Sample records for core network engineering

  1. 78 FR 775 - Goodman Networks, Inc. Core Network Engineering (Deployment Engineering) Division Alpharetta, GA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ...,846B; TA-W-81,846C; TA-W-81,846D] Goodman Networks, Inc. Core Network Engineering (Deployment Engineering) Division Alpharetta, GA; Goodman Networks, Inc. Core Network Engineering (Deployment Engineering) Division Hunt Valley, MD; Goodman Networks, Inc. Core Network Engineering (Deployment Engineering) Division...

  2. 78 FR 12359 - Goodman Networks, Inc., Core Network Engineering (Deployment Engineering) Division Including...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ...., Core Network Engineering (Deployment Engineering) Division Including Workers in the Core Network Engineering (Deployment Engineering) Division in Alpharetta, GA, Hunt Valley, MD, Naperville, IL, and St... Reconsideration applicable to workers and former workers of Goodman Networks, Inc., Core Network Engineering...

  3. Network Coding on Heterogeneous Multi-Core Processors for Wireless Sensor Networks

    PubMed Central

    Kim, Deokho; Park, Karam; Ro, Won W.

    2011-01-01

    While network coding is well known for its efficiency and usefulness in wireless sensor networks, the excessive costs associated with decoding computation and complexity still hinder its adoption into practical use. On the other hand, high-performance microprocessors with heterogeneous multi-cores would be used as processing nodes of the wireless sensor networks in the near future. To this end, this paper introduces an efficient network coding algorithm developed for the heterogenous multi-core processors. The proposed idea is fully tested on one of the currently available heterogeneous multi-core processors referred to as the Cell Broadband Engine. PMID:22164053

  4. Mapping edge-based traffic measurements onto the internal links in MPLS network

    NASA Astrophysics Data System (ADS)

    Zhao, Guofeng; Tang, Hong; Zhang, Yi

    2004-09-01

    Applying multi-protocol label switching techniques to IP-based backbone for traffic engineering goals has shown advantageous. Obtaining a volume of load on each internal link of the network is crucial for traffic engineering applying. Though collecting can be available for each link, such as applying traditional SNMP scheme, the approach may cause heavy processing load and sharply degrade the throughput of the core routers. Then monitoring merely at the edge of the network and mapping the measurements onto the core provides a good alternative way. In this paper, we explore a scheme for traffic mapping with edge-based measurements in MPLS network. It is supposed that the volume of traffic on each internal link over the domain would be mapped onto by measurements available only at ingress nodes. We apply path-based measurements at ingress nodes without enabling measurements in the core of the network. We propose a method that can infer a path from the ingress to the egress node using label distribution protocol without collecting routing data from core routers. Based on flow theory and queuing theory, we prove that our approach is effective and present the algorithm for traffic mapping. We also show performance simulation results that indicate potential of our approach.

  5. 3D Printed Vascular Networks Enhance Viability in High-Volume Perfusion Bioreactor.

    PubMed

    Ball, Owen; Nguyen, Bao-Ngoc B; Placone, Jesse K; Fisher, John P

    2016-12-01

    There is a significant clinical need for engineered bone graft substitutes that can quickly, effectively, and safely repair large segmental bone defects. One emerging field of interest involves the growth of engineered bone tissue in vitro within bioreactors, the most promising of which are perfusion bioreactors. Using bioreactor systems, tissue engineered bone constructs can be fabricated in vitro. However, these engineered constructs lack inherent vasculature and once implanted, quickly develop a necrotic core, where no nutrient exchange occurs. Here, we utilized COMSOL modeling to predict oxygen diffusion gradients throughout aggregated alginate constructs, which allowed for the computer-aided design of printable vascular networks, compatible with any large tissue engineered construct cultured in a perfusion bioreactor. We investigated the effect of 3D printed macroscale vascular networks with various porosities on the viability of human mesenchymal stem cells in vitro, using both gas-permeable, and non-gas permeable bioreactor growth chamber walls. Through the use of 3D printed vascular structures in conjunction with a tubular perfusion system bioreactor, cell viability was found to increase by as much as 50% in the core of these constructs, with in silico modeling predicting construct viability at steady state.

  6. 3D Printed Vascular Networks Enhance Viability in High-Volume Perfusion Bioreactor

    PubMed Central

    Ball, Owen; Nguyen, Bao-Ngoc B.; Placone, Jesse K.; Fisher, John P.

    2016-01-01

    There is a significant clinical need for engineered bone graft substitutes that can quickly, effectively, and safely repair large segmental bone defects. One emerging field of interest involves the growth of engineered bone tissue in vitro within bioreactors, the most promising of which are perfusion bioreactors. Using bioreactor systems, tissue engineered bone constructs can be fabricated in vitro. However, these engineered constructs lack inherent vasculature and once implanted, quickly develop a necrotic core, where no nutrient exchange occurs. Here, we utilized COMSOL modeling to predict oxygen diffusion gradients throughout aggregated alginate constructs, which allowed for the computer-aided design of printable vascular networks, compatible with any large tissue engineered construct cultured in a perfusion bioreactor. We investigated the effect of 3D printed macroscale vascular networks with various porosities on the viability of human mesenchymal stem cells in vitro, using both gas-permeable, and non-gas permeable bioreactor growth chamber walls. Through the use of 3D printed vascular structures in conjunction with a tubular perfusion system bioreactor, cell viability was found to increase by as much as 50% in the core of these constructs, with in silico modeling predicting construct viability at steady state. PMID:27272210

  7. DARPA DTN Phase 3 Core Engineering Support

    NASA Technical Reports Server (NTRS)

    Torgerson, J. Leigh; Richard Borgen, Richard; McKelvey, James; Segui, John; Tsao, Phil

    2010-01-01

    This report covers the initial DARPA DTN Phase 3 activities as JPL provided Core Engineering Support to the DARPA DTN Program, and then further details the culmination of the Phase 3 Program with a systematic development, integration and test of a disruption-tolerant C2 Situation Awareness (SA) system that may be transitioned to the USMC and deployed in the near future. The system developed and tested was a SPAWAR/JPL-Developed Common Operating Picture Fusion Tool called the Software Interoperability Environment (SIE), running over Disruption Tolerant Networking (DTN) protocols provided by BBN and MITRE, which effectively extends the operational range of SIE from normal fully-connected internet environments to the mobile tactical edges of the battlefield network.

  8. Enhancing Image Processing Performance for PCID in a Heterogeneous Network of Multi-core Processors

    DTIC Science & Technology

    2009-09-01

    TFLOPS of Playstation 3 (PS3) nodes with IBM Cell Broadband Engine multi-cores and 15 dual-quad Xeon head nodes. The interconnect fabric includes... 4   3. INFORMATION MANAGEMENT FOR PARALLELIZATION AND...STREAMING............................................................. 7  4 . RESULTS

  9. PIV Logon Configuration Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Glen Alan

    This document details the configurations and enhancements implemented to support the usage of federal Personal Identity Verification (PIV) Card for logon on unclassified networks. The guidance is a reference implementation of the configurations and enhancements deployed at the Los Alamos National Laboratory (LANL) by Network and Infrastructure Engineering – Core Services (NIE-CS).

  10. NASA CORE - A Worldwide Distribution Center for Educational Materials.

    NASA Astrophysics Data System (ADS)

    Kaiser-Holscott, K.

    2005-05-01

    The Lorain County Joint Vocational School District (JVS) administers NASA's Central Operation of Resources for Educators (CORE) for the purpose of: A. Operating a mail order service to supply educators around the world with NASA's educational materials; B. Servicing NASA Education Programs/Projects with NASA's educational materials; C. Supporting the NASA Educator Resource Center Network with technology resources for the next generation of ERC. D. Support NASA's mission to inspire the next generation of explorers...as only NASA can; E. Inspire and motivate students to pursue careers in geography, science, technology, engineering and mathematics. This is accomplished by the continued operation of a central site that educators can contact to obtain information about NASA educational programs and research; obtain NASA educational publications and media; and receive technical support for NASA multimedia materials. In addition CORE coordinates the efforts of the 67 NASA Educator Resource Centers to establish a more effective network to serve educators. CORE directly supports part of NASA's core mission, To Inspire the Next Generation of Explorers.as only NASA can. CORE inspires and motivates students to pursue careers in geography, science, technology, engineering and mathematics by providing educators with exciting and NASA-unique educational material to enhance the students' learning experience. CORE is located at the Lorain County Joint Vocational School (JVS) in Oberlin, Ohio. Students at the JVS assist with the daily operations of CORE. This assistance provides the students with valuable vocational training opportunities and helps the JVS reduce the amount of funding needed to operate CORE. CORE has vast experience in the dissemination of NASA educational materials as well as a network of NASA Education Resource Centers who distribute NASA materials to secondary and post-secondary schools and universities, informal educators, and other interested individuals and organizations. CORE would be a valuable resource for the distribution of Earth and Space Science products presented to the Joint Assembly.

  11. Design of a stateless low-latency router architecture for green software-defined networking

    NASA Astrophysics Data System (ADS)

    Saldaña Cercós, Silvia; Ramos, Ramon M.; Ewald Eller, Ana C.; Martinello, Magnos; Ribeiro, Moisés. R. N.; Manolova Fagertun, Anna; Tafur Monroy, Idelfonso

    2015-01-01

    Expanding software defined networking (SDN) to transport networks requires new strategies to deal with the large number of flows that future core networks will have to face. New south-bound protocols within SDN have been proposed to benefit from having control plane detached from the data plane offering a cost- and energy-efficient forwarding engine. This paper presents an overview of a new approach named KeyFlow to simultaneously reduce latency, jitter, and power consumption in core network nodes. Results on an emulation platform indicate that round trip time (RTT) can be reduced above 50% compared to the reference protocol OpenFlow, specially when flow tables are densely populated. Jitter reduction has been demonstrated experimentally on a NetFPGA-based platform, and 57.3% power consumption reduction has been achieved.

  12. Design of a Competitive and Collaborative Learning Strategy in a Communication Networks Course

    ERIC Educational Resources Information Center

    Regueras, L. M.; Verdu, E.; Verdu, M. J.; de Castro, J. P.

    2011-01-01

    In this paper, an educational methodology based on collaborative and competitive learning is proposed. The suggested approach has been successfully applied to an undergraduate communication networks course, which is part of the core curriculum of the three-year degree in telecommunications engineering at the University of Valladolid in Spain. This…

  13. Prediction and Optimization of Key Performance Indicators in the Production of Stator Core Using a GA-NN Approach

    NASA Astrophysics Data System (ADS)

    Rajora, M.; Zou, P.; Xu, W.; Jin, L.; Chen, W.; Liang, S. Y.

    2017-12-01

    With the rapidly changing demands of the manufacturing market, intelligent techniques are being used to solve engineering problems due to their ability to handle nonlinear complex problems. For example, in the conventional production of stator cores, it is relied upon experienced engineers to make an initial plan on the number of compensation sheets to be added to achieve uniform pressure distribution throughout the laminations. Additionally, these engineers must use their experience to revise the initial plans based upon the measurements made during the production of stator core. However, this method yields inconsistent results as humans are incapable of storing and analysing large amounts of data. In this article, first, a Neural Network (NN), trained using a hybrid Levenberg-Marquardt (LM) - Genetic Algorithm (GA), is developed to assist the engineers with the decision-making process. Next, the trained NN is used as a fitness function in an optimization algorithm to find the optimal values of the initial compensation sheet plan with the aim of minimizing the required revisions during the production of the stator core.

  14. Comparison of Communication Architectures and Network Topologies for Distributed Propulsion Controls (Preprint)

    DTIC Science & Technology

    2013-05-01

    logic to perform control function computations and are connected to the full authority digital engine control ( FADEC ) via a high-speed data...Digital Engine Control ( FADEC ) via a high speed data communication bus. The short term distributed engine control configu- rations will be core...concen- trator; and high temperature electronics, high speed communication bus between the data concentrator and the control law processor master FADEC

  15. Enhancing the Internationalisation of Distance Education in the Biological Sciences: The DUNE Project and Genetic Engineering.

    ERIC Educational Resources Information Center

    Leach, C. K.; And Others

    1997-01-01

    Describes the Distance Educational Network of Europe (DUNE) project that aims at enhancing the development of distance education in an international context. Highlights issues relating to the delivery of distance-learning courses in a transnational forum. Describes the genetic engineering course that aims at explaining the core techniques of…

  16. The History of the Internet Search Engine: Navigational Media and the Traffic Commodity

    NASA Astrophysics Data System (ADS)

    van Couvering, E.

    This chapter traces the economic development of the search engine industry over time, beginning with the earliest Web search engines and ending with the domination of the market by Google, Yahoo! and MSN. Specifically, it focuses on the ways in which search engines are similar to and different from traditional media institutions, and how the relations between traditional and Internet media have changed over time. In addition to its historical overview, a core contribution of this chapter is the analysis of the industry using a media value chain based on audiences rather than on content, and the development of traffic as the core unit of exchange. It shows that traditional media companies failed when they attempted to create vertically integrated portals in the late 1990s, based on the idea of controlling Internet content, while search engines succeeded in creating huge "virtually integrated" networks based on control of Internet traffic rather than Internet content.

  17. A Survey of Statistical Models for Reverse Engineering Gene Regulatory Networks

    PubMed Central

    Huang, Yufei; Tienda-Luna, Isabel M.; Wang, Yufeng

    2009-01-01

    Statistical models for reverse engineering gene regulatory networks are surveyed in this article. To provide readers with a system-level view of the modeling issues in this research, a graphical modeling framework is proposed. This framework serves as the scaffolding on which the review of different models can be systematically assembled. Based on the framework, we review many existing models for many aspects of gene regulation; the pros and cons of each model are discussed. In addition, network inference algorithms are also surveyed under the graphical modeling framework by the categories of point solutions and probabilistic solutions and the connections and differences among the algorithms are provided. This survey has the potential to elucidate the development and future of reverse engineering GRNs and bring statistical signal processing closer to the core of this research. PMID:20046885

  18. Theoretical study of a thermo-acousto-electric generator equipped with an electroacoustic feedback loop

    NASA Astrophysics Data System (ADS)

    Olivier, Come; Penelet, Guillaume; Poignand, Gaelle; Lotton, Pierrick

    2015-10-01

    A simplified model of a Stirling-type thermoacoustic engine coupled to a resonant mechanical system is presented. The acoustic network is presented as its temperature-dependent lumped element equivalent, and the nonlinear effects involved in such engines are accounted for in a nonlinear heat equation governing the temperature distribution through the thermoacoustic core. The low-order model is sufficient to capture the behavior of the engine, both in terms of stability and dynamic behavior.

  19. Reverse engineering and analysis of large genome-scale gene networks

    PubMed Central

    Aluru, Maneesha; Zola, Jaroslaw; Nettleton, Dan; Aluru, Srinivas

    2013-01-01

    Reverse engineering the whole-genome networks of complex multicellular organisms continues to remain a challenge. While simpler models easily scale to large number of genes and gene expression datasets, more accurate models are compute intensive limiting their scale of applicability. To enable fast and accurate reconstruction of large networks, we developed Tool for Inferring Network of Genes (TINGe), a parallel mutual information (MI)-based program. The novel features of our approach include: (i) B-spline-based formulation for linear-time computation of MI, (ii) a novel algorithm for direct permutation testing and (iii) development of parallel algorithms to reduce run-time and facilitate construction of large networks. We assess the quality of our method by comparison with ARACNe (Algorithm for the Reconstruction of Accurate Cellular Networks) and GeneNet and demonstrate its unique capability by reverse engineering the whole-genome network of Arabidopsis thaliana from 3137 Affymetrix ATH1 GeneChips in just 9 min on a 1024-core cluster. We further report on the development of a new software Gene Network Analyzer (GeNA) for extracting context-specific subnetworks from a given set of seed genes. Using TINGe and GeNA, we performed analysis of 241 Arabidopsis AraCyc 8.0 pathways, and the results are made available through the web. PMID:23042249

  20. Towards a Framework for Evolvable Network Design

    NASA Astrophysics Data System (ADS)

    Hassan, Hoda; Eltarras, Ramy; Eltoweissy, Mohamed

    The layered Internet architecture that had long guided network design and protocol engineering was an “interconnection architecture” defining a framework for interconnecting networks rather than a model for generic network structuring and engineering. We claim that the approach of abstracting the network in terms of an internetwork hinders the thorough understanding of the network salient characteristics and emergent behavior resulting in impeding design evolution required to address extreme scale, heterogeneity, and complexity. This paper reports on our work in progress that aims to: 1) Investigate the problem space in terms of the factors and decisions that influenced the design and development of computer networks; 2) Sketch the core principles for designing complex computer networks; and 3) Propose a model and related framework for building evolvable, adaptable and self organizing networks We will adopt a bottom up strategy primarily focusing on the building unit of the network model, which we call the “network cell”. The model is inspired by natural complex systems. A network cell is intrinsically capable of specialization, adaptation and evolution. Subsequently, we propose CellNet; a framework for evolvable network design. We outline scenarios for using the CellNet framework to enhance legacy Internet protocol stack.

  1. Metadata: Standards for Retrieving WWW Documents (and Other Digitized and Non-Digitized Resources)

    NASA Astrophysics Data System (ADS)

    Rusch-Feja, Diann

    The use of metadata for indexing digitized and non-digitized resources for resource discovery in a networked environment is being increasingly implemented all over the world. Greater precision is achieved using metadata than relying on universal search engines and furthermore, meta-data can be used as filtering mechanisms for search results. An overview of various metadata sets is given, followed by a more focussed presentation of Dublin Core Metadata including examples of sub-elements and qualifiers. Especially the use of the Dublin Core Relation element provides connections between the metadata of various related electronic resources, as well as the metadata for physical, non-digitized resources. This facilitates more comprehensive search results without losing precision and brings together different genres of information which would otherwise be only searchable in separate databases. Furthermore, the advantages of Dublin Core Metadata in comparison with library cataloging and the use of universal search engines are discussed briefly, followed by a listing of types of implementation of Dublin Core Metadata.

  2. Transmission in Optically Transparent Core Networks

    NASA Astrophysics Data System (ADS)

    Kilper, Dan; Jensen, Rich; Petermann, Klaus; Karasek, Miroslav

    2007-03-01

    Call for Papers: Transmission in Optically Transparent Core Networks

    Guest Feature Editors

    Dan Kilper and Rich Jensen, Coordinating Associate Editors Klaus Petermann and Miroslav Karasek, Guest Feature Editors

    Submission deadline: 15 June 2007
    Optically transparent networks in which optical transport signals are routed uninterrupted through multiple nodes have long been viewed as an important evolutionary step in fiber optic communications. More than a decade of research and development on transparent network technologies together with the requisite traffic growth has culminated in the recent deployment of commercial optically transparent systems. Although many of the traditional research goals of optical transmission remain important, optical transparency introduces new challenges. Greater emphasis is placed on system efficiency and control. The goal of minimizing signal terminations, which has been pursued through increasing reach and channel capacity, also can be realized through wavelength routing techniques. Rather than bounding system operation by rigid engineering rules, the physical layer is controlled and managed by automation tools. Many static signal impairments become dynamic due to network reconfiguration and transient fault events. Recently new directions in transmission research have emerged to address transparent networking problems. This special issue of the Journal of Optical Networking will examine the technologies and theory underpinning transmission in optically transparent core networks, including both metropolitan and long haul systems.

    Scope of Submission

    The special issue editors are soliciting high-quality original research papers related to transmission in optically transparent core networks. Although this does not include edge networks such as access or enterprise networks, core networks that have access capabilities will be considered in scope as will topics related to the interworking between core and edge networks. The core network topics suitable for inclusion in this feature issue are:
    • Optically transparent system design issues, transmission experiments, and field trials
    • Optically transparent network architectures and topologies
    • Dispersion management in reconfigurable and mesh systems
    • Optically transparent network device and sub-system performance, design, characterization and control, including: amplifiers, transmitters, receivers, switches, add/drop multiplexers
    • Transient and fault management
    • Physical layer system control
    • Monitoring and compensation to support transparency
    • Wavelength routing and planning as they relate to physical layer transmission
    • Hardware cost and configuration optimization for optically transparent networks
    To submit to this special issue, follow the normal procedure for submission to JON and select "TTCN" in the features indicator of the online submission form. For all other questions relating to this feature issue, please send an e-mail to jon@osa.org, subject line "TTCN." Additional information can be found on the JON website: . Submission Deadline: 15 June 2007

  3. An Offload NIC for NASA, NLR, and Grid Computing

    NASA Technical Reports Server (NTRS)

    Awrach, James

    2013-01-01

    This work addresses distributed data management and access dynamically configurable high-speed access to data distributed and shared over wide-area high-speed network environments. An offload engine NIC (network interface card) is proposed that scales at nX10-Gbps increments through 100-Gbps full duplex. The Globus de facto standard was used in projects requiring secure, robust, high-speed bulk data transport. Novel extension mechanisms were derived that will combine these technologies for use by GridFTP, bandwidth management resources, and host CPU (central processing unit) acceleration. The result will be wire-rate encrypted Globus grid data transactions through offload for splintering, encryption, and compression. As the need for greater network bandwidth increases, there is an inherent need for faster CPUs. The best way to accelerate CPUs is through a network acceleration engine. Grid computing data transfers for the Globus tool set did not have wire-rate encryption or compression. Existing technology cannot keep pace with the greater bandwidths of backplane and network connections. Present offload engines with ports to Ethernet are 32 to 40 Gbps f-d at best. The best of ultra-high-speed offload engines use expensive ASICs (application specific integrated circuits) or NPUs (network processing units). The present state of the art also includes bonding and the use of multiple NICs that are also in the planning stages for future portability to ASICs and software to accommodate data rates at 100 Gbps. The remaining industry solutions are for carrier-grade equipment manufacturers, with costly line cards having multiples of 10-Gbps ports, or 100-Gbps ports such as CFP modules that interface to costly ASICs and related circuitry. All of the existing solutions vary in configuration based on requirements of the host, motherboard, or carriergrade equipment. The purpose of the innovation is to eliminate data bottlenecks within cluster, grid, and cloud computing systems, and to add several more capabilities while reducing space consumption and cost. Provisions were designed for interoperability with systems used in the NASA HEC (High-End Computing) program. The new acceleration engine consists of state-ofthe- art FPGA (field-programmable gate array) core IP, C, and Verilog code; novel communication protocol; and extensions to the Globus structure. The engine provides the functions of network acceleration, encryption, compression, packet-ordering, and security added to Globus grid or for cloud data transfer. This system is scalable in nX10-Gbps increments through 100-Gbps f-d. It can be interfaced to industry-standard system-side or network-side devices or core IP in increments of 10 GigE, scaling to provide IEEE 40/100 GigE compliance.

  4. First principles design of a core bioenergetic transmembrane electron-transfer protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goparaju, Geetha; Fry, Bryan A.; Chobot, Sarah E.

    Here we describe the design, Escherichia coli expression and characterization of a simplified, adaptable and functionally transparent single chain 4-α-helix transmembrane protein frame that binds multiple heme and light activatable porphyrins. Such man-made cofactor-binding oxidoreductases, designed from first principles with minimal reference to natural protein sequences, are known as maquettes. This design is an adaptable frame aiming to uncover core engineering principles governing bioenergetic transmembrane electron-transfer function and recapitulate protein archetypes proposed to represent the origins of photosynthesis. This article is part of a Special Issue entitled Biodesign for Bioenergetics — the design and engineering of electronic transfer cofactors, proteinsmore » and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.« less

  5. Social network extraction based on Web: 3. the integrated superficial method

    NASA Astrophysics Data System (ADS)

    Nasution, M. K. M.; Sitompul, O. S.; Noah, S. A.

    2018-03-01

    The Web as a source of information has become part of the social behavior information. Although, by involving only the limitation of information disclosed by search engines in the form of: hit counts, snippets, and URL addresses of web pages, the integrated extraction method produces a social network not only trusted but enriched. Unintegrated extraction methods may produce social networks without explanation, resulting in poor supplemental information, or resulting in a social network of durmise laden, consequently unrepresentative social structures. The integrated superficial method in addition to generating the core social network, also generates an expanded network so as to reach the scope of relation clues, or number of edges computationally almost similar to n(n - 1)/2 for n social actors.

  6. RedeR: R/Bioconductor package for representing modular structures, nested networks and multiple levels of hierarchical associations

    PubMed Central

    2012-01-01

    Visualization and analysis of molecular networks are both central to systems biology. However, there still exists a large technological gap between them, especially when assessing multiple network levels or hierarchies. Here we present RedeR, an R/Bioconductor package combined with a Java core engine for representing modular networks. The functionality of RedeR is demonstrated in two different scenarios: hierarchical and modular organization in gene co-expression networks and nested structures in time-course gene expression subnetworks. Our results demonstrate RedeR as a new framework to deal with the multiple network levels that are inherent to complex biological systems. RedeR is available from http://bioconductor.org/packages/release/bioc/html/RedeR.html. PMID:22531049

  7. Polytopol computing for multi-core and distributed systems

    NASA Astrophysics Data System (ADS)

    Spaanenburg, Henk; Spaanenburg, Lambert; Ranefors, Johan

    2009-05-01

    Multi-core computing provides new challenges to software engineering. The paper addresses such issues in the general setting of polytopol computing, that takes multi-core problems in such widely differing areas as ambient intelligence sensor networks and cloud computing into account. It argues that the essence lies in a suitable allocation of free moving tasks. Where hardware is ubiquitous and pervasive, the network is virtualized into a connection of software snippets judiciously injected to such hardware that a system function looks as one again. The concept of polytopol computing provides a further formalization in terms of the partitioning of labor between collector and sensor nodes. Collectors provide functions such as a knowledge integrator, awareness collector, situation displayer/reporter, communicator of clues and an inquiry-interface provider. Sensors provide functions such as anomaly detection (only communicating singularities, not continuous observation), they are generally powered or self-powered, amorphous (not on a grid) with generation-and-attrition, field re-programmable, and sensor plug-and-play-able. Together the collector and the sensor are part of the skeleton injector mechanism, added to every node, and give the network the ability to organize itself into some of many topologies. Finally we will discuss a number of applications and indicate how a multi-core architecture supports the security aspects of the skeleton injector.

  8. Design of cognitive engine for cognitive radio based on the rough sets and radial basis function neural network

    NASA Astrophysics Data System (ADS)

    Yang, Yanchao; Jiang, Hong; Liu, Congbin; Lan, Zhongli

    2013-03-01

    Cognitive radio (CR) is an intelligent wireless communication system which can dynamically adjust the parameters to improve system performance depending on the environmental change and quality of service. The core technology for CR is the design of cognitive engine, which introduces reasoning and learning methods in the field of artificial intelligence, to achieve the perception, adaptation and learning capability. Considering the dynamical wireless environment and demands, this paper proposes a design of cognitive engine based on the rough sets (RS) and radial basis function neural network (RBF_NN). The method uses experienced knowledge and environment information processed by RS module to train the RBF_NN, and then the learning model is used to reconfigure communication parameters to allocate resources rationally and improve system performance. After training learning model, the performance is evaluated according to two benchmark functions. The simulation results demonstrate the effectiveness of the model and the proposed cognitive engine can effectively achieve the goal of learning and reconfiguration in cognitive radio.

  9. Reverse Engineering Cellular Networks with Information Theoretic Methods

    PubMed Central

    Villaverde, Alejandro F.; Ross, John; Banga, Julio R.

    2013-01-01

    Building mathematical models of cellular networks lies at the core of systems biology. It involves, among other tasks, the reconstruction of the structure of interactions between molecular components, which is known as network inference or reverse engineering. Information theory can help in the goal of extracting as much information as possible from the available data. A large number of methods founded on these concepts have been proposed in the literature, not only in biology journals, but in a wide range of areas. Their critical comparison is difficult due to the different focuses and the adoption of different terminologies. Here we attempt to review some of the existing information theoretic methodologies for network inference, and clarify their differences. While some of these methods have achieved notable success, many challenges remain, among which we can mention dealing with incomplete measurements, noisy data, counterintuitive behaviour emerging from nonlinear relations or feedback loops, and computational burden of dealing with large data sets. PMID:24709703

  10. Engineering a Functional Small RNA Negative Autoregulation Network with Model-Guided Design.

    PubMed

    Hu, Chelsea Y; Takahashi, Melissa K; Zhang, Yan; Lucks, Julius B

    2018-05-22

    RNA regulators are powerful components of the synthetic biology toolbox. Here, we expand the repertoire of synthetic gene networks built from these regulators by constructing a transcriptional negative autoregulation (NAR) network out of small RNAs (sRNAs). NAR network motifs are core motifs of natural genetic networks, and are known for reducing network response time and steady state signal. Here we use cell-free transcription-translation (TX-TL) reactions and a computational model to design and prototype sRNA NAR constructs. Using parameter sensitivity analysis, we design a simple set of experiments that allow us to accurately predict NAR function in TX-TL. We transfer successful network designs into Escherichia coli and show that our sRNA transcriptional network reduces both network response time and steady-state gene expression. This work broadens our ability to construct increasingly sophisticated RNA genetic networks with predictable function.

  11. GMPLS-based control plane for optical networks: early implementation experience

    NASA Astrophysics Data System (ADS)

    Liu, Hang; Pendarakis, Dimitrios; Komaee, Nooshin; Saha, Debanjan

    2002-07-01

    Generalized Multi-Protocol Label Switching (GMPLS) extends MPLS signaling and Internet routing protocols to provide a scalable, interoperable, distributed control plane, which is applicable to multiple network technologies such as optical cross connects (OXCs), photonic switches, IP routers, ATM switches, SONET and DWDM systems. It is intended to facilitate automatic service provisioning and dynamic neighbor and topology discovery across multi-vendor intelligent transport networks, as well as their clients. Efforts to standardize such a distributed common control plane have reached various stages in several bodies such as the IETF, ITU and OIF. This paper describes the design considerations and architecture of a GMPLS-based control plane that we have prototyped for core optical networks. Functional components of GMPLS signaling and routing are integrated in this architecture with an application layer controller module. Various requirements including bandwidth, network protection and survivability, traffic engineering, optimal utilization of network resources, and etc. are taken into consideration during path computation and provisioning. Initial experiments with our prototype demonstrate the feasibility and main benefits of GMPLS as a distributed control plane for core optical networks. In addition to such feasibility results, actual adoption and deployment of GMPLS as a common control plane for intelligent transport networks will depend on the successful completion of relevant standardization activities, extensive interoperability testing as well as the strengthening of appropriate business drivers.

  12. Application of real rock pore-threat statistics to a regular pore network model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakibul, M.; Sarker, H.; McIntyre, D.

    2011-01-01

    This work reports the application of real rock statistical data to a previously developed regular pore network model in an attempt to produce an accurate simulation tool with low computational overhead. A core plug from the St. Peter Sandstone formation in Indiana was scanned with a high resolution micro CT scanner. The pore-throat statistics of the three-dimensional reconstructed rock were extracted and the distribution of the pore-throat sizes was applied to the regular pore network model. In order to keep the equivalent model regular, only the throat area or the throat radius was varied. Ten realizations of randomly distributed throatmore » sizes were generated to simulate the drainage process and relative permeability was calculated and compared with the experimentally determined values of the original rock sample. The numerical and experimental procedures are explained in detail and the performance of the model in relation to the experimental data is discussed and analyzed. Petrophysical properties such as relative permeability are important in many applied fields such as production of petroleum fluids, enhanced oil recovery, carbon dioxide sequestration, ground water flow, etc. Relative permeability data are used for a wide range of conventional reservoir engineering calculations and in numerical reservoir simulation. Two-phase oil water relative permeability data are generated on the same core plug from both pore network model and experimental procedure. The shape and size of the relative permeability curves were compared and analyzed and good match has been observed for wetting phase relative permeability but for non-wetting phase, simulation results were found to be deviated from the experimental ones. Efforts to determine petrophysical properties of rocks using numerical techniques are to eliminate the necessity of regular core analysis, which can be time consuming and expensive. So a numerical technique is expected to be fast and to produce reliable results. In applied engineering, sometimes quick result with reasonable accuracy is acceptable than the more time consuming results. Present work is an effort to check the accuracy and validity of a previously developed pore network model for obtaining important petrophysical properties of rocks based on cutting-sized sample data.« less

  13. Application of real rock pore-throat statistics to a regular pore network model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarker, M.R.; McIntyre, D.; Ferer, M.

    2011-01-01

    This work reports the application of real rock statistical data to a previously developed regular pore network model in an attempt to produce an accurate simulation tool with low computational overhead. A core plug from the St. Peter Sandstone formation in Indiana was scanned with a high resolution micro CT scanner. The pore-throat statistics of the three-dimensional reconstructed rock were extracted and the distribution of the pore-throat sizes was applied to the regular pore network model. In order to keep the equivalent model regular, only the throat area or the throat radius was varied. Ten realizations of randomly distributed throatmore » sizes were generated to simulate the drainage process and relative permeability was calculated and compared with the experimentally determined values of the original rock sample. The numerical and experimental procedures are explained in detail and the performance of the model in relation to the experimental data is discussed and analyzed. Petrophysical properties such as relative permeability are important in many applied fields such as production of petroleum fluids, enhanced oil recovery, carbon dioxide sequestration, ground water flow, etc. Relative permeability data are used for a wide range of conventional reservoir engineering calculations and in numerical reservoir simulation. Two-phase oil water relative permeability data are generated on the same core plug from both pore network model and experimental procedure. The shape and size of the relative permeability curves were compared and analyzed and good match has been observed for wetting phase relative permeability but for non-wetting phase, simulation results were found to be deviated from the experimental ones. Efforts to determine petrophysical properties of rocks using numerical techniques are to eliminate the necessity of regular core analysis, which can be time consuming and expensive. So a numerical technique is expected to be fast and to produce reliable results. In applied engineering, sometimes quick result with reasonable accuracy is acceptable than the more time consuming results. Present work is an effort to check the accuracy and validity of a previously developed pore network model for obtaining important petrophysical properties of rocks based on cutting-sized sample data. Introduction« less

  14. Resource Sharing via Planed Relay for [InlineEquation not available: see fulltext.

    NASA Astrophysics Data System (ADS)

    Shen, Chong; Rea, Susan; Pesch, Dirk

    2008-12-01

    We present an improved version of adaptive distributed cross-layer routing algorithm (ADCR) for hybrid wireless network with dedicated relay stations ([InlineEquation not available: see fulltext.]) in this paper. A mobile terminal (MT) may borrow radio resources that are available thousands mile away via secure multihop RNs, where RNs are placed at pre-engineered locations in the network. In rural places such as mountain areas, an MT may also communicate with the core network, when intermediate MTs act as relay node with mobility. To address cross-layer network layers routing issues, the cascaded ADCR establishes routing paths across MTs, RNs, and cellular base stations (BSs) and provides appropriate quality of service (QoS). We verify the routing performance benefits of [InlineEquation not available: see fulltext.] over other networks by intensive simulation.

  15. Characterizing core-periphery structure of complex network by h-core and fingerprint curve

    NASA Astrophysics Data System (ADS)

    Li, Simon S.; Ye, Adam Y.; Qi, Eric P.; Stanley, H. Eugene; Ye, Fred Y.

    2018-02-01

    It is proposed that the core-periphery structure of complex networks can be simulated by h-cores and fingerprint curves. While the features of core structure are characterized by h-core, the features of periphery structure are visualized by rose or spiral curve as the fingerprint curve linking to entire-network parameters. It is suggested that a complex network can be approached by h-core and rose curves as the first-order Fourier-approach, where the core-periphery structure is characterized by five parameters: network h-index, network radius, degree power, network density and average clustering coefficient. The simulation looks Fourier-like analysis.

  16. Performing a local reduction operation on a parallel computer

    DOEpatents

    Blocksome, Michael A; Faraj, Daniel A

    2013-06-04

    A parallel computer including compute nodes, each including two reduction processing cores, a network write processing core, and a network read processing core, each processing core assigned an input buffer. Copying, in interleaved chunks by the reduction processing cores, contents of the reduction processing cores' input buffers to an interleaved buffer in shared memory; copying, by one of the reduction processing cores, contents of the network write processing core's input buffer to shared memory; copying, by another of the reduction processing cores, contents of the network read processing core's input buffer to shared memory; and locally reducing in parallel by the reduction processing cores: the contents of the reduction processing core's input buffer; every other interleaved chunk of the interleaved buffer; the copied contents of the network write processing core's input buffer; and the copied contents of the network read processing core's input buffer.

  17. Performing a local reduction operation on a parallel computer

    DOEpatents

    Blocksome, Michael A.; Faraj, Daniel A.

    2012-12-11

    A parallel computer including compute nodes, each including two reduction processing cores, a network write processing core, and a network read processing core, each processing core assigned an input buffer. Copying, in interleaved chunks by the reduction processing cores, contents of the reduction processing cores' input buffers to an interleaved buffer in shared memory; copying, by one of the reduction processing cores, contents of the network write processing core's input buffer to shared memory; copying, by another of the reduction processing cores, contents of the network read processing core's input buffer to shared memory; and locally reducing in parallel by the reduction processing cores: the contents of the reduction processing core's input buffer; every other interleaved chunk of the interleaved buffer; the copied contents of the network write processing core's input buffer; and the copied contents of the network read processing core's input buffer.

  18. Identification of lithofacies using Kohonen self-organizing maps

    USGS Publications Warehouse

    Chang, H.-C.; Kopaska-Merkel, D. C.; Chen, H.-C.

    2002-01-01

    Lithofacies identification is a primary task in reservoir characterization. Traditional techniques of lithofacies identification from core data are costly, and it is difficult to extrapolate to non-cored wells. We present a low-cost automated technique using Kohonen self-organizing maps (SOMs) to identify systematically and objectively lithofacies from well log data. SOMs are unsupervised artificial neural networks that map the input space into clusters in a topological form whose organization is related to trends in the input data. A case study used five wells located in Appleton Field, Escambia County, Alabama (Smackover Formation, limestone and dolomite, Oxfordian, Jurassic). A five-input, one-dimensional output approach is employed, assuming the lithofacies are in ascending/descending order with respect to paleoenvironmental energy levels. To consider the possible appearance of new logfacies not seen in training mode, which may potentially appear in test wells, the maximum number of outputs is set to 20 instead of four, the designated number of lithosfacies in the study area. This study found eleven major clusters. The clusters were compared to depositional lithofacies identified by manual core examination. The clusters were ordered by the SOM in a pattern consistent with environmental gradients inferred from core examination: bind/boundstone, grainstone, packstone, and wackestone. This new approach predicted lithofacies identity from well log data with 78.8% accuracy which is more accurate than using a backpropagation neural network (57.3%). The clusters produced by the SOM are ordered with respect to paleoenvironmental energy levels. This energy-related clustering provides geologists and petroleum engineers with valuable geologic information about the logfacies and their interrelationships. This advantage is not obtained in backpropagation neural networks and adaptive resonance theory neural networks. ?? 2002 Elsevier Science Ltd. All rights reserved.

  19. Patent citation network in nanotechnology (1976-2004)

    NASA Astrophysics Data System (ADS)

    Li, Xin; Chen, Hsinchun; Huang, Zan; Roco, Mihail C.

    2007-06-01

    The patent citation networks are described using critical node, core network, and network topological analysis. The main objective is understanding of the knowledge transfer processes between technical fields, institutions and countries. This includes identifying key influential players and subfields, the knowledge transfer patterns among them, and the overall knowledge transfer efficiency. The proposed framework is applied to the field of nanoscale science and engineering (NSE), including the citation networks of patent documents, submitting institutions, technology fields, and countries. The NSE patents were identified by keywords "full-text" searching of patents at the United States Patent and Trademark Office (USPTO). The analysis shows that the United States is the most important citation center in NSE research. The institution citation network illustrates a more efficient knowledge transfer between institutions than a random network. The country citation network displays a knowledge transfer capability as efficient as a random network. The technology field citation network and the patent document citation network exhibit a␣less efficient knowledge diffusion capability than a random network. All four citation networks show a tendency to form local citation clusters.

  20. Latest generation interconnect technologies in APEnet+ networking infrastructure

    NASA Astrophysics Data System (ADS)

    Ammendola, Roberto; Biagioni, Andrea; Cretaro, Paolo; Frezza, Ottorino; Lo Cicero, Francesca; Lonardo, Alessandro; Martinelli, Michele; Stanislao Paolucci, Pier; Pastorelli, Elena; Rossetti, Davide; Simula, Francesco; Vicini, Piero

    2017-10-01

    In this paper we present the status of the 3rd generation design of the APEnet board (V5) built upon the 28nm Altera Stratix V FPGA; it features a PCIe Gen3 x8 interface and enhanced embedded transceivers with a maximum capability of 12.5Gbps each. The network architecture is designed in accordance to the Remote DMA paradigm. The APEnet+ V5 prototype is built upon the Stratix V DevKit with the addition of a proprietary, third party IP core implementing multi-DMA engines. Support for zero-copy communication is assured by the possibility of DMA-accessing either host and GPU memory, offloading the CPU from the chore of data copying. The current implementation plateaus to a bandwidth for memory read of 4.8GB/s. Here we describe the hardware optimization to the memory write process which relies on the use of two independent DMA engines and an improved TLB.

  1. Nanowires Bending over Backward from Strain Partitioning in Asymmetric Core-Shell Heterostructures.

    PubMed

    Lewis, Ryan B; Corfdir, Pierre; Küpers, Hanno; Flissikowski, Timur; Brandt, Oliver; Geelhaar, Lutz

    2018-04-11

    The flexibility and quasi-one-dimensional nature of nanowires offer wide-ranging possibilities for novel heterostructure design and strain engineering. In this work, we realize arrays of extremely and controllably bent nanowires comprising lattice-mismatched and highly asymmetric core-shell heterostructures. Strain sharing across the nanowire heterostructures is sufficient to bend vertical nanowires over backward to contact either neighboring nanowires or the substrate itself, presenting new possibilities for designing nanowire networks and interconnects. Photoluminescence spectroscopy on bent-nanowire heterostructures reveals that spatially varying strain fields induce charge carrier drift toward the tensile-strained outside of the nanowires, and that the polarization response of absorbed and emitted light is controlled by the bending direction. This unconventional strain field is employed for light emission by placing an active region of quantum dots at the outer side of a bent nanowire to exploit the carrier drift and tensile strain. These results demonstrate how bending in nanoheterostructures opens up new degrees of freedom for strain and device engineering.

  2. Electrical innovations, authority and consulting expertise in late Victorian Britain

    PubMed Central

    Arapostathis, Stathis

    2013-01-01

    In this article I examine the practices of electrical engineering experts, with special reference to their role in the implementation of innovations in late Victorian electrical networks. I focus on the consulting work of two leading figures in the scientific and engineering world of the period, Alexander Kennedy and William Preece. Both were Fellows of the Royal Society and both developed large-scale consulting activities in the emerging electrical industry of light and power. At the core of the study I place the issues of trust and authority, and the bearing of these on the engineering expertise of consultants in late Victorian Britain. I argue that the ascription of expertise to these engineers and the trust placed in their advice were products of power relations on the local scale. The study seeks to unravel both the technical and the social reasons for authoritative patterns of consulting expertise. PMID:24686584

  3. The influence of the depth of k-core layers on the robustness of interdependent networks against cascading failures

    NASA Astrophysics Data System (ADS)

    Dong, Zhengcheng; Fang, Yanjun; Tian, Meng; Kong, Zhengmin

    The hierarchical structure, k-core, is common in various complex networks, and the actual network always has successive layers from 1-core layer (the peripheral layer) to km-core layer (the core layer). The nodes within the core layer have been proved to be the most influential spreaders, but there is few work about how the depth of k-core layers (the value of km) can affect the robustness against cascading failures, rather than the interdependent networks. First, following the preferential attachment, a novel method is proposed to generate the scale-free network with successive k-core layers (KCBA network), and the KCBA network is validated more realistic than the traditional BA network. Then, with KCBA interdependent networks, the effect of the depth of k-core layers is investigated. Considering the load-based model, the loss of capacity on nodes is adopted to quantify the robustness instead of the number of functional nodes in the end. We conduct two attacking strategies, i.e. the RO-attack (Randomly remove only one node) and the RF-attack (Randomly remove a fraction of nodes). Results show that the robustness of KCBA networks not only depends on the depth of k-core layers, but also is slightly influenced by the initial load. With RO-attack, the networks with less k-core layers are more robust when the initial load is small. With RF-attack, the robustness improves with small km, but the improvement is getting weaker with the increment of the initial load. In a word, the lower the depth is, the more robust the networks will be.

  4. Energy Efficient Engine core design and performance report

    NASA Technical Reports Server (NTRS)

    Stearns, E. Marshall

    1982-01-01

    The Energy Efficient Engine (E3) is a NASA program to develop fuel saving technology for future large transport aircraft engines. Testing of the General Electric E3 core showed that the core component performance and core system performance necessary to meet the program goals can be achieved. The E3 core design and test results are described.

  5. New technique for the direct measurement of core noise from aircraft engines

    NASA Technical Reports Server (NTRS)

    Krejsa, E. A.

    1981-01-01

    A new technique is presented for directly measuring the core noise levels from gas turbine aircraft engines. The technique requires that fluctuating pressures be measured in the far-field and at two locations within the engine core. The cross-spectra of these measurements are used to determine the levels of the far-field noise that propagated from the engine core. The technique makes it possible to measure core noise levels even when other noise sources dominate. The technique was applied to signals measured from an AVCO Lycoming YF102 turbofan engine. Core noise levels as a function of frequency and radiation angle were measured and are presented over a range of power settings.

  6. Gas Turbine Engine Having Fan Rotor Driven by Turbine Exhaust and with a Bypass

    NASA Technical Reports Server (NTRS)

    Suciu, Gabriel L. (Inventor); Chandler, Jesse M. (Inventor)

    2016-01-01

    A gas turbine engine has a core engine incorporating a core engine turbine. A fan rotor is driven by a fan rotor turbine. The fan rotor turbine is in the path of gases downstream from the core engine turbine. A bypass door is moveable from a closed position at which the gases from the core engine turbine pass over the fan rotor turbine, and moveable to a bypass position at which the gases are directed away from the fan rotor turbine. An aircraft is also disclosed.

  7. Connecting Core Percolation and Controllability of Complex Networks

    PubMed Central

    Jia, Tao; Pósfai, Márton

    2014-01-01

    Core percolation is a fundamental structural transition in complex networks related to a wide range of important problems. Recent advances have provided us an analytical framework of core percolation in uncorrelated random networks with arbitrary degree distributions. Here we apply the tools in analysis of network controllability. We confirm analytically that the emergence of the bifurcation in control coincides with the formation of the core and the structure of the core determines the control mode of the network. We also derive the analytical expression related to the controllability robustness by extending the deduction in core percolation. These findings help us better understand the interesting interplay between the structural and dynamical properties of complex networks. PMID:24946797

  8. s-core network decomposition: A generalization of k-core analysis to weighted networks

    NASA Astrophysics Data System (ADS)

    Eidsaa, Marius; Almaas, Eivind

    2013-12-01

    A broad range of systems spanning biology, technology, and social phenomena may be represented and analyzed as complex networks. Recent studies of such networks using k-core decomposition have uncovered groups of nodes that play important roles. Here, we present s-core analysis, a generalization of k-core (or k-shell) analysis to complex networks where the links have different strengths or weights. We demonstrate the s-core decomposition approach on two random networks (ER and configuration model with scale-free degree distribution) where the link weights are (i) random, (ii) correlated, and (iii) anticorrelated with the node degrees. Finally, we apply the s-core decomposition approach to the protein-interaction network of the yeast Saccharomyces cerevisiae in the context of two gene-expression experiments: oxidative stress in response to cumene hydroperoxide (CHP), and fermentation stress response (FSR). We find that the innermost s-cores are (i) different from innermost k-cores, (ii) different for the two stress conditions CHP and FSR, and (iii) enriched with proteins whose biological functions give insight into how yeast manages these specific stresses.

  9. Who Can You Turn to? Tie Activation within Core Business Discussion Networks

    ERIC Educational Resources Information Center

    Renzulli, Linda A.; Aldrich, Howard

    2005-01-01

    We examine the connection between personal network characteristics and the activation of ties for access to resources during routine times. We focus on factors affecting business owners' use of their core network ties to obtain legal, loan, financial and expert advice. Owners rely more on core business ties when their core networks contain a high…

  10. Smart Networked Elements in Support of ISHM

    NASA Technical Reports Server (NTRS)

    Oostdyk, Rebecca; Mata, Carlos; Perotti, Jose M.

    2008-01-01

    At the core of ISHM is the ability to extract information and knowledge from raw data. Conventional data acquisition systems sample and convert physical measurements to engineering units, which higher-level systems use to derive health and information about processes and systems. Although health management is essential at the top level, there are considerable advantages to implementing health-related functions at the sensor level. The distribution of processing to lower levels reduces bandwidth requirements, enhances data fusion, and improves the resolution for detection and isolation of failures in a system, subsystem, component, or process. The Smart Networked Element (SNE) has been developed to implement intelligent functions and algorithms at the sensor level in support of ISHM.

  11. Arabidopsis Ensemble Reverse-Engineered Gene Regulatory Network Discloses Interconnected Transcription Factors in Oxidative Stress[W

    PubMed Central

    Vermeirssen, Vanessa; De Clercq, Inge; Van Parys, Thomas; Van Breusegem, Frank; Van de Peer, Yves

    2014-01-01

    The abiotic stress response in plants is complex and tightly controlled by gene regulation. We present an abiotic stress gene regulatory network of 200,014 interactions for 11,938 target genes by integrating four complementary reverse-engineering solutions through average rank aggregation on an Arabidopsis thaliana microarray expression compendium. This ensemble performed the most robustly in benchmarking and greatly expands upon the availability of interactions currently reported. Besides recovering 1182 known regulatory interactions, cis-regulatory motifs and coherent functionalities of target genes corresponded with the predicted transcription factors. We provide a valuable resource of 572 abiotic stress modules of coregulated genes with functional and regulatory information, from which we deduced functional relationships for 1966 uncharacterized genes and many regulators. Using gain- and loss-of-function mutants of seven transcription factors grown under control and salt stress conditions, we experimentally validated 141 out of 271 predictions (52% precision) for 102 selected genes and mapped 148 additional transcription factor-gene regulatory interactions (49% recall). We identified an intricate core oxidative stress regulatory network where NAC13, NAC053, ERF6, WRKY6, and NAC032 transcription factors interconnect and function in detoxification. Our work shows that ensemble reverse-engineering can generate robust biological hypotheses of gene regulation in a multicellular eukaryote that can be tested by medium-throughput experimental validation. PMID:25549671

  12. Arabidopsis ensemble reverse-engineered gene regulatory network discloses interconnected transcription factors in oxidative stress.

    PubMed

    Vermeirssen, Vanessa; De Clercq, Inge; Van Parys, Thomas; Van Breusegem, Frank; Van de Peer, Yves

    2014-12-01

    The abiotic stress response in plants is complex and tightly controlled by gene regulation. We present an abiotic stress gene regulatory network of 200,014 interactions for 11,938 target genes by integrating four complementary reverse-engineering solutions through average rank aggregation on an Arabidopsis thaliana microarray expression compendium. This ensemble performed the most robustly in benchmarking and greatly expands upon the availability of interactions currently reported. Besides recovering 1182 known regulatory interactions, cis-regulatory motifs and coherent functionalities of target genes corresponded with the predicted transcription factors. We provide a valuable resource of 572 abiotic stress modules of coregulated genes with functional and regulatory information, from which we deduced functional relationships for 1966 uncharacterized genes and many regulators. Using gain- and loss-of-function mutants of seven transcription factors grown under control and salt stress conditions, we experimentally validated 141 out of 271 predictions (52% precision) for 102 selected genes and mapped 148 additional transcription factor-gene regulatory interactions (49% recall). We identified an intricate core oxidative stress regulatory network where NAC13, NAC053, ERF6, WRKY6, and NAC032 transcription factors interconnect and function in detoxification. Our work shows that ensemble reverse-engineering can generate robust biological hypotheses of gene regulation in a multicellular eukaryote that can be tested by medium-throughput experimental validation. © 2014 American Society of Plant Biologists. All rights reserved.

  13. Virtual machine-based simulation platform for mobile ad-hoc network-based cyber infrastructure

    DOE PAGES

    Yoginath, Srikanth B.; Perumalla, Kayla S.; Henz, Brian J.

    2015-09-29

    In modeling and simulating complex systems such as mobile ad-hoc networks (MANETs) in de-fense communications, it is a major challenge to reconcile multiple important considerations: the rapidity of unavoidable changes to the software (network layers and applications), the difficulty of modeling the critical, implementation-dependent behavioral effects, the need to sustain larger scale scenarios, and the desire for faster simulations. Here we present our approach in success-fully reconciling them using a virtual time-synchronized virtual machine(VM)-based parallel ex-ecution framework that accurately lifts both the devices as well as the network communications to a virtual time plane while retaining full fidelity. At themore » core of our framework is a scheduling engine that operates at the level of a hypervisor scheduler, offering a unique ability to execute multi-core guest nodes over multi-core host nodes in an accurate, virtual time-synchronized manner. In contrast to other related approaches that suffer from either speed or accuracy issues, our framework provides MANET node-wise scalability, high fidelity of software behaviors, and time-ordering accuracy. The design and development of this framework is presented, and an ac-tual implementation based on the widely used Xen hypervisor system is described. Benchmarks with synthetic and actual applications are used to identify the benefits of our approach. The time inaccuracy of traditional emulation methods is demonstrated, in comparison with the accurate execution of our framework verified by theoretically correct results expected from analytical models of the same scenarios. In the largest high fidelity tests, we are able to perform virtual time-synchronized simulation of 64-node VM-based full-stack, actual software behaviors of MANETs containing a mix of static and mobile (unmanned airborne vehicle) nodes, hosted on a 32-core host, with full fidelity of unmodified ad-hoc routing protocols, unmodified application executables, and user-controllable physical layer effects including inter-device wireless signal strength, reachability, and connectivity.« less

  14. Virtual machine-based simulation platform for mobile ad-hoc network-based cyber infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoginath, Srikanth B.; Perumalla, Kayla S.; Henz, Brian J.

    In modeling and simulating complex systems such as mobile ad-hoc networks (MANETs) in de-fense communications, it is a major challenge to reconcile multiple important considerations: the rapidity of unavoidable changes to the software (network layers and applications), the difficulty of modeling the critical, implementation-dependent behavioral effects, the need to sustain larger scale scenarios, and the desire for faster simulations. Here we present our approach in success-fully reconciling them using a virtual time-synchronized virtual machine(VM)-based parallel ex-ecution framework that accurately lifts both the devices as well as the network communications to a virtual time plane while retaining full fidelity. At themore » core of our framework is a scheduling engine that operates at the level of a hypervisor scheduler, offering a unique ability to execute multi-core guest nodes over multi-core host nodes in an accurate, virtual time-synchronized manner. In contrast to other related approaches that suffer from either speed or accuracy issues, our framework provides MANET node-wise scalability, high fidelity of software behaviors, and time-ordering accuracy. The design and development of this framework is presented, and an ac-tual implementation based on the widely used Xen hypervisor system is described. Benchmarks with synthetic and actual applications are used to identify the benefits of our approach. The time inaccuracy of traditional emulation methods is demonstrated, in comparison with the accurate execution of our framework verified by theoretically correct results expected from analytical models of the same scenarios. In the largest high fidelity tests, we are able to perform virtual time-synchronized simulation of 64-node VM-based full-stack, actual software behaviors of MANETs containing a mix of static and mobile (unmanned airborne vehicle) nodes, hosted on a 32-core host, with full fidelity of unmodified ad-hoc routing protocols, unmodified application executables, and user-controllable physical layer effects including inter-device wireless signal strength, reachability, and connectivity.« less

  15. Core-periphery structure requires something else in the network

    NASA Astrophysics Data System (ADS)

    Kojaku, Sadamori; Masuda, Naoki

    2018-04-01

    A network with core-periphery structure consists of core nodes that are densely interconnected. In contrast to a community structure, which is a different meso-scale structure of networks, core nodes can be connected to peripheral nodes and peripheral nodes are not densely interconnected. Although core-periphery structure sounds reasonable, we argue that it is merely accounted for by heterogeneous degree distributions, if one partitions a network into a single core block and a single periphery block, which the famous Borgatti–Everett algorithm and many succeeding algorithms assume. In other words, there is a strong tendency that high-degree and low-degree nodes are judged to be core and peripheral nodes, respectively. To discuss core-periphery structure beyond the expectation of the node’s degree (as described by the configuration model), we propose that one needs to assume at least one block of nodes apart from the focal core-periphery structure, such as a different core-periphery pair, community or nodes not belonging to any meso-scale structure. We propose a scalable algorithm to detect pairs of core and periphery in networks, controlling for the effect of the node’s degree. We illustrate our algorithm using various empirical networks.

  16. Aero-acoustic performance comparison of core engine noise suppressors on NASA quiet engine C

    NASA Technical Reports Server (NTRS)

    Bloomer, H. E.; Schaefer, J. W.

    1977-01-01

    The relative aero-acoustic effectiveness of two core engine suppressors, a contractor-designed suppressor delivered with the Quiet Engine, and a NASA-designed suppressor was evaluated. The NASA suppressor was tested with and without a splitter making a total of three configurations being reported in addition to the baseline hardwall case. The aerodynamic results are presented in terms of tailpipe pressure loss, corrected net thrust, and corrected specific fuel consumption as functions of engine power setting. The acoustic results are divided into duct and far-field acoustic data. The NASA-designed core suppressor did the better job of suppressing aft end noise, but the splitter associated with it caused a significant engine performance penality. The NASA core suppressor without the spltter suppressed most of the core noise without any engine performance penalty.

  17. φ-evo: A program to evolve phenotypic models of biological networks.

    PubMed

    Henry, Adrien; Hemery, Mathieu; François, Paul

    2018-06-01

    Molecular networks are at the core of most cellular decisions, but are often difficult to comprehend. Reverse engineering of network architecture from their functions has proved fruitful to classify and predict the structure and function of molecular networks, suggesting new experimental tests and biological predictions. We present φ-evo, an open-source program to evolve in silico phenotypic networks performing a given biological function. We include implementations for evolution of biochemical adaptation, adaptive sorting for immune recognition, metazoan development (somitogenesis, hox patterning), as well as Pareto evolution. We detail the program architecture based on C, Python 3, and a Jupyter interface for project configuration and network analysis. We illustrate the predictive power of φ-evo by first recovering the asymmetrical structure of the lac operon regulation from an objective function with symmetrical constraints. Second, we use the problem of hox-like embryonic patterning to show how a single effective fitness can emerge from multi-objective (Pareto) evolution. φ-evo provides an efficient approach and user-friendly interface for the phenotypic prediction of networks and the numerical study of evolution itself.

  18. Ultra-Porous Nanoparticle Networks: A Biomimetic Coating Morphology for Enhanced Cellular Response and Infiltration

    PubMed Central

    Nasiri, Noushin; Ceramidas, Anthony; Mukherjee, Shayanti; Panneerselvan, Anitha; Nisbet, David R.; Tricoli, Antonio

    2016-01-01

    Orthopedic treatments are amongst the most common cause of surgery and are responsible for a large share of global healthcare expenditures. Engineering materials that can hasten bone integration will improve the quality of life of millions of patients per year and reduce associated medical costs. Here, we present a novel hierarchical biomimetic coating that mimics the inorganic constituent of mammalian bones with the aim of improving osseointegration of metallic implants. We exploit the thermally-driven self-organization of metastable core-shell nanoparticles during their aerosol self-assembly to rapidly fabricate robust, ultra-porous nanoparticle networks (UNN) of crystalline hydroxyapatite (HAp). Comparative analysis of the response of osteoblast cells to the ultra-porous nanostructured HAp surfaces and to the spin coated HAp surfaces revealed superior osseointegrative properties of the UNN coatings with significant cell and filopodia infiltration. This flexible synthesis approach for the engineering of UNN HAp coatings on titanium implants provides a platform technology to study the bone-implant interface for improved osseointegration and osteoconduction. PMID:27076035

  19. Glass-based integrated optical splitters: engineering oriented research

    NASA Astrophysics Data System (ADS)

    Hao, Yinlei; Zheng, Weiwei; Yang, Jianyi; Jiang, Xiaoqing; Wang, Minghua

    2010-10-01

    Optical splitter is one of most typical device heavily demanded in implementation of Fiber To The Home (FTTH) system. Due to its compatibility with optical fibers, low propagation loss, flexibility, and most distinguishingly, potentially costeffectiveness, glass-based integrated optical splitters made by ion-exchange technology promise to be very attractive in application of optical communication networks. Aiming at integrated optical splitters applied in optical communication network, glass ion-exchange waveguide process is developed, which includes two steps: thermal salts ion-exchange and field-assisted ion-diffusion. By this process, high performance optical splitters are fabricated in specially melted glass substrate. Main performance parameters of these splitters, including maximum insertion loss (IL), polarization dependence loss (PDL), and IL uniformity are all in accordance with corresponding specifications in generic requirements for optic branching components (GR-1209-CORE). In this paper, glass based integrated optical splitters manufacturing is demonstrated, after which, engineering-oriented research work results on glass-based optical splitter are presented.

  20. Multi-casting approach for vascular networks in cellularized hydrogels.

    PubMed

    Justin, Alexander W; Brooks, Roger A; Markaki, Athina E

    2016-12-01

    Vascularization is essential for living tissue and remains a major challenge in the field of tissue engineering. A lack of a perfusable channel network within a large and densely populated tissue engineered construct leads to necrotic core formation, preventing fabrication of functional tissues and organs. We report a new method for producing a hierarchical, three-dimensional (3D) and perfusable vasculature in a large, cellularized fibrin hydrogel. Bifurcating channels, varying in size from 1 mm to 200-250 µm, are formed using a novel process in which we convert a 3D printed thermoplastic material into a gelatin network template, by way of an intermediate alginate hydrogel. This enables a CAD-based model design, which is highly customizable, reproducible, and which can yield highly complex architectures, to be made into a removable material, which can be used in cellular environments. Our approach yields constructs with a uniform and high density of cells in the bulk, made from bioactive collagen and fibrin hydrogels. Using standard cell staining and immuno-histochemistry techniques, we showed good cell seeding and the presence of tight junctions between channel endothelial cells, and high cell viability and cell spreading in the bulk hydrogel. © 2016 The Authors.

  1. Aero-acoustic performance comparison of core engine noise suppressors on NASA quiet engine 'C'

    NASA Technical Reports Server (NTRS)

    Bloomer, H. E.; Schaefer, J. W.

    1977-01-01

    The purpose of the experimental program reported herein was to evaluate and compare the relative aero-acoustic effectiveness of two core engine suppressors, a contractor-designed suppressor delivered with the Quiet Engine, and a NASA-designed suppressor, designed and built subsequently. The NASA suppressor was tested with and without a splitter making a total of three configurations being reported in addition to the baseline hardwall case. The aerodynamic results are presented in terms of tailpipe pressure loss, corrected net thrust, and corrected specific fuel consumption as functions of engine power setting. The acoustic results are divided into duct and far-field acoustic data. The NASA-designed core suppressor did the better job of suppressing aft end noise, but the splitter associated with it caused a significant engine performance penalty. The NASA core suppressor without the splitter suppressed most of the core noise without any engine performance penalty.

