Sample records for core nutation fcn

  1. Estimation of the interior parameters from Mars nutations and from Doppler measurements

    NASA Astrophysics Data System (ADS)

    Yseboodt, M.; Rivoldini, A.; Le Maistre, S.; Dehant, V. M. A.

    2017-12-01

    The presence of a liquid core inside Mars changes the nutations: the nutation amplitudes can be resonantly amplified because of a free mode, called the free core nutation (FCN).We quantify how the internal structure, in particular the size of the core, affects the nutation amplifications and the Doppler observable between a Martian lander and the Earth.Present day core size estimates suggest that the effect is the largest on the prograde semi-annual and retrograde ter-annual nutation.We solve the inverse problem assuming a given precision on the nutation amplifications provided by an extensive set of geodesy measurements and we estimate the precision on the core properties. Such measurements will be available in the near future thanks to the geodesy experiments RISE (InSight mission) and LaRa (ExoMars mission).We find that the precision on the core properties is very dependent on the proximity of the FCN period to the ter-annual forcing (-229 days) and the assumed a priori precision on the nutations.

  2. A study of the earth's free core nutation using international deployment of accelerometers gravity data

    NASA Technical Reports Server (NTRS)

    Cummins, Phil R.; Wahr, John M.

    1993-01-01

    In this study we consider the influence of the earth's free core nutation (FCN) on diurnal tidal admittance estimates for 11 stations of the globally distributed International Deployment of Accelerometers network. The FCN causes a resonant enhancement of the diurnal admittances which can be used to estimate some properties of the FCN. Estimations of the parameters describing the FCN (period, Q, and resonance strength) are made using data from individual stations and many stations simultaneously. These yield a result for the period of 423-452 sidereal days, which is shorter than theory predicts but is in agreement with many previous studies and suggests that the dynamical ellipticity of the core may be greater than its hydrostatic value.

  3. On the prediction of the Free Core Nutation

    NASA Astrophysics Data System (ADS)

    Belda Palazón, Santiago; Ferrándiz, José M.; Heinkelmann, Robert; Nilsson, Tobias; Schuh, Harald; Modiri, Sadegh

    2017-04-01

    Consideration of the Free Core Nutation (FCN) model is obliged for improved modelling of the Celestial Pole Offsets (CPO), since it is the major source of inaccuracy or unexplained time variability with respect to the current IAU2000 nutation theory. FCN is excited from various geophysical sources and thus it cannot be known until it is inferred from observations. However, given that the variations of the FCN signal are slow and seldom abrupt, we examine whether the availability of new FCN empirical models (i.e., Malkin 2007; Krásná et al. 2013; Belda et al. 2016) can be exploited to make reasonably accurate predictions of the FCN signal before observing it. In this work we study CPO predictions for the FCN model provided by Belda et al. 2016, in which the amplitude coefficients were estimated by using a sliding window with a width of 400 days and with a minimal displacement between the subsequent fits (one-day step). Our results exhibit two significant features: (1) the prediction of the FCN signal can be done on the basis of its prior amplitudes with a mean error of about 30 microarcseconds per year, with an apparent linear trend; and (2) the Weighted Root Mean Square (wrms) of the differences between the CPO produced by the IERS (International Earth Rotation and Reference Systems Service) and our predicted FCN exhibit an exponential slow-growing pattern, with a wmrs close to 120 microarcseconds along several months. Therefore a substantial improvement with respect to the CPO operational predictions of the IERS Rapid Service/Prediction Centre can be achieved.

  4. New method for determining free core nutation parameters, considering geophysical effects

    NASA Astrophysics Data System (ADS)

    Vondrák, J.; Ron, C.

    2017-08-01

    Context. In addition to the torques exerted by the Moon, Sun, and planets, changes of precession-nutation are known to be caused also by geophysical excitations. Recently studies suggest that geomagnetic jerks (GMJ) might be associated with sudden changes of phase and amplitude of free core nutation. We showed that using atmospheric and oceanic excitations with those by GMJ improves substantially the agreement with observed celestial pole offsets. Aims: Traditionally, the period Tf and quality factor Qf of the free core nutation (FCN) are derived from VLBI-based celestial pole offsets (CPO). Either direct analysis of the observed CPO, or indirect method using resonant effects of nutation terms with frequencies close to FCN, are used. The latter method is usually preferred, since it yields more accurate results. Our aim is to combine both approaches to better derive FCN parameters. Methods: We numerically integrated the part of CPO that is due to geophysical excitations for different combinations of Tf, Qf, using Brzeziński's broadband Liouville equations (Brzeziński 1994, Manuscripta geodaetica, 19, 157), and compared the results with the observed values of CPO. The values yielding the best fit were then estimated. The observed CPO, however, must be corrected for the change of nutation that is caused by the Tf, Qf values different from those used to calculate IAU 2000 model of nutation. To this end, we have used the Mathews-Herring-Buffet transfer function and applied it to the five most affected terms of nutation (with periods 365.26, 182.62, 121.75, 27.55 and 13.66 days). Results: The results, based on the CPO data in the interval 1986.0—2016.0 and excitations with three different models, are presented. We demonstrate that better results are obtained if the influence of additional excitations at GMJ epochs is added to excitations by the atmosphere and oceans. Our preferred values are Tf = 430.28 ± 0.04 mean solar days and Qf = 19 500 ± 200.

  5. Rotational modes of a simple Earth model

    NASA Astrophysics Data System (ADS)

    Seyed-Mahmoud, B.; Rochester, M. G.; Rogister, Y. J. G.

    2017-12-01

    We study the tilt-over mode (TOM), the spin-over mode (SOM), the free core nutation (FCN), and their relationships to each other using a simple Earth model with a homogeneous and incompressible liquid core and a rigid mantle. Analytical solutions for the periods of these modes as well as that of the Chandler wobble is found for the Earth model. We show that the FCN is the same mode as the SOM of a wobbling Earth. The reduced pressure, in terms of which the vector momentum equation is known to reduce to a scalar second order differential equation (the so called Poincaŕe equation), is used as the independent variable. Analytical solutions are then found for the displacement eigenfucntions in a meridional plane of the liquid core for the aforementioned modes. We show that the magnitude of motion in the mantle during the FCN is comparable to that in the liquid core, hence very small. The displacement eigenfunctions for these aforementioned modes as well as those for the free inner core nutation (FICN), computed numerically, are also given for a three layer Earth model which also includes a rigid but capable of wobbling inner core. We will discuss the slow convergence of the period of the FICN in terms of the characteristic surfaces of the Poincare equation.

  6. Testing a new Free Core Nutation empirical model

    NASA Astrophysics Data System (ADS)

    Belda, Santiago; Ferrándiz, José M.; Heinkelmann, Robert; Nilsson, Tobias; Schuh, Harald

    2016-03-01

    The Free Core Nutation (FCN) is a free mode of the Earth's rotation caused by the different material characteristics of the Earth's core and mantle. This causes the rotational axes of those layers to slightly diverge from each other, resulting in a wobble of the Earth's rotation axis comparable to nutations. In this paper we focus on estimating empirical FCN models using the observed nutations derived from the VLBI sessions between 1993 and 2013. Assuming a fixed value for the oscillation period, the time-variable amplitudes and phases are estimated by means of multiple sliding window analyses. The effects of using different a priori Earth Rotation Parameters (ERP) in the derivation of models are also addressed. The optimal choice of the fundamental parameters of the model, namely the window width and step-size of its shift, is searched by performing a thorough experimental analysis using real data. The former analyses lead to the derivation of a model with a temporal resolution higher than the one used in the models currently available, with a sliding window reduced to 400 days and a day-by-day shift. It is shown that this new model increases the accuracy of the modeling of the observed Earth's rotation. Besides, empirical models determined from USNO Finals as a priori ERP present a slightly lower Weighted Root Mean Square (WRMS) of residuals than IERS 08 C04 along the whole period of VLBI observations, according to our computations. The model is also validated through comparisons with other recognized models. The level of agreement among them is satisfactory. Let us remark that our estimates give rise to the lowest residuals and seem to reproduce the FCN signal in more detail.

  7. The Coupling between Earth's Inertial and Rotational Eigenmodes

    NASA Astrophysics Data System (ADS)

    Triana, S. A.; Rekier, J.; Trinh, A.; Laguerre, R.; Zhu, P.; Dehant, V. M. A.

    2017-12-01

    Wave motions in the Earth's fluid core, supported by the restoring action of both buoyancy (within the stably stratified top layer) and the Coriolis force, lead to the existence of global oscillation modes, the so-called gravito-inertial modes. These fluid modes can couple with the rotational modes of the Earth by exerting torques on the mantle and the inner core. Viscous shear stresses at the fluid boundaries, along with pressure and gravitation, contribute to the overall torque balance. Previous research by Rogister & Valette (2009) suggests that indeed rotational and gravito-inertial modes are coupled, thus shifting the frequencies of the Chandler Wobble (CW), the Free Core Nutation (FCN) and the Free Inner Core Nutation (FICN). Here we present the first results from a numerical model of the Earth's fluid core and its interaction with the rotational eigenmodes. In this first step we consider a fluid core without a solid inner core and we restrict to ellipticities of the same order as the Ekman number. We formulate the problem as a generalised eigenvalue problem that solves simultaneously the Liouville equation for the rotational modes (the torque balance), and the Navier-Stokes equation for the inertial modes.

  8. An a priori model for the reduction of nutation observations: KSV(1994.3) nutation series

    NASA Technical Reports Server (NTRS)

    Herring, T. A.

    1995-01-01

    We discuss the formulation of a new nutation series to be used in the reduction of modern space geodetic data. The motivation for developing such a series is to develop a nutation series that has smaller short period errors than the IAU 1980 nutation series and to provide a series that can be used with techniques such as the Global Positioning System (GPS) that have sensitivity to nutations but can directly separate the effects of nutations from errors in the dynamical force models that effect the satellite orbits. A modern nutation series should allow the errors in the force models for GPS to be better understood. The series is constructed by convolving the Kinoshita and Souchay rigid Earth nutation series with an Earth response function whose parameters are partly based on geophysical models of the Earth and partly estimated from a long series (1979-1993) of very long baseline interferometry (VLBI) estimates of nutation angles. Secular rates of change of the nutation angles to represent corrections to the precession constant and a secular change of the obliquity of the ecliptic are included in the theory. Time dependent amplitudes of the Free Core Nutation (FCN) that is most likely excited by variations in atmospheric pressure are included when the geophysical parameters are estimated. The complex components of the prograde annual nutation are estimated simultaneously with the geophysical parameters because of the large contribution to the nutation from the S(sub 1) atmospheric tide. The weighted root mean square (WRMS) scatter of the nutation angle estimates about this new model are 0.32 mas and the largest correction to the series when the amplitudes of the ten largest nutations are estimated is 0.18 +/- 0.03 mas for the in phase component of the prograde 18. 6 year nutation.

  9. Truncation Effects in Computing Free Wobble/Nutation Modes Explored Using a Simple Earth Model

    NASA Astrophysics Data System (ADS)

    Seyed-Mahmoud, B.; Rochester, M. G.; Rogers, C. M.

    2016-12-01

    The displacement field accompanying the wobble/nutation of the Earth is conventionally represented by an infinite chain of toroidal and spheroidal vector spherical harmonics, coupled by rotation and ellipticity. Numerical solutions for the eigenperiods require truncation of that chain, and the standard approaches using the linear momentum description (LMD) of deformation during wobble/nutation have truncated it at very low degrees, usually degree 3 or 4, and at most degree 5. The effects of such heavy truncation on the computed eigenperiods have hardly been examined. We here investigate the truncation effects on the periods of the free wobble/nutation modes using a simplified Earth model consisting of a homogeneous incompressible inviscid liquid outer core with a rigid (but not fixed) inner core and mantle. A novel Galerkin method is implemented using a Clairaut coordinate system to solve the classic Poincare problem in the liquid core and, to close the problem, we use the Lagrangean formulation of the Liouville equation for each of the solid parts of the Earth model. We find that, except for the free inner core nutation (FICN), the periods of the free rotational modes converge rather quickly. The period of the tiltover mode (TOM) is found to excellent accuracy. The computed periods of the Chandler wobble (CW) and free core nutation (FCN) are nearly identical to the values cited in the literature for similar Earth models, but that for the inner core wobble (ICW) is slightly different. Truncation at low-degree harmonics causes the FICN period to fluctuate over a range as large as 90 sd, with different values at different truncation levels. For example, truncation at degree 6 gives a period of 752 sd (almost identical with the value cited in the literature for such an Earth model) but truncation at degree 24 is required to obtain convergence, and the resulting period is 746 sd, with no guarantee that its proximity to earlier values is other than fortuitous. We conclude that the heavy truncation necessitated by the conventional LMD is unsatisfactory for the FICN.

  10. Observation of the Earth Liquid Core Resonance by Extensometers

    NASA Astrophysics Data System (ADS)

    Bán, Dóra; Mentes, Gyula; Kis, Márta; Koppán, András

    2018-05-01

    We performed Earth tidal measurements by quartz tube extensometers of the same type at several observatories (Budapest, Pécs, Sopronbánfalva in Hungary and Vyhne in Slovakia). In this paper, the first attempts to reveal the effect of the Free Core Nutation (FCN) from strain measurements are described. The effect of the FCN on the P1, K1, Ψ1 and Φ1 tidal waves were studied on the basis of tidal results obtained in four observatories. Effectiveness of the correction of tidal data for temperature, barometric pressure and ocean load was also investigated. The obtained K1/O1 ratios are close to the theoretical values with exception of the Pécs station. We found a discrepancy between the observed and theoretical P1/O1 values for all stations with exception of the Budapest station. It was found that the difference between the measured and theoretical Ψ1/O1 and Φ1/O1 ratios was very large independently of correction of the strain data. These discrepancies need further investigations. According to our results, fluid core resonance effects can also be detected by our quartz tube extensometers but correction of strain data for local effects is necessary.

  11. Observation of the Earth liquid core resonance by extensometers

    NASA Astrophysics Data System (ADS)

    Bán, Dóra; Mentes, Gyula

    2016-04-01

    The axis of the fluid outer core of the Earth and the rotation axis of the mantle do not coincide therefore restoring forces are set up at the core-mantle boundary which try to realign the two axes causing a resonance effect. In celestial reference system it is called the "Free Core Nutation" (FCN), which can be characterized by a period of 432 days while in the Earth reference system it is called the "Nearly Diurnal Free Wobble" (NDFW). The frequency of this phenomenon is near to the diurnal tidal frequencies, especially to P1 and K1 waves. Due to its resonance effect this phenomenon can be detected also by quartz tube extensometers suitable for Earth tides recording. In this study data series measured in several extensometric stations were used to reveal the presence of the FCN resonance. In the Pannonian Basin there are five observatories where extensometric measurements were carried out in different lengths of time. Four stations in Hungary: Sopronbánfalva Geodynamical Observatory (2000-2014), Budapest Mátyáshegy Gravity and Geodynamic Observatory (2005-2012), Pécs uranium mine (1991-1999), Bakonya, near to Pécs (2004-2005) and in Slovakia: Vyhne Earth Tide Observatory (2001-2013). Identical instrumentation in different observatories provides the opportunity to compare measurements with various topography, geology and environmental parameters. The results are also compared to values inferred from extensometric measurements in other stations.

  12. An Improved Empirical Harmonic Model of the Celestial Intermediate Pole Offsets from a Global VLBI Solution

    NASA Astrophysics Data System (ADS)

    Belda, Santiago; Heinkelmann, Robert; Ferrándiz, José M.; Karbon, Maria; Nilsson, Tobias; Schuh, Harald

    2017-10-01

    Very Long Baseline Interferometry (VLBI) is the only space geodetic technique capable of measuring all the Earth orientation parameters (EOP) accurately and simultaneously. Modeling the Earth's rotational motion in space within the stringent consistency goals of the Global Geodetic Observing System (GGOS) makes VLBI observations essential for constraining the rotation theories. However, the inaccuracy of early VLBI data and the outdated products could cause non-compliance with these goals. In this paper, we perform a global VLBI analysis of sessions with different processing settings to determine a new set of empirical corrections to the precession offsets and rates, and to the amplitudes of a wide set of terms included in the IAU 2006/2000A precession-nutation theory. We discuss the results in terms of consistency, systematic errors, and physics of the Earth. We find that the largest improvements w.r.t. the values from IAU 2006/2000A precession-nutation theory are associated with the longest periods (e.g., 18.6-yr nutation). A statistical analysis of the residuals shows that the provided corrections attain an error reduction at the level of 15 μas. Additionally, including a Free Core Nutation (FCN) model into a priori Celestial Pole Offsets (CPOs) provides the lowest Weighted Root Mean Square (WRMS) of residuals. We show that the CPO estimates are quite insensitive to TRF choice, but slightly sensitive to the a priori EOP and the inclusion of different VLBI sessions. Finally, the remaining residuals reveal two apparent retrograde signals with periods of nearly 2069 and 1034 days.

  13. Precession of a two-layer Earth: contributions of the core and elasticity

    NASA Astrophysics Data System (ADS)

    Baenas, Tomás; Ferrándiz, José M.; Escapa, Alberto; Getino, Juan; Navarro, Juan F.

    2016-04-01

    The Earth's internal structure contributes to the precession rate in a small but non-negligible amount, given the current accuracy goals demanded by IAG/GGOS to the reference frames, namely 30 μas and 3 μas/yr. These contributions come from a variety of sources. One of those not yet accounted for in current IAU models is associated to the crossed effects of certain nutation-rising terms of a two-layer Earth model; intuitively, it gathers an 'indirect' effect of the core via the NDFW, or FCN, resonance as well as a 'direct' effect arising from terms that account for energy variations depending on the elasticity of the core. Similar order of magnitude reaches the direct effect of the departure of the Earth's rheology from linear elasticity. To compute those effects we work out the problem in a unified way within the Hamiltonian framework developed by Getino and Ferrándiz (2001). It allows a consistent treatment of the problem since all the perturbations are derived from the same tide generating expansion and the crossing effects are rigorously obtained through Hori's canonical perturbation method. The problem admits an asymptotic analytical solution. The Hamiltonian is constructed by considering a two-layer Earth model made up of an anelastic mantle and a fluid core, perturbed by the gravitational action of the Moon and the Sun. The former effects reach some tens of μas/yr in the longitude rate, hence above the target accuracy level. We outline their influence in the estimation of the Earth's dynamical ellipticity, a main parameter factorizing both precession and nutation.

  14. Earth Core and Inner Core: What Can We Learn From a Bayesian Inversion of Combined Nutation and Surface Gravimetry Data?

    NASA Astrophysics Data System (ADS)

    Lambert, S. B.; Ziegler, Y.; Rosat, S.; Bizouard, C.

    2017-12-01

    Nutation time series derived from very long baseline interferometry (VLBI) and time varying surface gravity data recorded by superconducting gravimeters (SG) have long been used separately to assess the Earth's interior via the estimation of the free core and inner core resonance effects on nutation or tidal gravity. The results obtained from these two techniques have shown recently to be consistent, making relevant the combination of VLBI and SG observables and the estimation of Earth's interior parameters in a single inversion. We present here the results of combining nutation and surface gravity time series to improve estimates of the Earth's core and inner core resonant frequencies. We use VLBI nutation time series spanning 1984-2016 derived by several analysis centers affiliated to the International VLBI Service for Geodesy and Astrometry, together with surface gravity data from about 15 SG stations. We address the resonance model used for describing the Earth's interior response to tidal excitation, the data preparation consisting of the error recalibration and amplitude fitting to nutation data, and processing of SG time-varying gravity to remove any gaps, spikes, steps and other disturbances, followed by the tidal analysis with the ETERNA 3.4 software package. New estimates of the resonant periods are proposed and correlations between the parameters are investigated.

  15. Combining nutation and surface gravity observations to estimate the Earth's core and inner core resonant frequencies

    NASA Astrophysics Data System (ADS)

    Ziegler, Yann; Lambert, Sébastien; Rosat, Séverine; Nurul Huda, Ibnu; Bizouard, Christian

    2017-04-01

    Nutation time series derived from very long baseline interferometry (VLBI) and time varying surface gravity data recorded by superconducting gravimeters (SG) have long been used separately to assess the Earth's interior via the estimation of the free core and inner core resonance effects on nutation or tidal gravity. The results obtained from these two techniques have been shown recently to be consistent, making relevant the combination of VLBI and SG observables and the estimation of Earth's interior parameters in a single inversion. We present here the intermediate results of the ongoing project of combining nutation and surface gravity time series to improve estimates of the Earth's core and inner core resonant frequencies. We use VLBI nutation time series spanning 1984-2016 derived by the International VLBI Service for geodesy and astrometry (IVS) as the result of a combination of inputs from various IVS analysis centers, and surface gravity data from about 15 SG stations. We address here the resonance model used for describing the Earth's interior response to tidal excitation, the data preparation consisting of the error recalibration and amplitude fitting for nutation data, and processing of SG time-varying gravity to remove any gaps, spikes, steps and other disturbances, followed by the tidal analysis with the ETERNA 3.4 software package, the preliminary estimates of the resonant periods, and the correlations between parameters.

  16. Core dynamics and the nutations of the Earth.

    NASA Astrophysics Data System (ADS)

    Dehant, V. M. A.; Laguerre, R.; Rekier, J.; Rivoldini, A.; Trinh, A.; Triana, A. S.; Van Hoolst, T.; Zhu, P.

    2016-12-01

    We here present an overview of the recent activities within the project RotaNut - Rotation and Nutation of a Wobbly Earth, an ERC Advanced Grant funding from the European Research Council. We have recomputed the Basic Earth Parameters from recent VLBI series and we interpret them in terms of physics of the Earth's deep interior. This includes updates of the nutational constraints on Earth's internal magnetic field and inner core viscosity, as well as of the coupling constants at the core-mantle boundary (CMB) and inner core boundary ICB. We have explored on simplified Earth models the interactions between rotational and gravito-inertial modes. With the help of numerical simulations, we have also addressed the coupling between the global rotation and the inertial waves in the fluid core through parametric instabilities. Special interests have been given to the influence of the inner core onto the stability properties of the liquid core and the large scale formation in the turbulent flow through inverse cascade of energy. The role of precession and nutation forcing for the liquid core is characterized as well as the interaction between the Free Core Nutation (in the fluid core community called the tilt-over mode) and the inertial waves. This research represents the first steps in the project RotaNut financed by the European Research Council under ERC Advanced Grant 670874 for 2015-2020.

  17. Earth's core and inner-core resonances from analysis of VLBI nutation and superconducting gravimeter data

    NASA Astrophysics Data System (ADS)

    Rosat, S.; Lambert, S. B.; Gattano, C.; Calvo, M.

    2017-01-01

    Geophysical parameters of the deep Earth's interior can be evaluated through the resonance effects associated with the core and inner-core wobbles on the forced nutations of the Earth's figure axis, as observed by very long baseline interferometry (VLBI), or on the diurnal tidal waves, retrieved from the time-varying surface gravity recorded by superconducting gravimeters (SGs). In this paper, we inverse for the rotational mode parameters from both techniques to retrieve geophysical parameters of the deep Earth. We analyse surface gravity data from 15 SG stations and VLBI delays accumulated over the last 35 yr. We show existing correlations between several basic Earth parameters and then decide to inverse for the rotational modes parameters. We employ a Bayesian inversion based on the Metropolis-Hastings algorithm with a Markov-chain Monte Carlo method. We obtain estimates of the free core nutation resonant period and quality factor that are consistent for both techniques. We also attempt an inversion for the free inner-core nutation (FICN) resonant period from gravity data. The most probable solution gives a period close to the annual prograde term (or S1 tide). However the 95 per cent confidence interval extends the possible values between roughly 28 and 725 d for gravity, and from 362 to 414 d from nutation data, depending on the prior bounds. The precisions of the estimated long-period nutation and respective small diurnal tidal constituents are hence not accurate enough for a correct determination of the FICN complex frequency.

  18. A diurnal resonance in the ocean tide and in the earth's load response due to the resonant free 'core nutation'

    NASA Technical Reports Server (NTRS)

    Wahr, J. M.; Sasao, T.

    1981-01-01

    The effects of the oceans, which are subject to a resonance due to a free rotational eigenmode of an elliptical, rotating earth with a fluid outer core having an eigenfrequency of (1 + 1/460) cycle/day, on the body tide and nutational response of the earth to the diurnal luni-tidal force are computed. The response of an elastic, rotating, elliptical, oceanless earth with a fluid outer core to a given load distribution on its surface is first considered, and the tidal sea level height for equilibrium and nonequilibrium oceans is examined. Computations of the effects of equilibrium and nonequilibrium oceans on the nutational and deformational responses of the earth are then presented which show small but significant perturbations to the retrograde 18.6-year and prograde six-month nutations, and more important effects on the earth body tide, which is also resonant at the free core notation eigenfrequency.

  19. Forced nutations of the earth: Influence of inner core dynamics. I - Theory. II - Numerical results and comparisons. III - Very long interferometry data analysis

    NASA Technical Reports Server (NTRS)

    Mathews, P. M.; Buffett, Bruce A.; Herring, Thomas A.; Shapiro, Irwin I.

    1991-01-01

    A treatment is presented of the nutation problem for an oceanless, elastic, spheroidally stratified earth, with the dynamical role of the inner core explicitly included in the formulation. Solving the enlarged system of equations shows that a new almost diurnal eigenfrequency emerges. A rough estimate places it not far from the prograde annual tidal excitation frequency, so that possible resonance effects on nutation amplitudes need careful consideration. Tables are provided that exhibit the sensitivities of various relevant quantities, the eigenfrequencies and the coefficients which appear in the resonance expansion, as well as the nutation amplitudes at important tidal frequencies, to possible errors in the earth parameters which enter the theory set forth. Finally, the analysis of 798 VLBI experiments performed between July 1980 and February 1989 and the determination from this analysis of corrections to selected coefficients in the International Astronomical Union 1980 theory of the nutations of the earth are discussed.

  20. The effects of the solid inner core and nonhydrostatic structure on the earth's forced nutations and earth tides

    NASA Technical Reports Server (NTRS)

    De Vries, Dan; Wahr, John M.

    1991-01-01

    This paper computes the effects of the solid inner core (IC) on the forced nutations and earth tides, and on certain of the earth's rotational normal modes. The theoretical results are extended to include the effects of a solid IC and of nonhydrostatic structure. The presence of the IC is responsible for a new, almost diurnal, prograde normal mode which involves a relative rotation between the IC and fluid outer core about an equatorial axis. It is shown that the small size of the IC's effects on both nutations and tides is a consequence of the fact that the IC's moments of inertia are less than 1/1000 of the entire earth's.

  1. Truncation effects in computing free wobble/nutation modes explored using a simple Earth model

    NASA Astrophysics Data System (ADS)

    Seyed-Mahmoud, Behnam; Rochester, Michael G.; Rogers, Christopher M.

    2017-06-01

    The displacement field accompanying the wobble/nutation of the Earth is conventionally represented by an infinite chain of toroidal and spheroidal vector spherical harmonics, coupled by rotation and ellipticity. Numerical solutions for the eigenperiods require truncation of that chain, and the standard approaches using the linear momentum description (LMD) of deformation during wobble/nutation have truncated it at very low degrees, usually degree 3 or 4, and at most degree 5. The effects of such heavy truncation on the computed eigenperiods have hardly been examined. We here investigate the truncation effects on the periods of the free wobble/nutation modes using a simplified Earth model consisting of a homogeneous incompressible inviscid liquid outer core with a rigid (but not fixed) inner core and mantle. A novel Galerkin method is implemented using a Clairaut coordinate system to solve the classic Poincaré problem in the liquid core and, to close the problem, we use the Lagrangean formulation of the Liouville equation for each of the solid parts of the Earth model. We find that, except for the free inner core nutation (FICN), the periods of the free rotational modes converge rather quickly. The period of the tiltover mode is found to excellent accuracy. The computed periods of the Chandler wobble and free core nutation are nearly identical to the values cited in the literature for similar Earth models, but that for the inner core wobble is slightly different. Truncation at low-degree harmonics causes the FICN period to fluctuate over a range as large as 90 sd, with different values at different truncation levels. For example, truncation at degree 6 gives a period of 752 sd (almost identical with the value cited in the literature for such an Earth model) but truncation at degree 24 is required to obtain convergence, and the resulting period is 746 ± 1 sd, as more terms are included, with no guarantee that its proximity to earlier values is other than fortuitous. We conclude that the heavy truncation necessitated by the conventional LMD is unsatisfactory for the FICN.

  2. Nutation determination using the Global Positioning System

    NASA Astrophysics Data System (ADS)

    Yao, Kunliang; Capitaine, Nicole; Umnig, Elke; Weber, Robert

    2012-08-01

    VLBI observation of extragalactic radio sources is the only technique that allows high accuracy determination of nutation on a regular basis. However, this is limited to periods of nutation greater than about 30 days due to the current resolution of VL BI estimation. It is there fore important to use another technique to improve nutation at shorter periods. It has been shown by Rothacher et al. (1999) and Weber & Rothacher (2001) that GPS is a potential technique for the determination of the short period terms of nutation. The met hod, which is based on the estimation of nutation rates with respect to an a priori model, is limited to nutation terms in the higher frequency range (with periods up to about 21 days) due to deficiencies in the modeling of the satellite orbits. The high accuracy and high time resolution of the GPS observations that are now achieved give us the possibility to estimate the nutation variations with respect to the IAU2000A nutation, with an expected precision of 10 microarcseconds (μas ). The purpose of our study is to use recent GPS observations obtained by 140 IGS stations (IGS08 Core Reference Frame sites included) to estimate the short period nutations. Two methods are applied: one is to investigate the retrograde diurnal term of polar motion with nutation fixed to the IAU 2006/2000 precession - nutation, using CNES/GRGS software GINS/DYNAMO at Observatoire de Paris; another one is to investigate the nutation time derivative, with polar motion fixed, using Bernese GPS software at University of Technology in Vienna. In this poster, we report on our preliminary results with data set covering a period of 3 years (2009 - 2011), with appropriate time resolutions and on the comparison between the two approaches.

  3. Modeling of nutation-precession: Very long baseline interferometry results

    NASA Astrophysics Data System (ADS)

    Herring, T. A.; Mathews, P. M.; Buffett, B. A.

    2002-04-01

    Analysis of over 20 years of very long baseline interferometry data (VLBI) yields estimates of the coefficients of the nutation series with standard deviations ranging from 5 microseconds of arc (μas) for the terms with periods <400 days to 38 μas for the longest-period terms. The largest deviations between the VLBI estimates of the amplitudes of terms in the nutation series and the theoretical values from the Mathews-Herring-Buffett (MHB2000) nutation series are 56 +/- 38 μas (associated with two of the 18.6 year nutations). The amplitudes of nutational terms with periods <400 days deviate from the MHB2000 nutation series values at the level standard deviation. The estimated correction to the IAU-1976 precession constant is -2.997 +/- 0.008 mas yr-1 when the coefficients of the MHB2000 nutation series are held fixed and is consistent with that inferred from the MHB2000 nutation theory. The secular change in the obliquity of the ecliptic is estimated to be -0.252 +/- 0.003 mas yr-1. When the coefficients of the largest-amplitude terms in the nutation series are estimated, the precession constant correction and obliquity rate are estimated to be -2.960 +/- 0.030 and -0.237 +/- 0.012 mas yr-1. Significant variations in the freely excited retrograde free core nutation mode are observed over the 20 years. During this time the amplitude has decreased from ~300 +/- 50 μas in the mid-1980s to nearly zero by the year 2000. There is evidence that the amplitude of the mode in now increasing again.

  4. 21 CFR 170.100 - Submission of a premarket notification for a food contact substance (FCN) to the Food and Drug...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... contact substance (FCN) to the Food and Drug Administration (FDA). 170.100 Section 170.100 Food and Drugs... notification for a food contact substance (FCN) to the Food and Drug Administration (FDA). (a) An FCN is... substance for the same use, that manufacturer or supplier must also submit an FCN to FDA. (1) An FCN must...

  5. 21 CFR 170.100 - Submission of a premarket notification for a food contact substance (FCN) to the Food and Drug...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... contact substance (FCN) to the Food and Drug Administration (FDA). 170.100 Section 170.100 Food and Drugs... notification for a food contact substance (FCN) to the Food and Drug Administration (FDA). (a) An FCN is... substance for the same use, that manufacturer or supplier must also submit an FCN to FDA. (1) An FCN must...

  6. 21 CFR 170.100 - Submission of a premarket notification for a food contact substance (FCN) to the Food and Drug...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... contact substance (FCN) to the Food and Drug Administration (FDA). 170.100 Section 170.100 Food and Drugs... notification for a food contact substance (FCN) to the Food and Drug Administration (FDA). (a) An FCN is... substance for the same use, that manufacturer or supplier must also submit an FCN to FDA. (1) An FCN must...

  7. 21 CFR 170.100 - Submission of a premarket notification for a food contact substance (FCN) to the Food and Drug...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... contact substance (FCN) to the Food and Drug Administration (FDA). 170.100 Section 170.100 Food and Drugs... notification for a food contact substance (FCN) to the Food and Drug Administration (FDA). (a) An FCN is... substance for the same use, that manufacturer or supplier must also submit an FCN to FDA. (1) An FCN must...

  8. 21 CFR 170.100 - Submission of a premarket notification for a food contact substance (FCN) to the Food and Drug...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... contact substance (FCN) to the Food and Drug Administration (FDA). 170.100 Section 170.100 Food and Drugs...) to the Food and Drug Administration (FDA). (a) An FCN is effective for the food contact substance... or supplier must also submit an FCN to FDA. (1) An FCN must contain all of the information described...

  9. Mechanisms of Mannose-Binding Lectin-Associated Serine Proteases-1/3 Activation of the Alternative Pathway of Complement

    PubMed Central

    Banda, Nirmal K.; Takahashi, Minoru; Takahashi, Kazue; Stahl, Gregory L.; Hyatt, Stephanie; Glogowska, Magdalena; Wiles, Timothy A.; Endo, Yuichi; Fujita, Teizo; Holers, V. Michael; Arend, William P.

    2011-01-01

    Mannose-binding lectin-associated serine proteases-1/3 (MASP-1/3) are essential in activating the alternative pathway (AP) of complement through cleaving pro-factor D (pro-Df) into mature Df. MASP are believed to require binding to mannose binding lectins (MBL) or ficolins (FCN) to carry out their biological activities. Murine sera have been reported to contain MBL-A, MBL-C, and FCN-A, but not FCN-B that exists endogenously in monocytes and is thought not to bind MASP-1. We examined some possible mechanisms whereby MASP-1/3 might activate the AP. Collagen antibody-induced arthritis, a murine model of inflammatory arthritis dependent on the AP, was unchanged in mice lacking MBL-A, MBL-C, and FCN-A (MBL−/−/FCN A−/− mice) in comparison to wild-type mice. The in vitro induction of the AP by adherent mAb to collagen II was intact using sera from MBL−/−/FCN A−/− mice. Furthermore, sera from MBL−/−/FCN A−/− mice lacked pro-Df and possessed only mature Df. Gel filtration of sera from MBL−/−/FCN A−/− mice showed the presence of MASP-1 protein in fractions containing proteins smaller than the migration of MBL-A and MBL-C in sera from C4−/− mice, suggesting possible binding of MASP-1 to an unknown protein. Lastly, we show that FCN-B was present in the sera of MBL−/−/FCN A−/−mice and that it was bound to MASP-1. We conclude that MASP-1 does not require binding to MBL-A, MBL-C, or FCN-A to activate the AP. MASP-1 may cleave pro-Df into mature Df through binding to FCN-B or to an unknown protein, or may function as an unbound soluble protein. PMID:21943708

  10. Link prediction boosted psychiatry disorder classification for functional connectivity network

    NASA Astrophysics Data System (ADS)

    Li, Weiwei; Mei, Xue; Wang, Hao; Zhou, Yu; Huang, Jiashuang

    2017-02-01

    Functional connectivity network (FCN) is an effective tool in psychiatry disorders classification, and represents cross-correlation of the regional blood oxygenation level dependent signal. However, FCN is often incomplete for suffering from missing and spurious edges. To accurate classify psychiatry disorders and health control with the incomplete FCN, we first `repair' the FCN with link prediction, and then exact the clustering coefficients as features to build a weak classifier for every FCN. Finally, we apply a boosting algorithm to combine these weak classifiers for improving classification accuracy. Our method tested by three datasets of psychiatry disorder, including Alzheimer's Disease, Schizophrenia and Attention Deficit Hyperactivity Disorder. The experimental results show our method not only significantly improves the classification accuracy, but also efficiently reconstructs the incomplete FCN.

  11. Automated red blood cells extraction from holographic images using fully convolutional neural networks.

    PubMed

    Yi, Faliu; Moon, Inkyu; Javidi, Bahram

    2017-10-01

    In this paper, we present two models for automatically extracting red blood cells (RBCs) from RBCs holographic images based on a deep learning fully convolutional neural network (FCN) algorithm. The first model, called FCN-1, only uses the FCN algorithm to carry out RBCs prediction, whereas the second model, called FCN-2, combines the FCN approach with the marker-controlled watershed transform segmentation scheme to achieve RBCs extraction. Both models achieve good segmentation accuracy. In addition, the second model has much better performance in terms of cell separation than traditional segmentation methods. In the proposed methods, the RBCs phase images are first numerically reconstructed from RBCs holograms recorded with off-axis digital holographic microscopy. Then, some RBCs phase images are manually segmented and used as training data to fine-tune the FCN. Finally, each pixel in new input RBCs phase images is predicted into either foreground or background using the trained FCN models. The RBCs prediction result from the first model is the final segmentation result, whereas the result from the second model is used as the internal markers of the marker-controlled transform algorithm for further segmentation. Experimental results show that the given schemes can automatically extract RBCs from RBCs phase images and much better RBCs separation results are obtained when the FCN technique is combined with the marker-controlled watershed segmentation algorithm.

  12. Automated red blood cells extraction from holographic images using fully convolutional neural networks

    PubMed Central

    Yi, Faliu; Moon, Inkyu; Javidi, Bahram

    2017-01-01

    In this paper, we present two models for automatically extracting red blood cells (RBCs) from RBCs holographic images based on a deep learning fully convolutional neural network (FCN) algorithm. The first model, called FCN-1, only uses the FCN algorithm to carry out RBCs prediction, whereas the second model, called FCN-2, combines the FCN approach with the marker-controlled watershed transform segmentation scheme to achieve RBCs extraction. Both models achieve good segmentation accuracy. In addition, the second model has much better performance in terms of cell separation than traditional segmentation methods. In the proposed methods, the RBCs phase images are first numerically reconstructed from RBCs holograms recorded with off-axis digital holographic microscopy. Then, some RBCs phase images are manually segmented and used as training data to fine-tune the FCN. Finally, each pixel in new input RBCs phase images is predicted into either foreground or background using the trained FCN models. The RBCs prediction result from the first model is the final segmentation result, whereas the result from the second model is used as the internal markers of the marker-controlled transform algorithm for further segmentation. Experimental results show that the given schemes can automatically extract RBCs from RBCs phase images and much better RBCs separation results are obtained when the FCN technique is combined with the marker-controlled watershed segmentation algorithm. PMID:29082078

  13. The effect of ocean tides on the earth's rotation as predicted by the results of an ocean tide model

    NASA Technical Reports Server (NTRS)

    Gross, Richard S.

    1993-01-01

    The published ocean tidal angular momentum results of Seiler (1991) are used to predict the effects of the most important semidiurnal, diurnal, and long period ocean tides on the earth's rotation. The separate, as well as combined, effects of ocean tidal currents and sea level height changes on the length-of-day, UT1, and polar motion are computed. The predicted polar motion results reported here account for the presence of the free core nutation and are given in terms of the motion of the celestial ephemeris pole so that they can be compared directly to the results of observations. Outside the retrograde diurnal tidal band, the summed effect of the semidiurnal and diurnal ocean tides studied here predict peak-to-peak polar motion amplitudes as large as 2 mas. Within the retrograde diurnal tidal band, the resonant enhancement caused by the free core nutation leads to predicted polar motion amplitudes as large as 9 mas.

  14. Parameter Estimation for the Four Parameter Beta Distribution.

    DTIC Science & Technology

    1983-12-01

    060 1,000 ,033 -,027 -+046 -. 047 .042 1,000 ITERATIONS FCN2 USED FCN4 USED DIVERGED 4,9260 0.0000 . 4640 o0460 SAMPLE SIZE+ 10 ESTIMATOR: MME1 SEED ; 1...903 .278 1.000 -. 271 .882 .538 1.000 -. 078 -. 202 .038 -� 1.000 .050 .228 -o050 .086 .019 1.000 ITERATIONS FCN2 USED FCN4 USED DIVERGED...5.6575 33.2908 .0507 1.1332 .0002 .0000 .0000 .0007 CORRELATION COEFFICIENTS: 1.000 -. 058 1.000 -.914 . 262 1.000 -. 270 .895 .534 1.000 .021 .030 -,045

  15. Evolutionary conceptual analysis: faith community nursing.

    PubMed

    Ziebarth, Deborah

    2014-12-01

    The aim of the study was to report an evolutionary concept analysis of faith community nursing (FCN). FCN is a source of healthcare delivery in the USA which has grown in comprehensiveness and complexity. With increasing healthcare cost and a focus on access and prevention, FCN has extended beyond the physical walls of the faith community building. Faith communities and healthcare organizations invest in FCN and standardized training programs exist. Using Rodgers' evolutionary analysis, the literature was examined for antecedents, attributes, and consequences of the concept. This design allows for understanding the historical and social nature of the concept and how it changes over time. A search of databases using the keywords FCN, faith community nurse, parish nursing, and parish nurse was done. The concept of FCN was explored using research and theoretical literature. A theoretical definition and model were developed with relevant implications. The search results netted a sample of 124 reports of research and theoretical articles from multiple disciplines: medicine, education, religion and philosophy, international health, and nursing. Theoretical definition: FCN is a method of healthcare delivery that is centered in a relationship between the nurse and client (client as person, family, group, or community). The relationship occurs in an iterative motion over time when the client seeks or is targeted for wholistic health care with the goal of optimal wholistic health functioning. Faith integrating is a continuous occurring attribute. Health promoting, disease managing, coordinating, empowering and accessing health care are other essential attributes. All essential attributes occur with intentionality in a faith community, home, health institution and other community settings with fluidity as part of a community, national, or global health initiative. A new theoretical definition and corresponding conceptual model of FCN provides a basis for future nursing knowledge and model-based applications for evidence-based practice and research.

  16. A novel L-ficolin/mannose-binding lectin chimeric molecule with enhanced activity against Ebola virus.

    PubMed

    Michelow, Ian C; Dong, Mingdong; Mungall, Bruce A; Yantosca, L Michael; Lear, Calli; Ji, Xin; Karpel, Marshall; Rootes, Christina L; Brudner, Matthew; Houen, Gunnar; Eisen, Damon P; Kinane, T Bernard; Takahashi, Kazue; Stahl, Gregory L; Olinger, Gene G; Spear, Gregory T; Ezekowitz, R Alan B; Schmidt, Emmett V

    2010-08-06

    Ebola viruses constitute a newly emerging public threat because they cause rapidly fatal hemorrhagic fevers for which no treatment exists, and they can be manipulated as bioweapons. We targeted conserved N-glycosylated carbohydrate ligands on viral envelope surfaces using novel immune therapies. Mannose-binding lectin (MBL) and L-ficolin (L-FCN) were selected because they function as opsonins and activate complement. Given that MBL has a complex quaternary structure unsuitable for large scale cost-effective production, we sought to develop a less complex chimeric fusion protein with similar ligand recognition and enhanced effector functions. We tested recombinant human MBL and three L-FCN/MBL variants that contained the MBL carbohydrate recognition domain and varying lengths of the L-FCN collagenous domain. Non-reduced chimeric proteins formed predominantly nona- and dodecameric oligomers, whereas recombinant human MBL formed octadecameric and larger oligomers. Surface plasmon resonance revealed that L-FCN/MBL76 had the highest binding affinities for N-acetylglucosamine-bovine serum albumin and mannan. The same chimeric protein displayed superior complement C4 cleavage and binding to calreticulin (cC1qR), a putative receptor for MBL. L-FCN/MBL76 reduced infection by wild type Ebola virus Zaire significantly greater than the other molecules. Tapping mode atomic force microscopy revealed that L-FCN/MBL76 was significantly less tall than the other molecules despite similar polypeptide lengths. We propose that alterations in the quaternary structure of L-FCN/MBL76 resulted in greater flexibility in the collagenous or neck region. Similarly, a more pliable molecule might enhance cooperativity between the carbohydrate recognition domains and their cognate ligands, complement activation, and calreticulin binding dynamics. L-FCN/MBL chimeric proteins should be considered as potential novel therapeutics.

  17. Interaction of light and gravitropism with nutation of hypocotyls of Arabidopsis thaliana seedlings

    NASA Technical Reports Server (NTRS)

    Orbovic, V.; Poff, K. L.

    1997-01-01

    Etiolated seedlings of Arabidopsis thaliana nutated under conditions of physiological darkness while about ten percent of monitored individuals exhibited regular elliptical nutation, circumnutation. Pre-irradiation with red light prevented occurrence of circumnutation without having an effect on the average rate of the nutational movement. Phototropic response of seedlings to unilateral blue light appeared to be superimposed over nutation. Throughout gravitropism, some seedlings continued to exhibit nutation suggesting that these two processes are independently controlled. Based on these results, we suggest that nutation in Arabidopsis probably is not controlled by the mechanism predicted by the theory of gravitropic overshoots.

  18. Testing a satellite automatic nutation control system. [on synchronous meteorological satellite

    NASA Technical Reports Server (NTRS)

    Hrasiar, J. A.

    1974-01-01

    Testing of a particular nutation control system for the synchronous meteorological satellite (SMS) is described. The test method and principles are applicable to nutation angle control for other satellites with similar requirements. During its ascent to synchronous orbit, a spacecraft like the SMS spins about its minimum-moment-of-inertia axis. An uncontrolled spacecraft in this state is unstable because torques due to fuel motion increase the nutation angle. However, the SMS is equipped with an automatic nutation control (ANC) system which will keep the nutation angle close to zero. Because correct operation of this system is critical to mission success, it was tested on an air-bearing table. The ANC system was mounted on the three-axis air-bearing table which was scaled to the SMS and equipped with appropriate sensors and thrusters. The table was spun up in an altitude chamber and nutation induced so that table motion simulated spacecraft motion. The ANC system was used to reduce the nutation angle. This dynamic test of the ANC system met all its objectives and provided confidence that the ANC system will control the SMS nutation angle.

  19. Transient quantum coherent effects in the acetylene-filled hollow-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Stepanov, S.; Rodríguez Casillas, N.; Ocegueda Miramontes, M.; Hernández Hernández, E.

    2017-02-01

    Low-pressure acetylene in the hollow-core photonic crystal structure fibers is an excellent medium for the room-temperature investigation of the coherent quantum effects in communication wavelength region. Pulsed excitation enables observation of new coherent phenomena like optical nutation or photon echo and evaluation of important temporal characteristics of the light-molecule interactions. We also report original experimental results on the pulsed excitation of the electromagnetically induced transparency in co- and counter-propagation configurations.

  20. Nutation control during precession of a spin-stabilized spacecraft

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Precession maneuver control laws for single-spin spacecraft are investigated so that nutation is concurrently controlled. Analysis has led to the development of two types of control laws employing precession modulation for concurrent nutation control. Results were verified through digital simulation of a Synchronous Meteorological Satellite (SMS) configuration. An addition research effort was undertaken to investigate the cause and elimination of nutation anomalies in dual-spin spacecraft. A literature search was conducted and a dual-spin configuration was simulated to verify that nutational anomalies are not predicted by the existing nonlinear model. No conclusions were drawn as to the cause of the observed nutational anomalies in dual-spin spacecraft.

  1. Recording 2-D Nutation NQR Spectra by Random Sampling Method

    PubMed Central

    Sinyavsky, Nikolaj; Jadzyn, Maciej; Ostafin, Michal; Nogaj, Boleslaw

    2010-01-01

    The method of random sampling was introduced for the first time in the nutation nuclear quadrupole resonance (NQR) spectroscopy where the nutation spectra show characteristic singularities in the form of shoulders. The analytic formulae for complex two-dimensional (2-D) nutation NQR spectra (I = 3/2) were obtained and the condition for resolving the spectral singularities for small values of an asymmetry parameter η was determined. Our results show that the method of random sampling of a nutation interferogram allows significant reduction of time required to perform a 2-D nutation experiment and does not worsen the spectral resolution. PMID:20949121

  2. An application of cascaded 3D fully convolutional networks for medical image segmentation.

    PubMed

    Roth, Holger R; Oda, Hirohisa; Zhou, Xiangrong; Shimizu, Natsuki; Yang, Ying; Hayashi, Yuichiro; Oda, Masahiro; Fujiwara, Michitaka; Misawa, Kazunari; Mori, Kensaku

    2018-06-01

    Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ∼10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. 1 . Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Biodegradation of free cyanide by bacterial species isolated from cyanide-contaminated artisanal gold mining catchment area in Burkina Faso.

    PubMed

    Razanamahandry, Lovasoa Christine; Andrianisa, Harinaivo Anderson; Karoui, Hela; Kouakou, Koffi Marcelin; Yacouba, Hamma

    2016-08-01

    Soil and water samples were collected from a watershed in Burkina Faso where illegal artisanal gold extraction using cyanidation occurs. The samples were used to evaluate cyanide contamination and the presence of cyanide degrading bacteria (CDB). Free cyanide (F-CN) was detected in all samples, with concentrations varying from 0.023 to 0.9 mg kg(-1), and 0.7-23 μg L(-1) in the soil and water samples, respectively. Potential CDB also were present in the samples. To test the effective F-CN degradation capacity of the isolated CDB species, the species were cultivated in growth media containing 40, 60 or 80 mg F-CN L(-1), with or without nutrients, at pH 9.5 and at room temperature. More than 95% of F-CN was degraded within 25 h, and F-CN degradation was associated with bacterial growth and ammonium production. However, initial concentrations of F-CN higher than 100 mg L(-1) inhibited bacterial growth and cyanide degradation. Abiotic tests showed that less than 3% of F-CN was removed by volatilization. Thus, the degradation of F-CN occurred predominately by biological mechanisms, and such mechanisms are recommended for remediation of contaminated soil and water. The bacteria consortium used in the experiment described above exist in a Sahelian climate, which is characterized by a long hot and dry season. Because the bacteria are already adapted to the local climate conditions and show the potential for cyanide biodegradation, further applicability to other contaminated areas in West Africa, where illegal gold cyanidation is widespread, should be explored. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Molindone: effects in pigeons responding under conditional discrimination tasks.

    PubMed

    Picker, M J; Cleary, J P; Berens, K; Oliveto, A H; Dykstra, L A

    1989-02-01

    Pigeons were trained to respond under three conditional discrimination procedures; 1) a fixed-consecutive-number procedure with (FCN 8-SD) and without (FCN 8) an added external discriminative stimulus, 2) a delayed matching-to-sample (DMTS) procedure using 0-sec, 2-sec and 8-sec delay intervals, and 3) a repeated acquisition of behavioral chains (RA) procedure using a four-link response chain with three stimulus keys. The atypical neuroleptic agent molindone decreased accuracy under the FCN 8 at doses that had no effect on accuracy under the FCN 8-SD. Under the DMTS procedure, molindone-induced decreases in accuracy were directly related to the delay interval, with the largest relative decrements obtained at the 8-sec delay and the smallest at the 0-sec delay. Under the RA procedure, molindone decreased accuracy at doses that had little or no effect on the number of correct responses emitted. Relative to control values, molindone-induced decreases in accuracy were smallest under the DMTS and FCN 8-SD procedures and largest under the FCN 8 and RA procedures. The differential effects obtained with molindone under each of these procedures illustrate the need to employ a variety of assays when determining the behavioral actions of neuroleptics. In addition, this battery of behavioral tests may provide a useful tool for assessing the different neurochemical actions of neuroleptic compounds.

  5. Association of Lectin Pathway Protein Levels and Genetic Variants Early after Injury with Outcomes after Severe Traumatic Brain Injury: A Prospective Cohort Study.

    PubMed

    Osthoff, Michael; Walder, Bernhard; Delhumeau, Cécile; Trendelenburg, Marten; Turck, Natacha

    2017-09-01

    The lectin pathway of the complement system has been implicated in secondary ischemic/inflammatory injury after traumatic brain injury (TBI). However, previous experimental studies have yielded conflicting results, and human studies are scarce. In this exploratory study, we investigated associations of several lectin pathway proteins early after injury and single-nucleotide polymorphisms (SNP) with outcomes after severe TBI (mortality at 14 days [primary outcome] and consciousness assessed with the Glasgow Coma Scale [GCS] at 14 days, disability assessed with the Glasgow Outcome Scale Extended [GOSE] at 90 days). Forty-four patients with severe TBI were included. Plasma levels of lectin pathway proteins were sampled at 6, 12, 24, and 48 h after injury and eight mannose-binding lectin (MBL) and ficolin (FCN)2 SNPs were analyzed by enzyme-linked immunosorbent assay (ELISA) and genotyping, respectively. Plasma protein levels were stable with only a slight increase in mannose-binding protein-associated serine protease (MASP)-2 and FCN2 levels after 48 h (p < 0.05), respectively. Neither lectin protein plasma levels (6 h or mean levels) nor MBL2 genotypes or FCN2 variant alleles were associated with 14 day mortality or 14 day consciousness. However, FCN2, FCN3, and MASP-2 levels were higher in patients with an unfavorable outcome (GOSE 1-4) at 90 days (p < 0.05), whereas there was no difference in MBL2 genotypes or FCN2 variant alleles. In particular, higher mean MASP-2 levels over 48 h were independently associated with a GOSE score < 4 at 90 days after adjustment (odds ratio 3.46 [95% confidence interval 1.12-10.68] per 100 ng/mL increase, p = 0.03). No association was observed between the lectin pathway of the complement system and 14 day mortality or 14 day consciousness. However, higher plasma FCN2, FCN3, and, in particular, MASP-2 levels early after injury were associated with an unfavorable outcome at 90 days (death, vegetative state, and severe disability) which may be related to an increased activation of the lectin pathway.

  6. Analysis of a spatial tracking subsystem for optical communications

    NASA Technical Reports Server (NTRS)

    Win, Moe Z.; Chen, CHIEN-C.

    1992-01-01

    Spatial tracking plays a very critical role in designing optical communication systems because of the small angular beamwidth associated with the optical signal. One possible solution for spatial tracking is to use a nutating mirror which dithers the incoming beam at a rate much higher than the mechanical disturbances. A power detector then senses the change in detected power as the signal is reflected off the nutating mirror. This signal is then correlated with the nutator driver signals to obtain estimates of the azimuth and elevation tracking signals to control the fast scanning mirrors. A theoretical analysis is performed for a spatial tracking system using a nutator disturbed by shot noise and mechanical vibrations. Contributions of shot noise and mechanical vibrations to the total tracking error variance are derived. Given the vibration spectrum and the expected signal power, there exists an optimal amplitude for the nutation which optimizes the receiver performance. The expected performance of a nutator based system is estimated based on the choice of nutation amplitude.

  7. Proton decoupling and recoupling under double-nutation irradiation in solid-state NMR

    NASA Astrophysics Data System (ADS)

    Takeda, Kazuyuki; Wakisaka, Asato; Takegoshi, K.

    2014-12-01

    The effect of 1H decoupling in magic-angle spinning solid-state NMR is studied under radiofrequency irradiation causing simultaneous nutations around a pair of orthogonal axes. Double-nutation with an arbitrary pair of nutation frequencies is implemented through modulation of the amplitude, phase, and frequency of the transmitting pulses. Similarity and difference of double-nutation decoupling and two-pulse phase-modulation decoupling schemes [A. E. Bennett, C. M. Rienstra, M. Auger, K. V. Lakshmi, and R. G. Griffin, J. Chem. Phys. 103, 6951-6958 (1995) and I. Scholz, P. Hodgkinson, B. H. Meier, and M. Ernst, J. Chem. Phys. 130, 114510 (2009)] are discussed. The structure of recoupling bands caused by interference of the 1H spin nutation with sample spinning is studied by both experiments and numerical simulations.

  8. Faith community nursing scope of practice: extending access to healthcare.

    PubMed

    Balint, Katherine A; George, Nancy M

    2015-01-01

    The role of the Faith Community Nurse (FCN) is a multifaceted wholistic practice focused on individuals, families, and the faith and broader communities. The FCN is skilled in professional nursing and spiritual care, supporting health through attention to spiritual, physical, mental, and social health. FCNs can help meet the growing need for healthcare, especially for the uninsured, poor, and homeless. The contribution of FCNs on, primary prevention, health maintenance, and management of chronic disease deserves attention to help broaden understanding of the scope of FCN practice.

  9. Nutation of Helianthus Annuus in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Brown, A. H.

    1981-01-01

    An experiment to gather evidence to decide between the Darwinian concept of endogenously motivated nutation and the more mechanistic concept of gravity dependent nutation is described. If nutation persists in weightlessness, parameters describing the motion will be measured by recording in time lapse mode the video images of a population of seedlings that were grown at 1-g, but which will be observed at virtual zero gravity. Later, the plant images will be displayed on a video monitor in a laboratory, photographed on 16 millimeter film, and analyzed frame by frame to determine the kinetics of nutation for each specimen tested.

  10. Relationship Between Large-Scale Functional and Structural Covariance Networks in Idiopathic Generalized Epilepsy

    PubMed Central

    Zhang, Zhiqiang; Mantini, Dante; Xu, Qiang; Wang, Zhengge; Chen, Guanghui; Jiao, Qing; Zang, Yu-Feng

    2013-01-01

    Abstract The human brain can be modeled as a network, whose structure can be revealed by either anatomical or functional connectivity analyses. Little is known, so far, about the topological features of the large-scale interregional functional covariance network (FCN) in the brain. Further, the relationship between the FCN and the structural covariance network (SCN) has not been characterized yet, in the intact as well as in the diseased brain. Here, we studied 59 patients with idiopathic generalized epilepsy characterized by tonic–clonic seizures and 59 healthy controls. We estimated the FCN and the SCN by measuring amplitude of low-frequency fluctuations (ALFF) and gray matter volume (GMV), respectively, and then we conducted graph theoretical analyses. Our ALFF-based FCN and GMV-based results revealed that the normal human brain is characterized by specific topological properties such as small worldness and highly-connected hub regions. The patients had an altered overall topology compared to the controls, suggesting that epilepsy is primarily a disorder of the cerebral network organization. Further, the patients had altered nodal characteristics in the subcortical and medial temporal regions and default-mode regions, for both the FCN and SCN. Importantly, the correspondence between the FCN and SCN was significantly larger in patients than in the controls. These results support the hypothesis that the SCN reflects shared long-term trophic mechanisms within functionally synchronous systems. They can also provide crucial information for understanding the interactions between the whole-brain network organization and pathology in generalized tonic–clonic seizures. PMID:23510272

  11. Proton decoupling and recoupling under double-nutation irradiation in solid-state NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeda, Kazuyuki, E-mail: takezo@kuchem.kyoto-u.ac.jp; Wakisaka, Asato; Takegoshi, K.

    The effect of {sup 1}H decoupling in magic-angle spinning solid-state NMR is studied under radiofrequency irradiation causing simultaneous nutations around a pair of orthogonal axes. Double-nutation with an arbitrary pair of nutation frequencies is implemented through modulation of the amplitude, phase, and frequency of the transmitting pulses. Similarity and difference of double-nutation decoupling and two-pulse phase-modulation decoupling schemes [A. E. Bennett, C. M. Rienstra, M. Auger, K. V. Lakshmi, and R. G. Griffin, J. Chem. Phys. 103, 6951–6958 (1995) and I. Scholz, P. Hodgkinson, B. H. Meier, and M. Ernst, J. Chem. Phys. 130, 114510 (2009)] are discussed. The structuremore » of recoupling bands caused by interference of the {sup 1}H spin nutation with sample spinning is studied by both experiments and numerical simulations.« less

  12. Landcover Classification Using Deep Fully Convolutional Neural Networks

    NASA Astrophysics Data System (ADS)

    Wang, J.; Li, X.; Zhou, S.; Tang, J.

    2017-12-01

    Land cover classification has always been an essential application in remote sensing. Certain image features are needed for land cover classification whether it is based on pixel or object-based methods. Different from other machine learning methods, deep learning model not only extracts useful information from multiple bands/attributes, but also learns spatial characteristics. In recent years, deep learning methods have been developed rapidly and widely applied in image recognition, semantic understanding, and other application domains. However, there are limited studies applying deep learning methods in land cover classification. In this research, we used fully convolutional networks (FCN) as the deep learning model to classify land covers. The National Land Cover Database (NLCD) within the state of Kansas was used as training dataset and Landsat images were classified using the trained FCN model. We also applied an image segmentation method to improve the original results from the FCN model. In addition, the pros and cons between deep learning and several machine learning methods were compared and explored. Our research indicates: (1) FCN is an effective classification model with an overall accuracy of 75%; (2) image segmentation improves the classification results with better match of spatial patterns; (3) FCN has an excellent ability of learning which can attains higher accuracy and better spatial patterns compared with several machine learning methods.

  13. Constraints on magnetic energy and mantle conductivity from the forced nutations of the earth

    NASA Technical Reports Server (NTRS)

    Buffett, Bruce A.

    1992-01-01

    The possibility of a presence of a conducting layer at the base of the mantle, as suggested by Knittle and Jeanloz (1986, 1989), was examined using observations of the earth's nutations. Evidence favoring the presence of a conducting layer is found in the effect of ohmic dissipation, which can cause the amplitude of the earth's nutation to be out-of-phase with tidal forcings. It is shown that the earth's magnetic field can produce observable signatures in the forced nutations of the earth when a thin conducting layer is located at the base of the mantle. The present theoretical calculations are compared with VLBI determinations of forced nutations.

  14. Nutations of sunflower seedlings on tilted clinostats

    NASA Technical Reports Server (NTRS)

    Brown, A. H.; Chapman, D. K.

    1977-01-01

    The kinetics of hypocotyl nutations in Helianthus annuus L. were measured on plants which were rotated on clinostats with axes of rotation inclined at various angles, alpha, away from the vertical. The g-force component acting in the direction of the plant axis was taken as g cos alpha. The average period and average amplitude of nutation were constant for all such axially directed g-forces between 1.0 and 0.2 g (vertical to about 80 inclination). On the horizontal clinostat (90 inclination) nutation was neither initiated nor sustained. The g-force just sufficient fully to activate nutational oscillations should be sought for g-force parameter values ranging from 0 to 0.2.

  15. Association of a new FCN3 haplotype with high ficolin-3 levels in leprosy.

    PubMed

    Andrade, Fabiana Antunes; Beltrame, Marcia Holsbach; Bini, Valéria Bumiller; Gonçalves, Letícia Boslooper; Boldt, Angelica Beate Winter; Messias-Reason, Iara Jose de

    2017-02-01

    Leprosy is a chronic inflammatory disease caused by Mycobacterium leprae that mainly affects the skin and peripheral nervous system, leading to a high disability rate and social stigma. Previous studies have shown a contribution of genes encoding products of the lectin pathway of complement in the modulation of the susceptibility to leprosy; however, the ficolin-3/FCN3 gene impact on leprosy is currently unknown. The aim of the present study was to investigate if FCN3 polymorphisms (rs532781899: g.1637delC, rs28362807: g.3524_3532insTATTTGGCC and rs4494157: g.4473C>A) and ficolin-3 serum levels play a role in the susceptibility to leprosy. We genotyped up to 190 leprosy patients (being 114 (60%) lepromatous), and up to 245 controls with sequence-specific PCR. We also measured protein levels using ELISA in 61 leprosy and 73 controls. FCN3 polymorphisms were not associated with disease, but ficolin-3 levels were higher in patients with FCN3 *2B1 (CinsA) haplotype (p = 0.032). Median concentration of ficolin-3 was higher in leprosy per se (26034 ng/mL, p = 0.005) and lepromatous patients (28295 ng/mL, p = 0.016) than controls (18231 ng/mL). In addition, high ficolin-3 levels (>33362 ng/mL) were more common in leprosy per se (34.4%) and in lepromatous patients (35.5%) than controls (19.2%; p = 0.045 and p = 0.047, respectively). Our results lead us to suggest that polymorphisms in the FCN3 gene cooperate to increase ficolin-3 concentration and that it might contribute to leprosy susceptibility by favoring M. leprae infection.

  16. Damping Rotor Nutation Oscillations in a Gyroscope with Magnetic Suspension

    NASA Technical Reports Server (NTRS)

    Komarov, Valentine N.

    1996-01-01

    A possibility of an effective damping of rotor nutations by modulating the field of the moment transducers in synchronism with the nutation frequency is considered. The algorithms for forming the control moments are proposed and their application is discussed.

  17. Interior of Mars from spacecraft and complementary data.

    NASA Astrophysics Data System (ADS)

    Dehant, Veronique

    2015-04-01

    Mars, as Earth, Venus and Mercury is a terrestrial planet having, in addition to the mantle and lithosphere, a core composed of an iron alloy. This core might be completely liquid, completely solid or may contain a solid part (the inner core) and a liquid part. The existence of a magnetic field around a planet is mainly explained by the presence of motions in the liquid part in the core. The absence of a magnetic field does not help in constraining the state of the core as it might be completely solid or completely liquid but the motion (convection) might not be sufficient to maintain it, or even contain a growing inner core inside a liquid core composed of iron or Nickel and a percentage of light element corresponding to the eutectic composition (no precipitation). The planet Mars is smaller than Earth. It has evolved differently. We know for the Earth that the core is liquid and that the inner core is forming by precipitation of iron. For Mars spacecraft observation of the gravity field and its time variation allow us to obtain the effect of mass repartition, and in particular those induced by the solid tides. These tidal deformation of the planet are larger for a planet with a liquid core than for a completely solid planet. Recent spacecraft orbiting around Mars (MGS, Mars Odyssey, MRO, Mars Express) have allowed to obtain the k2 tidal Love numbers. This measurement is rather at the limit of what the observation can tell us but seems to indicate that Mars has a liquid core. The absence of a present-day global magnetic field places Mars in the situation where the inner core is not yet forming or has reached the eutectic. Physical observation of the planet other than tides also allow us to obtain information about the interior of Mars: its rotation and orientation changes. Planetary rotation can be separated into the rotation speed around an axis and the orientation of this axis (or another axis of the planet) in space. Most of us know that the rotation of a boiled egg noticeably differs from that of a raw egg. This simple observation shows that information on the inside of an object can be obtained from its rotation. The same idea applies to the rotation of celestial bodies. Their rotation changes and orientation changes provide information on the interior. For Mars, as for the Earth, it is mainly the changes in the orientation that are important to characterize their interiors, the length-of-day variations being mostly related to atmospheric angular moment transfer to the solid planet. The orientation changes are called precession, the long-term change, and nutation, the periodic wiggly short-term changes that are the most interesting to obtain information about the core. Nutations have up to now only been unambiguously observed for the Earth, but the InSIGHT (Interior exploration using Seismic Investigations, Geodesy, and Heat Transport) NASA mission to be launched in 2016, will carry out an X-band transponder enabling us to do Doppler measurements on the motion of Mars with respect to Earth, and therewith to determine the nutations and the interior structure of Mars.

  18. Effects of Increased Gravity Force on Nutations of Sunflower Hypocotyls 1

    PubMed Central

    Brown, Allan H.; Chapman, David K.

    1977-01-01

    A centrifuge was used to provide sustained acceleration in order to study the hypocotyl nutation of 6-day-old Helianthus annuus L. over a range of g-forces, up to 20 times normal g. At the upper end of this g-range, nutation was impeded and at times was erratic evidently because the weight of the cotyledons exceeded the supportive abilities of the hypocotyls. Over the range 1 to 9 g, the period of nutation was independent of the resultant force vector. Over the same g-range, the amplitude of nutation was nearly independent of the chronic g-force. If nutation in sunflower seedlings is an oscillation caused by a succession of geotropic responses which continue to overshoot the equilibrium position (plumb line), we might expect its amplitude to be more sensitive to changes in magnitude of the sustained g-force. In order to preserve the geotropic model of nutation-viz. that it is a sustained oscillation driven by geotropic reactions, it is necessary to assume that geotropic response must increase with increasing g most rapidly in the region of the g-parameter below the terrestrial value of 1 g. PMID:16659909

  19. Effects of increased gravity force on nutations of sunflower hypocotyls

    NASA Technical Reports Server (NTRS)

    Brown, A. H.; Chapman, D. K.

    1977-01-01

    A centrifuge was used to provide sustained acceleration in order to study the hypocotyl nutation of 6-day-old Helianthus annuus L. over a range of g-forces, up to 20 times normal g. At the upper end of this g-range, nutation was impeded and at times was erratic evidently because the weight of the cotyledons exceeded the supportive abilities of the hypocotyls. Over the range 1 to 9 g, the period of nutation was independent of the resultant force vector. Over the same g-range, the amplitude of nutation was nearly independent of the chronic g-force. If nutation in sunflower seedlings is an oscillation caused by a succession of geotropic responses which continue to overshoot the equilibrium position (plumb line), its amplitude might be expected to be more sensitive to changes in magnitude of the sustained g-force. In order to preserve the geotropic model, in which nutation is considered to be a sustained oscillation driven by geotropic reactions, it is necessary to assume that geotropic response must increase with increasing g most rapidly in the region of the g-parameter below the terrestrial value of 1 g.

  20. Optimal attitude maneuver execution for the Advanced Composition Explorer (ACE) mission

    NASA Technical Reports Server (NTRS)

    Woodard, Mark A.; Baker, David

    1995-01-01

    The Advanced Composition Explorer (ACE) spacecraft will require frequent attitude reorientations in order to maintain the spacecraft high gain antenna (HGA) within 3 deg of earth-pointing. These attitude maneuvers will be accomplished by employing a series of ground-commanded thruster pulses, computed by ground operations personnel, to achieve the desired change in the spacecraft angular momentum vector. With each maneuver, attitude nutation will be excited. Large nutation angles are undesirable from a science standpoint. It is important that the thruster firings be phased properly in order to minimize the nutation angle at the end of the maneuver so that science collection time is maximized. The analysis presented derives a simple approximation for the nutation contribution resulting from a series of short thruster burns. Analytic equations are derived which give the induced nutation angle as a function of the number of small thruster burns used to execute the attitude maneuver and the phasing of the burns. The results show that by properly subdividing the attitude burns, the induced nutation can be kept low. The analytic equations are also verified through attitude dynamics simulation and simulation results are presented. Finally, techniques for quantifying the post-maneuver nutation are discussed.

  1. Paris Observatory Analysis Center (OPAR): Report on Activities, January - December 2012

    NASA Technical Reports Server (NTRS)

    Lambert, Sebastien; Barache, Christophe

    2013-01-01

    We report on activities of the Paris Observatory VLBI Analysis Center (OPAR) for calendar year 2012 concerning the development of operational tasks, the development of our Web site, and various other activities: monitoring of the Earth's free core nutation, measuring of the post-seismic displacements of some stations, and the analysis of the recent IVS R&D sessions, including observations of quasars close to the Sun.

  2. Research on Earth's rotation and the effect of atmospheric pressure on vertical deformation and sea level variability

    NASA Technical Reports Server (NTRS)

    Wahr, John

    1993-01-01

    The work done under NASA grant NAG5-485 included modelling the deformation of the earth caused by variations in atmospheric pressure. The amount of deformation near coasts is sensitive to the nature of the oceanic response to the pressure. The PSMSL (Permanent Service for Mean Sea Level) data suggest the response is inverted barometer at periods greater than a couple months. Green's functions were constructed to describe the perturbation of the geoid caused by atmospheric and oceanic loading and by the accompanying load-induced deformation. It was found that perturbation of up to 2 cm are possible. Ice mass balance data was used for continental glaciers to look at the glacial contributions to time-dependent changes in polar motion, the lod, the earth's gravitational field, the position of the earth's center-of-mass, and global sea level. It was found that there can be lateral, non-hydrostatic structure inside the fluid core caused by gravitational forcing from the mantle, from the inner core, or from topography at the core/mantle or inner core/outer core boundaries. The nutational and tidal response of a non-hydrostatic earth with a solid inner core was modeled. Monthly, global tide gauge data from PSMSL was used to look at the 18.6-year ocean tide, the 14-month pole tide, the oceanic response to pressure, the linear trend and inter-annual variability in the earth's gravity field, the global sea level rise, and the effects of post glacial rebound. The effects of mantle anelasticity on nutations, earth tides, and tidal variation in the lod was modeled. Results of this model can be used with Crustal Dynamics observations to look at the anelastic dissipation and dispersion at tidal periods. The effects of surface topography on various components of crustal deformation was also modeled, and numerical models were developed of post glacial rebound.

  3. Book Review: Precession, Nutation, and Wobble of the Earth

    NASA Astrophysics Data System (ADS)

    Sterken, Christiaan; Dehant, V.; Mathews, P. M.

    2016-10-01

    This great book describes and explains observational and computational aspects of three apparently tiny changes in the Earth's motion and orientation, viz., precession, nutation, and wobble. The three introductory chapters of this book present fundamental definitions, elementary geodetic theory, and celestial/terrestrial reference systems - including transformations between reference frames. The next chapter on observational techniques describes the principle of accurate measurements of the orientation of the Earth's axis, as obtained from measurements of extra-galactic radio sources using Very Long Baseline Interferometry and GPS observations. Chapter 5 handles precession and nutation of the rigid Earth (i.e., a celestial body that cannot, by definition, deform) and the subsequent chapter takes deformation into consideration, viz., the effect of a centrifugal force caused by a constant-rate rotation that causes the Earth's shape and structure to become ellipsoidal. Deformations caused by external solar-system bodies are discussed in terms of deformability parameters. The next three chapters handle additional complex deviations: non-rigid Earth and more general Earth models, anelastic Earth parameters, and the effects of the fluid layers (i.e., ocean and atmosphere) on Earth rotation. Chapter 10 complements Chapter 7 with refinements that take into account diverse small effects such as the effect of a thermal conductive layer at the top of the core, Core Mantle and Inner Boundary coupling effects on nutation, electromagnetic coupling, and so-called topographic coupling. Chapter 11 covers comparison of observation and theory, and tells us that the present-date precision of the nutation theory is at the level of milliarcseconds in the time domain, and of a tenth of a microsecond in the frequency domain (with some exceptions). This chapter is followed by a 25-page chapter of definitions of equator, equinox, celestial intermediate pole and origin, stellar angle, universal time, and more. Chapter 13 treats the planet Mars, as it is also rapidly rotating, has an equatorial bulge and an obliquity that is comparable to that of the Earth. The last chapter is followed by three Appendices, viz., Rotation representation, Clairaut theory and Definitions of equinoxes. Appendix A deals with rotation vector and rotation matrix, specifically applied to small angles, such as in the case of rotation from change of pole position. Appendix B expresses the Earth's gravitational potential, and the first-order hypothesis that the Earth is in hydrostatic equilibrium, and that its uniformly-rotating surface is an equipotential corresponding to the mean sea level. Appendix C presents a set of definitions of equinoxes. This book is extremely well documented with more than 50 pages of references that are very up to date. The illustrations (exclusively line art diagrams) are all of good quality and the data tables are rich and well formatted. The language is clear and direct, but with nearly 1500 mathematical formulae, this reference work primarily appeals to the community of mathematically-schooled researchers, although anyone lecturing or teaching in celestial mechanics will see this jewel as a treasure trove to be visited on.

  4. The use of precession modulation for nutation control in spin-stabilized spacecraft

    NASA Technical Reports Server (NTRS)

    Taylor, J. M.; Donner, R. J.; Tasar, V.

    1974-01-01

    The relations which determine the nutation effects induced in a spinning spacecraft by periodic precession thrust pulses are derived analytically. By utilizing the idea that nutation need only be observed just before each precession thrust pulse, a difficult continuous-time derivation is replaced by a simple discrete-time derivation using z-transforms. The analytic results obtained are used to develop two types of modulated precession control laws which use the precession maneuver to concurrently control nutation. Results are illustrated by digital simulation of an actual spacecraft configuration.

  5. Effects of increased G-force on the nutations of sunflower seedlings

    NASA Technical Reports Server (NTRS)

    Brown, A. H.; Chapman, D. K.; Dahl, A. O.

