Preliminary studies show that climate models have difficulties in simulating the diurnal signals of total rainfall, rainfall intensity and frequency of occurrence, which have different peak hours, depending on locations. Further more model diurnal cycle of rainfall in monsoon regions tend to lead the observed by about 2-3 hours. These model bias offer insight into lack of, or poor representation of, key components of the convective and stratiform rainfall. The CEOP data also stimulated studies to compare and contrasts monsoon variability in different parts of the world. It was found that seasonal wind reversal, orographic effects, monsoon depressions, meso-scale convective complexes, SST and land surface land influences are common features in all monsoon regions. Strong intraseasonal variability is present in all monsoon regions. While there is a clear demarcation of onset, breaks and withdrawal in the Asian and Australian monsoon region associated with climatological intraseasonal variabillity, it is less clear in the American and Africa monsoon regions. The examination of satellite and reference site data in monsoon has led to preliminary model experiments to study the impact of aerosol on monsoon variability. I will show examples of how the study of the dynamics of aerosol-water cycle interactions in the monsoon region, can be best achieved using the CEOP data and modeling strategy.

  15. Tree seed traits' response to monsoon climate and altitude in Indian subcontinent with particular reference to the Himalayas.

    PubMed

    Singh, Surendra P; Phartyal, Shyam S; Rosbakh, Sergey

    2017-09-01

    Seed traits are related to several ecological attributes of a plant species, including its distribution. While the storage physiology of desiccation-sensitive seeds has drawn considerable attention, their ecology has remained sidelined, particularly how the strong seasonality of precipitation in monsoonal climate affects their temporal and spatial distribution. We compiled data on seed mass, seed desiccation behavior, seed shedding, and germination periodicity in relation to monsoon and altitude for 198 native tree species of Indian Himalayas and adjoining plains to find out (1) the adaptive significance of seed mass and seed desiccation behavior in relation to monsoon and (2) the pattern of change in seed mass in relation to altitude, habitat moisture, and succession. The tree species fall into three categories with respect to seed shedding and germination periodicities: (1) species in which both seed shedding and germination are synchronized with monsoon, referred to as monsoon-synchronized (MS, 46 species); (2) species in which seed germination is synchronized with monsoon, but seeds are shed several months before monsoon, referred to as partially monsoon-synchronized (PMS, 112 species); and (3) species in which both shedding and germination occur outside of monsoon months, referred to as monsoon-desynchronized (MD, 39 species). The seed mass of MS species (1,718 mg/seed) was greater than that of PMS (627 mg/seed) and MD (1,144 mg/seed). Of the 40 species with desiccation-sensitive seeds, 45% belong to the MS category, almost similar (approx. 47%) to woody plants with desiccation-sensitive seeds in evergreen rain forests. Seed mass differed significantly as per seed desiccation behavior and successional stage. No relationship of seed mass was found with altitude alone and on the basis of seed desiccation behavior. However, seed mass trend along the altitude differed among monsoon synchronization strategies. Based on our findings, we conclude that in the predicted climate change (warming and uncertain precipitation pattern) scenario, a delay or prolonged break-spell of monsoon may adversely affect the regeneration ecology of desiccation-sensitive seed-bearing species dominant over large forest areas of monsoonal climate.

  16. Proliferation of dinoflagellates in Kochi estuary, Kerala.

    PubMed

    Kumar, M Ratheesh; Vishnu, S Raj; Sudhanandh, V S; Faisal, A K; Shibu, R; Vimexen, V; Ajmal, K; Aneesh, K S; Antony, Sibin; Krishnan, Anoop K

    2014-09-01

    Phytoplankton community structure and dynamics of Kochi estuary (bar mouth) have been studied seasonally. Three seasonal samplings namely pre-monsoon, monsoon and post-monsoon were made, and a wide variation was observed in phytoplankton community with respect to nutrients and other physicochemical parameters. Contrary to other seasons, dinoflagellate cell density increased during pre-monsoon season though species diversity was less pronounced (D > 0.15). Peridinium oceanicum was the dominant dinoflagellate during pre-monsoon season. Significant fluctuation in three principal nutrients namely total nitrogen, total phosphorous and silicate were observed during pre-monsoon (TP < 1.8 micromol l(-1), TN > 40 micromol l(-1) and SiO4 < 20 micromol l(-1)) season as compared to monsoon season (TP > 3.20 micromol l(-1), TN < 20 micromol l(-1) and SiO4 > 27 micromol l(-1)). Salinity values were also found to be high during pre-monsoon ( > 25 psu). Study suggests that variation in salinity and nutrient concentration during transition of seasons could result in succession of species, thereby causing change in phytoplankton community structure. High salinity and nitrogen values along with low values of silicate and phosphorous resulted in proliferation of dinoflagellates during pre-monsoon season.

  17. A persistent northern boundary of Indian Summer Monsoon precipitation over Central Asia during the Holocene.

    PubMed

    Ramisch, Arne; Lockot, Gregori; Haberzettl, Torsten; Hartmann, Kai; Kuhn, Gerhard; Lehmkuhl, Frank; Schimpf, Stefan; Schulte, Philipp; Stauch, Georg; Wang, Rong; Wünnemann, Bernd; Yan, Dada; Zhang, Yongzhan; Diekmann, Bernhard

    2016-05-13

    Extra-tropical circulation systems impede poleward moisture advection by the Indian Summer Monsoon. In this context, the Himalayan range is believed to insulate the south Asian circulation from extra-tropical influences and to delineate the northern extent of the Indian Summer Monsoon in central Asia. Paleoclimatic evidence, however, suggests increased moisture availability in the Early Holocene north of the Himalayan range which is attributed to an intensification of the Indian Summer Monsoon. Nevertheless, mechanisms leading to a surpassing of the Himalayan range and the northern maximum extent of summer monsoonal influence remain unknown. Here we show that the Kunlun barrier on the northern Tibetan Plateau [~36°N] delimits Indian Summer Monsoon precipitation during the Holocene. The presence of the barrier relocates the insulation effect 1,000 km further north, allowing a continental low intensity branch of the Indian Summer Monsoon which is persistent throughout the Holocene. Precipitation intensities at its northern extent seem to be driven by differentiated solar heating of the Northern Hemisphere indicating dependency on energy-gradients rather than absolute radiation intensities. The identified spatial constraints of monsoonal precipitation will facilitate the prediction of future monsoonal precipitation patterns in Central Asia under varying climatic conditions.

