Testing and operating a multiprocessor chip with processor redundancy
Bellofatto, Ralph E; Douskey, Steven M; Haring, Rudolf A; McManus, Moyra K; Ohmacht, Martin; Schmunkamp, Dietmar; Sugavanam, Krishnan; Weatherford, Bryan J
2014-10-21
A system and method for improving the yield rate of a multiprocessor semiconductor chip that includes primary processor cores and one or more redundant processor cores. A first tester conducts a first test on one or more processor cores, and encodes results of the first test in an on-chip non-volatile memory. A second tester conducts a second test on the processor cores, and encodes results of the second test in an external non-volatile storage device. An override bit of a multiplexer is set if a processor core fails the second test. In response to the override bit, the multiplexer selects a physical-to-logical mapping of processor IDs according to one of: the encoded results in the memory device or the encoded results in the external storage device. On-chip logic configures the processor cores according to the selected physical-to-logical mapping.
Granacher, Urs; Schellbach, Jörg; Klein, Katja; Prieske, Olaf; Baeyens, Jean-Pierre; Muehlbauer, Thomas
2014-01-01
It has been demonstrated that core strength training is an effective means to enhance trunk muscle strength (TMS) and proxies of physical fitness in youth. Of note, cross-sectional studies revealed that the inclusion of unstable elements in core strengthening exercises produced increases in trunk muscle activity and thus provide potential extra training stimuli for performance enhancement. Thus, utilizing unstable surfaces during core strength training may even produce larger performance gains. However, the effects of core strength training using unstable surfaces are unresolved in youth. This randomized controlled study specifically investigated the effects of core strength training performed on stable surfaces (CSTS) compared to unstable surfaces (CSTU) on physical fitness in school-aged children. Twenty-seven (14 girls, 13 boys) healthy subjects (mean age: 14 ± 1 years, age range: 13-15 years) were randomly assigned to a CSTS (n = 13) or a CSTU (n = 14) group. Both training programs lasted 6 weeks (2 sessions/week) and included frontal, dorsal, and lateral core exercises. During CSTU, these exercises were conducted on unstable surfaces (e.g., TOGU© DYNAIR CUSSIONS, THERA-BAND© STABILITY TRAINER). Significant main effects of Time (pre vs. post) were observed for the TMS tests (8-22%, f = 0.47-0.76), the jumping sideways test (4-5%, f = 1.07), and the Y balance test (2-3%, f = 0.46-0.49). Trends towards significance were found for the standing long jump test (1-3%, f = 0.39) and the stand-and-reach test (0-2%, f = 0.39). We could not detect any significant main effects of Group. Significant Time x Group interactions were detected for the stand-and-reach test in favour of the CSTU group (2%, f = 0.54). Core strength training resulted in significant increases in proxies of physical fitness in adolescents. However, CSTU as compared to CSTS had only limited additional effects (i.e., stand-and-reach test). Consequently, if the goal of training is to enhance physical fitness, then CSTU has limited advantages over CSTS. ClinicalTrials.gov Identifier: NCT02290457 Registered 13 November 2014.
48 CFR 52.236-4 - Physical Data.
Code of Federal Regulations, 2014 CFR
2014-10-01
... fixed-price construction contract is contemplated and physical data (e.g., test borings, hydrographic..., such as surveys, auger borings, core borings, test pits, probings, test tunnels]. (b) Weather...
48 CFR 52.236-4 - Physical Data.
Code of Federal Regulations, 2013 CFR
2013-10-01
... fixed-price construction contract is contemplated and physical data (e.g., test borings, hydrographic..., such as surveys, auger borings, core borings, test pits, probings, test tunnels]. (b) Weather...
48 CFR 52.236-4 - Physical Data.
Code of Federal Regulations, 2012 CFR
2012-10-01
... fixed-price construction contract is contemplated and physical data (e.g., test borings, hydrographic..., such as surveys, auger borings, core borings, test pits, probings, test tunnels]. (b) Weather...
48 CFR 52.236-4 - Physical Data.
Code of Federal Regulations, 2011 CFR
2011-10-01
... fixed-price construction contract is contemplated and physical data (e.g., test borings, hydrographic..., such as surveys, auger borings, core borings, test pits, probings, test tunnels]. (b) Weather...
48 CFR 52.236-4 - Physical Data.
Code of Federal Regulations, 2010 CFR
2010-10-01
... fixed-price construction contract is contemplated and physical data (e.g., test borings, hydrographic..., such as surveys, auger borings, core borings, test pits, probings, test tunnels]. (b) Weather...
A moist aquaplanet variant of the Held–Suarez test for atmospheric model dynamical cores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thatcher, Diana R.; Jablonowski, Christiane
A moist idealized test case (MITC) for atmospheric model dynamical cores is presented. The MITC is based on the Held–Suarez (HS) test that was developed for dry simulations on “a flat Earth” and replaces the full physical parameterization package with a Newtonian temperature relaxation and Rayleigh damping of the low-level winds. This new variant of the HS test includes moisture and thereby sheds light on the nonlinear dynamics–physics moisture feedbacks without the complexity of full-physics parameterization packages. In particular, it adds simplified moist processes to the HS forcing to model large-scale condensation, boundary-layer mixing, and the exchange of latent and sensible heat betweenmore » the atmospheric surface and an ocean-covered planet. Using a variety of dynamical cores of the National Center for Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM), this paper demonstrates that the inclusion of the moist idealized physics package leads to climatic states that closely resemble aquaplanet simulations with complex physical parameterizations. This establishes that the MITC approach generates reasonable atmospheric circulations and can be used for a broad range of scientific investigations. This paper provides examples of two application areas. First, the test case reveals the characteristics of the physics–dynamics coupling technique and reproduces coupling issues seen in full-physics simulations. In particular, it is shown that sudden adjustments of the prognostic fields due to moist physics tendencies can trigger undesirable large-scale gravity waves, which can be remedied by a more gradual application of the physical forcing. Second, the moist idealized test case can be used to intercompare dynamical cores. These examples demonstrate the versatility of the MITC approach and suggestions are made for further application areas. Furthermore, the new moist variant of the HS test can be considered a test case of intermediate complexity.« less
A moist aquaplanet variant of the Held–Suarez test for atmospheric model dynamical cores
Thatcher, Diana R.; Jablonowski, Christiane
2016-04-04
A moist idealized test case (MITC) for atmospheric model dynamical cores is presented. The MITC is based on the Held–Suarez (HS) test that was developed for dry simulations on “a flat Earth” and replaces the full physical parameterization package with a Newtonian temperature relaxation and Rayleigh damping of the low-level winds. This new variant of the HS test includes moisture and thereby sheds light on the nonlinear dynamics–physics moisture feedbacks without the complexity of full-physics parameterization packages. In particular, it adds simplified moist processes to the HS forcing to model large-scale condensation, boundary-layer mixing, and the exchange of latent and sensible heat betweenmore » the atmospheric surface and an ocean-covered planet. Using a variety of dynamical cores of the National Center for Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM), this paper demonstrates that the inclusion of the moist idealized physics package leads to climatic states that closely resemble aquaplanet simulations with complex physical parameterizations. This establishes that the MITC approach generates reasonable atmospheric circulations and can be used for a broad range of scientific investigations. This paper provides examples of two application areas. First, the test case reveals the characteristics of the physics–dynamics coupling technique and reproduces coupling issues seen in full-physics simulations. In particular, it is shown that sudden adjustments of the prognostic fields due to moist physics tendencies can trigger undesirable large-scale gravity waves, which can be remedied by a more gradual application of the physical forcing. Second, the moist idealized test case can be used to intercompare dynamical cores. These examples demonstrate the versatility of the MITC approach and suggestions are made for further application areas. Furthermore, the new moist variant of the HS test can be considered a test case of intermediate complexity.« less
Multi-Physics Demonstration Problem with the SHARP Reactor Simulation Toolkit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merzari, E.; Shemon, E. R.; Yu, Y. Q.
This report describes to employ SHARP to perform a first-of-a-kind analysis of the core radial expansion phenomenon in an SFR. This effort required significant advances in the framework Multi-Physics Demonstration Problem with the SHARP Reactor Simulation Toolkit used to drive the coupled simulations, manipulate the mesh in response to the deformation of the geometry, and generate the necessary modified mesh files. Furthermore, the model geometry is fairly complex, and consistent mesh generation for the three physics modules required significant effort. Fully-integrated simulations of a 7-assembly mini-core test problem have been performed, and the results are presented here. Physics models ofmore » a full-core model of the Advanced Burner Test Reactor have also been developed for each of the three physics modules. Standalone results of each of the three physics modules for the ABTR are presented here, which provides a demonstration of the feasibility of the fully-integrated simulation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1975-09-30
Studies of reactions between core materials and coolant impurities, basic fission product transport mechanisms, core graphite development and testing, the development and testing of recyclable fuel systems, and physics and fuel management studies are described. Materials studies include irradiation capsule tests of both fuel and graphite. Experimental procedures and results are discussed and, where appropriate, the data are presented in tables, graphs, and photographs. (auth)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simunovic, Srdjan
2015-02-16
CASL's modeling and simulation technology, the Virtual Environment for Reactor Applications (VERA), incorporates coupled physics and science-based models, state-of-the-art numerical methods, modern computational science, integrated uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs), single-effect experiments, and integral tests. The computational simulation component of VERA is the VERA Core Simulator (VERA-CS). The core simulator is the specific collection of multi-physics computer codes used to model and deplete a LWR core over multiple cycles. The core simulator has a single common input file that drives all of the different physics codes. The parser code, VERAIn, converts VERAmore » Input into an XML file that is used as input to different VERA codes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, D. H.; Reigel, M. M.
A full-scale formed core sampler was designed and functionally tested for use in the Saltstone Disposal Facility (SDF). Savannah River National Laboratory (SRNL) was requested to compare properties of the formed core samples and core drilled samples taken from adjacent areas in the full-scale sampler. While several physical properties were evaluated, the primary property of interest was hydraulic conductivity. Differences in hydraulic conductivity between the samples from the formed core sampler and those representing the bulk material were noted with respect to the initial handling and storage of the samples. Due to testing conditions, the site port samples were exposedmore » to uncontrolled temperature and humidity conditions prior to testing whereas the formed core samples were kept in sealed containers with minimal exposure to an uncontrolled environment prior to testing. Based on the results of the testing, no significant differences in porosity or density were found between the formed core samples and those representing the bulk material in the test stand.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortensi, Javier; Baker, Benjamin Allen; Schunert, Sebastian
The INL is currently evolving the modeling and simulation (M&S) capability that will enable improved core operation as well as design and analysis of TREAT experiments. This M&S capability primarily uses MAMMOTH, a reactor physics application being developed under Multi-physics Object Oriented Simulation Environment (MOOSE) framework. MAMMOTH allows the coupling of a number of other MOOSE-based applications. This second year of work has been devoted to the generation of a deterministic reference solution for the full core, the preparation of anisotropic diffusion coefficients, the testing of the SPH equivalence method, and the improvement of the control rod modeling. In addition,more » this report includes the progress made in the modeling of the M8 core configuration and experiment vehicle since January of this year.« less
Recovery Efficiency Test Project: Phase 1, Activity report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Overbey, W.K. Jr.; Wilkins, D.W.; Keltch, B.
1988-04-01
This report is the second volume of the Recovery Efficiency Test Phase I Report of Activities. Volume 1 covered selection, well planning, drilling, coring, logging and completion operations. This volume reports on well testing activities, reclamation activities on the drilling site and access roads, and the results of physical and mechanical properties tests on the oriented core material obtained from a horizontal section of the well. 3 refs., 21 figs., 10 tabs.
ERIC Educational Resources Information Center
Higdon, Kacey
2012-01-01
School administrators in many schools are steadily reducing physical education time in response to rising pressure to obtain higher test scores in core subjects. This reduction is occurring without a systematic investigation of the contribution of physical education to test scores. The purpose of this quantitative study was to evaluate the…
Allen, Brett A; Hannon, James C; Burns, Ryan D; Williams, Skip M
2014-07-01
Trunk and core muscular development has been advocated to increase athletic performance and for maintenance of musculoskeletal health, especially related to the prevention of low back pain (LBP). The purpose of this study was to examine the effects of a simple core conditioning routine on tests of trunk and core muscular endurance in school-aged children. Participants included 164 students (86 girls, 78 boys; mean age, 11.5 ± 2.5 years) recruited from a grade school in a metropolitan area located in the southwestern United States. Students performed an equipment-free, moderate-to-high intensity, dynamic core conditioning warm-up routine once a week for a period of 6 weeks during the start of their physical education classes. The intervention consisted of 10 different dynamic core conditioning exercises performed at a 30-second duration per exercise totaling 5 minutes per session. Pre- and post-assessments of muscular endurance consisted of 5 different trunk and core muscular endurance tests: Parallel Roman Chair Dynamic Back Extension, Prone Plank, Lateral Plank, Dynamic Curl-Up, and Static Curl-up. A generalized estimation equation was used to analyze differences in pre- and post-intervention muscular fitness assessments controlling for gender and grade level. Analysis of the data revealed significant increases in muscular fitness test performance for each of the 5 measured outcomes (p < 0.001). Because risk factors of LBP are thought to commence during childhood, results of this study suggest that it may be desirable for children and adolescents to perform moderate-to-high intensity dynamic core exercises during physical education warm-up to improve trunk and core muscular endurance.
Core Physics and Kinetics Calculations for the Fissioning Plasma Core Reactor
NASA Technical Reports Server (NTRS)
Butler, C.; Albright, D.
2007-01-01
Highly efficient, compact nuclear reactors would provide high specific impulse spacecraft propulsion. This analysis and numerical simulation effort has focused on the technical feasibility issues related to the nuclear design characteristics of a novel reactor design. The Fissioning Plasma Core Reactor (FPCR) is a shockwave-driven gaseous-core nuclear reactor, which uses Magneto Hydrodynamic effects to generate electric power to be used for propulsion. The nuclear design of the system depends on two major calculations: core physics calculations and kinetics calculations. Presently, core physics calculations have concentrated on the use of the MCNP4C code. However, initial results from other codes such as COMBINE/VENTURE and SCALE4a. are also shown. Several significant modifications were made to the ISR-developed QCALC1 kinetics analysis code. These modifications include testing the state of the core materials, an improvement to the calculation of the material properties of the core, the addition of an adiabatic core temperature model and improvement of the first order reactivity correction model. The accuracy of these modifications has been verified, and the accuracy of the point-core kinetics model used by the QCALC1 code has also been validated. Previously calculated kinetics results for the FPCR were described in the ISR report, "QCALC1: A code for FPCR Kinetics Model Feasibility Analysis" dated June 1, 2002.
NASA Astrophysics Data System (ADS)
Townsend, M.; Huckins-Gang, H.; Prothro, L.; Reed, D.
2012-12-01
The National Center for Nuclear Security, established by the U.S. Department of Energy, National Nuclear Security Administration, is conducting a series of explosive tests at the Nevada National Security Site that are designed to increase the understanding of certain basic physical phenomena associated with underground explosions. These tests will aid in developing technologies that might be used to detect underground nuclear explosions in support of verification activities for the Comprehensive Nuclear-Test-Ban Treaty. The initial project is a series of explosive tests, known collectively as the Source Physics Experiment-Nevada (SPE-N), being conducted in granitic rocks. The SPE N test series is designed to study the generation and propagation of seismic waves. The results will help advance the seismic monitoring capability of the United States by improving the predictive capability of physics-based modeling of explosive phenomena. The first SPE N (SPE N1) test was conducted in May 2011, using 0.1 ton of explosives at the depth of 54.9 m in the U 15n source hole. SPE N2 was conducted in October 2011, using 1.0 ton of explosives at the depth of 45.7 m in the same source hole. The SPE N3 test was conducted in the same source hole in July 2012, using the same amount and type of explosive as for SPE N2, and at the same depth as SPE N2, within the damage zone created by the SPE N2 explosion to investigate damage effects on seismic wave propagation. Following the SPE N2 shot and prior to the SPE N3 shot, the core hole U-15n#10 was drilled at an angle from the surface to intercept the SPE N2 shot point location to obtain information necessary to characterize the damage zone. The desire was to determine the position of the damage zone near the shot point, at least on the northeast, where the core hole penetrated it, and obtain information on the properties of the damaged medium. Geologic characterization of the post-SPE N2 core hole included geophysical logging, a directional survey, and geologic description of the core to document visual evidence of damage. Selected core samples were provided to Sandia National Laboratories for measurement of physical and mechanical properties. A video was also run in the source hole after it was cleaned out. A significant natural fault zone was encountered in the angle core hole between 5.7 and 7.5 m from the shot point. However, several of the fractures observed in the core hole are interpreted as having been caused by the explosion. The fractures are characterized by a "fresh," mechanically broken look, with uncoated and very irregular surfaces. They tend to terminate against natural fractures and have orientations that differ from the previously defined natural fracture sets; they are common starting at about 5.4 m from the shot point. Within about 3.3 m of the shot point to the end of the recovered core at 1.6 m from the shot point, some of the core samples are softer and lighter in color, but do not appear to be weathered. It is thought this could be indicative of the presence of distributed microfracturing. This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy.
Effects of a New Cooling Technology on Physical Performance in US Air Force Military Personnel.
O'Hara, Reginald; Vojta, Christopher; Henry, Amy; Caldwell, Lydia; Wade, Molly; Swanton, Stacie; Linderman, Jon K; Ordway, Jason
2016-01-01
Heat-related illness is a critical factor for military personnel operating in hyperthermic environments. Heat illness can alter cognitive and physical performance during sustained operations missions. Therefore, the primary purpose of this investigation was to determine the effects of a novel cooling shirt on core body temperature in highly trained US Air Force personnel. Twelve trained (at least 80th percentile for aerobic fitness according to the American College of Sports Medicine, at least 90% on the US Air Force fitness test), male Air Force participants (mean values: age, 25 ± 2.8 years; height, 178 ± 7.9cm; body weight 78 ± 9.6kg; maximal oxygen uptake, 57 ± 1.9mL/kg/ min; and body fat, 10% ± 0.03%) completed this study. Subjects performed a 70-minute weighted treadmill walking test and 10-minute, 22.7kg sandbag shuttle test under two conditions: (1) "loaded" (shirt with cooling inserts) and (2) "unloaded" (shirt with no cooling inserts). Core body temperature, exercise heart rate, capillary blood lactate, and ratings of perceived exertion were recorded. Core body temperature was lower (ρ = .001) during the 70-minute treadmill walking test in the loaded condition. Peak core temperature during the 70-minute walking test was also significantly lower (ρ = .038) in the loaded condition. This lightweight (471g), passive cooling technology offers multiple hours of sustained cooling and reduced core and peak body temperature during a 70-minute, 22.7kg weighted-vest walking test. 2016.
Report of concrete pavement evaluation : project 105 C-4181-01 Donahoo Road, Wyandotte County.
DOT National Transportation Integrated Search
2013-12-01
The physical properties of hardened concrete cores and fresh concrete test results were compared with aggregate : gradation workability differences. The concrete cores were taken from a rural two-lane concrete road in northeastern Kansas : constructe...
Physical properties of sidewall cores from Decatur, Illinois
Morrow, Carolyn A.; Kaven, Joern; Moore, Diane E.; Lockner, David A.
2017-10-18
To better assess the reservoir conditions influencing the induced seismicity hazard near a carbon dioxide sequestration demonstration site in Decatur, Ill., core samples from three deep drill holes were tested to determine a suite of physical properties including bulk density, porosity, permeability, Young’s modulus, Poisson’s ratio, and failure strength. Representative samples of the shale cap rock, the sandstone reservoir, and the Precambrian basement were selected for comparison. Physical properties were strongly dependent on lithology. Bulk density was inversely related to porosity, with the cap rock and basement samples being both least porous (
DOT National Transportation Integrated Search
2013-12-01
The physical properties of hardened concrete cores and fresh concrete test results were compared with aggregate gradation workability differences. The concrete cores were taken from a rural two-lane concrete road in northeastern Kansas constructed in...
Comparative study of the physical properties of core materials.
Saygili, Gülbin; Mahmali, Sevil M
2002-08-01
This study was undertaken to measure physical properties of materials used for direct core buildups, including high-copper amalgam, visible light-cured resin composite, autocured titanium-containing composite, polyacid-modified composite, resin-modified glass-ionomer, and silver cermet cement. Compressive strength, diametral tensile strength, and flexural strength of six core materials of various material classes were measured for each material as a function of time up to 3 months at different storage conditions, using a standard specification test designed for the materials. Three different storage conditions (dry, humid, wet) at 37 degrees C were chosen. Materials were manipulated according to manufacturers' instructions for use as cores. Mean compressive, diametral tensile, and flexural strengths with associated standard deviations were calculated for each material. Multiple comparison and Newman-Keuls tests discerned many differences among materials. All materials were found to meet the minimum specification requirements, except in terms of flexural strength for amalgam after 1 hour and the silver cermet at all time intervals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2008-07-15
The Meeting papers discuss research and test reactor fuel performance, manufacturing and testing. Some of the main topics are: conversion from HEU to LEU in different reactors and corresponding problems and activities; flux performance and core lifetime analysis with HEU and LEU fuels; physics and safety characteristics; measurement of gamma field parameters in core with LEU fuel; nondestructive analysis of RERTR fuel; thermal hydraulic analysis; fuel interactions; transient analyses and thermal hydraulics for HEU and LEU cores; microstructure research reactor fuels; post irradiation analysis and performance; computer codes and other related problems.
O'Connor, S; McCaffrey, N; Whyte, E; Moran, K
2016-07-01
To adapt the trunk stability test to facilitate further sub-classification of higher levels of core stability in athletes for use as a screening tool. To establish the inter-tester and intra-tester reliability of this adapted core stability test. Reliability study. Collegiate athletic therapy facilities. Fifteen physically active male subjects (19.46 ± 0.63) free from any orthopaedic or neurological disorders were recruited from a convenience sample of collegiate students. The intraclass correlation coefficients (ICC) and 95% Confidence Intervals (CI) were computed to establish inter-tester and intra-tester reliability. Excellent ICC values were observed in the adapted core stability test for inter-tester reliability (0.97) and good to excellent intra-tester reliability (0.73-0.90). While the 95% CI were narrow for inter-tester reliability, Tester A and C 95% CI's were widely distributed compared to Tester B. The adapted core stability test developed in this study is a quick and simple field based test to administer that can further subdivide athletes with high levels of core stability. The test demonstrated high inter-tester and intra-tester reliability. Copyright © 2015 Elsevier Ltd. All rights reserved.
Integral Full Core Multi-Physics PWR Benchmark with Measured Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forget, Benoit; Smith, Kord; Kumar, Shikhar
In recent years, the importance of modeling and simulation has been highlighted extensively in the DOE research portfolio with concrete examples in nuclear engineering with the CASL and NEAMS programs. These research efforts and similar efforts worldwide aim at the development of high-fidelity multi-physics analysis tools for the simulation of current and next-generation nuclear power reactors. Like all analysis tools, verification and validation is essential to guarantee proper functioning of the software and methods employed. The current approach relies mainly on the validation of single physic phenomena (e.g. critical experiment, flow loops, etc.) and there is a lack of relevantmore » multiphysics benchmark measurements that are necessary to validate high-fidelity methods being developed today. This work introduces a new multi-cycle full-core Pressurized Water Reactor (PWR) depletion benchmark based on two operational cycles of a commercial nuclear power plant that provides a detailed description of fuel assemblies, burnable absorbers, in-core fission detectors, core loading and re-loading patterns. This benchmark enables analysts to develop extremely detailed reactor core models that can be used for testing and validation of coupled neutron transport, thermal-hydraulics, and fuel isotopic depletion. The benchmark also provides measured reactor data for Hot Zero Power (HZP) physics tests, boron letdown curves, and three-dimensional in-core flux maps from 58 instrumented assemblies. The benchmark description is now available online and has been used by many groups. However, much work remains to be done on the quantification of uncertainties and modeling sensitivities. This work aims to address these deficiencies and make this benchmark a true non-proprietary international benchmark for the validation of high-fidelity tools. This report details the BEAVRS uncertainty quantification for the first two cycle of operations and serves as the final report of the project.« less
NASA Astrophysics Data System (ADS)
Robinett, Richard
2003-04-01
In order to probe various aspects of student understanding of some of the core ideas of quantum mechanics, and especially how they develop over the undergraduate curriculum, we have developed an assessment instrument designed to test conceptual and visualization understanding in quantum theory. We report data obtained from students ranging from sophomore-level modern physics courses, through junior-senior level quantum theory classes, to first year graduate quantum mechanics courses in what may be the first such study of the development of student understanding in this important core subject of physics through the undergraduate career. We discuss the results and their possible relevance to the standard curriculum as well as to the development of new curricular materials.
Common Purposes: Using the Common Core State Standards to Strengthen Physical Education Instruction
ERIC Educational Resources Information Center
James-Hassan, Martha
2014-01-01
In a climate of high stakes testing in education in America physical education is an oft-overlooked content area. As physical educators, however, we know the value that we have in the educational lives of our students. Instruction in our content area is engaging and immediately applicable to the "real world." The skills and concepts that…
NASA Technical Reports Server (NTRS)
Heck, R. M.; Chang, M.; Hess, H.; Carrubba, R.
1977-01-01
The durability of catalysts and catalyst supports in a combustion environment was experimentally demonstrated. A test of 1000 hours duration was completed with two catalysts, using diesel fuel and operating at catalytically supported thermal combustion conditions. The performance of the catalysts was determined by monitoring emissions throughout the test, and by examining the physical condition of the catalyst core at the conclusion of the test. The test catalysts proved to be capable of low emissions operation after 1000 hours diesel aging, with no apparent physical degradation of the catalyst support.
NASA Technical Reports Server (NTRS)
1993-01-01
This document constitutes the final report for the study of humidity effects and loading rate on soluble core (PVA/MB composite material) mechanical and thermal properties under Contract No. 100345. This report describes test results procedures employed, and any unusual occurrences or specific observations associated with this test program. The primary objective of this work was to determine if cured soluble core filler material regains its tensile and compressive strength after exposure to high humidity conditions and following a drying cycle. Secondary objectives include measurements of tensile and compressive modulus, and Poisson's ratio, and coefficient of thermal expansion (CTE) for various moisture exposure states. A third objective was to compare the mechanical and thermal properties of the composite using 'SG' and 'CG' type extendospheres. The proposed facility for the manufacture of soluble cores at the Yellow Creek site incorporates no capability for the control of humidity. Recent physical property tests performed with the soluble core filler material showed that prolonged exposure to high humidity significantly degradates in strength. The purpose of these tests is to determine if the product, process or facility designs require modification to avoid imparting a high risk condition to the ASRM.
Weems, Robert E.; Seefelt, Ellen L.; Wrege, Beth M.; Self-Trail, Jean M.; Prowell, David C.; Durand, Colleen; Cobbs, Eugene F.; McKinney, Kevin C.
2007-01-01
Introduction In March and April, 2004, the U.S. Geological Survey (USGS), in cooperation with the North Carolina Geological Survey (NCGS) and the Raleigh Water Resources Discipline (WRD), drilled a stratigraphic test hole and well in Bertie County, North Carolina (fig. 1). The Hope Plantation test hole (BE-110-2004) was cored on the property of Hope Plantation near Windsor, North Carolina. The drill site is located on the Republican 7.5 minute quadradrangle at lat 36?01'58'N., long 78?01'09'W. (decimal degrees 36.0329 and 77.0192) (fig. 2). The altitude of the site is 48 ft above mean sea level as determined by Paulin Precise altimeter. This test hole was continuously cored by Eugene F. Cobbs, III and Kevin C. McKinney (USGS) to a total depth of 1094.5 ft. Later, a ground water observation well was installed with a screened interval between 315-329 feet below land surface (fig. 3). Upper Triassic, Lower Cretaceous, Upper Cretaceous, Tertiary, and Quaternary sediments were recovered from the site. The core is stored at the NCGS Coastal Plain core storage facility in Raleigh, North Carolina. In this report, we provide the initial lithostratigraphic summary recorded at the drill site along with site core photographs, data from the geophysical logger, calcareous nannofossil biostratigraphic correlations (Table 1) and initial hydrogeologic interpretations. The lithostratigraphy from this core can be compared to previous investigations of the Elizabethtown corehole, near Elizabethtown, North Carolina in Bladen County (Self-Trail, Wrege, and others, 2004), the Kure Beach corehole, near Wilmington, North Carolina in New Hanover County (Self-Trail, Prowell, and Christopher, 2004), the Esso #1, Esso #2, Mobil #1 and Mobil #2 cores in the Albermarle and Pamlico Sounds (Zarra, 1989), and the Cape Fear River outcrops in Bladen County (Farrell, 1998; Farrell and others, 2001). This core is the third in a series of planned benchmark coreholes that will be used to elucidate the physical stratigraphy, facies, thickness, and hydrogeology of the Tertiary and Cretaceous Coastal Plain sediments of North Carolina.
Balogh, Adi
2005-05-01
Pregnancy is associated with a number of musculoskeletal problems. It is important to educate all mothers, as well as those involved in ante- and postnatal care with advice on bras and exercises that are safe in pregnancy (in particular pelvic floor exercises). There is not much that can be done to alter the inevitable physiological and hormonal changes of pregnancy. However, by strengthening the core stabilising muscles around the pelvis and spine, and improving the breathing pattern, it is hoped that one can optimise the body for the challenges it may face. Pilates is based on the principle that a central core is developed and then movements are introduced to challenge this core stability. This philosophy is clearly applicable in pregnancy--a significant test both mentally and physically on the mother's body. By maximising the mother's core stability before and during pregnancy, it should be possible to limit any potential harm. Returning to exercise soon after the birth is important for the mother's physical and mental wellbeing--she looks after her baby's body for nine months, who cares for hers?
Collett, T.S.; Lewis, R.E.; Winters, W.J.; Lee, M.W.; Rose, K.K.; Boswell, R.M.
2011-01-01
The BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well was an integral part of an ongoing project to determine the future energy resource potential of gas hydrates on the Alaska North Slope. As part of this effort, the Mount Elbert well included an advanced downhole geophysical logging program. Because gas hydrate is unstable at ground surface pressure and temperature conditions, a major emphasis was placed on the downhole-logging program to determine the occurrence of gas hydrates and the in-situ physical properties of the sediments. In support of this effort, well-log and core data montages have been compiled which include downhole log and core-data obtained from the gas-hydrate-bearing sedimentary section in the Mount Elbert well. Also shown are numerous reservoir parameters, including gas-hydrate saturation and sediment porosity log traces calculated from available downhole well log and core data. ?? 2010.
NASA Astrophysics Data System (ADS)
Ivanov, V.; Samokhin, A.; Danicheva, I.; Khrennikov, N.; Bouscuet, J.; Velkov, K.; Pasichnyk, I.
2017-01-01
In this paper the approaches used for developing of the BN-800 reactor test model and for validation of coupled neutron-physic and thermohydraulic calculations are described. Coupled codes ATHLET 3.0 (code for thermohydraulic calculations of reactor transients) and DYN3D (3-dimensional code of neutron kinetics) are used for calculations. The main calculation results of reactor steady state condition are provided. 3-D model used for neutron calculations was developed for start reactor BN-800 load. The homogeneous approach is used for description of reactor assemblies. Along with main simplifications, the main reactor BN-800 core zones are described (LEZ, MEZ, HEZ, MOX, blankets). The 3D neutron physics calculations were provided with 28-group library, which is based on estimated nuclear data ENDF/B-7.0. Neutron SCALE code was used for preparation of group constants. Nodalization hydraulic model has boundary conditions by coolant mass-flow rate for core inlet part, by pressure and enthalpy for core outlet part, which can be chosen depending on reactor state. Core inlet and outlet temperatures were chosen according to reactor nominal state. The coolant mass flow rate profiling through the core is based on reactor power distribution. The test thermohydraulic calculations made with using of developed model showed acceptable results in coolant mass flow rate distribution through the reactor core and in axial temperature and pressure distribution. The developed model will be upgraded in future for different transient analysis in metal-cooled fast reactors of BN type including reactivity transients (control rods withdrawal, stop of the main circulation pump, etc.).
Posttest analysis of a laboratory-cast monolith of salt-saturated concrete. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wakeley, L.D.; Poole, T.S.
A salt-saturated concrete was formulated for laboratory testing of cementitious mixtures with potential for use in disposal of radioactive wastes in a geologic repository in halite rock. Cores were taken from a laboratory-cast concrete monolith on completion of tests of permeability, strain, and stress. The cores were analyzed for physical and chemical evidence of brine migration through the concrete, and other features with potential impact on installation of crete plugs at the Waste Isolation Pilot Plant (WIPP) in New Mexico. The posttest analyses of the cores provided evidence of brine movement along the interface between concrete and pipe, and littlemore » indication of permeability through the monolith itself. There may also have been diffusion of chloride into the monolith without actual brine flow.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amadio, G.; et al.
An intensive R&D and programming effort is required to accomplish new challenges posed by future experimental high-energy particle physics (HEP) programs. The GeantV project aims to narrow the gap between the performance of the existing HEP detector simulation software and the ideal performance achievable, exploiting latest advances in computing technology. The project has developed a particle detector simulation prototype capable of transporting in parallel particles in complex geometries exploiting instruction level microparallelism (SIMD and SIMT), task-level parallelism (multithreading) and high-level parallelism (MPI), leveraging both the multi-core and the many-core opportunities. We present preliminary verification results concerning the electromagnetic (EM) physicsmore » models developed for parallel computing architectures within the GeantV project. In order to exploit the potential of vectorization and accelerators and to make the physics model effectively parallelizable, advanced sampling techniques have been implemented and tested. In this paper we introduce a set of automated statistical tests in order to verify the vectorized models by checking their consistency with the corresponding Geant4 models and to validate them against experimental data.« less
The Impact of Obesity on Back and Core Muscular Endurance in Firefighters
Mayer, John M.; Nuzzo, James L.; Chen, Ren; Quillen, William S.; Verna, Joe L.; Miro, Rebecca; Dagenais, Simon
2012-01-01
The purpose of this study was to assess the relationships between obesity and measures of back and core muscular endurance in firefighters. Methods. A cross-sectional study was conducted in career firefighters without low back pain. Obesity measures included body mass index (BMI) and body fat percentage assessed with air displacement plethysmography. Muscular endurance was assessed with the Modified Biering Sorensen (back) and Plank (core) tests. Relationships were explored using t-tests and regression analyses. Results. Of the 83 participants enrolled, 24 (29%) were obese (BMI ≥ 30). Back and core muscular endurance was 27% lower for obese participants. Significant negative correlations were observed for BMI and body fat percentage with back and core endurance (r = −0.42 to −0.52). Stepwise regression models including one obesity measure (BMI, body fat percentage, and fat mass/fat-free mass), along with age and self-reported physical exercise, accounted for 17–19% of the variance in back muscular endurance and 29–37% of the variance in core muscular endurance. Conclusions. Obesity is associated with reduced back and core muscular endurance in firefighters, which may increase the risk of musculoskeletal injuries. Obesity should be considered along with back and core muscular endurance when designing exercise programs for back pain prevention in firefighters. PMID:23213491
NASA Technical Reports Server (NTRS)
Olson, B. A.; Lee, H. C.; Osgerby, I. T.; Heck, R. M.; Hess, H.
1980-01-01
The durability of CATCOM catalysts and catalyst supports was experimentally demonstrated in a combustion environment under simulated gas turbine engine combustor operating conditions. A test of 1000 hours duration was completed with one catalyst using no. 2 diesel fuel and operating at catalytically-supported thermal combustion conditions. The performance of the catalyst was determined by monitoring emissions throughout the test, and by examining the physical condition of the catalyst core at the conclusion of the test. Tests were performed periodically to determine changes in catalytic activity of the catalyst core. Detailed parametric studies were also run at the beginning and end of the durability test, using no. 2 fuel oil. Initial and final emissions for the 1000 hours test respectively were: unburned hydrocarbons (C3 vppm):0, 146, carbon monoxide (vppm):30, 2420; nitrogen oxides (vppm):5.7, 5.6.
NASA Astrophysics Data System (ADS)
Xue, L.; Firl, G.; Zhang, M.; Jimenez, P. A.; Gill, D.; Carson, L.; Bernardet, L.; Brown, T.; Dudhia, J.; Nance, L. B.; Stark, D. R.
2017-12-01
The Global Model Test Bed (GMTB) has been established to support the evolution of atmospheric physical parameterizations in NCEP global modeling applications. To accelerate the transition to the Next Generation Global Prediction System (NGGPS), a collaborative model development framework known as the Common Community Physics Package (CCPP) is created within the GMTB to facilitate engagement from the broad community on physics experimentation and development. A key component to this Research to Operation (R2O) software framework is the Interoperable Physics Driver (IPD) that hooks the physics parameterizations from one end to the dynamical cores on the other end with minimum implementation effort. To initiate the CCPP, scientists and engineers from the GMTB separated and refactored the GFS physics. This exercise demonstrated the process of creating IPD-compliant code and can serve as an example for other physics schemes to do the same and be considered for inclusion into the CCPP. Further benefits to this process include run-time physics suite configuration and considerably reduced effort for testing modifications to physics suites through GMTB's physics test harness. The implementation will be described and the preliminary results will be presented at the conference.
NASA Astrophysics Data System (ADS)
Losso, C.; Arizzi Novelli, A.; Picone, M.; Marchetto, D.; Pessa, G.; Molinaroli, E.; Ghetti, P. F.; Volpi Ghirardini, A.
2004-11-01
Toxic hazard in sites with varying types and levels of contamination in the Lagoon of Venice was estimated by means of toxicity bioassays based on the early life-stages of the autochthonous sea urchin Paracentrotus lividus. Elutriate was chosen as the test matrix, due to its ability to highlight potential toxic effects towards sensitive biological components of the water column caused by sediment resuspension phenomena affecting the Lagoon. Surficial sediments (core-top 5 cm deep), directly influenced by resuspension/redeposition processes, and core sediments (core 20 cm deep), recording time-mediated contamination, were sampled in some sites located in the lagoonal area most greatly influenced by anthropogenic activities. Particle size, organic matter and water content were also analysed. In two sites, the results of physical parameters showed that the core-top sediments were coarser than the 20-cm core sediments. Sperm cell toxicity test results showed the negligible acute toxicity of elutriates from all investigated sites. The embryo toxicity test demonstrated a short-term chronic toxicity gradient for elutriates from the 20-cm core sediments, in general agreement both with the expected contamination gradient and with results of the Microtox® solid-phase test. Elutriates of the core-top 5-cm sediments revealed a totally inverted gradient, in comparison with that for the 20-cm core sediments, and the presence of a "hot spot" of contamination in the site chosen as a possible reference. Investigations on ammonia and sulphides as possible confounding factors excluded their contribution to this "hot spot". Integrated physico-chemical and toxicity results on sediments at various depths demonstrated the presence of disturbed sediments in the central basin of the Lagoon of Venice.
The Dynamical Core Model Intercomparison Project (DCMIP-2016): Results of the Supercell Test Case
NASA Astrophysics Data System (ADS)
Zarzycki, C. M.; Reed, K. A.; Jablonowski, C.; Ullrich, P. A.; Kent, J.; Lauritzen, P. H.; Nair, R. D.
2016-12-01
The 2016 Dynamical Core Model Intercomparison Project (DCMIP-2016) assesses the modeling techniques for global climate and weather models and was recently held at the National Center for Atmospheric Research (NCAR) in conjunction with a two-week summer school. Over 12 different international modeling groups participated in DCMIP-2016 and focused on the evaluation of the newest non-hydrostatic dynamical core designs for future high-resolution weather and climate models. The paper highlights the results of the third DCMIP-2016 test case, which is an idealized supercell storm on a reduced-radius Earth. The supercell storm test permits the study of a non-hydrostatic moist flow field with strong vertical velocities and associated precipitation. This test assesses the behavior of global modeling systems at extremely high spatial resolution and is used in the development of next-generation numerical weather prediction capabilities. In this regime the effective grid spacing is very similar to the horizontal scale of convective plumes, emphasizing resolved non-hydrostatic dynamics. The supercell test case sheds light on the physics-dynamics interplay and highlights the impact of diffusion on model solutions.
Wide-range structurally optimized channel for monitoring the certified power of small-core reactors
NASA Astrophysics Data System (ADS)
Koshelev, A. S.; Kovshov, K. N.; Ovchinnikov, M. A.; Pikulina, G. N.; Sokolov, A. B.
2016-12-01
The results of tests of a prototype version of a channel for monitoring the certified power of small-core reactors performed at the BR-K1 reactor at the All-Russian Scientific Research Institute of Experimental Physics are reported. An SNM-11 counter and commercial KNK-4 and KNK-3 compensated ion chambers were used as neutron detectors in the tested channel, and certified NCMM and CCMM measurement modules controlled by a PC with specialized software were used as measuring instruments. The specifics of metrological assurance of calibration of the channel in the framework of reactor power monitoring are discussed.
Wide-range structurally optimized channel for monitoring the certified power of small-core reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koshelev, A. S., E-mail: alexsander.coshelev@yandex.ru; Kovshov, K. N.; Ovchinnikov, M. A.
The results of tests of a prototype version of a channel for monitoring the certified power of small-core reactors performed at the BR-K1 reactor at the All-Russian Scientific Research Institute of Experimental Physics are reported. An SNM-11 counter and commercial KNK-4 and KNK-3 compensated ion chambers were used as neutron detectors in the tested channel, and certified NCMM and CCMM measurement modules controlled by a PC with specialized software were used as measuring instruments. The specifics of metrological assurance of calibration of the channel in the framework of reactor power monitoring are discussed.
On Geomagnetism and Paleomagnetism I
NASA Technical Reports Server (NTRS)
Voorhies, Coerte V.
2000-01-01
A partial description of Earth's broad scale, core-source magnetic field has been developed and tested three ways. The description features an expected, or mean, spatial magnetic power spectrum that is approximately inversely proportional to horizontal wavenumber atop Earth's core. This multipole spectrum describes a magnetic energy range; it is not steep enough for Gubbins' magnetic dissipation range. Temporal variations of core multipole powers about mean values are to be expected and are described statistically, via trial probability distribution functions, instead of deterministically, via trial solution of closed transport equations. The distributions considered here are closed and neither require nor prohibit magnetic isotropy. The description is therefore applicable to, and tested against, both dipole and low degree non-dipole fields. In Part 1, a physical basis for an expectation spectrum is developed and checked. The description is then combined with main field models of twentieth century satellite and surface geomagnetic field measurements to make testable predictions of the radius of Earth's core. The predicted core radius is 0.7% above the 3480 km seismological value. Partial descriptions of other planetary dipole fields are noted.
NASA Astrophysics Data System (ADS)
Ohmori, Shuichi; Narabayashi, Tadashi; Mori, Michitsugu
A steam injector (SI) is a simple, compact and passive pump and also acts as a high-performance direct-contact compact heater. This provides SI with capability to serve also as a direct-contact feed-water heater that heats up feed-water by using extracted steam from turbine. Our technology development aims to significantly simplify equipment and reduce physical quantities by applying "high-efficiency SI", which are applicable to a wide range of operation regimes beyond the performance and applicable range of existing SIs and enables unprecedented multistage and parallel operation, to the low-pressure feed-water heaters and emergency core cooling system of nuclear power plants, as well as achieve high inherent safety to prevent severe accidents by keeping the core covered with water (a severe accident-free concept). This paper describes the results of the scale model test, and the transient analysis of SI-driven passive core injection system (PCIS).
PlasmaPy: beginning a community developed Python package for plasma physics
NASA Astrophysics Data System (ADS)
Murphy, Nicholas A.; Huang, Yi-Min; PlasmaPy Collaboration
2016-10-01
In recent years, researchers in several disciplines have collaborated on community-developed open source Python packages such as Astropy, SunPy, and SpacePy. These packages provide core functionality, common frameworks for data analysis and visualization, and educational tools. We propose that our community begins the development of PlasmaPy: a new open source core Python package for plasma physics. PlasmaPy could include commonly used functions in plasma physics, easy-to-use plasma simulation codes, Grad-Shafranov solvers, eigenmode solvers, and tools to analyze both simulations and experiments. The development will include modern programming practices such as version control, embedding documentation in the code, unit tests, and avoiding premature optimization. We will describe early code development on PlasmaPy, and discuss plans moving forward. The success of PlasmaPy depends on active community involvement and a welcoming and inclusive environment, so anyone interested in joining this collaboration should contact the authors.
a Prestellar Core 3MM Line Survey: Molecular Complexity in L183
NASA Astrophysics Data System (ADS)
Lattanzi, Valerio; Bizzocchi, Luca; Caselli, Paola
2017-06-01
Cold dark clouds represent a very unique environment to test our knowledge of the chemical and physical evolution of the structures that ultimately led to life. Starless cores, such as L183, are indeed the first phase of the star formation process and the nursery of chemical complexity. In this work we present the detection of several large astronomical molecules in the prestellar core L183, as a result of a 3mm single-pointing survey performed with the IRAM 30m antenna. The abundances of the observed species will be then compared to those found in similar environments, highlighting correspondences and uniquenesses of the different sources.
A near-infrared spectroscopic study of the starburst core of M82
NASA Technical Reports Server (NTRS)
Lester, D. F.; Gaffney, N.; Carr, J. S.; Joy, M.
1990-01-01
Near-IR spectroscopy of the M82 starburst core is presented, including complete J, H, and K band spectra with a resolution of 0.0035-micron for the inner 60 pc of the galaxy. Also, spatial profiles along the starburst ridge are presented for Br-gamma, molecular hydrogen, and forbidden Fe II line fluxes. Emission from shocked molecular hydrogen is detected from the core of M82. The distribution of features across the starburst disk are mapped to study the relationships between spectral diagnostics. The observations are used to test the appropriateness of single-beam, aggregate models for studying the physical conditions in starbursts.
Alignment between the Science Curriculum and Assessment in Selected NY State Regents Exams
ERIC Educational Resources Information Center
Liu, Xiufeng; Fulmer, Gavin
2008-01-01
This article reports on an analysis of alignment between NY state core curricula and NY Regents tests in physics and chemistry. Both the curriculum and test were represented by a two dimensional table consisting of topics and cognitive demands. The cell values of the table were numbers of major understandings in the curriculum and points of test…
Scaling relations of halo cores for self-interacting dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Henry W.; Loeb, Abraham, E-mail: henrylin@college.harvard.edu, E-mail: aloeb@cfa.harvard.edu
2016-03-01
Using a simple analytic formalism, we demonstrate that significant dark matter self-interactions produce halo cores that obey scaling relations nearly independent of the underlying particle physics parameters such as the annihilation cross section and the mass of the dark matter particle. For dwarf galaxies, we predict that the core density ρ{sub c} and the core radius r{sub c} should obey ρ{sub c} r{sub c} ≈ 41 M{sub ⊙} pc{sup −2} with a weak mass dependence ∼ M{sup 0.2}. Remarkably, such a scaling relation has recently been empirically inferred. Scaling relations involving core mass, core radius, and core velocity dispersion are predicted and agree well with observationalmore » data. By calibrating against numerical simulations, we predict the scatter in these relations and find them to be in excellent agreement with existing data. Future observations can test our predictions for different halo masses and redshifts.« less
Smith, R.L.; Garabedian, S.P.; Brooks, M.H.
1996-01-01
The transport of many solutes in groundwater is dependent upon the relative rates of physical flow and microbial metabolism. Quantifying rates of microbial processes under subsurface conditions is difficult and is most commonly approximated using laboratory studies with aquifer materials. In this study, we measured in situ rates of denitrification in a nitrate- contaminated aquifer using small-scale, natural-gradient tracer tests and compared the results with rates obtained from laboratory incubations with aquifer core material. Activity was measured using the acetylene block technique. For the tracer tests, co-injection of acetylene and bromide into the aquifer produced a 30 ??M increase in nitrous oxide after 10 m of transport (23-30 days). An advection-dispersion transport model was modified to include an acetylene-dependent nitrous oxide production term and used to simulate the tracer breakthrough curves. The model required a 4-day lag period and a relatively low sensitivity to acetylene to match the narrow nitrous oxide breakthrough curves. Estimates of in situ denitrification rates were 0.60 and 1.51 nmol of N2O produced cm-3 aquifer day-1 for two successive tests. Aquifer core material collected from the tracer test site and incubated as mixed slurries in flasks and as intact cores yielded rates that were 1.2-26 times higher than the tracer test rate estimates. Results with the coring-dependent techniques were variable and subject to the small- scale heterogeneity within the aquifer, while the tracer tests integrated the heterogeneity along a flow path, giving a rate estimate that is more applicable to transport at the scale of the aquifer.
Laboratory study of the characteristics of fault breccias in Busan area in Korea
NASA Astrophysics Data System (ADS)
Woo, I.; Um, J.
2012-12-01
The physical and mechanical characteristics of fault breccias from near the Mt. Kumjung were estimated from laboratory tests on fractured fault breccias. Mt. Kumjung is surrounded by Yangsan Fault and Dongrae Fault which are major faults traversing the southeast part of Korea in the direction of NE-SW. The undisturbed samples were obtained from boreholes drilled in this region. The microscopic analysis on the thin sections of fault breccias showed the microstructure and the porosity of breccias. The fault breccias are composed of mainly fine quartz grains, and of angular quartz grains and weathered microcline grains. This microstructure of fault breccias might be formed by the catalasis during brittle deformation processes of the fault. 20 to 40% porosity of fault breccias could play an important role in the passage of groundwater and then in the development of fault gouge in the core part of fault. The mechanical characteristics were estimated by means of uniaxial compressive strength tests on the undisturbed breccias samples. Since fault breccias are not cohesive enough to use it directly as a test specimen, the epoxy resin was utilized to fix the outer surface of core samples. The thin plastic wrap had been enveloped before the epoxy resin was applied in order that the epoxy resin could not penetrate into the core specimens. The thickness of epoxy resin was less than 1mm not to disturb the results of uniaxial compressive strength of core samples. The measured uniaxial compressive strengths are 10 to 15MPa for the only physically fractured breccias and 8 to 10 MPa for the core specimens with hydrothermally altered surface. These results can be compared with the Hoek and Brown failure criteria : 7 to 10MPa for GSI value 40 to 50 for fault breccias with fresh surface. The overall measured strength of fault breccias is less than the strength obtained empirically by Hoek and Brown failure criteria.; ;
Flow throughout the Earth's core inverted from geomagnetic observations and numerical dynamo models
NASA Astrophysics Data System (ADS)
Aubert, Julien
2013-02-01
This paper introduces inverse geodynamo modelling, a framework imaging flow throughout the Earth's core from observations of the geomagnetic field and its secular variation. The necessary prior information is provided by statistics from 3-D and self-consistent numerical simulations of the geodynamo. The core method is a linear estimation (or Kalman filtering) procedure, combined with standard frozen-flux core surface flow inversions in order to handle the non-linearity of the problem. The inversion scheme is successfully validated using synthetic test experiments. A set of four numerical dynamo models of increasing physical complexity and similarity to the geomagnetic field is then used to invert for flows at single epochs within the period 1970-2010, using data from the geomagnetic field models CM4 and gufm-sat-Q3. The resulting core surface flows generally provide satisfactory fits to the secular variation within the level of modelled errors, and robustly reproduce the most commonly observed patterns while additionally presenting a high degree of equatorial symmetry. The corresponding deep flows present a robust, highly columnar structure once rotational constraints are enforced to a high level in the prior models, with patterns strikingly similar to the results of quasi-geostrophic inversions. In particular, the presence of a persistent planetary scale, eccentric westward columnar gyre circling around the inner core is confirmed. The strength of the approach is to uniquely determine the trade-off between fit to the data and complexity of the solution by clearly connecting it to first principle physics; statistical deviations observed between the inverted flows and the standard model behaviour can then be used to quantitatively assess the shortcomings of the physical modelling. Such deviations include the (i) westwards and (ii) hemispherical character of the eccentric gyre. A prior model with angular momentum conservation of the core-mantle inner-core system, and gravitational coupling of reasonable strength between the mantle and the inner core, is shown to produce enough westward drift to resolve statistical deviation (i). Deviation (ii) is resolved by a prior with an hemispherical buoyancy release at the inner-core boundary, with excess buoyancy below Asia. This latter result suggests that the recently proposed inner-core translational instability presently transports the solid inner-core material westwards, opposite to the seismologically inferred long-term trend but consistently with the eccentricity of the geomagnetic dipole in recent times.
The in-process control of PVC sheath of a double core cable
NASA Astrophysics Data System (ADS)
Galeeva, N. S.; Redko, V. V.; Redko, L. A.
2018-01-01
In this work the possibility of the sheath hermiticity testing by measuring of the cable capacity per unit length variation during spark testing is considered. The research object is 2×0.75 HO3VVH2-F cable. According to the physical modelling it is proved that such defect of sheath as pinhole through the whole thickness of sheath can be registered for the test length 10 cm with test voltage frequencies 1kHz and 10kHz.
Multi-Physics Simulation of TREAT Kinetics using MAMMOTH
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeHart, Mark; Gleicher, Frederick; Ortensi, Javier
With the advent of next generation reactor systems and new fuel designs, the U.S. Department of Energy (DOE) has identified the need for the resumption of transient testing of nuclear fuels. DOE has decided that the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory (INL) is best suited for future testing. TREAT is a thermal neutron spectrum nuclear test facility that is designed to test nuclear fuels in transient scenarios. These specific fuels transient tests range from simple temperature transients to full fuel melt accidents. The current TREAT core is driven by highly enriched uranium (HEU) dispersed in amore » graphite matrix (1:10000 U-235/C atom ratio). At the center of the core, fuel is removed allowing for the insertion of an experimental test vehicle. TREAT’s design provides experimental flexibility and inherent safety during neutron pulsing. This safety stems from the graphite in the driver fuel having a strong negative temperature coefficient of reactivity resulting from a thermal Maxwellian shift with increased leakage, as well as graphite acting as a temperature sink. Air cooling is available, but is generally used post-transient for heat removal. DOE and INL have expressed a desire to develop a simulation capability that will accurately model the experiments before they are irradiated at the facility, with an emphasis on effective and safe operation while minimizing experimental time and cost. At INL, the Multi-physics Object Oriented Simulation Environment (MOOSE) has been selected as the model development framework for this work. This paper describes the results of preliminary simulations of a TREAT fuel element under transient conditions using the MOOSE-based MAMMOTH reactor physics tool.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasten, P.R.; Rittenhouse, P.L.; Bartine, D.E.
1984-06-01
ORNL continues to make significant contributions to the national program. In the HTR fuels area, we are providing detailed statistical information on the fission product retention performance of irradiated fuel. Our studies are also providing basic data on the mechanical, physical, and chemical behavior of HTR materials, including metals, ceramics, graphite, and concrete. The ORNL has an important role in the development of improved HTR graphites and in the specification of criteria that need to be met by commercial products. We are also developing improved reactor physics design methods. Our work in component development and testing centers in the Componentmore » Flow Test Loop (CFTL), which is being used to evaluate the performance of the HTR core support structure. Other work includes experimental evaluation of the shielding effectiveness of the lower portions of an HTR core. This evaluation is being performed at the ORNL Tower Shielding Facility. Researchers at ORNL are developing welding techniques for attaching steam generator tubing to the tubesheets and are testing ceramic pads on which the core posts rest. They are also performing extensive testing of aggregate materials obtained from potential HTR site areas for possible use in prestressed concrete reactor vessels. During the past year we continued to serve as a peer reviewer of small modular reactor designs being developed by GA and GE with balance-of-plant layouts being developed by Bechtel Group, Inc. We have also evaluated the national need for developing HTRs with emphasis on the longer term applications of the HTRs to fossil conversion processes.« less
Kaech Moll, Veronika M; Escorpizo, Reuben; Portmann Bergamaschi, Ruth; Finger, Monika E
2016-08-01
The Comprehensive ICF Core Set for vocational rehabilitation (VR) is a list of essential categories on functioning based on the World Health Organization (WHO) International Classification of Functioning, Disability and Health (ICF), which describes a standard for interdisciplinary assessment, documentation, and communication in VR. The aim of this study was to examine the content validity of the Comprehensive ICF Core Set for VR from the perspective of physical therapists. A 3-round email survey was performed using the Delphi method. A convenience sample of international physical therapists working in VR with work experience of ≥2 years were asked to identify aspects they consider as relevant when evaluating or treating clients in VR. Responses were linked to the ICF categories and compared with the Comprehensive ICF Core Set for VR. Sixty-two physical therapists from all 6 WHO world regions responded with 3,917 statements that were subsequently linked to 338 ICF categories. Fifteen (17%) of the 90 categories in the Comprehensive ICF Core Set for VR were confirmed by the physical therapists in the sample. Twenty-two additional ICF categories were identified that were not included in the Comprehensive ICF Core Set for VR. Vocational rehabilitation in physical therapy is not well defined in every country and might have resulted in the small sample size. Therefore, the results cannot be generalized to all physical therapists practicing in VR. The content validity of the ICF Core Set for VR is insufficient from solely a physical therapist perspective. The results of this study could be used to define a physical therapy-specific set of ICF categories to develop and guide physical therapist clinical practice in VR. © 2016 American Physical Therapy Association.
Towards testing quantum physics in deep space
NASA Astrophysics Data System (ADS)
Kaltenbaek, Rainer
2016-07-01
MAQRO is a proposal for a medium-sized space mission to use the unique environment of deep space in combination with novel developments in space technology and quantum technology to test the foundations of physics. The goal is to perform matter-wave interferometry with dielectric particles of up to 10^{11} atomic mass units and testing for deviations from the predictions of quantum theory. Novel techniques from quantum optomechanics with optically trapped particles are to be used for preparing the test particles for these experiments. The core elements of the instrument are placed outside the spacecraft and insulated from the hot spacecraft via multiple thermal shields allowing to achieve cryogenic temperatures via passive cooling and ultra-high vacuum levels by venting to deep space. In combination with low force-noise microthrusters and inertial sensors, this allows realizing an environment well suited for long coherence times of macroscopic quantum superpositions and long integration times. Since the original proposal in 2010, significant progress has been made in terms of technology development and in refining the instrument design. Based on these new developments, we submitted/will submit updated versions of the MAQRO proposal in 2015 and 2016 in response to Cosmic-Vision calls of ESA for a medium-sized mission. A central goal has been to address and overcome potentially critical issues regarding the readiness of core technologies and to provide realistic concepts for further technology development. We present the progress on the road towards realizing this ground-breaking mission harnessing deep space in novel ways for testing the foundations of physics, a technology pathfinder for macroscopic quantum technology and quantum optomechanics in space.
NASA Stennis Space Center Integrated System Health Management Test Bed and Development Capabilities
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Holland, Randy; Coote, David
2006-01-01
Integrated System Health Management (ISHM) is a capability that focuses on determining the condition (health) of every element in a complex System (detect anomalies, diagnose causes, prognosis of future anomalies), and provide data, information, and knowledge (DIaK)-not just data-to control systems for safe and effective operation. This capability is currently done by large teams of people, primarily from ground, but needs to be embedded on-board systems to a higher degree to enable NASA's new Exploration Mission (long term travel and stay in space), while increasing safety and decreasing life cycle costs of spacecraft (vehicles; platforms; bases or outposts; and ground test, launch, and processing operations). The topics related to this capability include: 1) ISHM Related News Articles; 2) ISHM Vision For Exploration; 3) Layers Representing How ISHM is Currently Performed; 4) ISHM Testbeds & Prototypes at NASA SSC; 5) ISHM Functional Capability Level (FCL); 6) ISHM Functional Capability Level (FCL) and Technology Readiness Level (TRL); 7) Core Elements: Capabilities Needed; 8) Core Elements; 9) Open Systems Architecture for Condition-Based Maintenance (OSA-CBM); 10) Core Elements: Architecture, taxonomy, and ontology (ATO) for DIaK management; 11) Core Elements: ATO for DIaK Management; 12) ISHM Architecture Physical Implementation; 13) Core Elements: Standards; 14) Systematic Implementation; 15) Sketch of Work Phasing; 16) Interrelationship Between Traditional Avionics Systems, Time Critical ISHM and Advanced ISHM; 17) Testbeds and On-Board ISHM; 18) Testbed Requirements: RETS AND ISS; 19) Sustainable Development and Validation Process; 20) Development of on-board ISHM; 21) Taxonomy/Ontology of Object Oriented Implementation; 22) ISHM Capability on the E1 Test Stand Hydraulic System; 23) Define Relationships to Embed Intelligence; 24) Intelligent Elements Physical and Virtual; 25) ISHM Testbeds and Prototypes at SSC Current Implementations; 26) Trailer-Mounted RETS; 27) Modeling and Simulation; 28) Summary ISHM Testbed Environments; 29) Data Mining - ARC; 30) Transitioning ISHM to Support NASA Missions; 31) Feature Detection Routines; 32) Sample Features Detected in SSC Test Stand Data; and 33) Health Assessment Database (DIaK Repository).
Core Exercises: Why You Should Strengthen Your Core Muscles
... patients with chronic low back pain. Journal of Physical Therapy Science. 2015;27:619. Rivera CE. Core and lumbopelvic stabilization in runners. Physical Medicine and Rehabilitation Clinics of North America. 2016; ...
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.
2007-01-01
This informal report summarizes the development and the design specifications of a recessed nomex core honeycomb panel in fulfillment of the deliverable in Task Order 13RBE, Revision 10, Subtask 17. The honeycomb panel, with 0.020-inch thick aluminum face sheets, has 0.016-inch thick aluminum patches applied to twenty-five, 6 by 6 inch, quarter inch thick recessed cores. A 10 dB higher transmission loss over the frequency range 250 - 1000 Hz was predicted by a MSC/NASTRAN finite element model when compared with the transmission loss of the base nomex core honeycomb panel. The static displacement, due to a unit force applied at either the core or recessed core area, was of the same order of magnitude as the static displacement of the base honeycomb panel when exposed to the same unit force. The mass of the new honeycomb design is 5.1% more than the base honeycomb panel. A physical model was constructed and is being tested.
Progress in the Development of a Global Quasi-3-D Multiscale Modeling Framework
NASA Astrophysics Data System (ADS)
Jung, J.; Konor, C. S.; Randall, D. A.
2017-12-01
The Quasi-3-D Multiscale Modeling Framework (Q3D MMF) is a second-generation MMF, which has following advances over the first-generation MMF: 1) The cloud-resolving models (CRMs) that replace conventional parameterizations are not confined to the large-scale dynamical-core grid cells, and are seamlessly connected to each other, 2) The CRMs sense the three-dimensional large- and cloud-scale environment, 3) Two perpendicular sets of CRM channels are used, and 4) The CRMs can resolve the steep surface topography along the channel direction. The basic design of the Q3D MMF has been developed and successfully tested in a limited-area modeling framework. Currently, global versions of the Q3D MMF are being developed for both weather and climate applications. The dynamical cores governing the large-scale circulation in the global Q3D MMF are selected from two cube-based global atmospheric models. The CRM used in the model is the 3-D nonhydrostatic anelastic Vector-Vorticity Model (VVM), which has been tested with the limited-area version for its suitability for this framework. As a first step of the development, the VVM has been reconstructed on the cubed-sphere grid so that it can be applied to global channel domains and also easily fitted to the large-scale dynamical cores. We have successfully tested the new VVM by advecting a bell-shaped passive tracer and simulating the evolutions of waves resulted from idealized barotropic and baroclinic instabilities. For improvement of the model, we also modified the tracer advection scheme to yield positive-definite results and plan to implement a new physics package that includes a double-moment microphysics and an aerosol physics. The interface for coupling the large-scale dynamical core and the VVM is under development. In this presentation, we shall describe the recent progress in the development and show some test results.
Development and Integration of Professional Core Values Among Practicing Clinicians.
McGinnis, Patricia Quinn; Guenther, Lee Ann; Wainwright, Susan F
2016-09-01
The physical therapy profession has adopted professional core values, which define expected values for its members, and developed a self-assessment tool with sample behaviors for each of the 7 core values. However, evidence related to the integration of these core values into practice is limited. The aims of this study were: (1) to gain insight into physical therapists' development of professional core values and (2) to gain insight into participants' integration of professional core values into clinical practice. A qualitative design permitted in-depth exploration of the development and integration of the American Physical Therapy Association's professional core values into physical therapist practice. Twenty practicing physical therapists were purposefully selected to explore the role of varied professional, postprofessional, and continuing education experiences related to exposure to professional values. The Core Values Self-Assessment and résumé sort served as prompts for reflection via semistructured interviews. Three themes were identified: (1) personal values were the foundation for developing professional values, which were further shaped by academic and clinical experiences, (2) core values were integrated into practice independent of practice setting and varied career paths, and (3) participants described the following professional core values as well integrated into their practice: integrity, compassion/caring, and accountability. Social responsibility was an area consistently identified as not being integrated into their practice. The Core Values Self-Assessment tool is a consensus-based document developed through a Delphi process. Future studies to establish reliability and construct validity of the tool may be warranted. Gaining an in-depth understanding of how practicing clinicians incorporate professional core values into clinical practice may shed light on the relationship between core values mastery and its impact on patient care. Findings may help shape educators' decisions for professional (entry-level), postprofessional, and continuing education. © 2016 American Physical Therapy Association.
Breault, Robert F.; Cooke, Matthew G.; Merrill, Michael
2004-01-01
The U.S. Geological Survey, in cooperation with the Massachusetts Executive Office of Environmental Affairs Department of Fish and Game Riverways Program, and the U.S. Environmental Protection Agency, studied sediment and water quality in the lower Neponset River, which is a tributary to Boston Harbor. Grab and core samples of sediment were tested for elements and organic compounds including polyaromatic hydrocarbons, organochlorine pesticides, and polychlorinated biphenyls. Physical properties of sediment samples, including grain size, were also measured. Selected sediment-core samples were tested for reactive sulfides and metals by means of the toxicity characteristic leaching procedure, which are sediment-disposal-related tests. Water quality, with respect to polychlorinated biphenyl contamination, was determined by testing samples collected by PISCES passive-water-column samplers for polychlorinated biphenyl congeners. Total concentrations of polychlorinated biphenyls were calculated by congener and by Aroclor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Downar, Thomas
This report summarizes the current status of VERA-CS Verification and Validation for PWR Core Follow operation and proposes a multi-phase plan for continuing VERA-CS V&V in FY17 and FY18. The proposed plan recognizes the hierarchical nature of a multi-physics code system such as VERA-CS and the importance of first achieving an acceptable level of V&V on each of the single physics codes before focusing on the V&V of the coupled physics solution. The report summarizes the V&V of each of the single physics codes systems currently used for core follow analysis (ie MPACT, CTF, Multigroup Cross Section Generation, and BISONmore » / Fuel Temperature Tables) and proposes specific actions to achieve a uniformly acceptable level of V&V in FY17. The report also recognizes the ongoing development of other codes important for PWR Core Follow (e.g. TIAMAT, MAMBA3D) and proposes Phase II (FY18) VERA-CS V&V activities in which those codes will also reach an acceptable level of V&V. The report then summarizes the current status of VERA-CS multi-physics V&V for PWR Core Follow and the ongoing PWR Core Follow V&V activities for FY17. An automated procedure and output data format is proposed for standardizing the output for core follow calculations and automatically generating tables and figures for the VERA-CS Latex file. A set of acceptance metrics is also proposed for the evaluation and assessment of core follow results that would be used within the script to automatically flag any results which require further analysis or more detailed explanation prior to being added to the VERA-CS validation base. After the Automation Scripts have been completed and tested using BEAVRS, the VERA-CS plan proposes the Watts Bar cycle depletion cases should be performed with the new cross section library and be included in the first draft of the new VERA-CS manual for release at the end of PoR15. Also, within the constraints imposed by the proprietary nature of plant data, as many as possible of the FY17 AMA Plant Core Follow cases should also be included in the VERA-CS manual at the end of PoR15. After completion of the ongoing development of TIAMAT for fully coupled, full core calculations with VERA-CS / BISON 1.5D, and after the completion of the refactoring of MAMBA3D for CIPS analysis in FY17, selected cases from the VERA-CS validation based should be performed, beginning with the legacy cases of Watts Bar and BEAVRS in PoR16. Finally, as potential Phase III future work some additional considerations are identified for extending the VERA-CS V&V to other reactor types such as the BWR.« less
Şahin, Sedef; Huri, Meral; Aran, Orkun Tahir; Uyanık, Mine
2018-02-23
Background/aim: The Cancer Fatigue Scale (CFS) was developed to evaluate the severity of fatigue in patients with breast cancer. The aim of this study is to translate and culturally adapt a Turkish version and investigate the validity and reliability of the CFS in Turkish patients with fatigue symptoms. Materials and methods: Eighty participants completed the Turkish version of the CFS for breast cancer and the European Organization for Research and Treatment of Cancer Quality of Life Core Questionnaire ″Core 30″ (EORTC QLQ-C30). Test-retest reliability was evaluated by repeating the CFS with a 7-day interval. Results: The CFS demonstrated high test-retest reliability (ICC = 0.95) and good internal consistency (Cronbach′s alpha = 0.74) for all domains. The Kaiser-Meyer-Olkin measure of sampling adequacy was found to be 0.819, which is considered to be satisfactory (>0.5). Correlations between domains of CFS physical and EORTC physical (r: 0.77), CFS cognitive and EORTC cognitive (r: 0.70), and CFS physical and EORTC fatigue (r: 0.80) were found to be significant. Conclusion: The Turkish version of the CFS is a reliable and valid instrument to assess physical, effective, and cognitive dimensions of fatigue. The CFS may be used to evaluate the severity of fatigue in Turkish-speaking breast cancer patients.
Space Launch System Base Heating Test: Environments and Base Flow Physics
NASA Technical Reports Server (NTRS)
Mehta, Manish; Knox, Kyle S.; Seaford, C. Mark; Dufrene, Aaron T.
2016-01-01
The NASA Space Launch System (SLS) vehicle is composed of four RS-25 liquid oxygen- hydrogen rocket engines in the core-stage and two 5-segment solid rocket boosters and as a result six hot supersonic plumes interact within the aft section of the vehicle during ight. Due to the complex nature of rocket plume-induced ows within the launch vehicle base during ascent and a new vehicle con guration, sub-scale wind tunnel testing is required to reduce SLS base convective environment uncertainty and design risk levels. This hot- re test program was conducted at the CUBRC Large Energy National Shock (LENS) II short-duration test facility to simulate ight from altitudes of 50 kft to 210 kft. The test program is a challenging and innovative e ort that has not been attempted in 40+ years for a NASA vehicle. This presentation discusses the various trends of base convective heat ux and pressure as a function of altitude at various locations within the core-stage and booster base regions of the two-percent SLS wind tunnel model. In-depth understanding of the base ow physics is presented using the test data, infrared high-speed imaging and theory. The normalized test design environments are compared to various NASA semi- empirical numerical models to determine exceedance and conservatism of the ight scaled test-derived base design environments. Brief discussion of thermal impact to the launch vehicle base components is also presented.
Space Launch System Base Heating Test: Environments and Base Flow Physics
NASA Technical Reports Server (NTRS)
Mehta, Manish; Knox, Kyle S.; Seaford, C. Mark; Dufrene, Aaron T.
2016-01-01
The NASA Space Launch System (SLS) vehicle is composed of four RS-25 liquid oxygen-hydrogen rocket engines in the core-stage and two 5-segment solid rocket boosters and as a result six hot supersonic plumes interact within the aft section of the vehicle during flight. Due to the complex nature of rocket plume-induced flows within the launch vehicle base during ascent and a new vehicle configuration, sub-scale wind tunnel testing is required to reduce SLS base convective environment uncertainty and design risk levels. This hot-fire test program was conducted at the CUBRC Large Energy National Shock (LENS) II short-duration test facility to simulate flight from altitudes of 50 kft to 210 kft. The test program is a challenging and innovative effort that has not been attempted in 40+ years for a NASA vehicle. This paper discusses the various trends of base convective heat flux and pressure as a function of altitude at various locations within the core-stage and booster base regions of the two-percent SLS wind tunnel model. In-depth understanding of the base flow physics is presented using the test data, infrared high-speed imaging and theory. The normalized test design environments are compared to various NASA semi-empirical numerical models to determine exceedance and conservatism of the flight scaled test-derived base design environments. Brief discussion of thermal impact to the launch vehicle base components is also presented.
NASA Astrophysics Data System (ADS)
Park, J.; Hyun, C.; Cho, H.; Park, H.