    1975-01-01

    A centrifuge was used to provide chronic acceleration in order to study the nutation of six-day old sunflower hypocotyls at 1 to 20 times normal gravity (g). At the upper end of the g-range nutational movement was impeded and at times erratic evidently because the weight of the cotyledons exceeded the supportive abilities of the hypocotyls. Over the range from 1 to 9 g the period of nutation was independent of the resultant g-force. That finding is interpreted as evidence that the geotropic response time -- i.e., the time needed for growth hormone transport from the region of g-sensing to the region of bending response --was not influenced significantly by substantial increments of the g-level, since geotropic response time is related to the period of nutation.

  6. Empirical Corrections to Nutation Amplitudes and Precession Computed from a Global VLBI Solution

    NASA Astrophysics Data System (ADS)

    Schuh, H.; Ferrandiz, J. M.; Belda-Palazón, S.; Heinkelmann, R.; Karbon, M.; Nilsson, T.

    2017-12-01

    The IAU2000A nutation and IAU2006 precession models were adopted to provide accurate estimations and predictions of the Celestial Intermediate Pole (CIP). However, they are not fully accurate and VLBI (Very Long Baseline Interferometry) observations show that the CIP deviates from the position resulting from the application of the IAU2006/2000A model. Currently, those deviations or offsets of the CIP (Celestial Pole Offsets - CPO), can only be obtained by the VLBI technique. The accuracy of the order of 0.1 milliseconds of arc (mas) allows to compare the observed nutation with theoretical prediction model for a rigid Earth and constrain geophysical parameters describing the Earth's interior. In this study, we empirically evaluate the consistency, systematics and deviations of the IAU 2006/2000A precession-nutation model using several CPO time series derived from the global analysis of VLBI sessions. The final objective is the reassessment of the precession offset and rate, and the amplitudes of the principal terms of nutation, trying to empirically improve the conventional values derived from the precession/nutation theories. The statistical analysis of the residuals after re-fitting the main nutation terms demonstrates that our empirical corrections attain an error reduction by almost 15 micro arc seconds.

  7. A fully convolutional networks (FCN) based image segmentation algorithm in binocular imaging system

    NASA Astrophysics Data System (ADS)

    Long, Zourong; Wei, Biao; Feng, Peng; Yu, Pengwei; Liu, Yuanyuan

    2018-01-01

    This paper proposes an image segmentation algorithm with fully convolutional networks (FCN) in binocular imaging system under various circumstance. Image segmentation is perfectly solved by semantic segmentation. FCN classifies the pixels, so as to achieve the level of image semantic segmentation. Different from the classical convolutional neural networks (CNN), FCN uses convolution layers instead of the fully connected layers. So it can accept image of arbitrary size. In this paper, we combine the convolutional neural network and scale invariant feature matching to solve the problem of visual positioning under different scenarios. All high-resolution images are captured with our calibrated binocular imaging system and several groups of test data are collected to verify this method. The experimental results show that the binocular images are effectively segmented without over-segmentation. With these segmented images, feature matching via SURF method is implemented to obtain regional information for further image processing. The final positioning procedure shows that the results are acceptable in the range of 1.4 1.6 m, the distance error is less than 10mm.

  8. Signatures of the Martian rotation parameters in the Doppler and range observables

    NASA Astrophysics Data System (ADS)

    Yseboodt, Marie; Dehant, Véronique; Péters, Marie-Julie

    2017-09-01

    The position of a Martian lander is affected by different aspects of Mars' rotational motions: the nutations, the precession, the length-of-day variations and the polar motion. These various motions have a different signature in a Doppler observable between the Earth and a lander on Mars' surface. Knowing the correlations between these signatures and the moments when these signatures are not null during one day or on a longer timescale is important to identify strategies that maximize the geophysical return of observations with a geodesy experiment, in particular for the ones on-board the future NASA InSight or ESA-Roscosmos ExoMars2020 missions. We provide first-order formulations of the signature of the rotation parameters in the Doppler and range observables. These expressions are functions of the diurnal rotation of Mars, the lander position, the planet radius and the rotation parameter. Additionally, the nutation signature in the Doppler observable is proportional to the Earth declination with respect to Mars. For a lander on Mars close to the equator, the motions with the largest signature in the Doppler observable are due to the length-of-day variations, the precession rate and the rigid nutations. The polar motion and the liquid core signatures have a much smaller amplitude. For a lander closer to the pole, the polar motion signature is enhanced while the other signatures decrease. We also numerically evaluate the amplitudes of the rotation parameters signature in the Doppler observable for landers on other planets or moons.

  9. Nutating subreflector for a millimeter wave telescope

    NASA Astrophysics Data System (ADS)

    Radford, Simon J. E.; Boynton, Paul; Melchiorri, Francesco

    1990-03-01

    Nutating a Cassegrain telescope's secondary mirror is a convenient method of steering the telescope beam through a small angle. This principle has been used to construct a high-performance beam switch for a millimeter wave telescope. A low mass, graphite-epoxy laminate secondary mirror is driven by linear electric motors operated in a frequency compensated control loop. By design, the nutator exerts little net oscillating torque on the telescope structure, resulting in virtually vibration free operation. The inherent versatility of beam switching by subreflector nutation permits a variety of switching waveforms to be tested without making any hardware changes. The nutator can shift the telescope beam by 10 arcminutes, a 1.25 deg rotation of the 75-cm-diam secondary mirror, in an interval of 8 ms and it can sustain a switching frequency of 10 Hz.

  10. Precession relaxation of viscoelastic oblate rotators

    NASA Astrophysics Data System (ADS)

    Frouard, Julien; Efroimsky, Michael

    2018-01-01

    Perturbations of all sorts destabilize the rotation of a small body and leave it in a non-principal spin state. In such a state, the body experiences alternating stresses generated by the inertial forces. This yields nutation relaxation, i.e. evolution of the spin towards the principal rotation about the maximal-inertia axis. Knowledge of the time-scales needed to damp the nutation is crucial in studies of small bodies' dynamics. In the literature hitherto, nutation relaxation has always been described with aid of an empirical quality factor Q introduced to parametrize the energy dissipation rate. Among the drawbacks of this approach was its inability to describe the dependence of the relaxation rate upon the current nutation angle. This inability stemmed from our lack of knowledge of the quality factor's dependence on the forcing frequency. In this article, we derive our description of nutation damping directly from the rheological law obeyed by the material. This renders us the nutation damping rate as a function of the current nutation angle, as well as of the shape and the rheological parameters of the body. In contradistinction from the approach based on an empirical Q factor, our development gives a zero damping rate in the spherical-shape limit. Our method is generic and applicable to any shape and to any linear rheological law. However, to simplify the developments, here we consider a dynamically oblate rotator with a Maxwell rheology.

  11. Cost-effective use of liquid nitrogen in cryogenic wind tunnels, phase 2

    NASA Technical Reports Server (NTRS)

    Mcintosh, Glen E.; Lombard, David S.; Leonard, Kenneth R.; Morhorst, Gerald D.

    1990-01-01

    Cryogenic seal tests were performed and Rulon A was selected for the subject nutating positive displacement expander. A four-chamber expander was designed and fabricated. A nitrogen reliquefier flow system was also designed and constructed for testing the cold expander. Initial tests were unsatisfactory because of high internal friction attributed to nutating Rulon inlet and outlet valve plates. Replacement of the nutating valves with cam-actuated poppet valves improved performance. However, no net nitrogen reliquefaction was achieved due to high internal friction. Computer software was developed for accurate calculation of nitrogen reliquefaction from a system such as that proposed. These calculations indicated that practical reliquefaction rates of 15 to 19 percent could be obtained. Due to mechanical problems, the nutating expander did not demonstrate its feasibility nor that of the system. It was concluded that redesign and testing of a smaller nutating expander was required to prove concept feasibility.

  12. 21 CFR 170.103 - Withdrawal without prejudice of a premarket notification for a food contact substance (FCN).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Withdrawal without prejudice of a premarket notification for a food contact substance (FCN). 170.103 Section 170.103 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD...

  13. 21 CFR 170.103 - Withdrawal without prejudice of a premarket notification for a food contact substance (FCN).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Withdrawal without prejudice of a premarket notification for a food contact substance (FCN). 170.103 Section 170.103 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD...

  14. 21 CFR 170.102 - Confidentiality of information in a premarket notification for a food contact substance (FCN).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Confidentiality of information in a premarket notification for a food contact substance (FCN). 170.102 Section 170.102 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD...

  15. 21 CFR 170.101 - Information in a premarket notification for a food contact substance (FCN).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Information in a premarket notification for a food contact substance (FCN). 170.101 Section 170.101 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES...

  16. 21 CFR 170.102 - Confidentiality of information in a premarket notification for a food contact substance (FCN).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Confidentiality of information in a premarket notification for a food contact substance (FCN). 170.102 Section 170.102 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD...

  17. 21 CFR 170.102 - Confidentiality of information in a premarket notification for a food contact substance (FCN).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Confidentiality of information in a premarket notification for a food contact substance (FCN). 170.102 Section 170.102 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES Premarket Notifications § 170...

  18. 21 CFR 170.101 - Information in a premarket notification for a food contact substance (FCN).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Information in a premarket notification for a food contact substance (FCN). 170.101 Section 170.101 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES...

  19. 21 CFR 170.103 - Withdrawal without prejudice of a premarket notification for a food contact substance (FCN).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Withdrawal without prejudice of a premarket notification for a food contact substance (FCN). 170.103 Section 170.103 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD...

  20. 21 CFR 170.101 - Information in a premarket notification for a food contact substance (FCN).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Information in a premarket notification for a food contact substance (FCN). 170.101 Section 170.101 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES Premarket Notifications § 170.101 Information...

  1. 21 CFR 170.101 - Information in a premarket notification for a food contact substance (FCN).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Information in a premarket notification for a food contact substance (FCN). 170.101 Section 170.101 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES...

  2. 21 CFR 170.102 - Confidentiality of information in a premarket notification for a food contact substance (FCN).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Confidentiality of information in a premarket notification for a food contact substance (FCN). 170.102 Section 170.102 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD...

  3. 21 CFR 170.103 - Withdrawal without prejudice of a premarket notification for a food contact substance (FCN).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Withdrawal without prejudice of a premarket notification for a food contact substance (FCN). 170.103 Section 170.103 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD...

  4. 21 CFR 170.103 - Withdrawal without prejudice of a premarket notification for a food contact substance (FCN).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Withdrawal without prejudice of a premarket notification for a food contact substance (FCN). 170.103 Section 170.103 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES Premarket Notifications § 170...

  5. 21 CFR 170.101 - Information in a premarket notification for a food contact substance (FCN).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Information in a premarket notification for a food contact substance (FCN). 170.101 Section 170.101 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES...

  6. 21 CFR 170.102 - Confidentiality of information in a premarket notification for a food contact substance (FCN).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Confidentiality of information in a premarket notification for a food contact substance (FCN). 170.102 Section 170.102 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD...

  7. A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery.

    PubMed

    Huang, Huasheng; Deng, Jizhong; Lan, Yubin; Yang, Aqing; Deng, Xiaoling; Zhang, Lei

    2018-01-01

    Appropriate Site Specific Weed Management (SSWM) is crucial to ensure the crop yields. Within SSWM of large-scale area, remote sensing is a key technology to provide accurate weed distribution information. Compared with satellite and piloted aircraft remote sensing, unmanned aerial vehicle (UAV) is capable of capturing high spatial resolution imagery, which will provide more detailed information for weed mapping. The objective of this paper is to generate an accurate weed cover map based on UAV imagery. The UAV RGB imagery was collected in 2017 October over the rice field located in South China. The Fully Convolutional Network (FCN) method was proposed for weed mapping of the collected imagery. Transfer learning was used to improve generalization capability, and skip architecture was applied to increase the prediction accuracy. After that, the performance of FCN architecture was compared with Patch_based CNN algorithm and Pixel_based CNN method. Experimental results showed that our FCN method outperformed others, both in terms of accuracy and efficiency. The overall accuracy of the FCN approach was up to 0.935 and the accuracy for weed recognition was 0.883, which means that this algorithm is capable of generating accurate weed cover maps for the evaluated UAV imagery.

  8. Fully convolutional neural network for removing background in noisy images of uranium bearing particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarolli, Jay G.; Naes, Benjamin E.; Butler, Lamar

    A fully convolutional neural network (FCN) was developed to supersede automatic or manual thresholding algorithms used for tabulating SIMS particle search data. The FCN was designed to perform a binary classification of pixels in each image belonging to a particle or not, thereby effectively removing background signal without manually or automatically determining an intensity threshold. Using 8,000 images from 28 different particle screening analyses, the FCN was trained to accurately predict pixels belonging to a particle with near 99% accuracy. Background eliminated images were then segmented using a watershed technique in order to determine isotopic ratios of particles. A comparisonmore » of the isotopic distributions of an independent data set segmented using the neural network, compared to a commercially available automated particle measurement (APM) program developed by CAMECA, highlighted the necessity for effective background removal to ensure that resulting particle identification is not only accurate, but preserves valuable signal that could be lost due to improper segmentation. The FCN approach improves the robustness of current state-of-the-art particle searching algorithms by reducing user input biases, resulting in an improved absolute signal per particle and decreased uncertainty of the determined isotope ratios.« less

  9. 3D Convolutional Neural Network for Automatic Detection of Lung Nodules in Chest CT.

    PubMed

    Hamidian, Sardar; Sahiner, Berkman; Petrick, Nicholas; Pezeshk, Aria

    2017-01-01

    Deep convolutional neural networks (CNNs) form the backbone of many state-of-the-art computer vision systems for classification and segmentation of 2D images. The same principles and architectures can be extended to three dimensions to obtain 3D CNNs that are suitable for volumetric data such as CT scans. In this work, we train a 3D CNN for automatic detection of pulmonary nodules in chest CT images using volumes of interest extracted from the LIDC dataset. We then convert the 3D CNN which has a fixed field of view to a 3D fully convolutional network (FCN) which can generate the score map for the entire volume efficiently in a single pass. Compared to the sliding window approach for applying a CNN across the entire input volume, the FCN leads to a nearly 800-fold speed-up, and thereby fast generation of output scores for a single case. This screening FCN is used to generate difficult negative examples that are used to train a new discriminant CNN. The overall system consists of the screening FCN for fast generation of candidate regions of interest, followed by the discrimination CNN.

  10. 3D convolutional neural network for automatic detection of lung nodules in chest CT

    NASA Astrophysics Data System (ADS)

    Hamidian, Sardar; Sahiner, Berkman; Petrick, Nicholas; Pezeshk, Aria

    2017-03-01

    Deep convolutional neural networks (CNNs) form the backbone of many state-of-the-art computer vision systems for classification and segmentation of 2D images. The same principles and architectures can be extended to three dimensions to obtain 3D CNNs that are suitable for volumetric data such as CT scans. In this work, we train a 3D CNN for automatic detection of pulmonary nodules in chest CT images using volumes of interest extracted from the LIDC dataset. We then convert the 3D CNN which has a fixed field of view to a 3D fully convolutional network (FCN) which can generate the score map for the entire volume efficiently in a single pass. Compared to the sliding window approach for applying a CNN across the entire input volume, the FCN leads to a nearly 800-fold speed-up, and thereby fast generation of output scores for a single case. This screening FCN is used to generate difficult negative examples that are used to train a new discriminant CNN. The overall system consists of the screening FCN for fast generation of candidate regions of interest, followed by the discrimination CNN.

  11. Implications for the melting phase relations in the MgO-FeO system at Core-Mantle Boundary conditions

    NASA Astrophysics Data System (ADS)

    Deng, J.; Lee, K. K. M.

    2017-12-01

    At nearly 2900 km depth, the core-mantle boundary (CMB) represents the largest density increase within the Earth going from a rocky mantle into an iron-alloy core. This compositional change sets up steep temperature gradients, which in turn influences mantle flow, structure and seismic velocities. Here we compute the melting phase relations of (Mg,Fe)O ferropericlase, the second most abundant mineral in the Earth's mantle, at CMB conditions and find that ultralow-velocity zones (ULVZs) could be explained by solid ferropericlase with 35 < Mg# = 100×(Mg/(Mg+Fe) by mol%) < 65. For compositions outside of this range, a solid ferropericlase cannot explain ULVZs. Additionally, solid ferropericlase can also provide a matrix for iron infiltration at the CMB by morphological instability, providing a mechanism for a high electrical conductivity layer of appropriate length scale inferred from core nutations.

  12. Longitude origins on moving equator II: effects of nutation

    NASA Astrophysics Data System (ADS)

    Fukushima, T.

    We obtained an explicit solution of s, the angle specifying the non-rotating orign (NRO) (Guinot 1979), for the pole uniformly rotating on a circle around an arbitrary fixed direction. Thanks to the obtained formula, we derived an approximate expression of its correction, Δs, due to the fast nutational motion of the pole by ignoring the slow precessional motion. By adopting the IAU 1980 nutation series (Seidelmann 1980) and combining the result with the previous solution for the precessional motion of the Earth's pole (Fukushima 2000), we developed a more precise expression of the global motion of the Celestial Ephemeris Origin (CEO). The current speed of global rotation of CEO amounts to -4.149 688 1"/yr where the contribution of the nutation is small as -38.4μas/yr but non-negligible. The negative sign shows that CEO rotates clockwise with respect to the inertial frame when viewed from the north pole. The long periodic motion of CEO is of the amplitude of the obliquity of ecliptic, around 23.5 degree, and of the period of precession, around 25800 yr. While the effect of nutation on the periodic motion of CEO looks like a series of mixed secular terms, which is simply proportional to the nutation in longitude and is of the order of some tens mas/yr.

  13. Development of user interface and of the data base "Earth, Moon and Planets" in the VBA environment for teaching students in the Kazan state universities

    NASA Astrophysics Data System (ADS)

    Petrova, N.; Tatarinov, P.; Akutina, M.

    2009-04-01

    In the frame of bachelor and master's degree diploma work the students accumulate and do structure distribution of necessary information about the spin-orbital, dynamical and geophysical characteristics of a planet. The information about the every planet is written into Excel WorkBook, the spreadsheets of which are the data base. The names of sheets reflect their content: "General Data", "Dynamics", "Geophysics", "Engineering", "References", Slides" etc. These data are taken from the last scientific articles dedicated to the modern problems of the planetary investigations. Especial interest is connected to the Lunar sciences - last data about surface mineral distribution, crust thickness and gravity field, slides with photographies received by Video Camera and various instruments situated on the board of Lunar SELENE mission (Japan, 2007-2009 yrs). The work with the data base is executed, using elements of the object-oriented programming. The students study to include into the UserForms standard means of Windows - Dialog Windows, TextBox, CommandButton, ComboBox, ScrollBar etc., and to support these elements by the macros written in programming language VBA. The main attention in the software support of the data base is done onto opportunity to investigate the two-three layer structure of a planet via modeling of its free nutation periods - Chandler-like Wobbles, Free Core Nutation, Inner Core Wobbles and Free Inner Core Nitation and their engineering estimation for space mission observations. The results are presented in the form of tables in Sheets and of diagrams constructed by special buttons of the UserForms on the basis of the calculated tables. The research was supported by the Russian-Japanese grant RFFI-JSPS N 07-02-91212, (2007 - 2009).

  14. Fully Convolutional Network-Based Multifocus Image Fusion.

    PubMed

    Guo, Xiaopeng; Nie, Rencan; Cao, Jinde; Zhou, Dongming; Qian, Wenhua

    2018-07-01

    As the optical lenses for cameras always have limited depth of field, the captured images with the same scene are not all in focus. Multifocus image fusion is an efficient technology that can synthesize an all-in-focus image using several partially focused images. Previous methods have accomplished the fusion task in spatial or transform domains. However, fusion rules are always a problem in most methods. In this letter, from the aspect of focus region detection, we propose a novel multifocus image fusion method based on a fully convolutional network (FCN) learned from synthesized multifocus images. The primary novelty of this method is that the pixel-wise focus regions are detected through a learning FCN, and the entire image, not just the image patches, are exploited to train the FCN. First, we synthesize 4500 pairs of multifocus images by repeatedly using a gaussian filter for each image from PASCAL VOC 2012, to train the FCN. After that, a pair of source images is fed into the trained FCN, and two score maps indicating the focus property are generated. Next, an inversed score map is averaged with another score map to produce an aggregative score map, which take full advantage of focus probabilities in two score maps. We implement the fully connected conditional random field (CRF) on the aggregative score map to accomplish and refine a binary decision map for the fusion task. Finally, we exploit the weighted strategy based on the refined decision map to produce the fused image. To demonstrate the performance of the proposed method, we compare its fused results with several start-of-the-art methods not only on a gray data set but also on a color data set. Experimental results show that the proposed method can achieve superior fusion performance in both human visual quality and objective assessment.

  15. Fluorescent carbon nanoparticle-based lateral flow biosensor for ultrasensitive detection of DNA.

    PubMed

    Takalkar, Sunitha; Baryeh, Kwaku; Liu, Guodong

    2017-12-15

    We report a fluorescent carbon nanoparticle (FCN)-based lateral flow biosensor for ultrasensitive detection of DNA. Fluorescent carbon nanoparticle with a diameter of around 15nm was used as a tag to label a detection DNA probe, which was complementary with the part of target DNA. A capture DNA probe was immobilized on the test zone of the lateral flow biosensor. Sandwich-type hybridization reactions among the FCN-labeled DNA probe, target DNA and capture DNA probe were performed on the lateral flow biosensor. In the presence of target DNA, FCNs were captured on the test zone of the biosensor and the fluorescent intensity of the captured FCNs was measured with a portable fluorescent reader. After systematic optimizations of experimental parameters (the components of running buffers, the concentration of detection DNA probe used in the preparation of FCN-DNA conjugates, the amount of FCN-DNA dispensed on the conjugate pad and the dispensing cycles of the capture DNA probes on the test-zone), the biosensor could detect a minimum concentration of 0.4 fM DNA. This study provides a rapid and low-cost approach for DNA detection with high sensitivity, showing great promise for clinical application and biomedical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The Evaluation of the Earth's Dynamical Flattening Based on the IAU Precession-nutation and VLBI Observations

    NASA Astrophysics Data System (ADS)

    Capitaine, Nicole; Liu, Jia-Cheng

    2014-12-01

    The dynamical flattening H_{d} is a fundamental Earth's parameter and a crucial scale factor in constructing the precession-nutation models. Its value has generally been derived from astronomical observations of the luni-solar precession in longitude at epoch, or from geophysical determinations of the Earth's moment of inertia. It should be noted that the observed precession rates in longitude and obliquity result from several theoretical contributions, some of them, as well as the nutation amplitudes, being also dependent on H_{d}. This paper discusses the rigorous procedure to be used for deriving H_{d} from the best available astronomical observations. We use the IAU 2006/2000 precession-nutation and VLBI observations of the celestial pole offsets spanning about 32 years in order to calculate the observed position of the CIP (Celestial intermediate pole) in the GCRS (Geocentric celestial reference system). Then, the value of H_{d} is evaluated by a least squares method with a careful consideration of the various theoretical contributions to the precession rates and of the largest terms of nutation. We compare the results with an indirect fit of H_{d} to the estimated corrections to the linear term in precession and the 18.6-yr nutation. We discuss the limit of accuracy, given the characteristics of the available observations and the uncertainties in the models, as well as the parameters on which H_{d} is dependent.

  17. Automated Method for Estimating Nutation Time Constant Model Parameters for Spacecraft Spinning on Axis

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Calculating an accurate nutation time constant (NTC), or nutation rate of growth, for a spinning upper stage is important for ensuring mission success. Spacecraft nutation, or wobble, is caused by energy dissipation anywhere in the system. Propellant slosh in the spacecraft fuel tanks is the primary source for this dissipation and, if it is in a state of resonance, the NTC can become short enough to violate mission constraints. The Spinning Slosh Test Rig (SSTR) is a forced-motion spin table where fluid dynamic effects in full-scale fuel tanks can be tested in order to obtain key parameters used to calculate the NTC. We accomplish this by independently varying nutation frequency versus the spin rate and measuring force and torque responses on the tank. This method was used to predict parameters for the Genesis, Contour, and Stereo missions, whose tanks were mounted outboard from the spin axis. These parameters are incorporated into a mathematical model that uses mechanical analogs, such as pendulums and rotors, to simulate the force and torque resonances associated with fluid slosh.

  18. Effectiveness of large booms as nutation dampers for spin stabilized spacecraft

    NASA Technical Reports Server (NTRS)

    Eke, F. O.

    1991-01-01

    The issue of using long slender booms as pendulous nutation damping devices on spinning aircraft is discussed. Motivation comes from experience with the Galileo Spacecraft, whose magnetometer boom also serves as a passive nutation damper for the spacecraft. Performance analysis of a spacecraft system equipped with such systems are relatively insensitive to changes in the damping constant of the device. However, the size and arrangement of such a damper raises important questions concerning spacecraft stability in general.

  19. The Nutating Engine-Prototype Engine Progress Report and Test Results

    NASA Technical Reports Server (NTRS)

    Meitner, Peter L.; Boruta, Mike

    2006-01-01

    A prototype of a new, internal combustion (IC) engine concept has been completed. The Nutating Engine features an internal disk nutating (wobbling) on a Z-shaped power shaft. The engine is exceedingly compact, and several times more power dense than any conventional (reciprocating or rotary) IC engine. This paper discusses lessons learned during the prototype engine's development and provides details of its construction. In addition, results of the initial performance tests of the various components, as well as the complete engine, are summarized.

  20. Improvement of VLBI EOP Accuracy and Precision

    NASA Technical Reports Server (NTRS)

    MacMillan, Daniel; Ma, Chopo

    2000-01-01

    In the CORE program, EOP measurements will be made with several different networks, each operating on a different day. It is essential that systematic differences between EOP derived by the different networks be minimized. Observed biases between the simultaneous CORE-A and NEOS-A sessions are about 60-130 micro(as) for PM, UT1 and nutation parameters. After removing biases, the observed rms differences are consistent with an increase in the formal precision of the measurements by factors ranging from 1.05 to 1.4. We discuss the possible sources of unmodeled error that account for these factors and the biases and the sensitivities of the network differences to modeling errors. We also discuss differences between VLBI and GPS PM measurements.

  1. ExoMars Lander Radioscience LaRa, a Space Geodesy Experiment to Mars.

    NASA Astrophysics Data System (ADS)

    Dehant, V.; Le Maistre, S.; Baland, R. M.; Yseboodt, M.; Peters, M. J.; Karatekin, O.; Rivoldini, A.; Van Hoolst, T.

    2017-09-01

    The LaRa (Lander Radioscience) experiment is designed to obtain coherent two-way Doppler measurements from the radio link between the ExoMars lander and Earth over at least one Martian year. The Doppler measurements will be used to observe the orientation and rotation of Mars in space (precession, nutations, and length-of-day variations), as well as polar motion. The ultimate objective is to obtain information / constraints on the Martian interior, and on the sublimation / condensation cycle of atmospheric CO2. Rotational variations will allow us to constrain the moment of inertia of the entire planet, including its mantle and core, the moment of inertia of the core, and seasonal mass transfer between the atmosphere and the ice caps.

  2. Facile preparation of ion-imprinted composite film for selective electrochemical removal of nickel(II) ions.

    PubMed

    Du, Xiao; Zhang, Hao; Hao, Xiaogang; Guan, Guoqing; Abudula, Abuliti

    2014-06-25

    A facile unipolar pulse electropolymerization (UPEP) technique is successfully applied for the preparation of ion-imprinted composite film composed of ferricyanide-embedded conductive polypyrrole (FCN/PPy) for the selective electrochemical removal of heavy metal ions from wastewater. The imprinted heavy metal ions are found to be easily removed in situ from the growing film only by tactfully applying potential oscillation due to the unstable coordination of FCN to the imprinted ions. The obtained Ni(2+) ion-imprinted FCN/PPy composite film shows fast uptake/release ability for the removal of Ni(2+) ions from aqueous solution, and the adsorption equilibrium time is less than 50 s. The ion exchange capacity reaches 1.298 mmol g(-1) and retains 93.5% of its initial value even after 1000 uptake/release cycles. Separation factors of 6.3, 5.6, and 6.2 for Ni(2+)/Ca(2+), Ni(2+)/K(+), and Ni(2+)/Na(+), respectively, are obtained. These characteristics are attributed to the high identification capability of the ion-imprinted composite film for the target ions and the dual driving forces resulting from both PPy and FCN during the redox process. It is expected that the present method can be used for simple preparation of other ion-imprinted composite films for the separation and recovery of target heavy metal ions as well.

  3. Measurement of short transverse relaxation times by pseudo-echo nutation experiments

    NASA Astrophysics Data System (ADS)

    Ferrari, Maude; Moyne, Christian; Canet, Daniel

    2018-07-01

    Very short NMR transverse relaxation times may be difficult to measure by conventional methods. Nutation experiments constitute an alternative approach. Nutation is, in the rotating frame, the equivalent of precession in the laboratory frame. It consists in monitoring the rotation of magnetization around the radio-frequency (rf) field when on-resonance conditions are fulfilled. Depending on the amplitude of the rf field, nutation may be sensitive to the two relaxation rates R1 and R2. A full theoretical development has been worked out for demonstrating how these two relaxation rates could be deduced from a simple nutation experiment, noticing however that inhomogeneity of the rf field may lead to erroneous results. This has led us to devise new experiments which are the equivalent of echo techniques in the rotating frame (pseudo spin-echo nutation experiment and pseudo gradient-echo experiment). Full equations of motion have been derived. Although complicated, they indicate that the sum of the two relaxation rates can be obtained very accurately and not altered by rf field inhomogeneity. This implies however an appropriate data processing accounting for the oscillations which are superposed to the echo decays and, anyway, theoretically predicted. A series of experiments has been carried out for different values of the rf field amplitude on samples of water doped with a paramagnetic compound at different concentrations. Pragmatically, as R1 can be easily measured by conventional methods, its value is entered in the data processing algorithm which then returns exclusively the value of the transverse relaxation time. Very consistent results are obtained that way.

  4. Measurement of short transverse relaxation times by pseudo-echo nutation experiments.

    PubMed

    Ferrari, Maude; Moyne, Christian; Canet, Daniel

    2018-05-03

    Very short NMR transverse relaxation times may be difficult to measure by conventional methods. Nutation experiments constitute an alternative approach. Nutation is, in the rotating frame, the equivalent of precession in the laboratory frame. It consists in monitoring the rotation of magnetization around the radio-frequency (rf) field when on-resonance conditions are fulfilled. Depending on the amplitude of the rf field, nutation may be sensitive to the two relaxation rates R 1 and R 2 . A full theoretical development has been worked out for demonstrating how these two relaxation rates could be deduced from a simple nutation experiment, noticing however that inhomogeneity of the rf field may lead to erroneous results. This has led us to devise new experiments which are the equivalent of echo techniques in the rotating frame (pseudo spin-echo nutation experiment and pseudo gradient-echo experiment). Full equations of motion have been derived. Although complicated, they indicate that the sum of the two relaxation rates can be obtained very accurately and not altered by rf field inhomogeneity. This implies however an appropriate data processing accounting for the oscillations which are superposed to the echo decays and, anyway, theoretically predicted. A series of experiments has been carried out for different values of the rf field amplitude on samples of water doped with a paramagnetic compound at different concentrations. Pragmatically, as R 1 can be easily measured by conventional methods, its value is entered in the data processing algorithm which then returns exclusively the value of the transverse relaxation time. Very consistent results are obtained that way. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Lewis acid-base interactions in weakly bound formaldehyde complexes with CO2, HCN, and FCN: considerations on the cooperative H-bonding effects.

    PubMed

    Rivelino, Roberto

    2008-01-17

    Ab initio quantum chemistry calculations reveal that HCN and mainly FCN can form Lewis acid-base complexes with formaldehyde associated with cooperative H bonds, as first noticed by Wallen et al. (Blatchford, M. A.; Raveendran, P.; Wallen, S. L. J. Am. Chem. Soc. 2002, 124, 14818-14819) for CO2-philic materials under supercritical conditions. The present results, obtained with MP2(Full)/aug-cc-pVDZ calculations, show that the degeneracy of the nu(2) mode in free HCN or FCN is removed upon complexation in the same fashion as that of CO2. The splitting of these bands along with the electron structure analysis provides substantial evidence of the interaction of electron lone pairs of the carbonyl oxygen with the electron-deficient carbon atom of the cyanides. Also, this work investigates the role of H bonds acting as additional stabilizing interactions in the complexes by performing the energetic and geometric characterization.

  6. (abstract) ARGOS: a System to Monitor Ulysses Nutation and Thruster Firings from Variations of the Spacecraft Radio Signal

    NASA Technical Reports Server (NTRS)

    McElrath, T. P.; Cangahuala, L. A.; Miller, K. J.; Stravert, L. R.; Garcia-Perez, Raul

    1995-01-01

    Ulysses is a spin-stabilized spacecraft that experienced significant nutation after its launch in October 1990. This was due to the Sun-spacecraft-Earth geometry, and a study of the phenomenon predicted that the nutation would again be a problem during 1994-95. The difficulty of obtaining nutation estimates in real time from the spacecraft telemetry forced the ESA/NASA Ulysses Team to explore alternative information sources. The work performed by the ESA Operations Team provided a model for a system that uses the radio signal strength measurements to monitor the spacecraft dynamics. These measurements (referred to as AGC) are provided once per second by the tracking stations of the DSN. The system was named ARGOS (Attitude Reckoning from Ground Observable Signals) after the ever-vigilant, hundred-eyed giant of Greek Mythology. The ARGOS design also included Doppler processing, because Doppler shifts indicate thruster firings commanded by the active nutation control carried out onboard the spacecraft. While there is some visibility into thruster activity from telemetry, careful processing of the high-sample-rate Doppler data provides an accurate means of detecting the presence and time of thruster firings. DSN Doppler measurements are available at a ten-per-second rate in the same tracking data block as the AGC data.

  7. Concise CIO based precession-nutation formulations

    NASA Astrophysics Data System (ADS)

    Capitaine, N.; Wallace, P. T.

    2008-01-01

    Context: The IAU 2000/2006 precession-nutation models have precision goals measured in microarcseconds. To reach this level of performance has required series containing terms at over 1300 frequencies and involving several thousand amplitude coefficients. There are many astronomical applications for which such precision is not required and the associated heavy computations are wasteful. This justifies developing smaller models that achieve adequate precision with greatly reduced computing costs. Aims: We discuss strategies for developing simplified IAU 2000/2006 precession-nutation procedures that offer a range of compromises between accuracy and computing costs. Methods: The chain of transformations linking celestial and terrestrial coordinates comprises frame bias, precession-nutation, Earth rotation and polar motion. We address the bias and precession-nutation (NPB) portion of the chain, linking the Geocentric Celestial Reference System (GCRS) with the Celestial Intermediate Reference System (CIRS), the latter based on the Celestial Intermediate Pole (CIP) and Celestial Intermediate Origin (CIO). Starting from direct series that deliver the CIP coordinates X,Y and (via the quantity s + XY/2) the CIO locator s, we look at the opportunities for simplification. Results: The biggest reductions come from truncating the series, but some additional gains can be made in the areas of the matrix formulation, the expressions for the nutation arguments and by subsuming long period effects into the bias quantities. Three example models are demonstrated that approximate the IAU 2000/2006 CIP to accuracies of 1 mas, 16 mas and 0.4 arcsec throughout 1995-2050 but with computation costs reduced by 1, 2 and 3 orders of magnitude compared with the full model. Appendices A to G are only available in electronic form at http://www.aanda.org

  8. Estimation of Nutation Time Constant Model Parameters for On-Axis Spinning Spacecraft

    NASA Technical Reports Server (NTRS)

    Schlee, Keith; Sudermann, James

    2008-01-01

    Calculating an accurate nutation time constant for a spinning spacecraft is an important step for ensuring mission success. Spacecraft nutation is caused by energy dissipation about the spin axis. Propellant slosh in the spacecraft fuel tanks is the primary source for this dissipation and can be simulated using a forced motion spin table. Mechanical analogs, such as pendulums and rotors, are typically used to simulate propellant slosh. A strong desire exists for an automated method to determine these analog parameters. The method presented accomplishes this task by using a MATLAB Simulink/SimMechanics based simulation that utilizes the Parameter Estimation Tool.

  9. JPL Ephemeris Tapes E9510, E9511, and E9512

    NASA Technical Reports Server (NTRS)

    Peabody, P. R.; Scott, J. F.; Orozco, E. G.

    1964-01-01

    The first issue of JPL Ephemeris Tapes is described. These tapes carry the positions and velocities of the planets and of the Moon, plus nutations and nutation rates in longitude and obliquity, together with second and fourth modified differences, for the interval December 30, 1949, to January 5, 2000.

  10. Smoothing and Predicting Celestial Pole Offsets using a Kalman Filter and Smoother

    NASA Astrophysics Data System (ADS)

    Nastula, J.; Chin, T. M.; Gross, R. S.; Winska, M.; Winska, J.

    2017-12-01

    Since the early days of interplanetary spaceflight, accounting for changes in the Earth's rotation is recognized to be critical for accurate navigation. In the 1960s, tracking anomalies during the Ranger VII and VIII lunar missions were traced to errors in the Earth orientation parameters. As a result, Earth orientation calibration methods were improved to support the Mariner IV and V planetary missions. Today, accurate Earth orientation parameters are used to track and navigate every interplanetary spaceflight mission. The interplanetary spacecraft tracking and navigation teams at JPL require the UT1 and polar motion parameters, and these Earth orientation parameters are estimated by the use of a Kalman filter to combine past measurements of these parameters and predict their future evolution. A model was then used to provide the nutation/precession components of the Earth's orientation separately. As a result, variations caused by the free core nutation were not taken into account. But for the highest accuracy, these variations must be considered. So JPL recently developed an approach based upon the use of a Kalman filter and smoother to provide smoothed and predicted celestial pole offsets (CPOs) to the interplanetary spacecraft tracking and navigation teams. The approach used at JPL to do this and an evaluation of the accuracy of the predicted CPOs will be given here.

  11. Determination of tidal h Love number parameters in the diurnal band using an extensive VLBI data set

    NASA Technical Reports Server (NTRS)

    Mitrovica, J. X.; Davis, J. L.; Mathews, P. M.; Shapiro, I. I.

    1994-01-01

    We use over a decade of geodetic Very Long Baseline Interferometry (VLBI) data to estimate parameters in a resonance expansion of the frequency dependence of the tidal h(sub 2) Love number within the diurnal band. The resonance is associated with the retrograde free core nutation (RFCN). We obtain a value for the real part of the resonance strength of (-0.27 +/- 0.03) x 10(exp -3); a value of -0.19 x 10(exp -3) is predicted theoretically. Uncertainties in the VLBI estimates of the body tide radial displacement amplitudes are approximately 0.5 mm (1.1 mm for the K1 frequency), but they do not yield sufficiently small Love number uncertainties for placing useful constraints on the frequency of the RFCN, given the much smaller uncertainties obtained from independent analyses using nutation or gravimetric data. We also consider the imaginary part of the tidal h(sub 2) Love number. The estimated imaginary part of the resonance strength is (0.00 +/- 0.02) x 10(exp -3). The estimated imaginary part of the nonresonant component of the Love number implies a phase angle in the diurnal tidal response of the Earth of 0.7 deg +/- 0.5 deg (lag).

  12. Surface-segregated monolayers: a new type of ordered monolayer for surface modification of organic semiconductors.

    PubMed

    Wei, Qingshuo; Tajima, Keisuke; Tong, Yujin; Ye, Shen; Hashimoto, Kazuhito

    2009-12-09

    We report a new type of ordered monolayer for the surface modification of organic semiconductors. Fullerene derivatives with fluorocarbon chains ([6,6]-phenyl-C(61)-buryric acid 1H,1H-perfluoro-1-alkyl ester or FC(n)) spontaneously segregated as a monolayer on the surface of a [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) film during a spin-coating process from the mixture solutions, as confirmed by X-ray photoelectron spectroscopy (XPS). Ultraviolet photoelectron spectroscopy (UPS) showed the shift of ionization potentials (IPs) depending on the fluorocarbon chain length, indicating the formation of surface dipole moments. Surface-sensitive vibrational spectroscopy, sum frequency generation (SFG) revealed the ordered molecular orientations of the C(60) moiety in the surface FC(n) layers. The intensity of the SFG signals from FC(n) on the surface showed a clear odd-even effect when the length of the fluorocarbon chain was changed. This new concept of the surface-segregated monolayer provides a facile and versatile approach to modifying the surface of organic semiconductors and is applicable to various organic optoelectronic devices.

  13. Comparative analysis of tumor spheroid generation techniques for differential in vitro drug toxicity

    PubMed Central

    Raghavan, Shreya; Rowley, Katelyn R.; Mehta, Geeta

    2016-01-01

    Multicellular tumor spheroids are powerful in vitro models to perform preclinical chemosensitivity assays. We compare different methodologies to generate tumor spheroids in terms of resultant spheroid morphology, cellular arrangement and chemosensitivity. We used two cancer cell lines (MCF7 and OVCAR8) to generate spheroids using i) hanging drop array plates; ii) liquid overlay on ultra-low attachment plates; iii) liquid overlay on ultra-low attachment plates with rotating mixing (nutator plates). Analysis of spheroid morphometry indicated that cellular compaction was increased in spheroids generated on nutator and hanging drop array plates. Collagen staining also indicated higher compaction and remodeling in tumor spheroids on nutator and hanging drop arrays compared to conventional liquid overlay. Consequently, spheroids generated on nutator or hanging drop plates had increased chemoresistance to cisplatin treatment (20-60% viability) compared to spheroids on ultra low attachment plates (10-20% viability). Lastly, we used a mathematical model to demonstrate minimal changes in oxygen and cisplatin diffusion within experimentally generated spheroids. Our results demonstrate that in vitro methods of tumor spheroid generation result in varied cellular arrangement and chemosensitivity. PMID:26918944

  14. Parameter Estimation of Spacecraft Fuel Slosh Model

    NASA Technical Reports Server (NTRS)

    Gangadharan, Sathya; Sudermann, James; Marlowe, Andrea; Njengam Charles

    2004-01-01

    Fuel slosh in the upper stages of a spinning spacecraft during launch has been a long standing concern for the success of a space mission. Energy loss through the movement of the liquid fuel in the fuel tank affects the gyroscopic stability of the spacecraft and leads to nutation (wobble) which can cause devastating control issues. The rate at which nutation develops (defined by Nutation Time Constant (NTC can be tedious to calculate and largely inaccurate if done during the early stages of spacecraft design. Pure analytical means of predicting the influence of onboard liquids have generally failed. A strong need exists to identify and model the conditions of resonance between nutation motion and liquid modes and to understand the general characteristics of the liquid motion that causes the problem in spinning spacecraft. A 3-D computerized model of the fuel slosh that accounts for any resonant modes found in the experimental testing will allow for increased accuracy in the overall modeling process. Development of a more accurate model of the fuel slosh currently lies in a more generalized 3-D computerized model incorporating masses, springs and dampers. Parameters describing the model include the inertia tensor of the fuel, spring constants, and damper coefficients. Refinement and understanding the effects of these parameters allow for a more accurate simulation of fuel slosh. The current research will focus on developing models of different complexity and estimating the model parameters that will ultimately provide a more realistic prediction of Nutation Time Constant obtained through simulation.

  15. Contributions to the Earth's Obliquity Rate, Precession, and Nutation

    NASA Technical Reports Server (NTRS)

    Williams, James G.

    1994-01-01

    The precession and nutation of the Earth's equator arise from solar, lunar, and planetary torques on the oblate Earth. The mean lunar orbit plane is nearly coincident with the ecliptic plane. A small tilt out of the ecliptic is caused by planetary perturbations and the Earth's gravitational harmonic J(sub 2). These planetary perturbations on the lunar orbit result in torques on the oblate Earth which contribute to precession, obliquity rate, and nutation while the J(sub 2) perturbations contribute to precession and nutation. Small additional contributions to the secular rates arise from tidal effects and planetary torques on the Earth's bulge. The total correction to the obliquity rate is -0.024 sec/century, it is an observable motion in space (the much larger conventional obliquity rate is wholly from the motion of the ecliptic, not the equator), and it is not present in the IAU-adopted expressions for the orientation of the Earth's equator. The effects have generally been allowed for in past nutation theories and some precession theories. For the planetary effect, the contributions to the 18.6 yr nutation are -0.03 mas (milliarcseconds) for the in-phase Delta(psi) plus out-of-phase contributions of 0.14 mas in Delta(psi) and -0.03 mas in Delta(sub epsilon). The latter terms demonstrate that out-of-phase contributions can arise by means other than dissipation. The sum of the contributions to the precession rate is considered and the inferred value of the moment of inertia combination (C-A)/C, which is used to scale the coefficients in the nutation series, is evaluated. Using an updated value for the precession rate, the rigid body (C-A)/C =0.003 273 763 4 which, in combination with a satellite-derived J(sub 2), gives a normalized polar moment of inertia C/MR(exp 2) = 0.330 700 7. The planetary contributions to the precession and obliquity rates are not constant for long times causing accelerations in both quantities. Acceleration in precession also arises from tides and changing J(sub 2) Contributions from the improved theory, masses, ecliptic motion, and measured values of the precession rate and obliquity are combined to give expressions (polynomials in time) for precession, obliquity, and Greenwich Mean Sidereal Time.

  16. Contributions to the Earth's obliquity rate, precession, and nutation

    NASA Technical Reports Server (NTRS)

    Williams, James G.

    1994-01-01

    The precession and nutation of the Earth's equator arise from solar, lunar, and planetary torques on the oblate Earth. The mean lunar orbit plane is nearly coincident with the ecliptic plane. A small tilt out of the ecliptic is caused by planetary perturbations and the Earth's gravitational harmonic J(sub2). These planetary perturbations on the lunar orbit result in torques on the oblate Earth which contribute to precession, obliquity rate, and nutation while the J(sub 2) perturbations contribute to precession and nutation. Small additional contributions to the secular rates arise from tidal effects and planetary torques on the Earth's bulge. The total correction to the obliquity rate is -0.024sec/century, it is an observable motion in space (the much larger conventional obliquity rate is wholly from the motion of the ecliptic, not the equator), and it is not present in the IAU-adopted expressions for the orientation of the Earth's equator. The J(sub2) effects have generally been allowed for in past nutation theories and some procession theories. For the planetary effect, the contributions to the 18.6 yr nutation are -0.03 mas (milliarcseconds) for the in-phase Delta phi plus out-of-phase contributions of 0.14 mas in Delta phi and -0.03 mas in Delta epsilon. The latter terms demonstrate that out-of-phase contributions can arise by means other than dissipation. The sum of the contributions to the precession rate is considered and the inferred value of the moment of inertia combination (C-A)/C, which is used to scale the coefficients in the nutation series, is evaluated. Using an updated value for the precession rate, the rigid body (C-A)/C = 0.003 273 763 4 which, in combination with a satellite-derived J(sub2), gives a normalized polar moment of inertia C/MR(exp2) = 0.330 700 7. The planetary contributions to the precession and obliquity rates are not constant for long times causing accelerations in both quantities. Acceleration in precession also arises from tides and changing J(sub2). Contributions from the improved theory, masses, ecliptic motion, and measured values of the precession rate and obliquity are combined to give expressions (polynomials in time) for precession, obliquity, and Greenwich Mean Sidereal Time.

  17. Lidar Cloud Detection with Fully Convolutional Networks

    NASA Astrophysics Data System (ADS)

    Cromwell, E.; Flynn, D.

    2017-12-01

    The vertical distribution of clouds from active remote sensing instrumentation is a widely used data product from global atmospheric measuring sites. The presence of clouds can be expressed as a binary cloud mask and is a primary input for climate modeling efforts and cloud formation studies. Current cloud detection algorithms producing these masks do not accurately identify the cloud boundaries and tend to oversample or over-represent the cloud. This translates as uncertainty for assessing the radiative impact of clouds and tracking changes in cloud climatologies. The Atmospheric Radiation Measurement (ARM) program has over 20 years of micro-pulse lidar (MPL) and High Spectral Resolution Lidar (HSRL) instrument data and companion automated cloud mask product at the mid-latitude Southern Great Plains (SGP) and the polar North Slope of Alaska (NSA) atmospheric observatory. Using this data, we train a fully convolutional network (FCN) with semi-supervised learning to segment lidar imagery into geometric time-height cloud locations for the SGP site and MPL instrument. We then use transfer learning to train a FCN for (1) the MPL instrument at the NSA site and (2) for the HSRL. In our semi-supervised approach, we pre-train the classification layers of the FCN with weakly labeled lidar data. Then, we facilitate end-to-end unsupervised pre-training and transition to fully supervised learning with ground truth labeled data. Our goal is to improve the cloud mask accuracy and precision for the MPL instrument to 95% and 80%, respectively, compared to the current cloud mask algorithms of 89% and 50%. For the transfer learning based FCN for the HSRL instrument, our goal is to achieve a cloud mask accuracy of 90% and a precision of 80%.

  18. Measurement Of Molecular Mobilities Of Polymers

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Tsay, Fun-Dow

    1989-01-01

    New molecular-probe technique used to measure molecular mobility of polymer. Method based on use of time-resolved electron-spin resonance (ESR) spectroscopy to monitor decay of transient nutation amplitudes from photoexcited triplet states of probe molecules with which polymer is doped. The higher molecular mobility of polymer matrix, the faster nutation amplitudes of the probe molecules decay.

  19. Observation model and parameter partials for the JPL VLBI parameter estimation software MASTERFIT-1987

    NASA Technical Reports Server (NTRS)

    Sovers, O. J.; Fanselow, J. L.

    1987-01-01

    This report is a revision of the document of the same title (1986), dated August 1, which it supersedes. Model changes during 1986 and 1987 included corrections for antenna feed rotation, refraction in modelling antenna axis offsets, and an option to employ improved values of the semiannual and annual nutation amplitudes. Partial derivatives of the observables with respect to an additional parameter (surface temperature) are now available. New versions of two figures representing the geometric delay are incorporated. The expressions for the partial derivatives with respect to the nutation parameters have been corrected to include contributions from the dependence of UTI on nutation. The authors hope to publish revisions of this document in the future, as modeling improvements warrant.

  20. Observation model and parameter partials for the JPL VLBI parameter estimation software MASTERFIT-1987

    NASA Astrophysics Data System (ADS)

    Sovers, O. J.; Fanselow, J. L.

    1987-12-01

    This report is a revision of the document of the same title (1986), dated August 1, which it supersedes. Model changes during 1986 and 1987 included corrections for antenna feed rotation, refraction in modelling antenna axis offsets, and an option to employ improved values of the semiannual and annual nutation amplitudes. Partial derivatives of the observables with respect to an additional parameter (surface temperature) are now available. New versions of two figures representing the geometric delay are incorporated. The expressions for the partial derivatives with respect to the nutation parameters have been corrected to include contributions from the dependence of UTI on nutation. The authors hope to publish revisions of this document in the future, as modeling improvements warrant.

  1. Radio Navigation Beacons on the Moon, Lunar Geodetic VLBI System, Physical Libration of the Moon for Chang'E-3/4, Luna-Glob, Luna-Resource and SELENE-2 Projects

    NASA Astrophysics Data System (ADS)

    Gusev, Alexander; Ping, Jinsong; Hanada, Hideo; Kikuchi, Fuyuhiko; Kosov, Alexander; Li, Jinling; Titov, Oleg

    2014-12-01

    The future lunar missions of Chang'E-3/4, Luna-Glob, Luna-Resource, and SELENE-2 will consist of a lander and an orbiter. Using the Lunar Same Beam, Differential and Inverse VLBI technologies, we anticipate to determine the coordinates of the radio beacons on the lunar surface with an accuracy of 1 mm for various space projects on the Moon. Small radio telescopes being installed on the surface of the Moon and incorporated into the existing network will help to improve the traditional IVS products by a factor of ten or even more. The model of the two-layer Moon gives several normal rotational modes--Chandler Wobble and Free Core Nutation. They can play an important role in the determination of the core parameters.

  2. A New Precession Formula

    NASA Astrophysics Data System (ADS)

    Fukushima, Toshio

    2003-07-01

    We adapt J. G. Williams' expression of the precession and nutation using the 3-1-3-1 rotation to an arbitrary inertial frame of reference. The modified formulation avoids a singularity caused by finite pole offsets near the epoch. By adopting the planetary precession formula numerically determined from DE405 and by using a recent theory of the forced nutation of the nonrigid Earth by Shirai & Fukishima, we analyze the celestial pole offsets observed by VLBI for 1979-2000 and determine the best-fit polynomials of the lunisolar precession angles. We then translate the results into classical precession quantities and evaluate the difference due to the difference in the ecliptic definition. The combination of these formulae and the periodic part of the Shirai-Fukishima nutation theory serves as a good approximation of the precession-nutation matrix in the International Celestial Reference Frame. As a by-product, we determine the mean celestial pole offset at J2000.0 as X0=-(17.12+/-0.01) mas and Y0=-(5.06+/-0.02) mas. Also, we estimate the speed of general precession in longitude at J2000.0 as p=5028.7955"+/-0.0003" per Julian century, the mean obliquity at J2000.0 in the inertial sense as (ɛ0)I=84381.40621"+/-0.00001" and in the rotational sense as (ɛ0)R=84381.40955"+/-0.00001", and the dynamical flattening of Earth as Hd=(3.2737804+/-0.0000003)×10-3. Furthermore, we establish a fast way to compute the precession-nutation matrix and provide a best-fit polynomial of an angle to specify the mean Celestial Ephemeris Origin.

  3. Low nutation-rate dampers

    NASA Technical Reports Server (NTRS)

    Tossman, B. E.

    1971-01-01

    Mission requirements plus spacecraft weight and power constraints often reduce the excitation frequency of a nutation damper below 1 cpm. Since attitude stability is determined by damper performance, maximum effectiveness at low rates is demanded. Presented are design considerations that low-frequency dampers require, along with descriptions of two low-frequency systems: the Direct Measurement Explorer 1 and the Small Astronomy Satellite A (SAS-A).

  4. Physiology of Movements in the Stems of Seedling Pisum sativum L. cv Alaska 1

    PubMed Central

    Britz, Steven J.; Galston, Arthur W.

    1983-01-01

    Phototropic response in etiolated pea (Pisum sativum L. cv Alaska) seedlings is poor. However, the curvature induced by unilateral blue light can be hastened and increased in magnitude by a previously administered red light pulse followed by several hours of darkness. Phytochrome is involved in the red light effect. Phototropic response was almost completely inhibited by removal of the apical bud and hook, but it was restored if exogenous indole-3-acetic acid was applied apically to the cut stump. Therefore, the stem contains both the phototropic photoreceptor and response mechanism. Perception of gravity and gravitropic response were also localized in the stem, but gravitropism was scarcely inhibited by decapitation. It was also observed that the kinetics and curvature pattern of gravitropism differed greatly from those of phototropism. Like phototropism, stem nutation required auxin and was promoted by red light. Unlike phototropism, photoenhanced nutational curvature required the apical hook and was propagated as a wave down the stem. Naphthylphthalamic acid inhibited, in order of decreasing effect, nutation, phototropism/gravitropism, and growth. Phototropism, gravitropism, and nutation appear to represent distinct forms of stem movement with fundamental differences in the mechanisms of curvature development. Images Fig. 3 PMID:16662824

  5. Momentum Biased Performance of LAPAN-A3 Satellite for Multispectral Pushbroom Imager Operation

    NASA Astrophysics Data System (ADS)

    Utama, S.; Saifudin, M. A.; Mukhayadi, M.

    2018-05-01

    One of LAPAN-A3 satellite’s missions is for earth observation using multispectral pushbroom imager. This mission needs a stable and accurate attitude to capture any area of interest. To accomplish the mission LAPAN-A3 satellite use momentum biased attitude control. The satellite use magnetic torquers to control the angular momentum vector and a reaction wheel to spin the satellite to remain nadir pointing. When the satellite spinning there are nutation and precession occurred. This paper observes attitude accuracy and stability due to nutation and precession of the satellite’s momentum and the effect to pushbroom imager operation. Nutation observed with 0.28° amplitude and 73 seconds period, and precession observed with 1° amplitude and 92 minutes period. This nutation and precession profile will lead to 2.6° attitude accuracy and maximum movement on ground track 0.055 km/s in along track direction and 0.259 km/s (0.026°/s) in cross track direction. Both of attitude accuracy and movement are outperformed the limitation. However due to satellite movement in orbit there is still blurring effect on the imager.

  6. Analysis of the partially filled viscous ring damper. [application as nutation damper for spinning satellite

    NASA Technical Reports Server (NTRS)

    Alfriend, K. T.

    1973-01-01

    A ring partially filled with a viscous fluid has been analyzed as a nutation damper for a spinning satellite. The fluid has been modelled as a rigid slug of finite length moving in a tube and resisted by a linear viscous force. It is shown that there are two distinct modes of motion, called the spin synchronous mode and the nutation synchronous mode. Time constants for each mode are obtained for both the symmetric and asymmetric satellite. The effects of a stop in the tube and an offset of the ring from the spin axis are also investigated. An analysis of test results is also given including a determination of the effect of gravity on the time constants in the two modes.

  7. Effects of the observed J2 variations on the Earth's precession and nutation

    NASA Astrophysics Data System (ADS)

    Ferrándiz, José M.; Baenas, Tomás; Belda, Santiago

    2016-04-01

    The Earth's oblateness parameter J2 is closely related to the dynamical ellipticity H, which factorizes the main components of the precession and the different nutation terms. In most theoretical approaches to the Earth's rotation, with IAU2000 nutation theory among them, H is assumed to be constant. The precession model IAU2006 supposes H to have a conventional linear variation, based on the J2 time series derived mainly from satellite laser ranging (SLR) data for decades, which gives rise to an additional quadratic term of the precession in longitude and some corrections of the nutation terms. The time evolution of J2 is, however, too complex to be well approximated by a simple linear model. The effect of more general models including periodic terms and closer to the observed time series, although still unable to reproduce a significant part of the signal, has been seldom investigated. In this work we address the problem of deriving the effect of the observed J2 variations without resorting to such simplified models. The Hamiltonian approach to the Earth rotation is extended to allow the McCullagh's term of the potential to depend on a time-varying oblateness. An analytical solution is derived by means of a suitable perturbation method in the case of the time series provided by the Center for Space Research (CSR) of the University of Texas, which results in non-negligible contributions to the precession-nutation angles. The presentation focuses on the main effects on the longitude of the equator; a noticeable non-linear trend is superimposed to the linear main precession term, along with some periodic and decadal variations.

  8. Blood vessels segmentation of hatching eggs based on fully convolutional networks

    NASA Astrophysics Data System (ADS)

    Geng, Lei; Qiu, Ling; Wu, Jun; Xiao, Zhitao

    2018-04-01

    FCN, trained end-to-end, pixels-to-pixels, predict result of each pixel. It has been widely used for semantic segmentation. In order to realize the blood vessels segmentation of hatching eggs, a method based on FCN is proposed in this paper. The training datasets are composed of patches extracted from very few images to augment data. The network combines with lower layer and deconvolution to enables precise segmentation. The proposed method frees from the problem that training deep networks need large scale samples. Experimental results on hatching eggs demonstrate that this method can yield more accurate segmentation outputs than previous researches. It provides a convenient reference for fertility detection subsequently.

  9. The Kinematics of Plant Nutation Reveals a Simple Relation between Curvature and the Orientation of Differential Growth.

    PubMed

    Bastien, Renaud; Meroz, Yasmine

    2016-12-01

    Nutation is an oscillatory movement that plants display during their development. Despite its ubiquity among plants movements, the relation between the observed movement and the underlying biological mechanisms remains unclear. Here we show that the kinematics of the full organ in 3D give a simple picture of plant nutation, where the orientation of the curvature along the main axis of the organ aligns with the direction of maximal differential growth. Within this framework we reexamine the validity of widely used experimental measurements of the apical tip as markers of growth dynamics. We show that though this relation is correct under certain conditions, it does not generally hold, and is not sufficient to uncover the specific role of each mechanism. As an example we re-interpret previously measured experimental observations using our model.

  10. UFCN: a fully convolutional neural network for road extraction in RGB imagery acquired by remote sensing from an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Kestur, Ramesh; Farooq, Shariq; Abdal, Rameen; Mehraj, Emad; Narasipura, Omkar; Mudigere, Meenavathi

    2018-01-01

    Road extraction in imagery acquired by low altitude remote sensing (LARS) carried out using an unmanned aerial vehicle (UAV) is presented. LARS is carried out using a fixed wing UAV with a high spatial resolution vision spectrum (RGB) camera as the payload. Deep learning techniques, particularly fully convolutional network (FCN), are adopted to extract roads by dense semantic segmentation. The proposed model, UFCN (U-shaped FCN) is an FCN architecture, which is comprised of a stack of convolutions followed by corresponding stack of mirrored deconvolutions with the usage of skip connections in between for preserving the local information. The limited dataset (76 images and their ground truths) is subjected to real-time data augmentation during training phase to increase the size effectively. Classification performance is evaluated using precision, recall, accuracy, F1 score, and brier score parameters. The performance is compared with support vector machine (SVM) classifier, a one-dimensional convolutional neural network (1D-CNN) model, and a standard two-dimensional CNN (2D-CNN). The UFCN model outperforms the SVM, 1D-CNN, and 2D-CNN models across all the performance parameters. Further, the prediction time of the proposed UFCN model is comparable with SVM, 1D-CNN, and 2D-CNN models.

  11. Improved Models for Precession and Nutation

    DTIC Science & Technology

    2000-03-01

    in the process of constructing the series. A series due to Shirai and Fukushima (2000) also gives a somewhat comparable t to data, improving on the...IERS 1996 have been e ected recently by Shirai and Fukushima (2000) through re nements of the method and the use of more extensive data, in their...once these series are implemented in the software used for estimation of nutation amplitudes from VLBI data. It is known ( Fukushima , 1991) that general

  12. Influence of electrolytes on growth, phototropism, nutation and surface potential in etiolated cucumber seedlings

    NASA Technical Reports Server (NTRS)

    Spalding, E. P.; Cosgrove, D. J.

    1993-01-01

    A variety of electrolytes (10-30 mol m-3) increased the relative growth rate of etiolated cucumber (Cucumis sativus L. cv. Burpee's Pickler) hypocotyls by 20-50% relative to water-only controls. The nonelectrolyte mannitol inhibited growth by 10%. All salts tested were effective, regardless of chemical composition or valence. Measurements of cell-sap osmolality ruled out an osmotic mechanism for the growth stimulation by electrolytes. This, and the nonspecificity of the response, indicate that an electrical property of the solutions was responsible for their growth-stimulating activity. Measurements of surface electrical potential supported this reasoning. Treatment with electrolytes also enhanced nutation and altered the pattern of phototropic curvature development. A novel analytical method for quantitating these effects on growth was developed. The evidence indicates that electrolytes influence an electrophysiological parameter that is involved in the control of cell expansion and the coordination of growth underlying tropisms and nutations.

  13. Short-period circumnutations found in sunflower hypocotyls in satellite orbit. A reappraisal of data from Spacelab-1

    NASA Technical Reports Server (NTRS)

    Bardal, Tom Kr; Johnsson, Anders; Chapman, David K.; Sager, J. C. (Principal Investigator)

    2003-01-01

    We have further analysed data from an experiment performed in satellite orbit, in Spacelab-1. In micro-gravity the hypocotyls of Helianthus annuus, cv. "Teddy Bear", showed short period circumnutations (periods around 30 minutes) as well as the already reported long period nutations (with an average period of about 115 minutes). We applied various types of signal analysis (Fourier and wavelet analysis) to the data series. The long period circumnutations have a larger amplitude than the short term circumnutations. Both short and long period circumnutations exist in one and the same hypocotyl. (This is in contrast to our ground control experiments, where were found only the long-period nutations.) The period of the nutations changed throughout the experiment. These results are extending the conclusions drawn after the Spacelab experiment (Brown et al. 1990). In particular they emphasize the existence of both short- and long-period circumnutations in micro-gravity.

  14. Feature extraction of micro-motion frequency and the maximum wobble angle in a small range of missile warhead based on micro-Doppler effect

    NASA Astrophysics Data System (ADS)

    Li, M.; Jiang, Y. S.

    2014-11-01

    Micro-Doppler effect is induced by the micro-motion dynamics of the radar target itself or any structure on the target. In this paper, a simplified cone-shaped model for ballistic missile warhead with micro-nutation is established, followed by the theoretical formula of micro-nutation is derived. It is confirmed that the theoretical results are identical to simulation results by using short-time Fourier transform. Then we propose a new method for nutation period extraction via signature maximum energy fitting based on empirical mode decomposition and short-time Fourier transform. The maximum wobble angle is also extracted by distance approximate approach in a small range of wobble angle, which is combined with the maximum likelihood estimation. By the simulation studies, it is shown that these two feature extraction methods are both valid even with low signal-to-noise ratio.

  15. Precession, Nutation and Wobble of the Earth

    NASA Astrophysics Data System (ADS)

    Dehant, V.; Mathews, P. M.

    2015-04-01

    Covering both astronomical and geophysical perspectives, this book describes changes in the Earth's orientation, specifically precession and nutation, and how they are observed and computed in terms of tidal forcing and models of the Earth's interior. Following an introduction to key concepts and elementary geodetic theory, the book describes how precise measurements of the Earth's orientation are made using observations of extra-galactic radio-sources by Very Long Baseline Interferometry techniques. It demonstrates how models are used to accurately pinpoint the location and orientation of the Earth with reference to the stars and how to determine variations in its rotation speed. A theoretical framework is also presented that describes the role played by the structure and properties of the Earth's deep interior. Incorporating suggestions for future developments in nutation theory for the next generation models, this book is ideal for advanced-level students and researche! rs in solid Earth geophysics, planetary science and astronomy.

  16. Nutation and precession control of the High Energy Solar Physics (HESP) satellite

    NASA Technical Reports Server (NTRS)

    Jayaraman, C. P.; Robertson, B. P.

    1993-01-01

    The High Energy Solar Physics (HESP) spacecraft is an intermediate class satellite proposed by NASA to study solar high-energy phenomena during the next cycle of high solar activity in the 1998 to 2005 time frame. The HESP spacecraft is a spinning satellite which points to the sun with stringent pointing requirements. The natural dynamics of a spinning satellite includes an undesirable effect: nutation, which is due to the presence of disturbances and offsets of the spin axis from the angular momentum vector. The proposed Attitude Control System (ACS) attenuates nutation with reaction wheels. Precessing the spacecraft to track the sun in the north-south and east-west directions is accomplished with the use of torques from magnetic torquer bars. In this paper, the basic dynamics of a spinning spacecraft are derived, control algorithms to meet HESP science requirements are discussed and simulation results to demonstrate feasibility of the ACS concept are presented.

  17. Consistency problems associated to the improvement of precession-nutation theories

    NASA Astrophysics Data System (ADS)

    Ferrandiz, J. M.; Escapa, A.; Baenas, T.; Getino, J.; Navarro, J. F.; Belda, S.

    2014-12-01

    The complexity of the modelling of the rotational motion of the Earth in space has produced that no single theory has been adopted to describe it in full. Hence, it is customary using at least a theory for precession and another one for nutation. The classic approach proceeds by deriving some of the fundamentals parameters from the precession theory at hand, like, e.g. the dynamical ellipticity H, and then using that valuesin the nutation theory. The former IAU1976 precession and IAU1980 nutation theories followed that scheme. Along with the improvement of the accuracy of the determination of EOP (Earth orientation parameters), IAU1980 was superseded by IAU2000, based on the application of the MHB2000 (Mathews et al 2002) transfer function to the previous rigid earth analytical theory REN2000 (Souchay et al 1999). The latter was derived while the precession model IAU1976 was still in force therefore it used the corresponding values for some of the fundamental parameters, as the precession rate, associated to the dynamical ellipticity, and the obliquity of the ecliptic at the reference epoch. The new precession model P03 was adopted as IAU2006. That change introduced some inconsistency since P03 used different values for some of the fundamental parameters that MHB2000 inherited from REN2000. Besides, the derivation of the basic earth parameters of MHB2000 itself comprised a fitted variation of the dynamical ellipticity adopted in the background rigid theory. Due to the strict requirements of accuracy of the present and coming times, the magnitude of the inconsistencies originated by this two-fold approach is no longer negligible as earlier. Some corrections have been proposed by Capitaine et al (2005) and Escapa et al (2014) in order to reach a better level of consistency between precession and nutation theories and parameters. In this presentation we revisit the problem taking into account some of the advances in precession theory not accounted for yet, stemming from the non-rigid nature of the Earth. Special attention is paid to the assessment of the level of consistency between the current IAU precession and nutation models and its impact on the adopted reference values. We suggest potential corrections and possibilities to incorporate theoretical advances and improve accuracy while being compliant with IAU resolutions.

  18. New Precession Formulas

    NASA Astrophysics Data System (ADS)

    Fukushima, T.

    2003-08-01

    We adapted J.G. Williams' expression of the precession and nutation by the 3-1-3-1 rotation (Williams 1994) to an arbitrary inertial frame of reference. The new expression of the precession matrix is P = R1(-ɛ ) R3(-ψ ) R1(ϕ) R3(γ ) while that of precession-nutation matrix is NP = R1(-ɛ -Δ ɛ ) R3(-ψ -Δ ψ ) R1(ϕ) R3(γ ). Here γ and ϕ are the new planetary precession angles, ψ and ɛ are the new luni-solar precession angles, and Δ ψ and Δ ɛ are the usual nutations. The modified formulation avoids a singularity caused by finite pole offsets near the epoch. By adopting the latest planetary precession formula determined from DE405 (Harada 2003) and by using a recent theory of the forced nutation of the non-rigid Earth, SF2001 (Shirai and Fukushima 2001), we analysed the celestial pole offsets observed by VLBI for 1979-2000 and compiled by USNO and determined the best-fit polynomials of the new luni-solar precession angles. Then we translated the results into the classic precessional quantities as sin π A sin Π A, sin π A \\cos Π A, π A, Π A, pA, ψ A, ω A, χA, ζ A, zA, and θ A. Also we evaluated the effect of the difference in the ecliptic definition between the inertial and rotational senses. The combination of these formulas and the periodic part of SF2001 serves as a good approximation of the precession-nutation matrix in the ICRF. As a by-product, we determined the mean celestial pole offset at J2000.0 as X0 = -(17.12 +/- 0.01) mas and Y0 = -(5.06 +/- 0.02) mas. Also we estimated the speed of general precession in longitude at J2000.0 as p = (5028.7955 +/- 0.0003)''/Julian century, the mean obliquity at J2000.0 in the rotational sense as ɛ 0 = (84381.40955 +/- 0.00001)'', and the dynamical flattening of the Earth as Hd = (0.0032737804 +/- 0.0000000003). Further, we established a fast way to compute the precession-nutation matrix and provided a best-fit polynomial of s, an angle to specify the mean CEO.

  19. Quantum Spin Gyroscope

    DTIC Science & Technology

    2015-07-15

    performing optically detected CW ESR and on-resonance Rabi nutation of the elec- tronic spins (see figure 5). We observed increased homogeneity (as...different crystal axes. Here the magnetic field applied was ∼ 100G. Right: Rabi nutations 2.3 Sensitivity In order to test the performance of this first...resonant driving, which are strongly dependent on the hyperfine interaction. 5 Fig. 6: 14N Rabi oscillations at B = 450G, B1 ≈ 3.3G in the three NV

  20. High Frequency Variations in Earth Orientation Derived From GNSS Observations

    NASA Astrophysics Data System (ADS)

    Weber, R.; Englich, S.; Snajdrova, K.; Boehm, J.

    2006-12-01

    Current observations gained by the space geodetic techniques, especially VLBI, GPS and SLR, allow for the determination of Earth Orientation Parameters (EOPs - polar motion, UT1/LOD, nutation offsets) with unprecedented accuracy and temporal resolution. This presentation focuses on contributions to the EOP recovery provided by satellite navigation systems (primarily GPS). The IGS (International GNSS Service), for example, currently provides daily polar motion with an accuracy of less than 0.1mas and LOD estimates with an accuracy of a few microseconds. To study more rapid variations in polar motion and LOD we established in a first step a high resolution (hourly resolution) ERP-time series from GPS observation data of the IGS network covering the period from begin of 2005 till March 2006. The calculations were carried out by means of the Bernese GPS Software V5.0 considering observations from a subset of 79 fairly stable stations out of the IGb00 reference frame sites. From these ERP time series the amplitudes of the major diurnal and semidiurnal variations caused by ocean tides are estimated. After correcting the series for ocean tides the remaining geodetic observed excitation is compared with variations of atmospheric excitation (AAM). To study the sensitivity of the estimates with respect to the applied mapping function we applied both the widely used NMF (Niell Mapping Function) and the VMF1 (Vienna Mapping Function 1). In addition, based on computations covering two months in 2005, the potential improvement due to the use of additional GLONASS data will be discussed. Finally, satellite techniques are also able to provide nutation offset rates with respect to the most recent nutation model. Based on GPS observations from 2005 we established nutation rate time series and subsequently derived the amplitudes of several nutation waves with periods less than 30 days. The results are compared to VLBI estimates processed by means of the OCCAM 6.1 software.

  1. Building Extraction from Remote Sensing Data Using Fully Convolutional Networks

    NASA Astrophysics Data System (ADS)

    Bittner, K.; Cui, S.; Reinartz, P.

    2017-05-01

    Building detection and footprint extraction are highly demanded for many remote sensing applications. Though most previous works have shown promising results, the automatic extraction of building footprints still remains a nontrivial topic, especially in complex urban areas. Recently developed extensions of the CNN framework made it possible to perform dense pixel-wise classification of input images. Based on these abilities we propose a methodology, which automatically generates a full resolution binary building mask out of a Digital Surface Model (DSM) using a Fully Convolution Network (FCN) architecture. The advantage of using the depth information is that it provides geometrical silhouettes and allows a better separation of buildings from background as well as through its invariance to illumination and color variations. The proposed framework has mainly two steps. Firstly, the FCN is trained on a large set of patches consisting of normalized DSM (nDSM) as inputs and available ground truth building mask as target outputs. Secondly, the generated predictions from FCN are viewed as unary terms for a Fully connected Conditional Random Fields (FCRF), which enables us to create a final binary building mask. A series of experiments demonstrate that our methodology is able to extract accurate building footprints which are close to the buildings original shapes to a high degree. The quantitative and qualitative analysis show the significant improvements of the results in contrast to the multy-layer fully connected network from our previous work.

  2. Accurate ab Initio Quartic Force Fields, Vibrational Frequencies, and Heats of Formation for FCN, FNC, ClCN, and ClNC

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Martin, Jan M. L.; Dateo, Christopher E.; Taylor, Peter R.

    1995-01-01

    The XCN and XNC (X = F, Cl) isomers have been investigated using the CCSD(T) method in conjunction with correlation consistent basis sets. Equilibrium geometries, harmonic frequencies, anharmonic constants, fundamental frequencies, and heats of formation have been evaluated. Agreement with experiment for the fundamental frequencies is very good, even for nu(sub 2), for CICN, which is subject to a strong Fermi resonance with 2nu(sub 3). It is also shown that a second-order perturbation theory approach to solving the nuclear Schroedinger equation gives results in excellent agreement with essentially exact variational calculations. This is true even for nu(sub 2) of ClCN, provided that near-singular terms are eliminated from the perturbation theory formulas and the appropriate Fermi interaction energy matrix is then diagonalized. A band at 615/cm, tentatively assigned as the Cl-N stretch in ClNC in matrix isolation experiments, is shown not to be due to ClNC. Accurate atomization energies are determined and are used to evaluate accurate heats of formation (3.1 +/- 1.5, 33.2 +/- 1.5, 72.6 +/- 1.5, and 75.9 +/- 1.5 kcal/mol for FCN, ClCN, FNC, and ClNC, respectively). It is expected that the theoretical heats of formation for FCN, FNC, and ClNC are the most accurate available.

  3. Rigid-Earth Nutation Models

    DTIC Science & Technology

    2000-03-01

    oscillations of the ecliptic , and the planetary tilt-e ect. The agreement of the new coecients of Souchay & Kinoshita (1996, 1997) with those of Hartmann & So... obliquity are shown in Tables 1 and 2. Table 1. Principal terms for quasidiurnal nutations in longitude and obliquity for the gure axis. The unit is as...Argument Period Longitude ( ) Obliquity (") lM lS F D sin cos sin cos 1 0 0 1 0 1 0.96215 -38.2313 -4.6980 -1.8567 15.1063 1 0 0 -1 0 -1

  4. CONEDEP: COnvolutional Neural network based Earthquake DEtection and Phase Picking

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Huang, Y.; Yue, H.; Zhou, S.; An, S.; Yun, N.