  18. Late Holocene anti-phase change in the East Asian summer and winter monsoons

    NASA Astrophysics Data System (ADS)

    Kang, Shugang; Wang, Xulong; Roberts, Helen M.; Duller, Geoff A. T.; Cheng, Peng; Lu, Yanchou; An, Zhisheng

    2018-05-01

    Changes in East Asian summer and winter monsoon intensity have played a pivotal role in the prosperity and decline of society in the past, and will be important for future climate scenarios. However, the phasing of changes in the intensity of East Asian summer and winter monsoons on millennial and centennial timescales during the Holocene is unclear, limiting our ability to understand the factors driving past and future changes in the monsoon system. Here, we present a high resolution (up to multidecadal) loess record for the last 3.3 ka from the southern Chinese Loess Plateau that clearly demonstrates the relationship between changes in the intensity of the East Asian summer and winter monsoons, particularly at multicentennial scales. At multimillennial scales, the East Asian summer monsoon shows a steady weakening, while the East Asian winter monsoon intensifies continuously. At multicentennial scales, a prominent ∼700-800 yr cycle in the East Asian summer and winter monsoon intensity is observed, and here too the two monsoons are anti-phase. We conclude that multimillennial changes are driven by Northern Hemisphere summer insolation, while multicentennial changes can be correlated with solar activity and changing strength of the Atlantic meridional overturning circulation.

  19. Development of fluid overpressures in crustal faults and implications for earthquakes mechanics

    NASA Astrophysics Data System (ADS)

    Leclère, Henri; Cappa, Frédéric; Faulkner, Daniel; Armitage, Peter; Blake, Oshaine; Fabbri, Olivier

    2013-04-01

    The development and maintenance of fluid overpressures strongly influence the mechanical behavior of the crust and especially crustal fault zones. The mechanisms allowing fluid pressure build-up are still open questions, and their influence on tectonic and fault weakening processes remain unclear. The determination of the hydraulic and mechanical properties of crustal fault zone elements is a key aspect to improve our understanding of the fluid-tectonic interactions and more particularly the role of fluids in fault mechanics and earthquake triggering. Here we address this question combining geological observations, laboratory experiments and hydromechanical models of an active crustal fault-zone in the Ubaye-Argentera area (southeastern France). Previous studies showed that the fluids located in the fault zone developed overpressures between 7 and 26 MPa, that triggered intense seismic swarms (i.e. 16,000 events in 2003-2004) (Jenatton et al., 2007; Daniel et al., 2011; Leclère et al., 2012). The fault-zone studied here is located in the Argentera external crystalline massif and is connected to regional NW-SE steeply-dipping dextral strike-slip faults with an offset of several kilometers. The fault zone cuts through migmatitic gneisses composed of quartz, K-feldspar, plagioclase, biotite and minor muscovite. It exposes several anastomosed core zones surrounded by damage zones with a pluri-decametric total width. The core zones are made up of centimetric to pluridecimetric phyllosilicate-rich gouge layers while the damage zones are composed of pluri-metric phyllonitic rock derived from mylonite. The permeability and elastic moduli of the host rock, damage zone and fault core were measured from plugs with a diameter of 20 mm and lengths between 26 to 51 mm, using a high-pressure hydrostatic fluid-flow apparatus. Measurements were made with confining pressures ranging from 30 to 210 MPa and using argon pore fluid pressure of 20 MPa. Data show a variation of the permeability values of one order of magnitude between host rock and fault zone and a decrease of 50% of the elastic properties between host rock and core zone. The heterogeneity of properties is related to the development of different microstructures across the fault-zone during the tectonic history. From these physical property values and the fault zone architecture, we analyze the effects of sudden mechanical loading on the development of fluid overpressures in fault-zone. To do this, we use a series of 1-D hydromechanical numerical models to show that sudden mechanical stress increase is a viable mechanism for fluid overpressuring in fault-zone with spatially-varying elastic and hydraulic properties. Based on these results, we discuss the implications for earthquake triggering.on crustal-scale faults.

  20. Structural and microstructural evolution of fault zones in Cretaceous poorly lithified sandstones of the Rio do Peixe basin, Paraiba, NE Brazil

    NASA Astrophysics Data System (ADS)

    Balsamo, Fabrizio; Nogueira, Francisco; Storti, Fabrizio; Bezerra, Francisco H. R.; De Carvalho, Bruno R.; André De Souza, Jorge