2010-12-01
Physical weathering caused by freeze-thaw action in cold regions was simulated with artificial weathering simulator in laboratory. Physical weathering of rock in cold regions usually depends on the temperature, rock type and moisture content. Then these three variables were considered in this study. The laboratory freeze-thaw tests were conducted on the three types of rocks, e.g. diorite, basalt and tuff, which are the major rock types around Sejong Station, King George Island, Antarctica. Nine core samples composed of three samples from each rock type were prepared in NX core, and 50 cycles of freeze-thaw test was carried out under dried and saturated water conditions. In this study, the physical weathering of rocks was investigated after each 10 cycles by measuring P-wave velocity, bulk density, effective porosity, Schmidt hardness and uniaxial compression strength(UCS). The experimental result of the diorite and the tuff specimens showed that P-wave velocity, bulk density, effective porosity, Schmidt hardness and UCS were gradually decreased as weathering progresses, but the result of the basalt specimens did not show typical trends due to the characteristics of irregular pore distribution and various pore sizes. Scanning electron microscopy(SEM) photographs of diorite, basalt and tuff specimens weathered in dried and saturated conditions were also acquired to investigate the role of water during physical weathering processes. The number and size of microcracks were increased as weathering progresses. This work was supported by the National Research Foundation of Korea(NRF) Grant(NRF-2010-0027753).
Analysis of the most common concept inventories in physics: What are we assessing?
NASA Astrophysics Data System (ADS)
Laverty, James T.; Caballero, Marcos D.
2018-06-01
Assessing student learning is a cornerstone of educational practice. Standardized assessments have played a significant role in the development of instruction, curricula, and educational spaces in college physics. However, the use of these assessments to evaluate student learning is only productive if they continue to align with our learning goals. Recently, there have been calls to elevate the process of science ("scientific practices") to the same level of importance and emphasis as the concepts of physics ("core ideas" and "crosscutting concepts"). We use the recently developed Three-Dimensional Learning Assessment Protocol to investigate how well the most commonly used standardized assessments in introductory physics (i.e., concept inventories) align with this modern understanding of physics education's learning goals. We find that many of the questions on concept inventories do elicit evidence of student understanding of core ideas, but do not have the potential to elicit evidence of scientific practices or crosscutting concepts. Furthermore, we find that the individual scientific practices and crosscutting concepts that are assessed using these tools are limited to a select few. We discuss the implications that these findings have on designing and testing curricula and instruction both in the past and for the future.
Coupling Schemes for Multiphysics Reactor Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vijay Mahadeven; Jean Ragusa
2007-11-01
This report documents the progress of the student Vijay S. Mahadevan from the Nuclear Engineering Department of Texas A&M University over the summer of 2007 during his visit to the INL. The purpose of his visit was to investigate the physics-based preconditioned Jacobian-free Newton-Krylov method applied to physics relevant to nuclear reactor simulation. To this end he studied two test problems that represented reaction-diffusion and advection-reaction. These two test problems will provide the basis for future work in which neutron diffusion, nonlinear heat conduction, and a twophase flow model will be tightly coupled to provide an accurate model of amore » BWR core.« less
A job-related fitness test for the Dutch police.
Strating, M; Bakker, R H; Dijkstra, G J; Lemmink, K A P M; Groothoff, J W
2010-06-01
The variety of tasks that characterize police work highlights the importance of being in good physical condition. To take a first step at standardizing the administration of a job-related test to assess a person's ability to perform the physical demands of the core tasks of police work. The principal research questions were: are test scores related to gender, age and function and are test scores related to body mass index (BMI) and the number of hours of physical exercise? Data of 6999 police officers, geographically spread over all parts of The Netherlands, who completed a physical competence test over a 1 year period were analysed. Women performed the test significantly more slowly than men. The mean test score was also related to age; the older a person the longer it took to complete the test. A higher BMI was associated with less hours of body exercise a week and a slower test performance, both in women and men. The differences in individual test scores, based on gender and age, have implications for future strategy within the police force. From a viewpoint of 'same job, same standard' one has to accept that test-score differences may lead to the exclusion of certain staff. However, from a viewpoint of 'diversity as a business issue', one may have to accept that on average, both female and older police officers are physically less tailored to their jobs than their male and younger colleagues.
Development and validation of a low-frequency modeling code for high-moment transmitter rod antennas
NASA Astrophysics Data System (ADS)
Jordan, Jared Williams; Sternberg, Ben K.; Dvorak, Steven L.
2009-12-01
The goal of this research is to develop and validate a low-frequency modeling code for high-moment transmitter rod antennas to aid in the design of future low-frequency TX antennas with high magnetic moments. To accomplish this goal, a quasi-static modeling algorithm was developed to simulate finite-length, permeable-core, rod antennas. This quasi-static analysis is applicable for low frequencies where eddy currents are negligible, and it can handle solid or hollow cores with winding insulation thickness between the antenna's windings and its core. The theory was programmed in Matlab, and the modeling code has the ability to predict the TX antenna's gain, maximum magnetic moment, saturation current, series inductance, and core series loss resistance, provided the user enters the corresponding complex permeability for the desired core magnetic flux density. In order to utilize the linear modeling code to model the effects of nonlinear core materials, it is necessary to use the correct complex permeability for a specific core magnetic flux density. In order to test the modeling code, we demonstrated that it can accurately predict changes in the electrical parameters associated with variations in the rod length and the core thickness for antennas made out of low carbon steel wire. These tests demonstrate that the modeling code was successful in predicting the changes in the rod antenna characteristics under high-current nonlinear conditions due to changes in the physical dimensions of the rod provided that the flux density in the core was held constant in order to keep the complex permeability from changing.
Physics in perspective. Volume 2, part A: The core subfields of physics
NASA Technical Reports Server (NTRS)
1972-01-01
Panel reports to the Survey Committee are presented to provide detailed technical background and documentation for committee findings, and to indicate the vitality and strength of the subfields of physics. Included are the core subfields of acoustics, optics, condensed matter, plasmas and fluids, atomic molecular and electron physics, nuclear physics, and elementary particle physics.
Development of suspended core soft glass fibers for far-detuned parametric conversion
NASA Astrophysics Data System (ADS)
Rampur, Anupamaa; Ciąćka, Piotr; Cimek, Jarosław; Kasztelanic, Rafał; Buczyński, Ryszard; Klimczak, Mariusz
2018-04-01
Light sources utilizing χ (2) parametric conversion combine high brightness with attractive operation wavelengths in the near and mid-infrared. In optical fibers, it is possible to use χ (3) degenerate four-wave mixing in order to obtain signal-to-idler frequency detuning of over 100 THz. We report on a test series of nonlinear soft glass suspended core fibers intended for parametric conversion of 1000-1100 nm signal wavelengths available from an array of mature lasers into the near-to-mid-infrared range of 2700-3500 nm under pumping with an erbium sub-picosecond laser system. The presented discussion includes modelling of the fiber properties, details of their physical development and characterization, and experimental tests of parametric conversion.
Application of the Toyota Production System improves core laboratory operations.
Rutledge, Joe; Xu, Min; Simpson, Joanne
2010-01-01
To meet the increased clinical demands of our hospital expansion, improve quality, and reduce costs, our tertiary care, pediatric core laboratory used the Toyota Production System lean processing to reorganize our 24-hour, 7 d/wk core laboratory. A 4-month, consultant-driven process removed waste, led to a physical reset of the space to match the work flow, and developed a work cell for our random access analyzers. In addition, visual controls, single piece flow, standard work, and "5S" were instituted. The new design met our goals as reflected by achieving and maintaining improved turnaround time (TAT; mean for creatinine reduced from 54 to 23 minutes) with increased testing volume (20%), monetary savings (4 full-time equivalents), decreased variability in TAT, and better space utilization (25% gain). The project had the unanticipated consequence of eliminating STAT testing because our in-laboratory TAT for routine testing was less than our prior STAT turnaround goal. The viability of this approach is demonstrated by sustained gains and further PDCA (Plan, Do, Check, Act) improvements during the 4 years after completion of the project.
Normal Mode Derived Models of the Physical Properties of Earth's Outer Core
NASA Astrophysics Data System (ADS)
Irving, J. C. E.; Cottaar, S.; Lekic, V.; Wu, W.
2017-12-01
Earth's outer core, the largest reservoir of metal in our planet, is comprised of an iron alloy of an uncertain composition. Its dynamical behaviour is responsible for the generation of Earth's magnetic field, with convection driven both by thermal and chemical buoyancy fluxes. Existing models of the seismic velocity and density of the outer core exhibit some variation, and there are only a small number of models which aim to represent the outer core's density.It is therefore important that we develop a better understanding of the physical properties of the outer core. Though most of the outer core is likely to be well mixed, it is possible that the uppermost outer core is stably stratified: it may be enriched in light elements released during the growth of the solid, iron enriched, inner core; by elements dissolved from the mantle into the outer core; or by exsolution of compounds previously dissolved in the liquid metal which will eventually be swept into the mantle. The stratified layer may host MAC or Rossby waves and it could impede communication between the chemically differentiated mantle and outer core, including screening out some of the geodynamo's signal. We use normal mode center frequencies to estimate the physical properties of the outer core in a Bayesian framework. We estimate the mineral physical parameters needed to best produce velocity and density models of the outer core which are consistent with the normal mode observations. We require that our models satisfy realistic physical constraints. We create models of the outer core with and without a distinct uppermost layer and assess the importance of this region.Our normal mode-derived models are compared with observations of body waves which travel through the outer core. In particular, we consider SmKS waves which are especially sensitive to the uppermost outer core and are therefore an important way to understand the robustness of our models.
Deterministic Modeling of the High Temperature Test Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortensi, J.; Cogliati, J. J.; Pope, M. A.
2010-06-01
Idaho National Laboratory (INL) is tasked with the development of reactor physics analysis capability of the Next Generation Nuclear Power (NGNP) project. In order to examine INL’s current prismatic reactor deterministic analysis tools, the project is conducting a benchmark exercise based on modeling the High Temperature Test Reactor (HTTR). This exercise entails the development of a model for the initial criticality, a 19 column thin annular core, and the fully loaded core critical condition with 30 columns. Special emphasis is devoted to the annular core modeling, which shares more characteristics with the NGNP base design. The DRAGON code is usedmore » in this study because it offers significant ease and versatility in modeling prismatic designs. Despite some geometric limitations, the code performs quite well compared to other lattice physics codes. DRAGON can generate transport solutions via collision probability (CP), method of characteristics (MOC), and discrete ordinates (Sn). A fine group cross section library based on the SHEM 281 energy structure is used in the DRAGON calculations. HEXPEDITE is the hexagonal z full core solver used in this study and is based on the Green’s Function solution of the transverse integrated equations. In addition, two Monte Carlo (MC) based codes, MCNP5 and PSG2/SERPENT, provide benchmarking capability for the DRAGON and the nodal diffusion solver codes. The results from this study show a consistent bias of 2–3% for the core multiplication factor. This systematic error has also been observed in other HTTR benchmark efforts and is well documented in the literature. The ENDF/B VII graphite and U235 cross sections appear to be the main source of the error. The isothermal temperature coefficients calculated with the fully loaded core configuration agree well with other benchmark participants but are 40% higher than the experimental values. This discrepancy with the measurement stems from the fact that during the experiments the control rods were adjusted to maintain criticality, whereas in the model, the rod positions were fixed. In addition, this work includes a brief study of a cross section generation approach that seeks to decouple the domain in order to account for neighbor effects. This spectral interpenetration is a dominant effect in annular HTR physics. This analysis methodology should be further explored in order to reduce the error that is systematically propagated in the traditional generation of cross sections.« less
Critical Resolution and Physical Dependenices of Supernovae: Stars in Heat and Under Pressure
NASA Astrophysics Data System (ADS)
Vartanyan, David; Burrows, Adam Seth
2017-01-01
For over five decades, the mechanism of explosion in core-collapse supernova continues to remain one of the last untoppled bastions in astrophysics, presenting both a technical and physical problem.Motivated by advances in computation and nuclear physics and the resilience of the core-collapse problem, collaborators Adam Burrows (Princeton), Joshua Dolence (LANL), and Aaron Skinner (LNL) have developed FORNAX - a highly parallelizable multidimensional supernova simulation code featuring an explicit hydrodynamic and radiation-transfer solver.We present the results (Vartanyan et. al 2016, Burrows et. al 2016, both in preparation) of a sequence of two-dimensional axisymmetric simulations of core-collapse supernovae using FORNAX, probing both progenitor mass dependence and the effect of physical inputs in explosiveness in our study on the revival of the stalled shock via the neutrino heating mechanism. We also performed a resolution study, testing spatial and energy group resolutions as well as compilation flags. We illustrate that, when the protoneutron star bounded by a stalled shock is close to the critical explosion condition (Burrows & Goshy 1993), small changes of order 10% in neutrino energies and luminosities can result in explosion, and that these effects couple nonlinearly.We show that many-body medium effects due to neutrino-nucleon scattering as well as inelastic neutrino-nucleon and neutrino-electron scattering are strongly favorable to earlier and more vigorous explosions by depositing energy in the gain region. Additionally, we probe the effects of a ray-by-ray+ transport solver (which does not include transverse velocity terms) employed by many groups and confirm that it artificially accelerates explosion (see also Skinner et. al 2016).In the coming year, we are gearing up for the first set of 3D simulations yet performed in the context of core-collapse supernovae employing 20 energy groups, and one of the most complete nuclear physics modules in the field with the ambitious goal of simulating supernova remants like Cas A. The current environment for core-collapse supernova provides for invigorating optimism that a robust explosion mechanism is within reach on graduate student lifetimes.
West, Daniel J; Cook, Christian J; Beaven, Martyn C; Kilduff, Liam P
2014-06-01
Core temperature typically displays a low circadian in the morning before peaking later in the day, and these changes occur within small physiological ranges. Body temperature plays an important role in physical performance, and some athletes may be required to train and compete in both the morning and evening. However, the influence of the circadian change in body temperature and its influence on physical performance in elite athletes are unclear. This study examined the effects of the time of day on core temperature and lower body power output in elite rugby union sevens players. Sixteen elite rugby union sevens players completed morning (in AM) countermovement jump and core temperature (Tcore) measurement, which were then repeated later the same day (in PM). Countermovement jump was processed for peak power output (PPO). Data were analyzed using paired samples t-test and Pearson's product moment correlation and are presented in mean ± SD. Tcore significantly increased from AM to PM (AM, 36.92 ± 0.23 vs. PM, 37.18 ± 0.18° C; P < 0.001) with PPO significantly increasing from AM to PM in all 16 players (AM, 5248 ± 366 vs. PM, 5413 ± 361 W; P < 0.001). The delta change in Tcore (0.26 ± 0.13° C) and PPO (164 ± 78 W) was significantly related (r = 0.781; P < 0.001). In conclusion, small circadian changes in core temperature can influence physical performance in elite athletes. Coaches should seek to use strategies, which may raise morning body temperature to offset the circadian low in the morning.
Ambegaonkar, Jatin P; Cortes, Nelson; Caswell, Shane V; Ambegaonkar, Gautam P; Wyon, Matthew
2016-04-01
Dance is a physically demanding activity, with almost 70% of all injuries in dancers occurring in the lower extremity (LE). Prior researchers report that muscle function (e.g. muscle endurance) and anatomical factors (e.g. hypermobility) affect physical performance (e.g. balance) and can subsequently influence LE injury risk. Specifically, lesser core muscle endurance, balance deficits, and greater hypermobility are related to increased LE injury risk. However, the potentials interrelationships among these factors in dancers remain unclear. The purposes of this study were to examine the relationships among core muscle endurance, balance, and LE hypermobility, and determine the relative contributions of core muscle endurance and LE hypermobility as predictors of balance in female collegiate dancers. Cross-sectional. Core muscle endurance was evaluated using the combined average anterior, left, and right lateral plank test time scores(s). LE hypermobility was measured using the LE-specific Beighton hypermobility measure, defining hypermobility if both legs had greater than 10 ° knee hyperextension. Balance was measured via the composite anterior, posterolateral, and posteromedial Star Excursion Balance Test (SEBT) reach distances (normalized to leg length) in 15 female healthy collegiate dancers (18.3 + 0.5yrs, 165.5 + 6.9cm, 63.7 + 12.1kg). Point-biserial-correlation-coefficients examined relationships and a linear regression examined whether core endurance and hypermobility predicted balance (p<.05). LE hypermobility (Yes; n = 3, No; n = 12) and balance (87.2 + 8.3% leg length) were positively correlated r(14)=.67, (p=.01). However, core endurance (103.9 + 50.6 s) and balance were not correlated r(14)=.32, (p=.26). LE hypermobility status predicted 36.9% of the variance in balance scores (p=.01). LE hypermobility, but not core muscle endurance may be related to balance in female collegiate dancers. While LE hypermobility status influenced balance in the female collegiate dancers, how this LE hypermobility status affects their longitudinal injury risk as their careers progress needs further study. Overall, the current findings suggest that rather than using isolated core endurance-centric training, clinicians may encourage dancers to use training programs that incorporate multiple muscles - in order to improve their balance, and possibly reduce their LE injury risk. 2b.
Cortes, Nelson; Caswell, Shane V.; Ambegaonkar, Gautam P.; Wyon, Matthew
2016-01-01
Background Dance is a physically demanding activity, with almost 70% of all injuries in dancers occurring in the lower extremity (LE). Prior researchers report that muscle function (e.g. muscle endurance) and anatomical factors (e.g. hypermobility) affect physical performance (e.g. balance) and can subsequently influence LE injury risk. Specifically, lesser core muscle endurance, balance deficits, and greater hypermobility are related to increased LE injury risk. However, the potentials interrelationships among these factors in dancers remain unclear. Purpose The purposes of this study were to examine the relationships among core muscle endurance, balance, and LE hypermobility, and determine the relative contributions of core muscle endurance and LE hypermobility as predictors of balance in female collegiate dancers. Study Design Cross-sectional Methods Core muscle endurance was evaluated using the combined average anterior, left, and right lateral plank test time scores(s). LE hypermobility was measured using the LE-specific Beighton hypermobility measure, defining hypermobility if both legs had greater than 10 ° knee hyperextension. Balance was measured via the composite anterior, posterolateral, and posteromedial Star Excursion Balance Test (SEBT) reach distances (normalized to leg length) in 15 female healthy collegiate dancers (18.3 + 0.5yrs, 165.5 + 6.9cm, 63.7 + 12.1kg). Point-biserial-correlation-coefficients examined relationships and a linear regression examined whether core endurance and hypermobility predicted balance (p<.05). Results LE hypermobility (Yes; n = 3, No; n = 12) and balance (87.2 + 8.3% leg length) were positively correlated r(14)=.67, (p=.01). However, core endurance (103.9 + 50.6 s) and balance were not correlated r(14)=.32, (p=.26). LE hypermobility status predicted 36.9% of the variance in balance scores (p=.01). Conclusion LE hypermobility, but not core muscle endurance may be related to balance in female collegiate dancers. While LE hypermobility status influenced balance in the female collegiate dancers, how this LE hypermobility status affects their longitudinal injury risk as their careers progress needs further study. Overall, the current findings suggest that rather than using isolated core endurance-centric training, clinicians may encourage dancers to use training programs that incorporate multiple muscles - in order to improve their balance, and possibly reduce their LE injury risk. Level of Evidence 2b PMID:27104055
Sreedevi, S; Sanjeev, R; Raghavan, Rekha; Abraham, Anna; Rajamani, T; Govind, Girish Kumar
2015-08-01
Endodontically treated teeth have significantly different physical and mechanical properties compared to vital teeth and are more prone to fracture. The study aims to compare the fracture resistance of endodontically treated teeth with and without post reinforcement, custom cast post-core and prefabricated post with glass ionomer core and to evaluate the ferrule effect on endodontically treated teeth restored with custom cast post-core. A total of 40 human maxillary central incisors with similar dimensions devoid of any root caries, restorations, previous endodontic treatment or cracks were selected from a collection of stored extracted teeth. An initial silicone index of each tooth was made. They were treated endodontically and divided into four groups of ten specimens each. Their apical seal was maintained with 4 mm of gutta-percha. Root canal preparation was done and then post core fabrication was done. The prepared specimens were subjected to load testing using a computer coordinated UTM. The fracture load results were then statistically analyzed. One-way ANOVA was followed by paired t-test. 1. Reinforcement of endodontically treated maxillary central incisors with post and core, improved their fracture resistance to be at par with that of endodontically treated maxillary central incisor, with natural crown. 2. The fracture resistance of endodontically treated maxillary central incisors is significantly increased when restored with custom cast post-core and 2 mm ferrule. With 2 mm ferrule, teeth restored with custom cast post-core had a significantly higher fracture resistance than teeth restored with custom cast post-core or prefabricated post and glass ionomer core without ferrule.
Webster, Joseph B
2009-03-01
To determine the performance and change over time when incorporating questions in the core competency domains of practice-based learning and improvement (PBLI), systems-based practice (SBP), and professionalism (PROF) into the national PM&R Self-Assessment Examination for Residents (SAER). Prospective, longitudinal analysis. The national Self-Assessment Examination for Residents (SAER) in Physical Medicine and Rehabilitation, which is administered annually. Approximately 1100 PM&R residents who take the examination annually. Inclusion of progressively more challenging questions in the core competency domains of PBLI, SBP, and PROF. Individual test item level of difficulty (P value) and discrimination (point biserial index). Compared with the overall test, questions in the subtopic areas of PBLI, SBP, and PROF were relatively easier and less discriminating (correlation of resident performance on these domains compared with that on the total test). These differences became smaller during the 3-year time period. The difficulty level of the questions in each of the subtopic domains was raised during the 3 year period to a level close to the overall exam. Discrimination of the test items improved or remained stable. This study demonstrates that, with careful item writing and review, multiple-choice items in the PBLI, SBP, and PROF domains can be successfully incorporated into an annual, national self-assessment examination for residents. The addition of these questions had value in assessing competency while not compromising the overall validity and reliability of the exam. It is yet to be determined if resident performance on these questions corresponds to performance on other measures of competency in the areas of PBLI, SBP, and PROF.
30 CFR 773.6 - Public participation in permit processing.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Information that pertains only to the analysis of the chemical and physical properties of the coal to be mined... operation, including the U.S. Department of Agriculture Soil Conservation Service district office, the local... pertaining to coal seams, test borings, core samplings, or soil samples in an application shall be made...
30 CFR 773.6 - Public participation in permit processing.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Information that pertains only to the analysis of the chemical and physical properties of the coal to be mined... operation, including the U.S. Department of Agriculture Soil Conservation Service district office, the local... pertaining to coal seams, test borings, core samplings, or soil samples in an application shall be made...
The effect of short-term isometric training on core/torso stiffness.
Lee, Benjamin; McGill, Stuart
2017-09-01
"Core" exercise is a basic part of many physical training regimens with goals ranging from rehabilitation of spine and knee injuries to improving athletic performance. Core stiffness has been proposed to perform several functions including reducing pain by minimising joint micro-movements, and enhancing strength and speed performance. This study probes the links between a training approach and immediate but temporary changes in stiffness. Passive and active stiffness was measured on 24 participants; 12 having little to no experience in core training (inexperienced), and the other 12 being athletes experienced to core training methods; before and after a 15 min bout of isometric core exercises. Passive stiffness was assessed on a "frictionless" bending apparatus and active stiffness assessed via a quick release mechanism. Short-term isometric core training increased passive and active stiffness in most directions for both inexperienced and experienced participants, passive left lateral bend among experienced participants being the exception (P < 0.05). There was no difference between the inexperienced and experienced groups. The results confirm that the specific isometric training exercise approach tested here can induce immediate changes in core stiffness, in this case following a single session. This may influence performance and injury resilience for a brief period.
Romanowicz, Barbara; Cao, Aimin; Godwal, Budhiram; ...
2016-01-06
Using an updated data set of ballistic PKIKP travel time data at antipodal distances, we test different models of anisotropy in the Earth's innermost inner core (IMIC) and obtain significantly better fits for a fast axis aligned with Earth's rotation axis, rather than a quasi-equatorial direction, as proposed recently. Reviewing recent results on the single crystal structure and elasticity of iron at core conditions, we find that an hcp structure with the fast c axis parallel to Earth's rotation is more likely but a body-centered cubic structure with the [111] axis aligned in that direction results in very similar predictionsmore » for seismic anisotropy. These models are therefore not distinguishable based on current seismological data. In addition, to match the seismological observations, the inferred strength of anisotropy in the IMIC (6–7%) implies almost perfect alignment of iron crystals, an intriguing, albeit unlikely situation, especially in the presence of heterogeneity, which calls for further studies. Fast axis of anisotropy in the central part of the inner core aligned with Earth's axis of rotation Lastly, the structure of iron in the inner core is most likely hcp, not bcc Not currently possible to distinguish between hcp and bcc structures from seismic observations« less
Development of the physics driver in NOAA Environmental Modeling System (NEMS)
NASA Astrophysics Data System (ADS)
Lei, H.; Iredell, M.; Tripp, P.
2016-12-01
As a key component of the Next Generation Global Prediction System (NGGPS), a physics driver is developed in the NOAA Environmental Modeling System (NEMS) in order to facilitate the research, development, and transition to operations of innovations in atmospheric physical parameterizations. The physics driver connects the atmospheric dynamic core, the Common Community Physics Package and the other NEMS-based forecast components (land, ocean, sea ice, wave, and space weather). In current global forecasting system, the physics driver has incorporated major existing physics packages including radiation, surface physics, cloud and microphysics, ozone, and stochastic physics. The physics driver is also applicable to external physics packages. The structure adjustment in NEMS by separating the PHYS trunk is to create an open physics package pool. This open platform is beneficial to the enhancement of U.S. weather forecast ability. In addition, with the universal physics driver, the NEMS can also be used for specific functions by connecting external target physics packages through physics driver. The test of its function is to connect a physics dust-radiation model in the system. Then the modified system can be used for dust storm prediction and forecast. The physics driver is also developed into a standalone form. This is to facilitate the development works on physics packages. The developers can save instant fields of meteorology data and snapshots from the running system , and then used them as offline driving data fields to test the new individual physics modules or small modifications to current modules. This prevents the run of whole system for every test.
CHEMICAL AND PHYSICAL CHARACTERIZATION OF COLLAPSING LOW-MASS PRESTELLAR DENSE CORES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hincelin, U.; Commerçon, B.; Wakelam, V.
The first hydrostatic core, also called the first Larson core, is one of the first steps in low-mass star formation as predicted by theory. With recent and future high-performance telescopes, the details of these first phases are becoming accessible, and observations may confirm theory and even present new challenges for theoreticians. In this context, from a theoretical point of view, we study the chemical and physical evolution of the collapse of prestellar cores until the formation of the first Larson core, in order to better characterize this early phase in the star formation process. We couple a state-of-the-art hydrodynamical modelmore » with full gas-grain chemistry, using different assumptions for the magnetic field strength and orientation. We extract the different components of each collapsing core (i.e., the central core, the outflow, the disk, the pseudodisk, and the envelope) to highlight their specific physical and chemical characteristics. Each component often presents a specific physical history, as well as a specific chemical evolution. From some species, the components can clearly be differentiated. The different core models can also be chemically differentiated. Our simulation suggests that some chemical species act as tracers of the different components of a collapsing prestellar dense core, and as tracers of the magnetic field characteristics of the core. From this result, we pinpoint promising key chemical species to be observed.« less
Exercise training in adults with Pompe disease: the effects on pain, fatigue, and functioning.
Favejee, Marein M; van den Berg, Linda E M; Kruijshaar, Michelle E; Wens, Stephan C A; Praet, Stephan F E; Pim Pijnappel, W W M; van Doorn, Pieter A; Bussmann, Johannes B J; van der Ploeg, Ans T
2015-05-01
To assess if a 12-week exercise intervention to improve aerobic fitness, muscle strength, and core stability also had an impact on fatigue, pain, activity, and participation in adults with Pompe disease, an inherited neuromuscular disorder. Open-label trial. Change was assessed by the chi-square test and Wilcoxon signed-rank test. Physiotherapy practices. Mildly affected adult patients with Pompe disease who were not dependent on ventilators and/or walking devices and were receiving enzyme replacement therapy. Patients participated in a 12-week exercise program, which included 36 sessions of standardized aerobic, resistance, and core stability exercises. Before and after the training program we evaluated fatigue (Fatigue Severity Scale), pain (yes/no), motor function (Quantitative Muscle Function Test, Rasch-built Pompe-specific Activity Scale), amount of physical activity (activity monitor), and health status (Medical Outcomes Study 36-Item Short-Form Health Survey). Of the 25 patients enrolled, 23 completed the program. At the end of the program, levels of fatigue (median, 5.33 to 4.78, P=.01) and pain (56.5% to 21.7%, P=.04) improved. The quality of motor function and the amount of physical activity patients engaged in did not change. Changes in pain and fatigue were not related to improvements in aerobic fitness or muscle strength. This study in mildly affected adult patients with Pompe disease suggests that a combined training program aiming to increase aerobic fitness, muscle strength, and core stability also leads to improvements in fatigue and pain. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Wang, Chen-Hao; Hsu, Hsin-Cheng; Wang, Kai-Ching
2014-08-01
Carbon-supported Pt, Pd, Pd-Pt core-shell (Pt(shell)-Pd(core)/C) and Ir-decorated Pd-Pt core-shell (Ir-decorated Pt(shell)-Pd(core)/C) catalysts were synthesized, and their physical properties, electrochemical behaviors, oxygen reduction reaction (ORR) characteristics and proton exchange membrane fuel cell (PEMFC) performances were investigated herein. From the XRD patterns and TEM images, Ir-decorated Pt(shell)-Pd(core)/C has been confirmed that Pt was deposited on the Pd nanoparticle which had the core-shell structure. Ir-decorated Pt(shell)-Pd(core)/C has more positive OH reduction peak than Pt/C, which is beneficial to weaken the binding energy of Pt-OH during the ORR. Thus, Ir-decorated Pt(shell)-Pd(core)/C has higher ORR activity than Pt/C. The maximum power density of H2-O2 PEMFC using Ir-decorated Pt(shell)-Pd(core)/C is 792.2 mW cm(-2) at 70°C, which is 24% higher than that using Pt/C. The single-cell accelerated degradation test of PEMFC using Ir-decorated Pt(shell)-Pd(core)/C shows good durability by the potential cycling of 40,000 cycles. This study concludes that Ir-decorated Pt(shell)-Pd(core)/C has the low Pt content, but it can facilitate the low-cost and high-efficient PEMFC. Copyright © 2013 Elsevier Inc. All rights reserved.
Pierce, H.A.; Murray, J.B.
2009-01-01
The International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS) drilled three core holes to a composite depth of 1766 m within the moat of the Chesapeake Bay impact structure. Core recovery rates from the drilling were high (??90%), but problems with core hole collapse limited the geophysical downhole logging to natural-gamma and temperature logs. To supplement the downhole logs, ??5% of the Chesapeake Bay impact structure cores was processed through the USGS GeoTek multisensor core logger (MSCL) located in Menlo Park, California. The measured physical properties included core thickness (cm), density (g cm-3), P-wave velocity (m s-1), P-wave amplitude (%), magnetic susceptibility (cgs), and resistivity (ohm-m). Fractional porosity was a secondary calculated property. The MSCL data-sampling interval for all core sections was 1 cm longitudinally. Photos of each MSCL sampled core section were imbedded with the physical property data for direct comparison. These data have been used in seismic, geologic, thermal history, magnetic, and gravity models of the Chesapeake Bay impact structure. Each physical property curve has a unique signature when viewed over the full depth of the Chesapeake Bay impact structure core holes. Variations in the measured properties reflect differences in pre-impact target-rock lithologies and spatial variations in impact-related deformation during late-stage crater collapse and ocean resurge. ?? 2009 The Geological Society of America.
Evaluating nuclear physics inputs in core-collapse supernova models
NASA Astrophysics Data System (ADS)
Lentz, E.; Hix, W. R.; Baird, M. L.; Messer, O. E. B.; Mezzacappa, A.
Core-collapse supernova models depend on the details of the nuclear and weak interaction physics inputs just as they depend on the details of the macroscopic physics (transport, hydrodynamics, etc.), numerical methods, and progenitors. We present preliminary results from our ongoing comparison studies of nuclear and weak interaction physics inputs to core collapse supernova models using the spherically-symmetric, general relativistic, neutrino radiation hydrodynamics code Agile-Boltztran. We focus on comparisons of the effects of the nuclear EoS and the effects of improving the opacities, particularly neutrino--nucleon interactions.
Ruaro, João A; Ruaro, Marinêz B; Guerra, Ricardo O
2014-01-01
To facilitate a systematic, comprehensive description of functioning and to enable the use of the International Classification of Functioning, Disability and Health (ICF) in clinical practice and research, core sets have been developed. The aim of this study was to propose a version of the ICF core set to classify the physical health of older adults. The proposition of the ICF core set was based on the Delphi technique. The panel of experts included 8 Brazilian researchers (physical therapists, medical doctors, nurses, and physical educators). The communication was wholly electronic. In total, there were 5 rounds of interactivity between the participants to arrive at the final version of the construct. The ICF core set presented 30 categories (14 on body functions, 4 on body structures, 9 on activities or participation, and 3 on environmental factors) and had a Cronbach α of 0.964. The presented core set is a secure, fast, and accurate instrument for assessing the physical health and engagement of older adults. It defines points related to functioning and health that are relevant when evaluating this population, as well as when reevaluating it and monitoring changes.
Hoglund, Lisa T; Pontiggia, Laura; Kelly, John D
2018-01-01
Patellofemoral joint (PFJ) osteoarthritis (OA) is prevalent in middle-aged and older adults. Despite this, there are minimal studies which have examined conservative interventions for PFJ OA. Weakness of proximal lower extremity muscles is associated with PFJ OA. It is unknown if a hip muscle strengthening and lumbopelvic-hip core stabilization program will improve symptoms and function in persons with PFJ OA. This study examined the feasibility and impact of a 6-week hip muscle strengthening and core stabilization program on pain, symptoms, physical performance, peak muscle torques, and quality of life in persons with PFJ OA. Ten females with PFJ OA and ten age- and sex-matched controls participated in baseline tests. PFJ OA participants attended ten twice-a-week hip strengthening and core stabilization exercise sessions. Outcome measures included questionnaires, the Timed-Up-and-Go, and peak isometric torque of hip and quadriceps muscles. Data were tested for normality; parametric and non-parametric tests were used as appropriate. At baseline, the PFJ OA group had significantly worse symptoms, slower Timed-Up-and-Go performance, and lower muscle torques than control participants. PFJ OA group adherence to supervised exercise sessions was adequate. All PFJ OA participants attended at least nine exercise sessions. Five PFJ OA participants returned 6-month follow-up questionnaires, which was considered fair retention. The PFJ OA participants' self-reported pain, symptoms, function in daily living, function in sport, and quality of life all improved at 6 weeks ( P < 0.05). Timed-Up-and-Go time score improved at 6 weeks ( P = 0.005). Peak hip external rotator torque increased ( P = 0.01). Improvements in pain and self-reported function were no longer significant 6 months following completion of the intervention. PFJ OA participants were adherent to the supervised sessions of the intervention. Improvement in symptoms, physical performance, and muscle torque were found after 6 weeks. Participant retention at 6 months was fair, and significant changes were no longer present. Our findings suggest that a hip strengthening and core stabilization program may be beneficial to improve symptoms, function, and physical performance in persons with PFJ OA. Future studies are needed, and additional measures should be taken to improve long-term adherence to exercise. ClinicalTrials.gov NCT02825238. Registered 6 July 2016 (retrospectively registered).
NASA Technical Reports Server (NTRS)
Struk, Peter; Tsao, Jen-Ching; Bartkus, Tadas
2017-01-01
This paper describes plans and preliminary results for using the NASA Propulsion Systems Lab (PSL) to experimentally study the fundamental physics of ice-crystal ice accretion. NASA is evaluating whether this facility, in addition to full-engine and motor-driven-rig tests, can be used for more fundamental ice-accretion studies that simulate the different mixed-phase icing conditions along the core flow passage of a turbo-fan engine compressor. The data from such fundamental accretion tests will be used to help develop and validate models of the accretion process. This paper presents data from some preliminary testing performed in May 2015 which examined how a mixed-phase cloud could be generated at PSL using evaporative cooling in a warmer-than-freezing environment.
NASA Technical Reports Server (NTRS)
Struk, Peter; Tsao, Jen-Ching; Bartkus, Tadas
2016-01-01
This presentation accompanies the paper titled Plans and Preliminary Results of Fundamental Studies of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory. NASA is evaluating whether PSL, in addition to full-engine and motor-driven-rig tests, can be used for more fundamental ice-accretion studies that simulate the different mixed-phase icing conditions along the core flow passage of a turbo-fan engine compressor. The data from such fundamental accretion tests will be used to help develop and validate models of the accretion process. This presentation (and accompanying paper) presents data from some preliminary testing performed in May 2015 which examined how a mixed-phase cloud could be generated at PSL using evaporative cooling in a warmer-than-freezing environment.
SPRUCE Peat Physical and Chemical Characteristics from Experimental Plot Cores, 2012
Iversen, C. M. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Brice, D. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Phillips, J. R. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; McFarlane, K. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hobbie, E. A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Kolka, R. K. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.
2012-01-01
This data set reports the results of physical and chemical analyses of peat core samples from the SPRUCE experimental study plots located in the S1-Bog. On August 13-15, 2012, a team of SPRUCE investigators and collaborators collected core samples of peat in the SPRUCE experimental plots. The goal was to characterize the biological, physical, and chemical characteristics of peat, and how those characteristics changed throughout the depth profile of the bog, prior to the initialization of the SPRUCE experimental warming and CO2 treatments. Cores were collected from 16 experimental plots; samples were collected from the hummock and hollow surfaces to depths of 200-300 cm in defined increments. Three replicate cores were collected from both hummock and hollow locations in each plot. The coring locations within each plot were mapped
Hands-on Physics Education of Residents in Diagnostic Radiology.
Zhang, Jie; Hardy, Peter A; DiSantis, David J; Oates, M Elizabeth
2017-06-01
The American Board of Radiology Core Examination integrates assessment of physics knowledge into its overall testing of clinical radiology, with an emphasis on understanding image quality and artifacts, radiation dose, and patient safety for each modality or subspecialty organ system. Accordingly, achieving a holistic approach to physics education of radiology residents is a huge challenge. The traditional teaching of radiological physics-simply through didactic lectures-was not designed for such a holistic approach. Admittedly, time constraints and clinical demands can make incorporation of physics teaching into clinical practice problematic. We created and implemented a week-long, intensive physics rotation for fledgling radiology residents and evaluated its effectiveness. The dedicated physics rotation is held for 1 week during the first month of radiology residency. It comprises three components: introductory lectures, hands-on practical clinical physics operations, and observation of clinical image production. A brief introduction of the physics pertinent to each modality is given at the beginning of each session. Hands-on experimental demonstrations are emphasized, receiving the greatest allotment of time. The residents perform experiments such as measuring radiation dose, studying the relationship between patient dose and clinical practice (eg, fluoroscopy technique), investigating the influence of acquisition parameters (kV, mAs) on radiographs, and evaluating image quality using computed tomography, magnetic resonance imaging, ultrasound, and gamma camera/single-photon emission computed tomography/positron emission tomography phantoms. Quantitative assessment of the effectiveness of the rotation is based on an examination that tests the residents' grasp of basic medical physics concepts along with written course evaluations provided by each resident. The pre- and post-rotation tests show that after the physics rotation, the average correct score of 25 questions improved from 13.6 ± 2.4 to 19 ± 1.2. The survey shows that the physics rotation during the first week of residency is favored by all residents and that 1 week's duration is appropriate. All residents are of the opinion that the intensive workshop would benefit them in upcoming clinical rotations. Residents acknowledge becoming more comfortable regarding the use of radiation and providing counsel regarding radiation during pregnancy. An immersive, short-duration, clinically oriented physics rotation is well received by new or less experienced radiology trainees, correlates basic physics concepts with their relevance to clinical imaging, and more closely parallels expectations of the American Board of Radiology Core Examination. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
U.S. initiatives to strengthen forensic science & international standards in forensic DNA.
Butler, John M
2015-09-01
A number of initiatives are underway in the United States in response to the 2009 critique of forensic science by a National Academy of Sciences committee. This article provides a broad review of activities including efforts of the White House National Science and Technology Council Subcommittee on Forensic Science and a partnership between the Department of Justice (DOJ) and the National Institute of Standards and Technology (NIST) to create the National Commission on Forensic Science and the Organization of Scientific Area Committees. These initiatives are seeking to improve policies and practices of forensic science. Efforts to fund research activities and aid technology transition and training in forensic science are also covered. The second portion of the article reviews standards in place or in development around the world for forensic DNA. Documentary standards are used to help define written procedures to perform testing. Physical standards serve as reference materials for calibration and traceability purposes when testing is performed. Both documentary and physical standards enable reliable data comparison, and standard data formats and common markers or testing regions are crucial for effective data sharing. Core DNA markers provide a common framework and currency for constructing DNA databases with compatible data. Recent developments in expanding core DNA markers in Europe and the United States are discussed. Published by Elsevier Ireland Ltd.
U.S. initiatives to strengthen forensic science & international standards in forensic DNA
Butler, John M.
2015-01-01
A number of initiatives are underway in the United States in response to the 2009 critique of forensic science by a National Academy of Sciences committee. This article provides a broad review of activities including efforts of the White House National Science and Technology Council Subcommittee on Forensic Science and a partnership between the Department of Justice (DOJ) and the National Institute of Standards and Technology (NIST) to create the National Commission on Forensic Science and the Organization of Scientific Area Committees. These initiatives are seeking to improve policies and practices of forensic science. Efforts to fund research activities and aid technology transition and training in forensic science are also covered. The second portion of the article reviews standards in place or in development around the world for forensic DNA. Documentary standards are used to help define written procedures to perform testing. Physical standards serve as reference materials for calibration and traceability purposes when testing is performed. Both documentary and physical standards enable reliable data comparison, and standard data formats and common markers or testing regions are crucial for effective data sharing. Core DNA markers provide a common framework and currency for constructing DNA databases with compatible data. Recent developments in expanding core DNA markers in Europe and the United States are discussed. PMID:26164236
The Facilitative Effect of Acute Rhythmic Exercise on Reading Comprehension of Junior High Students
ERIC Educational Resources Information Center
Mead, Tim P.; Roark, Susan; Larive, Lane J.; Percle, Kristen C.; Auenson, Rachel N.
2013-01-01
With tightening school budgets and continued emphasis on core subject standardized testing, physical education often takes a backseat to academic areas that school administrators deem more important. Much time is spent using improvement strategies in the classroom that do not involve exercise. Two hundred eighty-five sixth to eighth grade students…
Effects of stress paths on physical properties of sediments at the Nankai Trough subduction zone
NASA Astrophysics Data System (ADS)
Kitajima, H.; Saffer, D. M.
2011-12-01
Stress states are one of the most important factors governing deformation modes and fault strength. In subduction systems where tectonic stress is large, sediments are subjected to complicated stress conditions in time and space. Because direct measurements of stress are very limited, stress conditions at depths have been estimated by combining seismic reflection data with empirical relations between compressional-wave, porosity, and effective stress [Tsuji et al., 2008; Tobin and Saffer, 2009]. However, most of the empirical relations are derived from experiments conducted under isotropic conditions, and do not account for the more complicated stress states expected in active subduction-accretion complexes. In this study, we aim to derive relations between physical properties and stress states from triaxial deformation experiments on sediments. During the Integrated Ocean Drilling Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) Expeditions 314, 315, 319, 322, and 333, core samples were recovered from shallow boreholes into the accretionary prism and two sites seaward of the deformation front (reference sites). We used core samples from reference sites (Sites C0011 and C0012) for this study because they represent input material for the subduction system, and have not been subjected to tectonic compression in the accretionary wedge. In our deformation tests, samples are loaded under a range of different stress paths including isotropic loading, triaxial compression, and triaxial extension by controlling axial stress (up to 100 MPa), confining pressure (up to 100 MPa), and pore pressure (0.5-28 MPa). During tests, all pressures, axial displacement, and pore volume change were monitored. Permeability, and ultrasonic velocity were also measured during the tests. Two experiments have been conducted on samples taken from the core 322-C0011B-19R-5 (Lower Shikoku Basin hemipelagic mudstone, initial porosity of 43 %). The first test was conducted under istotropic loading and unloading by (1) increase and decrease in confining pressure, and (2) decrease and increase in pore pressure. The evolution of physical properties depends on effective pressure regardless of whether confining pressure or pore pressure is controlled. As effective pressure increases from 0.2 to 30 MPa, porosity decreases from 43 to 18 %, permeability decreases from 1.1×10-18 to 4.1×10-20 m2, and compressional-wave velocity increases from 1.76 to 2.5 km/s, respectively. The same physical properties do not fully recover during unloading, which corresponds to overconsolidated or overpressured condition. The second test included various loading paths including triaxial compression and extension, and drained and undrained condition of pore pressure. The results indicate that the evolution of physical properties be dependent on both effective mean stress and differential stress. The experimental results suggest that it is important to consider consolidation state and loading paths. We will present more experimental results and derive relations between physical properties and stress states.
Risser, Dennis W.; Williams, John H.; Hand, Kristen L.; Behr, Rose-Anna; Markowski, Antonette K.
2013-01-01
Open-File Miscellaneous Investigation 13–01.1 presents the results of geohydrologic investigations on a 1,664-foot-deep core hole drilled in the Bradford County part of the Gleason 7.5-minute quadrangle in north-central Pennsylvania. In the text, the authors discuss their methods of investigation, summarize physical and analytical results, and place those results in context. Four appendices include (1) a full description of the core in an Excel worksheet; (2) water-quality and core-isotope analytical results in Excel workbooks; (3) geophysical logs in LAS and PDF files, and an Excel workbook containing attitudes of bedding and fractures calculated from televiewer logs; and (4) MP4 clips from the downhole video at selected horizons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigg, David W.; Nielsen, Joseph W.; Norman, Daren R.
The Korea Atomic Energy Research Institute is currently in the process of qualifying a Low-Enriched Uranium fuel element design for the new Ki-Jang Research Reactor (KJRR). As part of this effort, a prototype KJRR fuel element was irradiated for several operating cycles in the Northeast Flux Trap of the Advanced Test Reactor (ATR) at the Idaho National Laboratory. The KJRR fuel element contained a very large quantity of fissile material (618g 235U) in comparison with historical ATR experiment standards (<1g 235U), and its presence in the ATR flux trap was expected to create a neutronic configuration that would be wellmore » outside of the approved validation envelope for the reactor physics analysis methods used to support ATR operations. Accordingly it was necessary, prior to high-power irradiation of the KJRR fuel element in the ATR, to conduct an extensive set of new low-power physics measurements with the KJRR fuel element installed in the ATR Critical Facility (ATRC), a companion facility to the ATR that is located in an immediately adjacent building, sharing the same fuel handling and storage canal. The new measurements had the objective of expanding the validation envelope for the computational reactor physics tools used to support ATR operations and safety analysis to include the planned KJRR irradiation in the ATR and similar experiments that are anticipated in the future. The computational and experimental results demonstrated that the neutronic behavior of the KJRR fuel element in the ATRC is well-understood, both in terms of its general effects on core excess reactivity and fission power distributions, its effects on the calibration of the core lobe power measurement system, as well as in terms of its own internal fission rate distribution and total fission power per unit ATRC core power. Taken as a whole, these results have significantly extended the ATR physics validation envelope, thereby enabling an entire new class of irradiation experiments.« less
Cabanas-Valdés, Rosa; Bagur-Calafat, Caritat; Girabent-Farrés, Montserrat; Caballero-Gómez, Fernanda Mª; du Port de Pontcharra-Serra, Helena; German-Romero, Ana; Urrútia, Gerard
2017-11-01
Analyse the effect of core stability exercises in addition to conventional physiotherapy training three months after the intervention ended. A randomized controlled trial. Outpatient services. Seventy-nine stroke survivors. In the intervention period, both groups underwent conventional physiotherapy performed five days/week for five weeks, and in addition the experimental group performed core stability exercises for 15 minutes/day. Afterwards, during a three-month follow-up period, both groups underwent usual care that could eventually include conventional physiotherapy or physical exercise but not in a controlled condition. Primary outcome was trunk control and dynamic sitting balance assessed by the Spanish-Version of Trunk Impairment Scale 2.0 and Function in Sitting Test. Secondary outcomes were standing balance and gait evaluated by the Berg Balance Scale, Tinetti Test, Brunel Balance Assessment, Spanish-Version of Postural Assessment Scale for Stroke and activities of daily living using the Barthel Index. A total of 68 subjects out of 79 completed the three-month follow-up period. The mean difference (SD) between groups was 0.78 (1.51) points ( p = 0.003) for total score on the Spanish-Version of Trunk Impairment Scale 2.0, 2.52 (6.46) points ( p = 0.009) for Function in Sitting Test, dynamic standing balance was 3.30 (9.21) points ( p= 0.009) on the Berg Balance Scale, gait was 0.82 (1.88) points ( p = 0.002) by Brunel Balance Assessment (stepping), and 1.11 (2.94) points ( p = 0.044) by Tinetti Test (gait), all in favour of core stability exercises. Core stability exercises plus conventional physiotherapy have a positive long-term effect on improving dynamic sitting and standing balance and gait in post-stroke patients.
The relationship between physical fitness and academic achievement among adolescent in South Korea.
Han, Gun-Soo
2018-04-01
[Purpose] The purpose of this study was to identify the relationship between physical fitness level and academic achievement in middle school students. [Subjects and Methods] A total of 236 students aged 13-15 from three middle schools in D city, South Korea, were selected using a random sampling method. Academic achievement was measured by students' 2014 fall-semester final exam scores and the level of physical fitness was determined according to the PAPS (Physical Activity Promotion System) score administrated by the Korean Ministry of Education. A Pearson correlation test with SPSS 20.0 was employed. [Results] The Pearson correlation test revealed a significant correlation between physical fitness and academic achievement. Specifically, students with higher levels of physical fitness tend to have higher academic performance. In addition, final exam scores of core subjects (e.g., English, mathematics, and science) were significantly related to the PAPS score. [Conclusion] Results of this study can be used to develop more effective physical education curricula. In addition, the data can also be applied to recreation and sport programs for other populations (e.g., children and adult) as well as existing national physical fitness data in various countries.
Integrating the English Language Arts Common Core State Standards into Physical Education
ERIC Educational Resources Information Center
James, Alisa R.; Bullock, Kerri
2015-01-01
Physical education teachers are expected to implement the English language arts (ELA) Common Core State Standards (CCSS) in their instruction. This has proved to be challenging for many physical educators. The purpose of this article is to provide developmentally appropriate examples of how to incorporate the ELA CCSS into physical education,…
Kim, Hyeyoung; Lee, Youngsun; Shin, Insik; Kim, Kitae; Moon, Jeheon
2014-01-01
[Purpose] For maximum efficiency and to prevent injury during javelin throwing, it is critical to maintain muscle balance and coordination of the rotator cuff and the glenohumeral joint. In this study, we investigated the change in the rotator cuff muscle strength, throw distance and technique of javelin throwers after they had performed a specific physical training that combined elements of weight training, function movement screen training, and core training. [Subjects] Ten javelin throwers participated in this study: six university athletes in the experimental group and four national-level athletes in the control group. [Methods] The experimental group performed 8 weeks of the specific physical training. To evaluate the effects of the training, measurements were performed before and after the training for the experimental group. Measurements comprised anthropometry, isokinetic muscle strength measurements, the function movement screen test, and movement analysis. [Results] After the specific physical training, the function movement screen score and external and internal rotator muscle strength showed statistically significant increases. Among kinematic factors, only pull distance showed improvement after training. [Conclusion] Eight weeks of specific physical training for dynamic stabilizer muscles enhanced the rotator cuff muscle strength, core stability, throw distance, and flexibility of javelin throwers. These results suggest that specific physical training can be useful for preventing shoulder injuries and improving the performance for javelin throwers. PMID:25364111
Kim, Hyeyoung; Lee, Youngsun; Shin, Insik; Kim, Kitae; Moon, Jeheon
2014-10-01
[Purpose] For maximum efficiency and to prevent injury during javelin throwing, it is critical to maintain muscle balance and coordination of the rotator cuff and the glenohumeral joint. In this study, we investigated the change in the rotator cuff muscle strength, throw distance and technique of javelin throwers after they had performed a specific physical training that combined elements of weight training, function movement screen training, and core training. [Subjects] Ten javelin throwers participated in this study: six university athletes in the experimental group and four national-level athletes in the control group. [Methods] The experimental group performed 8 weeks of the specific physical training. To evaluate the effects of the training, measurements were performed before and after the training for the experimental group. Measurements comprised anthropometry, isokinetic muscle strength measurements, the function movement screen test, and movement analysis. [Results] After the specific physical training, the function movement screen score and external and internal rotator muscle strength showed statistically significant increases. Among kinematic factors, only pull distance showed improvement after training. [Conclusion] Eight weeks of specific physical training for dynamic stabilizer muscles enhanced the rotator cuff muscle strength, core stability, throw distance, and flexibility of javelin throwers. These results suggest that specific physical training can be useful for preventing shoulder injuries and improving the performance for javelin throwers.
Physics Envy: Psychologists' Perceptions of Psychology and Agreement about Core Concepts
ERIC Educational Resources Information Center
Howell, Jennifer L.; Collisson, Brian; King, Kelly M.
2014-01-01
This study assessed the nature of psychology and its consensus regarding core content. We hypothesized that psychology possesses little agreement regarding its core content areas and thus may "envy" more canonical sciences, such as physics. Using a global sample, we compared psychologists' and physicists' perceptions regarding…
Judge, Timothy A; Hurst, Charlice; Simon, Lauren S
2009-05-01
The authors investigated core self-evaluations and educational attainment as mediating mechanisms for the influence of appearance (physical attractiveness) and intelligence (general mental ability) on income and financial strain. The direct effects of core self-evaluations on financial strain, as well as the indirect effects through income, were also considered. Longitudinal data were obtained as part of a national study, the Harvard Study of Health and Life Quality, and proposed models were evaluated with structural equation modeling. Results supported a partially mediated model, such that general mental ability and physical attractiveness exhibited both direct and indirect effects on income, as mediated by educational attainment and core self-evaluations. Finally, income negatively predicted financial strain, whereas core self-evaluations had both a direct and an indirect (through income) negative effect on financial strain. Overall, the results suggest that looks (physical attractiveness), brains (intelligence), and personality (core self-evaluations) are all important to income and financial strain. (c) 2009 APA, all rights reserved.
Extension of the XGC code for global gyrokinetic simulations in stellarator geometry
NASA Astrophysics Data System (ADS)
Cole, Michael; Moritaka, Toseo; White, Roscoe; Hager, Robert; Ku, Seung-Hoe; Chang, Choong-Seock
2017-10-01
In this work, the total-f, gyrokinetic particle-in-cell code XGC is extended to treat stellarator geometries. Improvements to meshing tools and the code itself have enabled the first physics studies, including single particle tracing and flux surface mapping in the magnetic geometry of the heliotron LHD and quasi-isodynamic stellarator Wendelstein 7-X. These have provided the first successful test cases for our approach. XGC is uniquely placed to model the complex edge physics of stellarators. A roadmap to such a global confinement modeling capability will be presented. Single particle studies will include the physics of energetic particles' global stochastic motions and their effect on confinement. Good confinement of energetic particles is vital for a successful stellarator reactor design. These results can be compared in the core region with those of other codes, such as ORBIT3d. In subsequent work, neoclassical transport and turbulence can then be considered and compared to results from codes such as EUTERPE and GENE. After sufficient verification in the core region, XGC will move into the stellarator edge region including the material wall and neutral particle recycling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasten, P.R.; Rittenhouse, P.L.; Bartine, D.E.
1983-06-01
During 1982 the High-Temperature Gas-Cooled Reactor (HTGR) Technology Program at Oak Ridge National Laboratory (ORNL) continued to develop experimental data required for the design and licensing of cogeneration HTGRs. The program involves fuels and materials development (including metals, graphite, ceramic, and concrete materials), HTGR chemistry studies, structural component development and testing, reactor physics and shielding studies, performance testing of the reactor core support structure, and HTGR application and evaluation studies.
DART Core/Combustor-Noise Initial Test Results
NASA Technical Reports Server (NTRS)
Boyle, Devin K.; Henderson, Brenda S.; Hultgren, Lennart S.
2017-01-01
Contributions from the combustor to the overall propulsion noise of civilian transport aircraft are starting to become important due to turbofan design trends and advances in mitigation of other noise sources. Future propulsion systems for ultra-efficient commercial air vehicles are projected to be of increasingly higher bypass ratio from larger fans combined with much smaller cores, with ultra-clean burning fuel-flexible combustors. Unless effective noise-reduction strategies are developed, combustor noise is likely to become a prominent contributor to overall airport community noise in the future. The new NASA DGEN Aero0propulsion Research Turbofan (DART) is a cost-efficient testbed for the study of core-noise physics and mitigation. This presentation gives a brief description of the recently completed DART core combustor-noise baseline test in the NASA GRC Aero-Acoustic Propulsion Laboratory (AAPL). Acoustic data was simultaneously acquired using the AAPL overhead microphone array in the engine aft quadrant far field, a single midfield microphone, and two semi-infinite-tube unsteady pressure sensors at the core-nozzle exit. An initial assessment shows that the data is of high quality and compares well with results from a quick 2014 feasibility test. Combustor noise components of measured total-noise signatures were educed using a two-signal source-separation method an dare found to occur in the expected frequency range. The research described herein is aligned with the NASA Ultra-Efficient Commercial Transport strategic thrust and is supported by the NASA Advanced Air Vehicle Program, Advanced Air Transport Technology Project, under the Aircraft Noise Reduction Subproject.
Measurements of Physical Parameters of White Dwarfs: A Test of the Mass–Radius Relation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bédard, A.; Bergeron, P.; Fontaine, G., E-mail: bedard@astro.umontreal.ca, E-mail: bergeron@astro.umontreal.ca, E-mail: fontaine@astro.umontreal.ca
We present a detailed spectroscopic and photometric analysis of 219 DA and DB white dwarfs for which trigonometric parallax measurements are available. Our aim is to compare the physical parameters derived from the spectroscopic and photometric techniques, and then to test the theoretical mass–radius relation for white dwarfs using these results. The agreement between spectroscopic and photometric parameters is found to be excellent, especially for effective temperatures, showing that our model atmospheres and fitting procedures provide an accurate, internally consistent analysis. The values of surface gravity and solid angle obtained, respectively, from spectroscopy and photometry, are combined with parallax measurementsmore » in various ways to study the validity of the mass–radius relation from an empirical point of view. After a thorough examination of our results, we find that 73% and 92% of the white dwarfs are consistent within 1 σ and 2 σ confidence levels, respectively, with the predictions of the mass–radius relation, thus providing strong support to the theory of stellar degeneracy. Our analysis also allows us to identify 15 stars that are better interpreted in terms of unresolved double degenerate binaries. Atmospheric parameters for both components in these binary systems are obtained using a novel approach. We further identify a few white dwarfs that are possibly composed of an iron core rather than a carbon/oxygen core, since they are consistent with Fe-core evolutionary models.« less
Cone penetration test for facies study: a review
NASA Astrophysics Data System (ADS)
Satriyo, N. A.; Soebowo, E.
2018-02-01
Engineering geology investigation through Cone Penetration Test (with pore-pressure measurements) approach is one of the most effective methods to find out sub surface layer. This method is generally used in Late Quaternary and typical deposit and can also be used for sedimentological purposes. CPTu and drilling core for high-resolution stratigraphy sub surface have been done in many research. These combined data can also be used to detail correlations of sub surface stratigraphy, to identify facies change and to determine the interpretation of sequence stratigraphy. The determination facies distribution research based on CPTu profile, which was included in quantitative data, is rarely done especially in Indonesia which has a different climate. Whereas drilling core description using grain size analysis will provide information on validation about physical lithology characteristics which are developed in research area. The interpretation is given using CPTu curve pattern and cone resistance parameter of CPTu’s data correlated with physical characteristics of drilling core. The cone resistance will provide the strength of the sediment layer which also gives the range of data between clay and sand. Finally, the review will show that each of developing facies characteristic provides a specific curve pattern and every sediment deposit facies can be determined by the transformation of CPTu curve profile. Despite the fact that the research using those methods are quite comprehensive, a review is presented on each of these methods related with the chronologic factor seen by the geological time and different characteristics sediment of different location.
Testing the Large-scale Environments of Cool-core and Non-cool-core Clusters with Clustering Bias
NASA Astrophysics Data System (ADS)
Medezinski, Elinor; Battaglia, Nicholas; Coupon, Jean; Cen, Renyue; Gaspari, Massimo; Strauss, Michael A.; Spergel, David N.
2017-02-01
There are well-observed differences between cool-core (CC) and non-cool-core (NCC) clusters, but the origin of this distinction is still largely unknown. Competing theories can be divided into internal (inside-out), in which internal physical processes transform or maintain the NCC phase, and external (outside-in), in which the cluster type is determined by its initial conditions, which in turn leads to different formation histories (I.e., assembly bias). We propose a new method that uses the relative assembly bias of CC to NCC clusters, as determined via the two-point cluster-galaxy cross-correlation function (CCF), to test whether formation history plays a role in determining their nature. We apply our method to 48 ACCEPT clusters, which have well resolved central entropies, and cross-correlate with the SDSS-III/BOSS LOWZ galaxy catalog. We find that the relative bias of NCC over CC clusters is b = 1.42 ± 0.35 (1.6σ different from unity). Our measurement is limited by the small number of clusters with core entropy information within the BOSS footprint, 14 CC and 34 NCC clusters. Future compilations of X-ray cluster samples, combined with deep all-sky redshift surveys, will be able to better constrain the relative assembly bias of CC and NCC clusters and determine the origin of the bimodality.
Testing the Large-scale Environments of Cool-core and Non-cool-core Clusters with Clustering Bias
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medezinski, Elinor; Battaglia, Nicholas; Cen, Renyue
2017-02-10
There are well-observed differences between cool-core (CC) and non-cool-core (NCC) clusters, but the origin of this distinction is still largely unknown. Competing theories can be divided into internal (inside-out), in which internal physical processes transform or maintain the NCC phase, and external (outside-in), in which the cluster type is determined by its initial conditions, which in turn leads to different formation histories (i.e., assembly bias). We propose a new method that uses the relative assembly bias of CC to NCC clusters, as determined via the two-point cluster-galaxy cross-correlation function (CCF), to test whether formation history plays a role in determiningmore » their nature. We apply our method to 48 ACCEPT clusters, which have well resolved central entropies, and cross-correlate with the SDSS-III/BOSS LOWZ galaxy catalog. We find that the relative bias of NCC over CC clusters is b = 1.42 ± 0.35 (1.6 σ different from unity). Our measurement is limited by the small number of clusters with core entropy information within the BOSS footprint, 14 CC and 34 NCC clusters. Future compilations of X-ray cluster samples, combined with deep all-sky redshift surveys, will be able to better constrain the relative assembly bias of CC and NCC clusters and determine the origin of the bimodality.« less
Development and Implementation of CFD-Informed Models for the Advanced Subchannel Code CTF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blyth, Taylor S.; Avramova, Maria
The research described in this PhD thesis contributes to the development of efficient methods for utilization of high-fidelity models and codes to inform low-fidelity models and codes in the area of nuclear reactor core thermal-hydraulics. The objective is to increase the accuracy of predictions of quantities of interests using high-fidelity CFD models while preserving the efficiency of low-fidelity subchannel core calculations. An original methodology named Physics- based Approach for High-to-Low Model Information has been further developed and tested. The overall physical phenomena and corresponding localized effects, which are introduced by the presence of spacer grids in light water reactor (LWR)more » cores, are dissected in corresponding four building basic processes, and corresponding models are informed using high-fidelity CFD codes. These models are a spacer grid-directed cross-flow model, a grid-enhanced turbulent mixing model, a heat transfer enhancement model, and a spacer grid pressure loss model. The localized CFD-models are developed and tested using the CFD code STAR-CCM+, and the corresponding global model development and testing in sub-channel formulation is performed in the thermal- hydraulic subchannel code CTF. The improved CTF simulations utilize data-files derived from CFD STAR-CCM+ simulation results covering the spacer grid design desired for inclusion in the CTF calculation. The current implementation of these models is examined and possibilities for improvement and further development are suggested. The validation experimental database is extended by including the OECD/NRC PSBT benchmark data. The outcome is an enhanced accuracy of CTF predictions while preserving the computational efficiency of a low-fidelity subchannel code.« less
Development and Implementation of CFD-Informed Models for the Advanced Subchannel Code CTF
NASA Astrophysics Data System (ADS)
Blyth, Taylor S.
The research described in this PhD thesis contributes to the development of efficient methods for utilization of high-fidelity models and codes to inform low-fidelity models and codes in the area of nuclear reactor core thermal-hydraulics. The objective is to increase the accuracy of predictions of quantities of interests using high-fidelity CFD models while preserving the efficiency of low-fidelity subchannel core calculations. An original methodology named Physics-based Approach for High-to-Low Model Information has been further developed and tested. The overall physical phenomena and corresponding localized effects, which are introduced by the presence of spacer grids in light water reactor (LWR) cores, are dissected in corresponding four building basic processes, and corresponding models are informed using high-fidelity CFD codes. These models are a spacer grid-directed cross-flow model, a grid-enhanced turbulent mixing model, a heat transfer enhancement model, and a spacer grid pressure loss model. The localized CFD-models are developed and tested using the CFD code STAR-CCM+, and the corresponding global model development and testing in sub-channel formulation is performed in the thermal-hydraulic subchannel code CTF. The improved CTF simulations utilize data-files derived from CFD STAR-CCM+ simulation results covering the spacer grid design desired for inclusion in the CTF calculation. The current implementation of these models is examined and possibilities for improvement and further development are suggested. The validation experimental database is extended by including the OECD/NRC PSBT benchmark data. The outcome is an enhanced accuracy of CTF predictions while preserving the computational efficiency of a low-fidelity subchannel code.
Deterministic Modeling of the High Temperature Test Reactor with DRAGON-HEXPEDITE
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Ortensi; M.A. Pope; R.M. Ferrer
2010-10-01
The Idaho National Laboratory (INL) is tasked with the development of reactor physics analysis capability of the Next Generation Nuclear Power (NGNP) project. In order to examine the INL’s current prismatic reactor analysis tools, the project is conducting a benchmark exercise based on modeling the High Temperature Test Reactor (HTTR). This exercise entails the development of a model for the initial criticality, a 19 fuel column thin annular core, and the fully loaded core critical condition with 30 fuel columns. Special emphasis is devoted to physical phenomena and artifacts in HTTR that are similar to phenomena and artifacts in themore » NGNP base design. The DRAGON code is used in this study since it offers significant ease and versatility in modeling prismatic designs. DRAGON can generate transport solutions via Collision Probability (CP), Method of Characteristics (MOC) and Discrete Ordinates (Sn). A fine group cross-section library based on the SHEM 281 energy structure is used in the DRAGON calculations. The results from this study show reasonable agreement in the calculation of the core multiplication factor with the MC methods, but a consistent bias of 2–3% with the experimental values is obtained. This systematic error has also been observed in other HTTR benchmark efforts and is well documented in the literature. The ENDF/B VII graphite and U235 cross sections appear to be the main source of the error. The isothermal temperature coefficients calculated with the fully loaded core configuration agree well with other benchmark participants but are 40% higher than the experimental values. This discrepancy with the measurement partially stems from the fact that during the experiments the control rods were adjusted to maintain criticality, whereas in the model, the rod positions were fixed. In addition, this work includes a brief study of a cross section generation approach that seeks to decouple the domain in order to account for neighbor effects. This spectral interpenetration is a dominant effect in annular HTR physics. This analysis methodology should be further explored in order to reduce the error that is systematically propagated in the traditional generation of cross sections.« less
Somerville, Kate; Cooper, Myra
2007-12-01
Women with bulimia nervosa (BN), dieters and non-dieting control participants were questioned about spontaneous imagery linked to concern with food and eating, weight and shape. The downward arrow technique was used to access any associated negative or core beliefs, which were examined for belief, distress and content. A semi-structured interview with open and closed questions was used. Negative self (core) beliefs were successfully accessed, and responses to the interview items had good test-retest and good inter-rater reliability. Patients with BN reported significantly more negative self (core) beliefs than those in the other two groups. Only a very small number of core beliefs about other people or the world in general were reported. Emotional belief ratings appeared to be higher overall than rational belief ratings. Patient's negative self-beliefs contained themes of "self-value", followed by "failure", "self-control" and "physical attractiveness", in descending order of frequency. The findings are discussed in relation to existing research, and implications for cognitive theories of bulimia nervosa and clinical practice are briefly discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambrose, T.W.
1965-06-04
Process and development activities reported include: depleted uranium irradiations, thoria irradiation, and hot die sizing. Reactor engineering activities include: brittle fracture of 190-C tanks, increased graphite temperature limits for the F reactor, VSR channel caulking, K reactor downcomer flow, zircaloy hydriding, and ribbed zircaloy process tubes. Reactor physics activities include: thoria irradiations, E-D irradiations, boiling protection with the high speed scanner, and in-core flux monitoring. Radiological engineering activities include: radiation control, classification, radiation occurrences, effluent activity data, and well car shielding. Process standards are listed, along with audits, and fuel failure experience. Operational physics and process physics studies are presented.more » Lastly, testing activities are detailed.« less
Core executive functions are associated with success in young elite soccer players.
Vestberg, Torbjörn; Reinebo, Gustaf; Maurex, Liselotte; Ingvar, Martin; Petrovic, Predrag
2017-01-01
Physical capacity and coordination cannot alone predict success in team sports such as soccer. Instead, more focus has been directed towards the importance of cognitive abilities, and it has been suggested that executive functions (EF) are fundamentally important for success in soccer. However, executive functions are going through a steep development from adolescence to adulthood. Moreover, more complex EF involving manipulation of information (higher level EF) develop later than simple executive functions such as those linked to simple working memory capacity (Core EF). The link between EF and success in young soccer players is therefore not obvious. In the present study we investigated whether EF are associated with success in soccer in young elite soccer players. We performed tests measuring core EF (a demanding working memory task involving a variable n-back task; dWM) and higher level EF (Design Fluency test; DF). Color-Word Interference Test and Trail Making Test were performed on an exploratory level as they contain a linguistic element. The lower level EF test (dWM) was taken from CogStateSport computerized concussion testing and the higher level EF test (DF) was from Delis-Kaplan Executive Function System test battery (D-KEFS). In a group of young elite soccer players (n = 30; aged 12-19 years) we show that they perform better than the norm in both the dWM (+0.49 SD) and DF (+0.86 SD). Moreover, we could show that both dWM and DF correlate with the number of goals the players perform during the season. The effect was more prominent for dWM (r = 0.437) than for DF (r = 0.349), but strongest for a combined measurement (r = 0.550). The effect was still present when we controlled for intelligence, length and age in a partial correlation analysis. Thus, our study suggests that both core and higher level EF may predict success in soccer also in young players.
Core executive functions are associated with success in young elite soccer players
Reinebo, Gustaf; Maurex, Liselotte; Ingvar, Martin; Petrovic, Predrag
2017-01-01
Physical capacity and coordination cannot alone predict success in team sports such as soccer. Instead, more focus has been directed towards the importance of cognitive abilities, and it has been suggested that executive functions (EF) are fundamentally important for success in soccer. However, executive functions are going through a steep development from adolescence to adulthood. Moreover, more complex EF involving manipulation of information (higher level EF) develop later than simple executive functions such as those linked to simple working memory capacity (Core EF). The link between EF and success in young soccer players is therefore not obvious. In the present study we investigated whether EF are associated with success in soccer in young elite soccer players. We performed tests measuring core EF (a demanding working memory task involving a variable n-back task; dWM) and higher level EF (Design Fluency test; DF). Color-Word Interference Test and Trail Making Test were performed on an exploratory level as they contain a linguistic element. The lower level EF test (dWM) was taken from CogStateSport computerized concussion testing and the higher level EF test (DF) was from Delis-Kaplan Executive Function System test battery (D-KEFS). In a group of young elite soccer players (n = 30; aged 12–19 years) we show that they perform better than the norm in both the dWM (+0.49 SD) and DF (+0.86 SD). Moreover, we could show that both dWM and DF correlate with the number of goals the players perform during the season. The effect was more prominent for dWM (r = 0.437) than for DF (r = 0.349), but strongest for a combined measurement (r = 0.550). The effect was still present when we controlled for intelligence, length and age in a partial correlation analysis. Thus, our study suggests that both core and higher level EF may predict success in soccer also in young players. PMID:28178738
Clinically oriented three-year medical physics curriculum: a new design for the future.
Nachiappan, Arun C; Lee, Stephen R; Willis, Marc H; Galfione, Matthew R; Chinnappan, Raj R; Diaz-Marchan, Pedro J; Bushong, Stewart C
2012-09-01
Medical physics instruction for diagnostic radiology residency at our institution has been redesigned with an interactive and image-based approach that encourages clinical application. The new medical physics curriculum spans the first 3 years of radiology residency and is integrated with the core didactic curriculum. Salient features include clinical medical physics conferences, fundamentals of medical physics lectures, practicums, online modules, journal club, and a final review before the American Board of Radiology core examination.