  2. An integrated network visualization framework towards metabolic engineering applications.

    PubMed

    Noronha, Alberto; Vilaça, Paulo; Rocha, Miguel

    2014-12-30

    Over the last years, several methods for the phenotype simulation of microorganisms, under specified genetic and environmental conditions have been proposed, in the context of Metabolic Engineering (ME). These methods provided insight on the functioning of microbial metabolism and played a key role in the design of genetic modifications that can lead to strains of industrial interest. On the other hand, in the context of Systems Biology research, biological network visualization has reinforced its role as a core tool in understanding biological processes. However, it has been scarcely used to foster ME related methods, in spite of the acknowledged potential. In this work, an open-source software that aims to fill the gap between ME and metabolic network visualization is proposed, in the form of a plugin to the OptFlux ME platform. The framework is based on an abstract layer, where the network is represented as a bipartite graph containing minimal information about the underlying entities and their desired relative placement. The framework provides input/output support for networks specified in standard formats, such as XGMML, SBGN or SBML, providing a connection to genome-scale metabolic models. An user-interface makes it possible to edit, manipulate and query nodes in the network, providing tools to visualize diverse effects, including visual filters and aspect changing (e.g. colors, shapes and sizes). These tools are particularly interesting for ME, since they allow overlaying phenotype simulation results or elementary flux modes over the networks. The framework and its source code are freely available, together with documentation and other resources, being illustrated with well documented case studies.

  3. Aircraft Engine Exhaust Nozzle System for Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H. (Inventor); Czech, Michael J. (Inventor); Elkoby, Ronen (Inventor)

    2014-01-01

    The aircraft exhaust engine nozzle system includes a fan nozzle to receive a fan flow from a fan disposed adjacent to an engine disposed above an airframe surface of the aircraft, a core nozzle disposed within the fan nozzle and receiving an engine core flow, and a pylon structure connected to the core nozzle and structurally attached with the airframe surface to secure the engine to the aircraft.

  4. Split radiator design for heat rejection optimization for a waste heat recovery system

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2016-10-18

    A cooling system provides improved heat recovery by providing a split core radiator for both engine cooling and condenser cooling for a Rankine cycle (RC). The cooling system includes a radiator having a first cooling core portion and a second cooling core portion. An engine cooling loop is fluidly connected the second cooling core portion. A condenser of an RC has a cooling loop fluidly connected to the first cooling core portion. A valve is provided between the engine cooling loop and the condenser cooling loop adjustably control the flow of coolant in the condenser cooling loop into the engine cooling loop. The cooling system includes a controller communicatively coupled to the valve and adapted to determine a load requirement for the internal combustion engine and adjust the valve in accordance with the engine load requirement.

  5. Virtual optical network mapping and core allocation in elastic optical networks using multi-core fibers

    NASA Astrophysics Data System (ADS)

    Xuan, Hejun; Wang, Yuping; Xu, Zhanqi; Hao, Shanshan; Wang, Xiaoli

    2017-11-01

    Virtualization technology can greatly improve the efficiency of the networks by allowing the virtual optical networks to share the resources of the physical networks. However, it will face some challenges, such as finding the efficient strategies for virtual nodes mapping, virtual links mapping and spectrum assignment. It is even more complex and challenging when the physical elastic optical networks using multi-core fibers. To tackle these challenges, we establish a constrained optimization model to determine the optimal schemes of optical network mapping, core allocation and spectrum assignment. To solve the model efficiently, tailor-made encoding scheme, crossover and mutation operators are designed. Based on these, an efficient genetic algorithm is proposed to obtain the optimal schemes of the virtual nodes mapping, virtual links mapping, core allocation. The simulation experiments are conducted on three widely used networks, and the experimental results show the effectiveness of the proposed model and algorithm.

  6. 78 FR 31592 - T-Mobile Usa, Inc., Core Fault Isolation Team, Engineering Division, Bethlehem, Pennsylvania...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-24

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-82,371] T-Mobile Usa, Inc., Core Fault Isolation Team, Engineering Division, Bethlehem, Pennsylvania; Notice of Affirmative Determination...., Core Fault Isolation Team, Engineering Division, Bethlehem, Pennsylvania (subject firm). The...

  7. Stability of ecological industry chain: an entropy model approach.

    PubMed

    Wang, Qingsong; Qiu, Shishou; Yuan, Xueliang; Zuo, Jian; Cao, Dayong; Hong, Jinglan; Zhang, Jian; Dong, Yong; Zheng, Ying

    2016-07-01

    A novel methodology is proposed in this study to examine the stability of ecological industry chain network based on entropy theory. This methodology is developed according to the associated dissipative structure characteristics, i.e., complexity, openness, and nonlinear. As defined in the methodology, network organization is the object while the main focus is the identification of core enterprises and core industry chains. It is proposed that the chain network should be established around the core enterprise while supplementation to the core industry chain helps to improve system stability, which is verified quantitatively. Relational entropy model can be used to identify core enterprise and core eco-industry chain. It could determine the core of the network organization and core eco-industry chain through the link form and direction of node enterprises. Similarly, the conductive mechanism of different node enterprises can be examined quantitatively despite the absence of key data. Structural entropy model can be employed to solve the problem of order degree for network organization. Results showed that the stability of the entire system could be enhanced by the supplemented chain around the core enterprise in eco-industry chain network organization. As a result, the sustainability of the entire system could be further improved.

  8. Neural networks within multi-core optic fibers

    PubMed Central

    Cohen, Eyal; Malka, Dror; Shemer, Amir; Shahmoon, Asaf; Zalevsky, Zeev; London, Michael

    2016-01-01

    Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks. PMID:27383911

  9. Neural networks within multi-core optic fibers.

    PubMed

    Cohen, Eyal; Malka, Dror; Shemer, Amir; Shahmoon, Asaf; Zalevsky, Zeev; London, Michael

    2016-07-07

    Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks.

  10. Plant salt-tolerance mechanisms

    DOE PAGES

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; ...

    2014-06-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selectionmore » and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.« less

  11. Combustion and Engine-Core Noise

    NASA Astrophysics Data System (ADS)

    Ihme, Matthias

    2017-01-01

    The implementation of advanced low-emission aircraft engine technologies and the reduction of noise from airframe, fan, and jet exhaust have made noise contributions from an engine core increasingly important. Therefore, meeting future ambitious noise-reduction goals requires the consideration of engine-core noise. This article reviews progress on the fundamental understanding, experimental analysis, and modeling of engine-core noise; addresses limitations of current techniques; and identifies opportunities for future research. After identifying core-noise contributions from the combustor, turbomachinery, nozzles, and jet exhaust, they are examined in detail. Contributions from direct combustion noise, originating from unsteady combustion, and indirect combustion noise, resulting from the interaction of flow-field perturbations with mean-flow variations in turbine stages and nozzles, are analyzed. A new indirect noise-source contribution arising from mixture inhomogeneities is identified by extending the theory. Although typically omitted in core-noise analysis, the impact of mean-flow variations and nozzle-upstream perturbations on the jet-noise modulation is examined, providing potential avenues for future core-noise mitigation.

  12. Neuromorphic Hardware Architecture Using the Neural Engineering Framework for Pattern Recognition.

    PubMed

    Wang, Runchun; Thakur, Chetan Singh; Cohen, Gregory; Hamilton, Tara Julia; Tapson, Jonathan; van Schaik, Andre

    2017-06-01

    We present a hardware architecture that uses the neural engineering framework (NEF) to implement large-scale neural networks on field programmable gate arrays (FPGAs) for performing massively parallel real-time pattern recognition. NEF is a framework that is capable of synthesising large-scale cognitive systems from subnetworks and we have previously presented an FPGA implementation of the NEF that successfully performs nonlinear mathematical computations. That work was developed based on a compact digital neural core, which consists of 64 neurons that are instantiated by a single physical neuron using a time-multiplexing approach. We have now scaled this approach up to build a pattern recognition system by combining identical neural cores together. As a proof of concept, we have developed a handwritten digit recognition system using the MNIST database and achieved a recognition rate of 96.55%. The system is implemented on a state-of-the-art FPGA and can process 5.12 million digits per second. The architecture and hardware optimisations presented offer high-speed and resource-efficient means for performing high-speed, neuromorphic, and massively parallel pattern recognition and classification tasks.

  13. Nano-engineered intrapores in nanoparticles of PtNi networks for increased oxygen reduction reaction activity

    NASA Astrophysics Data System (ADS)

    Ding, Jieting; Ji, Shan; Wang, Hui; Key, Julian; Brett, Dan J. L.; Wang, Rongfang

    2018-01-01

    Network-like metallic alloys of solid nanoparticles have been frequently reported as promising electrocatalysts for fuel cells. The three-dimensional structure of such networks is rich in pores in the form of voids between nanoparticles, which collectively expose a large surface area for catalytic activity. Herein, we present a novel solution to this problem using a precursor comprising a flocculent core-shell PtNi@Ni to produce PtNi network catalysts with nanoparticle intraporosity after carefully controlled electrochemical dealloying. Physical characterization shows a hierarchical level of nanoporosity (intrapores within nanoparticles and pores between them) evolves during the controlled electrochemical dealloying, and that a Pt-rich surface also forms after 22 cycles of Ni leaching. In ORR cycling, the PtNi networks gain 4-fold activity in both jECSA and jmass over a state of the art Pt/C electrocatalyst, and also significantly exceed previously reported PtNi networks. In ORR degradation tests, the PtNi networks also proved stable, dropping by 30.4% and 62.6% in jECSA and jmass respectively. The enhanced performance of the catalyst is evident, and we also propose that the presented synthesis procedure can be generally applied to developing other metallic networks.

  14. Multiple network interface core apparatus and method

    DOEpatents

    Underwood, Keith D [Albuquerque, NM; Hemmert, Karl Scott [Albuquerque, NM

    2011-04-26

    A network interface controller and network interface control method comprising providing a single integrated circuit as a network interface controller and employing a plurality of network interface cores on the single integrated circuit.

  15. Turbofan gas turbine engine with variable fan outlet guide vanes

    NASA Technical Reports Server (NTRS)

    Wood, Peter John (Inventor); LaChapelle, Donald George (Inventor); Grant, Carl (Inventor); Zenon, Ruby Lasandra (Inventor); Mielke, Mark Joseph (Inventor)

    2010-01-01

    A turbofan gas turbine engine includes a forward fan section with a row of fan rotor blades, a core engine, and a fan bypass duct downstream of the forward fan section and radially outwardly of the core engine. The forward fan section has only a single stage of variable fan guide vanes which are variable fan outlet guide vanes downstream of the forward fan rotor blades. An exemplary embodiment of the engine includes an afterburner downstream of the fan bypass duct between the core engine and an exhaust nozzle. The variable fan outlet guide vanes are operable to pivot from a nominal OGV position at take-off to an open OGV position at a high flight Mach Number which may be in a range of between about 2.5-4+. Struts extend radially across a radially inwardly curved portion of a flowpath of the engine between the forward fan section and the core engine.

  16. Social capital and core network ties: a validation study of individual-level social capital measures and their association with extra- and intra-neighborhood ties, and self-rated health.

    PubMed

    Moore, Spencer; Bockenholt, Ulf; Daniel, Mark; Frohlich, Katherine; Kestens, Yan; Richard, Lucie

    2011-03-01

    Research on social capital and health has assumed that measures of trust, participation, and perceived cohesion capture aspects of people's neighborhood social connections. This study uses data on the personal networks of 2707 Montreal adults in 300 different neighborhoods to examine the association of socio-demographic and social capital variables with the likelihood of having core ties, core neighborhood ties, and high self-rated health (SRH). Persons with higher household income were more likely to have core ties, but less likely to have core neighborhood ties. Persons with greater diversity in extra-neighborhood network capital were more likely to have core ties, and persons with greater diversity in intra-neighborhood network capital were more likely to have core neighborhood ties. Generalized trust, perceived neighborhood cohesion, and extra-neighborhood network diversity were shown associated with high SRH. Conventional measures of social capital may not capture network mechanisms. Findings suggest a critical appraisal of the mechanisms linking social capital and health, and the further delineation of network and psychosocial mechanisms in understanding these links. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Core psychopathology in anorexia nervosa and bulimia nervosa: A network analysis.

    PubMed

    Forrest, Lauren N; Jones, Payton J; Ortiz, Shelby N; Smith, April R

    2018-04-25

    The cognitive-behavioral theory of eating disorders (EDs) proposes that shape and weight overvaluation are the core ED psychopathology. Core symptoms can be statistically identified using network analysis. Existing ED network studies support that shape and weight overvaluation are the core ED psychopathology, yet no studies have estimated AN core psychopathology and concerns exist about the replicability of network analysis findings. The current study estimated ED symptom networks among people with anorexia nervosa (AN) and bulimia nervosa (BN) and among a combined group of people with AN and BN. Participants were girls and women with AN (n = 604) and BN (n = 477) seeking residential ED treatment. ED symptoms were assessed with the Eating Disorder Examination-Questionnaire (EDE-Q); 27 of the EDE-Q items were included as nodes in symptom networks. Core symptoms were determined by expected influence and strength values. In all networks, desiring weight loss, restraint, shape and weight preoccupation, and shape overvaluation emerged as the most important symptoms. In addition, in the AN and combined networks, fearing weight gain emerged as an important symptom. In the BN network, weight overvaluation emerged as another important symptom. Findings support the cognitive-behavioral premise that shape and weight overvaluation are at the core of AN psychopathology. Our BN and combined network findings provide a high degree of replication of previous findings. Clinically, findings highlight the importance of considering shape and weight overvaluation as a severity specifier and primary treatment target for people with EDs. © 2018 Wiley Periodicals, Inc.

  18. Mapping the Emergence of Synthetic Biology

    PubMed Central

    2016-01-01

    In this paper, we apply an original scientometric analyses to a corpus comprising synthetic biology (SynBio) publications in Thomson Reuters Web of Science to characterize the emergence of this new scientific field. Three results were drawn from this empirical investigation. First, despite the exponential growth of publications, the study of population level statistics (newcomers proportion, collaboration network structure) shows that SynBio has entered a stabilization process since 2010. Second, the mapping of textual and citational networks shows that SynBio is characterized by high heterogeneity and four different approaches: the central approach, where biobrick engineering is the most widespread; genome engineering; protocell creation; and metabolic engineering. We suggest that synthetic biology acts as an umbrella term allowing for the mobilization of resources, and also serves to relate scientific content and promises of applications. Third, we observed a strong intertwinement between epistemic and socio-economic dynamics. Measuring scientific production and impact and using structural analysis data, we identified a core set of mostly American scientists. Biographical analysis shows that these central and influential scientists act as “boundary spanners,” meaning that their importance to the field lies not only in their academic contributions, but also in their capacity to interact with other social spaces that are outside the academic sphere. PMID:27611324

  19. Analysis of core-periphery organization in protein contact networks reveals groups of structurally and functionally critical residues.

    PubMed

    Isaac, Arnold Emerson; Sinha, Sitabhra

    2015-10-01

    The representation of proteins as networks of interacting amino acids, referred to as protein contact networks (PCN), and their subsequent analyses using graph theoretic tools, can provide novel insights into the key functional roles of specific groups of residues. We have characterized the networks corresponding to the native states of 66 proteins (belonging to different families) in terms of their core-periphery organization. The resulting hierarchical classification of the amino acid constituents of a protein arranges the residues into successive layers - having higher core order - with increasing connection density, ranging from a sparsely linked periphery to a densely intra-connected core (distinct from the earlier concept of protein core defined in terms of the three-dimensional geometry of the native state, which has least solvent accessibility). Our results show that residues in the inner cores are more conserved than those at the periphery. Underlining the functional importance of the network core, we see that the receptor sites for known ligand molecules of most proteins occur in the innermost core. Furthermore, the association of residues with structural pockets and cavities in binding or active sites increases with the core order. From mutation sensitivity analysis, we show that the probability of deleterious or intolerant mutations also increases with the core order. We also show that stabilization centre residues are in the innermost cores, suggesting that the network core is critically important in maintaining the structural stability of the protein. A publicly available Web resource for performing core-periphery analysis of any protein whose native state is known has been made available by us at http://www.imsc.res.in/ ~sitabhra/proteinKcore/index.html.

  20. 77 FR 4650 - Airworthiness Directives; General Electric Company Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ... blade borescope inspection (BSI) or a failed engine core vibration survey, establishes a new lower life... LPT rotor stage 3 disk removal after a failed HPT blade BSI or a failed engine core vibration survey... engine test cell as part of an engine manual performance run fulfill the vibration survey requirements of...

  1. The Structure of Medical Informatics Journal Literature

    PubMed Central

    Morris, Theodore A.; McCain, Katherine W.

    1998-01-01

    Abstract Objective: Medical informatics is an emergent interdisciplinary field described as drawing upon and contributing to both the health sciences and information sciences. The authors elucidate the disciplinary nature and internal structure of the field. Design: To better understand the field's disciplinary nature, the authors examine the intercitation relationships of its journal literature. To determine its internal structure, they examined its journal cocitation patterns. Measurements: The authors used data from the Science Citation Index (SCI) and Social Science Citation Index (SSCI) to perform intercitation studies among productive journal titles, and software routines from SPSS to perform multivariate data analyses on cocitation data for proposed core journals. Results: Intercitation network analysis suggests that a core literature exists, one mark of a separate discipline. Multivariate analyses of cocitation data suggest that major focus areas within the field include biomedical engineering, biomedical computing, decision support, and education. The interpretable dimensions of multidimensional scaling maps differed for the SCI and SSCI data sets. Strong links to information science literature were not found. Conclusion: The authors saw indications of a core literature and of several major research fronts. The field appears to be viewed differently by authors writing in journals indexed by SCI from those writing in journals indexed by SSCI, with more emphasis placed on computers and engineering versus decision making by the former and more emphasis on theory versus application (clinical practice) by the latter. PMID:9760393

  2. Core networks and their reconfiguration patterns across cognitive loads.

    PubMed

    Zuo, Nianming; Yang, Zhengyi; Liu, Yong; Li, Jin; Jiang, Tianzi

    2018-04-20

    Different cognitively demanding tasks recruit globally distributed but functionally specific networks. However, the configuration of core networks and their reconfiguration patterns across cognitive loads remain unclear, as does whether these patterns are indicators for the performance of cognitive tasks. In this study, we analyzed functional magnetic resonance imaging data of a large cohort of 448 subjects, acquired with the brain at resting state and executing N-back working memory (WM) tasks. We discriminated core networks by functional interaction strength and connection flexibility. Results demonstrated that the frontoparietal network (FPN) and default mode network (DMN) were core networks, but each exhibited different patterns across cognitive loads. The FPN and DMN both showed strengthened internal connections at the low demand state (0-back) compared with the resting state (control level); whereas, from the low (0-back) to high demand state (2-back), some connections to the FPN weakened and were rewired to the DMN (whose connections all remained strong). Of note, more intensive reconfiguration of both the whole brain and core networks (but no other networks) across load levels indicated relatively poor cognitive performance. Collectively these findings indicate that the FPN and DMN have distinct roles and reconfiguration patterns across cognitively demanding loads. This study advances our understanding of the core networks and their reconfiguration patterns across cognitive loads and provides a new feature to evaluate and predict cognitive capability (e.g., WM performance) based on brain networks. © 2018 Wiley Periodicals, Inc.

  3. Protecting core networks with dual-homing: A study on enhanced network availability, resource efficiency, and energy-savings

    NASA Astrophysics Data System (ADS)

    Abeywickrama, Sandu; Furdek, Marija; Monti, Paolo; Wosinska, Lena; Wong, Elaine

    2016-12-01

    Core network survivability affects the reliability performance of telecommunication networks and remains one of the most important network design considerations. This paper critically examines the benefits arising from utilizing dual-homing in the optical access networks to provide resource-efficient protection against link and node failures in the optical core segment. Four novel, heuristic-based RWA algorithms that provide dedicated path protection in networks with dual-homing are proposed and studied. These algorithms protect against different failure scenarios (i.e. single link or node failures) and are implemented with different optimization objectives (i.e., minimization of wavelength usage and path length). Results obtained through simulations and comparison with baseline architectures indicate that exploiting dual-homed architecture in the access segment can bring significant improvements in terms of core network resource usage, connection availability, and power consumption.

  4. Core and Off-Core Processes in Systems Engineering

    NASA Technical Reports Server (NTRS)

    Breidenthal, Julian; Forsberg, Kevin

    2010-01-01

    An emerging methodology of organizing systems-engineering plans is based on a concept of core and off-core processes or activities. This concept has emerged as a result of recognition of a risk in the traditional representation of systems-engineering plans by a Vee model alone, according to which a large system is decomposed into levels of smaller subsystems, then integrated through levels of increasing scope until the full system is constructed. Actual systems-engineering activity is more complicated, raising the possibility that the staff will become confused in the absence of plans which explain the nature and ordering of work beyond the traditional Vee model.

  5. Core noise measurements on a YF-102 turbofan engine

    NASA Technical Reports Server (NTRS)

    Reshotko, M.; Karchmer, A. M.; Penko, P. F.; Mcardle, J. G.

    1977-01-01

    Core noise from a YF-102 high bypass ratio turbofan engine was investigated through the use of simultaneous measurements of internal fluctuating pressures and far field noise. Acoustic waveguide probes, located in the engine at the compressor exit, in the combustor, at the turbine exit, and in the core nozzle, were employed to measure internal fluctuating pressures. Spectra showed that the internal signals were free of tones, except at high frequency where machinery noise was present. Data obtained over a wide range of engine conditions suggest that below 60% of maximum fan speed the low frequency core noise contributes significantly to the far field noise.

  6. Energy efficient engine. Core engine bearings, drives and configuration: Detailed design report

    NASA Technical Reports Server (NTRS)

    Broman, C. L.

    1981-01-01

    The detailed design of the forward and aft sumps, the accessory drive system, the lubrication system, and the piping/manifold configuration to be employed in the core engine test of the Energy Efficient Engine is addressed. The design goals for the above components were established based on the requirements of the test cell engine.

  7. Evolution of engine cycles for STOVL propulsion concepts

    NASA Technical Reports Server (NTRS)

    Bucknell, R. L.; Frazier, R. H.; Giulianetti, D. J.

    1990-01-01

    Short Take-off, Vertical Landing (STOVL) demonstrator concepts using a common ATF engine core are discussed. These concepts include a separate fan and core flow engine cycle, mixed flow STOVL cycles, separate flow cycles convertible to mixed flow, and reaction control system engine air bleed. STOVL propulsion controls are discussed.

  8. Delivering Core Engineering Concepts to Secondary Level Students

    ERIC Educational Resources Information Center

    Merrill, Chris; Custer, Rodney L.; Daugherty, Jenny; Westrick, Martin; Zeng, Yong

    2008-01-01

    Through the efforts of National Center for Engineering and Technology Education (NCETE), three core engineering concepts within the realm of engineering design have emerged as crucial areas of need within secondary level technology education. These concepts are constraints, optimization, and predictive analysis (COPA). COPA appears to be at the…

  9. SENSE IT: Student Enabled Network of Sensors for the Environment using Innovative Technology

    NASA Astrophysics Data System (ADS)

    Hotaling, L. A.; Stolkin, R.; Kirkey, W.; Bonner, J. S.; Lowes, S.; Lin, P.; Ojo, T.

    2010-12-01

    SENSE IT is a project funded by the National Science Foundation (NSF) which strives to enrich science, technology, engineering and mathematics (STEM) education by providing teacher professional development and classroom projects in which high school students build from first principles, program, test and deploy sensors for water quality monitoring. Sensor development is a broad and interdisciplinary area, providing motivating scenarios in which to teach a multitude of STEM subjects, from mathematics and physics to biology and environmental science, while engaging students with hands on problems that reinforce conventional classroom learning by re-presenting theory as practical tools for building real-life working devices. The SENSE IT program is currently developing and implementing a set of high school educational modules which teach environmental science and basic engineering through the lens of fundamental STEM principles, at the same time introducing students to a new set of technologies that are increasingly important in the world of environmental research. Specifically, the project provides students with the opportunity to learn the engineering design process through the design, construction, programming and testing of a student-implemented water monitoring network in the Hudson and St. Lawrence Rivers in New York. These educational modules are aligned to state and national technology and science content standards and are designed to be compatible with standard classroom curricula to support a variety of core science, technology and mathematics classroom material. For example, while designing, programming and calibrating the sensors, the students are led through a series of tasks in which they must use core mathematics and physics theory to solve the real problems of making their sensors work. In later modules, students can explore environmental science and environmental engineering curricula while deploying and monitoring their sensors in local rivers. This presentation will provide an overview of the educational modules. A variety of sensors will be described, which are suitably simple for design and construction from first principles by high school students while being accurate enough for students to make meaningful environmental measurements. The presentation will also describe how the sensor building activities can be tied to core curricula classroom theory, enabling the modules to be utilized in regular classes by mathematics, science and computing teachers without disrupting their semester’s teaching goals. Furthermore, the presentation will address of the first two years of the SENSE IT project, during which 39 teachers have been equipped, trained on these materials, and have implemented the modules with around approximately 2,000 high school students.

  10. Mapping, Awareness, and Virtualization Network Administrator Training Tool (MAVNATT) Architecture and Framework

    DTIC Science & Technology

    2015-06-01

    unit may setup and teardown the entire tactical infrastructure multiple times per day. This tactical network administrator training is a critical...language and runs on Linux and Unix based systems. All provisioning is based around the Nagios Core application, a powerful backend solution for network...start up a large number of virtual machines quickly. CORE supports the simulation of fixed and mobile networks. CORE is open-source, written in Python

  11. Research on NGN network control technology

    NASA Astrophysics Data System (ADS)

    Li, WenYao; Zhou, Fang; Wu, JianXue; Li, ZhiGuang

    2004-04-01

    Nowadays NGN (Next Generation Network) is the hotspot for discussion and research in IT section. The NGN core technology is the network control technology. The key goal of NGN is to realize the network convergence and evolution. Referring to overlay network model core on Softswitch technology, circuit switch network and IP network convergence realized. Referring to the optical transmission network core on ASTN/ASON, service layer (i.e. IP layer) and optical transmission convergence realized. Together with the distributing feature of NGN network control technology, on NGN platform, overview of combining Softswitch and ASTN/ASON control technology, the solution whether IP should be the NGN core carrier platform attracts general attention, and this is also a QoS problem on NGN end to end. This solution produces the significant practical meaning on equipment development, network deployment, network design and optimization, especially on realizing present network smooth evolving to the NGN. This is why this paper puts forward the research topic on the NGN network control technology. This paper introduces basics on NGN network control technology, then proposes NGN network control reference model, at the same time describes a realizable network structure of NGN. Based on above, from the view of function realization, NGN network control technology is discussed and its work mechanism is analyzed.

  12. WarpEngine, a Flexible Platform for Distributed Computing Implemented in the VEGA Program and Specially Targeted for Virtual Screening Studies.

    PubMed

    Pedretti, Alessandro; Mazzolari, Angelica; Vistoli, Giulio

    2018-05-21

    The manuscript describes WarpEngine, a novel platform implemented within the VEGA ZZ suite of software for performing distributed simulations both in local and wide area networks. Despite being tailored for structure-based virtual screening campaigns, WarpEngine possesses the required flexibility to carry out distributed calculations utilizing various pieces of software, which can be easily encapsulated within this platform without changing their source codes. WarpEngine takes advantages of all cheminformatics features implemented in the VEGA ZZ program as well as of its largely customizable scripting architecture thus allowing an efficient distribution of various time-demanding simulations. To offer an example of the WarpEngine potentials, the manuscript includes a set of virtual screening campaigns based on the ACE data set of the DUD-E collections using PLANTS as the docking application. Benchmarking analyses revealed a satisfactory linearity of the WarpEngine performances, the speed-up values being roughly equal to the number of utilized cores. Again, the computed scalability values emphasized that a vast majority (i.e., >90%) of the performed simulations benefit from the distributed platform presented here. WarpEngine can be freely downloaded along with the VEGA ZZ program at www.vegazz.net .

  13. POLARIS: Agent-based modeling framework development and implementation for integrated travel demand and network and operations simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auld, Joshua; Hope, Michael; Ley, Hubert

    This paper discusses the development of an agent-based modelling software development kit, and the implementation and validation of a model using it that integrates dynamic simulation of travel demand, network supply and network operations. A description is given of the core utilities in the kit: a parallel discrete event engine, interprocess exchange engine, and memory allocator, as well as a number of ancillary utilities: visualization library, database IO library, and scenario manager. The overall framework emphasizes the design goals of: generality, code agility, and high performance. This framework allows the modeling of several aspects of transportation system that are typicallymore » done with separate stand-alone software applications, in a high-performance and extensible manner. The issue of integrating such models as dynamic traffic assignment and disaggregate demand models has been a long standing issue for transportation modelers. The integrated approach shows a possible way to resolve this difficulty. The simulation model built from the POLARIS framework is a single, shared-memory process for handling all aspects of the integrated urban simulation. The resulting gains in computational efficiency and performance allow planning models to be extended to include previously separate aspects of the urban system, enhancing the utility of such models from the planning perspective. Initial tests with case studies involving traffic management center impacts on various network events such as accidents, congestion and weather events, show the potential of the system.« less

  14. Optical interconnection network for parallel access to multi-rank memory in future computing systems.

    PubMed

    Wang, Kang; Gu, Huaxi; Yang, Yintang; Wang, Kun

    2015-08-10

    With the number of cores increasing, there is an emerging need for a high-bandwidth low-latency interconnection network, serving core-to-memory communication. In this paper, aiming at the goal of simultaneous access to multi-rank memory, we propose an optical interconnection network for core-to-memory communication. In the proposed network, the wavelength usage is delicately arranged so that cores can communicate with different ranks at the same time and broadcast for flow control can be achieved. A distributed memory controller architecture that works in a pipeline mode is also designed for efficient optical communication and transaction address processes. The scaling method and wavelength assignment for the proposed network are investigated. Compared with traditional electronic bus-based core-to-memory communication, the simulation results based on the PARSEC benchmark show that the bandwidth enhancement and latency reduction are apparent.

  15. Tests of a D vented thrust deflecting nozzle behind a simulated turbofan engine

    NASA Technical Reports Server (NTRS)

    Watson, T. L.

    1982-01-01

    A D vented thrust deflecting nozzle applicable to subsonic V/STOL aircraft was tested behind a simulated turbofan engine in the verticle thrust stand. Nozzle thrust, fan operating characteristics, nozzle entrance conditions, and static pressures were measured. Nozzle performance was measured for variations in exit area and thrust deflection angle. Six core nozzle configurations, the effect of core exit axial location, mismatched core and fan stream nozzle pressure ratios, and yaw vane presence were evaluated. Core nozzle configuration affected performance at normal and engine out operating conditions. Highest vectored nozzle performance resulted for a given exit area when core and fan stream pressure were equal. Its is concluded that high nozzle performance can be maintained at both normal and engine out conditions through control of the nozzle entrance Mach number with a variable exit area.

  16. Energy efficient engine component development and integration program

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Accomplishments in the Energy Efficient Engine Component Development and Integration program during the period of April 1, 1981 through September 30, 1981 are discussed. The major topics considered are: (1) propulsion system analysis, design, and integration; (2) engine component analysis, design, and development; (3) core engine tests; and (4) integrated core/low spool testing.

  17. Biocompatible magnetic core-shell nanocomposites for engineered magnetic tissues

    NASA Astrophysics Data System (ADS)

    Rodriguez-Arco, Laura; Rodriguez, Ismael A.; Carriel, Victor; Bonhome-Espinosa, Ana B.; Campos, Fernando; Kuzhir, Pavel; Duran, Juan D. G.; Lopez-Lopez, Modesto T.

    2016-04-01

    The inclusion of magnetic nanoparticles into biopolymer matrixes enables the preparation of magnetic field-responsive engineered tissues. Here we describe a synthetic route to prepare biocompatible core-shell nanostructures consisting of a polymeric core and a magnetic shell, which are used for this purpose. We show that using a core-shell architecture is doubly advantageous. First, gravitational settling for core-shell nanocomposites is slower because of the reduction of the composite average density connected to the light polymer core. Second, the magnetic response of core-shell nanocomposites can be tuned by changing the thickness of the magnetic layer. The incorporation of the composites into biopolymer hydrogels containing cells results in magnetic field-responsive engineered tissues whose mechanical properties can be controlled by external magnetic forces. Indeed, we obtain a significant increase of the viscoelastic moduli of the engineered tissues when exposed to an external magnetic field. Because the composites are functionalized with polyethylene glycol, the prepared bio-artificial tissue-like constructs also display excellent ex vivo cell viability and proliferation. When implanted in vivo, the engineered tissues show good biocompatibility and outstanding interaction with the host tissue. Actually, they only cause a localized transitory inflammatory reaction at the implantation site, without any effect on other organs. Altogether, our results suggest that the inclusion of magnetic core-shell nanocomposites into biomaterials would enable tissue engineering of artificial substitutes whose mechanical properties could be tuned to match those of the potential target tissue. In a wider perspective, the good biocompatibility and magnetic behavior of the composites could be beneficial for many other applications.The inclusion of magnetic nanoparticles into biopolymer matrixes enables the preparation of magnetic field-responsive engineered tissues. Here we describe a synthetic route to prepare biocompatible core-shell nanostructures consisting of a polymeric core and a magnetic shell, which are used for this purpose. We show that using a core-shell architecture is doubly advantageous. First, gravitational settling for core-shell nanocomposites is slower because of the reduction of the composite average density connected to the light polymer core. Second, the magnetic response of core-shell nanocomposites can be tuned by changing the thickness of the magnetic layer. The incorporation of the composites into biopolymer hydrogels containing cells results in magnetic field-responsive engineered tissues whose mechanical properties can be controlled by external magnetic forces. Indeed, we obtain a significant increase of the viscoelastic moduli of the engineered tissues when exposed to an external magnetic field. Because the composites are functionalized with polyethylene glycol, the prepared bio-artificial tissue-like constructs also display excellent ex vivo cell viability and proliferation. When implanted in vivo, the engineered tissues show good biocompatibility and outstanding interaction with the host tissue. Actually, they only cause a localized transitory inflammatory reaction at the implantation site, without any effect on other organs. Altogether, our results suggest that the inclusion of magnetic core-shell nanocomposites into biomaterials would enable tissue engineering of artificial substitutes whose mechanical properties could be tuned to match those of the potential target tissue. In a wider perspective, the good biocompatibility and magnetic behavior of the composites could be beneficial for many other applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00224b

  18. Organization of complex networks

    NASA Astrophysics Data System (ADS)

    Kitsak, Maksim

    Many large complex systems can be successfully analyzed using the language of graphs and networks. Interactions between the objects in a network are treated as links connecting nodes. This approach to understanding the structure of networks is an important step toward understanding the way corresponding complex systems function. Using the tools of statistical physics, we analyze the structure of networks as they are found in complex systems such as the Internet, the World Wide Web, and numerous industrial and social networks. In the first chapter we apply the concept of self-similarity to the study of transport properties in complex networks. Self-similar or fractal networks, unlike non-fractal networks, exhibit similarity on a range of scales. We find that these fractal networks have transport properties that differ from those of non-fractal networks. In non-fractal networks, transport flows primarily through the hubs. In fractal networks, the self-similar structure requires any transport to also flow through nodes that have only a few connections. We also study, in models and in real networks, the crossover from fractal to non-fractal networks that occurs when a small number of random interactions are added by means of scaling techniques. In the second chapter we use k-core techniques to study dynamic processes in networks. The k-core of a network is the network's largest component that, within itself, exhibits all nodes with at least k connections. We use this k-core analysis to estimate the relative leadership positions of firms in the Life Science (LS) and Information and Communication Technology (ICT) sectors of industry. We study the differences in the k-core structure between the LS and the ICT sectors. We find that the lead segment (highest k-core) of the LS sector, unlike that of the ICT sector, is remarkably stable over time: once a particular firm enters the lead segment, it is likely to remain there for many years. In the third chapter we study how epidemics spread though networks. Our results indicate that a virus is more likely to infect a large area of a network if it originates at a node contained within k-core of high index k.

  19. Requirements for a network storage service

    NASA Technical Reports Server (NTRS)

    Kelly, Suzanne M.; Haynes, Rena A.

    1991-01-01

    Sandia National Laboratories provides a high performance classified computer network as a core capability in support of its mission of nuclear weapons design and engineering, physical sciences research, and energy research and development. The network, locally known as the Internal Secure Network (ISN), comprises multiple distributed local area networks (LAN's) residing in New Mexico and California. The TCP/IP protocol suite is used for inter-node communications. Scientific workstations and mid-range computers, running UNIX-based operating systems, compose most LAN's. One LAN, operated by the Sandia Corporate Computing Computing Directorate, is a general purpose resource providing a supercomputer and a file server to the entire ISN. The current file server on the supercomputer LAN is an implementation of the Common File Server (CFS). Subsequent to the design of the ISN, Sandia reviewed its mass storage requirements and chose to enter into a competitive procurement to replace the existing file server with one more adaptable to a UNIX/TCP/IP environment. The requirements study for the network was the starting point for the requirements study for the new file server. The file server is called the Network Storage Service (NSS) and its requirements are described. An application or functional description of the NSS is given. The final section adds performance, capacity, and access constraints to the requirements.

  20. Neonatal Seizure Detection Using Deep Convolutional Neural Networks.

    PubMed

    Ansari, Amir H; Cherian, Perumpillichira J; Caicedo, Alexander; Naulaers, Gunnar; De Vos, Maarten; Van Huffel, Sabine

    2018-04-02

    Identifying a core set of features is one of the most important steps in the development of an automated seizure detector. In most of the published studies describing features and seizure classifiers, the features were hand-engineered, which may not be optimal. The main goal of the present paper is using deep convolutional neural networks (CNNs) and random forest to automatically optimize feature selection and classification. The input of the proposed classifier is raw multi-channel EEG and the output is the class label: seizure/nonseizure. By training this network, the required features are optimized, while fitting a nonlinear classifier on the features. After training the network with EEG recordings of 26 neonates, five end layers performing the classification were replaced with a random forest classifier in order to improve the performance. This resulted in a false alarm rate of 0.9 per hour and seizure detection rate of 77% using a test set of EEG recordings of 22 neonates that also included dubious seizures. The newly proposed CNN classifier outperformed three data-driven feature-based approaches and performed similar to a previously developed heuristic method.

  1. Electronic Communication in Engineering Work.

    ERIC Educational Resources Information Center

    Bishop, Ann P.

    1992-01-01

    Discusses the role of electronic networks in engineering work; reviews selected literature on engineering work, knowledge, and communication; describes current uses of electronic networks; and presents results from a study of the use of networks by engineers in the aerospace industry, including their perceptions of networks. (67 references) (LRW)

  2. Protein complex prediction for large protein protein interaction networks with the Core&Peel method.

    PubMed

    Pellegrini, Marco; Baglioni, Miriam; Geraci, Filippo

    2016-11-08

    Biological networks play an increasingly important role in the exploration of functional modularity and cellular organization at a systemic level. Quite often the first tools used to analyze these networks are clustering algorithms. We concentrate here on the specific task of predicting protein complexes (PC) in large protein-protein interaction networks (PPIN). Currently, many state-of-the-art algorithms work well for networks of small or moderate size. However, their performance on much larger networks, which are becoming increasingly common in modern proteome-wise studies, needs to be re-assessed. We present a new fast algorithm for clustering large sparse networks: Core&Peel, which runs essentially in time and storage O(a(G)m+n) for a network G of n nodes and m arcs, where a(G) is the arboricity of G (which is roughly proportional to the maximum average degree of any induced subgraph in G). We evaluated Core&Peel on five PPI networks of large size and one of medium size from both yeast and homo sapiens, comparing its performance against those of ten state-of-the-art methods. We demonstrate that Core&Peel consistently outperforms the ten competitors in its ability to identify known protein complexes and in the functional coherence of its predictions. Our method is remarkably robust, being quite insensible to the injection of random interactions. Core&Peel is also empirically efficient attaining the second best running time over large networks among the tested algorithms. Our algorithm Core&Peel pushes forward the state-of the-art in PPIN clustering providing an algorithmic solution with polynomial running time that attains experimentally demonstrable good output quality and speed on challenging large real networks.

  3. Investigations on Required Core Competencies for Engineering Graduates with Reference to the Indian IT Industry

    ERIC Educational Resources Information Center

    Goel, Sanjay

    2006-01-01

    Fifty-four engineers and managers working with Indian and multinational IT companies, with an average experience of 7.5 years, have responded to a survey about engineering education. Respondents have assessed the importance of 49 parameters. Twenty-three of these parameters correspond to core engineering and general professional competencies for…

  4. High performance shape memory polymer networks based on rigid nanoparticle cores

    PubMed Central

    Song, Jie

    2010-01-01

    Smart materials that can respond to external stimuli are of widespread interest in biomedical science. Thermal-responsive shape memory polymers, a class of intelligent materials that can be fixed at a temporary shape below their transition temperature (Ttrans) and thermally triggered to resume their original shapes on demand, hold great potential as minimally invasive self-fitting tissue scaffolds or implants. The intrinsic mechanism for shape memory behavior of polymers is the freezing and activation of the long-range motion of polymer chain segments below and above Ttrans, respectively. Both Ttrans and the extent of polymer chain participation in effective elastic deformation and recovery are determined by the network composition and structure, which are also defining factors for their mechanical properties, degradability, and bioactivities. Such complexity has made it extremely challenging to achieve the ideal combination of a Ttrans slightly above physiological temperature, rapid and complete recovery, and suitable mechanical and biological properties for clinical applications. Here we report a shape memory polymer network constructed from a polyhedral oligomeric silsesquioxane nanoparticle core functionalized with eight polyester arms. The cross-linked networks comprising this macromer possessed a gigapascal-storage modulus at body temperature and a Ttrans between 42 and 48 °C. The materials could stably hold their temporary shapes for > 1 year at room temperature and achieve full shape recovery ≤ 51 °C in a matter of seconds. Their versatile structures allowed for tunable biodegradability and biofunctionalizability. These materials have tremendous promise for tissue engineering applications. PMID:20375285

  5. UMA/GAN network architecture analysis

    NASA Astrophysics Data System (ADS)

    Yang, Liang; Li, Wensheng; Deng, Chunjian; Lv, Yi

    2009-07-01

    This paper is to critically analyze the architecture of UMA which is one of Fix Mobile Convergence (FMC) solutions, and also included by the third generation partnership project(3GPP). In UMA/GAN network architecture, UMA Network Controller (UNC) is the key equipment which connects with cellular core network and mobile station (MS). UMA network could be easily integrated into the existing cellular networks without influencing mobile core network, and could provides high-quality mobile services with preferentially priced indoor voice and data usage. This helps to improve subscriber's experience. On the other hand, UMA/GAN architecture helps to integrate other radio technique into cellular network which includes WiFi, Bluetooth, and WiMax and so on. This offers the traditional mobile operators an opportunity to integrate WiMax technique into cellular network. In the end of this article, we also give an analysis of potential influence on the cellular core networks ,which is pulled by UMA network.

  6. Programmable chemical controllers made from DNA.

    PubMed

    Chen, Yuan-Jyue; Dalchau, Neil; Srinivas, Niranjan; Phillips, Andrew; Cardelli, Luca; Soloveichik, David; Seelig, Georg

    2013-10-01

    Biological organisms use complex molecular networks to navigate their environment and regulate their internal state. The development of synthetic systems with similar capabilities could lead to applications such as smart therapeutics or fabrication methods based on self-organization. To achieve this, molecular control circuits need to be engineered to perform integrated sensing, computation and actuation. Here we report a DNA-based technology for implementing the computational core of such controllers. We use the formalism of chemical reaction networks as a 'programming language' and our DNA architecture can, in principle, implement any behaviour that can be mathematically expressed as such. Unlike logic circuits, our formulation naturally allows complex signal processing of intrinsically analogue biological and chemical inputs. Controller components can be derived from biologically synthesized (plasmid) DNA, which reduces errors associated with chemically synthesized DNA. We implement several building-block reaction types and then combine them into a network that realizes, at the molecular level, an algorithm used in distributed control systems for achieving consensus between multiple agents.

  7. Programmable chemical controllers made from DNA

    NASA Astrophysics Data System (ADS)

    Chen, Yuan-Jyue; Dalchau, Neil; Srinivas, Niranjan; Phillips, Andrew; Cardelli, Luca; Soloveichik, David; Seelig, Georg

    2013-10-01

    Biological organisms use complex molecular networks to navigate their environment and regulate their internal state. The development of synthetic systems with similar capabilities could lead to applications such as smart therapeutics or fabrication methods based on self-organization. To achieve this, molecular control circuits need to be engineered to perform integrated sensing, computation and actuation. Here we report a DNA-based technology for implementing the computational core of such controllers. We use the formalism of chemical reaction networks as a 'programming language' and our DNA architecture can, in principle, implement any behaviour that can be mathematically expressed as such. Unlike logic circuits, our formulation naturally allows complex signal processing of intrinsically analogue biological and chemical inputs. Controller components can be derived from biologically synthesized (plasmid) DNA, which reduces errors associated with chemically synthesized DNA. We implement several building-block reaction types and then combine them into a network that realizes, at the molecular level, an algorithm used in distributed control systems for achieving consensus between multiple agents.

  8. Programmable chemical controllers made from DNA

    PubMed Central

    Chen, Yuan-Jyue; Dalchau, Neil; Srinivas, Niranjan; Phillips, Andrew; Cardelli, Luca; Soloveichik, David; Seelig, Georg

    2014-01-01

    Biological organisms use complex molecular networks to navigate their environment and regulate their internal state. The development of synthetic systems with similar capabilities could lead to applications such as smart therapeutics or fabrication methods based on self-organization. To achieve this, molecular control circuits need to be engineered to perform integrated sensing, computation and actuation. Here we report a DNA-based technology for implementing the computational core of such controllers. We use the formalism of chemical reaction networks as a 'programming language', and our DNA architecture can, in principle, implement any behaviour that can be mathematically expressed as such. Unlike logic circuits, our formulation naturally allows complex signal processing of intrinsically analogue biological and chemical inputs. Controller components can be derived from biologically synthesized (plasmid) DNA, which reduces errors associated with chemically synthesized DNA. We implement several building-block reaction types and then combine them into a network that realizes, at the molecular level, an algorithm used in distributed control systems for achieving consensus between multiple agents. PMID:24077029

  9. Performance potential of gas-core and fusion rockets - A mission applications survey.

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.; Willis, E. A., Jr.

    1971-01-01

    This paper reports an evaluation of the performance potential of five nuclear rocket engines for four mission classes. These engines are: the regeneratively cooled gas-core nuclear rocket; the light bulb gas-core nuclear rocket; the space-radiator cooled gas-core nuclear rocket; the fusion rocket; and an advanced solid-core nuclear rocket which is included for comparison. The missions considered are: earth-to-orbit launch; near-earth space missions; close interplanetary missions; and distant interplanetary missions. For each of these missions, the capabilities of each rocket engine type are compared in terms of payload ratio for the earth launch mission or by the initial vehicle mass in earth orbit for space missions (a measure of initial cost). Other factors which might determine the engine choice are discussed. It is shown that a 60 day manned round trip to Mars is conceivable.-

  10. PREMER: a Tool to Infer Biological Networks.

    PubMed

    Villaverde, Alejandro F; Becker, Kolja; Banga, Julio R

    2017-10-04

    Inferring the structure of unknown cellular networks is a main challenge in computational biology. Data-driven approaches based on information theory can determine the existence of interactions among network nodes automatically. However, the elucidation of certain features - such as distinguishing between direct and indirect interactions or determining the direction of a causal link - requires estimating information-theoretic quantities in a multidimensional space. This can be a computationally demanding task, which acts as a bottleneck for the application of elaborate algorithms to large-scale network inference problems. The computational cost of such calculations can be alleviated by the use of compiled programs and parallelization. To this end we have developed PREMER (Parallel Reverse Engineering with Mutual information & Entropy Reduction), a software toolbox that can run in parallel and sequential environments. It uses information theoretic criteria to recover network topology and determine the strength and causality of interactions, and allows incorporating prior knowledge, imputing missing data, and correcting outliers. PREMER is a free, open source software tool that does not require any commercial software. Its core algorithms are programmed in FORTRAN 90 and implement OpenMP directives. It has user interfaces in Python and MATLAB/Octave, and runs on Windows, Linux and OSX (https://sites.google.com/site/premertoolbox/).

  11. Desmosine-Inspired Cross-Linkers for Hyaluronan Hydrogels

    NASA Astrophysics Data System (ADS)

    Hagel, Valentin; Mateescu, Markus; Southan, Alexander; Wegner, Seraphine V.; Nuss, Isabell; Haraszti, Tamás; Kleinhans, Claudia; Schuh, Christian; Spatz, Joachim P.; Kluger, Petra J.; Bach, Monika; Tussetschläger, Stefan; Tovar, Günter E. M.; Laschat, Sabine; Boehm, Heike

    2013-06-01

    We designed bioinspired cross-linkers based on desmosine, the cross-linker in natural elastin, to prepare hydrogels with thiolated hyaluronic acid. These short, rigid cross-linkers are based on pyridinium salts (as in desmosine) and can connect two polymer backbones. Generally, the obtained semi-synthetic hydrogels are form-stable, can withstand repeated stress, have a large linear-elastic range, and show strain stiffening behavior typical for biopolymer networks. In addition, it is possible to introduce a positive charge to the core of the cross-linker without affecting the gelation efficiency, or consequently the network connectivity. However, the mechanical properties strongly depend on the charge of the cross-linker. The properties of the presented hydrogels can thus be tuned in a range important for engineering of soft tissues by controlling the cross-linking density and the charge of the cross-linker.

  12. INcreasing Security and Protection through Infrastructure REsilience: The INSPIRE Project

    NASA Astrophysics Data System (ADS)

    D'Antonio, Salvatore; Romano, Luigi; Khelil, Abdelmajid; Suri, Neeraj

    The INSPIRE project aims at enhancing the European potential in the field of security by ensuring the protection of critical information infrastructures through (a) the identification of their vulnerabilities and (b) the development of innovative techniques for securing networked process control systems. To increase the resilience of such systems INSPIRE will develop traffic engineering algorithms, diagnostic processes and self-reconfigurable architectures along with recovery techniques. Hence, the core idea of the INSPIRE project is to protect critical information infrastructures by appropriately configuring, managing, and securing the communication network which interconnects the distributed control systems. A working prototype will be implemented as a final demonstrator of selected scenarios. Controls/Communication Experts will support project partners in the validation and demonstration activities. INSPIRE will also contribute to standardization process in order to foster multi-operator interoperability and coordinated strategies for securing lifeline systems.

  13. Parallel processing for scientific computations

    NASA Technical Reports Server (NTRS)

    Alkhatib, Hasan S.

    1991-01-01

    The main contribution of the effort in the last two years is the introduction of the MOPPS system. After doing extensive literature search, we introduced the system which is described next. MOPPS employs a new solution to the problem of managing programs which solve scientific and engineering applications on a distributed processing environment. Autonomous computers cooperate efficiently in solving large scientific problems with this solution. MOPPS has the advantage of not assuming the presence of any particular network topology or configuration, computer architecture, or operating system. It imposes little overhead on network and processor resources while efficiently managing programs concurrently. The core of MOPPS is an intelligent program manager that builds a knowledge base of the execution performance of the parallel programs it is managing under various conditions. The manager applies this knowledge to improve the performance of future runs. The program manager learns from experience.

  14. Transnational cocaine and heroin flow networks in western Europe: A comparison.

    PubMed

    Chandra, Siddharth; Joba, Johnathan

    2015-08-01

    A comparison of the properties of drug flow networks for cocaine and heroin in a group of 17 western European countries is provided with the aim of understanding the implications of their similarities and differences for drug policy. Drug flow data for the cocaine and heroin networks were analyzed using the UCINET software package. Country-level characteristics including hub and authority scores, core and periphery membership, and centrality, and network-level characteristics including network density, the results of a triad census, and the final fitness of the core-periphery structure of the network, were computed and compared between the two networks. The cocaine network contains fewer path redundancies and a smaller, more tightly knit core than the heroin network. Authorities, hubs and countries central to the cocaine network tend to have higher hub, authority, and centrality scores than those in the heroin network. The core-periphery and hub-authority structures of the cocaine and heroin networks reflect the west-to-east and east-to-west patterns of flow of cocaine and heroin respectively across Europe. The key nodes in the cocaine and heroin networks are generally distinct from one another. The analysis of drug flow networks can reveal important structural features of trafficking networks that can be useful for the allocation of scarce drug control resources. The identification of authorities, hubs, network cores, and network-central nodes can suggest foci for the allocation of these resources. In the case of Europe, while some countries are important to both cocaine and heroin networks, different sets of countries occupy positions of prominence in the two networks. The distinct nature of the cocaine and heroin networks also suggests that a one-size-fits-all supply- and interdiction-focused policy may not work as well as an approach that takes into account the particular characteristics of each network. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Ranking the spreading ability of nodes in network core

    NASA Astrophysics Data System (ADS)

    Tong, Xiao-Lei; Liu, Jian-Guo; Wang, Jiang-Pan; Guo, Qiang; Ni, Jing

    2015-11-01

    Ranking nodes by their spreading ability in complex networks is of vital significance to better understand the network structure and more efficiently spread information. The k-shell decomposition method could identify the most influential nodes, namely network core, with the same ks values regardless to their different spreading influence. In this paper, we present an improved method based on the k-shell decomposition method and closeness centrality (CC) to rank the node spreading influence of the network core. Experiment results on the data from the scientific collaboration network and U.S. aviation network show that the accuracy of the presented method could be increased by 31% and 45% than the one obtained by the degree k, 32% and 31% than the one by the betweenness.

  16. An engine trade study for a supersonic STOVL fighter-attack aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Beard, B. B.; Foley, W. H.

    1982-01-01

    The best main engine for an advanced STOVL aircraft flight demonstrator was studied. The STOVL aircraft uses ejectors powered by engine bypass flow together with vectored core exhaust to achieve vertical thrust capability. Bypass flow and core flow are exhausted through separate nozzles during wingborne flight. Six near term turbofan engines were examined for suitability for this aircraft concept. Fan pressure ratio, thrust split between bypass and core flow, and total thrust level were used to compare engines. One of the six candidate engines was selected for the flight demonstrator configuration. Propulsion related to this aircraft concept was studied. A preliminary candidate for the aircraft reaction control system for hover attitude control was selected. A mathematical model of transfer of bypass thrust from ejectors to aft directed nozzle during the transition to wingborne flight was developed. An equation to predict ejector secondary air flow rate and ram drag is derived. Additional topics discussed include: nozzle area control, ejector to engine inlet reingestion, bypass/core thrust split variation, and gyroscopic behavior during hover.

  17. Reservoir characterization using core, well log, and seismic data and intelligent software

    NASA Astrophysics Data System (ADS)

    Soto Becerra, Rodolfo

    We have developed intelligent software, Oilfield Intelligence (OI), as an engineering tool to improve the characterization of oil and gas reservoirs. OI integrates neural networks and multivariate statistical analysis. It is composed of five main subsystems: data input, preprocessing, architecture design, graphics design, and inference engine modules. More than 1,200 lines of programming code as M-files using the language MATLAB been written. The degree of success of many oil and gas drilling, completion, and production activities depends upon the accuracy of the models used in a reservoir description. Neural networks have been applied for identification of nonlinear systems in almost all scientific fields of humankind. Solving reservoir characterization problems is no exception. Neural networks have a number of attractive features that can help to extract and recognize underlying patterns, structures, and relationships among data. However, before developing a neural network model, we must solve the problem of dimensionality such as determining dominant and irrelevant variables. We can apply principal components and factor analysis to reduce the dimensionality and help the neural networks formulate more realistic models. We validated OI by obtaining confident models in three different oil field problems: (1) A neural network in-situ stress model using lithology and gamma ray logs for the Travis Peak formation of east Texas, (2) A neural network permeability model using porosity and gamma ray and a neural network pseudo-gamma ray log model using 3D seismic attributes for the reservoir VLE 196 Lamar field located in Block V of south-central Lake Maracaibo (Venezuela), and (3) Neural network primary ultimate oil recovery (PRUR), initial waterflooding ultimate oil recovery (IWUR), and infill drilling ultimate oil recovery (IDUR) models using reservoir parameters for San Andres and Clearfork carbonate formations in west Texas. In all cases, we compared the results from the neural network models with the results from regression statistical and non-parametric approach models. The results show that it is possible to obtain the highest cross-correlation coefficient between predicted and actual target variables, and the lowest average absolute errors using the integrated techniques of multivariate statistical analysis and neural networks in our intelligent software.

  18. CF6 jet engine performance improvement program. Short core exhaust nozzle performance improvement concept. [specific fuel consumption reduction

    NASA Technical Reports Server (NTRS)

    Fasching, W. A.

    1979-01-01

    The short core exhaust nozzle was evaluated in CF6-50 engine ground tests including performance, acoustic, and endurance tests. The test results verified the performance predictions from scale model tests. The short core exhaust nozzle provides an internal cruise sfc reduction of 0.9 percent without an increase in engine noise. The nozzle hardware successfully completed 1000 flight cycles of endurance testing without any signs of distress.

  19. Imagining the future: The core episodic simulation network dissociates as a function of timecourse and the amount of simulated information

    PubMed Central

    Thakral, Preston P.; Benoit, Roland G.; Schacter, Daniel L.

    2017-01-01

    Neuroimaging data indicate that episodic memory (i.e., remembering specific past experiences) and episodic simulation (i.e., imagining specific future experiences) are associated with enhanced activity in a common set of neural regions, often referred to as the core network. This network comprises the hippocampus, parahippocampal cortex, lateral and medial parietal cortex, lateral temporal cortex, and medial prefrontal cortex. Evidence for a core network has been taken as support for the idea that episodic memory and episodic simulation are supported by common processes. Much remains to be learned about how specific core network regions contribute to specific aspects of episodic simulation. Prior neuroimaging studies of episodic memory indicate that certain regions within the core network are differentially sensitive to the amount of information recollected (e.g., the left lateral parietal cortex). In addition, certain core network regions dissociate as a function of their timecourse of engagement during episodic memory (e.g., transient activity in the posterior hippocampus and sustained activity in the left lateral parietal cortex). In the current study, we assessed whether similar dissociations could be observed during episodic simulation. We found that the left lateral parietal cortex modulates as a function of the amount of simulated details. Of particular interest, while the hippocampus was insensitive to the amount of simulated details, we observed a temporal dissociation within the hippocampus: transient activity occurred in relatively posterior portions of the hippocampus and sustained activity occurred in anterior portions. Because the posterior hippocampal and lateral parietal findings parallel those observed previously during episodic memory, the present results add to the evidence that episodic memory and episodic simulation are supported by common processes. Critically, the present study also provides evidence that regions within the core network support dissociable processes. PMID:28324695

  20. SLS Test Stand Site Selection

    NASA Technical Reports Server (NTRS)

    Crowe, Kathryn; Williams, Michael

    2015-01-01

    Test site selection is a critical element of the design, development and production of a new system. With the advent of the new Space Launch System (SLS), the National Aeronautics and Space Administration (NASA) had a number of test site selection decisions that needed to be made early enough in the Program to support the planned Launch Readiness Date (LRD). This case study focuses on decisions that needed to be made in 2011 and 2012 in preparation for the April 2013 DPMC decision about where to execute the Main Propulsion Test that is commonly referred to as "Green Run." Those decisions relied upon cooperative analysis between the Program, the Test Lab and Center Operations. The SLS is a human spaceflight vehicle designed to carry a crew farther into space than humans have previously flown. The vehicle consists of four parts: the crew capsule, the upper stage, the core stage, and the first stage solid rocket boosters. The crew capsule carries the astronauts, while the upper stage, the core stage, and solid rocket boosters provide thrust for the vehicle. In other words, the stages provide the "lift" part of the lift vehicle. In conjunction with the solid rocket boosters, the core stage provides the initial "get-off-the-ground" thrust to the vehicle. The ignition of the four core stage engines and two solid rocket boosters is the first step in the launch portion of the mission. The solid rocket boosters burn out after about 2 minutes of flight, and are then jettisoned. The core stage provides thrust until the vehicle reaches a specific altitude and speed, at which point the core stage is shut off and jettisoned, and the upper stage provides vehicle thrust for subsequent mission trajectories. The integrated core stage primarily consists of a liquid oxygen tank, a liquid hydrogen tank, and the four core stage engines. For the SLS program, four RS-25 engines were selected as the four core stage engines. The RS-25 engine is the same engine that was used for Space Shuttle. The test plan for the integrated core stage was broken down into several segments: Component testing, system level testing, and element level testing. In this context, components are items such as valves, controllers, sensors, etc. Systems are items such as an entire engine, a tank, or the outer stage body. The core stage itself is considered to be an element. The rocket engines are also considered an element. At the program level, it was decided to perform a single green run test on the integrated core stage prior to shipment of it to Kennedy Space Center (KSC) for use in the EM-1 test flight of the SLS vehicle. A green run test is the first live fire of the new integrated core stage and engine elements - without boosters of course. The SLS Program had to decide where to perform SLS green run testing.

  1. Advantages and challenges offered by biofunctional core-shell fiber systems for tissue engineering and drug delivery.

    PubMed

    Sperling, Laura E; Reis, Karina P; Pranke, Patricia; Wendorff, Joachim H

    2016-08-01

    Whereas highly porous scaffolds composed of electrospun nanofibers can mimick major features of the extracellular matrix in tissue engineering, they lack the ability to incorporate and release biocompounds (drugs, growth factors) safely in a controlled way. Here, electrospun core-shell fibers (core made from water and aqueous solutions of hydrophilic polymers and the shell from materials with well-defined release mechanisms) offer unique advantages in comparison with those that have helped make porous nanofibrillar scaffolds highly successful in tissue engineering. This review considers the preparation and biofunctionalization of such core-shell fibers as well as applications in various areas, including neural, vascular, cardiac, cartilage and bone tissue engineering, and touches on the topic of clinical trials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. 78 FR 42758 - 36(b)(1) Arms Sales Notification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ... aircraft, to include: Inlet/Fan Modules, Core Engine Modules, Rear Compressor Drive Turbines, Fan Drive...-PW-229 engines for the Hellenic Air Force F-16 aircraft, to include: Inlet/Fan Modules, Core Engine Modules, Rear Compressor Drive Turbines, Fan Drive Turbine Modules, Augmentor Duct and Nozzle Modules, and...

  3. Core Ideas of Engineering and Technology

    ERIC Educational Resources Information Center

    Sneider, Cary

    2012-01-01

    Last month, Rodger Bybee's article, "Scientific and Engineering Practices in K-12 Classrooms," provided an overview of Chapter 3 in "A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas" (NRC 2011). Chapter 3 describes the practices of science and engineering that students are expected to develop during 13 years…

  4. 3D printed microchannel networks to direct vascularisation during endochondral bone repair.