    2017-04-01

    In this contribution we describe the structural architecture and microstructural features of fault zones developed in Cretaceous, poorly lithified sandstones of the Rio do Peixe basin, NE Brazil. The Rio do Peixe basin is an E-W-trending, intracontinental half-graben basin developed along the Precambrian Patos shear zone where it is abutted by the Porto Alegre shear zone. The basin formed during rifting between South America and Africa plates and was reactivated and inverted in a strike-slip setting during the Cenozoic. Sediments filling the basin consist of an heterolithic sequence of alternating sandstones, conglomerates, siltstone and clay-rich layers. These lithologies are generally poorly lithified far from the major fault zones. Deformational structures in the basin mostly consist of deformation band-dominated fault zones. Extensional and strike-slip fault zones, clusters of deformation bands, and single deformation bands are commonly well developed in the proximity of the basin-boundary fault systems. All deformation structures are generally in positive relief with respect to the host rocks. Extensional fault zones locally have growth strata in their hangingwall blocks and have displacement generally <10 m. In map view, they are organized in anastomosed segments with high connectivity. They strike E-W to NE-SW, and typically consist of wide fault cores (< 1 m in width) surrounded by up to few-meter wide damage zones. Fault cores are characterized by distributed deformation without pervasive strain localization in narrow shear bands, in which bedding is transposed into foliation imparted by grain preferred orientation. Microstructural observations show negligible cataclasis and dominant non-destructive particulate flow, suggesting that extensional fault zones developed in soft-sediment conditions in a water-saturated environment. Strike-slip fault zones commonly overprint the extensional ones and have displacement values typically lower than about 2 m. They are arranged in conjugate system consisting of NNW-SSE- and WNW-ESE-trending fault zones with left-lateral and right-lateral kinematics, respectively. Compared to extensional fault zones, strike-slip fault zones have narrow fault cores (few cm thick) and up to 2-3 m-thick damage zones. Microstructural observations indicate that cataclasis with pervasive grain size reduction is the dominant deformation mechanisms within the fault core, thus suggesting that late-stage strike-slip faulting occurred when sandstones were partially lithified by diagenetic processes. Alternatively, the change in deformation mechanisms may indicate faulting at greater depth. Structural and microstructural data suggest that fault zones in the Rio do Peixe basin developed in a progression from "ductile" (sensu Rutter, 1986) to more "brittle" deformation during changes from extensional to strike-slip kinematic fields. Such rheological and stress configuration evolution is expected to impact the petrophysical and permeability structure of fault zones in the study area.

  1. Orbital forcing on marine organic and carbonate production in the Indo-Pacific during the last 1.7 Myrs

    NASA Astrophysics Data System (ADS)

    Beaufort, L.; Bolton, C. T.; Mazur, J. C.; Gally, Y.

    2017-12-01

    The Western Pacific Warm Pool (WPWP) is a place of intense energy storage and redistribution … It is climatically relatively stable with, for example, little seasonality in sea surface temperature (SST). However, significant changes occur in the vertical structure of the upper ocean related to El Nino Southern Oscillation dynamics. These changes significantly impact the phytoplankton communities that are adapted to specific conditions in different layers of the photic zone, and are precisely recorded in the sediments by microfossils such as those produced by coccolithophores. Core MD97-2540 was retrieved on the Eauripik rise in the WPWP and covers, in 37 metres, a time interval spanning the last 1.7 million years (Myrs). Two samples were prepared (settling slide) every 5 cm. The entire coccolith assemblage was counted and identified automatically in each sample using the software SYRACO. Morphometric characteristics (length, thickness, mass…) were measured on every coccolith. Primary productivity (PP) was estimated using a transfer function based on the percentage of the species Florisphaera profunda. Changes in mass (M) of the dominant coccolithophore group, the Noelarhabdaceae (including Emilianiaand Gephyrocapsa), were studied. We also estimated the coccolithophore carbonate export production (CCEP). Those 3 parameters (PP, M and CCEP) show a significant imprint of precession and eccentricity of the Earth's orbit. In contrast to SST and planktic foraminiferal oxygen isotopes measured on the same samples, the coccolithophore parameters exhibit significant 400 kyr cyclicity, and the 100 kyr cycle is present prior to its appearance in the SST and oxygen isotope records 0.9 Myrs ago. This indicates direct forcing by insolation and seasonality on the WPWP, independent of global climatic variations. A discussion of the relationship between the Indian Monsoon and ENSO on orbital and longer timescales is enabled via comparisons with PP and CCEP measured at a similar resolution in a core from the southernmost Bay of Bengal, IODP Site U1443.

  2. Annual, orbital, and enigmatic variations in tropical oceanography recorded by the Equatorial Atlantic amplifier

    NASA Technical Reports Server (NTRS)

    Mcintyre, Andrew

    1992-01-01

    Equatorial Atlantic surface waters respond directly to changes in zonal and meridional lower tropospheric winds forced by annual insolation. This mechanism has its maximum effect along the equatorial wave guide centered on 10 deg W. The result is to amplify even subtle tropical climate changes such that they are recorded by marked amplitude changes in the proxy signals. Model realizations, NCAR AGCM and OGCM for 0 Ka and 126 Ka (January and July), and paleoceanographic proxy data show that these winds are also forced by insolation changes at the orbital periods of precession and obliquity. Perhelion in boreal summer produces a strengthened monsoon, e.g., increase meridional and decrease zonal wind stress. This reduces oceanic Ekman divergence and thermocline/nutricline shallowing. The result, in the equatorial Atlantic, is reduced primary productivity and higher euphotic zone temperatures; vice versa for perihelion in boreal winter. Perihelion is controlled by precession. Thus, the dominant period in spectra from a stacked SST record (0-252 Ka BP) at the site of the equatorial Atlantic amplifier is 23 Ky (53 percent of the total variance). This precessional period is coherent (k = 0.920) and in phase with boreal summer insolation. Oscillations of shorter period are present in records from cores sited beneath the amplifier region. These occur between 12.5 and 74.5 Ka BP, when eccentricity modulation of precession is at a minimum. Within this time interval there are 21 cycles with mean periods of 3.0 plus or minus 0.5 Ky. Similar periods have been documented from high latitude regions, e.g., Greenland ice cores from Camp Century. The Camp Century signal in this same time interval contains 21 cycles. A subjective correlation was made between the Camp Century and the equatorial records; the signals were statistically similar, r = 0.722 and k = 0.960.