Physiological Responses and Physical Performance during Football in the Heat
Mohr, Magni; Nybo, Lars; Grantham, Justin; Racinais, Sebastien
2012-01-01
Purpose To examine the impact of hot ambient conditions on physical performance and physiological responses during football match-play. Methods Two experimental games were completed in temperate (∼21°C; CON) and hot ambient conditions (∼43°C; HOT). Physical performance was assessed by match analysis in 17 male elite players during the games and a repeated sprint test was conducted after the two game trials. Core and muscle temperature were measured and blood samples were obtained, before and after the games. Results Muscle and core temperatures were ∼1°C higher (P<0.05) in HOT (40.3±0.1 and 39.5±0.1°C, respectively) compared to CON (39.2±0.1 and 38.3±0.1°C). Average heart rate, plasma lactate concentration, body weight loss as well as post-game sprint performance were similar between the two conditions. Total game distance declined (P<0.05) by 7% and high intensity running (>14 km⋅h−1) by 26% in HOT compared to CON), but peak sprint speed was 4% higher (P<0.05) in HOT than in CON, while there were no differences in the quantity or length of sprints (>24 km⋅h−1) between CON and HOT. In HOT, success rates for passes and crosses were 8 and 9% higher (P<0.05), respectively, compared to CON. Delta increase in core temperature and absolute core temperature in HOT were correlated to total game distance in the heat (r = 0.85 and r = 0.53, respectively; P<0.05), whereas, total and high intensity distance deficit between CON and HOT were not correlated to absolute or delta changes in muscle or core temperature. Conclusion Total game distance and especially high intensity running were lower during a football game in the heat, but these changes were not directly related to the absolute or relative changes in core or muscle temperature. However, peak sprinting speed and execution of successful passes and crosses were improved in the HOT condition. PMID:22723963
Integrated modelling of H-mode pedestal and confinement in JET-ILW
NASA Astrophysics Data System (ADS)
Saarelma, S.; Challis, C. D.; Garzotti, L.; Frassinetti, L.; Maggi, C. F.; Romanelli, M.; Stokes, C.; Contributors, JET
2018-01-01
A pedestal prediction model Europed is built on the existing EPED1 model by coupling it with core transport simulation using a Bohm-gyroBohm transport model to self-consistently predict JET-ILW power scan for hybrid plasmas that display weaker power degradation than the IPB98(y, 2) scaling of the energy confinement time. The weak power degradation is reproduced in the coupled core-pedestal simulation. The coupled core-pedestal model is further tested for a 3.0 MA plasma with the highest stored energy achieved in JET-ILW so far, giving a prediction of the stored plasma energy within the error margins of the measured experimental value. A pedestal density prediction model based on the neutral penetration is tested on a JET-ILW database giving a prediction with an average error of 17% from the experimental data when a parameter taking into account the fuelling rate is added into the model. However the model fails to reproduce the power dependence of the pedestal density implying missing transport physics in the model. The future JET-ILW deuterium campaign with increased heating power is predicted to reach plasma energy of 11 MJ, which would correspond to 11-13 MW of fusion power in equivalent deuterium-tritium plasma but with isotope effects on pedestal stability and core transport ignored.
Vacuum Compatibility of Flux-Core Arc Welding (FCAW)
NASA Astrophysics Data System (ADS)
Arose, Dana; Denault, Martin; Jurcznski, Stephan
2010-11-01
Typically, vacuum chambers are welded together using gas tungsten arc welding (GTAW) or gas metal arc welding (GMAW). This is demonstrated in the vacuum chamber of Princeton Plasma Physics Lab's (PPPL) National Spherical Torus Experiment (NSTX). These processes are slow and apply excess heat to the base metal, which may cause the vacuum chamber to deform beyond designed tolerance. Flux cored arc welding (FCAW) avoids these problems, but may produce an unacceptable amount of outgasing due to the flux shielding. We believe impurities due to outgasing from FCAW will not greatly exceed those found in GTAW and GMAW welding. To test this theory, samples welded together using all three welding processes will be made and baked in a residual gas analyzer (RGA). The GTAW and GMAW welds will be tested to establish a metric for permissible outgasing. By testing samples from all three processes we hope to demonstrate that FCAW does not significantly outgas, and is therefore a viable alternative to GTAW and GMAW. Results from observations will be presented.
NASA Astrophysics Data System (ADS)
Herrington, A. R.; Reed, K. A.
2018-02-01
A set of idealized experiments are developed using the Community Atmosphere Model (CAM) to understand the vertical velocity response to reductions in forcing scale that is known to occur when the horizontal resolution of the model is increased. The test consists of a set of rising bubble experiments, in which the horizontal radius of the bubble and the model grid spacing are simultaneously reduced. The test is performed with moisture, through incorporating moist physics routines of varying complexity, although convection schemes are not considered. Results confirm that the vertical velocity in CAM is to first-order, proportional to the inverse of the horizontal forcing scale, which is consistent with a scale analysis of the dry equations of motion. In contrast, experiments in which the coupling time step between the moist physics routines and the dynamical core (i.e., the "physics" time step) are relaxed back to more conventional values results in severely damped vertical motion at high resolution, degrading the scaling. A set of aqua-planet simulations using different physics time steps are found to be consistent with the results of the idealized experiments.
SU-E-E-05: Initial Experience On Physics Rotation of Radiological Residents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J; Williams, D; DiSantis, D
Purpose: The new ABR core exam integrates physics into clinical teaching, with an emphasis on understanding image quality, image artifacts, radiation dose and patient safety for each modality and/or sub-specialty. Accordingly, physics training of radiological residents faces a challenge. A traditional teaching of physics through didactic lectures may not fully fulfill this goal. It is also difficult to incorporate physics teaching in clinical practice due to time constraints. A dedicated physics rotation may be a solution. This study is to evaluate a full week physics workshop developed for the first year radiological residents. Methods: The physics rotation took a fullmore » week. It included three major parts, introduction lectures, hand-on experiences and observation of technologist operation. An introduction of basic concepts was given to each modality at the beginning. Hand-on experiments were emphasized and took most of time. During hand-on experiments, residents performed radiation measurements, studied the relationship between patient dose and practice (i.e., fluoroscopy), investigated influence of acquisition parameters (i.g., kV, mAs) on image quality, and evaluated image quality using phantoms A physics test before and after the workshop was also given but not for comparison purpose. Results: The evaluation shows that the physics rotation during the first week of residency in radiology is preferred by all residents. The length of a full week of physics workshop is appropriate. All residents think that the intensive workshop can significantly benefit their coming clinical rotations. Residents become more comfortable regarding the use of radiation and counseling relevant questions such as a pregnant patient risk from a CE PE examination. Conclusion: A dedicated physics rotation, assisting with didactic lectures, may fulfill the requirements of physics of the new ABR core exam. It helps radiologists deeply understand the physics concepts and more efficiently use the medical physics in practice.« less
Design of a Resistively Heated Thermal Hydraulic Simulator for Nuclear Rocket Reactor Cores
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Foote, John P.; Ramachandran, Narayanan; Wang, Ten-See; Anghaie, Samim
2007-01-01
A preliminary design study is presented for a non-nuclear test facility which uses ohmic heating to replicate the thermal hydraulic characteristics of solid core nuclear reactor fuel element passages. The basis for this testing capability is a recently commissioned nuclear thermal rocket environments simulator, which uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce high-temperature pressurized hydrogen flows representative of reactor core environments, excepting radiation effects. Initially, the baseline test fixture for this non-nuclear environments simulator was configured for long duration hot hydrogen exposure of small cylindrical material specimens as a low cost means of evaluating material compatibility. It became evident, however, that additional functionality enhancements were needed to permit a critical examination of thermal hydraulic effects in fuel element passages. Thus, a design configuration was conceived whereby a short tubular material specimen, representing a fuel element passage segment, is surrounded by a backside resistive tungsten heater element and mounted within a self-contained module that inserts directly into the baseline test fixture assembly. With this configuration, it becomes possible to create an inward directed radial thermal gradient within the tubular material specimen such that the wall-to-gas heat flux characteristics of a typical fuel element passage are effectively simulated. The results of a preliminary engineering study for this innovative concept are fully summarized, including high-fidelity multi-physics thermal hydraulic simulations and detailed design features.
Research on the equivalence between digital core and rock physics models
NASA Astrophysics Data System (ADS)
Yin, Xingyao; Zheng, Ying; Zong, Zhaoyun
2017-06-01
In this paper, we calculate the elastic modulus of 3D digital cores using the finite element method, systematically study the equivalence between the digital core model and various rock physics models, and carefully analyze the conditions of the equivalence relationships. The influences of the pore aspect ratio and consolidation coefficient on the equivalence relationships are also further refined. Theoretical analysis indicates that the finite element simulation based on the digital core is equivalent to the boundary theory and Gassmann model. For pure sandstones, effective medium theory models (SCA and DEM) and the digital core models are equivalent in cases when the pore aspect ratio is within a certain range, and dry frame models (Nur and Pride model) and the digital core model are equivalent in cases when the consolidation coefficient is a specific value. According to the equivalence relationships, the comparison of the elastic modulus results of the effective medium theory and digital rock physics is an effective approach for predicting the pore aspect ratio. Furthermore, the traditional digital core models with two components (pores and matrix) are extended to multiple minerals to more precisely characterize the features and mineral compositions of rocks in underground reservoirs. This paper studies the effects of shale content on the elastic modulus in shaly sandstones. When structural shale is present in the sandstone, the elastic modulus of the digital cores are in a reasonable agreement with the DEM model. However, when dispersed shale is present in the sandstone, the Hill model cannot describe the changes in the stiffness of the pore space precisely. Digital rock physics describes the rock features such as pore aspect ratio, consolidation coefficient and rock stiffness. Therefore, digital core technology can, to some extent, replace the theoretical rock physics models because the results are more accurate than those of the theoretical models.
Subash, Dayalan; Shoba, Krishnamma; Aman, Shibu; Bharkavi, Srinivasan Kumar Indu; Nimmi, Vijayan; Abhilash, Radhakrishnan
2017-09-01
The restoration of a severely damaged tooth usually needs a post and core as a part of treatment procedure to provide a corono - radicular stabilization. Biodentine is a class of dental material which possess high mechanical properties with excellent biocompatibility and bioactive behaviour. The sealing ability coupled with optimum physical properties could make Biodentine an excellent option as a core material. The aim of the study was to determine the fracture resistance of Biodentine as a core material in comparison with resin modified glass ionomer and composite resin. Freshly extracted 30 human permanent maxillary central incisors were selected. After endodontic treatment followed by post space preparation and luting of Glass fibre post (Reforpost, Angelus), the samples were divided in to three groups based on the type of core material. The core build-up used in Group I was Biodentine (Septodont, France), Group II was Resin-Modified Glass Ionomer Cement (GC, Japan) and Group III was Hybrid Composite Resin (TeEconom plus, Ivoclar vivadent). The specimens were subjected to fracture toughness using Universal testing machine (1474, Zwick/Roell, Germany) and results were compared using One-way analysis of variance with Tukey's Post hoc test. The results showed that there was significant difference between groups in terms of fracture load. Also, composite resin exhibited highest mean fracture load (1039.9 N), whereas teeth restored with Biodentine demonstrated the lowest mean fracture load (176.66 N). Resin modified glass ionomer exhibited intermediate fracture load (612.07 N). The primary mode of failure in Group I and Group II was favourable (100%) while unfavourable fracture was seen in Group III (30%). Biodentine, does not satisfy the requirements to be used as an ideal core material. The uses of RMGIC's as a core build-up material should be limited to non-stress bearing areas. Composite resin is still the best core build-up material owing to its high fracture resistance and bonding to tooth.
Wood, David B.
2007-11-01
Between 1951 and 1992, 828 underground tests were conducted on the Nevada National Security Site, Nye County, Nevada. Prior to and following these nuclear tests, holes were drilled and mined to collect rock samples. These samples are organized and stored by depth of borehole or drift at the U.S. Geological Survey Core Library and Data Center at Mercury, Nevada, on the Nevada National Security Site. From these rock samples, rock properties were analyzed and interpreted and compiled into project files and in published reports that are maintained at the Core Library and at the U.S. Geological Survey office in Henderson, Nevada. These rock-sample data include lithologic descriptions, physical and mechanical properties, and fracture characteristics. Hydraulic properties also were compiled from holes completed in the water table. Rock samples are irreplaceable because pre-test, in-place conditions cannot be recreated and samples can not be recollected from the many holes destroyed by testing. Documenting these data in a published report will ensure availability for future investigators.
Sperier, Aubrey D.; Hopkins, Colleen F.; Griffiths, Bridgette D.; Principe, Molly F.; Schnall, Barri L.; Bell, Johanna C.; Koppenhaver, Shane L.
2016-01-01
ABSTRACT Background Body armor is credited with increased survival rates in soldiers but the additional axial load may negatively impact the biomechanics of the spine resulting in low back pain. Multiple studies have found that lumbar stabilization programs are superior to generalized programs for patients with chronic low back pain. It is not known if such programs produce objective changes in trunk muscle function with wear of body armor. Hypothesis/Purpose An eight-week core stability exercise program would result in a larger improvement in physical endurance and abdominal muscle thickness than a control intervention. The purpose of this study was to assess the effectiveness of an eight-week core stability exercise program on physical endurance and abdominal muscle thickness with and without wear of body armor. Study Design Randomized controlled trial Methods Participants (N = 33) were randomized into either the core strengthening exercise group or the control group. Testing included ultrasound imaging of abdominal muscle thickness in hook-lying and standing with and without body armor and timed measures of endurance. Results There were statistically significant group by time interactions for transversus abdominis muscle contraction thickness during standing, both with (p = 0.018) and without body armor (p = 0.038). The main effect for hold-time during the horizontal side-support (p = 0.016) indicated improvement over time regardless of group. There was a significant group by time interaction (p = 0.014) for horizontal side-support hold-time when compliance with the exercise protocol was set at 85%, indicating more improvement in the core stabilization group than in the control group. Conclusion Performing an eight-week core stabilization exercise program significantly improves transversus abdominis muscle activation in standing and standing with body armor. When compliant with the exercises, such a program may increase trunk strength and muscle endurance. Levels of Evidence Therapy, Level 2b PMID:27525175
Yuxin Wu; Craig Ulrich; Tim Kneafsey
2018-03-22
This dataset reports the results of physical, chemical, and hydrologic analyses of soil cores collected at the NGEE Arctic Intensive Sites 0 and 1 (Plots A, B, C, and D) during late winter seasons (April-May) from 2013 to 2016. Locations were selected across the polygonal ground to include low, flat, and high centered polygons (LCPs, FCPs and HCPs) and internal features (i.e. the trough, center, and rim). The data are depth-resolved and down to ~ 4m below ground surface for some cores. The specific depths for each core where samples were analyzed vary from core to core.
A Core-Particle Model for Periodically Focused Ion Beams with Intense Space-Charge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lund, S M; Barnard, J J; Bukh, B
2006-08-02
A core-particle model is derived to analyze transverse orbits of test particles evolving in the presence of a core ion beam described by the KV distribution. The core beam has uniform density within an elliptical cross-section and can be applied to model both quadrupole and solenoidal focused beams in periodic or aperiodic lattices. Efficient analytical descriptions of electrostatic space-charge fields external to the beam core are derived to simplify model equations. Image charge effects are analyzed for an elliptical beam centered in a round, conducting pipe to estimate model corrections resulting from image charge nonlinearities. Transformations are employed to removemore » coherent utter motion associated with oscillations of the ion beam core due to rapidly varying, linear applied focusing forces. Diagnostics for particle trajectories, Poincare phase-space projections, and single-particle emittances based on these transformations better illustrate the effects of nonlinear forces acting on particles evolving outside the core. A numerical code has been written based on this model. Example applications illustrate model characteristics. The core-particle model described has recently been applied to identify physical processes leading to space-charge transport limits for an rms matched beam in a periodic quadrupole focusing channel [Lund and Chawla, Nuc. Instr. and Meth. A 561, 203 (2006)]. Further characteristics of these processes are presented here.« less
Prevention of hypothermia by infusion of warm fluid during abdominal surgery.
Xu, Hong-xia; You, Zhi-Jian; Zhang, Hong; Li, Zhiqing
2010-12-01
Perioperative hypothermia can lead to a number of complications for patients after surgery. The aim of this pilot study was to evaluate the efficacy of warm fluids in maintaining normal core temperature during the intraoperative period. We studied 30 American Society of Anesthesiologists (ASA) physical status I or II adult patients who required general anesthesia for abdominal surgery. In the control group (n = 15), fluids were infused at room temperature; in the test group (n = 15), fluids were infused at 37° C. In the control group, core temperature decreased to 35.5 ± 0.3° C during the first 3 hours, and then stabilized at the end of anesthesia. In the test group, core temperature decreased during the first 60 minutes, but increased to 36.9 ± 0.3° C at the end of anesthesia. In the control group, eight patients shivered at grade ≥2. In the test group, none of the patients reached grade ≥2 (P < .01). Infusion of warm fluid is effective in keeping patients nearly normothermic and preventing postanesthetic shivering. It may provide an easy and effective method for prevention of perioperative hypothermia. Copyright © 2010 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.
Overview and Current Status of Analyses of Potential LEU Design Concepts for TREAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connaway, H. M.; Kontogeorgakos, D. C.; Papadias, D. D.
2015-10-01
Neutronic and thermal-hydraulic analyses have been performed to evaluate the performance of different low-enriched uranium (LEU) fuel design concepts for the conversion of the Transient Reactor Test Facility (TREAT) from its current high-enriched uranium (HEU) fuel. TREAT is an experimental reactor developed to generate high neutron flux transients for the testing of nuclear fuels. The goal of this work was to identify an LEU design which can maintain the performance of the existing HEU core while continuing to operate safely. A wide variety of design options were considered, with a focus on minimizing peak fuel temperatures and optimizing the powermore » coupling between the TREAT core and test samples. Designs were also evaluated to ensure that they provide sufficient reactivity and shutdown margin for each control rod bank. Analyses were performed using the core loading and experiment configuration of historic M8 Power Calibration experiments (M8CAL). The Monte Carlo code MCNP was utilized for steady-state analyses, and transient calculations were performed with the point kinetics code TREKIN. Thermal analyses were performed with the COMSOL multi-physics code. Using the results of this study, a new LEU Baseline design concept is being established, which will be evaluated in detail in a future report.« less
NASA Astrophysics Data System (ADS)
Oyibo, A. E.
2013-12-01
Wellbore cement has been used to provide well integrity through zonal isolation in oil & gas wells and geothermal wells. Cementing is also used to provide mechanical support for the casing and protect the casing from corrosive fluids. Failure of cement could be caused by several factors ranging from poor cementing, failure to completely displace the drilling fluids to failure on the path of the casing. A failed cement job could result in creation of cracks and micro annulus through which produced fluids could migrate to the surface which could lead to sustained casing pressure, contamination of fresh water aquifer and blow out in some cases. In addition, cement failures could risk the release of chemicals substances from hydraulic fracturing into fresh water aquifer during the injection process. To achieve proper cementing, the drilling fluid should be completely displaced by the cement slurry. However, this is hard to achieve in practice, some mud is usually left on the wellbore which ends up contaminating the cement afterwards. The purpose of this experimental study is to investigate the impact of both physical and chemical mud contaminations on cement-formation bond strength for different types of formations. Physical contamination occurs when drilling fluids (mud) dries on the surface of the formation forming a mud cake. Chemical contamination on the other hand occurs when the drilling fluids which is still in the liquid form interacts chemically with the cement during a cementing job. We investigated the impact of the contamination on the shear bond strength and the changes in the mineralogy of the cement at the cement-formation interface to ascertain the impact of the contamination on the cement-formation bond strength. Berea sandstone and clay rich shale cores were bonded with cement cores with the cement-formation contaminated either physically or chemically. For the physically contaminated composite cores, we have 3 different sample designs: clean/not contaminated, scrapped and washed composite cores. Similarly, for the chemically contaminated samples we had 3 different sample designs: 0%, 5% and 10% mud contaminated composite cores. Shear test were performed on the composite cores to determine the shear bond strength and the results suggested that the detrimental impact of the contamination is higher when the cores are physically contaminated i.e. when we have mud cake present at the surface of the wellbore before a cement job is performed. Also, the results showed that shear bond strength is higher for sandstone formations as compared to shale formations. Material characterization analysis was carried out to determine the micro structural changes at the cement-formation interface. The results obtained from the SEM and micro CT images taken at the bond interface confirmed that chemical contamination caused substantial changes in the spatial distribution of minerals that impacted bond strength. Keywords: Cement-Formation bond strength, mud contamination, shale, sandstone and material characterization *Corresponding author
Self-consistent modeling of CFETR baseline scenarios for steady-state operation
NASA Astrophysics Data System (ADS)
Chen, Jiale; Jian, Xiang; Chan, Vincent S.; Li, Zeyu; Deng, Zhao; Li, Guoqiang; Guo, Wenfeng; Shi, Nan; Chen, Xi; CFETR Physics Team
2017-07-01
Integrated modeling for core plasma is performed to increase confidence in the proposed baseline scenario in the 0D analysis for the China Fusion Engineering Test Reactor (CFETR). The steady-state scenarios are obtained through the consistent iterative calculation of equilibrium, transport, auxiliary heating and current drives (H&CD). Three combinations of H&CD schemes (NB + EC, NB + EC + LH, and EC + LH) are used to sustain the scenarios with q min > 2 and fusion power of ˜70-150 MW. The predicted power is within the target range for CFETR Phase I, although the confinement based on physics models is lower than that assumed in 0D analysis. Ideal MHD stability analysis shows that the scenarios are stable against n = 1-10 ideal modes, where n is the toroidal mode number. Optimization of RF current drive for the RF-only scenario is also presented. The simulation workflow for core plasma in this work provides a solid basis for a more extensive research and development effort for the physics design of CFETR.
A Vertically Lagrangian Finite-Volume Dynamical Core for Global Models
NASA Technical Reports Server (NTRS)
Lin, Shian-Jiann
2003-01-01
A finite-volume dynamical core with a terrain-following Lagrangian control-volume discretization is described. The vertically Lagrangian discretization reduces the dimensionality of the physical problem from three to two with the resulting dynamical system closely resembling that of the shallow water dynamical system. The 2D horizontal-to-Lagrangian-surface transport and dynamical processes are then discretized using the genuinely conservative flux-form semi-Lagrangian algorithm. Time marching is split- explicit, with large-time-step for scalar transport, and small fractional time step for the Lagrangian dynamics, which permits the accurate propagation of fast waves. A mass, momentum, and total energy conserving algorithm is developed for mapping the state variables periodically from the floating Lagrangian control-volume to an Eulerian terrain-following coordinate for dealing with physical parameterizations and to prevent severe distortion of the Lagrangian surfaces. Deterministic baroclinic wave growth tests and long-term integrations using the Held-Suarez forcing are presented. Impact of the monotonicity constraint is discussed.
ERIC Educational Resources Information Center
Sagendorf, Kenneth; Noyd, Robert K.; Morris, D. Brent
2009-01-01
An institution-wide focus on deep learning has made significant changes in the biology and physics core course curriculum at the U.S. Air Force Academy. The biology course director has reworked course objectives to reflect the learning-focused approach to teaching, while the physics curriculum has adopted new learning outcomes and ways to…
Fuel management optimization using genetic algorithms and expert knowledge
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeChaine, M.D.; Feltus, M.A.
1996-09-01
The CIGARO fuel management optimization code based on genetic algorithms is described and tested. The test problem optimized the core lifetime for a pressurized water reactor with a penalty function constraint on the peak normalized power. A bit-string genotype encoded the loading patterns, and genotype bias was reduced with additional bits. Expert knowledge about fuel management was incorporated into the genetic algorithm. Regional crossover exchanged physically adjacent fuel assemblies and improved the optimization slightly. Biasing the initial population toward a known priority table significantly improved the optimization.
Kim, Jung-Hyun; Knight, Bob G; Longmire, Crystal V Flynn
2007-09-01
To explore how familism, burden, and coping styles mediate the relationships between ethnicity and the mental and physical health of caregivers. A probability sample of 65 White and 95 African Americans respondents caring for an older family member with dementia was used to test hypotheses from a sociocultural stress and coping model using path analysis. Measures of caregivers' health included subjective health, self-reported diseases, blood pressure, and heart rate. Mental health measures included self-reported depression and psychological symptoms. Contrary to the hypothesis, familism had an adverse effect on outcomes and was related to low education levels rather than to African American ethnicity. A buffering effect of active coping between being African American and diastolic blood pressure was found even after controlling for levels of education. Findings supported a core stress and coping model in which more behavior problems of care recipients were associated with poorer mental health of caregivers via greater burden and more use of avoidant coping. Results also demonstrate that this core model can be extended to physical health. (PsycINFO Database Record (c) 2007 APA, all rights reserved).
Thickness effect of kenaf cellulose membrane on its morphological, physical and tensile properties
NASA Astrophysics Data System (ADS)
Hashim, Sharifah Nurul Ain Syed; Zakaria, Sarani; Jaafar, Sharifah Nabihah Syed; Chia, Chin Hua
2016-11-01
Dissolution of kenaf core cellulose was undergone in NaOH/Urea solvent and the cellulose solution was casted with three different thicknesses (0.04 mm, 0.06 mm and 0.07 mm) followed by coagulation in 5 % of H2SO4 to form regenerated cellulose membrane. The XRD results showed that the crystallinity index (CrI) of kenaf core cellulose membrane decreased after been regenerated into cellulose II. The surface morphology showed that the pores of the membrane became smaller as the thickness of cellulose membrane increased. The transparency tests demonstrated the thinner samples (0.04 mm) gave higher light transmittance than the thickest samples (0.07 mm). The kenaf core membrane with 0.07 mm thickness possessed highest tensile strength and breaking elongation at σ = 33.48 and ɛ = 8.03 relatively and also exhibited the largest pore size.
Estimating explosion properties of normal hydrogen-rich core-collapse supernovae
NASA Astrophysics Data System (ADS)
Pejcha, Ondrej
2017-08-01
Recent parameterized 1D explosion models of hundreds of core-collapse supernova progenitors suggest that success and failure are intertwined in a complex pattern that is not a simple function of the progenitor initial mass. This rugged landscape is present also in other explosion properties, allowing for quantitative tests of the neutrino mechanism from observations of hundreds of supernovae discovered every year. We present a new self-consistent and versatile method that derives photospheric radius and temperature variations of normal hydrogen-rich core-collapse supernovae based on their photometric measurements and expansion velocities. We construct SED and bolometric light curves, determine explosion energies, ejecta and nickel masses while taking into account all uncertainties and covariances of the model. We describe the efforts to compare the inferences to the predictions of the neutrino mechanim. The model can be adapted to include more physical assumptions to utilize primarily photometric data coming from surveys such as LSST.
Host-Guest Complexes with Protein-Ligand-Like Affinities: Computational Analysis and Design
Moghaddam, Sarvin; Inoue, Yoshihisa
2009-01-01
It has recently been discovered that guests combining a nonpolar core with cationic substituents bind cucurbit[7]uril (CB[7]) in water with ultra-high affinities. The present study uses the Mining Minima algorithm to study the physics of these extraordinary associations and to computationally test a new series of CB[7] ligands designed to bind with similarly high affinity. The calculations reproduce key experimental observations regarding the affinities of ferrocene-based guests with CB[7] and β-cyclodextrin and provide a coherent view of the roles of electrostatics and configurational entropy as determinants of affinity in these systems. The newly designed series of compounds is based on a bicyclo[2.2.2]octane core, which is similar in size and polarity to the ferrocene core of the existing series. Mining Minima predicts that these new compounds will, like the ferrocenes, bind CB[7] with extremely high affinities. PMID:19133781
Modeling of rapid shutdown in the DIII-D tokamak by core deposition of high-Z material
Izzo, Valerie A.; Parks, Paul B.
2017-06-22
MHD modeling of shell-pellet injection for disruption mitigation is carried out under the assumption of idealized delivery of the radiating payload to the core, neglecting the physics of shell ablation. The shell pellet method is designed to produce an inside-out thermal quench in which core thermal heat is radiated while outer flux surfaces remain intact, protecting the divertor from large conducted heat loads. In the simulation, good outer surfaces remain until the thermal quench is nearly complete, and a high radiated energy fraction is achieved. As a result, when the outermost surfaces are destroyed, runaway electron test orbits indicate thatmore » the rate of runaway electron loss is very fast compared with prior massive gas injection simulations, which is attributed to the very different current profile evolution that occurs with central cooling.« less
A proposed medical physics curriculum: preparing for the 2013 ABR examination.
Nachiappan, Arun C; Wynne, David M; Katz, David P; Willis, Marc H; Bushong, Stewart C
2011-01-01
The upcoming ABR examination format for radiology residents is undergoing significant changes in 2013. This requires adaptation of the didactic curriculum for radiology residents entering in July 2010 to meet these changes. Physics will now be incorporated into the core (qualifying) examination during the third year of residency, instead of being tested as a separate examination that was often taken earlier in residency training in past years. In this article, the authors discuss the past, present, and future of medical physics instruction and outline a revised medical physics curriculum for radiology residents that has been internally approved for implementation at the authors' institution and has not been advocated by any society or by the ABR. Starting with this article, the authors hope to encourage a discussion of physics curriculum revision with other institutions. Copyright © 2011 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Physically active academic lessons in elementary children.
Bartholomew, John B; Jowers, Esbelle M
2011-06-01
Although schools are an ideal location to conduct interventions that target children, the emphasis on standardized testing makes it difficult to implement interventions that do not directly support academic instruction. In response, physically active academic lessons have been developed as a strategy to increase physical activity while also addressing core educational goals. Texas I-CAN! is one incarnation of this approach. We will review the on-going research on the impact of these active lessons on: teacher implementation, child step count, child attention control, and academic performance. The collected studies support the impact of physically active academic lessons on each area of interest. If these data can be replicated, it suggests that teachers might find these lessons of benefit to their primary role as educators, which should ease dissemination of these and other physically active lessons in elementary schools. Copyright © 2011 Elsevier Inc. All rights reserved.
Multiple Core Galaxies: Implications for M31
NASA Technical Reports Server (NTRS)
Smith, B. F.; Miller, R. H.; Cuzzi, Jeffrey N. (Technical Monitor)
1994-01-01
It is generally perceived that two cores cannot survive very long within the nuclear regions of a galaxy. The recent HST discovery of a double nucleus in M31 brings this question into prominence. Physical conditions in the nuclear regions of a typical galaxy help a second core survive so it can orbit for a long time, possibly for thousands of orbits. Given the nearly uniform mass density in a core, tidal forces within a core radius are compressive in all directions and help the core survive the buffeting it takes as it orbits near the center of the galaxy. We use numerical experiments to illustrate these physical principles. Modifications to the experimental method allow the full power of the experiments to be concentrated on the nuclear regions. Spatial resolution of about 0.2 parsec comfortably resolves detail within the 1.4 parsec core radius of the second, but brighter, core (P1) in M31. The same physical principles apply in other astronomical situations, such as dumbbell galaxies, galaxies orbiting near the center of a galaxy cluster, and subclustering in galaxy clusters. The experiments also illustrate that galaxy encounters and merging are quite sensitive to external tidal forces, such as those produced by the gravitational potential in a group or cluster of galaxies.
NASA Astrophysics Data System (ADS)
Wang, Weixing; Brian, B.; Ethier, S.; Chen, J.; Startsev, E.; Diamond, P. H.; Lu, Z.
2015-11-01
A non-diffusive momentum flux connecting edge momentum sources/sinks and core plasma flow is required to establish the off-axis peaked ion rotation profile typically observed in ECH-heated DIII-D plasmas without explicit external momentum input. The understanding of the formation of such profile structures provides an outstanding opportunity to test the physics of turbulence driving intrinsic rotation, and validate first-principles-based gyrokinetic simulation models. Nonlinear, global gyrokinetic simulations of DIII-D ECH plasmas indicate a substantial ITG fluctuation-induced residual stress generated around the region of peaked toroidal rotation, along with a diffusive momentum flux. The residual stress profile shows an anti-gradient, dipole structure, which is critical for accounting for the formation of the peaked rotation profile. It is showed that both turbulence intensity gradient and zonal flow ExB shear contribute to the generation of k// asymmetry needed for residual stress generation. By balancing the simulated residual stress and the momentum diffusion, a rotation profile is calculated. In general, the radial structure of core rotation profile is largely determined by the residual stress profile, while the amplitude of core rotation depends on the edge toroidal rotation velocity, which is determined by edge physics and used as a boundary condition in our model. The calculated core rotation profile is consistent with the experimental measurements. Also discussed is the modification of turbulence-generated Reynolds stress on poloidal rotation in those plasmas. Work supported by U.S. DOE Contract DE-AC02-09-CH11466.
Modeling of carbonate reservoir variable secondary pore space based on CT images
NASA Astrophysics Data System (ADS)
Nie, X.; Nie, S.; Zhang, J.; Zhang, C.; Zhang, Z.
2017-12-01
Digital core technology has brought convenience to us, and X-ray CT scanning is one of the most common way to obtain 3D digital cores. However, it can only provide the original information of the only samples being scanned, and we can't modify the porosity of the scanned cores. For numerical rock physical simulations, a series of cores with variable porosities are needed to determine the relationship between the physical properties and porosity. In carbonate rocks, the secondary pore space including dissolution pores, caves and natural fractures is the key reservoir space, which makes the study of carbonate secondary porosity very important. To achieve the variation of porosities in one rock sample, based on CT scanned digital cores, according to the physical and chemical properties of carbonate rocks, several mathematical methods are chosen to simulate the variation of secondary pore space. We use the erosion and dilation operations of mathematical morphology method to simulate the pore space changes of dissolution pores and caves. We also use the Fractional Brownian Motion model to generate natural fractures with different widths and angles in digital cores to simulate fractured carbonate rocks. The morphological opening-and-closing operations in mathematical morphology method are used to simulate distribution of fluid in the pore space. The established 3D digital core models with different secondary porosities and water saturation status can be used in the study of the physical property numerical simulations of carbonate reservoir rocks.
Ko, Dae-Sik; Jung, Dae-In; Jeong, Mi-Ae
2014-11-01
[Purpose] The aim of the present study was to investigate the effects of core stability exercise (CSE) on the physical and psychological functions of elderly women while negotiating general obstacles. [Subjects and Methods] After allocating 10 elderly women each to the core stability training group and the control group, we carried out Performance-Oriented Mobility Assessment (POMA) and measured crossing velocity (CV), maximum vertical heel clearance (MVHC), and knee flexion angle for assessing physical performances. We evaluated depression and fear of falling for assessing psychological functions. [Results] Relative to the control group, the core stability training group showed statistically significant overall changes after the training session: an increase in POMA scores, faster CV, lower MVHC, and a decrease in knee flexion angle. Furthermore, depression and fear of falling decreased significantly. [Conclusion] CSE can have a positive effect on the improvement of physical and psychological performances of older women who are vulnerable to falls as they negotiate everyday obstacles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lell, R. M.; Schaefer, R. W.; McKnight, R. D.
Over a period of 30 years more than a hundred Zero Power Reactor (ZPR) critical assemblies were constructed at Argonne National Laboratory. The ZPR facilities, ZPR-3, ZPR-6, ZPR-9 and ZPPR, were all fast critical assembly facilities. The ZPR critical assemblies were constructed to support fast reactor development, but data from some of these assemblies are also well suited to form the basis for criticality safety benchmarks. Of the three classes of ZPR assemblies, engineering mockups, engineering benchmarks and physics benchmarks, the last group tends to be most useful for criticality safety. Because physics benchmarks were designed to test fast reactormore » physics data and methods, they were as simple as possible in geometry and composition. The principal fissile species was {sup 235}U or {sup 239}Pu. Fuel enrichments ranged from 9% to 95%. Often there were only one or two main core diluent materials, such as aluminum, graphite, iron, sodium or stainless steel. The cores were reflected (and insulated from room return effects) by one or two layers of materials such as depleted uranium, lead or stainless steel. Despite their more complex nature, a small number of assemblies from the other two classes would make useful criticality safety benchmarks because they have features related to criticality safety issues, such as reflection by soil-like material. The term 'benchmark' in a ZPR program connotes a particularly simple loading aimed at gaining basic reactor physics insight, as opposed to studying a reactor design. In fact, the ZPR-6/7 Benchmark Assembly (Reference 1) had a very simple core unit cell assembled from plates of depleted uranium, sodium, iron oxide, U3O8, and plutonium. The ZPR-6/7 core cell-average composition is typical of the interior region of liquid-metal fast breeder reactors (LMFBRs) of the era. It was one part of the Demonstration Reactor Benchmark Program,a which provided integral experiments characterizing the important features of demonstration-size LMFBRs. As a benchmark, ZPR-6/7 was devoid of many 'real' reactor features, such as simulated control rods and multiple enrichment zones, in its reference form. Those kinds of features were investigated experimentally in variants of the reference ZPR-6/7 or in other critical assemblies in the Demonstration Reactor Benchmark Program.« less
NASA Astrophysics Data System (ADS)
Luo, Mingchuan; Wei, Lingli; Wang, Fanghui; Han, Kefei; Zhu, Hong
2014-12-01
Over the past decade, Pt based core-shell structured alloys have been studied extensively as oxygen reduction reaction (ORR) catalysts for proton exchange membrane fuel cells (PEMFCs) because of their distinctive electrochemical performance and low Pt loading. In this paper, a facile route based on microwave-assisted polyol method and chemical dealloying process is proposed to synthesize carbon supported core-shell structured nanoparticles (NPs) in gram-level for ORR electrocatalysis in PEMFCs. The obtained samples are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), inductively coupled plasma atomic emission spectroscopy (ICP-AES), and X-ray photoelectron spectroscopy (XPS). These physical characterization indicate that the final synthesized NPs are highly dispersed on the carbon support, and in a core-shell structure with CuPt alloy as the core and Pt as the shell. Electrochemical measurements, conducted by cyclic voltammetry (CV) and rotating disk electrode (RDE) tests, show the core-shell structured catalyst exhibit a 3× increase in mass activity and a 2× increase in specific activity over the commercial Pt/C catalyst, respectively. These results demonstrate that this route can be a reliable way to synthesize low-Pt catalyst in large-scale for PEMFCs.
Permeability and seismic velocity anisotropy across a ductile-brittle fault zone in crystalline rock
NASA Astrophysics Data System (ADS)
Wenning, Quinn C.; Madonna, Claudio; de Haller, Antoine; Burg, Jean-Pierre
2018-05-01
This study characterizes the elastic and fluid flow properties systematically across a ductile-brittle fault zone in crystalline rock at the Grimsel Test Site underground research laboratory. Anisotropic seismic velocities and permeability measured every 0.1 m in the 0.7 m across the transition zone from the host Grimsel granodiorite to the mylonitic core show that foliation-parallel P- and S-wave velocities systematically increase from the host rock towards the mylonitic core, while permeability is reduced nearest to the mylonitic core. The results suggest that although brittle deformation has persisted in the recent evolution, antecedent ductile fabric continues to control the matrix elastic and fluid flow properties outside the mylonitic core. The juxtaposition of the ductile strain zone next to the brittle zone, which is bounded inside the two mylonitic cores, causes a significant elastic, mechanical, and fluid flow heterogeneity, which has important implications for crustal deformation and fluid flow and for the exploitation and use of geothermal energy and geologic waste storage. The results illustrate how physical characteristics of faults in crystalline rocks change in fault zones during the ductile to brittle transitions.
Scalable Super-Resolution Synthesis of Core-Vest Composites Assisted by Surface Plasmons.
Montazeri, A O; Kim, Y; Fang, Y S; Soheilinia, N; Zaghi, G; Clark, J K; Maboudian, R; Kherani, N P; Carraro, C
2018-02-15
The behavior of composite nanostructures depends on both size and elemental composition. Accordingly, concurrent control of size, shape, and composition of nanoparticles is key to tuning their functionality. In typical core-shell nanoparticles, the high degree of symmetry during shell formation results in fully encapsulated cores with severed access to the surroundings. We commingle light parameters (wavelength, intensity, and pulse duration) with the physical properties of nanoparticles (size, shape, and composition) to form hitherto unrealized core-vest composite nanostructures (CVNs). Unlike typical core-shells, the plasmonic core of the resulting CVNs selectively maintains physical access to its surrounding. Tunable variations in local temperature profiles ≳50 °C are plasmonically induced over starburst-shaped nanoparticles as small as 50-100 nm. These temperature variations result in CVNs where the shell coverage mirrors the temperature variations. The precision thus offered individually tailors access pathways of the core and the shell.
NASA Astrophysics Data System (ADS)
Abe, N.; Okazaki, K.; Hatakeyama, K.; Ildefonse, B.; Leong, J. A. M.; Tateishi, Y.; Teagle, D. A. H.; Takazawa, E.; Kelemen, P. B.; Michibayashi, K.; Coggon, J. A.; Harris, M.; de Obeso, J. C.
2017-12-01
We report results on the physical property measurements of the core samples from ICDP Holes GT1A, GT2A and GT3A drilled at Samail Ophiolite, Sultanate of Oman. Cores from Holes GT1A and GT2A in the lower crust section are mainly composed of gabbros (gabbro and olivine gabbro), and small amounts of ultramafic rocks (wehrlite and dunite), while cores from Hole GT3A at the boundary between sheeted dikes and gabbro are mainly composed of basalt and diabase, followed by gabbros (gabbro, olivine gabbro and oxide gabbro), and less common felsic dikes, trondhjemite and tonalite, intrude the mafic rocks. Measurements of physical properties were undertaken to characterize recovered core material. Onboard the Drilling Vessel Chikyu, whole-round measurements included X-ray CT image, natural gamma radiation, and magnetic susceptibility for Leg 1, and additional P-wave velocity, gamma ray attenuation density, and electrical resistivity during Leg 2. Split-core point magnetic susceptibility and color spectroscopy were measured for all core sections. P-wave velocity, bulk/grain density and porosity of more than 500 discrete cube samples, and thermal conductivity on more than 240 pieces from the working half of the split core sections were also measured. Physical Properties of gabbroic rocks from Holes GT1A and GT2A are similar to typical oceanic gabbros from ODP and IODP expeditions at Atlantis Bank, Southwestern Indian Ridge (ODP Legs 118, 176 and 179; IODP Exp 360) and at Hess Deep, Eastern Pacific (ODP Leg 147 and IODP Exp. 345). Average P-wave velocity, bulk density, grain density, porosity and thermal conductivity are 6.7 km/s, 2.92 g/cm^3, 2.93 g/cm^3, 0.98% and 2.46 W/m/K, respectively. P-wave velocity of samples from all three holes is inversely correlated with porosity. No clear correlation between the original lithology and physical properties is observed. GT3A cores show a wider range (e.g., Vp from 2.2 to 7.1 km/s) of values for the measured physical properties, compared to gabbros from Holes GT1A and GT2A.
NASA Astrophysics Data System (ADS)
Cataloglu, Erdat
The purpose of this study was to construct a valid and reliable multiple-choice achievement test to assess students' understanding of core concepts of introductory quantum mechanics. Development of the Quantum Mechanics Visualization Instrument (QMVI) occurred across four successive semesters in 1999--2001. During this time 213 undergraduate and graduate students attending the Pennsylvania State University (PSU) at University Park and Arizona State University (ASU) participated in this development and validation study. Participating students were enrolled in four distinct groups of courses: Modern Physics, Undergraduate Quantum Mechanics, Graduate Quantum Mechanics, and Chemistry Quantum Mechanics. Expert panels of professors of physics experienced in teaching quantum mechanics courses and graduate students in physics and science education established the core content and assisted in the validating of successive versions of the 24-question QMVI. Instrument development was guided by procedures outlined in the Standards for Educational and Psychological Testing (AERA-APA-NCME, 1999). Data gathered in this study provided information used in the development of successive versions of the QMVI. Data gathered in the final phase of administration of the QMVI also provided evidence that the intended score interpretation of the QMVI achievement test is valid and reliable. A moderate positive correlation coefficient of 0.49 was observed between the students' QMVI scores and their confidence levels. Analyses of variance indicated that students' scores in Graduate Quantum Mechanics and Undergraduate Quantum Mechanics courses were significantly higher than the mean scores of students in Modern Physics and Chemistry Quantum Mechanics courses (p < 0.05). That finding is consistent with the additional understanding and experience that should be anticipated in graduate students and junior-senior level students over sophomore physics majors and majors in another field. The moderate positive correlation coefficient of 0.42 observed between students' QMVI scores and their final course grades was also consistent with expectations in a valid instrument. In addition, the Cronbach-alpha reliability coefficient of the QMVI was found to be 0.82. Limited findings were drawn on students' understanding of introductory quantum mechanics concepts. Data suggested that the construct of quantum mechanics understanding is most likely multidimensional and the Main Topic defined as "Quantum Mechanics Postulates" may be an especially important factor for students in acquiring a successful understanding of quantum mechanics.
NASA Astrophysics Data System (ADS)
Salavati, S.; Pershin, L.; Coyle, T. W.; Mostaghimi, J.
2015-01-01
Metallic foam core sandwich structures have been of particular interest for engineering applications in recent decades because of their unique mechanical and physical properties. Thermal spraying techniques have been recently introduced as a novel low-cost method for production of these structures with complex shapes. One of the potential applications of the metallic foam core sandwich structures prepared by thermal spray techniques is as heat shield devices. Open porosity in the microstructure of the coating may allow the cooling efficiency of the heat shield to be improved through the film cooling phenomenon. A modified twin wire-arc spraying process was employed to deposit high temperature resistant alloy 625 coatings with a high percentage of the open porosity. The effect of skin porosity on the mechanical properties (flexural rigidity) of the sandwich structures was studied using a four-point bending test. It was concluded from the four-point bending test results that increase in the porosity content of the coatings leads to decrease in the flexural rigidity of the sandwich panels. The ductility of the porous and conventional arc-sprayed alloy 625 coatings was improved after heat treatment at 1100 °C for 3 h.
NASA Astrophysics Data System (ADS)
Falzone, S.; Slater, L. D.; Day-Lewis, F. D.; Parker, B. L.; Keating, K.; Robinson, J.
2017-12-01
Mass transfer is the process by which solute is retained in less-mobile porosity domains, and later released into the mobile porosity domain. This process is often responsible for the slow arrival and gradual release of contaminants and solute tracers. Recent studies have outlined methods using dual-domain mass transfer (DDMT) models for characterizing this phenomenon. These models use the non-linear relationship of bulk (σb) and fluid (σf) conductivity, collected from electrical methods during tracer experiments, to characterize the less-mobile/mobile porosity ratio (β) and the mass-transfer rate coefficient (α). DDMT models use the hysteretic σb-σf relationship observed while solute tracers are injected and then flushed from a sample media. Due to limitations in observing the hysteretic σb-σf relationship, this method has not been used to characterize low permeability samples. We have developed an experimental method for testing porous rock cores that allows us to develop a fundamental understanding of contaminant storage and release in consolidated rock. We test the approach on cores from sedimentary rock sites where mass transfer is expected to occur between hydraulically connected fractures and the adjacent low permeability rock matrix. Our method uses a Hassler-type core holder, designed to apply confining pressure around the outside of a sample core, which hydraulically isolates the sample core, allowing water to be injected into it at increased pressures. The experimental apparatus was also designed to measure σb with spectral induced polarization (SIP) measurements, and σf from a sampling port located at the center of the core. Cores were initially saturated with a solution with high electrical conductivity ( 80000 μS/cm). DI water was then injected into the cores at elevated pressures (>60 psi) and the saturating solution was flushed from the cores, in order to generate flow rates fast enough to capture the non-linear σb-σf relationship expected when DDMT occurs. Our initial results demonstrate the existence of a non-linear σb-σf relationship indicative of DDMT for a tight sandstone core from a contaminated fractured rock site. Integrating the electrical results with known physical characteristics of the cores, we are able to quantify the mass transfer characteristics of the cores.
A One Chip Hardened Solution for High Speed SpaceWire System Implementations. Session: Components
NASA Technical Reports Server (NTRS)
Marshall, Joseph R.; Berger, Richard W.; Rakow, Glenn P.
2007-01-01
An Application Specific Integrated Circuit (ASIC) that implements the SpaceWire protocol has been developed in a radiation hardened 0.25 micron CMOS technology. This effort began in March 2003 as a joint development between the NASA Goddard Space Flight Center (GSFC) and BAE Systems. The BAE Systems SpaceWire ASIC is comprised entirely of reusable core elements, many of which are already flight-proven. It incorporates a router with 4 SpaceWire ports and two local ports, dual PC1 bus interfaces, a microcontroller, 32KB of internal memory, and a memory controller for additional external memory use. The SpaceWire cores are also reused in other ASICs under development. The SpaceWire ASIC is planned for use on the Geostationary Operational Environmental Satellites (GOES)-R, the Lunar Reconnaissance Orbiter (LRO) and other missions. Engineering and flight parts have been delivered to programs and users. This paper reviews the SpaceWire protocol and those elements of it that have been built into the current and next SpaceWire reusable cores and features within the core that go beyond the current standard and can be enabled or disabled by the user. The adaptation of SpaceWire to BAE Systems' On Chip Bus (OCB) for compatibility with the other reusable cores will be reviewed and highlighted. Optional configurations within user systems and test boards will be shown. The physical implementation of the design will be described and test results from the hardware will be discussed. Application of this ASIC and other ASICs containing the SpaceWire cores and embedded microcontroller to Plug and Play and reconfigurable implementations will be described. Finally, the BAE Systems roadmap for SpaceWire developments will be updated, including some products already in design as well as longer term plans.
Altering Reservoir Wettability to Improve Production from Single Wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
W. W. Weiss
2006-09-30
Many carbonate reservoirs are naturally fractured and typically produce less than 10% original oil in place during primary recovery. Spontaneous imbibition has proven an important mechanism for oil recovery from fractured reservoirs, which are usually weak waterflood candidates. In some situations, chemical stimulation can promote imbibition of water to alter the reservoir wettability toward water-wetness such that oil is produced at an economic rate from the rock matrix into fractures. In this project, cores and fluids from five reservoirs were used in laboratory tests: the San Andres formation (Fuhrman Masho and Eagle Creek fields) in the Permian Basin of Texasmore » and New Mexico; and the Interlake, Stony Mountain, and Red River formations from the Cedar Creek Anticline in Montana and South Dakota. Solutions of nonionic, anionic, and amphoteric surfactants with formation water were used to promote waterwetness. Some Fuhrman Masho cores soaked in surfactant solution had improved oil recovery up to 38%. Most Eagle Creek cores did not respond to any of the tested surfactants. Some Cedar Creek anticline cores had good response to two anionic surfactants (CD 128 and A246L). The results indicate that cores with higher permeability responded better to the surfactants. The increased recovery is mainly ascribed to increased water-wetness. It is suspected that rock mineralogy is also an important factor. The laboratory work generated three field tests of the surfactant soak process in the West Fuhrman Masho San Andres Unit. The flawlessly designed tests included mechanical well clean out, installation of new pumps, and daily well tests before and after the treatments. Treatments were designed using artificial intelligence (AI) correlations developed from 23 previous surfactant soak treatments. The treatments were conducted during the last quarter of 2006. One of the wells produced a marginal volume of incremental oil through October. It is interesting to note that the field tests were conducted in an area of the field that has not met production expectations. The dataset on the 23 Phosphoria well surfactant soaks was updated. An analysis of the oil decline curves indicted that 4.5 lb of chemical produced a barrel of incremental oil. The AI analysis supports the adage 'good wells are the best candidates.' The generally better performance of surfactant in the high permeability core laboratory tests supports this observation. AI correlations were developed to predict the response to water-frac stimulations in a tight San Andres reservoir. The correlations maybe useful in the design of Cedar Creek Anticline surfactant soak treatments planned for next year. Nuclear Magnetic Resonance scans of dolomite cores to measure porosity and saturation during the high temperature laboratory work were acquired. The scans could not be correlated with physical measurement using either conventional or AI methods.« less
Effects of physical conditioning on heat tolerance in chemical-defense gear. Master's thesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nauss, M.M.
Today the threat of chemical warfare is real. The only effective defense is the use of chemical defense gear and gas masks. Since they render chemical-warfare gases and liquids impermeable to penetration, they also prohibit sweat evaporation in conditions of thermal stress and thus, contribute to heat illness development. Historically, it has been the hot, humid tropics where United Nation's peacekeeping forces have been called, thus the use of chemical-defense gear in these regions is a realistic possibility and heat illness could affect the outcome of any mission carried out there. The human body only operates within a narrow rangemore » of core temparatures, and heat illness is the result of a breakdown in homeostasis. Many factors influence heat tolerance, thus maintaining core temperature within a safe range. Adequate hydration, acclimitization to heat, low body weight, young age, low alcohol intake, and physical fitness all contribute to heat tolerance. This proposal attempts to look specifically at the effect of physical conditioning on heat tolerance in chemical-defense gear as a possible solution to the heat-stress problem noted in this gear. Trainee graduates attending technical training schools at Lackland AFB, Texas, will be tested for maximum oxygen uptake (VO/2max) and heat tolerance time (HTT) in chemical defense gear on bicycle ergometers at Brooks AFB, Texas. Half of these subjects will be physically conditioned for 12 weeks.« less
Proceedings of the 1992 topical meeting on advances in reactor physics. Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-04-01
This document, Volume 2, presents proceedings of the 1992 Topical Meeting on Advances in Reactor Physics on March 8--11, 1992 at Charleston, SC. Session topics were as follows: Transport Theory; Fast Reactors; Plant Analyzers; Integral Experiments/Measurements & Analysis; Core Computational Systems; Reactor Physics; Monte Carlo; Safety Aspects of Heavy Water Reactors; and Space-Time Core Kinetics. The individual reports have been cataloged separately. (FI)
The physics of the earth's core: An introduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melchior, P.
1986-01-01
This book is a reference text providing information on physical topics of recent developments in internal geophysics. The text summarizes papers covering theoretical geophysics. Basic formulae, definitions and theorems are not explained in detail due to the limited space. The contents include applications to geodesy, geophysics, astronomy, astrophysics, geophysics and planetary physics. The formal contents include: The Earth's model; Thermodynamics; Hydrodynamics; Geomagnetism; Geophysical implications in the Earth's core.
Teaching the physical examination: a longitudinal strategy for tomorrow's physicians.
Uchida, Toshiko; Farnan, Jeanne M; Schwartz, Jennifer E; Heiman, Heather L
2014-03-01
The physical examination is an essential clinical skill. The traditional approach to teaching the physical exam has involved a comprehensive "head-to-toe" checklist, which is often used to assess students before they begin their clinical clerkships. This method has been criticized for its lack of clinical context and for promoting rote memorization without critical thinking. In response to these concerns, Gowda and colleagues surveyed a national sample of clinical skills educators in order to develop a consensus "core" physical exam, which they report in this issue. The core physical exam is intended to be performed for every patient admitted by students during their medicine clerkships and to be supplemented by symptom-driven "clusters" of additional history and physical exam maneuvers.In this commentary, the authors review the strengths and limitations of this Core + Clusters technique as well as the head-to-toe approach. They propose that the head-to-toe still has a place in medical education, particularly for beginning students with little knowledge of pathophysiology and for patients with vague or multiple symptoms. The authors suggest that the ideal curriculum would include teaching both the head-to-toe and the Core + Clusters exams in sequence. This iterative approach to physical exam teaching would allow a student to assess a patient in a comprehensive manner while incorporating more clinical reasoning as further medical knowledge is acquired.
Collett, Timothy S.; Boswell, Ray; Cochran, J.R.; Kumar, Pushpendra; Lall, Malcolm; Mazumdar, Aninda; Ramana, Mangipudi Venkata; Ramprasad, Tammisetti; Riedel, Michael; Sain, Kalachand; Sathe, Arun Vasant; Vishwanath, Krishna
2014-01-01
One of the specific objectives of this expedition was to test gas hydrate formation models and constrain model parameters, especially those that account for the formation of concentrated gas hydrate accumulations. The necessary data for characterizing the occurrence of in situ gas hydrate, such as interstitial water chlorinities, core-derived gas chemistry, physical and sedimentological properties, thermal images of the recovered cores, and downhole measured logging data (LWD and/or conventional wireline log data), were obtained from most of the drill sites established during NGHP-01. Almost all of the drill sites yielded evidence for the occurrence of gas hydrate; however, the inferred in situ concentration of gas hydrate varied substantially from site to site. For the most part, the interpretation of downhole logging data, core thermal images, interstitial water analyses, and pressure core images from the sites drilled during NGHP-01 indicate that the occurrence of concentrated gas hydrate is mostly associated with the presence of fractures in the sediments, and in some limited cases, by coarser grained (mostly sand-rich) sediments.
Neighborhood sampling: how many streets must an auditor walk?
McMillan, Tracy E; Cubbin, Catherine; Parmenter, Barbara; Medina, Ashley V; Lee, Rebecca E
2010-03-12
This study tested the representativeness of four street segment sampling protocols using the Pedestrian Environment Data Scan (PEDS) in eleven neighborhoods surrounding public housing developments in Houston, TX. The following four street segment sampling protocols were used (1) all segments, both residential and arterial, contained within the 400 meter radius buffer from the center point of the housing development (the core) were compared with all segments contained between the 400 meter radius buffer and the 800 meter radius buffer (the ring); all residential segments in the core were compared with (2) 75% (3) 50% and (4) 25% samples of randomly selected residential street segments in the core. Analyses were conducted on five key variables: sidewalk presence; ratings of attractiveness and safety for walking; connectivity; and number of traffic lanes. Some differences were found when comparing all street segments, both residential and arterial, in the core to the ring. Findings suggested that sampling 25% of residential street segments within the 400 m radius of a residence sufficiently represents the pedestrian built environment. Conclusions support more cost effective environmental data collection for physical activity research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krčo, Marko; Goldsmith, Paul F., E-mail: marko@astro.cornell.edu
2016-05-01
We present a geometry-independent method for determining the shapes of radial volume density profiles of astronomical objects whose geometries are unknown, based on a single column density map. Such profiles are often critical to understand the physics and chemistry of molecular cloud cores, in which star formation takes place. The method presented here does not assume any geometry for the object being studied, thus removing a significant source of bias. Instead, it exploits contour self-similarity in column density maps, which appears to be common in data for astronomical objects. Our method may be applied to many types of astronomical objectsmore » and observable quantities so long as they satisfy a limited set of conditions, which we describe in detail. We derive the method analytically, test it numerically, and illustrate its utility using 2MASS-derived dust extinction in molecular cloud cores. While not having made an extensive comparison of different density profiles, we find that the overall radial density distribution within molecular cloud cores is adequately described by an attenuated power law.« less
Warwick, Peter D.; Breland, F. Clayton; Hackley, Paul C.; Dulong, Frank T.; Nichols, Douglas J.; Karlsen, Alexander W.; Bustin, R. Marc; Barker, Charles E.; Willett, Jason C.; Trippi, Michael H.
2006-01-01
In 2001, and 2002, the U.S. Geological Survey (USGS) and the Louisiana Geological Survey (LGS), through a Cooperative Research and Development Agreement (CRADA) with Devon SFS Operating, Inc. (Devon), participated in an exploratory drilling and coring program for coal-bed methane in north-central Louisiana. The USGS and LGS collected 25 coal core and cuttings samples from two coal-bed methane test wells that were drilled in west-central Caldwell Parish, Louisiana. The purpose of this report is to provide the results of the analytical program conducted on the USGS/LGS samples. The data generated from this project are summarized in various topical sections that include: 1. molecular and isotopic data from coal gas samples; 2. results of low-temperature ashing and X-ray analysis; 3. palynological data; 4. down-hole temperature data; 5. detailed core descriptions and selected core photographs; 6. coal physical and chemical analytical data; 7. coal gas desorption results; 8. methane and carbon dioxide coal sorption data; 9. coal petrographic results; and 10. geophysical logs.
An FPGA computing demo core for space charge simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Jinyuan; Huang, Yifei; /Fermilab
2009-01-01
In accelerator physics, space charge simulation requires large amount of computing power. In a particle system, each calculation requires time/resource consuming operations such as multiplications, divisions, and square roots. Because of the flexibility of field programmable gate arrays (FPGAs), we implemented this task with efficient use of the available computing resources and completely eliminated non-calculating operations that are indispensable in regular micro-processors (e.g. instruction fetch, instruction decoding, etc.). We designed and tested a 16-bit demo core for computing Coulomb's force in an Altera Cyclone II FPGA device. To save resources, the inverse square-root cube operation in our design is computedmore » using a memory look-up table addressed with nine to ten most significant non-zero bits. At 200 MHz internal clock, our demo core reaches a throughput of 200 M pairs/s/core, faster than a typical 2 GHz micro-processor by about a factor of 10. Temperature and power consumption of FPGAs were also lower than those of micro-processors. Fast and convenient, FPGAs can serve as alternatives to time-consuming micro-processors for space charge simulation.« less
USGS leads United States effort in Mallik Well
2002-01-01
This winter, in the extremely cold, far reaches of the upper Northwest Territory of Canada, there is an international consortium of researchers participating in a program to study methane hydrates. The researchers are currently drilling a 1200 m-deep production research well through the permafrost. It is one of three wells located in the Mackenzie Delta, on the shore of the Beaufort Sea. Two observation wells were drilled adjacent to the main production test well earlier this year.Research objectives for the program focus on two themes: (1) the assessment of the production and properties of gas hydrates, and (2) an assessment of the stability of continental gas hydrates given warming trends predicted by climate change models. Of particular interest is the physical response of the gas hydrate to depressurization and thermal production stimulation. Cores are being taken from the well, and scientists hope to retrieve at least 200 m of core, including all the gas hydrate-rich intervals. Once cored, the samples are transported 200 kilometers over ice roads to Inuvik. Nearly 60 researchers are examining the cores for everything from geophysical parameters to microbiological analyses.
Neighborhood sampling: how many streets must an auditor walk?
2010-01-01
This study tested the representativeness of four street segment sampling protocols using the Pedestrian Environment Data Scan (PEDS) in eleven neighborhoods surrounding public housing developments in Houston, TX. The following four street segment sampling protocols were used (1) all segments, both residential and arterial, contained within the 400 meter radius buffer from the center point of the housing development (the core) were compared with all segments contained between the 400 meter radius buffer and the 800 meter radius buffer (the ring); all residential segments in the core were compared with (2) 75% (3) 50% and (4) 25% samples of randomly selected residential street segments in the core. Analyses were conducted on five key variables: sidewalk presence; ratings of attractiveness and safety for walking; connectivity; and number of traffic lanes. Some differences were found when comparing all street segments, both residential and arterial, in the core to the ring. Findings suggested that sampling 25% of residential street segments within the 400 m radius of a residence sufficiently represents the pedestrian built environment. Conclusions support more cost effective environmental data collection for physical activity research. PMID:20226052
Dynamical Core in Atmospheric Model Does Matter in the Simulation of Arctic Climate
NASA Astrophysics Data System (ADS)
Jun, Sang-Yoon; Choi, Suk-Jin; Kim, Baek-Min
2018-03-01
Climate models using different dynamical cores can simulate significantly different winter Arctic climates even if equipped with virtually the same physics schemes. Current climate simulated by the global climate model using cubed-sphere grid with spectral element method (SE core) exhibited significantly warmer Arctic surface air temperature compared to that using latitude-longitude grid with finite volume method core. Compared to the finite volume method core, SE core simulated additional adiabatic warming in the Arctic lower atmosphere, and this was consistent with the eddy-forced secondary circulation. Downward longwave radiation further enhanced Arctic near-surface warming with a higher surface air temperature of about 1.9 K. Furthermore, in the atmospheric response to the reduced sea ice conditions with the same physical settings, only the SE core showed a robust cooling response over North America. We emphasize that special attention is needed in selecting the dynamical core of climate models in the simulation of the Arctic climate and associated teleconnection patterns.
Occurrence of Radio Minihalos in a Mass-Limited Sample of Galaxy Clusters
NASA Technical Reports Server (NTRS)
Giacintucci, Simona; Markevitch, Maxim; Cassano, Rossella; Venturi, Tiziana; Clarke, Tracy E.; Brunetti, Gianfranco
2017-01-01
We investigate the occurrence of radio minihalos-diffuse radio sources of unknown origin observed in the cores of some galaxy clusters-in a statistical sample of 58 clusters drawn from the Planck Sunyaev-Zeldovich cluster catalog using a mass cut (M(sub 500) greater than 6 x 10(exp 14) solar mass). We supplement our statistical sample with a similarly sized nonstatistical sample mostly consisting of clusters in the ACCEPT X-ray catalog with suitable X-ray and radio data, which includes lower-mass clusters. Where necessary (for nine clusters), we reanalyzed the Very Large Array archival radio data to determine whether a minihalo is present. Our total sample includes all 28 currently known and recently discovered radio minihalos, including six candidates. We classify clusters as cool-core or non-cool-core according to the value of the specific entropy floor in the cluster center, rederived or newly derived from the Chandra X-ray density and temperature profiles where necessary (for 27 clusters). Contrary to the common wisdom that minihalos are rare, we find that almost all cool cores-at least 12 out of 15 (80%)-in our complete sample of massive clusters exhibit minihalos. The supplementary sample shows that the occurrence of minihalos may be lower in lower-mass cool-core clusters. No minihalos are found in non-cool cores or "warm cores." These findings will help test theories of the origin of minihalos and provide information on the physical processes and energetics of the cluster cores.
NASA Astrophysics Data System (ADS)
Viner, K.; Reinecke, P. A.; Gabersek, S.; Flagg, D. D.; Doyle, J. D.; Martini, M.; Ryglicki, D.; Michalakes, J.; Giraldo, F.
2016-12-01
NEPTUNE: the Navy Environmental Prediction sysTem Using the NUMA*corE, is a 3D spectral element atmospheric model composed of a full suite of physics parameterizations and pre- and post-processing infrastructure with plans for data assimilation and coupling components to a variety of Earth-system models. This talk will focus on the initial struggles and solutions in adapting NUMA for stable and accurate integration on the sphere using both the deep atmosphere equations and a newly developed shallow-atmosphere approximation, as demonstrated through idealized test cases. In addition, details of the physics-dynamics coupling methodology will be discussed. NEPTUNE results for test cases from the 2016 Dynamical Core Model Intercomparison Project (DCMIP-2016) will be shown and discussed. *NUMA: Nonhydrostatic Unified Model of the Atmosphere; Kelly and Giraldo 2012, JCP
NASA Astrophysics Data System (ADS)
Azmi, M. A.; Abdullah, H. Z.; Idris, M. I.
2013-12-01
This research focuses on the fabrication and characterization of sandwich composite panels using glass fiber composite skin and polyurethane foam reinforced coconut coir fiber core. The main objectives are to characterize the physical and mechanical properties and to elucidate the effect of coconut coir fibers in polyurethane foam cores and sandwich composite panels. Coconut coir fibers were used as reinforcement in polyurethane foams in which later were applied as the core in sandwich composites ranged from 5 wt% to 20 wt%. The physical and mechanical properties found to be significant at 5 wt% coconut coir fiber in polyurethane foam cores as well as in sandwich composites. It was found that composites properties serve better in sandwich composites construction.
NASA Technical Reports Server (NTRS)
Miller, R. H.; Smith, B. F.; Cuzzi, Jeffrey (Technical Monitor)
1995-01-01
The recent HST discovery of a double nucleus in M31 brings into prominence the question how long, a second core can survive within the nuclear regions of a galaxy. Physical conditions in the nuclear regions of a typical galaxy help a second core survive, so it can orbit for a long time. possibly for thousands of orbits. Given the nearly uniform mass density in a core, tidal forces within a core radius are compressive in all directions and help the core survive the buffeting it takes as it orbits near the center of the galaxy. We use numerical experiments to illustrate these physical principles. Our method allows the full power of the experiments to be concentrated on the nuclear regions. Spatial resolution of about 0.2 pc comfortably resolves detail within the 1.4 parsec core radius of the second, but brighter core (P1) in M31. We use these physical principles to discuss M31's double nucleus, but they apply to other galaxies as well. and in other astronomical situations such as dumbbell galaxies. galaxies orbiting near the center of a galaxy cluster, and subclustering in galaxy clusters. The experiments also illustrate that galaxy encounters and merging are quite sensitive to external tidal forces, such as those produced by the gravitational potential in a group or cluster of galaxies.
Ege, John R.; Carroll, R.D.; Way, R.J.; Magner, J.E.
1969-01-01
USBM/AEC Colorado Core Hole No. 3 (Bronco BR-1) is located in the SW1/4SW1/4SW1/4 sec. 14, T. 1 N., R. 98 W., Rio Blanco County, Colorado. The collar is at a ground elevation of 6,356 feet. The hole was core drilled between depths of 964 and 3,325 feet with a total depth of 3,797 feet. The hole was drilled to investigate geologic, geophysical and hydrological conditions at a possible in situ oil-shale retorting experiment site. The drill hole passed through 1,157 feet of alluvium and the Evacuation Creek Member of the Green River Formation, 1,603 feet of the Parachute Creek Member and penetrated into the Garden Gulch Member of the Green River Formation. In-bole density log/oil yield ratio interpretation indicates that two oil-shale zones exist which yield more than 20 gallons of shale oil per ton of rock; an upper zone lying between 1,271 and 1,750 feet in depth and a lower zone lying between 1,900 and 2,964 feet. Halite (sodium chloride salt) is found between 2,140 and 2,185 feet and nahcolite (sodium bicarbonate salt) between 2,195 and 2,700 feet. Nahcolite was present at one time above 2,195 feet but has been subsequently dissolved out by ground water. The core can be divided into six structural units based upon degree of fracturing. A highly fractured interval is found between 1,646 and 1,899 feet, which coincides with the dissolution or leached nahcolite zone. Physical property tests made on core samples between 1,356 and 3,253 feet give average values of 11,988 psi for uniaxial compressive strength, 1.38 X 10[superscript]6[superscript] psi for static Young's modulus and 11,809 fps for compressional velocity.
Cha, Young Joo; Lee, Jae Jin; Kim, Do Hyun; You, Joshua Sung H
2017-10-23
Core stabilization plays an important role in the regulation of postural stability. To overcome shortcomings associated with pain and severe core instability during conventional core stabilization tests, we recently developed the dynamic neuromuscular stabilization-based heel sliding (DNS-HS) test. The purpose of this study was to establish the criterion validity and test-retest reliability of the novel DNS-HS test. Twenty young adults with core instability completed both the bilateral straight leg lowering test (BSLLT) and DNS-HS test for the criterion validity study and repeated the DNS-HS test for the test-retest reliability study. Criterion validity was determined by comparing hip joint angle data that were obtained from BSLLT and DNS-HS measures. The test-retest reliability was determined by comparing hip joint angle data. Criterion validity was (ICC2,3) = 0.700 (p< 0.05), suggesting a good relationship between the two core stability measures. Test-retest reliability was (ICC3,3) = 0.953 (p< 0.05), indicating excellent consistency between the repeated DNS-HS measurements. Criterion validity data demonstrated a good relationship between the gold standard BSLLT and DNS-HS core stability measures. Test-retest reliability data suggests that DNS-HS core stability was a reliable test for core stability. Clinically, the DNS-HS test is useful to objectively quantify core instability and allow early detection and evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Benjamin S.; Hamilton, Steven P.; Jarrett, Michael G.
This report describes the performance improvements made to the VERA Core Simulator (VERA-CS) during FY2016. The development of the VERA Core Simulator has focused on the capability needed to deplete physical reactors and help solve various problems; this capability required the accurate simulation of many operating cycles of a nuclear power plant. The first section of this report introduces two test problems used to assess the run-time performance of VERA-CS using a source dated February 2016. The next section provides a brief overview of the major modifications made to decrease the computational cost. Following the descriptions of the major improvements,more » the run-time for each improvement is shown. Conclusions on the work are presented, and further follow-on performance improvements are suggested.« less
Integration of the SSPM and STAGE with the MPACT Virtual Facility Distributed Test Bed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cipiti, Benjamin B.; Shoman, Nathan
The Material Protection Accounting and Control Technologies (MPACT) program within DOE NE is working toward a 2020 milestone to demonstrate a Virtual Facility Distributed Test Bed. The goal of the Virtual Test Bed is to link all MPACT modeling tools, technology development, and experimental work to create a Safeguards and Security by Design capability for fuel cycle facilities. The Separation and Safeguards Performance Model (SSPM) forms the core safeguards analysis tool, and the Scenario Toolkit and Generation Environment (STAGE) code forms the core physical security tool. These models are used to design and analyze safeguards and security systems and generatemore » performance metrics. Work over the past year has focused on how these models will integrate with the other capabilities in the MPACT program and specific model changes to enable more streamlined integration in the future. This report describes the model changes and plans for how the models will be used more collaboratively. The Virtual Facility is not designed to integrate all capabilities into one master code, but rather to maintain stand-alone capabilities that communicate results between codes more effectively.« less
Forward Modeling of Oxygen Isotope Variability in Tropical Andean Ice Cores
NASA Astrophysics Data System (ADS)
Vuille, M. F.; Hurley, J. V.; Hardy, D. R.