    PubMed

    Daly, Andrew C; Pitacco, Pierluca; Nulty, Jessica; Cunniffe, Gráinne M; Kelly, Daniel J

    2018-04-01

    Bone tissue engineering strategies that recapitulate the developmental process of endochondral ossification offer a promising route to bone repair. Clinical translation of such endochondral tissue engineering strategies will require overcoming a number of challenges, including the engineering of large and often anatomically complex cartilage grafts, as well as the persistence of core regions of avascular cartilage following their implantation into large bone defects. Here 3D printing technology is utilized to develop a versatile and scalable approach to guide vascularisation during endochondral bone repair. First, a sacrificial pluronic ink was used to 3D print interconnected microchannel networks in a mesenchymal stem cell (MSC) laden gelatin-methacryloyl (GelMA) hydrogel. These constructs (with and without microchannels) were next chondrogenically primed in vitro and then implanted into critically sized femoral bone defects in rats. The solid and microchanneled cartilage templates enhanced bone repair compared to untreated controls, with the solid cartilage templates (without microchannels) supporting the highest levels of total bone formation. However, the inclusion of 3D printed microchannels was found to promote osteoclast/immune cell invasion, hydrogel degradation, and vascularisation following implantation. In addition, the endochondral bone tissue engineering strategy was found to support comparable levels of bone healing to BMP-2 delivery, whilst promoting lower levels of heterotopic bone formation, with the microchanneled templates supporting the lowest levels of heterotopic bone formation. Taken together, these results demonstrate that 3D printed hypertrophic cartilage grafts represent a promising approach for the repair of complex bone fractures, particularly for larger defects where vascularisation will be a key challenge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Combustion and Energy Transfer Experiments: A Laboratory Model for Linking Core Concepts across the Science Curriculum

    ERIC Educational Resources Information Center

    Barreto, Jose C.; Dubetz, Terry A.; Schmidt, Diane L.; Isern, Sharon; Beatty, Thomas; Brown, David W.; Gillman, Edward; Alberte, Randall S.; Egiebor, Nosa O.

    2007-01-01

    Core concepts can be integrated throughout lower-division science and engineering courses by using a series of related, cross-referenced laboratory experiments. Starting with butane combustion in chemistry, the authors expanded the underlying core concepts of energy transfer into laboratories designed for biology, physics, and engineering. This…

  6. Rich-Cores in Networks

    PubMed Central

    Ma, Athen; Mondragón, Raúl J.

    2015-01-01

    A core comprises of a group of central and densely connected nodes which governs the overall behaviour of a network. It is recognised as one of the key meso-scale structures in complex networks. Profiling this meso-scale structure currently relies on a limited number of methods which are often complex and parameter dependent or require a null model. As a result, scalability issues are likely to arise when dealing with very large networks together with the need for subjective adjustment of parameters. The notion of a rich-club describes nodes which are essentially the hub of a network, as they play a dominating role in structural and functional properties. The definition of a rich-club naturally emphasises high degree nodes and divides a network into two subgroups. Here, we develop a method to characterise a rich-core in networks by theoretically coupling the underlying principle of a rich-club with the escape time of a random walker. The method is fast, scalable to large networks and completely parameter free. In particular, we show that the evolution of the core in World Trade and C. elegans networks correspond to responses to historical events and key stages in their physical development, respectively. PMID:25799585

  7. Rich-cores in networks.

    PubMed

    Ma, Athen; Mondragón, Raúl J

    2015-01-01

    A core comprises of a group of central and densely connected nodes which governs the overall behaviour of a network. It is recognised as one of the key meso-scale structures in complex networks. Profiling this meso-scale structure currently relies on a limited number of methods which are often complex and parameter dependent or require a null model. As a result, scalability issues are likely to arise when dealing with very large networks together with the need for subjective adjustment of parameters. The notion of a rich-club describes nodes which are essentially the hub of a network, as they play a dominating role in structural and functional properties. The definition of a rich-club naturally emphasises high degree nodes and divides a network into two subgroups. Here, we develop a method to characterise a rich-core in networks by theoretically coupling the underlying principle of a rich-club with the escape time of a random walker. The method is fast, scalable to large networks and completely parameter free. In particular, we show that the evolution of the core in World Trade and C. elegans networks correspond to responses to historical events and key stages in their physical development, respectively.

  8. Reverse engineering a gene network using an asynchronous parallel evolution strategy

    PubMed Central

    2010-01-01

    Background The use of reverse engineering methods to infer gene regulatory networks by fitting mathematical models to gene expression data is becoming increasingly popular and successful. However, increasing model complexity means that more powerful global optimisation techniques are required for model fitting. The parallel Lam Simulated Annealing (pLSA) algorithm has been used in such approaches, but recent research has shown that island Evolutionary Strategies can produce faster, more reliable results. However, no parallel island Evolutionary Strategy (piES) has yet been demonstrated to be effective for this task. Results Here, we present synchronous and asynchronous versions of the piES algorithm, and apply them to a real reverse engineering problem: inferring parameters in the gap gene network. We find that the asynchronous piES exhibits very little communication overhead, and shows significant speed-up for up to 50 nodes: the piES running on 50 nodes is nearly 10 times faster than the best serial algorithm. We compare the asynchronous piES to pLSA on the same test problem, measuring the time required to reach particular levels of residual error, and show that it shows much faster convergence than pLSA across all optimisation conditions tested. Conclusions Our results demonstrate that the piES is consistently faster and more reliable than the pLSA algorithm on this problem, and scales better with increasing numbers of nodes. In addition, the piES is especially well suited to further improvements and adaptations: Firstly, the algorithm's fast initial descent speed and high reliability make it a good candidate for being used as part of a global/local search hybrid algorithm. Secondly, it has the potential to be used as part of a hierarchical evolutionary algorithm, which takes advantage of modern multi-core computing architectures. PMID:20196855

  9. Engineering neural systems for high-level problem solving.

    PubMed

    Sylvester, Jared; Reggia, James

    2016-07-01

    There is a long-standing, sometimes contentious debate in AI concerning the relative merits of a symbolic, top-down approach vs. a neural, bottom-up approach to engineering intelligent machine behaviors. While neurocomputational methods excel at lower-level cognitive tasks (incremental learning for pattern classification, low-level sensorimotor control, fault tolerance and processing of noisy data, etc.), they are largely non-competitive with top-down symbolic methods for tasks involving high-level cognitive problem solving (goal-directed reasoning, metacognition, planning, etc.). Here we take a step towards addressing this limitation by developing a purely neural framework named galis. Our goal in this work is to integrate top-down (non-symbolic) control of a neural network system with more traditional bottom-up neural computations. galis is based on attractor networks that can be "programmed" with temporal sequences of hand-crafted instructions that control problem solving by gating the activity retention of, communication between, and learning done by other neural networks. We demonstrate the effectiveness of this approach by showing that it can be applied successfully to solve sequential card matching problems, using both human performance and a top-down symbolic algorithm as experimental controls. Solving this kind of problem makes use of top-down attention control and the binding together of visual features in ways that are easy for symbolic AI systems but not for neural networks to achieve. Our model can not only be instructed on how to solve card matching problems successfully, but its performance also qualitatively (and sometimes quantitatively) matches the performance of both human subjects that we had perform the same task and the top-down symbolic algorithm that we used as an experimental control. We conclude that the core principles underlying the galis framework provide a promising approach to engineering purely neurocomputational systems for problem-solving tasks that in people require higher-level cognitive functions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Specifying the core network supporting episodic simulation and episodic memory by activation likelihood estimation.

    PubMed

    Benoit, Roland G; Schacter, Daniel L

    2015-08-01

    It has been suggested that the simulation of hypothetical episodes and the recollection of past episodes are supported by fundamentally the same set of brain regions. The present article specifies this core network via Activation Likelihood Estimation (ALE). Specifically, a first meta-analysis revealed joint engagement of expected core-network regions during episodic memory and episodic simulation. These include parts of the medial surface, the hippocampus and parahippocampal cortex within the medial temporal lobes, and the temporal and inferior posterior parietal cortices on the lateral surface. Both capacities also jointly recruited additional regions such as parts of the bilateral dorsolateral prefrontal cortex. All of these core regions overlapped with the default network. Moreover, it has further been suggested that episodic simulation may require a stronger engagement of some of the core network's nodes as well as the recruitment of additional brain regions supporting control functions. A second ALE meta-analysis indeed identified such regions that were consistently more strongly engaged during episodic simulation than episodic memory. These comprised the core-network clusters located in the left dorsolateral prefrontal cortex and posterior inferior parietal lobe and other structures distributed broadly across the default and fronto-parietal control networks. Together, the analyses determine the set of brain regions that allow us to experience past and hypothetical episodes, thus providing an important foundation for studying the regions' specialized contributions and interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Effect of fuel injection pressure on a heavy-duty diesel engine nonvolatile particle emission.

    PubMed

    Lähde, Tero; Rönkkö, Topi; Happonen, Matti; Söderström, Christer; Virtanen, Annele; Solla, Anu; Kytö, Matti; Rothe, Dieter; Keskinen, Jorma

    2011-03-15

    The effects of the fuel injection pressure on a heavy-duty diesel engine exhaust particle emissions were studied. Nonvolatile particle size distributions and gaseous emissions were measured at steady-state engine conditions while the fuel injection pressure was changed. An increase in the injection pressure resulted in an increase in the nonvolatile nucleation mode (core) emission at medium and at high loads. At low loads, the core was not detected. Simultaneously, a decrease in soot mode number concentration and size and an increase in the soot mode distribution width were detected at all loads. Interestingly, the emission of the core was independent of the soot mode concentration at load conditions below 50%. Depending on engine load conditions, growth of the geometric mean diameter of the core mode was also detected with increasing injection pressure. The core mode emission and also the size of the mode increased with increasing NOx emission while the soot mode size and emission decreased simultaneously.

  12. A novel complex networks clustering algorithm based on the core influence of nodes.

    PubMed

    Tong, Chao; Niu, Jianwei; Dai, Bin; Xie, Zhongyu

    2014-01-01

    In complex networks, cluster structure, identified by the heterogeneity of nodes, has become a common and important topological property. Network clustering methods are thus significant for the study of complex networks. Currently, many typical clustering algorithms have some weakness like inaccuracy and slow convergence. In this paper, we propose a clustering algorithm by calculating the core influence of nodes. The clustering process is a simulation of the process of cluster formation in sociology. The algorithm detects the nodes with core influence through their betweenness centrality, and builds the cluster's core structure by discriminant functions. Next, the algorithm gets the final cluster structure after clustering the rest of the nodes in the network by optimizing method. Experiments on different datasets show that the clustering accuracy of this algorithm is superior to the classical clustering algorithm (Fast-Newman algorithm). It clusters faster and plays a positive role in revealing the real cluster structure of complex networks precisely.

  13. Design study of an air pump and integral lift engine ALF-504 using the Lycoming 502 core

    NASA Technical Reports Server (NTRS)

    Rauch, D.

    1972-01-01

    Design studies were conducted for an integral lift fan engine utilizing the Lycoming 502 fan core with the final MQT power turbine. The fan is designed for a 12.5 bypass ratio and 1.25:1 pressure ratio, and provides supercharging for the core. Maximum sea level static thrust is 8370 pounds with a specific fuel consumption of 0.302 lb/hr-lb. The dry engine weight without starter is 1419 pounds including full-length duct and sound-attenuating rings. The engine envelope including duct treatment but not localized accessory protrusion is 53.25 inches in diameter and 59.2 inches long from exhaust nozzle exit to fan inlet flange. Detailed analyses include fan aerodynamics, fan and reduction gear mechanical design, fan dynamic analysis, engine noise analysis, engine performance, and weight analysis.

  14. Free-space optics technology employed in an UMTS release 4 bearer independent core network access part

    NASA Astrophysics Data System (ADS)

    Bibac, Ionut

    2005-08-01

    The UMTS Bearer Independent Core Network program introduced the 3rd Generation Partnership Program Release 4 BICN architecture into the legacy UMTS TDM-switched network. BICN is the application of calI server archltecture for voice and circuit switched data, enabling the provisioning of traditional circuit-switched services using a packet-switched transport network. Today"s business climate has made it essential for service providers to develop a comprehensive networking strategy that means introduction of RCBICN networks. The R4-BICN solution to the evolution of the Core Network in UMTS will enable operators to significantly reduce the capital and operational costs of delivering both traditional voice sewices and new multimedia services. To build the optical backbone, which can support the third generation (3G) packetized infrastructure, the operators could choose a fibre connection, or they could retain the benefits of a wireless connectivity by using a FSO - Free Space Optical lmk, the only wireless technology available that is capable of achieving data rates up to 2.4 Gbit/s. FSO offers viable alternatives for both core transmission networks and for replacing microwaves links in NodeB - RNC access networks. The paper and presentation aim to demonstrate the manner in which FSO products and networks are employed into R4-BICN design solutions.

  15. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) systems study. Appendix F: Performance and trajectory for ALS/LRB launch vehicles

    NASA Technical Reports Server (NTRS)

    1989-01-01

    By simply combining two baseline pump-fed LOX/RP-1 Liquid Rocket Boosters (LRBs) with the Denver core, a launch vehicle (Option 1 Advanced Launch System (ALS)) is obtained that can perform both the 28.5 deg (ALS) mission and the polar orbit ALS mission. The Option 2 LRB was obtained by finding the optimum LOX/LH2 engine for the STS/LRB reference mission (70.5 K lb payload). Then this engine and booster were used to estimate ALS payload for the 28.5 deg inclination ALS mission. Previous studies indicated that the optimum number of STS/LRB engines is four. When the engine/booster sizing was performed, each engine had 478 K lb sea level thrust and the booster carried 625,000 lb of useable propellant. Two of these LRBs combined with the Denver core provided a launch vehicle that meets the payload requirements for both the ALS and STS reference missions. The Option 3 LRB uses common engines for the cores and boosters. The booster engines do not have the nozzle extension. These engines were sized as common ALS engines. An ALS launch vehicle that has six core engines and five engines per booster provides 109,100 lb payload for the 28.5 deg mission. Each of these LOX/LH2 LRBs carries 714,100 lb of useable propellant. It is estimated that the STS/LRB reference mission payload would be 75,900 lb.

  16. Energy Efficient Engine integrated core/low spool design and performance report

    NASA Technical Reports Server (NTRS)

    Stearns, E. Marshall

    1985-01-01

    The Energy Efficient Engine (E3) is a NASA program to create fuel saving technology for future transport aircraft engines. The E3 technology advancements were demonstrated to operate reliably and achieve goal performance in tests of the Integrated Core/Low Spool vehicle. The first build of this undeveloped technology research engine set a record for low fuel consumption. Its design and detailed test results are herein presented.

  17. The Future of Metabolic Engineering and Synthetic Biology: Towards a Systematic Practice

    PubMed Central

    Yadav, Vikramaditya G.; De Mey, Marjan; Lim, Chin Giaw; Ajikumar, Parayil Kumaran; Stephanopoulos, Gregory

    2012-01-01

    Industrial biotechnology promises to revolutionize conventional chemical manufacturing in the years ahead, largely owing to the excellent progress in our ability to re-engineer cellular metabolism. However, most successes of metabolic engineering have been confined to over-producing natively synthesized metabolites in E. coli and S. cerevisiae. A major reason for this development has been the descent of metabolic engineering, particularly secondary metabolic engineering, to a collection of demonstrations rather than a systematic practice with generalizable tools. Synthetic biology, a more recent development, faces similar criticisms. Herein, we attempt to lay down a framework around which bioreaction engineering can systematize itself just like chemical reaction engineering. Central to this undertaking is a new approach to engineering secondary metabolism known as ‘multivariate modular metabolic engineering’ (MMME), whose novelty lies in its assessment and elimination of regulatory and pathway bottlenecks by re-defining the metabolic network as a collection of distinct modules. After introducing the core principles of MMME, we shall then present a number of recent developments in secondary metabolic engineering that could potentially serve as its facilitators. It is hoped that the ever-declining costs of de novo gene synthesis; the improved use of bioinformatic tools to mine, sort and analyze biological data; and the increasing sensitivity and sophistication of investigational tools will make the maturation of microbial metabolic engineering an autocatalytic process. Encouraged by these advances, research groups across the world would take up the challenge of secondary metabolite production in simple hosts with renewed vigor, thereby adding to the range of products synthesized using metabolic engineering. PMID:22629571

  18. Specifying the core network supporting episodic simulation and episodic memory by activation likelihood estimation

    PubMed Central

    Benoit, Roland G.; Schacter, Daniel L.

    2015-01-01

    It has been suggested that the simulation of hypothetical episodes and the recollection of past episodes are supported by fundamentally the same set of brain regions. The present article specifies this core network via Activation Likelihood Estimation (ALE). Specifically, a first meta-analysis revealed joint engagement of core network regions during episodic memory and episodic simulation. These include parts of the medial surface, the hippocampus and parahippocampal cortex within the medial temporal lobes, and the lateral temporal and inferior posterior parietal cortices on the lateral surface. Both capacities also jointly recruited additional regions such as parts of the bilateral dorsolateral prefrontal cortex. All of these core regions overlapped with the default network. Moreover, it has further been suggested that episodic simulation may require a stronger engagement of some of the core network’s nodes as wells as the recruitment of additional brain regions supporting control functions. A second ALE meta-analysis indeed identified such regions that were consistently more strongly engaged during episodic simulation than episodic memory. These comprised the core-network clusters located in the left dorsolateral prefrontal cortex and posterior inferior parietal lobe and other structures distributed broadly across the default and fronto-parietal control networks. Together, the analyses determine the set of brain regions that allow us to experience past and hypothetical episodes, thus providing an important foundation for studying the regions’ specialized contributions and interactions. PMID:26142352

  19. Flow Analysis of a Gas Turbine Low- Pressure Subsystem

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    1997-01-01

    The NASA Lewis Research Center is coordinating a project to numerically simulate aerodynamic flow in the complete low-pressure subsystem (LPS) of a gas turbine engine. The numerical model solves the three-dimensional Navier-Stokes flow equations through all components within the low-pressure subsystem as well as the external flow around the engine nacelle. The Advanced Ducted Propfan Analysis Code (ADPAC), which is being developed jointly by Allison Engine Company and NASA, is the Navier-Stokes flow code being used for LPS simulation. The majority of the LPS project is being done under a NASA Lewis contract with Allison. Other contributors to the project are NYMA and the University of Toledo. For this project, the Energy Efficient Engine designed by GE Aircraft Engines is being modeled. This engine includes a low-pressure system and a high-pressure system. An inlet, a fan, a booster stage, a bypass duct, a lobed mixer, a low-pressure turbine, and a jet nozzle comprise the low-pressure subsystem within this engine. The tightly coupled flow analysis evaluates aerodynamic interactions between all components of the LPS. The high-pressure core engine of this engine is simulated with a one-dimensional thermodynamic cycle code in order to provide boundary conditions to the detailed LPS model. This core engine consists of a high-pressure compressor, a combustor, and a high-pressure turbine. The three-dimensional LPS flow model is coupled to the one-dimensional core engine model to provide a "hybrid" flow model of the complete gas turbine Energy Efficient Engine. The resulting hybrid engine model evaluates the detailed interaction between the LPS components at design and off-design engine operating conditions while considering the lumped-parameter performance of the core engine.

  20. Rational Diversification of a Promoter Providing Fine-Tuned Expression and Orthogonal Regulation for Synthetic Biology

    PubMed Central

    Blount, Benjamin A.; Weenink, Tim; Vasylechko, Serge; Ellis, Tom

    2012-01-01

    Yeast is an ideal organism for the development and application of synthetic biology, yet there remain relatively few well-characterised biological parts suitable for precise engineering of this chassis. In order to address this current need, we present here a strategy that takes a single biological part, a promoter, and re-engineers it to produce a fine-graded output range promoter library and new regulated promoters desirable for orthogonal synthetic biology applications. A highly constitutive Saccharomyces cerevisiae promoter, PFY1p, was identified by bioinformatic approaches, characterised in vivo and diversified at its core sequence to create a 36-member promoter library. TetR regulation was introduced into PFY1p to create a synthetic inducible promoter (iPFY1p) that functions in an inverter device. Orthogonal and scalable regulation of synthetic promoters was then demonstrated for the first time using customisable Transcription Activator-Like Effectors (TALEs) modified and designed to act as orthogonal repressors for specific PFY1-based promoters. The ability to diversify a promoter at its core sequences and then independently target Transcription Activator-Like Orthogonal Repressors (TALORs) to virtually any of these sequences shows great promise toward the design and construction of future synthetic gene networks that encode complex “multi-wire” logic functions. PMID:22442681

  1. Rational diversification of a promoter providing fine-tuned expression and orthogonal regulation for synthetic biology.

    PubMed

    Blount, Benjamin A; Weenink, Tim; Vasylechko, Serge; Ellis, Tom

    2012-01-01

    Yeast is an ideal organism for the development and application of synthetic biology, yet there remain relatively few well-characterised biological parts suitable for precise engineering of this chassis. In order to address this current need, we present here a strategy that takes a single biological part, a promoter, and re-engineers it to produce a fine-graded output range promoter library and new regulated promoters desirable for orthogonal synthetic biology applications. A highly constitutive Saccharomyces cerevisiae promoter, PFY1p, was identified by bioinformatic approaches, characterised in vivo and diversified at its core sequence to create a 36-member promoter library. TetR regulation was introduced into PFY1p to create a synthetic inducible promoter (iPFY1p) that functions in an inverter device. Orthogonal and scalable regulation of synthetic promoters was then demonstrated for the first time using customisable Transcription Activator-Like Effectors (TALEs) modified and designed to act as orthogonal repressors for specific PFY1-based promoters. The ability to diversify a promoter at its core sequences and then independently target Transcription Activator-Like Orthogonal Repressors (TALORs) to virtually any of these sequences shows great promise toward the design and construction of future synthetic gene networks that encode complex "multi-wire" logic functions.

  2. Requirements for a network storage service

    NASA Technical Reports Server (NTRS)

    Kelly, Suzanne M.; Haynes, Rena A.

    1992-01-01

    Sandia National Laboratories provides a high performance classified computer network as a core capability in support of its mission of nuclear weapons design and engineering, physical sciences research, and energy research and development. The network, locally known as the Internal Secure Network (ISN), was designed in 1989 and comprises multiple distributed local area networks (LAN's) residing in Albuquerque, New Mexico and Livermore, California. The TCP/IP protocol suite is used for inner-node communications. Scientific workstations and mid-range computers, running UNIX-based operating systems, compose most LAN's. One LAN, operated by the Sandia Corporate Computing Directorate, is a general purpose resource providing a supercomputer and a file server to the entire ISN. The current file server on the supercomputer LAN is an implementation of the Common File System (CFS) developed by Los Alamos National Laboratory. Subsequent to the design of the ISN, Sandia reviewed its mass storage requirements and chose to enter into a competitive procurement to replace the existing file server with one more adaptable to a UNIX/TCP/IP environment. The requirements study for the network was the starting point for the requirements study for the new file server. The file server is called the Network Storage Services (NSS) and is requirements are described in this paper. The next section gives an application or functional description of the NSS. The final section adds performance, capacity, and access constraints to the requirements.

  3. Dynamic optical resource allocation for mobile core networks with software defined elastic optical networking.

    PubMed

    Zhao, Yongli; Chen, Zhendong; Zhang, Jie; Wang, Xinbo

    2016-07-25

    Driven by the forthcoming of 5G mobile communications, the all-IP architecture of mobile core networks, i.e. evolved packet core (EPC) proposed by 3GPP, has been greatly challenged by the users' demands for higher data rate and more reliable end-to-end connection, as well as operators' demands for low operational cost. These challenges can be potentially met by software defined optical networking (SDON), which enables dynamic resource allocation according to the users' requirement. In this article, a novel network architecture for mobile core network is proposed based on SDON. A software defined network (SDN) controller is designed to realize the coordinated control over different entities in EPC networks. We analyze the requirement of EPC-lightpath (EPCL) in data plane and propose an optical switch load balancing (OSLB) algorithm for resource allocation in optical layer. The procedure of establishment and adjustment of EPCLs is demonstrated on a SDON-based EPC testbed with extended OpenFlow protocol. We also evaluate the OSLB algorithm through simulation in terms of bandwidth blocking ratio, traffic load distribution, and resource utilization ratio compared with link-based load balancing (LLB) and MinHops algorithms.

  4. Neural networks and the experience and cultivation of mind.

    PubMed

    Werbos, Paul J

    2012-08-01

    Hard core neural network research includes development of mathematical models of cognitive prediction and optimization aimed at dual use, both as models of what we see in brain circuits and behavior, and as useful general-purpose engineering technology. The pathway and principles now exist to let us someday replicate learning abilities as elevated as what we see in the brain of the mouse-but how can this help us today in understanding and maximizing the much greater potential of the human mind, as addressed by many schools of thought all over the world for centuries? This paper discusses how we might use what we have learned at a lower level to better illuminate key phenomena in first person and clinical human experience such as Freud's "psychic energy", the role of traumatic experience, the interpretation of dreams, creativity, the cultivation of sanity and sensitivity, and the biological foundations of language. Published by Elsevier Ltd.

  5. The Lunar Quest Program and the International Lunar Network (ILN)

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.

    2009-01-01

    The Lunar and Planetary Science group at Marshall provides core capabilities to support the Agency's lunar exploration goals. ILN Anchor Nodes are currently in development by MSFC and APL under the Lunar Quest Program at MSFC. The Science objectives of the network are to understand the interior structure and composition of the moon. Pre-phase A engineering assessments are complete, showing a design that can achieve the science requirements, either on their own (if 4 launched) or in concert with international partners. Risk reduction activities are ongoing. The Lunar Quest Program is a Science-based program with the following goals: a) Fly small/medium science missions to accomplish key science goals; b) Build a strong lunar science community; c) Provide opportunities to demonstrate new technologies; and d) Where possible, help ESMD and SOMG goals and enhance presence of science in the implementation of the VSE. The Lunar Quest Program will be guided by recommendations from community reports.

  6. Best core stabilization exercise to facilitate subcortical neuroplasticity: A functional MRI neuroimaging study.

    PubMed

    Kim, Do Hyun; Lee, Jae Jin; You, Sung Joshua Hyun

    2018-03-23

    To investigate the effects of conscious (ADIM) and subconscious (DNS) core stabilization exercises on cortical changes in adults with core instability. Five non-symptomatic participants with core instability. A novel core stabilization task switching paradigm was designed to separate cortical or subcortical neural substrates during a series of DNS or ADIM core stabilization tasks. fMRI blood BOLD analysis revealed a distinctive subcortical activation pattern during the performance of the DNS, whereas the cortical motor network was primarily activated during an ADIM. Peak voxel volume values showed significantly greater DNS (11.08 ± 1.51) compared with the ADIM (8.81 ± 0.21) (p= 0.043). The ADIM exercise activated the cortical PMC-SMC-SMA motor network, whereas the DNS exercise activated both these same cortical areas and the subcortical cerebellum-BG-thalamus-cingulate cortex network.

  7. The common engine concept for ALS application - A cost reduction approach

    NASA Technical Reports Server (NTRS)

    Bair, E. K.; Schindler, C. M.

    1989-01-01

    Future launch systems require the application of propulsion systems which have been designed and developed to meet mission model needs while providing high degrees of reliability and cost effectiveness. Vehicle configurations which utilize different propellant combinations for booster and core stages can benefit from a common engine approach where a single engine design can be configured to operate on either set of propellants and thus serve as either a booster or core engine. Engine design concepts and mission application for a vehicle employing a common engine are discussed. Engine program cost estimates were made and cost savings, over the design and development of two unique engines, estimated.

  8. Preparing for a Career as a Network Engineer

    ERIC Educational Resources Information Center

    Morris, Gerard; Fustos, Janos; Haga, Wayne

    2012-01-01

    A network engineer is an Information Technology (IT) professional who designs, implements, maintains, and troubleshoots computer networks. While the United States is still experiencing relatively high unemployment, demand for network engineers remains strong. To determine what skills employers are looking for, data was collected and analyzed from…

  9. Turbofan Engine Core Compartment Vent Aerodynamic Configuration Development Methodology

    NASA Technical Reports Server (NTRS)

    Hebert, Leonard J.

    2006-01-01

    This paper presents an overview of the design methodology used in the development of the aerodynamic configuration of the nacelle core compartment vent for a typical Boeing commercial airplane together with design challenges for future design efforts. Core compartment vents exhaust engine subsystem flows from the space contained between the engine case and the nacelle of an airplane propulsion system. These subsystem flows typically consist of precooler, oil cooler, turbine case cooling, compartment cooling and nacelle leakage air. The design of core compartment vents is challenging due to stringent design requirements, mass flow sensitivity of the system to small changes in vent exit pressure ratio, and the need to maximize overall exhaust system performance at cruise conditions.

  10. Preliminary engineering design of sodium-cooled CANDLE core

    NASA Astrophysics Data System (ADS)

    Takaki, Naoyuki; Namekawa, Azuma; Yoda, Tomoyuki; Mizutani, Akihiko; Sekimoto, Hiroshi

    2012-06-01

    The CANDLE burning process is characterized by the autonomous shifting of burning region with constant reactivity and constant spacial power distribution. Evaluations of such critical burning process by using widely used neutron diffusion and burning codes under some realistic engineering constraints are valuable to confirm the technical feasibility of the CANDLE concept and to put the idea into concrete core design. In the first part of this paper, it is discussed that whether the sustainable and stable CANDLE burning process can be reproduced even by using conventional core analysis tools such as SLAROM and CITATION-FBR. As a result, it is certainly possible to demonstrate it if the proper core configuration and initial fuel composition required as CANDLE core are applied to the analysis. In the latter part, an example of a concrete image of sodium cooled, metal fuel, 2000MWt rating CANDLE core has been presented by assuming an emerging inevitable technology of recladding. The core satisfies engineering design criteria including cladding temperature, pressure drop, linear heat rate, and cumulative damage fraction (CDF) of cladding, fast neutron fluence and sodium void reactivity which are defined in the Japanese FBR design project. It can be concluded that it is feasible to design CADLE core by using conventional codes while satisfying some realistic engineering design constraints assuming that recladding at certain time interval is technically feasible.

  11. Effects of forward motion on jet and core noise

    NASA Technical Reports Server (NTRS)

    Low, J. K. C.

    1977-01-01

    A study was conducted to investigate the effects of forward motion on both jet and core noise. Measured low-frequency noise from static-engine and from flyover tests with a DC-9-30 powered by JT8D-109 turbofan engines and with a DC-10-40 powered by JT9D-59A turbofan engines was separated into jet- and core noise components. Comparisons of the static and the corresponding in-flight jet- and core-noise components are presented. The results indicate that for the DC-9 airplane at low power settings, where core noise is predominant, the effect of convective amplification on core-noise levels is responsible for the higher in-flight low-frequency noise levels in the inlet quadrant. Similarly, it was found that for the DC-10 airplane with engines mounted under the wings and flaps and flap deflection greater than 30 degrees, the contribution from jet-flap-interaction noise is as much as 5 dB in the inlet quadrant and is responsible for higher in-flight low-frequency noise levels during approach conditions. Those results indicate that to properly investigate flight effects, it is important to consider the noise contributions from other low-frequency sources, such as the core and the jet-flap interaction.

  12. GPM High Gain Antenna System Testing

    NASA Image and Video Library

    2014-02-20

    File: 03/26/2012 The GPM High Gain Antenna System (HGAS) in integration and testing at Goddard Space Flight Center. GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency (JAXA). The Core Observatory will link data from a constellation of current and planned satellites to produce next-generation global measurements of rainfall and snowfall from space. The GPM mission is the first coordinated international satellite network to provide near real-time observations of rain and snow every three hours anywhere on the globe. The GPM Core Observatory anchors this network by providing observations on all types of precipitation. The observatory's data acts as the measuring stick by which partner observations can be combined into a unified data set. The data will be used by scientists to study climate change, freshwater resources, floods and droughts, and hurricane formation and tracking. Credit: Craig E. Huber, Chief Engineer SGT Inc, NASA Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. ARC-2001-ACD01-0018

    NASA Image and Video Library

    2001-02-16

    New Center Network Deployment ribbon Cutting: from left to right: Maryland Edwards, Code JT upgrade project deputy task manager; Ed Murphy, foundry networks systems engineer; Bohdan Cmaylo, Code JT upgrade project task manager, Scott Santiago, Division Chief, Code JT; Greg Miller, Raytheon Network engineer and Frank Daras, Raytheon network engineering manager.

  14. The impact of capacity growth in national telecommunications networks.

    PubMed

    Lord, Andrew; Soppera, Andrea; Jacquet, Arnaud

    2016-03-06

    This paper discusses both UK-based and global Internet data bandwidth growth, beginning with historical data for the BT network. We examine the time variations in consumer behaviour and how this is statistically aggregated into larger traffic loads on national core fibre communications networks. The random nature of consumer Internet behaviour, where very few consumers require maximum bandwidth simultaneously, provides the opportunity for a significant statistical gain. The paper looks at predictions for how this growth might continue over the next 10-20 years, giving estimates for the amount of bandwidth that networks should support in the future. The paper then explains how national networks are designed to accommodate these traffic levels, and the various network roles, including access, metro and core, are described. The physical layer network is put into the context of how the packet and service layers are designed and the applications and location of content are also included in an overall network overview. The specific role of content servers in alleviating core network traffic loads is highlighted. The status of the relevant transmission technologies in the access, metro and core is given, showing that these technologies, with adequate research, should be sufficient to provide bandwidth for consumers in the next 10-20 years. © 2016 The Author(s).

  15. Quiet Clean Short-haul Experimental Engine (QCSEE) Under-The-Wing (UTW) boiler plate nacelle and core exhaust nozzle design report

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The mechanical design of the boiler plate nacelle and core exhaust nozzle for the QCSEE under the wing engine is presented. The nacelle, which features interchangeable hard-wall and acoustic panels, is to be utilized in the initial engine testing to establish acoustic requirements for the subsequent composite nacelle as well as in the QCSEE over the wing engine configuration.

  16. Multisector Health Policy Networks in 15 Large US Cities.

    PubMed

    Harris, Jenine K; Leider, J P; Carothers, Bobbi J; Castrucci, Brian C; Hearne, Shelley

    2016-01-01

    Local health departments (LHDs) have historically not prioritized policy development, although it is one of the 3 core areas they address. One strategy that may influence policy in LHD jurisdictions is the formation of partnerships across sectors to work together on local public health policy. We used a network approach to examine LHD local health policy partnerships across 15 large cities from the Big Cities Health Coalition. We surveyed the health departments and their partners about their working relationships in 5 policy areas: core local funding, tobacco control, obesity and chronic disease, violence and injury prevention, and infant mortality. Drawing on prior literature linking network structures with performance, we examined network density, transitivity, centralization and centrality, member diversity, and assortativity of ties. Networks included an average of 21.8 organizations. Nonprofits and government agencies made up the largest proportions of the networks, with 28.8% and 21.7% of network members, whereas for-profits and foundations made up the smallest proportions in all of the networks, with just 1.2% and 2.4% on average. Mean values of density, transitivity, diversity, assortativity, centralization, and centrality showed similarity across policy areas and most LHDs. The tobacco control and obesity/chronic disease networks were densest and most diverse, whereas the infant mortality policy networks were the most centralized and had the highest assortativity. Core local funding policy networks had lower scores than other policy area networks by most network measures. Urban LHDs partner with organizations from diverse sectors to conduct local public health policy work. Network structures are similar across policy areas jurisdictions. Obesity and chronic disease, tobacco control, and infant mortality networks had structures consistent with higher performing networks, whereas core local funding networks had structures consistent with lower performing networks.

  17. Multisector Health Policy Networks in 15 Large US Cities

    PubMed Central

    Leider, J. P.; Carothers, Bobbi J.; Castrucci, Brian C.; Hearne, Shelley

    2016-01-01

    Context: Local health departments (LHDs) have historically not prioritized policy development, although it is one of the 3 core areas they address. One strategy that may influence policy in LHD jurisdictions is the formation of partnerships across sectors to work together on local public health policy. Design: We used a network approach to examine LHD local health policy partnerships across 15 large cities from the Big Cities Health Coalition. Setting/Participants: We surveyed the health departments and their partners about their working relationships in 5 policy areas: core local funding, tobacco control, obesity and chronic disease, violence and injury prevention, and infant mortality. Outcome Measures: Drawing on prior literature linking network structures with performance, we examined network density, transitivity, centralization and centrality, member diversity, and assortativity of ties. Results: Networks included an average of 21.8 organizations. Nonprofits and government agencies made up the largest proportions of the networks, with 28.8% and 21.7% of network members, whereas for-profits and foundations made up the smallest proportions in all of the networks, with just 1.2% and 2.4% on average. Mean values of density, transitivity, diversity, assortativity, centralization, and centrality showed similarity across policy areas and most LHDs. The tobacco control and obesity/chronic disease networks were densest and most diverse, whereas the infant mortality policy networks were the most centralized and had the highest assortativity. Core local funding policy networks had lower scores than other policy area networks by most network measures. Conclusion: Urban LHDs partner with organizations from diverse sectors to conduct local public health policy work. Network structures are similar across policy areas jurisdictions. Obesity and chronic disease, tobacco control, and infant mortality networks had structures consistent with higher performing networks, whereas core local funding networks had structures consistent with lower performing networks. PMID:26910868

  18. Discovery in a World of Mashups

    NASA Astrophysics Data System (ADS)

    King, T. A.; Ritschel, B.; Hourcle, J. A.; Moon, I. S.

    2014-12-01

    When the first digital information was stored electronically, discovery of what existed was through file names and the organization of the file system. With the advent of networks, digital information was shared on a wider scale, but discovery remained based on file and folder names. With a growing number of information sources, named based discovery quickly became ineffective. The keyword based search engine was one of the first types of a mashup in the world of Web 1.0. Embedded links from one document to another with prescribed relationships between files and the world of Web 2.0 was formed. Search engines like Google used the links to improve search results and a worldwide mashup was formed. While a vast improvement, the need for semantic (meaning rich) discovery was clear, especially for the discovery of scientific data. In response, every science discipline defined schemas to describe their type of data. Some core schemas where shared, but most schemas are custom tailored even though they share many common concepts. As with the networking of information sources, science increasingly relies on data from multiple disciplines. So there is a need to bring together multiple sources of semantically rich information. We explore how harvesting, conceptual mapping, facet based search engines, search term promotion, and style sheets can be combined to create the next generation of mashups in the emerging world of Web 3.0. We use NASA's Planetary Data System and NASA's Heliophysics Data Environment to illustrate how to create a multi-discipline mash-up.

  19. Modeling complexity in engineered infrastructure system: Water distribution network as an example

    NASA Astrophysics Data System (ADS)

    Zeng, Fang; Li, Xiang; Li, Ke

    2017-02-01

    The complex topology and adaptive behavior of infrastructure systems are driven by both self-organization of the demand and rigid engineering solutions. Therefore, engineering complex systems requires a method balancing holism and reductionism. To model the growth of water distribution networks, a complex network model was developed following the combination of local optimization rules and engineering considerations. The demand node generation is dynamic and follows the scaling law of urban growth. The proposed model can generate a water distribution network (WDN) similar to reported real-world WDNs on some structural properties. Comparison with different modeling approaches indicates that a realistic demand node distribution and co-evolvement of demand node and network are important for the simulation of real complex networks. The simulation results indicate that the efficiency of water distribution networks is exponentially affected by the urban growth pattern. On the contrary, the improvement of efficiency by engineering optimization is limited and relatively insignificant. The redundancy and robustness, on another aspect, can be significantly improved through engineering methods.

  20. Comparison of predicted engine core noise with current and proposed aircraft noise certification requirements

    NASA Technical Reports Server (NTRS)

    Vonglahn, U. H.; Groesbeck, D. E.

    1981-01-01

    Predicted engine core noise levels are compared with measured total aircraft noise levels and with current and proposed federal noise certification requirements. Comparisons are made at the FAR-36 measuring stations and include consideration of both full- and cutback-power operation at takeoff. In general, core noise provides a barrier to achieving proposed EPA stage 5 noise levels for all types of aircraft. More specifically, core noise levels will limit further reductions in aircraft noise levels for current widebody commercial aircraft.

  1. 78 FR 52605 - Announcing the Twenty First Public Meeting of the Crash Injury Research and Engineering Network...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-23

    ... First Public Meeting of the Crash Injury Research and Engineering Network (CIREN) AGENCY: National... announces the Twenty First Public Meeting of members of the Crash Injury Research and Engineering Network... of centers, medical and engineering. Medical centers are based at Level I Trauma Centers that admit...

  2. 76 FR 46359 - Announcing the Nineteenth Public Meeting of the Crash Injury Research and Engineering Network...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-02

    ... Nineteenth Public Meeting of the Crash Injury Research and Engineering Network (CIREN) AGENCY: National... announces the Nineteenth Public Meeting of members of the Crash Injury Research and Engineering Network... of centers, medical and engineering. Medical centers are based at Level I Trauma Centers that admit...

  3. 77 FR 46154 - Announcing the Twentieth Public Meeting of the Crash Injury Research and Engineering Network (CIREN)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ... Twentieth Public Meeting of the Crash Injury Research and Engineering Network (CIREN) AGENCY: National... announces the Twentieth Public Meeting of members of the Crash Injury Research and Engineering Network... of centers, medical and engineering. Medical centers are based at Level I Trauma Centers that admit...

  4. Pegasus delivers SLS engine section

    NASA Image and Video Library

    2017-03-03

    NASA engineers install test hardware for the agency's new heavy lift rocket, the Space Launch System, into a newly constructed 50-foot structural test stand at NASA's Marshall Space Flight Center. In the stand, hydraulic cylinders will be electronically controlled to push, pull, twist and bend the test article with millions of pounds of force. Engineers will record and analyze over 3,000 channels of data for each test case to verify the capabilities of the engine section and validate that the design and analysis models accurately predict the amount of loads the core stage can withstand during launch and ascent. The engine section, recently delivered via NASA's barge Pegasus from NASA's Michoud Assembly Facility, is the first of four core stage structural test articles scheduled to be delivered to Marshall for testing. The engine section, located at the bottom of SLS's massive core stage, will house the rocket's four RS-25 engines and be an attachment point for the two solid rocket boosters.

  5. Pegasus delivers SLS engine section

    NASA Image and Video Library

    2017-05-18

    NASA engineers install test hardware for the agency's new heavy lift rocket, the Space Launch System, into a newly constructed 50-foot structural test stand at NASA's Marshall Space Flight Center. In the stand, hydraulic cylinders will be electronically controlled to push, pull, twist and bend the test article with millions of pounds of force. Engineers will record and analyze over 3,000 channels of data for each test case to verify the capabilities of the engine section and validate that the design and analysis models accurately predict the amount of loads the core stage can withstand during launch and ascent. The engine section, recently delivered via NASA's barge Pegasus from NASA's Michoud Assembly Facility, is the first of four core stage structural test articles scheduled to be delivered to Marshall for testing. The engine section, located at the bottom of SLS's massive core stage, will house the rocket's four RS-25 engines and be an attachment point for the two solid rocket boosters.

  6. AiResearch QCGAT engine, airplane, and nacelle design features

    NASA Technical Reports Server (NTRS)

    Heldenbrand, R. W.

    1980-01-01

    The quiet, clean, general aviation turbofan engine and nacelle system was designed and tested. The engine utilized the core of the AiResearch model TFE731-3 engine and incorporated several unique noise- and emissions-reduction features. Components that were successfully adapted to this core include the fan, gearbox, combustor, low-pressure turbine, and associated structure. A highly versatile workhorse nacelle incorporating interchangeable acoustic and hardwall duct liners, showed that large-engine attenuation technology could be applied to small propulsion engines. The application of the mixer compound nozzle demonstrated both performance and noise advantages on the engine. Major performance, emissions, and noise goals were demonstrated.

  7. 300 Gb/s IM/DD based SDM-WDM-PON with laserless ONUs.

    PubMed

    Bao, Fangdi; Morioka, Toshio; Oxenløwe, Leif K; Hu, Hao

    2018-04-02

    A low-cost, high-speed SDM-WDM-PON architecture is proposed by using a multi-core fiber (MCF) and intensity modulation/directly detection (IM/DD). One of the MCF cores is used for sending laser sources from optical line terminal (OLT) to optical network unit (ONU), thus facilitating laserless and colorless ONUs, and providing ease of network management and maintenance. In addition, the wavelengths of the ONUs are controlled on the OLT side, which also enables flexible optical networks. Thanks to the low inter-core crosstalk of a MCF, downstream (DS) and upstream (US) signals are transmitted independently in different cores of the MCF, not only increasing the aggregated capacity but also avoiding the Rayleigh backscattering noise. Finally, a proof-of-principle experiment is performed by using a 7-core fiber, achieving 300 /120 Gb/s aggregated capacity for DS and US (3 × cores, 4 × wavelengths, 25/10 Gb/s per wavelength), respectively.

  8. Enhancing Image Processing Performance for PCID in a Heterogeneous Network of Multi-code Processors

    NASA Astrophysics Data System (ADS)

    Linderman, R.; Spetka, S.; Fitzgerald, D.; Emeny, S.

    The Physically-Constrained Iterative Deconvolution (PCID) image deblurring code is being ported to heterogeneous networks of multi-core systems, including Intel Xeons and IBM Cell Broadband Engines. This paper reports results from experiments using the JAWS supercomputer at MHPCC (60 TFLOPS of dual-dual Xeon nodes linked with Infiniband) and the Cell Cluster at AFRL in Rome, NY. The Cell Cluster has 52 TFLOPS of Playstation 3 (PS3) nodes with IBM Cell Broadband Engine multi-cores and 15 dual-quad Xeon head nodes. The interconnect fabric includes Infiniband, 10 Gigabit Ethernet and 1 Gigabit Ethernet to each of the 336 PS3s. The results compare approaches to parallelizing FFT executions across the Xeons and the Cell's Synergistic Processing Elements (SPEs) for frame-level image processing. The experiments included Intel's Performance Primitives and Math Kernel Library, FFTW3.2, and Carnegie Mellon's SPIRAL. Optimization of FFTs in the PCID code led to a decrease in relative processing time for FFTs. Profiling PCID version 6.2, about one year ago, showed the 13 functions that accounted for the highest percentage of processing were all FFT processing functions. They accounted for over 88% of processing time in one run on Xeons. FFT optimizations led to improvement in the current PCID version 8.0. A recent profile showed that only two of the 19 functions with the highest processing time were FFT processing functions. Timing measurements showed that FFT processing for PCID version 8.0 has been reduced to less than 19% of overall processing time. We are working toward a goal of scaling to 200-400 cores per job (1-2 imagery frames/core). Running a pair of cores on each set of frames reduces latency by implementing parallel FFT processing. Our current results show scaling well out to 100 pairs of cores. These results support the next higher level of parallelism in PCID, where groups of several hundred frames each producing one resolved image are sent to cliques of several hundred cores in a round robin fashion. Current efforts toward further performance enhancement for PCID are shifting toward using the Playstations in conjunction with the Xeons to take advantage of outstanding price/performance as well as the Flops/Watt cost advantage. We are fine-tuning the PCID parallization strategy to balance processing over Xeons and Cell BEs to find an optimal partitioning of PCID over the heterogeneous processors. A high performance information management system that exploits native Infiniband multicast is used to improve latency among the head nodes. Using a publication/subscription oriented information management system to implement a unified communications platform makes runs on large HPCs with thousands of intercommunicating cores more flexible and more fault tolerant. It features a loose couplingof publishers to subscribers through intervening brokers. We are also working on enhancing performance for both Xeons and Cell BEs, buy moving selected operations to single precision. Techniques for adapting the code to single precision and performance results are reported.

  9. Vice President Pence Visits SLS Engineering Test Facility

    NASA Image and Video Library

    2017-09-25

    The Vice President toured the SLS engineering facility where the engine section of the rocket’s massive core stage is undergoing a major stress test. The rocket’s four RS-25 engines and the two solid rocket boosters that attach to the SLS engine section will produce more than 8 million pounds of thrust to launch the Orion spacecraft beyond low-Earth orbit. More than 3,000 measurements using sensors installed on the test section will help ensure the core stage for all SLS missions can withstand the extreme forces of flight.

  10. An engineered allosteric switch in leucine-zipper oligomerization.

    PubMed

    Gonzalez, L; Plecs, J J; Alber, T

    1996-06-01

    Controversy remains about the role of core side-chain packing in specifying protein structure. To investigate the influence of core packing on the oligomeric structure of a coiled coil, we engineered a GCN4 leucine zipper mutant that switches from two to three strands upon binding the hydrophobic ligands cyclohexane and benzene. In solution these ligands increased the apparent thermal stability and the oligomerization order of the mutant leucine zipper. The crystal structure of the peptide-benzene complex shows a single benzene molecule bound at the engineered site in the core of the trimer. These results indicate that coiled coils are well-suited to function as molecular switches and emphasize that core packing is an important determinant of oligomerization specificity.

  11. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 39: The role of computer networks in aerospace engineering

    NASA Technical Reports Server (NTRS)

    Bishop, Ann P.; Pinelli, Thomas E.

    1994-01-01

    This paper presents selected results from an empirical investigation into the use of computer networks in aerospace engineering. Such networks allow aerospace engineers to communicate with people and access remote resources through electronic mail, file transfer, and remote log-in. The study drew its subjects from private sector, government and academic organizations in the U.S. aerospace industry. Data presented here were gathered in a mail survey, conducted in Spring 1993, that was distributed to aerospace engineers performing a wide variety of jobs. Results from the mail survey provide a snapshot of the current use of computer networks in the aerospace industry, suggest factors associated with the use of networks, and identify perceived impacts of networks on aerospace engineering work and communication.

  12. Unducted, counterrotating gearless front fan engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, J.B.

    This patent describes a high bypass ratio gas turbine engine. It comprises a core engine effective for generating combustion gases passing through a main flow path; a power turbine aft of the core engine and including first and second counter rotatable interdigitated turbine blade rows, effective for counterrotating first and second drive shafts, respectively; an unducted fan section forward of the core engine including a first fan blade row connected to the first drive shaft and a second fan blade row axially spaced aftward from the first fan blade row and connected to the second drive shaft; and a boostermore » compressor axially positioned between the first and second fan blade rows and including first compressor blade rows connected to the first drive shaft and second compressor blade rows connected to the second drive shaft.« less

  13. Hybrid Analysis of Engine Core Noise

    NASA Astrophysics Data System (ADS)

    O'Brien, Jeffrey; Kim, Jeonglae; Ihme, Matthias

    2015-11-01

    Core noise, or the noise generated within an aircraft engine, is becoming an increasing concern for the aviation industry as other noise sources are progressively reduced. The prediction of core noise generation and propagation is especially challenging for computationalists since it involves extensive multiphysics including chemical reaction and moving blades in addition to the aerothermochemical effects of heated jets. In this work, a representative engine flow path is constructed using experimentally verified geometries to simulate the physics of core noise. A combustor, single-stage turbine, nozzle and jet are modeled in separate calculations using appropriate high fidelity techniques including LES, actuator disk theory and Ffowcs-Williams Hawkings surfaces. A one way coupling procedure is developed for passing fluctuations downstream through the flowpath. This method effectively isolates the core noise from other acoustic sources, enables straightforward study of the interaction between core noise and jet exhaust, and allows for simple distinction between direct and indirect noise. The impact of core noise on the farfield jet acoustics is studied extensively and the relative efficiency of different disturbance types and shapes is examined in detail.

  14. Multi-scale structure and topological anomaly detection via a new network statistic: The onion decomposition.

    PubMed

    Hébert-Dufresne, Laurent; Grochow, Joshua A; Allard, Antoine

    2016-08-18

    We introduce a network statistic that measures structural properties at the micro-, meso-, and macroscopic scales, while still being easy to compute and interpretable at a glance. Our statistic, the onion spectrum, is based on the onion decomposition, which refines the k-core decomposition, a standard network fingerprinting method. The onion spectrum is exactly as easy to compute as the k-cores: It is based on the stages at which each vertex gets removed from a graph in the standard algorithm for computing the k-cores. Yet, the onion spectrum reveals much more information about a network, and at multiple scales; for example, it can be used to quantify node heterogeneity, degree correlations, centrality, and tree- or lattice-likeness. Furthermore, unlike the k-core decomposition, the combined degree-onion spectrum immediately gives a clear local picture of the network around each node which allows the detection of interesting subgraphs whose topological structure differs from the global network organization. This local description can also be leveraged to easily generate samples from the ensemble of networks with a given joint degree-onion distribution. We demonstrate the utility of the onion spectrum for understanding both static and dynamic properties on several standard graph models and on many real-world networks.

  15. New Scheduling Algorithms for Agile All-Photonic Networks

    NASA Astrophysics Data System (ADS)

    Mehri, Mohammad Saleh; Ghaffarpour Rahbar, Akbar

    2017-12-01

    An optical overlaid star network is a class of agile all-photonic networks that consists of one or more core node(s) at the center of the star network and a number of edge nodes around the core node. In this architecture, a core node may use a scheduling algorithm for transmission of traffic through the network. A core node is responsible for scheduling optical packets that arrive from edge nodes and switching them toward their destinations. Nowadays, most edge nodes use virtual output queue (VOQ) architecture for buffering client packets to achieve high throughput. This paper presents two efficient scheduling algorithms called discretionary iterative matching (DIM) and adaptive DIM. These schedulers find maximum matching in a small number of iterations and provide high throughput and incur low delay. The number of arbiters in these schedulers and the number of messages exchanged between inputs and outputs of a core node are reduced. We show that DIM and adaptive DIM can provide better performance in comparison with iterative round-robin matching with SLIP (iSLIP). SLIP means the act of sliding for a short distance to select one of the requested connections based on the scheduling algorithm.

  16. 78 FR 7464 - Large Scale Networking (LSN) ; Joint Engineering Team (JET)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... NATIONAL SCIENCE FOUNDATION Large Scale Networking (LSN) ; Joint Engineering Team (JET) AGENCY: The Networking and Information Technology Research and Development (NITRD) National Coordination...://www.nitrd.gov/nitrdgroups/index.php?title=Joint_Engineering_Team_ (JET)#title. SUMMARY: The JET...

  17. Function approximation using combined unsupervised and supervised learning.

    PubMed

    Andras, Peter

    2014-03-01

    Function approximation is one of the core tasks that are solved using neural networks in the context of many engineering problems. However, good approximation results need good sampling of the data space, which usually requires exponentially increasing volume of data as the dimensionality of the data increases. At the same time, often the high-dimensional data is arranged around a much lower dimensional manifold. Here we propose the breaking of the function approximation task for high-dimensional data into two steps: (1) the mapping of the high-dimensional data onto a lower dimensional space corresponding to the manifold on which the data resides and (2) the approximation of the function using the mapped lower dimensional data. We use over-complete self-organizing maps (SOMs) for the mapping through unsupervised learning, and single hidden layer neural networks for the function approximation through supervised learning. We also extend the two-step procedure by considering support vector machines and Bayesian SOMs for the determination of the best parameters for the nonlinear neurons in the hidden layer of the neural networks used for the function approximation. We compare the approximation performance of the proposed neural networks using a set of functions and show that indeed the neural networks using combined unsupervised and supervised learning outperform in most cases the neural networks that learn the function approximation using the original high-dimensional data.

  18. "Us and them": a social network analysis of physicians' professional networks and their attitudes towards EBM.

    PubMed

    Mascia, Daniele; Cicchetti, Americo; Damiani, Gianfranco

    2013-10-22

    Extant research suggests that there is a strong social component to Evidence-Based Medicine (EBM) adoption since professional networks amongst physicians are strongly associated with their attitudes towards EBM. Despite this evidence, it is still unknown whether individual attitudes to use scientific evidence in clinical decision-making influence the position that physicians hold in their professional network. This paper explores how physicians' attitudes towards EBM is related to the network position they occupy within healthcare organizations. Data pertain to a sample of Italian physicians, whose professional network relationships, demographics and work-profile characteristics were collected. A social network analysis was performed to capture the structural importance of physicians in the collaboration network by the means of a core-periphery analysis and the computation of network centrality indicators. Then, regression analysis was used to test the association between the network position of individual clinicians and their attitudes towards EBM. Findings documented that the overall network structure is made up of a dense cohesive core of physicians and of less connected clinicians who occupy the periphery. A negative association between the physicians' attitudes towards EBM and the coreness they exhibited in the professional network was also found. Network centrality indicators confirmed these results documenting a negative association between physicians' propensity to use EBM and their structural importance in the professional network. Attitudes that physicians show towards EBM are related to the part (core or periphery) of the professional networks to which they belong as well as to their structural importance. By identifying virtuous attitudes and behaviors of professionals within their organizations, policymakers and executives may avoid marginalization and stimulate integration and continuity of care, both within and across the boundaries of healthcare providers.

  19. Engineering Pre-vascularized Scaffolds for Bone Regeneration.

    PubMed

    Barabaschi, Giada D G; Manoharan, Vijayan; Li, Qing; Bertassoni, Luiz E

    2015-01-01

    Survival of functional tissue constructs of clinically relevant size depends on the formation of an organized and uniformly distributed network of blood vessels and capillaries. The lack of such vasculature leads to spatio-temporal gradients in oxygen, nutrients and accumulation of waste products inside engineered tissue constructs resulting in negative biological events at the core of the scaffold. Unavailability of a well-defined vasculature also results in ineffective integration of scaffolds to the host vasculature upon implantation. Arguably, one of the greatest challenges in engineering clinically relevant bone substitutes, therefore, has been the development of vascularized bone scaffolds. Various approaches ranging from peptide and growth factor functionalized biomaterials to hyper-porous scaffolds have been proposed to address this problem with reasonable success. An emerging alternative to address this challenge has been the fabrication of pre-vascularized scaffolds by taking advantage of biomanufacturing techniques, such as soft- and photo-lithography or 3D bioprinting, and cell-based approaches, where functional capillaries are engineered in cell-laden scaffolds prior to implantation. These strategies seek to engineer pre-vascularized tissues in vitro, allowing for improved anastomosis with the host vasculature upon implantation, while also improving cell viability and tissue development in vitro. This book chapter provides an overview of recent methods to engineer pre-vascularized scaffolds for bone regeneration. We first review the development of functional blood capillaries in bony structures and discuss controlled delivery of growth factors, co-culture systems, and on-chip studies to engineer vascularized cell-laden biomaterials. Lastly, we review recent studies using microfabrication techniques and 3D printing to engineer pre-vascularized scaffolds for bone tissue engineering.

  20. Core-Noise

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2010-01-01

    This presentation is a technical progress report and near-term outlook for NASA-internal and NASA-sponsored external work on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system level noise metrics for the 2015, 2020, and 2025 timeframes; the emerging importance of core noise and its relevance to the SFW Reduced-Noise-Aircraft Technical Challenge; the current research activities in the core-noise area, with some additional details given about the development of a high-fidelity combustion-noise prediction capability; the need for a core-noise diagnostic capability to generate benchmark data for validation of both high-fidelity work and improved models, as well as testing of future noise-reduction technologies; relevant existing core-noise tests using real engines and auxiliary power units; and examples of possible scenarios for a future diagnostic facility. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Noise-Aircraft Technical Challenge aims to enable concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical for enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor designs could increase the combustion-noise component. The trend towards high-power-density cores also means that the noise generated in the low-pressure turbine will likely increase. Consequently, the combined result from these emerging changes will be to elevate the overall importance of turbomachinery core noise, which will need to be addressed in order to meet future noise goals.

  1. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications.

    PubMed

    Stefani, I; Cooper-White, J J

    2016-05-01

    Cardiovascular diseases remain the largest cause of death worldwide, and half of these deaths are the result of failure of the vascular system. Tissue engineering promises to provide new, and potentially more effective therapeutic strategies to replace damaged or degenerated vessels with functional vessels. However, these engineered vessels have substantial performance criteria, including vessel-like tubular shape, structure and mechanical property slate. Further, whether implanted without or with prior in vitro culture, such tubular scaffolds must provide a suitable environment for cell adhesion and growth and be of sufficient porosity to permit cell colonization. This study investigates the fabrication of slowly degradable, composite tubular polymer scaffolds made from polycaprolactone (PCL) and acrylated l-lactide-co-trimethylene carbonate (aPLA-co-TMC). The addition of acrylate groups permits the 'in-process' formation of crosslinks between aPLA-co-TMC chains during electrospinning of the composite system, exemplifying a novel process to produce multicomponent, elastomeric electrospun polymer scaffolds. Although PCL and aPLA-co-TMC were miscible in a co-solvent, a criteria for electrospinning, due to thermodynamic incompatibility of the two polymers as melts, solvent evaporation during electrospinning drove phase separation of these two systems, producing 'core-shell' fibres, with the core being composed of PCL, and the shell of crosslinked elastomeric aPLA-co-TMC. The resulting elastic fibrous scaffolds displayed burst pressures and suture retention strengths comparable with human arteries. Cytocompatibility testing with human mesenchymal stem cells confirmed adhesion to, and proliferation on the three-dimensional fibrous network, as well as alignment with highly-organized fibres. This new processing methodology and resulting mechanically-robust composite scaffolds hold significant promise for tubular tissue engineering applications. Autologous small diameter blood vessel grafts are unsuitable solutions for vessel repair. Engineered solutions such as tubular biomaterial scaffolds however have substantial performance criteria to meet, including vessel-like tubular shape, structure and mechanical property slate. We detail herein an innovative methodology to co-electrospin and 'in-process' crosslink composite mixtures of Poly(caprolactone) and a newly synthesised acrylated-Poly(lactide-co-trimethylene-carbonate) to create elastomeric, core-shell nanofibrous porous scaffolds in a one-step process. This novel composite system can be used to make aligned scaffolds that encourage stem cell adhesion, growth and morphological control, and produce robust tubular scaffolds of tunable internal diameter and wall thickness that possess mechanical properties approaching those of native vessels, ideal for future applications in the field of vessel tissue engineering. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  2. Structural and dynamic changes associated with beneficial engineered single-amino-acid deletion mutations in enhanced green fluorescent protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arpino, James A. J.; Rizkallah, Pierre J., E-mail: rizkallahp@cardiff.ac.uk; Jones, D. Dafydd, E-mail: rizkallahp@cardiff.ac.uk

    2014-08-01

    The beneficial engineered single-amino-acid deletion variants EGFP{sup D190Δ} and EGFP{sup A227Δ} have been studied. Single-amino-acid deletions are a common part of the natural evolutionary landscape but are rarely sampled during protein engineering owing to limited and prejudiced molecular understanding of mutations that shorten the protein backbone. Single-amino-acid deletion variants of enhanced green fluorescent protein (EGFP) have been identified by directed evolution with the beneficial effect of imparting increased cellular fluorescence. Biophysical characterization revealed that increased functional protein production and not changes to the fluorescence parameters was the mechanism that was likely to be responsible. The structure EGFP{sup D190Δ} containing amore » deletion within a loop revealed propagated changes only after the deleted residue. The structure of EGFP{sup A227Δ} revealed that a ‘flipping’ mechanism was used to adjust for residue deletion at the end of a β-strand, with amino acids C-terminal to the deletion site repositioning to take the place of the deleted amino acid. In both variants new networks of short-range and long-range interactions are generated while maintaining the integrity of the hydrophobic core. Both deletion variants also displayed significant local and long-range changes in dynamics, as evident by changes in B factors compared with EGFP. Rather than being detrimental, deletion mutations can introduce beneficial structural effects through altering core protein properties, folding and dynamics, as well as function.« less

  3. Identifying influential spreaders in complex networks based on kshell hybrid method

    NASA Astrophysics Data System (ADS)

    Namtirtha, Amrita; Dutta, Animesh; Dutta, Biswanath

    2018-06-01

    Influential spreaders are the key players in maximizing or controlling the spreading in a complex network. Identifying the influential spreaders using kshell decomposition method has become very popular in the recent time. In the literature, the core nodes i.e. with the largest kshell index of a network are considered as the most influential spreaders. We have studied the kshell method and spreading dynamics of nodes using Susceptible-Infected-Recovered (SIR) epidemic model to understand the behavior of influential spreaders in terms of its topological location in the network. From the study, we have found that every node in the core area is not the most influential spreader. Even a strategically placed lower shell node can also be a most influential spreader. Moreover, the core area can also be situated at the periphery of the network. The existing indexing methods are only designed to identify the most influential spreaders from core nodes and not from lower shells. In this work, we propose a kshell hybrid method to identify highly influential spreaders not only from the core but also from lower shells. The proposed method comprises the parameters such as kshell power, node's degree, contact distance, and many levels of neighbors' influence potential. The proposed method is evaluated using nine real world network datasets. In terms of the spreading dynamics, the experimental results show the superiority of the proposed method over the other existing indexing methods such as the kshell method, the neighborhood coreness centrality, the mixed degree decomposition, etc. Furthermore, the proposed method can also be applied to large-scale networks by considering the three levels of neighbors' influence potential.