  3. Live foraminiferal faunas (Rose Bengal stained) from the northern Arabian Sea: links with bottom-water oxygenation

    NASA Astrophysics Data System (ADS)

    Caulle, C.; Koho, K. A.; Mojtahid, M.; Reichart, G. J.; Jorissen, F. J.

    2013-09-01

    Live (Rose Bengal stained) benthic foraminifera from the Murray Ridge, within and below the northern Arabian Sea Oxygen Minimum Zone (OMZ), were studied in order to determine the relationship between faunal composition, bottom-water oxygenation (BWO), pore-water chemistry and organic matter (organic carbon and phytopigment) distribution. A series of multicores were recovered from a ten-station oxygen (BWO: 2-78 μM) and bathymetric (885-3010 m depth) transect during the winter monsoon in January 2009. Foraminifera were investigated from three different size fractions (63-125 μm, 125-150 μm and > 150 μm). The larger foraminifera (> 125 μm) were strongly dominated by agglutinated species (e.g. Reophax spp.). In contrast, in the 63-125 μm fraction, calcareous taxa were more abundant, especially in the core of the OMZ, suggesting an opportunistic behaviour. On the basis of a Principal Component Analysis, three foraminiferal groups were identified, reflecting the environmental parameters along the study transect. The faunas from the shallowest stations, in the core of the OMZ (BWO: 2 μM), were composed of "low oxygen" species, typical of the Arabian Sea OMZ (e.g., Rotaliatinopsis semiinvoluta, Praeglobobulimina spp. , Bulimina exilis, Uvigerina peregrina typeparva). These taxa are adapted to the very low BWO conditions and to high phytodetritus supplies. The transitional group, typical for the lower part of the OMZ (BWO: 5-16 μM), is composed of more cosmopolitan taxa tolerant to low-oxygen concentrations (Globocassidulina subglobosa, Ehrenbergina trigona). Below the OMZ (BWO: 26-78 μM), where food availability is more limited and becomes increasingly restricted to surficial sediments, more cosmopolitan calcareous taxa were present, such as Bulimina aculeata, Melonis barleeanus, Uvigerina peregrina and Epistominella exigua. Miliolids were uniquely observed in this last group, reflecting the higher BWO. At these deeper sites, the faunas exhibit a clear depth succession of superficial, intermediate and deep-infaunal microhabitats, because of the deeper oxygen and nitrate penetration into the sediment.

  4. Geochemical and microstructural evidence for interseismic changes in fault zone permeability and strength, Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Boulton, Carolyn; Menzies, Catriona D.; Toy, Virginia G.; Townend, John; Sutherland, Rupert

    2017-01-01

    Oblique dextral motion on the central Alpine Fault in the last circa 5 Ma has exhumed garnet-oligoclase facies mylonitic fault rocks from ˜35 km depth. During exhumation, deformation, accompanied by fluid infiltration, has generated complex lithological variations in fault-related rocks retrieved during Deep Fault Drilling Project (DFDP-1) drilling at Gaunt Creek, South Island, New Zealand. Lithological, geochemical, and mineralogical results reveal that the fault comprises a core of highly comminuted cataclasites and fault gouges bounded by a damage zone containing cataclasites, protocataclasites, and fractured mylonites. The fault core-alteration zone extends ˜20-30 m from the principal slip zone (PSZ) and is characterized by alteration of primary phases to phyllosilicate minerals. Alteration associated with distinct mineral phases occurred proximal the brittle-to-plastic transition (T ≤ 300-400°C, 6-10 km depth) and at shallow depths (T = 20-150°C, 0-3 km depth). Within the fault core-alteration zone, fractures have been sealed by precipitation of calcite and phyllosilicates. This sealing has decreased fault normal permeability and increased rock mass competency, potentially promoting interseismic strain buildup.

  5. Mapping the core journals of the physical therapy literature*

    PubMed Central

    Fell, Dennis W; Buchanan, Melanie J; Horchen, Heidi A; Scherr, Joel A

    2011-01-01

    Objectives: The purpose of this study was to identify (1) core journals in the literature of physical therapy, (2) currency of references cited in that literature, and (3) online databases providing the highest coverage rate of core journals. Method: Data for each cited reference in each article of four source journals for three years were recorded, including type of literature, year of publication, and journal title. The journal titles were ranked in descending order according to the frequency of citations and divided into three zones using Bradford's Law of Scattering. Four databases were analyzed for coverage rates of articles published in the Zone 1 and Zone 2 journals in 2007. Results: Journal articles were the most frequently cited type of literature, with sixteen journals supplying one-third of the cited journal references. Physical Therapy was the most commonly cited title. There were more cited articles published from 2000 to 2007 than in any previous full decade. Of the databases analyzed, CINAHL provided the highest coverage rate for Zone 1 2007 publications. Conclusions: Results were similar to a previous study, except for changes in the order of Zone 1 journals. Results can help physical therapists and librarians determine important journals in this discipline. PMID:21753912

  6. The Pasamonte unequilibrated eucrite: Pyroxene REE systematic and major-, minor-, and trace-element zoning. [Abstract only

    NASA Technical Reports Server (NTRS)

    Pun, A.; Papike, J. J.