2016-12-01
Ice core records from the tropical Andes serve as important archives of past tropical Pacific SST variability and changes in monsoon intensity upstream over the Amazon basin. Yet the interpretation of the oxygen isotopic signal in these ice cores remains controversial. Based on 10 years of continuous on-site glaciologic, meteorologic and isotopic measurements at the summit of the world's largest tropical ice cap, Quelccaya, in southern Peru, we developed a process-based physical forward model (proxy system model), capable of simulating intraseasonal, seasonal and interannual variability in delta-18O as observed in snow pits and short cores. Our results highlight the importance of taking into account post-depositional effects (sublimation and isotopic enrichment) to properly simulate the seasonal cycle. Intraseasonal variability is underestimated in our model unless the effects of cold air incursions, triggering significant monsoonal snowfall and more negative delta-18O values, are included. A number of sensitivity test highlight the influence of changing boundary conditions on the final snow isotopic profile. Such tests also show that our model provides much more realistic data than applying direct model output of precipitation delta-18O from isotope-enabled climate models (SWING ensemble). The forward model was calibrated with and run under present-day conditions, but it can also be driven with past climate forcings to reconstruct paleo-monsoon variability and investigate the influence of changes in radiative forcings (solar, volcanic) on delta-18O variability in Andean snow. The model is transferable and may be used to render a paleoclimatic context at other ice core locations.
Chen, Yong; Li, Xiang-Kai; Si, Jing; Wu, Guang-Jian; Tian, Li-De; Xiang, Shu-Rong
2016-01-01
In this study, six bacterial community structures were analyzed from the Dunde ice core (9.5-m-long) using 16S rRNA gene cloning library technology. Compared to the Muztagata mountain ice core (37-m-long), the Dunde ice core has different dominant community structures, with five genus-related groups Blastococcus sp./Propionibacterium, Cryobacterium-related., Flavobacterium sp., Pedobacter sp., and Polaromas sp. that are frequently found in the six tested ice layers from 1990 to 2000. Live and total microbial density patterns were examined and related to the dynamics of physical-chemical parameters, mineral particle concentrations, and stable isotopic ratios in the precipitations collected from both Muztagata and Dunde ice cores. The Muztagata ice core revealed seasonal response patterns for both live and total cell density, with high cell density occurring in the warming spring and summer months indicated by the proxy value of the stable isotopic ratios. Seasonal analysis of live cell density for the Dunde ice core was not successful due to the limitations of sampling resolution. Both ice cores showed that the cell density peaks were frequently associated with high concentrations of particles. A comparison of microbial communities in the Dunde and Muztagata glaciers showed that similar taxonomic members exist in the related ice cores, but the composition of the prevalent genus-related groups is largely different between the two geographically different glaciers. This indicates that the micro-biogeography associated with geographic differences was mainly influenced by a few dominant taxonomic groups. PMID:27847503
Scientific drilling into the San Andreas Fault Zone - an overview of SAFOD's first five years
Zoback, Mark; Hickman, Stephen; Ellsworth, William; ,
2011-01-01
The San Andreas Fault Observatory at Depth (SAFOD) was drilled to study the physical and chemical processes controlling faulting and earthquake generation along an active, plate-bounding fault at depth. SAFOD is located near Parkfield, California and penetrates a section of the fault that is moving due to a combination of repeating microearthquakes and fault creep. Geophysical logs define the San Andreas Fault Zone to be relatively broad (~200 m), containing several discrete zones only 2–3 m wide that exhibit very low P- and S-wave velocities and low resistivity. Two of these zones have progressively deformed the cemented casing at measured depths of 3192 m and 3302 m. Cores from both deforming zones contain a pervasively sheared, cohesionless, foliated fault gouge that coincides with casing deformation and explains the observed extremely low seismic velocities and resistivity. These cores are being now extensively tested in laboratories around the world, and their composition, deformation mechanisms, physical properties, and rheological behavior are studied. Downhole measurements show that within 200 m (maximum) of the active fault trace, the direction of maximum horizontal stress remains at a high angle to the San Andreas Fault, consistent with other measurements. The results from the SAFOD Main Hole, together with the stress state determined in the Pilot Hole, are consistent with a strong crust/weak fault model of the San Andreas. Seismic instrumentation has been deployed to study physics of faulting—earthquake nucleation, propagation, and arrest—in order to test how laboratory-derived concepts scale up to earthquakes occurring in nature.
43 CFR 3593.1 - Core or test hole cores, samples, cuttings.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... (d) When drilling on lands with potential for encountering high pressure oil, gas or geothermal... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Core or test hole cores, samples, cuttings...) EXPLORATION AND MINING OPERATIONS Bore Holes and Samples § 3593.1 Core or test hole cores, samples, cuttings...
43 CFR 3593.1 - Core or test hole cores, samples, cuttings.
Code of Federal Regulations, 2012 CFR
2012-10-01
.... (d) When drilling on lands with potential for encountering high pressure oil, gas or geothermal... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Core or test hole cores, samples, cuttings...) EXPLORATION AND MINING OPERATIONS Bore Holes and Samples § 3593.1 Core or test hole cores, samples, cuttings...
43 CFR 3593.1 - Core or test hole cores, samples, cuttings.
Code of Federal Regulations, 2013 CFR
2013-10-01
.... (d) When drilling on lands with potential for encountering high pressure oil, gas or geothermal... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Core or test hole cores, samples, cuttings...) EXPLORATION AND MINING OPERATIONS Bore Holes and Samples § 3593.1 Core or test hole cores, samples, cuttings...
43 CFR 3593.1 - Core or test hole cores, samples, cuttings.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... (d) When drilling on lands with potential for encountering high pressure oil, gas or geothermal... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Core or test hole cores, samples, cuttings...) EXPLORATION AND MINING OPERATIONS Bore Holes and Samples § 3593.1 Core or test hole cores, samples, cuttings...
Rose, K.; Boswell, R.; Collett, T.
2011-01-01
In February 2007, BP Exploration (Alaska), the U.S. Department of Energy, and the U.S. Geological Survey completed the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert well) in the Milne Point Unit on the Alaska North Slope. The program achieved its primary goals of validating the pre-drill estimates of gas hydrate occurrence and thickness based on 3-D seismic interpretations and wireline log correlations and collecting a comprehensive suite of logging, coring, and pressure testing data. The upper section of the Mount Elbert well was drilled through the base of ice-bearing permafrost to a casing point of 594??m (1950??ft), approximately 15??m (50??ft) above the top of the targeted reservoir interval. The lower portion of the well was continuously cored from 606??m (1987??ft) to 760??m (2494??ft) and drilled to a total depth of 914??m. Ice-bearing permafrost extends to a depth of roughly 536??m and the base of gas hydrate stability is interpreted to extend to a depth of 870??m. Coring through the targeted gas hydrate bearing reservoirs was completed using a wireline-retrievable system. The coring program achieved 85% recovery of 7.6??cm (3??in) diameter core through 154??m (504??ft) of the hole. An onsite team processed the cores, collecting and preserving approximately 250 sub-samples for analyses of pore water geochemistry, microbiology, gas chemistry, petrophysical analysis, and thermal and physical properties. Eleven samples were immediately transferred to either methane-charged pressure vessels or liquid nitrogen for future study of the preserved gas hydrate. Additional offsite sampling, analyses, and detailed description of the cores were also conducted. Based on this work, one lithostratigraphic unit with eight subunits was identified across the cored interval. Subunits II and Va comprise the majority of the reservoir facies and are dominantly very fine to fine, moderately sorted, quartz, feldspar, and lithic fragment-bearing to -rich sands. Lithostratigraphic and palynologic data indicate that this section is most likely early Eocene to late Paleocene in age. The examined units contain evidence for both marine and non-marine lithofacies, and indications that the depositional environment for the reservoir facies may have been shallower marine than originally interpreted based on pre-drill wireline log interpretations. There is also evidence of reduced salinity marine conditions during deposition that may be related to the paleo-climate and depositional conditions during the early Eocene. ?? 2010.
Core Values Core Values NREL's core values are rooted in a safe and supportive work environment guide our everyday actions and efforts: Safe and supportive work environment Respect for the rights physical and social environment Integrity Maintain the highest standard of ethics, honesty, and integrity
Experiments with a Regional Vector-Vorticity Model, and Comparison with Other Models
NASA Astrophysics Data System (ADS)
Konor, C. S.; Dazlich, D. A.; Jung, J.; Randall, D. A.
2017-12-01
The Vector-Vorticity Model (VVM) is an anelastic model with a unique dynamical core that predicts the three-dimensional vorticity instead of the three-dimensional momentum. The VVM is used in the CRMs of the Global Quasi-3D Multiscale Modeling Framework, which is discussed by Joon-Hee Jung and collaborators elsewhere in this session. We are updating the physics package of the VVM, replacing it with the physics package of the System for Atmosphere Modeling (SAM). The new physics package includes a double-moment microphysics, Mellor-Yamada turbulence, Monin-Obukov surface fluxes, and the RRTMG radiation parameterization. We briefly describe the VVM and show results from standard test cases, including TWP-ICE. We compare the results with those obtained using the earlier physics. We also show results from experiments on convection aggregation in radiative-convective equilibrium, and compare with those obtained using both SAM and the Regional Atmospheric Modeling System (RAMS).
Engineering and Physics Optimization of Breed and Burn Fast Reactor Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael J. Driscoll; Pavel Hejzlar; Peter Yarsky
2005-12-09
This project is organized under four major tasks (each of which has two or more subtasks) with contributions among the three collaborating organizations (MIT, INEEL and ANL-West): Task A: Core Physics and Fuel Cycle; Task B: Core Thermal Hydraulics; Task C: Plant Design Task; and D: Fuel Design.
Lived Body Knowledge: Disciplinary Knowledge for Preservice Physical Education Teachers
ERIC Educational Resources Information Center
Johnson, Tyler G.
2015-01-01
The American Kinesiology Association has constructed an undergraduate core for degree programs that reside in kinesiology-based academic units. Since many Physical Education Teacher Education programs are housed in such units, there is a need to prioritize the areas of the undergraduate core, particularly the place of the scientific dimensions of…
Teaching with Technology in Physical Education
ERIC Educational Resources Information Center
Eberline, Andrew D.; Richards, K. Andrew R.
2013-01-01
Physical education is at a crossroads in the 21st century. With government mandates related to the No Child Left Behind Act (U.S. Department of Education, 2001) emphasizing core subjects, such as math and literacy, non-core subjects have been deemphasized. The most recent "Shape of the Nation Report" (National Association for Sport and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farbin, Amir
2015-07-15
This is the final report of for DoE Early Career Research Program Grant Titled "Model-Independent Dark-Matter Searches at the ATLAS Experiment and Applications of Many-core Computing to High Energy Physics".
STEADY STATE MODELING OF THE MINIMUM CRITICAL CORE OF THE TRANSIENT REACTOR TEST FACILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anthony L. Alberti; Todd S. Palmer; Javier Ortensi
2016-05-01
With the advent of next generation reactor systems and new fuel designs, the U.S. Department of Energy (DOE) has identified the need for the resumption of transient testing of nuclear fuels. The DOE has decided that the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory (INL) is best suited for future testing. TREAT is a thermal neutron spectrum, air-cooled, nuclear test facility that is designed to test nuclear fuels in transient scenarios. These specific scenarios range from simple temperature transients to full fuel melt accidents. DOE has expressed a desire to develop a simulation capability that will accurately modelmore » the experiments before they are irradiated at the facility. It is the aim for this capability to have an emphasis on effective and safe operation while minimizing experimental time and cost. The multi physics platform MOOSE has been selected as the framework for this project. The goals for this work are to identify the fundamental neutronics properties of TREAT and to develop an accurate steady state model for future multiphysics transient simulations. In order to minimize computational cost, the effect of spatial homogenization and angular discretization are investigated. It was found that significant anisotropy is present in TREAT assemblies and to capture this effect, explicit modeling of cooling channels and inter-element gaps is necessary. For this modeling scheme, single element calculations at 293 K gave power distributions with a root mean square difference of 0.076% from those of reference SERPENT calculations. The minimum critical core configuration with identical gap and channel treatment at 293 K resulted in a root mean square, total core, radial power distribution 2.423% different than those of reference SERPENT solutions.« less
Hypervelocity Impact Performance of Open Cell Foam Core Sandwich Panel Structures
NASA Technical Reports Server (NTRS)
Ryan, Shannon; Christiansen, Eric; Lear, Dana
2009-01-01
Metallic foams are a relatively new class of materials with low density and novel physical, mechanical, thermal, electrical and acoustic properties. Although incompletely characterized, they offer comparable mechanical performance to traditional spacecraft structural materials (i.e. honeycomb sandwich panels) without detrimental through-thickness channeling cells. There are two competing types of metallic foams: open cell and closed cell. Open cell foams are considered the more promising technology due to their lower weight and higher degree of homogeneity. Leading micrometeoroid and orbital debris shields (MMOD) incorporate thin plates separated by a void space (i.e. Whipple shield). Inclusion of intermediate fabric layers, or multiple bumper plates have led to significant performance enhancements, yet these shields require additional non-ballistic mass for installation (fasteners, supports, etc.) that can consume up to 35% of the total shield weight [1]. Structural panels, such as open cell foam core sandwich panels, that are also capable of providing sufficient MMOD protection, represent a significant potential for increased efficiency in hypervelocity impact shielding from a systems perspective through a reduction in required non-ballistic mass. In this paper, the results of an extensive impact test program on aluminum foam core sandwich panels are reported. The effect of pore density, and core thickness on shielding performance have been evaluated over impact velocities ranging from 2.2 - 9.3 km/s at various angles. A number of additional tests on alternate sandwich panel configurations of comparable-weight have also been performed, including aluminum honeycomb sandwich panels (see Figure 1), Nomex honeycomb core sandwich panels, and 3D aluminum honeycomb sandwich panels. A total of 70 hypervelocity impact tests are reported, from which an empirical ballistic limit equation (BLE) has been derived. The BLE is in the standard form suitable for implementation in risk analysis software, and includes the effect of panel thickness, core density, and facesheet material properties. A comparison between the shielding performance of foam core sandwich panel structures and common MMOD shielding configurations is made for both conservative (additional 35% non-ballistic mass) and optimistic (additional mass equal to 30% of bumper mass) considerations. Suggestions to improve the shielding performance of foam core sandwich panels are made, including the use of outer mesh layers, intermediate fabric/composite layers, and varying pore density.
Nursing physical assessment for patient safety in general wards: reaching consensus on core skills.
Douglas, Clint; Booker, Catriona; Fox, Robyn; Windsor, Carol; Osborne, Sonya; Gardner, Glenn
2016-07-01
To determine consensus across acute care specialty areas on core physical assessment skills necessary for early recognition of changes in patient status in general wards. Current approaches to physical assessment are inconsistent and have not evolved to meet increased patient and system demands. New models of nursing assessment are needed in general wards that ensure a proactive and patient safety approach. A modified Delphi study. Focus group interviews with 150 acute care registered nurses at a large tertiary referral hospital generated a framework of core skills that were developed into a web-based survey. We then sought consensus with a panel of 35 senior acute care registered nurses following a classical Delphi approach over three rounds. Consensus was predefined as at least 80% agreement for each skill across specialty areas. Content analysis of focus group transcripts identified 40 discrete core physical assessment skills. In the Delphi rounds, 16 of these were consensus validated as core skills and were conceptually aligned with the primary survey: (Airway) Assess airway patency; (Breathing) Measure respiratory rate, Evaluate work of breathing, Measure oxygen saturation; (Circulation) Palpate pulse rate and rhythm, Measure blood pressure by auscultation, Assess urine output; (Disability) Assess level of consciousness, Evaluate speech, Assess for pain; (Exposure) Measure body temperature, Inspect skin integrity, Inspect and palpate skin for signs of pressure injury, Observe any wounds, dressings, drains and invasive lines, Observe ability to transfer and mobilise, Assess bowel movements. Among a large and diverse group of experienced acute care registered nurses consensus was achieved on a structured core physical assessment to detect early changes in patient status. Although further research is needed to refine the model, clinical application should promote systematic assessment and clinical reasoning at the bedside. © 2016 John Wiley & Sons Ltd.
Masini, Cher V; Nyhuis, Tara J; Sasse, Sarah K; Day, Heidi E W; Campeau, Serge
2011-05-01
Stress often negatively impacts physical and mental health but it has been suggested that voluntary physical activity may benefit health by reducing some of the effects of stress. The present experiments tested whether voluntary exercise can reduce heart rate, core body temperature and locomotor activity responses to acute (novelty or loud noise) or repeated stress (loud noise). After 6 weeks of running-wheel access, rats exposed to a novel environment had reduced heart rate, core body temperature, and locomotor activity responses compared to rats housed under sedentary conditions. In contrast, none of these measures were different between exercised and sedentary rats following acute 30-min noise exposures, at either 85 or 98 dB. Following 10 weeks of running-wheel access, both groups displayed significant habituation of all these responses to 10 consecutive daily 30-min presentations of 98 dB noise stress. However, the extent of habituation of all three responses was significantly enhanced in exercised compared to sedentary animals on the last exposure to noise. These results suggest that in physically active animals, under some conditions, acute responses to stress exposure may be reduced, and response habituation to repeated stress may be enhanced, which ultimately may reduce the negative and cumulative impact of stress.
MASINI, CHER V.; NYHUIS, TARA J.; SASSE, SARAH K.; DAY, HEIDI E. W.; CAMPEAU, SERGE
2015-01-01
Stress often negatively impacts physical and mental health but it has been suggested that voluntary physical activity may benefit health by reducing some of the effects of stress. The present experiments tested whether voluntary exercise can reduce heart rate, core body temperature and locomotor activity responses to acute (novelty or loud noise) or repeated stress (loud noise). After 6 weeks of running-wheel access, rats exposed to a novel environment had reduced heart rate, core body temperature, and locomotor activity responses compared to rats housed under sedentary conditions. In contrast, none of these measures were different between exercised and sedentary rats following acute 30-min noise exposures, at either 85 or 98 dB. Following 10 weeks of running-wheel access, both groups displayed significant habituation of all these responses to 10 consecutive daily 30-min presentations of 98 dB noise stress. However, the extent of habituation of all three responses was significantly enhanced in exercised compared to sedentary animals on the last exposure to noise. These results suggest that in physically active animals, under some conditions, acute responses to stress exposure may be reduced, and response habituation to repeated stress may be enhanced, which ultimately may reduce the negative and cumulative impact of stress. PMID:21438772
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schunert, Sebastian; Schwen, Daniel; Ghassemi, Pedram
This work presents a multi-physics, multi-scale approach to modeling the Transient Test Reactor (TREAT) currently prepared for restart at the Idaho National Laboratory. TREAT fuel is made up of microscopic fuel grains (r ˜ 20µm) dispersed in a graphite matrix. The novelty of this work is in coupling a binary collision Monte-Carlo (BCMC) model to the Finite Element based code Moose for solving a microsopic heat-conduction problem whose driving source is provided by the BCMC model tracking fission fragment energy deposition. This microscopic model is driven by a transient, engineering scale neutronics model coupled to an adiabatic heating model. Themore » macroscopic model provides local power densities and neutron energy spectra to the microscpic model. Currently, no feedback from the microscopic to the macroscopic model is considered. TREAT transient 15 is used to exemplify the capabilities of the multi-physics, multi-scale model, and it is found that the average fuel grain temperature differs from the average graphite temperature by 80 K despite the low-power transient. The large temperature difference has strong implications on the Doppler feedback a potential LEU TREAT core would see, and it underpins the need for multi-physics, multi-scale modeling of a TREAT LEU core.« less
Modelling the core magnetic field of the earth
NASA Technical Reports Server (NTRS)
Harrison, C. G. A.; Carle, H. M.
1982-01-01
It is suggested that radial off-center dipoles located within the core of the earth be used instead of spherical harmonics of the magnetic potential in modeling the core magnetic field. The off-center dipoles, in addition to more realistically modeling the physical current systems within the core, are if located deep within the core more effective at removing long wavelength signals of either potential or field. Their disadvantage is that their positions and strengths are more difficult to compute, and such effects as upward and downward continuation are more difficult to manipulate. It is nevertheless agreed with Cox (1975) and Alldredge and Hurwitz (1964) that physical realism in models is more important than mathematical convenience. A radial dipole model is presented which agrees with observations of secular variation and excursions.
Stellar structure and compact objects before 1940: Towards relativistic astrophysics
NASA Astrophysics Data System (ADS)
Bonolis, Luisa
2017-06-01
Since the mid-1920s, different strands of research used stars as "physics laboratories" for investigating the nature of matter under extreme densities and pressures, impossible to realize on Earth. To trace this process this paper is following the evolution of the concept of a dense core in stars, which was important both for an understanding of stellar evolution and as a testing ground for the fast-evolving field of nuclear physics. In spite of the divide between physicists and astrophysicists, some key actors working in the cross-fertilized soil of overlapping but different scientific cultures formulated models and tentative theories that gradually evolved into more realistic and structured astrophysical objects. These investigations culminated in the first contact with general relativity in 1939, when J. Robert Oppenheimer and his students George Volkoff and Hartland Snyder systematically applied the theory to the dense core of a collapsing neutron star. This pioneering application of Einstein's theory to an astrophysical compact object can be regarded as a milestone in the path eventually leading to the emergence of relativistic astrophysics in the early 1960s.
NASA Astrophysics Data System (ADS)
Toepfer, F.; Cortinas, J. V., Jr.; Kuo, W.; Tallapragada, V.; Stajner, I.; Nance, L. B.; Kelleher, K. E.; Firl, G.; Bernardet, L.
2017-12-01
NOAA develops, operates, and maintains an operational global modeling capability for weather, sub seasonal and seasonal prediction for the protection of life and property and fostering the US economy. In order to substantially improve the overall performance and accelerate advancements of the operational modeling suite, NOAA is partnering with NCAR to design and build the Global Modeling Test Bed (GMTB). The GMTB has been established to provide a platform and a capability for researchers to contribute to the advancement primarily through the development of physical parameterizations needed to improve operational NWP. The strategy to achieve this goal relies on effectively leveraging global expertise through a modern collaborative software development framework. This framework consists of a repository of vetted and supported physical parameterizations known as the Common Community Physics Package (CCPP), a common well-documented interface known as the Interoperable Physics Driver (IPD) for combining schemes into suites and for their configuration and connection to dynamic cores, and an open evidence-based governance process for managing the development and evolution of CCPP. In addition, a physics test harness designed to work within this framework has been established in order to facilitate easier like-to-like comparison of physics advancements. This paper will present an overview of the design of the CCPP and test platform. Additionally, an overview of potential new opportunities of how physics developers can engage in the process, from implementing code for CCPP/IPD compliance to testing their development within an operational-like software environment, will be presented. In addition, insight will be given as to how development gets elevated to CPPP-supported status, the pre-cursor to broad availability and use within operational NWP. An overview of how the GMTB can be expanded to support other global or regional modeling capabilities will also be presented.
NASA Astrophysics Data System (ADS)
Takahashi, T.
2017-12-01
The static Young's modulus (deformability) of a rock is indispensable for designing and constructing tunnels, dams and underground caverns in civil engineering. Static Young's modulus which is an elastic modulus at large strain level is usually obtained with the laboratory tests of rock cores sampled in boreholes drilled in a rock mass. A deformability model of the entire rock mass is then built by extrapolating the measurements based on a rock mass classification obtained in geological site characterization. However, model-building using data obtained from a limited number of boreholes in the rock mass, especially a complex rock mass, may cause problems in the accuracy and reliability of the model. On the other hand, dynamic Young's modulus which is the modulus at small strain level can be obtained from seismic velocity. If dynamic Young's modulus can be rationally converted to static one, a seismic velocity model by the seismic method can be effectively used to build a deformability model of the rock mass. In this study, we have, therefore, developed a rock physics model (Mavko et al., 2009) to estimate static Young's modulus from dynamic one for sedimentary rocks. The rock physics model has been generally applied to seismic properties at small strain level. In the proposed model, however, the sandy shale model, one of rock physics models, is extended for modeling the static Young's modulus at large strain level by incorporating the mixture of frictional and frictionless grain contacts into the Hertz-Mindlin model. The proposed model is verified through its application to the dynamic Young's moduli derived from well log velocities and static Young's moduli measured in the tri-axial compression tests of rock cores sampled in the same borehole as the logs were acquired. This application proves that the proposed rock physics model can be possibly used to estimate static Young's modulus (deformability) which is required in many types of civil engineering applications from seismically derived dynamic Young's modulus. References:Mavko, G., Mukerji, T. and Dvorkin, J., 2009, The Rock Physics Handbook, 2nd Edition, Cambridge University Press, Cambridge.
A PILOT STUDY OF CORE STABILITY AND ATHLETIC PERFORMANCE: IS THERE A RELATIONSHIP?
Sharrock, Chris; Cropper, Jarrod; Mostad, Joel; Johnson, Matt
2011-01-01
Study Design: Correlation study Objectives: To objectively evaluate the relationship between core stability and athletic performance measures in male and female collegiate athletes. Background: The relationship between core stability and athletic performance has yet to be quantified in the available literature. The current literature does not demonstrate whether or not core strength relates to functional performance. Questions remain regarding the most important components of core stability, the role of sport specificity, and the measurement of core stability in relation to athletic performance. Methods: A sample of 35 volunteer student athletes from Asbury College (NAIA Division II) provided informed consent. Participants performed a series of five tests: double leg lowering (core stability test), the forty yard dash, the T-test, vertical jump, and a medicine ball throw. Participants performed three trials of each test in a randomized order. Results: Correlations between the core stability test and each of the other four performance tests were determined using a General Linear Model. Medicine ball throw negatively correlated to the core stability test (r –0.389, p=0.023). Participants that performed better on the core stability test had a stronger negative correlation to the medicine ball throw (r =–0.527). Gender was the most strongly correlated variable to core strength, males with a mean measurement of double leg lowering of 47.43 degrees compared to females having a mean of 54.75 degrees. Conclusions: There appears to be a link between a core stability test and athletic performance tests; however, more research is needed to provide a definitive answer on the nature of this relationship. Ideally, specific performance tests will be able to better define and to examine relationships to core stability. Future studies should also seek to determine if there are specific sub-categories of core stability which are most important to allow for optimal training and performance for individual sports. PMID:21713228
Simulation of drift wave instability in field-reversed configurations using global magnetic geometry
NASA Astrophysics Data System (ADS)
Fulton, D. P.; Lau, C. K.; Lin, Z.; Tajima, T.; Holod, I.; the TAE Team
2016-10-01
Minimizing transport in the field-reversed configuration (FRC) is essential to enable FRC-based fusion reactors. Recently, significant progress on advanced beam-driven FRCs in C-2 and C-2U (at Tri Alpha Energy) provides opportunities to study transport properties using Doppler backscattering (DBS) measurements of turbulent fluctuations and kinetic particle-in-cell simulations of driftwaves in realistic equilibria via the Gyrokinetic Toroidal Code (GTC). Both measurements and simulations indicate relatively small fluctuations in the scrape-off layer (SOL). In the FRC core, local, single flux surface simulations reveal strong stabilization, while experiments indicate quiescent but finite fluctuations. One possible explanation is that turbulence may originate in the SOL and propagate at very low levels across the separatrix into the core. To test this hypothesis, a significant effort has been made to develop A New Code (ANC) based on GTC physics formulations, but using cylindrical coordinates which span the magnetic separatrix, including both core and SOL. Here, we present first results from global ANC simulations.
NASA Astrophysics Data System (ADS)
Ohmori, Shuichi; Narabayashi, Tadashi; Mori, Michitsugu; Iwaki, Chikako; Asanuma, Yutaka; Goto, Shoji
A Steam Injector (SI) is a simple, compact and passive pump and also acts as a high-performance direct-contact heater. This provides SI with capability to serve also as a direct-contact feed-water heater that heats up feed-water by using extracted steam from turbine. Our technology development aims to significantly simplify equipment and reduce physical quantities by applying "High-Efficiency SI", which are applicable to a wide range of operation regimes beyond the performance and applicable range of existing SIs and enables unprecedented multistage and parallel operation, to the low-pressure feed-water heaters and Emergency Core Cooling System of nuclear power plants, as well as achieve high inherent safety to prevent severe accidents by keeping the core covered with water (a Severe Accident-Free Concept). This paper describes the results of the endurance and performance tests of low-pressure SIs for feed-water heaters with Jet-deaerator and core injection system.
Dynamo Tests for Stratification Below the Core-Mantle Boundary
NASA Astrophysics Data System (ADS)
Olson, P.; Landeau, M.
2017-12-01
Evidence from seismology, mineral physics, and core dynamics points to a layer with an overall stable stratification in the Earth's outer core, possibly thermal in origin, extending below the core-mantle boundary (CMB) for several hundred kilometers. In contrast, energetic deep mantle convection with elevated heat flux implies locally unstable thermal stratification below the CMB in places, consistent with interpretations of non-dipole geomagnetic field behavior that favor upwelling flows below the CMB. Here, we model the structure of convection and magnetic fields in the core using numerical dynamos with laterally heterogeneous boundary heat flux in order to rationalize this conflicting evidence. Strongly heterogeneous boundary heat flux generates localized convection beneath the CMB that coexists with an overall stable stratification there. Partially stratified dynamos have distinctive time average magnetic field structures. Without stratification or with stratification confined to a thin layer, the octupole component is small and the CMB magnetic field structure includes polar intensity minima. With more extensive stratification, the octupole component is large and the magnetic field structure includes intense patches or high intensity lobes in the polar regions. Comparisons with the time-averaged geomagnetic field are generally favorable for partial stratification in a thin layer but unfavorable for stratification in a thick layer beneath the CMB.
Properties of kenaf from various cultivars, growth and pulping conditions
James S. Han; Ernest S. Miyashita; Sara J. Spielvogel
1999-01-01
The physical properties of kenaf offer potential as an alternative raw material for the manufacture of paper. Investigations to date have not determined whether core and fiber should be pulped together or separately. Kenaf bast and core fibers of different cultivars were pulped under various kraft pulping conditions and physical properties: density, Canadian Standard...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gala, Alan; Ohmacht, Martin
A multiprocessor system includes nodes. Each node includes a data path that includes a core, a TLB, and a first level cache implementing disambiguation. The system also includes at least one second level cache and a main memory. For thread memory access requests, the core uses an address associated with an instruction format of the core. The first level cache uses an address format related to the size of the main memory plus an offset corresponding to hardware thread meta data. The second level cache uses a physical main memory address plus software thread meta data to store the memorymore » access request. The second level cache accesses the main memory using the physical address with neither the offset nor the thread meta data after resolving speculation. In short, this system includes mapping of a virtual address to a different physical addresses for value disambiguation for different threads.« less
Second Topical Meeting on Laser Techniques in the Extreme Ultraviolet.
1985-01-10
Dressed Resonances, Lasw for Product Detlection, John W. Hepburn, N. Slvakumnar,* J. H. Eberly and D. Agassi, Department of Physics and and Paul L...inversion production in a laser plasma allows us to - between core-excited quartet states of Na I. The classifica- test a possible laser cavity. tions are...used to increase radiation losses. Enhancement of hydrogen-like CVI 182R line intensity and population inversion in Li-like ions (CIV, OVI, FVII , and
Geomagnetic main field modeling using magnetohydrodynamic constraints
NASA Technical Reports Server (NTRS)
Estes, R. H.
1985-01-01
The influence of physical constraints are investigated which may be approximately satisfied by the Earth's liquid core on models of the geomagnetic main field and its secular variation. A previous report describes the methodology used to incorporate nonlinear equations of constraint into the main field model. The application of that methodology to the GSFC 12/83 field model to test the frozen-flux hypothesis and the usefulness of incorporating magnetohydrodynamic constraints for obtaining improved geomagnetic field models is described.
77 FR 36014 - Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-15
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0134] Initial Test Program of Emergency Core Cooling... for public comment draft regulatory guide (DG), DG-1277, ``Initial Test Program of Emergency Core... acceptable to implement with regard to initial testing features of emergency core cooling systems (ECCSs) for...
Embedded binaries and their dense cores
NASA Astrophysics Data System (ADS)
Sadavoy, Sarah I.; Stahler, Steven W.
2017-08-01
We explore the relationship between young, embedded binaries and their parent cores, using observations within the Perseus Molecular Cloud. We combine recently published Very Large Array observations of young stars with core properties obtained from Submillimetre Common-User Bolometer Array 2 observations at 850 μm. Most embedded binary systems are found towards the centres of their parent cores, although several systems have components closer to the core edge. Wide binaries, defined as those systems with physical separations greater than 500 au, show a tendency to be aligned with the long axes of their parent cores, whereas tight binaries show no preferred orientation. We test a number of simple, evolutionary models to account for the observed populations of Class 0 and I sources, both single and binary. In the model that best explains the observations, all stars form initially as wide binaries. These binaries either break up into separate stars or else shrink into tighter orbits. Under the assumption that both stars remain embedded following binary break-up, we find a total star formation rate of 168 Myr-1. Alternatively, one star may be ejected from the dense core due to binary break-up. This latter assumption results in a star formation rate of 247 Myr-1. Both production rates are in satisfactory agreement with current estimates from other studies of Perseus. Future observations should be able to distinguish between these two possibilities. If our model continues to provide a good fit to other star-forming regions, then the mass fraction of dense cores that becomes stars is double what is currently believed.
Stern, Laura A.; Lorenson, T.D.; Pinkston, John C.
2011-01-01
Using cryogenic scanning electron microscopy (CSEM), powder X-ray diffraction, and gas chromatography methods, we investigated the physical states, grain characteristics, gas composition, and methane isotopic composition of two gas-hydrate-bearing sections of core recovered from the BPXA–DOE–USGS Mount Elbert Gas Hydrate Stratigraphic Test Well situated on the Alaska North Slope. The well was continuously cored from 606.5 m to 760.1 m depth, and sections investigated here were retrieved from 619.9 m and 661.0 m depth. X-ray analysis and imaging of the sediment phase in both sections shows it consists of a predominantly fine-grained and well-sorted quartz sand with lesser amounts of feldspar, muscovite, and minor clays. Cryogenic SEM shows the gas-hydrate phase forming primarily as a pore-filling material between the sediment grains at approximately 70–75% saturation, and more sporadically as thin veins typically several tens of microns in diameter. Pore throat diameters vary, but commonly range 20–120 microns. Gas chromatography analyses of the hydrate-forming gas show that it is comprised of mainly methane (>99.9%), indicating that the gas hydrate is structure I. Here we report on the distribution and articulation of the gas-hydrate phase within the cores, the grain morphology of the hydrate, the composition of the sediment host, and the composition of the hydrate-forming gas.
Stern, L.A.; Lorenson, T.D.; Pinkston, J.C.
2011-01-01
Using cryogenic scanning electron microscopy (CSEM), powder X-ray diffraction, and gas chromatography methods, we investigated the physical states, grain characteristics, gas composition, and methane isotopic composition of two gas-hydrate-bearing sections of core recovered from the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well situated on the Alaska North Slope. The well was continuously cored from 606.5. m to 760.1. m depth, and sections investigated here were retrieved from 619.9. m and 661.0. m depth. X-ray analysis and imaging of the sediment phase in both sections shows it consists of a predominantly fine-grained and well-sorted quartz sand with lesser amounts of feldspar, muscovite, and minor clays. Cryogenic SEM shows the gas-hydrate phase forming primarily as a pore-filling material between the sediment grains at approximately 70-75% saturation, and more sporadically as thin veins typically several tens of microns in diameter. Pore throat diameters vary, but commonly range 20-120 microns. Gas chromatography analyses of the hydrate-forming gas show that it is comprised of mainly methane (>99.9%), indicating that the gas hydrate is structure I. Here we report on the distribution and articulation of the gas-hydrate phase within the cores, the grain morphology of the hydrate, the composition of the sediment host, and the composition of the hydrate-forming gas. ?? 2009.
ERIC Educational Resources Information Center
Severiens, Thomas; Hohlfeld, Michael; Zimmermann, Kerstin; Hilf, Eberhard R.; von Ossietzky, Carl; Weibel, Stuart L.; Koch, Traugott; Hughes, Carol Ann; Bearman, David
2000-01-01
Includes four articles that discuss a variety to topics, including a distributed network of physics institutions documents called PhysDocs which harvests information from the local Web-servers of professional physics institutions; the Dublin Core metadata initiative; information services for higher education in a competitive environment; and…
Multi-core processing and scheduling performance in CMS
NASA Astrophysics Data System (ADS)
Hernández, J. M.; Evans, D.; Foulkes, S.
2012-12-01
Commodity hardware is going many-core. We might soon not be able to satisfy the job memory needs per core in the current single-core processing model in High Energy Physics. In addition, an ever increasing number of independent and incoherent jobs running on the same physical hardware not sharing resources might significantly affect processing performance. It will be essential to effectively utilize the multi-core architecture. CMS has incorporated support for multi-core processing in the event processing framework and the workload management system. Multi-core processing jobs share common data in memory, such us the code libraries, detector geometry and conditions data, resulting in a much lower memory usage than standard single-core independent jobs. Exploiting this new processing model requires a new model in computing resource allocation, departing from the standard single-core allocation for a job. The experiment job management system needs to have control over a larger quantum of resource since multi-core aware jobs require the scheduling of multiples cores simultaneously. CMS is exploring the approach of using whole nodes as unit in the workload management system where all cores of a node are allocated to a multi-core job. Whole-node scheduling allows for optimization of the data/workflow management (e.g. I/O caching, local merging) but efficient utilization of all scheduled cores is challenging. Dedicated whole-node queues have been setup at all Tier-1 centers for exploring multi-core processing workflows in CMS. We present the evaluation of the performance scheduling and executing multi-core workflows in whole-node queues compared to the standard single-core processing workflows.
Hydrogen in Earths Lowermost Mantle
NASA Astrophysics Data System (ADS)
Townsend, J. P.; Tsuchiya, J.; Bina, C. R.; Jacobsen, S. D.; Liu, Z.
2013-12-01
The lowermost mantle (D') is characterized by pronounced elastic anisotropy and elevated seismic attenuation. The presence of the post-perovskite (PPv) phase in the D' layer would contribute to these seismic observables, and therefore the influence of compositional variability on the physical properties of PPv should be explored to test mineralogical models of D' against the observed seismic structure. Here, we explore the influence of hydrogen on the physical properties of the PPv phase by first-principles calculations using density functional theory. The presence of hydrogen in the core-mantle boundary region, either as primordial H diffused from the liquid outer core or added by deeply subducted slabs, could potentially influence PPv physical properties and its phase stability. The OH-storage capacity of perovskite is likely much lower than PPv so the presence of OH could also influence the structure of D'. In the upper mantle, even small amounts of OH at concentrations less than 0.1 wt% can influence elastic properties and lattice preferred orientation. To study the possible influence of hydrogen on the physical properties of PPv, we have determined a stable hydrogen defect structure for PPv and its associated elastic properties, thermal stability, and IR signature. We will present a comparison of the observed elastic properties of the D' region with the calculated elastic properties of hPPv, as well as calculated FTIR spectra for comparison to ongoing experiments using a new CO2 laser-heating system and synchrotron-FTIR spectroscopy at the National Synchrotron Light Source.
Short‐term time step convergence in a climate model
Rasch, Philip J.; Taylor, Mark A.; Jablonowski, Christiane
2015-01-01
Abstract This paper evaluates the numerical convergence of very short (1 h) simulations carried out with a spectral‐element (SE) configuration of the Community Atmosphere Model version 5 (CAM5). While the horizontal grid spacing is fixed at approximately 110 km, the process‐coupling time step is varied between 1800 and 1 s to reveal the convergence rate with respect to the temporal resolution. Special attention is paid to the behavior of the parameterized subgrid‐scale physics. First, a dynamical core test with reduced dynamics time steps is presented. The results demonstrate that the experimental setup is able to correctly assess the convergence rate of the discrete solutions to the adiabatic equations of atmospheric motion. Second, results from full‐physics CAM5 simulations with reduced physics and dynamics time steps are discussed. It is shown that the convergence rate is 0.4—considerably slower than the expected rate of 1.0. Sensitivity experiments indicate that, among the various subgrid‐scale physical parameterizations, the stratiform cloud schemes are associated with the largest time‐stepping errors, and are the primary cause of slow time step convergence. While the details of our findings are model specific, the general test procedure is applicable to any atmospheric general circulation model. The need for more accurate numerical treatments of physical parameterizations, especially the representation of stratiform clouds, is likely common in many models. The suggested test technique can help quantify the time‐stepping errors and identify the related model sensitivities. PMID:27660669
Calculation of the Phenix end-of-life test 'Control Rod Withdrawal' with the ERANOS code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiberi, V.
2012-07-01
The Inst. of Radiological Protection and Nuclear Safety (IRSN) acts as technical support to French public authorities. As such, IRSN is in charge of safety assessment of operating and under construction reactors, as well as future projects. In this framework, one current objective of IRSN is to evaluate the ability and accuracy of numerical tools to foresee consequences of accidents. Neutronic studies step in the safety assessment from different points of view among which the core design and its protection system. They are necessary to evaluate the core behavior in case of accident in order to assess the integrity ofmore » the first barrier and the absence of a prompt criticality risk. To reach this objective one main physical quantity has to be evaluated accurately: the neutronic power distribution in core during whole reactor lifetime. Phenix end of life tests, carried out in 2009, aim at increasing the experience feedback on sodium cooled fast reactors. These experiments have been done in the framework of the development of the 4. generation of nuclear reactors. Ten tests have been carried out: 6 on neutronic and fuel aspects, 2 on thermal hydraulics and 2 for the emergency shutdown. Two of them have been chosen for an international exercise on thermal hydraulics and neutronics in the frame of an IAEA Coordinated Research Project. Concerning neutronics, the Control Rod Withdrawal test is relevant for safety because it allows evaluating the capability of calculation tools to compute the radial power distribution on fast reactors core configurations in which the flux field is very deformed. IRSN participated to this benchmark with the ERANOS code developed by CEA for fast reactors studies. This paper presents the results obtained in the framework of the benchmark activity. A relatively good agreement was found with available measures considering the approximations done in the modeling. The work underlines the importance of burn-up calculations in order to have a fine core concentrations mesh for the calculation of the power distribution. (authors)« less
Mundoma, Claudius
2013-01-01
As organizations expand and grow, the core facilities have become more dispersed disconnected. This is happening at a time when collaborations within the organization is a driver to increased productivity. Stakeholders are looking at the best way to bring the pieces together. It is inevitable that core facilities at universities and research institutes have to be integrated in order to streamline services and facilitate ease of collaboration. The path to integration often goes through consolidation, merging and shedding of redundant services. Managing this process requires a delicate coordination of two critical factors: the human (lab managers) factor and the physical assets factor. Traditionally more emphasis has been placed on reorganizing the physical assets without paying enough attention to the professionals who have been managing the assets for years, if not decades. The presentation focuses on how a systems approach can be used to effect a smooth core facility integration process. Managing the human element requires strengthening existing channels of communication and if necessary, creating new ones throughout the organization to break cultural and structural barriers. Managing the physical assets requires a complete asset audit and this requires direct input from the administration as well as the facility managers. Organizations can harness the power of IT to create asset visibility. Successfully managing the physical assets and the human assets increases productivity and efficiency within the organization.
Development of IR imaging system simulator
NASA Astrophysics Data System (ADS)
Xiang, Xinglang; He, Guojing; Dong, Weike; Dong, Lu
2017-02-01
To overcome the disadvantages of the tradition semi-physical simulation and injection simulation equipment in the performance evaluation of the infrared imaging system (IRIS), a low-cost and reconfigurable IRIS simulator, which can simulate the realistic physical process of infrared imaging, is proposed to test and evaluate the performance of the IRIS. According to the theoretical simulation framework and the theoretical models of the IRIS, the architecture of the IRIS simulator is constructed. The 3D scenes are generated and the infrared atmospheric transmission effects are simulated using OGRE technology in real-time on the computer. The physical effects of the IRIS are classified as the signal response characteristic, modulation transfer characteristic and noise characteristic, and they are simulated on the single-board signal processing platform based on the core processor FPGA in real-time using high-speed parallel computation method.
NASA Astrophysics Data System (ADS)
Mason-McCaffrey, Deborah
2011-04-01
At Salem State, we offer a Physics minor, but most of our teaching load is support courses for other science majors and a lab sequence which satisfies the University's core education requirement. In three years of using assessments and ILDs in small-enrollment calculus-based Physics classes, there has been a significant implementation learning curve, there are encouraging results, a few cautions, and still some open questions to report. ILDs can be highly effective teaching tools. They do require significant advance preparation as well as a safe environment for student participation. Motivating students to do their best on assessment pre- and post-tests can also be difficult. Strategies for motivating assessment performance, experiments using clickers to encourage participation in ILDs, and modifying and developing home-grown ILDs are discussed.
Diagnosis and treatment of dementia: 2. Diagnosis
Feldman, Howard H.; Jacova, Claudia; Robillard, Alain; Garcia, Angeles; Chow, Tiffany; Borrie, Michael; Schipper, Hyman M.; Blair, Mervin; Kertesz, Andrew; Chertkow, Howard
2008-01-01
Background Dementia can now be accurately diagnosed through clinical evaluation, cognitive screening, basic laboratory evaluation and structural imaging. A large number of ancillary techniques are also available to aid in diagnosis, but their role in the armamentarium of family physicians remains controversial. In this article, we provide physicians with practical guidance on the diagnosis of dementia based on recommendations from the Third Canadian Consensus Conference on the Diagnosis and Treatment of Dementia, held in March 2006. Methods We developed evidence-based guidelines using systematic literature searches, with specific criteria for study selection and quality assessment, and a clear and transparent decision-making process. We selected studies published from January 1996 to December 2005 that pertained to key diagnostic issues in dementia. We graded the strength of evidence using the criteria of the Canadian Task Force on Preventive Health Care. Results Of the 1591 articles we identified on all aspects of dementia diagnosis, 1095 met our inclusion criteria; 620 were deemed to be of good or fair quality. From a synthesis of the evidence in these studies, we made 32 recommendations related to the diagnosis of dementia. There are clinical criteria for diagnosing most forms of dementia. A standard diagnostic evaluation can be performd by family physicians over multiple visits. It involves a clinical history (from patient and caregiver), a physical examination and brief cognitive testing. A list of core laboratory tests is recommended. Structural imaging with computed tomography or magnetic resonance imaging is recommended in selected cases to rule out treatable causes of dementia or to rule in cerebrovascular disease. There is insufficient evidence to recommend routine functional imaging, measurement of biomarkers or neuropsychologic testing. Interpretation The diagnosis of dementia remains clinically integrative based on history, physical examination and brief cognitive testing. A number of core laboratory tests are also recommended. Structural neuroimaging is advised in selected cases. Other diagnostic approaches, including functional neuroimaging, neuropsychological testing and measurement of biomarkers, have shown promise but are not yet recommended for routine use by family physicians. PMID:18362376
Chuter, V H; de Jonge, X A K Janse; Thompson, B M; Callister, R
2015-03-01
Poor core stability is linked to a range of musculoskeletal pathologies and core-strengthening programmes are widely used as treatment. Treatment outcomes, however, are highly variable, which may be related to the method of delivery of core strengthening programmes. We investigated the effect of identical 8 week core strengthening programmes delivered as either supervised or home-based on measures of core stability. Participants with poor core stability were randomised into three groups: supervised (n=26), home-based (n=26) or control (n=26). Primary outcomes were the Sahrmann test and the Star Excursion Balance Test (SEBT) for dynamic core stability and three endurance tests (side-bridge, flexor and Sorensen) for static core stability. The exercise programme was devised and supervised by an exercise physiologist. Analysis of covariance on the change from baseline over the 8 weeks showed that the supervised group performed significantly better on all core stability measures than both the home-based and control group. The home-based group produced significant improvements compared to the control group in all static core stability tests, but not in most of the dynamic core stability tests (Sahrmann test and two out of three directions of the SEBT). Our results support the use of a supervised core-strengthening programme over a home-based programme to maximise improvements in core stability, especially in its dynamic aspects. Based on our findings in healthy individuals with low core stability, further research is recommended on potential therapeutic benefits of supervised core-strengthening programmes for pathologies associated with low core stability. ACTRN12613000233729. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
NASA Astrophysics Data System (ADS)
Salavati, Saeid
Metallic foam core sandwich structures have been of particular interest for engineering applications in recent decades due to their unique physical and mechanical properties. One of the potential applications of open pore metallic foam core sandwich structures is in heat exchangers. An investigation of sandwich structures fabricated from materials suitable for application at high temperatures and in corrosive environments was undertaken in this project. A novel method for fabrication of metallic foam core sandwich structures is thermal spray deposition of the faces on the prepared surfaces of the metallic foam substrate. The objective of the current study was to optimize the twin wire arc spray process parameters for the deposition of alloy 625 faces with controllable porosity content on the nickel foam substrate, and to characterize the physical and mechanical properties of the sandwich structure. The experimental investigations consisted of microstructural evaluation of the skin material and the foam substrate, investigation of the effect of alloying on the mechanical and thermal properties of the nickel foam, optimization of the grit-blasting and arc spray processes, observation of mechanical properties of the alloy 625 deposit by tensile testing and evaluation of the overall mechanical properties of the sandwich structure under flexural loading condition. The optimization of arc spraying process parameters allowed deposition of alloy 625 faces with a porosity of less than 4% for heat exchanger applications. Modification of the arc spraying process by co-deposition of polyester powder enabled 20% porosity to be obtained in the deposited faces for heat shield applications with film cooling. The effects of nickel foam alloying and heat treatment on the flexural rigidity of the sandwich structures were investigated and compared with as-received foam and as-fabricated sandwich structures. Available analytical models were employed to describe the effect of constituents' mechanical properties on the overall mechanical performance of the sandwich structures. Finite element modeling using ANSYS Structural was used to simulate the behaviour of the sandwich structures in four-point bending. The analytical and simulation results were compared with the experimental results obtained from the flexural tests.
Relationship between scapular muscle and core endurance in healthy subjects.
Hazar Kanik, Zeynep; Pala, Omer Osman; Gunaydin, Gurkan; Sozlu, Ugur; Alkan, Zeynep Beyza; Basar, Selda; Citaker, Seyit
2017-01-01
Scapular muscle endurance and core endurance reportedly influence shoulder injury risk. The exact relationship between scapular muscle endurance and core endurance, and how they impact one another in the healthy subjects remain unclear. To investigate the relationship between scapular muscle endurance and core endurance in healthy subjects. Fifty healthy volunteers (23 males, 27 females; mean age 20.42 ± 1.04 years) were participated in this study. Endurance of the serratus anterior and trapezius muscles was assessed using the scapular muscle endurance test. Sorensen test (endurance of trunk extensor muscles), trunk flexor endurance test, and side bridge test (endurance of lateral core muscles) were conducted to assess the core endurance. Pearson's product moment correlations examined relationships between scapular muscle endurance and each of the core endurance tests scores. Scapular muscle endurance test scores showed a positive correlation with the side bridge test scores (r = 0.414; p = 0.003). No significant correlation was found between scapular muscle endurance test scores and the other core endurance tests scores (p > 0.05). There appears to be a link between the scapular muscle endurance and lateral core muscles in healthy subjects; however, more research is needed to provide a definitive answer on the nature of this relationship. Further studies involving patients with shoulder pathology are warranted.
Seefelt, Ellen L.; Gonzalez, Wilma Aleman B.; Self-Trail, Jean M.; Weems, Robert E.; Edwards, Lucy E.; Pierce, Herbert A.; Durand, Colleen T.
2009-01-01
In October through November 2006, scientists from the U. S. Geological Survey (USGS) Eastern Region Earth Surface Processes Team (EESPT) and the Raleigh (N.C.) Water Science Center (WSC), in cooperation with the North Carolina Geological Survey (NCGS) and the Onslow County Water and Sewer Authority (ONWASA), drilled a stratigraphic test hole and well in Onslow County, N.C. The Dixon corehole was cored on ONWASA water utility property north of the town of Dixon, N.C., in the Sneads Ferry 7.5-minute quadrangle at latitude 34deg33'35' N, longitude 77deg26'54' W (decimal degrees 34.559722 and -77.448333). The site elevation is 66.0 feet (ft) above mean sea level as determined using a Paulin precision altimeter. The corehole attained a total depth of 1,010 ft and was continuously cored by the USGS EESPT drilling crew. A groundwater monitoring well was installed in the screened interval between 234 and 254 ft below land surface. The section cored at this site includes Upper Cretaceous, Paleogene, and Neogene sediments. The Dixon core is stored at the NCGS Coastal Plain core storage facility in Raleigh. The Dixon corehole is the fourth and last in a series of planned North Carolina benchmark coreholes drilled by the USGS Coastal Carolina Project. These coreholes explore the physical stratigraphy, facies, and thickness of Cretaceous, Paleogene, and Neogene Coastal Plain sediments in North Carolina. Correlations of lithologies, facies, and sequence stratigraphy can be made with the Hope Plantation corehole, N.C., near Windsor in Bertie County (Weems and others, 2007); the Elizabethtown corehole, near Elizabethtown, N.C., in Bladen County (Self-Trail and others, 2004b); the Smith Elementary School corehole, near Cove City, N.C., in Craven County (Harris and Self-Trail, 2006; Crocetti, 2007); the Kure Beach corehole, near Wilmington, N.C., in New Hanover County (Self-Trail and others, 2004a); the Esso#1, Esso #2, Mobil #1, and Mobil #2 cores in Albermarle and Pamlico Sounds, N.C. (Zarra, 1989); and the Cape Fear River outcrops in Bladen County, N.C. (Farrell, 1998; Farrell and others, 2001). This report contains the lithostratigraphic summary recorded at the drill site, core photographs, geophysical data, and calcareous nannofossil biostratigraphic correlations.
Toward a more efficient and scalable checkpoint/restart mechanism in the Community Atmosphere Model
NASA Astrophysics Data System (ADS)
Anantharaj, Valentine
2015-04-01
The number of cores (both CPU as well as accelerator) in large-scale systems has been increasing rapidly over the past several years. In 2008, there were only 5 systems in the Top500 list that had over 100,000 total cores (including accelerator cores) whereas the number of system with such capability has jumped to 31 in Nov 2014. This growth however has also increased the risk of hardware failure rates, necessitating the implementation of fault tolerance mechanism in applications. The checkpoint and restart (C/R) approach is commonly used to save the state of the application and restart at a later time either after failure or to continue execution of experiments. The implementation of an efficient C/R mechanism will make it more affordable to output the necessary C/R files more frequently. The availability of larger systems (more nodes, memory and cores) has also facilitated the scaling of applications. Nowadays, it is more common to conduct coupled global climate simulation experiments at 1 deg horizontal resolution (atmosphere), often requiring about 103 cores. At the same time, a few climate modeling teams that have access to a dedicated cluster and/or large scale systems are involved in modeling experiments at 0.25 deg horizontal resolution (atmosphere) and 0.1 deg resolution for the ocean. These ultrascale configurations require the order of 104 to 105 cores. It is not only necessary for the numerical algorithms to scale efficiently but the input/output (IO) mechanism must also scale accordingly. An ongoing series of ultrascale climate simulations, using the Titan supercomputer at the Oak Ridge Leadership Computing Facility (ORNL), is based on the spectral element dynamical core of the Community Atmosphere Model (CAM-SE), which is a component of the Community Earth System Model and the DOE Accelerated Climate Model for Energy (ACME). The CAM-SE dynamical core for a 0.25 deg configuration has been shown to scale efficiently across 100,000 cpu cores. At this scale, there is an increased risk that the simulation could be terminated due to hardware failures, resulting in a loss that could be as high as 105 - 106 titan core hours. Increasing the frequency of the output of C/R files could mitigate this loss but at the cost of additional C/R overhead. We are testing a more efficient C/R mechanism in CAM-SE. Our early implementation has demonstrated a nearly 3X performance improvement for a 1 deg CAM-SE (with CAM5 physics and MOZART chemistry) configuration using nearly 103 cores. We are in the process of scaling our implementation to 105 cores. This would allow us to run ultra scale simulations with more sophisticated physics and chemistry options while making better utilization of resources.
Heuristic rules embedded genetic algorithm for in-core fuel management optimization
NASA Astrophysics Data System (ADS)
Alim, Fatih
The objective of this study was to develop a unique methodology and a practical tool for designing loading pattern (LP) and burnable poison (BP) pattern for a given Pressurized Water Reactor (PWR) core. Because of the large number of possible combinations for the fuel assembly (FA) loading in the core, the design of the core configuration is a complex optimization problem. It requires finding an optimal FA arrangement and BP placement in order to achieve maximum cycle length while satisfying the safety constraints. Genetic Algorithms (GA) have been already used to solve this problem for LP optimization for both PWR and Boiling Water Reactor (BWR). The GA, which is a stochastic method works with a group of solutions and uses random variables to make decisions. Based on the theories of evaluation, the GA involves natural selection and reproduction of the individuals in the population for the next generation. The GA works by creating an initial population, evaluating it, and then improving the population by using the evaluation operators. To solve this optimization problem, a LP optimization package, GARCO (Genetic Algorithm Reactor Code Optimization) code is developed in the framework of this thesis. This code is applicable for all types of PWR cores having different geometries and structures with an unlimited number of FA types in the inventory. To reach this goal, an innovative GA is developed by modifying the classical representation of the genotype. To obtain the best result in a shorter time, not only the representation is changed but also the algorithm is changed to use in-core fuel management heuristics rules. The improved GA code was tested to demonstrate and verify the advantages of the new enhancements. The developed methodology is explained in this thesis and preliminary results are shown for the VVER-1000 reactor hexagonal geometry core and the TMI-1 PWR. The improved GA code was tested to verify the advantages of new enhancements. The core physics code used for VVER in this research is Moby-Dick, which was developed to analyze the VVER by SKODA Inc. The SIMULATE-3 code, which is an advanced two-group nodal code, is used to analyze the TMI-1.
Recent improvements of reactor physics codes in MHI
NASA Astrophysics Data System (ADS)
Kosaka, Shinya; Yamaji, Kazuya; Kirimura, Kazuki; Kamiyama, Yohei; Matsumoto, Hideki
2015-12-01
This paper introduces recent improvements for reactor physics codes in Mitsubishi Heavy Industries, Ltd(MHI). MHI has developed a new neutronics design code system Galaxy/Cosmo-S(GCS) for PWR core analysis. After TEPCO's Fukushima Daiichi accident, it is required to consider design extended condition which has not been covered explicitly by the former safety licensing analyses. Under these circumstances, MHI made some improvements for GCS code system. A new resonance calculation model of lattice physics code and homogeneous cross section representative model for core simulator have been developed to apply more wide range core conditions corresponding to severe accident status such like anticipated transient without scram (ATWS) analysis and criticality evaluation of dried-up spent fuel pit. As a result of these improvements, GCS code system has very wide calculation applicability with good accuracy for any core conditions as far as fuel is not damaged. In this paper, the outline of GCS code system is described briefly and recent relevant development activities are presented.
Recent improvements of reactor physics codes in MHI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosaka, Shinya, E-mail: shinya-kosaka@mhi.co.jp; Yamaji, Kazuya; Kirimura, Kazuki
2015-12-31
This paper introduces recent improvements for reactor physics codes in Mitsubishi Heavy Industries, Ltd(MHI). MHI has developed a new neutronics design code system Galaxy/Cosmo-S(GCS) for PWR core analysis. After TEPCO’s Fukushima Daiichi accident, it is required to consider design extended condition which has not been covered explicitly by the former safety licensing analyses. Under these circumstances, MHI made some improvements for GCS code system. A new resonance calculation model of lattice physics code and homogeneous cross section representative model for core simulator have been developed to apply more wide range core conditions corresponding to severe accident status such like anticipatedmore » transient without scram (ATWS) analysis and criticality evaluation of dried-up spent fuel pit. As a result of these improvements, GCS code system has very wide calculation applicability with good accuracy for any core conditions as far as fuel is not damaged. In this paper, the outline of GCS code system is described briefly and recent relevant development activities are presented.« less
FY 2016 Status Report on the Modeling of the M8 Calibration Series using MAMMOTH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Benjamin Allen; Ortensi, Javier; DeHart, Mark David
2016-09-01
This report provides a summary of the progress made towards validating the multi-physics reactor analysis application MAMMOTH using data from measurements performed at the Transient Reactor Test facility, TREAT. The work completed consists of a series of comparisons of TREAT element types (standard and control rod assemblies) in small geometries as well as slotted mini-cores to reference Monte Carlo simulations to ascertain the accuracy of cross section preparation techniques. After the successful completion of these smaller problems, a full core model of the half slotted core used in the M8 Calibration series was assembled. Full core MAMMOTH simulations were comparedmore » to Serpent reference calculations to assess the cross section preparation process for this larger configuration. As part of the validation process the M8 Calibration series included a steady state wire irradiation experiment and coupling factors for the experiment region. The shape of the power distribution obtained from the MAMMOTH simulation shows excellent agreement with the experiment. Larger differences were encountered in the calculation of the coupling factors, but there is also great uncertainty on how the experimental values were obtained. Future work will focus on resolving some of these differences.« less
ACCELERATION OF COMPACT RADIO JETS ON SUB-PARSEC SCALES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sang-Sung; Lobanov, Andrei P.; Krichbaum, Thomas P.
2016-08-01
Jets of compact radio sources are highly relativistic and Doppler boosted, making studies of their intrinsic properties difficult. Observed brightness temperatures can be used to study the intrinsic physical properties of relativistic jets, and constrain models of jet formation in the inner jet region. We aim to observationally test such inner jet models. The very long baseline interferometry (VLBI) cores of compact radio sources are optically thick at a given frequency. The distance of the core from the central engine is inversely proportional to the frequency. Under the equipartition condition between the magnetic field energy and particle energy densities, themore » absolute distance of the VLBI core can be predicted. We compiled the brightness temperatures of VLBI cores at various radio frequencies of 2, 8, 15, and 86 GHz. We derive the brightness temperature on sub-parsec scales in the rest frame of the compact radio sources. We find that the brightness temperature increases with increasing distance from the central engine, indicating that the intrinsic jet speed (the Lorentz factor) increases along the jet. This implies that the jets are accelerated in the (sub-)parsec regions from the central engine.« less
Finsler Geometry of Nonlinear Elastic Solids with Internal Structure
2017-01-01
should enable regularized numerical solutions with discretization -size independence for representation of materials demonstrating softening, e.g...additional possibility of a discrete larger void/cavity forming at the core of the sphere. In the second case, comparison with the classical...core of the domain. This hollow sphere physically represents a discrete cavity, while the constant field ξH physically represents a continuous
Brazier, John E.; Rowen, Donna; Barkham, Michael
2013-01-01
Background. The Clinical Outcomes in Routine Evaluation–Outcome Measure (CORE-OM) is used to evaluate the effectiveness of psychological therapies in people with common mental disorders. The objective of this study was to estimate a preference-based index for this population using CORE-6D, a health state classification system derived from the CORE-OM consisting of a 5-item emotional component and a physical item, and to demonstrate a novel method for generating states that are not orthogonal. Methods. Rasch analysis was used to identify 11 emotional health states from CORE-6D that were frequently observed in the study population and are, thus, plausible (in contrast, conventional statistical design might generate implausible states). Combined with the 3 response levels of the physical item of CORE-6D, they generate 33 plausible health states, 18 of which were selected for valuation. A valuation survey of 220 members of the public in South Yorkshire, United Kingdom, was undertaken using the time tradeoff (TTO) method. Regression analysis was subsequently used to predict values for all possible states described by CORE-6D. Results. A number of multivariate regression models were built to predict values for the 33 health states of CORE-6D, using the Rasch logit value of the emotional state and the response level of the physical item as independent variables. A cubic model with high predictive value (adjusted R2 = 0.990) was selected to predict TTO values for all 729 CORE-6D health states. Conclusion. The CORE-6D preference-based index will enable the assessment of cost-effectiveness of interventions for people with common mental disorders using existing and prospective CORE-OM data sets. The new method for generating states may be useful for other instruments with highly correlated dimensions. PMID:23178639
Physics Structure Analysis of Parallel Waves Concept of Physics Teacher Candidate
NASA Astrophysics Data System (ADS)
Sarwi, S.; Supardi, K. I.; Linuwih, S.
2017-04-01
The aim of this research was to find a parallel structure concept of wave physics and the factors that influence on the formation of parallel conceptions of physics teacher candidates. The method used qualitative research which types of cross-sectional design. These subjects were five of the third semester of basic physics and six of the fifth semester of wave course students. Data collection techniques used think aloud and written tests. Quantitative data were analysed with descriptive technique-percentage. The data analysis technique for belief and be aware of answers uses an explanatory analysis. Results of the research include: 1) the structure of the concept can be displayed through the illustration of a map containing the theoretical core, supplements the theory and phenomena that occur daily; 2) the trend of parallel conception of wave physics have been identified on the stationary waves, resonance of the sound and the propagation of transverse electromagnetic waves; 3) the influence on the parallel conception that reading textbooks less comprehensive and knowledge is partial understanding as forming the structure of the theory.
A 3-D Finite-Volume Non-hydrostatic Icosahedral Model (NIM)
NASA Astrophysics Data System (ADS)
Lee, Jin
2014-05-01
The Nonhydrostatic Icosahedral Model (NIM) formulates the latest numerical innovation of the three-dimensional finite-volume control volume on the quasi-uniform icosahedral grid suitable for ultra-high resolution simulations. NIM's modeling goal is to improve numerical accuracy for weather and climate simulations as well as to utilize the state-of-art computing architecture such as massive parallel CPUs and GPUs to deliver routine high-resolution forecasts in timely manner. NIM dynamic corel innovations include: * A local coordinate system remapped spherical surface to plane for numerical accuracy (Lee and MacDonald, 2009), * Grid points in a table-driven horizontal loop that allow any horizontal point sequence (A.E. MacDonald, et al., 2010), * Flux-Corrected Transport formulated on finite-volume operators to maintain conservative positive definite transport (J.-L, Lee, ET. Al., 2010), *Icosahedral grid optimization (Wang and Lee, 2011), * All differentials evaluated as three-dimensional finite-volume integrals around the control volume. The three-dimensional finite-volume solver in NIM is designed to improve pressure gradient calculation and orographic precipitation over complex terrain. NIM dynamical core has been successfully verified with various non-hydrostatic benchmark test cases such as internal gravity wave, and mountain waves in Dynamical Cores Model Inter-comparisons Projects (DCMIP). Physical parameterizations suitable for NWP are incorporated into NIM dynamical core and successfully tested with multimonth aqua-planet simulations. Recently, NIM has started real data simulations using GFS initial conditions. Results from the idealized tests as well as real-data simulations will be shown in the conference.
NASA Astrophysics Data System (ADS)
Zemke, K.; Kummmerow, J.; Wandrey, M.; Co2SINK Group
2009-04-01
Since June of 2008 carbon dioxide has been injected into a saline aquifer at the Ketzin test site [Würdemann et al., this volume]. The food grade CO2 is injected into a sandstone zone of the Stuttgart formation at ca. 650 m depth at 35°C reservoir temperature and 62 bar reservoir pressure. With the injection of CO2 into the geological formation, chemical and physical reservoir characteristics are changed depending on pressure, temperature, fluid chemistry and rock composition. Fluid-rock interaction could comprise dissolution of non-resistant minerals in CO2-bearing pore fluids, cementing of the pore space by precipitating substances from the pore fluid, drying and disintegration of clay minerals and thus influence of the composition and activities of the deep biosphere. To testing the injection behaviour of CO2 in water saturated rock and to evaluate the geophysical signature depending on the thermodynamic conditions, flow experiments with water and CO2 have been performed on cores of the Stuttgart formation from different locations including new wells of ketzin test site. The studied core material is an unconsolidated fine-grained sandstone with porosity values from 15 to 32 %. Permeability, electrical resistivity, and sonic wave velocities and their changes with pressure, saturation and time have been studied under simulated in situ conditions. The flow experiments conducted over several weeks with brine and CO2 showed no significant changes of resistivity and velocity and a slightly decreasing permeability. Pore fluid analysis showed mobilization of clay and some other components. A main objective of the CO2Sink laboratory program is the assessment of the effect of long-term CO2 exposure on reservoir rocks to predict the long-term behaviour of geological CO2 storage. For this CO2 exposure experiments reservoir rock samples were exposed to CO2 saturated reservoir fluid in corrosion-resistant high pressure vessels under in situ temperature and pressure conditions over a period of several months. Before and after the CO2 exposure experiment cyclic measurements of physical properties were carried out on these cores in a mechanical testing system. After experimental runs of up to 3 months no significant changes in flow and petrophysical data were observed. [For the microbilogical studies see Wandrey et al., this volume.] To study the impact of fluid-rock interactions on petrophysical parameters, porosity and pore radii distribution have been investigated before and after the experiment by NMR relaxation and mercury-injection. NMR measurements on rock core plugs saturated with brine may return valuable information on the porous structure of the rock core. The distribution of NMR-T2 values (CPMG) reflects the pore sizes within the rock core. NMR pore size is a derivative of the ratio pore surface/volume. The mercury injection pore size is an area-equivalent diameter of the throats connecting the pore system. Most of the tested samples show in the NMR measurements a slightly increasing porosity and a higher part of large pores. The mercury measurements and thin- section for microstructural characterisation after the CO2 exposure will be done at a later date.
NASA Technical Reports Server (NTRS)
Sapyta, Joe; Reid, Hank; Walton, Lew
1993-01-01
The topics are presented in viewgraph form and include the following: particle bed reactor (PBR) core cross section; PBR bleed cycle; fuel and moderator flow paths; PBR modeling requirements; characteristics of PBR and nuclear thermal propulsion (NTP) modeling; challenges for PBR and NTP modeling; thermal hydraulic computer codes; capabilities for PBR/reactor application; thermal/hydralic codes; limitations; physical correlations; comparison of predicted friction factor and experimental data; frit pressure drop testing; cold frit mask factor; decay heat flow rate; startup transient simulation; and philosophy of systems modeling.
Meric, Dogus; Barbuto, Sara; Sheahan, Thomas C; Shine, James P; Alshawabkeh, Akram N
2014-01-01
This paper describes the results of a benchscale testing program to assess the efficacy of a reactive core mat (RCM) for short term isolation and partial remediation of contaminated, subaqueous sediments. The 1.25 cm thick RCM (with a core reactive material such as organoclay with filtering layers on top and bottom) is placed on the sediment, and approximately 7.5 - 10 cm of overlying soil is placed on the RCM for stability and protection. A set of experiments were conducted to measure the sorption characteristics of the mat core (organoclay) and sediment used in the experiments, and to determine the fate of semi-volatile organic contaminants and non-reactive tracers through the sediment and reactive mat. The experimental study was conducted on naphthalene-spiked Neponset River (Milton, MA) sediment. The results show nonlinear sorption behavior for organoclay, with sorption capacity increasing with increasing naphthalene concentration. Neponset River sediment showed a notably high sorption capacity, likely due to the relatively high organic carbon fraction (14%). The fate and transport experiments demonstrated the short term efficiency of the reactive mat to capture the contamination that is associated with the post-capping period during which the highest consolidation-induced advective flux occurs, driving solid particles, pore fluid and soluble contaminants toward the reactive mat. The goal of the mat placement is to provide a physical filtering and chemically reactive layer to isolate contamination from the overlying water column. An important finding is that because of the high sorption capacity of the Neponset River sediment, the physical filtering capability of the mat is as critical as its chemical reactive capacity.
ADX: a high field, high power density, advanced divertor and RF tokamak
NASA Astrophysics Data System (ADS)
LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.
2015-05-01
The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept (affordable, robust, compact) (Sorbom et al 2015 Fusion Eng. Des. submitted (arXiv:1409.3540)) that makes use of high-temperature superconductor technology—a high-field (9.25 T) tokamak the size of the Joint European Torus that produces 270 MW of net electricity.
NASA Technical Reports Server (NTRS)
Wang, zhuo; Montgomery M. T.; Dunkerton, T. J.
2010-01-01
This is the second of a two-part study examining the simulated formation of Atlantic Hurricane Felix (2007) in a cloud-representing framework. Here several open issues are addressed concerning the formation of the storm's warm core, the evolution and respective contribution of stratiform versus convective precipitation within the parent wave's pouch, and the sensitivity of the development pathway reported in Part I to different model physics options and initial conditions. All but one of the experiments include ice microphysics as represented by one of several parameterizations, and the partition of convective versus stratiform precipitation is accomplished using a standard numerical technique based on the high-resolution control experiment. The transition to a warm-core tropical cyclone from an initially cold-core, lower tropospheric wave disturbance is analyzed first. As part of this transformation process, it is shown that deep moist convection is sustained near the pouch center. Both convective and stratiform precipitation rates increase with time. While stratiform precipitation occupies a larger area even at the tropical storm stage, deep moist convection makes a comparable contribution to the total rain rate at the pregenesis stage, and a larger contribution than stratiform processes at the storm stage. The convergence profile averaged near the pouch center is found to become dominantly convective with increasing deep moist convective activity there. Low-level convergence forced by interior diabatic heating plays a key role in forming and intensifying the near-surface closed circulation, while the midlevel convergence associated with stratiform precipitation helps to increase the midlevel circulation and thereby contributes to the formation and upward extension of a tropospheric-deep cyclonic vortex. Sensitivity tests with different model physics options and initial conditions demonstrate a similar pregenesis evolution. These tests suggest that the genesis location of a tropical storm is largely controlled by the parent wave's critical layer, whereas the genesis time and intensity of the protovortex depend on the details of the mesoscale organization, which is less predictable. Some implications of the findings are discussed.