  4. Determination of performance characteristics of scientific applications on IBM Blue Gene/Q

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evangelinos, C.; Walkup, R. E.; Sachdeva, V.

    The IBM Blue Gene®/Q platform presents scientists and engineers with a rich set of hardware features such as 16 cores per chip sharing a Level 2 cache, a wide SIMD (single-instruction, multiple-data) unit, a five-dimensional torus network, and hardware support for collective operations. Especially important is the feature related to cores that have four “hardware threads,” which makes it possible to hide latencies and obtain a high fraction of the peak issue rate from each core. All of these hardware resources present unique performance-tuning opportunities on Blue Gene/Q. We provide an overview of several important applications and solvers and studymore » them on Blue Gene/Q using performance counters and Message Passing Interface profiles. We also discuss how Blue Gene/Q tools help us understand the interaction of the application with the hardware and software layers and provide guidance for optimization. Furthermore, on the basis of our analysis, we discuss code improvement strategies targeting Blue Gene/Q. Information about how these algorithms map to the Blue Gene® architecture is expected to have an impact on future system design as we move to the exascale era.« less

  5. 77 FR 58415 - Large Scale Networking (LSN); Joint Engineering Team (JET)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... NATIONAL SCIENCE FOUNDATION Large Scale Networking (LSN); Joint Engineering Team (JET) AGENCY: The Networking and Information Technology Research and Development (NITRD) National Coordination Office (NCO..._Engineering_Team_ (JET). SUMMARY: The JET, established in 1997, provides for information sharing among Federal...

  6. 78 FR 70076 - Large Scale Networking (LSN)-Joint Engineering Team (JET)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ... NATIONAL SCIENCE FOUNDATION Large Scale Networking (LSN)--Joint Engineering Team (JET) AGENCY: The Networking and Information Technology Research and Development (NITRD) National Coordination Office (NCO..._Engineering_Team_ (JET)#title. SUMMARY: The JET, established in 1997, provides for information sharing among...

  7. Core Engine Noise Program. Volume III. Prediction Methods -- Supplement I. - Extension of Prediction Methods

    DTIC Science & Technology

    1976-03-01

    frequency noise transmission through turbine blade rows and addition of engine and component data to the prediction method for core noise. " Phase VI...lower turbine blade row attenuation for this low bypass engine . When the blade row attenuation is accounted for by means of a turbine work extrac...component and engine data. Currently, an in-depth program to investigate turbine blade row attenuation is underway (NAS3-19435 and DOT-FA75WA-3688). The

  8. Application of 3-signal coherence to core noise transmission

    NASA Technical Reports Server (NTRS)

    Krejsa, E. A.

    1983-01-01

    A method for determining transfer functions across turbofan engine components and from the engine to the far-field is developed. The method is based on the three-signal coherence technique used previously to obtain far-field core noise levels. This method eliminates the bias error in transfer function measurements due to contamination of measured pressures by nonpropagating pressure fluctuations. Measured transfer functions from the engine to the far-field, across the tailpipe, and across the turbine are presented for three turbofan engines.

  9. Fundamental structures of dynamic social networks.

    PubMed

    Sekara, Vedran; Stopczynski, Arkadiusz; Lehmann, Sune

    2016-09-06

    Social systems are in a constant state of flux, with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding the spreading of influence or diseases, formation of friendships, and the productivity of teams. Although there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the microdynamics of social networks. Here, we explore the dynamic social network of a densely-connected population of ∼1,000 individuals and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geolocation, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection unnecessary. Starting from 5-min time slices, we uncover dynamic social structures expressed on multiple timescales. On the hourly timescale, we find that gatherings are fluid, with members coming and going, but organized via a stable core of individuals. Each core represents a social context. Cores exhibit a pattern of recurring meetings across weeks and months, each with varying degrees of regularity. Taken together, these findings provide a powerful simplification of the social network, where cores represent fundamental structures expressed with strong temporal and spatial regularity. Using this framework, we explore the complex interplay between social and geospatial behavior, documenting how the formation of cores is preceded by coordination behavior in the communication networks and demonstrating that social behavior can be predicted with high precision.

  10. Fundamental structures of dynamic social networks

    PubMed Central

    Sekara, Vedran; Stopczynski, Arkadiusz; Lehmann, Sune

    2016-01-01

    Social systems are in a constant state of flux, with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding the spreading of influence or diseases, formation of friendships, and the productivity of teams. Although there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the microdynamics of social networks. Here, we explore the dynamic social network of a densely-connected population of ∼1,000 individuals and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geolocation, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection unnecessary. Starting from 5-min time slices, we uncover dynamic social structures expressed on multiple timescales. On the hourly timescale, we find that gatherings are fluid, with members coming and going, but organized via a stable core of individuals. Each core represents a social context. Cores exhibit a pattern of recurring meetings across weeks and months, each with varying degrees of regularity. Taken together, these findings provide a powerful simplification of the social network, where cores represent fundamental structures expressed with strong temporal and spatial regularity. Using this framework, we explore the complex interplay between social and geospatial behavior, documenting how the formation of cores is preceded by coordination behavior in the communication networks and demonstrating that social behavior can be predicted with high precision. PMID:27555584

  11. Developing a Consensus-Driven, Core Competency Model to Shape Future Audio Engineering Technology Curriculum: A Web-Based Modified Delphi Study

    ERIC Educational Resources Information Center

    Tough, David T.

    2009-01-01

    The purpose of this online study was to create a ranking of essential core competencies and technologies required by AET (audio engineering technology) programs 10 years in the future. The study was designed to facilitate curriculum development and improvement in the rapidly expanding number of small to medium sized audio engineering technology…

  12. Networked Governance in Three Policy Areas with Implications for the Common Core State Standards Initiative

    ERIC Educational Resources Information Center

    Manna, Paul

    2010-01-01

    Policy makers and researchers now recognize that designing effective institutions to govern policy networks is a major challenge of the 21st Century. Presently, the Common Core State Standards Initiative resembles an emerging network of organizations united around the goal of developing clear and challenging academic expectations for students in…

  13. Principles of Biomimetic Vascular Network Design Applied to a Tissue-Engineered Liver Scaffold

    PubMed Central

    Hoganson, David M.; Pryor, Howard I.; Spool, Ira D.; Burns, Owen H.; Gilmore, J. Randall

    2010-01-01

    Branched vascular networks are a central component of scaffold architecture for solid organ tissue engineering. In this work, seven biomimetic principles were established as the major guiding technical design considerations of a branched vascular network for a tissue-engineered scaffold. These biomimetic design principles were applied to a branched radial architecture to develop a liver-specific vascular network. Iterative design changes and computational fluid dynamic analysis were used to optimize the network before mold manufacturing. The vascular network mold was created using a new mold technique that achieves a 1:1 aspect ratio for all channels. In vitro blood flow testing confirmed the physiologic hemodynamics of the network as predicted by computational fluid dynamic analysis. These results indicate that this biomimetic liver vascular network design will provide a foundation for developing complex vascular networks for solid organ tissue engineering that achieve physiologic blood flow. PMID:20001254

  14. Principles of biomimetic vascular network design applied to a tissue-engineered liver scaffold.

    PubMed

    Hoganson, David M; Pryor, Howard I; Spool, Ira D; Burns, Owen H; Gilmore, J Randall; Vacanti, Joseph P

    2010-05-01

    Branched vascular networks are a central component of scaffold architecture for solid organ tissue engineering. In this work, seven biomimetic principles were established as the major guiding technical design considerations of a branched vascular network for a tissue-engineered scaffold. These biomimetic design principles were applied to a branched radial architecture to develop a liver-specific vascular network. Iterative design changes and computational fluid dynamic analysis were used to optimize the network before mold manufacturing. The vascular network mold was created using a new mold technique that achieves a 1:1 aspect ratio for all channels. In vitro blood flow testing confirmed the physiologic hemodynamics of the network as predicted by computational fluid dynamic analysis. These results indicate that this biomimetic liver vascular network design will provide a foundation for developing complex vascular networks for solid organ tissue engineering that achieve physiologic blood flow.

  15. Are Entrepreneurial Intentions Self-Regulated? Self-Consciousness, Core Self-Evaluations and Entrepreneurial Intentions of Higher Education Students.

    PubMed

    Auzoult, Laurent; Lheureux, Florent; Abdellaoui, Sid

    2016-06-20

    The main aim of this study is to demonstrate that private self-consciousness (SC) and core self-evaluations (CSEs) influence their formation, via the perceived feasibility and desirability of entrepreneurship or in interaction with it. Two hundred and sixteen students, from a university, an engineering college and a management school, participated in a survey questionnaire which measured these variables as well as controlled factors (e.g. entrepreneurship education, presence of entrepreneurs in their close social network). The results confirm that CSEs have a positive effect on feasibility and desirability (p < .001) which mediate their effect on intention (p < .007). They also show that private SC has a positive direct effect on intention (p < .001). Additionally, the positive interaction effects of desirability and feasibility and public SC and feasibility on intention are highlighted (p < .05). Unexpectedly, none of the hypothesized moderation effects of private SC were corroborated. The convergence of these results with prior research, the limitations of the study and practical implications are discussed.

  16. Identification of a core-periphery structure among participants of a business climate survey. An investigation based on the ZEW survey data

    NASA Astrophysics Data System (ADS)

    Stolzenburg, U.; Lux, T.

    2011-12-01

    Processes of social opinion formation might be dominated by a set of closely connected agents who constitute the cohesive `core' of a network and have a higher influence on the overall outcome of the process than those agents in the more sparsely connected `periphery'. Here we explore whether such a perspective could shed light on the dynamics of a well known economic sentiment index. To this end, we hypothesize that the respondents of the survey under investigation form a core-periphery network, and we identify those agents that define the core (in a discrete setting) or the proximity of each agent to the core (in a continuous setting). As it turns out, there is significant correlation between the so identified cores of different survey questions. Both the discrete and the continuous cores allow an almost perfect replication of the original series with a reduced data set of core members or weighted entries according to core proximity. Using a monthly time series on industrial production in Germany, we also compared experts' predictions with the real economic development. The core members identified in the discrete setting showed significantly better prediction capabilities than those agents assigned to the periphery of the network.

  17. Gene regulation is governed by a core network in hepatocellular carcinoma.

    PubMed

    Gu, Zuguang; Zhang, Chenyu; Wang, Jin

    2012-05-01

    Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide, and the mechanisms that lead to the disease are still relatively unclear. However, with the development of high-throughput technologies it is possible to gain a systematic view of biological systems to enhance the understanding of the roles of genes associated with HCC. Thus, analysis of the mechanism of molecule interactions in the context of gene regulatory networks can reveal specific sub-networks that lead to the development of HCC. In this study, we aimed to identify the most important gene regulations that are dysfunctional in HCC generation. Our method for constructing gene regulatory network is based on predicted target interactions, experimentally-supported interactions, and co-expression model. Regulators in the network included both transcription factors and microRNAs to provide a complete view of gene regulation. Analysis of gene regulatory network revealed that gene regulation in HCC is highly modular, in which different sets of regulators take charge of specific biological processes. We found that microRNAs mainly control biological functions related to mitochondria and oxidative reduction, while transcription factors control immune responses, extracellular activity and the cell cycle. On the higher level of gene regulation, there exists a core network that organizes regulations between different modules and maintains the robustness of the whole network. There is direct experimental evidence for most of the regulators in the core gene regulatory network relating to HCC. We infer it is the central controller of gene regulation. Finally, we explored the influence of the core gene regulatory network on biological pathways. Our analysis provides insights into the mechanism of transcriptional and post-transcriptional control in HCC. In particular, we highlight the importance of the core gene regulatory network; we propose that it is highly related to HCC and we believe further experimental validation is worthwhile.

  18. Understanding the implementation of evidence-based care: a structural network approach.

    PubMed

    Parchman, Michael L; Scoglio, Caterina M; Schumm, Phillip

    2011-02-24

    Recent study of complex networks has yielded many new insights into phenomenon such as social networks, the internet, and sexually transmitted infections. The purpose of this analysis is to examine the properties of a network created by the 'co-care' of patients within one region of the Veterans Health Affairs. Data were obtained for all outpatient visits from 1 October 2006 to 30 September 2008 within one large Veterans Integrated Service Network. Types of physician within each clinic were nodes connected by shared patients, with a weighted link representing the number of shared patients between each connected pair. Network metrics calculated included edge weights, node degree, node strength, node coreness, and node betweenness. Log-log plots were used to examine the distribution of these metrics. Sizes of k-core networks were also computed under multiple conditions of node removal. There were 4,310,465 encounters by 266,710 shared patients between 722 provider types (nodes) across 41 stations or clinics resulting in 34,390 edges. The number of other nodes to which primary care provider nodes have a connection (172.7) is 42% greater than that of general surgeons and two and one-half times as high as cardiology. The log-log plot of the edge weight distribution appears to be linear in nature, revealing a 'scale-free' characteristic of the network, while the distributions of node degree and node strength are less so. The analysis of the k-core network sizes under increasing removal of primary care nodes shows that about 10 most connected primary care nodes play a critical role in keeping the k-core networks connected, because their removal disintegrates the highest k-core network. Delivery of healthcare in a large healthcare system such as that of the US Department of Veterans Affairs (VA) can be represented as a complex network. This network consists of highly connected provider nodes that serve as 'hubs' within the network, and demonstrates some 'scale-free' properties. By using currently available tools to explore its topology, we can explore how the underlying connectivity of such a system affects the behavior of providers, and perhaps leverage that understanding to improve quality and outcomes of care.

  19. Ceramic regenerator systems development program

    NASA Technical Reports Server (NTRS)

    Cook, J. A.; Fucinari, C. A.; Lingscheit, J. N.; Rahnke, C. J.; Rao, V. D.

    1978-01-01

    Ceramic regenerator cores are considered that can be used in passenger car gas turbine engines, Stirling engines, and industrial/truck gas turbine engines. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability tests/in industrial gas turbine engines. A regenerator core made from aluminum silicate shows minimal evidence of chemical attack damage after 7804 hours of engine test at 800 C and another showed little distress after 4983 hours at 982 C. The results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are also included.

  20. Toward an Improved Hypersonic Engine Seal

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; DeMange,Jeffrey J.; Taylor, Shawn C.

    2003-01-01

    High temperature, dynamic seals are required in advanced engines to seal the perimeters of movable engine ramps for efficient, safe operation in high heat flux environments at temperatures from 2000 to 2500 F. Current seal designs do not meet the demanding requirements for future engines, so NASA s Glenn Research Center (GRC) is developing advanced seals to overcome these shortfalls. Two seal designs and two types of seal preloading devices were evaluated in a series of compression tests at room temperature and 2000 F and flow tests at room temperature. Both seals lost resiliency with repeated load cycling at room temperature and 2000 F, but seals with braided cores were significantly more flexible than those with cores composed of uniaxial ceramic fibers. Flow rates for the seals with cores of uniaxial fibers were lower than those for the seals with braided cores. Canted coil springs and silicon nitride compression springs showed promise conceptually as potential seal preloading devices to help maintain seal resiliency.

  1. Thermal Hydraulics Design and Analysis Methodology for a Solid-Core Nuclear Thermal Rocket Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Canabal, Francisco; Chen, Yen-Sen; Cheng, Gary; Ito, Yasushi

    2013-01-01

    Nuclear thermal propulsion is a leading candidate for in-space propulsion for human Mars missions. This chapter describes a thermal hydraulics design and analysis methodology developed at the NASA Marshall Space Flight Center, in support of the nuclear thermal propulsion development effort. The objective of this campaign is to bridge the design methods in the Rover/NERVA era, with a modern computational fluid dynamics and heat transfer methodology, to predict thermal, fluid, and hydrogen environments of a hypothetical solid-core, nuclear thermal engine the Small Engine, designed in the 1960s. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics and heat transfer platform, while formulations of flow and heat transfer through porous and solid media were implemented to describe those of hydrogen flow channels inside the solid24 core. Design analyses of a single flow element and the entire solid-core thrust chamber of the Small Engine were performed and the results are presented herein

  2. A network pharmacology approach to determine active ingredients and rationality of herb combinations of Modified-Simiaowan for treatment of gout.

    PubMed

    Zhao, Fangli; Guochun, Li; Yang, Yanhua; Shi, Le; Xu, Li; Yin, Lian

    2015-06-20

    Modified Simiaowan (MSW) is a traditional Chinese medicine (TCM) formula and is widely used as a clinically medication formula for its efficiency in treating gouty diseases.To predict the active ingredients in MSW and uncover the rationality of herb combinations of MSW. Three drug-target networks including the "candidate ingredient-target network" (cI-cT) that links the candidate ingredients and targets, the "core ingredient-target-pathway network" connecting core potential ingredients and targets through related pathways, and the "rationality of herb combinations of MSW network", which was derived from the cI-cT network, were developed to dissect the active ingredients in MSW and relationship between ingredients in herb combinations and their targets for gouty diseases. On the other hand, herbal ingredients comparisons were also conducted based on six physicochemical properties to investigate whether the herbs in MSW are similar in chemicals. Moreover, HUVEC viability and expression levels of ICAM-1 induced by monosodium urate (MSU) crystals were assessed to determine the activities of potential ingredients in MSW. Predicted by the core ingredient-target-pathway network, we collected 30 core ingredients in MSW and 25 inflammatory cytokines and uric acid synthetase or transporters, which are effective for gouty treatment through some related pathways. Experimental results also confirmed that those core ingredients could significantly increase HUVEC viability and attenuate the expression of ICAM-1, which supported the effectiveness of MSW in treating gouty diseases. Moreover, heat-clearing and dampness-eliminating herbs in MSW have similar physicochemical properties, which stimulate all the inflammatory and uric acid-lowing targets respectively, while the core drug and basic prescription in MSW stimulate the major and almost all the core targets, respectively. Our work successfully predicts the active ingredients in MSW and explains the cooperation between these ingredients and corresponding targets through related pathways for gouty diseases, and provides basis for an alternative approach to investigate the rationality of herb combinations of MSW on the network pharmacology level, which might be beneficial to drug development and applications. Copyright © 2015. Published by Elsevier Ireland Ltd.

  3. Defining and Exposing Privacy Issues with Social Media

    DTIC Science & Technology

    2012-06-11

    Twitter, and Linked In[ I 0). VI. SEARCH ENGINES In addition to social networking sites, search engines pose new issues to privacy. As...networking, search engines , and storing personal information online in general have been accepted worldwide due to the benefits they provide. Social...networking provides even more communication in an information-demanding age, allowing users to interact across great distances. Search engines allow

  4. Hybrid Neural-Network: Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics Developed and Demonstrated

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2002-01-01

    As part of the NASA Aviation Safety Program, a unique model-based diagnostics method that employs neural networks and genetic algorithms for aircraft engine performance diagnostics has been developed and demonstrated at the NASA Glenn Research Center against a nonlinear gas turbine engine model. Neural networks are applied to estimate the internal health condition of the engine, and genetic algorithms are used for sensor fault detection, isolation, and quantification. This hybrid architecture combines the excellent nonlinear estimation capabilities of neural networks with the capability to rank the likelihood of various faults given a specific sensor suite signature. The method requires a significantly smaller data training set than a neural network approach alone does, and it performs the combined engine health monitoring objectives of performance diagnostics and sensor fault detection and isolation in the presence of nominal and degraded engine health conditions.

  5. Shell-corona microgels from double interpenetrating networks.

    PubMed

    Rudyak, Vladimir Yu; Gavrilov, Alexey A; Kozhunova, Elena Yu; Chertovich, Alexander V

    2018-04-18

    Polymer microgels with a dense outer shell offer outstanding features as universal carriers for different guest molecules. In this paper, microgels formed by an interpenetrating network comprised of collapsed and swollen subnetworks are investigated using dissipative particle dynamics (DPD) computer simulations, and it is found that such systems can form classical core-corona structures, shell-corona structures, and core-shell-corona structures, depending on the subchain length and molecular mass of the system. The core-corona structures consisting of a dense core and soft corona are formed at small microgel sizes when the subnetworks are able to effectively separate in space. The most interesting shell-corona structures consist of a soft cavity in a dense shell surrounded with a loose corona, and are found at intermediate gel sizes; the area of their existence depends on the subchain length and the corresponding mesh size. At larger molecular masses the collapsing network forms additional cores inside the soft cavity, leading to the core-shell-corona structure.

  6. A reverse engineering algorithm for neural networks, applied to the subthalamopallidal network of basal ganglia.

    PubMed

    Floares, Alexandru George

    2008-01-01

    Modeling neural networks with ordinary differential equations systems is a sensible approach, but also very difficult. This paper describes a new algorithm based on linear genetic programming which can be used to reverse engineer neural networks. The RODES algorithm automatically discovers the structure of the network, including neural connections, their signs and strengths, estimates its parameters, and can even be used to identify the biophysical mechanisms involved. The algorithm is tested on simulated time series data, generated using a realistic model of the subthalamopallidal network of basal ganglia. The resulting ODE system is highly accurate, and results are obtained in a matter of minutes. This is because the problem of reverse engineering a system of coupled differential equations is reduced to one of reverse engineering individual algebraic equations. The algorithm allows the incorporation of common domain knowledge to restrict the solution space. To our knowledge, this is the first time a realistic reverse engineering algorithm based on linear genetic programming has been applied to neural networks.

  7. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 35: The use of computer networks in aerospace engineering

    NASA Technical Reports Server (NTRS)

    Bishop, Ann P.; Pinelli, Thomas E.

    1995-01-01

    This research used survey research to explore and describe the use of computer networks by aerospace engineers. The study population included 2000 randomly selected U.S. aerospace engineers and scientists who subscribed to Aerospace Engineering. A total of 950 usable questionnaires were received by the cutoff date of July 1994. Study results contribute to existing knowledge about both computer network use and the nature of engineering work and communication. We found that 74 percent of mail survey respondents personally used computer networks. Electronic mail, file transfer, and remote login were the most widely used applications. Networks were used less often than face-to-face interactions in performing work tasks, but about equally with reading and telephone conversations, and more often than mail or fax. Network use was associated with a range of technical, organizational, and personal factors: lack of compatibility across systems, cost, inadequate access and training, and unwillingness to embrace new technologies and modes of work appear to discourage network use. The greatest positive impacts from networking appear to be increases in the amount of accurate and timely information available, better exchange of ideas across organizational boundaries, and enhanced work flexibility, efficiency, and quality. Involvement with classified or proprietary data and type of organizational structure did not distinguish network users from nonusers. The findings can be used by people involved in the design and implementation of networks in engineering communities to inform the development of more effective networking systems, services, and policies.

  8. Neural Network-Based Sensor Validation for Turboshaft Engines

    NASA Technical Reports Server (NTRS)

    Moller, James C.; Litt, Jonathan S.; Guo, Ten-Huei

    1998-01-01

    Sensor failure detection, isolation, and accommodation using a neural network approach is described. An auto-associative neural network is configured to perform dimensionality reduction on the sensor measurement vector and provide estimated sensor values. The sensor validation scheme is applied in a simulation of the T700 turboshaft engine in closed loop operation. Performance is evaluated based on the ability to detect faults correctly and maintain stable and responsive engine operation. The set of sensor outputs used for engine control forms the network input vector. Analytical redundancy is verified by training networks of successively smaller bottleneck layer sizes. Training data generation and strategy are discussed. The engine maintained stable behavior in the presence of sensor hard failures. With proper selection of fault determination thresholds, stability was maintained in the presence of sensor soft failures.

  9. Technical/Engineering. Georgia Core Standards for Occupational Clusters.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Dept. of Occupational Studies.

    This document lists core standards and occupational knowledge and skills that have been identified and validated by industry as necessary to all Georgia students in secondary-level technical/engineering programs. First, foundation skills are grouped as follows: basic skills (reading, writing, arithmetic/mathematics, listening, speaking); thinking…

  10. EVALUATION OF AN ADVANCED ENGINEERING TEST REACTOR DESIGN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McVey, M.; Bradfute, J.O.; Buck, K.E.

    1958-07-15

    The scope of the study was primarily concerned with optimization of the geometrical and core-composition variables to achieve maximum flux in the loop region per unit core power without exceeding heat transfer and other engineering limitations. Centain other design questions are to be investigated. (A.C.)

  11. Identifying protein complex by integrating characteristic of core-attachment into dynamic PPI network.

    PubMed

    Shen, Xianjun; Yi, Li; Jiang, Xingpeng; He, Tingting; Yang, Jincai; Xie, Wei; Hu, Po; Hu, Xiaohua

    2017-01-01

    How to identify protein complex is an important and challenging task in proteomics. It would make great contribution to our knowledge of molecular mechanism in cell life activities. However, the inherent organization and dynamic characteristic of cell system have rarely been incorporated into the existing algorithms for detecting protein complexes because of the limitation of protein-protein interaction (PPI) data produced by high throughput techniques. The availability of time course gene expression profile enables us to uncover the dynamics of molecular networks and improve the detection of protein complexes. In order to achieve this goal, this paper proposes a novel algorithm DCA (Dynamic Core-Attachment). It detects protein-complex core comprising of continually expressed and highly connected proteins in dynamic PPI network, and then the protein complex is formed by including the attachments with high adhesion into the core. The integration of core-attachment feature into the dynamic PPI network is responsible for the superiority of our algorithm. DCA has been applied on two different yeast dynamic PPI networks and the experimental results show that it performs significantly better than the state-of-the-art techniques in terms of prediction accuracy, hF-measure and statistical significance in biology. In addition, the identified complexes with strong biological significance provide potential candidate complexes for biologists to validate.

  12. Network planning study of the metro-optical-network-oriented 3G application

    NASA Astrophysics Data System (ADS)

    Gong, Qian; Xu, Rong; Lin, Jin Tong

    2005-02-01

    To compare with the 2G mobile communication, 3G technologies can supply the perfect service scope and performance. 3G is the trend of the mobile communication. So now to build the transmission network, it is needed to consider how the transmission network to support the 3G applications. For the 3G network architecture, it include the 2 part: Utran access network and core network. So the metro optical network should consider how to build the network to adapt the 3G applications. Include the metro core and access layer. In the metro core, we should consider the network should evolved towards the Mesh architecture with ASON function to realize the fast protection and restoration, quick end-to-end service provision, and high capacity cross-connect matrix etc. In the access layer, the network should have the ability to access the 3G services such as ATM interface with IMA function. In addition, the traffic grooming should be provided to improve the bandwidth utility. In this paper, first we present the MCC network situation, the network planning model will be introduced. Then we present the topology architecture, node capacity and traffic forecast. At last, based on our analysis, we will give a total solution to MCC to build their metro optical network toward to the mesh network with the consideration of 3G services.

  13. SDN Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Rhett

    The SDN Project completed on time and on budget and successfully accomplished 100% of the scope of work outlined in the original Statement of Project Objective (SOPO). The SDN Project formed an alliance between Ameren Corporation, University of Illinois Urbana- Champaign (UIUC), Pacific Northwest National Laboratories (PNNL), and Schweitzer Engineering Laboratories, Inc. (SEL). The objective of the SDN Project is to address Topic Area of Interest 2: Sustain critical energy delivery functions while responding to a cyber-intrusion under Funding Opportunity Announcement DE-FOA-0000797. The goal of the project is to design and commercially release technology that provides a method to sustainmore » critical energy delivery functions during a cyber intrusion and to do this control system operators need the ability to quickly identify and isolate the affected network areas, and re-route critical information and control flows around. The objective of the SDN Project is to develop a Flow Controller that monitors, configures, and maintains the safe, reliable network traffic flows of all the local area networks (LANs) on a control system in the Energy sector. The SDN team identified the core attributes of a control system and produced an SDN flow controller that has the same core attributes enabling networks to be designed, configured and deployed that maximize the whitelisted, deny-bydefault and purpose built networks. This project researched, developed and commercially released technology that: Enables all field networks be to configured and monitored as if they are a single asset to be protected; Enables greatly improved and even precalculated response actions to reliability and cyber events; Supports pre-configured localized response actions tailored to provide resilience against failures and centralized response to cyber-attacks that improve network reliability and availability; Architecturally enables the right subject matter experts, who are usually the information technology and operational technology engineers, to be the ones centrally administering the technology and responding to events; Simplifies network configuration, improving deterministic Ethernet transport times, and providing instant visualization on where the communication circuits are and how all circuits are impacted when changes (e.g., configuration changes, failures or intrusions) happen, allowing operators to minimize downtime; and Improves the ability to identify deviations in network behavior resulting in detection and analysis of potential cyber intrusions and faster response times Results: This project has forever changed the way critical infrastructure networks are designed, secured, deployed and maintained. The cybersecurity and performance advantages achieved are significant, simply put traditional networking has been obsoleted while the team maintained Ethernet interoperability avoiding any legacy concerns. The team commercially released technology that accomplished all the cybersecurity goals outlined in the SOPO and completed it by executing the project management plan approved in the initial contract. The resulting Energy sector SDN flow controller model number is SEL-5056 and can be freely downloaded from the www.SELinc.com website. This technology not only improves the cybersecurity of control systems but has measured results that it improves the performance and reliability of the control system as well. This means the system owners can confidently apply it to their systems knowing that it will, “first do no harm” but actually improve the system as well. Success of the project is best measured by the sales and deployment of the technology. System owners in industrial, electric, defense, and oil and gas only months after commercial release have approved plans for deployment.« less

  14. Reverse Engineering Validation using a Benchmark Synthetic Gene Circuit in Human Cells

    PubMed Central

    Kang, Taek; White, Jacob T.; Xie, Zhen; Benenson, Yaakov; Sontag, Eduardo; Bleris, Leonidas

    2013-01-01

    Multi-component biological networks are often understood incompletely, in large part due to the lack of reliable and robust methodologies for network reverse engineering and characterization. As a consequence, developing automated and rigorously validated methodologies for unraveling the complexity of biomolecular networks in human cells remains a central challenge to life scientists and engineers. Today, when it comes to experimental and analytical requirements, there exists a great deal of diversity in reverse engineering methods, which renders the independent validation and comparison of their predictive capabilities difficult. In this work we introduce an experimental platform customized for the development and verification of reverse engineering and pathway characterization algorithms in mammalian cells. Specifically, we stably integrate a synthetic gene network in human kidney cells and use it as a benchmark for validating reverse engineering methodologies. The network, which is orthogonal to endogenous cellular signaling, contains a small set of regulatory interactions that can be used to quantify the reconstruction performance. By performing successive perturbations to each modular component of the network and comparing protein and RNA measurements, we study the conditions under which we can reliably reconstruct the causal relationships of the integrated synthetic network. PMID:23654266

  15. Reverse engineering validation using a benchmark synthetic gene circuit in human cells.

    PubMed

    Kang, Taek; White, Jacob T; Xie, Zhen; Benenson, Yaakov; Sontag, Eduardo; Bleris, Leonidas

    2013-05-17

    Multicomponent biological networks are often understood incompletely, in large part due to the lack of reliable and robust methodologies for network reverse engineering and characterization. As a consequence, developing automated and rigorously validated methodologies for unraveling the complexity of biomolecular networks in human cells remains a central challenge to life scientists and engineers. Today, when it comes to experimental and analytical requirements, there exists a great deal of diversity in reverse engineering methods, which renders the independent validation and comparison of their predictive capabilities difficult. In this work we introduce an experimental platform customized for the development and verification of reverse engineering and pathway characterization algorithms in mammalian cells. Specifically, we stably integrate a synthetic gene network in human kidney cells and use it as a benchmark for validating reverse engineering methodologies. The network, which is orthogonal to endogenous cellular signaling, contains a small set of regulatory interactions that can be used to quantify the reconstruction performance. By performing successive perturbations to each modular component of the network and comparing protein and RNA measurements, we study the conditions under which we can reliably reconstruct the causal relationships of the integrated synthetic network.

  16. A long-time limit for world subway networks.

    PubMed

    Roth, Camille; Kang, Soong Moon; Batty, Michael; Barthelemy, Marc

    2012-10-07

    We study the temporal evolution of the structure of the world's largest subway networks in an exploratory manner. We show that, remarkably, all these networks converge to a shape that shares similar generic features despite their geographical and economic differences. This limiting shape is made of a core with branches radiating from it. For most of these networks, the average degree of a node (station) within the core has a value of order 2.5 and the proportion of k = 2 nodes in the core is larger than 60 per cent. The number of branches scales roughly as the square root of the number of stations, the current proportion of branches represents about half of the total number of stations, and the average diameter of branches is about twice the average radial extension of the core. Spatial measures such as the number of stations at a given distance to the barycentre display a first regime which grows as r(2) followed by another regime with different exponents, and eventually saturates. These results--difficult to interpret in the framework of fractal geometry--confirm and yield a natural explanation in the geometric picture of this core and their branches: the first regime corresponds to a uniform core, while the second regime is controlled by the interstation spacing on branches. The apparent convergence towards a unique network shape in the temporal limit suggests the existence of dominant, universal mechanisms governing the evolution of these structures.

  17. A long-time limit for world subway networks

    PubMed Central

    Roth, Camille; Kang, Soong Moon; Batty, Michael; Barthelemy, Marc

    2012-01-01

    We study the temporal evolution of the structure of the world's largest subway networks in an exploratory manner. We show that, remarkably, all these networks converge to a shape that shares similar generic features despite their geographical and economic differences. This limiting shape is made of a core with branches radiating from it. For most of these networks, the average degree of a node (station) within the core has a value of order 2.5 and the proportion of k = 2 nodes in the core is larger than 60 per cent. The number of branches scales roughly as the square root of the number of stations, the current proportion of branches represents about half of the total number of stations, and the average diameter of branches is about twice the average radial extension of the core. Spatial measures such as the number of stations at a given distance to the barycentre display a first regime which grows as r2 followed by another regime with different exponents, and eventually saturates. These results—difficult to interpret in the framework of fractal geometry—confirm and yield a natural explanation in the geometric picture of this core and their branches: the first regime corresponds to a uniform core, while the second regime is controlled by the interstation spacing on branches. The apparent convergence towards a unique network shape in the temporal limit suggests the existence of dominant, universal mechanisms governing the evolution of these structures. PMID:22593096

  18. Sex networking of young men who have sex with men in densely connected saunas in Hong Kong.

    PubMed

    Poon, Chin Man; Lee, Shui Shan

    2013-12-01

    Some men who have sex with men (MSM) meet and have sex with male partners at gay saunas, the connections between which are little explored for designing HIV prevention measures. This study aims to describe the network configuration of gay saunas and explore its relationship with risk behavior of MSM in the respective sauna communities, in the city of Hong Kong. Using venue-based sampling, 205 MSM were recruited in 8 saunas in July 2011 for a cross-sectional anonymous questionnaire survey. A network of saunas was constructed based on the proportion of clients shared between them. Core saunas with higher intensity of linkages were delineated from core-periphery analysis. Men who have sex with men in core saunas were compared with those in peripheral ones in terms of their demographics and risk behavioral profiles. Eight core saunas were differentiated from a highly connected sauna network, consisting of 13 saunas with a diameter of 2. Men who have sex with men visiting core saunas were more likely to be younger and users of the Internet for sex networking (odds ratio, 5.43; 95% confidence interval, 1.84-16.01). On average, they visited 1.7 saunas and had 2.6 sauna partners over a 1-month period, which were both significantly higher than those for MSM in peripheral saunas. However, there was no association between having unprotected anal sex and visiting core saunas. Sauna affiliation patterns were age dependent and geographically related. Saunas were not homogeneously connected with each other. Prioritization may be considered so that public health interventions can be targeted at saunas in denser networks. An assortative mixing in age among MSM in sauna community informs planning for client-specific venue-based prevention programs.

  19. The role of the International Space University in building capacity in emerging space nations.

    NASA Astrophysics Data System (ADS)

    Richards, Robert

    The International Space University provides graduate-level training to the future leaders of the emerging global space community at its Central Campus in Strasbourg, France, and at locations around the world. In its two-month Summer Session and one-year Masters program, ISU offers its students a unique Core Curriculum covering all disciplines related to space programs and enterprises - space science, space engineering, systems engineering, space policy and law, business and management, and space and society. Both programs also involve an intense student research Team Project providing international graduate students and young space professionals the opportunity to solve complex problems by working together in an intercultural environment. Since its founding in 1987, ISU has graduated more than 2500 students from 96 countries. Together with hundreds of ISU faculty and lecturers from around the world, ISU alumni comprise an extremely effective network of space professionals and leaders that actively facilitates individual career growth, professional activities and international space cooperation.

  20. Shared protection based virtual network mapping in space division multiplexing optical networks

    NASA Astrophysics Data System (ADS)

    Zhang, Huibin; Wang, Wei; Zhao, Yongli; Zhang, Jie

    2018-05-01

    Space Division Multiplexing (SDM) has been introduced to improve the capacity of optical networks. In SDM optical networks, there are multiple cores/modes in each fiber link, and spectrum resources are multiplexed in both frequency and core/modes dimensions. Enabled by network virtualization technology, one SDM optical network substrate can be shared by several virtual networks operators. Similar with point-to-point connection services, virtual networks (VN) also need certain survivability to guard against network failures. Based on customers' heterogeneous requirements on the survivability of their virtual networks, this paper studies the shared protection based VN mapping problem and proposes a Minimum Free Frequency Slots (MFFS) mapping algorithm to improve spectrum efficiency. Simulation results show that the proposed algorithm can optimize SDM optical networks significantly in terms of blocking probability and spectrum utilization.

  1. Energy and time determine scaling in biological and computer designs

    PubMed Central

    Bezerra, George; Edwards, Benjamin; Brown, James; Forrest, Stephanie

    2016-01-01

    Metabolic rate in animals and power consumption in computers are analogous quantities that scale similarly with size. We analyse vascular systems of mammals and on-chip networks of microprocessors, where natural selection and human engineering, respectively, have produced systems that minimize both energy dissipation and delivery times. Using a simple network model that simultaneously minimizes energy and time, our analysis explains empirically observed trends in the scaling of metabolic rate in mammals and power consumption and performance in microprocessors across several orders of magnitude in size. Just as the evolutionary transitions from unicellular to multicellular animals in biology are associated with shifts in metabolic scaling, our model suggests that the scaling of power and performance will change as computer designs transition to decentralized multi-core and distributed cyber-physical systems. More generally, a single energy–time minimization principle may govern the design of many complex systems that process energy, materials and information. This article is part of the themed issue ‘The major synthetic evolutionary transitions’. PMID:27431524

  2. Energy and time determine scaling in biological and computer designs.

    PubMed

    Moses, Melanie; Bezerra, George; Edwards, Benjamin; Brown, James; Forrest, Stephanie

    2016-08-19

    Metabolic rate in animals and power consumption in computers are analogous quantities that scale similarly with size. We analyse vascular systems of mammals and on-chip networks of microprocessors, where natural selection and human engineering, respectively, have produced systems that minimize both energy dissipation and delivery times. Using a simple network model that simultaneously minimizes energy and time, our analysis explains empirically observed trends in the scaling of metabolic rate in mammals and power consumption and performance in microprocessors across several orders of magnitude in size. Just as the evolutionary transitions from unicellular to multicellular animals in biology are associated with shifts in metabolic scaling, our model suggests that the scaling of power and performance will change as computer designs transition to decentralized multi-core and distributed cyber-physical systems. More generally, a single energy-time minimization principle may govern the design of many complex systems that process energy, materials and information.This article is part of the themed issue 'The major synthetic evolutionary transitions'. © 2016 The Author(s).

  3. Converting Advances in Seismology into Earthquake Science

    NASA Astrophysics Data System (ADS)

    Hauksson, Egill; Shearer, Peter; Vidale, John

    2004-01-01

    Federal and state agencies and university groups all operate seismic networks in California. The U.S. Geological Survey (USGS) operates seismic networks in California in cooperation with the California Institute of Technology (Caltech) in southern California, and the University of California (UC) at Berkeley in northern California. The California Geological Survey (CGS) and the USGS National Strong Motion Program (NSMP) operate dial-out strong motion instruments in the state, primarily to capture data from large earthquakes for earthquake engineering and, more recently, emergency response. The California Governor's Office of Emergency Services (OES) provides leadership for the most recent project, the California Integrated Seismic Network (CISN), to integrate all of the California efforts, and to take advantage of the emergency response capabilities of the seismic networks. The core members of the CISN are Caltech, UC Berkeley, CGS, USGS Menlo Park, and USGS Pasadena (http://www.cisn.org). New seismic instrumentation is in place across southern California, and significant progress has been made in improving instrumentation in northern California. Since 2001, these new field instrumentation efforts, data sharing, and software development for real-time reporting and archiving have been coordinated through the California Integrated Seismic Network (CISN). The CISN is also the California region of the Advanced National Seismic Network (ANSS). In addition, EarthScope deployments of USArray that will begin in early 2004 in California are coordinated with the CISN. The southern and northern California earthquake data centers (SCEDC and NCEDC) have new capabilities that enable seismologists to obtain large volumes of data with only modest effort.

  4. Super-channel oriented routing, spectrum and core assignment under crosstalk limit in spatial division multiplexing elastic optical networks

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Zhu, Ye; Wang, Chunhui; Yu, Xiaosong; Liu, Chuan; Liu, Binglin; Zhang, Jie

    2017-07-01

    With the capacity increasing in optical networks enabled by spatial division multiplexing (SDM) technology, spatial division multiplexing elastic optical networks (SDM-EONs) attract much attention from both academic and industry. Super-channel is an important type of service provisioning in SDM-EONs. This paper focuses on the issue of super-channel construction in SDM-EONs. Mixed super-channel oriented routing, spectrum and core assignment (MS-RSCA) algorithm is proposed in SDM-EONs considering inter-core crosstalk. Simulation results show that MS-RSCA can improve spectrum resource utilization and reduce blocking probability significantly compared with the baseline RSCA algorithms.

  5. Structural stability of interaction networks against negative external fields

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Goltsev, A. V.; Mendes, J. F. F.

    2018-04-01

    We explore structural stability of weighted and unweighted networks of positively interacting agents against a negative external field. We study how the agents support the activity of each other to confront the negative field, which suppresses the activity of agents and can lead to collapse of the whole network. The competition between the interactions and the field shape the structure of stable states of the system. In unweighted networks (uniform interactions) the stable states have the structure of k -cores of the interaction network. The interplay between the topology and the distribution of weights (heterogeneous interactions) impacts strongly the structural stability against a negative field, especially in the case of fat-tailed distributions of weights. We show that apart from critical slowing down there is also a critical change in the system structure that precedes the network collapse. The change can serve as an early warning of the critical transition. To characterize changes of network structure we develop a method based on statistical analysis of the k -core organization and so-called "corona" clusters belonging to the k -cores.

  6. Anatomy of an online misinformation network.

    PubMed

    Shao, Chengcheng; Hui, Pik-Mai; Wang, Lei; Jiang, Xinwen; Flammini, Alessandro; Menczer, Filippo; Ciampaglia, Giovanni Luca

    2018-01-01

    Massive amounts of fake news and conspiratorial content have spread over social media before and after the 2016 US Presidential Elections despite intense fact-checking efforts. How do the spread of misinformation and fact-checking compete? What are the structural and dynamic characteristics of the core of the misinformation diffusion network, and who are its main purveyors? How to reduce the overall amount of misinformation? To explore these questions we built Hoaxy, an open platform that enables large-scale, systematic studies of how misinformation and fact-checking spread and compete on Twitter. Hoaxy captures public tweets that include links to articles from low-credibility and fact-checking sources. We perform k-core decomposition on a diffusion network obtained from two million retweets produced by several hundred thousand accounts over the six months before the election. As we move from the periphery to the core of the network, fact-checking nearly disappears, while social bots proliferate. The number of users in the main core reaches equilibrium around the time of the election, with limited churn and increasingly dense connections. We conclude by quantifying how effectively the network can be disrupted by penalizing the most central nodes. These findings provide a first look at the anatomy of a massive online misinformation diffusion network.

  7. Anatomy of an online misinformation network

    PubMed Central

    Wang, Lei; Jiang, Xinwen; Flammini, Alessandro; Ciampaglia, Giovanni Luca

    2018-01-01

    Massive amounts of fake news and conspiratorial content have spread over social media before and after the 2016 US Presidential Elections despite intense fact-checking efforts. How do the spread of misinformation and fact-checking compete? What are the structural and dynamic characteristics of the core of the misinformation diffusion network, and who are its main purveyors? How to reduce the overall amount of misinformation? To explore these questions we built Hoaxy, an open platform that enables large-scale, systematic studies of how misinformation and fact-checking spread and compete on Twitter. Hoaxy captures public tweets that include links to articles from low-credibility and fact-checking sources. We perform k-core decomposition on a diffusion network obtained from two million retweets produced by several hundred thousand accounts over the six months before the election. As we move from the periphery to the core of the network, fact-checking nearly disappears, while social bots proliferate. The number of users in the main core reaches equilibrium around the time of the election, with limited churn and increasingly dense connections. We conclude by quantifying how effectively the network can be disrupted by penalizing the most central nodes. These findings provide a first look at the anatomy of a massive online misinformation diffusion network. PMID:29702657

  8. Energy efficient engine. Volume 1: Component development and integration program

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Technology for achieving lower installed fuel consumption and lower operating costs in future commercial turbofan engines are developed, evaluated, and demonstrated. The four program objectives are: (1) propulsion system analysis; (2) component analysis, design, and development; (3) core design, fabrication, and test; and (4) integrated core/low spoon design, fabrication, and test.

  9. SLS Engine Section Test Article Moves From NASA Barge Pegasus To Test Stand at NASA’s Marshall Space Flight Center

    NASA Image and Video Library

    2017-05-18

    The NASA barge Pegasus made its first trip to NASA’s Marshall Space Flight Center in Huntsville, Alabama on May 15. It arrived carrying the first piece of Space Launch System hardware built at NASA's Michoud Assembly Facility in New Orleans. The barge left Michoud on April 28 with the core stage engine section test article, traveling 1,240 miles by river to Marshall. The rocket's engine section is the bottom of the core stage and houses the four RS-25 engines. The engine section test article was moved from the barge to Marshall’s Building 4619 where it will be tested. The bottom part of the test article is structurally the same as the engine section that will be flown as part of the SLS core stage. The shiny metal top part simulates the rocket's liquid hydrogen tank, which is the fuel tank that joins to the engine section. The test article will endure tests that pull, push, and bend it, subjecting it to millions of pounds of force. This ensures the structure can withstand the incredible stresses produced by the 8.8 million pounds of thrust during launch and ascent.

  10. SLS Engine Section Test Article Arrives at Marshall on NASA Barge Pegasus

    NASA Image and Video Library

    2017-05-16

    The NASA barge Pegasus made it’s first trip to NASA’s Marshall Space Flight Center in Huntsville, Alabama on May 15. It arrived carrying the first piece of Space Launch System hardware built at NASA's Michoud Assembly Facility in New Orleans. The barge left Michoud on April 28 with the core stage engine section test article, traveling 1,240 miles by river to Marshall. The rocket's engine section is the bottom of the core stage and houses the four RS-25 engines. The engine section test article will be moved to Marshall’s Building 4619 where it will be tested. The bottom part of the test article is structurally the same as the engine section that will be flown as part of the SLS core stage. The shiny metal top part simulates the rocket's liquid hydrogen tank, which is the fuel tank that joins to the engine section. The test article will endure tests that pull, push, and bend it, subjecting it to millions of pounds of force. This ensures the structure can withstand the incredible stresses produced by the 8.8 million pounds of thrust during launch and ascent.

  11. An improved heat transfer configuration for a solid-core nuclear thermal rocket engine

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Walton, James T.; Mcguire, Melissa L.

    1992-01-01

    Interrupted flow, impingement cooling, and axial power distribution are employed to enhance the heat-transfer configuration of a solid-core nuclear thermal rocket engine. Impingement cooling is introduced to increase the local heat-transfer coefficients between the reactor material and the coolants. Increased fuel loading is used at the inlet end of the reactor to enhance heat-transfer capability where the temperature differences are the greatest. A thermal-hydraulics computer program for an unfueled NERVA reactor core is employed to analyze the proposed configuration with attention given to uniform fuel loading, number of channels through the impingement wafers, fuel-element length, mass-flow rate, and wafer gap. The impingement wafer concept (IWC) is shown to have heat-transfer characteristics that are better than those of the NERVA-derived reactor at 2500 K. The IWC concept is argued to be an effective heat-transfer configuration for solid-core nuclear thermal rocket engines.

  12. Side-chain Engineering of Benzo[1,2-b:4,5-b’]dithiophene Core-structured Small Molecules for High-Performance Organic Solar Cells

    PubMed Central

    Yin, Xinxing; An, Qiaoshi; Yu, Jiangsheng; Guo, Fengning; Geng, Yongliang; Bian, Linyi; Xu, Zhongsheng; Zhou, Baojing; Xie, Linghai; Zhang, Fujun; Tang, Weihua

    2016-01-01

    Three novel small molecules have been developed by side-chain engineering on benzo[1,2-b:4,5-b’]dithiophene (BDT) core. The typical acceptor-donor-acceptor (A-D-A) structure is adopted with 4,8-functionalized BDT moieties as core, dioctylterthiophene as π bridge and 3-ethylrhodanine as electron-withdrawing end group. Side-chain engineering on BDT core exhibits small but measurable effect on the optoelectronic properties of small molecules. Theoretical simulation and X-ray diffraction study reveal the subtle tuning of interchain distance between conjugated backbones has large effect on the charge transport and thus the photovoltaic performance of these molecules. Bulk-heterojunction solar cells fabricated with a configuration of ITO/PEDOT:PSS/SM:PC71BM/PFN/Al exhibit a highest power conversion efficiency (PCE) of 6.99% after solvent vapor annealing. PMID:27140224

  13. Side-chain Engineering of Benzo[1,2-b:4,5-b']dithiophene Core-structured Small Molecules for High-Performance Organic Solar Cells.

    PubMed

    Yin, Xinxing; An, Qiaoshi; Yu, Jiangsheng; Guo, Fengning; Geng, Yongliang; Bian, Linyi; Xu, Zhongsheng; Zhou, Baojing; Xie, Linghai; Zhang, Fujun; Tang, Weihua

    2016-05-03

    Three novel small molecules have been developed by side-chain engineering on benzo[1,2-b:4,5-b']dithiophene (BDT) core. The typical acceptor-donor-acceptor (A-D-A) structure is adopted with 4,8-functionalized BDT moieties as core, dioctylterthiophene as π bridge and 3-ethylrhodanine as electron-withdrawing end group. Side-chain engineering on BDT core exhibits small but measurable effect on the optoelectronic properties of small molecules. Theoretical simulation and X-ray diffraction study reveal the subtle tuning of interchain distance between conjugated backbones has large effect on the charge transport and thus the photovoltaic performance of these molecules. Bulk-heterojunction solar cells fabricated with a configuration of ITO/PEDOT:PSS/SM:PC71BM/PFN/Al exhibit a highest power conversion efficiency (PCE) of 6.99% after solvent vapor annealing.

  14. Multiphysics Computational Analysis of a Solid-Core Nuclear Thermal Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Canabal, Francisco; Cheng, Gary; Chen, Yen-Sen

    2007-01-01

    The objective of this effort is to develop an efficient and accurate computational heat transfer methodology to predict thermal, fluid, and hydrogen environments for a hypothetical solid-core, nuclear thermal engine - the Small Engine. In addition, the effects of power profile and hydrogen conversion on heat transfer efficiency and thrust performance were also investigated. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics platform, while formulations of conjugate heat transfer were implemented to describe the heat transfer from solid to hydrogen inside the solid-core reactor. The computational domain covers the entire thrust chamber so that the afore-mentioned heat transfer effects impact the thrust performance directly. The result shows that the computed core-exit gas temperature, specific impulse, and core pressure drop agree well with those of design data for the Small Engine. Finite-rate chemistry is very important in predicting the proper energy balance as naturally occurring hydrogen decomposition is endothermic. Locally strong hydrogen conversion associated with centralized power profile gives poor heat transfer efficiency and lower thrust performance. On the other hand, uniform hydrogen conversion associated with a more uniform radial power profile achieves higher heat transfer efficiency, and higher thrust performance.

  15. Core-shell designed scaffolds for drug delivery and tissue engineering.

    PubMed

    Perez, Roman A; Kim, Hae-Won

    2015-07-01

    Scaffolds that secure and deliver therapeutic ingredients like signaling molecules and stem cells hold great promise for drug delivery and tissue engineering. Employing a core-shell design for scaffolds provides a promising solution. Some unique methods, such as co-concentric nozzle extrusion, microfluidics generation, and chemical confinement reactions, have been successful in producing core-shelled nano/microfibers and nano/microspheres. Signaling molecules and drugs, spatially allocated to the core and/or shell part, can be delivered in a controllable and sequential manner for optimal therapeutic effects. Stem cells can be loaded within the core part on-demand, safely protected from the environments, which ultimately affords ex vivo culture and in vivo tissue engineering. The encapsulated cells experience three-dimensional tissue-mimic microenvironments in which therapeutic molecules are secreted to the surrounding tissues through the semi-permeable shell. Tuning the material properties of the core and shell, changing the geometrical parameters, and shaping them into proper forms significantly influence the release behaviors of biomolecules and the fate of the cells. This topical issue highlights the immense usefulness of core-shell designs for the therapeutic actions of scaffolds in the delivery of signaling molecules and stem cells for tissue regeneration and disease treatment. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Nuclear-Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Rom, Frank E.

    1968-01-01

    The three basic types of nuclear power-plants (solid, liquid, and gas core) are compared on the bases of performance potential and the status of current technology. The solid-core systems are expected to have impulses in the range of 850 seconds, any thrust level (as long as it is greater than 10,000 pounds (44,480 newtons)), and thrust-to-engine-weight ratios of 2 to 20 pounds per pound (19.7 to 197 newtons per kilogram). There is negligible or no fuel loss from the solid-core system. The solid-core system, of course, has had the most work done on it. Large-scale tests have been performed on a breadboard engine that has produced specific impulses greater than 700 seconds at thrust levels of about 50,000 pounds (222,000 newtons). The liquid-core reactor would be interesting in the specific impulse range of 1200 to 1500 seconds. Again, any thrust level can be obtained depending on how big or small the reactor is made. The thrust-to-engine weight ratio for these systems would be in the range of 1 to 10. The discouraging feature of the liquid-core system is the high fuel-loss ratio anticipated. Values of 0.01 to 0.1 pound (0.00454 to 0.0454 kilograms) or uranium loss per pound (0.454 kilograms) of hydrogen are expected, if impulses in the range of 1200 to 1500 seconds are desired. The gas-core reactor shows specific impulses in the range of 1500 to 2500 seconds. The thrust levels should be at least as high as the weight so that the thrust-to-weight ratio does not go below 1. Because the engine weight is not expected to be under 100,000 pounds (444,800 newtons), thrust levels higher than 100,000 pounds (448,000 newtons) are of interest. The thrust-to-engine weights, in that case, would run from 1 to 20 pounds per pound (9.8 to 19.7 kilograms). Gas-core reactors tend to be very large, and can have high thrust-to-weight ratios. As in the case of the liquid-core system, the fuel loss that will be attendant with gas cores as envisioned today will be rather high. The loss rates will be 0.01 to 0.1 pound of uranium (0.00454 to 0.0454 kilograms) for each pound (0.454 kilograms) of hydrogen.

  17. CF6 Jet Engine Performance Improvement Program: High Pressure Turbine Aerodynamic Performance Improvement

    NASA Technical Reports Server (NTRS)

    Fasching, W. A.

    1980-01-01

    The improved single shank high pressure turbine design was evaluated in component tests consisting of performance, heat transfer and mechanical tests, and in core engine tests. The instrumented core engine test verified the thermal, mechanical, and aeromechanical characteristics of the improved turbine design. An endurance test subjected the improved single shank turbine to 1000 simulated flight cycles, the equivalent of approximately 3000 hours of typical airline service. Initial back-to-back engine tests demonstrated an improvement in cruise sfc of 1.3% and a reduction in exhaust gas temperature of 10 C. An additional improvement of 0.3% in cruise sfc and 6 C in EGT is projected for long service engines.

  18. Keeping Dublin Core Simple: Cross-Domain Discovery or Resource Description?; First Steps in an Information Commerce Economy: Digital Rights Management in the Emerging E-Book Environment; Interoperability: Digital Rights Management and the Emerging EBook Environment; Searching the Deep Web: Direct Query Engine Applications at the Department of Energy.

    ERIC Educational Resources Information Center

    Lagoze, Carl; Neylon, Eamonn; Mooney, Stephen; Warnick, Walter L.; Scott, R. L.; Spence, Karen J.; Johnson, Lorrie A.; Allen, Valerie S.; Lederman, Abe

    2001-01-01

    Includes four articles that discuss Dublin Core metadata, digital rights management and electronic books, including interoperability; and directed query engines, a type of search engine designed to access resources on the deep Web that is being used at the Department of Energy. (LRW)

  19. The deep space network, Volume 11

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Deep Space Network progress in flight project support, Tracking and Data Acquisition research and technology, network engineering, hardware and software implementation, and operations are presented. Material is presented in each of the following categories: description of DSN; mission support; radio science; support research and technology; network engineering and implementation; and operations and facilities.

  20. Acoustics and Trust of Separate-Flow Exhaust Nozzles With Mixing Devices for High-Bypass-Ratio Engines

    NASA Technical Reports Server (NTRS)

    Saiyed, Naseem H.; Mikkelsen, Kevin L.; Bridges, James E.

    2000-01-01

    The NASA Glenn Research Center recently completed an experimental study to reduce the jet noise from modern turbofan engines. The study concentrated on exhaust nozzle designs for high-bypass-ratio engines. These designs modified the core and fan nozzles individually and simultaneously. Several designs provided an ideal jet noise reduction of over 2.5 EPNdB for the effective perceived noise level (EPNL) metric. Noise data, after correcting for takeoff thrust losses, indicated over a 2.0-EPNdB reduction for nine designs. Individually modifying the fan nozzle did not provide attractive EPNL reductions. Designs in which only the core nozzle was modified provided greater EPNL reductions. Designs in which core and fan nozzles were modified simultaneously provided the greatest EPNL reduction. The best nozzle design had a 2.7-EPNdB reduction (corrected for takeoff thrust loss) with a 0.06-point cruise thrust loss. This design simultaneously employed chevrons on the core and fan nozzles. In comparison with chevrons, tabs appeared to be an inefficient method for reducing jet noise. Data trends indicate that the sum of the thrust losses from individually modifying core and fan nozzles did not generally equal the thrust loss from modifying them simultaneously. Flow blockage from tabs did not scale directly with cruise thrust loss and the interaction between fan flow and the core nozzle seemed to strongly affect noise and cruise performance. Finally, the nozzle configuration candidates for full-scale engine demonstrations are identified.

  1. Episodic specificity induction impacts activity in a core brain network during construction of imagined future experiences

    PubMed Central

    Madore, Kevin P.; Szpunar, Karl K.; Addis, Donna Rose; Schacter, Daniel L.

    2016-01-01

    Recent behavioral work suggests that an episodic specificity induction—brief training in recollecting the details of a past experience—enhances performance on subsequent tasks that rely on episodic retrieval, including imagining future experiences, solving open-ended problems, and thinking creatively. Despite these far-reaching behavioral effects, nothing is known about the neural processes impacted by an episodic specificity induction. Related neuroimaging work has linked episodic retrieval with a core network of brain regions that supports imagining future experiences. We tested the hypothesis that key structures in this network are influenced by the specificity induction. Participants received the specificity induction or one of two control inductions and then generated future events and semantic object comparisons during fMRI scanning. After receiving the specificity induction compared with the control, participants exhibited significantly more activity in several core network regions during the construction of imagined events over object comparisons, including the left anterior hippocampus, right inferior parietal lobule, right posterior cingulate cortex, and right ventral precuneus. Induction-related differences in the episodic detail of imagined events significantly modulated induction-related differences in the construction of imagined events in the left anterior hippocampus and right inferior parietal lobule. Resting-state functional connectivity analyses with hippocampal and inferior parietal lobule seed regions and the rest of the brain also revealed significantly stronger core network coupling following the specificity induction compared with the control. These findings provide evidence that an episodic specificity induction selectively targets episodic processes that are commonly linked to key core network regions, including the hippocampus. PMID:27601666

  2. Spatial-spectral flexible optical networking: enabling switching solutions for a simplified and efficient SDM network platform

    NASA Astrophysics Data System (ADS)

    Tomkos, I.; Zakynthinos, P.; Klonidis, D.; Marom, D.; Sygletos, S.; Ellis, A.; Salvadori, E.; Siracusa, D.; Angelou, M.; Papastergiou, G.; Psaila, N.; Ferran, J. F.; Ben-Ezra, S.; Jimenez, F.; Fernández-Palacios, J. P.