    1994-01-01

    We are evaluating the trace-element concentrations in the pyroxenes of Pasamonte. Pasamonte is a characteristic member of the main group eucrites, and has recently been redescribed as a polymict eucrite. Our Pasamonte sample contained eucritic clasts with textures ranging from subophitic to moderately coarse-grained. This study concentrates on pyroxenes from an unequilibrated, coarse-grained eucrite clast. Major-, minor-, and trace-element analyses were measured for zoned pyroxenes in the eucritic clast of Pasamonte. The major- and minor-element zoning traverses were measured using the JEOL 733 electron probe with an Oxford-Link imaging/analysis system. Complemenatry trace elements were then measured for the core and rim of each of the grains by SIMS. The trace elements analyzed consisted of eight REE, Sr, Y, and Zr. These analyses were performed on a Cameca 4f ion probe. The results of the CI chondrite normalized (average CI trace-element analyses for several grains and the major- and minor-element zoning patterns from a single pyroxene grain are given. The Eu abundance in the cores of the pyroxenes represents the detection limit and therefore the (-Eu) anomaly is a minimum. Major- and minor-element patterns are typical for igneous zoning. Pyroxene cores are Mg enriched, whereas the rims are enriched in Fe and Ca. Also, Ti and Mn are found to increase, while Cr and Al generally decrease in core-to-rim traverses. The cores of the pyroxenes are more depleted in the Rare Earth Elements (REE) than the rims. Using the minor- and trace-element concentrations of bulk Pasamonte and the minor- and trace-element concentrations from the cores of the pyroxenes in Pasamonte measured in this study, we calculated partition coefficients between pyroxene and melt. This calculation assumes that bulk Pasamonte is representative of a melt composition.

  7. Early Tertiary Anaconda metamorphic core complex, southwestern Montana

    USGS Publications Warehouse

    O'Neill, J. M.; Lonn, J.D.; Lageson, D.R.; Kunk, Michael J.

    2004-01-01

    A sinuous zone of gently southeast-dipping low-angle Tertiary normal faults is exposed for 100 km along the eastern margins of the Anaconda and Flint Creek ranges in southwest Montana. Faults in the zone variously place Mesoproterozoic through Paleozoic sedimentary rocks on younger Tertiary granitic rocks or on sedimentary rocks older than the overlying detached rocks. Lower plate rocks are lineated and mylonitic at the main fault and, below the mylonitic front, are cut by mylonitic mesoscopic to microscopic shear zones. The upper plate consists of an imbricate stack of younger-on-older sedimentary rocks that are locally mylonitic at the main, lowermost detachment fault but are characteristically strongly brecciated or broken. Kinematic indicators in the lineated mylonite indicate tectonic transport to the east-southeast. Syntectonic sedimentary breccia and coarse conglomerate derived solely from upper plate rocks were deposited locally on top of hanging-wall rocks in low-lying areas between fault blocks and breccia zones. Muscovite occurs locally as mica fish in mylonitic quartzites at or near the main detachment. The 40Ar/39Ar age spectrum obtained from muscovite in one mylonitic quartzite yielded an age of 47.2 + 0.14 Ma, interpreted to be the age of mylonitization. The fault zone is interpreted as a detachment fault that bounds a metamorphic core complex, here termed the Anaconda metamorphic core complex, similar in age and character to the Bitterroot mylonite that bounds the Bitterroot metamorphic core complex along the Idaho-Montana state line 100 km to the west. The Bitterroot and Anaconda core complexes are likely components of a continuous, tectonically integrated system. Recognition of this core complex expands the region of known early Tertiary brittle-ductile crustal extension eastward into areas of profound Late Cretaceous contractile deformation characterized by complex structural interactions between the overthrust belt and Laramide basement uplifts, overprinted by late Tertiary Basin and Range faulting. ?? 2004 NRC Canada.

  8. Regional changes in extreme monsoon rainfall deficit and excess in India

    NASA Astrophysics Data System (ADS)

    Pal, Indrani; Al-Tabbaa, Abir

    2010-04-01

    With increasing concerns about climate change, the need to understand the nature and variability of monsoon climatic conditions and to evaluate possible future changes becomes increasingly important. This paper deals with the changes in frequency and magnitudes of extreme monsoon rainfall deficiency and excess in India from 1871 to 2005. Five regions across India comprising variable climates were selected for the study. Apart from changes in individual regions, changing tendencies in extreme monsoon rainfall deficit and excess were also determined for the Indian region as a whole. The trends and their significance were assessed using non-parametric Mann-Kendall technique. The results show that intra-region variability for extreme monsoon seasonal precipitation is large and mostly exhibited a negative tendency leading to increasing frequency and magnitude of monsoon rainfall deficit and decreasing frequency and magnitude of monsoon rainfall excess.

  9. Glacial/Interglacial climate and vegetation history of North-East of Brazil during the last 1.5 Ma and their connection to the Amazonian rainforest

    NASA Astrophysics Data System (ADS)

    Kern, A.; Baker, P. A.; Cruz, F. W., Sr.; Dwyer, G. S.; Silva, C. G.; Oliveira, A. S.; Willard, D. A.

    2016-12-01

    Northeastern (NE) Brazil is characterized today by a dry climate and vegetation, which separate the humid forests of the Amazonia from those along the Atlantic coast. Species composition and molecular genetics suggest phases of exchange between these forests in the past and the NE region is the most likely corridor for migration. However, the vegetation history of the NE is largely unknown, leaving questions on the impact of glacial stages on the forest composition and the timing of cyclic transitions from tropical rainforest to semi-arid vegetation or vice versa. Here, we present preliminary results from a marine record recovered from the equatorial Brazilian continental margin covering the last 1.5 Ma. Pollen-based reconstructions across several glacial and interglacial stages provide data on vegetation expansion and retraction of these different biomes. Vegetation changes during drying/cooling events in the NE, which may be linked to movements of the Inter Tropical Convergence Zone or/and intensities of the South American Monsoon System. Increases in terrestrial input to the core site during these climatic events may be of NE origin or Amazon origin. In the latter case, these increases would mark a decrease or reversal of the strength of the North Brazil Current. This study is funded by FAPESP projects 2015/18314-7, 2014/05582-0 and the FAPESPBIOTA/NSF-Dimensions project 2012/50260-6).