    2017-12-01

    We developed an automatic local earthquake detection and phase picking algorithm based on Fully Convolutional Neural network (FCN). The FCN algorithm detects and segments certain features (phases) in 3 component seismograms to realize efficient picking. We use STA/LTA algorithm and template matching algorithm to construct the training set from seismograms recorded 1 month before and after the Wenchuan earthquake. Precise P and S phases are identified and labeled to construct the training set. Noise data are produced by combining back-ground noise and artificial synthetic noise to form the equivalent scale of noise set as the signal set. Training is performed on GPUs to achieve efficient convergence. Our algorithm has significantly improved performance in terms of the detection rate and precision in comparison with STA/LTA and template matching algorithms.

  5. Shape Dependence of Holographic Rényi Entropy in Conformal Field Theories

    NASA Astrophysics Data System (ADS)

    Dong, Xi

    2016-06-01

    We develop a framework for studying the well-known universal term in the Rényi entropy for an arbitrary entangling region in four-dimensional conformal field theories that are holographically dual to gravitational theories. The shape dependence of the Rényi entropy Sn is described by two coefficients: fb(n ) for traceless extrinsic curvature deformations and fc(n ) for Weyl tensor deformations. We provide the first calculation of the coefficient fb(n ) in interacting theories by relating it to the stress tensor one-point function in a deformed hyperboloid background. The latter is then determined by a straightforward holographic calculation. Our results show that a previous conjecture fb(n )=fc(n ), motivated by surprising evidence from a variety of free field theories and studies of conical defects, fails holographically.

  6. Residual nutational activity of the sunflower hypocotyl in simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Chapman, D. K.; Brown, A. H.

    1979-01-01

    The gravity dependence of circumnutational activity in the sunflower hypocotyl is investigated under conditions of simulated weightlessness. Seedling cultures of the sunflower Helianthus annuus were placed four days after planting in clinostats rotating at a rate of 1.0 rpm in the horizontal or somersaulting configurations, and plant movements around their growth axes were recorded in infrared light by a time-lapse closed-circuit video system. The amplitudes and mean cycle durations of the plant nutations in the horizontal and tumbling clinostats are observed to be 20% and 72%, and 32% and 74%, respectively, of the values observed in stationary plants; extrapolations to a state of zero g by the imposition of small centripetal forces on horizontally clinostated plants also indicate some nutational motion in the absence of gravity. It is concluded that the results are incompatible with the model of Israelsson and Johnsson (1967) of geotropic response with overshoot for sunflower circumnutation; however, results of the Spacelab 1 mission experiment are needed to unambiguously define the role of gravitation.

  7. Effects of individual strengthening exercises for the stabilization muscles on the nutation torque of the sacroiliac joint in a sedentary worker with nonspecific sacroiliac joint pain.

    PubMed

    Yoo, Won-Gyu

    2015-01-01

    [Purpose] We investigated the effects of individual strengthening exercises for the stabilization muscles on the nutation torque of the sacroiliac joint in a sedentary worker with nonspecific sacroiliac joint pain. [Subject] A 36-year-old female complained of pain in the sacroiliac joints. [Methods] The subject performed individual strengthening exercises for the stabilization muscles for nutation torque of the sacroiliac joint for 3 weeks. Pain-provocation tests and visual analog scale (VAS) scores were evaluated before and after the exercises. [Results] After performing the individual strengthening exercises for the erector spinae, rectus abdominis, and biceps femoris muscles for 3 weeks, the subject displayed no pain in the pain provocation tests, and the VAS score was 2/10. [Conclusion] The individual strengthening exercises for the stabilization muscles of the sacroiliac joint performed in the present study appear to be effective for sedentary workers with sacroiliac joint pain.

  8. Time Frequency Analysis of Spacecraft Propellant Tank Spinning Slosh

    NASA Technical Reports Server (NTRS)

    Green, Steven T.; Burkey, Russell C.; Sudermann, James

    2010-01-01

    Many spacecraft are designed to spin about an axis along the flight path as a means of stabilizing the attitude of the spacecraft via gyroscopic stiffness. Because of the assembly requirements of the spacecraft and the launch vehicle, these spacecraft often spin about an axis corresponding to a minor moment of inertia. In such a case, any perturbation of the spin axis will cause sloshing motions in the liquid propellant tanks that will eventually dissipate enough kinetic energy to cause the spin axis nutation (wobble) to grow further. This spinning slosh and resultant nutation growth is a primary design problem of spinning spacecraft and one that is not easily solved by analysis or simulation only. Testing remains the surest way to address spacecraft nutation growth. This paper describes a test method and data analysis technique that reveal the resonant frequency and damping behavior of liquid motions in a spinning tank. Slosh resonant frequency and damping characteristics are necessary inputs to any accurate numerical dynamic simulation of the spacecraft.

  9. Schematic of Mars Interior

    NASA Image and Video Library

    1997-10-14

    The interior of Mars is simply modeled as a core and mantle with a thin crust, similar to Earth. Mars' size and total mass have been determined by previous missions. Given four parameters, the core size and mass, and mantle size and mass can be determined. The combination of Pathfinder Doppler data with earlier data from the Viking landers has determined a third parameter, the moment of inertia, through measurement of Mars' precession rate. A fourth measurement is needed to complete the interior model. This may be achieved through future Doppler tracking of Pathfinder, since the presence of a fluid core may be detectable through its effect on Mars' nutation. The determination of the moment of inertia is a significant constraint on possible models for Mars' interior. If the core is as dense as possible (i.e. completely iron) and the mantle is similar to Earth's (or similar to the SNC meteorites thought to originate on Mars) then the minimum core radius is about 1300 km. If the core is made of less-dense material (i.e. a mixture of iron and sulfur) then the core radius is probably no more than 2000 km. Sojourner spent 83 days of a planned seven-day mission exploring the Martian terrain, acquiring images, and taking chemical, atmospheric and other measurements. The final data transmission received from Pathfinder was at 10:23 UTC on September 27, 1997. Although mission managers tried to restore full communications during the following five months, the successful mission was terminated on March 10, 1998. http://photojournal.jpl.nasa.gov/catalog/PIA00974

  10. Obliquity, precession rate, and nutation coefficients for a set of 100 asteroids

    NASA Astrophysics Data System (ADS)

    Lhotka, C.; Souchay, J.; Shahsavari, A.

    2013-08-01

    Context. Thanks to various space missions and the progress of ground-based observational techniques, the knowledge of asteroids has considerably increased in the recent years. Aims: Due to this increasing database that accompanies this evolution, we compute for a set of 100 asteroids their rotational parameters: the moments of inertia along the principal axes of the object, the obliquity of the axis of rotation with respect to the orbital plane, the precession rates, and the nutation coefficients. Methods: We select 100 asteroids for which the parameters for the study are well-known from observations or space missions. For each asteroid, we determine the moments of inertia, assuming an ellipsoidal shape. We calculate their obliquity from their orbit (instead of the ecliptic) and the orientation of the spin-pole. Finally, we calculate the precession rates and the largest nutation components. The number of asteroids concerned leads to some statistical studies of the output. Results: We provide a table of rotational parameters for our set of asteroids. The table includes the obliquity, their axes ratio, their dynamical ellipticity Hd, and the scaling factor K. We compute the precession rate ψ˙ and the leading nutation coefficients Δψ and Δɛ. We observe similar characteristics, as observed by previous authors that is, a significantly larger number of asteroids rotates in the prograde mode (≈ 60%) than in the retrograde one with a bimodal distribution. In particular, there is a deficiency of objects with a polar axis close to the orbit. The precession rates have a mean absolute value of 18″/y, and the leading nutation coefficients have an average absolute amplitude of 5.7″ for Δψ and 5.2″ for Δɛ. At last, we identify and characterize some cases with large precession rates, as seen in 25143 Itokawa, with has a precession rate of about - 475''/y. Tables 1 and 2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/556/A8

  11. The motion and stability of a dual spin satellite during the momentum wheel spin-up maneuver

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; Sen, S.

    1972-01-01

    The stability of a dual-spin satellite system during the momentum wheel spin-up maneuver is treated both analytically and numerically. The dual-spin system consists of: a slowly rotating or despun main-body; a momentum wheel (or rotor) which is accelerated by a torque motor to change its initial angular velocity relative to the main part to some high terminal value; and a nutation damper. A closed form solution for the case of a symmetrical satellite indicates that when the nutation damper is physically constrained for movement (i.e. by use of a mechanical clamp) the magnitude of the vector sum of the transverse angular velocity components remains bounded during the wheel spin-up under the influence of a constant motor torque. The analysis is extended to consider such effects as: the motion of the nutation damper during spin-up; a non-uniform motor torque; and the effect of a non-symmetrical mass distribution in the main spacecraft and the rotor. An approximate analytical solution using perturbation techniques is developed for the case of a slightly asymmetric main spacecraft.

  12. User's Manual for Aerofcn: a FORTRAN Program to Compute Aerodynamic Parameters

    NASA Technical Reports Server (NTRS)

    Conley, Joseph L.

    1992-01-01

    The computer program AeroFcn is discussed. AeroFcn is a utility program that computes the following aerodynamic parameters: geopotential altitude, Mach number, true velocity, dynamic pressure, calibrated airspeed, equivalent airspeed, impact pressure, total pressure, total temperature, Reynolds number, speed of sound, static density, static pressure, static temperature, coefficient of dynamic viscosity, kinematic viscosity, geometric altitude, and specific energy for a standard- or a modified standard-day atmosphere using compressible flow and normal shock relations. Any two parameters that define a unique flight condition are selected, and their values are entered interactively. The remaining parameters are computed, and the solutions are stored in an output file. Multiple cases can be run, and the multiple case solutions can be stored in another output file for plotting. Parameter units, the output format, and primary constants in the atmospheric and aerodynamic equations can also be changed.

  13. Towards dense volumetric pancreas segmentation in CT using 3D fully convolutional networks

    NASA Astrophysics Data System (ADS)

    Roth, Holger; Oda, Masahiro; Shimizu, Natsuki; Oda, Hirohisa; Hayashi, Yuichiro; Kitasaka, Takayuki; Fujiwara, Michitaka; Misawa, Kazunari; Mori, Kensaku

    2018-03-01

    Pancreas segmentation in computed tomography imaging has been historically difficult for automated methods because of the large shape and size variations between patients. In this work, we describe a custom-build 3D fully convolutional network (FCN) that can process a 3D image including the whole pancreas and produce an automatic segmentation. We investigate two variations of the 3D FCN architecture; one with concatenation and one with summation skip connections to the decoder part of the network. We evaluate our methods on a dataset from a clinical trial with gastric cancer patients, including 147 contrast enhanced abdominal CT scans acquired in the portal venous phase. Using the summation architecture, we achieve an average Dice score of 89.7 +/- 3.8 (range [79.8, 94.8])% in testing, achieving the new state-of-the-art performance in pancreas segmentation on this dataset.

  14. Deep Learning for ECG Classification

    NASA Astrophysics Data System (ADS)

    Pyakillya, B.; Kazachenko, N.; Mikhailovsky, N.

    2017-10-01

    The importance of ECG classification is very high now due to many current medical applications where this problem can be stated. Currently, there are many machine learning (ML) solutions which can be used for analyzing and classifying ECG data. However, the main disadvantages of these ML results is use of heuristic hand-crafted or engineered features with shallow feature learning architectures. The problem relies in the possibility not to find most appropriate features which will give high classification accuracy in this ECG problem. One of the proposing solution is to use deep learning architectures where first layers of convolutional neurons behave as feature extractors and in the end some fully-connected (FCN) layers are used for making final decision about ECG classes. In this work the deep learning architecture with 1D convolutional layers and FCN layers for ECG classification is presented and some classification results are showed.

  15. Breast mass detection in mammography and tomosynthesis via fully convolutional network-based heatmap regression

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Cain, Elizabeth Hope; Saha, Ashirbani; Zhu, Zhe; Mazurowski, Maciej A.

    2018-02-01

    Breast mass detection in mammography and digital breast tomosynthesis (DBT) is an essential step in computerized breast cancer analysis. Deep learning-based methods incorporate feature extraction and model learning into a unified framework and have achieved impressive performance in various medical applications (e.g., disease diagnosis, tumor detection, and landmark detection). However, these methods require large-scale accurately annotated data. Unfortunately, it is challenging to get precise annotations of breast masses. To address this issue, we propose a fully convolutional network (FCN) based heatmap regression method for breast mass detection, using only weakly annotated mass regions in mammography images. Specifically, we first generate heat maps of masses based on human-annotated rough regions for breast masses. We then develop an FCN model for end-to-end heatmap regression with an F-score loss function, where the mammography images are regarded as the input and heatmaps for breast masses are used as the output. Finally, the probability map of mass locations can be estimated with the trained model. Experimental results on a mammography dataset with 439 subjects demonstrate the effectiveness of our method. Furthermore, we evaluate whether we can use mammography data to improve detection models for DBT, since mammography shares similar structure with tomosynthesis. We propose a transfer learning strategy by fine-tuning the learned FCN model from mammography images. We test this approach on a small tomosynthesis dataset with only 40 subjects, and we show an improvement in the detection performance as compared to training the model from scratch.

  16. 47 CFR 1.10014 - What happens after officially filing my application?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ARC-xxxxx Foreign Carrier Affiliation Notification FCN-xxxxx International High Frequency IHF-xxxxx... PN released International High Frequency IHF-xxxxx International Public Fixed IPF-xxxxx Recognized... Foreign Carrier Affiliation Notification. International High Frequency: Construction Permits,Licenses...

  17. 47 CFR 1.10014 - What happens after officially filing my application?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ARC-xxxxx Foreign Carrier Affiliation Notification FCN-xxxxx International High Frequency IHF-xxxxx... PN released International High Frequency IHF-xxxxx International Public Fixed IPF-xxxxx Recognized... Foreign Carrier Affiliation Notification. International High Frequency: Construction Permits,Licenses...

  18. The effect of lunisolar tidal acceleration on stem elongation growth, nutations and leaf movements in peppermint (Mentha × piperita L.).

    PubMed

    Zajączkowska, U; Barlow, P W

    2017-07-01

    Orbital movement of the Moon generates a system of gravitational fields that periodically alter the gravitational force on Earth. This lunar tidal acceleration (Etide) is known to act as an external environmental factor affecting many growth and developmental phenomena in plants. Our study focused on the lunar tidal influence on stem elongation growth, nutations and leaf movements of peppermint. Plants were continuously recorded with time-lapse photography under constant illumination as well in constant illumination following 5 days of alternating dark-light cycles. Time courses of shoot movements were correlated with contemporaneous time courses of the Etide estimates. Optical microscopy and SEM were used in anatomical studies. All plant shoot movements were synchronised with changes in the lunisolar acceleration. Using a periodogram, wavelet analysis and local correlation index, a convergence was found between the rhythms of lunisolar acceleration and the rhythms of shoot growth. Also observed were cyclical changes in the direction of rotation of stem apices when gravitational dynamics were at their greatest. After contrasting dark-light cycle experiments, nutational rhythms converged to an identical phase relationship with the Etide and almost immediately their renewed movements commenced. Amplitudes of leaf movements decreased during leaf growth up to the stage when the leaf was fully developed; the periodicity of leaf movements correlated with the Etide rhythms. For the fist time, it was documented that lunisolar acceleration is an independent rhythmic environmental signal capable of influencing the dynamics of plant stem elongation. This phenomenon is synchronised with the known effects of Etide on nutations and leaf movements. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  19. The effect of the Earth's oblateness on the Moon's physical libration in latitude

    NASA Astrophysics Data System (ADS)

    Kondratyev, B. P.

    2013-05-01

    The Moon's physical libration in latitude generated by gravitational forces caused by the Earth's oblateness has been examined by a vector analytical method. Libration oscillations are described by a close set of five linear inhomogeneous differential equations, the dispersion equation has five roots, one of which is zero. A complete solution is obtained. It is revealed that the Earth's oblateness: a) has little effect on the instantaneous axis of Moon's rotation, but causes an oscillatory rotation of the body of the Moon with an amplitude of 0.072″ and pulsation period of 16.88 Julian years; b) causes small nutations of poles of the orbit and of the ecliptic along tight spirals, which occupy a disk with a cut in a center and with radius of 0.072″. Perturbations caused by the spherical Earth generate: a) physical librations in latitude with an amplitude of 34.275″; b) nutational motion for centers of small spiral nutations of orbit (ecliptic) pole over ellipses with semi-major axes of 113.850″ (85.158″) and the first pole rotates round the second one along a circle with radius of 28.691″; c) nutation of the Moon's celestial pole over an ellipse with a semi-major axis of 45.04″ and with an axes ratio of about 0.004 with a period of T = 27.212 days. The principal ellipse's axis is directed tangentially with respect to the precession circumference, along which the celestial pole moves nonuniformly nearly in one dimension. In contrast to the accepted concept, the latitude does not change while the Moon's poles of rotation move. The dynamical reason for the inclination of the Moon's mean equator with respect to the ecliptic is oblateness of the body of the Moon.

  20. Intraplate deformation, stress in the lithosphere and the driving mechanism for plate motions

    NASA Technical Reports Server (NTRS)

    Hager, Bradford H.

    1988-01-01

    During this period work was carried out on three fronts relevant to the understanding of intraplate deformation, stress in the lithosphere, and the driving mechanisms for plate motions: (1) observational constraints, using GPS geodesy on the deformation in the region of the boundry between the Pacific and North American plates in central and southern California; (2) numerical modeling of the effects of temperature dependent lithospheric viscosity on the stress and strain history of extensional regimes; and (3) improvement of estimates of mantle viscosity variation, the long-wave-length density variations in the mantle, and the topography of the core-mantel boundary from modeling of geoid anomalies, nutation, and changes in length of day. These projects are described in more detail, followed by a discussion of meetings attended and a list of abstracts and papers submitted and/or published.

  1. Observation model and parameter partials for the JPL VLBI parameter estimation software MODEST/1991

    NASA Technical Reports Server (NTRS)

    Sovers, O. J.

    1991-01-01

    A revision is presented of MASTERFIT-1987, which it supersedes. Changes during 1988 to 1991 included introduction of the octupole component of solid Earth tides, the NUVEL tectonic motion model, partial derivatives for the precession constant and source position rates, the option to correct for source structure, a refined model for antenna offsets, modeling the unique antenna at Richmond, FL, improved nutation series due to Zhu, Groten, and Reigber, and reintroduction of the old (Woolard) nutation series for simulation purposes. Text describing the relativistic transformations and gravitational contributions to the delay model was also revised in order to reflect the computer code more faithfully.

  2. High precision active nutation control for a flexible momentum biased spacecraft

    NASA Technical Reports Server (NTRS)

    Laskin, R. A.; Kopf, E. H.

    1984-01-01

    The controller design for the Solar Dynamics Observatory (SDO) is presented. SDO is a momentum biased spacecraft with three flexible appendages. Its primary scientific instrument, the solar oscillations imager (SOI), is rigidly attached to the spacecraft bus and has arc-second pointing requirements. Meeting these requirements necessitates the use of an active nutation controller (ANC) which is here mechanized with a small reaction wheel oriented along a bus transverse axis. The ANC does its job by orchestrating the transfer of angular momentum out of the bus transverse axes and into the momentum wheel. A simulation study verifies that the controller provides quick, stable, and accurate response.

  3. ACOSS Eleven (Active Control of Space Structures). Volume 2.

    DTIC Science & Technology

    1983-07-01

    sin (D-M) Note that D - p30. I - p28, M - p25. The moon also causes nutation of the solar longitude, A, and obliquity of the ecliptic , At. As mentioned...Compute aberration - p21 -. Ax, p29 -A 4 -20’.47 ° (371 R 300 " STEP 5(c) Compute mean obliquity - p43 - r 4 1 = - 23452294 - 0 � p23 - 1...is S sin(a/+bM +cF+dD +ell) (45) for nutation in longitude, and S cos(a/+ bM + cF + dD + efl) (46) for obliquity , where F - L - fl. The algorithm as

  4. Crustal dynamics project data analysis, 1991: VLBI geodetic results, 1979 - 1990

    NASA Technical Reports Server (NTRS)

    Ma, C.; Ryan, J. W.; Caprette, D. S.

    1992-01-01

    The Goddard VLBI group reports the results of analyzing 1412 Mark II data sets acquired from fixed and mobile observing sites through the end of 1990 and available to the Crustal Dynamics Project. Three large solutions were used to obtain Earth rotation parameters, nutation offsets, global source positions, site velocities, and baseline evolution. Site positions are tabulated on a yearly basis from 1979 through 1992. Site velocities are presented in both geocentric Cartesian coordinates and topocentric coordinates. Baseline evolution is plotted for 175 baselines. Rates are computed for earth rotation and nutation parameters. Included are 104 sources, 88 fixed stations and mobile sites, and 688 baselines.

  5. Segmentation of left ventricle myocardium in porcine cardiac cine MR images using a hybrid of fully convolutional neural networks and convolutional LSTM

    NASA Astrophysics Data System (ADS)

    Zhang, Dongqing; Icke, Ilknur; Dogdas, Belma; Parimal, Sarayu; Sampath, Smita; Forbes, Joseph; Bagchi, Ansuman; Chin, Chih-Liang; Chen, Antong

    2018-03-01

    In the development of treatments for cardiovascular diseases, short axis cardiac cine MRI is important for the assessment of various structural and functional properties of the heart. In short axis cardiac cine MRI, Cardiac properties including the ventricle dimensions, stroke volume, and ejection fraction can be extracted based on accurate segmentation of the left ventricle (LV) myocardium. One of the most advanced segmentation methods is based on fully convolutional neural networks (FCN) and can be successfully used to do segmentation in cardiac cine MRI slices. However, the temporal dependency between slices acquired at neighboring time points is not used. Here, based on our previously proposed FCN structure, we proposed a new algorithm to segment LV myocardium in porcine short axis cardiac cine MRI by incorporating convolutional long short-term memory (Conv-LSTM) to leverage the temporal dependency. In this approach, instead of processing each slice independently in a conventional CNN-based approach, the Conv-LSTM architecture captures the dynamics of cardiac motion over time. In a leave-one-out experiment on 8 porcine specimens (3,600 slices), the proposed approach was shown to be promising by achieving average mean Dice similarity coefficient (DSC) of 0.84, Hausdorff distance (HD) of 6.35 mm, and average perpendicular distance (APD) of 1.09 mm when compared with manual segmentations, which improved the performance of our previous FCN-based approach (average mean DSC=0.84, HD=6.78 mm, and APD=1.11 mm). Qualitatively, our model showed robustness against low image quality and complications in the surrounding anatomy due to its ability to capture the dynamics of cardiac motion.

  6. Executive Dysfunction in Obsessive-Compulsive Disorder and Anterior Cingulate-Based Resting State Functional Connectivity

    PubMed Central

    Yun, Je-Yeon; Jang, Joon Hwan; Jung, Wi Hoon; Shin, Na Young; Kim, Sung Nyun; Hwang, Jae Yeon

    2017-01-01

    Objective Executive dysfunction might be an important determinant for response to pharmacotherapy in obsessive-compulsive disorder (OCD), and could be sustained independently of symptom relief. The anterior cingulate cortex (ACC) has been indicated as a potential neural correlate of executive functioning in OCD. The present study examined the brain-executive function relationships in OCD from the ACC-based resting state functional connectivity networks (rs-FCNs), which reflect information processing mechanisms during task performance. Methods For a total of 58 subjects [OCD, n=24; healthy controls (HCs), n=34], four subdomains of executive functioning were measured using the Rey-Osterrieth Complex Figure Test (RCFT), the Stroop Color-Word Test (SCWT), the Wisconsin Card Sorting Test (WCST), and the Trail Making Test part B (TMT-B). To probe for differential patterns of the brain-cognition relationship in OCD compared to HC, the ACC-centered rs-FCN were calculated using five seed regions systemically placed throughout the ACC. Results Significant differences between the OCD group and the HCs with respect to the WCST perseverative errors, SCWT interference scores, and TMT-B reaction times (p<0.05) were observed. Moreover, significant interactions between diagnosis×dorsal ACC [S3]-based rs-FCN strength in the right dorsolateral prefrontal cortex for RCFT organization summary scores as well as between diagnosis×perigenual ACC [S7]-based rs-FCN strength in the left frontal eye field for SCWT color-word interference scores were unveiled. Conclusion These network-based neural foundations for executive dysfunction in OCD could become a potential target of future treatment, which could improve global domains of functioning broader than symptomatic relief. PMID:28539952

  7. Wavelet-enhanced convolutional neural network: a new idea in a deep learning paradigm.

    PubMed

    Savareh, Behrouz Alizadeh; Emami, Hassan; Hajiabadi, Mohamadreza; Azimi, Seyed Majid; Ghafoori, Mahyar

    2018-05-29

    Manual brain tumor segmentation is a challenging task that requires the use of machine learning techniques. One of the machine learning techniques that has been given much attention is the convolutional neural network (CNN). The performance of the CNN can be enhanced by combining other data analysis tools such as wavelet transform. In this study, one of the famous implementations of CNN, a fully convolutional network (FCN), was used in brain tumor segmentation and its architecture was enhanced by wavelet transform. In this combination, a wavelet transform was used as a complementary and enhancing tool for CNN in brain tumor segmentation. Comparing the performance of basic FCN architecture against the wavelet-enhanced form revealed a remarkable superiority of enhanced architecture in brain tumor segmentation tasks. Using mathematical functions and enhancing tools such as wavelet transform and other mathematical functions can improve the performance of CNN in any image processing task such as segmentation and classification.

  8. A top-down manner-based DCNN architecture for semantic image segmentation.

    PubMed

    Qiao, Kai; Chen, Jian; Wang, Linyuan; Zeng, Lei; Yan, Bin

    2017-01-01

    Given their powerful feature representation for recognition, deep convolutional neural networks (DCNNs) have been driving rapid advances in high-level computer vision tasks. However, their performance in semantic image segmentation is still not satisfactory. Based on the analysis of visual mechanism, we conclude that DCNNs in a bottom-up manner are not enough, because semantic image segmentation task requires not only recognition but also visual attention capability. In the study, superpixels containing visual attention information are introduced in a top-down manner, and an extensible architecture is proposed to improve the segmentation results of current DCNN-based methods. We employ the current state-of-the-art fully convolutional network (FCN) and FCN with conditional random field (DeepLab-CRF) as baselines to validate our architecture. Experimental results of the PASCAL VOC segmentation task qualitatively show that coarse edges and error segmentation results are well improved. We also quantitatively obtain about 2%-3% intersection over union (IOU) accuracy improvement on the PASCAL VOC 2011 and 2012 test sets.

  9. Earth Rotation Dynamics: Review and Prospects

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.

    2004-01-01

    Modem space geodetic measurement of Earth rotation variations, particularly by means of the VLBI technique, has over the years allowed studies of Earth rotation dynamics to advance in ever-increasing precision, accuracy, and temporal resolution. A review will be presented on our understanding of the geophysical and climatic causes, or "excitations", for length-of-day change, polar motion, and nutations. These excitations sources come from mass transports that constantly take place in the Earth system comprised of the atmosphere, hydrosphere, cryosphere, lithosphere, mantle, and the cores. In this sense, together with other space geodetic measurements of time-variable gravity and geocenter motion, Earth rotation variations become a remote-sensing tool for the integral of all mass transports, providing valuable information about the latter on a wide range of spatial and temporal scales. Future prospects with respect to geophysical studies with even higher accuracy and resolution will be discussed.

  10. Estimation of Geodetic and Geodynamical Parameters with VieVS

    NASA Technical Reports Server (NTRS)

    Spicakova, Hana; Bohm, Johannes; Bohm, Sigrid; Nilsson, tobias; Pany, Andrea; Plank, Lucia; Teke, Kamil; Schuh, Harald

    2010-01-01

    Since 2008 the VLBI group at the Institute of Geodesy and Geophysics at TU Vienna has focused on the development of a new VLBI data analysis software called VieVS (Vienna VLBI Software). One part of the program, currently under development, is a unit for parameter estimation in so-called global solutions, where the connection of the single sessions is done by stacking at the normal equation level. We can determine time independent geodynamical parameters such as Love and Shida numbers of the solid Earth tides. Apart from the estimation of the constant nominal values of Love and Shida numbers for the second degree of the tidal potential, it is possible to determine frequency dependent values in the diurnal band together with the resonance frequency of Free Core Nutation. In this paper we show first results obtained from the 24-hour IVS R1 and R4 sessions.

  11. Earth Rotational Variations Excited by Geophysical Fluids

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.

    2004-01-01

    Modern space geodetic measurement of Earth rotation variations, particularly by means of the VLBI technique, has over the years allowed studies of Earth rotation dynamics to advance in ever-increasing precision, accuracy, and temporal resolution. A review will be presented on our understanding of the geophysical and climatic causes, or "excitations". for length-of-day change, polar motion, and nutations. These excitations sources come from mass transports that constantly take place in the Earth system comprised of the atmosphere, hydrosphere, cryosphere, lithosphere, mantle, and the cores. In this sense, together with other space geodetic measurements of time-variable gravity and geocenter motion, Earth rotation variations become a remote-sensing tool for the integral of all mass transports, providing valuable information about the latter on a wide range of spatial and temporal scales. Future prospects with respect to geophysical studies with even higher accuracy and resolution will be discussed.

  12. Mass center estimation of a drag-free satellite

    NASA Technical Reports Server (NTRS)

    Sanz Fernandez De Cordova, S.; Debra, D. B.

    1975-01-01

    The mass center location of a spinning drag-free satellite can be estimated because there is control required to accelerate the mass center along the axis of spin as long as there is some nutation in the spinning motion. Linear and nonlinear models are compared and observability discussed. Online estimation fails when nutation is damped so an offline mechanization is proposed. A new sensor has been designed to permit greater relative motion than was possible on the drag-free satellite flown in 1972 (JH-1). Experimental laboratory results using a spinning vehicle with the new sensor mounted 30 cm from a spherical air bearing support are presented which confirm earlier simulation results.

  13. Selective Injection of Magnetization by Slow Chemical Exchange in NMR

    NASA Astrophysics Data System (ADS)

    Boulat, Benoit; Epstein, David M.; Rance, Mark

    1999-06-01

    In a system in slow dynamic equilibrium two NMR methods are shown to be suitable for injecting magnetization from one resonance to another by means of slow chemical exchange. The combined outputs of the methods may be employed to measure the value of the off-rate constant κoff in the complex. The methods are implemented experimentally using the complex of molecules composed of the enzyme Esherichia coli dihydrofolate reductase (DHFR) and the ligand folate. In an equilibrium solution with DHFR, folate is known to undergo chemical exchange between a free state and a bound state. The modified synchronous nutation method is applied to a spin of the folate molecule in the free and bound states; magnetization transfer occurs between the two sites due to the underlying exchange process. As a preliminary step for the application of the synchronous nutation method, a new one-dimensional 1H NMR technique is proposed which facilitates the assignment of the resonance of a spin in the bound state, provided the resonance of its exchange partner in the free state is known. This experiment is also used to obtain quantitative estimates of the transverse relaxation rate constant of the bound resonance. The numerical procedure necessary to analyze the experimental results of the synchronous nutation experiment is presented.

  14. Prospects of using a permanent magnetic end effector to despin and detumble an uncooperative target

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoguang; Lu, Yong; Zhou, Yu; Yin, Yuanhao

    2018-04-01

    Space debris, such as defunct satellites and upper stages of rockets, becomes an uncooperative target after losing its attitude control and communication ability. In addition, tumbling motion can occur due to environmental perturbations and residual angular momentum prior to the object's end-of-mission. To minimize the collision risk during docking and capturing of the tumbling target, a non-contact method based on the eddy current effect is put forward to transmit the control torque to the tumbling target. The main idea is to induce a controllable torque on the conducting surface of the tumbling target using a rotational magnetic field generated by a Halbach rotor. The radial and axial Halbach rotors are used to damp the spinning and nutation motions of the target, respectively. The normal and tangential force are evaluated concerning the relative pose between the chaser and the target. A simplified dynamic model of the nutation damping and despinning processes is developed and the influences of the asymmetrical principal moments of inertia and transverse angular velocity are discussed. The numerical simulation results show that the designed Halbach rotor stabilized the target attitude within an acceptable time. The electromagnetic nutation damping and despinning method provides new solutions for the development of on-orbit capture technology.

  15. Accurate free and forced rotational motions of rigid Venus

    NASA Astrophysics Data System (ADS)

    Cottereau, L.; Souchay, J.; Aljbaae, S.

    2010-06-01

    Context. The precise and accurate modelling of a terrestrial planet like Venus is an exciting and challenging topic, all the more interesting because it can be compared with that of Earth for which such a modelling has already been achieved at the milli-arcsecond level. Aims: We aim to complete a previous study, by determining the polhody at the milli-arcsecond level, i.e. the torque-free motion of the angular momentum axis of a rigid Venus in a body-fixed frame, as well as the nutation of its third axis of figure in space, which is fundamental from an observational point of view. Methods: We use the same theoretical framework as Kinoshita (1977, Celest. Mech., 15, 277) did to determine the precession-nutation motion of a rigid Earth. It is based on a representation of the rotation of a rigid Venus, with the help of Andoyer variables and a set of canonical equations in Hamiltonian formalism. Results: In a first part we computed the polhody, we showed that this motion is highly elliptical, with a very long period of 525 cy compared with 430 d for the Earth. This is due to the very small dynamical flattening of Venus in comparison with our planet. In a second part we precisely computed the Oppolzer terms, which allow us to represent the motion in space of the third Venus figure axis with respect to the Venus angular momentum axis under the influence of the solar gravitational torque. We determined the corresponding tables of the nutation coefficients of the third figure axis both in longitude and in obliquity due to the Sun, which are of the same order of amplitude as for the Earth. We showed that the nutation coefficients for the third figure axis are significantly different from those of the angular momentum axis on the contrary of the Earth. Our analytical results have been validated by a numerical integration, which revealed the indirect planetary effects.

  16. Spectroscopic monitoring of SS 433: A search for long-term variations of kinematic model parameters

    NASA Astrophysics Data System (ADS)

    Davydov, V. V.; Esipov, V. F.; Cherepashchuk, A. M.

    2008-06-01

    Between 1994 and 2006, we obtained uniform spectroscopic observations of SS 433 in the region of H α. We determined Doppler shifts of the moving emission lines, H α + and H α -, and studied various irregularities in the profiles for the moving emission lines. The total number of Doppler shifts measured in these 13 years is 488 for H α - and 389 for H α +. We have also used published data to study possible long-term variations of the SS 433 system, based on 755 Doppler shifts for H α - and 630 for H α + obtained over 28 years. We have derived improved kinematic model parameters for the precessing relativistic jets of S S 433 using five-and eight-parameter models. On average, the precession period was stable during the 28 years of observations (60 precession cycles), at 162.250d ± 0.003d. Phase jumps of the precession period and random variations of its length with amplitudes of ≈6% and ≈1%, respectively, were observed, but no secular changes in the precession period were detected. The nutation period, P nut = 6.2876d ± 0.00035d, and its phase were stable during 28 years (more than 1600 nutation cycles). We find no secular variations of the nutation cycle. The ejection speed of the relativistic jets, v, was, on average, constant during the 28 years, β = v/c = 0.2561 ± 0.0157. No secular variation of β is detected. In general, S S 433 demonstrates remarkably stable long-term characteristics of its precession and nutation, as well as of the central “engine” near the relativistic object that collimates the plasma in the jets and accelerates it to v = 0.2561 c. Our results support a model with a “slaved” accretion disk in S S 433, which follows the precession of the optical star’s rotation axis.

  17. Liquid Motion in a Rotating Tank Experiment (LME)

    NASA Technical Reports Server (NTRS)

    Deffenbaugh, D. M.; Dodge, F. T.; Green, S. T.

    1998-01-01

    The Liquid Motion Experiment (LME), which flew on STS 84 in May 1997, was an investigation of liquid motions in spinning, nutating tanks. LME was designed to quantify the effects of such liquid motions on the stability of spinning spacecraft, which are known to be adversely affected by the energy dissipated by the liquid motions. The LME hardware was essentially a spin table which could be forced to nutate at specified frequencies at a constant cone angle, independently of the spin rate. Cylindrical and spherical test tanks, partially filled with liquids of different viscosities, were located at the periphery of the spin table to simulate a spacecraft with off-axis propellant tanks; one set of tanks contained generic propellant management devices (PMDs). The primary quantitative data from the flight tests were the liquid-induced torques exerted on the tanks about radial and tangential axes through the center of the tank. Visual recordings of the liquid oscillations also provided qualitative information. The flight program incorporated two types of tests: sine sweep tests, in which the spin rate was held constant and the nutation frequency varied over a wide range; and sine dwell test, in which both the spin rate and the nutation frequency were held constant. The sine sweep tests were meant to investigate all the prominent liquid resonant oscillations and the damping of the resonances, and the sine dwell tests were meant to quantify the viscous energy dissipation rate of the liquid oscillations for steady state conditions. The LME flight data were compared to analytical results obtained from two companion IR&D programs at Southwest Research Institute. The comparisons indicated that the models predicted the observed liquid resonances, damping, and energy dissipation rates for many test conditions but not for all. It was concluded that improved models and CFD simulations are needed to resolve the differences. This work is ongoing under a current IR&D program.

  18. Scanning means for Cassegrainian antenna

    NASA Technical Reports Server (NTRS)

    Giandomenico, A.; Rusch, W. V. T.

    1967-01-01

    Mechanical antenna beam switching device detects weak signals over atmospheric and equipment noise sources in microwave antennas. It periodically nutates the paraboloidal subdish in a Cassegrainian reflector system.

  19. Gravity Functions of Circumnutation by Hypocotyls of Helianthus annuus in Simulated Hypogravity 12

    PubMed Central

    Chapman, David K.; Venditti, Allen L.; Brown, Allan H.

    1980-01-01

    For more than a decade research on the botanical mechanism responsible for circumnutation has centered on whether or not these nearly ubiquitous oscillations can be attributed to a hunting process whereby the plant organ continuously responds to the gravity force and, by overshooting each stimulus, initiates a sustained oscillation or, driven by a not yet defined autogenic mechanism, performs oscillatory activities that require no external reinforcement to maintain the observed rhythms of differential growth. We explore here the effects of altered gravity force on parameters of circumnutation. Following our earlier publication on circumnutation in hypergravity we report here an exploration of circumnutation in hypogravity. Parameters of circumnutation are recorded as functions of the axially imposed gravity force. The same method was used (two-axes clinostat rotation) to produce sustained gravity forces referred to as hypergravity (1 < g), hypogravity (0 [unk] g < 1), and negative gravity (−1 < g < 0). In these three regions of the g-parameter nutational frequency and nutational amplitude were influenced in different ways. The results of our tests describe the gravity dependence of circumnutation over the full range of real or simulated gravity levels that are available in an earth laboratory. Our results demonstrated that nutational parameters are indeed gravity-dependent but are not inconsistent with the postulate that circumnutation can proceed in the absence of a significant gravity force. PMID:16661229

  20. Signature analysis of ballistic missile warhead with micro-nutation in terahertz band

    NASA Astrophysics Data System (ADS)

    Li, Ming; Jiang, Yue-song

    2013-08-01

    In recent years, the micro-Doppler effect has been proposed as a new technique for signature analysis and extraction of radar targets. The ballistic missile is known as a typical radar target and has been paid many attentions for the complexities of its motions in current researches. The trajectory of a ballistic missile can be generally divided into three stages: boost phase, midcourse phase and terminal phase. The midcourse phase is the most important phase for radar target recognition and interception. In this stage, the warhead forms a typical micro-motion called micro-nutation which consists of three basic micro-motions: spinning, coning and wiggle. This paper addresses the issue of signature analysis of ballistic missile warhead in terahertz band via discussing the micro-Doppler effect. We establish a simplified model (cone-shaped) for the missile warhead followed by the micro-motion models including of spinning, coning and wiggle. Based on the basic formulas of these typical micro-motions, we first derive the theoretical formula of micro-nutation which is the main micro-motion of the missile warhead. Then, we calculate the micro-Doppler frequency in both X band and terahertz band via these micro-Doppler formulas. The simulations are given to show the superiority of our proposed method for the recognition and detection of radar micro targets in terahertz band.

  1. Laboratory simulation of the rocket motor thrust as a follower force

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Ground tests of solid propellant rocket motors have shown that metal-containing propellants produce various amounts of slag (primarily aluminum oxide), which is trapped in the motor case causing a loss of specific impulse. Although not yet definitely established, the presence of a liquid pool of slag also may contribute to nutational instabilities that have been observed with certain spin-stabilized, upper-stage vehicles. Because of the rocket's axial acceleration - absent in the ground tests - estimates of in-flight slag mass have been very uncertain. Yet such estimates are needed to determine the magnitude of the control authority of the systems required for eliminating the instability. A test rig with an eccentrically mounted hemispherical bowl was designed and built that incorporates a follower force that properly aligns the thrust vector along the axis of spin. A program that computes the motion of a point mass in the spinning and precessing bowl was written. Using various rpm, friction factors, and initial starting conditions, plots were generated showing the trace of the point mass around the inside of the fuel tank. The apparatus will be used extensively during the 1990 to 1991 academic year and incorporate future design features such as a variable nutation angle and a film height measuring instrument. Data obtained on the nutational instability characteristics will be used to determine order-of-magnitude estimates of control authority needed to minimize the sloshing effect.

  2. Laboratory Simulation of the Effect of Rocket Thrust on a Precessing Space Vehicle

    NASA Technical Reports Server (NTRS)

    Alvarez, Oscar; Bausley, Henry; Cohen, Sam; Falcon-Martin, Miguel; Furumoto, Gary (Editor); Horio, Asikin; Levitt, David; Walsh, Amy

    1990-01-01

    Ground tests of solid propellant rocket motors have shown that metal-containing propellants produce various amounts of slag (primarily aluminum oxide) which is trapped in the motor case, causing a loss of specific impulse. Although not yet definitely established, the presence of a liquid pool of slag also may contribute to nutational instabilities that have been observed with certain spin-stabilized, upper-stage vehicles. Because of the rocket's axial acceleration, absent in the ground tests, estimates of in-flight slag mass have been very uncertain. Yet such estimates are needed to determine the magnitude of the control authority of the systems required for eliminating the instability. A test rig with an eccentrically mounted hemispherical bowl was designed and built which incorporates a follower force that properly aligns the thrust vector along the axis of spin. A program that computes the motion of a point mass in the spinning and precessing bowl was written. Using various RPMs, friction factors, and initial starting conditions, plots were generated showing the trace of the point mass around the inside of the fuel tank. The apparatus will incorporate future design features such as a variable nutation angle and a film height measuring instrument. Data obtained on the nutational instability characteristics will be used to determine order of magnitude estimates of control authority needed to minimize the sloshing effect.

  3. Fully convolutional networks with double-label for esophageal cancer image segmentation by self-transfer learning

    NASA Astrophysics Data System (ADS)

    Xue, Di-Xiu; Zhang, Rong; Zhao, Yuan-Yuan; Xu, Jian-Ming; Wang, Ya-Lei

    2017-07-01

    Cancer recognition is the prerequisite to determine appropriate treatment. This paper focuses on the semantic segmentation task of microvascular morphological types on narrowband images to aid clinical examination of esophageal cancer. The most challenge for semantic segmentation is incomplete-labeling. Our key insight is to build fully convolutional networks (FCNs) with double-label to make pixel-wise predictions. The roi-label indicating ROIs (region of interest) is introduced as extra constraint to guild feature learning. Trained end-to-end, the FCN model with two target jointly optimizes both segmentation of sem-label (semantic label) and segmentation of roi-label within the framework of self-transfer learning based on multi-task learning theory. The learning representation ability of shared convolutional networks for sem-label is improved with support of roi-label via achieving a better understanding of information outside the ROIs. Our best FCN model gives satisfactory segmentation result with mean IU up to 77.8% (pixel accuracy > 90%). The results show that the proposed approach is able to assist clinical diagnosis to a certain extent.

  4. IRIS-S - Extending geodetic very long baseline interferometry observations to the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Carter, W. E.; Robertson, D. S.; Nothnagel, A.; Nicolson, G. D.; Schuh, H.

    1988-12-01

    High-accuracy geodetic very long baseline interferometry measurements between the African, Eurasian, and North American plates have been analyzed to determine the terrestrial coordinates of the Hartebeesthoek observatory to better than 10 cm, to determine the celestial coordinates of eight Southern Hemisphere radio sources with milliarc second (mas) accuracy, and to derive quasi-independent polar motion, UTI, and nutation time series. Comparison of the earth orientation time series with ongoing International Radio Interferometric Surveying project values shows agreement at about the 1 mas of arc level in polar motion and nutation and 0.1 ms of time in UTI. Given the independence of the observing sessions and the unlikeliness of common systematic error sources, this level of agreement serves to bound the total errors in both measurement series.

  5. Observation of a new coherent transient in NMR -- nutational two-pulse stimulated echo in the angular distribution of γ-radiation from oriented nuclei

    NASA Astrophysics Data System (ADS)

    Shakhmuratova, L. N.; Hutchison, W. D.; Isbister, D. J.; Chaplin, D. H.

    1997-07-01

    A new coherent transient in pulsed NMR, the two-pulse nutational stimulated echo, is reported for the ferromagnetic system 60CoFe using resonant perturbations on the directional emission of anisotropic γ-radiation from thermally oriented nuclei. The new spin echo is a result of non-linear nuclear spin dynamics due to large Larmor inhomogeneity active during radiofrequency pulse application. It is made readily observable through the gross detuning between NMR radiofrequency excitation and gamma radiation detection, and inhomogeneity in the Rabi frequency caused by metallic skin-effect. The method of concatenation of perturbation factors in a statistical tensor formalism is quantitatively applied to successfully predict and then fit in detail the experimental time-domain data.

  6. Stability of a dual-spin satellite with two dampers

    NASA Technical Reports Server (NTRS)

    Alfriend, K. T.; Hubert, C. H.

    1974-01-01

    The rotational stability of a dual-spin satellite consisting of a main body and a symmetric rotor, both spinning about a common axis, is investigated. The main body is equipped with a spring-mass damper, while a partially filled viscous ring damper is mounted on the rapidly spinning rotor. The effect of fluid motion on the rotational stability of the satellite is calculated, considering the fluid as a single particle moving in a tube with viscous damping. Time constants are obtained by solving approximate equations of motion for the nutation-synchronous and the spin-synchronous modes, and the results are found to agree well with the numerical integrations of the exact equations. A limit cycle may exist for some configurations; the nutation angle tends to increase in such cases.

  7. ExoMars Lander Radioscience LaRa, a Space Geodesy Experiment to Mars.

    NASA Astrophysics Data System (ADS)

    Dehant, Veronique; Le Maistre, Sebastien; Yseboodt, Marie; Peters, Marie-Julie; Karatekin, Ozgur; Van Hove, Bart; Rivoldini, Attilio; Baland, Rose-Marie; Van Hoolst, Tim

    2017-04-01

    The LaRa (Lander Radioscience) experiment is designed to obtain coherent two-way Doppler measurements from the radio link between the ExoMars lander and Earth over at least one Martian year. The instrument life time is thus almost twice the one Earth year of nominal mission duration. The Doppler measurements will be used to observe the orientation and rotation of Mars in space (precession, nutations, and length-of-day variations), as well as polar motion. The ultimate objective is to obtain information / constraints on the Martian interior, and on the sublimation / condensation cycle of atmospheric CO2. Rotational variations will allow us to constrain the moment of inertia of the entire planet, including its mantle and core, the moment of inertia of the core, and seasonal mass transfer between the atmosphere and the ice caps. The LaRa experiment will be combined with other ExoMars experiments, in order to retrieve a maximum amount of information on the interior of Mars. Specifically, combining LaRa's Doppler measurements with similar data from the Viking landers, Mars Pathfinder, Mars Exploration Rovers landers, and the forthcoming InSight-RISE lander missions, will allow us to improve our knowledge on the interior of Mars with unprecedented accuracy, hereby providing crucial information on the formation and evolution of the red planet.

  8. Precession-nutation procedures consistent with IAU 2006 resolutions

    NASA Astrophysics Data System (ADS)

    Wallace, P. T.; Capitaine, N.

    2006-12-01

    Context: .The 2006 IAU General Assembly has adopted the P03 model of Capitaine et al. (2003a) recommended by the WG on precession and the ecliptic (Hilton et al. 2006) to replace the IAU 2000 model, which comprised the Lieske et al. (1977) model with adjusted rates. Practical implementations of this new "IAU 2006" model are therefore required, involving choices of procedures and algorithms. Aims: .The purpose of this paper is to recommend IAU 2006 based precession-nutation computing procedures, suitable for different classes of application and achieving high standards of consistency. Methods: .We discuss IAU 2006 based procedures and algorithms for generating the rotation matrices that transform celestial to terrestrial coordinates, taking into account frame bias (B), P03 precession (P), P03-adjusted IAU 2000A nutation (N) and Earth rotation. The NPB portion can refer either to the equinox or to the celestial intermediate origin (CIO), requiring either the Greenwich sidereal time (GST) or the Earth rotation angle (ERA) as the measure of Earth rotation. Where GST is used, it is derived from ERA and the equation of the origins (EO) rather than through an explicit formula as in the past, and the EO itself is derived from the CIO locator. Results: .We provide precession-nutation procedures for two different classes of full-accuracy application, namely (i) the construction of algorithm collections such as the Standards Of Fundamental Astronomy (SOFA) library and (ii) IERS Conventions, and in addition some concise procedures for applications where the highest accuracy is not a requirement. The appendix contains a fully worked numerical example, to aid implementors and to illustrate the consistency of the two full-accuracy procedures which, for the test date, agree to better than 1 μas. Conclusions: .The paper recommends, for case (i), procedures based on angles to represent the PB and N components and, for case (ii), procedures based on series for the CIP X,Y. The two methods are of similar efficiency, and both support equinox based as well as CIO based applications.

  9. 77 FR 34955 - Agency Information Collection Activities; Submission for Office of Management and Budget Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ...'' as ``any substance intended for use as a component of materials used in manufacturing, packing... premarket review of a food additive petition (FAP) under section 409(b) of the FD&C Act is necessary to... notification. Currently, interested persons transmit an FCN submission to the Office of Food Additive Safety in...

  10. 77 FR 19670 - Agency Information Collection Activities; Proposed Collection; Comment Request; Food Contact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ... intended for use as a component of materials used in manufacturing, packing, packaging, transporting, or... additive petition (FAP) under section 409(b) of the FD&C Act is necessary to provide adequate assurance of... transmit an FCN submission to the Office of Food Additive Safety in the Center for Food Safety and Applied...

  11. 21 CFR 170.105 - The Food and Drug Administration's (FDA's) determination that a premarket notification for a food...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false The Food and Drug Administration's (FDA's... and Drug Administration's (FDA's) determination that a premarket notification for a food contact substance (FCN) is no longer effective. (a) If data or other information available to FDA, including data...

  12. 21 CFR 170.105 - The Food and Drug Administration's (FDA's) determination that a premarket notification for a food...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true The Food and Drug Administration's (FDA's... and Drug Administration's (FDA's) determination that a premarket notification for a food contact substance (FCN) is no longer effective. (a) If data or other information available to FDA, including data...

  13. 21 CFR 170.105 - The Food and Drug Administration's (FDA's) determination that a premarket notification for a food...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false The Food and Drug Administration's (FDA's... and Drug Administration's (FDA's) determination that a premarket notification for a food contact substance (FCN) is no longer effective. (a) If data or other information available to FDA, including data...

  14. 21 CFR 170.105 - The Food and Drug Administration's (FDA's) determination that a premarket notification for a food...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false The Food and Drug Administration's (FDA's... and Drug Administration's (FDA's) determination that a premarket notification for a food contact substance (FCN) is no longer effective. (a) If data or other information available to FDA, including data...

  15. 21 CFR 170.104 - Action on a premarket notification for a food contact substance (FCN).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES... agree that the notifier may submit a food additive petition proposing the approval of the food contact... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Action on a premarket notification for a food...

  16. 21 CFR 170.104 - Action on a premarket notification for a food contact substance (FCN).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES... agree that the notifier may submit a food additive petition proposing the approval of the food contact... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Action on a premarket notification for a food...

  17. 21 CFR 170.104 - Action on a premarket notification for a food contact substance (FCN).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES... agree that the notifier may submit a food additive petition proposing the approval of the food contact... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Action on a premarket notification for a food...

  18. 21 CFR 170.104 - Action on a premarket notification for a food contact substance (FCN).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES... agree that the notifier may submit a food additive petition proposing the approval of the food contact... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Action on a premarket notification for a food...

  19. On the changes of IAU 2000 nutation theory stemming from IAU 2006 precession theory

    NASA Astrophysics Data System (ADS)

    Escapa, A.; Getino, J.; Ferrándiz, J. M.; Baenas, T.

    2014-12-01

    The adoption of IAU 2006 precession theory (Capitaine et al. 2003) introduced some small changes in IAU 2000A nutation theory, relevant at the mircroarcsecond level. These adjustments were derived in Capitaine et al. (2005) and are currently considered in international standards like, for example, IERS Conventions (2010) or in the Explanatory Supplement to the Astronomical Almanac (2013). We reexamine the issue, working out the induced modifications due to a change in the value of the obliquity of the ecliptic and to the secular variation of the Earth dynamical flattening. In particular, within the framework of the Hamiltonian theory of the rotation of the Earth we derive analytical expressions of those changes for the motion of the figure axis. These expressions and their corresponding numerical contributions will be compared with those obtained in Capitaine et al. (2005).

  20. 21 CFR 170.104 - Action on a premarket notification for a food contact substance (FCN).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES Premarket Notifications § 170.104 Action on a.... (d) If FDA and a manufacturer or supplier agree that the notifier may submit a food additive petition... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Action on a premarket notification for a food...

  1. Measurement of diurnal and semidiurnal rotational variations and tidal parameters of Earth

    NASA Technical Reports Server (NTRS)

    Herring, Thomas A.; Dong, Danan

    1994-01-01

    We discuss the determination of diurnal and semidiurnal variations in the rotation rate and the direction of rotation axis of Earth from the analysis of 8 years of very long baseline interferometry (VLBI) data. This analysis clearly show that these variations are largely periodic and tidally driven; that is, the periods of the variations correspond to the periods of the largest lunar and solar tides. For rotation rate variations, expressed in terms of changes in universal time (UT), the tidal lines with the largest observed signals are O1 (amplitude 23.5 microseconds in time (microseconds), period 25.82 solar hours); KL (18.9 microseconds, 23.93 hours); M2 (17.9 microseconds, 12.54 hours); and S2 (8.6 microseconds, 12.00 hours). For variations in the direction of the rotation axis (polar motion), significant signals exist in the retrograde semidiurnal band at the M2 and S2 tides (amplitudes 265 and 119 microarc seconds (microarc seconds, respectively); the prograde diurnal band at the O1, K1, and P1 tides (amplitudes 199, 152, and 60 microarc seconds, respectively); and the prograde semidiurnal band at the M2 and K2 tides (amplitudes 58 and 39 microarc seconds, respectively). Variations in the retrograde diurnal band are represented by corrections with previous estimates except that a previously noted discrepancy in the 13.66-day nutation (corresponding to the O1 tide) is largely removed in this new analysis. We estimate that the standard deviations of these estimates are 1.0 microseconds for the UT1 variations and 14-16 microarc seconds for the polar motion terms. These uncertainties correspond to surface displacements of approximately 0.5 mm. From the analysis of atmospheric angular momentum data we conclude that variations in UT1 excited by the atmosphere with subdaily periods are small (approximately 1 microsecond). We find that the average radial tidal displacements of the VLBI sites in the diurnal band are largely consistent with known deficiencies in current tidal models, i.e., deficiencies of up to 0.9 mm in the treatment of the free core nutation resonance. In the semidiurnal band, our analysis yields estimates of the second-degree harmonic radial Love number h(sub 2) at the M2 tide of 0.604 + i0.005 +/- 0.002. The most likely explanation for the rotational variations are the effects of ocean tides, but there may also be some contributions from atmospheric tides, the effects of triaxiality of Earth, and the equatorial second-degree-harmonic components of the core- mantle boundary.

  2. Review Of The Working Group On Precession And The Ecliptic

    NASA Astrophysics Data System (ADS)

    Hilton, J. L.

    2006-08-01

    The IAU Working Group on Precession and the Ecliptic was charged with providing a precession model that was both dynamically consistent and compatible with the IAU 2000A nutation model, along with an updated definition and model for the ecliptic. The report of the working group has been accepted for publication in Celestial Mechanics (Hilton et al. 2006, in press) and has resulted in a recommendation to be considered at this General Assembly of the IAU. Specifically, the working group recommends: 1. That the terms lunisolar precession and planetary precession be replaced by precession of the equator and precession of the ecliptic, respectively. 2. That, beginning on 1 January 2009, the precession component of the IAU 2000A precession-nutation model be replaced by the P03 precession theory, of Capitaine et al. (2003, A&A, 412, 567-586) for the precession of the equator (Eqs. 37) and the precession of the ecliptic (Eqs. 38); the same paper provides the polynomial developments for the P03 primary angles and a number of derived quantities for use in both the equinox based and Celestial Intermediate Origin based paradigms. 3. That the choice of precession parameters be left to the user. 4. That the ecliptic pole should be explicitly defined by the mean orbital angular momentum vector of the Earth-Moon barycenter in an inertial reference frame, and this definition should be explicitly stated to avoid confusion with other, older definitions. consistent and compatible with the IAU 2000A nutation model, along consistent and compatible with the IAU 2000A nutation model, along with an updated definition and model for the ecliptic. The report of the working group has been accepted for publication in Celestial Mechanics (Hilton et al. 2006, in press) and has resulted in a recommendation to be considered at this General Assembly of the IAU. Specifically, the working group recommends, * that the terms lunisolar precession and planetary precession be replaced by precession of the equator and precession of the ecliptic, respectively, * that, beginning on 1 January 2009, the precession component of the IAU 2000A precession-nutation model be replaced by the P03 precession theory, of Capitaine et al. (2003, A&A, 412, 567-586) for the precession of the equator (Eqs.~37) and the precession of the ecliptic (Eqs.~38); the same paper provides the polynomial developments for the P03 primary angles and a number of derived quantities for use in both the equinox basedand Celestial Intermediate Origin based paradigms, * that the choice of precession parameters be left to the user, and * that the ecliptic pole should be explicitly defined by the mean orbital angular momentum vector of the Earth-Moon barycenter in an inertial reference frame, and this definition should be explicitly stated to avoid confusion with other, older definitions.

  3. Coherent manipulation of non-thermal spin order in optical nuclear polarization experiments

    NASA Astrophysics Data System (ADS)

    Buntkowsky, Gerd; Ivanov, Konstantin L.; Zimmermann, Herbert; Vieth, Hans-Martin

    2017-03-01

    Time resolved measurements of Optical Nuclear Polarization (ONP) have been performed on hyperpolarized triplet states in molecular crystals created by light excitation. Transfer of the initial electron polarization to nuclear spins has been studied in the presence of radiofrequency excitation; the experiments have been performed with different pulse sequences using different doped molecular systems. The experimental results clearly demonstrate the dominant role of coherent mechanisms of spin order transfer, which manifest themselves in well pronounced oscillations. These oscillations are of two types, precessions and nutations, having characteristic frequencies, which are the same for the different molecular systems and the pulse sequences applied. Hence, precessions and nutations constitute a general feature of polarization transfer in ONP experiments. In general, coherent manipulation of spin order transfer creates a powerful resource for improving the performance of the ONP method, which paves the way to strong signal enhancement in nuclear magnetic resonance.

  4. Development of a Simulink Library for the Design, Testing and Simulation of Software Defined GPS Radios. With Application to the Development of Parallel Correlator Structures

    DTIC Science & Technology

    2014-05-01

    function Value = Select_Element(Index,Signal) %# eml Value = Signal(Index); Code Listing 1 Code for Selector Block 12 | P a g e 4.3...code for the Simulink function shiftedSignal = fcn(signal,Shift) %# eml shiftedSignal = circshift(signal,Shift); Code Listing 2 Code for CircShift

  5. The 11th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Various mechanisms in aerospace engineering were presented at this conference. Specifications, design, and use of spacecraft and missile components are discussed, such as tail assemblies, radiometers, magnetormeters, pins, reaction wheels, ball bearings, actuators, mirrors, nutation dampers, airfoils, solar arrays, etc.

  6. Non-Rigid Earth Contributions to the Precession in Longitude and Indirect Effects on Nutations

    NASA Astrophysics Data System (ADS)

    Ferrandiz, J. M.; Escapa, A.; Baenas, T.; Getino, J.

    2016-12-01

    Precession in longitude is affected by the internal structure of the Earth. Although this effect is small, typically described as of second-order, it must be considered in current precession theories due to the stringent accuracy and consistency requirements. The current IAU2006 precession theory is based on Capitaine at al. (2003, 2005). The influence of the Earth's geophysical model is taken into account in IAU2006 only through a sole contribution, the so-called "non-linear effect" computed by Mathews (2004). In elastic Earth models the contributions are twofold. A main part comes from 2nd order terms of the mathematical solution stemming from crossed influences of certain nutation-rising terms. Only the Hamiltonian theory of the non-rigid Earth has succeeded in deriving a solution for those terms so far, and they were not considered in IAU2006 precession theory. Another contributions are caused by geopotential variations resulting from the tidal deformations of the Earth, or redistribution tidal potential. IAU2006 non-linear effect belongs to this category, although it just represents a partial, simplified approach to the total effect (Lambert & Mathews 2006, 2008). The mass redistribution is induced by the gravitational action of Moon and Sun, but also by the tidal variations of the Earth's angular velocity and the resultant changes of the centrifugal potential. We present a comprehensive study of the contributions to the precession in longitude due to the non-rigidity of the Earth, based on the Hamiltonian formalism developed by Getino and Ferrándiz for a two-layer Earth elastic model. To this end, we recall the achievements made by our group recently (Ferrándiz et al 2016, Baenas et al 2016) and complete them by incorporating the contributions due to the tidal variations of the Earth's angular velocity, as well as anelasticity effects consistent with the IERS Conventions. After that, we compute the total final correction to the precession in longitude due to non-rigid Earth contributions, and the associated change of its dynamical ellipticity. This change entails further corrections of the nutation series, known as indirect (Escapa et al. 2016). Both modifications should be taken into account to improve the accuracy and mutual consistency of the IAU2000 and IAU2006 nutation/precession theories.

  7. Dynamic ocean-tide effects on Earth's rotation

    NASA Technical Reports Server (NTRS)

    Dickman, S. R.

    1993-01-01

    This article develops 'broad-band' Liouville equations which are capable of determining the effects on the rotation of the Earth of a periodic excitation even at frequencies as high as semi-diurnal; these equations are then used to predict the rotational effects of altimetric, numerical and 32-constituent spherical harmonic ocean-tide models. The rotational model includes a frequency-dependent decoupled core, the effects of which are especially marked near retrograde diurnal frequencies; and a fully dynamic oceanic response, whose effects appear to be minor despite significant frequency dependence. The model also includes solid-earth effects which are frequency dependent as the result of both anelasticity at long periods and the fluid-core resonance at nearly diurnal periods. The effects of both tidal inertia and relative angular momentum on Earth rotation (polar motion, length of day, 'nutation' and Universal Time) are presented for 32 long- and short-period ocean tides determined as solutions to the author's spherical harmonic tide theory. The lengthening of the Chandler wobble period by the pole tide is also re-computed using the author's full theory. Additionally, using the spherical harmonic theory, tidal currents and their effects on rotation are determined for available numerical and altimetric tide height models. For all models, we find that the effects of tidal currents are at least as important as those of tide height for diurnal and semi-diurnal constituents.

  8. Behavior of Spinning Space Vehicles with Onboard Liquids, 2nd Edition, Technical Report B8030

    NASA Technical Reports Server (NTRS)

    Hubert, Carl

    2008-01-01

    Although the fundamental principles of spin stabilization are well established, uncertainty regarding the potential for rapid nutation growth caused by onboard liquids is a continuing concern. NASA and other organizations regularly encounter the issue of rapid nutation growth due to energy dissipation by liquids on spinning vehicles. Of concern is the stability of spinning upper stages and of spacecraft that spin for part or all of their missions. Several missions have required last-minute hardware or operational changes to deal with rapid nutation divergences that were identified late in the program. In some instances, major schedule slips were barely averted. In at least two cases, it was determined that a spinning upper stage was not a viable option. Historically, the "slosh" issue has been addressed by each space vehicle project individually, if it has been addressed at all. Due to budgetary and programmatic constraints, individual projects are unable to address the problem globally. Hence, there has been little effort to collect available test and flight data and use that data to make a coherent, unified picture of the "slosh" effect and how to deal with it. To some extent, each project has had to "reinvent the wheel", which can be both costly and risky. This study is a step toward correcting the situation. Specifically, the goal was to identify and collect available flight and test data for spinning vehicles with onboard liquid propellants. A total of 149 flight data points and 1,692 test points were collected as part of this study. This data was analyzed, correlated, and is presented here in a normalized form. In most cases, the normalization involves a dimensionless nutation time constant that can be used to predict performance of other vehicles with the same type of tank. For some configurations, it was also possible to identify conditions that can lead to resonance between nutational motion and liquid modes. Gaps in the knowledge base are identified and approaches to filling those gaps are outlined. The data presented here has two different but related uses. First, it can be applied directly to current and future spacecraft programs. Second, it can provide truth models for testing analytical techniques. Experience has shown that purely analytical models of the liquid "slosh" effect on spinning vehicles are unreliable unless they are validated against flight or test data. To the author's knowledge, this report contains the most extensive and varied data set available. As such, it should be a good resource for anyone seeking to develop and validate improved analytical techniques. All of the original digital data sets have been archived on disk, with copies provided to NASA/KSC. With some restrictions, many of these data sets can be made available to researchers within the United States. Whenever possible, spacecraft are identified by name in this report. However, several organizations provided access to data with the explicit proviso that their programs not be identified and that parameters be presented only in normalized form. These constraints have been respected.

  9. The International Celestial Reference Frame (ICRF) and the Relationship Between Frames

    NASA Technical Reports Server (NTRS)

    Ma, Chopo

    2000-01-01

    The International Celestial Reference Frame (ICRF), a catalog of VLBI source positions, is now the basis for astrometry and geodesy. Its construction and extension/maintenance will be discussed as well as the relationship of the ICRF, ITRF, and EOP/nutation.

  10. Models and Measurements of the Rotation of Mars

    NASA Astrophysics Data System (ADS)

    Folkner, W. M.; Konopliv, A. S.; Park, R. S.; Dehant, V. M. A.; Yseboodt, M.; Rivoldini, A.

    2016-12-01

    The rotation of Mars has been determined more accurately than for any other planet except Earth. This has been done using radio tracking data from spacecraft orbiting Mars or landed on Mars, starting with Mariner 9 in 1972 continuing through the present with several orbiters currently in operation. The Viking landers in 1976 provided the first clear measurements of variation in length of day. Mars Pathfinder combined with Viking lander provided the first estimate of the martian precession rate. The model for rigid Mars rotation developed by Reasenberg and King for Viking data analysis is accurate enough to fit the currently available measurements. With the InSight mission to be launched in 2018 and the ExoMars lander mission to be launched in 2020, nutation of Mars due to non-rigid effects are expected to be detectable, requiring improved models for the effects of the martian fluid core. We will present an overview of the current measurements sets, including comparisons of length-of-day variations from independent subsets, plans for the InSight and ExoMars missions, and summarize potential modeling improvements.

  11. Effects of adopting new precession, nutation and equinox corrections on the terrestrial reference frame

    NASA Technical Reports Server (NTRS)

    Zhu, S. Y.; Mueller, I. I.

    1982-01-01

    The effect of adopting definitive precession and equinox corrections on the terrestrial reference frame was investigated. It is noted that the effect on polar motion is a diurnal periodic term with an amplitude increasing linearly in time whole on UT1 it is a linear term: general principles are given to determine the effects of small rotations of the frame of a conventional inertial reference system (CIS) on the frame of the conventional terrestrial reference system (CTS); seven CTS options are presented, one of which is necessary to accommodate such rotation. Accommodating possible future changes in the astronomical nutation is discussed. The effects of differences which may exist between the various CTS's and CIS's on Earth rotation parameters (ERP) and how these differences can be determined are examined. It is shown that the CTS differences can be determined from observations made at the same site. The CIS differences by comparing the ERP's are determined by the different techniques during the same time period.

  12. Effects of adopting new precession, nutation and equinox corrections on the terrestrial reference frame

    NASA Technical Reports Server (NTRS)

    Zhu, S. Y.; Mueller, I. I.

    1982-01-01

    The effects of adopting new definitive precession and equinox corrections on the terrestrial reference frame was investigated. It is noted that: (1) the effect on polar motion is a diurnal periodic term with an amplitude increasing linearly in time whole on UT1 it is a linear term; (2) general principles are given to determine the effects of small rotations of the frame of a conventional inertial reference system (CIS) on the frame of the conventional terrestrial reference system (CTS); (3) seven CTS options are presented, one of which is necessary to accommodate such rotation. Accommodating possible future changes in the astronomical nutation is discussed. The effects of differences which may exist between the various CTS's and CIS's on Earth rotation parameters (ERP) and how these differences can be determined are examined. It is shown that the CTS differences can be determined from observations made at the same site, while the CIS differences by comparing the ERP's determined by the different techniques during the same time period.

  13. A new description of Earth's wobble modes using Clairaut coordinates: 1. Theory

    NASA Astrophysics Data System (ADS)

    Rochester, M. G.; Crossley, D. J.; Zhang, Y. L.

    2014-09-01

    This paper presents a novel mathematical reformulation of the theory of the free wobble/nutation of an axisymmetric reference earth model in hydrostatic equilibrium, using the linear momentum description. The new features of this work consist in the use of (i) Clairaut coordinates (rather than spherical polars), (ii) standard spherical harmonics (rather than generalized spherical surface harmonics), (iii) linear operators (rather than J-square symbols) to represent the effects of rotational and ellipticity coupling between dependent variables of different harmonic degree and (iv) a set of dependent variables all of which are continuous across material boundaries. The resulting infinite system of coupled ordinary differential equations is given explicitly, for an elastic solid mantle and inner core, an inviscid outer core and no magnetic field. The formulation is done to second order in the Earth's ellipticity. To this order it is shown that for wobble modes (in which the lowest harmonic in the displacement field is degree 1 toroidal, with azimuthal order m = ±1), it is sufficient to truncate the chain of coupled displacement fields at the toroidal harmonic of degree 5 in the solid parts of the earth model. In the liquid core, however, the harmonic expansion of displacement can in principle continue to indefinitely high degree at this order of accuracy. The full equations are shown to yield correct results in three simple cases amenable to analytic solution: a general earth model in rigid rotation, the tiltover mode in a homogeneous solid earth model and the tiltover and Chandler periods for an incompressible homogeneous solid earth model. Numerical results, from programmes based on this formulation, are presented in part II of this paper.

  14. Program and Abstracts of the Society for Research on Biological Rhythms (2nd) Held in Jacksonville, Florida on 9-13 May 1990

    DTIC Science & Technology

    1991-07-15

    4 Tram Schedule ................................................. 5 Amelia Island.................................................. 6 Program... Schedule .................................................. 7 Scientific Program.................................................. 8 Abstracts...and 5 4 -4- TRAM SCHEDULE 6" I Th)e Ameha Isand Tra-s 5 1 p taior, around teP I da-ly basis f~cn 6 1 5 a -MARSHSIDE Ia m Tra-T Stc-,S a’e -.E TRAM I

  15. Horizontal Axis Levitron--A Physics Demonstration

    ERIC Educational Resources Information Center

    Michaelis, Max M.

    2014-01-01

    After a brief history of the Levitron, the first horizontal axis Levitron is reported. Because it is easy to operate, it lends itself to educational physics experiments and analogies. Precession and nutation are visualized by reflecting the beam from a laser pointer off the "spignet". Precession is fundamental to nuclear magnetic…

  16. Multiple supervised residual network for osteosarcoma segmentation in CT images.

    PubMed

    Zhang, Rui; Huang, Lin; Xia, Wei; Zhang, Bo; Qiu, Bensheng; Gao, Xin

    2018-01-01

    Automatic and accurate segmentation of osteosarcoma region in CT images can help doctor make a reasonable treatment plan, thus improving cure rate. In this paper, a multiple supervised residual network (MSRN) was proposed for osteosarcoma image segmentation. Three supervised side output modules were added to the residual network. The shallow side output module could extract image shape features, such as edge features and texture features. The deep side output module could extract semantic features. The side output module could compute the loss value between output probability map and ground truth and back-propagate the loss information. Then, the parameters of residual network could be modified by gradient descent method. This could guide the multi-scale feature learning of the network. The final segmentation results were obtained by fusing the results output by the three side output modules. A total of 1900 CT images from 15 osteosarcoma patients were used to train the network and a total of 405 CT images from another 8 osteosarcoma patients were used to test the network. Results indicated that MSRN enabled a dice similarity coefficient (DSC) of 89.22%, a sensitivity of 88.74% and a F1-measure of 0.9305, which were larger than those obtained by fully convolutional network (FCN) and U-net. Thus, MSRN for osteosarcoma segmentation could give more accurate results than FCN and U-Net. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Integrating Online and Offline Three-Dimensional Deep Learning for Automated Polyp Detection in Colonoscopy Videos.

    PubMed

    Lequan Yu; Hao Chen; Qi Dou; Jing Qin; Pheng Ann Heng

    2017-01-01

    Automated polyp detection in colonoscopy videos has been demonstrated to be a promising way for colorectal cancer prevention and diagnosis. Traditional manual screening is time consuming, operator dependent, and error prone; hence, automated detection approach is highly demanded in clinical practice. However, automated polyp detection is very challenging due to high intraclass variations in polyp size, color, shape, and texture, and low interclass variations between polyps and hard mimics. In this paper, we propose a novel offline and online three-dimensional (3-D) deep learning integration framework by leveraging the 3-D fully convolutional network (3D-FCN) to tackle this challenging problem. Compared with the previous methods employing hand-crafted features or 2-D convolutional neural network, the 3D-FCN is capable of learning more representative spatio-temporal features from colonoscopy videos, and hence has more powerful discrimination capability. More importantly, we propose a novel online learning scheme to deal with the problem of limited training data by harnessing the specific information of an input video in the learning process. We integrate offline and online learning to effectively reduce the number of false positives generated by the offline network and further improve the detection performance. Extensive experiments on the dataset of MICCAI 2015 Challenge on Polyp Detection demonstrated the better performance of our method when compared with other competitors.

  18. Optimization of a Nutation Damper Attached to a Spin-Stabilized Satellite.

    DTIC Science & Technology

    1994-12-01

    characteristic roots describe the damping of the simple system. The damping time index, as proposed by Borelli and Leliakov (5:345), is defined as the...Viscous Ring Damper for a Freely Precessing Satellite." International Journal of Mechanical Sciences. Vol. 8. 1966. pp. 383- 395. 5. Borelli , R. L

  19. Comparing post-Newtonian and numerical relativity precession dynamics

    NASA Astrophysics Data System (ADS)

    Ossokine, Serguei; Boyle, Michael; Kidder, Lawrence E.; Pfeiffer, Harald P.; Scheel, Mark A.; Szilágyi, Béla

    2015-11-01

    Binary black-hole systems are expected to be important sources of gravitational waves for upcoming gravitational-wave detectors. If the spins are not colinear with each other or with the orbital angular momentum, these systems exhibit complicated precession dynamics that are imprinted on the gravitational waveform. We develop a new procedure to match the precession dynamics computed by post-Newtonian (PN) theory to those of numerical binary black-hole simulations in full general relativity. For numerical relativity (NR) simulations lasting approximately two precession cycles, we find that the PN and NR predictions for the directions of the orbital angular momentum and the spins agree to better than ˜1 ° with NR during the inspiral, increasing to 5° near merger. Nutation of the orbital plane on the orbital time scale agrees well between NR and PN, whereas nutation of the spin direction shows qualitatively different behavior in PN and NR. We also examine how the PN equations for precession and orbital-phase evolution converge with PN order, and we quantify the impact of various choices for handling partially known PN terms.