    2013-12-01

    The traffic carried by core optical networks grows at a steady but remarkable pace of 30-40% year-over-year. Optical transmissions and networking advancements continue to satisfy the traffic requirements by delivering the content over the network infrastructure in a cost and energy efficient manner. Such core optical networks serve the information traffic demands in a dynamic way, in response to requirements for shifting of traffics demands, both temporally (day/night) and spatially (business district/residential). However as we are approaching fundamental spectral efficiency limits of singlemode fibers, the scientific community is pursuing recently the development of an innovative, all-optical network architecture introducing the spatial degree of freedom when designing/operating future transport networks. Spacedivision- multiplexing through the use of bundled single mode fibers, and/or multi-core fibers and/or few-mode fibers can offer up to 100-fold capacity increase in future optical networks. The EU INSPACE project is working on the development of a complete spatial-spectral flexible optical networking solution, offering the network ultra-high capacity, flexibility and energy efficiency required to meet the challenges of delivering exponentially growing traffic demands in the internet over the next twenty years. In this paper we will present the motivation and main research activities of the INSPACE consortium towards the realization of the overall project solution.

  3. Design considerations in clustering nuclear rocket engines

    NASA Technical Reports Server (NTRS)

    Sager, Paul H.

    1992-01-01

    An initial investigation of the design considerations in clustering nuclear rocket engines for space transfer vehicles has been made. The clustering of both propulsion modules (which include start tanks) and nuclear rocket engines installed directly to a vehicle core tank appears to be feasible. Special provisions to shield opposite run tanks and the opposite side of a core tank - in the case of the boost pump concept - are required; the installation of a circumferential reactor side shield sector appears to provide an effective solution to this problem. While the time response to an engine-out event does not appear to be critical, the gimbal displacement required appears to be important. Since an installation of three engines offers a substantial reduction in gimbal requirements for engine-out and it may be possible to further enhance mission reliability with the greater number of engines, it is recommended that a cluster of four engines be considered.

  4. Design considerations in clustering nuclear rocket engines

    NASA Astrophysics Data System (ADS)

    Sager, Paul H.

    1992-07-01

    An initial investigation of the design considerations in clustering nuclear rocket engines for space transfer vehicles has been made. The clustering of both propulsion modules (which include start tanks) and nuclear rocket engines installed directly to a vehicle core tank appears to be feasible. Special provisions to shield opposite run tanks and the opposite side of a core tank - in the case of the boost pump concept - are required; the installation of a circumferential reactor side shield sector appears to provide an effective solution to this problem. While the time response to an engine-out event does not appear to be critical, the gimbal displacement required appears to be important. Since an installation of three engines offers a substantial reduction in gimbal requirements for engine-out and it may be possible to further enhance mission reliability with the greater number of engines, it is recommended that a cluster of four engines be considered.

  5. A First Look at the DGEN380 Engine Acoustic Data from a Core-Noise Perspective

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2015-01-01

    This work is a first look at acoustic data acquired in the NASA Glenn Research Center Aero-Acoustic Propulsion Laboratory using the Price Induction DGEN380 small turbofan engine, with particular emphasis on broadband combustor (core) noise. Combustor noise is detected by using a two-signal source separation technique employing one engine-internal sensor and one semi-far-field microphone. Combustor noise is an important core-noise component and is likely to become a more prominent contributor to overall airport community noise due to turbofan design trends, expected aircraft configuration changes, and advances in fan-noise-mitigation techniques. This work was carried out under the NASA Fundamental Aeronautics Program, Fixed Wing Project, Quiet Performance Subproject

  6. "I'm just a boy with girl parts": Understanding gender perception and negotiation in an undergraduate engineering program

    NASA Astrophysics Data System (ADS)

    Dickinson Skaggs, Jennifer Anne

    The number of women being enrolled and retained in engineering programs has steadily decreased since 1999, even with increased efforts and funding of initiatives to counteract this trend. Why are women not persisting or even choosing to pursue engineering? This qualitative research examines how undergraduate female engineering students perceive and negotiate their gender identities to successfully persist in engineering education. Narrative inquiry including semi-structured interviews, participant observation, and data analysis was conducted at a Research I institution. Participants were recruited through purposeful network sampling. Criteria for inclusion include students who have been in the American K-12 educational pipeline at least eight years and are junior or senior level academic standing and academic eligibility. By including male students in the collection of data, perceptions of the issues for women could be seen in context when compared to the perceptions of men in the same engineering discipline. The study focuses on the individual, institutional, and cultural perceptions of gender performativity within a network and the strategies and negotiations employed by undergraduate female engineering students to achieve their educational goals regarding each of these perspectives. Findings reveal female students utilize strategies of camouflage and costume, as well as internal and external support to persist in engineering education. Also, female engineering students are being prepared to only become engineering-students-in-the-making and kept from the larger engineering network, while male students are becoming engineers-in-the-making automatically connected to the larger engineering network based on gender. This lack of association with the network influences female engineering students in their decisions to pursue a career in professional engineering, or to pursue more traditionally gendered careers after graduation. This research is significant in its use of feminist theory and methodology to study engineering education. It is also significant in its use of qualitative methods allowing students to articulate their experiences in their own words and voices thus allowing for nuanced of meaning and understanding to emerge. Butler's theory of gender performativity in conjunction with Nespor's actor-network theory provides the conceptual framework with inductive analysis used as the primary tool for data analysis.

  7. Ceramic regenerator systems development program. [for automobile gas turbine engines

    NASA Technical Reports Server (NTRS)

    Cook, J. A.; Fucinari, C. A.; Lingscheit, J. N.; Rahnke, C. J.

    1977-01-01

    Ceramic regenerator cores are considered that can be used in passenger car gas turbine engines, Stirling engines, and industrial/truck gas turbine engines. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability test in Ford 707 industrial gas turbine engines. The results of 19,600 hours of turbine engine durability testing are described. Two materials, aluminum silicate and magnesium aluminum silicate, continue to show promise toward achieving the durability objectives of this program. A regenerator core made from aluminum silicate showed minimal evidence of chemical attack damage after 6935 hours of engine test at 800 C and another showed little distress after 3510 hours at 982 C. Results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are also included.

  8. Adaptive critic learning techniques for engine torque and air-fuel ratio control.

    PubMed

    Liu, Derong; Javaherian, Hossein; Kovalenko, Olesia; Huang, Ting

    2008-08-01

    A new approach for engine calibration and control is proposed. In this paper, we present our research results on the implementation of adaptive critic designs for self-learning control of automotive engines. A class of adaptive critic designs that can be classified as (model-free) action-dependent heuristic dynamic programming is used in this research project. The goals of the present learning control design for automotive engines include improved performance, reduced emissions, and maintained optimum performance under various operating conditions. Using the data from a test vehicle with a V8 engine, we developed a neural network model of the engine and neural network controllers based on the idea of approximate dynamic programming to achieve optimal control. We have developed and simulated self-learning neural network controllers for both engine torque (TRQ) and exhaust air-fuel ratio (AFR) control. The goal of TRQ control and AFR control is to track the commanded values. For both control problems, excellent neural network controller transient performance has been achieved.

  9. Pan- and core- network analysis of co-expression genes in a model plant

    DOE PAGES

    He, Fei; Maslov, Sergei

    2016-12-16

    Genome-wide gene expression experiments have been performed using the model plant Arabidopsis during the last decade. Some studies involved construction of coexpression networks, a popular technique used to identify groups of co-regulated genes, to infer unknown gene functions. One approach is to construct a single coexpression network by combining multiple expression datasets generated in different labs. We advocate a complementary approach in which we construct a large collection of 134 coexpression networks based on expression datasets reported in individual publications. To this end we reanalyzed public expression data. To describe this collection of networks we introduced concepts of ‘pan-network’ andmore » ‘core-network’ representing union and intersection between a sizeable fractions of individual networks, respectively. Here, we showed that these two types of networks are different both in terms of their topology and biological function of interacting genes. For example, the modules of the pan-network are enriched in regulatory and signaling functions, while the modules of the core-network tend to include components of large macromolecular complexes such as ribosomes and photosynthetic machinery. Our analysis is aimed to help the plant research community to better explore the information contained within the existing vast collection of gene expression data in Arabidopsis.« less

  10. Pan- and core- network analysis of co-expression genes in a model plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Fei; Maslov, Sergei

    Genome-wide gene expression experiments have been performed using the model plant Arabidopsis during the last decade. Some studies involved construction of coexpression networks, a popular technique used to identify groups of co-regulated genes, to infer unknown gene functions. One approach is to construct a single coexpression network by combining multiple expression datasets generated in different labs. We advocate a complementary approach in which we construct a large collection of 134 coexpression networks based on expression datasets reported in individual publications. To this end we reanalyzed public expression data. To describe this collection of networks we introduced concepts of ‘pan-network’ andmore » ‘core-network’ representing union and intersection between a sizeable fractions of individual networks, respectively. Here, we showed that these two types of networks are different both in terms of their topology and biological function of interacting genes. For example, the modules of the pan-network are enriched in regulatory and signaling functions, while the modules of the core-network tend to include components of large macromolecular complexes such as ribosomes and photosynthetic machinery. Our analysis is aimed to help the plant research community to better explore the information contained within the existing vast collection of gene expression data in Arabidopsis.« less

  11. Multidisciplinary Design Optimization for Aeropropulsion Engines and Solid Modeling/Animation via the Integrated Forced Methods

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The grant closure report is organized in the following four chapters: Chapter describes the two research areas Design optimization and Solid mechanics. Ten journal publications are listed in the second chapter. Five highlights is the subject matter of chapter three. CHAPTER 1. The Design Optimization Test Bed CometBoards. CHAPTER 2. Solid Mechanics: Integrated Force Method of Analysis. CHAPTER 3. Five Highlights: Neural Network and Regression Methods Demonstrated in the Design Optimization of a Subsonic Aircraft. Neural Network and Regression Soft Model Extended for PX-300 Aircraft Engine. Engine with Regression and Neural Network Approximators Designed. Cascade Optimization Strategy with Neural network and Regression Approximations Demonstrated on a Preliminary Aircraft Engine Design. Neural Network and Regression Approximations Used in Aircraft Design.

  12. Flexible, silver nanowire network nickel hydroxide core-shell electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Yuksel, Recep; Coskun, Sahin; Kalay, Yunus Eren; Unalan, Husnu Emrah

    2016-10-01

    We present a novel one-dimensional coaxial architecture composed of silver nanowire (Ag NW) network core and nickel hydroxide (Ni(OH)2) shell for the realization of coaxial nanocomposite electrode materials for supercapacitors. Ag NWs are formed conductive networks via spray coating onto polyethylene terephthalate (PET) substrates and Ni(OH)2 is gradually electrodeposited onto the Ag NW network to fabricate core-shell electrodes for supercapacitors. Synergy of highly conductive Ag NWs and high capacitive Ni(OH)2 facilitate ion and electron transport, enhance electrochemical properties and result in a specific capacitance of 1165.2 F g-1 at a current density of 3 A g-1. After 3000 cycles, fabricated nanocomposite electrodes show 93% capacity retention. The rational design explored in this study points out the potential of nanowire based coaxial energy storage devices.

  13. Consensus between Pipelines in Structural Brain Networks

    PubMed Central

    Parker, Christopher S.; Deligianni, Fani; Cardoso, M. Jorge; Daga, Pankaj; Modat, Marc; Dayan, Michael; Clark, Chris A.

    2014-01-01

    Structural brain networks may be reconstructed from diffusion MRI tractography data and have great potential to further our understanding of the topological organisation of brain structure in health and disease. Network reconstruction is complex and involves a series of processesing methods including anatomical parcellation, registration, fiber orientation estimation and whole-brain fiber tractography. Methodological choices at each stage can affect the anatomical accuracy and graph theoretical properties of the reconstructed networks, meaning applying different combinations in a network reconstruction pipeline may produce substantially different networks. Furthermore, the choice of which connections are considered important is unclear. In this study, we assessed the similarity between structural networks obtained using two independent state-of-the-art reconstruction pipelines. We aimed to quantify network similarity and identify the core connections emerging most robustly in both pipelines. Similarity of network connections was compared between pipelines employing different atlases by merging parcels to a common and equivalent node scale. We found a high agreement between the networks across a range of fiber density thresholds. In addition, we identified a robust core of highly connected regions coinciding with a peak in similarity across network density thresholds, and replicated these results with atlases at different node scales. The binary network properties of these core connections were similar between pipelines but showed some differences in atlases across node scales. This study demonstrates the utility of applying multiple structural network reconstrution pipelines to diffusion data in order to identify the most important connections for further study. PMID:25356977

  14. Rapid cell-free forward engineering of novel genetic ring oscillators

    PubMed Central

    Niederholtmeyer, Henrike; Sun, Zachary Z; Hori, Yutaka; Yeung, Enoch; Verpoorte, Amanda; Murray, Richard M; Maerkl, Sebastian J

    2015-01-01

    While complex dynamic biological networks control gene expression in all living organisms, the forward engineering of comparable synthetic networks remains challenging. The current paradigm of characterizing synthetic networks in cells results in lengthy design-build-test cycles, minimal data collection, and poor quantitative characterization. Cell-free systems are appealing alternative environments, but it remains questionable whether biological networks behave similarly in cell-free systems and in cells. We characterized in a cell-free system the ‘repressilator’, a three-node synthetic oscillator. We then engineered novel three, four, and five-gene ring architectures, from characterization of circuit components to rapid analysis of complete networks. When implemented in cells, our novel 3-node networks produced population-wide oscillations and 95% of 5-node oscillator cells oscillated for up to 72 hr. Oscillation periods in cells matched the cell-free system results for all networks tested. An alternate forward engineering paradigm using cell-free systems can thus accurately capture cellular behavior. DOI: http://dx.doi.org/10.7554/eLife.09771.001 PMID:26430766

  15. Design and Benchmarking of a Network-In-the-Loop Simulation for Use in a Hardware-In-the-Loop System

    NASA Technical Reports Server (NTRS)

    Aretskin-Hariton, Eliot; Thomas, George; Culley, Dennis; Kratz, Jonathan

    2017-01-01

    Distributed engine control (DEC) systems alter aircraft engine design constraints because of fundamental differences in the input and output communication between DEC and centralized control architectures. The change in the way communication is implemented may create new optimum engine-aircraft configurations. This paper continues the exploration of digital network communication by demonstrating a Network-In-the-Loop simulation at the NASA Glenn Research Center. This simulation incorporates a real-time network protocol, the Engine Area Distributed Interconnect Network Lite (EADIN Lite), with the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) software. The objective of this study is to assess digital control network impact to the control system. Performance is evaluated relative to a truth model for large transient maneuvers and a typical flight profile for commercial aircraft. Results show that a decrease in network bandwidth from 250 Kbps (sampling all sensors every time step) to 40 Kbps, resulted in very small differences in control system performance.

  16. Design and Benchmarking of a Network-In-the-Loop Simulation for Use in a Hardware-In-the-Loop System

    NASA Technical Reports Server (NTRS)

    Aretskin-Hariton, Eliot D.; Thomas, George Lindsey; Culley, Dennis E.; Kratz, Jonathan L.

    2017-01-01

    Distributed engine control (DEC) systems alter aircraft engine design constraints be- cause of fundamental differences in the input and output communication between DEC and centralized control architectures. The change in the way communication is implemented may create new optimum engine-aircraft configurations. This paper continues the exploration of digital network communication by demonstrating a Network-In-the-Loop simulation at the NASA Glenn Research Center. This simulation incorporates a real-time network protocol, the Engine Area Distributed Interconnect Network Lite (EADIN Lite), with the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) software. The objective of this study is to assess digital control network impact to the control system. Performance is evaluated relative to a truth model for large transient maneuvers and a typical flight profile for commercial aircraft. Results show that a decrease in network bandwidth from 250 Kbps (sampling all sensors every time step) to 40 Kbps, resulted in very small differences in control system performance.

  17. The Applied Mathematics for Power Systems (AMPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chertkov, Michael

    2012-07-24

    Increased deployment of new technologies, e.g., renewable generation and electric vehicles, is rapidly transforming electrical power networks by crossing previously distinct spatiotemporal scales and invalidating many traditional approaches for designing, analyzing, and operating power grids. This trend is expected to accelerate over the coming years, bringing the disruptive challenge of complexity, but also opportunities to deliver unprecedented efficiency and reliability. Our Applied Mathematics for Power Systems (AMPS) Center will discover, enable, and solve emerging mathematics challenges arising in power systems and, more generally, in complex engineered networks. We will develop foundational applied mathematics resulting in rigorous algorithms and simulation toolboxesmore » for modern and future engineered networks. The AMPS Center deconstruction/reconstruction approach 'deconstructs' complex networks into sub-problems within non-separable spatiotemporal scales, a missing step in 20th century modeling of engineered networks. These sub-problems are addressed within the appropriate AMPS foundational pillar - complex systems, control theory, and optimization theory - and merged or 'reconstructed' at their boundaries into more general mathematical descriptions of complex engineered networks where important new questions are formulated and attacked. These two steps, iterated multiple times, will bridge the growing chasm between the legacy power grid and its future as a complex engineered network.« less

  18. Stability and performance of propulsion control systems with distributed control architectures and failures

    NASA Astrophysics Data System (ADS)

    Belapurkar, Rohit K.

    Future aircraft engine control systems will be based on a distributed architecture, in which, the sensors and actuators will be connected to the Full Authority Digital Engine Control (FADEC) through an engine area network. Distributed engine control architecture will allow the implementation of advanced, active control techniques along with achieving weight reduction, improvement in performance and lower life cycle cost. The performance of a distributed engine control system is predominantly dependent on the performance of the communication network. Due to the serial data transmission policy, network-induced time delays and sampling jitter are introduced between the sensor/actuator nodes and the distributed FADEC. Communication network faults and transient node failures may result in data dropouts, which may not only degrade the control system performance but may even destabilize the engine control system. Three different architectures for a turbine engine control system based on a distributed framework are presented. A partially distributed control system for a turbo-shaft engine is designed based on ARINC 825 communication protocol. Stability conditions and control design methodology are developed for the proposed partially distributed turbo-shaft engine control system to guarantee the desired performance under the presence of network-induced time delay and random data loss due to transient sensor/actuator failures. A fault tolerant control design methodology is proposed to benefit from the availability of an additional system bandwidth and from the broadcast feature of the data network. It is shown that a reconfigurable fault tolerant control design can help to reduce the performance degradation in presence of node failures. A T-700 turbo-shaft engine model is used to validate the proposed control methodology based on both single input and multiple-input multiple-output control design techniques.

  19. SLS Engine Section Test Article Moved for Stacking at Michoud

    NASA Image and Video Library

    2017-04-25

    Stacking is underway for the Space Launch System core stage engine section structural qualification test article at NASA's Michoud Assembly Facility in New Orleans. The rocket's engine section is the bottom of the core stage and houses the four RS-25 engines. The engine section test article was moved to Michoud's Cell A in Building 110 for vertical stacking with hardware that simulates the rocket's liquid hydrogen tank, which is the fuel tank that joins to the engine section. Once stacked, the entire test article will load onto the barge Pegasus and ship to NASA's Marshall Space Flight Center in Huntsville, Alabama. There, it will be subjected to millions of pounds of force during testing to ensure the hardware can withstand the incredible stresses of launch.

  20. Seven-core multicore fiber transmissions for passive optical network.

    PubMed

    Zhu, B; Taunay, T F; Yan, M F; Fini, J M; Fishteyn, M; Monberg, E M; Dimarcello, F V

    2010-05-24

    We design and fabricate a novel multicore fiber (MCF), with seven cores arranged in a hexagonal array. The fiber properties of MCF including low crosstalk, attenuation and splice loss are described. A new tapered MCF connector (TMC), showing ultra-low crosstalk and losses, is also designed and fabricated for coupling the individual signals in-and-out of the MCF. We further propose a novel network configuration using parallel transmissions with the MCF and TMC for passive optical network (PON). To the best of our knowledge, we demonstrate the first bi-directional parallel transmissions of 1310 nm and 1490 nm signals over 11.3-km of seven-core MCF with 64-way splitter for PON.

  1. Quantum key distribution in multicore fibre for secure radio access networks

    NASA Astrophysics Data System (ADS)

    Llorente, Roberto; Provot, Antoine; Morant, Maria

    2018-01-01

    Broadband access in optical domain usually focuses in providing a pervasive cost-effective high bitrate communication in a given area. Nowadays, it is of utmost interest also to be able to provide a secure communication to the costumers in the area. Wireless access networks rely on optical domain for both fronthaul and backhaul of the radio access network (C-RAN). Multicore fiber (MCF) has been proposed as a promising candidate for the optical media of choice in nextgeneration wireless. The capacity demand of next-generation 5G networks makes interesting the use of high-capacity optical solutions as space-division multiplexing of different signals over MCF media. This work addresses secure MCF communication supporting C-RAN architectures. The paper proposes the use of one core in the MCF to transport securely an optical quantum key encoding altogether with end-to-end wireless signal transmitted in the remaining cores in radio-over-fiber (RoF). The RoF wireless signals are suitable for radio access fronthaul and backhaul. The theoretical principle and simulation analysis of quantum key distribution (QKD) are presented in this paper. The potential impact of optical RoF transmission crosstalk impairments is assessed experimentally considering different cellular signals on the remaining optical cores in the MCF. The experimental results report fronthaul performance over a four-core optical fiber with RoF transmission of full-standard CDMA signals providing 3.5G services in one core, HSPA+ signals providing 3.9G services in the second core and 3GPP LTEAdvanced signals providing 4G services in the third core, considering that the QKD signal is allocated in the fourth core.

  2. Performance Parameters Analysis of an XD3P Peugeot Engine Using Artificial Neural Networks (ANN) Concept in MATLAB

    NASA Astrophysics Data System (ADS)

    Rangaswamy, T.; Vidhyashankar, S.; Madhusudan, M.; Bharath Shekar, H. R.

    2015-04-01

    The current trends of engineering follow the basic rule of innovation in mechanical engineering aspects. For the engineers to be efficient, problem solving aspects need to be viewed in a multidimensional perspective. One such methodology implemented is the fusion of technologies from other disciplines in order to solve the problems. This paper mainly deals with the application of Neural Networks in order to analyze the performance parameters of an XD3P Peugeot engine (used in Ministry of Defence). The basic propaganda of the work is divided into two main working stages. In the former stage, experimentation of an IC engine is carried out in order to obtain the primary data. In the latter stage the primary database formed is used to design and implement a predictive neural network in order to analyze the output parameters variation with respect to each other. A mathematical governing equation for the neural network is obtained. The obtained polynomial equation describes the characteristic behavior of the built neural network system. Finally, a comparative study of the results is carried out.

  3. NASA's Next Generation Space Geodesy Network

    NASA Technical Reports Server (NTRS)

    Desai, S. D.; Gross, R. S.; Hilliard, L.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Merkowitz, S. M.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    NASA's Space Geodesy Project (SGP) is developing a prototype core site for a next generation Space Geodetic Network (SGN). Each of the sites in this planned network co-locate current state-of-the-art stations from all four space geodetic observing systems, GNSS, SLR, VLBI, and DORIS, with the goal of achieving modern requirements for the International Terrestrial Reference Frame (ITRF). In particular, the driving ITRF requirements for this network are 1.0 mm in accuracy and 0.1 mm/yr in stability, a factor of 10-20 beyond current capabilities. Development of the prototype core site, located at NASA's Geophysical and Astronomical Observatory at the Goddard Space Flight Center, started in 2011 and will be completed by the end of 2013. In January 2012, two operational GNSS stations, GODS and GOON, were established at the prototype site within 100 m of each other. Both stations are being proposed for inclusion into the IGS network. In addition, work is underway for the inclusion of next generation SLR and VLBI stations along with a modern DORIS station. An automated survey system is being developed to measure inter-technique vectorties, and network design studies are being performed to define the appropriate number and distribution of these next generation space geodetic core sites that are required to achieve the driving ITRF requirements. We present the status of this prototype next generation space geodetic core site, results from the analysis of data from the established geodetic stations, and results from the ongoing network design studies.

  4. Methods of information geometry in computational system biology (consistency between chemical and biological evolution).

    PubMed

    Astakhov, Vadim

    2009-01-01

    Interest in simulation of large-scale metabolic networks, species development, and genesis of various diseases requires new simulation techniques to accommodate the high complexity of realistic biological networks. Information geometry and topological formalisms are proposed to analyze information processes. We analyze the complexity of large-scale biological networks as well as transition of the system functionality due to modification in the system architecture, system environment, and system components. The dynamic core model is developed. The term dynamic core is used to define a set of causally related network functions. Delocalization of dynamic core model provides a mathematical formalism to analyze migration of specific functions in biosystems which undergo structure transition induced by the environment. The term delocalization is used to describe these processes of migration. We constructed a holographic model with self-poetic dynamic cores which preserves functional properties under those transitions. Topological constraints such as Ricci flow and Pfaff dimension were found for statistical manifolds which represent biological networks. These constraints can provide insight on processes of degeneration and recovery which take place in large-scale networks. We would like to suggest that therapies which are able to effectively implement estimated constraints, will successfully adjust biological systems and recover altered functionality. Also, we mathematically formulate the hypothesis that there is a direct consistency between biological and chemical evolution. Any set of causal relations within a biological network has its dual reimplementation in the chemistry of the system environment.

  5. Combinatorial optimization games

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, X.; Ibaraki, Toshihide; Nagamochi, Hiroshi

    1997-06-01

    We introduce a general integer programming formulation for a class of combinatorial optimization games, which immediately allows us to improve the algorithmic result for finding amputations in the core (an important solution concept in cooperative game theory) of the network flow game on simple networks by Kalai and Zemel. An interesting result is a general theorem that the core for this class of games is nonempty if and only if a related linear program has an integer optimal solution. We study the properties for this mathematical condition to hold for several interesting problems, and apply them to resolve algorithmic andmore » complexity issues for their cores along the line as put forward in: decide whether the core is empty; if the core is empty, find an imputation in the core; given an imputation x, test whether x is in the core. We also explore the properties of totally balanced games in this succinct formulation of cooperative games.« less

  6. A parallel implementation of the network identification by multiple regression (NIR) algorithm to reverse-engineer regulatory gene networks.

    PubMed

    Gregoretti, Francesco; Belcastro, Vincenzo; di Bernardo, Diego; Oliva, Gennaro

    2010-04-21

    The reverse engineering of gene regulatory networks using gene expression profile data has become crucial to gain novel biological knowledge. Large amounts of data that need to be analyzed are currently being produced due to advances in microarray technologies. Using current reverse engineering algorithms to analyze large data sets can be very computational-intensive. These emerging computational requirements can be met using parallel computing techniques. It has been shown that the Network Identification by multiple Regression (NIR) algorithm performs better than the other ready-to-use reverse engineering software. However it cannot be used with large networks with thousands of nodes--as is the case in biological networks--due to the high time and space complexity. In this work we overcome this limitation by designing and developing a parallel version of the NIR algorithm. The new implementation of the algorithm reaches a very good accuracy even for large gene networks, improving our understanding of the gene regulatory networks that is crucial for a wide range of biomedical applications.

  7. Animation: What makes up the Space Launch System’s massive core stage

    NASA Image and Video Library

    2017-04-24

    NASA’s new rocket, the Space Launch System, will be the most powerful rocket ever built for deep-space missions. The 212-foot core stage is the largest rocket stage ever built and will fuel four RS-25 engines that will help launch SLS. This animation depicts the parts that make up the core stage and how these parts will be joined to form the entire stage. The five major parts include: the engine section, the hydrogen tank, the intertank, the liquid oxygen tank and the forward skirt.

  8. Differential Engagement of Brain Regions within a "Core" Network during Scene Construction

    ERIC Educational Resources Information Center

    Summerfield, Jennifer J.; Hassabis, Demis; Maguire, Eleanor A.

    2010-01-01

    Reliving past events and imagining potential future events engages a well-established "core" network of brain areas. How the brain constructs, or reconstructs, these experiences or scenes has been debated extensively in the literature, but remains poorly understood. Here we designed a novel task to investigate this (re)constructive process by…

  9. A palladium-doped ceria@carbon core-sheath nanowire network: a promising catalyst support for alcohol electrooxidation reactions.

    PubMed

    Tan, Qiang; Du, Chunyu; Sun, Yongrong; Du, Lei; Yin, Geping; Gao, Yunzhi

    2015-08-28

    A novel palladium-doped ceria and carbon core-sheath nanowire network (Pd-CeO2@C CSNWN) is synthesized by a template-free and surfactant-free solvothermal process, followed by high temperature carbonization. This hierarchical network serves as a new class of catalyst support to enhance the activity and durability of noble metal catalysts for alcohol oxidation reactions. Its supported Pd nanoparticles, Pd/(Pd-CeO2@C CSNWN), exhibit >9 fold increase in activity toward the ethanol oxidation over the state-of-the-art Pd/C catalyst, which is the highest among the reported Pd systems. Moreover, stability tests show a virtually unchanged activity after 1000 cycles. The high activity is mainly attributed to the superior oxygen-species releasing capability of Pd-doped CeO2 nanowires by accelerating the removal of the poisoning intermediate. The unique interconnected one-dimensional core-sheath structure is revealed to facilitate immobilization of the metal catalysts, leading to the improved durability. This core-sheath nanowire network opens up a new strategy for catalyst performance optimization for next-generation fuel cells.

  10. Design of Distributed Engine Control Systems with Uncertain Delay.

    PubMed

    Liu, Xiaofeng; Li, Yanxi; Sun, Xu

    Future gas turbine engine control systems will be based on distributed architecture, in which, the sensors and actuators will be connected to the controllers via a communication network. The performance of the distributed engine control (DEC) is dependent on the network performance. This study introduces a distributed control system architecture based on a networked cascade control system (NCCS). Typical turboshaft engine-distributed controllers are designed based on the NCCS framework with a H∞ output feedback under network-induced time delays and uncertain disturbances. The sufficient conditions for robust stability are derived via the Lyapunov stability theory and linear matrix inequality approach. Both numerical and hardware-in-loop simulations illustrate the effectiveness of the presented method.

  11. Design of Distributed Engine Control Systems with Uncertain Delay

    PubMed Central

    Li, Yanxi; Sun, Xu

    2016-01-01

    Future gas turbine engine control systems will be based on distributed architecture, in which, the sensors and actuators will be connected to the controllers via a communication network. The performance of the distributed engine control (DEC) is dependent on the network performance. This study introduces a distributed control system architecture based on a networked cascade control system (NCCS). Typical turboshaft engine-distributed controllers are designed based on the NCCS framework with a H∞ output feedback under network-induced time delays and uncertain disturbances. The sufficient conditions for robust stability are derived via the Lyapunov stability theory and linear matrix inequality approach. Both numerical and hardware-in-loop simulations illustrate the effectiveness of the presented method. PMID:27669005

  12. Mineralogy of selected sedimentary interbeds at or near the Idaho National Engineering Laboratory, Idaho

    USGS Publications Warehouse

    Reed, Michael F.; Bartholomay, Roy C.

    1994-01-01

    The U.S. Geological Survey (USGS) Project Office at the Idaho National Engineering Laboratory (INEL), in cooperation with the U.S. Department of Energy and Idaho State University, analyzed 66 samples from sedimentary interbed cores during a 38-month period beginning in October 1990 to determine bulk and clay mineralogy. These cores had been collected from 19 sites in the Big Lost River Basin, 2 sites in the Birch Creek Basin, and 1 site in the Mud Lake Basin, and were archived at the USGS lithologic core library at the INEL. Mineralogy data indicate that the core samples from the Big Lost River Basin have larger mean and median percentages of quartz, total feldspar, and total clay minerals, but smaller mean and median percentages of calcite than the core samples from the Birch Creek Basin. Core samples from the Mud Lake Basin have abundant quartz, total feldspar, calcite, and total clay minerals.

  13. Protocol vulnerability detection based on network traffic analysis and binary reverse engineering.

    PubMed

    Wen, Shameng; Meng, Qingkun; Feng, Chao; Tang, Chaojing

    2017-01-01

    Network protocol vulnerability detection plays an important role in many domains, including protocol security analysis, application security, and network intrusion detection. In this study, by analyzing the general fuzzing method of network protocols, we propose a novel approach that combines network traffic analysis with the binary reverse engineering method. For network traffic analysis, the block-based protocol description language is introduced to construct test scripts, while the binary reverse engineering method employs the genetic algorithm with a fitness function designed to focus on code coverage. This combination leads to a substantial improvement in fuzz testing for network protocols. We build a prototype system and use it to test several real-world network protocol implementations. The experimental results show that the proposed approach detects vulnerabilities more efficiently and effectively than general fuzzing methods such as SPIKE.

  14. Effect of buoyancy on fuel containment in an open-cycle gas-core nuclear rocket engine.

    NASA Technical Reports Server (NTRS)

    Putre, H. A.

    1971-01-01

    Analysis aimed at determining the scaling laws for the buoyancy effect on fuel containment in an open-cycle gas-core nuclear rocket engine, so conducted that experimental conditions can be related to engine conditions. The fuel volume fraction in a short coaxial flow cavity is calculated with a programmed numerical solution of the steady Navier-Stokes equations for isothermal, variable density fluid mixing. A dimensionless parameter B, called the Buoyancy number, was found to correlate the fuel volume fraction for large accelerations and various density ratios. This parameter has the value B = 0 for zero acceleration, and B = 350 for typical engine conditions.

  15. Mechano-responsive hydrogels crosslinked by reactive block copolymer micelles

    NASA Astrophysics Data System (ADS)

    Xiao, Longxi

    Hydrogels are crosslinked polymeric networks that can swell in water without dissolution. Owing to their structural similarity to the native extracelluar matrices, hydrogels have been widely used in biomedical applications. Synthetic hydrogels have been designed to respond to various stimuli, but mechanical signals have not incorporated into hydrogel matrices. Because most tissues in the body are subjected to various types of mechanical forces, and cells within these tissues have sophisticated mechano-transduction machinery, this thesis is focused on developing hydrogel materials with built-in mechano-sensing mechanisms for use as tissue engineering scaffolds or drug release devices. Self-assembled block copolymer micelles (BCMs) with reactive handles were employed as the nanoscopic crosslinkers for the construction of covalently crosslinked networks. BCMs were assembled from amphiphilic diblock copolymers of poly(n-butyl acrylate) and poly(acrylic acid) partially modified with acrylate. Radical polymerization of acrylamide in the presence of micellar crosslinkers gave rise to elastomeric hydrogels whose mechanical properties can be tuned by varying the BCM composition and concentration. TEM imaging revealed that the covalently integrated BCMs underwent strain-dependent reversible deformation. A model hydrophobic drug, pyrene, loaded into the core of BCMs prior to the hydrogel formation, was dynamically released in response to externally applied mechanical forces, through force-induced reversible micelle deformation and the penetration of water molecules into the micelle core. The mechano-responsive hydrogel has been studied for tissue repair and regeneration purposes. Glycidyl methacrylate (GMA)-modified hyaluronic acid (HA) was photochemically crosslinked in the presence of dexamethasone (DEX)-loaded crosslinkable BCMs. The resultant HA gels (HAxBCM) contain covalently integrated micellar compartments with DEX being sequestered in the hydrophobic core. Compared to the traditional HA gels prepared by radical crosslinking of HAGMA, HAxBCM gels exhibited improved drug loading and release capacity. Moreover, compressive forces exerted on the gels were transmitted to the crosslinked BCMs, resulting in a force-modulated DEX release on demand. Micelle mobility in the crosslinked networks was analyzed by fluorescence correlation spectroscopy using nile red loaded BCMs. The anti-inflammatory activities of DEX-releasing HAxBCM gels were evaluated via the in vitro culture of lipopolysaccharide-activated macrophages.

  16. Epistemic Practices of Engineering for Education

    ERIC Educational Resources Information Center

    Cunningham, Christine M.; Kelly, Gregory J.

    2017-01-01

    Engineering offers new educational opportunities for students, yet also poses challenges about how to conceptualize the disciplinary core ideas, crosscutting concepts, and science and engineering practices of the disciplinary fields of engineering. In this paper, we draw from empirical studies of engineering in professional and school settings to…

  17. Analysing the Correlation between Social Network Analysis Measures and Performance of Students in Social Network-Based Engineering Education

    ERIC Educational Resources Information Center

    Putnik, Goran; Costa, Eric; Alves, Cátia; Castro, Hélio; Varela, Leonilde; Shah, Vaibhav

    2016-01-01

    Social network-based engineering education (SNEE) is designed and implemented as a model of Education 3.0 paradigm. SNEE represents a new learning methodology, which is based on the concept of social networks and represents an extended model of project-led education. The concept of social networks was applied in the real-life experiment,…

  18. Airborne Network Optimization with Dynamic Network Update

    DTIC Science & Technology

    2015-03-26

    Faculty Department of Electrical and Computer Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air University...Member Dr. Barry E. Mullins Member AFIT-ENG-MS-15-M-030 Abstract Modern networks employ congestion and routing management algorithms that can perform...airborne networks. Intelligent agents can make use of Kalman filter predictions to make informed decisions to manage communication in airborne networks. The

  19. Position-Specific HIV Risk in a Large Network of Homeless Youths

    PubMed Central

    Barman-Adhikari, Anamika; Milburn, Norweeta G.; Monro, William

    2012-01-01

    Objectives. We examined interconnections among runaway and homeless youths (RHYs) and how aggregated network structure position was associated with HIV risk in this population. Methods. We collected individual and social network data from 136 RHYs. On the basis of these data, we generated a sociomatrix, accomplished network visualization with a “spring embedder,” and examined k-cores. We used multivariate logistic regression models to assess associations between peripheral and nonperipheral network position and recent unprotected sexual intercourse. Results. Small numbers of nominations at the individual level aggregated into a large social network with a visible core, periphery, and small clusters. Female youths were more likely to be in the core, as were youths who had been homeless for 2 years or more. Youths at the periphery were less likely to report unprotected intercourse and had been homeless for a shorter duration. Conclusions. HIV risk was a function of risk-taking youths' connections with one another and was associated with position in the overall network structure. Social network–based prevention programs, young women's housing and health programs, and housing-first programs for peripheral youths could be effective strategies for preventing HIV among this population. PMID:22095350

  20. Genomic analysis reveals a tight link between transcription factor dynamics and regulatory network architecture.

    PubMed

    Jothi, Raja; Balaji, S; Wuster, Arthur; Grochow, Joshua A; Gsponer, Jörg; Przytycka, Teresa M; Aravind, L; Babu, M Madan

    2009-01-01

    Although several studies have provided important insights into the general principles of biological networks, the link between network organization and the genome-scale dynamics of the underlying entities (genes, mRNAs, and proteins) and its role in systems behavior remain unclear. Here we show that transcription factor (TF) dynamics and regulatory network organization are tightly linked. By classifying TFs in the yeast regulatory network into three hierarchical layers (top, core, and bottom) and integrating diverse genome-scale datasets, we find that the TFs have static and dynamic properties that are similar within a layer and different across layers. At the protein level, the top-layer TFs are relatively abundant, long-lived, and noisy compared with the core- and bottom-layer TFs. Although variability in expression of top-layer TFs might confer a selective advantage, as this permits at least some members in a clonal cell population to initiate a response to changing conditions, tight regulation of the core- and bottom-layer TFs may minimize noise propagation and ensure fidelity in regulation. We propose that the interplay between network organization and TF dynamics could permit differential utilization of the same underlying network by distinct members of a clonal cell population.

  1. Highly stable multi-wall carbon nanotubes@poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) core-shell composites with three-dimensional porous nano-network for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Zhou, Haihan; Han, Gaoyi; Chang, Yunzhen; Fu, Dongying; Xiao, Yaoming

    2015-01-01

    A facile and feasible electrochemical polymerization method has been used to construct the multi-wall carbon nanotubes@poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (MWCNTs@PEDOT/PSS) core-shell composites with three-dimensional (3D) porous nano-network microstructure. The composites are characterized with Fourier transform infrared spectroscopy, scanning electron microscope, and transmission electron microscopy. This special core-shell nanostructure can significantly reduce the ions diffusion distance and the 3D porous nano-network microstructure effectively enlarges the electrode/electrolyte interface. The electrochemical tests including cyclic voltammetry, galvanostatic charge/discharge measurements, and electrochemical impedance spectroscopy tests are performed, the results manifest the MWCNTs@PEDOT/PSS core-shell composites have superior capacitive behaviors and excellent cyclic stability, and a high areal capacitance of 98.1 mF cm-2 is achieved at 5 mV s-1 cyclic voltammetry scan. Furthermore, the MWCNTs@PEDOT/PSS composites exhibit obviously superior capacitive performance than that of PEDOT/PSS and PEDOT/Cl electrodes, indicating the effective composite of MWCNTs and PEDOT noticeably boosts the capacitive performance of PEDOT-based electrodes for electrochemical energy storage. Such a highly stable core-shell 3D network structural composite is very promising to be used as electrode materials for the high-performance electrochemical capacitors.

  2. The University of Michigan's Computer-Aided Engineering Network.

    ERIC Educational Resources Information Center

    Atkins, D. E.; Olsen, Leslie A.

    1986-01-01

    Presents an overview of the Computer-Aided Engineering Network (CAEN) of the University of Michigan. Describes its arrangement of workstations, communication networks, and servers. Outlines the factors considered in hardware and software decision making. Reviews the program's impact on students. (ML)

  3. Improvements to an Electrical Engineering Skill Audit Exam to Improve Student Mastery of Core EE Concepts

    ERIC Educational Resources Information Center

    Parent, D. W.

    2011-01-01

    The San Jose State University Electrical Engineering (EE) Department implemented a skill audit exam for graduating seniors in 1999 with the purpose of assessing the teaching and the students' mastery of core concepts in EE. However, consistent low scores for the first years in which the test was administered suggested that students had little…

  4. Ideas to Consider for New Chemical Engineering Educators: Part 1 (Courses Offered Earlier in the Curriculum)

    ERIC Educational Resources Information Center

    Keith, Jason M.; Silverstein, David L.; Visco, Donald P., Jr.

    2009-01-01

    Chemical engineering faculty members are often asked to teach a core course that they have not taught before. The immediate thought is to come up with some new ideas to revolutionize that core course in ways that will engage students and maximize learning. This paper summarizes the authors' selection of the most effective, innovative approaches…

  5. Computational Tools for Metabolic Engineering

    PubMed Central

    Copeland, Wilbert B.; Bartley, Bryan A.; Chandran, Deepak; Galdzicki, Michal; Kim, Kyung H.; Sleight, Sean C.; Maranas, Costas D.; Sauro, Herbert M.

    2012-01-01

    A great variety of software applications are now employed in the metabolic engineering field. These applications have been created to support a wide range of experimental and analysis techniques. Computational tools are utilized throughout the metabolic engineering workflow to extract and interpret relevant information from large data sets, to present complex models in a more manageable form, and to propose efficient network design strategies. In this review, we present a number of tools that can assist in modifying and understanding cellular metabolic networks. The review covers seven areas of relevance to metabolic engineers. These include metabolic reconstruction efforts, network visualization, nucleic acid and protein engineering, metabolic flux analysis, pathway prospecting, post-structural network analysis and culture optimization. The list of available tools is extensive and we can only highlight a small, representative portion of the tools from each area. PMID:22629572

  6. Integrated Engineering Information Technology, FY93 accommplishments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, R.N.; Miller, D.K.; Neugebauer, G.L.

    1994-03-01

    The Integrated Engineering Information Technology (IEIT) project is providing a comprehensive, easy-to-use computer network solution or communicating with coworkers both inside and outside Sandia National Laboratories. IEIT capabilities include computer networking, electronic mail, mechanical design, and data management. These network-based tools have one fundamental purpose: to help create a concurrent engineering environment that will enable Sandia organizations to excel in today`s increasingly competitive business environment.

  7. Development of a Stiffness-Based Chemistry Load Balancing Scheme, and Optimization of Input/Output and Communication, to Enable Massively Parallel High-Fidelity Internal Combustion Engine Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodavasal, Janardhan; Harms, Kevin; Srivastava, Priyesh

    A closed-cycle gasoline compression ignition engine simulation near top dead center (TDC) was used to profile the performance of a parallel commercial engine computational fluid dynamics code, as it was scaled on up to 4096 cores of an IBM Blue Gene/Q supercomputer. The test case has 9 million cells near TDC, with a fixed mesh size of 0.15 mm, and was run on configurations ranging from 128 to 4096 cores. Profiling was done for a small duration of 0.11 crank angle degrees near TDC during ignition. Optimization of input/output performance resulted in a significant speedup in reading restart files, andmore » in an over 100-times speedup in writing restart files and files for post-processing. Improvements to communication resulted in a 1400-times speedup in the mesh load balancing operation during initialization, on 4096 cores. An improved, “stiffness-based” algorithm for load balancing chemical kinetics calculations was developed, which results in an over 3-times faster run-time near ignition on 4096 cores relative to the original load balancing scheme. With this improvement to load balancing, the code achieves over 78% scaling efficiency on 2048 cores, and over 65% scaling efficiency on 4096 cores, relative to 256 cores.« less

  8. Nasa's Experiences Enabling the Capture and Sharing of Technical Expertise Through Communities of Practice

    NASA Astrophysics Data System (ADS)

    Topousis, Daria E.; Dennehy, Cornelius J.; Lebsock, Kenneth L.

    2012-12-01

    Historically, engineers at the National Aeronautics and Space Administration (NASA) had few opportunities or incentives to share their technical expertise across the Agency. Its center- and project-focused culture often meant that knowledge never left organizational and geographic boundaries. The need to develop a knowledge sharing culture became critical as a result of increasingly complex missions, closeout of the Shuttle Program, and a new generation of engineers entering the workforce. To address this need, the Office of the Chief Engineer established communities of practice on the NASA Engineering Network. These communities were strategically aligned with NASA's core competencies in such disciplines as avionics, flight mechanics, life support, propulsion, structures, loads and dynamics, human factors, and guidance, navigation, and control. This paper is a case study of NASA's implementation of a system that would identify and develop communities, from establishing simple websites that compiled discipline-specific resources to fostering a knowledge-sharing environment through collaborative and interactive technologies. It includes qualitative evidence of improved availability and transfer of knowledge. It focuses on capabilities that increased knowledge exchange such as a custom-made Ask An Expert system, community contact lists, publication of key resources, and submission forms that allowed any user to propose content for the sites. It discusses the peer relationships that developed through the communities and the leadership and infrastructure that made them possible.

  9. Bringing simulation to engineers in the field: a Web 2.0 approach.

    PubMed

    Haines, Robert; Khan, Kashif; Brooke, John

    2009-07-13

    Field engineers working on water distribution systems have to implement day-to-day operational decisions. Since pipe networks are highly interconnected, the effects of such decisions are correlated with hydraulic and water quality conditions elsewhere in the network. This makes the provision of predictive decision support tools (DSTs) for field engineers critical to optimizing the engineering work on the network. We describe how we created DSTs to run on lightweight mobile devices by using the Web 2.0 technique known as Software as a Service. We designed our system following the architectural style of representational state transfer. The system not only displays static geographical information system data for pipe networks, but also dynamic information and prediction of network state, by invoking and displaying the results of simulations running on more powerful remote resources.

  10. A palladium-doped ceria@carbon core-sheath nanowire network: a promising catalyst support for alcohol electrooxidation reactions

    NASA Astrophysics Data System (ADS)

    Tan, Qiang; Du, Chunyu; Sun, Yongrong; Du, Lei; Yin, Geping; Gao, Yunzhi

    2015-08-01

    A novel palladium-doped ceria and carbon core-sheath nanowire network (Pd-CeO2@C CSNWN) is synthesized by a template-free and surfactant-free solvothermal process, followed by high temperature carbonization. This hierarchical network serves as a new class of catalyst support to enhance the activity and durability of noble metal catalysts for alcohol oxidation reactions. Its supported Pd nanoparticles, Pd/(Pd-CeO2@C CSNWN), exhibit >9 fold increase in activity toward the ethanol oxidation over the state-of-the-art Pd/C catalyst, which is the highest among the reported Pd systems. Moreover, stability tests show a virtually unchanged activity after 1000 cycles. The high activity is mainly attributed to the superior oxygen-species releasing capability of Pd-doped CeO2 nanowires by accelerating the removal of the poisoning intermediate. The unique interconnected one-dimensional core-sheath structure is revealed to facilitate immobilization of the metal catalysts, leading to the improved durability. This core-sheath nanowire network opens up a new strategy for catalyst performance optimization for next-generation fuel cells.A novel palladium-doped ceria and carbon core-sheath nanowire network (Pd-CeO2@C CSNWN) is synthesized by a template-free and surfactant-free solvothermal process, followed by high temperature carbonization. This hierarchical network serves as a new class of catalyst support to enhance the activity and durability of noble metal catalysts for alcohol oxidation reactions. Its supported Pd nanoparticles, Pd/(Pd-CeO2@C CSNWN), exhibit >9 fold increase in activity toward the ethanol oxidation over the state-of-the-art Pd/C catalyst, which is the highest among the reported Pd systems. Moreover, stability tests show a virtually unchanged activity after 1000 cycles. The high activity is mainly attributed to the superior oxygen-species releasing capability of Pd-doped CeO2 nanowires by accelerating the removal of the poisoning intermediate. The unique interconnected one-dimensional core-sheath structure is revealed to facilitate immobilization of the metal catalysts, leading to the improved durability. This core-sheath nanowire network opens up a new strategy for catalyst performance optimization for next-generation fuel cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03023d

  11. NRL Fact Book

    DTIC Science & Technology

    2002-11-01

    CRADAs) under which NRL scientists and engineers work together with industry , academia, state or local governments, or other Federal agencies to... industrial hygiene, and environ- mental safety. The Division provides engineering and technical assistance to research divisions in the installation...The NRL Women in Science and Engineer - ing (WISE) Network is an open-membership network group of scientists and engineers who meet periodically to

  12. Oil-Free Turbomachinery Team Passed Milestone on Path to the First Oil-Free Turbine Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Bream, Bruce L.

    2002-01-01

    The Oil-Free Turbine Engine Technology Project team successfully demonstrated a foil-air bearing designed for the core rotor shaft of a turbine engine. The bearings were subjected to test conditions representative of the engine core environment through a combination of high speeds, sustained loads, and elevated temperatures. The operational test envelope was defined during conceptual design studies completed earlier this year by bearing manufacturer Mohawk Innovative Technologies and the turbine engine company Williams International. The prototype journal foil-air bearings were tested at the NASA Glenn Research Center. Glenn is working with Williams and Mohawk to create a revolution in turbomachinery by developing the world's first Oil-Free turbine aircraft engine. NASA's General Aviation Propulsion project and Williams International recently developed the FJX-2 turbofan engine that is being commercialized as the EJ-22. This core bearing milestone is a first step toward a future version of the EJ-22 that will take advantage of recent advances in foil-air bearings by eliminating the need for oil lubrication systems and rolling element bearings. Oil-Free technology can reduce engine weight by 15 percent and let engines operate at very high speeds, yielding power density improvements of 20 percent, and reducing engine maintenance costs. In addition, with NASA coating technology, engines can operate at temperatures up to 1200 F. Although the project is still a couple of years from a full engine test of the bearings, this milestone shows that the bearing design exceeds the expected environment, thus providing confidence that an Oil-Free turbine aircraft engine will be attained. The Oil-Free Turbomachinery Project is supported through the Aeropropulsion Base Research Program.

  13. Parameterizing the Supernova Engine and Its Effect on Remnants and Basic Yields

    NASA Astrophysics Data System (ADS)

    Fryer, Chris L.; Andrews, Sydney; Even, Wesley; Heger, Alex; Safi-Harb, Samar

    2018-03-01

    Core-collapse supernova science is now entering an era in which engine models are beginning to make both qualitative and, in some cases, quantitative predictions. Although the evidence in support of the convective engine for core-collapse supernova continues to grow, it is difficult to place quantitative constraints on this engine. Some studies have made specific predictions for the remnant distribution from the convective engine, but the results differ between different groups. Here we use a broad parameterization for the supernova engine to understand the differences between distinct studies. With this broader set of models, we place error bars on the remnant mass and basic yields from the uncertainties in the explosive engine. We find that, even with only three progenitors and a narrow range of explosion energies, we can produce a wide range of remnant masses and nucleosynthetic yields.

  14. Core Noise - Increasing Importance

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduced-Perceived-Noise Technical Challenge; and the current research activities in the core-noise area, with additional details given about the development of a high-fidelity combustor-noise prediction capability as well as activities supporting the development of improved reduced-order, physics-based models for combustor-noise prediction. The need for benchmark data for validation of high-fidelity and modeling work and the value of a potential future diagnostic facility for testing of core-noise-reduction concepts are indicated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor designs could increase the combustion-noise component. The trend towards high-power-density cores also means that the noise generated in the low-pressure turbine will likely increase. Consequently, the combined result from these emerging changes will be to elevate the overall importance of turbomachinery core noise, which will need to be addressed in order to meet future noise goals.

  15. Applying Model Based Systems Engineering to NASA's Space Communications Networks

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul; Barnes, Patrick; Reinert, Jessica; Golden, Bert

    2013-01-01

    System engineering practices for complex systems and networks now require that requirement, architecture, and concept of operations product development teams, simultaneously harmonize their activities to provide timely, useful and cost-effective products. When dealing with complex systems of systems, traditional systems engineering methodology quickly falls short of achieving project objectives. This approach is encumbered by the use of a number of disparate hardware and software tools, spreadsheets and documents to grasp the concept of the network design and operation. In case of NASA's space communication networks, since the networks are geographically distributed, and so are its subject matter experts, the team is challenged to create a common language and tools to produce its products. Using Model Based Systems Engineering methods and tools allows for a unified representation of the system in a model that enables a highly related level of detail. To date, Program System Engineering (PSE) team has been able to model each network from their top-level operational activities and system functions down to the atomic level through relational modeling decomposition. These models allow for a better understanding of the relationships between NASA's stakeholders, internal organizations, and impacts to all related entities due to integration and sustainment of existing systems. Understanding the existing systems is essential to accurate and detailed study of integration options being considered. In this paper, we identify the challenges the PSE team faced in its quest to unify complex legacy space communications networks and their operational processes. We describe the initial approaches undertaken and the evolution toward model based system engineering applied to produce Space Communication and Navigation (SCaN) PSE products. We will demonstrate the practice of Model Based System Engineering applied to integrating space communication networks and the summary of its results and impact. We will highlight the insights gained by applying the Model Based System Engineering and provide recommendations for its applications and improvements.

  16. Core network infrastructure supporting the VLT at ESO Paranal in Chile

    NASA Astrophysics Data System (ADS)

    Reay, Harold

    2000-06-01

    In October 1997 a number of projects were started at ESO's Paranal Observatory at Cerro Paranal in Chile to upgrade the communications infrastructure in place at the time. The planned upgrades were to internal systems such as computer data networks and telephone installations and also data links connecting Paranal to other ESO sites. This paper details the installation work carried out on the Paranal Core Network (PCN) during the period of October 1997 to December 1999. These installations were to provide both short term solutions to the requirement for reliable high bandwidth network connectivity between Paranal and ESO HQ in Garching, Germany in time for UTI (Antu) first light and perhaps more importantly, to provide the core systems necessary for a site moving towards operational status. This paper explains the reasons for using particular cable types, network topology, and fiber backbone design and implementation. We explain why it was decided to install the PCN in two distinct stages and how equipment used in temporary installations was re-used in the Very Large Telescope networks. Finally we describe the tools used to monitor network and satellite link performance and will discuss whether network backbone bandwidth meets the expected utilization and how this bandwidth can easily be increased in the future should there be a requirement.

  17. Novel strategy for protein exploration: high-throughput screening assisted with fuzzy neural network.

    PubMed

    Kato, Ryuji; Nakano, Hideo; Konishi, Hiroyuki; Kato, Katsuya; Koga, Yuchi; Yamane, Tsuneo; Kobayashi, Takeshi; Honda, Hiroyuki

    2005-08-19

    To engineer proteins with desirable characteristics from a naturally occurring protein, high-throughput screening (HTS) combined with directed evolutional approach is the essential technology. However, most HTS techniques are simple positive screenings. The information obtained from the positive candidates is used only as results but rarely as clues for understanding the structural rules, which may explain the protein activity. In here, we have attempted to establish a novel strategy for exploring functional proteins associated with computational analysis. As a model case, we explored lipases with inverted enantioselectivity for a substrate p-nitrophenyl 3-phenylbutyrate from the wild-type lipase of Burkhorderia cepacia KWI-56, which is originally selective for (S)-configuration of the substrate. Data from our previous work on (R)-enantioselective lipase screening were applied to fuzzy neural network (FNN), bioinformatic algorithm, to extract guidelines for screening and engineering processes to be followed. FNN has an advantageous feature of extracting hidden rules that lie between sequences of variants and their enzyme activity to gain high prediction accuracy. Without any prior knowledge, FNN predicted a rule indicating that "size at position L167," among four positions (L17, F119, L167, and L266) in the substrate binding core region, is the most influential factor for obtaining lipase with inverted (R)-enantioselectivity. Based on the guidelines obtained, newly engineered novel variants, which were not found in the actual screening, were experimentally proven to gain high (R)-enantioselectivity by engineering the size at position L167. We also designed and assayed two novel variants, namely FIGV (L17F, F119I, L167G, and L266V) and FFGI (L17F, L167G, and L266I), which were compatible with the guideline obtained from FNN analysis, and confirmed that these designed lipases could acquire high inverted enantioselectivity. The results have shown that with the aid of bioinformatic analysis, high-throughput screening can expand its potential for exploring vast combinatorial sequence spaces of proteins.

  18. Advanced biomaterial strategies to transplant preformed micro-tissue engineered neural networks into the brain

    NASA Astrophysics Data System (ADS)

    Harris, J. P.; Struzyna, L. A.; Murphy, P. L.; Adewole, D. O.; Kuo, E.; Cullen, D. K.

    2016-02-01

    Objective. Connectome disruption is a hallmark of many neurological diseases and trauma with no current strategies to restore lost long-distance axonal pathways in the brain. We are creating transplantable micro-tissue engineered neural networks (micro-TENNs), which are preformed constructs consisting of embedded neurons and long axonal tracts to integrate with the nervous system to physically reconstitute lost axonal pathways. Approach. We advanced micro-tissue engineering techniques to generate micro-TENNs consisting of discrete populations of mature primary cerebral cortical neurons spanned by long axonal fascicles encased in miniature hydrogel micro-columns. Further, we improved the biomaterial encasement scheme by adding a thin layer of low viscosity carboxymethylcellulose (CMC) to enable needle-less insertion and rapid softening for mechanical similarity with brain tissue. Main results. The engineered architecture of cortical micro-TENNs facilitated robust neuronal viability and axonal cytoarchitecture to at least 22 days in vitro. Micro-TENNs displayed discrete neuronal populations spanned by long axonal fasciculation throughout the core, thus mimicking the general systems-level anatomy of gray matter—white matter in the brain. Additionally, micro-columns with thin CMC-coating upon mild dehydration were able to withstand a force of 893 ± 457 mN before buckling, whereas a solid agarose cylinder of similar dimensions was predicted to withstand less than 150 μN of force. This thin CMC coating increased the stiffness by three orders of magnitude, enabling needle-less insertion into brain while significantly reducing the footprint of previous needle-based delivery methods to minimize insertion trauma. Significance. Our novel micro-TENNs are the first strategy designed for minimally invasive implantation to facilitate nervous system repair by simultaneously providing neuronal replacement and physical reconstruction of long-distance axon pathways in the brain. The micro-TENN approach may offer the ability to treat several disorders that disrupt the connectome, including Parkinson’s disease, traumatic brain injury, stroke, and brain tumor excision.

  19. Advanced biomaterial strategies to transplant preformed micro-tissue engineered neural networks into the brain

    PubMed Central

    Harris, J P; Struzyna, L A; Murphy, P L; Adewole, D O; Kuo, E; Cullen, D K

    2017-01-01

    Objective Connectome disruption is a hallmark of many neurological diseases and trauma with no current strategies to restore lost long-distance axonal pathways in the brain. We are creating transplantable micro-tissue engineered neural networks (micro-TENNs), which are preformed constructs consisting of embedded neurons and long axonal tracts to integrate with the nervous system to physically reconstitute lost axonal pathways. Approach We advanced micro-tissue engineering techniques to generate micro-TENNs consisting of discrete populations of mature primary cerebral cortical neurons spanned by long axonal fascicles encased in miniature hydrogel micro-columns. Further, we improved the biomaterial encasement scheme by adding a thin layer of low viscosity carboxymethylcellulose (CMC) to enable needle-less insertion and rapid softening for mechanical similarity with brain tissue. Main results The engineered architecture of cortical micro-TENNs facilitated robust neuronal viability and axonal cytoarchitecture to at least 22 days in vitro. Micro-TENNs displayed discrete neuronal populations spanned by long axonal fasciculation throughout the core, thus mimicking the general systems-level anatomy of gray matter—white matter in the brain. Additionally, micro columns with thin CMC-coating upon mild dehydration were able to withstand a force of 893 ± 457 mN before buckling, whereas a solid agarose cylinder of similar dimensions was predicted to withstand less than 150 μN of force. This thin CMC coating increased the stiffness by three orders of magnitude, enabling needle-less insertion into brain while significantly reducing the footprint of previous needle-based delivery methods to minimize insertion trauma. Significance Our novel micro-TENNs are the first strategy designed for minimally invasive implantation to facilitate nervous system repair by simultaneously providing neuronal replacement and physical reconstruction of long-distance axon pathways in the brain. The micro-TENN approach may offer the ability to treat several disorders that disrupt the connectome, including Parkinson’s disease, traumatic brain injury, stroke, and brain tumor excision PMID:26760138

  20. Synthetic Core Promoters as Universal Parts for Fine-Tuning Expression in Different Yeast Species

    PubMed Central

    2016-01-01

    Synthetic biology and metabolic engineering experiments frequently require the fine-tuning of gene expression to balance and optimize protein levels of regulators or metabolic enzymes. A key concept of synthetic biology is the development of modular parts that can be used in different contexts. Here, we have applied a computational multifactor design approach to generate de novo synthetic core promoters and 5′ untranslated regions (UTRs) for yeast cells. In contrast to upstream cis-regulatory modules (CRMs), core promoters are typically not subject to specific regulation, making them ideal engineering targets for gene expression fine-tuning. 112 synthetic core promoter sequences were designed on the basis of the sequence/function relationship of natural core promoters, nucleosome occupancy and the presence of short motifs. The synthetic core promoters were fused to the Pichia pastoris AOX1 CRM, and the resulting activity spanned more than a 200-fold range (0.3% to 70.6% of the wild type AOX1 level). The top-ten synthetic core promoters with highest activity were fused to six additional CRMs (three in P. pastoris and three in Saccharomyces cerevisiae). Inducible CRM constructs showed significantly higher activity than constitutive CRMs, reaching up to 176% of natural core promoters. Comparing the activity of the same synthetic core promoters fused to different CRMs revealed high correlations only for CRMs within the same organism. These data suggest that modularity is maintained to some extent but only within the same organism. Due to the conserved role of eukaryotic core promoters, this rational design concept may be transferred to other organisms as a generic engineering tool. PMID:27973777

  1. Calibration and Data Efforts of the National Ecological Observatory Network (NEON) Airborne Observation Platform during its Engineering Development Phase

    NASA Astrophysics Data System (ADS)

    Adler, J.; Goulden, T.; Kampe, T. U.; Leisso, N.; Musinsky, J.