  10. The Effect of the Divergent Circulation on Some Aspects of the 1978/79 Southern Hemisphere Monsoon.

    NASA Astrophysics Data System (ADS)

    Chen, Tsing-Chang; Yen, Ming-Cheng; van Loon, Harry

    1989-11-01

    Two aspects of the 1978/79 Southern Hemisphere (SH) monsoon are examined: (i) A double-low (double-high) structure in the lower (upper) levels of the troposphere, which appears over the region adjacent to Australia; and (ii) the poleward shift in the Australian jet after the monsoon onset. Emphasis is given to the effect of the divergent circulation on these two aspects of the SH monsoon. The data generated by the FGGE IIIb analyses at the European Centre for Medium Range Weather Forecasts and the Geophysical Fluid Dynamics Laboratory are used in this study.The three-dimensional structure of the SH monsoon circulation after the monsoon onset matches well with Gill's solution based upon a heat source symmetric with respect to the equator. His solution contains the coupling of an eastward-propagating Kelvin wave and a westward-propagating mixed gravity-Rossby wave over the heat source region. Water vapor and heat budget analyses for the SH monsoon were performed to show how this heat source is maintained by the monsoon circulation. The contrast between the theories of Gill and Silva Dias et al. is discussed in order to explain the presence of the SH monsoon over the region adjacent to Australia. The poleward shift of the Australian subtropical jet stream following the SH monsoon onset is illustrated by an analysis of the energetics of the divergent and rotational flows; namely, the interaction between these two flow components and the possible adjustment of the ageostrophic circulation caused by the thermal field change after the SH monsoon onset.

  11. Community level perceptions of the monsoon onset, withdrawal and climatic trends in Bangladesh

    NASA Astrophysics Data System (ADS)

    Reeve, M. A.; Abu Syed, M. D.; Hossain, P. R.; Maainuddi, G.; Mamnun, N.

    2012-04-01

    A structured questionnaire study was carried out in 6 different regions in Bangladesh in order to give insight into how the different communities define the monsoon. The respondents were asked how they define the monsoon onset and withdrawal, and by how much these can vary from year to year. They were also asked about how they perceive changes in onset and withdrawal dates and total monsoonal rainfall during the past 20 years. Bangladesh is a developing country with a large proportion of the population living in rural areas and employed in the agricultural sector. It is foreseen that these communities will be most affected by changes in the climate. These groups were considered to be the main stakeholders when considering climate change, due to the direct influence the monsoon has on their livelihood and the food supply for the entire nation. Agricultural workers were therefore the main group targeted in this study. The main aim of the study was to create a framework for defining the monsoon in order to increase the usability of results in future impact-related studies. Refining definitions according to the perceptions of the main stakeholders helps to achieve this goal. Results show that rainfall is the main parameter used in defining the monsoon onset and withdrawal. This is possibly intuitive, however the monsoon onset was considered to be considerably earlier than previous scientific studies. This could be due to pre-monsoonal rainfall, however the respondents defined this type of rainfall separately to what they called the monsoon. The monsoon is considered to start earliest in the Sylhet region in northeast Bangladesh.

  12. Transient Climate Impacts for Scenarios of Aerosol Emissions from Asia: A Story of Coal versus Gas

    DOE PAGES

    Grandey, Benjamin S.; Cheng, Haiwen; Wang, Chien

    2016-04-06

    Fuel usage is an important driver of anthropogenic aerosol emissions. In Asia, it is possible that aerosol emissions may increase if business continues as usual, with economic growth driving an increase in coal burning. But it is also possible that emissions may decrease rapidly as a result of the widespread adoption of cleaner technologies or a shift toward noncoal fuels, such as natural gas. In this study, the transient climate impacts of two aerosol emissions scenarios are investigated: a representative concentration pathway 4.5 (RCP4.5) control, which projects a decrease in anthropogenic aerosol emissions, and a scenario with enhanced anthropogenic aerosolmore » emissions from Asia. A coupled atmosphere–ocean configuration of the Community Earth System Model (CESM), including the Community Atmosphere Model, version 5 (CAM5), is used. Three sets of initial conditions are used to produce a three-member ensemble for each scenario. Enhanced Asian aerosol emissions are found to exert a large cooling effect across the Northern Hemisphere, partially offsetting greenhouse gas–induced warming. Aerosol-induced suppression of the East Asian and South Asian summer monsoon precipitation occurs. The enhanced Asian aerosol emissions also remotely impact precipitation in other parts of the world. Over Australia, austral summer monsoon precipitation is enhanced, an effect associated with a southward shift of the intertropical convergence zone, driven by the aerosol-induced cooling of the Northern Hemisphere. Over the Sahel, West African monsoon precipitation is suppressed, likely via a weakening of the West African westerly jet. These results indicate that fuel usage in Asia, through the consequent aerosol emissions and associated radiative effects, might significantly influence future climate both locally and globally.« less

  13. Niger River Discharge and the Connection to the West African Monsoon Over the Last 25 kyr

    NASA Astrophysics Data System (ADS)

    Patten, J.; Marcantonio, F.; Slowey, N. C.; Schmidt, M. W.; Parker, A. O.; Thomas, D. J.

    2016-12-01

    The intensity of the West African monsoon is directly tied to the shifting of the Inter-Tropical Convergence Zone and global-scale climate variability. As the West African monsoon varies through time, it affects the precipitation that occurs within the Niger River basin and the Niger River's discharge into the eastern equatorial Atlantic Ocean. The accumulation of marine sediments on the continental slope offshore of the Niger Delta reflects these processes. We seek to better understand how related environmental processes have varied as climate and sea level changed during the latter part of the last glacial-interglacial cycle. Here we present results from our ongoing investigation of sediments collected offshore of the Niger Delta that reflect such changes. The concentrations of 230Th, 232Th, and 234U in the sediments have been measured and combined with ages from radiocarbon dates and planktonic foraminiferal δ18O stratigraphies to estimate how the rate of sediment accumulation has varied through time. This record is considered together with measurements of sediment CaCO3 content and grain-size distribution to better understand the relative importance of environmental processes that control the flux of sediments and thorium to the seafloor - scavenging by particles settling through the water column versus the transport of sediments downslope by turbidity flows. We present xs230Th-derived 232Th fluxes that we suggest approximate the amount of fine-grained detrital material delivered from the Niger River to our sites. We anticipate that the importance of these competing processes will vary as climate/sea-level change influences the flux of sediments from the Niger River and the transport of these sediments to the slope.