  20. Comparing Post-Newtonian and Numerical-Relativity Precession Dynamics

    NASA Astrophysics Data System (ADS)

    Kidder, Lawrence; Ossokine, Sergei; Boyle, Michael; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela

    2015-04-01

    Binary black-hole systems are expected to be important sources of gravitational waves for upcoming gravitational-wave detectors. If the spins are not colinear with each other or with the orbital angular momentum, these systems exhibit complicated precession dynamics that are imprinted on the gravitational waveform. We develop a new procedure to match the precession dynamics computed by post-Newtonian (PN) theory to those of numerical binary black-hole simulations in full general relativity. For numerical relativity (NR) simulations lasting approximately two precession cycles, we find that the PN and NR predictions for the directions of the orbital angular momentum and the spins agree to better than ~1° with NR during the inspiral, increasing to 5° near merger. Nutation of the orbital plane on the orbital time-scale agrees well between NR and PN, whereas nutation of the spin direction shows qualitatively different behavior in PN and NR. We also examine how the PN equations for precession and orbital-phase evolution converge with PN order, and we quantify the impact of various choices for handling partially known PN terms.

  1. Measurement of cross relaxation between two selected nuclei by synchronous nutation of magnetization in nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Burghardt, Irene; Konrat, Robert; Boulat, Benoit; Vincent, Sébastien J. F.; Bodenhausen, Geoffrey

    1993-01-01

    A novel technique is described that allows one to measure cross-relaxation rates (Overhauser effects) between two selected nuclei in high-resolution NMR. The two chosen sites are irradiated simultaneously with the sidebands of an amplitude-modulated radio-frequency field, so that their magnetization vectors are forced to undergo a simultaneous motion, which is referred to as ``synchronous nutation.'' From the time-dependence observed for different initial conditions, one may derive cross-relaxation rates, and hence determine internuclear distances. The scalar interactions between the selected spins and other spins belonging to the same coupling network are effectively decoupled. Furthermore, cross relaxation to other spins in the environment does not affect the transient response of the selected spins, which are therefore in effect isolated from their environment in terms of dipolar interactions. The method is particularly suitable to study cases where normal Overhauser effects are perturbed by spin-diffusion effects due to the presence of further spins. The technique is applied to the protein bovine pancreatic trypsin inhibitor.

  2. The Excited Spin State of 1I/2017 U1 ‘Oumuamua

    NASA Astrophysics Data System (ADS)

    Belton, Michael J. S.; Hainaut, Olivier R.; Meech, Karen J.; Mueller, Beatrice E. A.; Kleyna, Jan T.; Weaver, Harold A.; Buie, Marc W.; Drahus, Michał; Guzik, Piotr; Wainscoat, Richard J.; Waniak, Wacław; Handzlik, Barbara; Kurowski, Sebastian; Xu, Siyi; Sheppard, Scott S.; Micheli, Marco; Ebeling, Harald; Keane, Jacqueline V.

    2018-04-01

    We show that ‘Oumuamua’s excited spin could be in a high-energy long axis mode (LAM) state, which implies that its shape could be far from the highly elongated shape found in previous studies. CLEAN and ANOVA algorithms are used to analyze ‘Oumuamua’s lightcurve using 818 observations over 29.3 days. Two fundamental periodicities are found at frequencies (2.77 ± 0.11) and (6.42 ± 0.18) cycles/day, corresponding to (8.67 ± 0.34) hr and (3.74 ± 0.11) hr, respectively. The phased data show that the lightcurve does not repeat in a simple manner, but approximately shows a double minimum at 2.77 cycles/day and a single minimum at 6.42 cycles/day. ‘Oumuamua could be spinning in either the LAM or short axis mode (SAM). For both, the long axis precesses around the total angular momentum vector with an average period of (8.67 ± 0.34) hr. For the three LAMs we have found, the possible rotation periods around the long axis are 6.58, 13.15, or 54.48 hr, with 54.48 hr being the most likely. ‘Oumuamua may also be nutating with respective periods of half of these values. We have also found two possible SAM states where ‘Oumuamua oscillates around the long axis with possible periods at 13.15 and 54.48 hr. In this case any nutation occurs with the same periods. Determination of the spin state, the amplitude of the nutation, the direction of the total angular momentum vector (TAMV), and the average total spin period may be possible with a direct model fit to the lightcurve. We find that ‘Oumuamua is “cigar-shaped,” if close to its lowest rotational energy, and an extremely oblate spheroid if close to its highest energy state.

  3. Transient nutation electron spin resonance spectroscopy on spin-correlated radical pairs: A theoretical analysis on hyperfine-induced nuclear modulations

    NASA Astrophysics Data System (ADS)

    Weber, Stefan; Kothe, Gerd; Norris, James R.

    1997-04-01

    The influence of anisotropic hyperfine interaction on transient nutation electron paramagnetic resonance (EPR) of light-induced spin-correlated radical pairs is studied theoretically using the density operator formalism. Analytical expressions for the time evolution of the transient EPR signal during selective microwave excitation of single transitions are derived for a model system comprised of a weakly coupled radical pair and one hyperfine-coupled nucleus with I=1/2. Zero-quantum electron coherence and single-quantum nuclear coherence are created as a result of the sudden light-induced generation of the radical pair state from a singlet-state precursor. Depending on the relative sizes of the nuclear Zeeman frequency and the secular and pseudo-secular parts of the hyperfine coupling, transitions between levels with different nuclear spin orientations are predicted to modulate the time-dependent EPR signal. These modulations are in addition to the well-known transient nutations and electron zero-quantum precessions. Our calculations provide insight into the mechanism of recent experimental observations of coherent nuclear modulations in the time-resolved EPR signals of doublets and radical pairs. Two distinct mechanisms of the modulations are presented for various microwave magnetic field strengths. The first modulation scheme arises from electron and nuclear coherences initiated by the laser excitation pulse and is "read out" by the weak microwave magnetic field. While the relative modulation depth of these oscillations with respect to the signal intensity is independent of the Rabi frequency, ω1, the frequencies of this coherence phenomenon are modulated by the effective microwave amplitude and determined by the nuclear Zeeman interaction and hyperfine coupling constants as well as the electron-electron spin exchange and dipolar interactions between the two radical pair halves. In a second mechanism the modulations are both created and detected by the microwave radiation. Here, the laser pulse merely defines the beginning of the microwave-induced coherent time evolution. This second mechanism appears the most consistent with current experimental observations.

  4. Gravity field and solar component of the precession rate and nutation coefficients of Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Lhotka, C.; Reimond, S.; Souchay, J.; Baur, O.

    2016-02-01

    The aim of this study is first to determine the gravity field of the comet 67P/Churyumov-Gerasimenko and second to derive the solar component of the precession rate and nutation coefficients of the spin-axis of the comet nucleus, I.e. without the direct, usually larger, effect of outgassing. The gravity field and related moments of inertia are obtained from two polyhedra, which are provided by the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) and NAVigation CAMera (NAVCAM) experiments on Rosetta, and are based on the assumption of uniform density for the comet nucleus. We also calculate the forced precession rate as well as the nutation coefficients on the basis of Kinoshita's theory of rotation of the rigid Earth and adapted it to be able to indirectly include the effect of outgassing on the rotational parameters. The second degree denormalized Stokes coefficients of comet 67P/C-G turn out to be (bracketed numbers refer to second shape model) C20 ≃ -6.74 [-7.93] × 10-2, C22 ≃ 2.60 [2.71] × 10-2, consistent with normalized principal moments of inertia A/MR2 ≃ 0.13 [0.11], B/MR2 ≃ 0.23 [0.22], with polar moment c = C/MR2 ≃ 0.25, depending on the choice of the polyhedron model. The obliquity between the rotation axis and the mean orbit normal is ɛ ≃ 52°, and the precession rate only due to solar torques becomes dot{ψ }in [20,30] arcsec yr^{-1}. Oscillations in longitude caused by the gravitational pull of the Sun turn out to be of the order of Δψ ≃ 1 arcmin, and oscillations in obliquity can be estimated to be of the order of Δɛ ≃ 0.5 arcmin.

  5. Precise comparisons of bottom-pressure and altimetric ocean tides

    NASA Astrophysics Data System (ADS)

    Ray, R. D.

    2013-09-01

    A new set of pelagic tide determinations is constructed from seafloor pressure measurements obtained at 151 sites in the deep ocean. To maximize precision of estimated tides, only stations with long time series are used; median time series length is 567 days. Geographical coverage is considerably improved by use of the international tsunami network, but coverage in the Indian Ocean and South Pacific is still weak. As a tool for assessing global ocean tide models, the data set is considerably more reliable than older data sets: the root-mean-square difference with a recent altimetric tide model is approximately 5 mm for the M2 constituent. Precision is sufficiently high to allow secondary effects in altimetric and bottom-pressure tide differences to be studied. The atmospheric tide in bottom pressure is clearly detected at the S1, S2, and T2 frequencies. The altimetric tide model is improved if satellite altimetry is corrected for crustal loading by the atmospheric tide. Models of the solid body tide can also be constrained. The free core-nutation effect in the K1 Love number is easily detected, but the overall estimates are not as accurate as a recent determination with very long baseline interferometry.

  6. Free-fall dynamics of a pair of rigidly linked disks

    NASA Astrophysics Data System (ADS)

    Kim, Taehyun; Chang, Jaehyeock; Kim, Daegyoum

    2018-03-01

    We investigate experimentally the free-fall motion of a pair of identical disks rigidly connected to each other. The three-dimensional coordinates of the pair of falling disks were constructed to quantitatively describe its trajectory, and the flow structure formed by the disk pair was identified by using dye visualization. The rigidly linked disk pair exhibits a novel falling pattern that creates a helical path with a conical configuration in which the lower disk rotates in a wider radius than the upper disk with respect to a vertical axis. The helical motion occurs consistently for the range of disk separation examined in this study. The dye visualization reveals that a strong, noticeable helical vortex core is generated from the outer tip of the lower disk during the helical motion. With an increasing length ratio, which is the ratio of the disk separation to the diameter of the disks, the nutation angle and the rate of change in the precession angle that characterize the combined helical and conical kinematics decrease linearly, whereas the pitch of the helical path increases linearly. Although all disk pairs undergo this helical motion, the horizontal-drift patterns of the disk pair depend on the length ratio.

  7. Earth's rotation in the framework of general relativity: rigid multipole moments

    NASA Astrophysics Data System (ADS)

    Klioner, S. A.; Soffel, M.; Xu, Ch.; Wu, X.

    A set of equations describing the rotational motion of the Earth relative to the GCRS is formulated in the approximation of rigidly rotating multipoles. The external bodies are supposed to be mass monopoles. The derived set of formulas is supposed to form the theoretical basis for a practical post-Newtonian theory of Earth precession and nutation.

  8. Basic research for the geodynamics program

    NASA Technical Reports Server (NTRS)

    Mueller, I. I.

    1982-01-01

    Work performed and data obtained in geodynamic research is reported. The purpose was to obtain utilization of: (1) laser and very long baseline interferometry (VLBI); (2) range difference observation in geodynamics; (3) development of models for ice sheet and crustal deformations. The effects of adopting new precession, nutation and equinox corrections on the terrestrial reference frame are investigated.

  9. Learning normalized inputs for iterative estimation in medical image segmentation.

    PubMed

    Drozdzal, Michal; Chartrand, Gabriel; Vorontsov, Eugene; Shakeri, Mahsa; Di Jorio, Lisa; Tang, An; Romero, Adriana; Bengio, Yoshua; Pal, Chris; Kadoury, Samuel

    2018-02-01

    In this paper, we introduce a simple, yet powerful pipeline for medical image segmentation that combines Fully Convolutional Networks (FCNs) with Fully Convolutional Residual Networks (FC-ResNets). We propose and examine a design that takes particular advantage of recent advances in the understanding of both Convolutional Neural Networks as well as ResNets. Our approach focuses upon the importance of a trainable pre-processing when using FC-ResNets and we show that a low-capacity FCN model can serve as a pre-processor to normalize medical input data. In our image segmentation pipeline, we use FCNs to obtain normalized images, which are then iteratively refined by means of a FC-ResNet to generate a segmentation prediction. As in other fully convolutional approaches, our pipeline can be used off-the-shelf on different image modalities. We show that using this pipeline, we exhibit state-of-the-art performance on the challenging Electron Microscopy benchmark, when compared to other 2D methods. We improve segmentation results on CT images of liver lesions, when contrasting with standard FCN methods. Moreover, when applying our 2D pipeline on a challenging 3D MRI prostate segmentation challenge we reach results that are competitive even when compared to 3D methods. The obtained results illustrate the strong potential and versatility of the pipeline by achieving accurate segmentations on a variety of image modalities and different anatomical regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Low MBL-associated serine protease 2 (MASP-2) levels correlate with urogenital schistosomiasis in Nigerian children.

    PubMed

    Ojurongbe, Olusola; Antony, Justin S; Van Tong, Hoang; Meyer, Christian G; Akindele, Akeem A; Sina-Agbaje, Olawumi R; Kremsner, Peter G; Velavan, Thirumalaisamy P

    2015-10-01

    The human mannose-binding lectin (MBL) and ficolins (FCN) are involved in pathogen recognition in the first line of defence. They support activation of the complement lectin cascade in the presence of MBL-associated serine protease 2 (MASP-2), a protein that cleaves the C4 and C2 complement components. Recent studies found that distinct MBL2 and FCN2 promoter variants and their corresponding serum levels are associated with relative protection from urogenital schistosomiasis. We investigated the contribution of MASP-2 levels and MASP2 polymorphisms in a Nigerian study group, of 163 individuals infected with Schistosoma haematobium and 183 healthy subjects. MASP-2 serum levels varied between younger children (≤12 years) and older children (>12 years) and adults (P = 0.0001). Younger children with a patent infection had significantly lower MASP-2 serum levels than uninfected children (P = 0.0074). Older children and adults (>12 years) with a current infection had higher serum MASP-2 levels than controls (P = 0.032). MBL serum levels correlated positively with MASP-2 serum levels (P = 0.01). MASP2 secretor haplotypes were associated with MASP-2 serum levels in healthy subjects. The heterozygous MASP2 p.P126L variant was associated with reduced serum MASP-2 levels (P = 0.01). The findings indicate that higher MASP-2 serum levels are associated with relative protection from urogenital schistosomiasis in Nigerian children. © 2015 John Wiley & Sons Ltd.

  11. Monitoring Global Geophysical Fluids by Space Geodesy

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Dehant, V.; Gross, R. S.; Ray, R. D.; Salstein, D. A.; Watkins, M.

    1999-01-01

    Since its establishment on 1/1/1998 by the International Earth Rotation Service, the Coordinating Center for Monitoring Global Geophysical Fluids (MGGF) and its seven Special Bureaus have engaged in an effort to support and facilitate the understanding of the geophysical fluids in global geodynamics research. Mass transports in the atmosphere-hydrosphere-solid Earth-core system (the "global geophysical fluids") will cause the following geodynamic effects on a broad time scale: (1) variations in the solid Earth's rotation (in length-of-day and polar motion/nutation) via the conservation of angular momentum and effected by torques at the fluid-solid Earth interface; (2) changes in the global gravitational field according to Newton's gravitational law; and (3) motion in the center of mass of the solid Earth relative to that of the whole Earth ("geocenter") via the conservation of linear momentum. These minute signals have become observable by space geodetic techniques, primarily VLBI, SLR, GPS, and DORIS, with ever increasing precision/accuracy and temporal/spatial resolution. Each of the seven Special Bureaus within MGGF is responsible for calculations related to a specific Earth component or aspect -- Atmosphere, Ocean, Hydrology, Ocean Tides, Mantle, Core, and Gravity/Geocenter. Angular momenta and torques, gravitational coefficients, and geocenter shift will be computed for geophysical fluids based on global observational data, and from state-of-the-art models, some of which assimilate such data. The computed quantities, algorithm and data formats are standardized. The results are archived and made available to the scientific research community. This paper reports the status of the MGGF activities and current results.

  12. Topographic-driven instabilities in terrestrial bodies

    NASA Astrophysics Data System (ADS)

    Vantieghem, S.; Cebron, D.; Herreman, W.; Lacaze, L.

    2013-12-01

    Models of internal planetary fluid layers (core flows, subsurface oceans) commonly assume that these fluid envelopes have a spherical shape. This approximation however entails a serious restriction from the fluid dynamics point of view. Indeed, in the presence of mechanical forcings (precession, libration, nutation or tides) due to gravitational interaction with orbiting partners, boundary topography (e.g. of the core-mantle boundary) may excite flow instabilities and space-filling turbulence. These phenomena may affect heat transport and dissipation at the main order. Here, we focus on instabilities driven by longitudinal libration. Using a suite of theoretical tools and numerical simulations, we are able to discern a parameter range for which instability may be excited. We thereby consider deformations of different azimuthal order. This study gives the first numerical evidence of the tripolar instability. Furthermore, we explore the non-linear regime and investigate the amplitude as well as the dissipation of the saturated instability. Indeed, these two quantities control the torques on the solid layers and the thermal transport. Furthermore, based on this results, we address the issue of magnetic field generation associated with these flows (by induction or by dynamo process). This instability mechanism applies to both synchronized as non-synchronized bodies. As such, our results show that a tripolar instability might be present in various terrestrial bodies (Early Moon, Gallilean moons, asteroids, etc.), where it could participate in dynamo action. Simulation of a libration-driven tripolar instability in a deformed spherical fluid layer: snapshot of the velocity magnitude, where a complex 3D flow pattern is established.

  13. Spiral Convection Columns: Improved Estimate Of Apparent Rotation Period(=1333.6 yr) Of Earth's Solid Inner Core

    NASA Astrophysics Data System (ADS)

    McDonald, Keith L.

    1999-11-01

    In 1974, an est. was made of turbulence driven rot. period of Earth's inner core(r=R_ic), neglecting forced precession, nutation and assuming core fluid's turbulent differential rot., (T_1c^o)_α, alone drives inner core and has achieved steady state so that viscous boundary condition, Υ_φ(R_ic,θ)=ɛ Υ = Υ_ic - Υ = Υ_φ(R_ic), is closely achieved.^1 Υ is mantle's const. sidereal angular velocity, Υ_ic is inner core's, and Υ_φ(r,θ) is fluid's appar., about Z-axis. In 1st est.^1 we assumed velocity and magnetic modes T_α,P_α and T_β,P_β are stationary random functions of time and deleted classes of modes in simplifying toroidal component eq. of transformed amplification eq.,^2 evaluated for mode (T_2c^o)_β to compute radial function (T_1c^o)_α thru a single integration with respect to r. In making integration we assumed toroidal and poloidal B-field intensities have same radial dependency thru core fluid, R_ic <= r <= 0.9R_c, whereas toroidal mag. field declines monotonely as rarrow 0, where it vanishes. To correct discrepancy, divide T_2c^o(r)_β by f(r) and multiply dr by f(r) and integrate over R_ic,..., R_c; define f(r)=150 gauss × (r/0.9R_c), 0 <= r <= 0.9Rc and f(r)=1500(1-r/R_c) gauss for 0.9Rc <= r <= R_c. Repeating computations^1 gives, for νm = 0.2 × 10^5 esu, rot. period of τ _φ(R_ic)=1768.77 yr, instead of former 812 yr.^1 However, we adopted later Elsasser's 1956 est. electrical conductivity of core fluid, σ = 3 × 10-6 emu, which yields τ_φ=1333.6 yr, as close lower limit since σ continues to increase with depth below mantle's base, R_c. Adopting 0.03 cm sec-1 for upwelling motions we see that spiral motions result that do not influence lifetimes of polar heat sources at Rc but shorten to near 10^3 yr near equator. B_T-,B_P-field replaces turbulance theory to compute τ _φ. ^1 Keith L McDonald, Bul. Am. Phys. Soc., 19(10), 1148, 1974. ^2 K L McDonald, On The Planetary Dynamo Theory, ESSA Tech. Report ERL 64-ESL 3 (Govt. Printing Office, 1968), Eq. 21.

  14. The Size of Mars' Fluid Core From Mars k2 Love Number Obtained From Analysis of MGS Doppler Tracking.

    NASA Astrophysics Data System (ADS)

    Yoder, C. F.; Konopliv, A. S.; Yuan, D. N.; Standish, E. M.; Folkner, W. M.

    2002-12-01

    The solar tidal deformation of Mars, measured by its k2 potential Love number, has been obtained from analysis of MGS radio tracking. The observed k2 =0.164+-0.016 is large enough to rule out a solid iron core. The inferred core radius Rc (1600km

  15. Determining parameters of Moon's orbital and rotational motion from LLR observations using GRAIL and IERS-recommended models

    NASA Astrophysics Data System (ADS)

    Pavlov, Dmitry A.; Williams, James G.; Suvorkin, Vladimir V.

    2016-11-01

    The aim of this work is to combine the model of orbital and rotational motion of the Moon developed for DE430 with up-to-date astronomical, geodynamical, and geo- and selenophysical models. The parameters of the orbit and physical libration are determined in this work from lunar laser ranging (LLR) observations made at different observatories in 1970-2013. Parameters of other models are taken from solutions that were obtained independently from LLR. A new implementation of the DE430 lunar model, including the liquid core equations, was done within the EPM ephemeris. The postfit residuals of LLR observations make evident that the terrestrial models and solutions recommended by the IERS Conventions are compatible with the lunar theory. That includes: EGM2008 gravitational potential with conventional corrections and variations from solid and ocean tides; displacement of stations due to solid and ocean loading tides; and precession-nutation model. Usage of these models in the solution for LLR observations has allowed us to reduce the number of parameters to be fit. The fixed model of tidal variations of the geopotential has resulted in a lesser value of Moon's extra eccentricity rate, as compared to the original DE430 model with two fit parameters. A mixed model of lunar gravitational potential was used, with some coefficients determined from LLR observations, and other taken from the GL660b solution obtained from the GRAIL spacecraft mission. Solutions obtain accurate positions for the ranging stations and the five retroreflectors. Station motion is derived for sites with long data spans. Dissipation is detected at the lunar fluid core-solid mantle boundary demonstrating that a fluid core is present. Tidal dissipation is strong at both Earth and Moon. Consequently, the lunar semimajor axis is expanding by 38.20 mm/yr, the tidal acceleration in mean longitude is -25.90 {{}^' ' }}/cy^2, and the eccentricity is increasing by 1.48× 10^{-11} each year.

  16. The dynamical behaviour of our planetary system. Proceedings. 4th Alexander von Humboldt Colloquium on Celestial Mechanics, Ramsau (Austria), 17 - 23 Mar 1996.

    NASA Astrophysics Data System (ADS)

    Dvorak, R.; Henrard, J.

    1996-03-01

    The following topics were dealt with: celestial mechanics, dynamical astronomy, planetary systems, resonance scattering, Hamiltonian mechanics non-integrability, irregular periodic orbits, escape, dynamical system mapping, fast Fourier method, precession-nutation, Nekhoroshev theorem, asteroid dynamics, the Trojan problem, planet-crossing orbits, Kirkwood gaps, future research, human comprehension limitations.

  17. An Innovative Role for Faith Community Nursing: Palliative Care Ministry.

    PubMed

    Lentz, Judy C

    Although the specialty of palliative nursing and palliative care continues to grow in hospital and outpatient settings, a paucity of home-based palliative services remains. This article discusses a new paradigm of faith-based palliative care ministry using faith community nurses (FCNs). Under the leadership of a palliative care doula (a nurse expert in palliative care), nurses in the faith community can offer critical support to those with serious illness. Models such as this provide stimulating content for FCN practice and opportunity to broaden health ministry within faith communities.

  18. On the dynamics of a spinning top under the influence of rotation: Resonant relative equilibrium states

    NASA Astrophysics Data System (ADS)

    Sheheitli, H.; Touma, J. R.

    2018-06-01

    We investigate the dynamics of a spinning top driven by a turntable that rotates with a given angular speed Ω. The pivot point of the top is at a fixed distance from the center of the turntable. We show that such a setup leads to resonance where the spinning top is locked in a state of relative equilibrium: precessing with an angular speed equal to that of the turntable while maintaining a constant nutation angle. Bifurcation diagrams are presented to depict how the stability of these relative equilibria, along with the corresponding value of the nutation angle, depends on the two parameters: the initial spin angular momentum and Ω. We discuss the classical spinning top, that is, the Ω = 0 case, and address the relation of the "sleeping top" state to the aforementioned relative equilibria. We also relate the dynamics to that of a spherical pendulum on a rotary arm and show that the latter can be viewed as a special case of the system at hand. Finally, we illustrate how the relative equilibria can be exploited for the attitude control of the top through resonance capture while slowly varying the turnable angular speed, Ω.

  19. Broadband excitation and indirect detection of nitrogen-14 in rotating solids using Delays Alternating with Nutation (DANTE)

    NASA Astrophysics Data System (ADS)

    Vitzthum, Veronika; Caporini, Marc A.; Ulzega, Simone; Bodenhausen, Geoffrey

    2011-09-01

    A train of short rotor-synchronized pulses in the manner of Delays Alternating with Nutations for Tailored Excitation (DANTE) applied to nitrogen-14 nuclei ( I = 1) in samples spinning at the magic angle at high frequencies (typically νrot = 62.5 kHz so that τrot = 16 μs) allows one to achieve uniform excitation of a great number of spinning sidebands that arise from large first-order quadrupole interactions, as occur for aromatic nitrogen-14 nuclei in histidine. With routine rf amplitudes ω1( 14N)/(2 π) = 60 kHz and very short pulses of a typical duration 0.5 < τp < 2 μs, efficient excitation can be achieved with 13 rotor-synchronized pulses in 13 τrot = 208 μs. Alternatively, with 'overtone' DANTE sequences using 2, 4, or 8 pulses per rotor period one can achieve efficient broadband excitation in fewer rotor periods, typically 2-4 τrot. These principles can be combined with the indirect detection of 14N nuclei via spy nuclei with S = ½ such as 1H or 13C in the manner of Dipolar Heteronuclear Multiple-Quantum Correlation (D-HMQC).

  20. Segmentation of skin lesions in chronic graft versus host disease photographs with fully convolutional networks

    NASA Astrophysics Data System (ADS)

    Wang, Jianing; Chen, Fuyao; Dellalana, Laura E.; Jagasia, Madan H.; Tkaczyk, Eric R.; Dawant, Benoit M.

    2018-02-01

    Chronic graft-versus-host disease (cGVHD) is a frequent and potentially life-threatening complication of allogeneic hematopoietic stem cell transplantation (HCT) and commonly affects the skin, resulting in distressing patient morbidity. The percentage of involved body surface area (BSA) is commonly used for diagnosing and scoring the severity of cGVHD. However, the segmentation of the involved BSA from patient whole body serial photography is challenging because (1) it is difficult to design traditional segmentation method that rely on hand crafted features as the appearance of cGVHD lesions can be drastically different from patient to patient; (2) to the best of our knowledge, currently there is no publicavailable labelled image set of cGVHD skin for training deep networks to segment the involved BSA. In this preliminary study we create a small labelled image set of skin cGVHD, and we explore the possibility to use a fully convolutional neural network (FCN) to segment the skin lesion in the images. We use a commercial stereoscopic Vectra H1 camera (Canfield Scientific) to acquire 400 3D photographs of 17 cGVHD patients aged between 22 and 72. A rotational data augmentation process is then applied, which rotates the 3D photos through 10 predefined angles, producing one 2D projection image at each position. This results in 4000 2D images that constitute our cGVHD image set. A FCN model is trained and tested using our images. We show that our method achieves encouraging results for segmenting cGVHD skin lesion in photographic images.

  1. The partially filled viscous ring damper.

    NASA Technical Reports Server (NTRS)

    Alfriend, K. T.

    1973-01-01

    The problem of a spinning satellite with a partially filled viscous ring damper is investigated. It is shown that there are two distinct modes of motion, the nutation-synchronous mode and spin-synchronous mode. From an approximate solution of the equations of motion a time constant is obtained for each mode. From a consideration of the fluid dynamics several methods are developed for determining the damping constant.

  2. Slow Manifold and Hannay Angle in the Spinning Top

    ERIC Educational Resources Information Center

    Berry, M. V.; Shukla, P.

    2011-01-01

    The spin of a top can be regarded as a fast variable, coupled to the motion of the axis which is slow. In pure precession, the rotation of the axis round a cone (without nutation), can be considered as the result of a reaction from the fast spin. The resulting restriction of the total state space of the top is an illustrative example, at…

  3. Recovery of spinning satellites

    NASA Technical Reports Server (NTRS)

    Coppey, J. M.; Mahaffey, W. R.

    1977-01-01

    The behavior of a space tug and a spinning satellite in a coupled configuration was simulated and analyzed. A docking concept was developed to investigate the requirements pertaining to the design of a docking interface. Sensing techniques and control requirements for the chase vehicle were studied to assess the feasibility of an automatic docking. The effects of nutation dampers and liquid propellant slosh motion upon the docking transient were investigated.

  4. A high resolution pneumatic stepping actuator for harsh reactor environments

    NASA Astrophysics Data System (ADS)

    Tippetts, Thomas B.; Evans, Paul S.; Riffle, George K.

    1993-01-01

    A reactivity control actuator for a high-power density nuclear propulsion reactor must be installed in close proximity to the reactor core. The energy input from radiation to the actuator structure could exceed hundreds of W/cc unless low-cross section, low-absorptivity materials are chosen. Also, for post-test handling and subsequent storage, materials should not be used that are activated into long half-life isotopes. Pneumatic actuators can be constructed from various reactor-compatible materials, but conventional pneumatic piston actuators generally lack the stiffness required for high resolution reactivity control unless electrical position sensors and compensated electronic control systems are used. To overcome these limitations, a pneumatic actuator is under development that positions an output shaft in response to a series of pneumatic pulses, comprising a pneumatic analog of an electrical stepping motor. The pneumatic pulses are generated remotely, beyond the strong radiation environment, and transmitted to the actuator through tubing. The mechanically simple actuator uses a nutating gear harmonic drive to convert motion of small pistons directly to high-resolution angular motion of the output shaft. The digital nature of this actuator is suitable for various reactor control algorithms but is especially compatible with the three bean salad algorithm discussed by Ball et al. (1991).

  5. Emergency response nurse scheduling with medical support robot by multi-agent and fuzzy technique.

    PubMed

    Kono, Shinya; Kitamura, Akira

    2015-08-01

    In this paper, a new co-operative re-scheduling method corresponding the medical support tasks that the time of occurrence can not be predicted is described, assuming robot can co-operate medical activities with the nurse. Here, Multi-Agent-System (MAS) is used for the co-operative re-scheduling, in which Fuzzy-Contract-Net (FCN) is applied to the robots task assignment for the emergency tasks. As the simulation results, it is confirmed that the re-scheduling results by the proposed method can keep the patients satisfaction and decrease the work load of the nurse.

  6. Earth's rotation irregularities derived from UTIBLI by method of multi-composing of ordinates

    NASA Astrophysics Data System (ADS)

    Segan, S.; Damjanov, I.; Surlan, B.

    Using the method of multi-composing of ordinates we have identified in Earth's rotation a long-periodic term with a period similar to the relaxation time of Chandler nutation. There was not enough information to assess its origin. We demonstrate that the method can be used even in the case when the data time span is comparable to the period of harmonic component.

  7. WOLF REXUS EXPERIMENT - European Planetary Science Congress

    NASA Astrophysics Data System (ADS)

    Buzdugan, A.

    2017-09-01

    WOLF experiment is developing a reaction wheel-based control system, effectively functioning as active nutation damper. One reaction wheel is used to reduce the undesirable lateral rates of spinning cylindrically symmetric free falling units, ejected from a sounding rocket. Once validated in REXUS flight, the concept and the design developed during WOLF experiment can be used for other application which require a flat spin of the free falling units.

  8. PAL: A Positional Astronomy Library

    NASA Astrophysics Data System (ADS)

    Jenness, T.; Berry, D. S.

    2013-10-01

    PAL is a new positional astronomy library written in C that attempts to retain the SLALIB API but is distributed with an open source GPL license. The library depends on the IAU SOFA library wherever a SOFA routine exists and uses the most recent nutation and precession models. Currently about 100 of the 200 SLALIB routines are available. Interfaces are also available from Perl and Python. PAL is freely available via github.

  9. Obliquity of the Ecliptic

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The angle between the planes of the ecliptic and the equator. On the celestial sphere, the angle at which the ecliptic intersects the celestial equator. The current (year 2000) value of the obliquity of ecliptic, which is denoted by the symbol ɛ, is 23° 26' 21''. Its value varies by ±9'' over a period of 18.6 years as a consequence of a phenomenon called nutation. Over a much longer period (abou...

  10. Circumnutation of rice coleoptiles: its relationships with gravitropism and absence in lazy mutants.

    PubMed

    Yoshihara, Takeshi; Iino, Moritoshi

    2006-05-01

    Although circumnutation occurs widely in higher plants, its mechanism is little understood. The idea that circumnutation is based on gravitropism has long been investigated, but the reported results have been controversial. We used dark-grown coleoptiles of rice (Oryza sativa L.) to re-investigate this issue. The following results supported the existence of a close relationship between gravitropism and circumnutation: (1) circumnutation disappears on a horizontal clinostat; (2) circumnutation is interrupted by a gravitropic response and re-initiated at a definable phase after gravitropic curvature; (3) circumnutation can be re-established by submergence and a brief gravitropic stimulation in the coleoptiles that have stopped nutating in response to red light; and (4) lazy mutants show no circumnutation. In spite of these results, however, there were cases in which gravitropism and circumnutation could be separated. Firstly, the non-circumnutating lazy coleoptile showed nearly a wild-type level of gravitropic responsiveness in its upper half, although this part was an active site of both gravitropism and circumnutation in wild-type coleoptiles. Secondly, coleoptiles could nutate without overshooting the vertical when developing phototropic curvature. It is concluded that gravitropism influences, but it is not directly involved in the process of circumnutation. It is further suggested that a gravity signal, shared with gravitropism, contributes to the maintenance of circumnutation.

  11. A Two-Wheel Observing Mode for the MAP Spacecraft

    NASA Technical Reports Server (NTRS)

    Starin, Scott R.; ODonnell, James R., Jr.

    2001-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE). Due to the MAP project's limited mass, power, and budget, a traditional reliability concept including fully redundant components was not feasible. The MAP design employs selective hardware redundancy, along with backup software modes and algorithms, to improve the odds of mission success. This paper describes the effort to develop a backup control mode, known as Observing II, that will allow the MAP science mission to continue in the event of a failure of one of its three reaction wheel assemblies. This backup science mode requires a change from MAP's nominal zero-momentum control system to a momentum-bias system. In this system, existing thruster-based control modes are used to establish a momentum bias about the sun line sufficient to spin the spacecraft up to the desired scan rate. Natural spacecraft dynamics exhibits spin and nutation similar to the nominal MAP science mode with different relative rotation rates, so the two reaction wheels are used to establish and maintain the desired nutation angle from the sun line. Detailed descriptions of the ObservingII control algorithm and simulation results will be presented, along with the operational considerations of performing the rest of MAP's necessary functions with only two wheels.

  12. Motion of the angular momentum vector in body coordinates for torque-free dual-spin spacecraft

    NASA Technical Reports Server (NTRS)

    Fedor, J. V.

    1981-01-01

    The motion of the angular momentum vector in body coordinates for torque free, asymmetric dual spin spacecraft without and, for a special case, with energy dissipation on the main spacecraft is investigated. Without energy dissipation, two integrals can be obtained from the Euler equations of motion. Using the classical method of elimination of variable, the motion about the equilibrium points (six for the general case) are derived with these integrals. For small nutation angle, theta, the trajectories about the theta = 0 deg and theta = 180 deg points readily show the requirements for stable motion about these points. Also the conditions needed to eliminate stable motion about the theta = 180 deg point as well as the other undesireable equilibrium points follow directly from these equations. For the special case where the angular momentum vector moves about the principal axis which contains the momentum wheel, the notion of 'free variable' azimuth angle is used. Physically this angle must vary from 0 to 2 pi in a circular periodic fashion. Expressions are thus obtained for the nutation angle in terms of the free variable and other spacecraft parameters. Results show that in general there are two separate trajectory expressions that govern the motion of the angular momentum vector in body coordinates.

  13. Observation model and parameter partials for the JPL VLBI parameter estimation software MODEST, 19 94

    NASA Technical Reports Server (NTRS)

    Sovers, O. J.; Jacobs, C. S.

    1994-01-01

    This report is a revision of the document Observation Model and Parameter Partials for the JPL VLBI Parameter Estimation Software 'MODEST'---1991, dated August 1, 1991. It supersedes that document and its four previous versions (1983, 1985, 1986, and 1987). A number of aspects of the very long baseline interferometry (VLBI) model were improved from 1991 to 1994. Treatment of tidal effects is extended to model the effects of ocean tides on universal time and polar motion (UTPM), including a default model for nearly diurnal and semidiurnal ocean tidal UTPM variations, and partial derivatives for all (solid and ocean) tidal UTPM amplitudes. The time-honored 'K(sub 1) correction' for solid earth tides has been extended to include analogous frequency-dependent response of five tidal components. Partials of ocean loading amplitudes are now supplied. The Zhu-Mathews-Oceans-Anisotropy (ZMOA) 1990-2 and Kinoshita-Souchay models of nutation are now two of the modeling choices to replace the increasingly inadequate 1980 International Astronomical Union (IAU) nutation series. A rudimentary model of antenna thermal expansion is provided. Two more troposphere mapping functions have been added to the repertoire. Finally, corrections among VLBI observations via the model of Treuhaft and lanyi improve modeling of the dynamic troposphere. A number of minor misprints in Rev. 4 have been corrected.

  14. Improving determination of the Martian rotation parameters through the synergy between LaRa and RISE radioscience experiments

    NASA Astrophysics Data System (ADS)

    Le Maistre, S.; Péters, M. J.; Yseboodt, M.; Dehant, V. M. A.

    2017-12-01

    The LaRa experiment consists of a transponder onboard the ExoMars mission that has been designed to obtain two-way Doppler shift measurements from a X-band radiolink between the lander on Mars and the ground stations on Earth. LaRa is planned to last at least one Earth year and should begin to operate from January 2021. RISE is another transponder onboard the InSight mission. This NASA experiment should last at least one Martian year starting from November 2018. The Doppler measurements are used to obtain the Mars' orientation and rotation parameters (MOP) i.e. the length-of-day (LOD) variations, the precession rate and the nutations of the rotation axis, and the polar motion. One of the major objectives of LaRa is to improve our knowledge of the deep interior of Mars by precisely measuring the signature of the liquid core in the nutations. In this study, we performed numerical simulations of these Doppler measurements in order to evaluate the impact on the determination of the MOP and the gain in precision provided by the synergy between both LaRa and RISE experiments. We used the GINS (Géodésie par Intégrations Numériques Simultanées) software implemented by the CNES and further developed at ROB for planetary geodesy applications. We assess the advantage of having the LaRa experiment in a row or at the same time as RISE experiment by considering the following scenarios for comparison: RISE and LaRa alone, RISE followed by LaRa, LaRa together with RISE. In this way, we study the impact of an improved Doppler geometry induced by the involvement of two landers instead of one. The Doppler geometry is a fundamental aspect of radioscience experiments. It affects the measurement sensitivity to the MOP and is thereby an important factor in their determination. The variety of the geometry (especially the azimuth) provided by its omnidirectional patch antenna is a strength of LaRa compared to RISE (two directional horn antennas) that allows to improve the MOP estimates obtained from RISE alone.In addition, because the two candidate landing sites of ExoMars are higher in latitude (18.20°N for Oxia Planum, 22°N for Mawrth Vallis) than InSight (4°N), we could estimate for the very first time the Chandler Wobble component of the polar motion using LaRa (Le Maistre et al., 2012), which is also powerful to constrain Mars interior and atmospheric models.

  15. Salience of Somatosensory Stimulus Modulating External-to-Internal Orienting Attention.

    PubMed

    Peng, Jiaxin; Chan, Sam C C; Chau, Bolton K H; Yu, Qiuhua; Chan, Chetwyn C H

    2017-01-01

    Shifting between one's external and internal environments involves orienting attention. Studies on differentiating subprocesses associated with external-to-internal orienting attention are limited. This study aimed to reveal the characteristics of the disengagement, shifting and reengagement subprocesses by using somatosensory external stimuli and internally generated images. Study participants were to perceive nociceptive external stimuli (External Low (E L ) or External High (E H )) induced by electrical stimulations (50 ms) followed by mentally rehearsing learned subnociceptive images (Internal Low (I L ) and Internal High (I H )). Behavioral responses and EEG signals of the participants were recorded. The three significant components elicited were: fronto-central negativity (FCN; 128-180 ms), fronto-central P2 (200-260 ms), and central P3 (320-380 ms), which reflected the three subprocesses, respectively. Differences in the FCN and P2 amplitudes during the orienting to the subnociceptive images revealed only in the E H but not E L stimulus condition that are new findings. The results indicated that modulations of the disengagement and shifting processes only happened if the external nociceptive stimuli were of high salience and the external-to-internal incongruence was large. The reengaging process reflected from the amplitude of P3 correlated significantly with attenuation of the pain intensity felt from the external nociceptive stimuli. These findings suggested that the subprocesses underlying external-to-internal orienting attention serve different roles. Disengagement subprocess tends to be stimulus dependent, which is bottom-up in nature. Shifting and reengagement tend to be top-down subprocesses, which taps on cognitive control. This subprocess may account for the attenuation effects on perceived pain intensity after orienting attention.

  16. Breast tumor segmentation in DCE-MRI using fully convolutional networks with an application in radiogenomics

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Saha, Ashirbani; Zhu, Zhe; Mazurowski, Maciej A.

    2018-02-01

    Breast tumor segmentation based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) remains an active as well as a challenging problem. Previous studies often rely on manual annotation for tumor regions, which is not only time-consuming but also error-prone. Recent studies have shown high promise of deep learning-based methods in various segmentation problems. However, these methods are usually faced with the challenge of limited number (e.g., tens or hundreds) of medical images for training, leading to sub-optimal segmentation performance. Also, previous methods cannot efficiently deal with prevalent class-imbalance problems in tumor segmentation, where the number of voxels in tumor regions is much lower than that in the background area. To address these issues, in this study, we propose a mask-guided hierarchical learning (MHL) framework for breast tumor segmentation via fully convolutional networks (FCN). Our strategy is first decomposing the original difficult problem into several sub-problems and then solving these relatively simpler sub-problems in a hierarchical manner. To precisely identify locations of tumors that underwent a biopsy, we further propose an FCN model to detect two landmarks defined on nipples. Finally, based on both segmentation probability maps and our identified landmarks, we proposed to select biopsied tumors from all detected tumors via a tumor selection strategy using the pathology location. We validate our MHL method using data for 272 patients, and achieve a mean Dice similarity coefficient (DSC) of 0.72 in breast tumor segmentation. Finally, in a radiogenomic analysis, we show that a previously developed image features show a comparable performance for identifying luminal A subtype when applied to the automatic segmentation and a semi-manual segmentation demonstrating a high promise for fully automated radiogenomic analysis in breast cancer.

  17. Salience of Somatosensory Stimulus Modulating External-to-Internal Orienting Attention

    PubMed Central

    Peng, Jiaxin; Chan, Sam C. C.; Chau, Bolton K. H.; Yu, Qiuhua; Chan, Chetwyn C. H.

    2017-01-01

    Shifting between one’s external and internal environments involves orienting attention. Studies on differentiating subprocesses associated with external-to-internal orienting attention are limited. This study aimed to reveal the characteristics of the disengagement, shifting and reengagement subprocesses by using somatosensory external stimuli and internally generated images. Study participants were to perceive nociceptive external stimuli (External Low (EL) or External High (EH)) induced by electrical stimulations (50 ms) followed by mentally rehearsing learned subnociceptive images (Internal Low (IL) and Internal High (IH)). Behavioral responses and EEG signals of the participants were recorded. The three significant components elicited were: fronto-central negativity (FCN; 128–180 ms), fronto-central P2 (200–260 ms), and central P3 (320–380 ms), which reflected the three subprocesses, respectively. Differences in the FCN and P2 amplitudes during the orienting to the subnociceptive images revealed only in the EH but not EL stimulus condition that are new findings. The results indicated that modulations of the disengagement and shifting processes only happened if the external nociceptive stimuli were of high salience and the external-to-internal incongruence was large. The reengaging process reflected from the amplitude of P3 correlated significantly with attenuation of the pain intensity felt from the external nociceptive stimuli. These findings suggested that the subprocesses underlying external-to-internal orienting attention serve different roles. Disengagement subprocess tends to be stimulus dependent, which is bottom-up in nature. Shifting and reengagement tend to be top-down subprocesses, which taps on cognitive control. This subprocess may account for the attenuation effects on perceived pain intensity after orienting attention. PMID:28970787

  18. Deficits in novelty exploration after controlled cortical impact.

    PubMed

    Wagner, Amy K; Postal, Brett A; Darrah, Shaun D; Chen, Xiangbai; Khan, Amina S

    2007-08-01

    Experimental models of traumatic brain injury (TBI) have been utilized to characterize the behavioral derangements associated with brain trauma. Several studies exist characterizing motor function in the controlled cortical impact (CCI) injury model of TBI, but less research has focused on how CCI affects exploratory behavior. The goal of this study was to characterize deficits in three novelty exploration tasks after the CCI. Under anesthesia, 37 adult male Sprague Dawley rats received CCI (2.7 mm and 2.9 mm; 4 m/sec) over the right parietal cortex or sham surgery. For days 1-6 post-surgery, the beam balance and beam walking tasks were used to assess motor deficits. The Open Field, Y-Maze, and Free Choice Novelty (FCN) tasks were used to measure exploratory deficits from days 7-14 post-surgery. Injured rats displayed a significant, but transient, deficit on each motor task (p < 0.0001). Open Field results showed that injured rats had lower activity levels than shams (p < 0.0001), displayed less habituation to the task, and had more anxiety related behaviors (thigmotaxis) across days (p < 0.0001). Y-maze results suggest that injured rats spent less time in the novel arm versus the familiar arms when compared to shams (p < 0.0001). For FCN, injured rats were less active (p < 0.05) and spent less time and had fewer interactions with objects in the novel environment compared to shams (p < 0.05). These results suggest that several ethological factors contribute to exploratory deficits after CCI and can be effectively characterized with the behavioral tasks described. Future work will utilize these tasks to evaluate the neural substrates underlying exploratory deficits after TBI.

  19. Medium- and Long-Wavelength Infrared Emission from a Laser-Produced Oxygen Plasma.

    DTIC Science & Technology

    1985-12-31

    PERSONAL AUT017IS, Sc ( ielt ifi(’ Interim FRO )m 1 9 8 5T j) ceber 31 30 *1 lSUPPLEMENTARY NUTATION *~~ 17 COSATi CODES 18 S;UHI E C T TFlM E H...11. H. R. Griem, Plasma Spectroscopy, McGraw Hill, N.Y. 1964: H1. R. Griem, Spectral Line Broadening by Plasmas, Academic Press, N.Y. 12. A. K. Pradham

  20. Progress in geophysical aspects of the rotation of the earth

    NASA Technical Reports Server (NTRS)

    Lambeck, K.

    1978-01-01

    The geophysical causes and consequences of the Earth's rotation are reviewed. Specific topics covered include: (1) the motion of the rotation axis in space, precession and nutation; (2) the motion of the rotation axis relative to the Earth, polar motion; and (3) the rate of rotation about this axis, or changes in the length of day. Secular decrease in obliquity and evolution of the Earth-Moon system are also discussed.

  1. Nutational Flows Inside Spinning Cylinders

    DTIC Science & Technology

    1990-12-01

    with the Astronautics Laboratory (AFSC), Edwards AFB CA 93523-5000. AL Project Manager was Gary Vogt. This report has been reviewed and is approved for...USERS UNCLASSIFIED 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL GARY L. VOGT (805) 275-5258 LSCF DD Form...is consistent with the flight data shown in Figure 3. However, despite the difference, the jet gain model by Flandro has stimulated the present work

  2. Flow Induced Nutation Instability in Spinning Solid Propellant Rockets

    DTIC Science & Technology

    1990-04-01

    September 1989 ROCKETS April 1990 Authors: Wasatch Research & Engineering, Inc. G. A. Flandro 375 N. Virginia Street M, Leloudis Salt Lake City UT...AFSC), Edwards Air Force Base, CA. AL Project Manager was Gary L. Vogt. This report has been reviewed and is approved for release and distribution in...accordance with the distribution statement on the cover and on the DD Form 1473. ,(- GARY L. VOCT LAWRENCE P. OUINN Project Manager Chief

  3. Advanced Method to Estimate Fuel Slosh Simulation Parameters

    NASA Technical Reports Server (NTRS)

    Schlee, Keith; Gangadharan, Sathya; Ristow, James; Sudermann, James; Walker, Charles; Hubert, Carl

    2005-01-01

    The nutation (wobble) of a spinning spacecraft in the presence of energy dissipation is a well-known problem in dynamics and is of particular concern for space missions. The nutation of a spacecraft spinning about its minor axis typically grows exponentially and the rate of growth is characterized by the Nutation Time Constant (NTC). For launch vehicles using spin-stabilized upper stages, fuel slosh in the spacecraft propellant tanks is usually the primary source of energy dissipation. For analytical prediction of the NTC this fuel slosh is commonly modeled using simple mechanical analogies such as pendulums or rigid rotors coupled to the spacecraft. Identifying model parameter values which adequately represent the sloshing dynamics is the most important step in obtaining an accurate NTC estimate. Analytic determination of the slosh model parameters has met with mixed success and is made even more difficult by the introduction of propellant management devices and elastomeric diaphragms. By subjecting full-sized fuel tanks with actual flight fuel loads to motion similar to that experienced in flight and measuring the forces experienced by the tanks these parameters can be determined experimentally. Currently, the identification of the model parameters is a laborious trial-and-error process in which the equations of motion for the mechanical analog are hand-derived, evaluated, and their results are compared with the experimental results. The proposed research is an effort to automate the process of identifying the parameters of the slosh model using a MATLAB/SimMechanics-based computer simulation of the experimental setup. Different parameter estimation and optimization approaches are evaluated and compared in order to arrive at a reliable and effective parameter identification process. To evaluate each parameter identification approach, a simple one-degree-of-freedom pendulum experiment is constructed and motion is induced using an electric motor. By applying the estimation approach to a simple, accurately modeled system, its effectiveness and accuracy can be evaluated. The same experimental setup can then be used with fluid-filled tanks to further evaluate the effectiveness of the process. Ultimately, the proven process can be applied to the full-sized spinning experimental setup to quickly and accurately determine the slosh model parameters for a particular spacecraft mission. Automating the parameter identification process will save time, allow more changes to be made to proposed designs, and lower the cost in the initial design stages.

  4. Long-Term Evolution of Orbits About a Precessing Oblate Planet: 3. A Semianalytical and a Purely Numerical Approach

    DTIC Science & Technology

    2007-11-01

    Keywords Orbital elements · Osculating elements · Mars · Natural satellites · Natural satellites’ orbits · Deimos · Equinoctial precession · The...theory of orbits about a precessing and nutating oblate planet, in terms of osculating elements defined in a frame associated with the equator of...solar-gravity-perturbed satellite orbiting an oblate planet subject to nonuniform equinoctial precession. This nonuniformity of precession is caused by

  5. The use of a selective saturation pulse to suppress t1 noise in two-dimensional 1H fast magic angle spinning solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Robertson, Aiden J.; Pandey, Manoj Kumar; Marsh, Andrew; Nishiyama, Yusuke; Brown, Steven P.

    2015-11-01

    A selective saturation pulse at fast magic angle spinning (MAS) frequencies (60+ kHz) suppresses t1 noise in the indirect dimension of two-dimensional 1H MAS NMR spectra. The method is applied to a synthetic nucleoside with an intense methyl 1H signal due to triisopropylsilyl (TIPS) protecting groups. Enhanced performance in terms of suppressing the methyl signal while minimising the loss of signal intensity of nearby resonances of interest relies on reducing spin diffusion - this is quantified by comparing two-dimensional 1H NOESY-like spin diffusion spectra recorded at 30-70 kHz MAS. For a saturation pulse centred at the methyl resonance, the effect of changing the nutation frequency at different MAS frequencies as well as the effect of changing the pulse duration is investigated. By applying a pulse of duration 30 ms and nutation frequency 725 Hz at 70 kHz MAS, a good compromise of significant suppression of the methyl resonance combined with the signal intensity of resonances greater than 5 ppm away from the methyl resonance being largely unaffected is achieved. The effectiveness of using a selective saturation pulse is demonstrated for both homonuclear 1H-1H double quantum (DQ)/single quantum (SQ) MAS and 14N-1H heteronuclear multiple quantum coherence (HMQC) two-dimensional solid-state NMR experiments.

  6. Necessary and sufficient conditions for the stability of a sleeping top described by three forms of dynamic equations

    NASA Astrophysics Data System (ADS)

    Ge, Zheng-Ming

    2008-04-01

    Necessary and sufficient conditions for the stability of a sleeping top described by dynamic equations of six state variables, Euler equations, and Poisson equations, by a two-degree-of-freedom system, Krylov equations, and by a one-degree-of-freedom system, nutation angle equation, is obtained by the Lyapunov direct method, Ge-Liu second instability theorem, an instability theorem, and a Ge-Yao-Chen partial region stability theorem without using the first approximation theory altogether.

  7. Improved UT1 Predictions through Low-Latency VLBI Observations

    DTIC Science & Technology

    2010-03-14

    J Geod (2010) 84:399–402 DOI 10.1007/s00190-010-0372-8 SHORT NOTE Improved UT1 predictions through low-latency VLBI observations Brian Luzum · Axel...polar motion and nutation on UT1 determinations from VLBI Intensive obser- vations. J Geod 82(12):863. doi:10.1007/s00190-008-0212-2 Ray JR, Carter WE...Behrend D (2007) The International VLBI Service for Geodesy and Astrometry (IVS): current capabilities and future prospects. J Geod 81(6–8):479. doi

  8. Chirped-Pulse Millimeter-Wave Spectroscopy of Rydberg-Rydberg Transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prozument, Kirill; Colombo, Anthony P.; Zhou Yan

    2011-09-30

    Transitions between Rydberg states of Ca atoms, in a pulsed, supersonic atomic beam, are directly detected by chirped-pulse millimeter-wave spectroscopy. Broadband, high-resolution spectra with accurate relative intensities are recorded instantly. Free induction decay (FID) of atoms, polarized by the chirped pulse, at their Rydberg-Rydberg transition frequencies, is heterodyne detected, averaged in the time domain, and Fourier transformed into the frequency domain. Millimeter-wave transient nutations are observed, and the possibility of FID evolving to superradiance is discussed.

  9. Where Are the Asteroids? The Design of ASTPT and ASTID.

    DTIC Science & Technology

    1980-04-15

    obliquity A = nutation in longitude = obliquity of ecliptic , of date e 0 obliquity of ecliptic , 1950.0 0O eutra rcsin uniy e q 1c 6 equatorial precession...need an additional rotation by the obliquity of the ecliptic , r- = R1(-Eo)o; Eo = 23*26󈧰蠔 (6) There is a very old trick in astronomy to simplify...execution speed. This is accomplished by using an approximate geocentric ecliptic position to eliminate, as quickly (in terms of CPU time) as possible

  10. A History of Precession Dissipation Energy

    NASA Astrophysics Data System (ADS)

    Vanyo, J. P.

    2006-05-01

    I am not an historian, but here are a few of my remembrances of my 78 years. Precession theory and application had its formal beginning by Euler in 1758 to define rotation of rigid objects. A short burst of interest, theory, and application for precession and planetary motion and gyroscopes started around the1800s. Precession theory blossomed in the 1960s by the Soviet-American contest for space exploration and the contest for a geodynamo model. Precession interest then followed separate paths. Aerospace research introduced precession dissipation energy by America's 1958 satellite (Explorer I) where an instability was seen. Its antennae dissipated energy by material hysteresis. Liquid dissipation in precessing satellites became a major difficulty for designers, and physical experiments became the prime solution. Precession dissipation energy rates are difficult and expensive to measure, see Vanyo, "Rotating Fluids", 1993 Butterworth-Heinemann (2001 Dover), p.318. Geophysical research introduced nutation and precession by luni-solar forces. Luni-solar precession dissipation energy had become the criteria for adequacy for a geodynamo. Roberts and Busse both examined viscous models, but an attempt by Malkus (1968) for a viscous and magnetic model did not success. A precession model by Vanyo-Likins (1972) derived an aerospace application for dissipation energy. Rochester et al (1975) and Loper (1975) claimed that precession energy was inadequate for a geodynamo, but formal criteria were never published. The 1975 papers by Rochester et al and Loper were in error. Their estimate for precession energy rate is off by 4 magnitudes. New research now supports energetic precession geodynamo models, e.g., articles for precession experiments that have adequate geodynamo energy rates, articles for core-mantle motions that show geomagnetic CMB patterns, articles for viscous-electromagnetic analyses that show precession core-mantle coupling, and articles for computer simulations that have achieved laminar and turbulent precession geodynamo models. Please, by e-mail, ask for a survey of solutions and problems.

  11. Concept designs of nonrotating-type centrifugal blood pump and basic study on output characteristics of the oscillating disk-type centrifugal pump.

    PubMed

    Kabei, N; Tuichiya, K; Sakurai, Y

    1994-09-01

    When designing a turbo-type blood pump as an artificial heart, the gap between a rotating shaft and a pump housing should be perfectly sealed to prevent any leakage or contamination through a seal. In addition, blood coagulation in a blood chamber must be avoided. To overcome these problems, we proposed five different nonrotating-type turbo pumps: a caudal-fin-type axial-flow pump, a caudal-fin-type centrifugal pump, a nutating-column-type centrifugal pump, a nutating-collapsible-tube-type centrifugal pump, and an oscillating-disk-type centrifugal pump. We selected and developed the oscillating-disk-type centrifugal pump that consists of a disk, a driving rod, a seal, an oscillation mechanism, and a pump housing. The disk is mounted on the end of the rod, which is connected to a high-speed DC motor through an oscillation mechanism. The rod and the disk do not rotate, but they oscillate in the pump housing. This movement of the disk generates forward fluid flow around the axis (i.e., the rotational fluid flow). Centrifugal force due to fluid rotation supports the pressure difference between the outlet and the inlet. The diameter of the disk is 39 mm, the maximum inner diameter of the pump housing is 40 mm, and the volume of the blood chamber for 25 degrees' oscillation is 16.9 ml. The performance of the pump was tested in a mock circulatory system.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Analysis of the wobbling effect in a lens-shaped body rotation

    NASA Astrophysics Data System (ADS)

    Kim, Minho

    2017-03-01

    We discuss the wobbling motion in a lens-shaped body rotation, focusing on the frequencies and the amplitude of nutation by filming the rotational motion and wobbling of the body. The friction coefficient of the surface is altered to examine its influence for two lenses with different curvature radii. MATLAB programs are developed to retrieve the Euler angles, which are graphed according to time. It is shown that the lens with a smaller curvature radius exhibits the wobbling effect in all cases, whereas the lens with a larger curvature radius shows such behaviour in limited circumstances. The study confirms that the friction coefficient has a negative linear correlation with the vertical axis declination amplitude with the R-squared value 0.878, showing that friction gives damping and causes smaller axis declination amplitudes. Negative linear correlation also exists with relation to the number of wobbles before the motion stops, where the R-squared value is 0.938, providing further evidence that friction and wobbling cause higher energy dissipation rates. The frequency of the wobbling motion only has a correlation with the curvature radius of the lens, showing no explicit correlation with the friction coefficient, with its R-squared value being 0.077. No losses of contact were observable in this motion. The overall process does not utilize particularly expensive apparatus and will be applicable for senior undergraduate students to experiment on and analyze the motion of a special situation regarding a rigid body that is both spinning and nutating.

  13. Galactic Warps in Triaxial Halos

    NASA Astrophysics Data System (ADS)

    Jeon, Myoungwon; Kim, Sungsoo S.; Ann, Hong Bae

    2009-05-01

    We study the behavior of galactic disks in triaxial halos both numerically and analytically to see if warps can be excited and sustained in triaxial potentials. We consider the following two scenarios: (1) galactic disks that are initially tilted relative to the equatorial plane of the halo (for a pedagogical purpose), and (2) tilted infall of dark matter relative to the equatorial plane of the disk and the halo. With numerical simulations of 100,000 disk particles in a fixed halo potential, we find that in triaxial halos, warps can be excited and sustained just as in spherical or axisymmetric halos but they show some oscillatory behavior and even can be transformed to a polar-ring system if the halo has a prolate-like triaxiality. The nonaxisymmetric component of the halo causes the disk to nutate, and the differential nutation between the inner and outer parts of the disk generally makes the magnitude of the warp slightly diminish and fluctuate. We also find that warps are relatively weaker in oblate and oblate-like triaxial halos, and since these halos are the halo configurations of disk galaxies inferred by cosmological simulations, our results are consistent with the fact that most of the observed warps are quite weak. We derive approximate formulae for the torques exerted on the disk by the triaxial halo and the dark matter torus, and with these formulae we successfully describe the behavior of the disks in our simulations. The techniques used in deriving these formulae could be applied for realistic halos with more complex structures.

  14. X-ray variability of SS 433: Evidence for supercritical accretion

    NASA Astrophysics Data System (ADS)

    Atapin, K. E.; Fabrika, S. N.

    2016-08-01

    We study the X-ray variability of SS 433 based on data from the ASCA observatory and the MAXI and RXTE/ASM monitoring missions. Based on the ASCA data, we have constructed the power spectrum of SS 433 in the frequency range from 10-6 to 0.1 Hz, which confirms the presence of a flat portion in the spectrum at frequencies 3 × 10-5-10-3 Hz. The periodic variability (precession, nutation, eclipses) begins to dominate significantly over the stochastic variability at lower frequencies, which does not allow the stochastic variability to be studied reliably. The model in which the flat portion extends to 9.5 × 10-6 Hz, while a power-law rise with an index of 2.6 occurs below provides the best agreement with the observations. The nutational oscillations of the jets with a period of about three days suggests that the time for the passage of material through the disk is less than this value. At frequencies below 4 × 10-6 Hz, the shape of the power spectrum probably does not reflect the disk structure but is determined by external factors, for example, by a change in the amount of material supplied by the donor. The flat portion can arise from a rapid decrease in the viscous time in the supercritical or radiative disk zones. The flat spectrum is associated with the variability of the X-ray jets that are formed in the supercritical disk region.

  15. The use of a selective saturation pulse to suppress t1 noise in two-dimensional (1)H fast magic angle spinning solid-state NMR spectroscopy.

    PubMed

    Robertson, Aiden J; Pandey, Manoj Kumar; Marsh, Andrew; Nishiyama, Yusuke; Brown, Steven P

    2015-11-01

    A selective saturation pulse at fast magic angle spinning (MAS) frequencies (60+kHz) suppresses t1 noise in the indirect dimension of two-dimensional (1)H MAS NMR spectra. The method is applied to a synthetic nucleoside with an intense methyl (1)H signal due to triisopropylsilyl (TIPS) protecting groups. Enhanced performance in terms of suppressing the methyl signal while minimising the loss of signal intensity of nearby resonances of interest relies on reducing spin diffusion--this is quantified by comparing two-dimensional (1)H NOESY-like spin diffusion spectra recorded at 30-70 kHz MAS. For a saturation pulse centred at the methyl resonance, the effect of changing the nutation frequency at different MAS frequencies as well as the effect of changing the pulse duration is investigated. By applying a pulse of duration 30 ms and nutation frequency 725 Hz at 70 kHz MAS, a good compromise of significant suppression of the methyl resonance combined with the signal intensity of resonances greater than 5 ppm away from the methyl resonance being largely unaffected is achieved. The effectiveness of using a selective saturation pulse is demonstrated for both homonuclear (1)H-(1)H double quantum (DQ)/single quantum (SQ) MAS and (14)N-(1)H heteronuclear multiple quantum coherence (HMQC) two-dimensional solid-state NMR experiments. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Fuel Distribution Estimate via Spin Period to Precession Period Ratio for the Advanced Composition Explorer

    NASA Technical Reports Server (NTRS)

    DeHart, Russell; Smith, Eric; Lakin, John

    2015-01-01

    The spin period to precession period ratio of a non-axisymmetric spin-stabilized spacecraft, the Advanced Composition Explorer (ACE), was used to estimate the remaining mass and distribution of fuel within its propulsion system. This analysis was undertaken once telemetry suggested that two of the four fuel tanks had no propellant remaining, contrary to pre-launch expectations of the propulsion system performance. Numerical integration of possible fuel distributions was used to calculate moments of inertia for the spinning spacecraft. A Fast Fourier Transform (FFT) of output from a dynamics simulation was employed to relate calculated moments of inertia to spin and precession periods. The resulting modeled ratios were compared to the actual spin period to precession period ratio derived from the effect of post-maneuver nutation angle on sun sensor measurements. A Monte Carlo search was performed to tune free parameters using the observed spin period to precession period ratio over the life of the mission. This novel analysis of spin and precession periods indicates that at the time of launch, propellant was distributed unevenly between the two pairs of fuel tanks, with one pair having approximately 20% more propellant than the other pair. Furthermore, it indicates the pair of the tanks with less fuel expelled all of its propellant by 2014 and that approximately 46 kg of propellant remains in the other two tanks, an amount that closely matches the operational fuel accounting estimate. Keywords: Fuel Distribution, Moments of Inertia, Precession, Spin, Nutation

  17. Convolution neural networks for real-time needle detection and localization in 2D ultrasound.

    PubMed

    Mwikirize, Cosmas; Nosher, John L; Hacihaliloglu, Ilker

    2018-05-01

    We propose a framework for automatic and accurate detection of steeply inserted needles in 2D ultrasound data using convolution neural networks. We demonstrate its application in needle trajectory estimation and tip localization. Our approach consists of a unified network, comprising a fully convolutional network (FCN) and a fast region-based convolutional neural network (R-CNN). The FCN proposes candidate regions, which are then fed to a fast R-CNN for finer needle detection. We leverage a transfer learning paradigm, where the network weights are initialized by training with non-medical images, and fine-tuned with ex vivo ultrasound scans collected during insertion of a 17G epidural needle into freshly excised porcine and bovine tissue at depth settings up to 9 cm and [Formula: see text]-[Formula: see text] insertion angles. Needle detection results are used to accurately estimate needle trajectory from intensity invariant needle features and perform needle tip localization from an intensity search along the needle trajectory. Our needle detection model was trained and validated on 2500 ex vivo ultrasound scans. The detection system has a frame rate of 25 fps on a GPU and achieves 99.6% precision, 99.78% recall rate and an [Formula: see text] score of 0.99. Validation for needle localization was performed on 400 scans collected using a different imaging platform, over a bovine/porcine lumbosacral spine phantom. Shaft localization error of [Formula: see text], tip localization error of [Formula: see text] mm, and a total processing time of 0.58 s were achieved. The proposed method is fully automatic and provides robust needle localization results in challenging scanning conditions. The accurate and robust results coupled with real-time detection and sub-second total processing make the proposed method promising in applications for needle detection and localization during challenging minimally invasive ultrasound-guided procedures.

  18. Spreading Effect of tDCS in Individuals with Attention-Deficit/Hyperactivity Disorder as Shown by Functional Cortical Networks: A Randomized, Double-Blind, Sham-Controlled Trial.

    PubMed

    Cosmo, Camila; Ferreira, Cândida; Miranda, José Garcia Vivas; do Rosário, Raphael Silva; Baptista, Abrahão Fontes; Montoya, Pedro; de Sena, Eduardo Pondé

    2015-01-01

    Transcranial direct current stimulation (tDCS) is known to modulate spontaneous neural network excitability. The cognitive improvement observed in previous trials raises the potential of this technique as a possible therapeutic tool for use in attention-deficit/hyperactivity disorder (ADHD) population. However, to explore the potential of this technique as a treatment approach, the functional parameters of brain connectivity and the extent of its effects need to be more fully investigated. The aim of this study was to investigate a functional cortical network (FCN) model based on electroencephalographic activity for studying the dynamic patterns of brain connectivity modulated by tDCS and the distribution of its effects in individuals with ADHD. Sixty ADHD patients participated in a parallel, randomized, double-blind, sham-controlled trial. Individuals underwent a single session of sham or anodal tDCS at 1 mA of current intensity over the left dorsolateral prefrontal cortex for 20 min. The acute effects of stimulation on brain connectivity were assessed using the FCN model based on electroencephalography activity. Comparing the weighted node degree within groups prior to and following the intervention, a statistically significant difference was found in the electrodes located on the target and correlated areas in the active group (p < 0.05), while no statistically significant results were found in the sham group (p ≥ 0.05; paired-sample Wilcoxon signed-rank test). Anodal tDCS increased functional brain connectivity in individuals with ADHD compared to data recorded in the baseline resting state. In addition, although some studies have suggested that the effects of tDCS are selective, the present findings show that its modulatory activity spreads. Further studies need to be performed to investigate the dynamic patterns and physiological mechanisms underlying the modulatory effects of tDCS. ClinicalTrials.gov NCT01968512.

  19. Relation between the celestial reference system and the terrestrial reference system of a rigid earth

    NASA Astrophysics Data System (ADS)

    Aoki, Shinko

    The equations of motion for a rigid earth under the influence of the sun and moon are solved analytically up to the second-order perturbation, and the results are used to elucidate the relationship between the celestial and terrestrial reference systems. The derivations are given in detail, and consideration is given to celestial-ephemeris and instantaneous-rotation poles, wobble, the departure point as the origin of the local inertial system, the precession-nutation matrix, and techniques for improving the celestial reference system.

  20. Spacecraft technology. [development of satellites and remote sensors

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Developments in spacecraft technology are discussed with emphasis on the Explorer satellite program. The subjects considered include the following: (1) nutational behavior of the Explorer-45 satellite, (2) panoramic sensor development, (3) onboard camera signal processor for Explorer satellites, and (4) microcircuit development. Information on the zero gravity testing of heat pipes is included. Procedures for cleaning heat treated aluminum heat pipes are explained. The development of a five-year magnetic tape, an accurate incremental angular encoder, and a blood freezing apparatus for leukemia research are also discussed.

  1. Life sciences experiments on Spacelab 1

    NASA Technical Reports Server (NTRS)

    Buderer, M. C.; Salinas, G. A.

    1980-01-01

    The objectives and procedures regarding various biological experiments to be conducted on Spacelab 1 are reviewed. These include the mapping of the HZE cosmic ray particle flux within the Spacelab module, investigating the effects of nullgravity on circadian cycles in the slime mold, Neurospora crassa, and measuring nutations of the dwarf sunflower, Helianthus annus. Emphasis is placed on research regarding possible changes in vestibulocular reflexes, vestibulospinal pathways, cortical functions involving perception of motion and spatial susceptibility. Also discussed are experiments regarding erythrokinetics in man and the effects of prolonged weightlessness of the humoral immune response in humans.

  2. Research in geodesy and geophysics based upon radio-interferometric observations of extragalactic radio sources. Final report, December 1984-December 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, T.A.; Davis, J.L.; Gwinn, C.R.

    1986-10-01

    This report consists of a collection of reprints and preprints. Subjects included: description of Mk-III system for very-long-baseline interferometry (VLBI); geodetic results from the Mk-I and Mk-III systems for VLBI; effects of modeling atmospheric propagation on estimates of baseline length and station height; an improved model for the dry propagation delay; corrections to IAU 1980 nutation series based on VLBI data and geophysical interpretation of those corrections; and a review of the contributions of VLBI to geodynamic studies.

  3. Crustal dynamics project data analysis, 1987. Volume 2: Mobile VLBI geodetic results, 1982-1986

    NASA Technical Reports Server (NTRS)

    Ma, C.; Ryan, J. W.

    1987-01-01

    The Goddard VLBI group reports the results of analyzing 101 Mark III data sets acquired from mobile observing sites through the end of 1986 and available to the Crustal Dynamics Project. The fixed VLBI observations at Hat Creek, Ft. Davis, Mojave, and OVRO are included as they participate heavily in the mobile schedules. One large solution GLB171 was used to obtain baseline length and transverse evolutions. Radio source positions were estimated globally, while nutation offsets were estimated from each data set. The results include 28 mobile sites.

  4. Software for roof defects recognition on aerial photographs

    NASA Astrophysics Data System (ADS)

    Yudin, D.; Naumov, A.; Dolzhenko, A.; Patrakova, E.

    2018-05-01

    The article presents information on software for roof defects recognition on aerial photographs, made with air drones. An areal image segmentation mechanism is described. It allows detecting roof defects – unsmoothness that causes water stagnation after rain. It is shown that HSV-transformation approach allows quick detection of stagnation areas, their size and perimeters, but is sensitive to shadows and changes of the roofing-types. Deep Fully Convolutional Network software solution eliminates this drawback. The tested data set consists of the roofing photos with defects and binary masks for them. FCN approach gave acceptable results of image segmentation in Dice metric average value. This software can be used in inspection automation of roof conditions in the production sector and housing and utilities infrastructure.

  5. Establishment and Discontinuance Criteria for Airport Traffic Control Towers.

    DTIC Science & Technology

    1983-08-01

    AR ASW 1 0.74 0.70 -539. HOT MINOT ND AOL 1 0.74 0.72 -509. LRD LAREDO TX ASW 1 0.76 0.72 -492. TXK TEXARKANA AR ASW 1 0.91 0.74 -462. FCN FRESNO CA...SFZ SMITHFIELD RI ANE 0 0.44 0.28 -2270. $IV AURORA CO ANN 0 0.40 0.25 -2387. ORO DURANGO CO ANN 0 0.49 0.43 -1791. 48V ERIE CO ANN 0 0.51 0.36 - 2017 ... 2017 . F70 FORT WORTH TX ASH 0 0.62 0.46 -1713. GLS GALVESTON TX ASW 0 0.83 0.69 -988. F67 GRAND PRAIRIE TX ASH 0 0.75 0.55 -1434. "Do HONDO TX ASW 0 1.77

  6. Control System of a Three DOF Spacecraft Simulator by Vectorable Thrusters and Control Moment Gyros

    DTIC Science & Technology

    2006-12-01

    1 s 1 s -K- -K- -K- -K- -K- -K- -K- -K- -K- 2 STATE 1 REF Tc urel Fx Fy Figure 42. Controller SIMULINK Model As an initial step in the...f1c a1c a1True a2c a2True f1act Thruster 1 Firing Logic [DelTrue] [a1True] [a2True] [DelTrue] Fx Fy T theta del F1c a1c F2c a2c Tcmg fcn Tc deltrue...cmgdd command CMG Steering Logic 3 theta 2 act_fb 1 uCOMMANDED Fx Fy Tc 52 to slew and fire independently, MSGCMG position is used to generate a

  7. Multiple-quantum spin counting in magic-angle-spinning NMR via low-power symmetry-based dipolar recoupling

    NASA Astrophysics Data System (ADS)

    Teymoori, Gholamhasan; Pahari, Bholanath; Viswanathan, Elumalai; Edén, Mattias

    2013-11-01

    By using a symmetry-based R281R28-1 double-quantum (2Q) dipolar recoupling sequence, we demonstrate high-order multiple-quantum coherence (MQC) excitation at fast magic-angle spinning (MAS) frequencies up to 34 kHz. This scheme combines several attractive features, such as a relatively high dipolar scaling factor, good compensation to rf-errors, isotropic and anisotropic chemical shifts, as well as an ultra-low radio-frequency (rf) power requirement. The latter translates into nutation frequencies below 30 kHz for MAS rates up to 60 kHz, thereby permitting rf application for very long excitation periods without risk of damaging the NMR probehead or sample, while the compensation to chemical shifts improves as the MAS rate increases. 31P MQC spin counting is demonstrated on powders of calcium hydroxyapatite (Ca5(PO4)3OH) and anhydrous sodium diphosphate (Na4P2O7), from which all even coherence orders up to 30 and 14 were detected, respectively, over the respective MAS ranges of 15-24 kHz and 20-34 kHz. The amplitude distributions among the 31P MQC orders depend on the precise nutation frequency during recoupling, despite that the highest detected order was relatively insensitive to this parameter. An observed gradual transition from a Gaussian to exponential functionality of the MQC amplitude-profile is discussed in relation to the prevailing approach to derive spin-cluster sizes by fitting the MQC amplitude-distribution to a Gaussian decay, where minor systematic deviations between the model and experimental data are frequently reported.