    2014-12-01

    The National Ecological Observatory Network (NEON) has collected airborne photographic, lidar, and imaging spectrometer data in 5 of 20 unique ecological climate regions (domains) within the United States. As part of its mission to detect and forecast ecological change at continental scales over multiple decades, NEON Airborne Observation Platform (AOP) will aerially survey the entire network of 60 core and re-locatable terrestrial sites annually, each of which are a minimum of 10km-by-10km in extent. The current effort encompasses three years of AOP engineering test flights; in 2017 NEON will transition to full operational status in all 20 domains. To date the total airborne data collected spans 34 Terabytes, and three of the five sampled domain's L1 data are publically available upon request. The large volume of current data, and the expected data collection over the remaining 15 domains, is challenging NEON's data distribution plans, backup capability, and data discovery processes. To provide the public with the highest quality data, calibration and validation efforts of the camera, lidar, and spectrometer L0 data are implemented to produce L1 datasets. Where available, the collected airborne measurements are validated against ground reference points and surfaces and adjusted for instrumentation and atmospheric effects. The imaging spectrometer data is spectrally and radiometrically corrected using NIST-traceable procedures. This presentation highlights three years of flight operation experiences including:1) Lessons learned on payload re-configuration, data extraction, data distribution, permitting requirements, flight planning, and operational procedures2) Lidar validation through control data comparisons collected at the Boulder Municipal Airport (KBDU), the site of NEON's new hangar facility3) Spectrometer calibration efforts, to include both the laboratory and ground observations

  2. Reverse Flow Engine Core Having a Ducted Fan with Integrated Secondary Flow Blades

    NASA Technical Reports Server (NTRS)

    Kisska, Michael K. (Inventor); Princen, Norman H. (Inventor); Kuehn, Mark S. (Inventor); Cosentino, Gary B. (Inventor)

    2014-01-01

    Secondary air flow is provided for a ducted fan having a reverse flow turbine engine core driving a fan blisk. The fan blisk incorporates a set of thrust fan blades extending from an outer hub and a set of integral secondary flow blades extending intermediate an inner hub and the outer hub. A nacelle provides an outer flow duct for the thrust fan blades and a secondary flow duct carries flow from the integral secondary flow blades as cooling air for components of the reverse flow turbine engine.

  3. Community core detection in transportation networks

    NASA Astrophysics Data System (ADS)

    De Leo, Vincenzo; Santoboni, Giovanni; Cerina, Federica; Mureddu, Mario; Secchi, Luca; Chessa, Alessandro

    2013-10-01

    This work analyzes methods for the identification and the stability under perturbation of a territorial community structure with specific reference to transportation networks. We considered networks of commuters for a city and an insular region. In both cases, we have studied the distribution of commuters’ trips (i.e., home-to-work trips and vice versa). The identification and stability of the communities’ cores are linked to the land-use distribution within the zone system, and therefore their proper definition may be useful to transport planners.

  4. Engine With Regression and Neural Network Approximators Designed

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.

    2001-01-01

    At the NASA Glenn Research Center, the NASA engine performance program (NEPP, ref. 1) and the design optimization testbed COMETBOARDS (ref. 2) with regression and neural network analysis-approximators have been coupled to obtain a preliminary engine design methodology. The solution to a high-bypass-ratio subsonic waverotor-topped turbofan engine, which is shown in the preceding figure, was obtained by the simulation depicted in the following figure. This engine is made of 16 components mounted on two shafts with 21 flow stations. The engine is designed for a flight envelope with 47 operating points. The design optimization utilized both neural network and regression approximations, along with the cascade strategy (ref. 3). The cascade used three algorithms in sequence: the method of feasible directions, the sequence of unconstrained minimizations technique, and sequential quadratic programming. The normalized optimum thrusts obtained by the three methods are shown in the following figure: the cascade algorithm with regression approximation is represented by a triangle, a circle is shown for the neural network solution, and a solid line indicates original NEPP results. The solutions obtained from both approximate methods lie within one standard deviation of the benchmark solution for each operating point. The simulation improved the maximum thrust by 5 percent. The performance of the linear regression and neural network methods as alternate engine analyzers was found to be satisfactory for the analysis and operation optimization of air-breathing propulsion engines (ref. 4).

  5. SolarPILOT | Concentrating Solar Power | NREL

    Science.gov Websites

    tools. Unlike exclusively ray-tracing tools, SolarPILOT runs the analytical simulation engine that uses engine alongside a ray-tracing core for more detailed simulations. The SolTrace simulation engine is

  6. Tissue engineering: confronting the transplantation crisis.

    PubMed

    Nerem, R M

    2000-01-01

    Tissue engineering is the development of biological substitutes and/or the fostering of tissue regeneration/remodelling. It is emerging as a technology which has the potential to confront the crisis in transplantation caused by the shortage of donor tissues and organs. With the development of this technology, ther is emerging a new industry which is at the interface of biotechnology and the traditional medical implant field. For this technology and the associated industry to realize their full potential, there are core, enabling technologies that need to be developed. This is the focus of the Georgia Tech/Emory Center for the Engineering of Living Tissues, newly established in the United States, with an Engineering Research Center Award from the National Science Foundation. With the development of these core technologies, tissue engineering will evolve from an art form to a technology based on science and engineering.

  7. Small Core, Big Network: A Comprehensive Approach to GIS Teaching Practice Based on Digital Three-Dimensional Campus Reconstruction

    ERIC Educational Resources Information Center

    Cheng, Liang; Zhang, Wen; Wang, Jiechen; Li, Manchun; Zhong, Lishan

    2014-01-01

    Geographic information science (GIS) features a wide range of disciplines and has broad applicability. Challenges associated with rapidly developing GIS technology and the currently limited teaching and practice materials hinder universities from cultivating highly skilled GIS graduates. Based on the idea of "small core, big network," a…

  8. A gene network simulator to assess reverse engineering algorithms.

    PubMed

    Di Camillo, Barbara; Toffolo, Gianna; Cobelli, Claudio

    2009-03-01

    In the context of reverse engineering of biological networks, simulators are helpful to test and compare the accuracy of different reverse-engineering approaches in a variety of experimental conditions. A novel gene-network simulator is presented that resembles some of the main features of transcriptional regulatory networks related to topology, interaction among regulators of transcription, and expression dynamics. The simulator generates network topology according to the current knowledge of biological network organization, including scale-free distribution of the connectivity and clustering coefficient independent of the number of nodes in the network. It uses fuzzy logic to represent interactions among the regulators of each gene, integrated with differential equations to generate continuous data, comparable to real data for variety and dynamic complexity. Finally, the simulator accounts for saturation in the response to regulation and transcription activation thresholds and shows robustness to perturbations. It therefore provides a reliable and versatile test bed for reverse engineering algorithms applied to microarray data. Since the simulator describes regulatory interactions and expression dynamics as two distinct, although interconnected aspects of regulation, it can also be used to test reverse engineering approaches that use both microarray and protein-protein interaction data in the process of learning. A first software release is available at http://www.dei.unipd.it/~dicamill/software/netsim as an R programming language package.

  9. Network Analysis of Reconnaissance and Intrusion of an Industrial Control System

    DTIC Science & Technology

    2016-09-01

    simulated a plant engineer using the engineering workstation web browser to authenticate to the vegetable cooker HMI. While the engineer established the...observed the vegetable cooker HMI web display, the attacker stopped capturing network traffic. Acting as the attacker, we searched the attacker’s pcap...manually controlled by human activity. In this testbed network, only web browser traffic (HTTP) is created by an operator to view an HMI status

  10. Dispersed Sensing Networks in Nano-Engineered Polymer Composites: From Static Strain Measurement to Ultrasonic Wave Acquisition

    PubMed Central

    Li, Yehai; Wang, Kai

    2018-01-01

    Self-sensing capability of composite materials has been the core of intensive research over the years and particularly boosted up by the recent quantum leap in nanotechnology. The capacity of most existing self-sensing approaches is restricted to static strains or low-frequency structural vibration. In this study, a new breed of functionalized epoxy-based composites is developed and fabricated, with a graphene nanoparticle-enriched, dispersed sensing network, whereby to self-perceive broadband elastic disturbance from static strains, through low-frequency vibration to guided waves in an ultrasonic regime. Owing to the dispersed and networked sensing capability, signals can be captured at any desired part of the composites. Experimental validation has demonstrated that the functionalized composites can self-sense strains, outperforming conventional metal foil strain sensors with a significantly enhanced gauge factor and a much broader response bandwidth. Precise and fast self-response of the composites to broadband ultrasonic signals (up to 440 kHz) has revealed that the composite structure itself can serve as ultrasound sensors, comparable to piezoceramic sensors in performance, whereas avoiding the use of bulky cables and wires as used in a piezoceramic sensor network. This study has spotlighted promising potentials of the developed approach to functionalize conventional composites with a self-sensing capability of high-sensitivity yet minimized intrusion to original structures. PMID:29724032

  11. Evaluation of the streamflow-gaging network of Texas and a proposed core network

    USGS Publications Warehouse

    Slade, Raymond M.; Howard, Teresa; Anaya, Roberto

    2001-01-01

    The U.S. Geological Survey streamflowgaging network in Texas is operated as part of the National Streamgaging Program and is jointly funded by the Geological Survey and Federal, State, and local agencies. This report documents an evaluation of the existing (as of October 1, 1999) network with regard to four major objectives of streamflow data; and on the basis of that evaluation, proposes a core network of streamflowgaging stations that best meets those objectives. The objectives are (1) regionalization (estimate flows or flow characteristics at ungaged sites in 11 hydrologically similar regions), (2) major flow (obtain flow rates and volumes in large streams), (3) outflow from the State (account for streamflow leaving the State), and (4) streamflow conditions assessment (assess current conditions with regard to long-term data, and define temporal trends in flow). The network analysis resulted in a proposed core network of 263 stations. Of those 263 stations, 43 were discontinued as of October 1, 1999, and 15 were partial-record stations. Fifty-five of the proposed core-network stations meet two of the four major objectives, 16 stations meet three objectives, and 1 station meets all four. One-hundred eighty-five stations with a median record length of 33 years were selected to meet the regionalization objective. Ninety-two stations with a median record length of about 62 years were selected to meet the major-flow objective. Twenty-six stations with a median record length of 59 years were selected to meet the outflow from the State objective. Fifty stations with a median record length of 53 years were selected to meet the streamflow conditions assessment objective.

  12. The role of interpersonal communication in the process of knowledge mobilization within a community-based organization: a network analysis.

    PubMed

    Gainforth, Heather L; Latimer-Cheung, Amy E; Athanasopoulos, Peter; Moore, Spencer; Ginis, Kathleen A Martin

    2014-05-22

    Diffusion of innovations theory has been widely used to explain knowledge mobilization of research findings. This theory posits that individuals who are more interpersonally connected within an organization may be more likely to adopt an innovation (e.g., research evidence) than individuals who are less interconnected. Research examining this tenet of diffusion of innovations theory in the knowledge mobilization literature is limited. The purpose of the present study was to use network analysis to examine the role of interpersonal communication in the adoption and mobilization of the physical activity guidelines for people with spinal cord injury (SCI) among staff in a community-based organization (CBO). The study used a cross-sectional, whole-network design. In total, 56 staff completed the network survey. Adoption of the guidelines was assessed using Rogers' innovation-decision process and interpersonal communication was assessed using an online network instrument. The patterns of densities observed within the network were indicative of a core-periphery structure revealing that interpersonal communication was greater within the core than between the core and periphery and within the periphery. Membership in the core, as opposed to membership in the periphery, was associated with greater knowledge of the evidence-based physical activity resources available and engagement in physical activity promotion behaviours (ps < 0.05). Greater in-degree centrality was associated with adoption of evidence-based behaviours (p < 0.05). Findings suggest that interpersonal communication is associated with knowledge mobilization and highlight how the network structure could be improved for further dissemination efforts. diffusion of innovations; network analysis; community-based organization; knowledge mobilization; knowledge translation, interpersonal communication.

  13. James Webb Space Telescope Core 2 Test - Cryogenic Thermal Balance Test of the Observatorys Core Area Thermal Control Hardware

    NASA Technical Reports Server (NTRS)

    Cleveland, Paul; Parrish, Keith; Thomson, Shaun; Marsh, James; Comber, Brian

    2016-01-01

    The James Webb Space Telescope (JWST), successor to the Hubble Space Telescope, will be the largest astronomical telescope ever sent into space. To observe the very first light of the early universe, JWST requires a large deployed 6.5-meter primary mirror cryogenically cooled to less than 50 Kelvin. Three scientific instruments are further cooled via a large radiator system to less than 40 Kelvin. A fourth scientific instrument is cooled to less than 7 Kelvin using a combination pulse-tube Joule-Thomson mechanical cooler. Passive cryogenic cooling enables the large scale of the telescope which must be highly folded for launch on an Ariane 5 launch vehicle and deployed once on orbit during its journey to the second Earth-Sun Lagrange point. Passive cooling of the observatory is enabled by the deployment of a large tennis court sized five layer Sunshield combined with the use of a network of high efficiency radiators. A high purity aluminum heat strap system connects the three instrument's detector systems to the radiator systems to dissipate less than a single watt of parasitic and instrument dissipated heat. JWST's large scale features, while enabling passive cooling, also prevent the typical flight configuration fully-deployed thermal balance test that is the keystone of most space missions' thermal verification plans. This paper describes the JWST Core 2 Test, which is a cryogenic thermal balance test of a full size, high fidelity engineering model of the Observatory's 'Core' area thermal control hardware. The 'Core' area is the key mechanical and cryogenic interface area between all Observatory elements. The 'Core' area thermal control hardware allows for temperature transition of 300K to approximately 50 K by attenuating heat from the room temperature IEC (instrument electronics) and the Spacecraft Bus. Since the flight hardware is not available for test, the Core 2 test uses high fidelity and flight-like reproductions.

  14. Real-time sensor data validation

    NASA Technical Reports Server (NTRS)

    Bickmore, Timothy W.

    1994-01-01

    This report describes the status of an on-going effort to develop software capable of detecting sensor failures on rocket engines in real time. This software could be used in a rocket engine controller to prevent the erroneous shutdown of an engine due to sensor failures which would otherwise be interpreted as engine failures by the control software. The approach taken combines analytical redundancy with Bayesian belief networks to provide a solution which has well defined real-time characteristics and well-defined error rates. Analytical redundancy is a technique in which a sensor's value is predicted by using values from other sensors and known or empirically derived mathematical relations. A set of sensors and a set of relations among them form a network of cross-checks which can be used to periodically validate all of the sensors in the network. Bayesian belief networks provide a method of determining if each of the sensors in the network is valid, given the results of the cross-checks. This approach has been successfully demonstrated on the Technology Test Bed Engine at the NASA Marshall Space Flight Center. Current efforts are focused on extending the system to provide a validation capability for 100 sensors on the Space Shuttle Main Engine.

  15. Rhythmogenic neuronal networks, emergent leaders, and k-cores.

    PubMed

    Schwab, David J; Bruinsma, Robijn F; Feldman, Jack L; Levine, Alex J

    2010-11-01

    Neuronal network behavior results from a combination of the dynamics of individual neurons and the connectivity of the network that links them together. We study a simplified model, based on the proposal of Feldman and Del Negro (FDN) [Nat. Rev. Neurosci. 7, 232 (2006)], of the preBötzinger Complex, a small neuronal network that participates in the control of the mammalian breathing rhythm through periodic firing bursts. The dynamics of this randomly connected network of identical excitatory neurons differ from those of a uniformly connected one. Specifically, network connectivity determines the identity of emergent leader neurons that trigger the firing bursts. When neuronal desensitization is controlled by the number of input signals to the neurons (as proposed by FDN), the network's collective desensitization--required for successful burst termination--is mediated by k-core clusters of neurons.

  16. Engineering research, development and technology report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langland, R T

    1999-02-01

    Nineteen ninety-eight has been a transition year for Engineering, as we have moved from our traditional focus on thrust areas to a more focused approach with research centers. These five new centers of excellence collectively comprise Engineering's Science and Technology program. This publication summarizes our formative year under this new structure. Let me start by talking about the differences between a thrust area and a research center. The thrust area is more informal, combining an important technology with programmatic priorities. In contrast, a research center is directly linked to an Engineering core technology. It is the purer model, for itmore » is more enduring yet has the scope to be able to adapt quickly to evolving programmatic priorities. To put it another way, the mission of a thrust area was often to grow the programs in conjunction with a technology, whereas the task of a research center is to vigorously grow our core technologies. By cultivating each core technology, we in turn enable long-term growth of new programs.« less

  17. New tools for non-invasive exploration of collagen network in cartilaginous tissue-engineered substitute.

    PubMed

    Henrionnet, Christel; Dumas, Dominique; Hupont, Sébastien; Stoltz, Jean François; Mainard, Didier; Gillet, Pierre; Pinzano, Astrid

    2017-01-01

    In tissue engineering approaches, the quality of substitutes is a key element to determine its ability to treat cartilage defects. However, in clinical practice, the evaluation of tissue-engineered cartilage substitute quality is not possible due to the invasiveness of the standard procedure, which is to date histology. The aim of this work was to validate a new innovative system performed from two-photon excitation laser adapted to an optical macroscope to evaluate at macroscopic scale the collagen network in cartilage tissue-engineered substitutes in confrontation with gold standard histologic techniques or immunohistochemistry to visualize type II collagen. This system permitted to differentiate the quality of collagen network between ITS and TGF-β1 treatments. Multiscale large field imaging combined to multimodality approaches (SHG-TCSPC) at macroscopical scale represent an innovative and non-invasive technique to monitor the quality of collagen network in cartilage tissue-engineered substitutes before in vivo implantation.

  18. How Well Do Engineering Students Retain Core Mathematical Knowledge after a Series of High Threshold Online Mathematics Tests?

    ERIC Educational Resources Information Center

    Carr, Michael; Prendergast, Mark; Breen, Cormac; Faulkner, Fiona

    2017-01-01

    In the Dublin Institute of Technology, high threshold core skills assessments are run in mathematics for third-year engineering students. Such tests require students to reach a threshold of 90% on a multiple choice test based on a randomized question bank. The material covered by the test consists of the more important aspects of undergraduate…

  19. Integration of systems biology with bioprocess engineering: L: -threonine production by systems metabolic engineering of Escherichia coli.

    PubMed

    Lee, Sang Yup; Park, Jin Hwan

    2010-01-01

    Random mutation and selection or targeted metabolic engineering without consideration of its impact on the entire metabolic and regulatory networks can unintentionally cause genetic alterations in the region, which is not directly related to the target metabolite. This is one of the reasons why strategies for developing industrial strains are now shifted towards targeted metabolic engineering based on systems biology, which is termed systems metabolic engineering. Using systems metabolic engineering strategies, all the metabolic engineering works are conducted in systems biology framework, whereby entire metabolic and regulatory networks are thoroughly considered in an integrated manner. The targets for purposeful engineering are selected after all possible effects on the entire metabolic and regulatory networks are thoroughly considered. Finally, the strain, which is capable of producing the target metabolite to a high level close to the theoretical maximum value, can be constructed. Here we review strategies and applications of systems biology successfully implemented on bioprocess engineering, with particular focus on developing L: -threonine production strains of Escherichia coli.

  20. Canada's neglected tropical disease research network: who's in the core-who's on the periphery?

    PubMed

    Phillips, Kaye; Kohler, Jillian Clare; Pennefather, Peter; Thorsteinsdottir, Halla; Wong, Joseph

    2013-01-01

    This study designed and applied accessible yet systematic methods to generate baseline information about the patterns and structure of Canada's neglected tropical disease (NTD) research network; a network that, until recently, was formed and functioned on the periphery of strategic Canadian research funding. MULTIPLE METHODS WERE USED TO CONDUCT THIS STUDY, INCLUDING: (1) a systematic bibliometric procedure to capture archival NTD publications and co-authorship data; (2) a country-level "core-periphery" network analysis to measure and map the structure of Canada's NTD co-authorship network including its size, density, cliques, and centralization; and (3) a statistical analysis to test the correlation between the position of countries in Canada's NTD network ("k-core measure") and the quantity and quality of research produced. Over the past sixty years (1950-2010), Canadian researchers have contributed to 1,079 NTD publications, specializing in Leishmania, African sleeping sickness, and leprosy. Of this work, 70% of all first authors and co-authors (n = 4,145) have been Canadian. Since the 1990s, however, a network of international co-authorship activity has been emerging, with representation of researchers from 62 different countries; largely researchers from OECD countries (e.g. United States and United Kingdom) and some non-OECD countries (e.g. Brazil and Iran). Canada has a core-periphery NTD international research structure, with a densely connected group of OECD countries and some African nations, such as Uganda and Kenya. Sitting predominantly on the periphery of this research network is a cluster of 16 non-OECD nations that fall within the lowest GDP percentile of the network. The publication specialties, composition, and position of NTD researchers within Canada's NTD country network provide evidence that while Canadian researchers currently remain the overall gatekeepers of the NTD research they generate; there is opportunity to leverage existing research collaborations and help advance regions and NTD areas that are currently under-developed.

  1. Distributed parallel messaging for multiprocessor systems

    DOEpatents

    Chen, Dong; Heidelberger, Philip; Salapura, Valentina; Senger, Robert M; Steinmacher-Burrow, Burhard; Sugawara, Yutaka

    2013-06-04

    A method and apparatus for distributed parallel messaging in a parallel computing system. The apparatus includes, at each node of a multiprocessor network, multiple injection messaging engine units and reception messaging engine units, each implementing a DMA engine and each supporting both multiple packet injection into and multiple reception from a network, in parallel. The reception side of the messaging unit (MU) includes a switch interface enabling writing of data of a packet received from the network to the memory system. The transmission side of the messaging unit, includes switch interface for reading from the memory system when injecting packets into the network.

  2. Development of CFD model for augmented core tripropellant rocket engine

    NASA Astrophysics Data System (ADS)

    Jones, Kenneth M.

    1994-10-01

    The Space Shuttle era has made major advances in technology and vehicle design to the point that the concept of a single-stage-to-orbit (SSTO) vehicle appears more feasible. NASA presently is conducting studies into the feasibility of certain advanced concept rocket engines that could be utilized in a SSTO vehicle. One such concept is a tripropellant system which burns kerosene and hydrogen initially and at altitude switches to hydrogen. This system will attain a larger mass fraction because LOX-kerosene engines have a greater average propellant density and greater thrust-to-weight ratio. This report describes the investigation to model the tripropellant augmented core engine. The physical aspects of the engine, the CFD code employed, and results of the numerical model for a single modular thruster are discussed.

  3. Negotiating Cultural Humility: First-Year Engineering Students' Development in a Life-Long Journey

    ERIC Educational Resources Information Center

    Groll, Lorie

    2013-01-01

    One of the most sought after abilities in matriculating engineering students is the ability to negotiate cultural differences and build sustainable partnerships with others. This core attribute of the National Academy of Engineers' Engineer of 2020 is one of the least researched areas in engineering education literature. The ABET Engineering…

  4. Selective Guide to Literature on Agricultural Engineering. Engineering Literature Guides, Number 4.

    ERIC Educational Resources Information Center

    Cloud, Gayla Staples, Comp.

    Agricultural engineering overlaps many other disciplines. This document is a survey of information sources in agricultural engineering and is intended to identify those core resources which can help engineers and librarians to find information about the discipline. Sections include: (1) "Guides to the Literature"; (2) "Bibliographies"; (3)…

  5. Temporal changes in the structure of a plant-frugivore network are influenced by bird migration and fruit availability

    PubMed Central

    Andresen, Ellen; Díaz-Castelazo, Cecilia

    2016-01-01

    Background. Ecological communities are dynamic collections whose composition and structure change over time, making up complex interspecific interaction networks. Mutualistic plant–animal networks can be approached through complex network analysis; these networks are characterized by a nested structure consisting of a core of generalist species, which endows the network with stability and robustness against disturbance. Those mutualistic network structures can vary as a consequence of seasonal fluctuations and food availability, as well as the arrival of new species into the system that might disorder the mutualistic network structure (e.g., a decrease in nested pattern). However, there is no assessment on how the arrival of migratory species into seasonal tropical systems can modify such patterns. Emergent and fine structural temporal patterns are adressed here for the first time for plant-frugivorous bird networks in a highly seasonal tropical environment. Methods. In a plant-frugivorous bird community, we analyzed the temporal turnover of bird species comprising the network core and periphery of ten temporal interaction networks resulting from different bird migration periods. Additionally, we evaluated how fruit abundance and richness, as well as the arrival of migratory birds into the system, explained the temporal changes in network parameters such as network size, connectance, nestedness, specialization, interaction strength asymmetry and niche overlap. The analysis included data from 10 quantitative plant-frugivorous bird networks registered from November 2013 to November 2014. Results. We registered a total of 319 interactions between 42 plant species and 44 frugivorous bird species; only ten bird species were part of the network core. We witnessed a noteworthy turnover of the species comprising the network periphery during migration periods, as opposed to the network core, which did not show significant temporal changes in species composition. Our results revealed that migration and fruit richness explain the temporal variations in network size, connectance, nestedness and interaction strength asymmetry. On the other hand, fruit abundance only explained connectance and nestedness. Discussion. By means of a fine-resolution temporal analysis, we evidenced for the first time how temporal changes in the interaction network structure respond to the arrival of migratory species into the system and to fruit availability. Additionally, few migratory bird species are important links for structuring networks, while most of them were peripheral species. We showed the relevance of studying bird–plant interactions at fine temporal scales, considering changing scenarios of species composition with a quantitative network approach. PMID:27330852

  6. Predictable Particle Engineering: Programming the Energy Level, Carrier Generation, and Conductivity of Core-Shell Particles.

    PubMed

    Yuan, Conghui; Wu, Tong; Mao, Jie; Chen, Ting; Li, Yuntong; Li, Min; Xu, Yiting; Zeng, Birong; Luo, Weiang; Yu, Lingke; Zheng, Gaofeng; Dai, Lizong

    2018-06-20

    Core-shell structures are of particular interest in the development of advanced composite materials as they can efficiently bring different components together at nanoscale. The advantage of this structure greatly relies on the crucial design of both core and shell, thus achieving an intercomponent synergistic effect. In this report, we show that decorating semiconductor nanocrystals with a boronate polymer shell can easily achieve programmable core-shell interactions. Taking ZnO and anatase TiO 2 nanocrystals as inner core examples, the effective core-shell interactions can narrow the band gap of semiconductor nanocrystals, change the HOMO and LUMO levels of boronate polymer shell, and significantly improve the carrier density of core-shell particles. The hole mobility of core-shell particles can be improved by almost 9 orders of magnitude in comparison with net boronate polymer, while the conductivity of core-shell particles is at most 30-fold of nanocrystals. The particle engineering strategy is based on two driving forces: catechol-surface binding and B-N dative bonding and having a high ability to control and predict the shell thickness. Also, this approach is applicable to various inorganic nanoparticles with different components, sizes, and shapes.

  7. Predicting efficiency of solar cells based on transparent conducting electrodes

    NASA Astrophysics Data System (ADS)

    Kumar, Ankush

    2017-01-01

    Efficiency of a solar cell is directly correlated with the performance of its transparent conducting electrodes (TCEs) which dictates its two core processes, viz., absorption and collection efficiencies. Emerging designs of a TCE involve active networks of carbon nanotubes, silver nanowires and various template-based techniques providing diverse structures; here, voids are transparent for optical transmittance while the conducting network acts as a charge collector. However, it is still not well understood as to which kind of network structure leads to an optimum solar cell performance; therefore, mostly an arbitrary network is chosen as a solar cell electrode. Herein, we propose a new generic approach for understanding the role of TCEs in determining the solar cell efficiency based on analysis of shadowing and recombination losses. A random network of wires encloses void regions of different sizes and shapes which permit light transmission; two terms, void fraction and equivalent radius, are defined to represent the TCE transmittance and wire spacings, respectively. The approach has been applied to various literature examples and their solar cell performance has been compared. To obtain high-efficiency solar cells, optimum density of the wires and their aspect ratio as well as active layer thickness are calculated. Our findings show that a TCE well suitable for one solar cell may not be suitable for another. For high diffusion length based solar cells, the void fraction of the network should be low while for low diffusion length based solar cells, the equivalent radius should be lower. The network with less wire spacing compared to the diffusion length behaves similar to continuous film based TCEs (such as indium tin oxide). The present work will be useful for architectural as well as material engineering of transparent electrodes for improvisation of solar cell performance.

  8. Evaluation of a Systems Analysis and Improvement Approach to Optimize Prevention of Mother-To-Child Transmission of HIV Using the Consolidated Framework for Implementation Research.

    PubMed

    Gimbel, Sarah; Rustagi, Alison S; Robinson, Julia; Kouyate, Seydou; Coutinho, Joana; Nduati, Ruth; Pfeiffer, James; Gloyd, Stephen; Sherr, Kenneth; Granato, S Adam; Kone, Ahoua; Cruz, Emilia; Manuel, Joao Luis; Zucule, Justina; Napua, Manuel; Mbatia, Grace; Wariua, Grace; Maina, Martin

    2016-08-01

    Despite large investments to prevent mother-to-child-transmission (PMTCT), pediatric HIV elimination goals are not on track in many countries. The Systems Analysis and Improvement Approach (SAIA) study was a cluster randomized trial to test whether a package of systems engineering tools could strengthen PMTCT programs. We sought to (1) define core and adaptable components of the SAIA intervention, and (2) explain the heterogeneity in SAIA's success between facilities. The Consolidated Framework for Implementation Research (CFIR) guided all data collection efforts. CFIR constructs were assessed in focus group discussions and interviews with study and facility staff in 6 health facilities (1 high-performing and 1 low-performing site per country, identified by study staff) in December 2014 at the end of the intervention period. SAIA staff identified the intervention's core and adaptable components at an end-of-study meeting in August 2015. Two independent analysts used CFIR constructs to code transcripts before reaching consensus. Flow mapping and continuous quality improvement were the core to the SAIA in all settings, whereas the PMTCT cascade analysis tool was the core in high HIV prevalence settings. Five CFIR constructs distinguished strongly between high and low performers: 2 in inner setting (networks and communication, available resources) and 3 in process (external change agents, executing, reflecting and evaluating). The CFIR is a valuable tool to categorize elements of an intervention as core versus adaptable, and to understand heterogeneity in study implementation. Future intervention studies should apply evidence-based implementation science frameworks, like the CFIR, to provide salient data to expand implementation to other settings.

  9. Evaluation of a Systems Analysis and Improvement Approach to Optimize Prevention of Mother-To-Child Transmission of HIV Using the Consolidated Framework for Implementation Research

    PubMed Central

    Rustagi, Alison S.; Robinson, Julia; Kouyate, Seydou; Coutinho, Joana; Nduati, Ruth; Pfeiffer, James; Gloyd, Stephen; Sherr, Kenneth; Granato, S. Adam; Kone, Ahoua; Cruz, Emilia; Manuel, Joao Luis; Zucule, Justina; Napua, Manuel; Mbatia, Grace; Wariua, Grace; Maina, Martin

    2016-01-01

    Background: Despite large investments to prevent mother-to-child-transmission (PMTCT), pediatric HIV elimination goals are not on track in many countries. The Systems Analysis and Improvement Approach (SAIA) study was a cluster randomized trial to test whether a package of systems engineering tools could strengthen PMTCT programs. We sought to (1) define core and adaptable components of the SAIA intervention, and (2) explain the heterogeneity in SAIA's success between facilities. Methods: The Consolidated Framework for Implementation Research (CFIR) guided all data collection efforts. CFIR constructs were assessed in focus group discussions and interviews with study and facility staff in 6 health facilities (1 high-performing and 1 low-performing site per country, identified by study staff) in December 2014 at the end of the intervention period. SAIA staff identified the intervention's core and adaptable components at an end-of-study meeting in August 2015. Two independent analysts used CFIR constructs to code transcripts before reaching consensus. Results: Flow mapping and continuous quality improvement were the core to the SAIA in all settings, whereas the PMTCT cascade analysis tool was the core in high HIV prevalence settings. Five CFIR constructs distinguished strongly between high and low performers: 2 in inner setting (networks and communication, available resources) and 3 in process (external change agents, executing, reflecting and evaluating). Discussion: The CFIR is a valuable tool to categorize elements of an intervention as core versus adaptable, and to understand heterogeneity in study implementation. Future intervention studies should apply evidence-based implementation science frameworks, like the CFIR, to provide salient data to expand implementation to other settings. PMID:27355497

  10. Biological computational approaches: new hopes to improve (re)programming robustness, regenerative medicine and cancer therapeutics.

    PubMed

    Ebrahimi, Behnam

    2016-01-01

    Hundreds of transcription factors (TFs) are expressed and work in each cell type, but the identity of the cells is defined and maintained through the activity of a small number of core TFs. Existing reprogramming strategies predominantly focus on the ectopic expression of core TFs of an intended fate in a given cell type regardless of the state of native/somatic gene regulatory networks (GRNs) of the starting cells. Interestingly, an important point is that how much products of the reprogramming, transdifferentiation and differentiation (programming) are identical to their in vivo counterparts. There is evidence that shows that direct fate conversions of somatic cells are not complete, with target cell identity not fully achieved. Manipulation of core TFs provides a powerful tool for engineering cell fate in terms of extinguishment of native GRNs, the establishment of a new GRN, and preventing installation of aberrant GRNs. Conventionally, core TFs are selected to convert one cell type into another mostly based on literature and the experimental identification of genes that are differentially expressed in one cell type compared to the specific cell types. Currently, there is not a universal standard strategy for identifying candidate core TFs. Remarkably, several biological computational platforms are developed, which are capable of evaluating the fidelity of reprogramming methods and refining existing protocols. The current review discusses some deficiencies of reprogramming technologies in the production of a pure population of authentic target cells. Furthermore, it reviews the role of computational approaches (e.g. CellNet, KeyGenes, Mogrify, etc.) in improving (re)programming methods and consequently in regenerative medicine and cancer therapeutics. Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  11. High performance carbon nanotube-Si core-shell wires with a rationally structured core for lithium ion battery anodes.

    PubMed

    Fan, Yu; Zhang, Qing; Lu, Congxiang; Xiao, Qizhen; Wang, Xinghui; Tay, Beng Kang

    2013-02-21

    Core-shell Si nanowires are very promising anode materials. Here, we synthesize vertically aligned carbon nanotubes (CNTs) with relatively large diameters and large inter-wire spacing as core wires and demonstrate a CNT-Si core-shell wire composite as a lithium ion battery (LIB) anode. Owing to the rationally engineered core structure, the composite shows good capacity retention and rate performance. The excellent performance is superior to most core-shell nanowires previously reported.

  12. The Rise of China in the International Trade Network: A Community Core Detection Approach

    PubMed Central

    Zhu, Zhen; Cerina, Federica; Chessa, Alessandro; Caldarelli, Guido; Riccaboni, Massimo

    2014-01-01

    Theory of complex networks proved successful in the description of a variety of complex systems ranging from biology to computer science and to economics and finance. Here we use network models to describe the evolution of a particular economic system, namely the International Trade Network (ITN). Previous studies often assume that globalization and regionalization in international trade are contradictory to each other. We re-examine the relationship between globalization and regionalization by viewing the international trade system as an interdependent complex network. We use the modularity optimization method to detect communities and community cores in the ITN during the years 1995–2011. We find rich dynamics over time both inter- and intra-communities. In particular, the Asia-Oceania community disappeared and reemerged over time along with a switch in leadership from Japan to China. We provide a multilevel description of the evolution of the network where the global dynamics (i.e., communities disappear or reemerge) and the regional dynamics (i.e., community core changes between community members) are related. Moreover, simulation results show that the global dynamics can be generated by a simple dynamic-edge-weight mechanism. PMID:25136895

  13. How Unstable Are Complex Financial Systems? Analyzing an Inter-bank Network of Credit Relations

    NASA Astrophysics Data System (ADS)

    Sinha, Sitabhra; Thess, Maximilian; Markose, Sheri

    The recent worldwide economic crisis of 2007-09 has focused attention on the need to analyze systemic risk in complex financial networks. We investigate the problem of robustness of such systems in the context of the general theory of dynamical stability in complex networks and, in particular, how the topology of connections influence the risk of the failure of a single institution triggering a cascade of successive collapses propagating through the network. We use data on bilateral liabilities (or exposure) in the derivatives market between 202 financial intermediaries based in USA and Europe in the last quarter of 2009 to empirically investigate the network structure of the over-the-counter (OTC) derivatives market. We observe that the network exhibits both heterogeneity in node properties and the existence of communities. It also has a prominent core-periphery organization and can resist large-scale collapse when subjected to individual bank defaults (however, failure of any bank in the core may result in localized collapse of the innermost core with substantial loss of capital) but is vulnerable to system-wide breakdown as a result of an accompanying liquidity crisis.

  14. The rise of China in the International Trade Network: a community core detection approach.

    PubMed

    Zhu, Zhen; Cerina, Federica; Chessa, Alessandro; Caldarelli, Guido; Riccaboni, Massimo

    2014-01-01

    Theory of complex networks proved successful in the description of a variety of complex systems ranging from biology to computer science and to economics and finance. Here we use network models to describe the evolution of a particular economic system, namely the International Trade Network (ITN). Previous studies often assume that globalization and regionalization in international trade are contradictory to each other. We re-examine the relationship between globalization and regionalization by viewing the international trade system as an interdependent complex network. We use the modularity optimization method to detect communities and community cores in the ITN during the years 1995-2011. We find rich dynamics over time both inter- and intra-communities. In particular, the Asia-Oceania community disappeared and reemerged over time along with a switch in leadership from Japan to China. We provide a multilevel description of the evolution of the network where the global dynamics (i.e., communities disappear or reemerge) and the regional dynamics (i.e., community core changes between community members) are related. Moreover, simulation results show that the global dynamics can be generated by a simple dynamic-edge-weight mechanism.

  15. Design of a TDOA location engine and development of a location system based on chirp spread spectrum.

    PubMed

    Wang, Rui-Rong; Yu, Xiao-Qing; Zheng, Shu-Wang; Ye, Yang

    2016-01-01

    Location based services (LBS) provided by wireless sensor networks have garnered a great deal of attention from researchers and developers in recent years. Chirp spread spectrum (CSS) signaling formatting with time difference of arrival (TDOA) ranging technology is an effective LBS technique in regards to positioning accuracy, cost, and power consumption. The design and implementation of the location engine and location management based on TDOA location algorithms were the focus of this study; as the core of the system, the location engine was designed as a series of location algorithms and smoothing algorithms. To enhance the location accuracy, a Kalman filter algorithm and moving weighted average technique were respectively applied to smooth the TDOA range measurements and location results, which are calculated by the cooperation of a Kalman TDOA algorithm and a Taylor TDOA algorithm. The location management server, the information center of the system, was designed with Data Server and Mclient. To evaluate the performance of the location algorithms and the stability of the system software, we used a Nanotron nanoLOC Development Kit 3.0 to conduct indoor and outdoor location experiments. The results indicated that the location system runs stably with high accuracy at absolute error below 0.6 m.

  16. Fully printable, strain-engineered electronic wrap for customizable soft electronics.

    PubMed

    Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek

    2017-03-24

    Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form.

  17. Fully printable, strain-engineered electronic wrap for customizable soft electronics

    NASA Astrophysics Data System (ADS)

    Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek

    2017-03-01

    Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form.

  18. Enabling the Capture and Sharing of NASA Technical Expertise Through Communities of Practice

    NASA Technical Reports Server (NTRS)

    Topousis, Daria E.; Dennehy, Cornelius J.; Lebsock, Kenneth L.

    2011-01-01

    Historically, engineers at the National Aeronautics and Space Administration (NASA) had few opportunities or incentives to share their technical expertise across the Agency. Its center- and project- focused culture often meant that knowledge never left organizational and geographic boundaries. With increasingly complex missions, the closeout of the Shuttle Program, and a new generation entering the workforce, developing a knowledge sharing culture became critical. To address this need, the Office of the Chief Engineer established communities of practice on the NASA Engineering Network. These communities were strategically aligned with NASA's core competencies in such disciplines as avionics, flight mechanics, life support, propulsion, structures, loads and dynamics, human factors, and guidance, navigation, and control. This paper describes the process used to identify and develop communities, from establishing simple websites that compiled discipline-specific resources to fostering a knowledge-sharing environment through collaborative and interactive technologies. It includes qualitative evidence of improved availability and transfer of knowledge. It focuses on pivotal capabilities that increased knowledge exchange such as a custom-made Ask An Expert system, community contact lists, publication of key resources, and submission forms that allowed any user to propose content for the sites. It discusses the peer relationships that developed through the communities and the leadership and infrastructure that made them possible.

  19. Fully printable, strain-engineered electronic wrap for customizable soft electronics

    PubMed Central

    Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek

    2017-01-01

    Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form. PMID:28338055

  20. Predicting Engineering Student Attrition Risk Using a Probabilistic Neural Network and Comparing Results with a Backpropagation Neural Network and Logistic Regression

    ERIC Educational Resources Information Center

    Mason, Cindi; Twomey, Janet; Wright, David; Whitman, Lawrence

    2018-01-01

    As the need for engineers continues to increase, a growing focus has been placed on recruiting students into the field of engineering and retaining the students who select engineering as their field of study. As a result of this concentration on student retention, numerous studies have been conducted to identify, understand, and confirm…

  1. Systems engineering technology for networks

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The report summarizes research pursued within the Systems Engineering Design Laboratory at Virginia Polytechnic Institute and State University between May 16, 1993 and January 31, 1994. The project was proposed in cooperation with the Computational Science and Engineering Research Center at Howard University. Its purpose was to investigate emerging systems engineering tools and their applicability in analyzing the NASA Network Control Center (NCC) on the basis of metrics and measures.

  2. Taming Wild Horses: The Need for Virtual Time-based Scheduling of VMs in Network Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoginath, Srikanth B; Perumalla, Kalyan S; Henz, Brian J

    2012-01-01

    The next generation of scalable network simulators employ virtual machines (VMs) to act as high-fidelity models of traffic producer/consumer nodes in simulated networks. However, network simulations could be inaccurate if VMs are not scheduled according to virtual time, especially when many VMs are hosted per simulator core in a multi-core simulator environment. Since VMs are by default free-running, on the outset, it is not clear if, and to what extent, their untamed execution affects the results in simulated scenarios. Here, we provide the first quantitative basis for establishing the need for generalized virtual time scheduling of VMs in network simulators,more » based on an actual prototyped implementations. To exercise breadth, our system is tested with multiple disparate applications: (a) a set of message passing parallel programs, (b) a computer worm propagation phenomenon, and (c) a mobile ad-hoc wireless network simulation. We define and use error metrics and benchmarks in scaled tests to empirically report the poor match of traditional, fairness-based VM scheduling to VM-based network simulation, and also clearly show the better performance of our simulation-specific scheduler, with up to 64 VMs hosted on a 12-core simulator node.« less

  3. The Role of Computer Networks in Aerospace Engineering.

    ERIC Educational Resources Information Center

    Bishop, Ann Peterson

    1994-01-01

    Presents selected results from an empirical investigation into the use of computer networks in aerospace engineering based on data from a national mail survey. The need for user-based studies of electronic networking is discussed, and a copy of the questionnaire used in the survey is appended. (Contains 46 references.) (LRW)

  4. NASA Glenn Research Center, Propulsion Systems Laboratory: Plan to Measure Engine Core Flow Water Vapor Content

    NASA Technical Reports Server (NTRS)

    Oliver, Michael

    2014-01-01

    This presentation will be made at the 92nd AIAA Turbine Engine Testing Working Group (TETWoG), a semi-annual technical meeting of turbine engine testing professionals. The objective is to describe an effort by NASA to measure the water vapor content on the core airflow in a full scale turbine engine ice crystal icing test and to open a discussion with colleagues how to accurately conduct the measurement based on any previous collective experience with the procedure, instruments and nature of engine icing testing within the group. The presentation lays out the schematics of the location in the flow path from which the sample will be drawn, the plumbing to get it from the engine flow path to the sensor and several different water vapor measurement technologies that will be used: Tunable diode laser and infrared spectroscopy.

  5. Tory II-A: a nuclear ramjet test reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadley, J.W.

    Declassified 28 Nov 1973. The first test reactor in the Pluto program, leading to development of a nuclear ramjet engine, is called Tory II-A. While it is not an actual prototype engine, this reactor embodies a core design which is considered feasible for an engine, and operation of the reactor will provide a test of that core type as well as more generalized values in reactor design and testing. The design of Tory II-A and construction of the reactor and of its test facility are described. Operation of the Tory II-A core at a total power of 160 megawatts, withmore » 800 pounds of air per second passing through the core and emerging at a temperature of 2000 deg F, is the central objective of the test program. All other reactor and facility components exist to support operation of the core, and preliminary steps in the test program itself will be directed primarily toward ensuring attalnment of full-power operation and collection of meaningful data on core behavior during that operation. The core, 3 feet in diameter and 41/2 feet long, will be composed of bundled ceramic tubes whose central holes will provide continuous air passages from end to end of the reactor. These tubes are to be composed of a homogeneous mixture of UO/sub 2/ fuel and BeO moderator, compacted and sintered to achieve high strength and density. (30 references) (auth)« less

  6. Diagnostics of the Supernova Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fryer, Chris L.; Ellinger, Carola; Young, Patrick A.

    The standard engine behind core-collapse supernovae is continuously evolving with increasingly detailed models. At this time, most simulations focus on an engine invoking turbulence above the proto-neutron star, sometimes termed the “convection-enhanced” engine. Finally, we review this engine and why it has become the standard for normal supernovae, focusing on a wide set of observations that provide insight into the supernova engine.

  7. Diagnostics of the Supernova Engine

    DOE PAGES

    Fryer, Chris L.; Ellinger, Carola; Young, Patrick A.; ...

    2017-10-17

    The standard engine behind core-collapse supernovae is continuously evolving with increasingly detailed models. At this time, most simulations focus on an engine invoking turbulence above the proto-neutron star, sometimes termed the “convection-enhanced” engine. Finally, we review this engine and why it has become the standard for normal supernovae, focusing on a wide set of observations that provide insight into the supernova engine.

  8. A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2001-01-01

    In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.

  9. Adaptive Optimization of Aircraft Engine Performance Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Long, Theresa W.

    1995-01-01

    Preliminary results are presented on the development of an adaptive neural network based control algorithm to enhance aircraft engine performance. This work builds upon a previous National Aeronautics and Space Administration (NASA) effort known as Performance Seeking Control (PSC). PSC is an adaptive control algorithm which contains a model of the aircraft's propulsion system which is updated on-line to match the operation of the aircraft's actual propulsion system. Information from the on-line model is used to adapt the control system during flight to allow optimal operation of the aircraft's propulsion system (inlet, engine, and nozzle) to improve aircraft engine performance without compromising reliability or operability. Performance Seeking Control has been shown to yield reductions in fuel flow, increases in thrust, and reductions in engine fan turbine inlet temperature. The neural network based adaptive control, like PSC, will contain a model of the propulsion system which will be used to calculate optimal control commands on-line. Hopes are that it will be able to provide some additional benefits above and beyond those of PSC. The PSC algorithm is computationally intensive, it is valid only at near steady-state flight conditions, and it has no way to adapt or learn on-line. These issues are being addressed in the development of the optimal neural controller. Specialized neural network processing hardware is being developed to run the software, the algorithm will be valid at steady-state and transient conditions, and will take advantage of the on-line learning capability of neural networks. Future plans include testing the neural network software and hardware prototype against an aircraft engine simulation. In this paper, the proposed neural network software and hardware is described and preliminary neural network training results are presented.

  10. Probabilistic QoS Analysis In Wireless Sensor Networks

    DTIC Science & Technology

    2012-04-01

    and A.O. Fapojuwo. TDMA scheduling with optimized energy efficiency and minimum delay in clustered wireless sensor networks . IEEE Trans. on Mobile...Research Computer Science and Engineering, Department of 5-1-2012 Probabilistic QoS Analysis in Wireless Sensor Networks Yunbo Wang University of...Wang, Yunbo, "Probabilistic QoS Analysis in Wireless Sensor Networks " (2012). Computer Science and Engineering: Theses, Dissertations, and Student

  11. Identifying Dynamic Protein Complexes Based on Gene Expression Profiles and PPI Networks

    PubMed Central

    Li, Min; Chen, Weijie; Wang, Jianxin; Pan, Yi

    2014-01-01

    Identification of protein complexes from protein-protein interaction networks has become a key problem for understanding cellular life in postgenomic era. Many computational methods have been proposed for identifying protein complexes. Up to now, the existing computational methods are mostly applied on static PPI networks. However, proteins and their interactions are dynamic in reality. Identifying dynamic protein complexes is more meaningful and challenging. In this paper, a novel algorithm, named DPC, is proposed to identify dynamic protein complexes by integrating PPI data and gene expression profiles. According to Core-Attachment assumption, these proteins which are always active in the molecular cycle are regarded as core proteins. The protein-complex cores are identified from these always active proteins by detecting dense subgraphs. Final protein complexes are extended from the protein-complex cores by adding attachments based on a topological character of “closeness” and dynamic meaning. The protein complexes produced by our algorithm DPC contain two parts: static core expressed in all the molecular cycle and dynamic attachments short-lived. The proposed algorithm DPC was applied on the data of Saccharomyces cerevisiae and the experimental results show that DPC outperforms CMC, MCL, SPICi, HC-PIN, COACH, and Core-Attachment based on the validation of matching with known complexes and hF-measures. PMID:24963481

  12. Incremental k-core decomposition: Algorithms and evaluation

    DOE PAGES

    Sariyuce, Ahmet Erdem; Gedik, Bugra; Jacques-SIlva, Gabriela; ...

    2016-02-01

    A k-core of a graph is a maximal connected subgraph in which every vertex is connected to at least k vertices in the subgraph. k-core decomposition is often used in large-scale network analysis, such as community detection, protein function prediction, visualization, and solving NP-hard problems on real networks efficiently, like maximal clique finding. In many real-world applications, networks change over time. As a result, it is essential to develop efficient incremental algorithms for dynamic graph data. In this paper, we propose a suite of incremental k-core decomposition algorithms for dynamic graph data. These algorithms locate a small subgraph that ismore » guaranteed to contain the list of vertices whose maximum k-core values have changed and efficiently process this subgraph to update the k-core decomposition. We present incremental algorithms for both insertion and deletion operations, and propose auxiliary vertex state maintenance techniques that can further accelerate these operations. Our results show a significant reduction in runtime compared to non-incremental alternatives. We illustrate the efficiency of our algorithms on different types of real and synthetic graphs, at varying scales. Furthermore, for a graph of 16 million vertices, we observe relative throughputs reaching a million times, relative to the non-incremental algorithms.« less

  13. Development of a solar receiver for an organic rankine cycle engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haskins, H.J.; Taylor, R.M.; Osborn, D.B.

    A solar receiver is described for use with an organic Rankine cycle (ORC) engine as part of the Small Community Solar Thermal Power Experiment (SCSE). The selected receiver concept is a direct-heated, once-through, monotube boiler normally operating at supercritical pressure. Fabrication methods for the receiver core have been developed and validated with flat braze samples, cylindrical segment samples, and a complete full-scale core assembly.

  14. Efficient, Low Pressure Ratio Propulsor for Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Gallagher, Edward J. (Inventor); Monzon, Byron R. (Inventor); Bugaj, Shari L. (Inventor)

    2018-01-01

    A gas turbine engine includes a core flow passage, a bypass flow passage, and a propulsor arranged at an inlet of the bypass flow passage and the core flow passage. The propulsor includes a row of propulsor blades. The row includes no more than 20 of the propulsor blades. The propulsor has a pressure ratio between about 1.2 and about 1.7 across the propulsor blades.

  15. Security Primitives for Reconfigurable Hardware-Based Systems

    DTIC Science & Technology

    2010-05-01

    work, we propose security primitives using ideas centered around the notion of “moats and drawbridges .” The primitives encompass four design properties...Santa Bar- bara, CA 93106; email: sherwood@cs.ucsb.edu; R. Kastner, Department of Computer Science and Engineering , University of California, San...fingerprint reader), the other to control the ethernet IP core—and an AES encryption engine used by both of the processor cores. These cores are all implemented

  16. Information accountability and usability: are there any connections?

    PubMed

    Sahama, Tony; Kushniruk, Andre; Kuwata, Shigeki

    2013-01-01

    Availability of health information is rapidly increasing and the expansion and proliferation of health information is inevitable. The Electronic Healthcare Record, Electronic Medical Record and Personal Health Record are at the core of this trend and are required for appropriate and practicable exchange and sharing of health information. However, it is becoming increasingly recognized that it is essential to preserve patient privacy and information security when utilising sensitive information for clinical, management and administrative processes. Furthermore, the usability of emerging healthcare applications is also becoming a growing concern. This paper proposes a novel approach for integrating consideration of information accountability with a perspective from usability engineering that can be applied when developing healthcare information technology applications. A social networking user case in the healthcare information exchange will be presented in the context of our approach.

  17. Evaluating the networking characteristics of the Cray XC-40 Intel Knights Landing-based Cori supercomputer at NERSC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerfler, Douglas; Austin, Brian; Cook, Brandon

    There are many potential issues associated with deploying the Intel Xeon Phi™ (code named Knights Landing [KNL]) manycore processor in a large-scale supercomputer. One in particular is the ability to fully utilize the high-speed communications network, given that the serial performance of a Xeon Phi TM core is a fraction of a Xeon®core. In this paper, we take a look at the trade-offs associated with allocating enough cores to fully utilize the Aries high-speed network versus cores dedicated to computation, e.g., the trade-off between MPI and OpenMP. In addition, we evaluate new features of Cray MPI in support of KNL,more » such as internode optimizations. We also evaluate one-sided programming models such as Unified Parallel C. We quantify the impact of the above trade-offs and features using a suite of National Energy Research Scientific Computing Center applications.« less

  18. Efficient Reverse-Engineering of a Developmental Gene Regulatory Network

    PubMed Central

    Cicin-Sain, Damjan; Ashyraliyev, Maksat; Jaeger, Johannes

    2012-01-01

    Understanding the complex regulatory networks underlying development and evolution of multi-cellular organisms is a major problem in biology. Computational models can be used as tools to extract the regulatory structure and dynamics of such networks from gene expression data. This approach is called reverse engineering. It has been successfully applied to many gene networks in various biological systems. However, to reconstitute the structure and non-linear dynamics of a developmental gene network in its spatial context remains a considerable challenge. Here, we address this challenge using a case study: the gap gene network involved in segment determination during early development of Drosophila melanogaster. A major problem for reverse-engineering pattern-forming networks is the significant amount of time and effort required to acquire and quantify spatial gene expression data. We have developed a simplified data processing pipeline that considerably increases the throughput of the method, but results in data of reduced accuracy compared to those previously used for gap gene network inference. We demonstrate that we can infer the correct network structure using our reduced data set, and investigate minimal data requirements for successful reverse engineering. Our results show that timing and position of expression domain boundaries are the crucial features for determining regulatory network structure from data, while it is less important to precisely measure expression levels. Based on this, we define minimal data requirements for gap gene network inference. Our results demonstrate the feasibility of reverse-engineering with much reduced experimental effort. This enables more widespread use of the method in different developmental contexts and organisms. Such systematic application of data-driven models to real-world networks has enormous potential. Only the quantitative investigation of a large number of developmental gene regulatory networks will allow us to discover whether there are rules or regularities governing development and evolution of complex multi-cellular organisms. PMID:22807664

  19. Advice networks in teams: the role of transformational leadership and members' core self-evaluations.

    PubMed

    Zhang, Zhen; Peterson, Suzanne J

    2011-09-01

    This article examines the team-level factors promoting advice exchange networks in teams. Drawing upon theory and research on transformational leadership, team diversity, and social networks, we hypothesized that transformational leadership positively influences advice network density in teams and that advice network density serves as a mediating mechanism linking transformational leadership to team performance. We further hypothesized a 3-way interaction in which members' mean core self-evaluation (CSE) and diversity in CSE jointly moderate the transformational leadership-advice network density relationship, such that the relationship is positive and stronger for teams with low diversity in CSE and high mean CSE. In addition, we expected that advice network centralization attenuates the positive influence of network density on team performance. Results based on multisource data from 79 business unit management teams showed support for these hypotheses. The results highlight the pivotal role played by transformational leadership and team members' CSEs in enhancing team social networks and, ultimately, team effectiveness. PsycINFO Database Record (c) 2011 APA, all rights reserved

  20. Core to College Evaluation: Statewide Networks. Connecting Education Systems and Stakeholders to Support College Readiness

    ERIC Educational Resources Information Center

    Bracco, Kathy Reeves; Klarin, Becca; Broek, Marie; Austin, Kim; Finkelstein, Neal; Bugler, Daniel; Mundry, Susan

    2014-01-01

    The Core to College initiative aims to facilitate greater coordination between K-12 and postsecondary education systems around implementation of the Common Core State Standards and aligned assessments. Core to College grants have been awarded to teams in Colorado, Florida, Hawaii, Kentucky, Louisiana, Massachusetts, North Carolina, Oregon,…

  1. Quality of Service Control Based on Virtual Private Network Services in a Wide Area Gigabit Ethernet Optical Test Bed

    NASA Astrophysics Data System (ADS)

    Rea, Luca; Pompei, Sergio; Valenti, Alessandro; Matera, Francesco; Zema, Cristiano; Settembre, Marina

    We report an experimental investigation about the Virtual Private LAN Service technique to guarantee the quality of service in the metro/core network and also in the presence of access bandwidth bottleneck. We also show how the virtual private network can be set up for answering to a user request in a very fast way. The tests were performed in a GMPLS test bed with GbE core routers linked with long (tens of kilometers) GbE G.652 fiber links.

  2. Microfluidic Investigation of Oil Mobilization in Shale Fracture Networks at Reservoir Conditions

    NASA Astrophysics Data System (ADS)

    Porter, M. L.; Jimenez-Martinez, J.; Carey, J. W.; Viswanathan, H. S.

    2015-12-01

    Investigations of pore-scale fluid flow and transport phenomena using engineered micromodels has steadily increased in recent years. In these investigations fluid flow is restricted to two-dimensions allowing for real time visualization and quantification of complex flow and reactive transport behavior, which is difficult to obtain in other experimental systems. One drawback to these studies is the use of engineered materials that do not faithfully represent the rock properties (e.g., porosity, wettability, roughness, etc.) encountered in subsurface formations. In this work, we describe a unique high pressure (up to 1500 psi) and temperature (up to 80 °C) microfluidics experimental system in which we investigate fluid flow and transport in geo-material (e.g., shale, Portland cement, etc.) micromodels. The use of geo-material micromodels allows us to better represent fluid-rock interactions including wettability, chemical reactivity, and nano-scale porosity at conditions representative of natural subsurface environments. Here, we present experimental results in fracture systems with applications to hydrocarbon mobility in hydraulically fractured shale. Complex fracture network patterns are derived from 3D x-ray tomography images of actual fractures created in shale rock cores. We use both shale and glass micromodels, allowing for a detailed comparison between flow phenomena in the different materials. We discuss results from two-phase huff-and-puff experiments involving N2 and n-Decane, as well as three-phase displacement experiments involving supercritical CO2, brine, and n-Decane.

  3. Software For Graphical Representation Of A Network

    NASA Technical Reports Server (NTRS)

    Mcallister, R. William; Mclellan, James P.

    1993-01-01

    System Visualization Tool (SVT) computer program developed to provide systems engineers with means of graphically representing networks. Generates diagrams illustrating structures and states of networks defined by users. Provides systems engineers powerful tool simplifing analysis of requirements and testing and maintenance of complex software-controlled systems. Employs visual models supporting analysis of chronological sequences of requirements, simulation data, and related software functions. Applied to pneumatic, hydraulic, and propellant-distribution networks. Used to define and view arbitrary configurations of such major hardware components of system as propellant tanks, valves, propellant lines, and engines. Also graphically displays status of each component. Advantage of SVT: utilizes visual cues to represent configuration of each component within network. Written in Turbo Pascal(R), version 5.0.

  4. Report of the Polymer Core Course Committee: Polymer Principles for the Chemical Engineering Curriculum.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1985

    1985-01-01

    Offers suggestions for introducing polymer topics into: (1) introductory chemical engineering; (2) transport phenomena and unit operations; (3) chemical engineering thermodynamics; and (4) reaction engineering. Also included for each area are examples of textbooks in current use and a few typical problems. (JN)

  5. Multidisciplinary and Active/Collaborative Approaches in Teaching Requirements Engineering

    ERIC Educational Resources Information Center

    Rosca, Daniela

    2005-01-01

    The requirements engineering course is a core component of the curriculum for the Master's in Software Engineering programme, at Monmouth University (MU). It covers the process, methods and tools specific to this area, together with the corresponding software quality issues. The need to produce software engineers with strong teamwork and…

  6. 78 FR 15110 - Aviation Rulemaking Advisory Committee; Engine Bird Ingestion Requirements-New Task

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ...: During the bird-ingestion rulemaking database (BRDB) working group`s reevaluation of the current engine... engine core ingestion. If the BRDB working group`s reevaluation determines that such requirements are... Task ARAC accepted the task and will establish the Engine Harmonization Working Group (EHWG), under the...

  7. Float Your Boat: Making Instant Design Challenges Meaningful and Relevant

    ERIC Educational Resources Information Center

    Oehrli, Robbie

    2016-01-01

    Engineering design is a core component of technology and engineering education, and although not every student will become an engineer following high school, all students can profit from having engineering design experiences in high school (Apedoe, Reynolds, Ellefson, & Schunn, 2008; Denson & Lammi, 2014; Grubbs & Strimel, 2015;…

  8. Examining Elementary School Students' Transfer of Learning through Engineering Design Using Think-Aloud Protocol Analysis

    ERIC Educational Resources Information Center

    Kelley, Todd; Sung, Euisuk

    2017-01-01

    The introduction of engineering practices within the "Next Generation Science Standards" provides technology educators with opportunities to help STEM educators infuse engineering design within a core curriculum. The introduction of teaching engineering design in early elementary grades also provides opportunities to conduct research…

  9. A Project-Based Cooperative Approach to Teaching Sustainable Energy Systems

    ERIC Educational Resources Information Center

    Verbic, Gregor; Keerthisinghe, Chanaka; Chapman, Archie C.