Core-in-shell sorbent for hot coal gas desulfurization
Wheelock, Thomas D.; Akiti, Jr., Tetteh T.
2004-02-10
A core-in-shell sorbent is described herein. The core is reactive to the compounds of interest, and is preferably calcium-based, such as limestone for hot gas desulfurization. The shell is a porous protective layer, preferably inert, which allows the reactive core to remove the desired compounds while maintaining the desired physical characteristics to withstand the conditions of use.
NASA Astrophysics Data System (ADS)
Xuan, Hejun; Wang, Yuping; Xu, Zhanqi; Hao, Shanshan; Wang, Xiaoli
2017-11-01
Virtualization technology can greatly improve the efficiency of the networks by allowing the virtual optical networks to share the resources of the physical networks. However, it will face some challenges, such as finding the efficient strategies for virtual nodes mapping, virtual links mapping and spectrum assignment. It is even more complex and challenging when the physical elastic optical networks using multi-core fibers. To tackle these challenges, we establish a constrained optimization model to determine the optimal schemes of optical network mapping, core allocation and spectrum assignment. To solve the model efficiently, tailor-made encoding scheme, crossover and mutation operators are designed. Based on these, an efficient genetic algorithm is proposed to obtain the optimal schemes of the virtual nodes mapping, virtual links mapping, core allocation. The simulation experiments are conducted on three widely used networks, and the experimental results show the effectiveness of the proposed model and algorithm.
Magnetohydrodynamic Convection in the Outer Core and its Geodynamic Consequences
NASA Technical Reports Server (NTRS)
Kuang, Weijia; Chao, Benjamin F.; Fang, Ming
2004-01-01
The Earth's fluid outer core is in vigorous convection through much of the Earth's history. In addition to generating and maintaining Earth s time-varying magnetic field (geodynamo), the core convection also generates mass redistribution in the core and a dynamical pressure field on the core-mantle boundary (CMB). All these shall result in various core-mantle interactions, and contribute to surface geodynamic observables. For example, electromagnetic core-mantle coupling arises from finite electrically conducting lower mantle; gravitational interaction occurs between the cores and the heterogeneous mantle; mechanical coupling may also occur when the CMB topography is aspherical. Besides changing the mantle rotation via the coupling torques, the mass-redistribution in the core shall produce a spatial-temporal gravity anomaly. Numerical modeling of the core dynamical processes contributes in several geophysical disciplines. It helps explain the physical causes of surface geodynamic observables via space geodetic techniques and other means, e.g. Earth's rotation variation on decadal time scales, and secular time-variable gravity. Conversely, identification of the sources of the observables can provide additional insights on the dynamics of the fluid core, leading to better constraints on the physics in the numerical modeling. In the past few years, our core dynamics modeling efforts, with respect to our MoSST model, have made significant progress in understanding individual geophysical consequences. However, integrated studies are desirable, not only because of more mature numerical core dynamics models, but also because of inter-correlation among the geophysical phenomena, e.g. mass redistribution in the outer core produces not only time-variable gravity, but also gravitational core-mantle coupling and thus the Earth's rotation variation. They are expected to further facilitate multidisciplinary studies of core dynamics and interactions of the core with other components of the Earth.
Multi-core processing and scheduling performance in CMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, J. M.; Evans, D.; Foulkes, S.
2012-01-01
Commodity hardware is going many-core. We might soon not be able to satisfy the job memory needs per core in the current single-core processing model in High Energy Physics. In addition, an ever increasing number of independent and incoherent jobs running on the same physical hardware not sharing resources might significantly affect processing performance. It will be essential to effectively utilize the multi-core architecture. CMS has incorporated support for multi-core processing in the event processing framework and the workload management system. Multi-core processing jobs share common data in memory, such us the code libraries, detector geometry and conditions data, resultingmore » in a much lower memory usage than standard single-core independent jobs. Exploiting this new processing model requires a new model in computing resource allocation, departing from the standard single-core allocation for a job. The experiment job management system needs to have control over a larger quantum of resource since multi-core aware jobs require the scheduling of multiples cores simultaneously. CMS is exploring the approach of using whole nodes as unit in the workload management system where all cores of a node are allocated to a multi-core job. Whole-node scheduling allows for optimization of the data/workflow management (e.g. I/O caching, local merging) but efficient utilization of all scheduled cores is challenging. Dedicated whole-node queues have been setup at all Tier-1 centers for exploring multi-core processing workflows in CMS. We present the evaluation of the performance scheduling and executing multi-core workflows in whole-node queues compared to the standard single-core processing workflows.« less
Stainless Steel NaK-Cooled Circuit (SNaKC) Fabrication and Assembly
NASA Technical Reports Server (NTRS)
Godfroy, Thomas J.
2007-01-01
An actively pumped Stainless Steel NaK Circuit (SNaKC) has been designed and fabricated by the Early Flight Fission Test Facility (EFF-TF) team at NASA's Marshall Space Flight Center. This circuit uses the eutectic mixture of sodium and potassium (NaK) as the working fluid building upon the experience and accomplishments of the SNAP reactor program from the late 1960's The SNaKC enables valuable experience and liquid metal test capability to be gained toward the goal of designing and building an affordable surface power reactor. The basic circuit components include a simulated reactor core a NaK to gas heat exchanger, an electromagnetic (EM) liquid metal pump, a liquid metal flow meter, an expansion reservoir and a drain/fill reservoir To maintain an oxygen free environment in the presence of NaK, an argon system is utilized. A helium and nitrogen system are utilized for core, pump, and heat exchanger operation. An additional rest section is available to enable special component testing m an elevated temperature actively pumped liquid metal environment. This paper summarizes the physical build of the SNaKC the gas and pressurization systems, vacuum systems, as well as instrumentation and control methods.
Earth's Outer Core Properties Estimated Using Bayesian Inversion of Normal Mode Eigenfrequencies
NASA Astrophysics Data System (ADS)
Irving, J. C. E.; Cottaar, S.; Lekic, V.
2016-12-01
The outer core is arguably Earth's most dynamic region, and consists of an iron-nickel liquid with an unknown combination of lighter alloying elements. Frequencies of Earth's normal modes provide the strongest constraints on the radial profiles of compressional wavespeed, VΦ, and density, ρ, in the outer core. Recent great earthquakes have yielded new normal mode measurements; however, mineral physics experiments and calculations are often compared to the Preliminary reference Earth model (PREM), which is 35 years old and does not provide uncertainties. Here we investigate the thermo-elastic properties of the outer core using Earth's free oscillations and a Bayesian framework. To estimate radial structure of the outer core and its uncertainties, we choose to exploit recent datasets of normal mode centre frequencies. Under the self-coupling approximation, centre frequencies are unaffected by lateral heterogeneities in the Earth, for example in the mantle. Normal modes are sensitive to both VΦ and ρ in the outer core, with each mode's specific sensitivity depending on its eigenfunctions. We include a priori bounds on outer core models that ensure compatibility with measurements of mass and moment of inertia. We use Bayesian Monte Carlo Markov Chain techniques to explore different choices in parameterizing the outer core, each of which represents different a priori constraints. We test how results vary (1) assuming a smooth polynomial parametrization, (2) allowing for structure close to the outer core's boundaries, (3) assuming an Equation-of-State and adiabaticity and inverting directly for thermo-elastic parameters. In the second approach we recognize that the outer core may have distinct regions close to the core-mantle and inner core boundaries and investigate models which parameterize the well mixed outer core separately from these two layers. In the last approach we seek to map the uncertainties directly into thermo-elastic parameters including the bulk modulus, its pressure derivative, and molar mass and volume, with particular attention paid to the (inherent) trade-offs between the different coefficients. We discuss our results in terms of added uncertainty to the light element composition of the outer core and the potential existence of anomalous structure near the outer core's boundaries.
NASA Astrophysics Data System (ADS)
Huhn, Katrin; Kukowski, Nina; Freudenthal, Tim; Crutchley, Gareth; Goepel, Andreas; Henrys, Stuart; Kasten, Sabine; Kaul, Norbert; Kuhlmann, Jannis; Mountjoy, Joshu; Orpin, Alan; Pape, Thomas; Schwarze, Cornelius; Totsche, Kai-Uwe; Torres, Marta; Villinger, Heiner
2017-04-01
Submarine landslides are important geologic hazards. Although they have been the focus of research for decades, there is still a clear lack in knowledge with respect to the interplay between tectonic movements, slope architecture and sediment physical properties of slope strata, as well as gas hydrate dissociation as controlling factors of slope stability or respectively slope failure processes. The main scientific goal of the Sonne expedition SO247 undertaken in spring 2016 was to gain a better understanding of the factors controlling slope destabilization, especially the interaction of tectonic steepening and gas hydrate transformation, at different tectonic settings along the Hikurangi subduction zone east of New Zealand's North Island. This active continental margin is characterized by various potential triggers for slope failure, e.g. (I) a wide range of tectonic movements which are associated with high seismicity, numerous active faults, sediment uplift and slope over-steepening, and (II) large gas hydrate deposits whose current upper stability limit in some places correlates with the breakoff points of slides. The target areas of SO247 were the frontal accretionary ridge at Rock Garden and the Tuaheni landslide complex (TLC) further north offshore Gisborne. Bathymetric as well as high-resolution seismic reflection and Parasound data were used to select suitable position for 53 gravity cores with a total length of 150 m which were recovered along systematic transects from the undisturbed slope sections to the slid masses in both working areas. In addition, six long sediment cores (three in both working areas) with a total length of approx. 470 m were drilled utilizing the MARUM Bremen drill rig MeBo200. These include a 105 m long continuous sediment core (core recovery > 95%) from an undisturbed slope section in the vicinity of the Tuaheni slide complex. This core represented the first long (i.e. longer than 50 m) sediment record from the Hikurangi margin. This drilling operation was paired with dense in-situ heat-flow measurements. Sedimentological, geotechnical, geophysical and geochemical analysis of the core material as well as sampled pore fluids and gases will enable a deeper insight into the slide kinematics, potential trigger mechanisms and timing of failure events. Furthermore, these data allow us to test hypotheses regarding the key role of sediment physical properties and/or gas hydrate dissociation and therewith the mechanics of submarine landslides; what are potential trigger mechanisms: uplift and over-steepening vs. sediment physical behaviour.
NASA Astrophysics Data System (ADS)
Lasbleis, M.; Day, E. A.; Waszek, L.
2017-12-01
The complex nature of inner core structure has been well-established from seismic studies, with heterogeneities at various length scales, both radially and laterally. Despite this, no geodynamic model has successfully explained all of the observed seismic features. To facilitate comparisons between seismic observations and geodynamic models of inner core growth we have developed a new, open access Python tool - GrowYourIC - that allows users to compare models of inner core structure. The code allows users to simulate different evolution models of the inner core, with user-defined rates of inner core growth, translation and rotation. Once the user has "grown" an inner core with their preferred parameters they can then explore the effect of "their" inner core's evolution on the relative age and growth rate in different regions of the inner core. The code will convert these parameters into seismic properties using either built-in mineral physics models, or user-supplied ones that calculate these seismic properties with users' own preferred mineralogical models. The 3D model of isotropic inner core properties can then be used to calculate the predicted seismic travel time anomalies for a random, or user-specified, set of seismic ray paths through the inner core. A real dataset of inner core body-wave differential travel times is included for the purpose of comparing user-generated models of inner core growth to actual observed travel time anomalies in the top 100km of the inner core. Here, we explore some of the possibilities of our code. We investigate the effect of the limited illumination of the inner core by seismic waves on the robustness of kinematic model interpretation. We test the impact on seismic differential travel time observations of several kinematic models of inner core growth: fast lateral translation; slow differential growth; and inner core super-rotation. We find that a model of inner core evolution incorporating both differential growth and slow super-rotation is able to recreate some of the more intricate details of the seismic observations. Specifically we are able to "grow" an inner core that has an asymmetric shift in isotropic hemisphere boundaries with increasing depth in the inner core.
Occurrence of Radio Minihalos in a Mass-limited Sample of Galaxy Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giacintucci, Simona; Clarke, Tracy E.; Markevitch, Maxim
2017-06-01
We investigate the occurrence of radio minihalos—diffuse radio sources of unknown origin observed in the cores of some galaxy clusters—in a statistical sample of 58 clusters drawn from the Planck Sunyaev–Zel’dovich cluster catalog using a mass cut ( M {sub 500} > 6 × 10{sup 14} M {sub ⊙}). We supplement our statistical sample with a similarly sized nonstatistical sample mostly consisting of clusters in the ACCEPT X-ray catalog with suitable X-ray and radio data, which includes lower-mass clusters. Where necessary (for nine clusters), we reanalyzed the Very Large Array archival radio data to determine whether a minihalo is present.more » Our total sample includes all 28 currently known and recently discovered radio minihalos, including six candidates. We classify clusters as cool-core or non-cool-core according to the value of the specific entropy floor in the cluster center, rederived or newly derived from the Chandra X-ray density and temperature profiles where necessary (for 27 clusters). Contrary to the common wisdom that minihalos are rare, we find that almost all cool cores—at least 12 out of 15 (80%)—in our complete sample of massive clusters exhibit minihalos. The supplementary sample shows that the occurrence of minihalos may be lower in lower-mass cool-core clusters. No minihalos are found in non-cool cores or “warm cores.” These findings will help test theories of the origin of minihalos and provide information on the physical processes and energetics of the cluster cores.« less
Mixson-Hayden, Tonya; Dawson, George J; Teshale, Eyasu; Le, Thao; Cheng, Kevin; Drobeniuc, Jan; Ward, John; Kamili, Saleem
2015-05-01
Hepatitis C virus (HCV) core antigen is a serological marker of current HCV infection. The aim of this study was mainly to evaluate the performance characteristics of the ARCHITECT HCV core antigen assay with specimens from US plasma donors and injecting drug users. A total of 551 serum and plasma samples with known anti-HCV and HCV RNA status were tested for HCV core antigen using the Abbott ARCHITECT HCV core antigen test. HCV core antigen was detectable in 100% of US plasma donor samples collected during the pre-seroconversion phase of infection (anti-HCV negative/HCV RNA positive). Overall sensitivity of the HCV core antigen assay was 88.9-94.3% in samples collected after seroconversion. The correlation between HCV core antigen and HCV RNA titers was 0.959. HCV core antigen testing may be reliably used to identify current HCV infection. Published by Elsevier B.V.
The Yucca Mountain Project prototype air-coring test, U12g tunnel, Nevada test site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ray, J.M.; Newsom, J.C.
1994-12-01
The Prototype Air-Coring Test was conducted at the Nevada Test Site (NTS) G-Tunnel facility to evaluate standard coring techniques, modified slightly for air circulation, for use in testing at a prospective nuclear waste repository at Yucca Mountain, Nevada. Air-coring technology allows sampling of subsurface lithology with minimal perturbation to ambient characteristic such as that required for exploratory holes near aquifers, environmental applications, and site characterization work. Two horizontal holes were cored, one 50 ft long and the other 150 ft long, in densely welded fractured tuff to simulate the difficult drilling conditions anticipated at Yucca Mountain. Drilling data from sevenmore » holes on three other prototype tests in nonwelded tuff were also collected for comparison. The test was used to establish preliminary standards of performance for drilling and dust collection equipment and to assess procedural efficiencies. The Longyear-38 drill achieved 97% recovery for HQ-size core (-2.5 in.), and the Atlas Copco dust collector (DCT-90) captured 1500 lb of fugitive dust in a mine environment with only minor modifications. Average hole production rates were 6-8 ft per 6-h shift in welded tuff and almost 20 ft per shift on deeper holes in nonwelded tuff. Lexan liners were successfully used to encapsulate core samples during the coring process and protect core properties effectively. The Prototype Air-Coring Test demonstrated that horizontal air coring in fractured welded tuff (to at least 150 ft) can be safely accomplished by proper selection, integration, and minor modification of standard drilling equipment, using appropriate procedures and engineering controls. The test also indicated that rig logistics, equipment, and methods need improvement before attempting a large-scale dry drilling program at Yucca Mountain.« less
PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery.
Chan, Juliana M; Zhang, Liangfang; Yuet, Kai P; Liao, Grace; Rhee, June-Wha; Langer, Robert; Farokhzad, Omid C
2009-03-01
Current approaches to encapsulate and deliver therapeutic compounds have focused on developing liposomal and biodegradable polymeric nanoparticles (NPs), resulting in clinically approved therapeutics such as Doxil/Caelyx and Genexol-PM, respectively. Our group recently reported the development of biodegradable core-shell NP systems that combined the beneficial properties of liposomal and polymeric NPs for controlled drug delivery. Herein we report the parameters that alter the biological and physicochemical characteristics, stability, drug release properties and cytotoxicity of these core-shell NPs. We further define scalable processes for the formulation of these NPs in a reproducible manner. These core-shell NPs consist of (i) a poly(D,L-lactide-co-glycolide) hydrophobic core, (ii) a soybean lecithin monolayer, and (iii) a poly(ethylene glycol) shell, and were synthesized by a modified nanoprecipitation method combined with self-assembly. Preparation of the NPs showed that various formulation parameters such as the lipid/polymer mass ratio and lipid/lipid-PEG molar ratio controlled NP physical stability and size. We encapsulated a model chemotherapy drug, docetaxel, in the NPs and showed that the amount of lipid coverage affected its drug release kinetics. Next, we demonstrated a potentially scalable process for the formulation, purification, and storage of NPs. Finally, we tested the cytotoxicity using MTT assays on two model human cell lines, HeLa and HepG2, and demonstrated the biocompatibility of these particles in vitro. Our data suggest that the PLGA-lecithin-PEG core-shell NPs may be a useful new controlled release drug delivery system.
Convectively driven decadal zonal accelerations in Earth's fluid core
NASA Astrophysics Data System (ADS)
More, Colin; Dumberry, Mathieu
2018-04-01
Azimuthal accelerations of cylindrical surfaces co-axial with the rotation axis have been inferred to exist in Earth's fluid core on the basis of magnetic field observations and changes in the length-of-day. These accelerations have a typical timescale of decades. However, the physical mechanism causing the accelerations is not well understood. Scaling arguments suggest that the leading order torque averaged over cylindrical surfaces should arise from the Lorentz force. Decadal fluctuations in the magnetic field inside the core, driven by convective flows, could then force decadal changes in the Lorentz torque and generate zonal accelerations. We test this hypothesis by constructing a quasi-geostrophic model of magnetoconvection, with thermally driven flows perturbing a steady, imposed background magnetic field. We show that when the Alfvén number in our model is similar to that in Earth's fluid core, temporal fluctuations in the torque balance are dominated by the Lorentz torque, with the latter generating mean zonal accelerations. Our model reproduces both fast, free Alfvén waves and slow, forced accelerations, with ratios of relative strength and relative timescale similar to those inferred for the Earth's core. The temporal changes in the magnetic field which drive the time-varying Lorentz torque are produced by the underlying convective flows, shearing and advecting the magnetic field on a timescale associated with convective eddies. Our results support the hypothesis that temporal changes in the magnetic field deep inside Earth's fluid core drive the observed decadal zonal accelerations of cylindrical surfaces through the Lorentz torque.
Initial Comparison of Direct and Legacy Modeling Approaches for Radial Core Expansion Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shemon, Emily R.
2016-10-10
Radial core expansion in sodium-cooled fast reactors provides an important reactivity feedback effect. As the reactor power increases due to normal start up conditions or accident scenarios, the core and surrounding materials heat up, causing both grid plate expansion and bowing of the assembly ducts. When the core restraint system is designed correctly, the resulting structural deformations introduce negative reactivity which decreases the reactor power. Historically, an indirect procedure has been used to estimate the reactivity feedback due to structural deformation which relies upon perturbation theory and coupling legacy physics codes with limited geometry capabilities. With advancements in modeling andmore » simulation, radial core expansion phenomena can now be modeled directly, providing an assessment of the accuracy of the reactivity feedback coefficients generated by indirect legacy methods. Recently a new capability was added to the PROTEUS-SN unstructured geometry neutron transport solver to analyze deformed meshes quickly and directly. By supplying the deformed mesh in addition to the base configuration input files, PROTEUS-SN automatically processes material adjustments including calculation of region densities to conserve mass, calculation of isotopic densities according to material models (for example, sodium density as a function of temperature), and subsequent re-homogenization of materials. To verify the new capability of directly simulating deformed meshes, PROTEUS-SN was used to compute reactivity feedback for a series of contrived yet representative deformed configurations for the Advanced Burner Test Reactor design. The indirect legacy procedure was also performed to generate reactivity feedback coefficients for the same deformed configurations. Interestingly, the legacy procedure consistently overestimated reactivity feedbacks by 35% compared to direct simulations by PROTEUS-SN. This overestimation indicates that the legacy procedures are in fact not conservative and could be overestimating reactivity feedback effects that are closely tied to reactor safety. We conclude that there is indeed value in performing direct simulation of deformed meshes despite the increased computational expense. PROTEUS-SN is already part of the SHARP multi-physics toolkit where both thermal hydraulics and structural mechanical feedback modeling can be applied but this is the first comparison of direct simulation to legacy techniques for radial core expansion.« less
Space Station CMIF extended duration metabolic control test
NASA Technical Reports Server (NTRS)
Schunk, Richard G.; Bagdigian, Robert M.; Carrasquillo, Robyn L.; Ogle, Kathryn Y.; Wieland, Paul O.
1989-01-01
The Space Station Extended Duration Metabolic Control Test (EMCT) was conducted at the MSFC Core Module Integration Facility. The primary objective of the EMCT was to gather performance data from a partially-closed regenerative Environmental Control and Life Support (ECLS) system functioning under steady-state conditions. Included is a description of the EMCT configuration, a summary of events, a discussion of anomalies that occurred during the test, and detailed results and analysis from individual measurements of water and gas samples taken during the test. A comparison of the physical, chemical, and microbiological methods used in the post test laboratory analyses of the water samples is included. The preprototype ECLS hardware used in the test, providing an overall process description and theory of operation for each hardware item. Analytical results pertaining to a system level mass balance and selected system power estimates are also included.
Advanced concepts for transformers pressboard dielectric constant and mechanical strength
NASA Astrophysics Data System (ADS)
1982-03-01
Of the numerous electrical considerations in a material, the value of the dielectric constant serves as an important criterion in designing proper insulation systems. Ways to reduce the dielectric constant of solid (fibrous) insulating materials were investigated. A literature search was made on cellulosic and synthetic fibers and also additives which offered the potential for dielectric constant reduction of the solid insulation. Sample board structures were produced in the laboratory and tested for electrical, mechanical and chemical characteristics. Electrical tests determined the suitability of the material at transformer test and operating conditions. The mechanical tests established the physical characteristics of the modified board structures. Chemical tests checked the conductivity of the aqueous extract, acidity, and ash content. Further, compatibility with transformer oil and some aging tests were performed. An actual computer transformer design was made based on one of the modified board structures and the reduction in core steel and transformer losses were shown.
Condensed matter physics of planets - Puzzles, progress and predictions
NASA Technical Reports Server (NTRS)
Stevenson, D. J.
1984-01-01
Attention is given to some of the major unresolved issues concerned with the physics of planetary interiors. The important advances in observations, and experimental and theoretical investigations are briefly reviewed, and some areas for further study are identified, including: the characteristics of atomic and electronic degrees of freedom at the high pressures and temperatures typical of a condensed planetary core; the behavior of water at megabar pressures; and the nature of the core-alloy in the earth and in the core mantle phase boundary. Consideration is also given to the behavior of carbon at high pressures and temperatures in the presence of oxygen and hydrogen; the behavior of the volatile ice assemblage in Titan at pressures of 2-40 kbar; and the electrical conductivities of matter under planetary core conditions.
Pitesa, Marko; Thau, Stefan
2018-03-01
Based on evolutionary theory, we predicted that cues of resource scarcity in the environment (e.g., news of droughts or food shortages) lead people to reduce their effort and performance in physically demanding work. We tested this prediction in a 2-wave field survey among employees and replicated it experimentally in the lab. In Study 1, employees who perceived resources in the environment to be scarce reported exerting less effort when their jobs involved much (but not little) physical work. In Study 2, participants who read that resources in the environment were scarce performed worse on a task demanding more (carrying books) but not less (transcribing book titles) physical work. This result was found even though better performance increased participants' chances of additional remuneration, and even though scarcity cues did not affect individuals' actual ability to meet their energy needs. We discuss implications for managing effort and performance, and the potential of evolutionary psychology to explain core organizational phenomena. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Gazsi, Claudia C; Oriel, Kathryn N
2010-01-01
A goal when designing the Physical Therapy Program at Lebanon Valley College (LVC) was to maximize vertical and horizontal integration of course content related to (a) medical Spanish, (b) geriatrics, and (c) health promotion through a service learning engagement. Seventeen Doctor of Physical Therapy students from LVC participated in a fall risk screening at a local senior center in a Spanish-speaking neighborhood. The screen included the single leg stance, timed-up-and-go (TUG), and functional reach tests. The students screened 30 participants over a 3-hour time period. Following the screening event, students were asked to reflect on their experience. Reflections revealed that the activity supported integration of concurrent didactic course material and Core Values, reinforced cultural issues presented the previous year, and convinced students that physical therapists have a distinct and important role in primary and secondary prevention in meeting the needs of the Spanish-speaking elderly community.
Analytical Estimation of the Scale of Earth-Like Planetary Magnetic Fields
NASA Astrophysics Data System (ADS)
Bologna, Mauro; Tellini, Bernardo
2014-10-01
In this paper we analytically estimate the magnetic field scale of planets with physical core conditions similar to that of Earth from a statistical physics point of view. We evaluate the magnetic field on the basis of the physical parameters of the center of the planet, such as density, temperature, and core size. We look at the contribution of the Seebeck effect on the magnetic field, showing that a thermally induced electrical current can exist in a rotating fluid sphere. We apply our calculations to Earth, where the currents would be driven by the temperature difference at the outer-inner core boundary, Jupiter and the Jupiter's satellite Ganymede. In each case we show that the thermal generation of currents leads to a magnetic field scale comparable to the observed fields of the considered celestial bodies.
78 FR 63516 - Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-24
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0134] Initial Test Program of Emergency Core Cooling....79.1, ``Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors.'' This... emergency core cooling systems (ECCSs) for boiling- water reactors (BWRs) whose licenses are issued after...
Is the Non-Dipole Magnetic Field Random?
NASA Technical Reports Server (NTRS)
Walker, Andrew D.; Backus, George E.
1996-01-01
Statistical modelling of the Earth's magnetic field B has a long history. In particular, the spherical harmonic coefficients of scalar fields derived from B can be treated as Gaussian random variables. In this paper, we give examples of highly organized fields whose spherical harmonic coefficients pass tests for independent Gaussian random variables. The fact that coefficients at some depth may be usefully summarized as independent samples from a normal distribution need not imply that there really is some physical, random process at that depth. In fact, the field can be extremely structured and still be regarded for some purposes as random. In this paper, we examined the radial magnetic field B(sub r) produced by the core, but the results apply to any scalar field on the core-mantle boundary (CMB) which determines B outside the CMB.
The CRONOS Code for Astrophysical Magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Kissmann, R.; Kleimann, J.; Krebl, B.; Wiengarten, T.
2018-06-01
We describe the magnetohydrodynamics (MHD) code CRONOS, which has been used in astrophysics and space-physics studies in recent years. CRONOS has been designed to be easily adaptable to the problem in hand, where the user can expand or exchange core modules or add new functionality to the code. This modularity comes about through its implementation using a C++ class structure. The core components of the code include solvers for both hydrodynamical (HD) and MHD problems. These problems are solved on different rectangular grids, which currently support Cartesian, spherical, and cylindrical coordinates. CRONOS uses a finite-volume description with different approximate Riemann solvers that can be chosen at runtime. Here, we describe the implementation of the code with a view toward its ongoing development. We illustrate the code’s potential through several (M)HD test problems and some astrophysical applications.
Late-time flux evolution of magnetars SGR 1627-41 and Swift J1822.3-1606
NASA Astrophysics Data System (ADS)
An, Hongjun
2013-10-01
The flux relaxations of magnetars post-outburst are of great interest as they permit detailed studies of magnetars and their environments. One model that can explain the flux relaxation is crustal cooling. In the model, heat is deposited after an energetic event in the crust and emitted at the surface. A significant amount of heat can propagate deeper inside, heating the core/crust boundary and changing the shape of the light curve at late times. Therefore, studying the flux relaxation at late times may provides a new opportunity to study the extreme environment near the core. We propose XMM-Newton observations to study the late-time flux evolution of two magnetars, SGR 1627-41 and Swift J1822.3- 1606 to test the crustal cooling model and infer physical properties of the magnetars.
Durability of building stones against artificial salt crystallization
NASA Astrophysics Data System (ADS)
Min, K.; Park, J.; Han, D.
2005-12-01
Salts have been known as the most powerful weathering agents, especially when combined with frost action. Salt crystallization test along with freezing-thawing test and acid immersion test was carried out to assess the durability of building stones against weathering. Granite, limestone, marble and basalt were sampled from different quarries in south Korea for this study. One cycle of artificial salt crystallization test was composed of immersion of cored rock specimens in oversaturated solutions of CaCl2, KCl, NaCl and Na2SO4, respectively for 15 hours and successive drying in an oven of 105°C for 3 hours and cooling at room temperature. Tests were performed up to 30 cycles, and specific gravity and ultrasonic velocity were measured after experiencing every 10 cycles and uniaxial compressive strength was measured only after 30 cycles. During the repeated Na2SO4 salt crystallization, some rock samples were gradually deformed excessively and burst after 20 to 30 cycles of test. The variation patterns of physical properties during the salt crystallization tests are too variable to generalize the effect of salt weathering on physical properties but limestone, marble and basalt samples showed relatively greater change of physical properties than granite samples. The recrystallized salts were well observed in the cracks of rock samples through the scanning electron microscope. In the all salt crystallization tests, apparent specific gravities for all tested samples increased generally but not so significantly due to recrystallization of salts. It can be inferred that filling the pores with salt crystals cause the increase of ultrasonic velocity during the early stage of salt crystallization and then in later stages the repeated cycles of salt crystallization result in development of cracks leading decrease of ultrasonic velocity for some rock samples.
2017-10-01
greater elevation in core temperature during exercise. In exercise-based rehabilitation or physically demanding occupational settings, activities...Military Health System Research 2 Symposium. We have initiated data collection for Aim 1B (assessment of the impact of large/small statue on...resulting in exacerbated elevations in core temperature and greater risk of heat illness during physical activities. Since the capacity for
Quantum Algorithms Based on Physical Processes
2013-12-03
quantum walks with hard-core bosons and the graph isomorphism problem,” American Physical Society March meeting, March 2011 Kenneth Rudinger, John...King Gamble, Mark Wellons, Mark Friesen, Dong Zhou, Eric Bach, Robert Joynt, and S.N. Coppersmith, “Quantum random walks of non-interacting bosons on...and noninteracting Bosons to distinguish nonisomorphic graphs. 1) We showed that quantum walks of two hard-core Bosons can distinguish all pairs of
Quantum Algorithms Based on Physical Processes
2013-12-02
quantum walks with hard-core bosons and the graph isomorphism problem,” American Physical Society March meeting, March 2011 Kenneth Rudinger, John...King Gamble, Mark Wellons, Mark Friesen, Dong Zhou, Eric Bach, Robert Joynt, and S.N. Coppersmith, “Quantum random walks of non-interacting bosons on...and noninteracting Bosons to distinguish nonisomorphic graphs. 1) We showed that quantum walks of two hard-core Bosons can distinguish all pairs of
ERIC Educational Resources Information Center
Edwards, Nazeem
2010-01-01
I report on an analysis of the alignment between the South African Grade 12 Physical Sciences core curriculum content and the exemplar papers of 2008, and the final examination papers of 2008 and 2009. A two-dimensional table was used for both the curriculum and the examination in order to calculate the Porter alignment index, which indicates the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zevenhoven, C.A.P.; Yrjas, K.P.; Hupa, M.M.
1996-03-01
The physical structure of a limestone or dolomite to be used in in-bed sulfur capture in fluidized bed gasifiers has a great impact on the efficiency of sulfur capture and sorbent use. In this study an unreacted shrinking core model with variable effective diffusivity is applied to sulfidation test data from a pressurized thermogravimetric apparatus (P-TGA) for a set of physically and chemically different limestone and dolomite samples. The particle size was 250--300 {micro}m for all sorbents, which were characterized by chemical composition analysis, particle density measurement, mercury porosimetry, and BET internal surface measurement. Tests were done under typical conditionsmore » for a pressurized fluidized-bed gasifier, i.e., 20% CO{sub 2}, 950 C, 20 bar. At these conditions the limestone remains uncalcined, while the dolomite is half-calcined. Additional tests were done at low CO{sub 2} partial pressures, yielding calcined limestone and fully calcined dolomite. The generalized model allows for determination of values for the initial reaction rate and product layer diffusivity.« less
Winters, William J.; Waite, William F.; Mason, David H.; Kumar, P.
2008-01-01
As part of an international cooperative research program, the U.S. Geological Survey (USGS) and researchers from the National Gas Hydrate Program (NGHP) of India are studying the physical properties of sediment recovered during the NGHP-01 cruise conducted offshore India during 2006. Here we report on index property, acoustic velocity, and triaxial shear test results for samples recovered from the Krishna-Godavari Basin. In addition, we discuss the effects of sample storage temperature, handling, and change in structure of fine-grained sediment. Although complex, sub-vertical planar gas-hydrate structures were observed in the silty clay to clayey silt samples prior to entering the Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI), the samples yielded little gas post test. This suggests most, if not all, gas hydrate dissociated during sample transfer. Mechanical properties of hydrate-bearing marine sediment are best measured by avoiding sample depressurization. By contrast, mechanical properties of hydrate-free sediments, that are shipped and stored at atmospheric pressure can be approximated by consolidating core material to the original in situ effective stress.
SPERT Destructive Test - I on Aluminum, Highly Enriched Plate Type Core
None
2018-01-16
SPERT - Special Power Excursion Reactor Tests Destructive Test number 1 On Aluminum, Highly Enriched Plate Type Core. A test studying the behavior of the reactor under destructive conditions on a light water moderated pool-type reactor with a plate-type core.
NASA Technical Reports Server (NTRS)
Lada, Charles J.
2005-01-01
This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular cloud cores and investigate the physical conditions which give rise to star and planet formation. The goals of this program are to acquire, reduce and analyze deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds in order to internal structure of starless cloud cores and to quantitatively investigate the evolution of such structure through the star and planet formation process. During the second year of this grant, progress toward these goals is discussed.
NASA Technical Reports Server (NTRS)
Lada, Charles J.
2004-01-01
This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular cloud cores and investigate the physical conditions which give rise to star and planet formation. The goals of this program are to acquire, reduce and analyze deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds in order to determine the detailed initial conditions for star formation from quantitative measurements of the internal structure of starless cloud cores and to quantitatively investigate the evolution of such structure through the star and planet formation process.
α Centauri A as a potential stellar model calibrator: establishing the nature of its core
NASA Astrophysics Data System (ADS)
Nsamba, B.; Monteiro, M. J. P. F. G.; Campante, T. L.; Cunha, M. S.; Sousa, S. G.
2018-05-01
Understanding the physical process responsible for the transport of energy in the core of α Centauri A is of the utmost importance if this star is to be used in the calibration of stellar model physics. Adoption of different parallax measurements available in the literature results in differences in the interferometric radius constraints used in stellar modelling. Further, this is at the origin of the different dynamical mass measurements reported for this star. With the goal of reproducing the revised dynamical mass derived by Pourbaix & Boffin, we modelled the star using two stellar grids varying in the adopted nuclear reaction rates. Asteroseismic and spectroscopic observables were complemented with different interferometric radius constraints during the optimisation procedure. Our findings show that best-fit models reproducing the revised dynamical mass favour the existence of a convective core (≳ 70% of best-fit models), a result that is robust against changes to the model physics. If this mass is accurate, then α Centauri A may be used to calibrate stellar model parameters in the presence of a convective core.
Self-consistent core-pedestal transport simulations with neural network accelerated models
Meneghini, Orso; Smith, Sterling P.; Snyder, Philip B.; ...
2017-07-12
Fusion whole device modeling simulations require comprehensive models that are simultaneously physically accurate, fast, robust, and predictive. In this paper we describe the development of two neural-network (NN) based models as a means to perform a snon-linear multivariate regression of theory-based models for the core turbulent transport fluxes, and the pedestal structure. Specifically, we find that a NN-based approach can be used to consistently reproduce the results of the TGLF and EPED1 theory-based models over a broad range of plasma regimes, and with a computational speedup of several orders of magnitudes. These models are then integrated into a predictive workflowmore » that allows prediction with self-consistent core-pedestal coupling of the kinetic profiles within the last closed flux surface of the plasma. Finally, the NN paradigm is capable of breaking the speed-accuracy trade-off that is expected of traditional numerical physics models, and can provide the missing link towards self-consistent coupled core-pedestal whole device modeling simulations that are physically accurate and yet take only seconds to run.« less
Random close packing in protein cores
NASA Astrophysics Data System (ADS)
Ohern, Corey
Shortly after the determination of the first protein x-ray crystal structures, researchers analyzed their cores and reported packing fractions ϕ ~ 0 . 75 , a value that is similar to close packing equal-sized spheres. A limitation of these analyses was the use of `extended atom' models, rather than the more physically accurate `explicit hydrogen' model. The validity of using the explicit hydrogen model is proved by its ability to predict the side chain dihedral angle distributions observed in proteins. We employ the explicit hydrogen model to calculate the packing fraction of the cores of over 200 high resolution protein structures. We find that these protein cores have ϕ ~ 0 . 55 , which is comparable to random close-packing of non-spherical particles. This result provides a deeper understanding of the physical basis of protein structure that will enable predictions of the effects of amino acid mutations and design of new functional proteins. We gratefully acknowledge the support of the Raymond and Beverly Sackler Institute for Biological, Physical, and Engineering Sciences, National Library of Medicine training grant T15LM00705628 (J.C.G.), and National Science Foundation DMR-1307712 (L.R.).
Self-consistent core-pedestal transport simulations with neural network accelerated models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meneghini, Orso; Smith, Sterling P.; Snyder, Philip B.
Fusion whole device modeling simulations require comprehensive models that are simultaneously physically accurate, fast, robust, and predictive. In this paper we describe the development of two neural-network (NN) based models as a means to perform a snon-linear multivariate regression of theory-based models for the core turbulent transport fluxes, and the pedestal structure. Specifically, we find that a NN-based approach can be used to consistently reproduce the results of the TGLF and EPED1 theory-based models over a broad range of plasma regimes, and with a computational speedup of several orders of magnitudes. These models are then integrated into a predictive workflowmore » that allows prediction with self-consistent core-pedestal coupling of the kinetic profiles within the last closed flux surface of the plasma. Finally, the NN paradigm is capable of breaking the speed-accuracy trade-off that is expected of traditional numerical physics models, and can provide the missing link towards self-consistent coupled core-pedestal whole device modeling simulations that are physically accurate and yet take only seconds to run.« less
Self-consistent core-pedestal transport simulations with neural network accelerated models
NASA Astrophysics Data System (ADS)
Meneghini, O.; Smith, S. P.; Snyder, P. B.; Staebler, G. M.; Candy, J.; Belli, E.; Lao, L.; Kostuk, M.; Luce, T.; Luda, T.; Park, J. M.; Poli, F.
2017-08-01
Fusion whole device modeling simulations require comprehensive models that are simultaneously physically accurate, fast, robust, and predictive. In this paper we describe the development of two neural-network (NN) based models as a means to perform a snon-linear multivariate regression of theory-based models for the core turbulent transport fluxes, and the pedestal structure. Specifically, we find that a NN-based approach can be used to consistently reproduce the results of the TGLF and EPED1 theory-based models over a broad range of plasma regimes, and with a computational speedup of several orders of magnitudes. These models are then integrated into a predictive workflow that allows prediction with self-consistent core-pedestal coupling of the kinetic profiles within the last closed flux surface of the plasma. The NN paradigm is capable of breaking the speed-accuracy trade-off that is expected of traditional numerical physics models, and can provide the missing link towards self-consistent coupled core-pedestal whole device modeling simulations that are physically accurate and yet take only seconds to run.
Leo, Gerhard W.; Pavich, M.J.; Obermeier, Stephen F.
1977-01-01
Undisturbed cores of saprolite developed on crystalline rocks of the Piedmont Province in Fairfax County, Virginia have been obtained using a combination of Shelby tubes, Denison sampler, and modified diamond core-drilling. The principal purpose of the core study is to correlate variations in chemistry, mineralogy and texture with engineering properties throughout the weathering profile. Coring sites were chosen to obtain a maximum depth of weathering on diverse lithologies. The rocks investigated include pelitic schist, metagraywacke, granite, diabase and serpentinite. Four to twelve samples per core were selected, depending on thickness of 1) the weathering profile (from about 1 m in serpentinite to more than 30 m in pelitic schist) and on 2) megascopic changes in saprolite character for analysis of petrography, texture, clay mineralogy andd major element chemistry. Shear strength and compressibility were determined on corresponding segments of core. Standard penetration tests were performed adjacent to coring sites to evaluate engineering properties in situ. Geochemical changes of saprolite developed from each rock type follow predictable trends from fresh rock to soil profile, with relative Increases in Si, Ti, Al, Fe3+ and H20; variable K; and relative loss of Fe 2+, Mg, Ca, and Na. These variations are more pronounced in the weathering profiles over mafic and ultramafic rocks than metagraywacke. Clay minerals in granite, schist and metagraywacke saprolite are kaolinite, dioctahedral vermiculite, interlayered micavermiculite, and minor illite. Gibbsite is locally developed in near-surface samples of schist. Standard penetration test data for the upper 7 m of saprolite over schist and metagraywacke suggest alternations between stronger and weaker horizons than probably reflect variations in lithology including the presence of quartz lenses. Results for granite saprolite are most consistent but indicate lower strength. Shear strength increases fairly regularly downward in the weathering profile. The engineering behavior of diabase saprolite is controlled by a dense, plastic, near-surface clay layer (montmorillonite and kaolinite)overlying rock which is weathered to a granular state (grus), while engineering properties of serpentinite are determined by a very thin weathering profile.
On the physical basis of a theory of human thermoregulation.
NASA Technical Reports Server (NTRS)
Iberall, A. S.; Schindler, A. M.
1973-01-01
Theoretical study of the physical factors which are responsible for thermoregulation in nude resting humans in a physical steady state. The behavior of oxidative metabolism, evaporative and convective thermal fluxes, fluid heat transfer, internal and surface temperatures, and evaporative phase transitions is studied by physiological/physical modeling techniques. The modeling is based on the theories that the body has a vital core with autothermoregulation, that the vital core contracts longitudinally, that the temperature of peripheral regions and extremities decreases towards the ambient, and that a significant portion of the evaporative heat may be lost underneath the skin. A theoretical basis is derived for a consistent modeling of steady-state thermoregulation on the basis of these theories.
Review of the TREAT Conversion Conceptual Design and Fuel Qualification Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diamond, David
The U.S. Department of Energy (DOE) is preparing to re establish the capability to conduct transient testing of nuclear fuels at the Idaho National Laboratory (INL) Transient Reactor Test (TREAT) facility. The original TREAT core went critical in February 1959 and operated for more than 6,000 reactor startups before plant operations were suspended in 1994. DOE is now planning to restart the reactor using the plant's original high-enriched uranium (HEU) fuel. At the same time, the National Nuclear Security Administration (NNSA) Office of Material Management and Minimization Reactor Conversion Program is supporting analyses and fuel fabrication studies that will allowmore » for reactor conversion to low-enriched uranium (LEU) fuel (i.e., fuel with less than 20% by weight 235U content) after plant restart. The TREAT Conversion Program's objectives are to perform the design work necessary to generate an LEU replacement core, to restore the capability to fabricate TREAT fuel element assemblies, and to implement the physical and operational changes required to convert the TREAT facility to use LEU fuel.« less
Gamma-ray bursts appear simpler than expected?
NASA Astrophysics Data System (ADS)
Chardonnet, P.; Filina, A. A.; Popov, M. V.; Chechetkin, V. M.; Baranov, A. A.
The cosmic gamma-ray bursts are certainly an enigma in astrophysics. The "standard fireball" scenario developed during many years has provided a possible explanation of this phenomenon. The aim of this work is simply to explore a new possible interpretation by developing a coherent scenario inside the global picture of stellar evolution. At the basis of our scenario is the fact that maybe we have not fully understood how the core of a pair instability supernovae explode. In such a way, we have proposed a new paradigm assuming that the core of such massive star, instead of doing a symmetrical explosion, is completely fragmented in hot spots of burning nuclear matter. We have tested our scenario using some observational data like GRB spectrum, light curves, Amati relation and GRB-SN connection, and for each set of data we have proposed a possible physical interpretation. We have also suggested some possible tests of this scenario by measurement at high redshift. If this scenario is correct, it tells us simply that cosmic gamma-ray bursts are simply a missing link in stellar evolution.
Cosmic gamma-ray bursts from primordial stars: A new renaissance in astrophysics?
NASA Astrophysics Data System (ADS)
Chardonnet, Pascal; Filina, Anastasia; Chechetkin, Valery; Popov, Mikhail; Baranov, Andrey
2015-10-01
The cosmic gamma-ray bursts are certainly an enigma in astrophysics. The “standard fireball” scenario developed during many years has provided a possible explanation of this phenomena. The aim of this work is simply to explore a new possible interpretation by developing a coherent scenario inside the global picture of stellar evolution. At the basis of our scenario, is the fact that maybe we have not fully understood how the core of a pair instability supernova explodes. In such way, we have proposed a new paradigm assuming that the core of such massive star, instead of doing a symmetrical explosion, is completely fragmented in hot spots of burning nuclear matter. We have tested our scenario with observational data like GRB spectra, lightcurves, Amati relation and GRB-SN connection, and for each set of data we have proposed a possible physical interpretation. We have also suggested some possible test of this scenario by measurement at high redshifts. If this scenario is correct, it tells us simply that the cosmic gamma-ray bursts are a missing link in stellar evolution, related to an unusual explosion.
Kim, Taeil; Harbaruk, Dzmitry; Gerardi, Craig; ...
2017-07-10
Experiments dropping molten uranium into test sections of single fuel pin geometry filled with sodium were conducted to investigate relocation behavior of metallic fuel in the core structures of sodium-cooled fast reactors during a hypothetical core disruptive accident. Metallic uranium was used as a fuel material and HT-9M was used as a fuel cladding material in the experiment in order to accurately mock-up the thermo-physical behavior of the relocation. The fuel cladding failed due to eutectic formation between the uranium and HT-9M for all experiments. The extent of the eutectic formation increased with increasing molten uranium temperature. Voids in themore » relocated fuel were observed for all experiments and were likely formed by sodium boiling in contact with the fuel. In one experiment, numerous fragments of the relocated fuel were found. In conclusion, it could be concluded that the injected metallic uranium fuel was fragmented and dispersed in the narrow coolant channel by sodium boiling« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Taeil; Harbaruk, Dzmitry; Gerardi, Craig
Experiments dropping molten uranium into test sections of single fuel pin geometry filled with sodium were conducted to investigate relocation behavior of metallic fuel in the core structures of sodium-cooled fast reactors during a hypothetical core disruptive accident. Metallic uranium was used as a fuel material and HT-9M was used as a fuel cladding material in the experiment in order to accurately mock-up the thermo-physical behavior of the relocation. The fuel cladding failed due to eutectic formation between the uranium and HT-9M for all experiments. The extent of the eutectic formation increased with increasing molten uranium temperature. Voids in themore » relocated fuel were observed for all experiments and were likely formed by sodium boiling in contact with the fuel. In one experiment, numerous fragments of the relocated fuel were found. In conclusion, it could be concluded that the injected metallic uranium fuel was fragmented and dispersed in the narrow coolant channel by sodium boiling« less
Monteiro-Junior, Renato Sobral; de Souza, Cíntia Pereira; Lattari, Eduardo; Rocha, Nuno Barbosa Ferreira; Mura, Gioia; Machado, Sérgio; da Silva, Elirez Bezerra
2015-01-01
Chronic Low Back Pain (CLBP) is a public health problem and older women have higher incidence of this symptom, which affect body balance, functional capacity and behavior. The purpose of this study was to verifying the effect of exercises with Nintendo Wii on CLBP, functional capacity and mood of elderly. Thirty older women (68 ± 4 years; 68 ± 12 kg; 154 ± 5 cm) with CLBP participated in this study. Elderly individuals were divided into a Control Exercise Group (n = 14) and an Experimental Wii Group (n = 16). Control Exercise Group did strength exercises and core training, while Experimental Wii Group did ones additionally to exercises with Wii. CLBP, balance, functional capacity and mood were assessed pre and post training by the numeric pain scale, Wii Balance Board, sit to stand test and Profile of Mood States, respectively. Training lasted eight weeks and sessions were performed three times weekly. MANOVA 2 x 2 showed no interaction on pain, siting, stand-up and mood (P = 0.53). However, there was significant difference within groups (P = 0.0001). ANOVA 2 x 2 showed no interaction for each variable (P > 0.05). However, there were significant differences within groups in these variables (P < 0.05). Tukey's post-hoc test showed significant difference in pain on both groups (P = 0.0001). Wilcoxon and Mann-Whitney tests identified no significant differences on balance (P > 0.01). Capacity to Sit improved only in Experimental Wii Group (P = 0.04). In conclusion, physical exercises with Nintendo Wii Fit Plus additional to strength and core training were effective only for sitting capacity, but effect size was small.
Implementing a Nuclear Power Plant Model for Evaluating Load-Following Capability on a Small Grid
NASA Astrophysics Data System (ADS)
Arda, Samet Egemen
A pressurized water reactor (PWR) nuclear power plant (NPP) model is introduced into Positive Sequence Load Flow (PSLF) software by General Electric in order to evaluate the load-following capability of NPPs. The nuclear steam supply system (NSSS) consists of a reactor core, hot and cold legs, plenums, and a U-tube steam generator. The physical systems listed above are represented by mathematical models utilizing a state variable lumped parameter approach. A steady-state control program for the reactor, and simple turbine and governor models are also developed. Adequacy of the isolated reactor core, the isolated steam generator, and the complete PWR models are tested in Matlab/Simulink and dynamic responses are compared with the test results obtained from the H. B. Robinson NPP. Test results illustrate that the developed models represents the dynamic features of real-physical systems and are capable of predicting responses due to small perturbations of external reactivity and steam valve opening. Subsequently, the NSSS representation is incorporated into PSLF and coupled with built-in excitation system and generator models. Different simulation cases are run when sudden loss of generation occurs in a small power system which includes hydroelectric and natural gas power plants besides the developed PWR NPP. The conclusion is that the NPP can respond to a disturbance in the power system without exceeding any design and safety limits if appropriate operational conditions, such as achieving the NPP turbine control by adjusting the speed of the steam valve, are met. In other words, the NPP can participate in the control of system frequency and improve the overall power system performance.
Core Strength: Implications for Fitness and Low Back Pain.
ERIC Educational Resources Information Center
Liemohn, Wendell; Pariser, Gina
2002-01-01
Presents information to promote understanding of the concept of core strength and stability, explain why this concept is important to spine health, and evaluate trunk training activities with respect to their contribution to core strength and stability, noting implications for physical fitness and low back pain. The paper reviews the anatomy and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-01-01
The simulation was performed on 64K cores of Intrepid, running at 0.25 simulated-years-per-day and taking 25 million core-hours. This is the first simulation using both the CAM5 physics and the highly scalable spectral element dynamical core. The animation of Total Precipitable Water clearly shows hurricanes developing in the Atlantic and Pacific.
ERIC Educational Resources Information Center
Barreto, Jose C.; Dubetz, Terry A.; Schmidt, Diane L.; Isern, Sharon; Beatty, Thomas; Brown, David W.; Gillman, Edward; Alberte, Randall S.; Egiebor, Nosa O.
2007-01-01
Core concepts can be integrated throughout lower-division science and engineering courses by using a series of related, cross-referenced laboratory experiments. Starting with butane combustion in chemistry, the authors expanded the underlying core concepts of energy transfer into laboratories designed for biology, physics, and engineering. This…
Toward a mineral physics reference model for the Moon's core.
Antonangeli, Daniele; Morard, Guillaume; Schmerr, Nicholas C; Komabayashi, Tetsuya; Krisch, Michael; Fiquet, Guillaume; Fei, Yingwei
2015-03-31
The physical properties of iron (Fe) at high pressure and high temperature are crucial for understanding the chemical composition, evolution, and dynamics of planetary interiors. Indeed, the inner structures of the telluric planets all share a similar layered nature: a central metallic core composed mostly of iron, surrounded by a silicate mantle, and a thin, chemically differentiated crust. To date, most studies of iron have focused on the hexagonal closed packed (hcp, or ε) phase, as ε-Fe is likely stable across the pressure and temperature conditions of Earth's core. However, at the more moderate pressures characteristic of the cores of smaller planetary bodies, such as the Moon, Mercury, or Mars, iron takes on a face-centered cubic (fcc, or γ) structure. Here we present compressional and shear wave sound velocity and density measurements of γ-Fe at high pressures and high temperatures, which are needed to develop accurate seismic models of planetary interiors. Our results indicate that the seismic velocities proposed for the Moon's inner core by a recent reanalysis of Apollo seismic data are well below those of γ-Fe. Our dataset thus provides strong constraints to seismic models of the lunar core and cores of small telluric planets. This allows us to propose a direct compositional and velocity model for the Moon's core.
Cooling of Accretion-Heated Neutron Stars
NASA Astrophysics Data System (ADS)
Wijnands, Rudy; Degenaar, Nathalie; Page, Dany
2017-09-01
We present a brief, observational review about the study of the cooling behaviour of accretion-heated neutron stars and the inferences about the neutron-star crust and core that have been obtained from these studies. Accretion of matter during outbursts can heat the crust out of thermal equilibrium with the core and after the accretion episodes are over, the crust will cool down until crust-core equilibrium is restored. We discuss the observed properties of the crust cooling sources and what has been learned about the physics of neutron-star crusts. We also briefly discuss those systems that have been observed long after their outbursts were over, i.e, during times when the crust and core are expected to be in thermal equilibrium. The surface temperature is then a direct probe for the core temperature. By comparing the expected temperatures based on estimates of the accretion history of the targets with the observed ones, the physics of neutron-star cores can be investigated. Finally, we discuss similar studies performed for strongly magnetized neutron stars in which the magnetic field might play an important role in the heating and cooling of the neutron stars.
Reactor Physics Assessment of Thick Silicon Carbide Clad PWR Fuels
2013-06-01
Densities ............................................................................................................ 21 2.3 Fuel Mass (Core Total...70 7.1 Geometry, Material Density, and Mass Summary for All Cores...21 Table 3: Fuel Rod Masses for Different Clads
Determination of Heritage SSME Pogo Suppressor Resistance and Inertance from Waterflow Pulse Testing
NASA Technical Reports Server (NTRS)
McDougal, Chris; Eberhart, Chad; Lee, Erik
2016-01-01
Waterflow tests of a heritage Space Shuttle Main Engine pogo suppressor were performed to experimentally quantify the resistance and inertance provided by the suppressor. Measurements of dynamic pressure and flow rate in response to pulsing flow were made throughout the test loop. A unique system identification methodology combined all sensor measurements with a one-dimensional perturbational flow model of the complete water flow loop to spatially translate physical measurements to the device under test. Multiple techniques were then employed to extract the effective resistance and inertance for the pogo suppressor. Parameters such as steady flow rate, perturbational flow rate magnitude, and pulse frequency were investigated to assess their influence on the behavior of the pogo suppressor dynamic response. These results support validation of the RS-25 pogo suppressor performance for use on the Space Launch System Core Stage.
NASA Astrophysics Data System (ADS)
St. John, K. E.; Leckie, R. M.; Jones, M. H.; Pound, K. S.; Pyle, E. J.
2008-12-01
Lithologic data from 40 DSDP, ODP, and IODP scientific ocean drilling cores from the Pacific and North Atlantic oceans are the basis for an inquiry-based classroom exercise module for college introductory geology and oceanography courses. Part 1 of this exercise module is designed as an initial inquiry aimed at drawing out student beliefs and prior knowledge. In Parts 2-3 students observe and describe the physical characteristics of sediment cores using digital core photos, and determine the sediment composition using smear slide data and a decision tree. In Part 4 students combine their individual site data to construct a map showing the distribution of the primary marine sediment types of the Pacific and North Atlantic Oceans, and develop hypotheses to explain the distribution of the sediment types shown on their map. The transportable skills of observation, forming questions, plotting data, interpreting data, and scientific synthesis are embedded in this module, benefitting non-majors as well as majors. The exercise module was tested in the 2008 School of Rock program and the 2008 Urbino Summer School for Paleoceanography, and is currently being tested in undergraduate courses at James Madison University, North Hennipen Community College, St. Cloud State University and University of Massachusetts, Amherst in classes that range in size from 16 students to >150 students. The student worksheets, instructor guide, and preliminary evaluation data will be presented.
Tate, Angela; Turner, Gregory N.; Knab, Sarah E.; Jorgensen, Colbie; Strittmatter, Andrew; Michener, Lori A.
2012-01-01
Context: The prevalence of shoulder pain among competitive swimmers is high, but no guidelines exist to reduce shoulder injuries. Elucidating differences between swimmers with and without shoulder pain can serve as a basis for the development of a program to prevent shoulder injury that might lead to pain and dysfunction. Objective: To determine whether physical characteristics, exposure, or training variables differ between swimmers with and without shoulder pain or disability. Design: Cross-sectional study. Setting: Multisite swimming centers. Patients or Other Participants: A total of 236 competitive female swimmers aged 8 to 77 years. Data Collection and Analysis: Participants completed the Penn Shoulder Score and underwent testing of core endurance, range of motion, muscle force production, and pectoralis minor muscle length and the Scapular Dyskinesis Test. Swimmers were grouped by age for analysis: ages 8 to 11 years (n = 42), 12 to 14 years (n = 43), 15 to 19 years (high school, n = 84), and 23 to 77 years (masters, n = 67). Comparisons were made between groups with and without pain and disability using independent t tests for continuous data and χ2 analyses and Fisher exact tests for categorical data. Results: Nine (21.4%) swimmers aged 8 to 11 years, 8 (18.6%) swimmers aged 12 to 14 years, 19 (22.6%) high school swimmers, and 13 (19.4%) masters swimmers had shoulder pain and disability. Differences that were found in 2 or more age groups between athletes with and without shoulder pain and disability included greater swimming exposure, a higher incidence of previous traumatic injury and patient-rated shoulder instability, and reduced participation in another sport in the symptomatic groups (P < .05). Reduced shoulder flexion motion, weakness of the middle trapezius and internal rotation, shorter pectoralis minor and latissimus, participation in water polo, and decreased core endurance were found in symptomatic females in single varying age groups (P < .05). Conclusions: Female competitive swimmers have shoulder pain and disability throughout their lives. Given that exposure and physical examination findings varied between athletes with and without substantial pain and disability, a program to prevent shoulder injury that might lead to pain and dysfunction appears warranted and might include exposure reduction, cross-training, pectoral and posterior shoulder stretching, strengthening, and core endurance training. PMID:22488280
Interpretation of the results of the CORA-33 dry core BWR test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ott, L.J.; Hagen, S.
All BWR degraded core experiments performed prior to CORA-33 were conducted under ``wet`` core degradation conditions for which water remains within the core and continuous steaming feeds metal/steam oxidation reactions on the in-core metallic surfaces. However, one dominant set of accident scenarios would occur with reduced metal oxidation under ``dry`` core degradation conditions and, prior to CORA-33, this set had been neglected experimentally. The CORA-33 experiment was designed specifically to address this dominant set of BWR ``dry`` core severe accident scenarios and to partially resolve phenomenological uncertainties concerning the behavior of relocating metallic melts draining into the lower regions ofmore » a ``dry`` BWR core. CORA-33 was conducted on October 1, 1992, in the CORA tests facility at KfK. Review of the CORA-33 data indicates that the test objectives were achieved; that is, core degradation occurred at a core heatup rate and a test section axial temperature profile that are prototypic of full-core nuclear power plant (NPP) simulations at ``dry`` core conditions. Simulations of the CORA-33 test at ORNL have required modification of existing control blade/canister materials interaction models to include the eutectic melting of the stainless steel/Zircaloy interaction products and the heat of mixing of stainless steel and Zircaloy. The timing and location of canister failure and melt intrusion into the fuel assembly appear to be adequately simulated by the ORNL models. This paper will present the results of the posttest analyses carried out at ORNL based upon the experimental data and the posttest examination of the test bundle at KfK. The implications of these results with respect to degraded core modeling and the associated safety issues are also discussed.« less
Evaluation of dredged material proposed for ocean disposal from Shark River Project area
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antrim, L.D.; Gardiner, W.W.; Barrows, E.S.
1996-09-01
The objective of the Shark River Project was to evaluate proposed dredged material to determine its suitability for unconfined ocean disposal at the Mud Dump Site. Tests and analyses were conducted on the Shark River sediments. The evaluation of proposed dredged material consisted of bulk sediment chemical and physical analysis, chemical analyses of dredging site water and elutriate, water-column and benthic acute toxicity tests, and bioaccumulation tests. Individual sediment core samples collected from the Shark River were analyzed for grain size, moisture content, and total organic carbon (TOC). One sediment composite was analyzed for bulk density, specific gravity, metals, chlorinatedmore » pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAHs), and 1,4- dichlorobenzene. Dredging site water and elutriate, prepared from suspended-particulate phase (SPP) of the Shark River sediment composite, were analyzed for metals, pesticides, and PCBs. Benthic acute toxicity tests and bioaccumulation tests were performed.« less
Zhao, L; Wang, Z; Qin, Z; Leslie, E; He, J; Xiong, Y; Xu, F
2018-03-01
The identification of physical-activity-friendly built environment (BE) constructs is highly useful for physical activity promotion and maintenance. The Physical Activity Neighborhood Environment Scale (PANES) was developed for assessing BE correlates. However, PANES reliability has not been investigated among adults in China. A cross-sectional study. With multistage sampling approaches, 1568 urban adults (aged 35-74 years) were recruited for the initial survey on all 17 items of PANES Chinese version (PANES-CHN), with the survey repeated 7 days later for each participant. Intraclass correlation coefficient (ICC) was used to assess the test-retest reliability of PANES-CHN for each item. Totally, 1551 participants completed both surveys (follow-up rate = 98.9%). Among participants (mean age: 54.7 ± 11.1 years), 47.8% were men, 22.1% were elders, and 22.7% had ≥13 years of education. Overall, the PANES-CHN demonstrated at least substantial reliability with ICCs ranging from 0.66 to 0.95 (core items), from 0.75 to 0.95 (recommended items), and from 0.78 to 0.87 (optional items). Similar outcomes were observed when data were analyzed by gender or age groups. The PANES-CHN has excellent test-retest reliability and thus has valuable utility for assessing urban BE attributes among Chinese adults. Copyright © 2017 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
Nuclear fuel management optimization using genetic algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeChaine, M.D.; Feltus, M.A.
1995-07-01
The code independent genetic algorithm reactor optimization (CIGARO) system has been developed to optimize nuclear reactor loading patterns. It uses genetic algorithms (GAs) and a code-independent interface, so any reactor physics code (e.g., CASMO-3/SIMULATE-3) can be used to evaluate the loading patterns. The system is compared to other GA-based loading pattern optimizers. Tests were carried out to maximize the beginning of cycle k{sub eff} for a pressurized water reactor core loading with a penalty function to limit power peaking. The CIGARO system performed well, increasing the k{sub eff} after lowering the peak power. Tests of a prototype parallel evaluation methodmore » showed the potential for a significant speedup.« less
Ice Accretion Measurements on an Airfoil and Wedge in Mixed-Phase Conditions
NASA Technical Reports Server (NTRS)
Struk, Peter; Bartkus, Tadas; Tsao, Jen-Ching; Currie, Tom; Fuleki, Dan
2015-01-01
This paper describes ice accretion measurements from experiments conducted at the National Research Council (NRC) of Canada's Research Altitude Test Facility during 2012. Due to numerous engine power loss events associated with high altitude convective weather, potential ice accretion within an engine due to ice crystal ingestion is being investigated collaboratively by NASA and NRC. These investigations examine the physical mechanisms of ice accretion on surfaces exposed to ice crystal and mixed phase conditions, similar to those believed to exist in core compressor regions of jet engines. A further objective of these tests is to examine scaling effects since altitude appears to play a key role in this icing process.
NASA Astrophysics Data System (ADS)
Lamandé, Mathieu; Schjønning, Per; Dal Ferro, Nicola; Morari, Francesco
2017-04-01
Pore system architecture is a key feature for understanding physical, biological and chemical processes in soils. Development of visualisation technics, especially x-ray CT, during recent years has been useful in describing the complex relationships between soil architecture and soil functions. We believe that combining visualization with physical models is a step further towards a better understanding of these relationships. We conducted a concept study using natural, artificial and 3D-printed soil cores. Eight natural soil cores (100 cm3) were sampled in a cultivated stagnic Luvisol at two depths (topsoil and subsoil), representing contrasting soil pore systems. Cylinders (100 cm3) were produced from plastic or from autoclaved aerated concrete. Holes of diameters 1.5 and 3 mm were drilled in the cylinder direction for the plastic cylinder and for one of the AAC cylinders. All natural and artificial cores were scanned in a micro x-ray CT scanner at a resolution of 35 µm. The reconstructed image of each soil core was printed with 3D multijet printing technology at a resolution of 29 µm. In some reconstructed digital volumes of the natural soil cores, pores of different sizes (equivalent diameter of 35, 70, 100, and 200 µm) were removed before additional 3D printing. Effective air-filled porosity, Darcian air permeability, and oxygen diffusion were measured on all natural, artificial and printed cores. The comparison of the natural and the artificial cores emphasized the difference in pore architecture between topsoil (sponge like) and subsoil (dominated by large vertical macropores). This study showed the high potential of using printed soil cores for understanding soil pore functions. The results confirm the suitability of the Ball model partitioning the pore system into arterial, marginal and remote pores to describe effects of soil structure on gas transport.
IRAS images of nearby dark clouds
NASA Technical Reports Server (NTRS)
Wood, Douglas O. S.; Myers, Philip C.; Daugherty, Debra A.
1994-01-01
We have investigated approximately 100 nearby molecular clouds using the extensive, all-sky database of IRAS. The clouds in this study cover a wide range of physical properties including visual extinction, size, mass, degree of isolation, homogeneity and morphology. IRAS 100 and 60 micron co-added images were used to calculate the 100 micron optical depth of dust in the clouds. These images of dust optical depth compare very well with (12)CO and (13)CO observations, and can be related to H2 column density. From the optical depth images we locate the edges of dark clouds and the dense cores inside them. We have identified a total of 43 `IRAS clouds' (regions with A(sub v) greater than 2) which contain a total of 255 `IRAS cores' (regions with A(sub v) greater than 4) and we catalog their physical properties. We find that the clouds are remarkably filamentary, and that the cores within the clouds are often distributed along the filaments. The largest cores are usually connected to other large cores by filaments. We have developed selection criteria to search the IRAS Point Source Catalog for stars that are likely to be associated with the clouds and we catalog the IRAS sources in each cloud or core. Optically visible stars associated with the clouds have been identified from the Herbig and Bell catalog. From these data we characterize the physical properties of the clouds including their star-formation efficiency.
AFRL’s ALREST Physics-Based Combustion Stability Program
2012-11-08
enduring challenge because of the inherent complexities in the physics of multiphase turbulent flames. The present paper provides the Air Force...Combustor F i d e l i t y URANS LES Steady RANS HLES Current SOA Capability with 2000 cores Capability at Program End in 2015 (2,000 cores+GPUs) Capability...Unlimited ALREST Validation Cases “Final Exam ” Hydrogen Stable Single Element (PSU) Stable Single Element Methane (Singla) Supercritical Non
Featured Image: The Simulated Collapse of a Core
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-11-01
This stunning snapshot (click for a closer look!) is from a simulation of a core-collapse supernova. Despite having been studied for many decades, the mechanism driving the explosions of core-collapse supernovae is still an area of active research. Extremely complex simulations such as this one represent best efforts to include as many realistic physical processes as is currently computationally feasible. In this study led by Luke Roberts (a NASA Einstein Postdoctoral Fellow at Caltech at the time), a core-collapse supernova is modeled long-term in fully 3D simulations that include the effects of general relativity, radiation hydrodynamics, and even neutrino physics. The authors use these simulations to examine the evolution of a supernova after its core bounce. To read more about the teams findings (and see more awesome images from their simulations), check out the paper below!CitationLuke F. Roberts et al 2016 ApJ 831 98. doi:10.3847/0004-637X/831/1/98
Physical Education: Should It Be in the Core Curriculum?
ERIC Educational Resources Information Center
Gabbard, Carl
2000-01-01
Recent research suggests that today's children are less physically active and more overweight/obese than those of previous generations. A superior physical education program hires college-educated specialists, requires daily physical activities, stresses improvement-oriented fitness education and skill development, includes all children, and…
Concu, Giovanna; De Nicolo, Barbara; Valdes, Monica
2014-01-01
The aim of this study was to evaluate ultrasonic P-wave velocity as a feature for predicting some physical and mechanical properties that describe the behavior of local building limestone. To this end, both ultrasonic testing and compressive tests were carried out on several limestone specimens and statistical correlation between ultrasonic velocity and density, compressive strength, and modulus of elasticity was studied. The effectiveness of ultrasonic velocity was evaluated by regression, with the aim of observing the coefficient of determination r 2 between ultrasonic velocity and the aforementioned parameters, and the mathematical expressions of the correlations were found and discussed. The strong relations that were established between ultrasonic velocity and limestone properties indicate that these parameters can be reasonably estimated by means of this nondestructive parameter. This may be of great value in a preliminary phase of the diagnosis and inspection of stone masonry conditions, especially when the possibility of sampling material cores is reduced. PMID:24511286
Concu, Giovanna; De Nicolo, Barbara; Valdes, Monica
2014-01-01
The aim of this study was to evaluate ultrasonic P-wave velocity as a feature for predicting some physical and mechanical properties that describe the behavior of local building limestone. To this end, both ultrasonic testing and compressive tests were carried out on several limestone specimens and statistical correlation between ultrasonic velocity and density, compressive strength, and modulus of elasticity was studied. The effectiveness of ultrasonic velocity was evaluated by regression, with the aim of observing the coefficient of determination r(2) between ultrasonic velocity and the aforementioned parameters, and the mathematical expressions of the correlations were found and discussed. The strong relations that were established between ultrasonic velocity and limestone properties indicate that these parameters can be reasonably estimated by means of this nondestructive parameter. This may be of great value in a preliminary phase of the diagnosis and inspection of stone masonry conditions, especially when the possibility of sampling material cores is reduced.
Concepts and technology development towards a platform for macroscopic quantum experiments in space
NASA Astrophysics Data System (ADS)
Kaltenbaek, Rainer
Tremendous progress has been achieved in space technology over the last decade. This technological heritage promises enabling applications of quantum technology in space already now or in the near future. Heritage in laser and optical technologies from LISA Pathfinder comprises core technologies required for quantum optical experiments. Low-noise micro-thruster technology from GAIA allows achieving an impressive quality of microgravity, and passive radiative cooling approaches as in the James Webb Space Telescope may be adapted for achieving cryogenic temperatures. Developments like these have rendered space an increasingly attractive platform for quantum-enhanced sensing and for fundamental tests of physics using quantum technology. In particular, there already have been significant efforts towards ralizing atom interferometry and atomic clocks in space as well as efforts to harness space as an environment for fundamental tests of physics using quantum optomechanics and high-mass matter-wave interferometry. Here, we will present recent efforts in spacecraft design and technology development towards this latter goal in the context of the mission proposal MAQRO.
Observations of Pre-Stellar Cores
NASA Astrophysics Data System (ADS)
Tafalla, M.
2005-08-01
Our understanding of the physical and chemical structure of pre-stellar cores, the simplest star-forming sites, has significantly improved since the last IAU Symposium on Astrochemistry (South Korea, 1999). Research done over these years has revealed that major molecular species like CO and CS systematically deplete onto dust grains in the interior of pre-stellar cores, while species like N2H+ and NH3 survive in the gas phase and can usually be detected toward the core centers. Such a selective behavior of molecular species gives rise to a differentiated (onion-like) chemical composition, and manifests itself in molecular maps as a dichotomy between centrally peaked and ring-shaped distributions. From the point of view of star-formation studies, the identification of molecular inhomogeneities in cores helps to resolve past discrepancies between observations made using different tracers, and brings the possibility of self-consistent modelling of the core internal structure. Here I present recent work on determining the physical and chemical structure of two pre-stellar cores, L1498 and L1517B, using observations in a large number of molecules and Monte Carlo radiative transfer analysis. These two cores are typical examples of the pre-stellar core population, and their chemical composition is characterized by the presence of large `freeze out holes' in most molecular species. In contrast with these chemically processed objects, a new population of chemically young cores has begun to emerge. The characteristics of its most extreme representative, L1521E, are briefly reviewed.