  8. OJ287: Deciphering the "Rosetta stone of blazars★"

    NASA Astrophysics Data System (ADS)

    Britzen, S.; Fendt, C.; Witzel, G.; Qian, S.-J.; Pashchenko, I. N.; Kurtanidze, O.; Zajacek, M.; Martinez, G.; Karas, V.; Aller, M.; Aller, H.; Eckart, A.; Nilsson, K.; Arévalo, P.; Cuadra, J.; Subroweit, M.; Witzel, A.

    2018-04-01

    OJ287 is the best candidate Active Galactic Nucleus (AGN) for hosting a supermassive binary black hole (SMBBH) at very close separation. We present 120 Very Long Baseline Array (VLBA) observations (at 15 GHz) covering the time between Apr. 1995 and Apr. 2017. We find that the OJ287 radio jet is precessing on a timescale of ˜ 22 yr. In addition, our data are consistent with a jet-axis rotation on a yearly timescale. We model the precession (24±2 yr) and combined motion of jet precession and jet-axis rotation. The jet motion explains the variability of the total radio flux-density via viewing angle changes and Doppler beaming. Half of the jet-precession timescale is of the order of the dominant optical periodicity timescale. We suggest that the optical emission is synchrotron emission and related to the jet radiation. The jet dynamics and flux-density light curves can be understood in terms of geometrical effects. Disturbances of an accretion disc caused by a plunging black hole do not seem necessary to explain the observed variability. Although the SMBBH model does not seem necessary to explain the observed variability, a SMBBH or Lense-Thirring precession (disc aSround single black hole) seem to be required to explain the timescale of the precessing motion. Besides jet rotation also nutation of the jet axis could explain the observed motion of the jet axis. We find a strikingly similar scaling for the timescales for precession and nutation as indicated for SS433 with a factor of roughly 50 times longer in OJ287.

  9. Geodetic Results from Mark 4 VLBI

    NASA Technical Reports Server (NTRS)

    MacMillan, Daniel; Petrov, Leonid; Ma, Chopo

    2002-01-01

    We present geodetic results of a series of 30 VLBI experiments recorded in Mark 4 mode at rates of 128 and 256 Mbps. The formal uncertainties of UT1, polar motion, and nutation offsets derived from these experiments are better than the corresponding uncertainties from NEOS-A experiments by a factor of 1.3-2. Baseline length repeatability for the series of 32 experiments over a period of one year is about 0.9 ppb. For comparison, NEOS-A length repeatability is about 1.4 ppb. We will discuss optimal use of Mark 4 in the design of future observing networks.

  10. The Magnus problem in Rodrigues-Hamilton parameters

    NASA Astrophysics Data System (ADS)

    Koshliakov, V. N.

    1984-04-01

    The formalism of Rodrigues-Hamilton parameters is applied to the Magnus problem related to the systematic drift of a gimbal-mounted astatic gyroscope due to the nutational vibration of the main axis of the rotor. It is shown that the use of the above formalism makes it possible to limit the analysis to a consideration of a linear system of differential equations written in perturbed values of Rodrigues-Hamilton parameters. A refined formula for the drift of the main axis of the gyroscope rotor is obtained, and an estimation is made of the effect of the truncation of higher-order terms.

  11. Spin Stabilized Impulsively Controlled Missile (SSICM)

    NASA Astrophysics Data System (ADS)

    Crawford, J. I.; Howell, W. M.

    1985-12-01

    This patent is for the Spin Stabilized Impulsively Controlled Missile (SSICM). SSICM is a missile configuration which employs spin stabilization, nutational motion, and impulsive thrusting, and a body mounted passive or semiactive sensor to achieve very small miss distances against a high speed moving target. SSICM does not contain an autopilot, control surfaces, a control actuation system, nor sensor stabilization gimbals. SSICM spins at a rate sufficient to provide frequency separation between body motions and inertial target motion. Its impulsive thrusters provide near instantaneous changes in lateral velocity, whereas conventional missiles require a significant time delay to achieve lateral acceleration.

  12. Conjectures and reputations: The composition and reception of James Bradley's paper on the aberration of light with some reference to a third unpublished version.

    PubMed

    Fisher, John

    2010-03-01

    In January 1729 a paper written by James Bradley was read at two meetings of the Royal Society. On a newly discovered motion of the fixed stars, later described as the theory of the aberration of light, it was to transform the science of astrometry. The paper appeared as a narrative of a programme of observation first begun at Kew and finalized at Wanstead, but it was, in reality, a careful reconstruction devised to enhance his reputation in response to a recognition that the programme was initially conducted in terms that were inimical to what he conceived to be his interest. The planned attempt to repeat Robert Hooke's celebrated experiment by James Pound, Samuel Molyneux and George Graham was set up at Molyneux's residence in Kew with James Bradley replacing Pound after his untimely and sudden demise. The unexpected and counterintuitive behaviour of the object star γ Draconis and the eradication of any suspicion of instrumental or systemic error led to the abandonment of the attempt to measure annual parallax and the initiation of new conjectures. An annual nutation was proposed but after the observation of a control star, 35 Camelopardalis, this conjecture was abandoned. Unknown to Bradley and Graham a premature approach was made by Molyneux to Newton claiming that the 'nutation' negated the whole of Newton's system. In the abandonment of the nutation yet another conjecture opposed to Newtonian theory was proposed and abandoned. Bradley determined to use his own instrument designed on different principles by Graham to observe the phenomenon in Wanstead. At Wanstead Bradley observed many stars to determine the parameters of the phenomenon. With the law of the motion described, Bradley proposed a hypothesis to explain it. Drawn from his earlier work on the ephemerides of Jupiter's satellites his hypothesis of the 'new-discovered motion' was quickly presented to the Royal Society as Bradley was working on a later and more definitive version of his paper. It is this later, third, unpublished version that is commonly referred to throughout this essay. It issued a challenge to 'anti-Copernicans' to offer an explanation of the observed phenomenon in geostatic terms. One such astronomer, Eustachio Manfredi, had examined the phenomenon of 'aberrations' in detail, the term being his. It was Bradley who first applied the term to the 'new-discovered motion' and within a short time 'aberration' was being applied by astronomers in the reduction of their observations. Annual aberration was widely accepted as evidence of the motion of the Earth. The paper enhanced Bradley's reputation and projected him into the forefront of European astronomers.

  13. Earth Rotation

    NASA Technical Reports Server (NTRS)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  14. Pulse-based electron spin transient nutation measurement of BaTiO3 fine particle: Identification of controversial signal around g = 2.00

    NASA Astrophysics Data System (ADS)

    Sawai, Takatoshi; Yamaguchi, Yoji; Kitamura, Noriko; Date, Tomotsugu; Konishi, Shinya; Taga, Kazuya; Tanaka, Katsuhisa

    2018-05-01

    Two dimensional pulse-based electron spin transient nutation (2D-ESTN) spectroscopy is a powerful tool for determining the spin quantum number and has been applied to BaTiO3 fine powder in order to identify the origin of the continuous wave electron spin resonance (CW-ESR) signal around g = 2.00. The signal is frequently observed in BaTiO3 ceramics, and the correlation between the signal intensity and positive temperature coefficient of resistivity (PTCR) properties has been reported to date. The CW-ESR spectrum of BaTiO3 fine particles synthesized by the sol-gel method shows a typical asymmetric signal at g = 2.004. The 2D-ESTN measurements of the sample clearly reveal that the signal belongs to the S = 5/2 high spin state, indicating that the signal is not due to a point defect as suggested by a number of researchers but rather to a transition metal ion. Our elemental analysis, as well as previous studies, indicates that the origin of the g = 2.004 signal is due to the presence of an Fe3+ impurity. The D value (second-order fine structure parameter) reveals that the origin of the signal is an Fe3+ center with distant charge compensation. In addition, we show a peculiar temperature dependence of the CW-ESR spectrum, suggesting that the phase transition behavior of a BaTiO3 fine particle is quite different from that of a bulk single crystal. Our identification does not contradict a vacancy-mediated mechanism for PTCR. However, it is incorrect to use the signal at g = 2.00 as evidence to support the vacancy-mediated mechanism.

  15. Mechanical Analog Approach to Parameter Estimation of Lateral Spacecraft Fuel Slosh

    NASA Technical Reports Server (NTRS)

    Chatman, Yadira; Gangadharan, Sathya; Schlee, Keith; Sudermann, James; Walker, Charles; Ristow, James; Hubert, Carl

    2007-01-01

    The nutation (wobble) of a spinning spacecraft in the presence of energy dissipation is a well-known problem in dynamics and is of particular concern for space missions. Even with modern computing systems, CFD type simulations are not fast enough to allow for large scale Monte Carlo analyses of spacecraft and launch vehicle dynamic behavior with slosh included. Simplified mechanical analogs for the slosh are preferred during the initial stages of design to reduce computational time and effort to evaluate the Nutation Time Constant (NTC). Analytic determination of the slosh analog parameters has met with mixed success and is made even more difficult by the introduction of propellant management devices such as elastomeric diaphragms. By subjecting full-sized fuel tanks with actual flight fuel loads to motion similar to that experienced in flight and measuring the forces experienced by the tanks, these parameters can be determined experimentally. Currently, the identification of the model parameters is a laborious trial-and-error process in which the hand-derived equations of motion for the mechanical analog are evaluated and their results compared with the experimental results. Of particular interest is the effect of diaphragms and bladders on the slosh dynamics and how best to model these devices. An experimental set-up is designed and built to include a diaphragm in the simulated spacecraft fuel tank subjected to lateral slosh. This research paper focuses on the parameter estimation of a SimMechanics model of the simulated spacecraft propellant tank with and without diaphragms using lateral fuel slosh experiments. Automating the parameter identification process will save time and thus allow earlier identification of potential vehicle problems.

  16. Bradley and Lacaille: Praxis as Passionate Pursuit of Exact Science

    NASA Astrophysics Data System (ADS)

    Wilson, C. A.

    1997-12-01

    From 1700 to 1800, astronomical observation and prediction improved in accuracy by an order of magnitude or more: by century's end astronomers could trust catalogued and predicted positions to within a few arcseconds. Crucial to this improvement were the discoveries of Bradley, which grew out of an endeavor of "normal science," the attempt to confirm with precision Robert Hooke's earlier supposed discovery of annual parallax in Gamma Draconis. On the theoretical side, Bradley's discoveries led to the quiet demise of two earlier doctrines, the Tychonic System and the Aristotelian and Cartesian doctrine of the instantaneous transmission of light. On the side of praxis, Bradley's discoveries meant that observational astronomy must be re-done from the ground up. In 1742 Nicolas-Louis Lacaille (1713-62), who had been admitted to the Paris Academie des Sciences only the year before, proposed to his astronomer colleagues that they take up this task as a cooperative enterprise. His proposal met with silence, but he undertook the project on his own, making it his life's work. By 1757 he had completed his Fundamenta Astronomiae, including a catalogue of 400 bright stars in which for the first time star positions were corrected for aberration and nutation. In 1758 he published his solar tables, the first to incorporate lunar and planetary perturbations as well as aberration and nutation. Lacaille's pendulum clock was not temperature-compensated, and his sextant poorly calibrated, but he was to some extent able to compensate for these flaws by bringing a massive number of observations to bear. Till the 1790s his Fundamenta Astronomiae and Tabulae Solares were important for the increments in accuracy they brought about, and for the inspiration they gave to later astronomers such as Delambre.

  17. Confirmation of gravitationally induced attitude drift of spinning satellite Ajisai with Graz high repetition rate SLR data

    NASA Astrophysics Data System (ADS)

    Kucharski, Daniel; Kirchner, Georg; Otsubo, Toshimichi; Lim, Hyung-Chul; Bennett, James; Koidl, Franz; Kim, Young-Rok; Hwang, Joo-Yeon

    2016-02-01

    The high repetition rate Satellite Laser Ranging system Graz delivers the millimeter precision range measurements to the corner cube reflector panels of Ajisai. The analysis of 4599 passes measured from October 2003 until November 2014 reveals the secular precession and nutation of Ajisai spin axis due to the gravitational forces as predicted by Kubo (1987) with the periods of 35.6 years and 116.5 days respectively. The observed precession cone is oriented at RA = 88.9°, Dec = -88.85° (J2000) and has a radius of 1.08°. The radius of the nutation cone increases from 1.32° to 1.57° over the 11 years of the measurements. We also detect a draconitic wobbling of Ajisai orientation due to the 'motion' of the Sun about the satellite's orbit. The observed spin period of Ajisai increases exponentially over the investigated time span according to the trend function: T = 1.492277·exp(0.0148388·Y) [s], where Y is in years since launch (1986.6133), RMS = 0.412 ms. The physical simulation model fitted to the observed spin parameters proves a very low interaction between Ajisai and the Earth's magnetic field, what assures that the satellite's angular momentum vector will remain in the vicinity of the south celestial pole for the coming decades. The developed empirical model of the spin axis orientation can improve the accuracy of the range determination between the ground SLR systems and the satellite's center-of-mass (Kucharski et al., 2015) and enable the accurate attitude prediction of Ajisai for the laser time-transfer experiments (Kunimori et al., 1992).

  18. Attitude-Independent Magnetometer Calibration for Spin-Stabilized Spacecraft

    NASA Technical Reports Server (NTRS)

    Natanson, Gregory

    2005-01-01

    The paper describes a three-step estimator to calibrate a Three-Axis Magnetometer (TAM) using TAM and slit Sun or star sensor measurements. In the first step, the Calibration Utility forms a loss function from the residuals of the magnitude of the geomagnetic field. This loss function is minimized with respect to biases, scale factors, and nonorthogonality corrections. The second step minimizes residuals of the projection of the geomagnetic field onto the spin axis under the assumption that spacecraft nutation has been suppressed by a nutation damper. Minimization is done with respect to various directions of the body spin axis in the TAM frame. The direction of the spin axis in the inertial coordinate system required for the residual computation is assumed to be unchanged with time. It is either determined independently using other sensors or included in the estimation parameters. In both cases all estimation parameters can be found using simple analytical formulas derived in the paper. The last step is to minimize a third loss function formed by residuals of the dot product between the geomagnetic field and Sun or star vector with respect to the misalignment angle about the body spin axis. The method is illustrated by calibrating TAM for the Fast Auroral Snapshot Explorer (FAST) using in-flight TAM and Sun sensor data. The estimated parameters include magnetic biases, scale factors, and misalignment angles of the spin axis in the TAM frame. Estimation of the misalignment angle about the spin axis was inconclusive since (at least for the selected time interval) the Sun vector was about 15 degrees from the direction of the spin axis; as a result residuals of the dot product between the geomagnetic field and Sun vectors were to a large extent minimized as a by-product of the second step.

  19. Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage.

    PubMed

    Hu, Bo; DeBruler, Camden; Rhodes, Zayn; Liu, T Leo

    2017-01-25

    Redox flow batteries (RFBs) are a viable technology to store renewable energy in the form of electricity that can be supplied to electricity grids. However, widespread implementation of traditional RFBs, such as vanadium and Zn-Br 2 RFBs, is limited due to a number of challenges related to materials, including low abundance and high costs of redox-active metals, expensive separators, active material crossover, and corrosive and hazardous electrolytes. To address these challenges, we demonstrate a neutral aqueous organic redox flow battery (AORFB) technology utilizing a newly designed cathode electrolyte containing a highly water-soluble ferrocene molecule. Specifically, water-soluble (ferrocenylmethyl)trimethylammonium chloride (FcNCl, 4.0 M in H 2 O, 107.2 Ah/L, and 3.0 M in 2.0 NaCl, 80.4 Ah/L) and N 1 -ferrocenylmethyl-N 1 ,N 1 ,N 2 ,N 2 ,N 2 -pentamethylpropane-1,2-diaminium dibromide, (FcN 2 Br 2 , 3.1 M in H 2 O, 83.1 Ah/L, and 2.0 M in 2.0 M NaCl, 53.5 Ah/L) were synthesized through structural decoration of hydrophobic ferrocene with synergetic hydrophilic functionalities including an ammonium cation group and a halide anion. When paired with methyl viologen (MV) as an anolyte, resulting FcNCl/MV and FcN 2 Br 2 /MV AORFBs were operated in noncorrosive neutral NaCl supporting electrolytes using a low-cost anion-exchange membrane. These ferrocene/MV AORFBs are characterized as having high theoretical energy density (45.5 Wh/L) and excellent cycling performance from 40 to 100 mA/cm 2 . Notably, the FcNCl/MV AORFBs (demonstrated at 7.0 and 9.9 Wh/L) exhibited unprecedented long cycling performance, 700 cycles at 60 mA/cm 2 with 99.99% capacity retention per cycle, and delivered power density up to 125 mW/cm 2 . These AORFBs are built from earth-abundant elements and are environmentally benign, thus representing a promising choice for sustainable and safe energy storage.

  20. 3D multi-scale FCN with random modality voxel dropout learning for Intervertebral Disc Localization and Segmentation from Multi-modality MR Images.

    PubMed

    Li, Xiaomeng; Dou, Qi; Chen, Hao; Fu, Chi-Wing; Qi, Xiaojuan; Belavý, Daniel L; Armbrecht, Gabriele; Felsenberg, Dieter; Zheng, Guoyan; Heng, Pheng-Ann

    2018-04-01

    Intervertebral discs (IVDs) are small joints that lie between adjacent vertebrae. The localization and segmentation of IVDs are important for spine disease diagnosis and measurement quantification. However, manual annotation is time-consuming and error-prone with limited reproducibility, particularly for volumetric data. In this work, our goal is to develop an automatic and accurate method based on fully convolutional networks (FCN) for the localization and segmentation of IVDs from multi-modality 3D MR data. Compared with single modality data, multi-modality MR images provide complementary contextual information, which contributes to better recognition performance. However, how to effectively integrate such multi-modality information to generate accurate segmentation results remains to be further explored. In this paper, we present a novel multi-scale and modality dropout learning framework to locate and segment IVDs from four-modality MR images. First, we design a 3D multi-scale context fully convolutional network, which processes the input data in multiple scales of context and then merges the high-level features to enhance the representation capability of the network for handling the scale variation of anatomical structures. Second, to harness the complementary information from different modalities, we present a random modality voxel dropout strategy which alleviates the co-adaption issue and increases the discriminative capability of the network. Our method achieved the 1st place in the MICCAI challenge on automatic localization and segmentation of IVDs from multi-modality MR images, with a mean segmentation Dice coefficient of 91.2% and a mean localization error of 0.62 mm. We further conduct extensive experiments on the extended dataset to validate our method. We demonstrate that the proposed modality dropout strategy with multi-modality images as contextual information improved the segmentation accuracy significantly. Furthermore, experiments conducted on extended data collected from two different time points demonstrate the efficacy of our method on tracking the morphological changes in a longitudinal study. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. The Advanced Part of a Treatise on the Dynamics of a System of Rigid Bodies

    NASA Astrophysics Data System (ADS)

    Routh, Edward John

    2013-03-01

    Preface; 1. Moving axes and relative motion; 2. Oscillations about equilibrium; 3. Oscillations about a state of motion; 4. Motion of a body under no forces; 5. Motion of a body under any forces; 6. Nature of the motion given by linear equations and the conditions of stability; 7. Free and forced oscillations; 8. Determination of the constants of integration in terms of the initial conditions; 9. Calculus of finite differences; 10. Calculus of variations; 11. Precession and nutation; 12. Motion of the moon about its centre; 13. Motion of a string or chain; 14. Motion of a membrane; Notes.

  2. Semi-analytical integration of the Earth's precession-nutation based on the GCRS coordinates of the CIP unit vector

    NASA Astrophysics Data System (ADS)

    Capitaine, N.; Folgueira, M.

    2012-12-01

    In a previous paper (Capitaine et al. 2006), referred here as Paper I, we demonstrated the possibility of integrating the Earth's rotational motion in terms of the coordinates (X, Y ) of the celestial intermediate pole (CIP) unit vector in the Geocentric celestial reference system (GCRS). Here, we report on the approach that has been followed for solving the equations in the case of an axially symmetric rigid Earth and the semi-analytical (X, Y ) solution obtained from the expression of the external torque acting on the Earth derived from the most complete semi-analytical solutions for the Earth, Moon and planets.

  3. Generalized Momentum Control of the Spin-Stabilized Magnetospheric Multiscale Formation

    NASA Technical Reports Server (NTRS)

    Queen, Steven Z.; Shah, Neerav; Benegalrao, Suyog S.; Blackman, Kathie

    2015-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four identically instrumented, spin-stabilized observatories elliptically orbiting the Earth in a tetrahedron formation. The on-board attitude control system adjusts the angular momentum of the system using a generalized thruster-actuated control system that simultaneously manages precession, nutation and spin. Originally developed using Lyapunov control-theory with rate-feedback, a published algorithm has been augmented to provide a balanced attitude/rate response using a single weighting parameter. This approach overcomes an orientation sign-ambiguity in the existing formulation, and also allows for a smoothly tuned-response applicable to both a compact/agile spacecraft, as well as one with large articulating appendages.

  4. Overcoming Present-Day Powerplant Limitations Via Unconventional Engine Configurations

    NASA Technical Reports Server (NTRS)

    Meitner, Peter L.

    2006-01-01

    The Army Research Laboratory s Vehicle Technology Directorate is sponsoring the prototype development of three unconventional engine concepts - two intermittent combustion (IC) engines and one turbine engine (via SBIR (Small Business Innovative Research) contracts). The IC concepts are the Nutating Engine and the Bonner Engine, and the turbine concept is the POWER Engine. Each of the three engines offers unique and greatly improved capabilities (which cannot be achieved by present-day powerplants), while offering significant reductions in size and weight. This paper presents brief descriptions of the physical characteristics of the three engines, and discusses their performance potentials, as well as their development status.

  5. Modified Bloch equations and spectral hole burning in solids

    NASA Astrophysics Data System (ADS)

    Asadullina, N. Ya; Asadullin, T. Ya; Asadullin, Ya Ya

    2001-06-01

    On the grounds of Bloch equations modified by taking into account the power dependence of the dispersion and damping parameters, we give general expressions for hole shapes burnt in the absorption and polarization spectra of the two-level systems. The general expressions are used for detailed numerical calculations of the hole shapes and hole widths in a concrete paramagnetic system (quartz with [AlO4]0 centres). This system earlier was studied experimentally and theoretically through the transient nutation and free induction decay methods. The results on the hole width in our modified-Bloch-equations model are in good qualitative agreement with the FID data.

  6. Crustal dynamics project data analysis, 1986. Volume 1: Fixed station VLBI geodetic results

    NASA Technical Reports Server (NTRS)

    Ma, C.; Ryan, J. W.

    1987-01-01

    The Goddard VLBI group reports the results of analyzing 361 Mark III VLBI data sets from fixed observatories through the end of 1985 which are available to the Crustal Dynamics Project. All POLARIS/IRIS full-day data sets are included. The mobile VLBI sites at Platteville, Colorado; Penticton, British Columbia; and Yellowknife, Northwest Territories are also included since these occupations bear on the study of plate stability. Two large solutions, GLB027 and GLB028, were used to obtain site/baseline evolutions and earth rotation parameters, respectively. Source positions and nutation offsets were also adjusted in each solution. The results include 23 sites and 101 baselines.

  7. Crustal dynamics project data analysis, 1988: VLBI geodetic results, 1979 - 1987

    NASA Technical Reports Server (NTRS)

    Ma, C.; Ryan, J. W.; Caprette, D.

    1989-01-01

    The results obtained by the Goddard VLBI (very long base interferometry) Data Analysis Team from the analysis of 712 Mark 3 VLBI geodetic data sets acquired from fixed and mobile observing sites through the end of 1987 are reported. A large solution, GLB401, was used to obtain earth rotation parameters and site velocities. A second large solution, GLB405, was used to obtain baseline evolutions. Radio source positions were estimated globally while nutation offsets were estimated from each data set. Site positions are tabulated on a yearly basis from 1979 through 1988. The results include 55 sites and 270 baselines.

  8. Fully convolutional neural networks for polyp segmentation in colonoscopy

    NASA Astrophysics Data System (ADS)

    Brandao, Patrick; Mazomenos, Evangelos; Ciuti, Gastone; Caliò, Renato; Bianchi, Federico; Menciassi, Arianna; Dario, Paolo; Koulaouzidis, Anastasios; Arezzo, Alberto; Stoyanov, Danail

    2017-03-01

    Colorectal cancer (CRC) is one of the most common and deadliest forms of cancer, accounting for nearly 10% of all forms of cancer in the world. Even though colonoscopy is considered the most effective method for screening and diagnosis, the success of the procedure is highly dependent on the operator skills and level of hand-eye coordination. In this work, we propose to adapt fully convolution neural networks (FCN), to identify and segment polyps in colonoscopy images. We converted three established networks into a fully convolution architecture and fine-tuned their learned representations to the polyp segmentation task. We validate our framework on the 2015 MICCAI polyp detection challenge dataset, surpassing the state-of-the-art in automated polyp detection. Our method obtained high segmentation accuracy and a detection precision and recall of 73.61% and 86.31%, respectively.

  9. Shape Dependence of Holographic Rényi Entropy in Conformal Field Theories.

    PubMed

    Dong, Xi

    2016-06-24

    We develop a framework for studying the well-known universal term in the Rényi entropy for an arbitrary entangling region in four-dimensional conformal field theories that are holographically dual to gravitational theories. The shape dependence of the Rényi entropy S_{n} is described by two coefficients: f_{b}(n) for traceless extrinsic curvature deformations and f_{c}(n) for Weyl tensor deformations. We provide the first calculation of the coefficient f_{b}(n) in interacting theories by relating it to the stress tensor one-point function in a deformed hyperboloid background. The latter is then determined by a straightforward holographic calculation. Our results show that a previous conjecture f_{b}(n)=f_{c}(n), motivated by surprising evidence from a variety of free field theories and studies of conical defects, fails holographically.

  10. Methods for computing internal flattening, with applications to the Earth's structure and geodynamics

    NASA Astrophysics Data System (ADS)

    Denis, C.; Amalvict, M.; Rogister, Y.; Tomecka-Suchoń, S.

    1998-03-01

    After general comments (Section 1) on using variational procedures to compute the oblateness of internal strata in the Earth and slowly rotating planets, we recall briefly some basic concepts about barotropic equilibrium figures (Section 2), and then proceed to discuss several accurate methods to derive the internal flattening. The algorithms given in Section 3 are based on the internal gravity field theory of Clairaut, Laplace and Lyapunov. They make explicit use of the concept of a level surface. The general formulation given here leads to a number of formulae which are of both theoretical and practical use in studying the Earth's structure, dynamics and rotational evolution. We provide exact solutions for the figure functions of three Earth models, and apply the formalism to yield curves for the internal flattening as a function of the spin frequency. Two more methods, which use the general deformation equations, are discussed in Section 4. The latter do not rely explicitly on the existence of level surfaces. They offer an alternative to the classical first-order internal field theory, and can actually be used to compute changes of the flattening on short timescales produced by variations in the LOD. For short durations, the Earth behaves elastically rather than hydrostatically. We discuss in some detail static deformations and Longman's static core paradox (Section 5), and demonstrate that in general no static solution exists for a realistic Earth model. In Section 6 we deal briefly with differential rotation occurring in cylindrical shells, and show why differential rotation of the inner core such as has been advocated recently is incompatible with the concept of level surfaces. In Section 7 we discuss first-order hydrostatic theory in relation to Earth structure, and show how to derive a consistent reference Earth model which is more suitable for geodynamical modelling than are modern Earth models such as 1066-A, PREM or CORE11. An important result is that a consistent application of hydrostatic theory leads to an inertia factor of about 0.332 instead of the value 0.3308 used until now. This change automatically brings `hydrostatic' values of the flattening, the dynamic shape factor and the precessional constant into much better agreement with their observed counterparts than has been assumed hitherto. Of course, we do not imply that non-hydrostatic effects are unimportant in modelling geodynamic processes. Finally, we discuss (Sections 7-8) some implications of our way of looking at things for Earth structure and some current problems of geodynamics. We suggest very significant changes for the structure of the core, in particular a strong reduction of the density jump at the inner core boundary. The theoretical value of the free core nutation period, which may be computed by means of our hydrostatic Earth models CGGM or PREMM, is in somewhat better agreement with the observed value than that based on PREM or 1066-A, although a significant residue remains. We attribute the latter to inadequate modelling of the deformation, and hence of the change in the inertia tensor, because the static deformation equations were used. We argue that non-hydrostatic effects, though present, cannot explain the large observed discrepancy of about 30 days.

  11. Extensometric observation of Earth tides and local tectonic processes at the Vyhne station, Slovakia

    NASA Astrophysics Data System (ADS)

    Brimich, Ladislav; Bednárik, Martin; Bezák, Vladimír; Kohút, Igor; Bán, Dóra; Eper-Pápai, Ildikó; Mentes, Gyula

    2016-06-01

    The Vyhne Tidal Station of the Earth Science Institute of the Slovak Academy of Sciences is located in the former mining gallery of St. Anthony of Padua in the Vyhne valley, Štiavnické vrchy Mts., Central Slovakia. It is equipped with a 20.5 metre long quartz-tube extensometer measuring Earth's tides, and long-term tectonic deformations of the Earth's crust. Data between 2001 and 2015 with some diverse gaps were digitally collected, processed and analysed. The effects of the local conditions, such as structure of the observatory, cavity effect, topography and geological features of the surrounding rocks, were investigated in detail and these effects were taken into consideration during the interpretation of the results of the data analysis. Tidal analysis of the extensometric data between 2005 and 2015 revealed that the measured tidal amplitudes are close to the theoretical values. The tidal transfer of the observatory was also investigated by coherence analysis between the theoretical and the measured extensometric data. The coherence is better than 0.9 both in the diurnal and semidiurnal band. The effect of the free core nutation resonance was also investigated in the case of the K1 and P1 tidal components. Since the K1/O1 ratio was about the theoretical value 0.8, than the P1/O1 was between 1.0 and 1.15 instead of the theoretical value of 0.9. The rate of the long-term strain rate was also investigated and the obtained -0.05 μstr/y shows a good agreement with the strain rate inferred from GPS measurements in the Central European GPS Reference Network.

  12. Summary of Synoptic Meteorological Observations. Indonesian Coastal Marine Areas. Volume 2. Area 8 - West Borneo, Area 9 - Karimata Strait, Area 10 - Southwest Java Sea, Area 11 - South Central Java, Area 12 - Southeast Java, Area 13 - Southeast Java Sea, Area 14 - Northeast Java Sea

    DTIC Science & Technology

    1975-04-01

    5 ’ :00 0 1’.20 2. 219 39 : .:0 :00 .0 A.. AP99 120 , ~ ~ ~ ~ ~ -y- ,M -.7yT ,, T , . , .,77M III II P~ kID : (¢E(’Ll) 9•3-977AREA 0009 KARIMATA STRAIT...TYPE OTHER WEATHER PHENOMENA kNO 01D RAIN PAIN VAIL RAIG SNOW OTHER HAI. PORN AT PCPN PAST ?HOR FOG FOG WO SMOKE SPRAY NO SHoR PON FRZN 06 TIME HOUR LTNG...NAONO DIR RAIN RAIN ORIL RCZG SNOW OTHER HAIL PCORN A? FCN PAST THOR OTOH HAZE SPRy NOUST SI ? R G PUG W SMOK SPRAY No PHft PCN PRN OPTM OR LTNG Wa PORN

  13. Very Long Baseline Interferometry Applied to Polar Motion, Relativity and Geodesy. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Ma, C.

    1978-01-01

    The causes and effects of diurnal polar motion are described. An algorithm is developed for modeling the effects on very long baseline interferometry observables. Five years of radio-frequency very long baseline interferometry data from stations in Massachusetts, California, and Sweden are analyzed for diurnal polar motion. It is found that the effect is larger than predicted by McClure. Corrections to the standard nutation series caused by the deformability of the earth have a significant effect on the estimated diurnal polar motion scaling factor and the post-fit residual scatter. Simulations of high precision very long baseline interferometry experiments taking into account both measurement uncertainty and modeled errors are described.

  14. Method And Apparatus For High Resolution Ex-Situ Nmr Spectroscopy

    DOEpatents

    Pines, Alexander; Meriles, Carlos A.; Heise, Henrike; Sakellariou, Dimitrios; Moule, Adam

    2004-01-06

    A method and apparatus for ex-situ nuclear magnetic resonance spectroscopy for use on samples outside the physical limits of the magnets in inhomogeneous static and radio-frequency fields. Chemical shift spectra can be resolved with the method using sequences of correlated, composite z-rotation pulses in the presence of spatially matched static and radio frequency field gradients producing nutation echoes. The amplitude of the echoes is modulated by the chemical shift interaction and an inhomogeneity free FID may be recovered by stroboscopically sampling the maxima of the echoes. In an alternative embodiment, full-passage adiabatic pulses are consecutively applied. One embodiment of the apparatus generates a static magnetic field that has a variable saddle point.

  15. Construction of the Non-Rigid Earth Rotation Series

    NASA Astrophysics Data System (ADS)

    Pashkevich, V. V.

    2007-01-01

    Last years a lot of attempts to derive a high-precision theory of the non-rigid Earth rotation are carried out. For these purposes different transfer functions are used. Usually these transfer functions are applied to the series representing the nutation in the longitude and the obliquity of the rigid Earth rotation with respect to the ecliptic of date. The aim of this investigation is a construction of new high-precision non-rigid Earth rotation series (SN9000), dynamically adequate to the DE404/LE404 ephemeris over 2000 time span years, which are presented as functions of the Euler angles Ψ, θ and φ with respect to the fixed ecliptic plane and equinox J2000.0.

  16. Crustal dynamics project data analysis, 1987. Volume 1: Fixed station VLBI geodetic results, 1979-1986

    NASA Technical Reports Server (NTRS)

    Ryan, J. W.; Ma, C.

    1987-01-01

    The Goddard VLBI group reports the results of analyzing Mark III data sets from fixed observatories through the end of 1986 and available to the Crustal Dynamics Project. All full-day data from POLARIS/IRIS are included. The mobile VLBI sites at Platteville (Colorado), Penticton (British Columbia), and Yellowknife (Northwest Territories) are also included since these occupations bear on the study of plate stability. Two large solutions, GLB121 and GLB122, were used to obtain Earth rotation parameters and baseline evolutions, respectively. Radio source positions were estimated globally while nutation offsets were estimated from each data set. The results include 25 sites and 108 baselines.

  17. NASA Space Geodesy Program: GSFC data analysis, 1993. VLBI geodetic results 1979 - 1992

    NASA Technical Reports Server (NTRS)

    Ma, Chopo; Ryan, James W.; Caprette, Douglas S.

    1994-01-01

    The Goddard VLBI group reports the results of analyzing Mark 3 data sets acquired from 110 fixed and mobile observing sites through the end of 1992 and available to the Space Geodesy Program. Two large solutions were used to obtain site positions, site velocities, baseline evolution for 474 baselines, earth rotation parameters, nutation offsets, and radio source positions. Site velocities are presented in both geocentric Cartesian and topocentric coordinates. Baseline evolution is plotted for the 89 baselines that were observed in 1992 and positions at 1988.0 are presented for all fixed stations and mobile sites. Positions are also presented for quasar radio sources used in the solutions.

  18. Macro-/Nano- Materials Based Ultrasensitive Lateral Flow Nucleic Acid Biosensors

    NASA Astrophysics Data System (ADS)

    Takalkar, Sunitha

    Ultrasensitive detection of nucleic acids plays a very important role in the field of molecular diagnosis for the detection of various diseases. Lateral flow biosensors (LFB) are convenient, easy-to-use, patient friendly forms of detection methods offering rapid and convenient clinical testing in close proximity to the patients thus drawing a lot of attention in different areas of research over the years. In comparison with the traditional immunoassays, the nucleic acid based lateral flow biosensors (NABLFB) has several advantages in terms of stability and interference capabilities. NABLFB utilizes nucleic acid probes as the bio-recognition element. The target analyte typically is the oligonucleotide like the DNA, mRNA, miRNA which are among the nucleic acid secretions by the tumor cells when it comes to detection of cancer. Traditionally gold nanoparticles (GNPs) have been used as labels for conjugating with the detection probes for the qualitative and semi quantitative analysis, the application of GNP-based LFB is limited by its low sensitivity. This dissertation describes the use of different nanomaterials and advanced detection technologies to enhance the sensitivities of the LFB based methods. Silica Nanorods decorated with GNP were synthesized and employed as labels for ultrasensitive detection of miRNA on the LFB. Owing to the biocompatibility and convenience in surface modification of SiNRs, they acted as good carriers to load numerous GNPs. The sensitivity of the GNP-SiNR-based LFSB was enhanced six times compared to the previous GNP-based LFSB. A fluorescent carbon nanoparticle (FCN) was first used as a tag to develop a lateral flow nucleic acid biosensor for ultrasensitive and quantitative detection of nucleic acid samples. Under optimal conditions, the FCN-based LFNAB was capable of detecting minimum 0.4 fM target DNA without complex operations and additional signal amplification. The carbon nanotube was used as a label and carrier of numerous enzyme and DNA molecules simultaneously thus resulting in the enormous amplification of the colorimetric signal. This CNT-enzyme label thus aided the ultra-sensitive detection of pancreatic cancer (PC) biomarker miRNA 210 and PC biomarker panel (miRNA 16, miRNA 21 and miRNA 196a). All these LFBs were also applied in the field of real sample detection.

  19. Stromal Vascular Fraction from Lipoaspirate Infranatant: Comparison Between Suction-Assisted Liposuction and Nutational Infrasonic Liposuction.

    PubMed

    Bowen, Robert E

    2016-06-01

    Lipoaspirate has shown great promise as a source of progenitor cells for use in regenerative medicine. The stromal vascular fraction (SVF) can be isolated from lipoaspirate using enzyme digestion and centrifugation, but this approach may be limited by the labor-intensive nature of the technique as well as ambiguities in current governmental regulations. An alternative approach to obtain SVF from lipoaspirate was studied. Paired (collected from contralateral regions) lipoaspirate specimens were acquired from 30 consenting patients (age 24-62; 22 females, 8 males) by suction-assisted liposuction (SAL) and nutational infrasonic liposuction (NIL). The infranatant from 50 ml of adipose tissue (LAF) was centrifuged at 400g × 5 min and the resultant pellet was collected with a pipette. Time = 15-20 min. The respective SVFs cell populations were counted using an optical fluorescent cell counter (Nexcelom A2000) and the fluorescent stains-acridine orange (AO) and propidium iodide (PI). The number of nucleated, live cells from SAL infranatant was 97,345 ± 23,435 per ml of adipose tissue and from NIL infranatant was 335,621 ± 81,274 per ml of adipose tissue. The p value is <0.00001, n = 30. Regenerative cells can be isolated from the lipoaspirate infranatant from either SAL or NIL, although in lower quantities than from enzyme digestion. NIL acquisition yielded 3.5× the number of cells over that acquired from SAL. The time, skill, and cost of producing SVF from infranatant is less than using enzyme digestion, which potentially make these regenerative therapies accessible to more physicians and patients. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  20. Incomplete initial nutation diffusion imaging: An ultrafast, single-scan approach for diffusion mapping.

    PubMed

    Ianuş, Andrada; Shemesh, Noam

    2018-04-01

    Diffusion MRI is confounded by the need to acquire at least two images separated by a repetition time, thereby thwarting the detection of rapid dynamic microstructural changes. The issue is exacerbated when diffusivity variations are accompanied by rapid changes in T 2 . The purpose of the present study is to accelerate diffusion MRI acquisitions such that both reference and diffusion-weighted images necessary for quantitative diffusivity mapping are acquired in a single-shot experiment. A general methodology termed incomplete initial nutation diffusion imaging (INDI), capturing two diffusion contrasts in a single shot, is presented. This methodology creates a longitudinal magnetization reservoir that facilitates the successive acquisition of two images separated by only a few milliseconds. The theory behind INDI is presented, followed by proof-of-concept studies in water phantom, ex vivo, and in vivo experiments at 16.4 and 9.4 T. Mean diffusivities extracted from INDI were comparable with diffusion tensor imaging and the two-shot isotropic diffusion encoding in the water phantom. In ex vivo mouse brain tissues, as well as in the in vivo mouse brain, mean diffusivities extracted from conventional isotropic diffusion encoding and INDI were in excellent agreement. Simulations for signal-to-noise considerations identified the regimes in which INDI is most beneficial. The INDI method accelerates diffusion MRI acquisition to single-shot mode, which can be of great importance for mapping dynamic microstructural properties in vivo without T 2 bias. Magn Reson Med 79:2198-2204, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  1. Expressions for IAU 2000 precession quantities

    NASA Astrophysics Data System (ADS)

    Capitaine, N.; Wallace, P. T.; Chapront, J.

    2003-12-01

    A new precession-nutation model for the Celestial Intermediate Pole (CIP) was adopted by the IAU in 2000 (Resolution B1.6). The model, designated IAU 2000A, includes a nutation series for a non-rigid Earth and corrections for the precession rates in longitude and obliquity. The model also specifies numerical values for the pole offsets at J2000.0 between the mean equatorial frame and the Geocentric Celestial Reference System (GCRS). In this paper, we discuss precession models consistent with IAU 2000A precession-nutation (i.e. MHB 2000, provided by Mathews et al. \\cite{Mathews02}) and we provide a range of expressions that implement them. The final precession model, designated P03, is a possible replacement for the precession component of IAU 2000A, offering improved dynamical consistency and a better basis for future improvement. As a preliminary step, we present our expressions for the currently used precession quantities zetaA, thetaA, zA, in agreement with the MHB corrections to the precession rates, that appear in the IERS Conventions 2000. We then discuss a more sophisticated method for improving the precession model of the equator in order that it be compliant with the IAU 2000A model. In contrast to the first method, which is based on corrections to the t terms of the developments for the precession quantities in longitude and obliquity, this method also uses corrections to their higher degree terms. It is essential that this be used in conjunction with an improved model for the ecliptic precession, which is expected, given the known discrepancies in the IAU 1976 expressions, to contribute in a significant way to these higher degree terms. With this aim in view, we have developed new expressions for the motion of the ecliptic with respect to the fixed ecliptic using the developments from Simon et al. (\\cite{Simon94}) and Williams (\\cite{Williams94}) and with improved constants fitted to the most recent numerical planetary ephemerides. We have then used these new expressions for the ecliptic together with the MHB corrections to precession rates to solve the precession equations for providing new solution for the precession of the equator that is dynamically consistent and compliant with IAU 2000. A number of perturbing effects have first been removed from the MHB estimates in order to get the physical quantities needed in the equations as integration constants. The equations have then been solved in a similar way to Lieske et al. (\\cite{Lieske77}) and Williams (\\cite{Williams94}), based on similar theoretical expressions for the contributions to precession rates, revised by using MHB values. Once improved expressions have been obtained for the precession of the ecliptic and the equator, we discuss the most suitable precession quantities to be considered in order to be based on the minimum number of variables and to be the best adapted to the most recent models and observations. Finally we provide developments for these quantities, denoted the P03 solution, including a revised Sidereal Time expression.

  2. Importance of temperature control for HEFLEX, a biological experiment for Spacelab 1. [plant gravitational physiology study

    NASA Technical Reports Server (NTRS)

    Chapman, D. K.; Brown, A. H.

    1979-01-01

    The importance of temperature control to HEFLEX, a Spacelab experiment designed to measure kinetic properties of Helianthis nutation in a low-g environment, is discussed. It is argued that the development of the HEFLEX experiment has been severely hampered by the inadequate control of ambient air temperature provided by the spacecraft module design. A worst case calculation shows that delivery of only 69% of the maximum yield of useful data from the HEFLEX system is guaranteed; significant data losses from inadequate temperature control are expected. The magnitude of the expected data losses indicates that the cost reductions associated with imprecise temperature controls may prove to be a false economy in the long term.

  3. Circumnutation augmented in clinostatted plants by a tactile stimulus

    NASA Technical Reports Server (NTRS)

    Chapman, D. K.; Brown, A. H.

    1981-01-01

    Dark-grown, 4-day old, Helianthus annuus seedlings were rotated for 20 hr on horizontal clinostats to minimize the amplitude of circumnutation. Then a Plexiglas sheet was placed gently against the tip of the cotyledons. By time-lapse video imaging (using intermittent IR illumination to which the plants were insensitive) movements of the clinostatted plants were observed before, during, and after the period of mechanical contact. Immediately after the Plexiglas sheet was removed residual nutation increased in amplitude almost three-fold, then declined over the next 7 hr to the prestimulation level. This demonstration of enhancement of circumnutation by mechanical contact is consistent with the model of an endogeneous oscillator that can be stimulated by factors other than gravity.

  4. NASA geodynamics program investigations summaries: A supplement to the NASA geodynamics program overview

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The development of a time series of global atmospheric motion and mass fields through April 1984 to compare with changes in length of day and polar motion was investigated. Earth rotation was studied and the following topics are discussed: (1) computation of atmospheric angular momentum through April 1984; (2) comparisons of psi sub values with variations in length of day obtained by several groups utilizing B.I.H., lunar laser ranging, VLBI, or Lageos measurements; (3) computation of atmospheric excitation of polar motion using daily fields of atmospheric winds and pressures for a short test period. Daily calculations may be extended over a longer period to examine the forcing of the annual and Chandler wobbles, in addition to higher frequency nutations.

  5. Revised coordinates of the Mars Orbiter Laser Altimeter (MOLA) footprints

    NASA Astrophysics Data System (ADS)

    Annibali, S.; Stark, A.; Gwinner, K.; Hussmann, H.; Oberst, J.

    2017-09-01

    We revised the Mars Orbiter Laser Altimeter (MOLA) footprint locations (i.e. areocentric body-fixed latitude and longitude), using updated trajectory models for the Mars Global Surveyor and updated rotation parameters of Mars, including precession, nutation and length-of-day variation. We assess the impact of these updates on the gridded MOLA maps. A first comparison reveals that even slight corrections to the rotational state of Mars can lead to height differences up to 100 m (in particular in regions with high slopes, where large interpolation effects are expected). Ultimately, we aim at independent measurements of the rotation parameters of Mars. We co-register MOLA profiles to digital terrain models from stereo images (stereo DTMs) and measure offsets of the two data sets.

  6. Double-quantum homonuclear rotary resonance: Efficient dipolar recovery in magic-angle spinning nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Nielsen, N. C.; Bildsøe, H.; Jakobsen, H. J.; Levitt, M. H.

    1994-08-01

    We describe an efficient method for the recovery of homonuclear dipole-dipole interactions in magic-angle spinning NMR. Double-quantum homonuclear rotary resonance (2Q-HORROR) is established by fulfilling the condition ωr=2ω1, where ωr is the sample rotation frequency and ω1 is the nutation frequency around an applied resonant radio frequency (rf) field. This resonance can be used for double-quantum filtering and measurement of homonuclear dipolar interactions in the presence of magic-angle spinning. The spin dynamics depend only weakly on crystallite orientation allowing good performance for powder samples. Chemical shift effects are suppressed to zeroth order. The method is demonstrated for singly and doubly 13C labeled L-alanine.

  7. On the origin of X-ray variability of SS 433

    NASA Astrophysics Data System (ADS)

    Band, D. L.; Grindlay, J. E.

    1984-10-01

    The X-ray flares observed from the central source in SS 433 by the Einstein telescope are attributed to surges in the mass transfer rate due to changes in the critical Roche volume of the companion. Analysis of the Roche potential for a primary with spin misaligned with the orbital axis, as required by the slaved disk model, predicts that the critical Roche volume will contract twice per orbit if the orbit is circular. A critical Roche volume fractional change of 1-2 percent is found by applying this potential to SS 433. The nutation of the companion should not affect the steady precession of its spin. Aspects of this work strengthen the evidence that the compact object might be a black hole.

  8. Dynamic behavior of the mercury damper

    NASA Technical Reports Server (NTRS)

    Crout, P. D.; Newkirk, H. L.

    1971-01-01

    The dynamic behavior of the mercury nutation damper is investigated. Particular attention is paid to the eccentric annular mercury configuration, which is the final continuous ring phase that occurs in the operation of all mercury dampers. In this phase, damping is poorest, and the system is closely linear. During the investigation, the hydrodynamic problem is treated as three dimensional, and extensive use is made of a variational principle of least-viscous frictional power loss. A variational principle of least-constraint is also used to advantage. Formulas for calculating the behavior of the mercury damper are obtained. Some confirmatory experiments were performed with transparent ring channels on a laboratory gyroscope. Selected movie frames taken during wobble damping are shown along with the results of film measurements.

  9. NASA Space Geodesy Program: GSFC data analysis, 1992. Crustal Dynamics Project VLBI geodetic results, 1979 - 1991

    NASA Technical Reports Server (NTRS)

    Ryan, J. W.; Ma, C.; Caprette, D. S.

    1993-01-01

    The Goddard VLBI group reports the results of analyzing 1648 Mark 3 data sets acquired from fixed and mobile observing sites through the end of 1991, and available to the Crustal Dynamics Project. Two large solutions were used to obtain Earth rotation parameters, nutation offsets, radio source positions, site positions, site velocities, and baseline evolution. Site positions are tabulated on a yearly basis for 1979 to 1995, inclusive. Site velocities are presented in both geocentric Cartesian and topocentric coordinates. Baseline evolution is plotted for 200 baselines, and individual length determinations are presented for an additional 356 baselines. This report includes 155 quasar radio sources, 96 fixed stations and mobile sites, and 556 baselines.

  10. Step-by-step synchronous variations of planetary natural processes in 1997-1998 and their uniform mechanism: phenomenon of "galloping of the core"

    NASA Astrophysics Data System (ADS)

    Barkin, Yu. V.

    2009-04-01

    "For an explanation of observably step-by-step variations of geodynamic and geophysical processes the mechanism of sharp sporadic relative displacements of the core and the mantle and deformations of the mantle in the certain periods of time (the phenomenon of "galloping of the core") is offered. Apparently, this mechanism results in spasmodic variations of axial rotation of the Earth, causes gallop in value of a phase of Chandler motion of a pole, to sharp changes of the intense condition in zones of catastrophes" ([1], p. 61). According to geodynamic model the step changes first of all should to be observed in motion of a geocenter as it reflects relative displacement of the centers of mass of the core and the mantle [1]. A gallop of natural processes in northern and southern hemispheres is characterized by the certain asymmetry. In result the step changes are tested by trend components of secular changes of parameters. In another words and activity (intensity) and trends of its secular changes test synchronous certain steps. Geocenter. According to observation data of DORIS spasmodic changes of polar rotation of a geocenter in a projection to an equatorial coordinate plane in 1997-1999 are revealed. On data DORIS in values of polar coordinate of a geocenter were observed gallop up to 20-30 cm. Changes of trend components have tested gallop which can be estimated in -2 mm in coordinate x, -5 mm in coordinate y and in -10 mm in coordinate z. Trajectory of a geocenter. A bend of a trajectory of long - periodic trend "trace" of a geocenter (its epicentre) on a surface of the Earth in 1997-1998 has been discovered (Zotov, Barkin, Lyubushin, 2008). It serves as direct confirmation of the assumption about a fundamental role of interaction and the forced relative displacements of the basic shells of the Earth, first of all the core and the mantle, both their stimulating and directing role in all planetary processes (Barkin, 2002). Gravitational field. On the data of satellite observations the secular trend of zonal coefficient of geopotentialJ2 is characterized by velocity J˙2=-3.70 × 10-11 1/yr (Cheng et al., 1999). In 1997-1998 the positive step in value of coefficient J2=2.5 × 10-10had place. Gravity. Daily gravity values corrected for air pressure, polar motion and tides have been obtained for the period October 1996 June 2000 on superconducting gravimeters (by Zerbini et al., 2002). The phenomenon of galloping of the core generated observed gravity burst (jump, step, glitch) in gravity variations at Medicine station in 1997-1998 with remarkable step about +5.5 mikrogalls. Global ocean. An action of this mechanism has caused appreciable spasmodic change of a level of ocean in same years. For periods of time: 1993.5-1997.0 and 1999.0 - 2002.0 on the base of Topex-Poseidon observations the following values of increase of mean sea level have been obtained: +2.75 mm/yr, +4.28 mm/yr. A positive step in mean sea level in galloping period 1997-1998 makes about 7.2 mm. Another characteristics have been determined from coastal observations: mean velocities before 1997 and after 1999 make +0.72 mm/yr and +0.60 mm/yr with a jump in 4.8 mm. Ocean hemispheres. On altimetry data velocities of increasing of mean sea levels in northern hemisphere have made about 0.0 mm/yr during 1993.0 - 1997.0 and 1.5 mm/yr after 1999.0 (Barkin et al., 2008). While in a southern hemisphere in both periods velocity of trend of mean sea level has made about 3.5 mm/yr. In northern hemisphere it is marked significant "altimetry" jump of a mean sea level in +15 mm in galloping years 1997-1998. In a southern hemisphere the jump of mean sea level is not swept up almost. We shall note, that under northern and southern hemispheres the oceanic areas located between parallels 60N - 820N and 820S - 60S here are meant. AAM. On the data of observations for period 1970.0 -1997.0 the axial angular momentum of atmosphere executes trend with positive velocity ḣ3 = á¹ ° = +0.0294 unit/yr AAM had a negative step in -0.91 unit in period of galoping years 1997-1998. Equatorial components of AAM are characterized by trends: ḣ1 = á¹- = -0.0057 unit/yr, ḣ2 = ˙Q = 0.0007 unit/yr. OAM. The trend of the angular momentum of ocean in northern hemisphere makes -0.12 ms/cy for the period of 1981-1989 (Brosche et al., 1997). And for southern hemisphere for the same period trend of axial angular momentum is characterized by velocity -0.24 ms/cy. Accordingly the general trend of OAM is estimated in -0.36 ms/cy(on data of Chen, 2005). HAM. Negative trends of the hydrological angular momentum for periods of time 1993.0 - 1997.0 and 1999.0-2004.3 consist about: -0.0052 ms/yr and -0.0061 ms/yr. The step of the hydrological angular momentum in 1997.0-1999.0 years consists +0.017 ms. Climate. In 1997-1998 sharp spasmodic increase of amplitude of change of quantity of low clouds (approximately in three times) has been observed. Sharp reduction of number of days of tropical cyclones in northern hemisphere had place in 1997-1998 (approximately for 130 days at the maximal values in 300-400). Temperature. On the data of observations for the period 1979 - 2007 the estimations of jumps in trends of temperatures have been obtained. In 1997-1998 years the global temperature has increased approximately on+0017, the average temperature in northern hemisphere has increased on +0015, and in a southern hemisphere is a little bit more essential on +0024. Cyclones. The number of storm days in the period November - April of each year for area of east Pacific tropical zone for three years 1996-1998 has grown three times in comparison with the similar three-annual periods of last 55 years. The step is in three times. Stratosphere. Daily values of the global contents of water pair in troposphere (mb) for the period 1979 - 2005 has tested one appreciable jump - step in 1997-1998 on +0.28 mb. The linear trend of decreasing of water pair in troposphere also was changed from velocity -0.021 mb/yr before 1997 to velocity -0.019 mb/yr after 1999. Sea ice. Hemispheres. Trends in increase of ice cover in a southern hemisphere consist +28065 km2•yr during 1979.0 - 1997.0 and +56452 km2•yr during period 1999.0 - 2008. A negative step of the area of an ice cover during 1997.0 - 1999.0 has made big value -325000 km2. Trends of increase of an ice cover in northern hemisphere make +24194 km2•yrduring 1979.0 - 1997.0 and 172200 km2•yr during 1999.0 - 2008. A negative jump of the area of an ice cover during 1997.0 - 1999.0 has made-130000 km2. Rotation of the Earth. LOD. During 1997.0-1999.0 when there was rather fast spasmodic increase of duration of day approximately on 0.038 ms. Similar sudden changes in natural processes in geodynamic model (Barkin, 2002) are explained by spasmodic displacement of the centre of mass of the core relatively to the mantle (phenomenon of galloping of the core, [1]). FCN. The period of Free Core Nutation has step changed in 1997-1998 years. It has decreased in this short period on about 45 days. The previous years the period decreased with velocity about -1.67 day/yr. The similar steps in change of activity of natural processes and in their trends before and after steps are observed in all planetary geodynamical and geophysical processes of the Earth. The discussed phenomenon is universal and will be observed on all solar system bodies including the Sun. I've suggested for discussion also a hypothesis that observed on pulsars glitch-phenomena have same nature and are connected with forced relative displacements of pulsar shells. References [1] Barkin Yu.V. (2007) Mechanism of tectonic activity of the Earth: deep geodynamics, its modern displays. Fundamental problems of geotectonics. Materials of XL Tectonic meeting. Vol. 1. M.: GEOS. pp. 59-62. In Russian.

  11. A KST framework for correlation network construction from time series signals

    NASA Astrophysics Data System (ADS)

    Qi, Jin-Peng; Gu, Quan; Zhu, Ying; Zhang, Ping

    2018-04-01

    A KST (Kolmogorov-Smirnov test and T statistic) method is used for construction of a correlation network based on the fluctuation of each time series within the multivariate time signals. In this method, each time series is divided equally into multiple segments, and the maximal data fluctuation in each segment is calculated by a KST change detection procedure. Connections between each time series are derived from the data fluctuation matrix, and are used for construction of the fluctuation correlation network (FCN). The method was tested with synthetic simulations and the result was compared with those from using KS or T only for detection of data fluctuation. The novelty of this study is that the correlation analyses was based on the data fluctuation in each segment of each time series rather than on the original time signals, which would be more meaningful for many real world applications and for analysis of large-scale time signals where prior knowledge is uncertain.

  12. Human-urine diabetes assay and in vivo rat bladder assay using a fluorine-doped carbon nanotube catheter sensor.

    PubMed

    Ly, Suw Young; Lee, Jin Hui

    2009-10-01

    The creation of a novel biosensor consisting of a fluorine-doped carbon nanotube (FCN) was explored for use in cyclic voltammetric (CV) and square-wave stripping voltammetric (SW) glucose assay. In the experiment that was carried out in this study, analytical optimum conditions were attained at the low detection limit (S/N3) of 0.6 microg/L (3.3 x 10(-9) M). In the 0.1 mg/L spike, the relative standard deviation of 0.607 (n = 15) was obtained. This was used for the diagnosis of the urine of patients with diabetes. Moreover, the catheter-type electrode (CE) can be inserted into a rat bladder through the rat's organs. Thus, it can be connected with an electrochemical analyzer that can be fitted with an interface for the real-time in vivo analysis of metabolic glucose. The developed system can be used for organ treatment, biological analysis, and in vivo control.

  13. Large Diameter Shuttle Launched-AEM (LDSL-AEM) study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A technical description of a Large Diameter Shuttle Launched-AEM (LDSL-AEM), an AEM base module adapted to carry 5 ft diameter payloads in the shuttle with propulsion for carrying payloads to higher altitude orbits from a 150 NM shuttle orbit, is described. The AEM is designed for launch on the scout launch vehicle. Onboard equipment provides capability to despin, acquire the earth, and control the vehicle in an earth pointing mode using reaction wheels for torque with magnets for all attitude acquisition, wheel desaturation, and nutation damping. Earth sensors in the wheels provide pitch and roll attitude. This system provides autonomous control capability to 1 degree in pitch and roll and 2 degrees in yaw. The attitude can be determined to .5 degrees in pitch and roll and 2 degrees in yaw.

  14. Strongly driven electron spins using a Ku band stripline electron paramagnetic resonance resonator

    NASA Astrophysics Data System (ADS)

    Yap, Yung Szen; Yamamoto, Hiroshi; Tabuchi, Yutaka; Negoro, Makoto; Kagawa, Akinori; Kitagawa, Masahiro

    2013-07-01

    This article details our work to obtain strong excitation for electron paramagnetic resonance (EPR) experiments by improving the resonator's efficiency. The advantages and application of strong excitation are discussed. Two 17 GHz transmission-type, stripline resonators were designed, simulated and fabricated. Scattering parameter measurements were carried out and quality factor were measured to be around 160 and 85. Simulation results of the microwave's magnetic field distribution are also presented. To determine the excitation field at the sample, nutation experiments were carried out and power dependence were measured using two organic samples at room temperature. The highest recorded Rabi frequency was rated at 210 MHz with an input power of about 1 W, which corresponds to a π/2 pulse of about 1.2 ns.

  15. Deep Space Network Capabilities for Receiving Weak Probe Signals

    NASA Technical Reports Server (NTRS)

    Asmar, Sami; Johnston, Doug; Preston, Robert

    2005-01-01

    Planetary probes can encounter mission scenarios where communication is not favorable during critical maneuvers or emergencies. Launch, initial acquisition, landing, trajectory corrections, safing. Communication challenges due to sub-optimum antenna pointing or transmitted power, amplitude/frequency dynamics, etc. Prevent lock-up on signal and extraction of telemetry. Examples: loss of Mars Observer, nutation of Ulysses, Galileo antenna, Mars Pathfinder and Mars Exploration Rovers Entry, Descent, and Landing, and the Cassini Saturn Orbit Insertion. A Deep Space Network capability to handle such cases has been used successfully to receive signals to characterize the scenario. This paper will describe the capability and highlight the cases of the critical communications for the Mars rovers and Saturn Orbit Insertion and preparation radio tracking of the Huygens probe at (non-DSN) radio telescopes.

  16. Circularly polarized microwaves for magnetic resonance study in the GHz range: Application to nitrogen-vacancy in diamonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mrózek, M., E-mail: mariusz.mrozek@uj.edu.pl; Rudnicki, D. S.; Gawlik, W.

    2015-07-06

    The ability to create time-dependent magnetic fields of controlled polarization is essential for many experiments with magnetic resonance. We describe a microstrip circuit that allows us to generate strong magnetic field at microwave frequencies with arbitrary adjusted polarization. The circuit performance is demonstrated by applying it to an optically detected magnetic resonance and Rabi nutation experiments in nitrogen-vacancy color centers in diamond. Thanks to high efficiency of the proposed microstrip circuit and degree of circular polarization of 85%; it is possible to address the specific spin states of a diamond sample using a low power microwave generator. The circuit maymore » be applied to a wide range of magnetic resonance experiments with a well-controlled polarization of microwaves.« less

  17. Stirling engine control mechanism and method

    DOEpatents

    Dineen, John J.

    1983-01-01

    A reciprocating-to-rotating motion conversion and power control device for a Stirling engine includes a hub mounted on an offset portion of the output shaft for rotation relative to the shaft and for sliding motion therealong which causes the hub to tilt relative to the axis of rotation of the shaft. This changes the angle of inclination of the hub relative to the shaft axis and changes the axial stroke of a set of arms connected to the hub and nutating therewith. A hydraulic actuating mechanism is connected to the hub for moving its axial position along the shaft. A balancing wheel is linked to the hub and changes its angle of inclination as the angle of inclination of the hub changes to maintain the mechanism in perfect balance throughout its range of motion.

  18. Disturbances of stem circumnutations evoked by wound-induced variation potentials in Helianthus annuus L.

    PubMed

    Stolarz, Maria; Dziubińska, Halina; Krupa, Maciej; Buda, Agnieszka; Trebacz, Kazimierz; Zawadzki, Tadeusz

    2003-01-01

    The relationship between evoked electrical activity and stem movements in three-week old sunflowers was demonstrated. Electrical potential changes (recorded by Ag/AgCl extracellular electrodes) and time-lapse images (from a top view camera) were recorded and analyzed. A heat stimulus applied to the tip of one of the second pair of leaves evoked a variation potential, transmitted basipetally along one side of the stem. After stimulation, disturbances of circumnutations occurred. They included: changes in the period, disorders in the elliptical shape, and, in some cases, reversion of direction (of movement). We suggest that asymmetrically propagated variation potential induces asymmetric stem shrinking and bending, which strongly disturbs circumnutations. Our results confirm the involvement of electrical potential changes in the mechanism of stem nutations.

  19. Magnetospheric Multiscale Mission Attitude Dynamics: Observations from Flight Data

    NASA Technical Reports Server (NTRS)

    Williams, Trevor; Shulman, Seth; Sedlak, Joseph E.; Ottenstein, Neil; Lounsbury, Brian

    2016-01-01

    The NASA Magnetospheric Multiscale mission, launched on Mar. 12, 2015, is flying four spinning spacecraft in highly elliptical orbits to study the magnetosphere of the Earth. Extensive attitude data is being collected, including spin rate, spin axis orientation, and nutation rate. The paper will discuss the various environmental disturbance torques that act on the spacecraft, and will describe the observed results of these torques. In addition, a slow decay in spin rate has been observed for all four spacecraft in the extended periods between maneuvers. It is shown that this despin is consistent with the effects of an additional disturbance mechanism, namely that produced by the Active Spacecraft Potential Control devices. Finally, attitude dynamics data is used to analyze a micrometeoroid/orbital debris impact event with MMS4 that occurred on Feb. 2, 2016.

  20. Crustal Dynamics Project data analysis, 1990

    NASA Technical Reports Server (NTRS)

    Caprette, D. S.; Ma, C.; Ryan, J. W.

    1990-01-01

    The Goddard Very Long Baseline Interferometry (VLBI) group reports the results of analyzing 1073 Mark 3 data sets acquired from fixed and mobile observing sites through the end of 1989 and available to the Crustal Dynamics Project. Two large solutions, GLB656 and GLB657, were used to establish a VLBI reference frame with an origin coincident with the ITRF89. Another large solution, GLB658, was used to obtain Earth rotation parameters, nutation offsets, and global source positions. Site velocities were obtained from another large solution, GLB659. A fifth large solution, GLB660, was used to obtain baseline evolution. Site positions are tabulated on a yearly basis from 1979 through 1992. Site velocities are presented in both Cartesian and topocentric coordinates. The results include 76 sources, 80 sites, and 422 baselines.

  1. Spinning Spacecraft Attitude Estimation Using Markley Variables: Filter Implementation And Results

    NASA Technical Reports Server (NTRS)

    Sedlak, Joseph E.

    2005-01-01

    Attitude estimation is often more difficult for spinning spacecraft than for three-axis stabilized platforms due to the need to follow rapidly-varying state vector elements and the lack of three-axis rate measurements from gyros. The estimation problem simplifies when torques are negligible and nutation has damped out, but the general case requires a sequential filter with dynamics propagation. This paper describes the implementation and test results for an extended Kalman filter for spinning spacecraft attitude and rate estimation based on a novel set of variables suggested in a paper by Markley [AAS93-3301 (referred to hereafter as Markley variables). Markley has demonstrated that the new set of variables provides a superior parameterization for numerical integration of the attitude dynamics for spinning or momentum-biased spacecraft. The advantage is that the Markley variables have fewer rapidly-varying elements than other representations such as the attitude quaternion and rate vector. A filter based on these variables was expected to show improved performance due to the more accurate numerical state propagation. However, for a variety of test cases, it has been found that the new filter, as currently implemented, does not perform significantly better than a quaternion-based filter that was developed and tested in parallel. This paper reviews the mathematical background for a filter based on Markley variables. It also describes some features of the implementation and presents test results. The test cases are based on a mission using magnetometer and Sun sensor data and gyro measurements on two axes normal to the spin axis. The orbit and attitude scenarios and spacecraft parameters are modeled after one of the THEMIS (Time History of Events and Macroscale Interactions during Substorms) probes. Several tests are presented that demonstrate the filter accuracy and convergence properties. The tests include torque-free motion with various nutation angles, large constant-torque attitude slews, sensor misalignments, large initial attitude and rate errors, and cases with low data frequency. It is found that the convergence is rapid, the radius of convergence is large, and the results are reasonably accurate even in the presence of unmodeled perturbations.

  2. Determination of the lunar orbital and rotational parameters and of the ecliptic reference system orientation from LLR measurements and IERS data

    NASA Astrophysics Data System (ADS)

    Chapront, J.; Chapront-Touzé, M.; Francou, G.

    1999-03-01

    An analysis of Lunar Laser Ranging (LLR) observations from January 1972 till March 1998 is performed using the lunar theory ELP 2000-96 and the completed Moons' theory of the lunar libration. The LLR station coordinates, polar motion and Universal Time are provided by the International Earth Rotation Service (IERS). In Solution 1 the precession-nutation transformation is given by recent analytical theories, while in Solution 2 it is derived from the IERS daily corrections. Orbital and free libration parameters of the Moon, and coordinates of the reflectors are obtained in both cases. The position of the inertial mean ecliptic of J2000.0 with respect to the equator of the mean Celestial Ephemeris Pole (CEP) of J2000.0 (in Solution 1) and to the International Celestial Reference System (ICRS), the IERS celestial reference system, (in Solution 2) are fit. The position of the mean CEP equator of J2000.0 and of several dynamical reference planes and origins, with respect to ICRS, are derived from these fits (Fig. 1). The leading results are the following: 0farcs057 60+/- 0farcs000 20 (in the equator) for the separation of the origin of right ascensions in ICRS from the ascending node of the inertial mean ecliptic of J2000.0 on the reference plane of ICRS, -0farcs0460 +/- 0farcs0008 (in the ecliptic) for the separation of the latter point from the inertial dynamical mean equinox of J2000.0, -0farcs015 19+/- 0farcs000 35 (in the equator) for the separation of the inertial dynamical mean equinox of J2000.0 from the J2000.0 right ascension origin derived from IERS polar motion and Universal Time and from precise theories of precession-nutation, and 23degr26 arcmin21 farcs405 22+/- 0farcs000 07 for the inertial obliquity of J2000.0. A correction of -0farcs3437 +/- 0farcs0040 /cy to the IAU 1976 value of the precession constant is also obtained (the errors quoted are formal errors).

  3. Electronic conductivity of solid and liquid (Mg, Fe)O computed from first principles

    NASA Astrophysics Data System (ADS)

    Holmström, E.; Stixrude, L.; Scipioni, R.; Foster, A. S.

    2018-05-01

    Ferropericlase (Mg, Fe)O is an abundant mineral of Earth's lower mantle and the liquid phase of the material was an important component of the early magma ocean. Using quantum-mechanical, finite-temperature density-functional theory calculations, we compute the electronic component of the electrical and thermal conductivity of (Mg0.75, Fe0.25)O crystal and liquid over a wide range of planetary conditions: 0-200 GPa, 2000-4000 K for the crystal, and 0-300 GPa, 4000-10,000 K for the liquid. We find that the crystal and liquid are semi-metallic over the entire range studied: the crystal has an electrical conductivity exceeding 103 S/m, whereas that of the liquid exceeds 104 S/m. Our results on the crystal are in reasonable agreement with experimental measurements of the electrical conductivity of ferropericlase once we account for the dependence of conductivity on iron content. We find that a harzburgite-dominated mantle with ferropericlase in combination with Al-free bridgmanite agrees well with electromagnetic sounding observations, while a pyrolitic mantle with a ferric-iron rich bridgmanite composition yields a lower mantle that is too conductive. The electronic component of thermal conductivity of ferropericlase with XFe = 0.19 is negligible (<1 W/m/K). The electrical conductivity of the crystal and liquid at conditions of the core-mantle boundary are similar to each other (3 ×104 S/m). A crystalline or liquid ferropericlase-rich layer of a few km thickness thus accounts for the high conductance that has been proposed to explain anomalies in Earth's nutation. The electrical conductivity of liquid ferropericlase exceeds that of liquid silica by more than an order of magnitude at conditions of a putative basal magma ocean, thus strengthening arguments that the basal magma ocean could have produced an ancient dynamo.

  4. High Frequency Chandler Wobble Excitation

    NASA Astrophysics Data System (ADS)

    Seitz, F.; Stuck, J.; Thomas, M.

    2003-04-01

    Variations of Earth rotation on sub-daily to secular timescales are caused by mass redistributions in the Earth system as a consequence of geophysical processes and gravitational influences. Forced oscillations of polar motion are superposed by free oscillations of the Earth, i.e. the Chandler wobble and the free core nutation. In order to study the interactions between externally induced polar motion and the Earth's free oscillations, a non-linear gyroscopic model has been developed. In most of the former investigations on polar motion, the Chandler wobble is introduced as a damped oscillation with predetermined frequency and amplitude. However, as the effect of rotational deformation is a backcoupling mechanism of polar motion on the Earth's rotational dynamics, both period and amplitude of the Chandler wobble are time-dependent when regarding additional excitations from, e.g., atmospheric or oceanic mass redistributions. The gyroscopic model is free of any explicit information concerning amplitude, phase, and period of free oscillations. The characteristics of the Earth's free oscillation is reproduced by the model from rheological and geometrical parameters and rotational deformation is taken into account. This enables to study the time variable Chandler oscillation when the gyro is forced with atmospheric and oceanic angular momentum from the global atmospheric ECHAM3-T21 general circulation model together with the ocean model for circulation and tides OMCT driven by ECHAM including surface pressure. Besides, mass redistributions in the Earth's body due to gravitational and loading deformations are regarded and external torques exerted by Moon and Sun are considered. The numerical results of the gyro are significantly related with the geodetically observed time series of polar motion published by the IERS. It is shown that the consistent excitation is capable to counteract the damping and thus to maintain the Chandler amplitude. Spectral analyses of the ECHAM and OMCT forcing fields give no hint for increased excitation power in the Chandler band. Thus it is assumed, that continuous high frequency excitation due to stochastic weather phenomena is responsible for the perpetuation of the Chandler wobble.

  5. Lunar and Artificial Satellite Laser Ranging: The Use of Queue Scheduling and Worth Functions to Maximize Scientific Results

    NASA Astrophysics Data System (ADS)

    Shelus, P. J.; Ricklefs, R. L.; Wiant, J. R.; Ries, J. G.

    2003-08-01

    The lunar and artificial satellite laser ranging network, part of the International Laser Ranging Service, monitors a large number of targets. Many scientific disciplines are investigated using these data. These include the realization and maintenance of the International Terrestrial Reference Frame; the 3-dimensional deformation of the solid Earth; Earth orientation; variations in the topography and volume of the liquid Earth, including ocean circulation, mean sea level, ice sheet thickness, and wave heights; tidally generated variations in atmospheric mass distribution; calibration of microwave tracking techniques; picosecond global time transfer; determination of the dynamic equinox, the obliquity of the ecliptic, the precession constant and theories of nutation; gravitational and general relativistic studies, including Einstein's Equivalence Principle, the Robertson-Walker b parameter and time rate of change of the gravitational constant; lunar physics, including the dissipation of rotational energy, shape of the core-mantle boundary (Love Number k2), and free librations and their stimulating mechanisms; Solar System ties to the International Celestial Reference Frame. With shrinking resources, we must not only assess specific data requirements for each target, but also maximize the efficiency of the observing network. Several factors must be considered. First, not only does a result depend critically upon the quality and quantity of the data, it also depends upon the data distribution. Second, as technology improves, the cost of obtaining data can increase. Both require that scientific endeavor pay close attention to the manner in which the data is gathered. We examine the evolution of the laser network, using data analysis requirements and efficient network scheduling to maximize the scientific return. This requires an understanding of the observing equipment, as well as the scientific principles being studied. Queue scheduling and worth functions become important. This work is funded by: NSF AST-0204127, NASA NAG5-10195, NAS5-01096, NAG5-11464.

  6. Estimability and simple dynamical analyses of range (range-rate range-difference) observations to artificial satellites. [laser range observations to LAGEOS using non-Bayesian statistics

    NASA Technical Reports Server (NTRS)

    Vangelder, B. H. W.

    1978-01-01

    Non-Bayesian statistics were used in simulation studies centered around laser range observations to LAGEOS. The capabilities of satellite laser ranging especially in connection with relative station positioning are evaluated. The satellite measurement system under investigation may fall short in precise determinations of the earth's orientation (precession and nutation) and earth's rotation as opposed to systems as very long baseline interferometry (VLBI) and lunar laser ranging (LLR). Relative station positioning, determination of (differential) polar motion, positioning of stations with respect to the earth's center of mass and determination of the earth's gravity field should be easily realized by satellite laser ranging (SLR). The last two features should be considered as best (or solely) determinable by SLR in contrast to VLBI and LLR.