    2017-01-01

    Engineering education is undergoing a restructuring driven by the needs of an increasingly multidisciplinary engineering profession. At the same time, power systems are transitioning toward future smart grids that will require power engineers with skills outside of the core power engineering domain. Since including new topics in the existing…

  10. Students' Attitudes towards Interdisciplinary Education: A Course on Interdisciplinary Aspects of Science and Engineering Education

    ERIC Educational Resources Information Center

    Gero, Aharon

    2017-01-01

    A course entitled "Science and Engineering Education: Interdisciplinary Aspects" was designed to expose undergraduate students of science and engineering education to the attributes of interdisciplinary education which integrates science and engineering. The core of the course is an interdisciplinary lesson, which each student is…

  11. Alleviation of Facility/Engine Interactions in an Open-Jet Scramjet Test Facility

    NASA Technical Reports Server (NTRS)

    Albertson, Cindy W.; Emami, Saied

    2001-01-01

    Results of a series of shakedown tests to eliminate facility/engine interactions in an open-jet scramjet test facility are presented. The tests were conducted with the NASA DFX (Dual-Fuel eXperimental scramjet) engine in the NASA Langley Combustion Heated Scramjet Test Facility (CHSTF) in support of the Hyper-X program, The majority of the tests were conducted at a total enthalpy and pressure corresponding to Mach 5 flight at a dynamic pressure of 734 psf. The DFX is the largest engine ever tested in the CHSTF. Blockage, in terms of the projected engine area relative to the nozzle exit area, is 81% with the engine forebody leading edge aligned with the upper edge of the facility nozzle such that it ingests the nozzle boundary layer. The blockage increases to 95% with the engine forebody leading edge positioned 2 in. down in the core flow. Previous engines successfully tested in the CHSTF have had blockages of no more than 51%. Oil flow studies along with facility and engine pressure measurements were used to define flow behavior. These results guided modifications to existing aeroappliances and the design of new aeroappliances. These changes allowed fueled tests to be conducted without facility interaction effects in the data with the engine forebody leading edge positioned to ingest the facility nozzle boundary layer. Interaction effects were also reduced for tests with the engine forebody leading edge positioned 2 in. into the core flow, however some interaction effects were still evident in the engine data. A new shroud and diffuser have been designed with the goal of allowing fueled tests to be conducted with the engine forebody leading edge positioned in the core without facility interaction effects in the data. Evaluation tests of the new shroud and diffuser will be conducted once ongoing fueled engine tests have been completed.

  12. Highly Stretchable and Transparent Supercapacitor by Ag-Au Core-Shell Nanowire Network with High Electrochemical Stability.

    PubMed

    Lee, Habeom; Hong, Sukjoon; Lee, Jinhwan; Suh, Young Duk; Kwon, Jinhyeong; Moon, Hyunjin; Kim, Hyeonseok; Yeo, Junyeob; Ko, Seung Hwan

    2016-06-22

    Stretchable and transparent electronics have steadily attracted huge attention in wearable devices. Although Ag nanowire is the one of the most promising candidates for transparent and stretchable electronics, its electrochemical instability has forbidden its application to the development of electrochemical energy devices such as supercapacitors. Here, we introduce a highly stretchable and transparent supercapacitor based on electrochemically stable Ag-Au core-shell nanowire percolation network electrode. We developed a simple solution process to synthesize the Ag-Au core-shell nanowire with excellent electrical conductivity as well as greatly enhanced chemical and electrochemical stabilities compared to pristine Ag nanowire. The proposed core-shell nanowire-based supercapacitor still possesses fine optical transmittance and outstanding mechanical stability up to 60% strain. The Ag-Au core-shell nanowire can be a strong candidate for future wearable electrochemical energy devices.

  13. Selective Guide to Literature on Mining Engineering. Engineering Literature Guides, Number 6.

    ERIC Educational Resources Information Center

    Erdmann, Charlotte A., Comp.

    The multidisciplinary field of mining engineering offers many challenges. Often, many sources must be used to solve a problem. This document is a survey of information sources in mining engineering and is intended to identify those core resources which can help engineers and librarians to find information about the discipline. Sections include:…

  14. Energy efficient engine component development and integration program

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The design of an energy efficient commercial turbofan engine is examined with emphasis on lower fuel consumption and operating costs. Propulsion system performance, emission standards, and noise reduction are also investigated. A detailed design analysis of the engine/aircraft configuration, engine components, and core engine is presented along with an evaluation of the technology and testing involved.

  15. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 47: The value of computer networks in aerospace

    NASA Technical Reports Server (NTRS)

    Bishop, Ann Peterson; Pinelli, Thomas E.

    1995-01-01

    This paper presents data on the value of computer networks that were obtained from a national survey of 2000 aerospace engineers that was conducted in 1993. Survey respondents reported the extent to which they used computer networks in their work and communication and offered their assessments of the value of various network types and applications. They also provided information about the positive impacts of networks on their work, which presents another perspective on value. Finally, aerospace engineers' recommendations on network implementation present suggestions for increasing the value of computer networks within aerospace organizations.

  16. Relative stability of core groups in pollination networks in a biodiversity hotspot over four years.

    PubMed

    Fang, Qiang; Huang, Shuang-Quan

    2012-01-01

    Plants and their pollinators form pollination networks integral to the evolution and persistence of species in communities. Previous studies suggest that pollination network structure remains nested while network composition is highly dynamic. However, little is known about temporal variation in the structure and function of plant-pollinator networks, especially in species-rich communities where the strength of pollinator competition is predicted to be high. Here we quantify temporal variation of pollination networks over four consecutive years in an alpine meadow in the Hengduan Mountains biodiversity hotspot in China. We found that ranked positions and idiosyncratic temperatures of both plants and pollinators were more conservative between consecutive years than in non-consecutive years. Although network compositions exhibited high turnover, generalized core groups--decomposed by a k-core algorithm--were much more stable than peripheral groups. Given the high rate of turnover observed, we suggest that identical plants and pollinators that persist for at least two successive years sustain pollination services at the community level. Our data do not support theoretical predictions of a high proportion of specialized links within species-rich communities. Plants were relatively specialized, exhibiting less variability in pollinator composition at pollinator functional group level than at the species level. Both specialized and generalized plants experienced narrow variation in functional pollinator groups. The dynamic nature of pollination networks in the alpine meadow demonstrates the potential for networks to mitigate the effects of fluctuations in species composition in a high biodiversity area.

  17. The Strength of the Strongest Ties in Collaborative Problem Solving

    NASA Astrophysics Data System (ADS)

    de Montjoye, Yves-Alexandre; Stopczynski, Arkadiusz; Shmueli, Erez; Pentland, Alex; Lehmann, Sune

    2014-06-01

    Complex problem solving in science, engineering, and business has become a highly collaborative endeavor. Teams of scientists or engineers collaborate on projects using their social networks to gather new ideas and feedback. Here we bridge the literature on team performance and information networks by studying teams' problem solving abilities as a function of both their within-team networks and their members' extended networks. We show that, while an assigned team's performance is strongly correlated with its networks of expressive and instrumental ties, only the strongest ties in both networks have an effect on performance. Both networks of strong ties explain more of the variance than other factors, such as measured or self-evaluated technical competencies, or the personalities of the team members. In fact, the inclusion of the network of strong ties renders these factors non-significant in the statistical analysis. Our results have consequences for the organization of teams of scientists, engineers, and other knowledge workers tackling today's most complex problems.

  18. The strength of the strongest ties in collaborative problem solving.

    PubMed

    de Montjoye, Yves-Alexandre; Stopczynski, Arkadiusz; Shmueli, Erez; Pentland, Alex; Lehmann, Sune

    2014-06-20

    Complex problem solving in science, engineering, and business has become a highly collaborative endeavor. Teams of scientists or engineers collaborate on projects using their social networks to gather new ideas and feedback. Here we bridge the literature on team performance and information networks by studying teams' problem solving abilities as a function of both their within-team networks and their members' extended networks. We show that, while an assigned team's performance is strongly correlated with its networks of expressive and instrumental ties, only the strongest ties in both networks have an effect on performance. Both networks of strong ties explain more of the variance than other factors, such as measured or self-evaluated technical competencies, or the personalities of the team members. In fact, the inclusion of the network of strong ties renders these factors non-significant in the statistical analysis. Our results have consequences for the organization of teams of scientists, engineers, and other knowledge workers tackling today's most complex problems.

  19. The Evaluation of Rekeying Protocols Within the Hubenko Architecture as Applied to Wireless Sensor Networks

    DTIC Science & Technology

    2009-03-01

    SENSOR NETWORKS THESIS Presented to the Faculty Department of Electrical and Computer Engineering Graduate School of Engineering and...hierarchical, and Secure Lock within a wireless sensor network (WSN) under the Hubenko architecture. Using a Matlab computer simulation, the impact of the...rekeying protocol should be applied given particular network parameters, such as WSN size. 10 1.3 Experimental Approach A computer simulation in

  20. Energy efficient engine fan component detailed design report

    NASA Technical Reports Server (NTRS)

    Halle, J. E.; Michael, C. J.

    1981-01-01

    The fan component which was designed for the energy efficient engine is an advanced high performance, single stage system and is based on technology advancements in aerodynamics and structure mechanics. Two fan components were designed, both meeting the integrated core/low spool engine efficiency goal of 84.5%. The primary configuration, envisioned for a future flight propulsion system, features a shroudless, hollow blade and offers a predicted efficiency of 87.3%. A more conventional blade was designed, as a back up, for the integrated core/low spool demonstrator engine. The alternate blade configuration has a predicted efficiency of 86.3% for the future flight propulsion system. Both fan configurations meet goals established for efficiency surge margin, structural integrity and durability.

  1. Variable mixer propulsion cycle

    NASA Technical Reports Server (NTRS)

    Rundell, D. J.; Mchugh, D. P.; Foster, T.; Brown, R. H. (Inventor)

    1978-01-01

    A design technique, method and apparatus are delineated for controlling the bypass gas stream pressure and varying the bypass ratio of a mixed flow gas turbine engine in order to achieve improved performance. The disclosed embodiments each include a mixing device for combining the core and bypass gas streams. The variable area mixing device permits the static pressures of the core and bypass streams to be balanced prior to mixing at widely varying bypass stream pressure levels. The mixed flow gas turbine engine therefore operates efficiently over a wide range of bypass ratios and the dynamic pressure of the bypass stream is maintained at a level which will keep the engine inlet airflow matched to an optimum design level throughout a wide range of engine thrust settings.

  2. Core skills assessment to improve mathematical competency

    NASA Astrophysics Data System (ADS)

    Carr, Michael; Bowe, Brian; Fhloinn, Eabhnat Ní

    2013-12-01

    Many engineering undergraduates begin third-level education with significant deficiencies in their core mathematical skills. Every year, in the Dublin Institute of Technology, a diagnostic test is given to incoming first-year students, consistently revealing problems in basic mathematics. It is difficult to motivate students to address these problems; instead, they struggle through their degree, carrying a serious handicap of poor core mathematical skills, as confirmed by exploratory testing of final year students. In order to improve these skills, a pilot project was set up in which a 'module' in core mathematics was developed. The course material was basic, but 90% or higher was required to pass. Students were allowed to repeat this module throughout the year by completing an automated examination on WebCT populated by a question bank. Subsequent to the success of this pilot with third-year mechanical engineering students, the project was extended to five different engineering programmes, across three different year-groups. Full results and analysis of this project are presented, including responses to interviews carried out with a selection of the students involved.

  3. Regenerator for gas turbine engine

    DOEpatents

    Lewakowski, John J.

    1979-01-01

    A rotary disc-type counterflow regenerator for a gas turbine engine includes a disc-shaped ceramic core surrounded by a metal rim which carries a coaxial annular ring gear. Bonding of the metal rim to the ceramic core is accomplished by constructing the metal rim in three integral portions: a driving portion disposed adjacent the ceramic core which carries the ring gear, a bonding portion disposed further away from the ceramic core and which is bonded thereto by elastomeric pads, and a connecting portion connecting the bonding portion to the driving portion. The elastomeric pads are bonded to radially flexible mounts formed as part of the metal rim by circumferential slots in the transition portion and lateral slots extending from one end of the circumferential slots across the bonding portion of the rim.

  4. An interconnected network of core-forming melts produced by shear deformation

    PubMed

    Bruhn; Groebner; Kohlstedt

    2000-02-24

    The formation mechanism of terrestrial planetary cores is still poorly understood, and has been the subject of numerous experimental studies. Several mechanisms have been proposed by which metal--mainly iron with some nickel--could have been extracted from a silicate mantle to form the core. Most recent models involve gravitational sinking of molten metal or metal sulphide through a partially or fully molten mantle that is often referred to as a 'magma ocean'. Alternative models invoke percolation of molten metal along an interconnected network (that is, porous flow) through a solid silicate matrix. But experimental studies performed at high pressures have shown that, under hydrostatic conditions, these melts do not form an interconnected network, leading to the widespread assumption that formation of metallic cores requires a magma ocean. In contrast, here we present experiments which demonstrate that shear deformation to large strains can interconnect a significant fraction of initially isolated pockets of metal and metal sulphide melts in a solid matrix of polycrystalline olivine. Therefore, in a dynamic (non-hydrostatic) environment, percolation remains a viable mechanism for the segregation and migration of core-forming melts in a solid silicate mantle.

  5. Design and Application of Nanogel-Based Polymer Networks

    NASA Astrophysics Data System (ADS)

    Dailing, Eric Alan

    Crosslinked polymer networks have wide application in biomaterials, from soft hydrogel scaffolds for cell culture and tissue engineering to glassy, high modulus dental restoratives. Composite materials formed with nanogels as a means for tuning network structure on the nanoscale have been reported, but no investigation into nanogels as the primary network component has been explored to this point. This thesis was dedicated to studying network formation from the direct polymerization of nanogels and investigating applications for these unique materials. Covalently crosslinked polymer networks were synthesized from polymerizable nanogels without the use of reactive small monomers or oligomers. Network properties were controlled by the chemical and physical properties of the nanogel, allowing for materials to be designed from nanostructured macromolecular precursors. Nanogels were synthesized from a thermally initiated solution free radical polymerization of a monomethacrylate, a dimethacrylate, and a thiol-based chain transfer agent. Monomers with a range of hydrophilic and hydrophobic character were copolymerized, and polymerizable groups were introduced through an alcohol-isocyanate click reaction. Nanogels were dispersible in water up to 75 wt%, including nanogels that contained a relatively high fraction of a conventionally water-insoluble component. Nanogels with molecular weights that ranged from 10's to 100's of kDa and hydrodynamic radii between 4 and 10 nm were obtained. Macroscopic crosslinked polymer networks were synthesized from the photopolymerization of methacrylate-functionalized nanogels in inert solvent, which was typically water. The nanogel composition and internal branching density affected both covalent and non-covalent interparticle interactions, which dictated the final mechanical properties of the networks. Nanogels with progressively disparate hydrophilic and hydrophobic character were synthesized to explore the potential for creating densely crosslinked, small monomer free dental materials. Nanogel-based networks showed no decrease in flexural modulus between the dry and water-equilibrated states in contrast to nanogel-monomer composites that exhibited a decrease in modulus upon water infiltration. The nanogel networks also exhibited higher conversion and lower volumetric shrinkage compared to the composite networks. Adhesive nanogels were designed with amphiphilic character and specific hydrogen-bonding groups. These nanogels gelled within 10 s of low intensity UV light exposure and demonstrated the ability to bond strongly to both hydrophilic and hydrophobic substrates that were dry or under water. Nanogel-based coatings were explored as a means to create multistructured, multifunctional polymer networks. Shape memory polymers were coated with nanogels through a dip-coating and subsequent photocrosslinking method. The presence of the coating did not affect the shape recovery of the polymer, and coatings formed with dexamethasone-loaded nanogels were demonstrated to release a physiologically relevant amount of the anti-inflammatory drug. These materials have potential application as minimally invasive implantable devices. Coatings were also formed from interfacial redox polymerizations. Nanogels with varying crosslinking density were coated onto dexamethasone-loaded networks, which had the effect of changing the diffusion coefficient of dexamethasone as it was released from the core network. A fluorescein-loaded nanogel was coated onto a rhodamine-loaded network, which provided multidrug release from both the coating and the core material through two distinct release profiles.

  6. Injector for liquid fueled rocket engine

    NASA Technical Reports Server (NTRS)

    Cornelius, Charles S. (Inventor); Myers, W. Neill (Inventor); Shadoan, Michael David (Inventor); Sparks, David L. (Inventor)

    2000-01-01

    An injector for liquid fueled rocket engines wherein a generally flat core having a frustoconical dome attached to one side of the core to serve as a manifold for a first liquid, with the core having a generally circular configuration having an axis. The other side of the core has a plurality of concentric annular first slots and a plurality of annular concentric second slots alternating with the first slots, the second slots having a greater depth than said first slots. A bore extends through the core for inletting a second liquid into said core, the bore intersecting the second slots to feed the second liquid into the second slots. The core also has a plurality of first passageways leading from the manifold to the first annular slots for feeding the first liquid into said first slots. A faceplate brazed to said other side of the core is provided with apertures extending from the first and second slots through said face plate, these apertures being positioned to direct fuel and liquid oxygen into contact with each other in the combustion chamber. The first liquid may be liquid oxygen and the second liquid may be kerosene or liquid hydrogen.

  7. Cascade Optimization for Aircraft Engines With Regression and Neural Network Analysis - Approximators

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Guptill, James D.; Hopkins, Dale A.; Lavelle, Thomas M.

    2000-01-01

    The NASA Engine Performance Program (NEPP) can configure and analyze almost any type of gas turbine engine that can be generated through the interconnection of a set of standard physical components. In addition, the code can optimize engine performance by changing adjustable variables under a set of constraints. However, for engine cycle problems at certain operating points, the NEPP code can encounter difficulties: nonconvergence in the currently implemented Powell's optimization algorithm and deficiencies in the Newton-Raphson solver during engine balancing. A project was undertaken to correct these deficiencies. Nonconvergence was avoided through a cascade optimization strategy, and deficiencies associated with engine balancing were eliminated through neural network and linear regression methods. An approximation-interspersed cascade strategy was used to optimize the engine's operation over its flight envelope. Replacement of Powell's algorithm by the cascade strategy improved the optimization segment of the NEPP code. The performance of the linear regression and neural network methods as alternative engine analyzers was found to be satisfactory. This report considers two examples-a supersonic mixed-flow turbofan engine and a subsonic waverotor-topped engine-to illustrate the results, and it discusses insights gained from the improved version of the NEPP code.

  8. Network Hardware Virtualization for Application Provisioning in Core Networks

    DOE PAGES

    Gumaste, Ashwin; Das, Tamal; Khandwala, Kandarp; ...

    2017-02-03

    We present that service providers and vendors are moving toward a network virtualized core, whereby multiple applications would be treated on their own merit in programmable hardware. Such a network would have the advantage of being customized for user requirements and allow provisioning of next generation services that are built specifically to meet user needs. In this article, we articulate the impact of network virtualization on networks that provide customized services and how a provider's business can grow with network virtualization. We outline a decision map that allows mapping of applications with technology that is supported in network-virtualization - orientedmore » equipment. Analogies to the world of virtual machines and generic virtualization show that hardware supporting network virtualization will facilitate new customer needs while optimizing the provider network from the cost and performance perspectives. A key conclusion of the article is that growth would yield sizable revenue when providers plan ahead in terms of supporting network-virtualization-oriented technology in their networks. To be precise, providers have to incorporate into their growth plans network elements capable of new service deployments while protecting network neutrality. Finally, a simulation study validates our NV-induced model.« less

  9. Network Hardware Virtualization for Application Provisioning in Core Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gumaste, Ashwin; Das, Tamal; Khandwala, Kandarp

    We present that service providers and vendors are moving toward a network virtualized core, whereby multiple applications would be treated on their own merit in programmable hardware. Such a network would have the advantage of being customized for user requirements and allow provisioning of next generation services that are built specifically to meet user needs. In this article, we articulate the impact of network virtualization on networks that provide customized services and how a provider's business can grow with network virtualization. We outline a decision map that allows mapping of applications with technology that is supported in network-virtualization - orientedmore » equipment. Analogies to the world of virtual machines and generic virtualization show that hardware supporting network virtualization will facilitate new customer needs while optimizing the provider network from the cost and performance perspectives. A key conclusion of the article is that growth would yield sizable revenue when providers plan ahead in terms of supporting network-virtualization-oriented technology in their networks. To be precise, providers have to incorporate into their growth plans network elements capable of new service deployments while protecting network neutrality. Finally, a simulation study validates our NV-induced model.« less

  10. Development INTERDATA 8/32 computer system

    NASA Technical Reports Server (NTRS)

    Sonett, C. P.

    1983-01-01

    The capabilities of the Interdata 8/32 minicomputer were examined regarding data and word processing, editing, retrieval, and budgeting as well as data management demands of the user groups in the network. Based on four projected needs: (1) a hands on (open shop) computer for data analysis with large core and disc capability; (2) the expected requirements of the NASA data networks; (3) the need for intermittent large core capacity for theoretical modeling; (4) the ability to access data rapidly either directly from tape or from core onto hard copy, the system proved useful and adequate for the planned requirements.

  11. Us army corps of engineers - Engineering research and development center - Petrographic analysis of section 3 personnel tunnel concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, J. M.

    The Concrete and Materials Branch (CMB) of the Geotechnical and Structures Laboratory was requested to perform an analysis on concrete cores collected from the north and south walls of the H-Canyon Section 3 Personnel Tunel, Savannah River Site, Aiken, South Carolina to determine the cause of the lower than expected compressive strength. This study examined five cores provided to the ERDC by the Department of Energy. The cores were logged in as CMB No. 170051-1 to 170051-5 and subjected to petrographic examination, air void analysis, chemical sprays, scanning electron microscopy, and x-ray diffraction.

  12. ARTVAL user guide : user guide for the ARTerial eVALuation computational engine.

    DOT National Transportation Integrated Search

    2015-06-01

    This document provides guidance on the use of the ARTVAL (Arterial Evaluation) computational : engine. The engine implements the Quick Estimation Method for Urban Streets (QEM-US) : described in Highway Capacity Manual (HCM2010) as the core computati...

  13. Variable Cycle Intake for Reverse Core Engine

    NASA Technical Reports Server (NTRS)

    Chandler, Jesse M (Inventor); Staubach, Joseph B (Inventor); Suciu, Gabriel L (Inventor)

    2016-01-01

    A gas generator for a reverse core engine propulsion system has a variable cycle intake for the gas generator, which variable cycle intake includes a duct system. The duct system is configured for being selectively disposed in a first position and a second position, wherein free stream air is fed to the gas generator when in the first position, and fan stream air is fed to the gas generator when in the second position.

  14. Water table tests of proposed heat transfer tunnels for small turbine vanes

    NASA Technical Reports Server (NTRS)

    Meitner, P. L.

    1974-01-01

    Water-table flow tests were conducted for proposed heat-transfer tunnels which were designed to provide uniform flow into their respective test sections of a single core engine turbine vane and a full annular ring of helicopter turbine vanes. Water-table tests were also performed for the single-vane test section of the core engine tunnel. The flow in the heat-transfer tunnels was shown to be acceptable.

  15. Ceramic regenerator systems development program

    NASA Technical Reports Server (NTRS)

    Fucinari, C. A.; Rahnke, C. J.; Rao, V. D. N.; Vallance, J. K.

    1980-01-01

    The DOE/NASA Ceramic Regenerator Design and Reliability Program aims to develop ceramic regenerator cores that can be used in passenger car and industrial/truck gas turbine engines. The major cause of failure of early gas turbine regenerators was found to be chemical attack of the ceramic material. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability test in Ford 707 industrial gas turbine engines late in 1974. Results of 53,065 hours of turbine engine durability testing are described. Two materials, aluminum silicate and magnesium aluminum silicate, show promise. Five aluminum silicate cores attained the durability objective of 10,000 hours at 800 C (1472 F). Another aluminum silicate core shows minimal evidence of chemical attack after 8071 hours at 982 C (1800 F). Results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are included.

  16. Network resilience in the face of health system reform.

    PubMed

    Sheaff, Rod; Benson, Lawrence; Farbus, Lou; Schofield, Jill; Mannion, Russell; Reeves, David

    2010-03-01

    Many health systems now use networks as governance structures. Network 'macroculture' is the complex of artefacts, espoused values and unarticulated assumptions through which network members coordinate network activities. Knowledge of how network macroculture during 2006-2008 develops is therefore of value for understanding how health networks operate, how health system reforms affect them, and how networks function (and can be used) as governance structures. To examine how quasi-market reforms impact upon health networks' macrocultures we systematically compared longitudinal case studies of these impacts across two care networks, a programme network and a user-experience network in the English NHS. We conducted interviews with key informants, focus groups, non-participant observations of meetings and analyses of key documents. We found that in these networks, artefacts adapted to health system reform faster than espoused values did, and the latter adapted faster than basic underlying assumptions. These findings contribute to knowledge by providing empirical support for theories which hold that changes in networks' core practical activity are what stimulate changes in other aspects of network macroculture. The most powerful way of using network macroculture to manage the formation and operation of health networks therefore appears to be by focusing managerial activity on the ways in which networks produce their core artefacts. 2009 Elsevier Ltd. All rights reserved.

  17. Spacewire router IP-core with priority adaptive routing

    NASA Astrophysics Data System (ADS)

    Shakhmatov, A. V.; Chekmarev, S. A.; Vergasov, M. Y.; Khanov, V. Kh

    2015-10-01

    Design of modern spacecraft focuses on using network principles of interaction on-board equipment, in particular in network SpaceWire. Routers are an integral part of most SpaceWire networks. The paper presents an adaptive routing algorithm with a prioritization, allowing more flexibility to manage the routing process. This algorithm is designed to transmit SpaceWire packets over a redundant network. Also a method is proposed for rapid restoration of working capacity after power by saving the routing table and the router configuration in an external non-volatile memory. The proposed solutions used to create IP-core router, and then tested in the FPGA device. The results illustrate the realizability and rationality of the proposed solutions.

  18. 75 FR 26180 - Effects on Broadband Communications Networks of Damage To or Failure of Network Equipment or...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ... seeks comment on the scope of its ancillary authority with regard to the matters described in this NOI... networks. For example, to what extent are core and edge network links protected with ``dark'' backup links...

  19. Exploring the "what if?" in geology through a RESTful open-source framework for cloud-based simulation and analysis

    NASA Astrophysics Data System (ADS)

    Klump, Jens; Robertson, Jess

    2016-04-01

    The spatial and temporal extent of geological phenomena makes experiments in geology difficult to conduct, if not entirely impossible and collection of data is laborious and expensive - so expensive that most of the time we cannot test a hypothesis. The aim, in many cases, is to gather enough data to build a predictive geological model. Even in a mine, where data are abundant, a model remains incomplete because the information at the level of a blasting block is two orders of magnitude larger than the sample from a drill core, and we have to take measurement errors into account. So, what confidence can we have in a model based on sparse data, uncertainties and measurement error? Our framework consist of two layers: (a) a ground-truth layer that contains geological models, which can be statistically based on historical operations data, and (b) a network of RESTful synthetic sensor microservices which can query the ground-truth for underlying properties and produce a simulated measurement to a control layer, which could be a database or LIMS, a machine learner or a companies' existing data infrastructure. Ground truth data are generated by an implicit geological model which serves as a host for nested models of geological processes as smaller scales. Our two layers are implemented using Flask and Gunicorn, which are open source Python web application framework and server, the PyData stack (numpy, scipy etc) and Rabbit MQ (an open-source queuing library). Sensor data is encoded using a JSON-LD version of the SensorML and Observations and Measurements standards. Containerisation of the synthetic sensors using Docker and CoreOS allows rapid and scalable deployment of large numbers of sensors, as well as sensor discovery to form a self-organized dynamic network of sensors. Real-time simulation of data sources can be used to investigate crucial questions such as the potential information gain from future sensing capabilities, or from new sampling strategies, or the combination of both, and it enables us to test many "what if?" questions, both in geology and in data engineering. What would we be able to see if we could obtain data at higher resolution? How would real-time data analysis change sampling strategies? Does our data infrastructure handle many new real-time data streams? What feature engineering can be deducted for machine learning approaches? By providing a 'data sandbox' able to scale to realistic geological scenarios we hope to start answering some of these questions. Faults happen in real world networks. Future work will investigate the effect of failure on dynamic sensor networks and the impact on the predictive capability of machine learning algorithms.

  20. A Novel Modeling Method for Aircraft Engine Using Nonlinear Autoregressive Exogenous (NARX) Models Based on Wavelet Neural Networks

    NASA Astrophysics Data System (ADS)

    Yu, Bing; Shu, Wenjun; Cao, Can

    2018-05-01

    A novel modeling method for aircraft engine using nonlinear autoregressive exogenous (NARX) models based on wavelet neural networks is proposed. The identification principle and process based on wavelet neural networks are studied, and the modeling scheme based on NARX is proposed. Then, the time series data sets from three types of aircraft engines are utilized to build the corresponding NARX models, and these NARX models are validated by the simulation. The results show that all the best NARX models can capture the original aircraft engine's dynamic characteristic well with the high accuracy. For every type of engine, the relative identification errors of its best NARX model and the component level model are no more than 3.5 % and most of them are within 1 %.

  1. Towards a portal and search engine to facilitate academic and research collaboration in engineering and education

    NASA Astrophysics Data System (ADS)

    Bonilla Villarreal, Isaura Nathaly

    While international academic and research collaborations are of great importance at this time, it is not easy to find researchers in the engineering field that publish in languages other than English. Because of this disconnect, there exists a need for a portal to find Who's Who in Engineering Education in the Americas. The objective of this thesis is to built an object-oriented architecture for this proposed portal. The Unified Modeling Language (UML) model developed in this thesis incorporates the basic structure of a social network for academic purposes. Reverse engineering of three social networks portals yielded important aspects of their structures that have been incorporated in the proposed UML model. Furthermore, the present work includes a pattern for academic social networks..

  2. TARGET's role in knowledge acquisition, engineering, validation, and documentation

    NASA Technical Reports Server (NTRS)

    Levi, Keith R.

    1994-01-01

    We investigate the use of the TARGET task analysis tool for use in the development of rule-based expert systems. We found TARGET to be very helpful in the knowledge acquisition process. It enabled us to perform knowledge acquisition with one knowledge engineer rather than two. In addition, it improved communication between the domain expert and knowledge engineer. We also found it to be useful for both the rule development and refinement phases of the knowledge engineering process. Using the network in these phases required us to develop guidelines that enabled us to easily translate the network into production rules. A significant requirement for TARGET remaining useful throughout the knowledge engineering process was the need to carefully maintain consistency between the network and the rule representations. Maintaining consistency not only benefited the knowledge engineering process, but also has significant payoffs in the areas of validation of the expert system and documentation of the knowledge in the system.

  3. CellNet: Network Biology Applied to Stem Cell Engineering

    PubMed Central

    Cahan, Patrick; Li, Hu; Morris, Samantha A.; da Rocha, Edroaldo Lummertz; Daley, George Q.; Collins, James J.

    2014-01-01

    SUMMARY Somatic cell reprogramming, directed differentiation of pluripotent stem cells, and direct conversions between differentiated cell lineages represent powerful approaches to engineer cells for research and regenerative medicine. We have developed CellNet, a network biology platform that more accurately assesses the fidelity of cellular engineering than existing methodologies and generates hypotheses for improving cell derivations. Analyzing expression data from 56 published reports, we found that cells derived via directed differentiation more closely resemble their in vivo counterparts than products of direct conversion, as reflected by the establishment of target cell-type gene regulatory networks (GRNs). Furthermore, we discovered that directly converted cells fail to adequately silence expression programs of the starting population, and that the establishment of unintended GRNs is common to virtually every cellular engineering paradigm. CellNet provides a platform for quantifying how closely engineered cell populations resemble their target cell type and a rational strategy to guide enhanced cellular engineering. PMID:25126793

  4. Resistive switching of Sn-doped In2O3/HfO2 core-shell nanowire: geometry architecture engineering for nonvolatile memory.

    PubMed

    Huang, Chi-Hsin; Chang, Wen-Chih; Huang, Jian-Shiou; Lin, Shih-Ming; Chueh, Yu-Lun

    2017-05-25

    Core-shell NWs offer an innovative approach to achieve nanoscale metal-insulator-metal (MIM) heterostructures along the wire radial direction, realizing three-dimensional geometry architecture rather than planar type thin film devices. This work demonstrated the tunable resistive switching characteristics of ITO/HfO 2 core-shell nanowires with controllable shell thicknesses by the atomic layer deposition (ALD) process for the first time. Compared to planar HfO 2 thin film device configuration, ITO/HfO 2 core-shell nanowire shows a prominent resistive memory behavior, including lower power consumption with a smaller SET voltage of ∼0.6 V and better switching voltage uniformity with variations (standard deviation(σ)/mean value (μ)) of V SET and V RESET from 0.38 to 0.14 and from 0.33 to 0.05 for ITO/HfO 2 core-shell nanowire and planar HfO 2 thin film, respectively. In addition, endurance over 10 3 cycles resulting from the local electric field enhancement can be achieved, which is attributed to geometry architecture engineering. The concept of geometry architecture engineering provides a promising strategy to modify the electric-field distribution for solving the non-uniformity issue of future RRAM.

  5. The evolution of metabolic networks of E. coli

    PubMed Central

    2011-01-01

    Background Despite the availability of numerous complete genome sequences from E. coli strains, published genome-scale metabolic models exist only for two commensal E. coli strains. These models have proven useful for many applications, such as engineering strains for desired product formation, and we sought to explore how constructing and evaluating additional metabolic models for E. coli strains could enhance these efforts. Results We used the genomic information from 16 E. coli strains to generate an E. coli pangenome metabolic network by evaluating their collective 76,990 ORFs. Each of these ORFs was assigned to one of 17,647 ortholog groups including ORFs associated with reactions in the most recent metabolic model for E. coli K-12. For orthologous groups that contain an ORF already represented in the MG1655 model, the gene to protein to reaction associations represented in this model could then be easily propagated to other E. coli strain models. All remaining orthologous groups were evaluated to see if new metabolic reactions could be added to generate a pangenome-scale metabolic model (iEco1712_pan). The pangenome model included reactions from a metabolic model update for E. coli K-12 MG1655 (iEco1339_MG1655) and enabled development of five additional strain-specific genome-scale metabolic models. These additional models include a second K-12 strain (iEco1335_W3110) and four pathogenic strains (two enterohemorrhagic E. coli O157:H7 and two uropathogens). When compared to the E. coli K-12 models, the metabolic models for the enterohemorrhagic (iEco1344_EDL933 and iEco1345_Sakai) and uropathogenic strains (iEco1288_CFT073 and iEco1301_UTI89) contained numerous lineage-specific gene and reaction differences. All six E. coli models were evaluated by comparing model predictions to carbon source utilization measurements under aerobic and anaerobic conditions, and to batch growth profiles in minimal media with 0.2% (w/v) glucose. An ancestral genome-scale metabolic model based on conserved ortholog groups in all 16 E. coli genomes was also constructed, reflecting the conserved ancestral core of E. coli metabolism (iEco1053_core). Comparative analysis of all six strain-specific E. coli models revealed that some of the pathogenic E. coli strains possess reactions in their metabolic networks enabling higher biomass yields on glucose. Finally the lineage-specific metabolic traits were compared to the ancestral core model predictions to derive new insight into the evolution of metabolism within this species. Conclusion Our findings demonstrate that a pangenome-scale metabolic model can be used to rapidly construct additional E. coli strain-specific models, and that quantitative models of different strains of E. coli can accurately predict strain-specific phenotypes. Such pangenome and strain-specific models can be further used to engineer metabolic phenotypes of interest, such as designing new industrial E. coli strains. PMID:22044664

  6. Separating Turbofan Engine Noise Sources Using Auto and Cross Spectra from Four Microphones

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2008-01-01

    The study of core noise from turbofan engines has become more important as noise from other sources such as the fan and jet were reduced. A multiple-microphone and acoustic-source modeling method to separate correlated and uncorrelated sources is discussed. The auto- and cross spectra in the frequency range below 1000 Hz are fitted with a noise propagation model based on a source couplet consisting of a single incoherent monopole source with a single coherent monopole source or a source triplet consisting of a single incoherent monopole source with two coherent monopole point sources. Examples are presented using data from a Pratt& Whitney PW4098 turbofan engine. The method separates the low-frequency jet noise from the core noise at the nozzle exit. It is shown that at low power settings, the core noise is a major contributor to the noise. Even at higher power settings, it can be more important than jet noise. However, at low frequencies, uncorrelated broadband noise and jet noise become the important factors as the engine power setting is increased.

  7. A Measure of Systems Engineering Effectiveness in Government Acquisition of Complex Information Systems: A Bayesian Belief Network-Based Approach

    ERIC Educational Resources Information Center

    Doskey, Steven Craig

    2014-01-01

    This research presents an innovative means of gauging Systems Engineering effectiveness through a Systems Engineering Relative Effectiveness Index (SE REI) model. The SE REI model uses a Bayesian Belief Network to map causal relationships in government acquisitions of Complex Information Systems (CIS), enabling practitioners to identify and…

  8. A case study for retaining nuclear power experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckjord, E.S.

    1996-12-31

    Nuclear engineering departments at U.S. universities are rethinking curricula to focus on essentials. Prospective engineers must know nuclear engineering disciplines, but knowing how their engineering forebears solved important problems will empower them even more by learning some history along with engineering. I suggest a way to retain experience, giving an example: the emergency core cooling system (ECCS) controversy and resolution.

  9. Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats.

    PubMed

    Li, Borui; Feng, Zhenhua; Tang, Ming; Xu, Zhilin; Fu, Songnian; Wu, Qiong; Deng, Lei; Tong, Weijun; Liu, Shuang; Shum, Perry Ping

    2015-05-04

    Towards the next generation optical access network supporting large capacity data transmission to enormous number of users covering a wider area, we proposed a hybrid wavelength-space division multiplexing (WSDM) optical access network architecture utilizing multicore fibers with advanced modulation formats. As a proof of concept, we experimentally demonstrated a WSDM optical access network with duplex transmission using our developed and fabricated multicore (7-core) fibers with 58.7km distance. As a cost-effective modulation scheme for access network, the optical OFDM-QPSK signal has been intensity modulated on the downstream transmission in the optical line terminal (OLT) and it was directly detected in the optical network unit (ONU) after MCF transmission. 10 wavelengths with 25GHz channel spacing from an optical comb generator are employed and each wavelength is loaded with 5Gb/s OFDM-QPSK signal. After amplification, power splitting, and fan-in multiplexer, 10-wavelength downstream signal was injected into six outer layer cores simultaneously and the aggregation downstream capacity reaches 300 Gb/s. -16 dBm sensitivity has been achieved for 3.8 × 10-3 bit error ratio (BER) with 7% Forward Error Correction (FEC) limit for all wavelengths in every core. Upstream signal from ONU side has also been generated and the bidirectional transmission in the same core causes negligible performance degradation to the downstream signal. As a universal platform for wired/wireless data access, our proposed architecture provides additional dimension for high speed mobile signal transmission and we hence demonstrated an upstream delivery of 20Gb/s per wavelength with QPSK modulation formats using the inner core of MCF emulating a mobile backhaul service. The IQ modulated data was coherently detected in the OLT side. -19 dBm sensitivity has been achieved under the FEC limit and more than 18 dB power budget is guaranteed.

  10. Hamsters, Picture Books, and Engineering Design

    ERIC Educational Resources Information Center

    Tank, Kristina; Pettis, Christy; Moore, Tamara; Fehr, Abby

    2013-01-01

    With the integration of engineering into science instruction, teachers have been seeking ways to add engineering in their classrooms. This article presents a primary (K-2) STEM unit that took place in a half-day kindergarten classroom as a way to address the scientific and engineering practices (dimension 1, p.41) and the disciplinary core idea…

  11. Online Data Resources in Chemical Engineering Education: Impact of the Uncertainty Concept for Thermophysical Properties

    ERIC Educational Resources Information Center

    Kim, Sun Hyung; Kang, Jeong Won; Kroenlein, Kenneth; Magee, Joseph W.; Diky, Vladimir; Muzny, Chris D.; Kazakov, Andrei F.; Chirico, Robert D.; Frenkel, Michael

    2013-01-01

    We review the concept of uncertainty for thermophysical properties and its critical impact for engineering applications in the core courses of chemical engineering education. To facilitate the translation of developments to engineering education, we employ NIST Web Thermo Tables to furnish properties data with their associated expanded…

  12. Standardized Curriculum for Small Engine Repair.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    This curriculum guide for small engine repair was developed by the state of Mississippi to standardize vocational education course titles and core contents. The objectives contained in this document are common to all small engine repair programs in the state. The guide contains objectives for small engine repair I and II courses. Units in course I…

  13. Modeling and Detection of Ice Particle Accretion in Aircraft Engine Compression Systems

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Simon, Donald L.; Guo, Ten-Huei

    2012-01-01

    The accretion of ice particles in the core of commercial aircraft engines has been an ongoing aviation safety challenge. While no accidents have resulted from this phenomenon to date, numerous engine power loss events ranging from uneventful recoveries to forced landings have been recorded. As a first step to enabling mitigation strategies during ice accretion, a detection scheme must be developed that is capable of being implemented on board modern engines. In this paper, a simple detection scheme is developed and tested using a realistic engine simulation with approximate ice accretion models based on data from a compressor design tool. These accretion models are implemented as modified Low Pressure Compressor maps and have the capability to shift engine performance based on a specified level of ice blockage. Based on results from this model, it is possible to detect the accretion of ice in the engine core by observing shifts in the typical sensed engine outputs. Results are presented in which, for a 0.1 percent false positive rate, a true positive detection rate of 98 percent is achieved.

  14. Resilient Core Networks for Energy Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuntze, Nicolai; Rudolph, Carsten; Leivesley, Sally

    2014-07-28

    Abstract—Substations and their control are crucial for the availability of electricity in today’s energy distribution. Ad- vanced energy grids with Distributed Energy Resources require higher complexity in substations, distributed functionality and communication between devices inside substations and between substations. Also, substations include more and more intelligent devices and ICT based systems. All these devices are connected to other systems by different types of communication links or are situated in uncontrolled environments. Therefore, the risk of ICT based attacks on energy grids is growing. Consequently, security measures to counter these risks need to be an intrinsic part of energy grids. Thismore » paper introduces the concept of a Resilient Core Network to interconnected substations. This core network provides essen- tial security features, enables fast detection of attacks and allows for a distributed and autonomous mitigation of ICT based risks.« less

  15. An auxiliary graph based dynamic traffic grooming algorithm in spatial division multiplexing enabled elastic optical networks with multi-core fibers

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Tian, Rui; Yu, Xiaosong; Zhang, Jiawei; Zhang, Jie

    2017-03-01

    A proper traffic grooming strategy in dynamic optical networks can improve the utilization of bandwidth resources. An auxiliary graph (AG) is designed to solve the traffic grooming problem under a dynamic traffic scenario in spatial division multiplexing enabled elastic optical networks (SDM-EON) with multi-core fibers. Five traffic grooming policies achieved by adjusting the edge weights of an AG are proposed and evaluated through simulation: maximal electrical grooming (MEG), maximal optical grooming (MOG), maximal SDM grooming (MSG), minimize virtual hops (MVH), and minimize physical hops (MPH). Numeric results show that each traffic grooming policy has its own features. Among different traffic grooming policies, an MPH policy can achieve the lowest bandwidth blocking ratio, MEG can save the most transponders, and MSG can obtain the fewest cores for each request.

  16. Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part II: from genes to networks: tissue engineering from the viewpoint of systems biology and network science.

    PubMed

    Lenas, Petros; Moos, Malcolm; Luyten, Frank P

    2009-12-01

    The field of tissue engineering is moving toward a new concept of "in vitro biomimetics of in vivo tissue development." In Part I of this series, we proposed a theoretical framework integrating the concepts of developmental biology with those of process design to provide the rules for the design of biomimetic processes. We named this methodology "developmental engineering" to emphasize that it is not the tissue but the process of in vitro tissue development that has to be engineered. To formulate the process design rules in a rigorous way that will allow a computational design, we should refer to mathematical methods to model the biological process taking place in vitro. Tissue functions cannot be attributed to individual molecules but rather to complex interactions between the numerous components of a cell and interactions between cells in a tissue that form a network. For tissue engineering to advance to the level of a technologically driven discipline amenable to well-established principles of process engineering, a scientifically rigorous formulation is needed of the general design rules so that the behavior of networks of genes, proteins, or cells that govern the unfolding of developmental processes could be related to the design parameters. Now that sufficient experimental data exist to construct plausible mathematical models of many biological control circuits, explicit hypotheses can be evaluated using computational approaches to facilitate process design. Recent progress in systems biology has shown that the empirical concepts of developmental biology that we used in Part I to extract the rules of biomimetic process design can be expressed in rigorous mathematical terms. This allows the accurate characterization of manufacturing processes in tissue engineering as well as the properties of the artificial tissues themselves. In addition, network science has recently shown that the behavior of biological networks strongly depends on their topology and has developed the necessary concepts and methods to describe it, allowing therefore a deeper understanding of the behavior of networks during biomimetic processes. These advances thus open the door to a transition for tissue engineering from a substantially empirical endeavor to a technology-based discipline comparable to other branches of engineering.

  17. The NUONCE engine for LEO networks

    NASA Technical Reports Server (NTRS)

    Lo, Martin W.; Estabrook, Polly

    1995-01-01

    Typical LEO networks use constellations which provide a uniform coverage. However, the demand for telecom service is dynamic and unevenly distributed around the world. We examine a more efficient and cost effective design by matching the satellite coverage with the cyclical demand for service around the world. Our approach is to use a non-uniform satellite distribution for the network. We have named this constellation design NUONCE for Non Uniform Optimal Network Communications Engine.

  18. Fabrication of a reticular poly(lactide-co-glycolide) cylindrical scaffold for the in vitro development of microvascular networks

    NASA Astrophysics Data System (ADS)

    Tung, Yen-Ting; Chang, Cheng-Chung; Ju, Jyh-Cherng; Wang, Gou-Jen

    2017-12-01

    The microvascular network is a simple but critical system that is responsible for a range of important biological mechanisms in the bodies of all animals. The ability to generate a functional microvessel not only makes it possible to engineer vital tissue of considerable size but also serves as a platform for biomedical studies. However, most of the current methods for generating microvessel networks in vitro use rectangular channels which cannot represent real vessels in vivo and have dead zones at their corners, hence hindering the circulation of culture medium. We propose a scaffold-wrapping method which enables fabrication of a customized microvascular network in vitro in a more biomimetic way. By integrating microelectromechanical techniques with thermal reflow, we designed and fabricated a microscale hemi-cylindrical photoresist template. A replica mold of polydimethylsiloxane, produced by casting, was then used to generate cylindrical scaffolds with biodegradable poly(lactide-co-glycolide) (PLGA). Human umbilical vein endothelial cells were seeded on both sides of the PLGA scaffold and cultured using a traditional approach. The expression of endothelial cell marker CD31 and intercellular junction vascular endothelial cadherin on the cultured cell demonstrated the potential of generating a microvascular network with a degradable cylindrical scaffold. Our method allows cells to be cultured on a scaffold using a conventional culture approach and monitors cell conditions continuously. We hope our cell-covered scaffold can serve as a framework for building large tissues or can be used as the core of a vascular chip for in vitro circulation studies.

  19. Topology-dependent rationality and quantal response equilibria in structured populations

    NASA Astrophysics Data System (ADS)

    Roman, Sabin; Brede, Markus

    2017-05-01

    Given that the assumption of perfect rationality is rarely met in the real world, we explore a graded notion of rationality in socioecological systems of networked actors. We parametrize an actors' rationality via their place in a social network and quantify system rationality via the average Jensen-Shannon divergence between the games Nash and logit quantal response equilibria. Previous work has argued that scale-free topologies maximize a system's overall rationality in this setup. Here we show that while, for certain games, it is true that increasing degree heterogeneity of complex networks enhances rationality, rationality-optimal configurations are not scale-free. For the Prisoner's Dilemma and Stag Hunt games, we provide analytic arguments complemented by numerical optimization experiments to demonstrate that core-periphery networks composed of a few dominant hub nodes surrounded by a periphery of very low degree nodes give strikingly smaller overall deviations from rationality than scale-free networks. Similarly, for the Battle of the Sexes and the Matching Pennies games, we find that the optimal network structure is also a core-periphery graph but with a smaller difference in the average degrees of the core and the periphery. These results provide insight on the interplay between the topological structure of socioecological systems and their collective cognitive behavior, with potential applications to understanding wealth inequality and the structural features of the network of global corporate control.

  20. Investigating the specific core genetic-and-epigenetic networks of cellular mechanisms involved in human aging in peripheral blood mononuclear cells

    PubMed Central

    Li, Cheng-Wei; Wang, Wen-Hsin; Chen, Bor-Sen

    2016-01-01

    Aging is an inevitable part of life for humans, and slowing down the aging process has become a main focus of human endeavor. Here, we applied a systems biology approach to construct protein-protein interaction networks, gene regulatory networks, and epigenetic networks, i.e. genetic and epigenetic networks (GENs), of elderly individuals and young controls. We then compared these GENs to extract aging mechanisms using microarray data in peripheral blood mononuclear cells, microRNA (miRNA) data, and database mining. The core GENs of elderly individuals and young controls were obtained by applying principal network projection to GENs based on Principal Component Analysis. By comparing the core networks, we identified that to overcome the accumulated mutation of genes in the aging process the transcription factor JUN can be activated by stress signals, including the MAPK signaling, T-cell receptor signaling, and neurotrophin signaling pathways through DNA methylation of BTG3, G0S2, and AP2B1 and the regulations of mir-223 let-7d, and mir-130a. We also address the aging mechanisms in old men and women. Furthermore, we proposed that drugs designed to target these DNA methylated genes or miRNAs may delay aging. A multiple drug combination comprising phenylalanine, cholesterol, and palbociclib was finally designed for delaying the aging process. PMID:26895224

  1. Topology-dependent rationality and quantal response equilibria in structured populations.

    PubMed

    Roman, Sabin; Brede, Markus

    2017-05-01

    Given that the assumption of perfect rationality is rarely met in the real world, we explore a graded notion of rationality in socioecological systems of networked actors. We parametrize an actors' rationality via their place in a social network and quantify system rationality via the average Jensen-Shannon divergence between the games Nash and logit quantal response equilibria. Previous work has argued that scale-free topologies maximize a system's overall rationality in this setup. Here we show that while, for certain games, it is true that increasing degree heterogeneity of complex networks enhances rationality, rationality-optimal configurations are not scale-free. For the Prisoner's Dilemma and Stag Hunt games, we provide analytic arguments complemented by numerical optimization experiments to demonstrate that core-periphery networks composed of a few dominant hub nodes surrounded by a periphery of very low degree nodes give strikingly smaller overall deviations from rationality than scale-free networks. Similarly, for the Battle of the Sexes and the Matching Pennies games, we find that the optimal network structure is also a core-periphery graph but with a smaller difference in the average degrees of the core and the periphery. These results provide insight on the interplay between the topological structure of socioecological systems and their collective cognitive behavior, with potential applications to understanding wealth inequality and the structural features of the network of global corporate control.

  2. A Graph theoretical approach to study the organization of the cortical networks during different mathematical tasks.

    PubMed

    Klados, Manousos A; Kanatsouli, Kassia; Antoniou, Ioannis; Babiloni, Fabio; Tsirka, Vassiliki; Bamidis, Panagiotis D; Micheloyannis, Sifis

    2013-01-01

    The two core systems of mathematical processing (subitizing and retrieval) as well as their functionality are already known and published. In this study we have used graph theory to compare the brain network organization of these two core systems in the cortical layer during difficult calculations. We have examined separately all the EEG frequency bands in healthy young individuals and we found that the network organization at rest, as well as during mathematical tasks has the characteristics of Small World Networks for all the bands, which is the optimum organization required for efficient information processing. The different mathematical stimuli provoked changes in the graph parameters of different frequency bands, especially the low frequency bands. More specific, in Delta band the induced network increases it's local and global efficiency during the transition from subitizing to retrieval system, while results suggest that difficult mathematics provoke networks with higher cliquish organization due to more specific demands. The network of the Theta band follows the same pattern as before, having high nodal and remote organization during difficult mathematics. Also the spatial distribution of the network's weights revealed more prominent connections in frontoparietal regions, revealing the working memory load due to the engagement of the retrieval system. The cortical networks of the alpha brainwaves were also more efficient, both locally and globally, during difficult mathematics, while the fact that alpha's network was more dense on the frontparietal regions as well, reveals the engagement of the retrieval system again. Concluding, this study gives more evidences regarding the interaction of the two core systems, exploiting the produced functional networks of the cerebral cortex, especially for the difficult mathematics.

  3. Molecular communication and networking: opportunities and challenges.

    PubMed

    Nakano, Tadashi; Moore, Michael J; Wei, Fang; Vasilakos, Athanasios V; Shuai, Jianwei

    2012-06-01

    The ability of engineered biological nanomachines to communicate with biological systems at the molecular level is anticipated to enable future applications such as monitoring the condition of a human body, regenerating biological tissues and organs, and interfacing artificial devices with neural systems. From the viewpoint of communication theory and engineering, molecular communication is proposed as a new paradigm for engineered biological nanomachines to communicate with the natural biological nanomachines which form a biological system. Distinct from the current telecommunication paradigm, molecular communication uses molecules as the carriers of information; sender biological nanomachines encode information on molecules and release the molecules in the environment, the molecules then propagate in the environment to receiver biological nanomachines, and the receiver biological nanomachines biochemically react with the molecules to decode information. Current molecular communication research is limited to small-scale networks of several biological nanomachines. Key challenges to bridge the gap between current research and practical applications include developing robust and scalable techniques to create a functional network from a large number of biological nanomachines. Developing networking mechanisms and communication protocols is anticipated to introduce new avenues into integrating engineered and natural biological nanomachines into a single networked system. In this paper, we present the state-of-the-art in the area of molecular communication by discussing its architecture, features, applications, design, engineering, and physical modeling. We then discuss challenges and opportunities in developing networking mechanisms and communication protocols to create a network from a large number of bio-nanomachines for future applications.

  4. Establishing ecological networks for habitat conservation in the case of Çeşme-Urla Peninsula, Turkey.

    PubMed

    Hepcan, Ciğdem Coşkun; Ozkan, Mehmet Bülent

    2011-03-01

    The study involves the Çeşme-Urla Peninsula, where habitat fragmentation and loss, which threaten biological diversity, have become an urgent matter of concern in recent decades. The study area has been subjected to anthropogenic pressures and alterations due to ongoing and impending land uses. Therefore, ecological networks, as an appropriate way to deal with habitat fragmentation and loss and to improve ecological quality, were identified in the study area as one of the early attempts in the country to maintain its rich biodiversity. In this sense, core areas and ecological linkages as primary components of ecological networks were established on the basis of sustaining natural habitats. A GIS-based model was created to identify core areas and to facilitate the ecological connectivity. The modeling process for core areas and corridors combined 14 and 21 different variables, respectively. The variables were used as environmental inputs in the model, and all analyses were materialized in ArcGIS 9.2 using grid functions of image analysis and spatial analyst modules. As a result, six core areas and 36 corridor alternatives were materialized. Furthermore, some recommendations for the implementation and management of the proposed ecological networks were revealed and discussed.

  5. Ag/Au/Polypyrrole Core-shell Nanowire Network for Transparent, Stretchable and Flexible Supercapacitor in Wearable Energy Devices

    NASA Astrophysics Data System (ADS)

    Moon, Hyunjin; Lee, Habeom; Kwon, Jinhyeong; Suh, Young Duk; Kim, Dong Kwan; Ha, Inho; Yeo, Junyeob; Hong, Sukjoon; Ko, Seung Hwan

    2017-02-01

    Transparent and stretchable energy storage devices have attracted significant interest due to their potential to be applied to biocompatible and wearable electronics. Supercapacitors that use the reversible faradaic redox reaction of conducting polymer have a higher specific capacitance as compared with electrical double-layer capacitors. Typically, the conducting polymer electrode is fabricated through direct electropolymerization on the current collector. However, no research have been conducted on metal nanowires as current collectors for the direct electropolymerization, even though the metal nanowire network structure has proven to be superior as a transparent, flexible, and stretchable electrode platform because the conducting polymer’s redox potential for polymerization is higher than that of widely studied metal nanowires such as silver and copper. In this study, we demonstrated a highly transparent and stretchable supercapacitor by developing Ag/Au/Polypyrrole core-shell nanowire networks as electrode by coating the surface of Ag NWs with a thin layer of gold, which provide higher redox potential than the electropolymerizable monomer. The Ag/Au/Polypyrrole core-shell nanowire networks demonstrated superior mechanical stability under various mechanical bending and stretching. In addition, proposed supercapacitors showed fine optical transmittance together with fivefold improved areal capacitance compared to pristine Ag/Au core-shell nanowire mesh-based supercapacitors.

  6. Ag/Au/Polypyrrole Core-shell Nanowire Network for Transparent, Stretchable and Flexible Supercapacitor in Wearable Energy Devices

    PubMed Central

    Moon, Hyunjin; Lee, Habeom; Kwon, Jinhyeong; Suh, Young Duk; Kim, Dong Kwan; Ha, Inho; Yeo, Junyeob; Hong, Sukjoon; Ko, Seung Hwan

    2017-01-01

    Transparent and stretchable energy storage devices have attracted significant interest due to their potential to be applied to biocompatible and wearable electronics. Supercapacitors that use the reversible faradaic redox reaction of conducting polymer have a higher specific capacitance as compared with electrical double-layer capacitors. Typically, the conducting polymer electrode is fabricated through direct electropolymerization on the current collector. However, no research have been conducted on metal nanowires as current collectors for the direct electropolymerization, even though the metal nanowire network structure has proven to be superior as a transparent, flexible, and stretchable electrode platform because the conducting polymer’s redox potential for polymerization is higher than that of widely studied metal nanowires such as silver and copper. In this study, we demonstrated a highly transparent and stretchable supercapacitor by developing Ag/Au/Polypyrrole core-shell nanowire networks as electrode by coating the surface of Ag NWs with a thin layer of gold, which provide higher redox potential than the electropolymerizable monomer. The Ag/Au/Polypyrrole core-shell nanowire networks demonstrated superior mechanical stability under various mechanical bending and stretching. In addition, proposed supercapacitors showed fine optical transmittance together with fivefold improved areal capacitance compared to pristine Ag/Au core-shell nanowire mesh-based supercapacitors. PMID:28155913

  7. Energy efficient engine low-pressure compressor component test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Michael, C. J.; Halle, J. E.

    1981-01-01

    The aerodynamic and mechanical design description of the low pressure compressor component of the Energy Efficient Engine were used. The component was designed to meet the requirements of the Flight Propulsion System while maintaining a low cost approach in providing a low pressure compressor design for the Integrated Core/Low Spool test required in the Energy Efficient Engine Program. The resulting low pressure compressor component design meets or exceeds all design goals with the exception of surge margin. In addition, the expense of hardware fabrication for the Integrated Core/Low Spool test has been minimized through the use of existing minor part hardware.

  8. Rich club analysis in the Alzheimer's disease connectome reveals a relatively undisturbed structural core network

    PubMed Central

    Daianu, Madelaine; Jahanshad, Neda; Nir, Talia M.; Jack, Clifford R.; Weiner, Michael W.; Bernstein, Matthew; Thompson, Paul M.

    2015-01-01

    Diffusion imaging can assess the white matter connections within the brain, revealing how neural pathways break down in Alzheimer's disease (AD). We analyzed 3-Tesla whole-brain diffusion-weighted images from 202 participants scanned by the Alzheimer's Disease Neuroimaging Initiative – 50 healthy controls, 110 with mild cognitive impairment (MCI) and 42 AD patients. From whole-brain tractography, we reconstructed structural brain connectivity networks to map connections between cortical regions. We tested whether AD disrupts the ‘rich-club’ – a network property where high-degree network nodes are more interconnected than expected by chance. We calculated the rich-club properties at a range of degree thresholds, as well as other network topology measures including global degree, clustering coefficient, path length and efficiency. Network disruptions predominated in the low-degree regions of the connectome in patients, relative to controls. The other metrics also showed alterations, suggesting a distinctive pattern of disruption in AD, less pronounced in MCI, targeting global brain connectivity, and focusing on more remotely connected nodes rather than the central core of the network. AD involves severely reduced structural connectivity; our step-wise rich club coefficients analyze points to disruptions predominantly in the peripheral network components; other modalities of data are needed to know if this indicates impaired communication among non rich-club regions. The highly connected core was relatively preserved, offering new evidence on the neural basis of progressive risk for cognitive decline. PMID:26037224

  9. [Regional network for patients with dementia--carrying out Kumamoto model for dementia].

    PubMed

    Ikeda, Manabu

    2014-01-01

    The Japanese government has tried to establish 150 Medical Centers for Dementia (MCDs) since 2008 to overcome the dementia medical service shortage. MCDs are required to provide special medical services for dementia and connect with other community resources in order to contribute to building a comprehensive support network for demented patients. The main specific needs are as follows: 1) special medical consultation; 2) differential diagnosis and early intervention; 3) medical treatment for the acute stage of BPSD; 4) corresponding to serious physical complications of dementia; 5) education for general physicians (GPs) and other community professionals. According to the population rate, two dementia medical centers were planned in Kumamoto Prefecture. However, it seemed to be too few to cover the vast Kumamoto area. Therefore, the local government and I proposed to the Japanese government that we build up networks that consist of one core MCD in our university hospital and several regional MCDs in local mental hospitals. The local government selected seven (nine at present) centers according to the area balance and condition of equipment. The Japanese government has recommended and funded such networks between core and regional centers since 2010. The main roles of the core centers are as follows: 1) early diagnosis such as Mild cognitive impairment, very mild Alzheimer's disease, Dementia with Lewy bodies, and Frontotemporal lobar degeneration using comprehensive neuropsychological batteries and neuroimagings, such as MRI and SPECT scans; 2) education for GPs; 3) training for young consultants. The core center opens case conferences at least every one or two months for all staff of regional centers to maintain the quality of all centers and give training opportunities for standardized international assessment scales. While the main roles of the regional centers are differential diagnosis, intervention for BPSD, and management of general medical problems using local networks with general hospitals and GPs, and organizing local networks for dementia with GPs and care staff In short, the regional centers take responsibility for ordinal clinical work for dementia. To construct a more extensive network, each regional center must hold regional case conferences and lectures on dementia for care staff and GPs sharing knowledge and skills acquired from case conferences by the core center.

  10. Perturbation of the mutated EGFR interactome identifies vulnerabilities and resistance mechanisms.

    PubMed

    Li, Jiannong; Bennett, Keiryn; Stukalov, Alexey; Fang, Bin; Zhang, Guolin; Yoshida, Takeshi; Okamoto, Isamu; Kim, Jae-Young; Song, Lanxi; Bai, Yun; Qian, Xiaoning; Rawal, Bhupendra; Schell, Michael; Grebien, Florian; Winter, Georg; Rix, Uwe; Eschrich, Steven; Colinge, Jacques; Koomen, John; Superti-Furga, Giulio; Haura, Eric B

    2013-11-05

    We hypothesized that elucidating the interactome of epidermal growth factor receptor (EGFR) forms that are mutated in lung cancer, via global analysis of protein-protein interactions, phosphorylation, and systematically perturbing the ensuing network nodes, should offer a new, more systems-level perspective of the molecular etiology. Here, we describe an EGFR interactome of 263 proteins and offer a 14-protein core network critical to the viability of multiple EGFR-mutated lung cancer cells. Cells with acquired resistance to EGFR tyrosine kinase inhibitors (TKIs) had differential dependence of the core network proteins based on the underlying molecular mechanisms of resistance. Of the 14 proteins, 9 are shown to be specifically associated with survival of EGFR-mutated lung cancer cell lines. This included EGFR, GRB2, MK12, SHC1, ARAF, CD11B, ARHG5, GLU2B, and CD11A. With the use of a drug network associated with the core network proteins, we identified two compounds, midostaurin and lestaurtinib, that could overcome drug resistance through direct EGFR inhibition when combined with erlotinib. Our results, enabled by interactome mapping, suggest new targets and combination therapies that could circumvent EGFR TKI resistance.