Implicit time-integration method for simultaneous solution of a coupled non-linear system
NASA Astrophysics Data System (ADS)
Watson, Justin Kyle
Historically large physical problems have been divided into smaller problems based on the physics involved. This is no different in reactor safety analysis. The problem of analyzing a nuclear reactor for design basis accidents is performed by a handful of computer codes each solving a portion of the problem. The reactor thermal hydraulic response to an event is determined using a system code like TRAC RELAP Advanced Computational Engine (TRACE). The core power response to the same accident scenario is determined using a core physics code like Purdue Advanced Core Simulator (PARCS). Containment response to the reactor depressurization in a Loss Of Coolant Accident (LOCA) type event is calculated by a separate code. Sub-channel analysis is performed with yet another computer code. This is just a sample of the computer codes used to solve the overall problems of nuclear reactor design basis accidents. Traditionally each of these codes operates independently from each other using only the global results from one calculation as boundary conditions to another. Industry's drive to uprate power for reactors has motivated analysts to move from a conservative approach to design basis accident towards a best estimate method. To achieve a best estimate calculation efforts have been aimed at coupling the individual physics models to improve the accuracy of the analysis and reduce margins. The current coupling techniques are sequential in nature. During a calculation time-step data is passed between the two codes. The individual codes solve their portion of the calculation and converge to a solution before the calculation is allowed to proceed to the next time-step. This thesis presents a fully implicit method of simultaneous solving the neutron balance equations, heat conduction equations and the constitutive fluid dynamics equations. It discusses the problems involved in coupling different physics phenomena within multi-physics codes and presents a solution to these problems. The thesis also outlines the basic concepts behind the nodal balance equations, heat transfer equations and the thermal hydraulic equations, which will be coupled to form a fully implicit nonlinear system of equations. The coupling of separate physics models to solve a larger problem and improve accuracy and efficiency of a calculation is not a new idea, however implementing them in an implicit manner and solving the system simultaneously is. Also the application to reactor safety codes is new and has not be done with thermal hydraulics and neutronics codes on realistic applications in the past. The coupling technique described in this thesis is applicable to other similar coupled thermal hydraulic and core physics reactor safety codes. This technique is demonstrated using coupled input decks to show that the system is solved correctly and then verified by using two derivative test problems based on international benchmark problems the OECD/NRC Three mile Island (TMI) Main Steam Line Break (MSLB) problem (representative of pressurized water reactor analysis) and the OECD/NRC Peach Bottom (PB) Turbine Trip (TT) benchmark (representative of boiling water reactor analysis).
The evolution of interdisciplinarity in physics research.
Pan, Raj Kumar; Sinha, Sitabhra; Kaski, Kimmo; Saramäki, Jari
2012-01-01
Science, being a social enterprise, is subject to fragmentation into groups that focus on specialized areas or topics. Often new advances occur through cross-fertilization of ideas between sub-fields that otherwise have little overlap as they study dissimilar phenomena using different techniques. Thus to explore the nature and dynamics of scientific progress one needs to consider the organization and interactions between different subject areas. Here, we study the relationships between the sub-fields of Physics using the Physics and Astronomy Classification Scheme (PACS) codes employed for self-categorization of articles published over the past 25 years (1985-2009). We observe a clear trend towards increasing interactions between the different sub-fields. The network of sub-fields also exhibits core-periphery organization, the nucleus being dominated by Condensed Matter and General Physics. However, over time Interdisciplinary Physics is steadily increasing its share in the network core, reflecting a shift in the overall trend of Physics research.
Multi-scale imaging and elastic simulation of carbonates
NASA Astrophysics Data System (ADS)
Faisal, Titly Farhana; Awedalkarim, Ahmed; Jouini, Mohamed Soufiane; Jouiad, Mustapha; Chevalier, Sylvie; Sassi, Mohamed
2016-05-01
Digital Rock Physics (DRP) is an emerging technology that can be used to generate high quality, fast and cost effective special core analysis (SCAL) properties compared to conventional experimental techniques and modeling techniques. The primary workflow of DRP conssits of three elements: 1) image the rock sample using high resolution 3D scanning techniques (e.g. micro CT, FIB/SEM), 2) process and digitize the images by segmenting the pore and matrix phases 3) simulate the desired physical properties of the rocks such as elastic moduli and velocities of wave propagation. A Finite Element Method based algorithm, that discretizes the basic Hooke's Law equation of linear elasticity and solves it numerically using a fast conjugate gradient solver, developed by Garboczi and Day [1] is used for mechanical and elastic property simulations. This elastic algorithm works directly on the digital images by treating each pixel as an element. The images are assumed to have periodic constant-strain boundary condition. The bulk and shear moduli of the different phases are required inputs. For standard 1.5" diameter cores however the Micro-CT scanning reoslution (around 40 μm) does not reveal smaller micro- and nano- pores beyond the resolution. This results in an unresolved "microporous" phase, the moduli of which is uncertain. Knackstedt et al. [2] assigned effective elastic moduli to the microporous phase based on self-consistent theory (which gives good estimation of velocities for well cemented granular media). Jouini et al. [3] segmented the core plug CT scan image into three phases and assumed that micro porous phase is represented by a sub-extracted micro plug (which too was scanned using Micro-CT). Currently the elastic numerical simulations based on CT-images alone largely overpredict the bulk, shear and Young's modulus when compared to laboratory acoustic tests of the same rocks. For greater accuracy of numerical simulation prediction, better estimates of moduli inputs for this current unresolved phase is important. In this work we take a multi-scale imaging approach by first extracting a smaller 0.5" core and scanning at approx 13 µm, then further extracting a 5mm diameter core scanned at 5 μm. From this last scale, region of interests (containing unresolved areas) are identified for scanning at higher resolutions using Focalised Ion Beam (FIB/SEM) scanning technique reaching 50 nm resolution. Numerical simulation is run on such a small unresolved section to obtain a better estimate of the effective moduli which is then used as input for simulations performed using CT-images. Results are compared with expeirmental acoustic test moduli obtained also at two scales: 1.5" and 0.5" diameter cores.
Energy Efficient Engine core design and performance report
NASA Technical Reports Server (NTRS)
Stearns, E. Marshall
1982-01-01
The Energy Efficient Engine (E3) is a NASA program to develop fuel saving technology for future large transport aircraft engines. Testing of the General Electric E3 core showed that the core component performance and core system performance necessary to meet the program goals can be achieved. The E3 core design and test results are described.
Nilsen, Tormod S; Raastad, Truls; Skovlund, Eva; Courneya, Kerry S; Langberg, Carl W; Lilleby, Wolfgang; Fosså, Sophie D; Thorsen, Lene
2015-11-01
Androgen deprivation therapy (ADT) increases survival rates in prostate cancer (PCa) patients with locally advanced disease, but is associated with side effects that may impair daily function. Strength training may counteract several side effects of ADT, such as changes in body composition and physical functioning, which in turn may affect health-related quality of life (HRQOL). However, additional randomised controlled trials are needed to expand this knowledge. Fifty-eight PCa patients on ADT were randomised to either 16 weeks of high-load strength training (n = 28) or usual care (n = 30). The primary outcome was change in total lean body mass (LBM) assessed by dual x-ray absorptiometry (DXA). Secondary outcomes were changes in regional LBM, fat mass, and areal bone mineral density (aBMD) measured by DXA; physical functioning assessed by 1-repetition maximum (1RM) tests, sit-to-stand test, stair climbing test and Shuttle walk test; and HRQOL as measured by the European Organization for the Research and Treatment of Cancer Quality of Life Questionnaire Core 30. No statistically significant effect of high-load strength training was demonstrated on total LBM (p = 0.16), but significant effects were found on LBM in the lower and upper extremities (0.49 kg, p < 0.01 and 0.15 kg, p < 0.05, respectively). Compared to usual care, high-load strength training showed no effect on fat mass, aBMD or HRQOL, but beneficial effects were observed in all 1RM tests, sit-to-stand test and stair climbing tests. Adherence to the training program was 88% for lower body exercises and 84% for upper body exercises. In summary, high-load strength training improved LBM in extremities and physical functioning, but had no effect on fat mass, aBMD, or HRQOL in PCa patients on ADT.
Testing a laser-induced breakdown spectroscopy technique on the Arctic sediments
NASA Astrophysics Data System (ADS)
Han, D.; Nam, S. I.
2017-12-01
Physical and geochemical investigations coupled with the Laser-induced Breakdown Spectroscopy (LIBS) were performed on three surface sediment cores (ARA03B/24BOX, ARA02B/01(A)MUC, ARA02B/02MUC and ARA02B/03(A)MUC) recovered from the western Arctic Ocean (Chukchi Sea) during IBRV ARON expeditions in 2012. The LIBS technique was applied to carry out elemental chemical analysis of the Arctic sediments and compared with that measured by ITRAX X-ray fuorescence (XRF) core scanning. LIBS and XRF have shown similar elemental composition within each sediment core. In this study, mineral composition (XRD), grain size distribution and organic carbon content as well as elemental composition (LIBS) were all considered to understand paleoenvironmental changes (ocean circulation, sea-ice drift, iceberg discharge, and etc.) recorded in the Arctic Holocene sediment. Quantitative LIBS analysis shows a gradually varying distribution of the elements along the sampled core and clear separation between the cores. The cores are geochemically characterized by elevated Mn profile. The gradient of mineral composition and grain sizes among the cores shows regional distribution and variation in sedimentary condition due to geological distance between East Siberian and North America. The present study reveals that a LIBS technique can be employed for in-situ sediment analyses for the Arctic Ocean. Furthermore, LIBS does not require costly equipment, trained operators, and complicated sample pre-treatment processes compared to Atomic absorption spectroscopy (AAS) and inductively coupled plasma emission spectroscopy (ICP), and also known to show relatively high levels of sensitivity, precision, and distinction than XRF analysis, scanning electron microscopy-energy dispersive spectrometry (SEM-EDS), and electron probe X-ray microanalysis (EPMA).
Validation of a coupled core-transport, pedestal-structure, current-profile and equilibrium model
NASA Astrophysics Data System (ADS)
Meneghini, O.
2015-11-01
The first workflow capable of predicting the self-consistent solution to the coupled core-transport, pedestal structure, and equilibrium problems from first-principles and its experimental tests are presented. Validation with DIII-D discharges in high confinement regimes shows that the workflow is capable of robustly predicting the kinetic profiles from on axis to the separatrix and matching the experimental measurements to within their uncertainty, with no prior knowledge of the pedestal height nor of any measurement of the temperature or pressure. Self-consistent coupling has proven to be essential to match the experimental results, and capture the non-linear physics that governs the core and pedestal solutions. In particular, clear stabilization of the pedestal peeling ballooning instabilities by the global Shafranov shift and destabilization by additional edge bootstrap current, and subsequent effect on the core plasma profiles, have been clearly observed and documented. In our model, self-consistency is achieved by iterating between the TGYRO core transport solver (with NEO and TGLF for neoclassical and turbulent flux), and the pedestal structure predicted by the EPED model. A self-consistent equilibrium is calculated by EFIT, while the ONETWO transport package evolves the current profile and calculates the particle and energy sources. The capabilities of such workflow are shown to be critical for the design of future experiments such as ITER and FNSF, which operate in a regime where the equilibrium, the pedestal, and the core transport problems are strongly coupled, and for which none of these quantities can be assumed to be known. Self-consistent core-pedestal predictions for ITER, as well as initial optimizations, will be presented. Supported by the US Department of Energy under DE-FC02-04ER54698, DE-SC0012652.
Ice Cores Dating With a New Inverse Method Taking Account of the Flow Modeling Errors
NASA Astrophysics Data System (ADS)
Lemieux-Dudon, B.; Parrenin, F.; Blayo, E.
2007-12-01
Deep ice cores extracted from Antarctica or Greenland recorded a wide range of past climatic events. In order to contribute to the Quaternary climate system understanding, the calculation of an accurate depth-age relationship is a crucial point. Up to now ice chronologies for deep ice cores estimated with inverse approaches are based on quite simplified ice-flow models that fail to reproduce flow irregularities and consequently to respect all available set of age markers. We describe in this paper, a new inverse method that takes into account the model uncertainty in order to circumvent the restrictions linked to the use of simplified flow models. This method uses first guesses on two flow physical entities, the ice thinning function and the accumulation rate and then identifies correction functions on both flow entities. We highlight two major benefits brought by this new method: first of all the ability to respect large set of observations and as a consequence, the feasibility to estimate a synchronized common ice chronology for several cores at the same time. This inverse approach relies on a bayesian framework. To respect the positive constraint on the searched correction functions, we assume lognormal probability distribution on one hand for the background errors, but also for one particular set of the observation errors. We test this new inversion method on three cores simultaneously (the two EPICA cores : DC and DML and the Vostok core) and we assimilate more than 150 observations (e.g.: age markers, stratigraphic links,...). We analyze the sensitivity of the solution with respect to the background information, especially the prior error covariance matrix. The confidence intervals based on the posterior covariance matrix calculation, are estimated on the correction functions and for the first time on the overall output chronologies.
Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
David W. Nigg; Devin A. Steuhm
2011-09-01
Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance and, to some extent, experiment management are obsolete, inconsistent with the state of modern nuclear engineering practice, and are becoming increasingly difficult to properly verify and validate (V&V). Furthermore, the legacy staff knowledge required for application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In 2009 the Idaho National Laboratory (INL) initiated a focused effort to address this situation through the introduction of modern high-fidelitymore » computational software and protocols, with appropriate V&V, within the next 3-4 years via the ATR Core Modeling and Simulation and V&V Update (or 'Core Modeling Update') Project. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF). The ATR Core Modeling Update Project, targeted for full implementation in phase with the anticipated ATR Core Internals Changeout (CIC) in the 2014 time frame, began during the last quarter of Fiscal Year 2009, and has just completed its first full year. Key accomplishments so far have encompassed both computational as well as experimental work. A new suite of stochastic and deterministic transport theory based reactor physics codes and their supporting nuclear data libraries (SCALE, KENO-6, HELIOS, NEWT, and ATTILA) have been installed at the INL under various permanent sitewide license agreements and corresponding baseline models of the ATR and ATRC are now operational, demonstrating the basic feasibility of these code packages for their intended purpose. Furthermore, a capability for rigorous sensitivity analysis and uncertainty quantification based on the TSUNAMI system is being implemented and initial computational results have been obtained. This capability will have many applications in 2011 and beyond as a tool for understanding the margins of uncertainty in the new models as well as for validation experiment design and interpretation. Finally we note that although full implementation of the new computational models and protocols will extend over a period 3-4 years as noted above, interim applications in the much nearer term have already been demonstrated. In particular, these demonstrations included an analysis that was useful for understanding the cause of some issues in December 2009 that were triggered by a larger than acceptable discrepancy between the measured excess core reactivity and a calculated value that was based on the legacy computational methods. As the Modeling Update project proceeds we anticipate further such interim, informal, applications in parallel with formal qualification of the system under the applicable INL Quality Assurance procedures and standards.« less
Recasting particle physics by entangling physics, history and philosophy
NASA Astrophysics Data System (ADS)
Bertozzi, Eugenio; Levrini, Olivia
2016-05-01
-1The paper presents the design process we followed to recast particle physics so as to make it conceptually relevant for secondary school students. In this design process, the concept of symmetry was assumed as core-idea because of its structural and foundational role in particle physics, its crosscutting character and its epistemological and philosophical value. The first draft of the materials was tested in a pilot-study which involved 19 students of a regular class (grade 13) of an Italian school. The data analysis showed that the students were in their "regime of competence" for grasping subtle nuances of the materials and for providing important hints for revising them. In particular, students' reactions brought into light the need of clarifying the "foundational" character that symmetry attained in twentieth-century physics. The delicate step of re-thinking the materials required the researchers to articulate the complex relationship between researches on physics teaching, history and philosophy of physics. This analytic phase resulted in a version of the materials which implies the students to be guided to grasp the meaning of symmetry as normative principle in twentieth-century physics, throughout the exploration of the different meanings assumed by symmetry over time. The whole process led also to the production of an essential, on-line version, of the materials targeted to a wider audience.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, G.A.; Lake, L.W.; Sepehrnoori, K.
1988-11-01
The objective of this research is to develop, validate, and apply a comprehensive chemical flooding simulator for chemical recovery processes involving surfactants, polymers, and alkaline chemicals in various combinations. This integrated program includes components of laboratory experiments, physical property modelling, scale-up theory, and numerical analysis as necessary and integral components of the simulation activity. Developing, testing and applying flooding simulator (UTCHEM) to a wide variety of laboratory and reservoir problems involving tracers, polymers, polymer gels, surfactants, and alkaline agent has been continued. Improvements in both the physical-chemical and numerical aspects of UTCHEM have been made which enhance its versatility, accuracymore » and speed. Supporting experimental studies during the past year include relative permeability and trapping of microemulsion, tracer flow studies oil recovery in cores using alcohol free surfactant slugs, and microemulsion viscosity measurements. These have enabled model improvement simulator testing. Another code called PROPACK has also been developed which is used as a preprocessor for UTCHEM. Specifically, it is used to evaluate input to UTCHEM by computing and plotting key physical properties such as phase behavior interfacial tension.« less
Osborne, Sonya; Douglas, Clint; Reid, Carol; Jones, Lee; Gardner, Glenn
2015-05-01
Registered nurses and midwives play an essential role in detecting patients at risk of deterioration through ongoing assessment and action in response to changing health status. Yet, evidence suggests that clinical deterioration frequently goes unnoticed in hospitalised patients. While much attention has been paid to early warning and rapid response systems, little research has examined factors related to physical assessment skills. To determine a minimum data set of core skills used during nursing assessment of hospitalised patients and identify nurse and workplace predictors of the use of physical assessment to detect patient deterioration. The study used a single-centre, cross-sectional survey design. The study included 434 registered nurses and midwives (Grades 5-7) involved in clinical care of patients on acute care wards, including medicine, surgery, oncology, mental health and maternity service areas, at a 929-bed tertiary referral teaching hospital in Southeast Queensland, Australia. We conducted a hospital-wide survey of registered nurses and midwives using the 133-item Physical Assessment Skills Inventory and the 58-item Barriers to Registered Nurses' Use of Physical Assessment Scale. Median frequency for each physical assessment skill was calculated to determine core skills. To explore predictors of core skill utilisation, backward stepwise general linear modelling was conducted. Means and regression coefficients are reported with 95% confidence intervals. A p value <.05 was considered significant for all analyses. Core skills used by most nurses every time they worked included assessment of temperature, oxygen saturation, blood pressure, breathing effort, skin, wound and mental status. Reliance on others and technology (F=35.77, p<.001), lack of confidence (F=5.52, p=.02), work area (F=3.79, p=.002), and clinical role (F=44.24, p<.001) were significant predictors of the extent of physical assessment skill use. The increasing acuity of the acute care patient plausibly warrants more than vital signs assessment; however, our study confirms nurses' physical assessment core skill set is mainly comprised of vital signs. The focus on these endpoints of deterioration as dictated by early warning and rapid response systems may divert attention from and devalue comprehensive nursing assessment that could detect subtle changes in health status earlier in the patient's hospitalisation. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Development of an Integrated Science Core Curriculum for Allied Health Students
ERIC Educational Resources Information Center
Sesney, John; And Others
1977-01-01
The article describes the development of BioMedical Sciences Core at Weber State College in Ogden, Utah for introductory level allied health students. The design of the "Core" curriculum is to integrate the disciplines of physics, chemistry, anatomy, physiology, and microbiology as they relate to the human body rather than teaching the traditional…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehart, Mark; Mausolff, Zander; Goluoglu, Sedat
This report summarizes university research activities performed in support of TREAT modeling and simulation research. It is a compilation of annual research reports from four universities: University of Florida, Texas A&M University, Massachusetts Institute of Technology and Oregon State University. The general research topics are, respectively, (1) 3-D time-dependent transport with TDKENO/KENO-VI, (2) implementation of the Improved Quasi-Static method in Rattlesnake/MOOSE for time-dependent radiation transport approximations, (3) improved treatment of neutron physics representations within TREAT using OpenMC, and (4) steady state modeling of the minimum critical core of the Transient Reactor Test Facility (TREAT).
NASA Technical Reports Server (NTRS)
Mitchell, J. K.; Carrier, W. D., III; Houston, W. N.; Scott, R. F.; Bromwell, L. G.; Durgunoglu, H. T.; Hovland, H. J.; Treadwell, D. D.; Costes, N. C.
1972-01-01
Preliminary results are presented of an investigation of the physical and mechanical properties of lunar soil on the Descartes slopes, and the Cayley Plains in the vicinity of the LM for Apollo 16. The soil mechanics data were derived form (1) crew commentary and debriefings, (2) television, (3) lunar surface photography, (4) performance data and observations of interactions between soil and lunar roving vehicle, (5) drive-tube and deep drill samples, (6) sample characteristics, and (7) measurements using the SRP. The general characteristics, stratigraphy and variability are described along with the core samples, penetrometer test results, density, porosity and strength.
The equivalence principle in a quantum world
NASA Astrophysics Data System (ADS)
Bjerrum-Bohr, N. E. J.; Donoghue, John F.; El-Menoufi, Basem Kamal; Holstein, Barry R.; Planté, Ludovic; Vanhove, Pierre
2015-09-01
We show how modern methods can be applied to quantum gravity at low energy. We test how quantum corrections challenge the classical framework behind the equivalence principle (EP), for instance through introduction of nonlocality from quantum physics, embodied in the uncertainty principle. When the energy is small, we now have the tools to address this conflict explicitly. Despite the violation of some classical concepts, the EP continues to provide the core of the quantum gravity framework through the symmetry — general coordinate invariance — that is used to organize the effective field theory (EFT).
The Beatles, the Nobel Prize, and CT scanning of the chest.
Goodman, Lawrence R
2010-01-01
From its first test scan on a mouse, in 1967, to current medical practice, the CT scanner has become a core imaging tool in thoracic diagnosis. Initially financed by money from Beatles' record sales, the first patient scan was performed in 1971. Only 8 years later, a Nobel Prize in Physics and Medicine was awarded to Hounsfield and Cormack for their discovery. This article traces the history of CT scanner development and how each technical advance expanded chest diagnostic frontiers. Chest imaging now accounts for 30% of all CT scanning.
Yeung, Nelson C Y; Lau, Joseph T F; Yu, Xiao-nan; Chu, Yvonne; Shing, Matthew M K; Leung, Ting Fan; Li, Chi Kong; Fok, Tai Fai; Mak, Winnie W S
2013-01-01
The Pediatric Quality of Life Inventory (PedsQL) 4.0 Generic Core Scales are commonly used to assess health-related quality of life of healthy children and pediatric patients. Validation of the Generic Core Scales among Chinese pediatric cancer patients has not been reported in the literature. The scales can serve to measure different quality-of-life domains that are not captured by the PedsQL Cancer Module. Psychometric properties of the Chinese version of the PedsQL 4.0 among pediatric cancer patients and their caretakers were examined. The Generic Core Scales were administered to 335 pairs of pediatric cancer patients (aged 8-18 years) and their caretakers in Hong Kong. A 5-factor structure (physical, emotional, social, school-related cognitive function, and missed school) was identified in the patient and proxy versions of the scales using confirmatory factor analysis. Both versions of the total scale reported Cronbach α's of .90 or greater, with almost all subscales reporting α's of .70 or greater. Test-retest reliability at 2 weeks was acceptable (intraclass correlations ≥0.60) for a majority of subscales. Agreement between patients' and caretakers' ratings was medium. The scales demonstrated acceptable psychometric properties and construct validity. This study validated the Chinese version of the Generic Core Scales among pediatric cancer patients and their caretakers, which supports the future use of the scales in clinical settings. The Generic Core Scales can also be supplementary to the PedsQL Cancer Module for measuring multiple domains of quality of life in cancer population.
Physical properties of self-, dual-, and light-cured direct core materials.
Rüttermann, Stefan; Alberts, Ian; Raab, Wolfgang H M; Janda, Ralf R
2011-08-01
The objective of this study is to evaluate flexural strength, flexural modulus, compressive strength, curing temperature, curing depth, volumetric shrinkage, water sorption, and hygroscopic expansion of two self-, three dual-, and three light-curing resin-based core materials. Flexural strength and water sorption were measured according to ISO 4049, flexural modulus, compressive strength, curing temperature, and curing depth according to well-proven, literature-known methods, and the volumetric behavior was determined by the Archimedes' principle. ANOVA was calculated to find differences between the materials' properties, and correlation of water sorption and hygroscopic expansion was analysed according to Pearson (p < 0.05). Clearfil Photo Core demonstrated the highest flexural strength (125 ± 12 MPa) and curing depth (15.2 ± 0.1 mm) and had the highest flexural modulus (≈12.6 ± 1.2 GPa) concertedly with Multicore HB. The best compressive strength was measured for Voco Rebilda SC and Clearfil DC Core Auto (≈260 ± 10 MPa). Encore SuperCure Contrast had the lowest water sorption (11.8 ± 3.3 µg mm(-3)) and hygroscopic expansion (0.0 ± 0.2 vol.%). Clearfil Photo Core and Encore SuperCure Contrast demonstrated the lowest shrinkage (≈2.1 ± 0.1 vol.%). Water sorption and hygroscopic expansion had a very strong positive correlation. The investigated core materials significantly differed in the tested properties. The performance of the materials depended on their formulation, as well as on the respective curing process.
Corepal, Rekesh; Best, Paul; O’Neill, Roisin; Tully, Mark A; Edwards, Mark; Jago, Russell; Miller, Sarah J; Kee, Frank; Hunter, Ruth F
2018-01-01
Objective To explore the temporal changes of adolescents’ views and experiences of participating in a gamified intervention to encourage physical activity behaviour and associated processes of behaviour change. Design A qualitative longitudinal design was adopted whereby focus groups were conducted with the same participants in each intervention school (n=3) at four time-points (baseline, end of each of two intervention phases and 1-year follow-up). The framework method was used to thematically analyse the data. Setting Secondary schools (n=3), Belfast (Northern Ireland). Participants A subsample (n=19 at four time-points) of individuals aged 12–14 years who participated in the StepSmart Challenge, a gamified intervention involving a pedometer competition and material rewards to encourage physical activity behaviour change. Results Three core themes were identified: (1) competition; (2) incentives and (3) influence of friends. Participants indicated that a pedometer competition may help initiate physical activity but suggested that there were a number of barriers such as participants finding it ‘boring’, and feeling as though they had a remote chance of ‘winning’. ‘Incentives’ were viewed favourably, although there were participants who found not winning a prize ‘annoying’. Friends were a motivator to be more physically active, particularly for girls who felt encouraged to walk more when with a friend. Conclusions The intervention in general and specific gamified elements were generally viewed positively and deemed acceptable. Results suggest that gamification may have an important role to play in encouraging adolescents to engage in physical activity and in creating interventions that are fun and enjoyable. The longitudinal approach added additional depth to the analysis as themes were refined and tested with participants over time. The findings also suggest that gamified Behaviour Change Techniques align well with core concepts of Self-determination Theory and that various game elements may require tailoring for specific populations, for example, different genders. Trial registration number NCT02455986; Pre-results. PMID:29678971
Waite, W.F.; Kneafsey, T.J.; Winters, W.J.; Mason, D.H.
2008-01-01
Physical property measurements of sediment cores containing natural gas hydrate are typically performed on material exposed, at least briefly, to non-in situ conditions during recovery. To examine the effects of a brief excursion from the gas-hydrate stability field, as can occur when pressure cores are transferred to pressurized storage vessels, we measured physical properties on laboratory-formed sand packs containing methane hydrate and methane pore gas. After depressurizing samples to atmospheric pressure, we repressurized them into the methane-hydrate stability field and remeasured their physical properties. Thermal conductivity, shear strength, acoustic compressional and shear wave amplitudes, and speeds of the original and depressurized/repressurized samples are compared. X– ray computed tomography images track how the gas-hydrate distribution changes in the hydrate-cemented sands owing to the depressurizaton/repressurization process. Because depressurization-induced property changes can be substantial and are not easily predicted, particularly in water-saturated, hydrate-bearing sediment, maintaining pressure and temperature conditions throughout the core recovery and measurement process is critical for using laboratory measurements to estimate in situ properties.
Waite, W.F.; Kneafsey, T.J.; Winters, W.J.; Mason, D.H.
2008-01-01
Physical property measurements of sediment cores containing natural gas hydrate are typically performed on material exposed, at least briefly, to non-in situ conditions during recovery. To examine the effects of a brief excursion from the gas-hydrate stability field, as can occur when pressure cores are transferred to pressurized storage vessels, we measured physical properties on laboratory-formed sand packs containing methane hydrate and methane pore gas. After depressurizing samples to atmospheric pressure, we repressurized them into the methane-hydrate stability field and remeasured their physical properties. Thermal conductivity, shear strength, acoustic compressional and shear wave amplitudes, and speeds of the original and depressurized/repressurized samples are compared. X-ray computed tomography images track how the gas-hydrate distribution changes in the hydrate-cemented sands owing to the depressurizaton/repressurization process. Because depressurization-induced property changes can be substantial and are not easily predicted, particularly in water-saturated, hydrate-bearing sediment, maintaining pressure and temperature conditions throughout the core recovery and measurement process is critical for using laboratory measurements to estimate in situ properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Machaieie, Dinelsa A.; Vilas-Boas, José W.; Wuensche, Carlos A.
Using near-infrared data from the Two Micron All Sky Survey catalog and the Near Infrared Color Excess method, we studied the extinction distribution in five dense cores of Musca, which show visual extinction greater than 10 mag and are potential sites of star formation. We analyzed the stability in four of them, fitting their radial extinction profiles with Bonnor–Ebert isothermal spheres, and explored their properties using the J = 1–0 transition of {sup 13}CO and C{sup 18}O and the J = K = 1 transition of NH{sub 3}. One core is not well described by the model. The stability parametermore » of the fitted cores ranges from 4.5 to 5.7 and suggests that all cores are stable, including Mu13, which harbors one young stellar object (YSO), the IRAS 12322-7023 source. However, the analysis of the physical parameters shows that Mu13 tends to have larger A {sub V}, n {sub c}, and P {sub ext} than the remaining starless cores. The other physical parameters do not show any trend. It is possible that those are the main parameters to explore in active star-forming cores. Mu13 also shows the most intense emission of NH{sub 3}. Its {sup 13}CO and C{sup 18}O lines have double peaks, whose integrated intensity maps suggest that they are due to the superposition of clouds with different radial velocities seen in the line of sight. It is not possible to state whether these clouds are colliding and inducing star formation or are related to a physical process associated with the formation of the YSO.« less
Definitions, Foundations and Associations of Physical Literacy: A Systematic Review.
Edwards, Lowri C; Bryant, Anna S; Keegan, Richard J; Morgan, Kevin; Jones, Anwen M
2017-01-01
The concept of physical literacy has stimulated increased research attention in recent years-being deployed in physical education, sport participation, and the promotion of physical activity. Independent research groups currently operationalize the construct differently. The purpose of this systematic review was to conduct a systematic review of the physical literacy construct, as reflected in contemporary research literature. Five databases were searched using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines for systematic reviews. Inclusion criteria were English language, peer reviewed, published by March 2016, and seeking to conceptualize physical literacy. Articles that met these criteria were analyzed in relation to three core areas: properties/attributes, philosophical foundations and theoretical associations with other constructs. A total of 50 published articles met the inclusion criteria and were analyzed qualitatively using inductive thematic analysis. The thematic analysis addressed the three core areas. Under definitions, core attributes that define physical literacy were identified, as well as areas of conflict between different approaches currently being adopted. One relatively clear philosophical approach was prominent in approximately half of the papers, based on a monist/holistic ontology and phenomenological epistemology. Finally, the analysis identified a number of theoretical associations, including health, physical activity and academic performance. Current literature contains different representations of the physical literacy construct. The costs and benefits of adopting an exclusive approach versus pluralism are considered. Recommendations for both researchers and practitioners focus on identifying and clearly articulating the definitions, philosophical assumptions and expected outcomes prior to evaluating the effectiveness of this emerging concept.
2nd Generation QUATARA Flight Computer Project
NASA Technical Reports Server (NTRS)
Falker, Jay; Keys, Andrew; Fraticelli, Jose Molina; Capo-Iugo, Pedro; Peeples, Steven
2015-01-01
Single core flight computer boards have been designed, developed, and tested (DD&T) to be flown in small satellites for the last few years. In this project, a prototype flight computer will be designed as a distributed multi-core system containing four microprocessors running code in parallel. This flight computer will be capable of performing multiple computationally intensive tasks such as processing digital and/or analog data, controlling actuator systems, managing cameras, operating robotic manipulators and transmitting/receiving from/to a ground station. In addition, this flight computer will be designed to be fault tolerant by creating both a robust physical hardware connection and by using a software voting scheme to determine the processor's performance. This voting scheme will leverage on the work done for the Space Launch System (SLS) flight software. The prototype flight computer will be constructed with Commercial Off-The-Shelf (COTS) components which are estimated to survive for two years in a low-Earth orbit.
Ersoy, E; Cetiner, S; Koçak, F
1989-09-01
In post-core applications, addition to the cast designs restorations that are performed on fabrication posts with restorative materials are being used. To improve the physical properties of glass-ionomer cements that are popular today, glass-cermet cements have been introduced and those materials have been proposed to be an alternative restorative material in post-core applications. In this study, the compressive resistance of Ketac-Silver as a core material was investigated comparatively with amalgam and composite resins.
Quantification of subsurface pore pressure through IODP drilling
NASA Astrophysics Data System (ADS)
Saffer, D. M.; Flemings, P. B.
2010-12-01
It is critical to understand the magnitude and distribution of subsurface pore fluid pressure: it controls effective stress and thus mechanical strength, slope stability, and sediment compaction. Elevated pore pressures also drive fluid flows that serve as agents of mass, solute, and heat fluxes. The Ocean Drilling Program (ODP) and Integrated Ocean Drilling Program (IODP) have provided important avenues to quantify pore pressure in a range of geologic and tectonic settings. These approaches include 1) analysis of continuous downhole logs and shipboard physical properties data to infer compaction state and in situ pressure and stress, 2) laboratory consolidation testing of core samples collected by drilling, 3) direct downhole measurements using pore pressure probes, 3) pore pressure and stress measurements using downhole tools that can be deployed in wide diameter pipe recently acquired for riser drilling, and 4) long-term monitoring of formation pore pressure in sealed boreholes within hydraulically isolated intervals. Here, we summarize key advances in quantification of subsurface pore pressure rooted in scientific drilling, highlighting with examples from subduction zones, the Gulf of Mexico, and the New Jersey continental shelf. At the Nankai, Costa Rican, and Barbados subduction zones, consolidation testing of cores samples, combined with analysis of physical properties data, indicates that even within a few km landward of the trench, pore pressures in and below plate boundary décollement zones reach a significant fraction of the lithostatic load (λ*=0.25-0.91). These results document a viable and quantifiable mechanism to explain the mechanical weakness of subduction décollements, and are corroborated by a small number of direct measurements in sealed boreholes and by inferences from seismic reflection data. Recent downhole measurements conducted during riser drilling using the modular formation dynamics tester wireline tool (MDT) in a forearc basin ~50 km from the trench document hydrostatic pore pressures in the basin fill down to ~1500 mbsf, and illustrate a promising technique for obtaining pore pressure and stress magnitude. In the Gulf of Mexico, we used pore pressure penetrometers to measure severe overpressures (λ*=0.7); a comprehensive program of consolidation testing on recovered core samples confirms elevated pore pressures due to rapid sedimentation, reflecting disequilibrium compaction. Similarly, along the New Jersey continental shelf, analysis of porosity data from downhole logs and augmented by geotechnical testing of cores demonstrates elevated pore pressures in the shallow subsurface. In both offshore New Jersey and the Gulf of Mexico, integration of direct measurements, geotechnical testing, and hydrodynamic modeling illustrate how flow is focused along permeable layers to reduce effective stress and drive submarine landslides. In sum, pore pressure observations made through the ODP and IODP provide insight into how pore pressure controls the large-scale form of passive and active continental margins, how submarine landslides form, and provide strategies for engineering deep boreholes.
SALTON SEA SCIENTIFIC DRILLING PROJECT: SCIENTIFIC PROGRAM.
Sass, J.H.; Elders, W.A.
1986-01-01
The Salton Sea Scientific Drilling Project, was spudded on 24 October 1985, and reached a total depth of 10,564 ft. (3. 2 km) on 17 March 1986. There followed a period of logging, a flow test, and downhole scientific measurements. The scientific goals were integrated smoothly with the engineering and economic objectives of the program and the ideal of 'science driving the drill' in continental scientific drilling projects was achieved in large measure. The principal scientific goals of the project were to study the physical and chemical processes involved in an active, magmatically driven hydrothermal system. To facilitate these studies, high priority was attached to four areas of sample and data collection, namely: (1) core and cuttings, (2) formation fluids, (3) geophysical logging, and (4) downhole physical measurements, particularly temperatures and pressures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lott, P. Aaron; Woodward, Carol S.; Evans, Katherine J.
Performing accurate and efficient numerical simulation of global atmospheric climate models is challenging due to the disparate length and time scales over which physical processes interact. Implicit solvers enable the physical system to be integrated with a time step commensurate with processes being studied. The dominant cost of an implicit time step is the ancillary linear system solves, so we have developed a preconditioner aimed at improving the efficiency of these linear system solves. Our preconditioner is based on an approximate block factorization of the linearized shallow-water equations and has been implemented within the spectral element dynamical core within themore » Community Atmospheric Model (CAM-SE). Furthermore, in this paper we discuss the development and scalability of the preconditioner for a suite of test cases with the implicit shallow-water solver within CAM-SE.« less
Earliest phases of star formation (EPoS). Dust temperature distributions in isolated starless cores
NASA Astrophysics Data System (ADS)
Lippok, N.; Launhardt, R.; Henning, Th.; Balog, Z.; Beuther, H.; Kainulainen, J.; Krause, O.; Linz, H.; Nielbock, M.; Ragan, S. E.; Robitaille, T. P.; Sadavoy, S. I.; Schmiedeke, A.
2016-07-01
Context. Stars form by the gravitational collapse of cold and dense molecular cloud cores. Constraining the temperature and density structure of such cores is fundamental for understanding the initial conditions of star formation. We use Herschel observations of the thermal far-infrared (FIR) dust emission from nearby and isolated molecular cloud cores and combine them with ground-based submillimeter continuum data to derive observational constraints on their temperature and density structure. Aims: The aim of this study is to verify the validity of a ray-tracing inversion technique developed to derive the dust temperature and density structure of nearby and isolated starless cores directly from the dust emission maps and to test if the resulting temperature and density profiles are consistent with physical models. Methods: We have developed a ray-tracing inversion technique that can be used to derive the temperature and density structure of starless cores directly from the observed dust emission maps without the need to make assumptions about the physical conditions. Using this ray-tracing inversion technique, we derive the dust temperature and density structure of six isolated starless molecular cloud cores from dust emission maps in the wavelengths range 100 μm-1.2 mm. We then employ self-consistent radiative transfer modeling to the density profiles derived with the ray-tracing inversion method. In this model, the interstellar radiation field (ISRF) is the only heating source. The local strength of the ISRF as well as the total extinction provided by the outer envelope are treated as semi-free parameters which we scale within defined limits. The best-fit values of both parameters are derived by comparing the self-consistently calculated temperature profiles with those derived by the ray-tracing method. Results: We confirm earlier results and show that all starless cores are significantly colder inside than outside, with central core temperatures in the range 7.5-11.9 K and envelope temperatures that are 2.4 - 9.6 K higher. The core temperatures show a strong negative correlation with peak column density which suggests that the thermal structure of the cores is dominated by external heating from the ISRF and shielding by dusty envelopes. We find that temperature profiles derived with the ray-tracing inversion method can be well-reproduced with self-consistent radiative transfer models if the cores have geometry that is not too complex and good data coverage with spatially resolved maps at five or more wavelengths in range between 100 μm and 1.2 mm. We also confirm results from earlier studies that found that the usually adopted canonical value of the total strength of the ISRF in the solar neighbourhood is incompatible with the most widely used dust opacity models for dense cores. However, with the data available for this study, we cannot uniquely resolve the degeneracy between dust opacity law and strength of the ISRF. Final T maps (FITS format) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/cgi-bin/qcat?J/A+A/592/A61
Falbo, S.; Condello, G.; Capranica, L.; Forte, R.
2016-01-01
Physical and cognitive training seem to counteract age-related decline in physical and mental function. Recently, the possibility of integrating cognitive demands into physical training has attracted attention. The purpose of this study was to evaluate the effects of twelve weeks of designed physical-cognitive training on executive cognitive function and gait performance in older adults. Thirty-six healthy, active individuals aged 72.30 ± 5.84 years were assigned to two types of physical training with major focus on physical single task (ST) training (n = 16) and physical-cognitive dual task (DT) training (n = 20), respectively. They were tested before and after the intervention for executive function (inhibition, working memory) through Random Number Generation and for gait (walking with/without negotiating hurdles) under both single and dual task (ST, DT) conditions. Gait performance improved in both groups, while inhibitory performance decreased after exercise training with ST focus but tended to increase after training with physical-cognitive DT focus. Changes in inhibition performance were correlated with changes in DT walking performance with group differences as a function of motor task complexity (with/without hurdling). The study supports the effectiveness of group exercise classes for older individuals to improve gait performance, with physical-cognitive DT training selectively counteracting the age-related decline in a core executive function essential for daily living. PMID:28053985
Falbo, S; Condello, G; Capranica, L; Forte, R; Pesce, C
2016-01-01
Physical and cognitive training seem to counteract age-related decline in physical and mental function. Recently, the possibility of integrating cognitive demands into physical training has attracted attention. The purpose of this study was to evaluate the effects of twelve weeks of designed physical-cognitive training on executive cognitive function and gait performance in older adults. Thirty-six healthy, active individuals aged 72.30 ± 5.84 years were assigned to two types of physical training with major focus on physical single task (ST) training ( n = 16) and physical-cognitive dual task (DT) training ( n = 20), respectively. They were tested before and after the intervention for executive function (inhibition, working memory) through Random Number Generation and for gait (walking with/without negotiating hurdles) under both single and dual task (ST, DT) conditions. Gait performance improved in both groups, while inhibitory performance decreased after exercise training with ST focus but tended to increase after training with physical-cognitive DT focus. Changes in inhibition performance were correlated with changes in DT walking performance with group differences as a function of motor task complexity (with/without hurdling). The study supports the effectiveness of group exercise classes for older individuals to improve gait performance, with physical-cognitive DT training selectively counteracting the age-related decline in a core executive function essential for daily living.
Fujioka, Shinsuke; Johzaki, Tomoyuki; Arikawa, Yasunobu; Zhang, Zhe; Morace, Alessio; Ikenouchi, Takahito; Ozaki, Tetsuo; Nagai, Takahiro; Abe, Yuki; Kojima, Sadaoki; Sakata, Shohei; Inoue, Hiroaki; Utsugi, Masaru; Hattori, Shoji; Hosoda, Tatsuya; Lee, Seung Ho; Shigemori, Keisuke; Hironaka, Youichiro; Sunahara, Atsushi; Sakagami, Hitoshi; Mima, Kunioki; Fujimoto, Yasushi; Yamanoi, Kohei; Norimatsu, Takayoshi; Tokita, Shigeki; Nakata, Yoshiki; Kawanaka, Junji; Jitsuno, Takahisa; Miyanaga, Noriaki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Nagatomo, Hideo; Azechi, Hiroshi
2015-06-01
A series of experiments were carried out to evaluate the energy-coupling efficiency from heating laser to a fuel core in the fast-ignition scheme of laser-driven inertial confinement fusion. Although the efficiency is determined by a wide variety of complex physics, from intense laser plasma interactions to the properties of high-energy density plasmas and the transport of relativistic electron beams (REB), here we simplify the physics by breaking down the efficiency into three measurable parameters: (i) energy conversion ratio from laser to REB, (ii) probability of collision between the REB and the fusion fuel core, and (iii) fraction of energy deposited in the fuel core from the REB. These three parameters were measured with the newly developed experimental platform designed for mimicking the plasma conditions of a realistic integrated fast-ignition experiment. The experimental results indicate that the high-energy tail of REB must be suppressed to heat the fuel core efficiently.
NASA Astrophysics Data System (ADS)
Morita, E.; Weigl, M.; Schuh, A.; Stucki, G.
2006-01-01
Health resort programs have a long tradition, mainly in European countries and Japan. They rely on local resources and the physical environment, physical medicine interventions and traditional medicine to optimise functioning and health. Arguably because of the long tradition, there is only a limited number of high-quality studies that examine the effectiveness of health resort programs. Specific challenges to the evaluation of health resort programs are to randomise the holistic approach with a varying number of specific interventions but also the reliance on the effect of the physical environment. Reference standards for the planning and reporting of health resort studies would be highly beneficial. With the International Classification of Functioning Disability and Health (ICF), we now have such a standard that allows us to describe body functions and structures, activities and participation and interaction with environmental factors. A major challenge when applying the ICF in practice is its length. Therefore, the objective of this project was to identify the ICF categories most relevant for health resort programs. We conducted a consensus-building, three-round, e-mail survey using the Delphi technique. Based on the consensus of the experts, it was possible to come up with an ICF Core Set that can serve as reference standards for the indication, intervention planning and evaluation of health resort programs. This preliminary ICF Core Set should be tested in different regions and in subsets of health resort visitors with varying conditions.
Toward a mineral physics reference model for the Moon’s core
Antonangeli, Daniele; Morard, Guillaume; Schmerr, Nicholas C.; Komabayashi, Tetsuya; Krisch, Michael; Fiquet, Guillaume; Fei, Yingwei
2015-01-01
The physical properties of iron (Fe) at high pressure and high temperature are crucial for understanding the chemical composition, evolution, and dynamics of planetary interiors. Indeed, the inner structures of the telluric planets all share a similar layered nature: a central metallic core composed mostly of iron, surrounded by a silicate mantle, and a thin, chemically differentiated crust. To date, most studies of iron have focused on the hexagonal closed packed (hcp, or ε) phase, as ε-Fe is likely stable across the pressure and temperature conditions of Earth’s core. However, at the more moderate pressures characteristic of the cores of smaller planetary bodies, such as the Moon, Mercury, or Mars, iron takes on a face-centered cubic (fcc, or γ) structure. Here we present compressional and shear wave sound velocity and density measurements of γ-Fe at high pressures and high temperatures, which are needed to develop accurate seismic models of planetary interiors. Our results indicate that the seismic velocities proposed for the Moon’s inner core by a recent reanalysis of Apollo seismic data are well below those of γ-Fe. Our dataset thus provides strong constraints to seismic models of the lunar core and cores of small telluric planets. This allows us to propose a direct compositional and velocity model for the Moon’s core. PMID:25775531
Direct access inter-process shared memory
Brightwell, Ronald B; Pedretti, Kevin; Hudson, Trammell B
2013-10-22
A technique for directly sharing physical memory between processes executing on processor cores is described. The technique includes loading a plurality of processes into the physical memory for execution on a corresponding plurality of processor cores sharing the physical memory. An address space is mapped to each of the processes by populating a first entry in a top level virtual address table for each of the processes. The address space of each of the processes is cross-mapped into each of the processes by populating one or more subsequent entries of the top level virtual address table with the first entry in the top level virtual address table from other processes.
Novel secretory granule morphology in physically fixed pancreatic islets.
Dudek, R W; Boyne, A F; Charles, T M
1984-09-01
Protein A-gold immunocytochemistry has been applied to physically fixed beta cells from rat islets of Langerhans. The punctate nature of the gold particles permits improved resolution of the antigenic sites without obscuring the fine ultrastructural preservation obtained by physical fixation. There is a filamentous material within the halo of the secretory granules that is not preserved by aqueous, chemical fixation. When viewed in stereo the filaments appear as an annular cobweb or a series of wheel spokes attached to a centrally located hub (the dense core of the granule). The filaments demonstrate insulin-like immunoreactivity using the protein A-gold technique. The immunoreactivity appears to be restricted to the filaments and the surface of the dense cores. This may be a consequence of the preservation of a solid, insolubilized core state that resists penetration by the antibody and/or the protein A-gold complex. However, the evidence that there is a halo pool of insulin which is separate from the massive core aggregate suggests that i) correspondingly massive exocytotic pits may not be as mandatory for insulin release as has been assumed and ii) the complex kinetics of insulin secretion may be, in part, a reflection of multiple insulin compartments within secretory granules.
Essential Ingredients in Core-collapse Supernovae
Hix, William Raphael; Lentz, E. J.; Endeve, Eirik; ...
2014-03-27
Marking the inevitable death of a massive star, and the birth of a neutron star or black hole, core-collapse supernovae bring together physics at a wide range in spatial scales, from kilometer-sized hydrodynamic motions (eventually growing to gigameter scale) down to femtometer scale nuclear reactions. Carrying 10more » $$^{44}$$ joules of kinetic energy and a rich-mix of newly synthesized atomic nuclei, core-collapse supernovae are the preeminent foundries of the nuclear species which make up ourselves and our solar system. We will discuss our emerging understanding of the convectively unstable, neutrino-driven explosion mechanism, based on increasingly realistic neutrino-radiation hydrodynamic simulations that include progressively better nuclear and particle physics. Recent multi-dimensional models with spectral neutrino transport from several research groups, which slowly develop successful explosions for a range of progenitors, have motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of how supernovae explode. Recent progress on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.« less
NASA Astrophysics Data System (ADS)
2008-10-01
Based on bibliometric data from information-services provider Thomson Reuters, this map reveals "core areas" of physics, shown as coloured circular nodes, and the relationship between these subdisciplines, shown as lines.
GRAVITATIONAL ACCRETION OF PARTICLES ONTO MOONLETS EMBEDDED IN SATURN's RINGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yasui, Yuki; Ohtsuki, Keiji; Daisaka, Hiroshi, E-mail: y.yasui@whale.kobe-u.ac.jp, E-mail: ohtsuki@tiger.kobe-u.ac.jp
2014-12-20
Using a local N-body simulation, we examine gravitational accretion of ring particles onto moonlet cores in Saturn's rings. We find that gravitational accretion of particles onto moonlet cores is unlikely to occur in the C ring and probably difficult in the inner B ring as well provided that the cores are rigid water ice. Dependence of particle accretion on ring thickness changes when the radial distance from the planet and/or the density of particles is varied: the former determines the size of the core's Hill radius relative to its physical size, while the latter changes the effect of self-gravity ofmore » accreted particles. We find that particle accretion onto high-latitude regions of the core surface can occur even if the rings' vertical thickness is much smaller than the core radius, although redistribution of particles onto the high-latitude regions would not be perfectly efficient in outer regions of the rings such as the outer A ring, where the size of the core's Hill sphere in the vertical direction is significantly larger than the core's physical radius. Our results suggest that large boulders recently inferred from observations of transparent holes in the C ring are not formed locally by gravitational accretion, while propeller moonlets in the A ring would be gravitational aggregates formed by particle accretion onto dense cores. Our results also imply that the main bodies of small satellites near the outer edge of Saturn's rings may have been formed in rather thin rings.« less
Krisko, Tibor I; LeClair, Katherine B; Cohen, David E
2017-03-01
Phosphatidylcholine transfer protein (PC-TP; synonym StarD2) is highly expressed in liver and oxidative tissues. PC-TP promotes hepatic glucose production during fasting and aggravates glucose intolerance in high fat fed mice. However, because PC-TP also suppresses thermogenesis in brown adipose tissue (BAT), its direct contribution to obesity-associated diabetes in mice remains unclear. Here we examined the effects of genetic PC-TP ablation on glucose homeostasis in leptin-deficient ob/ob mice, which exhibit both diabetes and altered thermoregulation. Mice lacking both PC-TP and leptin (Pctp -/- ;ob/ob) were prepared by crossing Pctp -/- with ob/+ mice. Glucose homeostasis was assessed by standard assays, and energy expenditure was determined by indirect calorimetry using a comprehensive laboratory animal monitoring system, which also recorded physical activity and food intake. Body composition was determined by NMR and hepatic lipids by enzymatic assays. Core body temperature was measured using a rectal thermocouple probe. Pctp -/- ;ob/ob mice demonstrated improved glucose homeostasis, as evidenced by markedly improved glucose and pyruvate tolerance tests, without changes in insulin tolerance. However, there were no differences in EE at any ambient temperature. There were also no effects of PC-TP expression on physical activity, food intake or core body temperature. Improved glucose tolerance in Pctp -/- ;ob/ob mice in the absence of increases in energy expenditure or core body temperature indicates a direct pathogenic role for PC-TP in diabetes in leptin deficient mice. Copyright © 2016 Elsevier Inc. All rights reserved.
Dietary tyrosine benefits cognitive and psychomotor performance during body cooling.
O'Brien, Catherine; Mahoney, Caroline; Tharion, William J; Sils, Ingrid V; Castellani, John W
2007-02-28
Supplemental tyrosine is effective at limiting cold-induced decreases in working memory, presumably by augmenting brain catecholamine levels, since tyrosine is a precursor for catecholamine synthesis. The effectiveness of tyrosine for preventing cold-induced decreases in physical performance has not been examined. This study evaluated the effect of tyrosine supplementation on cognitive, psychomotor, and physical performance following a cold water immersion protocol that lowered body core temperature. Fifteen subjects completed a control trial (CON) in warm (35 degrees C) water and two cold water trials, each spaced a week apart. Subjects ingested an energy bar during each trial; on one cold trial (TYR) the bar contained tyrosine (300 mg/kg body weight), and on the other cold trial (PLB) and on CON the bar contained no tyrosine. Following each water immersion, subjects completed a battery of performance tasks in a cold air (10 degrees C) chamber. Core temperature was lower (p=0.0001) on PLB and TYR (both 35.5+/-0.6 degrees C) than CON (37.1+/-0.3 degrees C). On PLB, performance on a Match-to-Sample task decreased 18% (p=0.02) and marksmanship performance decreased 14% (p=0.002), compared to CON, but there was no difference between TYR and CON. Step test performance decreased by 11% (p=0.0001) on both cold trials, compared to CON. These data support previous findings that dietary tyrosine supplementation is effective for mitigating cold-induced cognitive performance such as working memory, even with reduced core temperature, and extends those findings to include the psychomotor task of marksmanship.
NASA Astrophysics Data System (ADS)
Ha, Taesung
A probabilistic risk assessment (PRA) was conducted for a loss of coolant accident, (LOCA) in the McMaster Nuclear Reactor (MNR). A level 1 PRA was completed including event sequence modeling, system modeling, and quantification. To support the quantification of the accident sequence identified, data analysis using the Bayesian method and human reliability analysis (HRA) using the accident sequence evaluation procedure (ASEP) approach were performed. Since human performance in research reactors is significantly different from that in power reactors, a time-oriented HRA model (reliability physics model) was applied for the human error probability (HEP) estimation of the core relocation. This model is based on two competing random variables: phenomenological time and performance time. The response surface and direct Monte Carlo simulation with Latin Hypercube sampling were applied for estimating the phenomenological time, whereas the performance time was obtained from interviews with operators. An appropriate probability distribution for the phenomenological time was assigned by statistical goodness-of-fit tests. The human error probability (HEP) for the core relocation was estimated from these two competing quantities: phenomenological time and operators' performance time. The sensitivity of each probability distribution in human reliability estimation was investigated. In order to quantify the uncertainty in the predicted HEPs, a Bayesian approach was selected due to its capability of incorporating uncertainties in model itself and the parameters in that model. The HEP from the current time-oriented model was compared with that from the ASEP approach. Both results were used to evaluate the sensitivity of alternative huinan reliability modeling for the manual core relocation in the LOCA risk model. This exercise demonstrated the applicability of a reliability physics model supplemented with a. Bayesian approach for modeling human reliability and its potential usefulness of quantifying model uncertainty as sensitivity analysis in the PRA model.
Soil strength and macropore volume limit root elongation rates in many UK agricultural soils.
Valentine, Tracy A; Hallett, Paul D; Binnie, Kirsty; Young, Mark W; Squire, Geoffrey R; Hawes, Cathy; Bengough, A Glyn
2012-07-01
Simple indicators of crop and cultivar performance across a range of soil types and management are needed for designing and testing sustainable cropping practices. This paper determined the extent to which soil chemical and physical properties, particularly soil strength and pore-size distribution influences root elongation in a wide range of agricultural top soils, using a seedling-based indicator. Intact soil cores were sampled from the topsoil of 59 agricultural fields in Scotland, representing a wide geographic spread, range of textures and management practices. Water release characteristics, dry bulk density and needle penetrometer resistance were measured on three cores from each field. Soil samples from the same locations were sieved, analysed for chemical characteristics, and packed to dry bulk density of 1.0 g cm(-3) to minimize physical constraints. Root elongation rates were determined for barley seedlings planted in both intact field and packed soil cores at a water content close to field capacity (-20 kPa matric potential). Root elongation in field soil was typically less than half of that in packed soils. Penetrometer resistance was typically between 1 and 3 MPa for field soils, indicating the soils were relatively hard, despite their moderately wet condition (compared with <0.2 MPa for packed soil). Root elongation was strongly linked to differences in physical rather than chemical properties. In field soil root elongation was related most closely to the volume of soil pores between 60 µm and 300 µm equivalent diameter, as estimated from water-release characteristics, accounting for 65.7 % of the variation in the elongation rates. Root elongation rate in the majority of field soils was slower than half of the unimpeded (packed) rate. Such major reductions in root elongation rates will decrease rooting volumes and limit crop growth in soils where nutrients and water are scarce.
NASA Astrophysics Data System (ADS)
Kirschner, D. L.; Carpenter, B.; Keenan, T.; Sandusky, E.; Sone, H.; Ellsworth, B.; Hickman, S.; Weiland, C.; Zoback, M.
2007-12-01
Core samples were obtained that cross three faults of the San Andreas Fault Zone north of Parkfield, California, during the summer of 2007. The cored intervals were obtained by sidetracking off the SAFOD Main Hole that was rotary drilled across the San Andreas in 2005. The first cored interval targeted the pronounced lithologic boundary between the Salinian terrane and the Great Valley and Franciscan formations. Eleven meters of pebbly conglomerate (with minor amounts of fine sands and shale) were obtained from 3141 to 3152 m (measured depth, MD). The two conglomerate units are heavily fractured with many fractures having accommodated displacement. Within this cored interval, there is a ~1m zone with highly sheared, fine-grained material, possibly ultracataclasite in part. The second cored interval crosses a creeping segment of a fault that has been deforming the cemented casing of the adjacent Main Hole. This cored interval sampled the fault 100 m above a seismogenic patch of M2 repeating earthquakes. Thirteen meters of core were obtained across this fault from 3186 to 3199 m (MD). This fault, which is hosted primarily in siltstones and shales, contains a serpentinite body embedded in a highly sheared shale and serpentinite-bearing fault gouge unit. The third cored interval crosses a second creeping fault that has also been deforming the cemented casing of the Main Hole. This fault, which is the most rapidly shearing fault in the San Andreas fault zone based on casing deformation, contains multiple fine- grained clay-rich fault strands embedded in highly sheared shales and lesser deformed sandstones. Initial processing of the cores was carried out at the drill site. Each core came to the surface in 9 meter-long aluminum core barrels. These were cut into more manageable three-foot sections. The quarter-inch-thick aluminum liner of each section was cut and then split apart to reveal the 10 cm diameter cores. Depending on the fragility and porosity of the rock, the drilling fluid was removed either by washing with dilute calcium chloride brine (to approximately match the salinity of the formation fluids) or by gently scraping away drilling mud on the core surface. Once cleaned, each core section was photographed to very high resolution on a Geotek Multi- Sensor Core Logging (MSCL) system. This system was also used to determine the bulk density and magnetic susceptibility of each section. The 25 MB high-resolution photographs and the raw and processed physical properties data were then uploaded to the ICDP web server in Potsdam for public access (http://safod.icdp- online.org). The cores will be archived at the Gulf Coast Repository of the Integrated Ocean Drilling Program in College Station, TX. The MSCL photographs, physical property measurements, and other related data, such as geophysical logs, will be integrated using CoreWall, and will be on display at the meeting. All samples, data, and imagery are available to the science community.
Impact of Americium-241 (n,γ) Branching Ratio on SFR Core Reactivity and Spent Fuel Characteristics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiruta, Hikaru; Youinou, Gilles J.; Dixon, Brent W.
An accurate prediction of core physics and fuel cycle parameters largely depends on the order of details and accuracy in nuclear data taken into account for actual calculations. 241Am is a major gateway nuclide for most of minor actinides and thus important nuclide for core physics and fuel-cycle calculations. The 241Am(n,?) branching ratio (BR) is in fact the energy dependent (see Fig. 1), therefore, it is necessary to taken into account the spectrum effect on the calculation of the average BR for the full-core depletion calculations. Moreover, the accuracy of the BR used in the depletion calculations could significantly influencemore » the core physics performance and post irradiated fuel compositions. The BR of 241Am(n,?) in ENDF/B-VII.0 library is relatively small and flat in thermal energy range, gradually increases within the intermediate energy range, and even becomes larger at the fast energy range. This indicates that the properly collapsed BR for fast reactors could be significantly different from that of thermal reactors. The evaluated BRs are also differ from one evaluation to another. As seen in Table I, average BRs for several evaluated libraries calculated by means of a fast spectrum are similar but have some differences. Most of currently available depletion codes use a pre-determined single value BR for each library. However, ideally it should be determined on-the-fly basis like that of one-group cross sections. These issues provide a strong incentive to investigate the effect of different 241Am(n,?) BRs on core and spent fuel parameters. This paper investigates the impact of the 241Am(n,?) BR on the results of SFR full-core based fuel-cycle calculations. The analysis is performed by gradually increasing the value of BR from 0.15 to 0.25 and studying its impact on the core reactivity and characteristics of SFR spent fuels over extended storage times (~10,000 years).« less
Overview of the Hungarian National Youth Fitness Study
Csányi, Tamás; Finn, Kevin J.; Welk, Gregory J.; Zhu, Weimo; Karsai, István; Ihász, Ferenc; Vass, Zoltán; Molnár, László
2015-01-01
The 2012 Public Act on Education in Hungary made daily physical education (PE) a mandatory part of the school day starting in the 2012–2013 school year. This directive was linked to a significant reorganization of the Hungarian education system including a new National Core Curriculum that regulates the objectives and contents of PE. The Hungarian School Sport Federation (HSSF) recognized the opportunity and created the Strategic Actions for Health-Enhancing Physical Education or Testnevelés az Egészségfejlesztésben Stratégiai Intézkedések (TESI) project. Physical fitness assessments have been a traditional part of the Hungarian PE program; however, the TESI plan called for the use of a new health-related battery and assessment system to usher in a new era of fitness education in the country. The HSSF enlisted the Cooper Institute to assist in building an infrastructure for full deployment of a national student fitness assessment program based on the FITNESSGRAM® in Hungarian schools. The result is a new software-supported test battery, namely the Hungarian National Student Fitness Test (NETFIT), which uses health-related, criterion-referenced youth fitness standards. The NETFIT system now serves as a compulsory fitness assessment for all Hungarian schools. This article details the development process for the test battery and summarizes the aims and methods of the Hungarian National Youth Fitness Study. PMID:26054954
Akhtar, Muhammad Waseem; Karimi, Hossein; Gilani, Syed Amir
2017-01-01
Low back pain is a frequent problem faced by the majority of people at some point in their lifetime. Exercise therapy has been advocated an effective treatment for chronic low back pain. However, there is lack of consensus on the best exercise treatment and numerous studies are underway. Conclusive studies are lacking especially in this part of the world. Thisstudy was designed to compare the effectiveness of specific stabilization exercises with routine physical therapy exerciseprovided in patients with nonspecific chronic mechanical low back pain. This is single blinded randomized control trial that was conducted at the department of physical therapy Orthopedic and Spine Institute, Johar Town, Lahore in which 120 subjects with nonspecific chronic low back pain participated. Subjects with the age between 20 to 60 years and primary complaint of chronic low back pain were recruited after giving an informed consent. Participants were randomly assigned to two treatment groups A & B which were treated with core stabilization exercise and routine physical therapy exercise respectively. TENS and ultrasound were given as therapeutic modalities to both treatment groups. Outcomes of the treatment were recorded using Visual Analogue Scale (VAS) pretreatment, at 2 nd , 4 th and 6 th week post treatment. The results of this study illustrate that clinical and therapeutic effects of core stabilization exercise program over the period of six weeks are more effective in terms of reduction in pain, compared to routine physical therapy exercise for similar duration. This study found significant reduction in pain across the two groups at 2 nd , 4 th and 6 th week of treatment with p value less than 0.05. There was a mean reduction of 3.08 and 1.71 on VAS across the core stabilization group and routine physical therapy exercise group respectively. Core stabilization exercise is more effective than routine physical therapy exercise in terms of greater reduction in pain in patients with non-specific low back pain.
The microstructure and magnetic properties of Cu/CuO/Ni core/multi-shell nanowire arrays
NASA Astrophysics Data System (ADS)
Yang, Feng; Shi, Jie; Zhang, Xiaofeng; Hao, Shijie; Liu, Yinong; Feng, Chun; Cui, Lishan
2018-04-01
Multifunctional metal/oxide/metal core/multi-shell nanowire arrays were prepared mostly by physical or chemical vapor deposition. In our study, the Cu/CuO/Ni core/multi-shell nanowire arrays were prepared by AAO template-electrodeposition and oxidation processes. The Cu/Ni core/shell nanowire arrays were prepared by AAO template-electrodeposition method. The microstructure and chemical compositions of the core/multi-shell nanowires and core/shell nanowires have been characterized using transmission electron microscopy with HADDF-STEM and X-ray diffraction. Magnetization measurements revealed that the Cu/CuO/Ni and Cu/Ni nanowire arrays have high coercivity and remanence ratio.
Kesli, Recep; Polat, Hakki; Terzi, Yuksel; Kurtoglu, Muhammet Guzel; Uyar, Yavuz
2011-12-01
Hepatitis C virus (HCV) is a global health care problem. Diagnosis of HCV infection is mainly based on the detection of anti-HCV antibodies as a screening test with serum samples. Recombinant immunoblot assays are used as supplemental tests and for the final detection and quantification of HCV RNA in confirmatory tests. In this study, we aimed to compare the HCV core antigen test with the HCV RNA assay for confirming anti-HCV results to determine whether the HCV core antigen test may be used as an alternative confirmatory test to the HCV RNA test and to assess the diagnostic values of the total HCV core antigen test by determining the diagnostic specificity and sensitivity rates compared with the HCV RNA test. Sera from a total of 212 treatment-naive patients were analyzed for anti-HCV and HCV core antigen both with the Abbott Architect test and with the molecular HCV RNA assay consisting of a reverse transcription-PCR method as a confirmatory test. The diagnostic sensitivity, specificity, and positive and negative predictive values of the HCV core antigen assay compared to the HCV RNA test were 96.3%, 100%, 100%, and 89.7%, respectively. The levels of HCV core antigen showed a good correlation with those from the HCV RNA quantification (r = 0.907). In conclusion, the Architect HCV antigen assay is highly specific, sensitive, reliable, easy to perform, reproducible, cost-effective, and applicable as a screening, supplemental, and preconfirmatory test for anti-HCV assays used in laboratory procedures for the diagnosis of hepatitis C virus infection.
Physical properties of pressurized sediment from hydrate ridge
Winters, William J.; Waite, William F.; Mason, David H.; Gilbert, Lauren
2006-01-01
As part of an ongoing laboratory study, preliminary acoustic, triaxial strength, and electrical resistivity results are presented from a test performed on a clayey silt sediment sample recovered from Site 1249 at the summit of southern Hydrate Ridge during Ocean Drilling Program Leg 204. The test specimen was stored and transported in two different methane-charged pressure vessels until it was tested using the Gas Hydrate and Sediment Test Laboratory Instrument (GHASTLI). Although gas hydrate may have existed in the core section immediately after recovery, little (if any) hydrate was present in the specimen during testing. We therefore present background physical property results for sediment that may have hosted gas hydrate in situ. Because we consolidated the test specimen in increments beyond its in situ stress state, we are able to present properties representative of similar but deeper subbottom sediment. The increased consolidation stress also helped to mitigate some, but not all, types of disturbance caused by the recovery process. P-wave velocities from 1.54 to 1.74 km/s varied linearly with consolidation stress, σ′c, up to 970 kPa (equivalent to ~160 meters below seafloor). Electrical resistivity was periodically measured by a Wenner array and varied between 1.0 and 2.8 Ωm. These values reflect both the pore water salinity and soft, fine-grained texture of the sediment. Shear behavior is consistent with the induced normally consolidated behavior of clayey silt.
Preparing CAM-SE for Multi-Tracer Applications: CAM-SE-Cslam
NASA Astrophysics Data System (ADS)
Lauritzen, P. H.; Taylor, M.; Goldhaber, S.
2014-12-01
The NCAR-DOE spectral element (SE) dynamical core comes from the HOMME (High-Order Modeling Environment; Dennis et al., 2012) and it is available in CAM. The CAM-SE dynamical core is designed with intrinsic mimetic properties guaranteeing total energy conservation (to time-truncation errors) and mass-conservation, and has demonstrated excellent scalability on massively parallel compute platforms (Taylor, 2011). For applications involving many tracers such as chemistry and biochemistry modeling, CAM-SE has been found to be significantly more computationally costly than the current "workhorse" model CAM-FV (Finite-Volume; Lin 2004). Hence a multi-tracer efficient scheme, called the CSLAM (Conservative Semi-Lagrangian Multi-tracer; Lauritzen et al., 2011) scheme, has been implemented in the HOMME (Erath et al., 2012). The CSLAM scheme has recently been cast in flux-form in HOMME so that it can be coupled to the SE dynamical core through conventional flux-coupling methods where the SE dynamical core provides background air mass fluxes to CSLAM. Since the CSLAM scheme makes use of a finite-volume gnomonic cubed-sphere grid and hence does not operate on the SE quadrature grid, the capability of running tracer advection, the physical parameterization suite and dynamics on separate grids has been implemented in CAM-SE. The default CAM-SE-CSLAM setup is to run physics on the quasi-equal area CSLAM grid. The capability of running physics on a different grid than the SE dynamical core may provide a more consistent coupling since the physics grid option operates with quasi-equal-area cell average values rather than non-equi-distant grid-point (SE quadrature point) values. Preliminary results on the performance of CAM-SE-CSLAM will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Cyrus; Larsen, Matt; Brugger, Eric
Strawman is a system designed to explore the in situ visualization and analysis needs of simulation code teams running multi-physics calculations on many-core HPC architectures. It porvides rendering pipelines that can leverage both many-core CPUs and GPUs to render images of simulation meshes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavel Hejzlar, Peter Yarsky, Mike Driscoll, Dan Wachs, Kevan Weaver, Ken Czerwinski, Mike Pope, James Parry, Theron D. Marshall, Cliff B. Davis, Dustin Crawford, Thomas Hartmann, Pradip Saha; Hejzlar, Pavel; Yarsky, Peter
2005-01-31
This project is organized under four major tasks (each of which has two or more subtasks) with contributions among the three collaborating organizations (MIT, INEEL and ANL-West): Task A: Core Physics and Fuel Cycle; Task B: Core Thermal Hydraulics; Task C: Plant Design; Task D: Fuel Design The lead PI, Michael J. Driscoll, has consolidated and summarized the technical progress submissions provided by the contributing investigators from all sites, under the above principal task headings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Y. Q.; Shemon, E. R.; Mahadevan, Vijay S.
SHARP, developed under the NEAMS Reactor Product Line, is an advanced modeling and simulation toolkit for the analysis of advanced nuclear reactors. SHARP is comprised of three physics modules currently including neutronics, thermal hydraulics, and structural mechanics. SHARP empowers designers to produce accurate results for modeling physical phenomena that have been identified as important for nuclear reactor analysis. SHARP can use existing physics codes and take advantage of existing infrastructure capabilities in the MOAB framework and the coupling driver/solver library, the Coupled Physics Environment (CouPE), which utilizes the widely used, scalable PETSc library. This report aims at identifying the coupled-physicsmore » simulation capability of SHARP by introducing the demonstration example called sahex in advance of the SHARP release expected by Mar 2016. sahex consists of 6 fuel pins with cladding, 1 control rod, sodium coolant and an outer duct wall that encloses all the other components. This example is carefully chosen to demonstrate the proof of concept for solving more complex demonstration examples such as EBR II assembly and ABTR full core. The workflow of preparing the input files, running the case and analyzing the results is demonstrated in this report. Moreover, an extension of the sahex model called sahex_core, which adds six homogenized neighboring assemblies to the full heterogeneous sahex model, is presented to test homogenization capabilities in both Nek5000 and PROTEUS. Some primary information on the configuration and build aspects for the SHARP toolkit, which includes capability to auto-download dependencies and configure/install with optimal flags in an architecture-aware fashion, is also covered by this report. A step-by-step instruction is provided to help users to create their cases. Details on these processes will be provided in the SHARP user manual that will accompany the first release.« less
NASA Astrophysics Data System (ADS)
Gaillot, P.