  14. Study of Aerosol Optical Properties Over Two Sites in the Foothills of the Central Himalayas

    NASA Astrophysics Data System (ADS)

    Rupakheti, D.; Kang, S.; Cong, Z.; Rupakheti, M.; Tripathee, L.; Panday, A. K.; Holben, B.

    2018-04-01

    Atmospheric aerosol possesses impacts on climate system and ecological environments, human health and agricultural productivity. The environment over Himalayas and Tibetan Plateau region are continuously degraded due to the transport of pollution from the foothills of the Himalayas; mostly the Indo-Gangetic Plain (IGP). Thus, analysis of aerosol optical properties over two sites; Lumbini and Kathmandu (the southern slope of central Himalayas) using AERONET's CIMEL sun photometer were conducted in this study. Aerosol optical depth (AOD at 500 nm), angstrom exponent (α or AE), volume size distribution (VSD), single scattering albedo (SSA) and asymmetry parameter (AP) were studied for 2013-2014 and the average AOD was found to be: 0.64 ± 0.41 (Lumbini) and 0.45 ± 0.30 (Kathmandu). The average AE was found to be: 1.25 ± 0.24 and 1.26 ± 0.18 respectively for two sites. The relation between AOD and AE was used to discriminate the aerosol types over these sites which indicated anthropogenic, mixed and biomass burning origin aerosol constituted the major aerosol types in Lumbini and Kathmandu. A clear bi-modal distribution of aerosol volume size was observed with highest volume concentration during the post-monsoon season in fine mode and pre-monsoon season in coarse mode (Lumbini) and highest value over both modes during pre-monsoon season in Kathmandu. The single scattering albedo (SSA) and asymmetry parameter (AP) analyses suggested aerosols over the Himalayan foothills sites are dominated by absorbing and anthropogenic aerosols from urban and industrial activities and biomass burning. Long-term studies are essential to understand and characterize the nature of aerosol over this research gap zone.

  15. Controlling factors of the OMZ in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Resplandy, L.; Lévy, M.; Bopp, L.; Echevin, V.; Pous, S.; Sarma, V. V. S. S.; Kumar, D.

    2012-05-01

    In-situ observations indicate that the Arabian Sea oxygen minimum zone (OMZ) is only weakly influenced by the strong seasonal cycle of ocean dynamic and biogeochemistry forced by the asian monsoon system and it is spatially decorrelated from the coastal upwelling systems where the biological production is the strongest. In this study we examine the factors controlling the seasonality and the spatial distribution of the OMZ in the Arabian Sea using a coupled bio-physical model. We find that the oxygen concentration in the OMZ displays a seasonal cycle with an amplitude of 5-15 % of the annual mean oxygen concentration. The OMZ is ventilated by lateral ventilation along the western boundary current and in the coastal undercurrent along India during the summer monsoon and by coastal downwelling and negative Ekman pumping during the fall intermonsoon and winter monsoon. This ventilation is counterbalanced by strong coastal upwelling and positive Ekman pumping of low oxygen waters at the base of the OMZ during the spring intermonsoon. Although the factors controlling the OMZ seasonality are associated with the men circulation, we find that mesoscale dynamics modulates them by limiting the vertical ventilation during winter and enhancing it through lateral advection during the rest of the year. Processes explaining the establishment and spatial distribution of the OMZ were quantified using a perturbation experiment initialised with no OMZ. As expected, the oxygen depletion is triggered by strong biological activity in central Arabian Sea during winter and in western and eastern boundary coastal upwelling systems during summer. We find that the 3-D ocean dynamic largely controls the spatial distribution of the OMZ. The eastward shift ensues from the northward lateral transport of ventilated waters along the western and eastern coasts and the advection offshore of low oxygen waters formed in the upwelling system.

  16. Late Mio-Pliocene chemical weathering of the Yulong porphyry Cu deposit in the eastern Tibetan Plateau constrained by goethite (U-Th)/He dating: Implication for Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Deng, Xiao-Dong; Li, Jian-Wei; Shuster, David L.

    2017-08-01

    Chemical weathering has provided a potentially important feedback between tectonic forcing and climate evolution of the Asian continent, although precise constraints on the timing and history of weathering are only variably documented. Here, we use goethite (U-Th)/He and 4He/3He geochronology to constrain the timing and rates of chemical weathering at the Yulong porphyry Cu deposit on the eastern Tibetan Plateau. Goethite grains have (U-Th)/He ages ranging from 6.73 ± 0.51 to 0.53 ± 0.04 Ma that correlate with independent paleoclimatic proxies inferred from supergene Mn-oxides and loess deposits under variable tectonic regimes and vegetation zones over the southeastern Asia. This correlation indicates that regional climatic conditions, especially monsoonal precipitation, controlled chemical weathering and goethite precipitation in a vast area of southeastern Asia. The goethite ages suggest that the Asian summer monsoon was relatively strong from 7 to 4.6 Ma, but weakened between 4.6 and 4 Ma, and then significantly intensified from 4 to 2 Ma. The precipitation ages of goethites collected along a 100-m-thick weathering profile decrease with depth, and indicate a downward propagation of the weathering front at rates of <6.7, 53.5 ± 10.8, and 4.8 ± 0.6 m/Ma during the intervals of 7-4, 4-2, and 2-0.7 Ma, respectively. The rapid propagation of weathering front during 4-2 Ma was caused by abrupt lowering of the water table, which was possibly related to local surface uplift or reorganization of the river systems in southeastern Tibet during this period.