  7. Deep learning based hand gesture recognition in complex scenes

    NASA Astrophysics Data System (ADS)

    Ni, Zihan; Sang, Nong; Tan, Cheng

    2018-03-01

    Recently, region-based convolutional neural networks(R-CNNs) have achieved significant success in the field of object detection, but their accuracy is not too high for small objects and similar objects, such as the gestures. To solve this problem, we present an online hard example testing(OHET) technology to evaluate the confidence of the R-CNNs' outputs, and regard those outputs with low confidence as hard examples. In this paper, we proposed a cascaded networks to recognize the gestures. Firstly, we use the region-based fully convolutional neural network(R-FCN), which is capable of the detection for small object, to detect the gestures, and then use the OHET to select the hard examples. To enhance the accuracy of the gesture recognition, we re-classify the hard examples through VGG-19 classification network to obtain the final output of the gesture recognition system. Through the contrast experiments with other methods, we can see that the cascaded networks combined with the OHET reached to the state-of-the-art results of 99.3% mAP on small and similar gestures in complex scenes.

  8. Classification with an edge: Improving semantic image segmentation with boundary detection

    NASA Astrophysics Data System (ADS)

    Marmanis, D.; Schindler, K.; Wegner, J. D.; Galliani, S.; Datcu, M.; Stilla, U.

    2018-01-01

    We present an end-to-end trainable deep convolutional neural network (DCNN) for semantic segmentation with built-in awareness of semantically meaningful boundaries. Semantic segmentation is a fundamental remote sensing task, and most state-of-the-art methods rely on DCNNs as their workhorse. A major reason for their success is that deep networks learn to accumulate contextual information over very large receptive fields. However, this success comes at a cost, since the associated loss of effective spatial resolution washes out high-frequency details and leads to blurry object boundaries. Here, we propose to counter this effect by combining semantic segmentation with semantically informed edge detection, thus making class boundaries explicit in the model. First, we construct a comparatively simple, memory-efficient model by adding boundary detection to the SEGNET encoder-decoder architecture. Second, we also include boundary detection in FCN-type models and set up a high-end classifier ensemble. We show that boundary detection significantly improves semantic segmentation with CNNs in an end-to-end training scheme. Our best model achieves >90% overall accuracy on the ISPRS Vaihingen benchmark.

  9. A fusion network for semantic segmentation using RGB-D data

    NASA Astrophysics Data System (ADS)

    Yuan, Jiahui; Zhang, Kun; Xia, Yifan; Qi, Lin; Dong, Junyu

    2018-04-01

    Semantic scene parsing is considerable in many intelligent field, including perceptual robotics. For the past few years, pixel-wise prediction tasks like semantic segmentation with RGB images has been extensively studied and has reached very remarkable parsing levels, thanks to convolutional neural networks (CNNs) and large scene datasets. With the development of stereo cameras and RGBD sensors, it is expected that additional depth information will help improving accuracy. In this paper, we propose a semantic segmentation framework incorporating RGB and complementary depth information. Motivated by the success of fully convolutional networks (FCN) in semantic segmentation field, we design a fully convolutional networks consists of two branches which extract features from both RGB and depth data simultaneously and fuse them as the network goes deeper. Instead of aggregating multiple model, our goal is to utilize RGB data and depth data more effectively in a single model. We evaluate our approach on the NYU-Depth V2 dataset, which consists of 1449 cluttered indoor scenes, and achieve competitive results with the state-of-the-art methods.

  10. Coulometric determination of NAD+ and NADH in normal and cancer cells using LDH, RVC and a polymer mediator.

    PubMed

    Torabi, F; Ramanathan, K; Larsson, P O; Gorton, L; Svanberg, K; Okamoto, Y; Danielsson, B; Khayyami, M

    1999-11-15

    An electrochemical method for the measurement of NAD(+) and NADH in normal and cancer tissues using flow injection analysis (FIA) is reported. Reticulated vitreous carbon (RVC) electrodes with entrapped l-lactate dehydrogenase (LDH) and a new redox polymer containing covalently bound toluidine blue O (TBO) were employed for this purpose. Both NAD(+) and NADH were estimated coulometrically based on their reaction with LDH. The latter was immobilized on controlled pore glass (CPG) by cross-linking with glutaraldehyde and packed within the RVC. The concentrations of NAD(+) and NADH in the tissues, estimated using different electron mediators such as ferricyanide (FCN), meldola blue (MB) and TBO have also been compared. The effects of flow rate, pH, applied potential (versus Ag/AgCl reference) and adsorption of the mediators have also been investigated. Based on the measurements of NAD(+) and NADH in normal and cancer tissues it has been concluded that the NADH concentration is lower, while the NAD(+) concentration is higher in cancer tissues. Amongst the electron mediators TBO was found to be a more stable mediator for such measurements.

  11. Spin-Orbit Qubits of Rare-Earth-Metal Ions in Axially Symmetric Crystal Fields

    NASA Astrophysics Data System (ADS)

    Bertaina, S.; Shim, J. H.; Gambarelli, S.; Malkin, B. Z.; Barbara, B.

    2009-11-01

    Contrary to the well-known spin qubits, rare-earth-metal qubits are characterized by a strong influence of crystal field due to large spin-orbit coupling. At low temperature and in the presence of resonance microwaves, it is the magnetic moment of the crystal-field ground state which nutates (for several μs) and the Rabi frequency ΩR is anisotropic. Here, we present a study of the variations of ΩR(H→0) with the magnitude and direction of the static magnetic field H→0 for the odd Er167 isotope in a single crystal CaWO4:Er3+. The hyperfine interactions split the ΩR(H→0) curve into eight different curves which are fitted numerically and described analytically. These “spin-orbit qubits” should allow detailed studies of decoherence mechanisms which become relevant at high temperature and open new ways for qubit addressing using properly oriented magnetic fields.

  12. Spin-orbit qubits of rare-earth-metal ions in axially symmetric crystal fields.

    PubMed

    Bertaina, S; Shim, J H; Gambarelli, S; Malkin, B Z; Barbara, B

    2009-11-27

    Contrary to the well-known spin qubits, rare-earth-metal qubits are characterized by a strong influence of crystal field due to large spin-orbit coupling. At low temperature and in the presence of resonance microwaves, it is the magnetic moment of the crystal-field ground state which nutates (for several micros) and the Rabi frequency Omega(R) is anisotropic. Here, we present a study of the variations of Omega(R)(H(0)) with the magnitude and direction of the static magnetic field H(0) for the odd 167Er isotope in a single crystal CaWO(4):Er(3+). The hyperfine interactions split the Omega(R)(H(0)) curve into eight different curves which are fitted numerically and described analytically. These "spin-orbit qubits" should allow detailed studies of decoherence mechanisms which become relevant at high temperature and open new ways for qubit addressing using properly oriented magnetic fields.

  13. The rotational dynamics of Titan from Cassini RADAR images

    NASA Astrophysics Data System (ADS)

    Meriggiola, Rachele; Iess, Luciano; Stiles, Bryan. W.; Lunine, Jonathan. I.; Mitri, Giuseppe

    2016-09-01

    Between 2004 and 2009 the RADAR instrument of the Cassini mission provided 31 SAR images of Titan. We tracked the position of 160 surface landmarks as a function of time in order to monitor the rotational dynamics of Titan. We generated and processed RADAR observables using a least squares fit to determine the updated values of the rotational parameters. We provide a new rotational model of Titan, which includes updated values for spin pole location, spin rate, precession and nutation terms. The estimated pole location is compatible with the occupancy of a Cassini state 1. We found a synchronous value of the spin rate (22.57693 deg/day), compatible at a 3-σ level with IAU predictions. The estimated obliquity is equal to 0.31°, incompatible with the assumption of a rigid body with fully-damped pole and a moment of inertia factor of 0.34, as determined by gravity measurements.

  14. The Goal of the IAU/IAG Joint Working Group on the Theory of Earth Rotation

    NASA Technical Reports Server (NTRS)

    Ferrandiz, J. M.; Gross, R. S.

    2013-01-01

    In 2012 the International Association of Geodesy (IAG) and the International Astronomical Union (IAU) initiated a process to establish a Joint Working Group (JWG) on theory of Earth rotation with the purpose of promoting the development of improved theories of the Earth rotation which reach the accuracy required to meet the needs of the near future as recommended by, e.g. GGOS, the Global Geodetic Observing System of the IAG. The JWG was approved by both organizations in April 2013 with the chairs being the two authors of this paper. Its structure comprises three Sub Working Groups (SWGs) addressing Precession/Nutation, Polar Motion and UT1, the Numerical Solutions and Validation, respectively. The SWGs should work in parallel for the sake of efficiency, but should keep consistency as an overall goal. This paper offers a view of the objectives and scope of the JWG and reports about its initial activities and plans.

  15. Characterization of heteronuclear decoupling through proton spin dynamics in solid-state nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    De Paëpe, Gaël; Eléna, Bénédicte; Emsley, Lyndon

    2004-08-01

    The work presented here aims at understanding the performance of phase modulated heteronuclear decoupling sequences such as Cosine Modulation or Two Pulse Phase Modulation. To that end we provide an analytical description of the intrinsic behavior of Cosine Modulation decoupling with respect to radio-frequency-inhomogeneity and the proton-proton dipolar coupling network. We discover through a Modulation Frame average Hamiltonian analysis that best decoupling is obtained under conditions where the heteronuclear interactions are removed but notably where homonuclear couplings are recoupled at a homonuclear Rotary Resonance (HORROR) condition in the Modulation Frame. These conclusions are supported by extensive experimental investigations, and notably through the introduction of proton nutation experiments to characterize spin dynamics in solids under decoupling conditions. The theoretical framework presented in this paper allows the prediction of the optimum parameters for a given set of experimental conditions.

  16. Tumbling asteroid rotation with the YORP torque and inelastic energy dissipation

    NASA Astrophysics Data System (ADS)

    Breiter, S.; Murawiecka, M.

    2015-05-01

    The Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect and rotational energy dissipation due to inelastic deformations are two key mechanisms affecting rotation of tumbling asteroids in long term. Each of the effects used to be discussed separately. We present the first results concerning a simulation of their joint action. Asteroids (3103) Eger and (99942) Apophis, as well as their scaled variants, are used as test bodies. Plugging in the dissipation destroys limit cycles of the pure YORP, but creates a new asymptotic state of stationary tumbling with a fixed rotation period. The present model does not contradict finding Eger in the principal axis rotation. For Apophis, the model suggests that its current rotation state should be relatively young. In general, the fraction of initial conditions leading to the principal axis rotation is too small, compared to the actual data. The model requires a stronger energy dissipation and weaker YORP components in the nutation angle and obliquity.

  17. Probabilistic and deterministic aspects of linear estimation in geodesy. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Dermanis, A.

    1976-01-01

    Recent advances in observational techniques related to geodetic work (VLBI, laser ranging) make it imperative that more consideration should be given to modeling problems. Uncertainties in the effect of atmospheric refraction, polar motion and precession-nutation parameters, cannot be dispensed with in the context of centimeter level geodesy. Even physical processes that have generally been previously altogether neglected (station motions) must now be taken into consideration. The problem of modeling functions of time or space, or at least their values at observation points (epochs) is explored. When the nature of the function to be modeled is unknown. The need to include a limited number of terms and to a priori decide upon a specific form may result in a representation which fails to sufficiently approximate the unknown function. An alternative approach of increasing application is the modeling of unknown functions as stochastic processes.

  18. Crossed-coil detection of two-photon excited nuclear quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Eles, Philip T.; Michal, Carl A.

    2005-08-01

    Applying a recently developed theoretical framework for determining two-photon excitation Hamiltonians using average Hamiltonian theory, we calculate the excitation produced by half-resonant irradiation of the pure quadrupole resonance of a spin-3/2 system. This formalism provides expressions for the single-quantum and double-quantum nutation frequencies as well as the Bloch-Siegert shift. The dependence of the excitation strength on RF field orientation and the appearance of the free-induction signal along an axis perpendicular to the excitation field provide an unmistakable signature of two-photon excitation. We demonstrate single- and double-quantum excitation in an axially symmetric system using 35Cl in a single crystal of potassium chlorate ( ωQ = 28 MHz) with crossed-coil detection. A rotation plot verifies the orientation dependence of the two-photon excitation, and double-quantum coherences are observed directly with the application of a static external magnetic field.

  19. Image Mission Attitude Support Experiences

    NASA Technical Reports Server (NTRS)

    Ottenstein, N.; Challa, M.; Home, A.; Harman, R.; Burley, R.

    2001-01-01

    The spin-stabilized Imager for Magnetopause to Aurora Global Exploration (IMAGE) is the National Aeronautics and Space Administration's (NASA's) first Medium-class Explorer Mission (MIDEX). IMAGE was launched into a highly elliptical polar orbit on March 25, 2000 from Vandenberg Air Force Base, California, aboard a Boeing Delta II 7326 launch vehicle. This paper presents some of the observations of the flight dynamics analyses during the launch and in-orbit checkout period through May 18, 2000. Three new algorithms - one algebraic and two differential correction - for computing the parameters of the coning motion of a spacecraft are described and evaluated using in-flight data from the autonomous star tracker (AST) on IMAGE. Other attitude aspects highlighted include support for active damping consequent upon the failure of the passive nutation damper, performance evaluation of the AST, evaluation of the Sun sensor and magnetometer using AST data, and magnetometer calibration.

  20. Planar ion trap (retarding potential analyzer) experiment for atmosphere explorer

    NASA Technical Reports Server (NTRS)

    Hanson, W. B.; Sanatani, S.; Lippincott, C. R.; Zuccaro, D. R.

    1982-01-01

    The retarding potential analyzer and drift meter were carried aboard all three Atmosphere Explorer spacecraft. These instruments measure the total thermal ion concentration and temperature, the bulk thermal ion velocity vector and some limited properties of the relative abundance of H(+), He(+), O(+) and molecular ions. These instruments functioned with no internal failures on all the spacecraft. On AE-E there existed some evidence for external surface contamination that damaged the integrity of the RPA sweep grids. This led to some difficulties in data reduction and interpretation that did not prove to be a disastrous problem. The AE-D spacecraft functioned for only a few months before it re-entered. During this time the satellite suffered from a nutation about the spin axis of about + or - 2 deg. This 2 deg modulation was superimposed upon the ion drift meter horizontal ion arrival angle output requiring the employment of filtering techniques to retrieve the real data.

  1. Satellite attitude prediction by multiple time scales method

    NASA Technical Reports Server (NTRS)

    Tao, Y. C.; Ramnath, R.

    1975-01-01

    An investigation is made of the problem of predicting the attitude of satellites under the influence of external disturbing torques. The attitude dynamics are first expressed in a perturbation formulation which is then solved by the multiple scales approach. The independent variable, time, is extended into new scales, fast, slow, etc., and the integration is carried out separately in the new variables. The theory is applied to two different satellite configurations, rigid body and dual spin, each of which may have an asymmetric mass distribution. The disturbing torques considered are gravity gradient and geomagnetic. Finally, as multiple time scales approach separates slow and fast behaviors of satellite attitude motion, this property is used for the design of an attitude control device. A nutation damping control loop, using the geomagnetic torque for an earth pointing dual spin satellite, is designed in terms of the slow equation.

  2. Semantic labeling of high-resolution aerial images using an ensemble of fully convolutional networks

    NASA Astrophysics Data System (ADS)

    Sun, Xiaofeng; Shen, Shuhan; Lin, Xiangguo; Hu, Zhanyi

    2017-10-01

    High-resolution remote sensing data classification has been a challenging and promising research topic in the community of remote sensing. In recent years, with the rapid advances of deep learning, remarkable progress has been made in this field, which facilitates a transition from hand-crafted features designing to an automatic end-to-end learning. A deep fully convolutional networks (FCNs) based ensemble learning method is proposed to label the high-resolution aerial images. To fully tap the potentials of FCNs, both the Visual Geometry Group network and a deeper residual network, ResNet, are employed. Furthermore, to enlarge training samples with diversity and gain better generalization, in addition to the commonly used data augmentation methods (e.g., rotation, multiscale, and aspect ratio) in the literature, aerial images from other datasets are also collected for cross-scene learning. Finally, we combine these learned models to form an effective FCN ensemble and refine the results using a fully connected conditional random field graph model. Experiments on the ISPRS 2-D Semantic Labeling Contest dataset show that our proposed end-to-end classification method achieves an overall accuracy of 90.7%, a state-of-the-art in the field.

  3. Ship Detection in Gaofen-3 SAR Images Based on Sea Clutter Distribution Analysis and Deep Convolutional Neural Network

    PubMed Central

    You, Hongjian

    2018-01-01

    Target detection is one of the important applications in the field of remote sensing. The Gaofen-3 (GF-3) Synthetic Aperture Radar (SAR) satellite launched by China is a powerful tool for maritime monitoring. This work aims at detecting ships in GF-3 SAR images using a new land masking strategy, the appropriate model for sea clutter and a neural network as the discrimination scheme. Firstly, the fully convolutional network (FCN) is applied to separate the sea from the land. Then, by analyzing the sea clutter distribution in GF-3 SAR images, we choose the probability distribution model of Constant False Alarm Rate (CFAR) detector from K-distribution, Gamma distribution and Rayleigh distribution based on a tradeoff between the sea clutter modeling accuracy and the computational complexity. Furthermore, in order to better implement CFAR detection, we also use truncated statistic (TS) as a preprocessing scheme and iterative censoring scheme (ICS) for boosting the performance of detector. Finally, we employ a neural network to re-examine the results as the discrimination stage. Experiment results on three GF-3 SAR images verify the effectiveness and efficiency of this approach. PMID:29364194

  4. Ship Detection in Gaofen-3 SAR Images Based on Sea Clutter Distribution Analysis and Deep Convolutional Neural Network.

    PubMed

    An, Quanzhi; Pan, Zongxu; You, Hongjian

    2018-01-24

    Target detection is one of the important applications in the field of remote sensing. The Gaofen-3 (GF-3) Synthetic Aperture Radar (SAR) satellite launched by China is a powerful tool for maritime monitoring. This work aims at detecting ships in GF-3 SAR images using a new land masking strategy, the appropriate model for sea clutter and a neural network as the discrimination scheme. Firstly, the fully convolutional network (FCN) is applied to separate the sea from the land. Then, by analyzing the sea clutter distribution in GF-3 SAR images, we choose the probability distribution model of Constant False Alarm Rate (CFAR) detector from K-distribution, Gamma distribution and Rayleigh distribution based on a tradeoff between the sea clutter modeling accuracy and the computational complexity. Furthermore, in order to better implement CFAR detection, we also use truncated statistic (TS) as a preprocessing scheme and iterative censoring scheme (ICS) for boosting the performance of detector. Finally, we employ a neural network to re-examine the results as the discrimination stage. Experiment results on three GF-3 SAR images verify the effectiveness and efficiency of this approach.

  5. Defect detection and classification of galvanized stamping parts based on fully convolution neural network

    NASA Astrophysics Data System (ADS)

    Xiao, Zhitao; Leng, Yanyi; Geng, Lei; Xi, Jiangtao

    2018-04-01

    In this paper, a new convolution neural network method is proposed for the inspection and classification of galvanized stamping parts. Firstly, all workpieces are divided into normal and defective by image processing, and then the defective workpieces extracted from the region of interest (ROI) area are input to the trained fully convolutional networks (FCN). The network utilizes an end-to-end and pixel-to-pixel training convolution network that is currently the most advanced technology in semantic segmentation, predicts result of each pixel. Secondly, we mark the different pixel values of the workpiece, defect and background for the training image, and use the pixel value and the number of pixels to realize the recognition of the defects of the output picture. Finally, the defect area's threshold depended on the needs of the project is set to achieve the specific classification of the workpiece. The experiment results show that the proposed method can successfully achieve defect detection and classification of galvanized stamping parts under ordinary camera and illumination conditions, and its accuracy can reach 99.6%. Moreover, it overcomes the problem of complex image preprocessing and difficult feature extraction and performs better adaptability.

  6. Fluoride-induced modulation of ionic transport in asymmetric nanopores functionalized with "caged" fluorescein moieties.

    PubMed

    Ali, Mubarak; Ahmed, Ishtiaq; Ramirez, Patricio; Nasir, Saima; Cervera, Javier; Niemeyer, Christof M; Ensinger, Wolfgang

    2016-04-28

    We demonstrate experimentally and theoretically a nanofluidic fluoride sensing device based on a single conical pore functionalized with "caged" fluorescein moieties. The nanopore functionalization is based on an amine-terminated fluorescein whose phenolic hydroxyl groups are protected with tert-butyldiphenylsilyl (TBDPS) moieties. The protected fluorescein (Fcn-TBDPS-NH2) molecules are then immobilized on the nanopore surface via carbodiimide coupling chemistry. Exposure to fluoride ions removes the uncharged TBDPS moieties due to the fluoride-promoted cleavage of the silicon-oxygen bond, leading to the generation of negatively charged groups on the fluorescein moieties immobilized onto the pore surface. The asymmetrical distribution of these groups along the conical nanopore leads to the electrical rectification observed in the current-voltage (I-V) curve. On the contrary, other halides and anions are not able to induce any significant ionic rectification in the asymmetric pore. In each case, the success of the chemical functionalization and deprotection reactions is monitored through the changes observed in the I-V curves before and after the specified reaction step. The theoretical results based on the Nernst-Planck and Poisson equations further demonstrate the validity of an experimental approach to fluoride-induced modulation of nanopore current rectification behaviour.

  7. Official Guard and Reserve Manpower Strengths and Statistics. Fiscal Year 1982 Summary

    DTIC Science & Technology

    1982-01-01

    DI ’a D~ U.. O 14( 11) f.IF) U0 0F)Cn D.4- F- aIaDP iDC n l 4. wlU a’ ý w fN 0 n C K) T) -P" F CW a l ) Nn w) (’o F-4 o( C...CIn OW~I ;0 - 4MT 4i on 0. H WI l - 0 PI4 .4C) .4i 4 4 N W’)NNP) t .’ P2-iP I flD N 4I LL. (F L0 Di0C )t Di YW 0 4 O %W nll)ýP ON sý4 )"C I LP ,I N 6...8217 V) 4K 1L 6; - N In 4ý v4 w4 O0a vC l 4440 4K 6K1 I DI 4’ tflLi 4M 49 ii 4. ;c 4i 0 W 4 M. wIL In 0q x~ 4i w. cc 4 4j 64 6 w0 ~ 0’Ir 0 .4’ m 4 V 4

  8. Expected Improvements in VLBI Measurements of the Earth's Orientation

    NASA Technical Reports Server (NTRS)

    Ma, Chopo

    2003-01-01

    Measurements of the Earth s orientation since the 1970s using space geodetic techniques have provided a continually expanding and improving data set for studies of the Earth s structure and the distribution of mass and angular momentum. The accuracy of current one-day measurements is better than 100 microarcsec for the motion of the pole with respect to the celestial and terrestrial reference frames and better than 3 microsec for the rotation around the pole. VLBI uniquely provides the three Earth orientation parameters (nutation and UTI) that relate the Earth to the extragalactic celestial reference frame. The accuracy and resolution of the VLBI Earth orientation time series can be expected to improve substantially in the near future because of refinements in the realization of the celestial reference frame, improved modeling of the troposphere and non-linear station motions, larger observing networks, optimized scheduling, deployment of disk-based Mark V recorders, full use of Mark IV capabilities, and e-VLBI. More radical future technical developments will be discussed.

  9. VizieR Online Data Catalog: SMART97, rigid Earth rotation new solution (Bretagnon+ 1998)

    NASA Astrophysics Data System (ADS)

    Bretagnon, P.; Francou, G.; Rocher, P.; Simon, J. L.

    1998-03-01

    The Earth rotation solution SMART97 (Solution du Mouvement de l'Axe de Rotation de la Terre) is an analytical solution of the Earth rotation in the rigid case. It gives the expressions of precession-nutation and rotation of the Earth for the 3 Euler angles ψ, ω, φ as well as for the quantities p, ɛ, χ, and the sidereal time. For the axis of figure (fig), these 7 quantities are given in the dynamical system (dyn) and in the kinematical system (kin). SMART97 also gives the variables ψ and ω, in the dynamical system, for the differences (axis of figure - axis of rotation) (rot) and (axis of figure - axis of the angular momentum) (ang). The accuracy of the solution is better than 2.2 microarcseconds for all these variables over 20000 days, between 1968 and 2023. A program EXAMPLE (Fortran 77) is provided which makes use of the subroutine SMART97 which substitutes the time in the series of the solutions SMART97. (18 data files).

  10. Solar-System Tests of Gravitational Theories

    NASA Technical Reports Server (NTRS)

    Shapiro, Irwin I.

    2001-01-01

    We are engaged in testing gravitational theory, primarily using observations of objects in the solar system and primarily on that scale. Our goal is either to detect departures from the standard model (general relativity) - if any exist within the level of sensitivity of our data - or to place tighter bounds on such departures. For this project, we have analyzed a combination of observational data with our model of the solar system, including mostly planetary radar ranging, lunar laser ranging, and spacecraft tracking, but also including both pulsar timing and pulsar very long base interferometry (VLBI) measurements. This year, we have extended our model of Earth nutation with adjustable correction terms at the principal frequencies. We also refined our model of tidal drag on the Moon's orbit. We believe these changes will make no substantial changes in the results, but we are now repeating the analysis of the whole set of data to verify that belief. Additional information is contained in the original extended abstract.

  11. Free Falling in Stratified Fluids

    NASA Astrophysics Data System (ADS)

    Lam, Try; Vincent, Lionel; Kanso, Eva

    2017-11-01

    Leaves falling in air and discs falling in water are examples of unsteady descents due to complex interaction between gravitational and aerodynamic forces. Understanding these descent modes is relevant to many branches of engineering and science such as estimating the behavior of re-entry space vehicles to studying biomechanics of seed dispersion. For regularly shaped objects falling in homogenous fluids, the motion is relatively well understood. However, less is known about how density stratification of the fluid medium affects the falling behavior. Here, we experimentally investigate the descent of discs in both pure water and in stable linearly stratified fluids for Froude numbers Fr 1 and Reynolds numbers Re between 1000 -2000. We found that stable stratification (1) enhances the radial dispersion of the disc at landing, (2) increases the descent time, (3) decreases the inclination (or nutation) angle, and (4) decreases the fluttering amplitude while falling. We conclude by commenting on how the corresponding information can be used as a predictive model for objects free falling in stratified fluids.

  12. Spacecraft flight control system design selection process for a geostationary communication satellite

    NASA Technical Reports Server (NTRS)

    Barret, C.

    1992-01-01

    The Earth's first artificial satellite, Sputnik 1, slowly tumbled in orbit. The first U.S. satellite, Explorer 1, also tumbled out of control. Now, as we launch the Mars observer and the Cassini spacecraft, stability and control have become higher priorities. The flight control system design selection process is reviewed using as an example a geostationary communication satellite which is to have a life expectancy of 10 to 14 years. Disturbance torques including aerodynamic, magnetic, gravity gradient, solar, micrometeorite, debris, collision, and internal torques are assessed to quantify the disturbance environment so that the required compensating torque can be determined. Then control torque options, including passive versus active, momentum control, bias momentum, spin stabilization, dual spin, gravity gradient, magnetic, reaction wheels, control moment gyros, nutation dampers, inertia augmentation techniques, three-axis control, reactions control system (RCS), and RCS sizing, are considered. A flight control system design is then selected and preliminary stability criteria are met by the control gains selection.

  13. A 250 GHz Gyrotron with a 3 GHz Tuning Bandwidth for Dynamic Nuclear Polarization

    PubMed Central

    Barnes, Alexander B.; Nanni, Emilio A.; Herzfeld, Judith; Griffin, Robert G.; Temkin, Richard J.

    2012-01-01

    We describe the design and implementation of a novel tunable 250 GHz gyrotron oscillator with >10 W output power over most of a 3 GHz band and >35 W peak power. The tuning bandwidth and power are sufficient to generate a >1 MHz nutation frequency across the entire nitroxide EPR lineshape for cross effect DNP, as well as to excite solid effect transitions utilizing other radicals, without the need for sweeping the NMR magnetic field. Substantially improved tunability is achieved by implementing a long (23 mm) interaction cavity that can excite higher order axial modes by changing either the magnetic field of the gyrotron or the cathode potential. This interaction cavity excites the rotating TE5,2,q mode, and an internal mode converter outputs a high-quality microwave beam with >94% Gaussian content. The gyrotron was integrated into a DNP spectrometer, resulting in a measured DNP enhancement of 54 on the membrane protein bacteriorhodopsin. PMID:22743211

  14. Transport-related triplet states and hyperfine couplings in organic tandem solar cells probed by pulsed electrically detected magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Kraffert, Felix; Bahro, Daniel; Meier, Christoph; Denne, Maximilian; Colsmann, Alexander; Behrends, Jan

    2017-09-01

    Tandem solar cells constitute the most successful organic photovoltaic devices with power conversion efficiencies comparable to thin-film silicon solar cells. Especially their high open-circuit voltage - only achievable by a well-adjusted layer stacking - leads to their high efficiencies. Nevertheless, the microscopic processes causing the lossless recombination of charge carriers within the recombination zone are not well understood yet. We show that advanced pulsed electrically detected magnetic resonance techniques such as electrically detected (ED)-Rabi nutation measurements and electrically detected hyperfine sublevel correlation (ED-HYSCORE) spectroscopy help to understand the role of triplet excitons in these microscopic processes. We investigate fully working miniaturised organic tandem solar cells and detect current-influencing doublet states in different layers as well as triplet excitons located on the fullerene-based acceptor. We apply ED-HYSCORE in order to study the nuclear spin environment of the relevant electron/hole spins and detect a significant amount of the low abundant 13C nuclei coupled to the observer spins.

  15. Phase-noise influence on coherent transients and hole burning

    NASA Astrophysics Data System (ADS)

    Shakhmuratov, R. N.; Szabo, Alex

    1998-10-01

    Resonant excitation of an inhomogeneously broadened ensemble of two-level atoms (TLA) by a stochastic field with phase noise is theoretically investigated. Free-induction decay (FID), hole burning (HB), and transient nutation (TN) are studied. We consider two kinds of driving fields, one with a free walking phase and another with the phase locked in a limited domain. It is shown that the resonant excitation behavior depends strongly on the noise property. Noise induced by a walking phase gives a simple contribution to the dephasing time, T2, of two-level atoms whereas phase locking qualitatively changes the laser-atom interaction. In the latter case, it is shown that even when the central part of the driving field spectrum is narrower than homogeneous absorption line of the TLA, the wide, low intensity wings of the spectrum (sidebands produced by the locked phase noise), have a strong effect on the FID, TN, and HB induced by the central, narrow part of the spectrum. The influence of sidebands on photon echoes is also discussed.

  16. Isolation of EPR spectra and estimation of spin-states in two-component mixtures of paramagnets.

    PubMed

    Chabbra, Sonia; Smith, David M; Bode, Bela E

    2018-04-26

    The presence of multiple paramagnetic species can lead to overlapping electron paramagnetic resonance (EPR) signals. This complication can be a critical obstacle for the use of EPR to unravel mechanisms and aid the understanding of earth abundant metal catalysis. Furthermore, redox or spin-crossover processes can result in the simultaneous presence of metal centres in different oxidation or spin states. In this contribution, pulse EPR experiments on model systems containing discrete mixtures of Cr(i) and Cr(iii) or Cu(ii) and Mn(ii) complexes demonstrate the feasibility of the separation of the EPR spectra of these species by inversion recovery filters and the identification of the relevant spin states by transient nutation experiments. We demonstrate the isolation of component spectra and identification of spin states in a mixture of catalyst precursors. The usefulness of the approach is emphasised by monitoring the fate of the chromium species upon activation of an industrially used precatalyst system.

  17. Spin dynamics of light-induced charge separation in composites of semiconducting polymers and PC60BM revealed using Q-band pulse EPR.

    PubMed

    Lukina, E A; Suturina, E; Reijerse, E; Lubitz, W; Kulik, L V

    2017-08-23

    Light-induced processes in composites of semiconducting polymers and fullerene derivatives have been widely studied due to their usage as active layers of organic solar cells. However the process of charge separation under light illumination - the key process of an organic solar cell is not well understood yet. Here we report a Q-band pulse electron paramagnetic resonance study of composites of the fullerene derivative PC 60 BM ([6,6]-phenyl-C 61 -butyric acid methyl ester) with different p-type semiconducting polymers regioregular and regiorandom P3HT (poly(3-hexylthiophene-2,5-diyl), MEH-PPV (poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]), PCDTBT (poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)]), PTB7 (poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}))), resulting in a detailed description of the in-phase laser flash-induced electron spin echo (ESE) signal. We found that in organic donor-acceptor composites the laser flash simultaneously induces species of two types: a polymer˙ + /fullerene˙ - spin-correlated polaron pair (SCPP) with an initial singlet spin state and (nearly) free polymer˙ + and fullerene˙ - species with non-equilibrium spin polarization. Species of the first type (SCPP) are well-known for polymer/fullerene blends and are usually associated with a charge-separated state. Also, spin polarization of long-living free species (polarons in deep traps) is affected by the laser flash, which is the third contribution to the flash-induced ESE signal. A protocol for extracting the in-phase ESE signal of the SCPP based on the dependence of the microwave nutation frequency on the strength of the spin coupling within the polaron pair was developed. Nutation experiments revealed an unusual pattern of the SCPP in RR-P3HT/PC 60 BM composites, from which the strength of the exchange interaction between the polymer˙ + and fullerene˙ - was extracted. In composites with low-efficient polymers the contribution of the SCPP to the in-phase ESE signal is high, while in composites with high-efficient polymers it is low. This finding can be used as a selection criterion of charge separation efficiency in the polymer/fullerene composites.

  18. Population resequencing reveals candidate genes associated with salinity adaptation of the Pacific oyster Crassostrea gigas.

    PubMed

    She, Zhicai; Li, Li; Meng, Jie; Jia, Zhen; Que, Huayong; Zhang, Guofan

    2018-06-06

    The Pacific oyster Crassostrea gigas is an important cultivated shellfish. As a euryhaline species, it has evolved adaptive mechanisms responding to the complex and changeable intertidal environment that it inhabits. To investigate the genetic basis of this salinity adaptation mechanism, we conducted a genome-wide association study using phenotypically differentiated populations (hyposalinity and hypersalinity adaptation populations, and control population), and confirmed our results using an independent population, high-resolution melting, and mRNA expression analysis. For the hyposalinity adaptation, we determined 24 genes, including Cg_CLCN7 (chloride channel protein 7) and Cg_AP1 (apoptosis 1 inhibitor), involved in the ion/water channel and transporter mechanisms, free amino acid and reactive oxygen species metabolism, immune responses, and chemical defence. Three SNPs located on these two genes were significantly differentiated between groups, as was Cg_CLCN7. For the hypersalinity adaptation, the biological process for positive regulating the developmental process was enriched. Enriched gene functions were focused on transcriptional regulation, signal transduction, and cell growth and differentiation, including calmodulin (Cg_CaM) and ficolin-2 (Cg_FCN2). These genes and polymorphisms possibly play an important role in oyster hyposalinity and hypersalinity adaptation. They not only further our understanding of salinity adaptation mechanisms but also provide markers for highly adaptable oyster strains suitable for breeding.

  19. Organic Ferroelectric-Based 1T1T Random Access Memory Cell Employing a Common Dielectric Layer Overcoming the Half-Selection Problem.

    PubMed

    Zhao, Qiang; Wang, Hanlin; Ni, Zhenjie; Liu, Jie; Zhen, Yonggang; Zhang, Xiaotao; Jiang, Lang; Li, Rongjin; Dong, Huanli; Hu, Wenping

    2017-09-01

    Organic electronics based on poly(vinylidenefluoride/trifluoroethylene) (P(VDF-TrFE)) dielectric is facing great challenges in flexible circuits. As one indispensable part of integrated circuits, there is an urgent demand for low-cost and easy-fabrication nonvolatile memory devices. A breakthrough is made on a novel ferroelectric random access memory cell (1T1T FeRAM cell) consisting of one selection transistor and one ferroelectric memory transistor in order to overcome the half-selection problem. Unlike complicated manufacturing using multiple dielectrics, this system simplifies 1T1T FeRAM cell fabrication using one common dielectric. To achieve this goal, a strategy for semiconductor/insulator (S/I) interface modulation is put forward and applied to nonhysteretic selection transistors with high performances for driving or addressing purposes. As a result, high hole mobility of 3.81 cm 2 V -1 s -1 (average) for 2,6-diphenylanthracene (DPA) and electron mobility of 0.124 cm 2 V -1 s -1 (average) for N,N'-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDI-FCN 2 ) are obtained in selection transistors. In this work, we demonstrate this technology's potential for organic ferroelectric-based pixelated memory module fabrication. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Supervised guiding long-short term memory for image caption generation based on object classes

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Cao, Zhiguo; Xiao, Yang; Qi, Xinyuan

    2018-03-01

    The present models of image caption generation have the problems of image visual semantic information attenuation and errors in guidance information. In order to solve these problems, we propose a supervised guiding Long Short Term Memory model based on object classes, named S-gLSTM for short. It uses the object detection results from R-FCN as supervisory information with high confidence, and updates the guidance word set by judging whether the last output matches the supervisory information. S-gLSTM learns how to extract the current interested information from the image visual se-mantic information based on guidance word set. The interested information is fed into the S-gLSTM at each iteration as guidance information, to guide the caption generation. To acquire the text-related visual semantic information, the S-gLSTM fine-tunes the weights of the network through the back-propagation of the guiding loss. Complementing guidance information at each iteration solves the problem of visual semantic information attenuation in the traditional LSTM model. Besides, the supervised guidance information in our model can reduce the impact of the mismatched words on the caption generation. We test our model on MSCOCO2014 dataset, and obtain better performance than the state-of-the- art models.

  1. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method.

    PubMed

    Zhou, Xiangrong; Takayama, Ryosuke; Wang, Song; Hara, Takeshi; Fujita, Hiroshi

    2017-10-01

    We propose a single network trained by pixel-to-label deep learning to address the general issue of automatic multiple organ segmentation in three-dimensional (3D) computed tomography (CT) images. Our method can be described as a voxel-wise multiple-class classification scheme for automatically assigning labels to each pixel/voxel in a 2D/3D CT image. We simplify the segmentation algorithms of anatomical structures (including multiple organs) in a CT image (generally in 3D) to a majority voting scheme over the semantic segmentation of multiple 2D slices drawn from different viewpoints with redundancy. The proposed method inherits the spirit of fully convolutional networks (FCNs) that consist of "convolution" and "deconvolution" layers for 2D semantic image segmentation, and expands the core structure with 3D-2D-3D transformations to adapt to 3D CT image segmentation. All parameters in the proposed network are trained pixel-to-label from a small number of CT cases with human annotations as the ground truth. The proposed network naturally fulfills the requirements of multiple organ segmentations in CT cases of different sizes that cover arbitrary scan regions without any adjustment. The proposed network was trained and validated using the simultaneous segmentation of 19 anatomical structures in the human torso, including 17 major organs and two special regions (lumen and content inside of stomach). Some of these structures have never been reported in previous research on CT segmentation. A database consisting of 240 (95% for training and 5% for testing) 3D CT scans, together with their manually annotated ground-truth segmentations, was used in our experiments. The results show that the 19 structures of interest were segmented with acceptable accuracy (88.1% and 87.9% voxels in the training and testing datasets, respectively, were labeled correctly) against the ground truth. We propose a single network based on pixel-to-label deep learning to address the challenging issue of anatomical structure segmentation in 3D CT cases. The novelty of this work is the policy of deep learning of the different 2D sectional appearances of 3D anatomical structures for CT cases and the majority voting of the 3D segmentation results from multiple crossed 2D sections to achieve availability and reliability with better efficiency, generality, and flexibility than conventional segmentation methods, which must be guided by human expertise. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  2. Analysis of the Effect of UTI-UTC to High Precision Orbit

    NASA Astrophysics Data System (ADS)

    Shin, Dongseok; Kwak, Sunghee; Kim, Tag-Gon

    1999-12-01

    As the spatial resolution of remote sensing satellites becomes higher, very accurate determination of the position of a LEO (Low Earth Orbit) satellite is demanding more than ever. Non-symmetric Earth gravity is the major perturbation force to LEO satellites. Since the orbit propagation is performed in the celestial frame while Earth gravity is defined in the terrestrial frame, it is required to convert the coordinates of the satellite from one to the other accurately. Unless the coordinate conversion between the two frames is performed accurately the orbit propagation calculates incorrect Earth gravitational force at a specific time instant, and hence, causes errors in orbit prediction. The coordinate conversion between the two frames involves precession, nutation, Earth rotation and polar motion. Among these factors, unpredictability and uncertainty of Earth rotation, called UTI-UTC, is the largest error source. In this paper, the effect of UTI-UTC on the accuracy of the LEO propagation is introduced, tested and analzed. Considering the maximum unpredictability of UTI-UTC, 0.9 seconds, the meaningful order of non-spherical Earth harmonic functions is derived.

  3. Crystal orientation induced spin Rabi beat oscillations of point defects at the c-Si(111)/ SiO 2 interface

    NASA Astrophysics Data System (ADS)

    Paik, Seoyoung; Lee, Sang-Yun; Boehme, Christoph

    2011-03-01

    Spin-dependent electronic transitions such as certain charge carrier recombination and transport processes in semiconductors are usually governed by the Pauli blockade within pairs of two paramagnetic centers. One implication of this is that the manipulation of spin states, e.g. by magnetic resonant excitation, can produce changes to electric currents of the given semiconductor material. If both spins are changed at the same time, quantum beat effects such as beat oscillation between resonantly induced spin Rabi nutation becomes detectable through current measurements. Here, we report on electrically detected spin Rabi beat oscillation caused by pairs of 31 P donor states and Pb interface defects at the phosphorous doped Si(111)/ Si O2 interface. Due to the g-factor anisotropy of the Pb center we can tune the intra pair Larmor frequency difference (so called Larmor separation) through orientation of the sample with regard to the external magnetic field. As the Larmor separation governs the spin Rabi beat oscillation, we show experimentally how the crystal orientation can influence the beat effect.

  4. The MAGIC of CINEMA: first in-flight science results from a miniaturised anisotropic magnetoresistive magnetometer

    NASA Astrophysics Data System (ADS)

    Archer, M. O.; Horbury, T. S.; Brown, P.; Eastwood, J. P.; Oddy, T. M.; Whiteside, B. J.; Sample, J. G.

    2015-06-01

    We present the first in-flight results from a novel miniaturised anisotropic magnetoresistive space magnetometer, MAGIC (MAGnetometer from Imperial College), aboard the first CINEMA (CubeSat for Ions, Neutrals, Electrons and MAgnetic fields) spacecraft in low Earth orbit. An attitude-independent calibration technique is detailed using the International Geomagnetic Reference Field (IGRF), which is temperature dependent in the case of the outboard sensor. We show that the sensors accurately measure the expected absolute field to within 2% in attitude mode and 1% in science mode. Using a simple method we are able to estimate the spacecraft's attitude using the magnetometer only, thus characterising CINEMA's spin, precession and nutation. Finally, we show that the outboard sensor is capable of detecting transient physical signals with amplitudes of ~ 20-60 nT. These include field-aligned currents at the auroral oval, qualitatively similar to previous observations, which agree in location with measurements from the DMSP (Defense Meteorological Satellite Program) and POES (Polar-orbiting Operational Environmental Satellites) spacecraft. Thus, we demonstrate and discuss the potential science capabilities of the MAGIC instrument onboard a CubeSat platform.

  5. VizieR Online Data Catalog: Methods for CIP and CIO localisation (Capitaine+, 2006)

    NASA Astrophysics Data System (ADS)

    Capitaine, N.; Wallace, P. T.

    2006-04-01

    Various implementations are described, their theoretical bases compared and the relationships between the expressions for the relevant parameters are provided. Semi-analytical and numerical comparisons have been made, based on the P03 precession and the IAU 2000A nutation, with slight modifications to the latter to make it consistent with P03. Methods based on the recent P03 precession model can be found in Capitaine et al. (2003A&A...412..567C, 2005A&A...432..355C). Tables 5-11 contain the coefficients in microarcseconds (uas) of the series developments (i.e. Fourier and Poisson terms) as functions of (terrestrial) time t (expressed in centuries since J2000.0) for the quantities s (Eq. (53)), s+XY/2 (Eq. (58)), s+XY/2+D (Eq. (60)), EO+Dpsi*cos(epsilonA) (where EO is given by Eq. (69)), x{CIO}, y{CIO}, z{CIO} (Eq. (70)), respectively, retaining all terms larger than 0.1 uas. The general formula is: S=Sum{on i}[Sum{j=0,5}[(S{j}i)*tj*sin(ARG)+(C{j}i*cos(ARG)]*tj

  6. Two-photon Lee-Goldburg nuclear magnetic resonance: Simultaneous homonuclear decoupling and signal acquisition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michal, Carl A.; Hastings, Simon P.; Lee, Lik Hang

    2008-02-07

    We present NMR signals from a strongly coupled homonuclear spin system, {sup 1}H nuclei in adamantane, acquired with simultaneous two-photon excitation under conditions of the Lee-Goldburg experiment. Small coils, having inside diameters of 0.36 mm, are used to achieve two-photon nutation frequencies of {approx}20 kHz. The very large rf field strengths required give rise to large Bloch-Siegert shifts that cannot be neglected. These experiments are found to be extremely sensitive to inhomogeneity of the applied rf field, and due to the Bloch-Siegert shift, exhibit a large asymmetry in response between the upper and lower Lee-Goldburg offsets. Two-photon excitation has themore » potential to enhance both the sensitivity and performance of homonuclear dipolar decoupling, but is made challenging by the high rf power required and the difficulties introduced by the inhomogeneous Bloch-Siegert shift. We briefly discuss a variation of the frequency-switched Lee-Goldburg technique, called four-quadrant Lee-Goldburg (4QLG) that produces net precession in the x-y plane, with a reduced chemical shift scaling factor of 1/3.« less

  7. Rotational-oscillational motions of the nonrigid Earth about the center of mass

    NASA Astrophysics Data System (ADS)

    Bondarenko, V. V.; Perepelkin, V. V.

    2009-10-01

    We use the model of a nearly axisymmetric viscoelastic rigid body to study perturbed rotational-oscillational motions of the Earth's pole. We point out that the Chandler component of oscillations is of celestial-mechanics nature and is caused by the gravitational-tidal actions of the Sun and the Moon. We analyze the pole oscillation excitation mechanism at a frequency close to the Chandler frequency and show that the undamped pole oscillations are caused by the resonance harmonic of the external perturbation at a frequency close to the free nutation frequency. We discuss whether it is possible to solve the problem of constructing a short-term forecast of the pole motion on the basis of a polynomial filter obtained by the least-squares method without taking into account small-scale oscillations caused by wide-band random factors of arbitrary physical nature. In the present paper, we perform numerical simulation of tidal inhomogeneities in the Earth's axial rotation. Attention is mainly paid to the analysis of day length variations on short time intervals with periods less than or equal to one year (interannual oscillations) and to their forecast.

  8. Systematic evaluation of heteronuclear spin decoupling in solid-state NMR at the rotary-resonance conditions in the regime of fast magic-angle spinning

    NASA Astrophysics Data System (ADS)

    Sharma, Kshama; Madhu, P. K.; Agarwal, Vipin

    2016-09-01

    The performance of heteronuclear spin decoupling sequences in solid-state NMR severely degrades when the proton radiofrequency (RF) nutation frequencies (ν1) are close to or at multiples of magic-angle spinning (MAS) frequency (νr) that are referred to as rotary-resonance recoupling conditions (ν1 = n · νr). Recently, two schemes, namely, PISSARRO and rCWApA, have been shown to be less affected by the problem of MAS and RF interference, specifically at the n = 2 rotary-resonance recoupling condition, especially in the fast MAS regime. Here, we systematically evaluate the loss in intensity of several heteronuclear spin decoupling sequences at the n = 1, 2 conditions compared to high-power decoupling in the fast-MAS regime. We propose that in the fast-MAS regime (above 40 kHz) the entire discussion about RF and MAS interference can be avoided by using appropriate low-power decoupling sequences which give comparable performance to decoupling sequences with high-power 1H irradiation of ca.195 kHz.

  9. Some new thoughts about long-term precession formula

    NASA Astrophysics Data System (ADS)

    Vondrák, J.; Capitaine, N.; Wallace, P.

    2011-10-01

    In our preceding study (Vondrák et al. 2009) we formulated developments for the precessional contribution to the CIP X, Y coordinates suitable for use over long time intervals. They were fitted to IAU 2006 close to J2000.0 and to the numerical integration of the ecliptic (using the integrator package Mercury 6) and of the general precession and obliquity (using Laskar's solution LA93) for more distant epochs. Now we define the boundary between precession and nutation (both are periodic) to avoid their overlap. We use the IAU 2006 model (that is based on the Bretagnon's solution VSOP87 and the JPL planetary ephemerides DE406) to represent the precession of the ecliptic close to J2000.0, a new integration using Mercury 6 for more distant epochs, and Laskar's LA93 solution to represent general precession and obliquity. The goal is to obtain new developments for different sets of precession angles that would fit to modern observations near J2000.0, and at the same time to numerical integration of the translatory-rotatory motions of solar system bodies on scales of several thousand centuries.

  10. On Physical Interpretation of the In-Site Measurement of Earth Rotation by Ring Laser Gyrometers

    NASA Technical Reports Server (NTRS)

    Chao, B. F.

    2004-01-01

    Large ring laser gyrometers under development have demonstrated the capability of detecting minute ground motions and deformations on a wide range of timescales. The next challenge and goal is to measure the Earth's rotation variations to a precision that rivals that of the present space-geodesy techniques, thus providing an in-situ (and cost effective alternatives of Earth rotation measurement for geophysical research and geodetic applications. Aside from thermal and mechanical instabilities, "undesirable" ground motion and tilt that appear in the signal will need to be removed before any variation in Earth rotation can be detected. Removal of these signals, some of them are larger than the sought rotation signals, has been a typical procedure in many precise geophysical instruments, such as gravimeters, seismometers, and tiltmeters. The remaining Earth rotation signal resides in both the spin around the axis and in the orientation of the axis. In the case of the latter, the in-situ measurement is complementary to the space-geodetic observables in terms of polar motion and nutation, a fact to be exploited.

  11. Mars Rotational and Orbital Dynamics

    NASA Image and Video Library

    1997-10-14

    The Rotation and Orbit Dynamics experiment is based on measuring the Doppler range to Pathfinder using the radio link. Mars rotation about it's pole causes a signature in the data with a daily minimum when the lander is closest to the Earth. Changes in the daily signature reveal information about the planetary interior, through its effect on Mars' precession and nutation. The signature also is sensitive to variations in Mars' rotation rate as the mass of the atmosphere increases and decreases as the polar caps are formed in winter and evaporate in spring. Long term signatures in the range to the lander are caused by asteroids perturbing Mars' orbit. Analysis of these perturbations allows the determination of the masses of asteroids. Sojourner spent 83 days of a planned seven-day mission exploring the Martian terrain, acquiring images, and taking chemical, atmospheric and other measurements. The final data transmission received from Pathfinder was at 10:23 UTC on September 27, 1997. Although mission managers tried to restore full communications during the following five months, the successful mission was terminated on March 10, 1998. http://photojournal.jpl.nasa.gov/catalog/PIA00975

  12. Quantum speed limit time in a magnetic resonance

    NASA Astrophysics Data System (ADS)

    Ivanchenko, E. A.

    2017-12-01

    A visualization for dynamics of a qudit spin vector in a time-dependent magnetic field is realized by means of mapping a solution for a spin vector on the three-dimensional spherical curve (vector hodograph). The obtained results obviously display the quantum interference of precessional and nutational effects on the spin vector in the magnetic resonance. For any spin the bottom bounds of the quantum speed limit time (QSL) are found. It is shown that the bottom bound goes down when using multilevel spin systems. Under certain conditions the non-nil minimal time, which is necessary to achieve the orthogonal state from the initial one, is attained at spin S = 2. An estimation of the product of two and three standard deviations of the spin components are presented. We discuss the dynamics of the mutual uncertainty, conditional uncertainty and conditional variance in terms of spin standard deviations. The study can find practical applications in the magnetic resonance, 3D visualization of computational data and in designing of optimized information processing devices for quantum computation and communication.

  13. Lander Radioscience LaRa, a Space Geodesy Experiment to Mars within the ExoMars 2020 mission.

    NASA Astrophysics Data System (ADS)

    Dehant, V. M. A.; Le Maistre, S.; Yseboodt, M.; Peters, M. J.; Karatekin, O.; Van Hove, B.; Rivoldini, A.; Baland, R. M.; Van Hoolst, T.

    2017-12-01

    The LaRa (Lander Radioscience) experiment is designed to obtain coherent two-way Doppler measurements from the radio link between the 2020 ExoMars lander and Earth over at least one Martian year. The LaRa instrument consists of a coherent transponder with up- and downlinks at X-band radio frequencies. The signal received from Earth is a pure carrier at 7.178 GHz; it is transponded back to Earth at a frequency of 8.434 GHz. The transponder is designed to maintain its lock and coherency over its planed one-hour observation sessions. The transponder mass is at the one-kg level. There are one uplink antenna and two downlink antennas. They are small patch antennas covered by a radome of 130gr for the downlink ones and of 200gr for the uplink. The signals will be generated and received by Earth-based radio antennas belonging to the NASA deep space network (DSN), the ESA tracking station network, or the Russian ground stations network. The instrument lifetime is more than twice the nominal mission duration of one Earth year. The Doppler measurements will be used to observe the orientation and rotation of Mars in space (precession, nutations, and length-of-day variations), as well as polar motion. The ultimate objective is to obtain information/constraints on the Martian interior, and on the sublimation/condensation cycle of atmospheric CO2. Orientation and rotational variations will allow us to constrain the moment of inertia of the entire planet, the moment of inertia of the core, and seasonal mass transfer between the atmosphere and the ice caps. The LaRa experiment will be combined with other previous radio science experiments such as the InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) RISE experiment (Rotation and Interior Structure Experiment) with radio science data of the NASA Viking landers, Mars Pathfinder and Mars Exploration Rovers. In addition, other ExoMars2020 and TGO (Trace Gas Orbiter) experiments providing information on the Martian atmosphere will be considered in order to retrieve a maximum amount of information on the interior of Mars. This contribution will provide an overview of the LaRa instrument and science objectives.

  14. Modern studies of the Lunar Physical libration at the Kazan University

    NASA Astrophysics Data System (ADS)

    Petrova, Natalia; Hanada, Hideo; Nefedyev, Yuri; Gusev, Alexander

    Main results in investigation of the lunar physical libration in the Kazan University are presented in the report. Modern problems in the lunar spin-dynamics are considered. The accent is done on the fine phenomena of the lunar libration caused by complicated interior structure. Parameters of a free libration are discussed; geometrical interpretation of the chandler-like and free core nutation is given. Over the past 10 years a creative cooperation has been formed between scientists of the Kazan University and the National Astronomical Observatory of Japan (Mizusava). The project ILOM (In situ Lunar Orientation Measurement), planned in the frame of SELENE-2 or -3 missions is aimed at monitoring the physical libration of the Moon. The Russian side has taken over some of the theoretical tasks to ensure the planned observations. One of the important elements of the project is placing of a small optical telescope on the lunar surface with the purpose to detect the lunar physical libration with millisecond accuracy. Computer simulation of the future observations is being done with the purpose of their optimization: effective placement of measuring system on the lunar surface, testing of sensitivity of new observations to various features of the lunar interior structure. The results of the first stage of the simulation are presented in the paper. At this stage the software for the selection of stars and reduction of their coordinates onto the period of observations is developed, the tracks for the selected stars are constructed and analyzed, their sensitivity to the internal characteristics of the lunar body, in the first place, to the selenopotential coefficients, is tested. Inverse problem of lunar physical libration is formulated and solved. It is shown that selenographic coordinates of polar stars are insensitive to longitudinal librations tau(t). Comparing coordinates calculated for two models of a rigid and deformable Moon is carried out and components sensitive to Love number k _{2} are revealed. Analytical theory of physical libration was very convenient tool for modeling the upcoming observations. The main outcome of this collaboration was the understanding of the strategy and tactics of building an improved analytical theory of physical libration. This work was supported by RFBR grant No. 13-02-00792.

  15. A Dynamic Nuclear Polarization spectrometer at 95 GHz/144 MHz with EPR and NMR excitation and detection capabilities.

    PubMed

    Feintuch, Akiva; Shimon, Daphna; Hovav, Yonatan; Banerjee, Debamalya; Kaminker, Ilia; Lipkin, Yaacov; Zibzener, Koby; Epel, Boris; Vega, Shimon; Goldfarb, Daniella

    2011-04-01

    A spectrometer specifically designed for systematic studies of the spin dynamics underlying Dynamic Nuclear Polarization (DNP) in solids at low temperatures is described. The spectrometer functions as a fully operational NMR spectrometer (144 MHz) and pulse EPR spectrometer (95 GHz) with a microwave (MW) power of up to 300 mW at the sample position, generating a MW B(1) field as high as 800 KHz. The combined NMR/EPR probe comprises of an open-structure horn-reflector configuration that functions as a low Q EPR cavity and an RF coil that can accommodate a 30-50 μl sample tube. The performance of the spectrometer is demonstrated through some basic pulsed EPR experiments, such as echo-detected EPR, saturation recovery and nutation measurements, that enable quantification of the actual intensity of MW irradiation at the position of the sample. In addition, DNP enhanced NMR signals of samples containing TEMPO and trityl are followed as a function of the MW frequency. Buildup curves of the nuclear polarization are recorded as a function of the microwave irradiation time period at different temperatures and for different MW powers. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Magnetic flux tailoring through Lenz lenses for ultrasmall samples: A new pathway to high-pressure nuclear magnetic resonance

    PubMed Central

    Meier, Thomas; Wang, Nan; Mager, Dario; Korvink, Jan G.; Petitgirard, Sylvain; Dubrovinsky, Leonid

    2017-01-01

    A new pathway to nuclear magnetic resonance (NMR) spectroscopy for picoliter-sized samples (including those kept in harsh and extreme environments, particularly in diamond anvil cells) is introduced, using inductively coupled broadband passive electromagnetic lenses, to locally amplify the magnetic field at the isolated sample, leading to an increase in sensitivity. The lenses are adopted for the geometrical restrictions imposed by a toroidal diamond indenter cell and yield signal-to-noise ratios at pressures as high as 72 GPa at initial sample volumes of only 230 pl. The corresponding levels of detection are found to be up to four orders of magnitude lower compared to formerly used solenoidal microcoils. Two-dimensional nutation experiments on long-chained alkanes, CnH2n+2 (n = 16 to 24), as well as homonuclear correlation spectroscopy on thymine, C5H6N2O2, were used to demonstrate the feasibility of this approach for higher-dimensional NMR experiments, with a spectral resolution of at least 2 parts per million. This approach opens up the field of ultrahigh-pressure sciences to one of the most versatile spectroscopic methods available in a pressure range unprecedented up to now. PMID:29230436

  17. Magnetic flux tailoring through Lenz lenses for ultrasmall samples: A new pathway to high-pressure nuclear magnetic resonance.

    PubMed

    Meier, Thomas; Wang, Nan; Mager, Dario; Korvink, Jan G; Petitgirard, Sylvain; Dubrovinsky, Leonid

    2017-12-01

    A new pathway to nuclear magnetic resonance (NMR) spectroscopy for picoliter-sized samples (including those kept in harsh and extreme environments, particularly in diamond anvil cells) is introduced, using inductively coupled broadband passive electromagnetic lenses, to locally amplify the magnetic field at the isolated sample, leading to an increase in sensitivity. The lenses are adopted for the geometrical restrictions imposed by a toroidal diamond indenter cell and yield signal-to-noise ratios at pressures as high as 72 GPa at initial sample volumes of only 230 pl. The corresponding levels of detection are found to be up to four orders of magnitude lower compared to formerly used solenoidal microcoils. Two-dimensional nutation experiments on long-chained alkanes, C n H 2 n +2 ( n = 16 to 24), as well as homonuclear correlation spectroscopy on thymine, C 5 H 6 N 2 O 2 , were used to demonstrate the feasibility of this approach for higher-dimensional NMR experiments, with a spectral resolution of at least 2 parts per million. This approach opens up the field of ultrahigh-pressure sciences to one of the most versatile spectroscopic methods available in a pressure range unprecedented up to now.

  18. Chronic sacroiliac joint and pelvic girdle dysfunction in a 35-year-old nulliparous woman successfully managed with multimodal and multidisciplinary approach.

    PubMed

    Jonely, Holly; Brismée, Jean-Michel; Desai, Mehul J; Reoli, Rachel

    2015-02-01

    Sacroiliac joint pain and dysfunction affect 15-25% of patients reporting low back pain, including reports of spontaneous, idiopathic, traumatic, and non-traumatic onsets. The poor reliability and validity associated with diagnostic clinical and imaging techniques leads to challenges in diagnosing and managing sacroiliac joint dysfunction. A 35-year-old nulliparous female with a 14-year history of right sacroiliac joint dysfunction was managed using a multimodal and multidisciplinary approach when symptoms failed to resolve after 2 months of physical therapy. The plan of care included four prolotherapy injections, sacroiliac joint manipulation into nutation, pelvic girdle belting, and specific stabilization exercises. The patient completed 20 physical therapy sessions over a 12-month period. At 6 months, the patient's Oswestry Disability Questionnaire score was reduced from 34% to 14%. At 1-year follow-up, her score was 0%. The patient's rating of pain on a numeric rating scale decreased to an average of 4/10 at 6 months and 0/10 at 1-year follow-up. A multidisciplinary and multimodal approach for the management of chronic sacroiliac joint dysfunction appeared successful in a single-case design at 1-year follow-up.

  19. Simple picture for neutrino flavor transformation in supernovae

    NASA Astrophysics Data System (ADS)

    Duan, Huaiyu; Fuller, George M.; Qian, Yong-Zhong

    2007-10-01

    We can understand many recently discovered features of flavor evolution in dense, self-coupled supernova neutrino and antineutrino systems with a simple, physical scheme consisting of two quasistatic solutions. One solution closely resembles the conventional, adiabatic single-neutrino Mikheyev-Smirnov-Wolfenstein (MSW) mechanism, in that neutrinos and antineutrinos remain in mass eigenstates as they evolve in flavor space. The other solution is analogous to the regular precession of a gyroscopic pendulum in flavor space, and has been discussed extensively in recent works. Results of recent numerical studies are best explained with combinations of these solutions in the following general scenario: (1) Near the neutrino sphere, the MSW-like many-body solution obtains. (2) Depending on neutrino vacuum mixing parameters, luminosities, energy spectra, and the matter density profile, collective flavor transformation in the nutation mode develops and drives neutrinos away from the MSW-like evolution and toward regular precession. (3) Neutrino and antineutrino flavors roughly evolve according to the regular precession solution until neutrino densities are low. In the late stage of the precession solution, a stepwise swapping develops in the energy spectra of νe and νμ/ντ. We also discuss some subtle points regarding adiabaticity in flavor transformation in dense-neutrino systems.

  20. Study of spin-dependent transitions and spin coherence at the (111) oriented phosphorous doped crystalline silicon to silicon dioxide interface using pulsed electrically detected magnetic resonance

    NASA Astrophysics Data System (ADS)

    Paik, Seoyoung

    A study of spin-dependent electronic transitions at the (111) oriented phosphorous doped crystalline silicon (c-Si) to silicon dioxide (SiO 2) interface is presented for [31P] = 1015 cm-3 and [31P] = 1016 cm -3 and a temperature range between T ≈ 5K and T ≈ 15K. Using pulsed electrically detected magnetic resonance (pEDMR), spin-dependent transitions involving 31P donor states and two different interface states are observed, namely (i) Pb centers which can be identified by their characteristic anisotropy and (ii) the E' center which is attributed to defects of the near interface SiO 2 bulk. Correlation measurements of the dynamics of spin-dependent recombination confirm that previously proposed transitions between 31P and the interface defects take place. The influence of these near interface transitions on the 31P donor spin coherence time T 2 as well as the donor spin-lattice relaxation time T 1 is then investigated by comparison of spin Hahn echo decay measurements obtained from conventional bulk sensitive pulsed electron paramagnetic resonance and surface sensitive pEDMR measurements, as well as surface sensitive electrically detected inversion recovery experiments. The measurements reveal that the T2 times of both interface states and 31P donor electrons spins in proximity of them are consistently shorter than the T1 times, and both T2 and T1 times of the near interface donors are reduced by several orders of magnitude from those in the bulk, at T ≤ 13 K. The T 2 times of the 31P donor electrons are in agreement with the prediction by De Sousa that they are limited by interface defect-induced field noise. To further investigate the dynamic properties of spin-dependent near interface processes, electrical detection of spin beat oscillation between resonantly induced spin-Rabi nutation is conducted at the phosphorous doped (1016cm-3) Si(111)/SiO2 interface. Predictions of Rabi beat oscillations based on several different spin-pair models are compared with measured Rabi beat nutation data. Due to the g-factor anisotropy of the Pb center (a silicon surface dangling bond), one can tune intra-pair Larmor frequency differences (Larmor separations) by orientation of the crystal with regard to an external magnetic field. Since Larmor separation governs the number of beating spin-pairs, crystal orientation can control the beat current. This is used to identify spin states that are paired by mutual electronic transitions. Based on the agreement between hypothesis and data, the experiments confirm the presence of the previously observed 31P-P b transition and the previously hypothesized P b to near interface SiO2 bulk state (E' center) transition.

  1. Periodicity Analysis of X-ray Light Curves of SS 433

    NASA Astrophysics Data System (ADS)

    Wang, J. Y.; Lu, X. L.; Zhao, Q. W.; Dong, D. Q.; Lao, B. Q.; Lu, Y.; Wei, Y. H.; Wu, X. C.; An, T.

    2016-03-01

    SS 433 is the only X-ray binary to date that was detected to have a pair of well-collimated jets, and its orbital period, super orbital period, and nutation period were all detected at the same time. The study on the periodic X-ray variabilities is helpful for understanding its dynamic process of the central engine and the correlation with other bands. In the present paper, two time series analysis techniques, Lomb-Scargle periodogram and weighted wavelet Z-transform, are employed to search for the periodicities from the Swift/BAT (Burst Alert Telescope)(15--50 keV) and RXTE/ASM (Rossi X-Ray Timing Explorer/All-Sky Monitor)(1.5--3, 3--5 and 5--12 keV) light curves of SS 433, and the Monte Carlo simulation is performed. For the 15--50 keV energy band, five significant periodic signals are detected, which are P_1(˜6.29 d), P_2 (˜6.54 d), P_3 (˜13.08 d), P_4 (˜81.50 d), and P_5 (˜162.30 d). For the 3--5 and 5--12 keV energy bands, periodic signals P_3 (˜13 d) and P_5 (˜162 d) are detected in both energy bands. However, for the 1.5--3 keV energy band, no significant periodic signal is detected. P_5 has the strongest periodic signal in the power spectrum for all the energy bands of 3--5, 5--12, and 15--50 keV, and it is consistent with that obtained by previous study in optical band. Further, due to the existence of relativistic radio jets, the X-ray and optical band variability of P_5 (˜162 d) is probably related to the precession of the relativistic jets. High coherence between X-ray and optical light curves may also imply that the X-ray and optical emissions are of the same physical origin. P_3 shows a good agreement with the orbital period (˜13.07 d) first obtained by previous study, and P_2 and P_4 are the high frequency harmonic components of P_3 and P_5, respectively. P_1 is detected from the power spectrum of 15--50 keV energy band only, and it is consistent with the systematic nutation period. As the power of energy band decreases (from hard X-ray to soft X-ray), less periodicities are detected, which provides an evidence that the emission from high energy band (hard X-ray) comes primarily from jets, and the emission from low energy band (soft X-ray) may originate from the medium around binary systems. The multiple X-ray periods obtained from the present studies provide the necessary basis for the analysis of multi-wavelength data and the dynamics of the central engine system of SS 433.

  2. Targeted Proteomics Predicts a Sustained Complete-Response after Transarterial Chemoembolization and Clinical Outcomes in Patients with Hepatocellular Carcinoma: A Prospective Cohort Study.

    PubMed

    Yu, Su Jong; Kim, Hyunsoo; Min, Hophil; Sohn, Areum; Cho, Young Youn; Yoo, Jeong-Ju; Lee, Dong Hyeon; Cho, Eun Ju; Lee, Jeong-Hoon; Gim, Jungsoo; Park, Taesung; Kim, Yoon Jun; Kim, Chung Yong; Yoon, Jung-Hwan; Kim, Youngsoo

    2017-03-03

    This study was aimed to identify blood-based biomarkers to predict a sustained complete response (CR) after transarterial chemoembolization (TACE) using targeted proteomics. Consecutive patients with HCC who had undergone TACE were prospectively enrolled (training (n = 100) and validation set (n = 80)). Serum samples were obtained before and 6 months after TACE. Treatment responses were evaluated using the modified Response Evaluation Criteria in Solid Tumors (mRECIST). In the training set, the MRM-MS assay identified five marker candidate proteins (LRG1, APCS, BCHE, C7, and FCN3). When this five-marker panel was combined with the best-performing clinical variables (tumor number, baseline PIVKA, and baseline AFP), the resulting ensemble model had the highest area under the receiver operating curve (AUROC) value in predicting a sustained CR after TACE in the training and validation sets (0.881 and 0.813, respectively). Furthermore, the ensemble model was an independent predictor of rapid progression (hazard ratio (HR), 2.889; 95% confidence interval (CI), 1.612-5.178; P value < 0.001) and overall an unfavorable survival rate (HR, 1.985; 95% CI, 1.024-3.848; P value = 0.042) in the entire population by multivariate analysis. Targeted proteomics-based ensemble model can predict clinical outcomes after TACE. Therefore, this model can aid in determining the best candidates for TACE and the need for adjuvant therapy.

  3. Systematic evaluation of deep learning based detection frameworks for aerial imagery

    NASA Astrophysics Data System (ADS)

    Sommer, Lars; Steinmann, Lucas; Schumann, Arne; Beyerer, Jürgen

    2018-04-01

    Object detection in aerial imagery is crucial for many applications in the civil and military domain. In recent years, deep learning based object detection frameworks significantly outperformed conventional approaches based on hand-crafted features on several datasets. However, these detection frameworks are generally designed and optimized for common benchmark datasets, which considerably differ from aerial imagery especially in object sizes. As already demonstrated for Faster R-CNN, several adaptations are necessary to account for these differences. In this work, we adapt several state-of-the-art detection frameworks including Faster R-CNN, R-FCN, and Single Shot MultiBox Detector (SSD) to aerial imagery. We discuss adaptations that mainly improve the detection accuracy of all frameworks in detail. As the output of deeper convolutional layers comprise more semantic information, these layers are generally used in detection frameworks as feature map to locate and classify objects. However, the resolution of these feature maps is insufficient for handling small object instances, which results in an inaccurate localization or incorrect classification of small objects. Furthermore, state-of-the-art detection frameworks perform bounding box regression to predict the exact object location. Therefore, so called anchor or default boxes are used as reference. We demonstrate how an appropriate choice of anchor box sizes can considerably improve detection performance. Furthermore, we evaluate the impact of the performed adaptations on two publicly available datasets to account for various ground sampling distances or differing backgrounds. The presented adaptations can be used as guideline for further datasets or detection frameworks.

  4. About mechanisms of tetonic activity of the satellites

    NASA Astrophysics Data System (ADS)

    Barkin, Yu. V.

    2003-04-01

    ABOUT MECHANISMS OF TECTONIC ACTIVITY OF THE SATELLITES Yu.V. Barkin Sternberg Astronomical Institute, Moscow, Russia, barkin@sai.msu.ru Due to attraction of the central planet and others external bodies satellite is subjected by tidal and non-tidal deformations. Elastic energy is changed in dependence from mutual position and motion of celestial bodies and as result the tensional state of satellite and its tectonic (endogenous) activity also is changed. Satellites of the planets have the definite shell’s structure and due to own rotation these shells are characterized by different oblatenesses. Gravitational interaction of the satellite and its mother planet generates big additional mechanical forces (and moments) between the neighboring non-spherical shells of the satellite (mantle, core and crust). These forces and moments are cyclic functions of time, which are changed in the different time-scales. They generate corresponding cyclic perturbations of the tensional state of the shells, their deformations, small relative transnational displacements and slow rotation of the shells and others. In geological period of time it leads to a fundamental tectonic reconstruction of the body. Definite contribution to discussed phenomena are caused by classical tidal mechanism. of planet-satellite interaction. But in this report we discuss in first the new mechanisms of endogenous activity of celestial bodies. They are connected with differential gravitational attraction of non-spherical satellite shells by the external celestial bodies which leads: 1) to small relative rotation (nutations) of the shells; 2) to small relative translational motions of the shells (displacements of their center of mass); 3) to relative displacements and rotations of the shells due to eccentricity of their center of mass positions; 4) to viscous elastic deformations of the shells and oth. (Barkin, 2001). For higher evaluations of the power of satellite endogenous activities were obtained analytical formulae. Obtained theoretical evaluations of the force and power characteristics are in good agreement with observational date and in particular they explain some from the well known problems of planetology. The following phenomena obtain an explanation: 1. Higher endogenous activity of Io; 2. Europe crack systems; 3. high endogenous activity of Ganimede, Titan, Miranda, Enceladus, Ariel. Well known relations of tectonic activity between satellites: Ariel and Umbriel, Reiha and Diona, Titania and Oberon have been explained in terms of numerical values of force and energy characteristics. Conclusion about high endogenous activity of Titan also presents important interest. The work was accepted and financed by RFBR grant N 02-05-64176 and by grant SAB2000-0235 of Ministry of Education of Spain (Secretaria de Estado de Educacion y Universidades).

  5. To Mercury dynamics

    NASA Astrophysics Data System (ADS)

    Barkin, Yu. V.; Ferrandiz, J. M.