2007-12-01
X-ray computed tomography (CT) of rock core provides nondestructive cross-sectional or three-dimensional core representations from the attenuation of electromagnetic radiation. Attenuation depends on the density and the atomic constituents of the rock material that is scanned. Since it has the potential to non-invasively measure phase distribution and species concentration, X-ray CT offers significant advantages to characterize both heterogeneous and apparently homogeneous lithologies. In particular, once empirically calibrated into 3D density images, this scanning technique is useful in the observation of density variation. In this paper, I present a procedure from which information contained in the 3D images can be quantitatively extracted and turned into very-high resolution core logs and core image logs including (1) the radial and angular distributions of density values, (2) the histogram of distribution of the density and its related statistical parameters (average, 10- 25- 50, 75 and 90 percentiles, and width at half maximum), and (3) the volume, the average density and the mass contribution of three core fractions defined by two user-defined density thresholds (voids and vugs < 1.01 g/cc ≤ damaged core material < 1.25 g/cc < non-damaged core material). In turn, these quantitative outputs (1) allow the recognition of bedding and sedimentary features, as well as natural and coring-induced fractures, (2) provide a high-resolution bulk density core log, and (3) provide quantitative estimates of core voids and core damaged zones that can further be used to characterize core quality and core disturbance, and apply, where appropriate, volume correction on core physical properties (gamma-ray attenuation density, magnetic susceptibility, natural gamma radiation, non-contact electrical resistivity, P-wave velocity) acquired via Multi- Sensors Core loggers (MSCL). The procedure is illustrated on core data (XR-CT images, continuous MSCL physical properties and discrete Moisture and Density measurements) from the Hole C9001C drilled off-shore Shimokita (northeast coast of Honshu, Japan) during the shake-down cruise (08-11/2006) of the scientific drilling vessel, Chikyu.
Dalziell, Andrew; Boyle, James; Mutrie, Nanette
2015-01-01
Recent research has confirmed a positive relationship between levels of physical activity and academic achievement. Some of these studies have been informed by neurological models of Executive Functioning (EF). There is a general consensus within the literature that the three core EF skills are; working memory, inhibitory control and cognitive flexibility. The development of these core EF skills has been linked with learning and academic achievement and is an essential component in the delivery of PE using a new and innovative approach called ‘Better Movers and Thinkers (BMT).’ A mixed methods design was used to investigate the effectiveness and feasibility of a 16-week intervention programme using BMT where 46 children were tested on two separate occasions for coordination and balance control, academic skills, working memory and non-verbal reasoning skills. One school acted as the control condition (21 students, aged 9 – 10 years) and another school acted as the intervention condition (25 students, aged 9 – 10 years). Quantitative data revealed an effect between pre and post-test conditions in the areas of phonological skills (p = .042), segmentation skills (p = .014) and working memory (p = .040) in favour of the intervention condition. Further analysis identified a gender-interaction with male students in the intervention condition making significant gains in phonological skills (p = .005) segmentation skills (p = .014) and spelling (p = .007) compared to boys in the control condition. Analysis of qualitative data from a sample of students from the intervention condition and their class teacher indicated good acceptability of BMT as an alternative approach to PE. PMID:27247688
Kunz, Jennifer Hauser; Hommel, Kevin A; Greenley, Rachel Neff
2010-06-01
This study compared youth and parent-proxy reports of health-related quality of life (HRQoL) among youth with inflammatory bowel disease (IBD) to published comparison group data and examined concordance between youth and parent-proxy reports of HRQoL. One hundred thirty-six youth and parent-proxy reports on the PedsQL 4.0 Generic Core Scales were compared to published data from chronically ill, acutely ill, and healthy comparison groups using independent samples t-tests. Reporter agreement was examined using paired samples t-tests and intraclass correlations (ICCs). Youth with IBD reported lower psychosocial functioning than the healthy comparison group, higher physical and social functioning than the chronically ill group, and lower school functioning than all published comparison groups. Parent-proxy reports of youth HRQoL were higher than the chronically ill group, but lower than the healthy group on all scales except psychosocial functioning. Youth with active IBD reported lower physical health domain scores than youth with inactive disease. Concordance between youth and parent-proxy reports was moderate, with the lowest agreement in school and social functioning. Youth with IBD and their parents rate HRQoL as lower than healthy youth but do not perceive the impact of IBD to be as limiting as in other chronic conditions. Youth report suggests that IBD may be particularly detrimental to HRQoL in the school functioning domain. Moderate agreement between parent and youth reports substantiates continued use of multiple informants in studies of pediatric HRQoL.
NASA Astrophysics Data System (ADS)
Lueck, A. J.; Raef, A. E.
2015-12-01
This study will focus on characterizing subsurface rock formations of the Wellington Field, in Sumner County, Kansas, for both geosequestration of carbon dioxide (CO2) in the saline Arbuckle formation and enhanced oil recovery of a depleting Mississippian oil reservoir. Multi-scale data including lithofacies core samples, X-ray diffraction, digital rock physics scans, scanning electron microscope (SEM) imaging, well log data including sonic and dipole sonic, and surface 3D seismic reflection data will be integrated to establish and/or validate a new or existing rock physics model that best represents our reservoir rock types and characteristics. We will acquire compressional wave velocity and shear wave velocity data from Mississippian and Arbuckle cores by running ultrasonic tests using an Ult 100 Ultrasonic System and a 12 ton hydraulic jack located in the geophysics lab in Thompson Hall at Kansas State University. The elastic constants Young's Modulus, Bulk Modulus, Shear (Rigidity) Modulus and Poisson's Ratio will be extracted from these velocity data. Ultrasonic velocities will also be compared to sonic and dipole sonic log data from the Wellington 1-32 well. These data will be integrated to validate a lithofacies classification statistical model, which will be and partially has been applied to the largely unknown saline Arbuckle formation, with hopes for a connection, perhaps via Poisson's ratio, allowing a time-lapse seismic feasibility assessment and potentially developing a transformation of compressional wave sonic velocities to shear wave sonic for all wells, where compressional wave sonic is available. We will also be testing our rock physics model by predicting effects of changing effective (brine + CO2 +hydrocarbon) fluid composition on seismic properties and the implications on feasibility of seismic monitoring. Lessons learned from characterizing the Mississippian are essential to understanding the potential of utilizing similar workflows for the much less known saline aquifer of the Arbuckle in south central Kansas.
EBR-II Reactor Physics Benchmark Evaluation Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, Chad L.; Lum, Edward S; Stewart, Ryan
This report provides a reactor physics benchmark evaluation with associated uncertainty quantification for the critical configuration of the April 1986 Experimental Breeder Reactor II Run 138B core configuration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kryanev, A. V.; Udumyan, D. K.; Kurchenkov, A. Yu., E-mail: s327@vver.kiae.ru
2014-12-15
Problems associated with determining the power distribution in the VVER-440 core on the basis of a neutron-physics calculation and data from in-core monitors are considered. A new mathematical scheme is proposed for this on the basis of a metric analysis. In relation to the existing mathematical schemes, the scheme in question improves the accuracy and reliability of the resulting power distribution.
Ultrahigh temperature vapor core reactor-MHD system for space nuclear electric power
NASA Technical Reports Server (NTRS)
Maya, Isaac; Anghaie, Samim; Diaz, Nils J.; Dugan, Edward T.
1991-01-01
The conceptual design of a nuclear space power system based on the ultrahigh temperature vapor core reactor with MHD energy conversion is presented. This UF4 fueled gas core cavity reactor operates at 4000 K maximum core temperature and 40 atm. Materials experiments, conducted with UF4 up to 2200 K, demonstrate acceptable compatibility with tungsten-molybdenum-, and carbon-based materials. The supporting nuclear, heat transfer, fluid flow and MHD analysis, and fissioning plasma physics experiments are also discussed.
Characterizing Facesheet/Core Disbonding in Honeycomb Core Sandwich Structure
NASA Technical Reports Server (NTRS)
Rinker, Martin; Ratcliffe, James G.; Adams, Daniel O.; Krueger, Ronald
2013-01-01
Results are presented from an experimental investigation into facesheet core disbonding in carbon fiber reinforced plastic/Nomex honeycomb sandwich structures using a Single Cantilever Beam test. Specimens with three, six and twelve-ply facesheets were tested. Specimens with different honeycomb cores consisting of four different cell sizes were also tested, in addition to specimens with three different widths. Three different data reduction methods were employed for computing apparent fracture toughness values from the test data, namely an area method, a compliance calibration technique and a modified beam theory method. The compliance calibration and modified beam theory approaches yielded comparable apparent fracture toughness values, which were generally lower than those computed using the area method. Disbonding in the three-ply facesheet specimens took place at the facesheet/core interface and yielded the lowest apparent fracture toughness values. Disbonding in the six and twelve-ply facesheet specimens took place within the core, near to the facesheet/core interface. Specimen width was not found to have a significant effect on apparent fracture toughness. The amount of scatter in the apparent fracture toughness data was found to increase with honeycomb core cell size.
Association between Physical Fitness and Academic Achievement in a Cohort of Danish School Pupils
ERIC Educational Resources Information Center
Andersen, Mikkel P.; Mortensen, Rikke N.; Vardinghus-Nielsen, Henrik; Franch, Jesper; Torp-Pedersen, Christian; Bøggild, Henrik
2016-01-01
Background: Time spent on physical activity in elementary school has been altered to improve core academics. However, little is known about the relationship between physical fitness and academic achievement. We examined the association between physical fitness and academic achievement and investigated the influence of parental socioeconomic status…
Physics Meets Art in the General Education Core
ERIC Educational Resources Information Center
Dark, Marta L.; Hylton, Derrick J.
2018-01-01
This article describes a general education course offering, Physics and the Arts. During the development of this course, physics and arts faculty collaborated closely. We cover the usual physics phenomena for such a course--light, color, and sound--in addition to gravity, equilibrium, and spacetime. Goals of the course are to increase students'…
Mapping the literature of physical therapy.
Wakiji, E M
1997-01-01
Physical therapy is a fast growing profession because of the aging population, medical advances, and the public's interest in health promotion. This study is part of the Medical Library Association (MLA) Nursing and Allied Health Resources Section's project to map the allied health literature. It identifies the core journals in physical therapy by analyzing the cited references of articles in two established physical therapy journals, Physical Therapy and Archives of Physical Medicine and Rehabilitation, during the period 1991 through 1993. This bibliometric analysis also determines the extent to which these journals are covered by the primary indexing sources, Allied and Alternative Medicine (AMED), the Cumulative Index to Nursing and Allied Health Literature, EMBASE, and MEDLINE. In this study, fourteen journals were found to supply one-third of all references studied. Ninety-five journals provided an additional third of the references. MEDLINE rated the highest as the indexing tool of choice for these 109 journals. The study results can assist in collection development decisions, advise physical therapists as to the best access to their core literature, and influence database producers to increase their coverage of the literature important to physical therapy. PMID:9285129
Resolving the observer reference class problem in cosmology
NASA Astrophysics Data System (ADS)
Friederich, Simon
2017-06-01
The assumption that we are typical observers plays a core role in attempts to make multiverse theories empirically testable. A widely shared worry about this assumption is that it suffers from systematic ambiguity concerning the reference class of observers with respect to which typicality is assumed. As a way out, Srednicki and Hartle recommend that we empirically test typicality with respect to different candidate reference classes in analogy to how we test physical theories. Unfortunately, as this paper argues, this idea fails because typicality is not the kind of assumption that can be subjected to empirical tests. As an alternative, a background information constraint on observer reference class choice is suggested according to which the observer reference class should be chosen such that it includes precisely those observers who one could possibly be, given one's assumed background information.
Methodology of the Westinghouse dynamic rod worth measurement technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chao, Y.A.; Chapman, D.M.; Easter, M.E.
1992-01-01
During zero-power physics testing, plant operations personnel use one of various techniques to measure the reactivity worth of the control rods to confirm shutdown margin. A simple and fast procedure for measuring rod worths called dynamic rod worth measurement (DRWM) has been developed at Westinghouse. This procedure was tested at the recent startups of Point Beach Nuclear Power Plant Unit 1 cycle 20 and Unit 2 cycle 18. The results of these tests show that DRWM measures rod worths with accuracy comparable to that of both boron dilution and rod bank exchange measurements. The DRWM procedure is a fast processmore » of measuring the reactivity worth of individual banks by inserting and withdrawing the bank continuously at the maximum stepping speed without changing the boron concentration and recording the signals of the ex-core detectors.« less
NASA Technical Reports Server (NTRS)
Crowe, Kathryn; Williams, Michael
2015-01-01
Test site selection is a critical element of the design, development and production of a new system. With the advent of the new Space Launch System (SLS), the National Aeronautics and Space Administration (NASA) had a number of test site selection decisions that needed to be made early enough in the Program to support the planned Launch Readiness Date (LRD). This case study focuses on decisions that needed to be made in 2011 and 2012 in preparation for the April 2013 DPMC decision about where to execute the Main Propulsion Test that is commonly referred to as "Green Run." Those decisions relied upon cooperative analysis between the Program, the Test Lab and Center Operations. The SLS is a human spaceflight vehicle designed to carry a crew farther into space than humans have previously flown. The vehicle consists of four parts: the crew capsule, the upper stage, the core stage, and the first stage solid rocket boosters. The crew capsule carries the astronauts, while the upper stage, the core stage, and solid rocket boosters provide thrust for the vehicle. In other words, the stages provide the "lift" part of the lift vehicle. In conjunction with the solid rocket boosters, the core stage provides the initial "get-off-the-ground" thrust to the vehicle. The ignition of the four core stage engines and two solid rocket boosters is the first step in the launch portion of the mission. The solid rocket boosters burn out after about 2 minutes of flight, and are then jettisoned. The core stage provides thrust until the vehicle reaches a specific altitude and speed, at which point the core stage is shut off and jettisoned, and the upper stage provides vehicle thrust for subsequent mission trajectories. The integrated core stage primarily consists of a liquid oxygen tank, a liquid hydrogen tank, and the four core stage engines. For the SLS program, four RS-25 engines were selected as the four core stage engines. The RS-25 engine is the same engine that was used for Space Shuttle. The test plan for the integrated core stage was broken down into several segments: Component testing, system level testing, and element level testing. In this context, components are items such as valves, controllers, sensors, etc. Systems are items such as an entire engine, a tank, or the outer stage body. The core stage itself is considered to be an element. The rocket engines are also considered an element. At the program level, it was decided to perform a single green run test on the integrated core stage prior to shipment of it to Kennedy Space Center (KSC) for use in the EM-1 test flight of the SLS vehicle. A green run test is the first live fire of the new integrated core stage and engine elements - without boosters of course. The SLS Program had to decide where to perform SLS green run testing.
Using White Dwarf Companions of Blue Stragglers to Constrain Mass Transfer Physics
NASA Astrophysics Data System (ADS)
Gosnell, Natalie M.; Leiner, Emily; Geller, Aaron M.; Knigge, Christian; Mathieu, Robert D.; Sills, Alison; Leigh, Nathan
2018-06-01
Complete membership studies of old open clusters reveal that 25% of the evolved stars follow pathways in stellar evolution that are impacted by binary evolution. Recent studies show that the majority of blue straggler stars, traditionally defined to be stars brighter and bluer than the corresponding main sequence turnoff, are formed through mass transfer from a giant star onto a main sequence companion, resulting in a white dwarf in a binary system with a blue straggler. We will present constraints on the histories and mass transfer efficiencies for two blue straggler-white dwarf binaries in open cluster NGC 188. The constraints are a result of measuring white dwarf cooling temperatures and surface gravities with HST COS far-ultraviolet spectroscopy. This information sets both the timeline for mass transfer and the stellar masses in the pre-mass transfer binary, allowing us to constrain aspects of the mass transfer physics. One system is formed through Case C mass transfer, leaving a CO-core white dwarf, and provides an interesting test case for mass transfer from an asymptotic giant branch star in an eccentric system. The other system formed through Case B mass transfer, leaving a He-core white dwarf, and challenges our current understanding of the expected regimes for stable mass transfer from red giant branch stars.
Trbusek, J
2009-11-01
Detection of HCV core antigen as direct marker of hepatitis C infection clearly improves diagnosis of this disease (especially reduction of window period) and brings broad clinical utilization. The company Abbott Laboratories offers fully automated laboratory test for measurement of HCV core antigen on ARCHITECT analyzers.
Cone Calorimeter Analysis of FRT Intumescent and Untreated Foam Core Particleboards
Mark A. Dietenberger; Ali Shalbafan; Johannes Welling; Charles Boardman
2012-01-01
The effectiveness of treatments of the surface layer of novel foam core particleboards were evaluated by means of Cone calorimeter tests. Foam core particleboards with variations of surface layer treatment, adhesives and surface layer thicknesses under similar processing conditions were used to produce the test specimen for the Cone calorimeter tests. Ignitability,...
NASA Technical Reports Server (NTRS)
Douglas, Robert B.; Parker, V. Thomas; Cullings, Kenneth W.; Sun, Sidney (Technical Monitor)
2003-01-01
Forest development patterns following disturbance are known to influence the physical and chemical attributes of soils at different points in time. Changes in soil resources are thought to have a corresponding effect on ectomycorrhizal (ECM) community structure. We used molecular methods to compare below-ground ECM species richness, composition, and abundance between adjacent stands of homogenous lodgepole pine and old growth mixed conifer in Yellowstone National Park (YNP). In each stand-type we collected soil cores to both identify mycorrhizae and assess soil chemistry. Although no statistical difference was observed in the mean number of ECM root tips per core between stand types, the total number of species identified (85 versus 35) and the mean number of species per core (8.8 +/- 0.6 versus 2.5 +/- 0.3) were significantly higher in lodgepole pine. Differences between the actual and estimated species richness levels indicated that these forest types support a high number of ECM species and that undersampling was severe. Species compositions were widely disparate between stands where only four species were shared out of a total of 116. Soil analysis also revealed that mixed conifer was significantly lower in pH, but higher in organic matter, potassium, phosphorus, and ammonium when compared to lodgepole pine stands. Species richness per core was correlated with these chemical data, however, analysis of covariance indicated that stand type was the only statistically significant factor in the observed difference in species richness. Our data suggest that ECM fungal richness increases as homogenous lodgepole pine stands grow and mature, but declines after Engelmann spruce and subalpine fir colonize. Despite difficulties linking species composition with soil chemistry, there are a variety of physical and chemical factors that could be influencing ECM community structure. Future field experiments are necessary to test some of the mechanisms potentially operating within this system.
Chan, Mandy Ky; Chow, Ka Wai; Lai, Alfred Ys; Mak, Noble Kc; Sze, Jason Ch; Tsang, Sharon Mh
2017-07-21
Core stabilization has been utilized for rehabilitation and prevention of lower limb musculoskeletal injuries. Previous studies showed that activation of the abdominal core muscles enhanced the hip muscle activity in hip extension and abduction exercises. However, the lack of the direct measurement and quantification of the activation level of the abdominal core muscles during the execution of the hip exercises affect the level of evidence to substantiate the proposed application of core exercises to promote training and rehabilitation outcome of the hip region. The aim of the present study was to examine the effects of abdominal core activation, which is monitored directly by surface electromyography (EMG), on hip muscle activation while performing different hip exercises, and to explore whether participant characteristics such as gender, physical activity level and contractile properties of muscles, which is assessed by tensiomyography (TMG), have confounding effect to the activation of hip muscles in enhanced core condition. Surface EMG of bilateral internal obliques (IO), upper gluteus maximus (UGMax), lower gluteus maximus (LGMax), gluteus medius (GMed) and biceps femoris (BF) of dominant leg was recorded in 20 young healthy subjects while performing 3 hip exercises: Clam, side-lying hip abduction (HABD), and prone hip extension (PHE) in 2 conditions: natural core activation (NC) and enhanced core activation (CO). EMG signals normalized to percentage of maximal voluntary isometric contraction (%MVIC) were compared between two core conditions with the threshold of the enhanced abdominal core condition defined as >20%MVIC of IO. Enhanced abdominal core activation has significantly promoted the activation level of GMed in all phases of clam exercise (P < 0.05), and UGMax in all phases of PHE exercise (P < 0.05), LGMax in eccentric phases of all 3 exercises (P < 0.05), and BF in all phases of all 3 exercises except the eccentric phase of PHE exercise (P < 0.05). The %MVIC of UGMax was significantly higher than that of LGMax in all phases of clam and HABD exercises under both CO and NC conditions (P < 0.001) while the %MVIC of LGMax was significantly higher than UGMax in concentric phase of PHE exercise under NC condition (P = 0.003). Gender, physical activity level and TMG parameters were not major covariates to activation of hip muscles under enhanced core condition. Abdominal core activation enhances the hip muscles recruitment in Clam, HABD and PHE exercises, and this enhancement is correlated with higher physical activity and stiffer hip muscle. Our results suggest the potential application of abdominal core activation for lower limb rehabilitation since the increased activation of target hip muscles may enhance the therapeutic effects of hip strengthening exercises.
NASA Astrophysics Data System (ADS)
Jia, X.; Slavin, J.; Chen, Y.; Poh, G.; Toth, G.; Gombosi, T.
2018-05-01
We present results from state-of-the-art global models of Mercury's space environment capable of self-consistently simulating the induction effect at the core and resolving kinetic physics important for magnetic reconnection.
Urine tests for Down's syndrome screening.
Alldred, S Kate; Guo, Boliang; Takwoingi, Yemisi; Pennant, Mary; Wisniewski, Susanna; Deeks, Jonathan J; Neilson, James P; Alfirevic, Zarko
2015-12-10
Down's syndrome occurs when a person has three copies of chromosome 21, or the specific area of chromosome 21 implicated in causing Down's syndrome, rather than two. It is the commonest congenital cause of mental disability and also leads to numerous metabolic and structural problems. It can be life-threatening, or lead to considerable ill health, although some individuals have only mild problems and can lead relatively normal lives. Having a baby with Down's syndrome is likely to have a significant impact on family life. The risk of a Down's syndrome affected pregnancy increases with advancing maternal age.Noninvasive screening based on biochemical analysis of maternal serum or urine, or fetal ultrasound measurements, allows estimates of the risk of a pregnancy being affected and provides information to guide decisions about definitive testing. Before agreeing to screening tests, parents need to be fully informed about the risks, benefits and possible consequences of such a test. This includes subsequent choices for further tests they may face, and the implications of both false positive and false negative screening tests (i.e. invasive diagnostic testing, and the possibility that a miscarried fetus may be chromosomally normal). The decisions that may be faced by expectant parents inevitably engender a high level of anxiety at all stages of the screening process, and the outcomes of screening can be associated with considerable physical and psychological morbidity. No screening test can predict the severity of problems a person with Down's syndrome will have. To estimate and compare the accuracy of first and second trimester urine markers for the detection of Down's syndrome. We carried out a sensitive and comprehensive literature search of MEDLINE (1980 to 25 August 2011), EMBASE (1980 to 25 August 2011), BIOSIS via EDINA (1985 to 25 August 2011), CINAHL via OVID (1982 to 25 August 2011), The Database of Abstracts of Reviews of Effectiveness (The Cochrane Library 2011, Issue 7), MEDION (25 August 2011), The Database of Systematic Reviews and Meta-Analyses in Laboratory Medicine (25 August 2011), The National Research Register (archived 2007), Health Services Research Projects in Progress database (25 August 2011). We studied reference lists and published review articles. Studies evaluating tests of maternal urine in women up to 24 weeks of gestation for Down's syndrome, compared with a reference standard, either chromosomal verification or macroscopic postnatal inspection. We extracted data as test positive or test negative results for Down's and non-Down's pregnancies allowing estimation of detection rates (sensitivity) and false positive rates (1-specificity). We performed quality assessment according to QUADAS (Quality Assessment of Diagnostic Accuracy Studies) criteria. We used hierarchical summary ROC (receiver operating characteristic) meta-analytical methods to analyse test performance and compare test accuracy. We performed analysis of studies allowing direct comparison between tests. We investigated the impact of maternal age on test performance in subgroup analyses. We included 19 studies involving 18,013 pregnancies (including 527 with Down's syndrome). Studies were generally of high quality, although differential verification was common with invasive testing of only high-risk pregnancies. Twenty-four test combinations were evaluated formed from combinations of the following seven different markers with and without maternal age: AFP (alpha-fetoprotein), ITA (invasive trophoblast antigen), ß-core fragment, free ßhCG (beta human chorionic gonadotrophin), total hCG, oestriol, gonadotropin peptide and various marker ratios. The strategies evaluated included three double tests and seven single tests in combination with maternal age, and one triple test, two double tests and 11 single tests without maternal age. Twelve of the 19 studies only evaluated the performance of a single test strategy while the remaining seven evaluated at least two test strategies. Two marker combinations were evaluated in more than four studies; second trimester ß-core fragment (six studies), and second trimester ß-core fragment with maternal age (five studies).In direct test comparisons, for a 5% false positive rate (FPR), the diagnostic accuracy of the double marker second trimester ß-core fragment and oestriol with maternal age test combination was significantly better (ratio of diagnostic odds ratio (RDOR): 2.2 (95% confidence interval (CI) 1.1 to 4.5), P = 0.02) (summary sensitivity of 73% (CI 57 to 85) at a cut-point of 5% FPR) than that of the single marker test strategy of second trimester ß-core fragment and maternal age (summary sensitivity of 56% (CI 45 to 66) at a cut-point of 5% FPR), but was not significantly better (RDOR: 1.5 (0.8 to 2.8), P = 0.21) than that of the second trimester ß-core fragment to oestriol ratio and maternal age test strategy (summary sensitivity of 71% (CI 51 to 86) at a cut-point of 5% FPR). Tests involving second trimester ß-core fragment and oestriol with maternal age are significantly more sensitive than the single marker second trimester ß-core fragment and maternal age, however, there were few studies. There is a paucity of evidence available to support the use of urine testing for Down's syndrome screening in clinical practice where alternatives are available.
Effect of Core Training Program on Physical Functional Performance in Female Soccer Players
ERIC Educational Resources Information Center
Taskin, Cengiz
2016-01-01
The purpose of this study was to determine the effect of core training program on speed, acceleration, vertical jump, and standing long jump in female soccer players. A total of 40 female soccer players volunteered to participate in this study. They were divided randomly into 1 of 2 groups: core training group (CTG; n = 20) and control group (CG;…
E-novo: an automated workflow for efficient structure-based lead optimization.
Pearce, Bradley C; Langley, David R; Kang, Jia; Huang, Hongwei; Kulkarni, Amit
2009-07-01
An automated E-Novo protocol designed as a structure-based lead optimization tool was prepared through Pipeline Pilot with existing CHARMm components in Discovery Studio. A scaffold core having 3D binding coordinates of interest is generated from a ligand-bound protein structural model. Ligands of interest are generated from the scaffold using an R-group fragmentation/enumeration tool within E-Novo, with their cores aligned. The ligand side chains are conformationally sampled and are subjected to core-constrained protein docking, using a modified CHARMm-based CDOCKER method to generate top poses along with CDOCKER energies. In the final stage of E-Novo, a physics-based binding energy scoring function ranks the top ligand CDOCKER poses using a more accurate Molecular Mechanics-Generalized Born with Surface Area method. Correlation of the calculated ligand binding energies with experimental binding affinities were used to validate protocol performance. Inhibitors of Src tyrosine kinase, CDK2 kinase, beta-secretase, factor Xa, HIV protease, and thrombin were used to test the protocol using published ligand crystal structure data within reasonably defined binding sites. In-house Respiratory Syncytial Virus inhibitor data were used as a more challenging test set using a hand-built binding model. Least squares fits for all data sets suggested reasonable validation of the protocol within the context of observed ligand binding poses. The E-Novo protocol provides a convenient all-in-one structure-based design process for rapid assessment and scoring of lead optimization libraries.
Lima, Cristina Jardelino de; Falci, Saulo Gabriel Moreira; Rodrigues, Danillo Costa; Marchiori, Érica Cristina; Moreira, Roger Willian Fernandes
2015-12-01
The aim of the present study was to use mechanical and photoelastic tests to compare the performance of cannulated screws with solid-core screws in sagittal split osteotomy fixation. Ten polyurethane mandibles, with a prefabricated sagittal split ramus osteotomy, were fixed with an L inverted technique and allocated to each group as follows: cannulated screw group (CSG), fixed with three 2.3-cannulated screws; and solid-core screw group (SCSG), fixed with three 2.3-solid-core screws. Vertical linear loading tests were performed. The differences between mean values were analyzed through T test for independent samples. The photoelastic test was carried out using a polariscope. The results revealed differences between the two groups only at 1 mm of displacement, in which the cannulated-screw revealed more resistance. Photoelastic test showed higher stress concentration close to mandibular branch in the solid-core group. Cannulated screws performed better than solid-core ones in a mechanical test at 1-mm displacement and photoelastic tests.
Test case for VVER-1000 complex modeling using MCU and ATHLET
NASA Astrophysics Data System (ADS)
Bahdanovich, R. B.; Bogdanova, E. V.; Gamtsemlidze, I. D.; Nikonov, S. P.; Tikhomirov, G. V.
2017-01-01
The correct modeling of processes occurring in the fuel core of the reactor is very important. In the design and operation of nuclear reactors it is necessary to cover the entire range of reactor physics. Very often the calculations are carried out within the framework of only one domain, for example, in the framework of structural analysis, neutronics (NT) or thermal hydraulics (TH). However, this is not always correct, as the impact of related physical processes occurring simultaneously, could be significant. Therefore it is recommended to spend the coupled calculations. The paper provides test case for the coupled neutronics-thermal hydraulics calculation of VVER-1000 using the precise neutron code MCU and system engineering code ATHLET. The model is based on the fuel assembly (type 2M). Test case for calculation of power distribution, fuel and coolant temperature, coolant density, etc. has been developed. It is assumed that the test case will be used for simulation of VVER-1000 reactor and in the calculation using other programs, for example, for codes cross-verification. The detailed description of the codes (MCU, ATHLET), geometry and material composition of the model and an iterative calculation scheme is given in the paper. Script in PERL language was written to couple the codes.
Stochastic Approaches Within a High Resolution Rapid Refresh Ensemble
NASA Astrophysics Data System (ADS)
Jankov, I.
2017-12-01
It is well known that global and regional numerical weather prediction (NWP) ensemble systems are under-dispersive, producing unreliable and overconfident ensemble forecasts. Typical approaches to alleviate this problem include the use of multiple dynamic cores, multiple physics suite configurations, or a combination of the two. While these approaches may produce desirable results, they have practical and theoretical deficiencies and are more difficult and costly to maintain. An active area of research that promotes a more unified and sustainable system is the use of stochastic physics. Stochastic approaches include Stochastic Parameter Perturbations (SPP), Stochastic Kinetic Energy Backscatter (SKEB), and Stochastic Perturbation of Physics Tendencies (SPPT). The focus of this study is to assess model performance within a convection-permitting ensemble at 3-km grid spacing across the Contiguous United States (CONUS) using a variety of stochastic approaches. A single physics suite configuration based on the operational High-Resolution Rapid Refresh (HRRR) model was utilized and ensemble members produced by employing stochastic methods. Parameter perturbations (using SPP) for select fields were employed in the Rapid Update Cycle (RUC) land surface model (LSM) and Mellor-Yamada-Nakanishi-Niino (MYNN) Planetary Boundary Layer (PBL) schemes. Within MYNN, SPP was applied to sub-grid cloud fraction, mixing length, roughness length, mass fluxes and Prandtl number. In the RUC LSM, SPP was applied to hydraulic conductivity and tested perturbing soil moisture at initial time. First iterative testing was conducted to assess the initial performance of several configuration settings (e.g. variety of spatial and temporal de-correlation lengths). Upon selection of the most promising candidate configurations using SPP, a 10-day time period was run and more robust statistics were gathered. SKEB and SPPT were included in additional retrospective tests to assess the impact of using all three stochastic approaches to address model uncertainty. Results from the stochastic perturbation testing were compared to a baseline multi-physics control ensemble. For probabilistic forecast performance the Model Evaluation Tools (MET) verification package was used.
The Mile Deep Muon Detector at Sanford Underground Laboratory
NASA Astrophysics Data System (ADS)
McMahan, Margaret; Gabriel, Steve
2012-03-01
For educating students and teachers about basic nuclear and particle physics, you can't go wrong with cosmic rays muons as a cheap and reliable source of data. A simple and relatively inexpensive detector gives a myriad of possibilities to cover core material in physical science, chemistry, physics, and statistics and gives students opportunities to design their own investigations. At Sanford Underground Laboratory at Homestake, in Lead, SD, cosmic ray muon detectors are being used to answer the first question always asked by any visitor to the facility, ``Why are you building the lab a mile underground'' A conventional Quarknet-style detector is available in the education facility on the surface, with a much larger companion detector, the Mile Deep Muon Detector, set up 4850 feet below the surface. Using the Quarknet data acquisition board, the data will be made available to students and teachers through the Cosmic Ray E-lab website. The detector was tested and installed as part of a summer program for students beginning their first or second year of college.
NASA Astrophysics Data System (ADS)
Zheng, Jiajia; Li, Yancheng; Li, Zhaochun; Wang, Jiong
2015-10-01
This paper presents multi-physics modeling of an MR absorber considering the magnetic hysteresis to capture the nonlinear relationship between the applied current and the generated force under impact loading. The magnetic field, temperature field, and fluid dynamics are represented by the Maxwell equations, conjugate heat transfer equations, and Navier-Stokes equations. These fields are coupled through the apparent viscosity and the magnetic force, both of which in turn depend on the magnetic flux density and the temperature. Based on a parametric study, an inverse Jiles-Atherton hysteresis model is used and implemented for the magnetic field simulation. The temperature rise of the MR fluid in the annular gap caused by core loss (i.e. eddy current loss and hysteresis loss) and fluid motion is computed to investigate the current-force behavior. A group of impulsive tests was performed for the manufactured MR absorber with step exciting currents. The numerical and experimental results showed good agreement, which validates the effectiveness of the proposed multi-physics FEA model.
A new method for teaching physical examination to junior medical students.
Sayma, Meelad; Williams, Hywel Rhys
2016-01-01
Teaching effective physical examination is a key component in the education of medical students. Preclinical medical students often have insufficient clinical knowledge to apply to physical examination recall, which may hinder their learning when taught through certain understanding-based models. This pilot project aimed to develop a method to teach physical examination to preclinical medical students using "core clinical cases", overcoming the need for "rote" learning. This project was developed utilizing three cycles of planning, action, and reflection. Thematic analysis of feedback was used to improve this model, and ensure it met student expectations. A model core clinical case developed in this project is described, with gout as the basis for a "foot and ankle" examination. Key limitations and difficulties encountered on implementation of this pilot are discussed for future users, including the difficulty encountered in "content overload". This approach aims to teach junior medical students physical examination through understanding, using a simulated patient environment. Robust research is now required to demonstrate efficacy and repeatability in the physical examination of other systems.
Efficiency of static core turn-off in a system-on-a-chip with variation
Cher, Chen-Yong; Coteus, Paul W; Gara, Alan; Kursun, Eren; Paulsen, David P; Schuelke, Brian A; Sheets, II, John E; Tian, Shurong
2013-10-29
A processor-implemented method for improving efficiency of a static core turn-off in a multi-core processor with variation, the method comprising: conducting via a simulation a turn-off analysis of the multi-core processor at the multi-core processor's design stage, wherein the turn-off analysis of the multi-core processor at the multi-core processor's design stage includes a first output corresponding to a first multi-core processor core to turn off; conducting a turn-off analysis of the multi-core processor at the multi-core processor's testing stage, wherein the turn-off analysis of the multi-core processor at the multi-core processor's testing stage includes a second output corresponding to a second multi-core processor core to turn off; comparing the first output and the second output to determine if the first output is referring to the same core to turn off as the second output; outputting a third output corresponding to the first multi-core processor core if the first output and the second output are both referring to the same core to turn off.
NASA Technical Reports Server (NTRS)
Fasching, W. A.
1979-01-01
The short core exhaust nozzle was evaluated in CF6-50 engine ground tests including performance, acoustic, and endurance tests. The test results verified the performance predictions from scale model tests. The short core exhaust nozzle provides an internal cruise sfc reduction of 0.9 percent without an increase in engine noise. The nozzle hardware successfully completed 1000 flight cycles of endurance testing without any signs of distress.
Physical and Electronic Isolation of Carbon Nanotube Conductors
NASA Technical Reports Server (NTRS)
OKeeffe, James; Biegel, Bryan (Technical Monitor)
2001-01-01
Multi-walled nanotubes are proposed as a method to electrically and physically isolate nanoscale conductors from their surroundings. We use tight binding (TB) and density functional theory (DFT) to simulate the effects of an external electric field on multi-wall nanotubes. Two categories of multi-wall nanotube are investigated, those with metallic and semiconducting outer shells. In the metallic case, simulations show that the outer wall effectively screens the inner core from an applied electric field. This offers the ability to reduce crosstalk between nanotube conductors. A semiconducting outer shell is found not to perturb an electric field incident on the inner core, thereby providing physical isolation while allowing the tube to remain electrically coupled to its surroundings.
Contamination Control of Freeze Shoe Coring System for Collection of Aquifer Sands
NASA Astrophysics Data System (ADS)
Homola, K.; van Geen, A.; Spivack, A. J.; Grzybowski, B.; Schlottenmier, D.
2017-12-01
We have developed and tested an original device, the freeze-shoe coring system, designed to recover undisturbed samples of water contained in sand-dominated aquifers. Aquifer sands are notoriously difficult to collect together with porewater from coincident depths, as high hydraulic permeability leads to water drainage and mixing during retrieval. Two existing corer designs were reconfigured to incorporate the freeze-shoe system; a Hydraulic Piston (HPC) and a Rotary (RC) Corer. Once deployed, liquid CO2 contained in an interior tank is channeled to coils at the core head where it changes phase, rapidly cooling the deepest portion of the core. The resulting frozen core material impedes water loss during recovery. We conducted contamination tests to examine the integrity of cores retrieved during a March 2017 yard test deployment. Perfluorocarbon tracer (PFC) was added to the drill fluid and recovered cores were subsampled to capture the distribution of PFC throughout the core length and interior. Samples were collected from two HPC and one RC core and analyzed for PFC concentrations. The lowest porewater contamination, around 0.01% invasive fluid, occurs in the center of both HPC cores. The greatest contamination (up to 10%) occurs at the disturbed edges where core material contacts drill fluid. There was lower contamination in the core interior than top, bottom, and edges, as well as significantly lower contamination in HPC cores that those recovered with the RC. These results confirm that the freeze-shoe system, proposed for field test deployments in West Bengal, India, can successfully collect intact porewater and sediment material with minimal if any contamination from drill fluid.
A Numerical and Experimental Study of Damage Growth in a Composite Laminate
NASA Technical Reports Server (NTRS)
McElroy, Mark; Ratcliffe, James; Czabaj, Michael; Wang, John; Yuan, Fuh-Gwo
2014-01-01
The present study has three goals: (1) perform an experiment where a simple laminate damage process can be characterized in high detail; (2) evaluate the performance of existing commercially available laminate damage simulation tools by modeling the experiment; (3) observe and understand the underlying physics of damage in a composite honeycomb sandwich structure subjected to low-velocity impact. A quasi-static indentation experiment has been devised to provide detailed information about a simple mixed-mode damage growth process. The test specimens consist of an aluminum honeycomb core with a cross-ply laminate facesheet supported on a stiff uniform surface. When the sample is subjected to an indentation load, the honeycomb core provides support to the facesheet resulting in a gradual and stable damage growth process in the skin. This enables real time observation as a matrix crack forms, propagates through a ply, and then causes a delamination. Finite element analyses were conducted in ABAQUS/Explicit(TradeMark) 6.13 that used continuum and cohesive modeling techniques to simulate facesheet damage and a geometric and material nonlinear model to simulate core crushing. The high fidelity of the experimental data allows a detailed investigation and discussion of the accuracy of each numerical modeling approach.
Physiological and Selective Attention Demands during an International Rally Motor Sport Event
Turner, Anthony P.; Richards, Hugh
2015-01-01
Purpose. To monitor physiological and attention responses of drivers and codrivers during a World Rally Championship (WRC) event. Methods. Observational data were collected from ten male drivers/codrivers on heart rate (HR), core body (T core) and skin temperature (T sk), hydration status (urine osmolality), fluid intake (self-report), and visual and auditory selective attention (performance tests). Measures were taken pre-, mid-, and postcompetition day and also during the precompetition reconnaissance. Results. In ambient temperatures of 20.1°C (in-car peak 33.9°C) mean (SD) peak HR and T core were significantly elevated (P < 0.05) during rally compared to reconnaissance (166 (17) versus 111 (16) beats·min−1 and 38.5 (0.4) versus 37.6 (0.2)°C, resp.). Values during competitive stages were substantially higher in drivers. High urine osmolality was indicated in some drivers within competition. Attention was maintained during the event but was significantly lower prerally, though with considerable individual variation. Conclusions. Environmental and physical demands during rally competition produced significant physiological responses. Challenges to thermoregulation, hydration status, and cognitive function need to be addressed to minimise potentially negative effects on performance and safety. PMID:25866799
Physiological and selective attention demands during an international rally motor sport event.
Turner, Anthony P; Richards, Hugh
2015-01-01
To monitor physiological and attention responses of drivers and codrivers during a World Rally Championship (WRC) event. Observational data were collected from ten male drivers/codrivers on heart rate (HR), core body (T core) and skin temperature (T sk), hydration status (urine osmolality), fluid intake (self-report), and visual and auditory selective attention (performance tests). Measures were taken pre-, mid-, and postcompetition day and also during the precompetition reconnaissance. In ambient temperatures of 20.1°C (in-car peak 33.9°C) mean (SD) peak HR and T core were significantly elevated (P < 0.05) during rally compared to reconnaissance (166 (17) versus 111 (16) beats · min(-1) and 38.5 (0.4) versus 37.6 (0.2)°C, resp.). Values during competitive stages were substantially higher in drivers. High urine osmolality was indicated in some drivers within competition. Attention was maintained during the event but was significantly lower prerally, though with considerable individual variation. Environmental and physical demands during rally competition produced significant physiological responses. Challenges to thermoregulation, hydration status, and cognitive function need to be addressed to minimise potentially negative effects on performance and safety.
Core Noise - Increasing Importance
NASA Technical Reports Server (NTRS)
Hultgren, Lennart S.
2011-01-01
This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduced-Perceived-Noise Technical Challenge; and the current research activities in the core-noise area, with additional details given about the development of a high-fidelity combustor-noise prediction capability as well as activities supporting the development of improved reduced-order, physics-based models for combustor-noise prediction. The need for benchmark data for validation of high-fidelity and modeling work and the value of a potential future diagnostic facility for testing of core-noise-reduction concepts are indicated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor designs could increase the combustion-noise component. The trend towards high-power-density cores also means that the noise generated in the low-pressure turbine will likely increase. Consequently, the combined result from these emerging changes will be to elevate the overall importance of turbomachinery core noise, which will need to be addressed in order to meet future noise goals.
Mapping the core journals of the physical therapy literature*
Fell, Dennis W; Buchanan, Melanie J; Horchen, Heidi A; Scherr, Joel A
2011-01-01
Objectives: The purpose of this study was to identify (1) core journals in the literature of physical therapy, (2) currency of references cited in that literature, and (3) online databases providing the highest coverage rate of core journals. Method: Data for each cited reference in each article of four source journals for three years were recorded, including type of literature, year of publication, and journal title. The journal titles were ranked in descending order according to the frequency of citations and divided into three zones using Bradford's Law of Scattering. Four databases were analyzed for coverage rates of articles published in the Zone 1 and Zone 2 journals in 2007. Results: Journal articles were the most frequently cited type of literature, with sixteen journals supplying one-third of the cited journal references. Physical Therapy was the most commonly cited title. There were more cited articles published from 2000 to 2007 than in any previous full decade. Of the databases analyzed, CINAHL provided the highest coverage rate for Zone 1 2007 publications. Conclusions: Results were similar to a previous study, except for changes in the order of Zone 1 journals. Results can help physical therapists and librarians determine important journals in this discipline. PMID:21753912
Sport-specific endurance plank test for evaluation of global core muscle function.
Tong, Tom K; Wu, Shing; Nie, Jinlei
2014-02-01
To examine the validity and reliability of a sports-specific endurance plank test for the evaluation of global core muscle function. Repeated-measures study. Laboratory environment. Twenty-eight male and eight female young athletes. Surface electromyography (sEMG) of selected trunk flexors and extensors, and an intervention of pre-fatigue core workout were applied for test validation. Intraclass correlation coefficient (ICC), coefficient of variation (CV), and the measurement bias ratio */÷ ratio limits of agreement (LOA) were calculated to assess reliability and measurement error. Test validity was shown by the sEMG of selected core muscles, which indicated >50% increase in muscle activation during the test; and the definite discrimination of the ∼30% reduction in global core muscle endurance subsequent to a pre-fatigue core workout. For test-retest reliability, when the first attempt of three repeated trials was considered as familiarisation, the ICC was 0.99 (95% CI: 0.98-0.99), CV was 2.0 ± 1.56% and the measurement bias ratio */÷ ratio LOA was 0.99 */÷ 1.07. The findings suggest that the sport-specific endurance plank test is a valid, reliable and practical method for assessing global core muscle endurance in athletes given that at least one familiarisation trial takes place prior to measurement. Copyright © 2013 Elsevier Ltd. All rights reserved.
Influence of PBL with open-book tests on knowledge retention measured with progress tests.
Heijne-Penninga, M; Kuks, J B M; Hofman, W H A; Muijtjens, A M M; Cohen-Schotanus, J
2013-08-01
The influence of problem-based learning (PBL) and open-book tests on long-term knowledge retention is unclear and subject of discussion. Hypotheses were that PBL as well as open-book tests positively affect long-term knowledge retention. Four progress test results of fifth and sixth-year medical students (n = 1,648) of three medical schools were analyzed. Two schools had PBL driven curricula, and the third one had a traditional curriculum (TC). One of the PBL schools (PBLob) used a combination of open-book (assessing backup knowledge) and closed-book tests (assessing core knowledge); the other two schools (TC and PBLcb) only used closed-book tests. The items of the progress tests were divided into core and backup knowledge. T tests (with Bonferroni correction) were used to analyze differences between curricula. PBL students performed significantly better than TC students on core knowledge (average effect size (av ES) = 0.37-0.74) and PBL students tested with open-book tests scored somewhat higher than PBL students tested without such tests (av ES = 0.23-0.30). Concerning backup knowledge, no differences were found between the scores of the three curricula. Students of the two PBL curricula showed a substantially better long-term knowledge retention than TC students. PBLob students performed somewhat better on core knowledge than PBLcb students. These outcomes suggest that a problem-based instructional approach in particular can stimulate long-term knowledge retention. Distinguishing knowledge into core and backup knowledge and using open-book tests alongside closed-book tests could enhance long-term core knowledge retention.
LFRic: Building a new Unified Model
NASA Astrophysics Data System (ADS)
Melvin, Thomas; Mullerworth, Steve; Ford, Rupert; Maynard, Chris; Hobson, Mike
2017-04-01
The LFRic project, named for Lewis Fry Richardson, aims to develop a replacement for the Met Office Unified Model in order to meet the challenges which will be presented by the next generation of exascale supercomputers. This project, a collaboration between the Met Office, STFC Daresbury and the University of Manchester, builds on the earlier GungHo project to redesign the dynamical core, in partnership with NERC. The new atmospheric model aims to retain the performance of the current ENDGame dynamical core and associated subgrid physics, while also enabling a far greater scalability and flexibility to accommodate future supercomputer architectures. Design of the model revolves around a principle of a 'separation of concerns', whereby the natural science aspects of the code can be developed without worrying about the underlying architecture, while machine dependent optimisations can be carried out at a high level. These principles are put into practice through the development of an autogenerated Parallel Systems software layer (known as the PSy layer) using a domain-specific compiler called PSyclone. The prototype model includes a re-write of the dynamical core using a mixed finite element method, in which different function spaces are used to represent the various fields. It is able to run in parallel with MPI and OpenMP and has been tested on over 200,000 cores. In this talk an overview of the both the natural science and computational science implementations of the model will be presented.
PKiKP amplitude observations and structure of the inner core boundary
NASA Astrophysics Data System (ADS)
Krasnoshchekov, D.; Adushkin, V.; Ovtchinnikov, V.
2003-04-01
We present PKiKP amplitude observations at distances from 5.6 to 90 degrees that evidence substantial lateral variability of reflecting conditions on the inner core boundary. Unlike other PKiKP studies, that frequently use array data, detection of PKiKP phase in the work was accomplished on single vertical component. We have carefully investigated short-period digital vertical channels of 9 stations in Central Asia that recorded 43 Underground Nuclear Explosions carried out at Nevada, Lop-Nor, Novaya Zemlya and Semipalatinsk Test Sites in 1968 - 1994, and found numerous convincing examples of PKiKP waveforms. The amplitude data set varies in the range from 1 to 62 nm with predominant period of less than 1 s. Using known seismic source parameters we compared the expected PKiKP amplitudes and travel times to the experimental ones. The observed travel times are generally agreed with PREM within 1 s scatter, though amplitudes aren't. In addition, the whole stack of experimental amplitudes may hardly be simultaneously agreed with any regular model of the inner core boundary either sharp or with transition. Thorough analysis of the data set indicates, that detection of PKiKP and its amplitude is basically pre-defined by actual physical conditions at reflection point on the surface of the inner core which may vary substantially due to boundary processes of freezing and chemical (structural) convection.
Dietschi, Dider; Ardu, Stefano; Rossier-Gerber, Anne; Krejci, Ivo
2006-12-01
Fatigue resistance of post and cores is critical to the long term behavior of restored nonvital teeth. The purpose of this in vitro trial was to evaluate the influence of the post material's physical properties on the adaptation of adhesive post and core restorations after cyclic mechanical loading. Composite post and cores were made on endodontically treated deciduous bovine teeth using 3 anisotropic posts (made of carbon, quartz, or quartz-and-carbon fibers) and 3 isotropic posts (zirconium, stainless steel, titanium). Specimens were submitted to 3 successive loading phases--250,000 cycles at 50 N, 250,000 at 75 N, and 500,000 at 100 N--at a rate of 1.5 Hz. Restoration adaptation was evaluated under SEM, before and during loading (margins) and after test completion (margins and internal interfaces). Six additional samples were fabricated for the characterization of interface micromorphology using confocal microscopy. Mechanical loading increased the proportion of marginal gaps in all groups; carbon fiber posts presented the lowest final gap proportion (7.11%) compared to other stiffer metal-ceramic or softer fiber posts (11.0% to 19.1%). For internal adaptation, proportions of debonding between dentin and core or cement varied from 21.69% (carbon post) to 47.37% (stainless steel post). Debonding at the post-cement interface occurred only with isotropic materials. Confocal microscopy observation revealed that gaps were generally associated with an incomplete hybrid layer and reduced resin tags. Regardless of their rigidity, metal and ceramic isotropic posts proved less effective than fiber posts at stabilizing the post and core structure in the absence of the ferrule effect, due to the development of more interfacial defects with either composite or dentin.
Checkerboard seed-blanket thorium fuel core concepts for heavy water moderated reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromley, B.P.; Hyland, B.
2013-07-01
New reactor concepts to implement thorium-based fuel cycles have been explored to achieve maximum resource utilization. Pressure tube heavy water reactors (PT-HWR) are highly advantageous for implementing the use of thorium-based fuels because of their high neutron economy and on-line re-fuelling capability. The use of heterogeneous seed-blanket core concepts in a PT-HWR where higher-fissile-content seed fuel bundles are physically separate from lower-fissile-content blanket bundles allows more flexibility and control in fuel management to maximize the fissile utilization and conversion of fertile fuel. The lattice concept chosen was a 35-element bundle made with a homogeneous mixture of reactor grade Pu (aboutmore » 67 wt% fissile) and Th, and with a central zirconia rod to help reduce coolant void reactivity. Several checkerboard heterogeneous seed-blanket core concepts with plutonium-thorium-based fuels in a 700-MWe-class PT-HWR were analyzed, using a once-through thorium (OTT) cycle. Different combinations of seed and blanket fuel were tested to determine the impact on core-average burnup, fissile utilization, power distributions, and other performance parameters. It was found that various checkerboard core concepts can achieve a fissile utilization that is up to 26% higher than that achieved in a PT-HWR using more conventional natural uranium fuel bundles. Up to 60% of the Pu is consumed; up to 43% of the energy is produced from thorium, and up to 303 kg/year of Pa-233/U-233/U-235 are produced. Checkerboard cores with about 50% of low-power blanket bundles may require power de-rating (65% to 74%) to avoid exceeding maximum limits for channel and bundle powers and linear element ratings. (authors)« less
Annular seed-blanket thorium fuel core concepts for heavy water moderated reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromley, B.P.; Hyland, B.
2013-07-01
New reactor concepts to implement thorium-based fuel cycles have been explored to achieve maximum resource utilization. Pressure tube heavy water reactors (PT-HWR) are highly advantageous for implementing the use of thorium-based fuels because of their high neutron economy and on-line re-fuelling capability. The use of heterogeneous seed-blanket core concepts in a PT-HWR where higher-fissile-content seed fuel bundles are physically separate from lower-fissile-content blanket bundles allows more flexibility and control in fuel management to maximize the fissile utilization and conversion of fertile fuel. The lattice concept chosen is a 35-element bundle made with a homogeneous mixture of reactor grade Pu andmore » Th, and with a central zirconia rod to help reduce coolant void reactivity. Several annular heterogeneous seed-blanket core concepts with plutonium-thorium-based fuels in a 700-MWe-class PT-HWR were analyzed, using a once-through thorium (OTT) cycle. Different combinations of seed and blanket fuel were tested to determine the impact on core-average burnup, fissile utilization, power distributions, and other performance parameters. It was found that the various core concepts can achieve a fissile utilization that is up to 30% higher than is currently achieved in a PT-HWR using conventional natural uranium fuel bundles. Up to 67% of the Pu is consumed; up to 43% of the energy is produced from thorium, and up to 363 kg/year of U-233 is produced. Seed-blanket cores with ∼50% content of low-power blanket bundles may require power de-rating (∼58% to 65%) to avoid exceeding maximum limits for peak channel power, bundle power and linear element ratings. (authors)« less
Testing the dynamic coupling of the core-mantle and inner core boundaries
NASA Astrophysics Data System (ADS)
Driscoll, Peter E.
2015-07-01
The proposal that the seismically observed hemispherical asymmetry of Earth's inner core is controlled by the heat flux structure imposed on the outer core by the lower mantle is tested with numerical dynamo models driven by mixed thermochemical convection. We find that models driven by a single core-mantle boundary (CMB) spherical harmonic of degree and mode 2, the dominant mode in lower mantle seismic shear velocity tomography, produce a similar structure at the inner core boundary (ICB) shifted 30∘ westward. The sensitivity of the ICB to the CMB is further tested by increasing the CMB heterogeneity amplitude. In addition, two seismic tomographic models are tested: first with CMB resolution up to degree and order 4, and second with resolution up to degree and order 8. We find time-averaged ICB heat flux in these cases to be similar at large scale, with small-scale differences due to higher CMB harmonics (above degree 4). The tomographic models produce "Earth-like" magnetic fields, while similar models with twice the CMB heat flow amplitudes produce less Earth-like fields, implying that increasing CMB heterogeneity forces the model out of an Earth-like regime. The dynamic ICB heat fluxes are compared to the proposed translation mode of the inner core to test whether the CMB controls inner core growth and structure. This test indicates that, although CMB tomography is unlikely to be driving inner core translation, the ICB heat flux response is weak enough to not interfere with the most unstable translation mode, if it is occurring.
In vitro evaluation of five core materials.
Gu, Steven; Rasimick, Brian J; Deutsch, Allan S; Musikant, Barry L
2007-01-01
This in vitro study determined the fracture strength of five core materials supported by two different endodontic dowels. Diametral tensile strength and microhardness of the three resin composite core materials used in this study were also tested. The fracture strength study used one lanthanide-reinforced flowable resin composite (Ti-Core Auto E), one titanium- and lanthanide-reinforced composite (Ti-Core), one lanthanide-reinforced composite (Ti-Core Natural), and two metal-reinforced glass ionomer core materials (Ketac Silver and GC Miracle Mix). Two types of dowels were used: a multitiered, split-shank threaded dowel with a flange (#1 Flexi-Flange) and one without a flange design (#1 Flexi-Post). The specimens were divided into ten groups. Each tooth/dowel and core specimen was placed in a special jig at 45 degrees and subjected to a load by a universal testing machine. The diametral tensile strength and the microhardness of the three resin composite core materials were measured by a universal testing machine and Barcol hardness tester, respectively. All test groups contained ten specimens. The fracture strength value of the resin composite core materials was significantly larger ( p < 0.0001) than those for the metal-reinforced glass-ionomer core materials. Analysis of variance (ANOVA) also showed that the Flexi-Flange dowel interacted with Ti-Core and Ti-Core Auto E to significantly ( p < 0.0013) increase the fracture strength relative to the Flexi-Post. One-way ANOVA revealed that there were no significant differences between them in terms of diametral tensile strength. The Barcol hardness values of the composite core materials were statistically different ( p < 0.0001), with the Ti-Core the highest, followed by Ti-Core Natural, then Ti-Core Auto E. Resin composite core material performed better than glass ionomer material in this in vitro study. The flowable composite core material performed about the same in terms of fracture strength and diametral tensile strength compared with nonflowable composites. Combined with certain core materials, the flange design increased the fracture strength of the tooth/dowel and core combination.
TH-E-201-01: Diagnostic Radiology Residents Physics Curriculum and Updates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sensakovic, W.
The ABR Core Examination stresses integrating physics into real-world clinical practice and, accordingly, has shifted its focus from passive recall of facts to active application of physics principles. Physics education of radiology residents poses a challenge. The traditional method of didactic lectures alone is insufficient, yet it is difficult to incorporate physics teaching consistently into clinical rotations due to time constraints. Faced with this challenge, diagnostic medical physicists who teach radiology residents, have been thinking about how to adapt their teaching to the new paradigm, what to teach and meet expectation of the radiology resident and the radiology residency program.more » The proposed lecture attempts to discuss above questions. Newly developed diagnostic radiology residents physics curriculum by the AAPM Imaging Physics Curricula Subcommittee will be reviewed. Initial experience on hands-on physics teaching will be discussed. Radiology resident who will have taken the BAR Core Examination will share the expectation of physics teaching from a resident perspective. The lecture will help develop robust educational approaches to prepare radiology residents for safer and more effective lifelong practice. Learning Objectives: Learn updated physics requirements for radiology residents Pursue effective approaches to teach physics to radiology residents Learn expectation of physics teaching from resident perspective J. Zhang, This topic is partially supported by RSNA Education Scholar Grant.« less
MATCHED-INDEX-OF-REFRACTION FLOW FACILITY FOR FUNDAMENTAL AND APPLIED RESEARCH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piyush Sabharwall; Carl Stoots; Donald M. McEligot
2014-11-01
Significant challenges face reactor designers with regard to thermal hydraulic design and associated modeling for advanced reactor concepts. Computational thermal hydraulic codes solve only a piece of the core. There is a need for a whole core dynamics system code with local resolution to investigate and understand flow behavior with all the relevant physics and thermo-mechanics. The matched index of refraction (MIR) flow facility at Idaho National Laboratory (INL) has a unique capability to contribute to the development of validated computational fluid dynamics (CFD) codes through the use of state-of-the-art optical measurement techniques, such as Laser Doppler Velocimetry (LDV) andmore » Particle Image Velocimetry (PIV). PIV is a non-intrusive velocity measurement technique that tracks flow by imaging the movement of small tracer particles within a fluid. At the heart of a PIV calculation is the cross correlation algorithm, which is used to estimate the displacement of particles in some small part of the image over the time span between two images. Generally, the displacement is indicated by the location of the largest peak. To quantify these measurements accurately, sophisticated processing algorithms correlate the locations of particles within the image to estimate the velocity (Ref. 1). Prior to use with reactor deign, the CFD codes have to be experimentally validated, which requires rigorous experimental measurements to produce high quality, multi-dimensional flow field data with error quantification methodologies. Computational thermal hydraulic codes solve only a piece of the core. There is a need for a whole core dynamics system code with local resolution to investigate and understand flow behavior with all the relevant physics and thermo-mechanics. Computational techniques with supporting test data may be needed to address the heat transfer from the fuel to the coolant during the transition from turbulent to laminar flow, including the possibility of an early laminarization of the flow (Refs. 2 and 3) (laminarization is caused when the coolant velocity is theoretically in the turbulent regime, but the heat transfer properties are indicative of the coolant velocity being in the laminar regime). Such studies are complicated enough that computational fluid dynamics (CFD) models may not converge to the same conclusion. Thus, experimentally scaled thermal hydraulic data with uncertainties should be developed to support modeling and simulation for verification and validation activities. The fluid/solid index of refraction matching technique allows optical access in and around geometries that would otherwise be impossible while the large test section of the INL system provides better spatial and temporal resolution than comparable facilities. Benchmark data for assessing computational fluid dynamics can be acquired for external flows, internal flows, and coupled internal/external flows for better understanding of physical phenomena of interest. The core objective of this study is to describe MIR and its capabilities, and mention current development areas for uncertainty quantification, mainly the uncertainty surface method and cross-correlation method. Using these methods, it is anticipated to establish a suitable approach to quantify PIV uncertainty for experiments performed in the MIR.« less
Health and Physical Education: A New Global Statement of Consensus (from a Polish Perspective)
ERIC Educational Resources Information Center
Edginton, Christopher R.; Chin, Ming-kai; Bronikowski, Michal
2011-01-01
Physical education has found itself in a difficult position; increasingly more voices are questioning its legitimisation on school curricula. There is an obvious need for performance standards and ways to measure the impact of physical education. Linking the benefits and outcomes of physical education to 21st Century core learning areas such as…
Training of Paraeducators for Physical Education for Children with Visual Impairments
ERIC Educational Resources Information Center
Lieberman, Lauren J.; Conroy, Paula
2013-01-01
Introduction: Children with visual impairments are often behind their peers in physical and motor skills. It is often necessary for these children to work one to one with a paraeducator to gain the benefits of physical education, improve physical activity and motor skills, and attain the basic standards of the Expanded Core Curriculum (ECC).…
Wrestling with Pedagogical Change: The TEAL Initiative at MIT
ERIC Educational Resources Information Center
Breslow, Lori
2010-01-01
In the late 1990s, the physics department at the Massachusetts Institute of Technology (MIT) had a problem. The department was responsible for teaching the two required physics courses that are part of the General Institute Requirements (GIRs), MIT's core curriculum--Physics I (mechanics, or in MIT parlance, 8.01) and Physics II (electricity and…
Haring, Catharina M; van der Meer, Jos W M; Postma, Cornelis T
2013-09-01
Performance of a focused physical examination will induce a high cognitive load for medical students in the early phase of the clinical clerkships. To come to a workable and clinically applicable standard physical examination for medical students to be used in every new patient in the daily clinical practice of internal medicine. A questionnaire held among physicians that supervise students during the clerkship of internal medicine in one Dutch training region. Of the complete list of physical examination 55 items were considered to be an integral part of the standard general physical examination for medical students. Most emphasized were elements of the physical examination aimed at general parameters, thorax and abdomen, vascular status, lymph nodes, spinal column, skin and some parts of the neurological examination. The standard physical examinations performed by supervisors themselves contain fewer items than they expected from the students. The expectations a supervisor has towards the student correlates with the frequency with which they apply the various components in their own physical examination. This study provides us with a 'core' physical examination for medical students that can be applied in the early phase of the clinical clerkships.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burmeister, Jay, E-mail: burmeist@karmanos.org; Chen, Zhe; Chetty, Indrin J.
Purpose: The American Society for Radiation Oncology (ASTRO) Physics Core Curriculum Subcommittee (PCCSC) has updated the recommended physics curriculum for radiation oncology resident education to improve consistency in teaching, intensity, and subject matter. Methods and Materials: The ASTRO PCCSC is composed of physicists and physicians involved in radiation oncology residency education. The PCCSC updated existing sections within the curriculum, created new sections, and attempted to provide additional clinical context to the curricular material through creation of practical clinical experiences. Finally, we reviewed the American Board of Radiology (ABR) blueprint of examination topics for correlation with this curriculum. Results: The newmore » curriculum represents 56 hours of resident physics didactic education, including a 4-hour initial orientation. The committee recommends completion of this curriculum at least twice to assure both timely presentation of material and re-emphasis after clinical experience. In addition, practical clinical physics and treatment planning modules were created as a supplement to the didactic training. Major changes to the curriculum include addition of Fundamental Physics, Stereotactic Radiosurgery/Stereotactic Body Radiation Therapy, and Safety and Incidents sections, and elimination of the Radiopharmaceutical Physics and Dosimetry and Hyperthermia sections. Simulation and Treatment Verification and optional Research and Development in Radiation Oncology sections were also added. A feedback loop was established with the ABR to help assure that the physics component of the ABR radiation oncology initial certification examination remains consistent with this curriculum. Conclusions: The ASTRO physics core curriculum for radiation oncology residents has been updated in an effort to identify the most important physics topics for preparing residents for careers in radiation oncology, to reflect changes in technology and practice since the publication of previous recommended curricula, and to provide practical training modules in clinical radiation oncology physics and treatment planning. The PCCSC is committed to keeping the curriculum current and consistent with the ABR examination blueprint.« less
Burmeister, Jay; Chen, Zhe; Chetty, Indrin J; Dieterich, Sonja; Doemer, Anthony; Dominello, Michael M; Howell, Rebecca M; McDermott, Patrick; Nalichowski, Adrian; Prisciandaro, Joann; Ritter, Tim; Smith, Chadd; Schreiber, Eric; Shafman, Timothy; Sutlief, Steven; Xiao, Ying
2016-07-15
The American Society for Radiation Oncology (ASTRO) Physics Core Curriculum Subcommittee (PCCSC) has updated the recommended physics curriculum for radiation oncology resident education to improve consistency in teaching, intensity, and subject matter. The ASTRO PCCSC is composed of physicists and physicians involved in radiation oncology residency education. The PCCSC updated existing sections within the curriculum, created new sections, and attempted to provide additional clinical context to the curricular material through creation of practical clinical experiences. Finally, we reviewed the American Board of Radiology (ABR) blueprint of examination topics for correlation with this curriculum. The new curriculum represents 56 hours of resident physics didactic education, including a 4-hour initial orientation. The committee recommends completion of this curriculum at least twice to assure both timely presentation of material and re-emphasis after clinical experience. In addition, practical clinical physics and treatment planning modules were created as a supplement to the didactic training. Major changes to the curriculum include addition of Fundamental Physics, Stereotactic Radiosurgery/Stereotactic Body Radiation Therapy, and Safety and Incidents sections, and elimination of the Radiopharmaceutical Physics and Dosimetry and Hyperthermia sections. Simulation and Treatment Verification and optional Research and Development in Radiation Oncology sections were also added. A feedback loop was established with the ABR to help assure that the physics component of the ABR radiation oncology initial certification examination remains consistent with this curriculum. The ASTRO physics core curriculum for radiation oncology residents has been updated in an effort to identify the most important physics topics for preparing residents for careers in radiation oncology, to reflect changes in technology and practice since the publication of previous recommended curricula, and to provide practical training modules in clinical radiation oncology physics and treatment planning. The PCCSC is committed to keeping the curriculum current and consistent with the ABR examination blueprint. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Open friction courses on an asphaltic concrete base: A seven-year progress report
NASA Astrophysics Data System (ADS)
Dodge, K. S.
1982-10-01
The performance of two open-friction courses (OFC) having 1/2 in. and 1/4 in. maximum-sized aggregates - and their adjacent conventional New York State 1A top-course (control) is documented over the final 4 years of their 7-year design lives. The pavements were evaluated by analysis of mix properties and surface performance. The physical properties examined by means of extracted pavement cores were aggregate gradation, binder penetration and viscosities, and void content. Testing of frictional performance, rut depths, microtecture and macrotexture, rideability, and cracking were used to evaluate the pavement's surface performance.
Multicore Hardware Experiments in Software Producibility
2009-06-01
processors. 15. SUBJECT TERMS Multi-core, Real - time Systems , Testing, Software Modernization 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF... real ‐ time systems . The inputs to the dgclocalnav component are the path plan (received from highlevelplanner, discussed next), the drivable grid... time systems , robotics, and software. As frequently observed in cyber‐physical systems, the system designers may need experience in multiple
Evaluation of Mechanical Properties of Plywood Treated with a new Wood Preservative (CEB) Chemical
NASA Astrophysics Data System (ADS)
Kalawate, Aparna; Shahoo, Shadhu Charan; Khatua, Pijus Kanti; Das, Himadri Sekhar
2017-04-01
The objective of this study was to explore the physical and mechanical properties of the plywood made with phenolic glue and rubber wood as core veneer with CEB as a wood preservative. The studied properties were glue shear strength in dry, wet mycological, modulus of elasticity, modulus of rupture and tensile strength in parallel to grain direction as per IS:1734 part-4, 11 and 9 (1983) respectively. Results of the above mentioned tests were compared with the prescribed values given in IS 710-2010 and results revealed that samples conformed the prescribed values.
From Theoretical Physics to Cancer Diagnostics
NASA Astrophysics Data System (ADS)
Tang, Cha-Mei
The core technologies of our company are techniques in high aspect ratio microfabrication. We are currently applying them to the development of x-ray phase contrast imaging systems and blood test for early detection of solid tumors. Good research does not always mean marketable products. Large market size is critical for commercialization. Excellent and accurate science is important, but not sufficient. We are learning that commercialization requires different expertise, experienced advisors, well known board of directors, partnerships, and investments. Our technologies have the potential of reaching multi-billion dollar sales, and we hope we will achieve that goal.
Foster, J.B.; Garklavs, George; Mackey, G.W.
1984-01-01
Hydrogeologic studies were conducted at the low-level radioactive-waste disposal site near Sheffield, Illinois, from 1976-84. Data in this report include water levels in wells, lake stages, inorganic, organic, and radiometric chemical analyses of ground and surface water, hydraulic conductivities of glacial materials, grain-size distribution, clay and carbonate mineralogy, and cation exchange capacities of the glacial materials. Also included are results of petrographic analyses, physical measurements of wells, stratigraphy and lithology of cores collected from test wells, and horizontal coordinates of wells.
ERIC Educational Resources Information Center
Crofts, Colin
1981-01-01
Presents a headmaster's viewpoints and comments on the core syllabus for A-level physics which appeared in the May 1980 issue of "Physics Education," including the necessity for instructional materials, in-service teacher learning, and feasibility studies. (SK)
Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
David W. Nigg, Principal Investigator; Kevin A. Steuhm, Project Manager
Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance, and to some extent, experiment management, are inconsistent with the state of modern nuclear engineering practice, and are difficult, if not impossible, to properly verify and validate (V&V) according to modern standards. Furthermore, the legacy staff knowledge required for application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In late 2009, the Idaho National Laboratory (INL) initiated a focused effort, the ATR Core Modeling Updatemore » Project, to address this situation through the introduction of modern high-fidelity computational software and protocols. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF). The ATR Core Modeling Update Project, targeted for full implementation in phase with the next anticipated ATR Core Internals Changeout (CIC) in the 2014-2015 time frame, began during the last quarter of Fiscal Year 2009, and has just completed its third full year. Key accomplishments so far have encompassed both computational as well as experimental work. A new suite of stochastic and deterministic transport theory based reactor physics codes and their supporting nuclear data libraries (HELIOS, KENO6/SCALE, NEWT/SCALE, ATTILA, and an extended implementation of MCNP5) has been installed at the INL under various licensing arrangements. Corresponding models of the ATR and ATRC are now operational with all five codes, demonstrating the basic feasibility of the new code packages for their intended purpose. Of particular importance, a set of as-run core depletion HELIOS calculations for all ATR cycles since August 2009, Cycle 145A through Cycle 151B, was successfully completed during 2012. This major effort supported a decision late in the year to proceed with the phased incorporation of the HELIOS methodology into the ATR Core Safety Analysis Package (CSAP) preparation process, in parallel with the established PDQ-based methodology, beginning late in Fiscal Year 2012. Acquisition of the advanced SERPENT (VTT-Finland) and MC21 (DOE-NR) Monte Carlo stochastic neutronics simulation codes was also initiated during the year and some initial applications of SERPENT to ATRC experiment analysis were demonstrated. These two new codes will offer significant additional capability, including the possibility of full-3D Monte Carlo fuel management support capabilities for the ATR at some point in the future. Finally, a capability for rigorous sensitivity analysis and uncertainty quantification based on the TSUNAMI system has been implemented and initial computational results have been obtained. This capability will have many applications as a tool for understanding the margins of uncertainty in the new models as well as for validation experiment design and interpretation.« less
An examination of impact damage in glass-phenolic and aluminum honeycomb core composite panels
NASA Technical Reports Server (NTRS)
Nettles, A. T.; Lance, D. G.; Hodge, A. J.