  17. Investigating the haze transport from 1997 biomass burning in Southeast Asia: its impact upon Singapore

    NASA Astrophysics Data System (ADS)

    Koe, Lawrence C. C.; Arellano, Avelino F.; McGregor, John L.

    The 1997 Indonesia forest fires was an environmental disaster of exceptional proportions. Such a disaster caused massive transboundary air pollution and indiscriminate destruction of biodiversity in the world. The immediate consequence of the fires was the production of large amounts of haze in the region, causing visibility and health problems within Southeast Asia. Furthermore, fires of these magnitudes are potential contributors to global warming and climate change due to the emission of large amounts of greenhouse gases and other pyrogenic products.The long-range transport of fire-related haze in the region is investigated using trajectories from the CSIRO Division of Atmospheric Research Limited Area Model (DARLAM). Emission scenarios were constructed for hotspot areas in Sumatra and Kalimantan for the months of September and October 1997 to determine the period and fire locations most critical to Singapore. This study also examines some transport issues raised from field observations. Results show that fires in the coastal areas of southeast Sumatra and southwest Kalimantan can be potential contributors to transboundary air pollution in Singapore. Singapore was directly affected by haze from these areas whereas Kuala Lumpur was heavily affected by the haze coming from Sumatra. In most cases, Singapore was more affected by fires from Kalimantan than was Kuala Lumpur. This was mainly a result of the shifting of monsoons. The transition of monsoons resulted in weaker low-level winds and shifted convergence zones near to the southeast of Peninsular Malaysia. In addition to severe drought and massive fire activity in 1997, the timing of the monsoon transition has a strong influence on haze transport in the region.

  18. Core segment 15008 - Regolith stratigraphy at Apennine Front Station 2 using multispectral imaging

    NASA Technical Reports Server (NTRS)

    Pieters, C. M.; Meloy, A.; Hawke, B. R.; Nagle, J. S.

    1982-01-01

    High precision multispectral images for Apennine Front core segment 15008 are presented. These data have a spatial resolution less than approximately 0.5 mm and are analyzed for their compositional information using image analysis techniques. The stratigraphy of the regolith sampled by 15008 is documented here as three distinct zones, the most prominent of which is a feldspathic fragment-rich zone with a chaotic fabric that occurs between 10 and 18 cm depth. It is suggested that this material is the primary rim crest deposit of the local 10 m crater. Above this zone the stratigraphy is more horizontal in nature. Below this zone the soil is observed to be relatively homogeneous with no distinctive structure to 23 cm depth.

  19. San Andreas fault zone drilling project: scientific objectives and technological challenges

    USGS Publications Warehouse

    Hickman, Stephen; Younker, Leland; Zobeck, Mark; Cooper, George; ,

    1994-01-01

    We are leading a new international initiative to conduct scientific drilling within the San Andreas fault zone at depths of up to 10 km. This project is motivated by the need to understand the physical and chemical processes operating within the fault zone and to answer fundamental questions about earthquake generation along major plate-boundary faults. Through an integrated program of coring, fluid sampling, in-situ and laboratory experimentation and long-term monitoring, we hope to provide fundamental constraints on the structure, composition, mechanical behavior and physical state of the San Andreas fault system at depths comparable to the nucleation zones of great earthquakes. The drilling, sampling and observational requirements needed to ensure the success of this project are stringent. These include: 1) drilling stable vertical holes to depths of about 9 km in fractured rock at temperatures of up to 300??C; 2) continuous coring of inclined holes branched off these vertical boreholes to intersect the fault at depths of 3, 6 and 9 km; 3) conducting sophisticated borehole geophysical measurements and fluid/rock sampling at high temperatures and pressures; and 4) instrumenting some or all of these inclined core holes for continuous monitoring of seismicity and a broad range of physical and chemical properties over periods of up to several decades. For all of these tasks, because of the overpressured clay-rich formations anticipated within the fault zone at depth, we expect to encounter difficult drilling, coring and hole-completion conditions in the regions of greatest scientific interest.

  20. San Andreas fault zone drilling project: scientific objectives and technological challenges

    USGS Publications Warehouse

    Hickman, S.H.; Younker, L.W.; Zoback, M.D.

    1995-01-01

    We are leading a new international initiative to conduct scientific drilling within the San Andreas fault zone at depths of up to 10 km. This project is motivated by the need to understand the physical and chemical processes operating within the fault zone and to answer fundamental questions about earthquake generation along major plate-boundary faults. Through a comprehensive program of coring, fluid sampling, downhole measurements, laboratory experimentation, and long-term monitoring, we hope to obtain critical information on the structure, composition, mechanical behavior and physical state of the San Andreas fault system at depths comparable to the nucleation zones of great earthquakes. The drilling, sampling and observational requirements needed to ensure the success of this project are stringent. These include: 1) drilling stable vertical holes to depths of about 9 km in fractured rock at temperatures of up to 300°C; 2) continuous coring and completion of inclined holes branched off these vertical boreholes to intersect the fault at depths of 3, 6, and 9 km; 3) conducting sophisticated borehole geophysical measurements and fluid/rock sampling at high temperatures and pressures; and 4) instrumenting some or all of these inclined core holes for continuous monitoring of earthquake activity, fluid pressure, deformation and other parameters for periods of up to several decades. For all of these tasks, because of the overpressured clay-rich formations anticipated within the fault zone at depth, we expect to encounter difficult drilling, coring and hole-completion conditions in the region of greatest scientific interest.

Top