    Present significance of the study of rotation of Mercury considered as a core-mantle system arises from planned Mercury missions. New high accurate data on Mercury's structure and its physical fields are expected from BepiColombo mission (Anselmi et al., 2001). Investigation of resonant rotation of Mercury, begun by Colombo G. (1966), will play here main part. New approaches to the study of Mercury dynamics and the construction of analytical theory of its resonant rotation are suggested. Within these approaches Mercury is considered as a system of two non-spherical interacting bodies: a core and a mantle. The mantle of Mercury is considered as non-spherical, rigid (or elastic) layer. Inner shell is a liquid core, which occupies a large ellipsoidal cavity of Mercury. This Mercury system moves in the gravitational field of the Sun in resonant traslatory-rotary regime of the resonance 3:2. We take into account only the second harmonic of the force function of the Sun and Mercury. For the study of Mercury rotation we have been used specially designed canonical equations of motion in Andoyer and Poincare variables (Barkin, Ferrandiz, 2001), more convenient for the application of mentioned methods. Approximate observational and some theoretical evaluations of the two main coefficients of Mercury gravitational field J_2 and C22 are known. From observational data of Mariner-10 mission were obtained some first evaluations of these coefficients: J_2 =(8± 6)\\cdot 10-5(Esposito et al., 1977); J_2 =(6± 2)\\cdot 10-5and C22 =(1.0± 0.5)\\cdot 10-5(Anderson et al., 1987). Some theoretical evaluation of ratio of these coefficients has been obtained on the base of study of periodic motions of the system of two non-spherical gravitating bodies (Barkin, 1976). Corresponding values of coefficients consist: J_2 =8\\cdot 10-5and C22 =0.33\\cdot 10-5. We have no data about non-sphericity of inner core of Mercury. Planned missions to Mercury (BepiColombo and Messenger) promise to obtain new and accurate data about dynamics and structure of this planet (Anselmi et al., 2001). There are also some evaluations of moments of inertia Mercury and its core: C/(mR^2)=0.35, C_m /C=0.5± 0.07, (Peal, 1996). Here C and C_m are the moments of inertia of the full Mercury and of its core, m and R is a mass and a mean radius of Mercury. Based on two methods, we consider the rotation of Mercury in the gravitational field of the Sun. First method of perturbation has been effectively applied to the construction of a rotational theory of the Earth for its models as two or three layer celestial body moving in gravitational fields of the Moon, Sun and planets in wide set of papers ranging in 1999-2001 years of Ferrandiz J.M. and Getino J.(2001). Some generalization of this Hamiltonian formalism on the case of cavity (core) with arbitrary dynamical and geometrical oblateness has been obtained in a paper (Barkin, Ferrandiz, 2001). Another method is an analytical method of construction of the resonant rotational motion of synchronous satellites and Mercury, considered as non-spherical rigid bodies. This method has been applied earlier to construction of an analytical theory of rotation of the Moon considered as rigid non-spherical body (Barkin, 1989). Here we modified these methods to apply them to the study of the resonant rotation of a two-layer Mercury. By this we use very effective for the application of perturbation methods and dynamical geometrical illustration of canonical equations in Andoyer and Poincare variables. Main resonant properties of Mercury motion were been described first as generalized Cassini's laws (Colombo, 1966). But Colombo and some anothers scientists (Peal, 1969; Beletskii, 1972; Ward, 1975 and oth.) considered Mercury as rigid non-spherical body sometimes taking into account tidal deformation. Here we have been obtained and formulated these laws and their generalization for a two-layer model of Mercury. On the next step we have evaluated frequencies of free oscillations of core-mantle system of Mercury. Based on the mentioned data about Mercury (Barkin, 1976) we have been obtained the following model values of moments of inertia of the Mercury and for its core:A=0.3499534, B=0.3499667, C=0.35; A_c =B_c =0.1749767, C_c =0.175000 (1quad unit=mR^2, m and R is a mass and a mean radius of the Mercury). Here we used model values for moments of inertia of the core using also some analogy with axysimmetrical model of the core of the Moon from paper Williams et al. (2003). Corresponding periods of free oscillations were determined on the base specially constructed equations of developed theory. They are equal: T_1 =260543\\cdot Trot years and T_2 =0.999468\\cdot Trot (Trot =58.6462 days is a period of Mercury rotation). Last period determines long period of relative oscillation of the core and mantleT_r . The mentioned periods are equal: T_1 =713years and T_r =302years. Barkin's work was accepted by grant SAB2000-0235 of Ministry of Education of Spain and partially by grants AYA2001-0787 and ESP2001-4533 is also aknowledged. References Anderson J.D., Colombo G., Esposito P.B., Lau E.L., Trager G.B.: 1987. The mass, gravity field and ephemeris of Mercury. Icarus, pp. 337-349. Anselmi A., Scoon G.E.N.: 2001. BepiColombo, ESA's Mercury Cornerstone mission. Planetary and Space Science, 49, pp. 1409-1420. Barkin Yu.V.: 1976. About plane periodic motions of a rigid body in gravitational field of a sphere. Astron. J., v. 53, pp. 1110-1119. In Russian. Barkin Yu.V.: 1987. An analytical theory of the lunar rotational motion. Proc. Int. Symp. ``Figure and Dynamics of Earth, Moon and Planets'' (September 1986, Prague). Monograph series of VUGTK. Prague. Pp. 657-677. Beletskij V.V.: 1972. Resonance rotation of celestial bodies and Cassini's laws. Celestial Mechanics, v.6, N3, pp. 356-378. Colombo G.: 1966. Cassini's second and third laws, Astron. J., 71, p. 891. Esposito P.B., Anderson J.D., Ng A.T.Y.: 1977. Experimental determination of Mercury's mass and oblateness. Space Res., v. 17, pp. 639-644. Getino J., Ferrandiz J.M.: 2001. Forced nutations of a two-layer earth model. Monthly Notices of the Royal Astronomical Society, v. 322, Iss. 4, pp. 785-799. Ferrandiz J.M., Barkin Yu.V.: 2001. Dynamics of the rotational motion of the planet with the elastic mantle, liquid core and with the changeable external shell. Proc. of Intern. Conf. ``AstroKazan-2001''. Astronomy and geodesy in new millennium (24-29 September 2001), Kazan State University: Publisher ``DAS'', 2001, p. 123-129. Peal S.J.: 1969. Generalized Cassini's laws, Astron. J., 74, p. 483. Peal S.J.: 1996. Characterizing the core of Mercury. LPS XXVII, 1168. Ward W.R.: 1975. Tidal friction and generalized Cassini's laws in the solar system. Astron. Journal, Vol. 80, N 1, pp. 64-70.

  6. International Conference on the Mechanical Technology of Inertial Devices, University of Newcastle-upon-Tyne, England, Apr. 7-9, 1987, Proceedings

    NASA Astrophysics Data System (ADS)

    Various papers on the mechanical technology of inertial devices are presented. The topics addressed include: development of a directional gyroscope for remotely piloted vehicles and similar applications; a two-degree-of-freedom gyroscope with frictionless inner and outer gimbal pickoffs; oscillogyro design, manufacture, and performance; development of miniature two-axis rate gyroscope; mechanical design aspects of the electrostatically suspended gyroscope; role of gas-lubricated bearings in current and future sensors; development of a new microporous retainer material for precision ball bearings; design study for a high-stability, large-centrifuge test bed; evaluation of a two-axis rate gyro; operating principles of a two-axis angular rate transducer; and nutation frequency analysis. Also considered are: triaxial laser gyro; mechanical design considerations for a ring laser gyro dither mechanism; environmental considerations in the design of fiberoptic gyroscopes; manufacturing aspects of some critical high-precision mechanical components of inertial devices; dynamics and control of a gyroscopic force measurement system; high precision and high performance motion systems; use of multiple acceleration references to obtain high precision centrifuge data at low cost; gyro testing and evaluation at the Communications Research Centre; review of the mechanical design and development of a high-performance accelerometer; and silicon microengineering for accelerometers.

  7. The Research of Variation of the Period and Precession of the Rotation Axis of EGS (AJISAI) Satellite by Using Photometric Measurement

    NASA Astrophysics Data System (ADS)

    Burlak, N.; Koshkin, N.; Korobeynikova, E.; Melikyants, S.; Shakun, L.; Strakhova, S.

    The light curves of EGS Ajisai with temporal resolution of 20 ms referred to the time scale UTC (GPS) with an error of at most 0.1 ms were obtained. The observed flashes are produced when the mirrors which cover the spinning satellite's surface reflect off the sunlight. In previous paper the analysis of sequence of flashes allowed of reconstructing the arrangement and orientation of the mirrors, i.e. developing an optogeometric model of the satellite (Korobeynikova et al., 2012), and to apply that model along with new photometric observations to determine the satellite's sidereal rotational period with an accuracy that was previously unachievable. A new technique for determination of the spin-axis orientation during each passage of the satellite over an observation site was developed. The secular slowdown of the satellite's spin rate (Psid = 1.4858*EXP(0.000041099*T), where T is measured in days counted from the date of the satellite launch) and its variations correlating with the average duration of the satellite orbit out of the Earth's shadow were refined. New parameters of the spin-axis precession were estimated: the period Pprec = 116.44 days, αprec = 18.0h, δprec = 87.66°, the nutation angle θ = 1.78°.

  8. Constraining Binary Asteroid Mass Distributions Based On Mutual Motion

    NASA Astrophysics Data System (ADS)

    Davis, Alex B.; Scheeres, Daniel J.

    2017-06-01

    The mutual gravitational potential and torques of binary asteroid systems results in a complex coupling of attitude and orbital motion based on the mass distribution of each body. For a doubly-synchronous binary system observations of the mutual motion can be leveraged to identify and measure the unique mass distributions of each body. By implementing arbitrary shape and order computation of the full two-body problem (F2BP) equilibria we study the influence of asteroid asymmetries on separation and orientation of a doubly-synchronous system. Additionally, simulations of binary systems perturbed from doubly-synchronous behavior are studied to understand the effects of mass distribution perturbations on precession and nutation rates such that unique behaviors can be isolated and used to measure asteroid mass distributions. We apply our investigation to the Trojan binary asteroid system 617 Patroclus and Menoetius (1906 VY), which will be the final flyby target of the recently announced LUCY Discovery mission in March 2033. This binary asteroid system is of particular interest due to the results of a recent stellar occultation study (DPS 46, id.506.09) that suggests the system to be doubly-synchronous and consisting of two-similarly sized oblate ellipsoids, in addition to suggesting the presence mass asymmetries resulting from an impact crater on the southern limb of Menoetius.

  9. Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization

    PubMed Central

    Hoff, Daniel E.M.; Albert, Brice J.; Saliba, Edward P.; Scott, Faith J.; Choi, Eric J.; Mardini, Michael; Barnes, Alexander B.

    2015-01-01

    Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198 GHz MAS DNP probe. Our calculations show that a microwave power input of 17 W is required to generate an average EPR nutation frequency of 0.84 MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5 kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions. PMID:26482131

  10. A 140 GHz pulsed EPR/212 MHz NMR spectrometer for DNP studies

    NASA Astrophysics Data System (ADS)

    Smith, Albert A.; Corzilius, Björn; Bryant, Jeffrey A.; DeRocher, Ronald; Woskov, Paul P.; Temkin, Richard J.; Griffin, Robert G.

    2012-10-01

    We described a versatile spectrometer designed for the study of dynamic nuclear polarization (DNP) at low temperatures and high fields. The instrument functions both as an NMR spectrometer operating at 212 MHz (1H frequency) with DNP capabilities, and as a pulsed-EPR operating at 140 GHz. A coiled TE011 resonator acts as both an NMR coil and microwave resonator, and a double balanced (1H, 13C) radio frequency circuit greatly stabilizes the NMR performance. A new 140 GHz microwave bridge has also been developed, which utilizes a four-phase network and ELDOR channel at 8.75 GHz, that is then multiplied and mixed to obtain 140 GHz microwave pulses with an output power of 120 mW. Nutation frequencies obtained are as follows: 6 MHz on S = 1/2 electron spins, 100 kHz on 1H, and 50 kHz on 13C. We demonstrate basic EPR, ELDOR, ENDOR, and DNP experiments here. Our solid effect DNP results demonstrate an enhancement of 144 and sensitivity gain of 310 using OX063 trityl at 80 K and an enhancement of 157 and maximum sensitivity gain of 234 using Gd-DOTA at 20 K, which is significantly better performance than previously reported at high fields (⩾3 T).

  11. A 140 GHz Pulsed EPR/212 MHz NMR Spectrometer for DNP Studies

    PubMed Central

    Smith, Albert A.; Corzilius, Björn; Bryant, Jeffrey A.; DeRocher, Ronald; Woskov, Paul P.; Temkin, Richard J.; Griffin, Robert G.

    2012-01-01

    We described a versatile spectrometer designed for the study of dynamic nuclear polarization (DNP) at low temperatures and high fields. The instrument functions both as an NMR spectrometer operating at 212 MHz (1H frequency) with DNP capabilities, and as a pulsed-EPR operating at 140 GHz. A coiled TE011 resonator acts as both an NMR coil and microwave resonator, and a double balanced (1H, 13C) radio frequency circuit greatly stabilizes the NMR performance. A new 140 GHz microwave bridge has also been developed, which utilizes a four-phase network and ELDOR channel at 8.75 GHz, that is then multiplied and mixed to obtain 140 GHz microwave pulses with an output power of 120 mW. Nutation frequencies obtained are as follows: 6 MHz on S = ½ electron spins, 100 kHz on 1H, and 50 kHz on 13C. We demonstrate basic EPR, ELDOR, ENDOR, and DNP experiments here. Our solid effect DNP results demonstrate an enhancement of 144 and sensitivity gain of 310 using OX063 trityl at 80 K and an enhancement of 157 and maximum sensitivity gain of 234 using Gd-DOTA at 20 K, which is significantly better performance than previously reported at high fields (>3 T). PMID:22975246

  12. Lunar Laser Ranging: Glorious Past And A Bright Future

    NASA Astrophysics Data System (ADS)

    Shelus, Peter J.

    Lunar Laser Ranging (LLR), a part of the NASA Apollo program, has beenon-going for more than 30 years. It provides the grist for a multi-disciplinarydata analysis mill. Results exist for solid Earth sciences, geodesy and geodynamics,solar system ephemerides, terrestrial and celestial reference frames, lunar physics,general relativity and gravitational theory. Combined with other data, it treatsprecession of the Earth''s spin axis, lunar induced nutation, polar motion/Earthrotation, Earth orbit obliquity to the ecliptic, intersection of the celestial equatorwith the ecliptic, luni-solar solid body tides, lunar tidal deceleration, lunar physicaland free librations, structure of the moon and energy dissipation in the lunar interior.LLR provides input to lunar surface cartography and surveying, Earth station and lunar retroreflector location and motion, mass of the Earth-moon system, lunar and terrestrial gravity harmonics and Love numbers, relativistic geodesic precession, and the equivalence principle of general relativity. With the passive nature of the reflectors and steady improvement in observing equipment and data analysis, LLR continues to provide state-of-the-art results. Gains are steady as the data-base expands. After more than 30 years, LLR remains the only active Apollo experiment. It is important to recognize examples of efficient and cost effective progress of research. LLR is just such an example.

  13. On interstellar light polarization by diamagnetic silicate and carbon dust in the infrared

    NASA Astrophysics Data System (ADS)

    Papoular, R.

    2018-04-01

    The motion of diamagnetic dust particles in interstellar magnetic fields is studied numerically with several different sets of parameters. Two types of behaviour are observed, depending on the value of the critical number R, which is a function of the grain inertia, the magnetic susceptibility of the material and of the strength of rotation braking. If R ≤ 10, the grain ends up in a static state and perfectly aligned with the magnetic field, after a few braking times. If not, it goes on precessing and nutating about the field vector for a much longer time. Usual parameters are such that the first situation can hardly be observed. Fortunately, in the second and more likely situation, there remains a persistent partial alignment that is far from negligible, although it decreases as the field decreases and as R increases. The solution of the complete equations of motion of grains in a field helps understanding the details of this behaviour. One particular case of an ellipsoidal forsterite silicate grain is studied in detail and shown to polarize light in agreement with astronomical measurements of absolute polarization in the infrared. Phonons are shown to contribute to the progressive flattening of extinction and polarization towards long wavelengths. The measured dielectric properties of forsterite qualitatively fit the Serkowski peak in the visible.

  14. Chronic sacroiliac joint and pelvic girdle dysfunction in a 35-year-old nulliparous woman successfully managed with multimodal and multidisciplinary approach

    PubMed Central

    Jonely, Holly; Brismée, Jean-Michel; Desai, Mehul J; Reoli, Rachel

    2015-01-01

    Background and purpose: Sacroiliac joint pain and dysfunction affect 15–25% of patients reporting low back pain, including reports of spontaneous, idiopathic, traumatic, and non-traumatic onsets. The poor reliability and validity associated with diagnostic clinical and imaging techniques leads to challenges in diagnosing and managing sacroiliac joint dysfunction. Case description: A 35-year-old nulliparous female with a 14-year history of right sacroiliac joint dysfunction was managed using a multimodal and multidisciplinary approach when symptoms failed to resolve after 2 months of physical therapy. The plan of care included four prolotherapy injections, sacroiliac joint manipulation into nutation, pelvic girdle belting, and specific stabilization exercises. Outcomes: The patient completed 20 physical therapy sessions over a 12-month period. At 6 months, the patient’s Oswestry Disability Questionnaire score was reduced from 34% to 14%. At 1-year follow-up, her score was 0%. The patient’s rating of pain on a numeric rating scale decreased to an average of 4/10 at 6 months and 0/10 at 1-year follow-up. Discussion: A multidisciplinary and multimodal approach for the management of chronic sacroiliac joint dysfunction appeared successful in a single-case design at 1-year follow-up. PMID:26309378

  15. Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization.

    PubMed

    Hoff, Daniel E M; Albert, Brice J; Saliba, Edward P; Scott, Faith J; Choi, Eric J; Mardini, Michael; Barnes, Alexander B

    2015-11-01

    Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198GHz MAS DNP probe. Our calculations show that a microwave power input of 17W is required to generate an average EPR nutation frequency of 0.84MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Attitude Ground System (AGS) for the Magnetospheric Multi-Scale (MMS) Mission

    NASA Technical Reports Server (NTRS)

    Raymond, Juan C.; Sedlak, Joseph E.; Vint, Babak

    2015-01-01

    MMS Overview Recall from Conrads presentation earlier today MMS launch: March 13, 2015 on an Atlas V from Space Launch Complex 40, Cape Canaveral, Florida MMS Observatory Separation: five minute intervals spinning at 3 rpm approximately 1.5 hours after launch MMS Science Goals: study magnetospheric plasma physics and understand the processes that cause power grids, communication disruptions and Aurora formation Mission: 4 identical spacecraft in tetrahedral formation with variable size1.2 x 12 RE in Phase 1, with apogee on dayside to observe bow shock1.2 x 25 RE in Phase 2, with apogee on night side to observe magneto tail Challenges Tight attitude control box, orbit and formation maintenance requirements Maneuvers on thrusters every two weeks Delta-H Spin axis direction and spin rate maintenance Delta-V Orbit and Formation maintenance Mission phase transitions AGS support Smart targeting prediction of Spin-Axis attitude in the presence of environmental torques to stay within the science attitude Determination of the spacecraft attitude and spin rate (sensitive to knowledge of inertia tensor)Calibrations to improve attitude determination results and improve orbit maneuvers Mass properties (Center of Mass, and inertia tensor for nutation and coning) Accelerometer bias (sensitive to the accuracy of the rate estimates) Sensor alignments.

  17. Numerical Algorithms for Precise and Efficient Orbit Propagation and Positioning

    NASA Astrophysics Data System (ADS)

    Bradley, Ben K.

    Motivated by the growing space catalog and the demands for precise orbit determination with shorter latency for science and reconnaissance missions, this research improves the computational performance of orbit propagation through more efficient and precise numerical integration and frame transformation implementations. Propagation of satellite orbits is required for astrodynamics applications including mission design, orbit determination in support of operations and payload data analysis, and conjunction assessment. Each of these applications has somewhat different requirements in terms of accuracy, precision, latency, and computational load. This dissertation develops procedures to achieve various levels of accuracy while minimizing computational cost for diverse orbit determination applications. This is done by addressing two aspects of orbit determination: (1) numerical integration used for orbit propagation and (2) precise frame transformations necessary for force model evaluation and station coordinate rotations. This dissertation describes a recently developed method for numerical integration, dubbed Bandlimited Collocation Implicit Runge-Kutta (BLC-IRK), and compare its efficiency in propagating orbits to existing techniques commonly used in astrodynamics. The BLC-IRK scheme uses generalized Gaussian quadratures for bandlimited functions. It requires significantly fewer force function evaluations than explicit Runge-Kutta schemes and approaches the efficiency of the 8th-order Gauss-Jackson multistep method. Converting between the Geocentric Celestial Reference System (GCRS) and International Terrestrial Reference System (ITRS) is necessary for many applications in astrodynamics, such as orbit propagation, orbit determination, and analyzing geoscience data from satellite missions. This dissertation provides simplifications to the Celestial Intermediate Origin (CIO) transformation scheme and Earth orientation parameter (EOP) storage for use in positioning and orbit propagation, yielding savings in computation time and memory. Orbit propagation and position transformation simulations are analyzed to generate a complete set of recommendations for performing the ITRS/GCRS transformation for a wide range of needs, encompassing real-time on-board satellite operations and precise post-processing applications. In addition, a complete derivation of the ITRS/GCRS frame transformation time-derivative is detailed for use in velocity transformations between the GCRS and ITRS and is applied to orbit propagation in the rotating ITRS. EOP interpolation methods and ocean tide corrections are shown to impact the ITRS/GCRS transformation accuracy at the level of 5 cm and 20 cm on the surface of the Earth and at the Global Positioning System (GPS) altitude, respectively. The precession-nutation and EOP simplifications yield maximum propagation errors of approximately 2 cm and 1 m after 15 minutes and 6 hours in low-Earth orbit (LEO), respectively, while reducing computation time and memory usage. Finally, for orbit propagation in the ITRS, a simplified scheme is demonstrated that yields propagation errors under 5 cm after 15 minutes in LEO. This approach is beneficial for orbit determination based on GPS measurements. We conclude with a summary of recommendations on EOP usage and bias-precession-nutation implementations for achieving a wide range of transformation and propagation accuracies at several altitudes. This comprehensive set of recommendations allows satellite operators, astrodynamicists, and scientists to make informed decisions when choosing the best implementation for their application, balancing accuracy and computational complexity.

  18. Periodicity Analysis of X-ray Light Curves of SS 433

    NASA Astrophysics Data System (ADS)

    Wang, Jun-yi; Lu, Xiang-long; Zhao, Qiu-wen; Dong, Dian-qiao; Lao, Bao-qiang; Lu, Yang; Wei, Yan-heng; Wu, Xiao-cong; An, Tao

    2017-01-01

    SS 433 is sofar the unique X-ray binary that has the simultaneously detected orbital period, super-orbital period, and nutation period, as well as a bidirectional spiral jet. The study on its X-ray light variability is helpful for understanding the dynamic process of the system, and the correlations between the different wavebands. In this paper, two time-series analysis techniques, i.e., the Lomb-Scargle periodogram and weighted wavelet Z-transform, are employed to search for the periods in the Swift/BAT (Burst Alert Telescope) (15-50 keV) and RXTE/ASM (Rose X-ray Timing Explorer/All Sky Monitor) (1.5-3, 3- 4, and 5-12 keV) light curves of SS 433, and the Monte Carlo simulation is performed for the obtained periodical components. For the 15-50 keV energy band, five significant periodical components are detected, which are P1(∼6.29 d), P2 (∼6.54 d), P3 (∼13.08 d), P4 (∼81.50 d), and P5 (∼162.30 d). For the 3-5 and 5-12 keV energy bands, the periodical components P3 (∼13 d) and P5 (∼162 d) are detected in both energy bands. However, for the 1.5-3 keV energy band, no significant periodic signal is detected. P5 is the strongest periodic signal in the power spectrum for all the energy bands of 3-5, 5-12, and 15-50 keV, and it is consistent with the previous result obtained from the study of optical light curves. Furthermore, in combination with the radio spiral jet of SS 433, it is suggested that the X-ray and optical variability of P5 (∼162 d) is probably related to the precession of its relativistic jet. The high correlation between the X-ray and optical light curves may also imply that the X-ray and optical radiations are of the same physical origin. P3 shows a good agreement with the orbital period (∼13.07 d) obtained by the previous study, and P2 and P4 are respectively the high-frequency harmonics of P3 and P5. P1 is detected only in the power spectrum of the 15-50 keV energy band, and it is consistent with the nutation period of the system. As the energy of energy band decreases (from hard X-ray to soft X-ray), the number of detected periods becomes gradually less, this result verifies that the radiation in the high-energy band (hard X-ray) comes primarily from the jet, and the radiation in the low-energy band (soft X-ray) may be dominated by the medium around the binary system. The multiple X-ray periods obtained from the present study have provided a reliable basis for the further analysis of the multi-band data of SS 433, and the study on the dynamical mechanism of the system.

  19. Infrared Matrix-Isolation Study of New Noble-Gas Compounds

    NASA Astrophysics Data System (ADS)

    Zhu, Cheng; Räsänen, Markku; Khriachtchev, Leonid

    2016-06-01

    We identify new noble-gas compounds in solid matrices using IR spectroscopy. The compounds under study belong to two types: HNgY and YNgY' where Ng is a noble-gas atom and Y and Y' are electronegative fragments. The experimental assignments are supported by ab initio calculations at the MP2(full) and CCSD(T) levels of theory with the def2-TZVPPD basis set. We have prepared and characterized two new HNgY compounds (noble-gas hydrides): HKrCCCl in a Kr matrix and HXeCCCl in a Xe matrix.I The synthesis of these compounds includes two steps: UV photolysis of HCCCl in a noble-gas matrix to form the H + CCCl fragments and annealing of the matrix to mobilize H atoms and to promote the H + Ng + CCCl = HNgCCCl reaction. An interesting observation in the experiments on HXeCCCl in a Xe matrix is the temperature-induced transformation of the three H-Xe stretching bands. This observation is explained by temperature-induced changes of local matrix morphology around the embedded HXeCCCl molecule. In these experiments, we have also obtained the IR spectrum of the CCCl radical, which is produced by photodecomposition of HCCCl. We have identified three new YNgY' compounds (fluorinated noble-gas cyanides): FKrCN in a Kr matrix and FXeCN and FXeNC in a Xe matrix.II These molecule are formed by photolysis of FCN in a noble-gas matrix due to locality of this process. The amount of these molecules increases upon thermal mobilization of the F atoms in the photolyzed matrix featuring the F + Ng + CN reaction.

  20. First Steps to Automated Interior Reconstruction from Semantically Enriched Point Clouds and Imagery

    NASA Astrophysics Data System (ADS)

    Obrock, L. S.; Gülch, E.

    2018-05-01

    The automated generation of a BIM-Model from sensor data is a huge challenge for the modeling of existing buildings. Currently the measurements and analyses are time consuming, allow little automation and require expensive equipment. We do lack an automated acquisition of semantical information of objects in a building. We are presenting first results of our approach based on imagery and derived products aiming at a more automated modeling of interior for a BIM building model. We examine the building parts and objects visible in the collected images using Deep Learning Methods based on Convolutional Neural Networks. For localization and classification of building parts we apply the FCN8s-Model for pixel-wise Semantic Segmentation. We, so far, reach a Pixel Accuracy of 77.2 % and a mean Intersection over Union of 44.2 %. We finally use the network for further reasoning on the images of the interior room. We combine the segmented images with the original images and use photogrammetric methods to produce a three-dimensional point cloud. We code the extracted object types as colours of the 3D-points. We thus are able to uniquely classify the points in three-dimensional space. We preliminary investigate a simple extraction method for colour and material of building parts. It is shown, that the combined images are very well suited to further extract more semantic information for the BIM-Model. With the presented methods we see a sound basis for further automation of acquisition and modeling of semantic and geometric information of interior rooms for a BIM-Model.

  1. Identification of Biomarkers of Response to IFNg during Endotoxin Tolerance: Application to Septic Shock

    PubMed Central

    Allantaz-Frager, Florence; Turrel-Davin, Fanny; Venet, Fabienne; Monnin, Cécile; De Saint Jean, Amélie; Barbalat, Véronique; Cerrato, Elisabeth; Pachot, Alexandre; Lepape, Alain; Monneret, Guillaume

    2013-01-01

    The rapid development in septic patients of features of marked immunosuppression associated with increased risk of nosocomial infections and mortality represents the rational for the initiation of immune targeted treatments in sepsis. However, as there is no clinical sign of immune dysfunctions, the current challenge is to develop biomarkers that will help clinicians identify the patients that would benefit from immunotherapy and monitor its efficacy. Using an in vitro model of endotoxin tolerance (ET), a pivotal feature of sepsis-induced immunosuppression in monocytes, we identified using gene expression profiling by microarray a panel of transcripts associated with the development of ET which expression was restored after immunostimulation with interferon-gamma (IFN-γ). These results were confirmed by qRT-PCR. Importantly, this short-list of markers was further evaluated in patients. Of these transcripts, six (TNFAIP6, FCN1, CXCL10, GBP1, CXCL5 and PID1) were differentially expressed in septic patients’ blood compared to healthy blood upon ex vivo LPS stimulation and were restored by IFN-γ. In this study, by combining a microarray approach in an in vitro model and a validation in clinical samples, we identified a panel of six new transcripts that could be used for the identification of septic patients eligible for IFNg therapy. Along with the previously identified markers TNFa, IL10 and HLA-DRA, the potential value of these markers should now be evaluated in a larger cohort of patients. Upon favorable results, they could serve as stratification tools prior to immunostimulatory treatment and to monitor drug efficacy. PMID:23874546

  2. Identification of biomarkers of response to IFNg during endotoxin tolerance: application to septic shock.

    PubMed

    Allantaz-Frager, Florence; Turrel-Davin, Fanny; Venet, Fabienne; Monnin, Cécile; De Saint Jean, Amélie; Barbalat, Véronique; Cerrato, Elisabeth; Pachot, Alexandre; Lepape, Alain; Monneret, Guillaume

    2013-01-01

    The rapid development in septic patients of features of marked immunosuppression associated with increased risk of nosocomial infections and mortality represents the rational for the initiation of immune targeted treatments in sepsis. However, as there is no clinical sign of immune dysfunctions, the current challenge is to develop biomarkers that will help clinicians identify the patients that would benefit from immunotherapy and monitor its efficacy. Using an in vitro model of endotoxin tolerance (ET), a pivotal feature of sepsis-induced immunosuppression in monocytes, we identified using gene expression profiling by microarray a panel of transcripts associated with the development of ET which expression was restored after immunostimulation with interferon-gamma (IFN-γ). These results were confirmed by qRT-PCR. Importantly, this short-list of markers was further evaluated in patients. Of these transcripts, six (TNFAIP6, FCN1, CXCL10, GBP1, CXCL5 and PID1) were differentially expressed in septic patients' blood compared to healthy blood upon ex vivo LPS stimulation and were restored by IFN-γ. In this study, by combining a microarray approach in an in vitro model and a validation in clinical samples, we identified a panel of six new transcripts that could be used for the identification of septic patients eligible for IFNg therapy. Along with the previously identified markers TNFa, IL10 and HLA-DRA, the potential value of these markers should now be evaluated in a larger cohort of patients. Upon favorable results, they could serve as stratification tools prior to immunostimulatory treatment and to monitor drug efficacy.

  3. Fully Convolutional Networks for Ground Classification from LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Rizaldy, A.; Persello, C.; Gevaert, C. M.; Oude Elberink, S. J.

    2018-05-01

    Deep Learning has been massively used for image classification in recent years. The use of deep learning for ground classification from LIDAR point clouds has also been recently studied. However, point clouds need to be converted into an image in order to use Convolutional Neural Networks (CNNs). In state-of-the-art techniques, this conversion is slow because each point is converted into a separate image. This approach leads to highly redundant computation during conversion and classification. The goal of this study is to design a more efficient data conversion and ground classification. This goal is achieved by first converting the whole point cloud into a single image. The classification is then performed by a Fully Convolutional Network (FCN), a modified version of CNN designed for pixel-wise image classification. The proposed method is significantly faster than state-of-the-art techniques. On the ISPRS Filter Test dataset, it is 78 times faster for conversion and 16 times faster for classification. Our experimental analysis on the same dataset shows that the proposed method results in 5.22 % of total error, 4.10 % of type I error, and 15.07 % of type II error. Compared to the previous CNN-based technique and LAStools software, the proposed method reduces the total error and type I error (while type II error is slightly higher). The method was also tested on a very high point density LIDAR point clouds resulting in 4.02 % of total error, 2.15 % of type I error and 6.14 % of type II error.

  4. Detecting brain dynamics during resting state: a tensor based evolutionary clustering approach

    NASA Astrophysics Data System (ADS)

    Al-sharoa, Esraa; Al-khassaweneh, Mahmood; Aviyente, Selin

    2017-08-01

    Human brain is a complex network with connections across different regions. Understanding the functional connectivity (FC) of the brain is important both during resting state and task; as disruptions in connectivity patterns are indicators of different psychopathological and neurological diseases. In this work, we study the resting state functional connectivity networks (FCNs) of the brain from fMRI BOLD signals. Recent studies have shown that FCNs are dynamic even during resting state and understanding the temporal dynamics of FCNs is important for differentiating between different conditions. Therefore, it is important to develop algorithms to track the dynamic formation and dissociation of FCNs of the brain during resting state. In this paper, we propose a two step tensor based community detection algorithm to identify and track the brain network community structure across time. First, we introduce an information-theoretic function to reduce the dynamic FCN and identify the time points that are similar topologically to combine them into a tensor. These time points will be used to identify the different FC states. Second, a tensor based spectral clustering approach is developed to identify the community structure of the constructed tensors. The proposed algorithm applies Tucker decomposition to the constructed tensors and extract the orthogonal factor matrices along the connectivity mode to determine the common subspace within each FC state. The detected community structure is summarized and described as FC states. The results illustrate the dynamic structure of resting state networks (RSNs), including the default mode network, somatomotor network, subcortical network and visual network.

  5. Determining the Concentrations and Temperatures of Products in a CF_4/CHF_3/N_2 Plasma via Submillimeter Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Helal, Yaser H.; Neese, Christopher F.; De Lucia, Frank C.; Ewing, Paul R.; Agarwal, Ankur; Craver, Barry; Stout, Phillip J.; Armacost, Michael D.

    2017-06-01

    Plasmas used for the manufacturing of semiconductor devices are similar in pressure and temperature to those used in the laboratory for the study of astrophysical species in the submillimeter (SMM) spectral region. The methods and technology developed in the SMM for these laboratory studies are directly applicable for diagnostic measurements in the semiconductor manufacturing industry. Many of the molecular neutrals, radicals, and ions present in processing plasmas have been studied and their spectra have been cataloged or are in the literature. In this work, a continuous wave, intensity calibrated SMM absorption spectrometer was developed as a remote sensor of gas and plasma species. A major advantage of intensity calibrated rotational absorption spectroscopy is its ability to determine absolute concentrations and temperatures of plasma species from first principles without altering the plasma environment. An important part of this work was the design of the optical components which couple 500-750 GHz radiation through a commercial inductively coupled plasma chamber. The measurement of transmission spectra was simultaneously fit for background and absorption signal. The measured absorption was used to calculate absolute densities and temperatures of polar species. Measurements for CHF_3, CF_2, FCN, HCN, and CN made in a CF_4/CHF_3/N_2 plasma will be presented. Temperature equilibrium among species will be shown and the common temperature is leveraged to obtain accurate density measurements for simultaneously observed species. The densities and temperatures of plasma species are studied as a function of plasma parameters, including flow rate, pressure, and discharge power.

  6. Pilot Trial of an Electronic Family Medical History in US Faith-Based Communities.

    PubMed

    Newcomb, Patricia; Canclini, Sharon; Cauble, Denise; Raudonis, Barbara; Golden, Paulette

    2014-07-01

    In spite of the acknowledged importance of collecting family health information, methods of collecting, organizing, and storage of pedigree data are not uniformly utilized in practice, though several electronic tools have been developed for the purpose. Using electronic tools to gather health information may empower individuals to take responsibility in managing their family health history. The purpose of this study was to describe the feasibility and outcomes of introducing small groups to the My Family Health Portrait tool in faith-based communities using faith community nurses (FCNs). This pilot project adopted a mixed methods approach to assess the potential of an educational intervention delivered by FCNs for increasing the use of electronic technologies for organizing and storing family health histories among the general public. Treatment and control groups were recruited from four faith-based communities in north Texas using a parallel-groups quasi-experimental design. Qualitative data were gleaned from field notes made by investigators interacting with FCNs and observing their teaching. A majority of respondents believed that knowing one's health history and passing it on to family and medical personnel is important. Those receiving face-to-face instruction on the electronic tool were significantly more likely to have written down family health information than the control group who received only an informational handout (χ(2) = 5.96, P = .015). Barriers to teaching about and using the electronic tool included FCNs' lack of facility with computers in the educational context and FCN and respondent mistrust of electronic storage for family health information. © The Author(s) 2014.

  7. Psoriasis skin biopsy image segmentation using Deep Convolutional Neural Network.

    PubMed

    Pal, Anabik; Garain, Utpal; Chandra, Aditi; Chatterjee, Raghunath; Senapati, Swapan

    2018-06-01

    Development of machine assisted tools for automatic analysis of psoriasis skin biopsy image plays an important role in clinical assistance. Development of automatic approach for accurate segmentation of psoriasis skin biopsy image is the initial prerequisite for developing such system. However, the complex cellular structure, presence of imaging artifacts, uneven staining variation make the task challenging. This paper presents a pioneering attempt for automatic segmentation of psoriasis skin biopsy images. Several deep neural architectures are tried for segmenting psoriasis skin biopsy images. Deep models are used for classifying the super-pixels generated by Simple Linear Iterative Clustering (SLIC) and the segmentation performance of these architectures is compared with the traditional hand-crafted feature based classifiers built on popularly used classifiers like K-Nearest Neighbor (KNN), Support Vector Machine (SVM) and Random Forest (RF). A U-shaped Fully Convolutional Neural Network (FCN) is also used in an end to end learning fashion where input is the original color image and the output is the segmentation class map for the skin layers. An annotated real psoriasis skin biopsy image data set of ninety (90) images is developed and used for this research. The segmentation performance is evaluated with two metrics namely, Jaccard's Coefficient (JC) and the Ratio of Correct Pixel Classification (RCPC) accuracy. The experimental results show that the CNN based approaches outperform the traditional hand-crafted feature based classification approaches. The present research shows that practical system can be developed for machine assisted analysis of psoriasis disease. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Cardiac MRI in mice at 9.4 Tesla with a transmit-receive surface coil and a cardiac-tailored intensity-correction algorithm.

    PubMed

    Sosnovik, David E; Dai, Guangping; Nahrendorf, Matthias; Rosen, Bruce R; Seethamraju, Ravi

    2007-08-01

    To evaluate the use of a transmit-receive surface (TRS) coil and a cardiac-tailored intensity-correction algorithm for cardiac MRI in mice at 9.4 Tesla (9.4T). Fast low-angle shot (FLASH) cines, with and without delays alternating with nutations for tailored excitation (DANTE) tagging, were acquired in 13 mice. An intensity-correction algorithm was developed to compensate for the sensitivity profile of the surface coil, and was tailored to account for the unique distribution of noise and flow artifacts in cardiac MR images. Image quality was extremely high and allowed fine structures such as trabeculations, valve cusps, and coronary arteries to be clearly visualized. The tag lines created with the surface coil were also sharp and clearly visible. Application of the intensity-correction algorithm improved signal intensity, tissue contrast, and image quality even further. Importantly, the cardiac-tailored properties of the correction algorithm prevented noise and flow artifacts from being significantly amplified. The feasibility and value of cardiac MRI in mice with a TRS coil has been demonstrated. In addition, a cardiac-tailored intensity-correction algorithm has been developed and shown to improve image quality even further. The use of these techniques could produce significant potential benefits over a broad range of scanners, coil configurations, and field strengths. (c) 2007 Wiley-Liss, Inc.

  9. Autonomous spacecraft attitude control using magnetic torquing only

    NASA Technical Reports Server (NTRS)

    Musser, Keith L.; Ebert, Ward L.

    1989-01-01

    Magnetic torquing of spacecraft has been an important mechanism for attitude control since the earliest satellites were launched. Typically a magnetic control system has been used for precession/nutation damping for gravity-gradient stabilized satellites, momentum dumping for systems equipped with reaction wheels, or momentum-axis pointing for spinning and momentum-biased spacecraft. Although within the small satellite community there has always been interest in expensive, light-weight, and low-power attitude control systems, completely magnetic control systems have not been used for autonomous three-axis stabilized spacecraft due to the large computational requirements involved. As increasingly more powerful microprocessors have become available, this has become less of an impediment. These facts have motivated consideration of the all-magnetic attitude control system presented here. The problem of controlling spacecraft attitude using only magnetic torquing is cast into the form of the Linear Quadratic Regulator (LQR), resulting in a linear feedback control law. Since the geomagnetic field along a satellite trajectory is not constant, the system equations are time varying. As a result, the optimal feedback gains are time-varying. Orbit geometry is exploited to treat feedback gains as a function of position rather than time, making feasible the onboard solution of the optimal control problem. In simulations performed to date, the control laws have shown themselves to be fairly robust and a good candidate for an onboard attitude control system.

  10. Contributions to reference systems from Lunar Laser Ranging using the IfE analysis model

    NASA Astrophysics Data System (ADS)

    Hofmann, Franz; Biskupek, Liliane; Müller, Jürgen

    2018-01-01

    Lunar Laser Ranging (LLR) provides various quantities related to reference frames like Earth orientation parameters, coordinates and velocities of ground stations in the Earth-fixed frame and selenocentric coordinates of the lunar retro-reflectors. This paper presents the recent results from LLR data analysis at the Institut für Erdmessung, Leibniz Universität Hannover, based on all LLR data up to the end of 2016. The estimates of long-periodic nutation coefficients with periods between 13.6 days and 18.6 years are obtained with an accuracy in the order of 0.05-0.7 milliarcseconds (mas). Estimations of the Earth rotation phase Δ UT are accurate at the level of 0.032 ms if more than 14 normal points per night are included. The tie between the dynamical ephemeris frame to the kinematic celestial frame is estimated from pure LLR observations by two angles and their rates with an accuracy of 0.25 and 0.02 mas per year. The estimated station coordinates and velocities are compared to the ITRF2014 solution and the geometry of the retro-reflector network with the DE430 solution. The given accuracies represent 3 times formal errors of the parameter fit. The accuracy for Δ UT is based on the standard deviation of the estimates with respect to the reference C04 solution.

  11. Earth Orientation and Its Excitations by Atmosphere, Oceans, and Geomagnetic Jerks

    NASA Astrophysics Data System (ADS)

    Vondrák, J.; Ron, C.

    2015-12-01

    In addition to torques exerted by the Moon, Sun, and planets, changes of the Earth orientation parameters (EOP) are known to be caused also by excitations by the atmosphere and oceans. Recently appeared studies, hinting that geomagnetic jerks (GMJ, rapid changes of geomagnetic field) might be associated with sudden changes of phase and amplitude of EOP (Holme and de Viron 2005, 2013, Gibert and Le Mouël 2008, Malkin 2013). We (Ron et al. 2015) used additional excitations applied at the epochs of GMJ to derive its influence on motion of the spin axis of the Earth in space (precession-nutation). We demonstrated that this effect, if combined with the influence of the atmosphere and oceans, improves substantially the agreement with celestial pole offsets observed by Very Long-Baseline Interferometry. Here we concentrate our efforts to study possible influence of GMJ on temporal changes of all five Earth orientation parameters defining the complete Earth orientation in space. Numerical integration of Brzeziński's broad-band Liouville equations (Brzeziński 1994) with atmospheric and oceanic excitations, combined with expected GMJ effects, is used to derive EOP and compare them with their observed values. We demonstrate that the agreement between all five Earth orientation parameters integrated by this method and those observed by space geodesy is improved substantially if the influence of additional excitations at GMJ epochs is added to excitations by the atmosphere and oceans.

  12. State-of-the-art satellite laser range modeling for geodetic and oceanographic applications

    NASA Technical Reports Server (NTRS)

    Klosko, Steve M.; Smith, David E.

    1993-01-01

    Significant improvements have been made in the modeling and accuracy of Satellite Laser Range (SLR) data since the launch of LAGEOS in 1976. Some of these include: improved models of the static geopotential, solid-Earth and ocean tides, more advanced atmospheric drag models, and the adoption of the J2000 reference system with improved nutation and precession. Site positioning using SLR systems currently yield approximately 2 cm static and 5 mm/y kinematic descriptions of the geocentric location of these sites. Incorporation of a large set of observations from advanced Satellite Laser Ranging (SLR) tracking systems have directly made major contributions to the gravitational fields and in advancing the state-of-the-art in precision orbit determination. SLR is the baseline tracking system for the altimeter bearing TOPEX/Poseidon and ERS-1 satellites and thus, will play an important role in providing the Conventional Terrestrial Reference Frame for instantaneously locating the geocentric position of the ocean surface over time, in providing an unchanging range standard for altimeter range calibration, and for improving the geoid models to separate gravitational from ocean circulation signals seen in the sea surface. Nevertheless, despite the unprecedented improvements in the accuracy of the models used to support orbit reduction of laser observations, there still remain systematic unmodeled effects which limit the full exploitation of modern SLR data.

  13. Relationships of earthquakes (and earthquake-associated mass movements) and polar motion as determined by Kalman filtered, Very-Long-Baseline-Interferometry

    NASA Technical Reports Server (NTRS)

    Preisig, Joseph Richard Mark

    1988-01-01

    A Kalman filter was designed to yield optimal estimates of geophysical parameters from Very Long Baseline Interferometry (VLBI) group delay data. The geophysical parameters are the polar motion components, adjustments to nutation in obliquity and longitude, and a change in the length of day parameter. The VLBI clock (and clock rate) parameters and atmospheric zenith delay parameters are estimated simultaneously. Filter background is explained. The IRIS (International Radio Interferometric Surveying) VLBI data are Kalman filtered. The resulting polar motion estimates are examined. There are polar motion signatures at the times of three large earthquakes occurring in 1984 to 1986: Mexico, 19 September, 1985 (Magnitude M sub s = 8.1); Chile, 3 March, 1985 (M sub s = 7.8); and Taiwan, 14 November, 1986 (M sub s = 7.8). Breaks in polar motion occurring about 20 days after the earthquakes appear to correlate well with the onset of increased regional seismic activity and a return to more normal seismicity (respectively). While the contribution of these three earthquakes to polar motion excitations is small, the cumulative excitation due to earthquakes, or seismic phenomena over a Chandler wobble damping period may be significant. Mechanisms for polar motion excitation due to solid earth phenomena are examined. Excitation functions are computed, but the data spans are too short to draw conclusions based on these data.

  14. Efficient amplitude-modulated pulses for triple- to single-quantum coherence conversion in MQMAS NMR.

    PubMed

    Colaux, Henri; Dawson, Daniel M; Ashbrook, Sharon E

    2014-08-07

    The conversion between multiple- and single-quantum coherences is integral to many nuclear magnetic resonance (NMR) experiments of quadrupolar nuclei. This conversion is relatively inefficient when effected by a single pulse, and many composite pulse schemes have been developed to improve this efficiency. To provide the maximum improvement, such schemes typically require time-consuming experimental optimization. Here, we demonstrate an approach for generating amplitude-modulated pulses to enhance the efficiency of the triple- to single-quantum conversion. The optimization is performed using the SIMPSON and MATLAB packages and results in efficient pulses that can be used without experimental reoptimisation. Most significant signal enhancements are obtained when good estimates of the inherent radio-frequency nutation rate and the magnitude of the quadrupolar coupling are used as input to the optimization, but the pulses appear robust to reasonable variations in either parameter, producing significant enhancements compared to a single-pulse conversion, and also comparable or improved efficiency over other commonly used approaches. In all cases, the ease of implementation of our method is advantageous, particularly for cases with low sensitivity, where the improvement is most needed (e.g., low gyromagnetic ratio or high quadrupolar coupling). Our approach offers the potential to routinely improve the sensitivity of high-resolution NMR spectra of nuclei and systems that would, perhaps, otherwise be deemed "too challenging".

  15. Efficient Amplitude-Modulated Pulses for Triple- to Single-Quantum Coherence Conversion in MQMAS NMR

    PubMed Central

    2014-01-01

    The conversion between multiple- and single-quantum coherences is integral to many nuclear magnetic resonance (NMR) experiments of quadrupolar nuclei. This conversion is relatively inefficient when effected by a single pulse, and many composite pulse schemes have been developed to improve this efficiency. To provide the maximum improvement, such schemes typically require time-consuming experimental optimization. Here, we demonstrate an approach for generating amplitude-modulated pulses to enhance the efficiency of the triple- to single-quantum conversion. The optimization is performed using the SIMPSON and MATLAB packages and results in efficient pulses that can be used without experimental reoptimisation. Most significant signal enhancements are obtained when good estimates of the inherent radio-frequency nutation rate and the magnitude of the quadrupolar coupling are used as input to the optimization, but the pulses appear robust to reasonable variations in either parameter, producing significant enhancements compared to a single-pulse conversion, and also comparable or improved efficiency over other commonly used approaches. In all cases, the ease of implementation of our method is advantageous, particularly for cases with low sensitivity, where the improvement is most needed (e.g., low gyromagnetic ratio or high quadrupolar coupling). Our approach offers the potential to routinely improve the sensitivity of high-resolution NMR spectra of nuclei and systems that would, perhaps, otherwise be deemed “too challenging”. PMID:25047226

  16. Magnetospheric Multiscale Mission Attitude Dynamics: Observations from Flight Data

    NASA Technical Reports Server (NTRS)

    Williams, Trevor; Shulman, Seth; Sedlak, Joseph; Ottenstein, Neil; Lounsbury, Brian

    2016-01-01

    Extensive flight data is being collected throughout the MMS mission that includes quantities that are of interest for attitude dynamics studies such as spin rate, spin axis orientation nutation rate, etc. One example of such data is the long-term evolution of the spin rates of the four spacecraft. Spikes in these rates are observed that are separated by the MMS orbital period (just under 24 hr) and occur around perigee due to gravity-gradient torque. Periodic discontinuities in spin rate are caused by the controller resetting the spin rate approximately to the nominal 3.1 RPM value at the time of each maneuver. In between, a slow decay in spin rate can be seen to occur. The paper will discuss various disturbance torque mechanisms that could potentially be responsible for this behavior: these include magnetic hysteresis, eddy currents, solar radiation pressure, and a possible interaction between gravity-gradient and wire boom flexibility effects. One additional disturbance mechanism is produced by the Active Spacecraft Potential Control (ASPOC) devices: these emit positive indium ions to keep the MMS spacecraft electrically neutral, so as not to corrupt the electric field observations that are made by some of the on-board instruments. The spin rate decays that could be produced by these various mechanisms will be quantified in the paper, and their signatures described. Comparing these with the observations from flight data then allow the most likely candidate to be determined.

  17. Composition and origin of basaltic magma of the Hawaiian Islands

    USGS Publications Warehouse

    Powers, H.A.

    1955-01-01

    Silica-saturated basaltic magma is the source of the voluminous lava flows, erupted frequently and rapidly in the primitive shield-building stage of activity, that form the bulk of each Hawaiian volcano. This magma may be available in batches that differ slightly in free silica content from batch to batch both at the same and at different volcanoes; differentiation by fractionation of olivine does not occur within this primitive magma. Silica-deficient basaltic magma, enriched in alkali, is the source of commonly porphyritic lava flows erupted less frequently and in relatively negligible volume during a declining and decadent stage of activity at some Hawaiian volcanoes. Differentiation by fractionation of olivine, plagioclase and augite is evident among these lavas, but does not account for the silica deficiency or the alkali enrichment. Most of the data of Hawaiian volcanism and petrology can be explained by a hypothesis that batches of magma are melted from crystalline paridotite by a recurrent process (distortion of the equatorial bulge by forced and free nutational stresses) that accomplishes the melting only of the plagioclase and pyroxene component but not the excess olivine and more refractory components within a zone of fixed and limited depth. Eruption exhausts the supply of meltable magma under a given locality and, in the absence of more violent melting processes, leaves a stratum of crystalline refractory components. ?? 1955.

  18. VizieR Online Data Catalog: New standards in 18th century astrometry (Lequeux, 2014)

    NASA Astrophysics Data System (ADS)

    Lequeux, J.

    2014-05-01

    Catalogue of Flamsteed (flamstee.dat): John Flamsteed (1646-1719) was the first astronomer in charge of Greenwich Observatory. His stellar catalogue (Flamsteed 1725) was built on observations from 1675 to 1683 with a 6-feet radius sextant mounted on an axis parallel to the polar axis of the Earth, then from 1683 to 1719 with a mural circle with a radius of 79.5 inches (2m). 220 stars over 3925. Catalogue of Romer (romer.dat): Ole (or Olaus) Romer (1644-1710) is principally known for his 1676 discovery of the finite velocity of light, a discovery that he shared with Jean-Dominique Cassini. After a long stay in Paris, he returned to Copenhagen in 1681 and was appointed professor of astronomy at the University. The observatory and all the observations were destroyed in the great Copenhagen fire of 1728, with the exception of observations of 88 stars obtained during three observing nights, from 20 to 23 October 1706. La Caille's catalogue of fundamental stars (lacaifun.dat): Nicolas-Louis La Caille (or Lacaille, or de la Caille, 1713-1762) was a French astronomer who is remembered principally for his survey of the southern sky, where he introduced 14 new constellations that are still in use today. Before leaving for the Cape of Good Hope in 1750, he started a catalogue of the 400 brightest stars of both hemispheres, which he completed during his stays in Cape Town and in the Mauritius island, then after his return to Paris in 1754. He reduced the observations himself, including for the first time corrections for aberration and nutation, and published them with details of the observations and reductions (La Caille 1757). Bailly's adaptation of La Caille's catalogue of fundamental stars (bailly.dat): After the death of La Caille, Jean-Sylvain Bailly published a catalogue of the brighest stars of both hemispheres for the equinox B1750.0 in Ephemerides for 10 year from 1765 to 1775 (Anonymous (Bailly) 1763, p. lvii-lxiv). This catalogue obviously derives from the catalogue named lacaillefund.dat. La Caille's complete survey of the southern sky (lacaisur.dat): During his stay in Cape Town in 1751-1752, La Caille made the first systematic survey of the sky ever, in the modern sense. 244 stars over 9766. La Caille's catalogue of zodiacal stars (lacaizod.dat): When La Caille returned from his southern expedition in 1754, he undertook the construction of a catalogue of zodiacal stars. Mayer's zodiacal catalogue (mayer.dat): At exactly the same time as La Caille, Tobias Mayer (1723-1762) in Gottingen undertook a similar catalogue of zodiacal stars, using a 6-feet radius mural quadrant made by John Bird (1709-1776). 200 stars over 998. Bradley's stellar catalogue (bradley.dat): James Bradley (1693-1762) is famous for his discovery of aberration and nutation. From 1750 to his death in 1762, he built a large stellar catalogue, from observations first with an old mural sector and after 1753 with the Bird 8-ft mural sector located in Greenwich, where it 215 stars over 3220. Piazzi's stellar catalogue (piazzi.dat): Giuseppe Piazzi (1746-1846) built a large catalogue containing 7646 stars from 1792 to 1813, observed in Palermo with an altazimuthal circle of Jesse Ramsden (1735-1800) can still be seen. 202 stars over 7646. Lalande's stellar catalogue (lalande.dat): L'Histoire celeste francaise de Lalande (Lalande 1801), which contains the unreduced observations of approximately 40,000 stars, is the first very large stellar catalogue. 198 stars over ~45000. (10 data files).

  19. Sustained deep-tissue pain alters functional brain connectivity.

    PubMed

    Kim, Jieun; Loggia, Marco L; Edwards, Robert R; Wasan, Ajay D; Gollub, Randy L; Napadow, Vitaly

    2013-08-01

    Recent functional brain connectivity studies have contributed to our understanding of the neurocircuitry supporting pain perception. However, evoked-pain connectivity studies have employed cutaneous and/or brief stimuli, which induce sensations that differ appreciably from the clinical pain experience. Sustained myofascial pain evoked by pressure cuff affords an excellent opportunity to evaluate functional connectivity change to more clinically relevant sustained deep-tissue pain. Connectivity in specific networks known to be modulated by evoked pain (sensorimotor, salience, dorsal attention, frontoparietal control, and default mode networks: SMN, SLN, DAN, FCN, and DMN) was evaluated with functional-connectivity magnetic resonance imaging, both at rest and during a sustained (6-minute) pain state in healthy adults. We found that pain was stable, with no significant changes of subjects' pain ratings over the stimulation period. Sustained pain reduced connectivity between the SMN and the contralateral leg primary sensorimotor (S1/M1) representation. Such SMN-S1/M1 connectivity decreases were also accompanied by and correlated with increased SLN-S1/M1 connectivity, suggesting recruitment of activated S1/M1 from SMN to SLN. Sustained pain also increased DAN connectivity to pain processing regions such as mid-cingulate cortex, posterior insula, and putamen. Moreover, greater connectivity during pain between contralateral S1/M1 and posterior insula, thalamus, putamen, and amygdala was associated with lower cuff pressures needed to reach the targeted pain sensation. These results demonstrate that sustained pain disrupts resting S1/M1 connectivity by shifting it to a network known to process stimulus salience. Furthermore, increased connectivity between S1/M1 and both sensory and affective processing areas may be an important contribution to interindividual differences in pain sensitivity. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  20. A Robust Deep-Learning-Based Detector for Real-Time Tomato Plant Diseases and Pests Recognition.

    PubMed

    Fuentes, Alvaro; Yoon, Sook; Kim, Sang Cheol; Park, Dong Sun

    2017-09-04

    Plant Diseases and Pests are a major challenge in the agriculture sector. An accurate and a faster detection of diseases and pests in plants could help to develop an early treatment technique while substantially reducing economic losses. Recent developments in Deep Neural Networks have allowed researchers to drastically improve the accuracy of object detection and recognition systems. In this paper, we present a deep-learning-based approach to detect diseases and pests in tomato plants using images captured in-place by camera devices with various resolutions. Our goal is to find the more suitable deep-learning architecture for our task. Therefore, we consider three main families of detectors: Faster Region-based Convolutional Neural Network (Faster R-CNN), Region-based Fully Convolutional Network (R-FCN), and Single Shot Multibox Detector (SSD), which for the purpose of this work are called "deep learning meta-architectures". We combine each of these meta-architectures with "deep feature extractors" such as VGG net and Residual Network (ResNet). We demonstrate the performance of deep meta-architectures and feature extractors, and additionally propose a method for local and global class annotation and data augmentation to increase the accuracy and reduce the number of false positives during training. We train and test our systems end-to-end on our large Tomato Diseases and Pests Dataset, which contains challenging images with diseases and pests, including several inter- and extra-class variations, such as infection status and location in the plant. Experimental results show that our proposed system can effectively recognize nine different types of diseases and pests, with the ability to deal with complex scenarios from a plant's surrounding area.

  1. Automatic Semantic Segmentation of Brain Gliomas from MRI Images Using a Deep Cascaded Neural Network.

    PubMed

    Cui, Shaoguo; Mao, Lei; Jiang, Jingfeng; Liu, Chang; Xiong, Shuyu

    2018-01-01

    Brain tumors can appear anywhere in the brain and have vastly different sizes and morphology. Additionally, these tumors are often diffused and poorly contrasted. Consequently, the segmentation of brain tumor and intratumor subregions using magnetic resonance imaging (MRI) data with minimal human interventions remains a challenging task. In this paper, we present a novel fully automatic segmentation method from MRI data containing in vivo brain gliomas. This approach can not only localize the entire tumor region but can also accurately segment the intratumor structure. The proposed work was based on a cascaded deep learning convolutional neural network consisting of two subnetworks: (1) a tumor localization network (TLN) and (2) an intratumor classification network (ITCN). The TLN, a fully convolutional network (FCN) in conjunction with the transfer learning technology, was used to first process MRI data. The goal of the first subnetwork was to define the tumor region from an MRI slice. Then, the ITCN was used to label the defined tumor region into multiple subregions. Particularly, ITCN exploited a convolutional neural network (CNN) with deeper architecture and smaller kernel. The proposed approach was validated on multimodal brain tumor segmentation (BRATS 2015) datasets, which contain 220 high-grade glioma (HGG) and 54 low-grade glioma (LGG) cases. Dice similarity coefficient (DSC), positive predictive value (PPV), and sensitivity were used as evaluation metrics. Our experimental results indicated that our method could obtain the promising segmentation results and had a faster segmentation speed. More specifically, the proposed method obtained comparable and overall better DSC values (0.89, 0.77, and 0.80) on the combined (HGG + LGG) testing set, as compared to other methods reported in the literature. Additionally, the proposed approach was able to complete a segmentation task at a rate of 1.54 seconds per slice.

  2. Dermoscopic Image Segmentation via Multistage Fully Convolutional Networks.

    PubMed

    Bi, Lei; Kim, Jinman; Ahn, Euijoon; Kumar, Ashnil; Fulham, Michael; Feng, Dagan

    2017-09-01

    Segmentation of skin lesions is an important step in the automated computer aided diagnosis of melanoma. However, existing segmentation methods have a tendency to over- or under-segment the lesions and perform poorly when the lesions have fuzzy boundaries, low contrast with the background, inhomogeneous textures, or contain artifacts. Furthermore, the performance of these methods are heavily reliant on the appropriate tuning of a large number of parameters as well as the use of effective preprocessing techniques, such as illumination correction and hair removal. We propose to leverage fully convolutional networks (FCNs) to automatically segment the skin lesions. FCNs are a neural network architecture that achieves object detection by hierarchically combining low-level appearance information with high-level semantic information. We address the issue of FCN producing coarse segmentation boundaries for challenging skin lesions (e.g., those with fuzzy boundaries and/or low difference in the textures between the foreground and the background) through a multistage segmentation approach in which multiple FCNs learn complementary visual characteristics of different skin lesions; early stage FCNs learn coarse appearance and localization information while late-stage FCNs learn the subtle characteristics of the lesion boundaries. We also introduce a new parallel integration method to combine the complementary information derived from individual segmentation stages to achieve a final segmentation result that has accurate localization and well-defined lesion boundaries, even for the most challenging skin lesions. We achieved an average Dice coefficient of 91.18% on the ISBI 2016 Skin Lesion Challenge dataset and 90.66% on the PH2 dataset. Our extensive experimental results on two well-established public benchmark datasets demonstrate that our method is more effective than other state-of-the-art methods for skin lesion segmentation.

  3. High-throughput adaptive sampling for whole-slide histopathology image analysis (HASHI) via convolutional neural networks: Application to invasive breast cancer detection.

    PubMed

    Cruz-Roa, Angel; Gilmore, Hannah; Basavanhally, Ajay; Feldman, Michael; Ganesan, Shridar; Shih, Natalie; Tomaszewski, John; Madabhushi, Anant; González, Fabio

    2018-01-01

    Precise detection of invasive cancer on whole-slide images (WSI) is a critical first step in digital pathology tasks of diagnosis and grading. Convolutional neural network (CNN) is the most popular representation learning method for computer vision tasks, which have been successfully applied in digital pathology, including tumor and mitosis detection. However, CNNs are typically only tenable with relatively small image sizes (200 × 200 pixels). Only recently, Fully convolutional networks (FCN) are able to deal with larger image sizes (500 × 500 pixels) for semantic segmentation. Hence, the direct application of CNNs to WSI is not computationally feasible because for a WSI, a CNN would require billions or trillions of parameters. To alleviate this issue, this paper presents a novel method, High-throughput Adaptive Sampling for whole-slide Histopathology Image analysis (HASHI), which involves: i) a new efficient adaptive sampling method based on probability gradient and quasi-Monte Carlo sampling, and, ii) a powerful representation learning classifier based on CNNs. We applied HASHI to automated detection of invasive breast cancer on WSI. HASHI was trained and validated using three different data cohorts involving near 500 cases and then independently tested on 195 studies from The Cancer Genome Atlas. The results show that (1) the adaptive sampling method is an effective strategy to deal with WSI without compromising prediction accuracy by obtaining comparative results of a dense sampling (∼6 million of samples in 24 hours) with far fewer samples (∼2,000 samples in 1 minute), and (2) on an independent test dataset, HASHI is effective and robust to data from multiple sites, scanners, and platforms, achieving an average Dice coefficient of 76%.

  4. A Robust Deep-Learning-Based Detector for Real-Time Tomato Plant Diseases and Pests Recognition

    PubMed Central

    Yoon, Sook; Kim, Sang Cheol; Park, Dong Sun

    2017-01-01

    Plant Diseases and Pests are a major challenge in the agriculture sector. An accurate and a faster detection of diseases and pests in plants could help to develop an early treatment technique while substantially reducing economic losses. Recent developments in Deep Neural Networks have allowed researchers to drastically improve the accuracy of object detection and recognition systems. In this paper, we present a deep-learning-based approach to detect diseases and pests in tomato plants using images captured in-place by camera devices with various resolutions. Our goal is to find the more suitable deep-learning architecture for our task. Therefore, we consider three main families of detectors: Faster Region-based Convolutional Neural Network (Faster R-CNN), Region-based Fully Convolutional Network (R-FCN), and Single Shot Multibox Detector (SSD), which for the purpose of this work are called “deep learning meta-architectures”. We combine each of these meta-architectures with “deep feature extractors” such as VGG net and Residual Network (ResNet). We demonstrate the performance of deep meta-architectures and feature extractors, and additionally propose a method for local and global class annotation and data augmentation to increase the accuracy and reduce the number of false positives during training. We train and test our systems end-to-end on our large Tomato Diseases and Pests Dataset, which contains challenging images with diseases and pests, including several inter- and extra-class variations, such as infection status and location in the plant. Experimental results show that our proposed system can effectively recognize nine different types of diseases and pests, with the ability to deal with complex scenarios from a plant’s surrounding area. PMID:28869539

  5. Increased Renal Solute Excretion in Rats Following Space Flight

    NASA Technical Reports Server (NTRS)

    Wade, Charles E.; Moore, A. L.; Morey-Holton, E.

    1995-01-01

    Following space flight a diuresis, due to an increase in free water clearance, has been suggested in humans. To assess the effects of space flight on renal function, rats were flown in space for 14 days. Rats were divided into three groups; vivarium controls (V;n=6; housed 2/shoe box cage), flight controls (FC;n=6; group housed in a flight cage), and flight animals (F;n=6). Upon landing all animals were placed into individual metabolic cages. Urine was collected daily for 7 days and every other day for 14 days. Urine output was increased (p less than 0.05; ANOVA) following flight for 3 days. On postflight day 1, flow rates were, V=6.8 plus or minus 0.9, FC=8.711.8 and F=16.6 plus or minus 2.7 microliter/min. Excretion rates of Na+ and K+ were increased, resulting in an increased osmotic excretion rate (V=7.9 plus or minus 0.9, FC=6.1 plus or minus 0.7 and F=13.5 plus or minus 0.7 uOsm/min). Creatinine excretion rate was increased over the first two postflight days. In the absence of changes in plasma creatinine, Na+, or K+ (samples obtained immediately post flight from similar rats compared to Day 14), GFR was increased following space flight. The increased excretion of solute was thus the result of increased delivery and decreased reabsorption. Osmotic clearance was increased (V=28, FC=27 and F=51 microliter/min), while free water clearance was decreased post flight (V=-21,FC=-18 and F=-34 microliter/min). In rats, the postflight diuresis is the result of an increase in solute (osmotic) excretion with an accompanying reduction in free water clearance.

  6. High-throughput adaptive sampling for whole-slide histopathology image analysis (HASHI) via convolutional neural networks: Application to invasive breast cancer detection

    PubMed Central

    Gilmore, Hannah; Basavanhally, Ajay; Feldman, Michael; Ganesan, Shridar; Shih, Natalie; Tomaszewski, John; Madabhushi, Anant; González, Fabio

    2018-01-01

    Precise detection of invasive cancer on whole-slide images (WSI) is a critical first step in digital pathology tasks of diagnosis and grading. Convolutional neural network (CNN) is the most popular representation learning method for computer vision tasks, which have been successfully applied in digital pathology, including tumor and mitosis detection. However, CNNs are typically only tenable with relatively small image sizes (200 × 200 pixels). Only recently, Fully convolutional networks (FCN) are able to deal with larger image sizes (500 × 500 pixels) for semantic segmentation. Hence, the direct application of CNNs to WSI is not computationally feasible because for a WSI, a CNN would require billions or trillions of parameters. To alleviate this issue, this paper presents a novel method, High-throughput Adaptive Sampling for whole-slide Histopathology Image analysis (HASHI), which involves: i) a new efficient adaptive sampling method based on probability gradient and quasi-Monte Carlo sampling, and, ii) a powerful representation learning classifier based on CNNs. We applied HASHI to automated detection of invasive breast cancer on WSI. HASHI was trained and validated using three different data cohorts involving near 500 cases and then independently tested on 195 studies from The Cancer Genome Atlas. The results show that (1) the adaptive sampling method is an effective strategy to deal with WSI without compromising prediction accuracy by obtaining comparative results of a dense sampling (∼6 million of samples in 24 hours) with far fewer samples (∼2,000 samples in 1 minute), and (2) on an independent test dataset, HASHI is effective and robust to data from multiple sites, scanners, and platforms, achieving an average Dice coefficient of 76%. PMID:29795581

  7. Sustained deep-tissue pain alters functional brain connectivity

    PubMed Central

    Kim, Jieun; Loggia, Marco L.; Edwards, Robert; Wasan, Ajay D.; Gollub, Randy L.; Napadow, Vitaly

    2013-01-01

    Recent functional brain connectivity studies have contributed to our understanding of the neurocircuitry supporting pain perception. However, evoked-pain connectivity studies have employed cutaneous and/or brief stimuli, which induce sensations that differ appreciably from the clinical pain experience. Sustained myofascial pain evoked by pressure cuff affords an excellent opportunity to evaluate functional connectivity change to more clinically-relevant sustained deep-tissue pain. Connectivity in specific networks known to be modulated by evoked pain (sensorimotor, salience, dorsal attention, fronto-parietal control and default mode networks; SMN, SLN, DAN, FCN and DMN) was evaluated with functional-connectivity MRI, both at rest and during a sustained (6-minute) pain state in healthy adults. We found that pain was stable with no significant changes of subjects’ pain ratings over the stimulation period. Sustained pain reduced connectivity between the SMN and the contralateral leg primary sensorimotor (S1/M1) representation. Such SMN-S1/M1 connectivity decreases were also accompanied by and correlated with increased SLN-S1/M1 connectivity, suggesting recruitment of activated S1/M1 from SMN to SLN. Sustained pain also increased DAN connectivity to pain processing regions such as mid-cingulate cortex, posterior insula and putamen. Moreover, greater connectivity during pain between contralateral S1/M1 and posterior insula, thalamus, putamen, and amygdala, was associated with lower cuff pressures needed to reach the targeted pain sensation. These results demonstrate that sustained pain disrupts resting S1/M1 connectivity by shifting it to a network known to process stimulus salience. Furthermore, increased connectivity between S1/M1 and both sensory and affective processing areas may be an important contribution to inter-individual differences in pain sensitivity. PMID:23718988

  8. Effects of radiation damping for biomolecular NMR experiments in solution: a hemisphere concept for water suppression

    PubMed Central

    Ishima, Rieko

    2016-01-01

    Abundant solvent nuclear spins, such as water protons in aqueous solution, cause radiation damping in NMR experiments. It is important to know how the effect of radiation damping appears in high-resolution protein NMR because macromolecular studies always require very high magnetic field strengths with a highly sensitive NMR probe that can easily cause radiation damping. Here, we show the behavior of water magnetization after a pulsed-field gradient (PFG) using nutation experiments at 900 MHz with a cryogenic probe: when water magnetization is located in the upper hemisphere (having +Z component, parallel to the external magnetic field), dephasing of the magnetization by a PFG effectively suppresses residual water magnetization in the transverse plane. In contrast, when magnetization is located in the lower hemisphere (having −Z component), the small residual transverse component remaining after a PFG is still sufficient to induce radiation damping. Based on this observation, we designed 1H-15N HSQC experiments in which water magnetization is maintained in the upper hemisphere, but not necessarily along Z, and compared them with the conventional experiments, in which water magnetization is inverted during the t1 period. The result demonstrates moderate gain of signal-to-noise ratio, 0–28%. Designing the experiments such that water magnetization is maintained in the upper hemisphere allows shorter pulses to be used compared to the complete water flip-back and, thereby, is useful as a building block of protein NMR pulse programs in solution. PMID:27524944

  9. NASA Tech Briefs, June 2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Topics covered include: COTS MEMS Flow-Measurement Probes; Measurement of an Evaporating Drop on a Reflective Substrate; Airplane Ice Detector Based on a Microwave Transmission Line; Microwave/Sonic Apparatus Measures Flow and Density in Pipe; Reducing Errors by Use of Redundancy in Gravity Measurements; Membrane-Based Water Evaporator for a Space Suit; Compact Microscope Imaging System with Intelligent Controls; Chirped-Superlattice, Blocked-Intersubband QWIP; Charge-Dissipative Electrical Cables; Deep-Sea Video Cameras Without Pressure Housings; RFID and Memory Devices Fabricated Integrally on Substrates; Analyzing Dynamics of Cooperating Spacecraft; Spacecraft Attitude Maneuver Planning Using Genetic Algorithms; Forensic Analysis of Compromised Computers; Document Concurrence System; Managing an Archive of Images; MPT Prediction of Aircraft-Engine Fan Noise; Improving Control of Two Motor Controllers; Electro-deionization Using Micro-separated Bipolar Membranes; Safer Electrolytes for Lithium-Ion Cells; Rotating Reverse-Osmosis for Water Purification; Making Precise Resonators for Mesoscale Vibratory Gyroscopes; Robotic End Effectors for Hard-Rock Climbing; Improved Nutation Damper for a Spin-Stabilized Spacecraft; Exhaust Nozzle for a Multitube Detonative Combustion Engine; Arc-Second Pointer for Balloon-Borne Astronomical Instrument; Compact, Automated Centrifugal Slide-Staining System; Two-Armed, Mobile, Sensate Research Robot; Compensating for Effects of Humidity on Electronic Noses; Brush/Fin Thermal Interfaces; Multispectral Scanner for Monitoring Plants; Coding for Communication Channels with Dead-Time Constraints; System for Better Spacing of Airplanes En Route; Algorithm for Training a Recurrent Multilayer Perceptron; Orbiter Interface Unit and Early Communication System; White-Light Nulling Interferometers for Detecting Planets; and Development of Methodology for Programming Autonomous Agents.

  10. Short Term Exogenic Climate Change Forcing

    NASA Astrophysics Data System (ADS)

    Krahenbuhl, Daniel

    Several short term exogenic forcings affecting Earth's climate are but recently identified. Lunar nutation periodicity has implications for numerical meteorological prediction. Abrupt shifts in solar wind bulk velocity, particle density, and polarity exhibit correlation with terrestrial hemispheric vorticity changes, cyclonic strengthening and the intensification of baroclinic disturbances. Galactic Cosmic ray induced tropospheric ionization modifies cloud microphysics, and modulates the global electric circuit. This dissertation is constructed around three research questions: (1): What are the biweekly declination effects of lunar gravitation upon the troposphere? (2): How do United States severe weather reports correlate with heliospheric current sheet crossings? and (3): How does cloud cover spatially and temporally vary with galactic cosmic rays? Study 1 findings show spatial consistency concerning lunar declination extremes upon Rossby longwaves. Due to the influence of Rossby longwaves on synoptic scale circulation, our results could theoretically extend numerical meteorological forecasting. Study 2 results indicate a preference for violent tornadoes to occur prior to a HCS crossing. Violent tornadoes (EF3+) are 10% more probable to occur near, and 4% less probable immediately after a HCS crossing. The distribution of hail and damaging wind reports do not mirror this pattern. Polarity is critical for the effect. Study 3 results confirm anticorrelation between solar flux and low-level marine-layer cloud cover, but indicate substantial regional variability between cloud cover altitude and GCRs. Ultimately, this dissertation serves to extend short term meteorological forecasting, enhance climatological modeling and through analysis of severe violent weather and heliospheric events, protect property and save lives.

  11. Radiofrequency fields in MAS solid state NMR probes

    NASA Astrophysics Data System (ADS)

    Tošner, Zdeněk; Purea, Armin; Struppe, Jochem O.; Wegner, Sebastian; Engelke, Frank; Glaser, Steffen J.; Reif, Bernd

    2017-11-01

    We present a detailed analysis of the radiofrequency (RF) field over full volume of a rotor that is generated in a solenoid coil. On top of the usually considered static distribution of amplitudes along the coil axis we describe dynamic radial RF inhomogeneities induced by sample rotation. During magic angle spinning (MAS), the mechanical rotation of the sample about the magic angle, a spin packet travels through areas of different RF fields and experiences periodical modulations of both the RF amplitude and the phase. These modulations become particularly severe at the end regions of the coil where the relative RF amplitude varies up to ±25% and the RF phase changes within ±30°. Using extensive numerical simulations we demonstrate effects of RF inhomogeneity on pulse calibration and for the ramped CP experiment performed at a wide range of MAS rates. In addition, we review various methods to map RF fields using a B0 gradient along the sample (rotor axis) for imaging purposes. Under such a gradient, a nutation experiment provides directly the RF amplitude distribution, a cross polarization experiment images the correlation of the RF fields on the two channels according to the Hartmann-Hahn matching condition, while a spin-lock experiment allows to calibrate the RF amplitude employing the rotary resonance recoupling condition. Knowledge of the RF field distribution in a coil provides key to understand its effects on performance of a pulse sequence at the spectrometer and enables to set robustness requirements in the experimental design.

  12. Nonlinear model and attitude dynamics of flexible spacecraft with large amplitude slosh

    NASA Astrophysics Data System (ADS)

    Deng, Mingle; Yue, Baozeng

    2017-04-01

    This paper is focused on the nonlinearly modelling and attitude dynamics of spacecraft coupled with large amplitude liquid sloshing dynamics and flexible appendage vibration. The large amplitude fuel slosh dynamics is included by using an improved moving pulsating ball model. The moving pulsating ball model is an equivalent mechanical model that is capable of imitating the whole liquid reorientation process. A modification is introduced in the capillary force computation in order to more precisely estimate the settling location of liquid in microgravity or zero-g environment. The flexible appendage is modelled as a three dimensional Bernoulli-Euler beam and the assumed modal method is employed to derive the nonlinear mechanical model for the overall coupled system of liquid filled spacecraft with appendage. The attitude maneuver is implemented by the momentum transfer technique, and a feedback controller is designed. The simulation results show that the liquid sloshing can always result in nutation behavior, but the effect of flexible deformation of appendage depends on the amplitude and direction of attitude maneuver performed by spacecraft. Moreover, it is found that the liquid sloshing and the vibration of flexible appendage are coupled with each other, and the coupling becomes more significant with more rapid motion of spacecraft. This study reveals that the appendage's flexibility has influence on the liquid's location and settling time in microgravity. The presented nonlinear system model can provide an important reference for the overall design of the modern spacecraft composed of rigid platform, liquid filled tank and flexible appendage.