1990-01-01
An examination of low velocity impact damage to glass-phenolic and aluminum core honeycomb sandwich panels with carbon-epoxy facesheets is presented. An instrumented drop weight impact test apparatus was utilized to inflict damage at energy ranges between 0.7 and 4.2 joules. Specimens were checked for extent of damage by cross sectional examination. The effect of core damage was assessed by subjecting impact-damaged beams to four-point bend tests. Skin-only specimens (facings not bonded to honeycomb) were also tested for comparison purposes. Results show that core buckling is the first damage mode, followed by delaminations in the facings, matrix cracking, and finally fiber breakage. The aluminum honeycomb panels exhibited a larger core damage zone and more facing delaminations than the glass-phenolic core, but could withstand more shear stress when damaged than the glass-phenolic core specimens.
Otterman, Nicoline; Veerbeek, Janne; Schiemanck, Sven; van der Wees, Philip; Nollet, Frans; Kwakkel, Gert
2017-07-01
To select relevant and feasible instruments for the revision of the Dutch clinical practice guideline for physical therapy in patients with stroke. In this implementation study a comprehensive proposal for ICF categories and matching instruments was developed, based on reliability and validity. Relevant instruments were then selected in a consensus round by 11 knowledge brokers who were responsible for the implementation of the selected instruments. The feasibility of the selected instruments was tested by 36 physical therapists at different work settings within stroke services. Finally, instruments that were deemed relevant and feasible were included in the revised guideline. A total of 28 instruments were recommended for inclusion in the revised guideline. Nineteen instruments were retained from the previous guideline. Ten new instruments were tested in clinical practice, seven of which were found feasible. Two more instruments were added after critical appraisal of the set of the measurement instruments. The revised guideline contains 28 relevant and feasible instrument selected and tested in clinical practice by physical therapists. Further education and implementation is needed to integrate instruments in clinical practice. Further research is proposed for developing and implementing a core set of measurement instruments to be used at fixed time points to establish data registries that allow for continuous improvement of rehabilitation for stroke patients. Implications for Rehabilitation The revised Dutch Stroke Physical Therapy Guideline recommends a total of 28 instruments, that are relevant and feasible for clinical practice of physical therapist in the different settings of stroke rehabilitation. The selection of instrument in daily practice should be part of the clinical reasoning process of PTs and be tailored to individual patients' needs and the degree of priority of the affected ICF category. Suggested education strategies for further integration of instruments in of the daily practice of PTs in Stroke Rehabilitation are: 'Training on the job' and 'peer assessment in clinical situations'.
Effects of perturbation relative phase on transverse mode instability gain
NASA Astrophysics Data System (ADS)
Zervas, Michalis N.
2018-02-01
We have shown that the relative phase between the fundamental fiber mode and the transverse perturbation affects significantly the local transverse modal instability (TMI) gain. The gain variation is more pronounced as the core diameter increases. This finding can be used in conjunction with other proposed approaches to develop efficient strategies for mitigating TMI in high power fiber amplifiers and lasers. It also provides some physical insight on the physical origin of the observed large differences in the TMI threshold dependence on core diameter for narrow and broad linewidth operation.
Electron-ion relaxation in a dense plasma. [supernovae core physics
NASA Technical Reports Server (NTRS)
Littleton, J. E.; Buchler, J.-R.
1974-01-01
The microscopic physics of the thermonuclear runaway in highly degenerate carbon-oxygen cores is investigated to determine if and how a detonation wave is generated. An expression for the electron-ion relaxation time is derived under the assumption of large degeneracy and extreme relativity of the electrons in a two-temperature plasma. Since the nuclear burning time proves to be several orders of magnitude shorter than the relaxation time, it is concluded that in studying the structure of the detonation wave the electrons and ions must be treated as separate fluids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryukhin, V. V., E-mail: bryuhin@yandex.ru; Kurakin, K. Yu.; Uvakin, M. A.
The article covers the uncertainty analysis of the physical calculations of the VVER reactor core for different meshes of the reference values of the feedback parameters (FBP). Various numbers of nodes of the parametric axes of FBPs and different ranges between them are investigated. The uncertainties of the dynamic calculations are analyzed using RTS RCCA ejection as an example within the framework of the model with the boundary conditions at the core inlet and outlet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeHart, Mark D.; Mausolff, Zander; Weems, Zach
2016-08-01
One goal of the MAMMOTH M&S project is to validate the analysis capabilities within MAMMOTH. Historical data has shown limited value for validation of full three-dimensional (3D) multi-physics methods. Initial analysis considered the TREAT startup minimum critical core and one of the startup transient tests. At present, validation is focusing on measurements taken during the M8CAL test calibration series. These exercises will valuable in preliminary assessment of the ability of MAMMOTH to perform coupled multi-physics calculations; calculations performed to date are being used to validate the neutron transport solver Rattlesnake\\cite{Rattlesnake} and the fuels performance code BISON. Other validation projects outsidemore » of TREAT are available for single-physics benchmarking. Because the transient solution capability of Rattlesnake is one of the key attributes that makes it unique for TREAT transient simulations, validation of the transient solution of Rattlesnake using other time dependent kinetics benchmarks has considerable value. The Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD) has recently developed a computational benchmark for transient simulations. This benchmark considered both two-dimensional (2D) and 3D configurations for a total number of 26 different transients. All are negative reactivity insertions, typically returning to the critical state after some time.« less
TH-E-201-00: Teaching Radiology Residents: What, How, and Expectation
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The ABR Core Examination stresses integrating physics into real-world clinical practice and, accordingly, has shifted its focus from passive recall of facts to active application of physics principles. Physics education of radiology residents poses a challenge. The traditional method of didactic lectures alone is insufficient, yet it is difficult to incorporate physics teaching consistently into clinical rotations due to time constraints. Faced with this challenge, diagnostic medical physicists who teach radiology residents, have been thinking about how to adapt their teaching to the new paradigm, what to teach and meet expectation of the radiology resident and the radiology residency program.more » The proposed lecture attempts to discuss above questions. Newly developed diagnostic radiology residents physics curriculum by the AAPM Imaging Physics Curricula Subcommittee will be reviewed. Initial experience on hands-on physics teaching will be discussed. Radiology resident who will have taken the BAR Core Examination will share the expectation of physics teaching from a resident perspective. The lecture will help develop robust educational approaches to prepare radiology residents for safer and more effective lifelong practice. Learning Objectives: Learn updated physics requirements for radiology residents Pursue effective approaches to teach physics to radiology residents Learn expectation of physics teaching from resident perspective J. Zhang, This topic is partially supported by RSNA Education Scholar Grant.« less
Efficient synthetic access to thermo-responsive core/shell nanoparticles
NASA Astrophysics Data System (ADS)
Dine, Enaam Jamal Al; Ferjaoui, Zied; Roques-Carmes, Thibault; Schjen, Aleksandra; Meftah, Abdelaziz; Hamieh, Tayssir; Toufaily, Joumana; Schneider, Raphaël; Gaffet, Eric; Alem, Halima
2017-03-01
Core/shell nanostructures based on silica, fluorescent ZnO quantum dots (QDs) and superparamagnetic Fe3O4 nanoparticles (NPs) were prepared and fully characterized by the combination of different techniques and the physical properties of the nanostructures were studied. We demonstrate the efficiency of the atom transfer radical polymerization with activators regenerated by electron transfer process to graft (co-)polymers of different structures and polarity at the surface of metal oxide NPs. The influence of the polymer chain configuration on the optical properties of the ZnO/polymer core/shell QDs was enlightened. Concerning the magnetic properties of the Fe3O4/polymer nanostructures, only the amount of the grafted polymer plays a role on the saturation magnetization of the NPs and no influence of the aggregation was evidenced. The simple and fast process described in this work is efficient for the grafting of copolymers from surfaces and the derived NPs display the combination of the physical properties of the core and the macromolecular behavior of the shell.
Internal structure of vortices in a dipolar spinor Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Borgh, Magnus O.; Lovegrove, Justin; Ruostekoski, Janne
2017-04-01
We demonstrate how dipolar interactions (DI) can have pronounced effects on the structure of vortices in atomic spinor Bose-Einstein condensates and illustrate generic physical principles that apply across dipolar spinor systems. We then find and analyze the cores of singular non-Abelian vortices in a spin-3 52Cr condensate. Using a simpler spin-1 model system, we analyze the underlying dipolar physics and show how a dipolar healing length interacts with the hierarchy of healing lengths of the contact interaction and leads to simple criteria for the core structure: vortex core size is restricted to the shorter spin-dependent healing length when the interactions both favor the ground-state spin condition, but can conversely be enlarged by DI when interactions compete. We further demonstrate manifestations of spin-ordering induced by the DI anisotropy, including DI-dependent angular momentum of nonsingular vortices, as a result of competition with adaptation to rotation, and potentially observable internal vortex-core spin textures. We acknowledge financial support from the EPSRC.
Efficient synthetic access to thermo-responsive core/shell nanoparticles.
Dine, Enaam Jamal Al; Ferjaoui, Zied; Roques-Carmes, Thibault; Schjen, Aleksandra; Meftah, Abdelaziz; Hamieh, Tayssir; Toufaily, Joumana; Schneider, Raphaël; Gaffet, Eric; Alem, Halima
2017-03-24
Core/shell nanostructures based on silica, fluorescent ZnO quantum dots (QDs) and superparamagnetic Fe 3 O 4 nanoparticles (NPs) were prepared and fully characterized by the combination of different techniques and the physical properties of the nanostructures were studied. We demonstrate the efficiency of the atom transfer radical polymerization with activators regenerated by electron transfer process to graft (co-)polymers of different structures and polarity at the surface of metal oxide NPs. The influence of the polymer chain configuration on the optical properties of the ZnO/polymer core/shell QDs was enlightened. Concerning the magnetic properties of the Fe 3 O 4 /polymer nanostructures, only the amount of the grafted polymer plays a role on the saturation magnetization of the NPs and no influence of the aggregation was evidenced. The simple and fast process described in this work is efficient for the grafting of copolymers from surfaces and the derived NPs display the combination of the physical properties of the core and the macromolecular behavior of the shell.
Exploring cosmic origins with CORE: Cosmological parameters
NASA Astrophysics Data System (ADS)
Di Valentino, E.; Brinckmann, T.; Gerbino, M.; Poulin, V.; Bouchet, F. R.; Lesgourgues, J.; Melchiorri, A.; Chluba, J.; Clesse, S.; Delabrouille, J.; Dvorkin, C.; Forastieri, F.; Galli, S.; Hooper, D. C.; Lattanzi, M.; Martins, C. J. A. P.; Salvati, L.; Cabass, G.; Caputo, A.; Giusarma, E.; Hivon, E.; Natoli, P.; Pagano, L.; Paradiso, S.; Rubiño-Martin, J. A.; Achúcarro, A.; Ade, P.; Allison, R.; Arroja, F.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartolo, N.; Bartlett, J. G.; Basak, S.; Baumann, D.; de Bernardis, P.; Bersanelli, M.; Bonaldi, A.; Bonato, M.; Borrill, J.; Boulanger, F.; Bucher, M.; Burigana, C.; Buzzelli, A.; Cai, Z.-Y.; Calvo, M.; Carvalho, C. S.; Castellano, G.; Challinor, A.; Charles, I.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; De Petris, M.; De Zotti, G.; Diego, J. M.; Errard, J.; Feeney, S.; Fernandez-Cobos, R.; Ferraro, S.; Finelli, F.; de Gasperis, G.; Génova-Santos, R. T.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Hagstotz, S.; Hanany, S.; Handley, W.; Hazra, D. K.; Hernández-Monteagudo, C.; Hervias-Caimapo, C.; Hills, M.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lamagna, L.; Lasenby, A.; Lewis, A.; Liguori, M.; Lindholm, V.; Lopez-Caniego, M.; Luzzi, G.; Maffei, B.; Martin, S.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; McCarthy, D.; Melin, J.-B.; Mohr, J. J.; Molinari, D.; Monfardini, A.; Negrello, M.; Notari, A.; Paiella, A.; Paoletti, D.; Patanchon, G.; Piacentini, F.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Quartin, M.; Remazeilles, M.; Roman, M.; Ringeval, C.; Tartari, A.; Tomasi, M.; Tramonte, D.; Trappe, N.; Trombetti, T.; Tucker, C.; Väliviita, J.; van de Weygaert, R.; Van Tent, B.; Vennin, V.; Vermeulen, G.; Vielva, P.; Vittorio, N.; Young, K.; Zannoni, M.
2018-04-01
We forecast the main cosmological parameter constraints achievable with the CORE space mission which is dedicated to mapping the polarisation of the Cosmic Microwave Background (CMB). CORE was recently submitted in response to ESA's fifth call for medium-sized mission proposals (M5). Here we report the results from our pre-submission study of the impact of various instrumental options, in particular the telescope size and sensitivity level, and review the great, transformative potential of the mission as proposed. Specifically, we assess the impact on a broad range of fundamental parameters of our Universe as a function of the expected CMB characteristics, with other papers in the series focusing on controlling astrophysical and instrumental residual systematics. In this paper, we assume that only a few central CORE frequency channels are usable for our purpose, all others being devoted to the cleaning of astrophysical contaminants. On the theoretical side, we assume ΛCDM as our general framework and quantify the improvement provided by CORE over the current constraints from the Planck 2015 release. We also study the joint sensitivity of CORE and of future Baryon Acoustic Oscillation and Large Scale Structure experiments like DESI and Euclid. Specific constraints on the physics of inflation are presented in another paper of the series. In addition to the six parameters of the base ΛCDM, which describe the matter content of a spatially flat universe with adiabatic and scalar primordial fluctuations from inflation, we derive the precision achievable on parameters like those describing curvature, neutrino physics, extra light relics, primordial helium abundance, dark matter annihilation, recombination physics, variation of fundamental constants, dark energy, modified gravity, reionization and cosmic birefringence. In addition to assessing the improvement on the precision of individual parameters, we also forecast the post-CORE overall reduction of the allowed parameter space with figures of merit for various models increasing by as much as ~ 107 as compared to Planck 2015, and 105 with respect to Planck 2015 + future BAO measurements.
Weigl, Martin; Wild, Heike
2017-09-15
To validate the International Classification of Functioning, Disability and Health Comprehensive Core Set for Osteoarthritis from the patient perspective in Europe. This multicenter cross-sectional study involved 375 patients with knee or hip osteoarthritis. Trained health professionals completed the Comprehensive Core Set, and patients completed the Short-Form 36 questionnaire. Content validity was evaluated by calculating prevalences of impairments in body function and structures, limitations in activities and participation and environmental factors, which were either barriers or facilitators. Convergent construct validity was evaluated by correlating the International Classification of Functioning, Disability and Health categories with the Short-Form 36 Physical Component Score and the SF-36 Mental Component Score in a subgroup of 259 patients. The prevalences of all body function, body structure and activities and participation categories were >40%, >32% and >20%, respectively, and all environmental factors were relevant for >16% of patients. Few categories showed relevant differences between knee and hip osteoarthritis. All body function categories and all but two activities and participation categories showed significant correlations with the Physical Component Score. Body functions from the ICF chapter Mental Functions showed higher correlations with the Mental Component Score than with the Physical Component Score. This study supports the validity of the International Classification of Functioning, Disability and Health Comprehensive Core Set for Osteoarthritis. Implications for Rehabilitation Comprehensive International Classification of Functioning, Disability and Health Core Sets were developed as practical tools for application in multidisciplinary assessments. The validity of the Comprehensive International Classification of Functioning, Disability and Health Core Set for Osteoarthritis in this study supports its application in European patients with osteoarthritis. The differences in results between this Europe validation study and a previous Singaporean validation study underscore the need to validate the International Classification of Functioning, Disability and Health Core Sets in different regions of the world.
Synthetic seismograms and spectral cycles on the Andvord and Schollaert Drifts: Antarctic Peninsula
Manley, P.L.; Brachfeld, S.
2007-01-01
(Schollaert Drift) and the mouth of Andvord Bay (Andvord Drift) has been examined using synthetic seismograms. The seismograms generated from the physical properties in jumbo piston cores taken at each of these drifts (28JPC and 18JPC respectively) show good agreement with the field seismic profiles when core disturbance is taken into consideration. Both cores suggest an under-sampling of up to 30% (or compaction) during coring. This leads to inaccuracy in the evaluation of past sedimentation rates and thus interpretations on these rates may be biased.
Mode I Toughness Measurements of Core/Facesheet Bonds in Honeycomb Sandwich Structures
NASA Technical Reports Server (NTRS)
Nettles, Alan T.; Ratcliffe, James G.
2006-01-01
Composite sandwich structures will be used in many future applications in aerospace, marine and offshore industries due to the fact that the strength and stiffness to mass ratios surpass any other structural type. Sandwich structure also offers advantages over traditional stiffened panels such as ease of manufacturing and repair. During the last three decades, sandwich structure has been used extensively for secondary structure in aircraft (fuselage floors, rudders and radome structure). Sandwich structure is also used as primary structure in rotorcraft, the most common example being the trailing edge of rotor blades. As with other types of composite construction, sandwich structure exhibits several types of failure mode such as facesheet wrinkling, core crushing and sandwich buckling. Facesheet/core debonding has also been observed in the marine and aerospace industry. During this failure mode, peel stresses applied to an existing facesheet/core debond or an interface low in toughness, results in the facesheet being peeled from the core material, possibly leading to a significant loss in structural integrity of the sandwich panel. In an incident during a test on a liquid hydrogen fuel tank of the X-33 prototype vehicle, the outer graphite/epoxy facesheet and honeycomb core became debonded from the inner facesheet along significant areas, leading to failure of the tank. As a consequence of the accident; significant efforts were made to characterize the toughness of the facesheet/core bond. Currently, the only standardized method available for assessing the quality of the facesheet/core interface is the climbing drum peel test (ASTM D1781). During this test a sandwich beam is removed from a panel and the lip of one of the facesheets is attached to a drum, as shown in Fig. 1. The drum is then rotated along the sandwich beam, causing the facesheet to peel from the core. This method has two major drawbacks. First, it is not possible to obtain quantitative fracture data from the test and so the results can only be used in a qualitative manner. Second, only sandwich structure with thin facesheets can be tested (to facilitate wrapping of the facesheet around the climbing drum). In recognition of the need for a more quantitative facesheet/core fracture test, several workers have devised experimental techniques for characterizing the toughness of the facesheet/core interface. In all of these cases, the tests are designed to yield a mode I-dominated fracture toughness of the facesheet/core interface in a manner similar to that used to determine mode I fracture toughness of composite laminates. In the current work, a modified double cantilever beam is used to measure the mode I-dominated fracture toughness of the interface in a sandwich consisting of glass/phenolic honeycomb core reinforced with graphite epoxy facesheets. Two specimen configurations were tested as shown in Fig 2. The first configuration consisted of reinforcing the facesheets with aluminum blocks (Fig. 2a). In the second configuration unreinforced specimens were tested (Fig. 2b). Climbing drum peel tests were also conducted to compare the fracture behavior observed between this test and the modified double cantilever beam. This paper outlines the test procedures and data reduction strategies used to compute fracture toughness values from the tests. The effect of specimen reinforcement on fracture toughness of the facesheet/core interface is discussed.
Experimental Study of the Compression Response of Fluted-Core Composite Panels with Joints
NASA Technical Reports Server (NTRS)
Schultz, Marc R.; Rose, Cheryl A.; Guzman, J. Carlos; McCarville, Douglas; Hilburger, Mark W.
2012-01-01
Fluted-core sandwich composites consist of integral angled web members spaced between laminate face sheets, and may have the potential to provide benefits over traditional sandwich composites for certain aerospace applications. However, fabrication of large autoclave-cured fluted-core cylindrical shells with existing autoclaves will require that the shells be fabricated in segments, and joined longitudinally to form a complete barrel. Two different longitudinal fluted-core joint designs were considered experimentally in this study. In particular, jointed fluted-core-composite panels were tested in longitudinal compression because longitudinal compression is the primary loading condition in dry launch-vehicle barrel sections. One of the joint designs performed well in comparison with unjointed test articles, and the other joint design failed at loads approximately 14% lower than unjointed test articles. The compression-after-impact (CAI) performance of jointed fluted-core composites was also investigated by testing test articles that had been subjected to 6 ft-lb impacts. It was found that such impacts reduced the load-carrying capability by 9% to 40%. This reduction is dependent on the joint concept, component flute size, and facesheet thickness.
Mathematical Sense-Making in Quantum Mechanics: An Initial Peek
ERIC Educational Resources Information Center
Dreyfus, Benjamin W.; Elby, Andrew; Gupta, Ayush; Sohr, Erin Ronayne
2017-01-01
Mathematical sense-making--looking for coherence between the structure of the mathematical formalism and causal or functional relations in the world--is a core component of physics expertise. Some physics education research studies have explored what mathematical sense-making looks like at the introductory physics level, while some historians and…
ERIC Educational Resources Information Center
Pierce, Patricia; Nichols, Randall; Herman, Susan
2007-01-01
One of the primary roles of physical education teachers is to incorporate health-related fitness and lifetime physical activity into their programs. It is also important for physical educators to stay current on evolving fitness trends that may benefit their students. For example, strength training, once thought to be detrimental to children, has…
The Necessity of Physical Activity in Kinesiology Degree Programs
ERIC Educational Resources Information Center
Johnson, Tyler G.; Twietmeyer, Gregg
2018-01-01
The term "the practice of physical activity" was recently introduced as one of the four elements of the American Kinesiology Association undergraduate core curriculum. The purpose of this article is to articulate the nature of the term by offering a philosophical justification (other than health) for including physical activity…
Integration and Physical Education: A Review of Research
ERIC Educational Resources Information Center
Marttinen, Risto Harri Juhani; McLoughlin, Gabriella; Fredrick, Ray, III; Novak, Dario
2017-01-01
The Common Core State Standards Initiative has placed an increased focus on mathematics and English language arts. A relationship between physical activity and academic achievement is evident, but research on integration of academic subjects with physical education is still unclear. This literature review examined databases for the years…
Hydrophilic guidewires: evaluation and comparison of their properties and safety.
Torricelli, Fabio Cesar Miranda; De, Shubha; Sarkissian, Carl; Monga, Manoj
2013-11-01
To compare physical and mechanical properties of 10 commercially available hydrophilic guidewires. In vitro testing was performed to evaluate 10 different straight hydrophilic guidewires (5 regular and 5 stiff wires): Glidewire, NiCore, EZ Glider, Hiwire, and Zipwire. The forces required for tip perforation, tip bending, shaft bending, and friction during movement were measured for all 10 wires. The tip contour was measured using high power light microscopy. The Glidewire required the greatest force to perforate our model (P = .01). The EZ Glider, Zipwire, and Glidewire had the lowest tip bending forces (P <.001). The Glidewire had the stiffest shaft (P <.001). The EZ Glider and Glidewire required the greatest forces in the friction test (P <.001). Regarding the stiff guidewires, the GlidewireS required the greatest force in the perforation test (P ≤.05). The GlidewireS and EZ GliderS required the lowest tip bending force (P ≤.004). The ZipwireS and NiCoreS had the stiffest shafts (P ≤.01). The GlidewireS required the greatest force in the friction test (P <.001). Measurement of the tip contour showed the Zipwire, HiwireS, and EZ GliderS had the roundest tips. Each wire has unique properties with advantages and disadvantages. The Glidewires (both stiff and regular) have the lowest potential for perforation, although they are less slippery. The Glidewire and EZ Glider required the least tip force to bend around a point of obstruction. Copyright © 2013 Elsevier Inc. All rights reserved.
Grieve, Sharon; Perez, Roberto SGM; Birklein, Frank; Brunner, Florian; Bruehl, Stephen; Harden R, Norman; Packham, Tara; Gobeil, Francois; Haigh, Richard; Holly, Janet; Terkelsen, Astrid; Davies, Lindsay; Lewis, Jennifer; Thomassen, Ilona; Connett, Robyn; Worth, Tina; Vatine, Jean-Jacques; McCabe, Candida S
2017-01-01
Complex Regional Pain Syndrome (CRPS) is a persistent pain condition that remains incompletely understood and challenging to treat. Historically, a wide range of different outcome measures have been used to capture the multidimensional nature of CRPS. This has been a significant limiting factor in the advancement of our understanding of the mechanisms and management of CRPS. In 2013, an international consortium of patients, clinicians, researchers and industry representatives was established, to develop and agree on a minimum core set of standardised outcome measures for use in future CRPS clinical research, including but not limited to clinical trials within adult populations The development of a core measurement set was informed through workshops and supplementary work, using an iterative consensus process. ‘What is the clinical presentation and course of CRPS, and what factors influence it?’ was agreed as the most pertinent research question that our standardised set of patient-reported outcome measures should be selected to answer. The domains encompassing the key concepts necessary to answer the research question were agreed as: pain, disease severity, participation and physical function, emotional and psychological function, self efficacy, catastrophizing and patient's global impression of change. The final core measurement set included the optimum generic or condition-specific patient-reported questionnaire outcome measures, which captured the essence of each domain, and one clinician reported outcome measure to capture the degree of severity of CRPS. The next step is to test the feasibility and acceptability of collecting outcome measure data using the core measurement set in the CRPS population internationally. PMID:28178071
Core Cutting Test with Vertical Rock Cutting Rig (VRCR)
NASA Astrophysics Data System (ADS)
Yasar, Serdar; Osman Yilmaz, Ali
2017-12-01
Roadheaders are frequently used machines in mining and tunnelling, and performance prediction of roadheaders is important for project economics and stability. Several methods were proposed so far for this purpose and, rock cutting tests are the best choice. Rock cutting tests are generally divided into two groups which are namely, full scale rock cutting tests and small scale rock cutting tests. These two tests have some superiorities and deficiencies over themselves. However, in many cases, where rock sampling becomes problematic, small scale rock cutting test (core cutting test) is preferred for performance prediction, since small block samples and core samples can be conducted to rock cutting testing. Common problem for rock cutting tests are that they can be found in very limited research centres. In this study, a new mobile rock cutting testing equipment, vertical rock cutting rig (VRCR) was introduced. Standard testing procedure was conducted on seven rock samples which were the part of a former study on cutting rocks with another small scale rock cutting test. Results showed that core cutting test can be realized successfully with VRCR with the validation of paired samples t-test.
NASA Technical Reports Server (NTRS)
Perez, Christopher E.; Berg, Melanie D.; Friendlich, Mark R.
2011-01-01
Motivation for this work is: (1) Accurately characterize digital signal processor (DSP) core single-event effect (SEE) behavior (2) Test DSP cores across a large frequency range and across various input conditions (3) Isolate SEE analysis to DSP cores alone (4) Interpret SEE analysis in terms of single-event upsets (SEUs) and single-event transients (SETs) (5) Provide flight missions with accurate estimate of DSP core error rates and error signatures.
Water in Star-forming Regions with Herschel (WISH): recent results and trends
NASA Astrophysics Data System (ADS)
van Dishoeck, E. F.
2012-03-01
Water is a key molecule in the physics and chemistry of star- and planet-forming regions. In the `Water in Star-forming Regions with Herschel' (WISH) Key Program, we have obtained a comprehensive set of water data toward a large sample of well-characterized protostars, covering a wide range of masses and luminosities --from the lowest to the highest mass protostars--, as well as evolutionary stages --from pre-stellar cores to disks. Lines of both ortho- and para-H_2O and their isotopologues, as well as chemically related hydrides, are observed with the HIFI and PACS instruments. The data elucidate the physical processes responsible for the warm gas, probe dynamical processes associated with forming stars and planets (outflow, infall, expansion), test basic chemical processes and reveal the chemical evolution of water and the oxygen-reservoir into planet-forming disks. In this brief talk a few recent WISH highlights will be presented, including determinations of the water abundance in each of the different physical components (inner and outer envelope, outflow) and constraints on the ortho/para ratio. Special attention will be given to trends found across the sample, especially the similarity in profiles from low to high-mass protostars and the evolution of the gas-phase water abundance from prestellar cores to disks. More details can be found at http://www.strw.leidenuniv.nl/WISH, whereas overviews are given in van Dishoeck et al. (2011, PASP 123, 138), Kristensen & van Dishoeck (2011, Astronomische Nachrichten 332, 475) and Bergin & van Dishoeck (2012, Phil. Trans. Royal Soc. A).
Pardon, Marie-Christine; Kendall, David A; Pérez-Diaz, Fernando; Duxon, Mark S; Marsden, Charles A
2004-08-01
The present study investigated whether the 'psychological threat' induced by sensory contact with an aggressive conspecific would be a sufficient factor in inducing behavioural and physiological disturbances. Repeated sensory contact with an aggressive mouse (social threat) in a partitioned cage was compared with repeated exposure to a novel partitioned cage in male NMRI mice. We first examined parameters of stress responsiveness (body weight, plasma corticosterone levels, frequency of self-grooming and defecation). The temperature and physical activity responses to stress were also recorded during and after the 4 weeks of stress using radiotelemetry. Finally, cognitivo-emotional performance was assessed after acute stress and 2 and 4 weeks of stress by measuring decision making, sequential alternation performance and behaviour in the elevated T-maze. Social threat had a greater impact than novel cage exposure on most parameters of stress responsiveness, although mice did not habituate to either stressor. Social threat rapidly led to an anticipatory rise in core body temperature and physical activity before the scheduled stress sessions. Such anticipation developed within the first week and persisted for 9 days after ending the stress procedure. Some memory impairment in the sequential alternation test was found in stressed mice, independent of the stressor. After 4 weeks of stress, inhibitory avoidance in the elevated T-maze was enhanced in socially stressed mice and reduced in novel cage mice. The sustained anticipation of stress in the social threat group preceded aversive responding. It remains to be established whether anticipation contributes to the development of aversive responses.
NASA Astrophysics Data System (ADS)
McAllister, M.; Gochis, D.; Dugger, A. L.; Karsten, L. R.; McCreight, J. L.; Pan, L.; Rafieeinasab, A.; Read, L. K.; Sampson, K. M.; Yu, W.
2017-12-01
The community WRF-Hydro modeling system is publicly available and provides researchers and operational forecasters a flexible and extensible capability for performing multi-scale, multi-physics options for hydrologic modeling that can be run independent or fully-interactive with the WRF atmospheric model. The core WRF-Hydro physics model contains very high-resolution descriptions of terrestrial hydrologic process representations such as land-atmosphere exchanges of energy and moisture, snowpack evolution, infiltration, terrain routing, channel routing, basic reservoir representation and hydrologic data assimilation. Complementing the core physics components of WRF-Hydro are an ecosystem of pre- and post-processing tools that facilitate the preparation of terrain and meteorological input data, an open-source hydrologic model evaluation toolset (Rwrfhydro), hydrologic data assimilation capabilities with DART and advanced model visualization capabilities. The National Center for Atmospheric Research (NCAR), through collaborative support from the National Science Foundation and other funding partners, provides community support for the entire WRF-Hydro system through a variety of mechanisms. This presentation summarizes the enhanced user support capabilities that are being developed for the community WRF-Hydro modeling system. These products and services include a new website, open-source code repositories, documentation and user guides, test cases, online training materials, live, hands-on training sessions, an email list serve, and individual user support via email through a new help desk ticketing system. The WRF-Hydro modeling system and supporting tools which now include re-gridding scripts and model calibration have recently been updated to Version 4 and are merging toward capabilities of the National Water Model.
NASA Astrophysics Data System (ADS)
Romano, Paul Kollath
Monte Carlo particle transport methods are being considered as a viable option for high-fidelity simulation of nuclear reactors. While Monte Carlo methods offer several potential advantages over deterministic methods, there are a number of algorithmic shortcomings that would prevent their immediate adoption for full-core analyses. In this thesis, algorithms are proposed both to ameliorate the degradation in parallel efficiency typically observed for large numbers of processors and to offer a means of decomposing large tally data that will be needed for reactor analysis. A nearest-neighbor fission bank algorithm was proposed and subsequently implemented in the OpenMC Monte Carlo code. A theoretical analysis of the communication pattern shows that the expected cost is O( N ) whereas traditional fission bank algorithms are O(N) at best. The algorithm was tested on two supercomputers, the Intrepid Blue Gene/P and the Titan Cray XK7, and demonstrated nearly linear parallel scaling up to 163,840 processor cores on a full-core benchmark problem. An algorithm for reducing network communication arising from tally reduction was analyzed and implemented in OpenMC. The proposed algorithm groups only particle histories on a single processor into batches for tally purposes---in doing so it prevents all network communication for tallies until the very end of the simulation. The algorithm was tested, again on a full-core benchmark, and shown to reduce network communication substantially. A model was developed to predict the impact of load imbalances on the performance of domain decomposed simulations. The analysis demonstrated that load imbalances in domain decomposed simulations arise from two distinct phenomena: non-uniform particle densities and non-uniform spatial leakage. The dominant performance penalty for domain decomposition was shown to come from these physical effects rather than insufficient network bandwidth or high latency. The model predictions were verified with measured data from simulations in OpenMC on a full-core benchmark problem. Finally, a novel algorithm for decomposing large tally data was proposed, analyzed, and implemented/tested in OpenMC. The algorithm relies on disjoint sets of compute processes and tally servers. The analysis showed that for a range of parameters relevant to LWR analysis, the tally server algorithm should perform with minimal overhead. Tests were performed on Intrepid and Titan and demonstrated that the algorithm did indeed perform well over a wide range of parameters. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)
Tory II-A: a nuclear ramjet test reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadley, J.W.
Declassified 28 Nov 1973. The first test reactor in the Pluto program, leading to development of a nuclear ramjet engine, is called Tory II-A. While it is not an actual prototype engine, this reactor embodies a core design which is considered feasible for an engine, and operation of the reactor will provide a test of that core type as well as more generalized values in reactor design and testing. The design of Tory II-A and construction of the reactor and of its test facility are described. Operation of the Tory II-A core at a total power of 160 megawatts, withmore » 800 pounds of air per second passing through the core and emerging at a temperature of 2000 deg F, is the central objective of the test program. All other reactor and facility components exist to support operation of the core, and preliminary steps in the test program itself will be directed primarily toward ensuring attalnment of full-power operation and collection of meaningful data on core behavior during that operation. The core, 3 feet in diameter and 41/2 feet long, will be composed of bundled ceramic tubes whose central holes will provide continuous air passages from end to end of the reactor. These tubes are to be composed of a homogeneous mixture of UO/sub 2/ fuel and BeO moderator, compacted and sintered to achieve high strength and density. (30 references) (auth)« less
Habitability and the Multiverse
NASA Astrophysics Data System (ADS)
Sandora, M. E.
2017-11-01
Are the laws of physics set to maximize the habitability of the universe? We study how plate tectonics, core and mantle composition, homochirality, photosynthesis, and planet size depend on physics, and make predictions for where life will be found.
Publications - GMC 70 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 70 Publication Details Title: Core permeability determinations and other related physical determinations and other related physical analyses of 20 North Slope wells: Alaska Division of Geological &
Zhang, Y; Xu, Q; Trissel, L A; Baker, M B
1999-01-01
Numerous factors have been identified that influence the amount of calcium and phosphates that can remain in solution or will precipitate from parenteral nutrition solutions. Two of the most important such factors are the specific formulation of the amino acid source and the salt form of the calcium source. The purpose of this study was to evaluate the physical compatibility of calcium (as acetate) and potassium phophates in Aminosyn II-based parenteral nutrition solutions. Five representative core parenteral nutrition formulations containing Aminosyn II 2% to 5% were evaluated. Varying amounts of calcium acetate and potassium phosphates were added to samples of the core formulations to identify the concentrations at which precipitation just began to occur. A total of five series of concentrations was tested wiht maxima of calcium 40 mEq/L and phosphates 40 mM/L. The samples were evaluated by visual observation with the unaided eye and by use of a Tyndall beam to accentuate the visibility of small particles and low-level turbidity. For samples not exhibiting visible particles or haze, the turbidity and particle content were measured electronically. Evaluations were performed initially during the first 15 minutes after mixing and after 48 hours of storage at 23 deg and 37 deg C. The precipitation potential of calcium and phosphates in the five representative parenteral nutrition solutions containing Aminosyn II at a a variety of concentrations has been evaluated over a broad range of concentrations has been evaluated over a broad rage of concentrations. The results are presented in tabular form and were used to determine the boundary between compatibility and incompatibility in each of the five core parenteral nutrtion formulations. The boundary lines or compatibility curves were constructed for each of the formulations and are presented graphically.
NASA Astrophysics Data System (ADS)
Li, Xin; Tang, Li; Lin, Hai-Nan
2017-05-01
We compare six models (including the baryonic model, two dark matter models, two modified Newtonian dynamics models and one modified gravity model) in accounting for galaxy rotation curves. For the dark matter models, we assume NFW profile and core-modified profile for the dark halo, respectively. For the modified Newtonian dynamics models, we discuss Milgrom’s MOND theory with two different interpolation functions, the standard and the simple interpolation functions. For the modified gravity, we focus on Moffat’s MSTG theory. We fit these models to the observed rotation curves of 9 high-surface brightness and 9 low-surface brightness galaxies. We apply the Bayesian Information Criterion and the Akaike Information Criterion to test the goodness-of-fit of each model. It is found that none of the six models can fit all the galaxy rotation curves well. Two galaxies can be best fitted by the baryonic model without involving nonluminous dark matter. MOND can fit the largest number of galaxies, and only one galaxy can be best fitted by the MSTG model. Core-modified model fits about half the LSB galaxies well, but no HSB galaxies, while the NFW model fits only a small fraction of HSB galaxies but no LSB galaxies. This may imply that the oversimplified NFW and core-modified profiles cannot model the postulated dark matter haloes well. Supported by Fundamental Research Funds for the Central Universities (106112016CDJCR301206), National Natural Science Fund of China (11305181, 11547305 and 11603005), and Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Y5KF181CJ1)
NASA Astrophysics Data System (ADS)
Janka, Hans-Thomas
The question why and how core-collapse supernovae (SNe) explode is one of the central and most long-standing riddles of stellar astrophysics. Solving this problem is crucial for deciphering the supernova (SN) phenomenon; for predicting its observable signals such as light curves and spectra, nucleosynthesis yields, neutrinos, and gravitational waves; for defining the role of SNe in the dynamical and chemo-dynamical evolution of galaxies; and for explaining the birth conditions and properties of neutron stars (NSs) and stellar-mass black holes. Since the formation of such compact remnants releases over hundred times more energy in neutrinos than the kinetic energy of the SN explosion, neutrinos can be the decisive agents for powering the SN outburst. According to the standard paradigm of the neutrino-driven mechanism, the energy transfer by the intense neutrino flux to the medium behind the stagnating core bounce shock, assisted by violent hydrodynamic mass motions (sometimes subsumed by the term "turbulence"), revives the outward shock motion and thus initiates the SN explosion. Because of the weak coupling of neutrinos in the region of this energy deposition, detailed, multidimensional hydrodynamic models including neutrino transport and a wide variety of physics are needed to assess the viability of the mechanism. Owing to advanced numerical codes and increasing supercomputer power, considerable progress has been achieved in our understanding of the physical processes that have to act in concert for the success of neutrino-driven explosions. First studies begin to reveal observational implications and avenues to test the theoretical picture by data from individual SNe and SN remnants but also from population-integrated observables. While models will be further refined, a real breakthrough is expected through the next galactic core-collapse SN, when neutrinos and gravitational waves can be used to probe the conditions deep inside the dying star.
Shamsi, Mohammad Bagher; Rezaei, Mandana; Zamanlou, Mehdi; Sadeghi, Mehdi; Pourahmadi, Mohammad Reza
2016-01-01
The aim was to compare core stability and general exercises (GEs) in chronic low back pain (LBP) patients based on lumbopelvic stability (LPS) assessment through three endurance core stability tests. There is a controversy about preference of core stability exercise (CSE) over other types of exercise for chronic LBP. Studies which have compared these exercises used other outcomes than those related to LPS. As it is claimed that CSE enhances back stability, endurance tests for LPS were used. A 16-session CSE program and a GE program with the same duration were conducted for two groups of participants. Frequency of interventions for both groups was three times a week. Forty-three people (aged 18-60 years) with chronic non-specific LBP were alternately allocated to core stability (n = 22) or GE group (n = 21) when admitted. The primary outcomes were three endurance core stability tests including: (1) trunk flexor; (2) trunk extensor; and (3) side bridge tests. Secondary outcomes were disability and pain. Measurements were taken at baseline and the end of the intervention. After the intervention, test times increased and disability and pain decreased within groups. There was no significant difference between two groups in increasing test times (p = 0.23 to p = 0.36) or decreasing disability (p = 0.16) and pain (p = 0.73). CSE is not more effective than GE for improving endurance core stability tests and reducing disability and pain in chronic non-specific LBP patients.
van der Stap, Djamilla K.D.; Rider, Lisa G.; Alexanderson, Helene; Huber, Adam M.; Gualano, Bruno; Gordon, Patrick; van der Net, Janjaap; Mathiesen, Pernille; Johnson, Liam G.; Ernste, Floranne C.; Feldman, Brian M.; Houghton, Kristin M.; Singh-Grewal, Davinder; Kutzbach, Abraham Garcia; Munters, Li Alemo; Takken, Tim
2015-01-01
OBJECTIVES Currently there are no evidence-based recommendations regarding which fitness and strength tests to use for patients with childhood or adult idiopathic inflammatory myopathies (IIM). This hinders clinicians and researchers in choosing the appropriate fitness- or muscle strength-related outcome measures for these patients. Through a Delphi survey, we aimed to identify a candidate core-set of fitness and strength tests for children and adults with IIM. METHODS Fifteen experts participated in a Delphi survey that consisted of five stages to achieve a consensus. Using an extensive search of published literature and through the expertise of the experts, a candidate core-set based on expert opinion and clinimetric properties was developed. Members of the International Myositis Assessment and Clinical Studies Group (IMACS) were invited to review this candidate core-set during the final stage, which led to a final candidate core-set. RESULTS A core-set of fitness- and strength-related outcome measures was identified for children and adults with IIM. For both children and adults, different tests were identified and selected for maximal aerobic fitness, submaximal aerobic fitness, anaerobic fitness, muscle strength tests and muscle function tests. CONCLUSIONS The core-set of fitness and strength-related outcome measures provided by this expert consensus process will assist practitioners and researchers in deciding which tests to use in IIM patients. This will improve the uniformity of fitness and strength tests across studies, thereby facilitating the comparison of study results and therapeutic exercise program outcomes among patients with IIM. PMID:26568594
Metal-core pad-plane development for ACTAR TPC
NASA Astrophysics Data System (ADS)
Giovinazzo, J.; Pibernat, J.; Goigoux, T.; de Oliveira, R.; Grinyer, G. F.; Huss, C.; Mauss, B.; Pancin, J.; Pedroza, J. L.; Rebii, A.; Roger, T.; Rosier, P.; Saillant, F.; Wittwer, G.
2018-06-01
With the recent development of active targets and time projection chambers (ACTAR TPC) as detectors for fundamental nuclear physics experiments, the need arose for charge collection planes with a high density of readout channels. In order to fulfill the mechanical constraints for the ACTAR TPC device, we designed a pad-plane based on a metal-core circuit with an conceptually simple design and routing for signal readout, named FAKIR (in reference to a fakir bed of nails). A test circuit has been equipped with a micro mesh gaseous structure (micromegas) for signal amplification and a dedicated readout electronics. Test measurements have been performed with an 55Fe X-ray source giving an intrinsic energy resolution (FWHM) of 22 ± 1% at 5 . 9 keV, and with a 3-alpha source for which a resolution of about 130 ± 20 keV at 4 . 8 MeV has been estimated. The pad-plane has been mounted into a reduced size demonstrator version of the ACTAR TPC detector, in order to illustrate charged particle track reconstruction. The tests preformed with the X-ray and the 3-alpha sources shows that results obtained from pads signals are comparable to the intrinsic result from the micro-mesh signal. In addition, a simple alpha particle tracks analysis is performed to demonstrate that the pad plane allows a precise reconstruction of the direction and length of the trajectories.
Fitness characteristics of a suburban special weapons and tactics team.
Pryor, Riana R; Colburn, Deanna; Crill, Matthew T; Hostler, David P; Suyama, J
2012-03-01
Special Weapons and Tactics (SWAT) operators are specialized law enforcement officers who traditionally perform their duties with higher anticipated workloads because of additional body armor, weapons, and equipment used for enhanced operations and protection. This elevated workload increases the need for SWAT operators to improve or maintain their physical fitness to consistently perform routine operations. Typical tasks require trunk rotation, overhead upper extremity use, upper and lower body strength use, and long waiting periods followed by explosive movements while wearing additional equipment. Eleven male SWAT operators from 1 SWAT team performed flexibility, strength, power, and aerobic capacity tests and a variety of job-related tasks. Data were compared with age- and gender-based normative data. Fitness testing revealed that officers ranked high on tests of muscular strength (leg strength, 90th percentile; bench press, 85th percentile); however, body composition (55th percentile), core body strength, and flexibility ranked lower. Furthermore, aerobic capacity and muscular power had a wide range of scores and were also not ideal to support maximal performance during routine operations. These data can assist exercise specialists choose fitness programs specifically for job-related tasks of SWAT operators when creating fitness programs. Fitness programming for law enforcement should focus on improving aerobic fitness, flexibility, core strength, and muscular power while maintaining muscular strength to meet the needs of these specialized officers.
Testing for Controlled Rapid Pressurization
Steven Knudsen
2014-09-03
Borehole W1 is a NQ core hole drilled at our test site in Socorro. The rock is rhyolite. Borehole W1 which was used to test gas-gas explosive mixtures is 55 feet deep with casing (pinkish in the drawing) set to 35 feet. The model is a representation of the borehole and the holes we cored around the central borehole after the test. The brown colored core holes showed dye when we filled W1 with water and slightly pressurized it. This indicates there was some path between W1 and the colored core hole. The core holes are shown to their TD in the drawing. The green plane is a fracture plane which we believe is the result of the explosions of the gas mixture in W1. Data resource is a 2D .pdf Solid Works Drawing of borehole w-1
Upgrade of Irradiation Test Capability of the Experimental Fast Reactor Joyo
NASA Astrophysics Data System (ADS)
Sekine, Takashi; Aoyama, Takafumi; Suzuki, Soju; Yamashita, Yoshioki
2003-06-01
The JOYO MK-II core was operated from 1983 to 2000 as fast neutron irradiation bed. In order to meet various requirements for irradiation tests for development of FBRs, the JOYO upgrading project named MK-III program was initiated. The irradiation capability in the MK-III core will be about four times larger than that of the MK-II core. Advanced irradiation test subassemblies such as capsule type subassembly and on-line instrumentation rig are planned. As an innovative reactor safety system, the irradiation test of Self-Actuated Shutdown System (SASS) will be conducted. In order to improve the accuracy of neutron fluence, the core management code system was upgraded, and the Monte Carlo code and Helium Accumulation Fluence Monitor (HAFM) were applied. The MK-III core is planned to achieve initial criticality in July 2003.
Experimental and Theoretical Investigations on Viscosity of Fe-Ni-C Liquids at High Pressures
NASA Astrophysics Data System (ADS)
Chen, B.; Lai, X.; Wang, J.; Zhu, F.; Liu, J.; Kono, Y.
2016-12-01
Understanding and modeling of Earth's core processes such as geodynamo and heat flow via convection in liquid outer cores hinges on the viscosity of candidate liquid iron alloys under core conditions. Viscosity estimates from various methods of the metallic liquid of the outer core, however, span up to 12 orders of magnitude. Due to experimental challenges, viscosity measurements of iron liquids alloyed with lighter elements are scarce and conducted at conditions far below those expected for the outer core. In this study, we adopt a synergistic approach by integrating experiments at experimentally-achievable conditions with computations up to core conditions. We performed viscosity measurements based on the modified Stokes' floating sphere viscometry method for the Fe-Ni-C liquids at high pressures in a Paris-Edinburgh press at Sector 16 of the Advanced Photon Source, Argonne National Laboratory. Our results show that the addition of 3-5 wt.% carbon to iron-nickel liquids has negligible effect on its viscosity at pressures lower than 5 GPa. The viscosity of the Fe-Ni-C liquids, however, becomes notably higher and increases by a factor of 3 at 5-8 GPa. Similarly, our first-principles molecular dynamics calculations up to Earth's core pressures show a viscosity change in Fe-Ni-C liquids at 5 GPa. The significant change in the viscosity is likely due to a liquid structural transition of the Fe-Ni-C liquids as revealed by our X-ray diffraction measurements and first-principles molecular dynamics calculations. The observed correlation between structure and physical properties of liquids permit stringent benchmark test of the computational liquid models and contribute to a more comprehensive understanding of liquid properties under high pressures. The interplay between experiments and first-principles based modeling is shown to be a practical and effective methodology for studying liquid properties under outer core conditions that are difficult to reach with the current static high-pressure capabilities. The new viscosity data from experiments and computations would provide new insights into the internal dynamics of the outer core.
NASA Astrophysics Data System (ADS)
Roberts, Stephen K.
Nanomaterials show immense promise for the future in numerous areas of application. Properties that are unique from the bulk material and are tunable allow for innovation in material design. This thesis will focus on controlling the physical properties of core/shell nanostructures to enhance the utility of the materials. The first focus is on the impact of different solvent mixtures during the shell growth phase of SILAR based core/shell quantum dot synthesis is studied. Gaining insight into the mechanism for SILAR growth of core/shell nanoparticles allows improved synthetic yields and precursor binding, providing enhanced control to synthesis of core/shell nanoparticles. The second focus of this thesis is exploring the use of magnetic nanoparticles for magnetic drug targeting for cardiovascular conditions. Magnetic targeting for drug delivery enables increased local drug concentration, while minimizing non-specific interactions. In order to be effective for magnetic targeting, it must be shown that low magnetic strength is sufficient to capture flowing nanoparticles. By demonstrating the binding of a therapeutic agent to the surface at medicinal levels, the viability for use as a nanoparticle drug delivery system is improved.
Random close packing in protein cores
NASA Astrophysics Data System (ADS)
Gaines, Jennifer C.; Smith, W. Wendell; Regan, Lynne; O'Hern, Corey S.
2016-03-01
Shortly after the determination of the first protein x-ray crystal structures, researchers analyzed their cores and reported packing fractions ϕ ≈0.75 , a value that is similar to close packing of equal-sized spheres. A limitation of these analyses was the use of extended atom models, rather than the more physically accurate explicit hydrogen model. The validity of the explicit hydrogen model was proved in our previous studies by its ability to predict the side chain dihedral angle distributions observed in proteins. In contrast, the extended atom model is not able to recapitulate the side chain dihedral angle distributions, and gives rise to large atomic clashes at side chain dihedral angle combinations that are highly probable in protein crystal structures. Here, we employ the explicit hydrogen model to calculate the packing fraction of the cores of over 200 high-resolution protein structures. We find that these protein cores have ϕ ≈0.56 , which is similar to results obtained from simulations of random packings of individual amino acids. This result provides a deeper understanding of the physical basis of protein structure that will enable predictions of the effects of amino acid mutations to protein cores and interfaces of known structure.
Random close packing in protein cores.
Gaines, Jennifer C; Smith, W Wendell; Regan, Lynne; O'Hern, Corey S
2016-03-01
Shortly after the determination of the first protein x-ray crystal structures, researchers analyzed their cores and reported packing fractions ϕ ≈ 0.75, a value that is similar to close packing of equal-sized spheres. A limitation of these analyses was the use of extended atom models, rather than the more physically accurate explicit hydrogen model. The validity of the explicit hydrogen model was proved in our previous studies by its ability to predict the side chain dihedral angle distributions observed in proteins. In contrast, the extended atom model is not able to recapitulate the side chain dihedral angle distributions, and gives rise to large atomic clashes at side chain dihedral angle combinations that are highly probable in protein crystal structures. Here, we employ the explicit hydrogen model to calculate the packing fraction of the cores of over 200 high-resolution protein structures. We find that these protein cores have ϕ ≈ 0.56, which is similar to results obtained from simulations of random packings of individual amino acids. This result provides a deeper understanding of the physical basis of protein structure that will enable predictions of the effects of amino acid mutations to protein cores and interfaces of known structure.
[New methods for determining the relative load due to physical effort of the human body].
Szubert, Józef; Szubert, Sławomir; Koszada-Włodarczyk, Wiesława; Bortkiewicz, Alicja
2014-01-01
The relative physical load (% VO2max) is the quotient of oxygen uptake (Vo2) during physical effort and maximum oxygen uptake (VO2max) by the human body. For this purpose the stress test must be performed. The relative load shows a high correlation with minute ventilation, cardiac output, heart rate, stroke volume, increased concentrations of catecholamines in the blood, inner temperature, weight, height and human body surface area. The relative load is a criterion for the maximum workloads admissible for healthy and sick workers. Besides, the classification of effort can be more precise when based on the relative load than on the energy output. Based on our own and international empirical evidence and the laws of heat transfer and fluid mechanics, a model of temperature control system has been developed, involving the elements of human cardiovascular and respiratory systems. Using this model, we have been able to develop our own methods of determining the relative load, applying only the body core temperature (Tw) or heart rate within one minute (HR), body mass (m), height (H), and body surface area (AD) instead of VO,max. The values of the relative physical load (% VO2max) obtained by using our own methods do not differ significantly from those obtained by other methods and by other researchers. The developed methods for determining the relative physical load (% VO2max) do not require the exercise test to be performed, therefore, they may be considered (after verification in an experimental study) a feasible alternative to current methods.
ERIC Educational Resources Information Center
Starr, Joshua P.; Spellings, Margaret
2014-01-01
More than 40 states plan to assess student performance with new tests tied to the Common Core State Standards. In summer 2013, results from Common Core-aligned tests in New York showed a steep decline in outcomes. Common Core advocates hailed the scores as an honest accounting of school and student performance, while others worried that they…
Impact of material absorption on supercontinuum generation in liquid core photonic crystal fiber
NASA Astrophysics Data System (ADS)
Nithyanandan, K.; Raja, Vasantha Jayakantha; Uthayakumar, T.; Porsezian, K.
2013-06-01
The impact of material absorption on supercontinuum generation (SCG) in liquid core photonic crystal fiber (LCPCF) is presented. While PCFs with cores made from different glasses are well studied in previous works with saturable nonlinear response (SNL), in this paper, it is planned to investigate the dynamics of nonlinear processes of supercontinuum generation in high-index fiber with material absorption to understand the physical phenomena of pulse propagation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mouradian, E.M.
1966-02-16
A thermal analysis is carried out to determine the temperature distribution throughout a SNAP 10A reactor core, particularly in the vicinity of the grid plates, during atmospheric reentry. The transient temperatue distribution of the grid plate indicates when sufficient melting occurs so that fuel elements are free to be released and continue their descent individually.
Development of an extensible dual-core wireless sensing node for cyber-physical systems
NASA Astrophysics Data System (ADS)
Kane, Michael; Zhu, Dapeng; Hirose, Mitsuhito; Dong, Xinjun; Winter, Benjamin; Häckell, Mortiz; Lynch, Jerome P.; Wang, Yang; Swartz, A.
2014-04-01
The introduction of wireless telemetry into the design of monitoring and control systems has been shown to reduce system costs while simplifying installations. To date, wireless nodes proposed for sensing and actuation in cyberphysical systems have been designed using microcontrollers with one computational pipeline (i.e., single-core microcontrollers). While concurrent code execution can be implemented on single-core microcontrollers, concurrency is emulated by splitting the pipeline's resources to support multiple threads of code execution. For many applications, this approach to multi-threading is acceptable in terms of speed and function. However, some applications such as feedback controls demand deterministic timing of code execution and maximum computational throughput. For these applications, the adoption of multi-core processor architectures represents one effective solution. Multi-core microcontrollers have multiple computational pipelines that can execute embedded code in parallel and can be interrupted independent of one another. In this study, a new wireless platform named Martlet is introduced with a dual-core microcontroller adopted in its design. The dual-core microcontroller design allows Martlet to dedicate one core to standard wireless sensor operations while the other core is reserved for embedded data processing and real-time feedback control law execution. Another distinct feature of Martlet is a standardized hardware interface that allows specialized daughter boards (termed wing boards) to be interfaced to the Martlet baseboard. This extensibility opens opportunity to encapsulate specialized sensing and actuation functions in a wing board without altering the design of Martlet. In addition to describing the design of Martlet, a few example wings are detailed, along with experiments showing the Martlet's ability to monitor and control physical systems such as wind turbines and buildings.
Sequoia Messaging Rate Benchmark
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedley, Andrew
2008-01-22
The purpose of this benchmark is to measure the maximal message rate of a single compute node. The first num_cores ranks are expected to reside on the 'core' compute node for which message rate is being tested. After that, the next num_nbors ranks are neighbors for the first core rank, the next set of num_nbors ranks are neighbors for the second core rank, and so on. For example, testing an 8-core node (num_cores = 8) with 4 neighbors (num_nbors = 4) requires 8 + 8 * 4 - 40 ranks. The first 8 of those 40 ranks are expected tomore » be on the 'core' node being benchmarked, while the rest of the ranks are on separate nodes.« less
Using the Climbing Drum Peel (CDP) Test to Obtain a G(sub IC) value for Core/Facesheet Bonds
NASA Technical Reports Server (NTRS)
Nettles, A. T.; Gregory, Elizabeth D.; Jackson, Justin R.
2006-01-01
A method of measuring the Mode I fracture toughness of core/facesheet bonds in sandwich Structures is desired, particularly with the widespread use of models that need this data as input. This study examined if a critical strain energy release rate, G(sub IC), can be obtained from the climbing drum peel (CDP) test. The CDP test is relatively simple to perform and does not rely on measuring small crack lengths such as required by the double cantilever beam (DCB) test. Simple energy methods were used to calculate G(sub IC) from CDP test data on composite facesheets bonded to a honeycomb core. Facesheet thicknesses from 2 to 5 plies were tested to examine the upper and lower bounds on facesheet thickness requirements. Results from the study suggest that the CDP test, with certain provisions, can be used to find the GIG value of a core/facesheet bond.
NASA Astrophysics Data System (ADS)
Heinzeller, Dominikus; Duda, Michael G.; Kunstmann, Harald
2017-04-01
With strong financial and political support from national and international initiatives, exascale computing is projected for the end of this decade. Energy requirements and physical limitations imply the use of accelerators and the scaling out to orders of magnitudes larger numbers of cores then today to achieve this milestone. In order to fully exploit the capabilities of these Exascale computing systems, existing applications need to undergo significant development. The Model for Prediction Across Scales (MPAS) is a novel set of Earth system simulation components and consists of an atmospheric core, an ocean core, a land-ice core and a sea-ice core. Its distinct features are the use of unstructured Voronoi meshes and C-grid discretisation to address shortcomings of global models on regular grids and the use of limited area models nested in a forcing data set, with respect to parallel scalability, numerical accuracy and physical consistency. Here, we present work towards the application of the atmospheric core (MPAS-A) on current and future high performance computing systems for problems at extreme scale. In particular, we address the issue of massively parallel I/O by extending the model to support the highly scalable SIONlib library. Using global uniform meshes with a convection-permitting resolution of 2-3km, we demonstrate the ability of MPAS-A to scale out to half a million cores while maintaining a high parallel efficiency. We also demonstrate the potential benefit of a hybrid parallelisation of the code (MPI/OpenMP) on the latest generation of Intel's Many Integrated Core Architecture, the Intel Xeon Phi Knights Landing.
THE ROLE OF THE MAGNETOROTATIONAL INSTABILITY IN MASSIVE STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, J. Craig; Kagan, Daniel; Chatzopoulos, Emmanouil, E-mail: wheel@astro.as.utexas.edu
2015-01-20
The magnetorotational instability (MRI) is key to physics in accretion disks and is widely considered to play some role in massive star core collapse. Models of rotating massive stars naturally develop very strong shear at composition boundaries, a necessary condition for MRI instability, and the MRI is subject to triply diffusive destabilizing effects in radiative regions. We have used the MESA stellar evolution code to compute magnetic effects due to the Spruit-Tayler (ST) mechanism and the MRI, separately and together, in a sample of massive star models. We find that the MRI can be active in the later stages ofmore » massive star evolution, leading to mixing effects that are not captured in models that neglect the MRI. The MRI and related magnetorotational effects can move models of given zero-age main sequence mass across ''boundaries'' from degenerate CO cores to degenerate O/Ne/Mg cores and from degenerate O/Ne/Mg cores to iron cores, thus affecting the final evolution and the physics of core collapse. The MRI acting alone can slow the rotation of the inner core in general agreement with the observed ''initial'' rotation rates of pulsars. The MRI analysis suggests that localized fields ∼10{sup 12} G may exist at the boundary of the iron core. With both the ST and MRI mechanisms active in the 20 M {sub ☉} model, we find that the helium shell mixes entirely out into the envelope. Enhanced mixing could yield a population of yellow or even blue supergiant supernova progenitors that would not be standard SN IIP.« less
Characterization and physical properties of hydrate bearing sediments
NASA Astrophysics Data System (ADS)
Terzariol, M.; Santamarina, C.
2016-12-01
The amount of carbon trapped in hydrates is estimated to be larger than in conventional oil and gas reservoirs, thus methane hydrate is a promising energy resource. The high water pressure and the relatively low temperature needed for hydrate stability restrict the distribution of methane hydrates to continental shelves and permafrost regions. Stability conditions add inherent complexity to coring, sampling, handling, testing and data interpretation, have profound implications on potential production strategies. Thus a novel technology is developed for handling, transferring, and testing of natural hydrate bearing sediments without depressurization in order to preserve the sediment structure. Results from the first deployment of these tools on natural samples from Nankai Trough, Japan will also be summarized. Finally, to avoid consequences of poor sampling, a new multi-sensor in-situ characterization tool will be introduced.
Flow reversal power limit for the HFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Lap Y.; Tichler, P.R.
The High Flux Beam Reactor (HFBR) undergoes a buoyancy-driven reversal of flow in the reactor core following certain postulated accidents. Uncertainties about the afterheat removal capability during the flow reversal has limited the reactor operating power to 30 MW. An experimental and analytical program to address these uncertainties is described in this report. The experiments were single channel flow reversal tests under a range of conditions. The analytical phase involved simulations of the tests to benchmark the physical models and development of a criterion for dryout. The criterion is then used in simulations of reactor accidents to determine a safemore » operating power level. It is concluded that the limit on the HFBR operating power with respect to the issue of flow reversal is in excess of 60 MW.« less
Advanced Pressure Coring System for Deep Earth Sampling (APRECOS)
NASA Astrophysics Data System (ADS)
Anders, E.; Rothfuss, M.; Müller, W. H.
2009-04-01
Nowadays the recovery of cores from boreholes is a standard operation. However, during that process the mechanical, physical, and chemical properties as well as living conditions for microorganisms are significantly altered. In-situ sampling is one approach to overcome the severe scientific limitations of conventional, depressurized core investigations by recovering, processing, and conducting experiments in the laboratory, while maintaining unchanged environmental parameters. The most successful equipment today is the suite of tools developed within the EU funded projects HYACE (Hydrate Autoclave Coring Equipment) and HYACINTH (Deployment of HYACE tools In New Tests on Hydrates) between 1997 and 2005. Within several DFG (German Research Foundation) projects the Technical University Berlin currently works on concepts to increase the present working pressure of 250 bar as well as to reduce logistical and financial expenses by merging redundant and analogous procedures and scaling down the considerable size of key components. It is also proposed to extend the range of applications for the wireline rotary pressure corer and the sub-sampling and transfer system to all types of soil conditions (soft to highly-consolidated). New modifications enable the tools to be used in other pressure related fields of research, such as unconventional gas exploration (coal-bed methane, tight gas, gas hydrate), CO2 sequestration, and microbiology of the deep biosphere. Expedient enhancement of an overall solution for pressure core retrieval, process and investigation will open the way for a complete on-site, all-purpose, in-situ equipment. The advanced assembly would allow for executing the whole operation sequences of coring, non-destructive measurement, sub-sampling and transfer into storage, measurement and transportation chambers, all in sterile, anaerobic conditions, and without depressurisation in quick succession. Extensive post-cruise handling and interim storage would be dispensable. The complete core processing and preparation of in-situ sample sections for worldwide shipping could be conducted within hours after retrieval.
NASA Astrophysics Data System (ADS)
Bouffard, M.
2016-12-01
Convection in the Earth's outer core is driven by the combination of two buoyancy sources: a thermal source directly related to the Earth's secular cooling, the release of latent heat and possibly the heat generated by radioactive decay, and a compositional source due to the crystallization of the growing inner core which releases light elements into the liquid outer core. The dynamics of fusion/crystallization being dependent on the heat flux distribution, the thermochemical boundary conditions are coupled at the inner core boundary which may affect the dynamo in various ways, particularly if heterogeneous conditions are imposed at one boundary. In addition, the thermal and compositional molecular diffusivities differ by three orders of magnitude. This can produce significant differences in the convective dynamics compared to pure thermal or compositional convection due to the potential occurence of double-diffusive phenomena. Traditionally, temperature and composition have been combined into one single variable called codensity under the assumption that turbulence mixes all physical properties at an "eddy-diffusion" rate. This description does not allow for a proper treatment of the thermochemical coupling and is certainly incorrect within stratified layers in which double-diffusive phenomena can be expected. For a more general and rigorous approach, two distinct transport equations should therefore be solved for temperature and composition. However, the weak compositional diffusivity is technically difficult to handle in current geodynamo codes and requires the use of a semi-Lagrangian description to minimize numerical diffusion. We implemented a "particle-in-cell" method into a geodynamo code to properly describe the compositional field. The code is suitable for High Parallel Computing architectures and was successfully tested on two benchmarks. Following the work by Aubert et al. (2008) we use this new tool to perform dynamo simulations including thermochemical coupling at the inner core boundary as well as exploration of the infinite Lewis number limit to study the effect of a heterogeneous core mantle boundary heat flow on the inner core growth.
NASA Astrophysics Data System (ADS)
O'Connor, Evan Patrick
Core-Collapse Supernovae are one of the most complex astrophysical systems in the universe. They deeply entwine aspects of physics and astrophysics that are rarely side by side in nature. To accurately model core-collapse supernovae one must self-consistently combine general relativity, nuclear physics, neutrino physics, and magneto-hydrodynamics in a symmetry-free computational environment. This is a challenging task, as each one of these aspects on its own is an area of great study. We take an open approach in an effort to encourage collaboration in the core-collapse supernovae community. In this thesis, we develop a new open-source general-relativistic spherically-symmetric Eulerian hydrodynamics code for studying stellar collapse, protoneutron star formation, and evolution until black hole formation. GR1D includes support for finite temperature equations of state and an efficient and qualitatively accurate treatment of neutrino leakage. GR1D implements spherically-symmetric rotation, allowing for the study of slowly rotating stellar collapse. GR1D is available at http://www.stellarcollapse.org. We use GR1D to perform an extensive study of black hole formation in failing core-collapse supernovae. Over 100 presupernova models from various sources are used in over 700 total simulations. We systematically explore the dependence of black hole formation on the input physics: initial zero-age main sequence (ZAMS) mass and metallicity, nuclear equation of state, rotation, and stellar mass loss rates. Assuming the core-collapse supernova mechanism fails and a black hole forms, we find that the outcome, for a given equation of state, can be estimated, to first order, by a single parameter, the compactness of the stellar core at bounce. By comparing the protoneutron star structure at the onset of gravitational instability with solutions of the Tolman-Oppenheimer-Volkof equations, we find that thermal pressure support in the outer protoneutron star core is responsible for raising the maximum protoneutron star mass by up to 25% above the cold neutron star value. By artificially increasing neutrino heating, we find the critical neutrino heating efficiency required for exploding a given progenitor structure and connect these findings with ZAMS conditions. This establishes, albeit approximately, for the first time based on actual collapse simulations, the mapping between ZAMS parameters and the outcome of core collapse. We also use GR1D to study proposed progenitors of long-duration gamma-ray bursts. We find that many of the proposed progenitors have core structures similar to garden-variety core-collapse supernovae. These are not expected to form black holes, a key ingredient of the collapsar model of long-duration gamma-ray bursts. The small fraction of proposed progenitors that are compact enough to form black holes have fast rotating iron cores, making them prone to a magneto-rotational explosion and the formation of a protomagnetar rather than a black hole. Finally, we present preliminary work on a fully general-relativistic neutrino transport code and neutrino-interaction library. Following along with the trends explored in our black hole formation study, we look at the dependence of the neutrino observables on the bounce compactness. We find clear relationships that will allow us to extract details of the core structure from the next galactic supernova. Following the open approach of GR1D, the neutrino transport code will be made open-source upon completion. The open-source neutrino-interaction library, NuLib, is already available at http://www.nulib.org.
Analysis of fuel options for the breakeven core configuration of the Advanced Recycling Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stauff, N.E.; Klim, T.K.; Taiwo, T.A.
2013-07-01
A trade-off study is performed to determine the impacts of various fuel forms on the core design and core physics characteristics of the sodium-cooled Toshiba- Westinghouse Advanced Recycling Reactor (ARR). The fuel forms include oxide, nitride, and metallic forms of U and Th. The ARR core configuration is redesigned with driver and blanket regions in order to achieve breakeven fissile breeding performance with the various fuel types. State-of-the-art core physics tools are used for the analyses. In addition, a quasi-static reactivity balance approach is used for a preliminary comparison of the inherent safety performances of the various fuel options. Thorium-fueledmore » cores exhibit lower breeding ratios and require larger blankets compared to the U-fueled cores, which is detrimental to core compactness and increases reprocessing and manufacturing requirements. The Th cores also exhibit higher reactivity swings through each cycle, which penalizes reactivity control and increases the number of control rods required. On the other hand, using Th leads to drastic reductions in void and coolant expansion coefficients of reactivity, with the potential for enhancing inherent core safety. Among the U-fueled ARR cores, metallic and nitride fuels result in higher breeding ratios due to their higher heavy metal densities. On the other hand, oxide fuels provide a softer spectrum, which increases the Doppler effect and reduces the positive sodium void worth. A lower fuel temperature is obtained with the metallic and nitride fuels due to their higher thermal conductivities and compatibility with sodium bonds. This is especially beneficial from an inherent safety point of view since it facilitates the reactor cool-down during loss of power removal transients. The advantages in terms of inherent safety of nitride and metallic fuels are maintained when using Th fuel. However, there is a lower relative increase in heavy metal density and in breeding ratio going from oxide to metallic or nitride Th fuels relative to the U counterpart fuels. (authors)« less
The effects of passive heating and head-cooling on perception of exercise in the heat.
Simmons, Shona E; Mündel, Toby; Jones, David A
2008-09-01
The capacity to perform exercise is reduced in a hot environment when compared to cooler conditions. A limiting factor appears to be a higher core body temperature (T (core)) and it has been suggested that an elevated T (core) reduces the drive to exercise, this being reflected in higher ratings of perceived exertion (RPE). The purpose of the present study was to determine whether passive heating to increase T (core) would have a detrimental effect on RPE and thermal comfort during subsequent exercise in the heat and whether head-cooling during passive heating would attenuate these unpleasant sensations of an elevated T (core) during subsequent exercise in the heat. Nine physically-active, non-heat-acclimated volunteers [6 males, 3 females; age: 21 +/- 1 year, VO(2max) 50 +/- 9 ml kg(-1).min(-1), peak power output: 286 +/- 43 W (mean +/- SD)] performed two 12-minute constant-load cycling tests at 70% VO(2max) in a warm-dry environment (34 +/- 1 degrees C, relative humidity <30%) separated by a period of passive heating in a sauna (68 +/- 3 degrees C) to increase T (core). In one trial, subjects had their head and face cooled continually in the sauna (HC), the other trial was a control (CON). Passive heating increased T (core) by 1.22 +/- 0.03 degrees C in the CON and by 0.75 +/- 0.07 degrees C in the HC trial (P < 0.01). Passive heating increased weighted mean skin temperature (T (msk)) in both the CON and HC trials (P < 0.01), however, head-cooling lowered T (msk) during passive heating (P < 0.05). Exercise time following passive heating was reduced in both the CON and HC trials (P < 0.05). Passive heating increased RPE (P < 0.01), however, RPE was lower following passive heating with head-cooling (P < 0.05). There was a significant correlation between T (core) and RPE (r = 0.82, P < 0.001). In conclusion, our results suggest increased RPE during exercise in the heat is primarily due to the increase in T (core). Furthermore, head-cooling attenuates the rise in T (core) and the effect on RPE is proportional to the rise on T (core).