  11. Unifying Inference of Meso-Scale Structures in Networks.

    PubMed

    Tunç, Birkan; Verma, Ragini

    2015-01-01

    Networks are among the most prevalent formal representations in scientific studies, employed to depict interactions between objects such as molecules, neuronal clusters, or social groups. Studies performed at meso-scale that involve grouping of objects based on their distinctive interaction patterns form one of the main lines of investigation in network science. In a social network, for instance, meso-scale structures can correspond to isolated social groupings or groups of individuals that serve as a communication core. Currently, the research on different meso-scale structures such as community and core-periphery structures has been conducted via independent approaches, which precludes the possibility of an algorithmic design that can handle multiple meso-scale structures and deciding which structure explains the observed data better. In this study, we propose a unified formulation for the algorithmic detection and analysis of different meso-scale structures. This facilitates the investigation of hybrid structures that capture the interplay between multiple meso-scale structures and statistical comparison of competing structures, all of which have been hitherto unavailable. We demonstrate the applicability of the methodology in analyzing the human brain network, by determining the dominant organizational structure (communities) of the brain, as well as its auxiliary characteristics (core-periphery).

  12. Research and Development in the U.S. Army Corps of Engineers: Improving the Common Stock of Knowledge

    DTIC Science & Technology

    2011-08-01

    instrumentation researchers such as Eugene Woodman, Francis Hanes, L.H. Daniels, and Leo F. Ingram developed instru- ments ranging from high-speed cameras to...dredging involved computer modeling of various prob- lems, and CERC helped in the development of technologies such as breakwater designs, CORE- LOC ...of hydraulic engineering and modeling, bridge scour analysis, development of the CORE- LOC Concrete Armoring and Samoa Stone products for coastal

  13. Using the sound of nuclear energy

    DOE PAGES

    Garrett, Steven; Smith, James; Smith, Robert; ...

    2016-08-01

    The generation of sound by heat has been documented as an “acoustical curiosity” since a Buddhist monk reported the loud tone generated by a ceremonial rice-cooker in his diary, in 1568. Over the last four decades, significant progress has been made in understanding “thermoacoustic processes,” enabling the design of thermoacoustic engines and refrigerators. Motivated by the Fukushima nuclear reactor disaster, we have developed and tested a thermoacoustic engine that exploits the energy-rich conditions in the core of a nuclear reactor to provide core condition information to the operators without a need for external electrical power. The heat engine is self-poweredmore » and can wirelessly transmit the temperature and reactor power level by generation of a pure tone which can be detected outside the reactor. We report here the first use of a fission-powered thermoacoustic engine capable of serving as a performance and safety sensor in the core of a research reactor and present data from the hydrophones in the coolant (far from the core) and an accelerometer attached to a structure outside the reactor. These measurements confirmed that the frequency of the sound produced indicates the reactor’s coolant temperature and that the amplitude (above an onset threshold) is related to the reactor’s operating power level. Furthermore, these signals can be detected even in the presence of substantial background noise generated by the reactor’s fluid pumps.« less

  14. Using the sound of nuclear energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, Steven; Smith, James; Smith, Robert

    The generation of sound by heat has been documented as an “acoustical curiosity” since a Buddhist monk reported the loud tone generated by a ceremonial rice-cooker in his diary, in 1568. Over the last four decades, significant progress has been made in understanding “thermoacoustic processes,” enabling the design of thermoacoustic engines and refrigerators. Motivated by the Fukushima nuclear reactor disaster, we have developed and tested a thermoacoustic engine that exploits the energy-rich conditions in the core of a nuclear reactor to provide core condition information to the operators without a need for external electrical power. The heat engine is self-poweredmore » and can wirelessly transmit the temperature and reactor power level by generation of a pure tone which can be detected outside the reactor. We report here the first use of a fission-powered thermoacoustic engine capable of serving as a performance and safety sensor in the core of a research reactor and present data from the hydrophones in the coolant (far from the core) and an accelerometer attached to a structure outside the reactor. These measurements confirmed that the frequency of the sound produced indicates the reactor’s coolant temperature and that the amplitude (above an onset threshold) is related to the reactor’s operating power level. Furthermore, these signals can be detected even in the presence of substantial background noise generated by the reactor’s fluid pumps.« less

  15. Increasing Scalability of Researcher Network Extraction from the Web

    NASA Astrophysics Data System (ADS)

    Asada, Yohei; Matsuo, Yutaka; Ishizuka, Mitsuru

    Social networks, which describe relations among people or organizations as a network, have recently attracted attention. With the help of a social network, we can analyze the structure of a community and thereby promote efficient communications within it. We investigate the problem of extracting a network of researchers from the Web, to assist efficient cooperation among researchers. Our method uses a search engine to get the cooccurences of names of two researchers and calculates the streangth of the relation between them. Then we label the relation by analyzing the Web pages in which these two names cooccur. Research on social network extraction using search engines as ours, is attracting attention in Japan as well as abroad. However, the former approaches issue too many queries to search engines to extract a large-scale network. In this paper, we propose a method to filter superfluous queries and facilitates the extraction of large-scale networks. By this method we are able to extract a network of around 3000-nodes. Our experimental results show that the proposed method reduces the number of queries significantly while preserving the quality of the network as compared to former methods.

  16. Variable neighborhood search for reverse engineering of gene regulatory networks.

    PubMed

    Nicholson, Charles; Goodwin, Leslie; Clark, Corey

    2017-01-01

    A new search heuristic, Divided Neighborhood Exploration Search, designed to be used with inference algorithms such as Bayesian networks to improve on the reverse engineering of gene regulatory networks is presented. The approach systematically moves through the search space to find topologies representative of gene regulatory networks that are more likely to explain microarray data. In empirical testing it is demonstrated that the novel method is superior to the widely employed greedy search techniques in both the quality of the inferred networks and computational time. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. 48 CFR 301.607-71 - FAC-P/PM levels and requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... (2) The FAI describes the following three sets of general core competencies on its Web site: (3..., systems engineering, test and evaluation, contracting, and business. (6) Specific core competencies also...

  18. Special Advanced Course for Core Sciences to Bring Up Project Leaders

    NASA Astrophysics Data System (ADS)

    Inagaki, Kenji; Tabata, Nobuhisa; Gofuku, Akio; Harada, Isao; Takada, Jun

    Special Advanced Course for Core Sciences has been introduced recently to Graduate School of Natural Science and Technology, Okayama University, to bring up a project leader. The following points are key education goals in this program : (1) knowledge of core sciences, (2) communication ability by using English, and (3) wide viewpoints for researches. In order to accomplish these goals, several lectures for core sciences, patent systems and engineering ethics as well as long term internships by the collaboration with some regional companies have been put in practice. In this paper, we describe the outline of the program, educational effects, and our experiences. Then, we discuss how effective the program is for bringing up an engineer or a scientist who can lead sciences and technologies of their domains. This paper also describes current activities of the program.

  19. fastBMA: scalable network inference and transitive reduction.

    PubMed

    Hung, Ling-Hong; Shi, Kaiyuan; Wu, Migao; Young, William Chad; Raftery, Adrian E; Yeung, Ka Yee

    2017-10-01

    Inferring genetic networks from genome-wide expression data is extremely demanding computationally. We have developed fastBMA, a distributed, parallel, and scalable implementation of Bayesian model averaging (BMA) for this purpose. fastBMA also includes a computationally efficient module for eliminating redundant indirect edges in the network by mapping the transitive reduction to an easily solved shortest-path problem. We evaluated the performance of fastBMA on synthetic data and experimental genome-wide time series yeast and human datasets. When using a single CPU core, fastBMA is up to 100 times faster than the next fastest method, LASSO, with increased accuracy. It is a memory-efficient, parallel, and distributed application that scales to human genome-wide expression data. A 10 000-gene regulation network can be obtained in a matter of hours using a 32-core cloud cluster (2 nodes of 16 cores). fastBMA is a significant improvement over its predecessor ScanBMA. It is more accurate and orders of magnitude faster than other fast network inference methods such as the 1 based on LASSO. The improved scalability allows it to calculate networks from genome scale data in a reasonable time frame. The transitive reduction method can improve accuracy in denser networks. fastBMA is available as code (M.I.T. license) from GitHub (https://github.com/lhhunghimself/fastBMA), as part of the updated networkBMA Bioconductor package (https://www.bioconductor.org/packages/release/bioc/html/networkBMA.html) and as ready-to-deploy Docker images (https://hub.docker.com/r/biodepot/fastbma/). © The Authors 2017. Published by Oxford University Press.

  20. Study of stator-vane fluctuating pressures in a turbofan engine for static and flight tests

    NASA Technical Reports Server (NTRS)

    Mueller, A. W.

    1984-01-01

    As part of a program to study the fan noise generated from turbofan engines, fluctuating surface pressures induced by fan-rotor wakes were measured on core- and bypass-stator outlet guide vanes of a modified JT15D-1 engine. Tests were conducted with the engine operating on an outdoor test stand and in flight. The amplitudes of pressures measured at fan-rotor blade-passage fundamental frequencies were generally higher and appeared less stable for the static tests than for the flight tests. Fluctuating pressures measured at the blade-passage frequency of the high-speed core compressor were interpreted to be acoustic; however, disturbance trace velocities for either the convected rotor wakes or acoustic pressures were difficult to interpret because of the complex environment.

  1. State-of-the-art of turbofan engine noise control

    NASA Technical Reports Server (NTRS)

    Jones, W. L.; Groeneweg, J. F.

    1977-01-01

    The technology of turbofan engine noise reduction is surveyed. Specific topics discussed include: (1) new fans for low noise; (2) fan and core noise suppression; (3) turbomachinery noise sources; and (4) a new program for improving static noise testing of fans and engines.

  2. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    PubMed Central

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-01-01

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. PMID:24709875

  3. Systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

    PubMed

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-10-11

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

  4. An engineering paradigm in the biomedical sciences: Knowledge as epistemic tool.

    PubMed

    Boon, Mieke

    2017-10-01

    In order to deal with the complexity of biological systems and attempts to generate applicable results, current biomedical sciences are adopting concepts and methods from the engineering sciences. Philosophers of science have interpreted this as the emergence of an engineering paradigm, in particular in systems biology and synthetic biology. This article aims at the articulation of the supposed engineering paradigm by contrast with the physics paradigm that supported the rise of biochemistry and molecular biology. This articulation starts from Kuhn's notion of a disciplinary matrix, which indicates what constitutes a paradigm. It is argued that the core of the physics paradigm is its metaphysical and ontological presuppositions, whereas the core of the engineering paradigm is the epistemic aim of producing useful knowledge for solving problems external to the scientific practice. Therefore, the two paradigms involve distinct notions of knowledge. Whereas the physics paradigm entails a representational notion of knowledge, the engineering paradigm involves the notion of 'knowledge as epistemic tool'. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Biospecimen Core Resource - TCGA

    Cancer.gov

    The Cancer Genome Atlas (TCGA) Biospecimen Core Resource centralized laboratory reviews and processes blood and tissue samples and their associated data using optimized standard operating procedures for the entire TCGA Research Network.

  6. Guiding District Implementation of Common Core State Standards: Innovation Configuration Maps

    ERIC Educational Resources Information Center

    Roy, Patricia; Killion, Joellen

    2011-01-01

    Leadership Networks are regional and content-specific networks focused on the preparation of college- and career-ready students. Each network includes teacher leaders, school administrators, central office staff, regional cooperatives, and institutes of higher education. Network members work collaboratively to focus their efforts on regional needs…

  7. Why Statewide Educational Networks are Important to State and Educational Leaders

    ERIC Educational Resources Information Center

    Mathews, J.B.

    2004-01-01

    Statewide educational networks are core elements of states' education and telecommunications infrastructures. These networks influence educational success and contribute to a state's competitive status, economic development and general quality of life. Electronic communications networks are changing how people live and work in every state.…

  8. Migration of optical core network to next generation networks - Carrier Grade Ethernet Optical Transport Network

    NASA Astrophysics Data System (ADS)

    Glamočanin, D.

    2017-05-01

    In order to maintain the continuity of the telecom operators’ network construction, while monitoring development needs, increasing customers’ demands and application of technological improvements, it is necessary to migrate optical transport core network to the next generation networks - Carrier Grade Ethernet Optical Transport Network (OTN CE). The primary objective of OTN CE is to realize an environment that is based solely on the switching in the optical domain, i.e. the realization of transparent optical networks and optical switching to the second layer of ISO / OSI model. The realization of such a network provides opportunities for further development of existing, but also technologically more demanding, new services. It is also a prerequisite to provide higher scalability, reliability, security and quality of QoS service, as well as prerequisites for the establishment of SLA (Service Level Agreement) for existing services, especially traffic in real time. This study aims to clarify the proposed model, which has the potential to be eventually adjusted in accordance with new scientific knowledge in this field as well as market requirements.

  9. Isolated in a technologically connected world?: Changes in the core professional ties of female researchers in Ghana, Kenya, and Kerala, India.

    PubMed

    Miller, B Paige; Shrum, Wesley

    2012-01-01

    Using panel data gathered across two waves (2001 and 2005) from researchers in Ghana, Kenya, and Kerala, India, we examine three questions: (1) To what extent do gender differences exist in the core professional networks of scientists in low-income areas? (2) How do gender differences shift over time? (3) Does use of information and communication technologies (ICTs) mediate the relationship between gender and core network composition? Our results indicate that over a period marked by dramatic increases in access to and use of various ICTs, the composition and size of female researchers core professional ties have either not changed significantly or have changed in an unexpected direction. Indeed, the size of women's ties are retracting over time rather than expanding.

  10. University degrees consistent with agricultural production in the European Union

    NASA Astrophysics Data System (ADS)

    Perdigones, Alicia; del Cerro, Jesus; Tarquis, Ana Maria; Benedicto, Susana; García, Jose Luis

    2013-04-01

    Degrees clearly oriented to rural and agricultural engineering are distinguished from the rest of the engineering areas by the need to involve the biological phenomena of engineering calculations. These degrees, which include subjects such as crop production, biotechnology and physics, among others, have evolved tremendously over the last ten years, implanting new curricula and introducing new specialties such as those dedicated to the environment or rural development, thereby adapting new social, economic and environmental aspects of each country. Currently being finalized to implement new titles in most Spanish universities, and in rest of Europe, following the guidelines set by Bologna. The process of elaboration of these degrees is complicated precisely because of the great variety of areas and subjects involved in these degrees. In this paper we study, for several countries of the European Union, the core subjects of the university degrees of agricultural engineering and the correlations between the core contents and the importance of the related uses of the soil in the different sectors of crop production (arable crops, horticulture, fruit growing, gardening, etc.) as well as other socio-economic criteria. The objective is to detect if the design of the core content is consistent in each country with the importance of the related socio-economic sector. Key-words: curriculum, crop production, agricultural engineer.

  11. Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine digital control system design report

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A digital electronic control was combined with conventional hydromechanical components to operate the four controlled variables on the under-the-wing engine: fuel flow, fan blade pitch, fan exhaust area, and core compressor stator angles. The engine and control combination offers improvements in noise, pollution, thrust response, operational monitoring, and pilot workload relative to current engines.

  12. Nuclear thermal propulsion engine system design analysis code development

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.; Ivanenok, Joseph F.

    1992-01-01

    A Nuclear Thermal Propulsion (NTP) Engine System Design Analyis Code has recently been developed to characterize key NTP engine system design features. Such a versatile, standalone NTP system performance and engine design code is required to support ongoing and future engine system and vehicle design efforts associated with proposed Space Exploration Initiative (SEI) missions of interest. Key areas of interest in the engine system modeling effort were the reactor, shielding, and inclusion of an engine multi-redundant propellant pump feed system design option. A solid-core nuclear thermal reactor and internal shielding code model was developed to estimate the reactor's thermal-hydraulic and physical parameters based on a prescribed thermal output which was integrated into a state-of-the-art engine system design model. The reactor code module has the capability to model graphite, composite, or carbide fuels. Key output from the model consists of reactor parameters such as thermal power, pressure drop, thermal profile, and heat generation in cooled structures (reflector, shield, and core supports), as well as the engine system parameters such as weight, dimensions, pressures, temperatures, mass flows, and performance. The model's overall analysis methodology and its key assumptions and capabilities are summarized in this paper.

  13. Nonlinear dynamic simulation of single- and multi-spool core engines

    NASA Technical Reports Server (NTRS)

    Schobeiri, T.; Lippke, C.; Abouelkheir, M.

    1993-01-01

    In this paper a new computational method for accurate simulation of the nonlinear dynamic behavior of single- and multi-spool core engines, turbofan engines, and power generation gas turbine engines is presented. In order to perform the simulation, a modularly structured computer code has been developed which includes individual mathematical modules representing various engine components. The generic structure of the code enables the dynamic simulation of arbitrary engine configurations ranging from single-spool thrust generation to multi-spool thrust/power generation engines under adverse dynamic operating conditions. For precise simulation of turbine and compressor components, row-by-row calculation procedures were implemented that account for the specific turbine and compressor cascade and blade geometry and characteristics. The dynamic behavior of the subject engine is calculated by solving a number of systems of partial differential equations, which describe the unsteady behavior of the individual components. In order to ensure the capability, accuracy, robustness, and reliability of the code, comprehensive critical performance assessment and validation tests were performed. As representatives, three different transient cases with single- and multi-spool thrust and power generation engines were simulated. The transient cases range from operating with a prescribed fuel schedule, to extreme load changes, to generator and turbine shut down.

  14. Inspiring engineering minds to advance human health: the Henry Samueli School of Engineering's Department of BME.

    PubMed

    Lee, Abraham; Wirtanen, Erik

    2012-07-01

    The growth of biomedical engineering at The Henry Samueli School of Engineering at the University of California, Irvine (UCI) has been rapid since the Center for Biomedical Engineering was first formed in 1998 [and was later renamed as the Department of Biomedical Engineering (BME) in 2002]. Our current mission statement, “Inspiring Engineering Minds to Advance Human Health,” serves as a reminder of why we exist, what we do, and the core principles that we value and by which we abide. BME exists to advance the state of human health via engineering innovation and practices. To attain our goal, we are empowering our faculty to inspire and mobilize our students to address health problems. We treasure the human being, particularly the human mind and health. We believe that BME is where minds are nurtured, challenged, and disciplined, and it is also where the health of the human is held as a core mission value that deserves our utmost priority (Figure 1). Advancing human health is not a theoretical practice; it requires bridging between disciplines (engineering and medicine) and between communities (academic and industry).

  15. The role of total laboratory automation in a consolidated laboratory network.

    PubMed

    Seaberg, R S; Stallone, R O; Statland, B E

    2000-05-01

    In an effort to reduce overall laboratory costs and improve overall laboratory efficiencies at all of its network hospitals, the North Shore-Long Island Health System recently established a Consolidated Laboratory Network with a Core Laboratory at its center. We established and implemented a centralized Core Laboratory designed around the Roche/Hitachi CLAS Total Laboratory Automation system to perform the general and esoteric laboratory testing throughout the system in a timely and cost-effective fashion. All remaining STAT testing will be performed within the Rapid Response Laboratories (RRLs) at each of the system's hospitals. Results for this laboratory consolidation and implementation effort demonstrated a decrease in labor costs and improved turnaround time (TAT) at the core laboratory. Anticipated system savings are approximately $2.7 million. TATs averaged 1.3 h within the Core Laboratory and less than 30 min in the RRLs. When properly implemented, automation systems can reduce overall laboratory expenses, enhance patient services, and address the overall concerns facing the laboratory today: job satisfaction, decreased length of stay, and safety. The financial savings realized are primarily a result of labor reductions.

  16. An Interconnected Network of Core-Forming Melts Produced by Shear Deformation

    NASA Technical Reports Server (NTRS)

    Bruhn, D.; Groebner, N.; Kohlstedt, D. L.

    2000-01-01

    The formation mechanism of terrestrial planetary is still poorly understood, and has been the subject of numerous experimental studies. Several mechanisms have been proposed by which metal-mainly iron with some nickel-could have been extracted from a silicate mantle to form the core. Most recent models involve gravitational sinking of molten metal or metal sulphide through a partially or fully molten mantle that is often referred to as a'magma ocean. Alternative models invoke percolation of molten metal along an interconnected network (that is, porous flow) through a solid silicate matrix. But experimental studies performed at high pressures have shown that, under hydrostatic conditions, these melts do not form an interconnected network, leading to the widespread assumption that formation of metallic cores requires a magma ocean. In contrast, here we present experiments which demonstrate that shear deformation to large strains can interconnect a significant fraction of initially isolated pockets of metal and metal sulphide melts in a solid matrix of polycrystalline olivine. Therefore, in a dynamic (nonhydrostatic) environment, percolation remains a viable mechanism for the segregation and migration of core-forming melts in a solid silicate mantle.

  17. High-capacity mixed fiber-wireless backhaul networks using MMW radio-over-MCF and MIMO

    NASA Astrophysics Data System (ADS)

    Pham, Thu A.; Pham, Hien T. T.; Le, Hai-Chau; Dang, Ngoc T.

    2017-10-01

    In this paper, we have proposed a high-capacity backhaul network, which is based on mixed fiber-wireless systems using millimeter-wave radio-over-multi-core fiber (MMW RoMCF) and multiple-input multiple-output (MIMO) transmission, for next generation mobile access networks. In addition, we also investigate the use of avalanche photodiode (APD) to improve capacity of the proposed backhaul downlink. We then theoretically analyze the system capacity comprehensively while considering various physical impairments including noise, MCF crosstalk, and fading modeled by Rician MIMO channel. The feasibility of the proposed backhaul architecture is verified via the numerical simulation experiments. The research results demonstrate that our developed backhaul solution can significantly enhance the backhaul capacity; the system capacity of 24 bps/Hz can be achieved with 20-km 8-core MCF and 8 × 8 MIMO transmitted over 100-m Rician fading link. It is also shown that the system performance, in term of channel capacity, strongly depend on the MCF inter-core crosstalk, which is governed by the mode coupling coefficient, the core pitch, and the bending radius.

  18. Advanced Computational Techniques for Power Tube Design.

    DTIC Science & Technology

    1986-07-01

    fixturing applications, in addition to the existing computer-aided engineering capabilities. o Helix TWT Manufacturing has Implemented a tooling and fixturing...illustrates the ajor features of this computer network. ) The backbone of our system is a Sytek Broadband Network (LAN) which Interconnects terminals and...automatic network analyzer (FANA) which electrically characterizes the slow-wave helices of traveling-wave tubes ( TWTs ) -- both for engineering design

  19. Analyzing the Social Networks of High- and Low-Performing Students in Online Discussion Forums

    ERIC Educational Resources Information Center

    Ghadirian, Hajar; Salehi, Keyvan; Ayub, Ahmad Fauzi Mohd

    2018-01-01

    An ego network is an individual's social network relationships with core members. In this study, the ego network parameters in online discussion spaces of high- and low-performing students were compared. The extent to which students' ego networks changed over the course were also analyzed. Participation in 7 weeks of online discussions were…

  20. Delivering Core Engineering Concepts to Secondary Level Students. Research in Engineering and Technology Education

    ERIC Educational Resources Information Center

    Merrill, Chris; Custer, Rodney L.; Daugherty, Jenny; Westrick, Martin; Zeng, Yong

    2007-01-01

    Within primary and secondary school technology education, engineering has been proposed as an avenue to bring about technological literacy. Different initiatives such as curriculum development projects (i.e., Project ProBase and Project Lead The Way) and National Science Foundation funded projects such as the National Center for Engineering and…

  1. Engineering Design for Engineering Design: Benefits, Models, and Examples from Practice

    ERIC Educational Resources Information Center

    Turner, Ken L., Jr.; Kirby, Melissa; Bober, Sue

    2016-01-01

    Engineering design, a framework for studying and solving societal problems, is a key component of STEM education. It is also the area of greatest challenge within the Next Generation Science Standards, NGSS. Many teachers feel underprepared to teach or create activities that feature engineering design, and integrating a lesson plan of core content…

  2. Multipoint to multipoint routing and wavelength assignment in multi-domain optical networks

    NASA Astrophysics Data System (ADS)

    Qin, Panke; Wu, Jingru; Li, Xudong; Tang, Yongli

    2018-01-01

    In multi-point to multi-point (MP2MP) routing and wavelength assignment (RWA) problems, researchers usually assume the optical networks to be a single domain. However, the optical networks develop toward to multi-domain and larger scale in practice. In this context, multi-core shared tree (MST)-based MP2MP RWA are introduced problems including optimal multicast domain sequence selection, core nodes belonging in which domains and so on. In this letter, we focus on MST-based MP2MP RWA problems in multi-domain optical networks, mixed integer linear programming (MILP) formulations to optimally construct MP2MP multicast trees is presented. A heuristic algorithm base on network virtualization and weighted clustering algorithm (NV-WCA) is proposed. Simulation results show that, under different traffic patterns, the proposed algorithm achieves significant improvement on network resources occupation and multicast trees setup latency in contrast with the conventional algorithms which were proposed base on a single domain network environment.

  3. Induction simulation of gas core nuclear engine

    NASA Technical Reports Server (NTRS)

    Poole, J. W.; Vogel, C. E.

    1973-01-01

    The design, construction and operation of an induction heated plasma device known as a combined principles simulator is discussed. This device incorporates the major design features of the gas core nuclear rocket engine such as solid feed, propellant seeding, propellant injection through the walls, and a transpiration cooled, choked flow nozzle. Both argon and nitrogen were used as propellant simulating material, and sodium was used for fuel simulating material. In addition, a number of experiments were conducted utilizing depleted uranium as the fuel. The test program revealed that satisfactory operation of this device can be accomplished over a range of operating conditions and provided additional data to confirm the validity of the gas core concept.

  4. The computational core and fixed point organization in Boolean networks

    NASA Astrophysics Data System (ADS)

    Correale, L.; Leone, M.; Pagnani, A.; Weigt, M.; Zecchina, R.

    2006-03-01

    In this paper, we analyse large random Boolean networks in terms of a constraint satisfaction problem. We first develop an algorithmic scheme which allows us to prune simple logical cascades and underdetermined variables, returning thereby the computational core of the network. Second, we apply the cavity method to analyse the number and organization of fixed points. We find in particular a phase transition between an easy and a complex regulatory phase, the latter being characterized by the existence of an exponential number of macroscopically separated fixed point clusters. The different techniques developed are reinterpreted as algorithms for the analysis of single Boolean networks, and they are applied in the analysis of and in silico experiments on the gene regulatory networks of baker's yeast (Saccharomyces cerevisiae) and the segment-polarity genes of the fruitfly Drosophila melanogaster.

  5. A Graph Theoretical Approach to Study the Organization of the Cortical Networks during Different Mathematical Tasks

    PubMed Central

    Klados, Manousos A.; Kanatsouli, Kassia; Antoniou, Ioannis; Babiloni, Fabio; Tsirka, Vassiliki; Bamidis, Panagiotis D.; Micheloyannis, Sifis

    2013-01-01

    The two core systems of mathematical processing (subitizing and retrieval) as well as their functionality are already known and published. In this study we have used graph theory to compare the brain network organization of these two core systems in the cortical layer during difficult calculations. We have examined separately all the EEG frequency bands in healthy young individuals and we found that the network organization at rest, as well as during mathematical tasks has the characteristics of Small World Networks for all the bands, which is the optimum organization required for efficient information processing. The different mathematical stimuli provoked changes in the graph parameters of different frequency bands, especially the low frequency bands. More specific, in Delta band the induced network increases it’s local and global efficiency during the transition from subitizing to retrieval system, while results suggest that difficult mathematics provoke networks with higher cliquish organization due to more specific demands. The network of the Theta band follows the same pattern as before, having high nodal and remote organization during difficult mathematics. Also the spatial distribution of the network’s weights revealed more prominent connections in frontoparietal regions, revealing the working memory load due to the engagement of the retrieval system. The cortical networks of the alpha brainwaves were also more efficient, both locally and globally, during difficult mathematics, while the fact that alpha’s network was more dense on the frontparietal regions as well, reveals the engagement of the retrieval system again. Concluding, this study gives more evidences regarding the interaction of the two core systems, exploiting the produced functional networks of the cerebral cortex, especially for the difficult mathematics. PMID:23990992

  6. How social networks influence female students' choices to major in engineering

    NASA Astrophysics Data System (ADS)

    Weinland, Kathryn Ann

    Scope and Method of Study: This study examined how social influence plays a part in female students' choices of college major, specifically engineering instead of science, technology, and math. Social influence may show itself through peers, family members, and teachers and may encompass resources under the umbrella of social capital. The purpose of this study was to examine how female students' social networks, through the lens of social capital, influence her major choice of whether or not to study engineering. The variables of peer influence, parental influence, teacher/counselor influence, perception of engineering, and academic background were addressed in a 52 question, Likert scale survey. This survey has been modified from an instrument previously used by Reyer (2007) at Bradley University. Data collection was completed using the Dillman (2009) tailored design model. Responses were grouped into four main scales of the dependent variables of social influence, encouragement, perceptions of engineering and career motivation. A factor analysis was completed on the four factors as a whole, and individual questions were not be analyzed. Findings and Conclusions: This study addressed the differences in social network support for female freshmen majoring in engineering versus female freshmen majoring in science, technology, or math. Social network support, when working together from all angles of peers, teachers, parents, and teachers/counselors, transforms itself into a new force that is more powerful than the summation of the individual parts. Math and science preparation also contributed to female freshmen choosing to major in engineering instead of choosing to major in science, technology, or math. The STEM pipeline is still weak and ways in which to reinforce it should be examined. Social network support is crucial for female freshmen who are majoring in science, technology, engineering, and math.

  7. Nuclear Engine System Simulation (NESS). Volume 1: Program user's guide

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.

    1993-03-01

    A Nuclear Thermal Propulsion (NTP) engine system design analysis tool is required to support current and future Space Exploration Initiative (SEI) propulsion and vehicle design studies. Currently available NTP engine design models are those developed during the NERVA program in the 1960's and early 1970's and are highly unique to that design or are modifications of current liquid propulsion system design models. To date, NTP engine-based liquid design models lack integrated design of key NTP engine design features in the areas of reactor, shielding, multi-propellant capability, and multi-redundant pump feed fuel systems. Additionally, since the SEI effort is in the initial development stage, a robust, verified NTP analysis design tool could be of great use to the community. This effort developed an NTP engine system design analysis program (tool), known as the Nuclear Engine System Simulation (NESS) program, to support ongoing and future engine system and stage design study efforts. In this effort, Science Applications International Corporation's (SAIC) NTP version of the Expanded Liquid Engine Simulation (ELES) program was modified extensively to include Westinghouse Electric Corporation's near-term solid-core reactor design model. The ELES program has extensive capability to conduct preliminary system design analysis of liquid rocket systems and vehicles. The program is modular in nature and is versatile in terms of modeling state-of-the-art component and system options as discussed. The Westinghouse reactor design model, which was integrated in the NESS program, is based on the near-term solid-core ENABLER NTP reactor design concept. This program is now capable of accurately modeling (characterizing) a complete near-term solid-core NTP engine system in great detail, for a number of design options, in an efficient manner. The following discussion summarizes the overall analysis methodology, key assumptions, and capabilities associated with the NESS presents an example problem, and compares the results to related NTP engine system designs. Initial installation instructions and program disks are in Volume 2 of the NESS Program User's Guide.

  8. Nuclear Engine System Simulation (NESS). Volume 1: Program user's guide

    NASA Technical Reports Server (NTRS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.

    1993-01-01

    A Nuclear Thermal Propulsion (NTP) engine system design analysis tool is required to support current and future Space Exploration Initiative (SEI) propulsion and vehicle design studies. Currently available NTP engine design models are those developed during the NERVA program in the 1960's and early 1970's and are highly unique to that design or are modifications of current liquid propulsion system design models. To date, NTP engine-based liquid design models lack integrated design of key NTP engine design features in the areas of reactor, shielding, multi-propellant capability, and multi-redundant pump feed fuel systems. Additionally, since the SEI effort is in the initial development stage, a robust, verified NTP analysis design tool could be of great use to the community. This effort developed an NTP engine system design analysis program (tool), known as the Nuclear Engine System Simulation (NESS) program, to support ongoing and future engine system and stage design study efforts. In this effort, Science Applications International Corporation's (SAIC) NTP version of the Expanded Liquid Engine Simulation (ELES) program was modified extensively to include Westinghouse Electric Corporation's near-term solid-core reactor design model. The ELES program has extensive capability to conduct preliminary system design analysis of liquid rocket systems and vehicles. The program is modular in nature and is versatile in terms of modeling state-of-the-art component and system options as discussed. The Westinghouse reactor design model, which was integrated in the NESS program, is based on the near-term solid-core ENABLER NTP reactor design concept. This program is now capable of accurately modeling (characterizing) a complete near-term solid-core NTP engine system in great detail, for a number of design options, in an efficient manner. The following discussion summarizes the overall analysis methodology, key assumptions, and capabilities associated with the NESS presents an example problem, and compares the results to related NTP engine system designs. Initial installation instructions and program disks are in Volume 2 of the NESS Program User's Guide.

  9. DEFINING THE PLAYERS IN HIGHER-ORDER NETWORKS: PREDICTIVE MODELING FOR REVERSE ENGINEERING FUNCTIONAL INFLUENCE NETWORKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, Jason E.; Costa, Michelle N.; Stevens, S.L.

    A difficult problem that is currently growing rapidly due to the sharp increase in the amount of high-throughput data available for many systems is that of determining useful and informative causative influence networks. These networks can be used to predict behavior given observation of a small number of components, predict behavior at a future time point, or identify components that are critical to the functioning of the system under particular conditions. In these endeavors incorporating observations of systems from a wide variety of viewpoints can be particularly beneficial, but has often been undertaken with the objective of inferring networks thatmore » are generally applicable. The focus of the current work is to integrate both general observations and measurements taken for a particular pathology, that of ischemic stroke, to provide improved ability to produce useful predictions of systems behavior. A number of hybrid approaches have recently been proposed for network generation in which the Gene Ontology is used to filter or enrich network links inferred from gene expression data through reverse engineering methods. These approaches have been shown to improve the biological plausibility of the inferred relationships determined, but still treat knowledge-based and machine-learning inferences as incommensurable inputs. In this paper, we explore how further improvements may be achieved through a full integration of network inference insights achieved through application of the Gene Ontology and reverse engineering methods with specific reference to the construction of dynamic models of transcriptional regulatory networks. We show that integrating two approaches to network construction, one based on reverse-engineering from conditional transcriptional data, one based on reverse-engineering from in situ hybridization data, and another based on functional associations derived from Gene Ontology, using probabilities can improve results of clustering as evaluated by a predictive model of transcriptional expression levels.« less

  10. Fully-elastic multi-granular network with space/frequency/time switching using multi-core fibres and programmable optical nodes.

    PubMed

    Amaya, N; Irfan, M; Zervas, G; Nejabati, R; Simeonidou, D; Sakaguchi, J; Klaus, W; Puttnam, B J; Miyazawa, T; Awaji, Y; Wada, N; Henning, I

    2013-04-08

    We present the first elastic, space division multiplexing, and multi-granular network based on two 7-core MCF links and four programmable optical nodes able to switch traffic utilising the space, frequency and time dimensions with over 6000-fold bandwidth granularity. Results show good end-to-end performance on all channels with power penalties between 0.75 dB and 3.7 dB.

  11. Integration of ANFIS, NN and GA to determine core porosity and permeability from conventional well log data

    NASA Astrophysics Data System (ADS)

    Ja'fari, Ahmad; Hamidzadeh Moghadam, Rasoul

    2012-10-01

    Routine core analysis provides useful information for petrophysical study of the hydrocarbon reservoirs. Effective porosity and fluid conductivity (permeability) could be obtained from core analysis in laboratory. Coring hydrocarbon bearing intervals and analysis of obtained cores in laboratory is expensive and time consuming. In this study an improved method to make a quantitative correlation between porosity and permeability obtained from core and conventional well log data by integration of different artificial intelligent systems is proposed. The proposed method combines the results of adaptive neuro-fuzzy inference system (ANFIS) and neural network (NN) algorithms for overall estimation of core data from conventional well log data. These methods multiply the output of each algorithm with a weight factor. Simple averaging and weighted averaging were used for determining the weight factors. In the weighted averaging method the genetic algorithm (GA) is used to determine the weight factors. The overall algorithm was applied in one of SW Iran’s oil fields with two cored wells. One-third of all data were used as the test dataset and the rest of them were used for training the networks. Results show that the output of the GA averaging method provided the best mean square error and also the best correlation coefficient with real core data.

  12. Engineering Promoter Architecture in Oleaginous Yeast Yarrowia lipolytica.

    PubMed

    Shabbir Hussain, Murtaza; Gambill, Lauren; Smith, Spencer; Blenner, Mark A

    2016-03-18

    Eukaryotic promoters have a complex architecture to control both the strength and timing of gene transcription spanning up to thousands of bases from the initiation site. This complexity makes rational fine-tuning of promoters in fungi difficult to predict; however, this very same complexity enables multiple possible strategies for engineering promoter strength. Here, we studied promoter architecture in the oleaginous yeast, Yarrowia lipolytica. While recent studies have focused on upstream activating sequences, we systematically examined various components common in fungal promoters. Here, we examine several promoter components including upstream activating sequences, proximal promoter sequences, core promoters, and the TATA box in autonomously replicating expression plasmids and integrated into the genome. Our findings show that promoter strength can be fine-tuned through the engineering of the TATA box sequence, core promoter, and upstream activating sequences. Additionally, we identified a previously unreported oleic acid responsive transcription enhancement in the XPR2 upstream activating sequences, which illustrates the complexity of fungal promoters. The promoters engineered here provide new genetic tools for metabolic engineering in Y. lipolytica and provide promoter engineering strategies that may be useful in engineering other non-model fungal systems.

  13. Two Rotor Stratified Charge Rotary Engine (SCRE) Engine System Technology Evaluation

    NASA Technical Reports Server (NTRS)

    Hoffman, T.; Mack, J.; Mount, R.

    1994-01-01

    This report summarizes results of an evaluation of technology enablement component technologies as integrated into a two rotor Stratified Charge Rotary Engine (SCRE). The work constitutes a demonstration of two rotor engine system technology, utilizing upgraded and refined component technologies derived from prior NASA Contracts NAS3-25945, NAS3-24628 and NAS-23056. Technical objectives included definition of, procurement and assembly of an advanced two rotor core aircraft engine, operation with Jet-A fuel at Take-Off rating of 340 BHP (254kW) and operation at a maximum cruise condition of 255 BHP (190kW), 75% cruise. A fuel consumption objective of 0.435 LBS/BHP-Hr (265 GRS/kW-Hr) was identified for the maximum cruise condition. A critical technology component item, a high speed, unit injector fuel injection system with electronic control was defined, procured and tested in conjunction with this effort. The two rotor engine configuration established herein defines an affordable, advanced, Jet-A fuel capability core engine (not including reduction gear, propeller shaft and some aircraft accessories) for General Aviation of the mid-1990's and beyond.

  14. Teaching Engineering Practices

    ERIC Educational Resources Information Center

    Cunningham, Christine M.; Carlsen, William S.

    2014-01-01

    Engineering is featured prominently in the Next Generation Science Standards (NGSS) and related reform documents, but how its nature and methods are described is problematic. This paper is a systematic review and critique of that representation, and proposes that the disciplinary core ideas of engineering (as described in the NGSS) can be…

  15. Software Engineering Education: Some Important Dimensions

    ERIC Educational Resources Information Center

    Mishra, Alok; Cagiltay, Nergiz Ercil; Kilic, Ozkan

    2007-01-01

    Software engineering education has been emerging as an independent and mature discipline. Accordingly, various studies are being done to provide guidelines for curriculum design. The main focus of these guidelines is around core and foundation courses. This paper summarizes the current problems of software engineering education programs. It also…

  16. Traffic engineering and regenerator placement in GMPLS networks with restoration

    NASA Astrophysics Data System (ADS)

    Yetginer, Emre; Karasan, Ezhan

    2002-07-01

    In this paper we study regenerator placement and traffic engineering of restorable paths in Generalized Multipro-tocol Label Switching (GMPLS) networks. Regenerators are necessary in optical networks due to transmission impairments. We study a network architecture where there are regenerators at selected nodes and we propose two heuristic algorithms for the regenerator placement problem. Performances of these algorithms in terms of required number of regenerators and computational complexity are evaluated. In this network architecture with sparse regeneration, offline computation of working and restoration paths is studied with bandwidth reservation and path rerouting as the restoration scheme. We study two approaches for selecting working and restoration paths from a set of candidate paths and formulate each method as an Integer Linear Programming (ILP) prob-lem. Traffic uncertainty model is developed in order to compare these methods based on their robustness with respect to changing traffic patterns. Traffic engineering methods are compared based on number of additional demands due to traffic uncertainty that can be carried. Regenerator placement algorithms are also evaluated from a traffic engineering point of view.

  17. Supply Chain Engineering and the Use of a Supporting Knowledge Management Application

    NASA Astrophysics Data System (ADS)

    Laakmann, Frank

    The future competition in markets will happen between logistics networks and no longer between enterprises. A new approach for supporting the engineering of logistics networks is developed by this research as a part of the Collaborative Research Centre (SFB) 559: "Modeling of Large Networks in Logistics" at the University of Dortmund together with the Fraunhofer-Institute of Material Flow and Logistics founded by Deutsche Forschungsgemeinschaft (DFG). Based on a reference model for logistics processes, the process chain model, a guideline for logistics engineers is developed to manage the different types of design tasks of logistics networks. The technical background of this solution is a collaborative knowledge management application. This paper will introduce how new Internet-based technologies support supply chain design projects.

  18. ACCELERATION OF COMPACT RADIO JETS ON SUB-PARSEC SCALES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sang-Sung; Lobanov, Andrei P.; Krichbaum, Thomas P.

    2016-08-01

    Jets of compact radio sources are highly relativistic and Doppler boosted, making studies of their intrinsic properties difficult. Observed brightness temperatures can be used to study the intrinsic physical properties of relativistic jets, and constrain models of jet formation in the inner jet region. We aim to observationally test such inner jet models. The very long baseline interferometry (VLBI) cores of compact radio sources are optically thick at a given frequency. The distance of the core from the central engine is inversely proportional to the frequency. Under the equipartition condition between the magnetic field energy and particle energy densities, themore » absolute distance of the VLBI core can be predicted. We compiled the brightness temperatures of VLBI cores at various radio frequencies of 2, 8, 15, and 86 GHz. We derive the brightness temperature on sub-parsec scales in the rest frame of the compact radio sources. We find that the brightness temperature increases with increasing distance from the central engine, indicating that the intrinsic jet speed (the Lorentz factor) increases along the jet. This implies that the jets are accelerated in the (sub-)parsec regions from the central engine.« less

  19. Crossbar Switches For Optical Data-Communication Networks

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P.

    1994-01-01

    Optoelectronic and electro-optical crossbar switches called "permutation engines" (PE's) developed to route packets of data through fiber-optic communication networks. Basic network concept described in "High-Speed Optical Wide-Area Data-Communication Network" (NPO-18983). Nonblocking operation achieved by decentralized switching and control scheme. Each packet routed up or down in each column of this 5-input/5-output permutation engine. Routing algorithm ensures each packet arrives at its designated output port without blocking any other packet that does not contend for same output port.

  20. Interpretation of Core Length in Shear Coaxial Rocket Injectors from X-ray Radiography Measurements

    DTIC Science & Technology

    2014-06-01

    to the shape of the liquid jet core, elliptical EPL is what would be expected from a cylinder of liquid and has previously been observed in diesel...rely on the shear between an outer lower-density high velocity annulus and a higher- density low-velocity inner jet to atomize and mix a liquid and a...of combustion devices (turbofan engine exhaust, air blast furnaces, and liquid rocket engines) shear coaxial jets have been studied for over sixty

  1. Reactor moderator, pressure vessel, and heat rejection system of an open-cycle gas core nuclear rocket concept

    NASA Technical Reports Server (NTRS)

    Taylor, M. F.; Whitmarsh, C. L., Jr.; Sirocky, P. J., Jr.; Iwanczyke, L. C.

    1973-01-01

    A preliminary design study of a conceptual 6000-megawatt open-cycle gas-core nuclear rocket engine system was made. The engine has a thrust of 196,600 newtons (44,200 lb) and a specific impulse of 4400 seconds. The nuclear fuel is uranium-235 and the propellant is hydrogen. Critical fuel mass was calculated for several reactor configurations. Major components of the reactor (reflector, pressure vessel, and waste heat rejection system) were considered conceptually and were sized.

  2. Landscape-scale spatial abundance distributions discriminate core from random components of boreal lake bacterioplankton.

    PubMed

    Niño-García, Juan Pablo; Ruiz-González, Clara; Del Giorgio, Paul A

    2016-12-01

    Aquatic bacterial communities harbour thousands of coexisting taxa. To meet the challenge of discriminating between a 'core' and a sporadically occurring 'random' component of these communities, we explored the spatial abundance distribution of individual bacterioplankton taxa across 198 boreal lakes and their associated fluvial networks (188 rivers). We found that all taxa could be grouped into four distinct categories based on model statistical distributions (normal like, bimodal, logistic and lognormal). The distribution patterns across lakes and their associated river networks showed that lake communities are composed of a core of taxa whose distribution appears to be linked to in-lake environmental sorting (normal-like and bimodal categories), and a large fraction of mostly rare bacteria (94% of all taxa) whose presence appears to be largely random and linked to downstream transport in aquatic networks (logistic and lognormal categories). These rare taxa are thus likely to reflect species sorting at upstream locations, providing a perspective of the conditions prevailing in entire aquatic networks rather than only in lakes. © 2016 John Wiley & Sons Ltd/CNRS.

  3. Core Noise: Implications of Emerging N+3 Designs and Acoustic Technology Needs

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    This presentation is a summary of the core-noise implications of NASA's primary N+3 aircraft concepts. These concepts are the MIT/P&W D8.5 Double Bubble design, the Boeing/GE SUGAR Volt hybrid gas-turbine/electric engine concept, the NASA N3-X Turboelectric Distributed Propulsion aircraft, and the NASA TBW-XN Truss-Braced Wing concept. The first two are future concepts for the Boeing 737/Airbus A320 US transcontinental mission of 180 passengers and a maximum range of 3000 nm. The last two are future concepts for the Boeing 777 transpacific mission of 350 passengers and a 7500 nm range. Sections of the presentation cover: turbofan design trends on the N+1.5 time frame and the already emerging importance of core noise; the NASA N+3 concepts and associated core-noise challenges; the historical trends for the engine bypass ratio (BPR), overall pressure ratio (OPR), and combustor exit temperature; and brief discussion of a noise research roadmap being developed to address the core-noise challenges identified for the N+3 concepts. The N+3 conceptual aircraft have (i) ultra-high bypass ratios, in the rage of 18 - 30, accomplished by either having a small-size, high-power-density core, an hybrid design which allows for an increased fan size, or by utilizing a turboelectric distributed propulsion design; and (ii) very high OPR in the 50 - 70 range. These trends will elevate the overall importance of turbomachinery core noise. The N+3 conceptual designs specify the need for the development and application of advanced liners and passive and active control strategies to reduce the core noise. Current engineering prediction of core noise uses semi-empirical methods based on older turbofan engines, with (at best) updates for more recent designs. The models have not seen the same level of development and maturity as those for fan and jet noise and are grossly inadequate for the designs considered for the N+3 time frame. An aggressive program for the development of updated noise prediction tools for integrated core assemblies as well as and strategies for noise reduction and control is needed in order to meet the NASA N+3 noise goals. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic.

  4. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 14: Engineering work and information use in aerospace: Results of a telephone survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; White, Terry F.

    1992-01-01

    A telephone survey of U.S. aerospace engineers and scientists who were on the Society of Automotive Engineers (SAE) mailing list was conducted between August 14-26, 1991. The survey was undertaken to obtain information on the daily work activities of aerospace engineers and scientists, to measure various practices used by aerospace engineers and scientists to obtain STI, and to ask aerospace engineers and scientists about their use of electronic networks. Co-workers were found important sources of information. Co-workers are used to obtain technical information because the information they have is relevant, not because co-workers are accessible. As technical uncertainty increases, so does the need for information internal and external to the organization. Electronic networks enjoy widespread use within the aerospace community. These networks are accessible and they are used to contact people at remote sites. About 80 percent of the respondents used electronic mail, file transfer, and information or data retrieval to commercial or in-house data bases.

  5. Cascade Optimization Strategy with Neural Network and Regression Approximations Demonstrated on a Preliminary Aircraft Engine Design

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale A.; Patnaik, Surya N.

    2000-01-01

    A preliminary aircraft engine design methodology is being developed that utilizes a cascade optimization strategy together with neural network and regression approximation methods. The cascade strategy employs different optimization algorithms in a specified sequence. The neural network and regression methods are used to approximate solutions obtained from the NASA Engine Performance Program (NEPP), which implements engine thermodynamic cycle and performance analysis models. The new methodology is proving to be more robust and computationally efficient than the conventional optimization approach of using a single optimization algorithm with direct reanalysis. The methodology has been demonstrated on a preliminary design problem for a novel subsonic turbofan engine concept that incorporates a wave rotor as a cycle-topping device. Computations of maximum thrust were obtained for a specific design point in the engine mission profile. The results (depicted in the figure) show a significant improvement in the maximum thrust obtained using the new methodology in comparison to benchmark solutions obtained using NEPP in a manual design mode.

  6. CellNet: network biology applied to stem cell engineering.

    PubMed

    Cahan, Patrick; Li, Hu; Morris, Samantha A; Lummertz da Rocha, Edroaldo; Daley, George Q; Collins, James J

    2014-08-14

    Somatic cell reprogramming, directed differentiation of pluripotent stem cells, and direct conversions between differentiated cell lineages represent powerful approaches to engineer cells for research and regenerative medicine. We have developed CellNet, a network biology platform that more accurately assesses the fidelity of cellular engineering than existing methodologies and generates hypotheses for improving cell derivations. Analyzing expression data from 56 published reports, we found that cells derived via directed differentiation more closely resemble their in vivo counterparts than products of direct conversion, as reflected by the establishment of target cell-type gene regulatory networks (GRNs). Furthermore, we discovered that directly converted cells fail to adequately silence expression programs of the starting population and that the establishment of unintended GRNs is common to virtually every cellular engineering paradigm. CellNet provides a platform for quantifying how closely engineered cell populations resemble their target cell type and a rational strategy to guide enhanced cellular engineering. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. The trans-species core SELF: the emergence of active cultural and neuro-ecological agents through self-related processing within subcortical-cortical midline networks.

    PubMed

    Panksepp, Jaak; Northoff, Georg

    2009-03-01

    The nature of "the self" has been one of the central problems in philosophy and more recently in neuroscience. This raises various questions: (i) Can we attribute a self to animals? (ii) Do animals and humans share certain aspects of their core selves, yielding a trans-species concept of self? (iii) What are the neural processes that underlie a possible trans-species concept of self? (iv) What are the developmental aspects and do they result in various levels of self-representation? Drawing on recent literature from both human and animal research, we suggest a trans-species concept of self that is based upon what has been called a "core-self" which can be described by self-related processing (SRP) as a specific mode of interaction between organism and environment. When we refer to specific neural networks, we will here refer to the underlying system as the "core-SELF." The core-SELF provides primordial neural coordinates that represent organisms as living creatures-at the lowest level this elaborates interoceptive states along with raw emotional feelings (i.e., the intentions in action of a primordial core-SELF) while higher medial cortical levels facilitate affective-cognitive integration (yielding a fully-developed nomothetic core-self). Developmentally, SRP allows stimuli from the environment to be related and linked to organismic needs, signaled and processed within core-self structures within subcorical-cortical midline structures (SCMS) that provide the foundation for epigenetic emergence of ecologically framed, higher idiographic forms of selfhood across different individuals within a species. These functions ultimately operate as a coordinated network. We postulate that core SRP operates automatically, is deeply affective, and is developmentally and epigenetically connected to sensory-motor and higher cognitive abilities. This core-self is mediated by SCMS, embedded in visceral and instinctual representations of the body that are well integrated with basic attentional, emotional and motivational functions that are apparently shared between humans, non-human mammals, and perhaps in a proto-SELF form, other vertebrates. Such a trans-species concept of organismic coherence is thoroughly biological and affective at the lowest levels of a complex neural network, and culturally and ecologically molded at higher levels of neural processing. It allows organisms to selectively adapt to and integrate with physical and social environments. Such a psychobiologically universal, but environmentally diversified, concept may promote novel trans-species studies of the core-self across mammalian species.

  8. Allison moving forward

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raflo, D.

    1994-07-01

    Allison has been on its own since December 1, when General Motors Corporation sold its former Allison Gas Turbine Division to Clayton, Dubilier & Rice Inc, a private New York investment firm, and a group of senior Allison managers for $318 million. Allison engine Company`s current product line includes large engines, small aircraft engines, and industrial engines. Over 140,000 engines have been produced since 1915, giving Allison a large stake in world leaderhsip. With strong cogeneration markets already established in Europe and Japan, Allison`s industrial engines are being positioned to compete in emerging markets in China, Indonesia and the Sovietmore » Union. Cogeneration market potential in the US improves despite the current popularity with abundant, low-cost natural gas because of the South Coast Air Control Management District`s push for reduced emissions. The new 7000-shp KB7 industrial engine is the latest addition to the 501K engine family, and adds increased power (by 1700 shp), with a boost compressor to the current core compressor increasing air flow, along with a new low-loss exhaust system. Allison`s new AE series of turboprop (AE 2100) and turbofan (AE 3007) engines, with engine cores derived from the T406 design, have been selected to power regional airliners. 2 figs.« less

  9. Primary atomization of liquid jets issuing from rocket engine coaxial injectors

    NASA Astrophysics Data System (ADS)

    Woodward, Roger D.

    1993-01-01

    The investigation of liquid jet breakup and spray development is critical to the understanding of combustion phenomena in liquid-propellant rocket engines. Much work has been done to characterize low-speed liquid jet breakup and dilute sprays, but atomizing jets and dense sprays have yielded few quantitative measurements due to their optical opacity. This work focuses on a characteristic of the primary breakup process of round liquid jets, namely the length of the intact liquid core. The specific application considered is that of shear-coaxial type rocket engine injectors. Real-time x-ray radiography, capable of imaging through the dense two-phase region surrounding the liquid core, has been used to make the measurements. Nitrogen and helium were employed as the fuel simulants while an x-ray absorbing potassium iodide aqueous solution was used as the liquid oxygen (LOX) simulant. The intact-liquid-core length data have been obtained and interpreted to illustrate the effects of chamber pressure (gas density), injected-gas and liquid velocities, and cavitation. The results clearly show that the effect of cavitation must be considered at low chamber pressures since it can be the dominant breakup mechanism. A correlation of intact core length in terms of gas-to-liquid density ratio, liquid jet Reynolds number, and Weber number is suggested. The gas-to-liquid density ratio appears to be the key parameter for aerodynamic shear breakup in this study. A small number of hot-fire, LOX/hydrogen tests were also conducted to attempt intact-LOX-core measurements under realistic conditions in a single-coaxial-element rocket engine. The tests were not successful in terms of measuring the intact core, but instantaneous imaging of LOX jets suggests that LOX jet breakup is qualitatively similar to that of cold-flow, propellant-simulant jets. The liquid oxygen jets survived in the hot-fire environment much longer than expected, and LOX was even visualized exiting the chamber nozzle under some conditions. This may be an effect of the single element configuration.

  10. Procedure for Separating Noise Sources in Measurements of Turbofan Engine Core Noise

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2006-01-01

    The study of core noise from turbofan engines has become more important as noise from other sources like the fan and jet have been reduced. A multiple microphone and acoustic source modeling method to separate correlated and uncorrelated sources has been developed. The auto and cross spectrum in the frequency range below 1000 Hz is fitted with a noise propagation model based on a source couplet consisting of a single incoherent source with a single coherent source or a source triplet consisting of a single incoherent source with two coherent point sources. Examples are presented using data from a Pratt & Whitney PW4098 turbofan engine. The method works well.

  11. Acoustic design of the QCSEE propulsion systems

    NASA Technical Reports Server (NTRS)

    Loeffler, I. J.; Smith, E. B.; Sowers, H. D.

    1976-01-01

    Acoustic design features and techniques employed in the Quiet Clean Short-Haul Experimental Engine (QCSEE) Program are described. The role of jet/flap noise in selecting the engine fan pressure ratio for powered lift propulsion systems is discussed. The QCSEE acoustic design features include a hybrid inlet (near-sonic throat velocity with acoustic treatment); low fan and core pressure ratios; low fan tip speeds; gear-driven fans; high and low frequency stacked core noise treatment; multiple-thickness treatment; bulk absorber treatment; and treatment on the stator vanes. The QCSEE designs represent and anticipated acoustic technology improvement of 12 to 16 PNdb relative to the noise levels of the low-noise engines used on current wide-body commercial jet transport aircraft.

  12. Weighted compactness function based label propagation algorithm for community detection

    NASA Astrophysics Data System (ADS)

    Zhang, Weitong; Zhang, Rui; Shang, Ronghua; Jiao, Licheng

    2018-02-01

    Community detection in complex networks, is to detect the community structure with the internal structure relatively compact and the external structure relatively sparse, according to the topological relationship among nodes in the network. In this paper, we propose a compactness function which combines the weight of nodes, and use it as the objective function to carry out the node label propagation. Firstly, according to the node degree, we find the sets of core nodes which have great influence on the network. The more the connections between the core nodes and the other nodes are, the larger the amount of the information these kernel nodes receive and transform. Then, according to the similarity of the nodes between the core nodes sets and the nodes degree, we assign weights to the nodes in the network. So the label of the nodes with great influence will be the priority in the label propagation process, which effectively improves the accuracy of the label propagation. The compactness function between nodes and communities in this paper is based on the nodes influence. It combines the connections between nodes and communities with the degree of the node belongs to its neighbor communities based on calculating the node weight. The function effectively uses the information of nodes and connections in the network. The experimental results show that the proposed algorithm can achieve good results in the artificial network and large-scale real networks compared with the 8 contrast algorithms.

  13. Design Practices of Preservice Elementary Teachers in an Integrated Engineering and Literature Experience

    ERIC Educational Resources Information Center

    Wendell, Kristen Bethke

    2014-01-01

    The incorporation of engineering practices and core ideas into the "Next Generation Science Standards" at the elementary school level provides exciting opportunities but also raises important questions about the preparation of new elementary teachers. Both the teacher education and engineering education communities have a limited…

  14. Standardized Curriculum for Outboard Marine Engine Mechanics.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    This curriculum guide for outboard marine engine mechanics was developed by the state of Mississippi to standardize vocational education course titles and core contents. The objectives contained in this document are common to all outboard marine engine mechanics programs in the state. The guide contains objectives for outboard marine engine…

  15. Brains--Computers--Machines: Neural Engineering in Science Classrooms

    ERIC Educational Resources Information Center

    Chudler, Eric H.; Bergsman, Kristen Clapper

    2016-01-01

    Neural engineering is an emerging field of high relevance to students, teachers, and the general public. This feature presents online resources that educators and scientists can use to introduce students to neural engineering and to integrate core ideas from the life sciences, physical sciences, social sciences, computer science, and engineering…

  16. An Introductory Course in Bioengineering and Biotechnology for Chemical Engineering Sophomores

    ERIC Educational Resources Information Center

    O'Connor, Kim C.

    2007-01-01

    Advances in the biological sciences necessitate the training of chemical engineers to translate these fundamental discoveries into applications that will benefit society. Accordingly, Tulane University revised its core chemical engineering curriculum in 2005 to include a new introductory course in bioengineering and biotechnology for sophomores.…

  17. Understanding Biological Regulation Through Synthetic Biology.

    PubMed

    Bashor, Caleb J; Collins, James J

    2018-05-20

    Engineering synthetic gene regulatory circuits proceeds through iterative cycles of design, building, and testing. Initial circuit designs must rely on often-incomplete models of regulation established by fields of reductive inquiry-biochemistry and molecular and systems biology. As differences in designed and experimentally observed circuit behavior are inevitably encountered, investigated, and resolved, each turn of the engineering cycle can force a resynthesis in understanding of natural network function. Here, we outline research that uses the process of gene circuit engineering to advance biological discovery. Synthetic gene circuit engineering research has not only refined our understanding of cellular regulation but furnished biologists with a toolkit that can be directed at natural systems to exact precision manipulation of network structure. As we discuss, using circuit engineering to predictively reorganize, rewire, and reconstruct cellular regulation serves as the ultimate means of testing and understanding how cellular phenotype emerges from systems-level network function.

  18. Global Hawk Systems Engineering. Case Study

    DTIC Science & Technology

    2010-01-01

    Management Core System ( TBMCS ) (complex software development) • F-111 Fighter (joint program with significant involvement by the Office of the...Software Requirements Specification TACC Tailored Airworthiness Certification Criteria TBMCS Theater Battle Management Core System TEMP Test and

  19. Core Engine Noise Control Program. Volume III. Prediction Methods

    DTIC Science & Technology

    1974-08-01

    turbofan engines , and Method (C) is based on an analytical description of viscous wake interaction between adjoining blade rows. Turbine Tone/ Jet ...levels for turbojet , turboshaft and turbofan engines . The turbojet data correlate highest and the turbofan data correlate lowest. Turbine Noise Noise...different engines were examined for combustor, jet and fan noise. Tnree turbojet , two turboshaft and two turbofan

  20. A model for enhancing Internet medical document retrieval with "medical core metadata".

    PubMed

    Malet, G; Munoz, F; Appleyard, R; Hersh, W

    1999-01-01

    Finding documents on the World Wide Web relevant to a specific medical information need can be difficult. The goal of this work is to define a set of document content description tags, or metadata encodings, that can be used to promote disciplined search access to Internet medical documents. The authors based their approach on a proposed metadata standard, the Dublin Core Metadata Element Set, which has recently been submitted to the Internet Engineering Task Force. Their model also incorporates the National Library of Medicine's Medical Subject Headings (MeSH) vocabulary and MEDLINE-type content descriptions. The model defines a medical core metadata set that can be used to describe the metadata for a wide variety of Internet documents. The authors propose that their medical core metadata set be used to assign metadata to medical documents to facilitate document retrieval by Internet search engines.

Top