  13. Accurate spin axes and solar system dynamics: Climatic variations for the Earth and Mars

    NASA Astrophysics Data System (ADS)

    Edvardsson, S.; Karlsson, K. G.; Engholm, M.

    2002-03-01

    Celestial mechanical simulations from a purely classical point of view of the solar system, including our Moon and the Mars moons - Phobos and Deimos - are carried out for 2 millions of years before present. Within the classical approximation, the results are derived at a very high level of accuracy. Effects from general relativity for a number of variables are investigated and found to be small. For climatic studies of about 1 Myr, general relativity can safely be ignored. Three different and independent integration schemes are used in order to exclude numerical anomalies. The converged results from all methods are found to be in complete agreement. For verification, a number of properties such as spin axis precession, nutation, and orbit inclination for Earth and Mars have been calculated. Times and positions of equinoxes and solstices are continously monitored. As also observed earlier, the obliquity of the Earth is stabilized by the Moon. On the other hand, the obliquity of Mars shows dramatic variations. Climatic influences due to celestial variables for the Earth and Mars are studied. Instead of using mean insolation as in the usual applications of Milankovitch theory, the present approach focuses on the instantaneous solar radiation power (insolation) at each summer solstice. Solar radiation power is compared to the derivative of the icevolume and these quantities are found to be in excellent agreement. Orbital precessions for the inner planets are studied as well. In the case of Mercury, it is investigated in detail.

  14. Circumnutation and its dependence on the gravity response in rice, morning glory and pea plants: verification by spaceflight experiments

    NASA Astrophysics Data System (ADS)

    Takahashi, Hideyuki; Kobayashi, Akie; Fujii, Nobuharu; Yano, Sachiko; Shimazu, Toru; Kim, Hyejeong; Tomita, Yuuta; Miyazawa, Yutaka

    Plant organs display helical growth movement known as circumnutation. This movement helps plant organs find suitable environmental cues. The amplitude, period and shape of the circumnutation differ depending on plant species or organs. Although the mechanism for circumnutation is unclear, it has long been argued whether circumnutation is involved with gravitropic response. Previously, we showed that shoots of weeping morning glory (we1 and we2) are impaired in not only the differentiation of endodermis (gravisensing cells) and gravitropic response, but also winding and circumnutation (Kitazawa et al., PNAS 102: 18742-18747, 2005). Here, we report a reduced circumnutation in the shoots of rice and the roots of pea mutants defective in gravitropic response. Coleoptiles of clinorotated rice seedlings and decapped roots of pea seedlings also showed a reduction of their circumnutational movement. These results suggest that circumnutation is tightly related with gravitropic response. In the proposed spaceflight experiments, “Plant Rotation”, we will verify the hypothesis that circumnutation requires gravity response, by using microgravity environment in KIBO module of the International Space Station. We will grow rice and morning glory plants under both muG and 1G conditions on orbit and monitor their growth by a camera. The downlinked images will be analyzed for the measurements of plant growth and nutational movements. This experiment will enable us to answer the question whether circumnutation depends on gravity response or not.

  15. The European Robotic Exploration of the Planet Mars

    NASA Astrophysics Data System (ADS)

    Chicarro, Agustin

    2010-05-01

    The ESA Mars Express mission was launched in June 2003 and has been orbiting Mars for over six years providing data with an unprecedented spatial and spectral resolution on the surface, subsurface, atmosphere and ionosphere of the red planet. The main theme of the mission is the search for water in its various states everywhere on the planet by all instruments using different techniques. The mission is still a huge success, helping rewrite new pages in our understanding of Mars. Mars Express will be followed by ESA's new Exploration Programme, starting in 2016 with an Orbiter focusing on atmospheric trace gases and in particular methane. The ExoMars rover will follow in 2018 to perform geochemical and exobiological measurements on the surface and the subsurface. Then in 2020, a Network of 3-6 surface stations will be launched (possibly together with an orbiter), in order to investigate the interior of the planet, its atmospheric dynamics and the geology of each landing site. All these Mars Exploration missions will be carried out jointly with NASA. Such network-orbiter combination represents a unique tool to perform new investigations of Mars, which could not be addressed by other means. In particular, i) the internal geophysical aspects concern the structure and dynamics of the interior of Mars including the state of the core and composition of the mantle; the fine structure of the crust including its paleomagnetic anomalies; the rotational parameters (axis tilt, precession, nutation, etc) that define both the state of the interior and the climate evolution; ii) the atmospheric physics aspects concern the general circulation and its forcing factors; the time variability cycles of the transport of volatiles, water and dust; surface-atmosphere interactions and overall meteorology and climate; iii) the geology of each landing site concerns the full characterization of the surrounding area including petrological rock types, chemical and mineralogical sample analysis, erosion, oxidation and weathering processes to infer the geological history of the region, as well as the astrobiological potential of each site. To complement the science gained from the Martian surface, investigations need to be carried out from orbit in a coordinated manner, such as i) global atmospheric mapping to study weather patterns, opacity and chemical composition; ii) a detailed map of the crustal magnetic anomalies from lower orbit (150 km); iii) study of these magnetic anomalies need to be studied in light of the magnetic field induced by the solar wind interaction with the upper atmosphere of the planet. The Network Mission concept is based on the fact that some important science goals on any given terrestrial planet can only be achieved with simultaneous measurements from a number of landers located on the surface of the planet (primarily internal geophysics, geodesy and meteorology) coupled to an orbiter. The long-term goal of Mars robotic exploration in Europe remains the return of rock and soil samples from the Martian surface before eventually Humans go to Mars one day.

  16. Using the P03 Precession Model

    NASA Astrophysics Data System (ADS)

    Wallace, P. T.; Capitaine, N.

    2006-08-01

    The precession model adopted by the IAU in 2000 comprised the existing Lieske et al. (1977) model plus rate corrections of about 300 mas/cy in longitude and 25 mas/cy in obliquity. Though accurate with respect to existing VLBI observations, the IAU 2000 model is not consistent with dynamical theory, and consequently the IAU Working Group on precession and the ecliptic has recommended (Hilton et al. 2006) that it be replaced by the "P03" model of Capitaine et al. (2003). P03 provides improved models for both the equator and the ecliptic, and also includes parameterized provision for future adjustment to match new determinations of properties of the non-rigid Earth such as the precession rates and J2 rate. Practical use of the new model involves choices of algorithm and computational procedure, and a number of ways have been studied (Capitaine & Wallace 2006) of generating the directions of the celestial intermediate pole and origin (CIP, CIO), from which the usual rotation matrices can be obtained. From a wide range of possible procedures we have selected two that target different classes of application, typified by the SOFA software and the IERS Conventions respectively. These procedures achieve a high standard of consistency, both internal and mutual, as well as being efficient and versatile. One is based on the Fukushima-Williams precession-nutation angles, the other on series for the CIP coordinates. Both use the CIO locator s, and both deliver the full range of products, supporting classical equinox/GST methods in addition to the CIO/ERA "new paradigm".

  17. Magic angle spinning NMR with metallized rotors as cylindrical microwave resonators.

    PubMed

    Scott, Faith J; Sesti, Erika L; Choi, Eric J; Laut, Alexander J; Sirigiri, Jagadishwar R; Barnes, Alexander B

    2018-04-19

    We introduce a novel design for millimeter wave electromagnetic structures within magic angle spinning (MAS) rotors. In this demonstration, a copper coating is vacuum deposited onto the outside surface of a sapphire rotor at a thickness of 50 nm. This thickness is sufficient to reflect 197-GHz microwaves, yet not too thick as to interfere with radiofrequency fields at 300 MHz or prevent sample spinning due to eddy currents. Electromagnetic simulations of an idealized rotor geometry show a microwave quality factor of 148. MAS experiments with sample rotation frequencies of ω r /2π = 5.4 kHz demonstrate that the drag force due to eddy currents within the copper does not prevent sample spinning. Spectra of sodium acetate show resolved 13 C J-couplings of 60 Hz and no appreciable broadening between coated and uncoated sapphire rotors, demonstrating that the copper coating does not prevent shimming and high-resolution nuclear magnetic resonance spectroscopy. Additionally, 13 C Rabi nutation curves of ω 1 /2π = 103 kHz for both coated and uncoated rotors indicate no detrimental impact of the copper coating on radio frequency coupling of the nuclear spins to the sample coil. We present this metal coated rotor as a first step towards an MAS resonator. MAS resonators are expected to have a significant impact on developments in electron decoupling, pulsed dynamic nuclear polarization (DNP), room temperature DNP, DNP with low-power microwave sources, and electron paramagnetic resonance detection. Copyright © 2018 John Wiley & Sons, Ltd.

  18. Testing impact of the strategy of VLBI data analysis on the estimation of Earth Orientation Parameters and station coordinates

    NASA Astrophysics Data System (ADS)

    Wielgosz, Agata; Tercjak, Monika; Brzeziński, Aleksander

    2016-06-01

    Very Long Baseline Interferometry (VLBI) is the only space geodetic technique capable to realise the Celestial Reference Frame and tie it with the Terrestrial Reference Frame. It is also the only technique, which measures all the Earth Orientation Parameters (EOP) on a regular basis, thus the role of VLBI in determination of the universal time, nutation and polar motion and station coordinates is invaluable. Although geodetic VLBI has been providing observations for more than 30 years, there are no clear guidelines how to deal with the stations or baselines having significantly bigger post-fit residuals than the other ones. In our work we compare the common weighting strategy, using squared formal errors, with strategies involving exclusion or down-weighting of stations or baselines. For that purpose we apply the Vienna VLBI Software VieVS with necessary additional procedures. In our analysis we focus on statistical indicators that might be the criterion of excluding or down-weighting the inferior stations or baselines, as well as on the influence of adopted strategy on the EOP and station coordinates estimation. Our analysis shows that in about 99% of 24-hour VLBI sessions there is no need to exclude any data as the down-weighting procedure is sufficiently efficient. Although results presented here do not clearly indicate the best algorithm, they show strengths and weaknesses of the applied methods and point some limitations of automatic analysis of VLBI data. Moreover, it is also shown that the influence of the adopted weighting strategy is not always clearly reflected in the results of analysis.

  19. Radiofrequency fields in MAS solid state NMR probes.

    PubMed

    Tošner, Zdeněk; Purea, Armin; Struppe, Jochem O; Wegner, Sebastian; Engelke, Frank; Glaser, Steffen J; Reif, Bernd

    2017-11-01

    We present a detailed analysis of the radiofrequency (RF) field over full volume of a rotor that is generated in a solenoid coil. On top of the usually considered static distribution of amplitudes along the coil axis we describe dynamic radial RF inhomogeneities induced by sample rotation. During magic angle spinning (MAS), the mechanical rotation of the sample about the magic angle, a spin packet travels through areas of different RF fields and experiences periodical modulations of both the RF amplitude and the phase. These modulations become particularly severe at the end regions of the coil where the relative RF amplitude varies up to ±25% and the RF phase changes within ±30°. Using extensive numerical simulations we demonstrate effects of RF inhomogeneity on pulse calibration and for the ramped CP experiment performed at a wide range of MAS rates. In addition, we review various methods to map RF fields using a B 0 gradient along the sample (rotor axis) for imaging purposes. Under such a gradient, a nutation experiment provides directly the RF amplitude distribution, a cross polarization experiment images the correlation of the RF fields on the two channels according to the Hartmann-Hahn matching condition, while a spin-lock experiment allows to calibrate the RF amplitude employing the rotary resonance recoupling condition. Knowledge of the RF field distribution in a coil provides key to understand its effects on performance of a pulse sequence at the spectrometer and enables to set robustness requirements in the experimental design. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Multiple Cylinder Free-Piston Stirling Machinery

    NASA Astrophysics Data System (ADS)

    Berchowitz, David M.; Kwon, Yong-Rak

    In order to improve the specific power of piston-cylinder type machinery, there is a point in capacity or power where an advantage accrues with increasing number of piston-cylinder assemblies. In the case of Stirling machinery where primary energy is transferred across the casing wall of the machine, this consideration is even more important. This is due primarily to the difference in scaling of basic power and the required heat transfer. Heat transfer is found to be progressively limited as the size of the machine increases. Multiple cylinder machines tend to preserve the surface area to volume ratio at more favorable levels. In addition, the spring effect of the working gas in the so-called alpha configuration is often sufficient to provide a high frequency resonance point that improves the specific power. There are a number of possible multiple cylinder configurations. The simplest is an opposed pair of piston-displacer machines (beta configuration). A three-cylinder machine requires stepped pistons to obtain proper volume phase relationships. Four to six cylinder configurations are also possible. A small demonstrator inline four cylinder alpha machine has been built to demonstrate both cooling operation and power generation. Data from this machine verifies theoretical expectations and is used to extrapolate the performance of future machines. Vibration levels are discussed and it is argued that some multiple cylinder machines have no linear component to the casing vibration but may have a nutating couple. Example applications are discussed ranging from general purpose coolers, computer cooling, exhaust heat power extraction and some high power engines.

  1. Improved black-blood imaging using DANTE-SPACE for simultaneous carotid and intracranial vessel wall evaluation.

    PubMed

    Xie, Yibin; Yang, Qi; Xie, Guoxi; Pang, Jianing; Fan, Zhaoyang; Li, Debiao

    2016-06-01

    The purpose of this study was to develop a three-dimensional black blood imaging method for simultaneously evaluating the carotid and intracranial arterial vessel walls with high spatial resolution and excellent blood suppression with and without contrast enhancement. The delay alternating with nutation for tailored excitation (DANTE) preparation module was incorporated into three-dimensional variable flip angle turbo spin echo (SPACE) sequence to improve blood signal suppression. Simulations and phantom studies were performed to quantify image contrast variations induced by DANTE. DANTE-SPACE, SPACE, and two-dimensional turbo spin echo were compared for apparent signal-to-noise ratio, contrast-to-noise ratio, and morphometric measurements in 14 healthy subjects. Preliminary clinical validation was performed in six symptomatic patients. Apparent residual luminal blood was observed in five (pre-contrast) and nine (post-contrast) subjects with SPACE and only two (post-contrast) subjects with DANTE-SPACE. DANTE-SPACE showed 31% (pre-contrast) and 100% (post-contrast) improvement in wall-to-blood contrast-to-noise ratio over SPACE. Vessel wall area measured from SPACE was significantly larger than that from DANTE-SPACE due to possible residual blood signal contamination. DANTE-SPACE showed the potential to detect vessel wall dissection and identify plaque components in patients. DANTE-SPACE significantly improved arterial and venous blood suppression compared with SPACE. Simultaneous high-resolution carotid and intracranial vessel wall imaging to potentially identify plaque components was feasible with a scan time under 6 min. Magn Reson Med 75:2286-2294, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  2. Selective excitation enables assignment of proton resonances and (1)H-(1)H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of (1)H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as (13)C or (15)N. In this method, after the initial preparation of proton magnetization and cross-polarization to (13)C nuclei, transverse magnetization of desired (13)C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific (13)C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of (1)H-(1)H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  3. Multi-class geospatial object detection based on a position-sensitive balancing framework for high spatial resolution remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Zhong, Yanfei; Han, Xiaobing; Zhang, Liangpei

    2018-04-01

    Multi-class geospatial object detection from high spatial resolution (HSR) remote sensing imagery is attracting increasing attention in a wide range of object-related civil and engineering applications. However, the distribution of objects in HSR remote sensing imagery is location-variable and complicated, and how to accurately detect the objects in HSR remote sensing imagery is a critical problem. Due to the powerful feature extraction and representation capability of deep learning, the deep learning based region proposal generation and object detection integrated framework has greatly promoted the performance of multi-class geospatial object detection for HSR remote sensing imagery. However, due to the translation caused by the convolution operation in the convolutional neural network (CNN), although the performance of the classification stage is seldom influenced, the localization accuracies of the predicted bounding boxes in the detection stage are easily influenced. The dilemma between translation-invariance in the classification stage and translation-variance in the object detection stage has not been addressed for HSR remote sensing imagery, and causes position accuracy problems for multi-class geospatial object detection with region proposal generation and object detection. In order to further improve the performance of the region proposal generation and object detection integrated framework for HSR remote sensing imagery object detection, a position-sensitive balancing (PSB) framework is proposed in this paper for multi-class geospatial object detection from HSR remote sensing imagery. The proposed PSB framework takes full advantage of the fully convolutional network (FCN), on the basis of a residual network, and adopts the PSB framework to solve the dilemma between translation-invariance in the classification stage and translation-variance in the object detection stage. In addition, a pre-training mechanism is utilized to accelerate the training procedure and increase the robustness of the proposed algorithm. The proposed algorithm is validated with a publicly available 10-class object detection dataset.

  4. Molecular Engineering Strategy for High Efficiency Fullerene-Free Organic Solar Cells Using Conjugated 1,8-Naphthalimide and Fluorenone Building Blocks.

    PubMed

    Do, Thu Trang; Pham, Hong Duc; Manzhos, Sergei; Bell, John M; Sonar, Prashant

    2017-05-24

    We designed, synthesized, and characterized a series of novel electron deficient small molecule nonfullerene acceptors based on 1,8-naphthalimide (NAI) and 9-fluorenone (FN) with different branched alkyl chains using various techniques. These molecules are based on an acceptor-donor-acceptor-donor-acceptor (A1-D-A2-D-A1) molecular design configuration with NAI as the end-capping acceptor (A1), FN as electron-withdrawing central (A2) group, and thiophene ring as a donor (D) unit. These materials are named as NAI-FN-NAI (BO) and NAI-FN-NAI (HD) where BO and HD represent butyloctyl and hexyldecyl alkyl groups, respectively. To further modify energy levels of these materials, we converted the weak electron withdrawing ketonic group (C═O) attached to the FN moiety of NAI-FN-NAI (BO) to a stronger electron withdrawing cyano group (C≡N) to obtain the compound NAI-FCN-NAI (BO) by keeping the same alkyl chain. The optical, electrochemical, and thermal properties of the new acceptors were studied. The materials exhibited higher to medium band gaps, low lowest unoccupied molecular orbital (LUMO) energy levels, and highly thermally stable properties. Organic solar cell devices employing conventional poly(3-hexylthiophene) (P3HT) a donor polymer and the newly designed small molecules as the acceptor were investigated. Among all new materials, organic solar cell devices based on NAI-FN-NAI (BO) as an acceptor exhibit the highest performance with an open circuit voltage (V OC ) of 0.88 V, a short-circuit current density (J SC ) of 9.1 mAcm -2 , a fill factor (FF) of 45%, and an overall power conversion efficiency (PCE) of 3.6%. This is the first report of 9-fluorenone based nonfullerene acceptor with P3HT donor in organic solar cell devices with such a promising performance.

  5. Automatic Semantic Segmentation of Brain Gliomas from MRI Images Using a Deep Cascaded Neural Network

    PubMed Central

    Mao, Lei; Liu, Chang; Xiong, Shuyu

    2018-01-01

    Brain tumors can appear anywhere in the brain and have vastly different sizes and morphology. Additionally, these tumors are often diffused and poorly contrasted. Consequently, the segmentation of brain tumor and intratumor subregions using magnetic resonance imaging (MRI) data with minimal human interventions remains a challenging task. In this paper, we present a novel fully automatic segmentation method from MRI data containing in vivo brain gliomas. This approach can not only localize the entire tumor region but can also accurately segment the intratumor structure. The proposed work was based on a cascaded deep learning convolutional neural network consisting of two subnetworks: (1) a tumor localization network (TLN) and (2) an intratumor classification network (ITCN). The TLN, a fully convolutional network (FCN) in conjunction with the transfer learning technology, was used to first process MRI data. The goal of the first subnetwork was to define the tumor region from an MRI slice. Then, the ITCN was used to label the defined tumor region into multiple subregions. Particularly, ITCN exploited a convolutional neural network (CNN) with deeper architecture and smaller kernel. The proposed approach was validated on multimodal brain tumor segmentation (BRATS 2015) datasets, which contain 220 high-grade glioma (HGG) and 54 low-grade glioma (LGG) cases. Dice similarity coefficient (DSC), positive predictive value (PPV), and sensitivity were used as evaluation metrics. Our experimental results indicated that our method could obtain the promising segmentation results and had a faster segmentation speed. More specifically, the proposed method obtained comparable and overall better DSC values (0.89, 0.77, and 0.80) on the combined (HGG + LGG) testing set, as compared to other methods reported in the literature. Additionally, the proposed approach was able to complete a segmentation task at a rate of 1.54 seconds per slice. PMID:29755716

  6. Efficiency of static core turn-off in a system-on-a-chip with variation

    DOEpatents

    Cher, Chen-Yong; Coteus, Paul W; Gara, Alan; Kursun, Eren; Paulsen, David P; Schuelke, Brian A; Sheets, II, John E; Tian, Shurong

    2013-10-29

    A processor-implemented method for improving efficiency of a static core turn-off in a multi-core processor with variation, the method comprising: conducting via a simulation a turn-off analysis of the multi-core processor at the multi-core processor's design stage, wherein the turn-off analysis of the multi-core processor at the multi-core processor's design stage includes a first output corresponding to a first multi-core processor core to turn off; conducting a turn-off analysis of the multi-core processor at the multi-core processor's testing stage, wherein the turn-off analysis of the multi-core processor at the multi-core processor's testing stage includes a second output corresponding to a second multi-core processor core to turn off; comparing the first output and the second output to determine if the first output is referring to the same core to turn off as the second output; outputting a third output corresponding to the first multi-core processor core if the first output and the second output are both referring to the same core to turn off.

  7. Identification of stars in a J1744.0 star catalogue Yixiangkaocheng

    NASA Astrophysics Data System (ADS)

    Ahn, S.-H.

    2012-05-01

    The stars in the Chinese star catalogue, Yixiangkaocheng, which were edited by the Jesuit astronomer Kögler in AD 1744 and published in AD 1756, are identified with their counterparts in the Hipparcos catalogue. The equinox of the catalogue is confirmed to be J1744.0. By considering the precession of equinox, proper motions and nutation, the star closest to the location of each star in Yixiangkaocheng, having a proper magnitude, is selected as the corresponding identified star. I identified 2848 stars and 13 nebulosities out of 3083 objects in Yixiangkaocheng, and so the identification rate reached 92.80 per cent. I find that the magnitude classification system in Yixiangkaocheng agrees with the modern magnitude system. The catalogue includes dim stars, whose visual magnitudes are larger than 7, but most of these stars have Flamsteed designations. I find that the stars whose declination is lower than -30° have relatively larger offsets and different systematic behaviour from other stars. This indicates that there might be two different sources of stars in Yixiangkaocheng. In particular, I find that μ1 Sco and γ1 Sgr approximately mark the boundary between two different source catalogues. The observer's location, as estimated from these facts, agrees with the latitude of Greenwich where Flamsteed made his observations. The positional offsets between the Yixiangkaocheng stars and the Hipparcos stars are 0.6 arcmin, which implies that the source catalogue of stars with δ > -30° must have come from telescopic observations. Nebulosities in Yixiangkaocheng are identified with a few double stars, o Cet (the variable star, Mira), the Andromeda galaxy, ω Cen and NGC6231. These entities are associated with listings in Halley's Catalogue of the Southern Stars of AD 1679 as well as Flamsteed's catalogue of AD 1690.

  8. Accurate procedure for deriving UTI at a submilliarcsecond accuracy from Greenwich Sidereal Time or from the stellar angle

    NASA Astrophysics Data System (ADS)

    Capitaine, N.; Gontier, A.-M.

    1993-08-01

    Present observations using modern astrometric techniques are supposed to provide the Earth orientation parameters, and therefore UT1, with an accuracy better than ±1 mas. In practice, UT1 is determined through the intermediary of Greenwich Sidereal Time (GST), using both the conventional relationship between Greenwich Mean Sidereal Time (GMST) and UTl (Aoki et al. 1982) and the so-called "equation of the equinoxes" limited to the first order terms with respect to the nutation quantities. This highly complex relation between sidereal time and UT1 is not accurate at the milliaresecond level which gives rise to spurious terms of milliaresecond amplitude in the derived UTl. A more complete relationship between GST and UT1 has been recommended by Aoki & Kinoshita (1983) and Aoki (1991) taking into account the second order terms in the difference between GST and GM ST, the largest one having an amplitude of 2.64 mas and a 18.6 yr-period. This paper explains how this complete expansion of GST implicitly uses the concept of "nonrotating origin" (NRO) as proposed by Guinot in 1979 and would, therefore, provide a more accurate value of UTl and consequently of the Earth's angular velocity. This paper shows, moreover, that such a procedure would be simplified and conceptually clarified by the explicit use of the NRO as previously proposed (Guinot 1979; Capitaine et al. 1986). The two corresponding options (implicit or explicit use of the NRO) are shown to be equivalent for defining the specific Earth's angle of rotation and then UT1. The of the use of such an accurate procedure which has been proposed in the new IERS standards (McCarthy 1992a) instead of the usual one are estimated for the practical derivation of UT1.

  9. Trends in Performance and Characteristics of Ultra-Stable Oscillators for Deep Space Radio Science Experiments

    NASA Technical Reports Server (NTRS)

    Asmar, Sami

    1997-01-01

    Telecommunication systems of spacecraft on deep space missions also function as instruments for Radio Science experiments. Radio scientists utilize the telecommunication links between spacecraft and Earth to examine very small changes in the phase/frequency, amplitude, and/or polarization of radio signals to investigate a host of physical phenomena in the solar system. Several missions augmented the radio communication system with an Ultra-Stable Oscillator (USO) in order to provide a highly stable reference signal for oneway downlink. This configuration is used in order to enable better investigations of the atmospheres of the planets occulting the line-of-sight to the spacecraft; one-way communication was required and the transponders' built-in auxiliary oscillators were neither sufficiently stable nor spectrally pure for the occultation experiments. Since Radio Science instrumentation is distributed between the spacecraft and the ground stations, the Deep Space Network (DSN) is also equipped to function as a world-class instrument for Radio Science research. For a detailed account of Radio Science experiments, methodology, key discoveries, and the DSN's historical contribution to the field, see Asmar and Renzetti (1993). The tools of Radio Science can be and have also been utilized in addressing several mission engineering challenges; e.g., characterization of spacecraft nutation and anomalous motion, antenna calibrations, and communications during surface landing phases. Since the first quartz USO was flown on Voyager, the technology has advanced significantly, affording future missions higher sensitivity in reconstructing the temperature pressure profiles of the atmospheres under study as well as other physical phenomena of interest to Radio Science. This paper surveys the trends in stability and spectral purity performance, design characteristics including size and mass, as well as cost and history of these clocks in space.

  10. Selective excitation enables assignment of proton resonances and {sup 1}H-{sup 1}H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of {sup 1}H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as {sup 13}C or {sup 15}N. In this method, after the initial preparation of proton magnetization and cross-polarization to {sup 13}C nuclei, transverse magnetization of desired {sup 13}C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferredmore » to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific {sup 13}C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of {sup 1}H-{sup 1}H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.« less

  11. Relation Between the Celestial Reference System and the Terrestrial Reference System of a Rigid Earth

    NASA Astrophysics Data System (ADS)

    Aoki, Shinko

    1987-03-01

    A relation between the Celestial Reference System (CRS) and the Terrestrial Reference System is established theoretically by solving the equations of motion of a rigid Earth under the influence of the Sun and the Moon up to the second order perturbation. The solutions include not only nutation including Oppolzer terms but also the right ascension of the dynamical departure point (DP), as well as the wobble matrix. We have found that the kinematical definition of the Non-Rotating Origin NRO (for which our term is DP) given by Capitaine, Guinot and Souchay (1987) is not entirely equivalent to that included in the solutions of the equations of motion but shows perturbation, in particular when this is taken on the instantaneous equator. Besides this serious fault, we feel little merit in taking the DP as reference: (1) Unnecessary spurious mixed secular terms appear which come from the geometrical configuration that the DP leaves far and far from the ecliptic. (2) the DP moves secularly as well as oscillating with respect to space; this literally contradicts the term ‘NRO’, or is at least misleading. (3) It does not free us from the precession uncertainty to adopt DP as reference, since we cannot avoid virtual proper motions in terms of the current CRS. (4) No terms ignored hitherto are introduced, even if we take the DP properly chosen, i.e., on the equator of the celestial ephemeris pole. The transformation is only mathematical. There is no sufficient reason to take it instead of the equinox, which is observable in principle, as reference at the cost of the labor of changing all the textbooks, ephemerides, data and computer software now existing.

  12. Normal modes of synchronous rotation

    NASA Astrophysics Data System (ADS)

    Varadi, Ferenc; Musotto, Susanna; Moore, William; Schubert, Gerald

    2005-07-01

    The dynamics of synchronous rotation and physical librations are revisited in order to establish a conceptually simple and general theoretical framework applicable to a variety of problems. Our motivation comes from disagreements between the results of numerical simulations and those of previous theoretical studies, and also because different theoretical studies disagree on basic features of the dynamics. We approach the problem by decomposing the orientation matrix of the body into perfectly synchronous rotation and deviation from the equilibrium state. The normal modes of the linearized equations are computed in the case of a circular satellite orbit, yielding both the periods and the eigenspaces of three librations. Libration in longitude decouples from the other two, vertical modes. There is a fast vertical mode with a period very close to the average rotational period. It corresponds to tilting the body around a horizontal axis while retaining nearly principal-axis rotation. In the inertial frame, this mode appears as nutation and free precession. The other vertical mode, a slow one, is the free wobble. The effects of the nodal precession of the orbit are investigated from the point of view of Cassini states. We test our theory using numerical simulations of the full equations of the dynamics and discuss the disagreements among our study and previous ones. The numerical simulations also reveal that in the case of eccentric orbits large departures from principal-axis rotation are possible due to a resonance between free precession and wobble. We also revisit the history of the Moon's rotational state and show that it switched from one Cassini state to another when it was at 46.2 Earth radii. This number disagrees with the value 34.2 derived in a previous study.

  13. A novel in situ electrochemical NMR cell with a palisade gold film electrode

    NASA Astrophysics Data System (ADS)

    Ni, Zu-Rong; Cui, Xiao-Hong; Cao, Shuo-Hui; Chen, Zhong

    2017-08-01

    In situ electrochemical nuclear magnetic resonance (EC-NMR) has attracted considerable attention because of its ability to directly observe real-time electrochemical processes. Therefore, minimizing the incompatibility between the electrochemical device and NMR detection has become an important challenge. A circular thin metal film deposited on the outer surface of a glass tube with a thickness considerably less than the metal skin depth is considered to be the ideal working electrode. In this study, we demonstrate that such a thin film electrode still has a great influence on the radio frequency field homogeneity in the detective zone of the NMR spectrometer probe and provide theoretical and experimental confirmation of its electromagnetic shielding. Furthermore, we propose a novel palisade gold film device to act as the working electrode. The NMR nutation behavior of protons shows that the uniformity of the radio frequency field is greatly improved, increasing the sensitivity in NMR detection. Another advantage of the proposed device is that an external reference standard adapted to the reaction compound can be inserted as a probe to determine the fluctuation of the physico-chemical environment and achieve high-accuracy quantitative NMR analysis. A three-chamber electrochemical device based on the palisade gold film design was successfully fabricated and the in situ electrochemical NMR performance was validated in a standard 5 mm NMR probe by acquiring voltammograms and high-resolution NMR spectra to characterize the electrochemically generated species. The evolution of in situ EC-NMR spectrum monitoring of the redox transformation between p-benzoquinone and hydroquinone demonstrates the ability of the EC-NMR device to simultaneously quantitatively determine the reactants and elucidate the reaction mechanism at the molecular level.

  14. Liquid Motion Experiment Flight Test Results

    NASA Technical Reports Server (NTRS)

    Chato David J.; Dalton, Penni J.; Dodge, Franklin T.; Green, Steve

    1998-01-01

    The Liquid Motion Experiment (LME), designed to study the effects of liquid motion in rotating tanks, was flown on STS 84. LME was essentially a spin table that created a realistic nutation motion of scale-model tanks containing liquid. TWo spherical and two cylindrical transparent tanks were tested simultaneously, and three sets of such tanks were employed to vary liquid viscosity, fill level, and propellant management device (PMD) design. All the tanks were approximately 4.5 inches diameter. The primary test measurements were the radial and tangential torques exerted on the tanks by the liquid. Resonant frequencies and damping of the liquid oscillations were determined by sine sweep tests. For a given tank shape, the resonant frequency depended on fill level. For the cylindrical tanks, the resonances had somewhat different frequencies for the tangential axis (0.55 to 0.75 times spin rate) and the radial axis (0.73 to 0.78 times spin rate), and the tangential axis resonance agreed more closely with available analytical models. For the spherical tanks, the resonant frequencies were between 0.74 to 0.77 times the spin rate and were the same for the tangential and radial axes. The damping coefficients varied from about I% to 3% of critical, depending on tank shape, fill level, and liquid viscosity. 'Me viscous energy dissipation rates of the liquid oscillations were determined from sine dwell tests. The LME energy dissipation rates varied from 0.3 to 0.5 times the estimates obtained from scaling previous ground tests and spacecraft flight data. The PNDs sometimes enhanced the resonances and energy dissipation rates and sometimes decreased them, which points out the need to understand better the effects of PMD on liquid motion as a function of PMD and tank design.

  15. [Complete nucleotide sequences and genome structure of two Chinese tobacco mosaic virus isolates deduced from full-length infectious cDNA clones].

    PubMed

    Yang, G; Liu, X G; Qiu, B S

    2000-07-01

    The complete nucleotides of two Chinese tobacco mosaic virus (TMV) isolates, TMV-Cv (vulgare strain) and TMV-N14 (an attenuated virus originated from a tomato strain), were determined from their respective full-length infectious cDNA clones and compared with published TMV sequences. The genome structure of TMV-Cv contained 6395 nucleotides, in which four functional open reading frames (ORF), coding for replicase (126 kD/183 kD), movement protein (MP, 30 kD) and coat protein (CP, 17.6 kD) respectively, could be recognized. TMV-N14 contained 6384 nucleotides in its genome. In contrast to TMV-Cv, five functional ORFs encoding the replicase 98.5 kD/126 kD/183 kD, MP(27 kD) and CP(17.6 kD), respectively, were detected in the TMV-N14 genome. TMV-Cv is 99% homologous to a Korean TMV isolate belonging to the vulgare strain at the nucleotide level. TMV-N14 is 99% homologous to a highly virulent Japanese isolate TMV-L (tomato strain) at the nucleotide level. In TMV-N14, one opal nulation (UGA) occurred in the replicase gene and one ochre nutation (UAA) in the MP gene. The former mutation created a potential, additional ORF within the replicase gene, the latter reduced the size of the MP to 27 kD. In addition, there were also 13 amino acid substitutions in the replicase gene of TMV-N14 when compared to that of TMV-L. Collectively, these changes may have significant implications in the attenuation of the virulence of TMV-N14.

  16. Pangaea, She No Spin

    NASA Astrophysics Data System (ADS)

    McDowell, M.

    2002-12-01

    Looking at lopsided Pangaea, shown imaginatively on many illustrated proposals, I wondered what would happen if the configuration were put in high relief on a globe and spun on axis. Then I wondered if the present configuration of land masses would itself balance as a spinning top. So I got two Replogle globes, two boxes of colored modeling clay sticks, and two fat knitting needles, to fit through the capped holes at the poles of the globes. The clay sticks I cut up into 3 mm. (1/8") slices, using a different color for each continent, and applied to the first globe, assuming the extreme exaggeration above the geoid, no matter how crude, would tell the story. Inserting one needle through the globe and securing it, I balanced the globe on the point of the needle and twirled it like a top. Result: Wobbly! Top end of needle gyrated unevenly, and here it was supposed to make a smooth precessional cone. Oh boy. For the second globe, I used a Scotese "free stuff" interpretation of Pangaea, which I had to augment considerably using USGS, DuToit, Irving and other references, fitting it on the globe and applying identical clay color slices to what I judged generally accepted land surfaces. Result: the thing would hardly stand up, let alone spin. Conclusion: Although a refinement of application on the "today" globe might eliminate nutation, creating a smoother spin, there is no way any refinement of Pangaea on the same size globe can come close. While the concept of a supercontinent may be viable, I theorize that it had to have evolved on a far smaller globe, where land mass could balance, and the "breakup" would not have caused us to wildly gyrate on our axis. Because Pangaea, she no spin.

  17. The spin down of the radio pulsars: Braking index

    NASA Technical Reports Server (NTRS)

    Beskin, V. S.; Gurevich, A. V.; Istomin, Ya. N.

    1991-01-01

    Presently, the value of the retardation dP/dt is well known for most radio pulsars. It is negative for all cases except one and is of the order of 10(exp -15). That single case is when the pulsar, which is located in the star globular system, can have a considerable acceleration leading to the opposite sign of P'= dP/dt due to the Doppler effect. Careful measurements of the period, P, also allow one to determine the variation of this retardation with the course of time- P'' = d(exp 2)P/dt(exp 2). The results of these measurements are usually represented in the form of the dimensionless retardation index n = omega'' omega/omega(exp 2)= 2 - P''P/P(exp 2) (omega is the angular velocity). The data for 21 pulsars are given. The parameter, n, is strongly undetermined both in value and sign in all cases except for four pulsars. Changes of the rotation period, P, and the inclination angle, chi, the angle between the axes of rotation and the magnetic moment are caused by two processes: the regular retardation and nutation due to deviation from the strict spherical shape of the neutron star. Losses which are caused by the currents flowing in the magnetosphere of the neutron star and by being closed on the star surface are considered. Such losses are critical for the neutron star magnetosphere which is full of dense plasma. Since the radio emission is generated in the dense plasma of the polar magnetosphere, then practically all radio pulsars are retarded by the current mechanism. The formula for the braking index is presented along with other aspects of the investigation.

  18. Precise attitude determination of defunct satellite laser ranging tragets

    NASA Astrophysics Data System (ADS)

    Pittet, Jean-Noel; Schildknecht, Thomas; Silha, Jiri

    2016-07-01

    The Satellite Laser Ranging (SLR) technology is used to determine the dynamics of objects equipped with so-called retro-reflectors or retro-reflector arrays (RRA). This type of measurement allows to range to the spacecraft with very high precision, which leads to determination of very accurate orbits. Non-active spacecraft, which are not any more attitude controlled, tend to start to spin or tumble under influence of the external and internal torques. Such a spinning can be around one constant axis of rotation or it can be more complex, when also precession and nutation motions are present. The rotation of the RRA around the spacecraft's centre of mass can create both a oscillation pattern of laser range signal and a periodic signal interruption when the RRA is hidden behind the satellite. In our work we will demonstrate how the SLR ranging technique to cooperative targets can be used to determine precisely their attitude state. The processing of the obtained data will be discussed, as well as the attitude determination based on parameters estimation. Continuous SLR measurements to one target can allow to accurately monitor attitude change over time which can be further used for the future attitude modelling. We will show our solutions of the attitude states determined for the non-active ESA satellite ENVISAT based on measurements acquired during year 2013-2015 by Zimmerwald SLR station, Switzerland. The angular momentum shows a stable behaviour with respect to the orbital plane but is not aligned with orbital momentum. The determination of the inertial rotation over time, shows it evolving between 130 to 190 seconds within two year. Parameter estimation also bring a strong indication of a retrograde rotation. Results on other former satellites in low and medium Earth orbit such as TOPEX/Poseidon or GLONASS type will be also presented.

  19. Solid-state 11B and 13C NMR, IR, and X-ray crystallographic characterization of selected arylboronic acids and their catechol cyclic esters.

    PubMed

    Oh, Se-Woung; Weiss, Joseph W E; Kerneghan, Phillip A; Korobkov, Ilia; Maly, Kenneth E; Bryce, David L

    2012-05-01

    Nine arylboronic acids, seven arylboronic catechol cyclic esters, and two trimeric arylboronic anhydrides (boroxines) are investigated using (11)B solid-state NMR spectroscopy at three different magnetic field strengths (9.4, 11.7, and 21.1 T). Through the analysis of spectra of static and magic-angle spinning samples, the (11)B electric field gradient and chemical shift tensors are determined. The effects of relaxation anisotropy and nutation field strength on the (11)B NMR line shapes are investigated. Infrared spectroscopy was also used to help identify peaks in the NMR spectra as being due to the anhydride form in some of the arylboronic acid samples. Seven new X-ray crystallographic structures are reported. Calculations of the (11)B NMR parameters are performed using cluster model and periodic gauge-including projector-augmented wave (GIPAW) density functional theory (DFT) approaches, and the results are compared with the experimental values. Carbon-13 solid-state NMR experiments and spectral simulations are applied to determine the chemical shifts of the ipso carbons of the samples. One bond indirect (13)C-(11)B spin-spin (J) coupling constants are also measured experimentally and compared with calculated values. The (11)B/(10)B isotope effect on the (13)C chemical shift of the ipso carbons of arylboronic acids and their catechol esters, as well as residual dipolar coupling, is discussed. Overall, this combined X-ray, NMR, IR, and computational study provides valuable new insights into the relationship between NMR parameters and the structure of boronic acids and esters. Copyright © 2012 John Wiley & Sons, Ltd.

  20. The IVS data input to ITRF2014

    NASA Astrophysics Data System (ADS)

    Nothnagel, Axel; Alef, Walter; Amagai, Jun; Andersen, Per Helge; Andreeva, Tatiana; Artz, Thomas; Bachmann, Sabine; Barache, Christophe; Baudry, Alain; Bauernfeind, Erhard; Baver, Karen; Beaudoin, Christopher; Behrend, Dirk; Bellanger, Antoine; Berdnikov, Anton; Bergman, Per; Bernhart, Simone; Bertarini, Alessandra; Bianco, Giuseppe; Bielmaier, Ewald; Boboltz, David; Böhm, Johannes; Böhm, Sigrid; Boer, Armin; Bolotin, Sergei; Bougeard, Mireille; Bourda, Geraldine; Buttaccio, Salvo; Cannizzaro, Letizia; Cappallo, Roger; Carlson, Brent; Carter, Merri Sue; Charlot, Patrick; Chen, Chenyu; Chen, Maozheng; Cho, Jungho; Clark, Thomas; Collioud, Arnaud; Colomer, Francisco; Colucci, Giuseppe; Combrinck, Ludwig; Conway, John; Corey, Brian; Curtis, Ronald; Dassing, Reiner; Davis, Maria; de-Vicente, Pablo; De Witt, Aletha; Diakov, Alexey; Dickey, John; Diegel, Irv; Doi, Koichiro; Drewes, Hermann; Dube, Maurice; Elgered, Gunnar; Engelhardt, Gerald; Evangelista, Mark; Fan, Qingyuan; Fedotov, Leonid; Fey, Alan; Figueroa, Ricardo; Fukuzaki, Yoshihiro; Gambis, Daniel; Garcia-Espada, Susana; Gaume, Ralph; Gaylard, Michael; Geiger, Nicole; Gipson, John; Gomez, Frank; Gomez-Gonzalez, Jesus; Gordon, David; Govind, Ramesh; Gubanov, Vadim; Gulyaev, Sergei; Haas, Ruediger; Hall, David; Halsig, Sebastian; Hammargren, Roger; Hase, Hayo; Heinkelmann, Robert; Helldner, Leif; Herrera, Cristian; Himwich, Ed; Hobiger, Thomas; Holst, Christoph; Hong, Xiaoyu; Honma, Mareki; Huang, Xinyong; Hugentobler, Urs; Ichikawa, Ryuichi; Iddink, Andreas; Ihde, Johannes; Ilijin, Gennadiy; Ipatov, Alexander; Ipatova, Irina; Ishihara, Misao; Ivanov, D. V.; Jacobs, Chris; Jike, Takaaki; Johansson, Karl-Ake; Johnson, Heidi; Johnston, Kenneth; Ju, Hyunhee; Karasawa, Masao; Kaufmann, Pierre; Kawabata, Ryoji; Kawaguchi, Noriyuki; Kawai, Eiji; Kaydanovsky, Michael; Kharinov, Mikhail; Kobayashi, Hideyuki; Kokado, Kensuke; Kondo, Tetsuro; Korkin, Edward; Koyama, Yasuhiro; Krasna, Hana; Kronschnabl, Gerhard; Kurdubov, Sergey; Kurihara, Shinobu; Kuroda, Jiro; Kwak, Younghee; La Porta, Laura; Labelle, Ruth; Lamb, Doug; Lambert, Sébastien; Langkaas, Line; Lanotte, Roberto; Lavrov, Alexey; Le Bail, Karine; Leek, Judith; Li, Bing; Li, Huihua; Li, Jinling; Liang, Shiguang; Lindqvist, Michael; Liu, Xiang; Loesler, Michael; Long, Jim; Lonsdale, Colin; Lovell, Jim; Lowe, Stephen; Lucena, Antonio; Luzum, Brian; Ma, Chopo; Ma, Jun; Maccaferri, Giuseppe; Machida, Morito; MacMillan, Dan; Madzak, Matthias; Malkin, Zinovy; Manabe, Seiji; Mantovani, Franco; Mardyshkin, Vyacheslav; Marshalov, Dmitry; Mathiassen, Geir; Matsuzaka, Shigeru; McCarthy, Dennis; Melnikov, Alexey; Michailov, Andrey; Miller, Natalia; Mitchell, Donald; Mora-Diaz, Julian Andres; Mueskens, Arno; Mukai, Yasuko; Nanni, Mauro; Natusch, Tim; Negusini, Monia; Neidhardt, Alexander; Nickola, Marisa; Nicolson, George; Niell, Arthur; Nikitin, Pavel; Nilsson, Tobias; Ning, Tong; Nishikawa, Takashi; Noll, Carey; Nozawa, Kentarou; Ogaja, Clement; Oh, Hongjong; Olofsson, Hans; Opseth, Per Erik; Orfei, Sandro; Pacione, Rosa; Pazamickas, Katherine; Petrachenko, William; Pettersson, Lars; Pino, Pedro; Plank, Lucia; Ploetz, Christian; Poirier, Michael; Poutanen, Markku; Qian, Zhihan; Quick, Jonathan; Rahimov, Ismail; Redmond, Jay; Reid, Brett; Reynolds, John; Richter, Bernd; Rioja, Maria; Romero-Wolf, Andres; Ruszczyk, Chester; Salnikov, Alexander; Sarti, Pierguido; Schatz, Raimund; Scherneck, Hans-Georg; Schiavone, Francesco; Schreiber, Ulrich; Schuh, Harald; Schwarz, Walter; Sciarretta, Cecilia; Searle, Anthony; Sekido, Mamoru; Seitz, Manuela; Shao, Minghui; Shibuya, Kazuo; Shu, Fengchun; Sieber, Moritz; Skjaeveland, Asmund; Skurikhina, Elena; Smolentsev, Sergey; Smythe, Dan; Sousa, Don; Sovers, Ojars; Stanford, Laura; Stanghellini, Carlo; Steppe, Alan; Strand, Rich; Sun, Jing; Surkis, Igor; Takashima, Kazuhiro; Takefuji, Kazuhiro; Takiguchi, Hiroshi; Tamura, Yoshiaki; Tanabe, Tadashi; Tanir, Emine; Tao, An; Tateyama, Claudio; Teke, Kamil; Thomas, Cynthia; Thorandt, Volkmar; Thornton, Bruce; Tierno Ros, Claudia; Titov, Oleg; Titus, Mike; Tomasi, Paolo; Tornatore, Vincenza; Trigilio, Corrado; Trofimov, Dmitriy; Tsutsumi, Masanori; Tuccari, Gino; Tzioumis, Tasso; Ujihara, Hideki; Ullrich, Dieter; Uunila, Minttu; Venturi, Tiziana; Vespe, Francesco; Vityazev, Veniamin; Volvach, Alexandr; Vytnov, Alexander; Wang, Guangli; Wang, Jinqing; Wang, Lingling; Wang, Na; Wang, Shiqiang; Wei, Wenren; Weston, Stuart; Whitney, Alan; Wojdziak, Reiner; Yatskiv, Yaroslav; Yang, Wenjun; Ye, Shuhua; Yi, Sangoh; Yusup, Aili; Zapata, Octavio; Zeitlhoefler, Reinhard; Zhang, Hua; Zhang, Ming; Zhang, Xiuzhong; Zhao, Rongbing; Zheng, Weimin; Zhou, Ruixian; Zubko, Nataliya

    2015-01-01

    Very Long Baseline Interferometry (VLBI) is a primary space-geodetic technique for determining precise coordinates on the Earth, for monitoring the variable Earth rotation and orientation with highest precision, and for deriving many other parameters of the Earth system. The International VLBI Service for Geodesy and Astrometry (IVS, http://ivscc.gsfc.nasa.gov/) is a service of the International Association of Geodesy (IAG) and the International Astronomical Union (IAU). The datasets published here are the results of individual Very Long Baseline Interferometry (VLBI) sessions in the form of normal equations in SINEX 2.0 format (http://www.iers.org/IERS/EN/Organization/AnalysisCoordinator/SinexFormat/sinex.html, the SINEX 2.0 description is attached as pdf) provided by IVS as the input for the next release of the International Terrestrial Reference System (ITRF): ITRF2014. This is a new version of the ITRF2008 release (Bockmann et al., 2009). For each session/ file, the normal equation systems contain elements for the coordinate components of all stations having participated in the respective session as well as for the Earth orientation parameters (x-pole, y-pole, UT1 and its time derivatives plus offset to the IAU2006 precession-nutation components dX, dY (https://www.iau.org/static/resolutions/IAU2006_Resol1.pdf). The terrestrial part is free of datum. The data sets are the result of a weighted combination of the input of several IVS Analysis Centers. The IVS contribution for ITRF2014 is described in Bachmann et al (2015), Schuh and Behrend (2012) provide a general overview on the VLBI method, details on the internal data handling can be found at Behrend (2013).

  1. The development and optimisation of 3D black-blood R2* mapping of the carotid artery wall.

    PubMed

    Yuan, Jianmin; Graves, Martin J; Patterson, Andrew J; Priest, Andrew N; Ruetten, Pascal P R; Usman, Ammara; Gillard, Jonathan H

    2017-12-01

    To develop and optimise a 3D black-blood R 2 * mapping sequence for imaging the carotid artery wall, using optimal blood suppression and k-space view ordering. Two different blood suppression preparation methods were used; Delay Alternating with Nutation for Tailored Excitation (DANTE) and improved Motion Sensitive Driven Equilibrium (iMSDE) were each combined with a three-dimensional (3D) multi-echo Fast Spoiled GRadient echo (ME-FSPGR) readout. Three different k-space view-order designs: Radial Fan-beam Encoding Ordering (RFEO), Distance-Determined Encoding Ordering (DDEO) and Centric Phase Encoding Order (CPEO) were investigated. The sequences were evaluated through Bloch simulation and in a cohort of twenty volunteers. The vessel wall Signal-to-Noise Ratio (SNR), Contrast-to-Noise Ratio (CNR) and R 2 *, and the sternocleidomastoid muscle R 2 * were measured and compared. Different numbers of acquisitions-per-shot (APS) were evaluated to further optimise the effectiveness of blood suppression. All sequences resulted in comparable R 2 * measurements to a conventional, i.e. non-blood suppressed sequence in the sternocleidomastoid muscle of the volunteers. Both Bloch simulations and volunteer data showed that DANTE has a higher signal intensity and results in a higher image SNR than iMSDE. Blood suppression efficiency was not significantly different when using different k-space view orders. Smaller APS achieved better blood suppression. The use of blood-suppression preparation methods does not affect the measurement of R 2 *. DANTE prepared ME-FSPGR sequence with a small number of acquisitions-per-shot can provide high quality black-blood R 2 * measurements of the carotid vessel wall. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. VLBI real-time analysis by Kalman Filtering

    NASA Astrophysics Data System (ADS)

    Karbon, M.; Nilsson, T.; Soja, B.; Heinkelmann, R.; Raposo-Pulido, V.; Schuh, H.

    2013-12-01

    Geodetic Very Long Baseline Interferometry (VLBI) is one of the primary space geodetic techniques providing the full set of Earth Orientation Parameter (EOP) and is unique for observing long term Universal Time (UT1) and precession/nutation. Accurate and continuous EOP obtained in near real-time are essential for satellite based navigation and positioning and for enabling the precise tracking of interplanetary spacecrafts. To meet this necessity the International VLBI Service for Geodesy and Astrometry (IVS) increased its efforts to reduce the time span between the VLBI observations and the availability of the final results. Currently the timeliness is about two weeks, but the goal is to reduce it to less than one day with the future VGOS (VLBI2010 Global Observing System) network. The FWF project VLBI-ART contributes to this new generation VLBI system by considerably accelerating the VLBI analysis procedure through the implementation of an elaborate Kalman filter. This true real-time Kalman filter will be embedded in the Vienna VLBI Software (VieVS) as a completely automated tool with no need of human interaction. This filter also allows the prediction and combination of EOP from various space geodetic techniques by implementing stochastic models to statistically account for unpredictable changes in EOP. Additionally, atmospheric angular momenta calculated from numerical weather prediction models are introduced to support the short-term EOP prediction. To optimize the performance of the new software various investigations with real as well as simulated data are foreseen. The results are compared to the ones obtained by conventional VLBI parameter estimation methods (e.g. least squares method) and to corresponding parameter series from other techniques, such as from the Global Navigation Satellite Systems (GNSS).

  3. Attitude Control and Orbital Dynamics Challenges of Removing the First 3-Axis Stabilized Tracking and Data Relay Satellite from the Geosynchronous ARC

    NASA Technical Reports Server (NTRS)

    Benet, Charles A.; Hofman, Henry; Williams, Thomas E.; Olney, Dave; Zaleski, Ronald

    2011-01-01

    Launched on April 4, 1983 onboard STS 6 (Space Shuttle Challenger), the First Tracking and Data Relay Satellite (TDRS 1) was retired above the Geosynchronous Orbit (GEO) on June 27, 2010 after having provided real-time communications with a variety of low-orbiting spacecraft over a 26-year period. To meet NASA requirements limiting orbital debris 1, a team of experts was assembled to conduct an End-Of-Mission (EOM) procedure to raise the satellite 350 km above the GEO orbit. Following the orbit raising via conventional station change maneuvers, the team was confronted with having to deplete the remaining propellant and passivate all energy storage or generation sources. To accomplish these tasks within the time window, communications (telemetry and control links), electrical power, propulsion, and thermal constraints, a spacecraft originally designed as a three-axis stabilized satellite was turned into a spinner. This paper (a companion paper to Innovative Approach Enabled the Retirement of TDRS 1, paper # 1699, IEEE 2011 Aerospace Conference, March 5-12, 2011 sup 2) focuses on the challenges of maintaining an acceptable spinning dynamics, while repetitively firing thrusters. Also addressed are the effects of thruster firings on the orbit characteristics and how they were mitigated by a careful scheduling of the fuel depletion operations. Periodic thruster firings for spin rate adjustment, nutation damping, and precession of the momentum vector were also required in order to maintain effective communications with the satellite. All operations were thoroughly rehearsed and supported by simulations thus lending a high level of confidence in meeting the NASA EOM goals.

  4. Orbit Determination Toolbox

    NASA Technical Reports Server (NTRS)

    Carpenter, James R.; Berry, Kevin; Gregpru. Late; Speckman, Keith; Hur-Diaz, Sun; Surka, Derek; Gaylor, Dave

    2010-01-01

    The Orbit Determination Toolbox is an orbit determination (OD) analysis tool based on MATLAB and Java that provides a flexible way to do early mission analysis. The toolbox is primarily intended for advanced mission analysis such as might be performed in concept exploration, proposal, early design phase, or rapid design center environments. The emphasis is on flexibility, but it has enough fidelity to produce credible results. Insight into all flight dynamics source code is provided. MATLAB is the primary user interface and is used for piecing together measurement and dynamic models. The Java Astrodynamics Toolbox is used as an engine for things that might be slow or inefficient in MATLAB, such as high-fidelity trajectory propagation, lunar and planetary ephemeris look-ups, precession, nutation, polar motion calculations, ephemeris file parsing, and the like. The primary analysis functions are sequential filter/smoother and batch least-squares commands that incorporate Monte-Carlo data simulation, linear covariance analysis, measurement processing, and plotting capabilities at the generic level. These functions have a user interface that is based on that of the MATLAB ODE suite. To perform a specific analysis, users write MATLAB functions that implement truth and design system models. The user provides his or her models as inputs to the filter commands. The software provides a capability to publish and subscribe to a software bus that is compliant with the NASA Goddard Mission Services Evolution Center (GMSEC) standards, to exchange data with other flight dynamics tools to simplify the flight dynamics design cycle. Using the publish and subscribe approach allows for analysts in a rapid design center environment to seamlessly incorporate changes in spacecraft and mission design into navigation analysis and vice versa.

  5. 1H NMR Detection of superparamagnetic nanoparticles at 1 T using a microcoil and novel tuning circuit

    NASA Astrophysics Data System (ADS)

    Sillerud, Laurel O.; McDowell, Andrew F.; Adolphi, Natalie L.; Serda, Rita E.; Adams, David P.; Vasile, Michael J.; Alam, Todd M.

    2006-08-01

    Magnetic beads containing superparamagnetic iron oxide nanoparticles (SPIONs) have been shown to measurably change the nuclear magnetic resonance (NMR) relaxation properties of nearby protons in aqueous solution at distances up to ˜50 μm. Therefore, the NMR sensitivity for the in vitro detection of single cells or biomolecules labeled with magnetic beads will be maximized with microcoils of this dimension. We have constructed a prototype 550 μm diameter solenoidal microcoil using focused gallium ion milling of a gold/chromium layer. The NMR coil was brought to resonance by means of a novel auxiliary tuning circuit, and used to detect water with a spectral resolution of 2.5 Hz in a 1.04 T (44.2 MHz) permanent magnet. The single-scan SNR for water was 137, for a 200 μs π/2 pulse produced with an RF power of 0.25 mW. The nutation performance of the microcoil was sufficiently good so that the effects of magnetic beads on the relaxation characteristics of the surrounding water could be accurately measured. A solution of magnetic beads (Dynabeads MyOne Streptavidin) in deionized water at a concentration of 1000 beads per nL lowered the T1 from 1.0 to 0.64 s and the T2∗ from 110 to 0.91 ms. Lower concentrations (100 and 10 beads/nL) also resulted in measurable reductions in T2∗, suggesting that low-field, microcoil NMR detection using permanent magnets can serve as a high-sensitivity, miniaturizable detection mechanism for very low concentrations of magnetic beads in biological fluids.

  6. Five degrees of freedom linear state-space representation of electrodynamic thrust bearings

    NASA Astrophysics Data System (ADS)

    Van Verdeghem, J.; Kluyskens, V.; Dehez, B.

    2017-09-01

    Electrodynamic bearings can provide stable and contactless levitation of rotors while operating at room temperatures. Depending solely on passive phenomena, specific models have to be developed to study the forces they exert and the resulting rotordynamics. In recent years, models allowing us to describe the axial dynamics of a large range of electrodynamic thrust bearings have been derived. However, these bearings being devised to be integrated into fully magnetic suspensions, the existing models still suffer from restrictions. Indeed, assuming the spin speed as varying slowly, a rigid rotor is characterised by five independent degrees of freedom whereas early models only considered the axial degree. This paper presents a model free of the previous limitations. It consists in a linear state-space representation describing the rotor's complete dynamics by considering the impact of the rotor axial, radial and angular displacements as well as the gyroscopic effects. This set of ten equations depends on twenty parameters whose identification can be easily performed through static finite element simulations or quasi-static experimental measurements. The model stresses the intrinsic decoupling between the axial dynamics and the other degrees of freedom as well as the existence of electrodynamic angular torques restoring the rotor to its nominal position. Finally, a stability analysis performed on the model highlights the presence of two conical whirling modes related to the angular dynamics, namely the nutation and precession motions. The former, whose intrinsic stability depends on the ratio between polar and transverse moments of inertia, can be easily stabilised through external damping whereas the latter, which is stable up to an instability threshold linked to the angular electrodynamic cross-coupling stiffness, is less impacted by that damping.

  7. Family and infant characteristics associated with timing of core and non-core food introduction in early childhood.

    PubMed

    Schrempft, S; van Jaarsveld, C H M; Fisher, A; Wardle, J

    2013-06-01

    To identify family and infant characteristics associated with timing of introduction of two food types: core foods (nutrient-dense) and non-core foods (nutrient-poor) in a population-based sample of mothers and infants. Participants were 1861 mothers and infants from the Gemini twin birth cohort (one child per family). Family and infant characteristics were assessed when the infants were around 8 months old. Timing of introducing core and non-core foods was assessed at 8 and 15 months. As the distributions of timing were skewed, three similar-sized groups were created for each food type: earlier (core: 1-4 months; non-core: 3-8 months), average (core: 5 months; non-core: 9-10 months) and later introduction (core: 6-12 months; non-core: 11-18 months). Ordinal logistic regression was used to examine predictors of core and non-core food introduction, with bootstrapping to test for differences between the core and non-core models. Younger maternal age, lower education level and higher maternal body mass index were associated with earlier core and non-core food introduction. Not breastfeeding for at least 3 months and higher birth weight were specifically associated with earlier introduction of core foods. Having older children was specifically associated with earlier introduction of non-core foods. There are similarities and differences in the characteristics associated with earlier introduction of core and non-core foods. Successful interventions may require a combination of approaches to target both food types.

  8. Family and infant characteristics associated with timing of core and non-core food introduction in early childhood

    PubMed Central

    Schrempft, Stephanie; van Jaarsveld, Cornelia H.M.; Fisher, Abigail; Wardle, Jane

    2013-01-01

    Objective To identify family and infant characteristics associated with timing of introduction of two food types: core foods (nutrient-dense) and non-core foods (nutrient-poor) in a population-based sample of mothers and infants. Method Participants were 1861 mothers and infants from the Gemini twin birth cohort (one child per family). Family and infant characteristics were assessed when the infants were around 8 months old. Timing of introducing core and non-core foods was assessed at 8 and 15 months. As the distributions of timing were skewed, three similar-sized groups were created for each food type: earlier (core: 1–4 months; non-core: 3–8 months), average (core: 5 months; non-core: 9–10 months), and later introduction (core: 6–12 months; non-core: 11–18 months). Ordinal logistic regression was used to examine predictors of core and non-core food introduction, with bootstrapping to test for differences between the core and non-core models. Results Younger maternal age, lower education level, and higher maternal BMI were associated with earlier core and non-core food introduction. Not breastfeeding for at least 3 months and higher birth weight were specifically associated with earlier introduction of core foods. Having older children was specifically associated with earlier introduction of non-core foods. Conclusion There are similarities and differences in the characteristics associated with earlier introduction of core and non-core foods. Successful interventions may require a combination of approaches to target both food types. PMID:23486509

  9. Facile fabrication of core-in-shell particles by the slow removal of the core and its use in the encapsulation of metal nanoparticles.

    PubMed

    Choi, Won San; Koo, Hye Young; Kim, Dong-Yu

    2008-05-06

    Core-in-shell particles with controllable core size have been fabricated from core-shell particles by means of the controlled core-dissolution method. These cores in inorganic shells were employed as scaffolds for the synthesis of metal nanoparticles. After dissolution of the cores, metal nanoparticles embedded in cores were encapsulated into the interior of shell, without any damage or change. This article describes a very simple method for deriving core-in-shell particles with controllable core size and encapsulation of nanoparticles into the interior of shell.

  10. Performing a local reduction operation on a parallel computer

    DOEpatents

    Blocksome, Michael A; Faraj, Daniel A

    2013-06-04

    A parallel computer including compute nodes, each including two reduction processing cores, a network write processing core, and a network read processing core, each processing core assigned an input buffer. Copying, in interleaved chunks by the reduction processing cores, contents of the reduction processing cores' input buffers to an interleaved buffer in shared memory; copying, by one of the reduction processing cores, contents of the network write processing core's input buffer to shared memory; copying, by another of the reduction processing cores, contents of the network read processing core's input buffer to shared memory; and locally reducing in parallel by the reduction processing cores: the contents of the reduction processing core's input buffer; every other interleaved chunk of the interleaved buffer; the copied contents of the network write processing core's input buffer; and the copied contents of the network read processing core's input buffer.

  11. Performing a local reduction operation on a parallel computer

    DOEpatents

    Blocksome, Michael A.; Faraj, Daniel A.

    2012-12-11

    A parallel computer including compute nodes, each including two reduction processing cores, a network write processing core, and a network read processing core, each processing core assigned an input buffer. Copying, in interleaved chunks by the reduction processing cores, contents of the reduction processing cores' input buffers to an interleaved buffer in shared memory; copying, by one of the reduction processing cores, contents of the network write processing core's input buffer to shared memory; copying, by another of the reduction processing cores, contents of the network read processing core's input buffer to shared memory; and locally reducing in parallel by the reduction processing cores: the contents of the reduction processing core's input buffer; every other interleaved chunk of the interleaved buffer; the copied contents of the network write processing core's input buffer; and the copied contents of the network read processing core's input buffer.

  12. Characterization of Hepatitis C Virus Core Protein Multimerization and Membrane Envelopment: Revelation of a Cascade of Core-Membrane Interactions ▿

    PubMed Central

    Ai, Li-Shuang; Lee, Yu-Wen; Chen, Steve S.-L.

    2009-01-01

    The molecular basis underlying hepatitis C virus (HCV) core protein maturation and morphogenesis remains elusive. We characterized the concerted events associated with core protein multimerization and interaction with membranes. Analyses of core proteins expressed from a subgenomic system showed that the signal sequence located between the core and envelope glycoprotein E1 is critical for core association with endoplasmic reticula (ER)/late endosomes and the core's envelopment by membranes, which was judged by the core's acquisition of resistance to proteinase K digestion. Despite exerting an inhibitory effect on the core's association with membranes, (Z-LL)2-ketone, a specific inhibitor of signal peptide peptidase (SPP), did not affect core multimeric complex formation, suggesting that oligomeric core complex formation proceeds prior to or upon core attachment to membranes. Protease-resistant core complexes that contained both innate and processed proteins were detected in the presence of (Z-LL)2-ketone, implying that core envelopment occurs after intramembrane cleavage. Mutations of the core that prevent signal peptide cleavage or coexpression with an SPP loss-of-function D219A mutant decreased the core's envelopment, demonstrating that SPP-mediated cleavage is required for core envelopment. Analyses of core mutants with a deletion in domain I revealed that this domain contains sequences crucial for core envelopment. The core proteins expressed by infectious JFH1 and Jc1 RNAs in Huh7 cells also assembled into a multimeric complex, associated with ER/late-endosomal membranes, and were enveloped by membranes. Treatment with (Z-LL)2-ketone or coexpression with D219A mutant SPP interfered with both core envelopment and infectious HCV production, indicating a critical role of core envelopment in HCV morphogenesis. The results provide mechanistic insights into the sequential and coordinated processes during the association of the HCV core protein with membranes in the early phase of virus maturation and morphogenesis. PMID:19605478

  13. Core losses of a permanent magnet synchronous motor with an amorphous stator core under inverter and sinusoidal excitations

    NASA Astrophysics Data System (ADS)

    Yao, Atsushi; Sugimoto, Takaya; Odawara, Shunya; Fujisaki, Keisuke

    2018-05-01

    We report core loss properties of permanent magnet synchronous motors (PMSM) with amorphous magnetic materials (AMM) core under inverter and sinusoidal excitations. To discuss the core loss properties of AMM core, a comparison with non-oriented (NO) core is also performed. In addition, based on both experiments and numerical simulations, we estimate higher (time and space) harmonic components of the core losses under inverter and sinusoidal excitations. The core losses of PMSM are reduced by about 59% using AMM stator core instead of NO core under sinusoidal excitation. We show that the average decrease obtained by using AMM instead of NO in the stator core is about 94% in time harmonic components.

  14. Results of NanTroSEIZE Expeditions Stages 1 & 2: Deep-sea Coring Operations on-board the Deep-sea Drilling Vessel Chikyu and Development of Coring Equipment for Stage 3

    NASA Astrophysics Data System (ADS)

    Shinmoto, Y.; Wada, K.; Miyazaki, E.; Sanada, Y.; Sawada, I.; Yamao, M.

    2010-12-01

    The Nankai-Trough Seismogenic Zone Experiment (NanTroSEIZE) has carried out several drilling expeditions in the Kumano Basin off the Kii-Peninsula of Japan with the deep-sea scientific drilling vessel Chikyu. Core sampling runs were carried out during the expeditions using an advanced multiple wireline coring system which can continuously core into sections of undersea formations. The core recovery rate with the Rotary Core Barrel (RCB) system was rather low as compared with other methods such as the Hydraulic Piston Coring System (HPCS) and Extended Shoe Coring System (ESCS). Drilling conditions such as hole collapse and sea conditions such as high ship-heave motions need to be analyzed along with differences in lithology, formation hardness, water depth and coring depth in order to develop coring tools, such as the core barrel or core bit, that will yield the highest core recovery and quality. The core bit is especially important in good recovery of high quality cores, however, the PDC cutters were severely damaged during the NanTroSEIZE Stages 1 & 2 expeditions due to severe drilling conditions. In the Stage 1 (riserless coring) the average core recovery was rather low at 38 % with the RCB and many difficulties such as borehole collapse, stick-slip and stuck pipe occurred, causing the damage of several of the PDC cutters. In Stage 2, a new design for the core bit was deployed and core recovery was improved at 67 % for the riserless system and 85 % with the riser. However, due to harsh drilling conditions, the PDC core bit and all of the PDC cutters were completely worn down. Another original core bit was also deployed, however, core recovery performance was low even for plate boundary core samples. This study aims to identify the influence of the RCB system specifically on the recovery rates at each of the holes drilled in the NanTroSEIZE coring expeditions. The drilling parameters such as weight-on-bit, torque, rotary speed and flow rate, etc., were analyzed and conditions such as formation, tools, and sea conditions which directly affect core recovery have been categorized. Also discussed will be the further development of such coring equipment as the core bit and core barrel for the NanTroSEIZE Stage 3 expeditions, which aim to reach a depth of 7000 m-below the sea floor into harder formations under extreme drilling conditions.

  15. Longer biopsy cores do not increase prostate cancer detection rate: A large-scale cohort study refuting cut-off values indicated in the literature

    PubMed Central

    Yılmaz, Hasan; Yavuz, Ufuk; Üstüner, Murat; Çiftçi, Seyfettin; Yaşar, Hikmet; Müezzinoğlu, Bahar; Uslubaş, Ali Kemal; Dillioğlugil, Özdal

    2017-01-01

    Objective Only a few papers in the literature aimed to evaluate biopsy core lengths. Additionally, studies evaluated the core length with different approaches. We aimed to determine whether prostate cancer (PCa) detection is affected from core lengths according to three different approaches in a large standard cohort and compare our cut-off values with the published cut-offs. Material and methods We retrospectively analyzed 1,523 initial consecutive transrectal ultrasound-guided 12-core prostate biopsies. Biopsies were evaluated with respect to total core length (total length of each patients’ core) average core length (total core length divided by total number of cores in each patient), and mean core length (mean length of all cores pooled), and compared our cut-off values with the published cut-offs. The prostate volumes were categorized into four groups (<30, 30–59.99, 60–119.99, ≥120 cm3) and PCa detection rates in these categories were examined. Results PCa was found in 41.5% patients. There was no difference between benign and malignant mean core lengths of the pooled cores (p>0.05). Total core length and average core length were not significantly associated with PCa in multivariate logistic regression analyses (p>0.05). The core lengths (mean, average and total core lengths) increased (p<0.001) and PCa rates decreased (p<0.001) steadily with increasing prostate volume categories. PCa percentages decreased in all categories above the utilized cut-offs for mean (p>0.05), average (p<0.05), and total core lengths (p>0.05). Conclusion There was no difference between mean core lengths of benign and malignant cores. Total core length and average core length were not significantly associated with PCa. Contrary to the cut-offs used for mean and average core lengths in the published studies, PCa rates decrease as these core lengths increase. Larger studies are necessary for the determination and acceptance of accurate cut-offs. PMID:28861301

  16. The thermal evolution of Mercury's Fe-Si core

    NASA Astrophysics Data System (ADS)

    Knibbe, Jurriën Sebastiaan; van Westrenen, Wim

    2018-01-01

    We have studied the thermal and magnetic field evolution of planet Mercury with a core of Fe-Si alloy to assess whether an Fe-Si core matches its present-day partially molten state, Mercury's magnetic field strength, and the observed ancient crustal magnetization. The main advantages of an Fe-Si core, opposed to a previously assumed Fe-S core, are that a Si-bearing core is consistent with the highly reduced nature of Mercury and that no compositional convection is generated upon core solidification, in agreement with magnetic field indications of a stable layer at the top of Mercury's core. This study also present the first implementation of a conductive temperature profile in the core where heat fluxes are sub-adiabatic in a global thermal evolution model. We show that heat migrates from the deep core to the outer part of the core as soon as heat fluxes at the outer core become sub-adiabatic. As a result, the deep core cools throughout Mercury's evolution independent of the temperature evolution at the core-mantle boundary, causing an early start of inner core solidification and magnetic field generation. The conductive layer at the outer core suppresses the rate of core growth after temperature differences between the deep and shallow core are relaxed, such that a magnetic field can be generated until the present. Also, the outer core and mantle operate at higher temperatures than previously thought, which prolongs mantle melting and mantle convection. The results indicate that S is not a necessary ingredient of Mercury's core, bringing bulk compositional models of Mercury more in line with reduced meteorite analogues.

  17. Lightweight Low Force Rotary Percussive Coring Tool for Planetary Applications

    NASA Technical Reports Server (NTRS)

    Hironaka, Ross; Stanley, Scott

    2010-01-01

    A prototype low-force rotary-percussive rock coring tool for use in acquiring samples for geological surveys in future planetary missions was developed. The coring tool could eventually enable a lightweight robotic system to operate from a relatively small (less than 200 kg) mobile or fixed platform to acquire and cache Mars or other planetary rock samples for eventual return to Earth for analysis. To gain insight needed to design an integrated coring tool, the coring ability of commercially available coring bits was evaluated for effectiveness of varying key parameters: weight-on-bit, rotation speed, percussive rate and force. Trade studies were performed for different methods of breaking a core at its base and for retaining the core in a sleeve to facilitate sample transfer. This led to a custom coring tool design which incorporated coring, core breakage, core retention, and core extraction functions. The coring tool was tested on several types of rock and demonstrated the overall feasibility of this approach for robotic rock sample acquisition.

  18. Core-melt source reduction system

    DOEpatents

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-04-25

    A core-melt source reduction system for ending the progression of a molten core during a core-melt accident and resulting in a stable solid cool matrix. The system includes alternating layers of a core debris absorbing material and a barrier material. The core debris absorbing material serves to react with and absorb the molten core such that containment overpressurization and/or failure does not occur. The barrier material slows the progression of the molten core debris through the system such that the molten core has sufficient time to react with the core absorbing material. The system includes a provision for cooling the glass/molten core mass after the reaction such that a stable solid cool matrix results. 4 figs.

  19. Core-melt source reduction system

    DOEpatents

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1995-01-01

    A core-melt source reduction system for ending the progression of a molten core during a core-melt accident and resulting in a stable solid cool matrix. The system includes alternating layers of a core debris absorbing material and a barrier material. The core debris absorbing material serves to react with and absorb the molten core such that containment overpressurization and/or failure does not occur. The barrier material slows the progression of the molten core debris through the system such that the molten core has sufficient time to react with the core absorbing material. The system includes a provision for cooling the glass/molten core mass after the reaction such that a stable solid cool matrix results.

  20. Core-core and core-valence correlation energy atomic and molecular benchmarks for Li through Ar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranasinghe, Duminda S.; Frisch, Michael J.; Petersson, George A., E-mail: gpetersson@wesleyan.edu

    2015-12-07

    We have established benchmark core-core, core-valence, and valence-valence absolute coupled-cluster single double (triple) correlation energies (±0.1%) for 210 species covering the first- and second-rows of the periodic table. These species provide 194 energy differences (±0.03 mE{sub h}) including ionization potentials, electron affinities, and total atomization energies. These results can be used for calibration of less expensive methodologies for practical routine determination of core-core and core-valence correlation energies.

Top